

PHP 8 Objects, Patterns,
and Practice: Volume 2

Mastering Essential
Development Tools

Seventh Edition

Matt Zandstra

PHP 8 Objects, Patterns, and Practice: Volume 2: Mastering Essential
Development Tools, Seventh Edition

ISBN-13 (pbk): 979-8-8688-0778-7		 ISBN-13 (electronic): 979-8-8688-0779-4
https://doi.org/10.1007/979-8-8688-0779-4

Copyright © 2025 by Matt Zandstra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson Prior
Editorial Assistant: Jacob Shmulewitz

Cover designed by eStudioCalamar

Cover image designed by Pawel Czerwinski on Unsplash

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/services/
source-code.

If disposing of this product, please recycle the paper

Matt Zandstra
Brighton, UK

https://doi.org/10.1007/979-8-8688-0779-4

To Louise. Still the whole point.

v

Table of Contents

About the Author�� xiii

Acknowledgments��xv

Introduction��xvii

Chapter 1: �Good (and Bad) Practice�� 1

Beyond Code�� 2

Borrowing a Wheel��� 2

Playing Nice��� 5

Giving Your Code Wings��� 6

Standards��� 7

Vagrant and Docker��� 8

Testing��� 8

Command-Line Scripting��� 10

Continuous Integration��� 10

Summary��� 11

Chapter 2: �Generating Documentation with phpDocumentor���������������������������������� 13

Why Document?��� 14

Installation��� 15

Generating Documentation�� 15

DocBlock Comments�� 18

Documenting Classes�� 20

File-Level Documentation�� 21

Documenting Properties�� 22

https://doi.org/10.1007/979-8-8688-0779-4_1
https://doi.org/10.1007/979-8-8688-0779-4_1
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_2
https://doi.org/10.1007/979-8-8688-0779-4_2
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec7

vi

Documenting Methods��� 23

Creating Links in Documentation��� 25

Summary��� 29

Chapter 3: �PHP Standards��� 31

Why Standards?��� 31

What Are PHP Standards Recommendations?��� 32

Why PSR in Particular?��� 34

Who Are PSRs For?��� 34

Coding with Style��� 35

PSR-1 Basic Coding Standard�� 36

PSR-12 Extended Coding Style��� 39

PSR-4 Autoloading��� 47

The Rules That Matter to Us��� 47

PSR-11 Container Interface��� 51

Summary��� 53

Chapter 4: �Refactoring and Standards Tools��� 55

PHP_CodeSniffer�� 56

Checking and Fixing Your Code�� 56

Managing the Scope of an Analysis��� 59

Creating Your Own Sniff�� 61

PHPStan��� 69

Installing PHPStan�� 69

Running PHPStan��� 69

Rule Levels��� 70

Telling PHPStan to Ignore Errors��� 72

Array Arguments: Correcting Outside the Language�� 74

Summary��� 76

Table of Contents

https://doi.org/10.1007/979-8-8688-0779-4_2#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_3
https://doi.org/10.1007/979-8-8688-0779-4_3
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec24
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec25
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec26
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec27
https://doi.org/10.1007/979-8-8688-0779-4_4
https://doi.org/10.1007/979-8-8688-0779-4_4
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec13
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec14
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec15

vii

Chapter 5: �Using and Creating Components with Composer����������������������������������� 77

What Is Composer?�� 78

Installing Composer��� 78

Installing a (Set of) Package(s)�� 79

Installing a Package from the Command Line�� 80

Versions�� 81

require-dev��� 83

Composer and Autoload��� 85

Creating Your Own Package��� 86

Adding Package Information�� 86

Platform Packages��� 87

Distribution Through Packagist�� 88

Keeping It Private��� 92

Summary��� 94

Chapter 6: �Version Control with Git��� 95

Why Use Version Control?�� 95

Getting Git�� 97

Using an Online Git Repository��� 98

Configuring a Git Server��� 100

Creating the Remote Repository��� 101

Beginning a Project�� 103

Cloning the Repository��� 107

Updating and Committing�� 108

Adding and Removing Files and Directories�� 113

Adding a File��� 113

Removing a File�� 114

Adding a Directory�� 114

Removing Directories��� 115

Renaming Files or Directories�� 115

Table of Contents

https://doi.org/10.1007/979-8-8688-0779-4_5
https://doi.org/10.1007/979-8-8688-0779-4_5
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec13
https://doi.org/10.1007/979-8-8688-0779-4_6
https://doi.org/10.1007/979-8-8688-0779-4_6
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec13
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec14
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec15
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec16
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec17

viii

Tagging a Release�� 115

Branching a Project�� 117

Summary��� 128

Chapter 7: �Testing with PHPUnit�� 129

Functional Tests and Unit Tests�� 130

Testing by Hand�� 131

Introducing PHPUnit��� 134

Creating a Test Case��� 135

Assertion Methods�� 139

Testing Exceptions�� 140

Running Test Suites�� 142

Constraints��� 143

Mocks and Stubs�� 146

Tests Succeed When They Fail��� 150

Writing Web Tests��� 156

Introducing Selenium��� 157

A Note of Caution��� 167

Summary��� 169

Chapter 8: �Vagrant��� 171

The Problem��� 171

A Little Setup�� 173

Choosing and Installing a Vagrant Box��� 173

Mounting Local Directories on the Vagrant Box��� 176

Provisioning��� 179

Setting Up the Web Server��� 181

Setting Up MariaDB�� 182

Configuring a Hostname��� 183

Wrapping It Up��� 185

Summary��� 187

Table of Contents

https://doi.org/10.1007/979-8-8688-0779-4_6#Sec18
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec19
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec20
https://doi.org/10.1007/979-8-8688-0779-4_7
https://doi.org/10.1007/979-8-8688-0779-4_7
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec20
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec21
https://doi.org/10.1007/979-8-8688-0779-4_8
https://doi.org/10.1007/979-8-8688-0779-4_8
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec10

ix

Chapter 9: �Docker�� 189

What Is Docker?��� 190

Getting Docker��� 190

Running an Image�� 192

Establishing Some Docker Terms��� 193

Acquiring an Image with docker pull��� 194

Creating and Invoking a Container with docker run��� 195

Listing Containers�� 196

Accessing a Container with docker run��� 197

Running a Container in the Background�� 197

Accessing a Container with docker exec��� 198

Building Your Own Image��� 199

In the Weeds with CMD and ENTRYPOINT�� 201

Mounting a Local Directory�� 204

A Single Command Development Environment��� 205

Building a System Out of Multiple Containers��� 206

Removing Images and Containers��� 208

Creating and Using a Named Bridge Network��� 210

Docker Compose�� 213

Resetting the Project�� 214

The Compose File��� 214

Combining Docker Compose and Dockerfile�� 216

Adding a Second Service��� 217

What About Composer?�� 219

Some Docker Compose Commands��� 221

Summary��� 222

Chapter 10: �Automating Build and Deployment with Ansible�������������������������������� 223

What Is Ansible?��� 224

Getting Ansible��� 224

Confirming Your Install��� 225

Table of Contents

https://doi.org/10.1007/979-8-8688-0779-4_9
https://doi.org/10.1007/979-8-8688-0779-4_9
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec13
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec14
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec15
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec16
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec17
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec18
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec19
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec20
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec21
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec22
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec23
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec24
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec25
https://doi.org/10.1007/979-8-8688-0779-4_10
https://doi.org/10.1007/979-8-8688-0779-4_10
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec3

x

Command-Line Utilities�� 226

Hello, Ansible�� 227

Inventories: Working with Hosts��� 229

Checking Out a Git Repository��� 234

Copying a Configuration File�� 235

Some More on Variables�� 236

Declaring Variables with vars��� 236

Overriding Variables from the Command Line�� 237

Placing Variables in Files�� 238

Interpolating Values into a File��� 239

Managing Secrets with Ansible Vault��� 241

Checking in on Megaquiz��� 243

Inventory Variables��� 246

The Composer Module��� 248

Conditionals��� 249

Summary��� 250

Chapter 11: �PHP on the Command Line��� 251

Why the Command Line?��� 252

A Dummy Function��� 253

Autoloading�� 254

Acquiring Arguments��� 255

The Shebang�� 256

Error Conditions��� 257

Usage��� 258

Handling Arguments and Options�� 260

Options��� 260

Introducing getopt�� 262

The Problem with getopt()�� 263

Using GetOpt.php�� 263

Enforcing Positional Arguments��� 268

Table of Contents

https://doi.org/10.1007/979-8-8688-0779-4_10#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec13
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec14
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec15
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec16
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec17
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec18
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec19
https://doi.org/10.1007/979-8-8688-0779-4_11
https://doi.org/10.1007/979-8-8688-0779-4_11
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec13

xi

Handling Output��� 269

Updating the Example Script��� 271

Adding Verbose Mode��� 273

Prompted Input�� 275

Piped Input��� 276

Packaging Up��� 277

Distribution with Composer�� 278

Creating a Phar��� 281

Executing Shell Commands��� 283

Summary��� 286

Chapter 12: �Continuous Integration��� 287

What Is Continuous Integration?�� 288

Preparing a Project for CI��� 290

Getting and Installing Jenkins�� 293

Installing Jenkins��� 294

Installing Jenkins Plug-ins��� 297

Setting Up Git in Jenkins�� 298

Configuring Composer and PHPUnit��� 302

Running the First Build��� 304

Triggering Builds�� 304

A Jenkins Agent�� 308

GitHub Actions�� 315

Why GitHub Actions?�� 316

The Basics�� 316

Checking Out the Code��� 320

Running Composer��� 321

Running PHPUnit�� 323

What Next?��� 324

Summary�� 325

Table of Contents

https://doi.org/10.1007/979-8-8688-0779-4_11#Sec14
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec15
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec16
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec17
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec18
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec19
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec20
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec21
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec22
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec23
https://doi.org/10.1007/979-8-8688-0779-4_12
https://doi.org/10.1007/979-8-8688-0779-4_12
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec18
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec19
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec20
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec21
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec22
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec23
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec24
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec25

xii

Chapter 13: �PHP Practice�� 327

Practice�� 328

Testing�� 329

Standards and Standards Tools�� 329

Inline Documentation��� 330

Development Environments�� 330

Version Control��� 331

Build and Deployment�� 331

Command-Line Scripting�� 332

Continuous Integration��� 332

What I Missed��� 333

Summary��� 335

�Bibliography�� 337

�Index�� 341

Table of Contents

https://doi.org/10.1007/979-8-8688-0779-4_13
https://doi.org/10.1007/979-8-8688-0779-4_13
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec11

xiii

About the Author

Matt Zandstra has worked as a web programmer, consultant, and writer for over two

decades. In addition to this book, he is the author of Sams Teach Yourself PHP in 24

Hours (three editions) and a contributor to DHTML Unleashed. He has written articles

for Linux Magazine, Zend, IBM DeveloperWorks, and PHP Architect magazine and also

writes fiction.

Matt was a senior developer/tech lead at Yahoo and API tech lead at LoveCrafts.

He now runs an agency that advises companies on their architectures and system

management and develops systems primarily with PHP, Python, and Java.

xv

Acknowledgments

I have benefited from the support of many people while working on this edition. But

as always, I must also look back to the book’s origins. I tried out some of this book’s

underlying concepts in a talk in Brighton, back when we were all first marveling at

the shiny possibilities of PHP 5. Thanks to Andy Budd, who hosted the talk, and to the

vibrant Brighton developer community. Thanks also to Jessey White-Cinis, who was at

that meeting and who put me in touch with Martin Streicher at Apress.

Once again, this time around, the Apress team has provided enormous support,

feedback, and encouragement. I am lucky to have benefited from such professionalism.

I'm delighted that my friend and colleague, Paul Tregoing, agreed again to act as

technical reviewer despite many other projects including his own book. This edition

has greatly benefited from Paul’s knowledge, insight, and attention to detail – many

thanks Paul!

Thanks and love to my wife, Louise. The production of this book has coincided with

the university careers of my children Holly and Viola who have struggled with their own

deadlines and creative blocks. Thanks are due to them for keeping me company at the

kitchen table as we found our separate ways together!

I write to music, and in previous editions of this book, I remembered the great DJ,

John Peel, champion of the underground and the eclectic. The soundtrack for this

edition was largely provided by BBC Radio 3’s Late Junction and Six Music's Freak

Zone both played on a loop. Thanks to the DJs and musicians who continue to keep

things weird.

xvii

Introduction

When I decided to learn to program, I went out to a bookshop on Tottenham Court

Road in London and bought myself a book about Perl. Excited, I started building an

application before I'd even finished the fourth chapter, which is how I managed to write

a working forum application without yet knowing how to define a subroutine. That's

another story, though (one involving very very big loops). Once I had finished reading

the book and rounded out my understanding, I felt sure I had learned everything I

needed to know. I was ready.

It was only then that I began to perceive new gaps in my knowledge. Some of it was

relatively easy to fix. I was able to find books on the Unix shell and CGI to address the

most obvious chasm. But, even after that, I had questions. Where would I store my code?

How would I collaborate with other developers without overwriting their work or having

my own work clobbered? How should I source libraries and manage dependencies?

What about development environments? What was the best way to deploy my code?

How could I test the systems I built?

The answers could be found online – though search in those days was rudimentary. I

spent a lot of time on the Usenet search engine DejaNews and pieced together a working

practice. In retrospect, it was somewhat suboptimal in all sorts of ways, but it was

enough to help me get systems into the world. Over the years, I joined teams and learned

from knowledgeable people. I searched out more books. My practice improved.

The coverage gap was not the fault of that Perl book's author. He did a brilliant job

within the book's remit. But when I came to pitch a book about coding with objects in

PHP, I thought about the extent of that remit. Although I wanted to write about objects

and design, I did not want to do so in an absolute vacuum. I wanted to write a practical

book – a book that helped with the last yard of development too. So I added practice to

my PHP, objects, and patterns proposal.

xviii

PHP 8 Objects, Patterns, and Practice has evolved over the years and grown from a

slim volume to a full on doorstopper. When the time came for a seventh edition, I had

additions in mind as usual. As well as revising the existing topics covered by the Practice

section, I wanted to include more on continuous integration, to add new subjects such

as PHPStan, Docker, Ansible, and command-line PHP scripting.

Of course, that was impossible. The sixth edition was huge. There was no way we

could create a seventh edition that was even larger. Unless, of course, we broke the book

into two volumes. So that is what we did. I hope you enjoy the result.

Introduction

1
© Matt Zandstra 2025
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_1

CHAPTER 1

Good (and Bad) Practice
In the previous volume, I focused on coding, concentrating particularly on the role of

design in building flexible and reusable tools and applications. Development doesn’t

end with code, however. It is possible to come away from books and courses with a solid

understanding of a language, yet still encounter problems when it comes to running and

deploying a project.

In this volume, I will move beyond code to cover some of the tools and techniques

that form the underpinnings of a successful development process. This chapter will

cover the following:

•	 Third-party packages: Where to get them and when to use them.

•	 Deployment: Pushing your code across servers, applying

configuration.

•	 Version control: Bringing harmony to the development process.

•	 Documentation: Writing code that is easy to understand, use,

and extend.

•	 Unit testing: A tool for automated bug detection and prevention.

•	 Standards: Why it’s sometimes good to follow the herd.

•	 Development environments: Every developer needs a lab of their own.

A coder should be able to work safely with a system that resembles

the production environment, no matter their hardware or OS.

•	 Scripting the command line: PHP may be known as a web technology,

but it can be just as powerful on the command line.

•	 Continuous integration: Using this practice and set of tools to

automate project builds and tests as well as to warn of problems as

they occur.

https://doi.org/10.1007/979-8-8688-0779-4_1#DOI

2

�Beyond Code
When I first graduated from working on my own and took a place in a development

team, I was astonished at how much stuff other developers seemed to have to know.

Good-natured arguments simmered endlessly over issues of vital-seeming importance:

Which is the best text editor? Should the team standardize on an integrated development

environment? Should we impose a coding standard? How should we test our code?

Should we document as we develop? Sometimes, these issues seemed more important

than the code itself, and my colleagues seemed to have acquired their encyclopedic

knowledge of the domain through some strange process of osmosis.

The books I had read on PHP, Perl, and Java certainly didn’t stray from the code

itself to any great extent. As I discussed in the previous volume, many books about

programming rarely diverge from their tight focus on functions and syntax to take in

code design. If design is off topic, you can be sure that wider issues such as version

control and testing are rarely discussed. This is not a criticism – if a book professes to

cover the main features of a language, it should be no surprise that this is principally

what it does.

In learning about code, however, I found that I had neglected many of the mechanics

of a project’s day-to-day life. I discovered that some of these details were critical to the

success or failure of projects I helped develop. In this chapter, and in more detail in

coming chapters, I will look beyond code to explore some of the tools and techniques on

which the success of your projects may depend.

�Borrowing a Wheel
When faced with a challenging but discrete requirement in a project (the need to parse a

particular format, perhaps, or to use a novel protocol in talking to a remote server), there

is a lot to be said for building a component that addresses the need. It can also be one of

the best ways to learn your craft. In creating a package, you gain insight into a problem

and file away new techniques that might have wider application.

You invest at once in your project and in your own skills. By keeping functionality

internal to your system, you can save your users from having to download third-party

packages. Occasionally, too, you may sidestep thorny licensing issues. There’s nothing like

the sense of satisfaction you can get when you test a component you designed yourself

and find that, wonder of wonders, it works – it does exactly what you wrote on the tin.

Chapter 1 Good (and Bad) Practice

3

There is a dark side to all this, of course. Many packages represent an investment of

thousands of person-hours: a resource that you may not have on hand. You may be able

to address this by developing only the functionality needed specifically by your project,

whereas a third-party tool might fulfill a myriad of other needs as well. The question

remains, however: If a freely available tool exists, why are you squandering your talents

in reproducing it? Do you have the time and resources to develop, test, and debug your

package? Might not this time be better deployed elsewhere?

I am one of the worst offenders when it comes to wheel reinvention. Picking apart

problems and inventing solutions to them is a fundamental part of what we do as coders.

Getting down to some serious architecture is a more rewarding prospect than writing

some glue to stitch together three or four existing components. When this temptation

comes over me, I remind myself of projects past. Although the choice to build from

scratch has never killed a project in my experience, I have seen it devour schedules and

murder profit margins. There I sit with a manic gleam in my eye, hatching plots and

spinning class diagrams, failing to notice as I obsess over the details of my component

that the big picture is now a distant memory.

Now, when I map out a project, I try to develop a feel for what belongs inside the

code base and what should be treated as a third-party requirement. For example, your

application may generate (or read) an RSS feed, and you may need to validate email

addresses and automate mailouts, authenticate users, or read from a standard-format

configuration file. All of these needs can be fulfilled by external packages.

In previous versions of this book, I suggested that PEAR (PHP Extension and

Application Repository) was the way to go for packages. Times change, though, and

the PHP world has very definitely moved to the Composer dependency manager

and its default repository, Packagist (https://packagist.org). Because Composer

manages packages on a per-project basis, it is less prone to the dreaded dependency hell

syndrome (where different packages require incompatible versions of the same library).

Besides, the fact that all the action has moved to Composer/Packagist means that

you’re more likely to find what you’re looking for there. What’s more, many of the PEAR

packages are available through Packagist (https://packagist.org/packages/pear/).

So, once you have defined your needs, your first stop should be the Packagist

site. You can then use Composer to install your package and to manage package

dependencies. I will cover Composer in more detail in Chapter 5.

Chapter 1 Good (and Bad) Practice

https://packagist.org
https://packagist.org/packages/pear/
https://doi.org/10.1007/979-8-8688-0779-4_5

4

To give you some idea of what’s available using Composer and Packagist, here are

just a few of the things you can do with the packages you’ll find there:

•	 Cache output with pear/cache_lite

•	 Test the efficiency of your code with the athletic/athletic

benchmark library

•	 Abstract the details of database access with doctrine/dbal

•	 Extract RSS feeds with simplepie/simplepie

•	 Access REST APIs with guzzlehttp/guzzle

•	 Parse configuration file formats with symfony/config

•	 Parse and manipulate URLs with league/uri

The Packagist website provides a powerful search facility. You may find packages that

address your needs there, or you may need to cast your net wider using a search engine.

Either way, you should always take time to assess existing packages before setting out to

potentially reinvent that wheel.

The fact that you have a need – and that a package exists to address it – should not

be the start and end of your deliberations. Although it is preferable to use a package

where it will save you otherwise unnecessary development, in some cases, it can add

overhead without real gain. You may find that a clean and focused class will get the

job done without bloat or that PHP provides a decent built-in solution. Nonetheless,

many programmers, myself included, often place too much emphasis on the creation of

original code, sometimes to the detriment of their projects.

Note T he unwillingness to use third-party tools and solutions is often built-in
at the institutional level. This tendency to treat external products with suspicion
is sometimes known as the not invented here syndrome. As a further note, the
technical reviewer and fellow sf fan Paul Tregoing points out that Not Invented Here
is also the name of a ship in Iain M. Banks’ Culture series.

This emphasis on authorship may be one reason that there often seems to be more

creation than actual use of reusable code.

Chapter 1 Good (and Bad) Practice

5

Effective programmers see original code as just one of the tools available to aid them

in engineering a project’s successful outcome. Such programmers look at the resources

they have at hand and deploy them effectively. If a package exists to take some strain,

then that is a win. To steal and paraphrase an aphorism from the Perl world: good coders

are lazy.

�Playing Nice
The truth of Sartre’s famous dictum that “Hell is other people” is proved on a daily

basis in some software projects. This might describe the relationship between clients

and developers, symptomized by the many ways that lack of communication leads to

creeping features and skewed priorities. But the cap fits, too, for happily communicative

and cooperative team members when it comes to sharing code.

As soon as a project has more than one developer, version control becomes a critical

issue. A single coder may work on code in place, saving a copy of her working directory at

key points in development. Introduce another programmer to the mix, and this strategy

breaks down in minutes. If the new developer works in the same development directory,

then there is a real chance that one programmer will overwrite the work of his colleague

when saving, unless both are very careful to always work on different files.

Alternatively, our two developers can each take a version of the code base to work on

separately. That works fine until the moment comes to reconcile the two versions. Unless

the developers have worked on entirely different sets of files, the task of merging two or

more development strands rapidly becomes an enormous headache.

This is where Git, Subversion, and similar tools come in. Using a version control

system, you can check out your own version of a code base and work on it until you are

happy with the result. You can then update your version with any changes that your

colleagues have been making. The version control software will automatically merge

these changes into your files, notifying you of any conflicts it cannot handle. Once you

have tested this new hybrid, you can save it to the central repository, making it available

to other developers.

Version control systems provide you with other benefits. They keep a complete

record of all stages of a project, so you can roll back to, or grab a snapshot of, any point

in the project’s lifetime. You can also create branches, so that you can maintain a public

release at the same time as a bleeding-edge development version.

Chapter 1 Good (and Bad) Practice

6

Once you have used version control on a project, you will not want to attempt

another without it. Working simultaneously with multiple branches of a project can be

a conceptual challenge, especially at first, but the benefits soon become clear. Version

control is just too useful to live without. I cover Git in Chapter 17.

Note T he current edition of this book was written and edited in plain text
(Markdown format) using Git as a collaboration tool.

�Giving Your Code Wings
Have you ever seen your code grounded because it is just too hard to build? This is

especially a danger for projects that are developed in place. Such projects settle into

their context, with passwords and directories, databases, and helper application

invocations programmed right into the code. Deploying a project of this kind can be a

major undertaking, with teams of programmers picking through source code to amend

settings, so that they fit the new environment.

This problem can be eased to some degree by providing a centralized configuration

file or class so that settings can be changed in one place. But even then, deployment

can be a chore. The difficulty or ease of build will impede or encourage frequent

deployments during development.

As with any repetitive and time-consuming task, build should be automated. A

deployment tool can determine default values for install locations, check and change

permissions, create databases, and initialize variables, among a dizzying range of other

tasks. In fact, such a tool should be able to do just about anything you need to get an

application from a source directory in a distribution to full deployment.

Cloud products such as Amazon’s AWS CodePipeline have made it possible to create

test and staging environments as needed. Good deployment solutions are essential in

order to take full advantage of these resources. It’s no good being able to provision a

server on an automated basis if you can’t also deploy your system on the fly.

Of course, the most straightforward way to move code is by using a version control

system like Git. You can also acquire third-party dependencies (or your own packages) using

Composer which, together with the Packagist repository, provides access to thousands of

libraries. Powerful as these tools are, they do not cover configuration management, and

even for simple use cases, they’d need to be orchestrated. I cover Composer in Chapter 5.

Chapter 1 Good (and Bad) Practice

https://doi.org/10.1007/979-8-8688-0779-4_17
https://doi.org/10.1007/979-8-8688-0779-4_5

7

In Chapter 10, I introduce Ansible. This powerful deployment tool can install your

code onto multiple servers, typically utilizing Git to acquire core code and Composer

for third-party dependencies. Build is about much more than the process of placing

file A in location B, however. Ansible can manage your system’s secrets and general

configuration. It can also run tests and other quality control tools or even manage

server-level provisioning.

�Standards
I mentioned previously that this book shifted its focus from PEAR to Composer. Is this

because Composer is much better than PEAR? I do love lots of things about Composer,

and these might (in fact, probably would) swing the decision on their own. The

principal reason the book shifted a couple of editions back, though, is that everyone

else had shifted. Composer has become the standard for dependency management.

That is crucial because it means that when I find a package at Packagist, I am also

likely to find all its dependencies and related packages. I’ll even find many of the PEAR

packages there.

Choosing a standard for dependency management, then, ensures availability and

interoperability. But standards apply beyond packages and dependencies to the ways

that systems work and to the ways that we code. If we agree on protocols, then our

systems and teams can integrate seamlessly with one another. And, as more and more

components mix across more and more systems, that is increasingly essential.

Where a definitive way of handling, say, logging, is needed, it is obviously ideal that

we adopt the best protocol. But the quality of the recommendation (which will dictate

formats, log levels, etc.) is possibly less important than the fact that we all comply with it.

It’s no good implementing the best standard if you’re the only person doing it.

In Chapter 15, I discuss standards in more detail with particular reference to a set

of recommendations managed by the PHP-FIG group. These PSRs (PHP Standards

Recommendations) cover everything from caching to security. In the chapter, I will focus

on PSR-1 and PSR-12, recommendations which address the thorny issue of coding style

(where do you like to put your braces? And how do you feel about someone else telling

you to change the way you do it?). Then, I’ll move on to the absolute boon of PSR-4,

which covers autoloading (support for PSR-4 is another area in which Composer excels).

Chapter 1 Good (and Bad) Practice

https://doi.org/10.1007/979-8-8688-0779-4_10
https://doi.org/10.1007/979-8-8688-0779-4_15

8

�Vagrant and Docker
What operating system does your team use? Some organizations mandate a particular

combination of hardware and software, of course. Often, though, there will be a mix. One

developer may have a development machine running Fedora. Another might swear by

his MacBook, and a third may stick with his Alienware Windows box (he probably likes it

for gaming).

Chances are the production system will run on something else entirely – Debian,

perhaps.

It can be a pain getting a system to work across multiple platforms, and it can be a

risk if none of those platforms resemble the production system. You really don’t want to

discover issues related to the production OS after you’ve gone live. In practice, of course,

you’ll likely deploy to a staging environment first. Even so, wouldn’t it be better to catch

these problems early?

Vagrant is a technology that uses virtualization to give all team members a

development environment that is as close as possible to production. Getting up and

running should be as simple as invoking a command or two, and, best of all, everyone

can stick with their favorite machines and distributions (I’m a Fedora guy, for the

record).

Although Vagrant is a fantastic tool, it is also both monolithic and resource hungry.

In order to get an environment up and running, you must create an entire server

environment running on a virtual machine. Docker provides a powerful lightweight

alternative. Instead of running a single silo running its own kernel, Docker allows you to

deploy multiple small containers – one for each of your system’s services. Because, behind

the scenes, a container runs directly on the host machine’s operating system (on Linux, at

least), it is easy to deploy, runs fast, and is relatively sparing on resources. By orchestrating

such containers, you can build a powerful development environment very quickly.

I cover Vagrant in Chapter 8 and Docker in Chapter 9.

�Testing
When you create a class, you are probably pretty sure that it works. You will, after all,

have put it through its paces during development. You’ll also have run your system with

the component in place, checking that it integrates well and that your new functionality

is available and performing as expected.

Chapter 1 Good (and Bad) Practice

https://doi.org/10.1007/979-8-8688-0779-4_8
https://doi.org/10.1007/979-8-8688-0779-4_9

9

Can you be sure that your class will carry on working as expected, though? That

might seem like a silly question. After all, you’ve checked your code once; why should it

stop working arbitrarily? Well, of course, it won’t; nothing happens arbitrarily, and if you

never add another line of code to your system, you can probably breathe easy. If, on the

other hand, your project is active, then it’s inevitable that your component’s context will

change and highly likely that the component itself will be altered in any number of ways.

Let’s look at these issues in turn. First, how can changing a component’s context

introduce errors? Even in a system where components are nicely decoupled from one

another, they remain interdependent. Objects used by your class return values, perform

actions, and accept data. If any of these behaviors change, the effects on the operation of

your class might cause the kind of error that’s easy to catch – the kind where your system

falls over with a convenient error message that includes a file name and line number.

Much more insidious, though, is the kind of change that does not cause an engine-level

error but nonetheless confuses your component. If your class makes an assumption

based on another class’s data, a change in that data might cause it to make a wrong

decision. Your class is now in error and without a change to a line of code.

And it’s likely that you will go on altering the class you’ve just completed. Often,

these changes will be minor and obvious – so minor, in fact, that you won’t feel the

need to run through the careful checks you performed during development. You’ll

have probably forgotten them all, anyhow, unless you kept them in some way (perhaps

commented out at the bottom of your class file). Small changes, though, have a way of

causing large unintended consequences – consequences that might have been caught

had you thought to put a test harness in place.

A test harness is a set of automated tests that can be applied to your system as a

whole or to its individual classes. Well deployed, a test harness helps you to prevent bugs

from occurring and from recurring. A single change may cause a cascade of errors, and

the test harness can help you to locate and eliminate these. This means you can make

changes with some confidence that you are not breaking anything. It is quite satisfying

to make an improvement to your system and then see a list of failed tests. These are all

errors that might have propagated within your system and which now it won’t have to

suffer in production.

Chapter 1 Good (and Bad) Practice

10

�Command-Line Scripting
Typically, any project you work on sprouts a thicket of command-line scripts. You’ll need

to clear down databases, set up test data, run periodic clean up or data population tasks,

and send out mail shots. The list tends to just grow and grow.

Since, by definition, you’re already working with PHP, the language can be an

excellent choice for scripting on the shell. You’re likely to have the PHP interpreter to

hand, after all. You can achieve pretty much everything with PHP that you can with a

shell script, with the added bonus that you’re deploying a familiar language. Thanks to

Composer, you have access to thousands of powerful libraries, making it easy to build

scripts for almost any purpose. What’s more, if you are developing a web application in

PHP, you can easily integrate your PHP shell scripts into it, giving your command-line

utilities seamless access to your software API, and, because you will be using application

configuration, you can take easy advantage of system components like databases or web

services.

Of course, there are considerations to take into account when building command-

line scripts in any language. You need to manage options and positional arguments,

for example. Given the potential variations in argument forms and requirements,

parsing these can be surprisingly challenging. For more complex scripts, you may want

to interactively prompt the user for input or even accept piped data. You also need to

consider how to communicate error conditions and usage information to the user as

well as managing general output and debug messaging.

I cover all this and more in Chapter 11.

�Continuous Integration
Have you ever created a schedule that made everything okay? You start with an

assignment: a code commission maybe or a school project. It’s big and scary, and failure

lurks. But you get out a sheet of paper, and you slice it up into manageable tasks. You

determine the books to read and the components to write. Maybe you highlight the tasks

in different colors. Individually, none of the tasks is actually that scary, it turns out. And

gradually, as you plan, you conquer the deadline. As long as you do a little bit every day,

you’ll be fine. You can relax.

Chapter 1 Good (and Bad) Practice

https://doi.org/10.1007/979-8-8688-0779-4_11

11

Sometimes, though, that schedule takes on a talismanic power. You hold it up like a

shield to protect yourself from doubt and from the creeping fear that perhaps this time

you’ll crash and burn. And it’s only after several weeks that you realize the schedule is

not magic on its own. You actually have to do the work, too. By then, of course, lulled by

the schedule’s reassuring power, you have let things slide. There’s nothing for it but to

make a new schedule. This time, it will be less reassuring.

Testing and building are like that, too. You have to run your tests. You have to build

your projects and build them in fresh environments regularly; otherwise, the magic

won’t work.

And if writing tests is a pain, running them can be a chore, especially as they gain in

complexity and failures interrupt your plans. Of course, if you were running them more

often, you’d probably have fewer failures, and those you did have would stand a good

chance of relating to new code that’s fresh in your mind.

It’s easy to get comfortable in a sandbox. After all, you’ve got all your toys there: little

scriptlets that make your life easy, development tools, and useful libraries. The trouble is

your project may be getting too comfortable in your sandbox, too. It may begin to rely on

uncommitted code or dependencies that you have left out of your build files. That means

it’s broken anywhere else but where you work.

The only answer is to build, build, and build again. And do it in a reasonably virgin

environment each time.

Of course, it’s all very well to advise this; it’s quite another matter to do it. Coders as

a breed tend to like to code. They want to keep the meetings and the housekeeping to a

minimum. That’s where continuous integration (CI) comes in. CI is both a practice and

a set of tools to make the practice as easy as it possibly can be. Ideally, builds and tests

should be entirely automatic or at least launchable from a single command or click. Any

problems will be tracked, and you will be notified before an issue becomes too serious.

I will talk more about CI in Chapter 12.

�Summary
A developer’s aim is always to deliver a working system. Writing good code is an essential

part of this aim’s fulfillment, but it is not the whole story.

In this chapter, I introduced dependency management with Composer and

Packagist. I also covered version control. Once you can install your code and the

components upon which it depends, you’ll need to deploy the system to staging and

Chapter 1 Good (and Bad) Practice

https://doi.org/10.1007/979-8-8688-0779-4_12

12

production environments, managing configuration so that it works appropriately in each

context. I introduced Ansible, a tool designed for the purpose. I also discussed Docker

and Vagrant, two approaches to creating production-like development environments.

I looked at quality control, taking in both standards and automated testing. Even if your

project is web-based, it will likely require scripts for automating development tasks or

for performing scheduled work. I briefly explored some issues relating to command-line

scripting with PHP. Finally, I introduced CI, a set of tools to automate build and testing.

Chapter 1 Good (and Bad) Practice

13
© Matt Zandstra 2025
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_2

CHAPTER 2

Generating
Documentation
with phpDocumentor
Remember that tricky bit of code? The method that called a legacy library and returned

an array of objects which were indexed by product IDs. Or was it product names?

Even with argument and return type declarations in modern PHP, the behavior of your

components can remain obscure from the standpoint of source code alone.

Coding is a messy and complex business, and it’s hard to keep track of the way your

systems work and what needs doing. The problem becomes worse when you add more

programmers to the project. Whether you need to signpost potential danger areas or

fantastic features, documentation can help you. For a large code base, documentation or

its absence can make or break a project.

This chapter will cover

•	 The phpDocumentor application: Installing phpDocumentor and

running it from the command line

•	 Documentation syntax: The DocBlock comment and

documentation tags

•	 Documenting your code: Using DocBlock comments to provide

information about classes, properties, and methods

•	 Creating links in documentation: Linking to websites and to other

documentation elements

https://doi.org/10.1007/979-8-8688-0779-4_2#DOI

14

�Why Document?
Programmers love and loathe documentation in equal measure. When you are under

pressure from deadlines, with managers or customers peering over your shoulders,

documentation is often the first thing to be jettisoned. The overwhelming drive is to get

results. Write elegant code, certainly (though that can be another sacrifice), but with a

code base undergoing rapid evolution, documentation can feel like a real waste of time.

After all, you’ll probably have to change your classes several times in as many days. Of

course, everyone agrees that it’s desirable to have good documentation. It’s just that no

one wants to undermine productivity in order to make it happen.

Imagine a very large project. The code base is enormous, consisting of very clever

code written by very clever people. The team members have been working on this single

project (or set of related subprojects) for over five years. They know each other well, and

they understand the code absolutely. Documentation is sparse, of course. Everyone

has a map of the project in their heads, and a set of unofficial coding conventions that

provide clues as to what is going on in any particular area. Then the team is extended.

The two new coders are given a good basic introduction to the complex architecture and

thrown in. This is the point at which the true cost of undocumented code begins to tell.

What would otherwise have been a few weeks of acclimatization soon becomes months.

Confronted with an undocumented class, the new programmers are forced to trace

the arguments to every method, track down every referenced global, and check all the

methods in the inheritance hierarchy. And with each trail followed, the process begins

again. If, like me, you have been one of those new team members, you soon learn to love

documentation.

Lack of documentation costs. It costs in time, as new team members join a project or

existing colleagues shift beyond their area of specialization. It costs in errors as coders

fall into the traps that all projects set. Methods which are designed for use in a specific

context are invoked from the wrong component. A function declares that it returns an

array or null – but the logic which determines which will get furnished is unclear, so a

new coder makes a best guess. Functionality that already exists is needlessly recreated.

Documentation is a hard habit to get into because you don’t feel the pain of

neglecting it straightaway. Documentation needn’t be difficult, though, if you work at it

as you code. This process can be significantly eased if you add your documentation in

the source itself as you code. You can then run a tool to extract the comments into neatly

formatted web pages. This chapter is about just such a tool.

Chapter 2 Generating Documentation with phpDocumentor

15

phpDocumentor (https://www.phpdoc.org/) was originally based on a Java tool

called JavaDoc. Both systems extract special comments from source code, building

sophisticated application programming interface (API) documentation from both the

coder’s comments and the code constructs they find in the source.

�Installation
Unusually for a PHP tool, Composer is not the recommended way to install

phpDocumentor. The project maintainers warn that installing with Composer brings

with it a high probability of dependency conflicts so, for that reason, probably the easiest

way to get up and running is the phar archive.

Get the archive
$ wget https://phpdoc.org/phpDocumentor.phar

move somewhere central
$ mv phpDocumentor.phar ~/bin/phpdoc

make it executable
$ chmod 755 ~/bin/phpdoc

I downloaded the file phpDocumentor.phar and saved it to my local bin/ directory. I

also renamed it to phpdoc, partly because that’s quicker to type and partly because it is a

common practice. I ensured that the archive was runnable using the chmod command.

You can also use the official Docker image:

$ docker run --rm -v ${PWD}:/data phpdoc/phpdoc:3

This assumes you want to run phpDocumentor against your current directory. If

that’s not the case, change ${PWD} to point to a more relevant subdirectory.

�Generating Documentation
It might seem odd to generate documentation before we have even written any,

but phpDocumentor parses the code structures in our source code, so it can gather

information about your project before you even start.

Chapter 2 Generating Documentation with phpDocumentor

https://www.phpdoc.org/

16

I am going to document aspects of an imaginary project called “megaquiz.” It

consists of two directories, command and quiztools, which contain class files. These are

also the names of packages in the project.

By default, phpDocumentor will run on the current working directory (though you

have already seen that you can specify a different directory with Docker’s -v flag). It is

probably more useful, though, to specify your source and target directories.

Let’s run it:

$ phpdoc \
 --title=megaquiz \
 --target=src/ch15/docs \
 --directory=src/ch15/megaquiz

The --directory flag denotes the directory whose contents you intend to document

(you can also use the single letter flag -d with no equals sign for its argument). --target

(or -t) denotes your target directory (the directory to which you wish to write the

documentation files). Use --title to set a project title.

Here is the command-line output from the previous command:

phpDocumentor v3.4.3

Parsing files
 8/8 [============================] 100%
Applying transformations (can take a while)

All done in 0 seconds!

Now, in my specified documentation directory at src/ch15/docs, I should find my

documentation generated as HTML files. I can open index.html to find a surprising

amount of detail. Because my classes are namespaced, my classes are already organized

into a package-like structure.

You can see the popp\ch15\megaquiz\command classes, for example, in Figure 2-1.

Chapter 2 Generating Documentation with phpDocumentor

17

Figure 2-1.  phpDocumentor renders classes by namespace

Note  phpDocumentor supports a @package tag which you can use to apply
logical package categories to your documented classes. If you’re defining
namespaces in your project, however, using @package as well can represent a
needless maintenance overhead and may cause confusion.

As you can see, phpDocumentor shows all the classes in the selected namespace

(popp\ch15\megaquiz\command). If any had been defined, it would also show any

functions, interfaces, or traits. The class names are all hyperlinks. In Figure 2-2, you can

see some of the documentation for the Command class.

phpDocumentor is smart enough to recognize that Command is an abstract class.

Notice also that it has reported both the name and the type of the argument required by

the execute() method as well as its return type.

Chapter 2 Generating Documentation with phpDocumentor

18

Because this level of detail alone is enough to provide an easily navigable overview of

a large project, it is a huge improvement over having no documentation at all. However, I

can improve it further by adding comments to my source code.

Figure 2-2.  Default documentation for the Command class

�DocBlock Comments
DocBlock comments are specially formatted to be recognized by a documentation

application. They take the form of standard multiline comments. Standard, that is, with

the single addition of an asterisk to each line within the comment:

/**
 * My DocBlock comment
 */

Chapter 2 Generating Documentation with phpDocumentor

19

phpDocumentor is designed to expect special content within DocBlocks. This

content includes normal text descriptive of the element to be documented (for our

purposes, a file, class, method, or property). It also includes special keywords called

tags. Tags are defined using the at sign (@) and may be associated with arguments. So the

following DocBlock placed at the top of a class tells phpDocumentor about the author:

/**
 * @author Bob Bobson
 */

If I add this comment to classes in my project, phpDocumentor will include

attribution in its output as you can see in Figure 2-3.

Figure 2-3.  Documentation output that recognizes the @author tag

Chapter 2 Generating Documentation with phpDocumentor

20

�Documenting Classes
Let’s add some more tags and text that are useful in class- or file-level DocBlocks. I

should identify the class, explain its uses, and add authorship and copyright information.

Here is the Command class in its entirety:

namespace popp\ch15\megaquiz\command;

/**
 * Defines core functionality for commands.
 * Command classes perform specific tasks in a system via
 * the execute() method
 *
 * @author Bob Bobson
 * @copyright 2024 Hidden Hat Technologies Ltd
 */
abstract class Command
{
 abstract public function execute(CommandContext $context): bool;
}

The DocBlock comment has grown significantly. The first sentence is a one-line

summary. This is emphasized in the output and extracted for use in overview listings.

The subsequent lines of text contain more detailed description. It is here that you can

provide detailed usage information for the programmers who come after you. As we will

see, this section can contain links to other elements in the project and fragments of code

in addition to descriptive text. I also include the @author tag, which you have already

seen, and a @copyright tag. You can see the effect of my extended class comment in

Figure 2-4.

Chapter 2 Generating Documentation with phpDocumentor

21

Figure 2-4.  Class details in documentation output

Notice that I didn’t need to tell phpDocumentor that the Command class is abstract.

This confirms something that we already know, that phpDocumentor interrogates the

classes with which it works even without our help. But it is also important to see that

DocBlocks are contextual. phpDocumentor understands that we are documenting a

class in the previous listing, because the DocBlock it encounters immediately precedes a

class declaration.

�File-Level Documentation
Although I tend to think in terms of classes rather than of the files that contain them, a

file-level comment can be a good place to insert copyright and license information. A file

comment should be the first DocBlock in a document. It should not directly precede a

coding construct (like a class, for example).

Chapter 2 Generating Documentation with phpDocumentor

22

Many open source projects require that every file includes a license notice or a link

to one. Page-level DocBlock comments can be used, therefore, for including license

information that you do not want to repeat on a class-by-class basis. You can use the

@license tag for this. @license should be followed by a URL, pointing to a license

document and a description:

/**
 * @license https://opensource.org/license/mit The MIT License
 */

�Documenting Properties
Once upon a time, all properties were mixed in PHP. That is, a property could potentially

contain a value of any type. These days, of course, we can, and usually should, constrain

the types of our properties. As you might expect, phpDocumentor will detect and report

any property type declarations.

There are still plenty of situations, however, where more information is valuable. You

may wish to explain what a property is used for or to provide information about types

contained within a collection.

We can document a property, variable, or constant with the @var tag. This will

accept three arguments which can be placed on a single line. These are type, name, and

description.

Here are some properties documented in the CommandContext class:

class CommandContext
{
 /** @var string appname The application name */
 public readonly string $appname;

 /** @var array<string, mixed> params Encapsulated keys/values */
 private array $params = [];

 /** @var string error An error message */
 public string $error = "";

 // ...

Chapter 2 Generating Documentation with phpDocumentor

23

As you can see, I provide a type, a name, and a description for each property. For the

params array, I also use a special notation to specify the type of both the keys and values

in the array. This generic notation is a standard way of describing the types that make

up collections. Generics, which define and constrain collection types, are supported

in many other languages such as TypeScript and Java. Although PHP does not support

defining generics within the language, the notation is useful both for anyone reading the

documentation as well as other tools that might use the phpdoc – notably IDEs and static

analysis tools such as PHPStan.

You can see the documented properties in Figure 2-5.

Figure 2-5.  Documenting properties

�Documenting Methods
Together with classes, methods lie at the heart of a documentation project. At the very

least, readers need to understand the arguments to a method, the operation performed,

and its return value.

Chapter 2 Generating Documentation with phpDocumentor

24

As with class-level DocBlock comments, method documentation should consist of

two blocks of text: a one-line summary and an optional description. You can provide

information about each argument to the method with the @param tag. Each @param tag

should begin a new line and should be followed by the argument name, its type, and a

short description.

You can document the method’s return type with the @return tag. @return

should begin a new line and should be followed by the return value’s type and a short

description. I put these elements together here:

/**
 * Perform the key operation encapsulated by the class.
 * Command classes encapsulate a single operation. They
 * are easy to add to and remove from a project, can be
 * stored after instantiation and execute() invoked at
 * leisure.
 * @param $context CommandContext Shared contextual data
 * @return bool false on failure, true on success
 */
abstract public function execute(CommandContext $context): bool;

It may seem strange to add more documentation than code to a document.

Documentation in abstract classes is particularly important, though, because it provides

directions for developers who need to understand how to extend the class. If you are

worried about the amount of dead space the PHP engine must parse and discard for a

well-documented project, it is a relatively trivial matter to add code to your build tools to

strip out comments on installation.

You can see our documentation’s output in Figure 2-6.

Chapter 2 Generating Documentation with phpDocumentor

25

Figure 2-6.  Documenting methods

�Creating Links in Documentation
phpDocumentor generates a hyperlinked documentation environment for you.

Sometimes, though, you will want to generate your own hyperlinks, either to other

elements within documentation or to external sites. In this section, we will look at the

tags for both of these.

As you construct a DocBlock comment, you may want to talk about a related class,

property, or method. To make it easy for the user to navigate to this feature, you can

use the @see tag. @see requires a reference to a class using the fully qualified or relative

class name (so, for example if you are documenting from the popp\ch15\megaquiz\
command namespace, you can just use a class name to refer to another class in the same

namespace). You can also append double colons followed by an element such as a

method (Command::execute()) or a property (CommandContext::$applicationName).

Chapter 2 Generating Documentation with phpDocumentor

26

Once you’ve referenced your target element, you can add some label text. So, in the

following DocBlock comment, I document the CommandContext class and emphasize the

fact that it is commonly used in the Command::execute() method:

/**
 * Encapsulates data for passing to, from and between Commands.
 * Commands require disparate data according to context. The
 * CommandContext object is passed to the {@see Command::execute()}
 * method, and contains data in key/value format. The class
 * automatically extracts the contents of the $_REQUEST
 * superglobal.
 *
 * @see Command::execute() the execute method
 */
class CommandContext
{
 // ...

As you can see in Figure 2-7, the @see tag resolves to a link. Clicking this will lead you

to the Command::execute() method. Notice also a new feature. You can apply some tags

inline within description text by wrapping them in braces.

Chapter 2 Generating Documentation with phpDocumentor

27

Figure 2-7.  Creating a link with the @see tag (inline and block)

You can also create web links using the @link tag. Simply combine @link with a URL

and a description.

@link http://www.example.com More info

Once again, the URL is the target, and the description that follows it is the clickable

text. As with @see, you can also use @link inline.

You may want to make a reciprocal link. Command uses CommandContext objects, so I

can create a link from Command::execute() to the CommandContext class and a reciprocal

link in the opposite direction. I could, of course, do this with two @see tags.

@uses handles it all with a single tag, however:

abstract class Command
{

 /**
 * Perform the key operation encapsulated by the class.

Chapter 2 Generating Documentation with phpDocumentor

28

 * Command classes encapsulate a single operation. They
 * are easy to add to and remove from a project, can be
 * stored after instantiation and execute() invoked at
 * leisure.
 * @param $context CommandContext Shared contextual data
 * @return bool false on failure, true on success
 * @uses CommandContext
 * @link https://en.wikipedia.org/wiki/Command_pattern
 */
 abstract public function execute(CommandContext $context): bool;
}

So, by adding the @uses tag to the Command::execute() documentation, I create a

link to the CommandContext class page. In this CommandContext class documentation, a

“Used by” link will appear which leads back to Command::execute().

You can see some of this in action in Figure 2-8.

Figure 2-8.  Documentation including @link and @uses tags

Chapter 2 Generating Documentation with phpDocumentor

29

�Summary
In this chapter, I covered the core features of phpDocumentor. You encountered the

DocBlock comment syntax and the tags that can be used with it. I looked at approaches

to documenting classes, properties, and methods, and you were provided with enough

material to transform your documentation and thus improve collaborative working

immeasurably (especially when used in conjunction with build tools and version

control). There is a lot more to this application than I have space to cover, though, so be

sure to check the phpDocumentor home page at https://www.phpdoc.org.

Chapter 2 Generating Documentation with phpDocumentor

https://www.phpdoc.org

31
© Matt Zandstra 2025
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_3

CHAPTER 3

PHP Standards
Unless you are a lawyer or a health inspector, the topic of standards probably does not

make your heart race. However, what standards help us achieve is worth getting excited

about. Standards promote interoperability, and that gives us access to a vast array of

compatible tools and framework components.

This chapter will cover several important aspects of standards:

•	 Why standards: What are standards and why they matter

•	 PHP Standards Recommendations: Their origins and purpose

•	 PSR-1: The Basic Coding Standard

•	 PSR-12: Extended Coding Style

•	 PSR-4: Autoloading

�Why Standards?
Design patterns interoperate. That is built-in at their core. A problem described in a

design pattern suggests a particular solution, which in turn generates architectural

consequences. These are then well addressed by new patterns. Patterns also help

developers to interoperate because they provide a shared vocabulary. Object-oriented

systems tend to privilege the principle of playing nice.

As we increasingly share each other’s components though, this informal tendency

toward interoperability is not always enough. Tools like Composer allow us to mix and

match tools in our projects. These components may be designed as stand-alone libraries,

or they may be pieces from a wider framework. Either way, once deployed in our system,

they must be capable of working beside and in collaboration with any number of other

components. By adhering to core standards, we make it less likely that our work will run

into compatibility issues.

https://doi.org/10.1007/979-8-8688-0779-4_3#DOI

32

In some senses, the nature of a standard is less important than the fact that it

is adhered to. Personally, for example, I don’t love every aspect of the PSR-12 style

guidelines. In most circumstances, including this book, I have adopted the standard.

Other developers on my teams will hopefully find my code easier to work with because

they will engage with it in a format that is familiar. For other standards, such as

autoloading, failure to observe a common standard will result in components that may

not work together at all without additional middleware.

Standards are probably not the most exciting aspect of programming. However, there

is an interesting contradiction at their core. It may seem that a standard closes down

creativity. After all, standards tell you what you can and can’t do. You must comply. You

might think that this is hardly the stuff of innovation. And yet, we owe the great flowering

of creativity that the Internet has ushered into our lives to the fact that every node on

this network of networks conforms to open standards. Proprietary systems stuck within

walled gardens are necessarily limited in scope and often in longevity – no matter how

clever their code or slick their interfaces. The Internet, with its shared protocols, ensures

that any site can link to any other site. Most browsers support standard HTML, CSS, and

JavaScript. The interfaces we can build within these standards are not always the most

impressive we might imagine (though the limitations are much less than they were); still,

abiding by them enables us to maximize the reach of our work.

Used well, standards promote openness, cooperation, and, ultimately, creativity.

This is true, even if a standard itself enforces some limitations.

�What Are PHP Standards Recommendations?
At the 2009 php[tek] conference, a group of framework developers formed an

organization they called the PHP Framework Interop Group (PHP-FIG). Since then,

developers have come on board from other key components. Their purpose was to build

standards, so that their systems could better coexist.

The group vote on standards proposals which progress from Draft through Review

and, finally, to Accepted status.

Table 3-1 lists the current standards at the time of this writing.

Chapter 3 PHP Standards

33

Table 3-1.  Accepted PHP Standards Recommendations

PSR Number Name Description

1 Basic Coding Standard Fundamentals such as PHP tags and basic naming

conventions

3 Logger Interface Rules for log levels and logger behaviors

4 Autoloading Standard Conventions for naming classes and namespaces,

as well as their mapping to the file system

6 Caching Interface Rules for cache management, including data types,

cache item lifetime, error handling, etc.

7 HTTP Message Interface Conventions for HTTP requests and responses

11 Container Interface A common interface for dependency injection

containers

12 Extended Coding Style Guide Code formatting, including rules for placement of

braces, argument lists, etc.

13 Hypermedia Links Interfaces for describing hypermedia links

14 Event Dispatcher Definition for event management

15 HTTP Handlers Common interfaces for HTTP server request

handlers

16 Simple Cache A common interface for caching libraries (a

simplification of PSR-6)

17 HTTP Factories A common standard for factories that create PSR-

7-compliant HTTP objects

18 HTTP Client Interface for sending HTTP requests and receiving

HTTP responses

20 Clock A simple interface for reading the system clock

Chapter 3 PHP Standards

34

�Why PSR in Particular?
So, why choose one standard and not another? It happens that the PHP Framework

Interop Group – the originators of PSRs – has a pretty great pedigree, and the

standards themselves therefore make sense. But also, these are the standards that the

major frameworks and components are adopting. If you are using Composer to add

functionality to your projects, you are already consuming code that complies with PSRs.

By using its conventions for autoloading and its style guides, you are likely building code

that is ready for collaboration with other people and components.

Note  One set of standards is not inherently superior to another. When you choose
whether to adopt a standard, your choice may be driven by your judgment of the
recommendation’s merits. Alternatively, you might make a pragmatic choice based
on the context within which you are working. If you’re working in the WordPress
community, for example, you might want to adopt the style defined in the Core
Contributor Handbook at https://developer.wordpress.org/coding-
standards/wordpress-coding-standards/php/. Such a choice is part of
the point of standards, which are all about the cooperation of people and software.

PSRs are a good bet because they are supported by key framework and component

projects, including Phing, Composer, PEAR, Symfony, and Zend 2. Like patterns,

standards are infectious – you’re probably already benefiting from them.

�Who Are PSRs For?
Ostensibly, PSRs are designed for the creators of frameworks. The fact that the

membership of the PHP-FIG group rapidly widened to include the creators of tools

as well as frameworks, however, shows that standards have wide relevance. That said,

unless you are creating a logger, you may not need to worry too much about the details of

PSR-3 (beyond ensuring any logging tool you use is itself compliant). On the other hand,

if you’ve read Volume 1, chances are you are as likely to be creating tools as you are to be

consuming them. So, it’s also likely that you’ll find something relevant to you either in

the present standards or the standards to come.

Chapter 3 PHP Standards

https://developer.wordpress.org/coding-standards/wordpress-coding-standards/php/
https://developer.wordpress.org/coding-standards/wordpress-coding-standards/php/

35

And then, there are the standards that matter to all of us. Unglamorous as style

guides are, for example, they are relevant to every programmer. And while the rules that

govern autoloading really apply to those who create autoloaders (and the main game

in town is probably Composer’s), they also fundamentally affect how we organize our

classes, our packages, and our files.

For these reasons, I will focus on coding style and autoloading for the rest of this chapter.

�Coding with Style
I tend to find pull request comments like “your braces are in the wrong place”

disproportionately irritating. Such input often seems nitpicky and perilously close to

bike-shedding.

Note  In case you have not come across it, the verb “to bike-shed” refers to the
tendency in some reviewers to criticize unimportant elements of a project under
scrutiny. The implication is that such elements are chosen because they fit within the
scope of the commenter’s competence. So, given a skyscraper to assess, a particular
manager might focus not on the vast and complex tower of glass and steel but on the
much easier to comprehend bike shed around the back. Wikipedia has a good history
of the term: https://en.wikipedia.org/wiki/Law_of_triviality.

And yet, I have come to see that conforming to a common style can help improve the

quality of code. This is mainly a matter of readability (regardless of the reasoning behind

a particular rule). If a team abides by the same rules for indentations, brace placement,

argument lists, and so on, then a developer can quickly assess and contribute to a

colleague’s code.

So, in a previous edition of the book, I committed to edit all code examples so that

they conformed to PSR-1 and PSR-12. I asked my colleague and technical reviewer Paul

Tregoing to hold me to that, too. This was a promise that was so easy to make at the

planning stage – and much more effort than I expected. This brings me to the first style

guide lesson I learned. If possible, adopt a standard early for your project. Refactoring to

a code style will likely tie up resources and make it hard to examine code differences that

span The Time of the Great Reformat.

So what changes have I had to apply? Let’s start with the basics.

Chapter 3 PHP Standards

https://en.wikipedia.org/wiki/Law_of_triviality

36

�PSR-1 Basic Coding Standard
These are the fundamentals for PHP code. You can find them in detail at https://www.
php-fig.org/psr/psr-1/. Let’s break them down.

�Opening and Closing Tags

First of all, a PHP section should open either with <?php or <?=. In other words, the short

opening tag, <?, should not be used nor should any other variation. A section should

close with ?> only (or, as we shall see, no tag at all).

Note P SRs follow a set of definitions for words such as SHOULD and MUST
which determine the degree of compliance a directive should command. While
this chapter will rely on the plain English meanings of such words, the absolute
intended meanings within the context of PSR are defined at https://www.ietf.
org/rfc/rfc2119.txt.

�Side Effects

A PHP file should declare classes, interfaces, functions, and the like, or it should perform

an action (such as reading or writing to a file or sending output to the browser); however,

it should not do both. If you are accustomed to using require_once() to include other

class files, this will trip you up straightaway because the act of including another file is a

side effect. Just as patterns beget patterns, so standards tend to require other standards.

The correct way to handle class dependencies is through a PSR-4-compliant autoloader.

So, is it legal for a class you declare to write to a file in one of its methods? That is

perfectly acceptable because the effect is not kicked off by the file’s inclusion. In other

words, it’s an execution effect, not a side effect.

So what kind of file might perform actions rather than declare classes? Think of the

script that initiates an application.

Chapter 3 PHP Standards

https://www.php-fig.org/psr/psr-1/
https://www.php-fig.org/psr/psr-1/
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt

37

Here is a listing that performs actions as a direct result of inclusion:

namespace popp\ch16\batch01;

require_once(__DIR__ . "/../../../vendor/autoload.php");

$tree = new Tree();
print "loaded " . get_class($tree) . "\n";

Here is a PHP file that declares a class with no side effects:

namespace popp\ch16\batch01;

class Tree
{
}

Note  In other chapters, I largely omit namespace declarations and use
directives in order to focus on the code. Since this chapter is about the mechanics
of formatting class files, I will include namespace and use statements where
appropriate.

�Naming

Classes must be declared in upper camel case, also known as studly caps or PascalCase.

In other words, a class name should begin with a capital letter. The rest of the name

should be lowercase unless it consists of multiple words. In this instance, each word

should begin with an uppercase letter, like this:

class MyClassName

Properties can be named in any way, although consistency is called for. I tend to use

camel case, an approach similar to studly caps, but without the leading capital letter:

private string $myPropertyName

Methods must be declared in camel case:

public function myMethodName()

Chapter 3 PHP Standards

38

Class constants must be uppercase, with words separated by underscores:

public const MY_NAME_IS = 'matt';

�More Rules and an Example

Classes, namespaces, and files should be declared in accordance with the PSR-4

Autoloading Standard. We will come to that later in the chapter, however. PHP

documents must be saved as UTF-8 encoded files (without a byte order mark or BOM).

Note  More accurately, PSR-1 states that namespaces and classes MUST follow
an autoloading PSR. This would include the now-deprecated PSR-0 which specifies
support for PEAR-style class naming.

Finally, for PSR-1, let’s get it all wrong – and then put it right. Here is a class file that

breaks all the rules:

<?
require_once("conf/ConfFile.ini");

class conf_reader {
 const ModeFile = 1;
 const Mode_DB = 2;

 private $conf_file;
 private $confValues = [];

 function read_conf() {
 // implementation
 }
}
?>

Can you spot all the issues? First of all, I used a short opening tag. I also failed to

declare a namespace (though we haven’t yet covered this requirement in detail). In

naming my class, I used underscores and no capitals, rather than studly caps. And I used

two formats for my constant names, neither of which are the required one – all capitals

with words separated by underscores. Although both my property names were legal,

Chapter 3 PHP Standards

39

I failed to make them consistent; specifically, I used underscores for $conf_file and

camel case for $confValues. In naming my method, read_conf(), I used an underscore

rather than camel case.

Let’s fix those itemized issues.

<?php
namespace popp\ch16\batch01;

class ConfReader {
 const MODE_FILE = 1;
 const MODE_DB = 2;

 private $confFile;
 private $confValues = [];

 function readConf() {
 // implementation
 }
}
?>

This fixes things up as far as PSR-1 is concerned but we are not done. There is still

PSR-12 to consider.

�PSR-12 Extended Coding Style
The Extended Coding Style (PSR-12) builds upon PSR-1 and replaces a deprecated

standard: PSR-2. Let’s jump in and look at some of the rules.

�Starting and Ending a PHP Document

We have already seen that PSR-1 requires that PHP blocks open with <?php or <?=.

PSR-12 stipulates that pure PHP files should not have an ending ?> tag but should end

with a single blank line. It’s all too easy to end a file with a closing tag and then let an

extra new line creep in. This can result in formatting bugs as well as errors when you set

HTTP headers (you cannot do this after content has already been sent to the browser).

Table 3-2 describes, in order, the statements that might form a valid PHP document.

Chapter 3 PHP Standards

40

Table 3-2.  PHP Statements

Statement Example

Opening PHP tag <?php

A file-level DocBlock /**
* File doc
*/

Declare statements declare(strict_types=1);

Namespace declaration namespace popp;

Use import statements (classes) use other\Service;

Use import statements (functions) use function other\myFunc;

Use import statements (constants) use const other\MY_CONST;

The remainder of the code in the file

A PHP document should follow the structure in Table 3-2 (though any elements that

are not necessary for legal PHP code may be omitted). namespace declarations should be

followed by a blank line, and a block of use declarations should be followed by a blank

line. Do not put more than one use declaration on the same line:

namespace popp\ch16\batch01;

use popp\ch10\batch06\PollutionDecorator;
use popp\ch10\batch06\DiamondDecorator;
use popp\ch10\batch06\Plains;

// begin class

Note  Compound namespaces (with a depth of now more than two) are also
allowed by PSR-12. So, a form like this would be legal:

use popp\ch10\{
 batch06\PollutionDecorator,
 batch06\DiamondDecorator,
 batch06\Plains,
};

Chapter 3 PHP Standards

41

�Starting and Ending a Class

The class keyword, the class name, and extends and implements must all be placed on

the same line. Where a class implements multiple interfaces, each interface name can

be included on the same line as the class declaration, or it can be placed indented on

its own line. Indentation, by the way, must be four spaces. If you choose to place your

interface names on multiple lines, the first item must be placed on its own line rather

than directly after the implements keyword. Class braces should begin on the line after

the class declaration and end on their own line (directly after the class contents). So, a

class declaration might look something like this:

class EarthGame extends Game implements
 Playable,
 Savable
{

 // class body
}

However, you could equally place the interface names on a single line:

class EarthGame extends Game implements Playable, Savable
{

// class body

}

In the case of interfaces, you can specify multiple classes to extend from applying

the same rules as for implements – that is with all classes on one line or broken into a list

with each class on its own line.

�Working with Traits

When adding a trait to a class, you must add the use statement to the line directly after

the class’s opening brace. Although PHP allows you to group your traits onto a single

line, PSR-12 requires that you place each use statement on its own line. If your class

provides its own elements in addition to the use statements, you must leave a blank line

before proceeding with nontrait content. Otherwise, you must close the class block on

the line directly after the last use statement.

Chapter 3 PHP Standards

42

Here is a class that imports two traits and provides a method of its own:

namespace popp\ch16\batch01;

class Tree
{
 use GrowTools;
 use TerrainUtil;

 public function draw(): void
 {
 // implementation
 }
}

If you declare a block for as or insteadof statements, it should spread over multiple

lines. The opening brace should begin on the same line as the use statement. The block

should then use one line per statement. Finally, the closing brace should end on its own

line, like this:

namespace popp\ch16\batch01;

class Marsh
{
 use GrowTools {
 GrowTools::dimension as size;
 }
 use TerrainUtil;

 public function draw(): void
 {
 // implementation
 }
}

Chapter 3 PHP Standards

43

�Declaring Properties and Constants

Properties and constants must have a declared visibility (public, private, or

protected). The var keyword is not acceptable. We have already covered the format for

property and constant names as part of PSR-1.

�Starting and Ending a Method

All methods must have a declared visibility (public, private, or protected). The

visibility keyword must follow abstract or final, but precede static. Method

arguments with default values should be placed at the end of the argument list.

�Single-Line Declarations

Method braces should begin on the line after the method name and end on their own

line (directly after the method code). A list of method arguments should not begin or end

with a space (i.e., they should snuggle in close to the wrapping parentheses). For each

argument, the comma should be flush with the preceding argument name (or the default

value), but it should then be followed by a space. Let’s clarify things with an example:

final public static function generateTile(int $diamondCount, bool $polluted
= false): array
{
 // implementation
}

�Multiline Declarations

A single-line method declaration is not practical in cases where there are many

arguments. In this situation, you can break the argument list so that each argument

(including type, argument variable, default value, and comma) is placed indented on

its own line. In this case, the closing parenthesis should be placed on the line after the

argument list, flush with the start of the method declaration. The opening brace should

follow the closing parenthesis on the same line, separated by a space. The method body

should begin on a new line. Once again, that sounds much more complicated than it is.

An example should make it clearer:

Chapter 3 PHP Standards

44

public function __construct(
 int $size,
 string $name,
 bool $wraparound = false,
 bool $aliens = false
) {
 // implementation
}

�Return Types

A return type declaration should be on the same line as the closing parenthesis. The

colon should directly follow the closing parenthesis. The colon should be separated from

the return type by a single space. For multiline declarations, the return type declaration

should precede the opening brace on the same line separated by a space.

final public static function findTilesMatching(
 int $diamondCount,
 bool $polluted = false
): array {
 // implementation
}

PSR-12 does not mandate the use of return type declarations. However, since the

introduction of void, mixed, and nullable types, it should be possible to provide a

declaration that matches all circumstances.

�Lines and Indentation

As mentioned briefly above, you must use four spaces rather than tabs for indentation.

It’s worth checking your editor settings – you can configure good editors to use spaces

rather than a tab when you press the Tab key. You should also wrap your text before your

line reaches 120 characters (though this is not mandatory). Ideally, lines longer than 80

characters should be split across multiple lines of no more than 80 characters each. Lines

must end with Unix line feed characters and not other platform-specific combinations

(such as CR in Macs and CR/LF on Windows). Again, check your editor’s settings for this,

since it will likely use your operating system’s default line ending characters.

Chapter 3 PHP Standards

45

�Calling Methods and Functions

Do not place a space between the method name and the opening parenthesis. You can

apply the same rules to the argument list in a method call as you do to the argument list

in a method declaration. In other words, for a single-line call, leave no space after the

opening parenthesis or before the closing parenthesis. A comma should follow directly

after each argument, with a single space falling before the next one. If you need to use

multiple lines for a method call, each argument should sit indented on its own line, and

the closing parenthesis should fall on a new line:

$earthgame = new EarthGame(
 5,
 "earth",
 true,
 true
);
$earthgame::generateTile(5, true);

�Flow of Control

Flow control keywords (if, for, while, etc.) must be followed by a single space.

However, the opening parenthesis must not be followed by a space. Similarly, the closing

parenthesis must not be preceded by a space. So, the contents should be snug in their

brackets. In contrast to class and (single line) function declarations, the opening brace

for the flow control block must begin on the same line as the closing parenthesis. The

closing brace should sit on its own line. Here’s a quick example:

$tile = [];
for ($x = 0; $x < $diamondCount; $x++) {
 if ($polluted) {
 �$tile[] = new PollutionDecorator(new DiamondDecorator(new

Plains()));
 } else {
 $tile[] = new DiamondDecorator(new Plains());
 }
}

Chapter 3 PHP Standards

46

Notice the space after both for and if. The for and if expressions are flush to the

parentheses that contain them. In both cases, the closing parenthesis is followed by a

space and then the opening brace for the flow control body.

Expressions in parentheses may be split across multiple lines, with each line

indented at least once. Where the expressions are broken, the Boolean operators can go

either at the beginning or end of each line, but your choice must be consistent.

$ret = [];
$count = count($this->tiles);
for (
 $x = 0;
 $x < $count;
 $x++
) {
 if (
 $this->tiles[$x]->isPolluted() &&
 $this->tiles[$x]->hasDiamonds() &&
 ! ($this->tiles[$x]->isPlains())
) {
 $ret[] = $x;
 }
}
return $ret;

�Finishing the ConfReader Class

Remember ConfReader? In the previous version, I fixed all issues up to PSR-1

compliance. But that work would not pass muster for PSR-12. In addition to various

minor spacing issues, I failed to declare visibility on my constants and methods. For the

sake of completeness, let’s finish the work off now.

namespace popp\ch16\batch01;

class ConfReader
{
 public const MODE_FILE = 1;
 public const MODE_DB = 2;

Chapter 3 PHP Standards

47

 private string $confFile;
 private array $confValues = [];

 public function readConf(): void
 {
 // implementation
 }
}

�PSR-4 Autoloading
We looked at PHP’s support for autoloading in Volume 1. I showed how to use the

spl_autoload_register() function to automatically require files based on the name

of an as yet unloaded class. Although this is powerful, it is also a kind of behind-the-

scenes magic. This is fine in a single project but a recipe for great confusion if multiple

components come together and all use different conventions for loading class files.

The Autoloading Standard (PSR-4) requires frameworks to conform to a common set

of rules, thereby adding some discipline to the magic.

This is great news for developers. It means that we can more or less ignore the

mechanics of requiring files and focus instead on class dependencies.

�The Rules That Matter to Us
The main purpose of PSR-4 is to define rules for autoloader developers. However, those

rules inevitably determine the way we must declare namespaces and classes. Here are

some of the basics.

As specified in PSR-1, a fully qualified class name (i.e., the name of a class, including

its namespaces) must include an initial “vendor” namespace. So, a class must have at

least one namespace.

Let’s say that our vendor namespace is popp. We can declare a class in this way:

namespace popp;

class Services
{
}

Chapter 3 PHP Standards

48

The fully qualified class name for this class is popp\Services.

The initial namespaces in a path must correspond to one or more base directories.

We can use this to map a set of sub-namespaces to a starting directory. If, for example,

we want to work with the namespace popp\library (and nothing else under the popp

namespace), then we might map that to a top-level directory to spare us from having to

maintain an empty popp/ directory.

Let’s set up a composer.json file to perform that mapping:

{
 "autoload": {
 "psr-4": {
 "popp\\library\\": "mylib"
 }
 }
}

Notice that I don’t even need to call the base directory, "library". This is an

arbitrary mapping of popp\library to the my\lib directory. Now I can create a class file

under the mylib directory:

// mylib/LibraryCatalogue.php

namespace popp\library;

use popp\library\inventory\Book;

class LibraryCatalogue
{
 private array $books = [];

 public function addBook(Book $book): void
 {
 $this->books[] = $book;
 }
}

In order to be found, the LibraryCatalogue class must be placed in a file with

exactly the same name (with the obvious addition of the .php extension).

Chapter 3 PHP Standards

49

After a base directory (mylib) has been associated with initial namespaces (popp\
library), there must then be a direct relation between subsequent directories and

sub-namespaces. It happens that I have already referenced a class named popp\
library\inventory\Book in my LibraryCatalogue class. That class file should therefore

be placed in the mylib/inventory directory:

// mylib/library/inventory/Book.php

namespace popp\library\inventory;

class Book
{
 // implementation
}

Remember the rule that the initial namespaces in a path must correspond to one or

more base directories? So far, we have made a one-to-one relationship between popp\
library and mylib. There’s actually no reason why we can’t map the popp\library

namespace to more than one base directory. Let’s add a directory named additional to

the mapping; here’s the amendment to composer.json:

{
 "autoload": {
 "psr-4": {
 "popp\\library\\": ["mylib", "additional"]
 }
 }
}

Now I can create the additional/inventory directories and a class to go in them:

// additional/inventory/Ebook.php

namespace popp\library\inventory;

class Ebook extends Book
{
 // implementation
}

Chapter 3 PHP Standards

50

Next, let’s create a top-level runner script, index.php, to instantiate these classes:

require_once("vendor/autoload.php");

use popp\library\LibraryCatalogue;

// will be found under mylib/
use popp\library\inventory\Book;

// will be found under additional/
use popp\library\inventory\Ebook;

$catalogue = new LibraryCatalogue();
$catalogue->addBook(new Book());
$catalogue->addBook(new Ebook());

Note  You must use Composer to generate the autoload file, vendor/autoload.
php, and this file must be included in some way before you gain access to the
logic you have declared in composer.json. You can do this by running the
command composer install (or by running composer dump-autoload if
you just want to regenerate the autoload file in an environment that is already
installed). You can learn more about Composer in Chapter 18.

Remember the rule about side effects? A PHP file should declare classes, interfaces,

functions, and the like, or it should perform an action. However, it should not do both.

This script falls into the taking action category. Crucially, it calls require_once() to

include the autoload code generated using the configuration in the composer.json file.

Thanks to this, all the classes are located, despite the fact that Ebook has been placed in

an entirely separate base directory from the rest.

Why would I want to maintain two separate directories for the same core

namespace? One possible reason is for unit tests that you want to keep separate from

production code. You may also manage plug-ins and extensions that will not ship with

every version of your system.

Chapter 3 PHP Standards

https://doi.org/10.1007/979-8-8688-0779-4_18

51

Note  Be sure to keep an eye on all the PSR standards at https://www.php-
fig.org/psr. This is a fast-moving area, and you’ll likely find that standards
relevant to you are on their way.

�PSR-11 Container Interface
This is something of an aside, since most of us will use a dependency injection

container rather than write one. However, I created just such a container in Volume 1

(first implemented Chapter 9 and used extensively in Chapters 12 and 13) so it’s worth

covering in brief here. You may remember that a dependency injection container

supports the Inversion of Control pattern using various means (often including

configuration, reflection, and attribute comments) to instantiate or otherwise populate

objects. The container acts as a repository for objects which can be accessed via a key

(usually, but not always, the object’s class name) and which can then be automatically

used in the creation and configuration of yet more objects.

The PSR-11 standard is comparatively brief. It mostly consists of a set of interfaces

which are made available in the package Psr\Container. The most important of these

is ContainerInterface, which defines the behavior of a compliant IoC container. Two

lesser interfaces ContainerExceptionInterface and NotFoundExceptionInterface

should be implemented by any exceptions thrown by the container.

You can add the Psr\Container package to a project with

$ composer require psr/container

The container I created in Chapter 9 of Volume 1 was already close to compliance.

Without going back into implementation details, here’s what it takes to make it PSR-11

compliant:

use Psr\Container\ContainerInterface;

class Container implements ContainerInterface
{
 public function has(string $class): bool
 {
 // ...
 }

Chapter 3 PHP Standards

https://www.php-fig.org/psr
https://www.php-fig.org/psr
https://doi.org/10.1007/979-8-8688-0779-4_9
https://doi.org/10.1007/979-8-8688-0779-4_12
https://doi.org/10.1007/979-8-8688-0779-4_13
https://doi.org/10.1007/979-8-8688-0779-4_9

52

 public function get(string $class): object
 {
 // ...
 }
}

There’s more to Container than the methods shown here, of course, but these are

what the standard demands. The ContainerInterface interface does not specify a

return type for get(), but the bool return type for the has() method is required.

In my implementation of the get() method (and the methods it invokes internally), I

throw two types of exception. Firstly, if I have not already stored a particular object and I

cannot locate a class corresponding to the given string, I throw a NotFoundException.

use Psr\Container\NotFoundExceptionInterface;

class NotFoundException extends \Exception implements
NotFoundExceptionInterface
{
}

If I can find a class matching a get() invocation but then cannot instantiate an

object from it for some reason, I throw a ContainerException.

use Psr\Container\ContainerExceptionInterface;

class ContainerException extends \Exception implements
ContainerExceptionInterface
{
}

These classes simply extend Exception and implement their corresponding

Psr\Container interfaces. Because of this, a client can catch either

ContainerExceptionInterface or NotFoundExceptionInterface and then act

accordingly.

Chapter 3 PHP Standards

53

�Summary
In this chapter, I wrestled a little with the possibility that standards are less than

fantastically exciting – and then made a case for their power. Standards get integration

issues out of our way, so that we can get on and do amazing things. I looked at PSR-1

and PSR-12, the standards for basic coding and for wider coding style. Next, I went on

to discuss PSR-4, the standard for autoloaders. I did not delve into PSR-0, the older

autoloading standard which supports old PEAR-style package naming, but you may want

to look it up. Finally, I worked through a Composer-based example that showed PSR-4-

compliant autoloading in practice.

Chapter 3 PHP Standards

55
© Matt Zandstra 2025
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_4

CHAPTER 4

Refactoring and
Standards Tools
As coders, ideally, we work to automate drudgery (the qualification is necessary because

we’ve all encountered systems that have clearly been written to make everyone’s lives

worse rather than better). In doing so, though, we must often endure our own parade of

tedious tasks. While standards make for better, more interoperable code, for example,

the need for compliance adds yet another layer of effort to our development routines.

And that’s before we hunt for misspelled variables, loose method signatures, and all

manner of other bug magnets.

Luckily, there are tools available to help with, or even fully automate, the drudgery.

In this chapter, I will look briefly at two of the best of these: PHP_CodeSniffer and

PHPStan. The chapter will cover

•	 Running PHP_CodeSniffer: Checking standards compliance in your

projects

•	 PHP Code Beautifier and Fixer: Automatically correcting PHP_

CodeSniffer errors

•	 Custom standards: Writing your own sniffs

•	 PHPStan: Finding deeper issues in your code with this powerful static

analysis tool

https://doi.org/10.1007/979-8-8688-0779-4_4#DOI

56

�PHP_CodeSniffer
Even if Chapter 3 covered every single directive in PSR-12 (which it does not), it would

be hard to keep it all in your mind. After all, we have other things to think about – like the

design and implementation of our systems. So, given that we have bought into the value

of coding standards, how do we comply without using too much of our time or focus? We

use a tool, of course.

PHP_CodeSniffer allows you to detect and even repair standards violations – and

not just for PSR. You can get it by following the instructions at https://github.com/
squizlabs/PHP_CodeSniffer. There are Composer and PEAR options, but here’s how

you can download the PHP archive files:

$ curl -OL https://phars.phpcodesniffer.com/phpcs.phar
$ curl -OL https://phars.phpcodesniffer.com/phpcbf.phar

Why two downloads? The first is for the main PHP_CodeSniffer script: phpcs, which

diagnoses and reports on violations. The second is for an extension: phpcbf, or PHP

Code Beautifier and Fixer, which can fix a lot of them.

�Checking and Fixing Your Code
Let’s put the tools through their paces. First, here is a scrappily formatted piece of code:

namespace popp\ch17\batch01;
class ebookParser {

 function __construct(string $path , $format=0) {
 if ($format>1)
 $this->setFormat(1);
 }

 function setformat(int $format) {
 // do something with $format
 }
}

Rather than run through the problems here, let’s have PHP_CodeSniffer do it for us:

$ php phpcs.phar --standard=PSR12 src/ch17/batch01/EbookParser.php

Chapter 4 Refactoring and Standards Tools

https://doi.org/10.1007/979-8-8688-0779-4_3
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer

57

FILE: /var/popp/src/ch17/batch01/phpcsBroken.php

FOUND 17 ERRORS AFFECTING 6 LINES

 5 | ERROR | [x] Header blocks must be separated by a single blank line
 6 | ERROR | [] Class name "ebookParser" is not in PascalCase format
 6 | ERROR | [x] Opening brace must not be followed by a blank line
 6 | ERROR | [x] �Opening brace of a class must be on the line after the

definition
 8 | ERROR | [] Visibility must be declared on method "__construct"
 8 | ERROR | [x] �Expected 0 spaces between argument "$path" and

comma; 1 found
 8 | ERROR | [x] �Incorrect spacing between argument "$format" and equals

sign; expected 1 but found 0
 8 | ERROR | [x] �Incorrect spacing between default value and equals sign

for argument "$format"; expected 1 but found 0
 8 | ERROR | [x] Expected 0 spaces before closing parenthesis; 1 found
 8 | ERROR | [x] Opening brace should be on a new line
 9 | ERROR | [x] Inline control structures are not allowed
 9 | ERROR | [x] Expected at least 1 space before ">"; 0 found
 9 | ERROR | [x] Expected at least 1 space after ">"; 0 found
 10 | ERROR | [x] �Space after opening parenthesis of function call

prohibited
 10 | ERROR | [x] Expected 0 spaces before closing parenthesis; 1 found
 13 | ERROR | [] Visibility must be declared on method "setformat"
 13 | ERROR | [x] Opening brace should be on a new line

PHPCBF CAN FIX THE 14 MARKED SNIFF VIOLATIONS AUTOMATICALLY

Time: 174ms; Memory: 8MB

That’s an exhausting number of problems for just a few lines of code. Luckily, as

the output indicates, we can fix a lot of these with very little effort by running phpcbf

(applied to a copy so as to keep my formatting errors for another time):

$ php phpcbf.phar --standard=PSR12 src/ch17/batch01/EbookParser.php

Chapter 4 Refactoring and Standards Tools

58

Here is the command’s output:

PHPCBF RESULT SUMMARY
--
FILE FIXED REMAINING
--
/var/popp/src/ch17/batch01/EbookParser.php 14 3
--
A TOTAL OF 14 ERRORS WERE FIXED IN 1 FILE
--

Time: 233ms; Memory: 8MB

`

Now, if I run phpcs again, the situation is much improved:

FILE: /var/popp/src/ch17/batch01/EbookParser.php
--
FOUND 3 ERRORS AFFECTING 3 LINES
--
 6 | ERROR | Class name "ebookParser" is not in PascalCase format
 8 | ERROR | Visibility must be declared on method "__construct"
 15 | ERROR | Visibility must be declared on method "setformat"
--

Time: 335ms; Memory: 8MB

I’ll go ahead and add the visibility declarations and then change the name of the

class – a quick job! Now I have a stylishly compliant code file:

namespace popp\ch17\batch01;

class EbookParser
{
 public function __construct(string $path, $format = 0)
 {
 if ($format > 1) {
 $this->setFormat(1);
 }
 }

Chapter 4 Refactoring and Standards Tools

59

 public function setformat(int $format)
 {
 // do something with $format
 }
}

�Managing the Scope of an Analysis
So far, I have invoked the phpcs and phpcbf commands with a path to an individual file.

As you might expect, you can also pass along a path to a directory. PHP_CodeSniffer will

work recursively through the directory and generate a report for all valid files found.

$./phpcs.phar --standard=PSR12 src/ch17/batch02/

Depending upon the number of files within a directory, this will often result in a

very large report. In such cases, I often pipe the output through the more command or

redirect to a file. You can reduce the output somewhat by suppressing warnings with

the -n option. This will limit the output to errors only.

$./phpcs.phar --standard=PSR12 -n src/ch17/batch02/

You can also skip files and directories with the --ignore option. This is particularly

useful if you’d like to avoid getting reports on third-party code beneath a vendor/

directory. You can also specify part or all of a file name.

$./phpcs.phar --standard=PSR12 --ignore=vendor,Blah src/ch17/batch02/

Here, I exclude any path containing vendor or Blah. I could get a little more granular

using wildcards. I might want to block a directory named Blah, for example, but still

check a file name BlahTools.php:

$./phpcs.phar --standard=PSR12 --ignore=vendor,Blah/* src/ch17/batch02/

If you’re sure that a particular file should be exempt from analysis, you can add a

directive to the source:

// phpcs:ignoreFile

class DefiantlyBad {
 // I am non-compliant and proud
}

Chapter 4 Refactoring and Standards Tools

60

Or if you’re breaking the rules for good reason in only part of your source file, you

can selectively disable and re-enable analysis:

namespace popp\ch17\batch02;

class PartiallyBad
{
 public function __construct()
 {
 }

// phpcs:disable
 function intentionalRulebreaking() {}
// phpcs:enable
}

I have, throughout, been specifying the PSR12 standard using the --standard option.

That’s because the default standard is PEAR and I have been focusing on PSR standards in

this book. I can review the available standards using the -i option.

$./phpcs.phar -i
The installed coding standards are MySource, PEAR, PSR1, PSR2, PSR12, Squiz
and Zend

A standard is made up of (usually) multiple sniffs. You can get a list of the sniffs for a

standard using the -e option.

$./phpcs.phar --standard=PSR12 -e

Here’s some truncated output:

The PSR12 standard contains 60 sniffs

Generic (15 sniffs)

 Generic.ControlStructures.InlineControlStructure
 Generic.Files.ByteOrderMark
 Generic.Files.LineEndings
 Generic.Files.LineLength
 Generic.Formatting.DisallowMultipleStatements

Chapter 4 Refactoring and Standards Tools

61

Armed with that information, I can limit my review to a particular set of sniffs:

$./phpcs.phar --standard=PSR12 --sniffs=PSR12.Classes.OpeningBraceSpace
src/ch17/batch01/

�Creating Your Own Sniff
PHP_CodeSniffer is an extremely useful tool when used without much customization.

However, teams inevitably negotiate and enforce their own standards and practices in

addition to those set by third-party bodies.

A team I worked with, for example, mandated that developers should avoid a range

of procedural functions in favor of object-oriented equivalents. So a class that used

the date() function should be refactored to employ the DateTime class. Keeping track

of rules like this during code reviews can quickly become a chore as they evolve and

multiply.

Luckily, PHP_CodeSniffer supports custom standards and sniffs. Let’s create a

standard containing a sniff that discourages the use of date().

�Defining a Standard

I’m going to call my standard NoProc. A minimal setup consists of a directory named

after the standard and a file named ruleset.xml. So this is my file structure:

NoProc/
 ruleset.xml

The ruleset.xml file can be quite extensive (you can see all the directives it supports

at https://github.com/PHPCSStandards/PHP_CodeSniffer/wiki/Annotated-Ruleset).

Luckily, though, it only takes a few lines to create a viable standard.

<ruleset name="NoProc">
 �<description>A standard which discourages use of certain functions where
OO alternatives should be used.</description>

</ruleset>

So, a minimal standard needs a ruleset element with a name attribute and a

description sub-element.

Chapter 4 Refactoring and Standards Tools

https://github.com/PHPCSStandards/PHP_CodeSniffer/wiki/Annotated-Ruleset

62

So that’s it! I have a new standard – albeit one with no rules. I still need to tell phpcs

about it by adding the standard to configuration.

$./phpcs.phar --config-set installed_paths $PWD/NoProc/

phpcs tells us where it saved the value.

Using config file: /Users/mattz/work/popp7/popp7-repo/CodeSniffer.conf

Config value "installed_paths" added successfully

Let’s see if phpcs knows about NoProc:

$./phpcs.phar -i
The installed coding standards are MySource, PEAR, PSR1, PSR2, PSR12,
Squiz, Zend and NoProc

�A Bad Date File

In order to have something for a sniff to work with, I’ll create a scrappy file. In addition

to using date(), I’ll add all sorts of whitespace and mix in various language elements

confusingly named date. I’ll call this throwaway file BadDate.php.

namespace {
 Date("now");

 $date =
 /* bloop */ date(DATE_ATOM);

 print_r($date);
}

namespace testClass {
 class

 /** tricksy **/

 date {
 function date(): void {
 print "date!!!";
 }

Chapter 4 Refactoring and Standards Tools

63

 }
}

namespace testEnum {
 enum date {
 }
}

namespace testInterface {
 interface date
 {
 }
}

namespace testTrait {
 trait date
 {
 }
}

What an ugly piece of work! All the better to put the parser through its paces, though.

This is that rare circumstance in which bad code is good.

�Creating the Sniff

A sniff is a class that implements the interface PHP_CodeSniffer\Sniffs\Sniff. Here is

the interface (stripped of inline documentation):

namespace PHP_CodeSniffer\Sniffs;

use PHP_CodeSniffer\Files\File;

interface Sniff
{
 public function register();
 public function process(File $phpcsFile, $stackPtr);
}

Chapter 4 Refactoring and Standards Tools

64

I’ll begin, then, by creating an empty sniff class. There are some simple rules that

will simplify the process. By default, the library will look for my sniff under the standard

(NoProc) directory within a directory named Sniffs. You can create subdirectories for

different types of sniff. You should name your class so that it (and therefore its class file)

contains the substring Sniff.

Note F un fact: it took me the best part of an afternoon to work out why my sniff
(a class whose name did not contain Sniff) was not being recognized by PHP_
CodeSniffer.

Having created an empty class, my file structure looks like this:

NoProc/
 ruleset.xml
 Sniffs/
 Dates/
 NoProceduralDateSniff.php

Here’s my NoProceduralDateSniff class template – as yet unimplemented:

namespace PHP_CodeSniffer\Standards\NoProc\Sniffs\Dates;

use PHP_CodeSniffer\Sniffs\Sniff;
use PHP_CodeSniffer\Files\File;
use PHP_CodeSniffer\Util\Tokens;

class NoProceduralDateSniff implements Sniff
{
 public function register(): array
 {
 }

 public function process(File $file, $position): void
 {
 }
}

Chapter 4 Refactoring and Standards Tools

65

The register() method should return an array of PHP parser tokens (the elements

into which a script is broken into during compilation). As a target file is processed, if

one of the tokens returned by register() is encountered, the process() method will be

invoked. This is called with two arguments: a PHP_CodeSniffer\Files\File object and

an integer index for the current token.

You can see a list of parser tokens at https://www.php.net/manual/en/tokens.php,

although PHP_CodeSniffer actually breaks down source code into a more detailed set.

This might seem daunting if you’re new to it, but, in fact, you can work out what’s going

on pretty easily by running phpcs against a file with the -vv option set to crank up its

verbosity.

$./phpcs.phar -vv src/ch17/batch02/BadDate.php

Here’s a very small sample from the output:

 *** START PHP TOKENIZING ***
 Process token [0]: T_OPEN_TAG => <?php\n
 Process token [1]: T_COMMENT => /*·listing·17.20·*/
 Process token [2]: T_WHITESPACE => \n
 Process token [3]: T_STRING => Date
 Process token 4 : T_OPEN_PARENTHESIS => (
 Process token [5]: T_CONSTANT_ENCAPSED_STRING => "now"
 Process token 6 : T_CLOSE_PARENTHESIS =>)
 Process token 7 : T_SEMICOLON => ;

By running this over a small sample script, you can see how PHP_CodeSniffer breaks it

down into tokens. It turns out that the date in date("now"), the date in function date(),

and the date in class date are all rendered as the T_STRING constant. This is also true of

enumerations, interfaces, and traits. That complicates my task a little but not too much

since function is parsed as a T_FUNCTION token, class as a T_CLASS token, and so on. By

matching identifiers for the kinds of elements I am not looking for, I can rule them out.

I’ll begin with the register() method. I can see from the debug output above that a

T_STRING token should be the sniff’s trigger:

public function register(): array
{
 return [\T_STRING];
}

Chapter 4 Refactoring and Standards Tools

https://www.php.net/manual/en/tokens.php

66

So now, NoProceduralDateSniff will be activated for each T_STRING token

in a target file. Activation, here, means the invocation of process(). Here’s my

implementation of that:

public function process(File $file, $position): void
{
 $tokens = $file->getTokens();
 $content = $tokens[$position]['content'];

 if (strtolower($content) != "date") {
 return;
 }

 $tokenBefore = $file->findPrevious(
 Tokens::$emptyTokens,
 ($position - 1),
 null,
 true
);
 $tokenCode = $tokens[$tokenBefore]['code'];
 if (
 $tokenCode == T_FUNCTION
 || $tokenCode == T_CLASS
 || $tokenCode == T_INTERFACE
 || $tokenCode == T_TRAIT
 || $tokenCode == T_ENUM
) {
 $tokenCodeStr = $tokens[$tokenBefore]['type'];
 return ;
 }
 �$error = "Looks like a procedural date() consider using

DateTime class";
 $file->addError($error, $position, "ProdDate");
}

Chapter 4 Refactoring and Standards Tools

67

As you can see, most of my work here is with the PHP_CodeSniffer\Files\File

object which represents the file being parsed. It’s worth diving into some of its useful

methods for sniff authors.

File maintains an array of the tokens that make up the file under review. It makes

this available via the getTokens() method. The provided $position argument contains

the index of the current token. Acquiring the token at the $position index will render an

associative array with, among other fields, a code element (corresponding to the value

T_STRING in this case), a type element containing a string representation of the code,

and a content element (the string “Date” for the first match in my test script).

If the match is not for a token with the content “date” (ignoring case), then I

know that this is not the token I am looking for, and I dismiss the issue with a return

statement. Otherwise, some more investigation is needed. In particular, since I’m only

interested in a function call, I need to rule out the declarations of methods, classes,

interfaces, enumerations, and traits named date. Once these declarations are excluded,

I am most likely looking at a match. So, as I discovered by studying the output from my

verbose parse, I need to look for a preceding T_FUNCTION, T_CLASS, T_INTERFACE, T_ENUM,

or T_TRAIT token in order to exclude the wrong kinds of date.

This is where the findPrevious() method becomes useful. findPrevious() looks

for a preceding token. It requires two arguments. First, $types, a token (or an array of

tokens) to define the search. Then, $start the starting point from which to search in

the token array. It optionally accepts $end which defaults to null but which should

otherwise contain an end index for the search. Next, it accepts $exclude, a Boolean,

false by default, which inverts the match rule when set to true. That means that a

search will match anything other than one of the specified tokens. Finally, it accepts

$local, another Boolean. This also defaults to false. When this is set to true, the search

will be limited to the current statement.

Here’s my findPrevious() call again:

$tokenBefore = $file->findPrevious(
 Tokens::$emptyTokens,
 ($position - 1),
 null,
 true
);

Chapter 4 Refactoring and Standards Tools

68

I call it with a handy array of whitespace tokens made available by the PHP_
CodeSniffer\Util\Tokens class and with a starting index. I don’t set an end argument,

but I do invert the search. That means I’m looking for the first previous token that is not

white space. Once I’ve acquired this, I can test its type. If I’ve found one of the declaration

tokens, then I can safely return. Otherwise, it looks like I’m in business. In this case, I’m

in the business of calling addError(). This method requires an error string, the token

index, and a unique self-generated error code. (Out of scope here, it further accepts a

data array for interpolating values into the error string, a severity integer, and a Boolean

indicating whether the error is automatically fixable.)

Before I move on, it’s worth mentioning a couple of other useful File methods.

findNext() is identical in signature and function to findPrevious()except that it

searches forward and not backward. Similarly, addWarning() is identical to addError()

except that it generates a warning rather than an error. Finally getDeclarationName()

requires a token stack index pointing to a method, class, interface, enumeration, or trait

declaration and returns the name. It will throw an exception if the referenced token is

not of a relevant type.

Now that I have my solitary sniff in place, I can try out the standard:

$./phpcs.phar --standard=NoProc src/ch17/batch02/BadDate.php
FILE: /Users/mattz/work/popp7/popp7-repo/src/ch17/batch02/BadDate.php
--
FOUND 2 ERRORS AFFECTING 2 LINES
--
 5 | ERROR | Looks like a procedural date() consider using DateTime class
 8 | ERROR | Looks like a procedural date() consider using DateTime class
--

Time: 27ms; Memory: 6MB

�Combining Multiple Standards

Even if I were to round out my NoProc standard, it would really only be useful as an

extension to a more complete standard. I can combine NoProc with, for example, PSR12

in a couple of ways. I can do this at runtime by adding both standards to my command

invocation:

$./phpcs.phar --standard=PSR12,NoProc src/ch17/batch02/BadDate.php

Chapter 4 Refactoring and Standards Tools

69

I can also amend the standard itself so that NoProc always incorporates PSR12. To do

this, I’ll simply add a rule element to my ruleset.xml file.

<ruleset name="NoProc">
 �<description>A standard which discourages use of certain functions where
OO alternatives should be used.</description>

 <rule ref="PSR12"/>
</ruleset>

The effect of the two approaches is identical, but the second automates the inclusion

of the PSR12 standard.

�PHPStan
Standards promote interoperability and good practice. By definition, the tools that enforce

them are necessarily limited in scope to the standards they enforce. If you want to find a

wider range of potential problems in your code, however, there are other options. Your

IDE may well be running an analysis for you as you code, for example. Luckily, for those,

like me, who prefer to stick with an editor such as Vim, a set of utilities collectively known

as static analysis tools can be employed. They are so-called because they read and analyze

source code without running it. Among the best and most popular of these is PHPStan.

�Installing PHPStan
The easiest way to install PHPStan is with Composer.

$ composer require --dev phpstan/phpstan

This will install the libraries you need and make a command-line script available at

vendor/bin/phpstan.

�Running PHPStan
You can run an analysis very simply with the analyse command. Remember my

EbookParser example? Now that it’s perfectly PSR12 compliant, let’s see what PHPStan

makes of it.

$ php vendor/bin/phpstan analyse --no-progress --no-ansi EbookParser.php

Chapter 4 Refactoring and Standards Tools

70

I am running the command with the flags --no-progress to hide a dynamic progress

report and --no-ansi to suppress some prettification that won’t play well in these pages.

I’ll not show these flags in future examples. Here’s my report:

[OK] No errors

Tip of the Day:
PHPStan is performing only the most basic checks.
You can pass a higher rule level through the --level option
(the default and current level is 0) to analyse code more thoroughly.

No errors? Great! It looks like my work is done. However, as the tool itself tells us,

things aren’t that simple.

�Rule Levels
PHPStan applies rule levels running from a lenient 0 to a forbiddingly strict 9. Table 4-1

summarizes some of the checks associated with these levels.

Table 4-1.  PHPStan Rule Levels

Level Description

0 Basic checks including unknown classes and functions, method and function invocations

with the incorrect number of arguments

1 Undefined variables

2 Unknown methods called on objects and classes

3 Property types, return types

4 Redundant code

5 Argument types which don’t match parameter declarations

6 More undeclared types

7 Checks on union parameter type declarations

8 Report unchecked use of types that might be null

9 Strict mixed type checks

Chapter 4 Refactoring and Standards Tools

71

If you’re working with a pre-existing code base, you might find an initial report quite

shocking, especially if you dial the severity up to 9. I tend to start at about level 6 for

my checks.

$ php vendor/bin/phpstan analyse --level=6 EbookParser.php

At once, I find that my perfectly compliant class is, nonetheless, somewhat imperfect.

------ --
 Line EbookParser.php
------ --
 8 �Constructor of class popp\ch17\batch01\EbookParser has an unused

parameter $path.
 8 �Method popp\ch17\batch01\EbookParser::__construct() has parameter

$format with no type specified.
 15 �Method popp\ch17\batch01\EbookParser::setformat() has no return

type specified.
------ --

These are all easy enough to fix. I’ll go ahead and set things right.

class EbookParserFixed
{
 private int $format;
 private string $path;

 public function __construct(string $path, int $format = 0)
 {
 $this->path = $path;
 if ($format > 1) {
 $this->setFormat(1);
 }
 }

 public function setFormat(int $format): void
 {
 $this->format = $format;
 }
}

Chapter 4 Refactoring and Standards Tools

72

Of course, sometimes when you fix a bug or an issue, you simply expose another one

right behind it. PHPStan immediately spots new problems:

$ php vendor/bin/phpstan analyse --level=6 EbookParserFixed.php
------ --
 Line EbookParserFixed.php
------ --
 7 �Property popp\ch17\batch03\EbookParser::$format is never read, only

written.
 �See: https://phpstan.org/developing-extensions/always-read-

written-properties
 8 �Property popp\ch17\batch03\EbookParser::$path is never read, only

written.
 �See: https://phpstan.org/developing-extensions/always-read-

written-properties
------ --

I can fix the issue with $format either by removing it or using it some way. I’ll create

an accessor method:

public function getFormat(): int
{
 return $this->format;
}

�Telling PHPStan to Ignore Errors
My EbookParser class is a work in progress. I don’t want to remove the currently unused

$path property. At the same time, though, I would rather not see the error report every

time I run PHPStan. I can tell the tool to forgive errors by adding a PHPDoc directive to

my source file. To do that, I need to specify an error identifier. I can see the identifier to

use by running an analysis with the -v flag.

Chapter 4 Refactoring and Standards Tools

73

$ php vendor/bin/phpstan analyse --level=6 -v EbookParserFixed.php
------ --
 Line EbookParserFixed.php
------ --
 7 �Property popp\ch17\batch03\EbookParserFixed::$format is never read,

only written.
 property.onlyWritten
 �See: https://phpstan.org/developing-extensions/always-read-

written-properties
 8 �Property popp\ch17\batch03\EbookParserFixed::$path is never read,

only written.
 property.onlyWritten
 �See: https://phpstan.org/developing-extensions/always-read-

written-properties
------ --

This slightly more verbose output informs me that the error I need to ignore is

property.onlyWritten:

class EbookParserFixed2
{
 private int $format;
 /** @phpstan-ignore property.onlyWritten */
 private string $path;

 // ...

Let’s run again with that in place:

$ php vendor/bin/phpstan analyse --level=6 EbookParserFixed2.php

And now, my known errors are forgiven:

[OK] No errors

Chapter 4 Refactoring and Standards Tools

74

�Array Arguments: Correcting Outside the Language
Not everything that PHPStan checks for can be corrected with PHP code alone. Imagine

that I decided to refactor the $path constructor parameter and property specifying an

array rather than a string so that I can manage multiple filepaths. Here’s my amendment:

class EbookParserFixed3
{
 private int $format;
 /** @phpstan-ignore property.onlyWritten */
 private array $path;

 public function __construct(array $path, int $format = 0)
 {
 $this->path = $path;
 if ($format > 1) {
 $this->setFormat(1);
 }
 }

 // ...

When I review this at rule level 6 or higher, I see this error:

------ --
 Line EbookParserFixed3.php
------ --
 9 �Property popp\ch17\batch03\EbookParserFixed3::$path type has no

value type specified in iterable type array.
 �See: https://phpstan.org/blog/solving-phpstan-no-value-type-

specified-in-iterable-type
 11 �Method popp\ch17\batch03\EbookParserFixed3::__construct()

has parameter $path with no value type specified in iterable
type array.

 �See: https://phpstan.org/blog/solving-phpstan-no-value-type-
specified-in-iterable-type

------ --

[ERROR] Found 2 errors

Chapter 4 Refactoring and Standards Tools

75

This makes a lot of sense. Modern PHP can be pinned down very well as far as type

is concerned. But collections remain untyped. We encountered one solution in Volume

1 – the use of typed collection classes. But if you’re sticking with arrays, then you’re also

stuck as far as enforcing type is concerned. One solution, supported by IDEs and tools

such as PHPStan, is the use of PHPDoc. By telling static analysis tools our expectations

for array contents, we help them to enforce our rules. So, I can fix the error:

class EbookParserFixed4
{
 private int $format;
 /** @phpstan-ignore property.onlyWritten */
 private array $path;

 /**
 * Constructor
 *
 * @param string[] $path A list of paths to process
 * @param int $format A format value 0-4
 */
 public function __construct(array $path, int $format = 0)
 {
 $this->path = $path;
 if ($format > 1) {
 $this->setFormat(1);
 }
 }

And we get a clean bill of health once again.

Chapter 4 Refactoring and Standards Tools

76

�Summary
In this chapter, I examined two tools for maintaining code quality in your projects. I

covered the use of PHP_CodeSniffer for detecting coding standards violations and the

phpcbf extension which can automatically correct many violations. I created a custom

standard named NoProc containing a single sniff for detecting usage of the date()

function. I introduced PHPStan, a static analysis tool for finding bugs and design issues

in PHP code. I showed how to adjust the tool’s sensitivity, to disable it for known errors,

and to handle collection typing errors with PHPDoc.

Chapter 4 Refactoring and Standards Tools

77
© Matt Zandstra 2025
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_5

CHAPTER 5

Using and Creating
Components
with Composer
Programmers aspire to produce reusable code. This is one of the great goals in object-

oriented coding. We like to abstract useful functionality from the messiness of specific

context, turning a particular solution into a tool that can be used again and again. To

come at this from another angle, if programmers love the reusable, they hate duplication.

By creating libraries that can be reapplied, programmers avoid the need to implement

similar solutions across multiple projects.

Even if we avoid duplication in our own code, though, there is a wider issue. For

every tool you create, how many other programmers have implemented the same

solution? This is wasted effort on an epic scale: Wouldn’t it be much more sensible for

programmers to collaborate and to focus their energies on making a single tool better,

rather than producing hundreds of variations on a theme?

In order to do this, we need to get our hands on existing libraries. But then, the

packages we need will likely require other libraries in order to do their work. So, we need

a tool which can handle downloading and installing packages, as well as manage their

dependencies. That is where Composer comes in; it does all this and more besides.

This chapter will cover several key issues:

•	 Installation: Downloading and setting up Composer

•	 Requirements: Using composer.json to get packages

•	 Versions: Specifying versions so as to get the latest code without

breaking your system

https://doi.org/10.1007/979-8-8688-0779-4_5#DOI

78

•	 Packagist: Configuring your code for public access

•	 Private repositories: Leveraging Composer using a private repository

�What Is Composer?
Strictly speaking, Composer is a dependency manager rather than a package manager.

This, it seems, is because it handles component relationships on a local basis rather than

centrally as Yum and Apt do. If you think that this is an overly fine distinction, you could

be right. However we define it, Composer allows you to specify packages. It downloads

them to a local directory (vendor), finds and downloads all dependencies, and then

makes all this code available to your project via an autoloader.

As always, we need to begin by getting the tool.

�Installing Composer
You can download Composer at https://getcomposer.org/download/. You will find an

installer mechanism there. You can also install a stable phar file like this:

$ wget https://getcomposer.org/composer-stable.phar
$ chmod 755 composer-stable.phar
$ sudo mv composer-stable.phar ~/bin/composer

I download the archive and run chmod to ensure that it is executable. Then, I copy it

into a central location so that I can run it easily from anywhere in my system. Now I can

test the command:

$ composer --version

The output confirms both the version and the fact that the command is

probably sane.

Composer version 2.7.2 2024-03-11 17:12:18

Chapter 5 Using and Creating Components with Composer

https://getcomposer.org/download/

79

�Installing a (Set of) Package(s)
Why did I do that funky bit with the parentheses in the title for this section? Because

packages inevitably beget packages – sometimes a lot of packages.

Let’s begin with a library that stands alone, though. Imagine that we’re building an

application which needs to communicate with OpenAI. A little bit of research leads me

to the orhanerday/open-ai package. In order to install this, I need to generate a JSON

file named composer.json and then define a require element:

{
 "require": {
 "orhanerday/open-ai": "5.*"
 }
}

I begin with a directory that is empty apart from the composer.json file. Once I run a

Composer command, though, we’ll see a change:

$ composer update

Here’s the output:

Loading composer repositories with package information
Updating dependencies
Lock file operations: 0 installs, 1 update, 0 removals
 - Upgrading orhanerday/open-ai (5.1 => 5.2)
Writing lock file
Installing dependencies from lock file (including require-dev)
Package operations: 1 install, 0 updates, 0 removals
 - Installing orhanerday/open-ai (5.2): Extracting archive
Generating autoload files
1 package you are using is looking for funding.
Use the `composer fund` command to find out more!
No security vulnerability advisories found.

So what has been generated? Let’s take a look by running ls:

composer.json composer.lock vendor

Chapter 5 Using and Creating Components with Composer

80

Composer installs packages into vendor/. It also generates a file named composer.
lock. This specifies the exact versions of all packages installed. If you’re using version

control, you can commit this file. If another developer runs composer install with a

composer.lock file present, package versions will be installed on their system exactly

as specified. In this way, the team can stay in sync with one another, and you can be

sure that your production environment exactly matches the development and test

environments. If a developer runs composer install and no composer.lock file is

present, then the effect is the same as running composer update – dependencies will be

calculated anew, and a composer.lock file will be generated.

You can override the lock file by running composer update again. This will generate

a new lock file. Typically, you will run this to keep current with new package versions (if

you are using ranges or, as I have, wildcards).

�Installing a Package from the Command Line
As you have seen, I can create the composer.json file using an editor. But you can also

have Composer do it for you. This is particularly useful if you need to kick off with a

single package. When you invoke composer require on the command line, Composer

will download the specified package and install it into vendor/ for you. It will also

generate a composer.json file, which you can then edit and extend:

$ composer require orhanerday/open-ai

Output:

./composer.json has been created
Running composer update orhanerday/open-ai
Loading composer repositories with package information
Updating dependencies
Nothing to modify in lock file
Writing lock file
Installing dependencies from lock file (including require-dev)
Nothing to install, update or remove
Generating autoload files

Chapter 5 Using and Creating Components with Composer

81

1 package you are using is looking for funding.
Use the `composer fund` command to find out more!
No security vulnerability advisories found.
Using version ^5.1 for orhanerday/open-ai

�Versions
Composer is designed to support semantic versioning. In essence, this involves defining

a package’s version with three numbers separated by dots: major, minor, and patch.

If you fix a bug, add no functionality, and do not break backward compatibility, you

should increment the patch number. If you add new functionality but do not break

backward compatibility, you should increment the middle minor number. If your new

version breaks backward compatibility (in other words, if client code would break if

this new version were suddenly switched in), then you should increment the first major

version number.

Note  You can read more about the semantic versioning convention at https://
semver.org.

You should bear this in mind when specifying versions in your composer.json file:

if you are too liberal in your ranges or wildcards, you may find that your system breaks

on update.

Table 5-1 shows some of the ways that you can specify versions with Composer.

Chapter 5 Using and Creating Components with Composer

https://semver.org
https://semver.org

82

Ta
bl

e
5-

1.
 C

om
p

os
er

 a
n

d
P

ac
ka

ge
 V

er
si

on
s

Ty
pe

Ex
am

pl
e

No
te

s

Ex
ac

t
1.
2.
2

On
ly

 in
st

al
l t

he
 g

iv
en

 v
er

si
on

.

W
ild

ca
rd

1.
2.
*

In
st

al
l t

he
 e

xa
ct

 s
pe

ci
fie

d
nu

m
be

rs
 b

ut
 fi

nd
 th

e
la

te
st

 a
va

ila
bl

e
ve

rs
io

n
m

at
ch

in
g

th
e

w
ild

ca
rd

.

Ra
ng

e
1.
0.
0–
1.
1.
7

In
st

al
l a

 v
er

si
on

 n
o

lo
w

er
 th

an
 th

e
fir

st
 n

um
be

r a
nd

 n
o

hi
gh

er
 th

an
 th

e
la

st
 n

um
be

r.

Co
m

pa
ris

on
>1
.2
.0
 <
=1
.2
.2

Us
e
<,

 <
=,

 >
, a

nd
 >
=

to
 s

pe
ci

fy
 c

om
pl

ex
 ra

ng
es

. Y
ou

 c
an

 c
om

bi
ne

 th
es

e
di

re
ct

iv
es

 w
ith

 a

sp
ac

e
(e

qu
iv

al
en

t t
o

“a
nd

”)
 o

r w
ith

 ||
to

 s
pe

ci
fy

 “
or

”.

Ti
ld

e
(m

aj
or

 v
er

si
on

)
~1
.3

Th
e

gi
ve

n
nu

m
be

r i
s

th
e

m
in

im
um

, a
nd

 th
e

fin
al

 n
um

be
r s

pe
ci

fie
d

ca
n

in
cr

ea
se

. S
o,

 fo
r

~1
.3

, 1
.3

 is
 th

e
m

in
im

um
, a

nd
 th

er
e

ca
n

be
 n

o
m

at
ch

 a
t 2

.0
.0

 o
r a

bo
ve

.

Ca
re

t
^1
.3

W
ill

 m
at

ch
 u

p
to

, b
ut

 n
ot

 in
cl

ud
in

g,
 th

e
ne

xt
 b

re
ak

in
g

ch
an

ge
. S

o,
 w

hi
le

 ~
1.
3.
1

w
ill

 n
ot

m
at

ch
 a

t 1
.4

 a
nd

 a
bo

ve
, ^
1.
3.
1

w
ill

 m
at

ch
 fr

om
 1

.3
.1

 u
p

to
, b

ut
 n

ot
 in

cl
ud

in
g,

 2
.0

.0
. T

hi
s

is
 g

en
er

al
ly

 th
e

m
os

t u
se

fu
l s

ho
rtc

ut
.

Chapter 5 Using and Creating Components with Composer

83

Note  You can further influence the way that composer selects packages by
adding stability suffixes to your version constraint strings. By adding @ followed
by one of dev, alpha, beta, and RC (running from least to most stable), you will
allow composer to consider nonstable versions in its calculations. Composer can
work this out by looking at the Git tag names. So, 1.2.*@dev can match the tag
1.2.2-dev. You can also use the stability flag stable to signal that you do not
want to include bleeding-edge code. This will match version tags which are not
defined as dev, beta, and so on.

�require-dev
Very often, you need packages during development that are unnecessary in a production

context. You will want to run tests locally, for example, but you are unlikely to need

PHPUnit available on your public site.

Composer addresses this by supporting a separate require-dev element. You can

add packages here, just as you can for the require element:

{
 "require-dev": {
 "phpunit/phpunit": "*"
 },
 "require": {
 "orhanerday/open-ai": "^5.0"
 }
}

Now, when we run composer update, PHPUnit and all sorts of dependent packages

are downloaded and installed:

Loading composer repositories with package information
Updating dependencies
Nothing to modify in lock file
Installing dependencies from lock file (including require-dev)
Package operations: 27 installs, 0 updates, 0 removals

Chapter 5 Using and Creating Components with Composer

84

 - Installing orhanerday/open-ai (5.1): Extracting archive
 - Installing sebastian/version (5.0.0): Extracting archive
 - Installing sebastian/type (5.0.0): Extracting archive
 ...
Generating autoload files
25 packages you are using are looking for funding.
Use the `composer fund` command to find out more!
No security vulnerability advisories found.

If you’re installing in a production context, however, you can pass the --no-dev flag

to composer install, and Composer will download only those packages specified in the

require element:

$ composer install --no-dev
Installing dependencies from lock file
Verifying lock file contents can be installed on current platform.
Package operations: 1 install, 0 updates, 0 removals
 - Installing orhanerday/open-ai (5.1): Extracting archive
Generating autoload files
1 package you are using is looking for funding.
Use the `composer fund` command to find out more!

Note A s a reminder, when you run the composer install command,
Composer looks for a file named composer.lock. If this file is not present, the
command will behave like composer update – dependencies will be freshly
calculated, and the composer.lock file will be generated. This records the exact
version of every file you installed under vendor/.

If you run composer install and a composer.lock file is already present
alongside composer.json, Composer will fetch the package versions it finds
there. This is useful because you can commit a composer.lock file to your
version control repository and be sure that your team will download the same
versions of all the packages you have installed. If you need to override composer.
lock, either to get the latest versions of packages or because you have changed
composer.json, you should run composer update to override the lock file.

Chapter 5 Using and Creating Components with Composer

85

�Composer and Autoload
We covered autoloading in some detail in Chapter 3. For the sake of completeness,

however, it is worth looking at it briefly here. Composer generates a file named

autoload.php, which handles class loading for the packages it downloads. You can also

leverage this functionality for your own code by including autoload.php (usually by

invoking require_once). Once you have done this, any class you declare in your system

will be found automatically when accessed in your code, so long as your directories and

file names mirror your namespaces and class names.

In other words, a class named poppbook\megaquiz\command\CommandContext must

be placed in a file named CommandContext.php in the poppbook/megaquiz/command/

directory.

If you want to mix things up (perhaps by omitting a redundant leading directory

or two or by adding a test directory to the search path), then you can use the autoload

element to map a namespace to your file structure, like this:

"autoload": {
 "psr-4": {
 "poppbook\\megaquiz\\": ["src", "test"]
 }
}

In order to generate the latest autoload.php file, I need to run one of composer
install (will also install anything specified in the lock file) or composer update (will

also install the latest packages that match the specification in composer.json). If you do

not want to install or update any packages, you can use composer dump-autoload which

will only generate autoload files.

Now, so long as autoload.php is included, my classes are easily discoverable. Thanks

to my autoload configuration, the poppbook\megaquiz\command\CommandContext

class will be found in src/command/CommandContext.php. Not only that, because I have

referenced more than one target (test as well as src), I can also create test classes that

belong to the poppbook\megaquiz namespace under the test/ directory.

Turn to the “PSR-4 Autoloading” section in Chapter 3 to follow a more in-depth

example.

Chapter 5 Using and Creating Components with Composer

https://doi.org/10.1007/979-8-8688-0779-4_3
https://doi.org/10.1007/979-8-8688-0779-4_3

86

�Creating Your Own Package
If you have worked with PEAR in the past, you might expect a section on creating a

package to involve an entirely new package file. In fact, we’ve already been creating a

package throughout this chapter. We just have to add some more information and then

find a way to make our code available to others.

�Adding Package Information
You really do not have to add that much information to make a viable package, but

you absolutely need a name so that it can be referenced and found. I’ll also include

description and authors elements to provide more complete information.

"name": "poppbook/megaquiz",
"description": "a truly mega quiz",
"authors": [
 {
 "name": "matt zandstra",
 "email": "matt@getinstance.com"
 }
],

These fields should be mostly self-explanatory. The exception might be that leading

namespace – poppbook in this case – which is separated from the actual package name

by a forward slash. This is known as the vendor name and it’s a PSR-4 requirement. As

you might expect, the vendor name becomes a top-level directory under vendor/ when

your package is installed. This is often the organization name used by the package owner

in GitHub or Bitbucket.

With all that in place, you are ready to commit your package to your version control

host of choice. If you’re not sure what that involves, you can learn a lot more about this

subject in Chapter 6.

Note  Composer supports a version field, but it is considered better practice
to use a tag in Git to track your package’s version. Composer will automatically
recognize this.

Chapter 5 Using and Creating Components with Composer

https://doi.org/10.1007/979-8-8688-0779-4_6

87

Remember that you should not push the vendor directory (at least not usually –

there are some arguable exceptions to that rule). However, it is a good idea to track the

generated composer.lock file alongside composer.json.

�Platform Packages
Although you cannot use Composer to install system-wide packages, you can specify system-

wide requirements, so that your package will only install in a system which is ready for it.

A platform package is specified with a single key, though in a couple of cases the key

is further broken down by type, using a dash. I list the available types in Table 5-2.

Table 5-2.  Platform Packages

Type Example Description

PHP "php": "8.*" The PHP version

Extension "ext-xml": ">2" A PHP extension

Library "lib-iconv": "~2" A system library used by PHP

HHVM "hhvm": "~2" An HHVM version (HHVM is a virtual machine that supports

an extended version of PHP)

Let’s try it out:

{
 "require": {
 "orhanerday/open-ai": "^5.0",
 "ext-xml": "*",
 "ext-gd": "*"
 }
}

In the preceding code, I specify that my package requires the xml and gd extensions.

Now, it’s time to run update:

$ composer update
Loading composer repositories with package information
Updating dependencies
Your requirements could not be resolved to an installable set of packages.

Chapter 5 Using and Creating Components with Composer

88

 Problem 1
 - Root composer.json requires PHP extension ext-gd * but it is
 missing from your system. Install or enable PHP's gd extension.

 �To enable extensions, verify that they are enabled in your
.ini files:

 - /usr/local/etc/php/conf.d/docker-php-ext-sodium.ini
 �You can also run `php --ini` in a terminal to see which

files are
 used by PHP in CLI mode.
 �Alternatively, you can run Composer with `--ignore-platform-

req=ext-gd`
 to temporarily ignore these required extensions.

It looks as though I was set up for XML; however, GD, an image manipulation

package, is not installed on my system, so Composer throws an error. Notice that

Composer gave me an option. I could, if I wanted, rerun the command with the flag

 --ignore-platform-req=ext-gd. Of course, my code might not run as expected without

the required extension.

�Distribution Through Packagist
If you’ve been working through this chapter, you might have wondered where the

packages we have been installing actually come from. It feels a lot like magic, but (as you

might expect) there is a package repository behind the scenes. It is called Packagist, and

it can be found at https://packagist.org. So long as your code can be found in a public

Git repository, it can be made available through Packagist.

Let’s give it a shot. I have pushed my megaquiz project to GitHub, so now I need to

tell Packagist about my repository. Once I have signed up, I simply add the URL of my

repository. You can see this in Figure 5-1.

Chapter 5 Using and Creating Components with Composer

https://packagist.org

89

Figure 5-1.  Adding a package to Packagist

Once I’ve added megaquiz, Packagist locates the repository, checks the composer.
json file, and displays a control panel. You can see that in Figure 5-2.

Packagist tells me that I have not set license information. I can fix this at any time by

adding a license element to the composer.json file:

Chapter 5 Using and Creating Components with Composer

90

Figure 5-2.  The package control panel

"license": "Apache-2.0",

Packagist has also failed to find any version information. I’ll fix this by adding a tag to

the GitHub repository:

$ git tag -a 'v1.0.0' -m 'v1.0.0'
$ git push –tags

Note I f you think I’m cheating by skimming over this Git stuff, you’re right. I
cover both Git and GitHub in some detail in Chapter 6.

Now, Packagist knows about my version number. You can see that in Figure 5-3.

Chapter 5 Using and Creating Components with Composer

https://doi.org/10.1007/979-8-8688-0779-4_6

91

Figure 5-3.  Packagist knows the version

At this point, anyone can include megaquiz from another package. Here is a minimal

composer.json file:

{
 "require": {
 "poppbook/megaquiz": "*"
 }
}

I specify the vendor name and the package name. Riskily, I am happy to accept any

version at all. Let’s go ahead and install:

$ composer update
Loading composer repositories with package information
Updating dependencies
Lock file operations: 2 installs, 0 updates, 0 removals

Chapter 5 Using and Creating Components with Composer

92

 - Locking orhanerday/open-ai (5.1)
 - Locking poppbook/megaquiz (v1.0.1)
Writing lock file
Installing dependencies from lock file (including require-dev)
Package operations: 2 installs, 0 updates, 0 removals
 - Downloading poppbook/megaquiz (v1.0.1)
 - Installing orhanerday/open-ai (5.1): Extracting archive
 - Installing poppbook/megaquiz (v1.0.1): Extracting archive
Generating autoload files
1 package you are using is looking for funding.
Use the `composer fund` command to find out more!
No security vulnerability advisories found.

Notice that the dependencies I specified when I set up megaquiz are also

downloaded.

�Keeping It Private
Of course, you don’t always want to publish your code to the world. Sometimes, you

need to share only with a smaller set of authorized users.

Here is a private package named getinstance/wtnlang-php which contains a library

for a scripting language:

{
 "name": "getinstance/wtnlang-php",
 "description": "it's a wtn language",
 "license": "private",
 "authors": [
 {
 "name": "matt zandstra",
 "email": "matt@getinstance.com"
 }
],
 "autoload": {
 "psr-4": {

Chapter 5 Using and Creating Components with Composer

93

 "getinstance\\wtnlang\\": ["src/", "test/unit"]
 }
 },
 "require": {
 "aura/cli": "^2.2",
 "monolog/monolog": "^3.5"
 },
 "require-dev": {
 "phpunit/phpunit": "^11.1"
 }
}

This is hosted in a private Bitbucket repository, so it’s not available via Packagist. So,

how would I include it in a project? I simply need to tell Composer where to look. I can

do this by creating or adding to the repositories element:

{
 "repositories": [
 {
 "type": "vcs",
 "url": "git@bitbucket.org:getinstance/wtnlang-php.git"
 }
],
 "require": {
 "poppbook/megaquiz": "*",
 "getinstance/wtnlang-php": "dev-develop"
 }
}

I could have specified a version for getinstance/wtnlang-php in the require block,

and that would correspond to a tag in the Git repository, but, by using the dev- prefix,

I can call for a branch. This is very useful during development. So now, so long as I have

access to getinstance/wtnlang-php, I can install both my private package and megaquiz

at once:

$ composer update
Loading composer repositories with package information

Chapter 5 Using and Creating Components with Composer

94

Updating dependencies
Nothing to modify in lock file
Installing dependencies from lock file (including require-dev)
Package operations: 7 installs, 0 updates, 0 removals
 - Syncing getinstance/wtnlang-php (dev-develop f33515e) into cache
 - Installing composer/ca-bundle (1.5.0): Extracting archive
 - Installing psr/log (3.0.0): Extracting archive
 - Installing monolog/monolog (3.5.0): Extracting archive
 - Installing aura/cli (2.2.0): Extracting archive
 - �Installing getinstance/wtnlang-php (dev-develop f33515e): Cloning

f33515e3f7 from cache
 - Installing orhanerday/open-ai (5.1): Extracting archive
 - Installing poppbook/megaquiz (v1.0.1): Extracting archive
Generating autoload files
3 packages you are using are looking for funding.
Use the `composer fund` command to find out more!
No security vulnerability advisories found.

�Summary
You should leave this chapter with a sense of how easy it is to leverage Composer

packages to add power to your projects. Through the composer.json file, you can also

make your code accessible to other users, whether publicly by using Packagist or by

specifying your own repository. This approach automates dependency downloads for

your users and allows third-party packages to use yours without the need for bundling.

Chapter 5 Using and Creating Components with Composer

95
© Matt Zandstra 2025
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_6

CHAPTER 6

Version Control with Git
All disasters have their tipping point, the moment at which order finally breaks down

and events simply spiral out of control. Do you ever find yourself in projects like that?

Are you able to spot that crucial moment?

Perhaps it’s when you make “just a couple of changes” and find that you have

brought everything crashing down around you (and, even worse, you’re not quite sure

how to get back to the point of stability you have just destroyed). It could be when you

realize that three members of your team have been working on the same set of classes

and merrily saving over each other’s work. Or perhaps it’s when you discover that a bug

fix that you have implemented twice has somehow disappeared from the code base yet

again. Wouldn’t it be nice if there were a tool to help you manage collaborative working,

allowing you to take snapshots of your projects, roll them back if necessary, and then

merge multiple strands of development? In this chapter, we look at Git, a tool that does

all that and more.

This chapter will cover the following aspects of working with Git:

•	 Basic configuration: Exploring some tips for setting up Git

•	 Importing: Starting a new project

•	 Committing changes: Saving your work to the repository

•	 Updating: Merging other people’s work with your own

•	 Branching: Maintaining parallel strands of development

�Why Use Version Control?
If it hasn’t already, version control will change your life (if only your life as a developer).

How many times have you reached a stable moment in a project, drawn a breath, and

plunged onward into development chaos once again? How easy was it to revert to the

stable version when it came time to demonstrate your work in progress? Of course, you

https://doi.org/10.1007/979-8-8688-0779-4_6#DOI

96

may have saved a snapshot of your project when it reached a stable moment, probably

by duplicating your development directory. Now, imagine that your colleague is working

on the same code base. Perhaps he has saved a stable copy of the code as you have. The

difference is that his copy is a snapshot of his work, not yours. Of course, he has a messy

development directory, too. So you have four versions of your project to coordinate.

Now, imagine a project with four programmers and a web UI developer. You’re looking

pale. Perhaps you would like to lie down?

Git exists exclusively to address this problem. Using Git, all of your developers can

clone their own copies of the code base from a central repository. Whenever they reach a

stable point in their code, they can pull the latest code from the server and merge it with

their own recent work. When they are ready, and after they have fixed any conflicts and

run all tests, they can push their new stable synthesis back into the shared repository.

Git is a distributed version control system. This means that, once they have acquired

a branch, users commit to their own local repository without the need for a network

connection. There are a number of benefits to this. It means that day-to-day operations

are faster and that you can work easily on planes and trains and in automobiles.

Ultimately, however, you can share an authoritative repository with your teammates.

The fact that each developer can merge their work into a central repository means

that reconciling multiple strands of development is made vastly easier. Even better, you

can check out versions of your code base based on a date or a label. So when your code

reaches a stable point, suitable for showing to a client as work in progress, for example,

you can tag that with an arbitrary label. You can then use that tag to check out the correct

code base when your client swoops into your office looking to impress an investor.

Wait! There’s more! You can also manage multiple strands of development at the

same time. If this sounds needlessly complicated, imagine a mature project. You have

already shipped the first version, and you’re well into development of version 2. Does

version 1.n go away in the meantime? Of course not. Your users are spotting bugs and

requesting enhancements all the time. You may be months away from shipping version

2, so where do you make and test the changes? Git lets you maintain distinct branches of

the code base. So you might create a bug fix branch of your version 1.n for development

on the current production code. At key points, this branch can be merged back into the

version 2 code (the trunk), so that your new release can benefit from improvements to

version 1.n.

Chapter 6 Version Control with Git

97

Note  Git is not the only version control system available. You might also like
to look into Subversion (https://subversion.apache.org/) or Mercurial
(https://www.mercurial-scm.org/). This chapter is necessarily a brief
introduction to a large topic. Luckily, however, Pro Git by Scott Chacon (Apress,
2014) covers the topic with depth and clarity. Not only that, but a web version is
available online at https://git-scm.com/book/en/v2.

Let’s get on and look at some of these features in practice.

�Getting Git
If you are working with a Unix-like operating system (such as Linux or FreeBSD), you

may already have Git installed and ready to use.

Note I show commands that are input at the command line with a leading dollar
sign ($) to represent the command prompt to distinguish them from any output
they may produce.

Try typing this from the command line:

$ git help

You should see some usage information that will confirm that you are ready to

get started. If you do not already have Git, you should consult your distribution’s

documentation. You will almost certainly have access to a simple installation

mechanism such as Yum or Apt, or you can acquire Git directly from https://git-scm.
com/downloads.

Note T echnical reviewer Paul Tregoing also recommends Git for Windows
(https://gitforwindows.org/) which comes with Git, naturally, but also a set
of useful open source tools.

Chapter 6 Version Control with Git

https://subversion.apache.org/
https://www.mercurial-scm.org/
https://git-scm.com/book/en/v2
https://git-scm.com/downloads
https://git-scm.com/downloads
https://gitforwindows.org/

98

�Using an Online Git Repository
You may have noticed by now that this book often goes it alone. I almost never argue

that you should reinvent the wheel; rather, you should at least get a sense of what goes

into wheel construction before buying one ready-made. For this reason, I’ll be covering

the mechanics of setting up and maintaining your own central Git repository in the next

section. Let’s get real, though. You’ll almost certainly use a specialized host to manage

your repositories. There are a number of these to choose from, though the biggest

players are probably Bitbucket (https://bitbucket.org), GitHub (https://github.
org), and GitLab (https://about.gitlab.com/).

So, which should you choose? As a rule of thumb, GitHub is the standard for open

source products. So, I’ll sign up with GitHub for my project. Figure 6-1 shows my next

decision, which is the choice between a public and a private repository. I’ll opt for a

public project (because I’m creating an open source project).

Figure 6-1.  Getting started with a GitHub project

Chapter 6 Version Control with Git

https://bitbucket.org
https://github.org
https://github.org
https://about.gitlab.com/

99

As you can see, in Figure 6-1, GitHub confirms that the megaquiz repository is

available within my namespace. At this point, GitHub offers some helpful instructions

for importing my project. You can see those in Figure 6-2.

Figure 6-2.  GitHub’s import instructions

I’m not ready to run those commands yet, though. GitHub needs to be able to

validate me when I push files to the server. In order to do that, it requires my public key. I

describe one way of generating such a key in the next section, “Configuring a Git Server.”

Once I have a public key, I can add it from the SSH and GPG keys link in GitHub’s User

Settings screen.

You can see GitHub’s settings screen for SSH and GPG keys in Figure 6-3.

Chapter 6 Version Control with Git

100

Figure 6-3.  Adding an SSH key

Now, I’m ready to start adding files to my repository. Before we get into that, though,

we should step back and spend some time following the do-it-yourself route.

�Configuring a Git Server
Git is different from traditional version control systems in two key ways. First, under

the hood, it stores snapshots of files rather than the changes made to files between

commits. Second, and more obviously to the user, it operates locally to your system until

you choose to push to or pull from a remote repository. This means that you are not

dependent on an Internet connection to get on with your work.

You do not need a single remote repository in order to work with Git, but in practice,

it almost always makes sense to have a shared source of authority if you are working

with a team.

In this section, I look at the steps needed to get a remote Git server up and running. I

assume root access to a Linux machine.

Chapter 6 Version Control with Git

101

�Creating the Remote Repository
In order to create a Git repository, I must first create a containing directory. I log in to a

freshly provisioned remote server via SSH. I am going to create my repository under

/var/git. Generally speaking, only the root user can create and modify directories there,

so I run the following command using sudo:

$ sudo mkdir -p /var/git/megaquiz
$ cd /var/git/megaquiz/

I create /var/git, a parent directory for my repositories and a subdirectory for a

sample project called megaquiz. Now, I can prepare the directory itself:

$ sudo git init --bare
Initialized empty Git repository in /var/git/megaquiz/

The --bare flag tells Git to initialize a repository without a working directory. Git will

complain if you try to push to a repository that has not been created in this way.

At the moment, only the root user can mess around under /var/git. I can change

this by creating a user and a group named git and making it the directory’s owner:

$ sudo adduser git
$ sudo chown -R git:git /var/git

�Preparing the Repository for Local Users

Although this is a designated remote server, I should also ensure that local users

can commit to the repository. If you’re not careful, this can cause ownership and

permissions issues (especially if users with sudo privileges push code).

$ sudo chmod -R g+rws /var/git

This gives members of the git group write access to /var/git and causes all files

and directories created here to take on the git group. Now, as long as I ensure that they

are members of the git group, local users will be able to write to the repository.

You can add a local user to the git group like this:

$ sudo usermod -aG git bob

Now, user bob is a member of the git group.

Chapter 6 Version Control with Git

102

�Providing Access to Users

The owner of the bob user mentioned in the previous section can log in to the server and

interact with the repository from his shell. Generally, though, you won’t want to provide

shell access to all your users. In any case, most users will prefer to take advantage of Git’s

distributed nature and to work locally with their cloned data.

One way to grant a user SSH access is via public key authentication. To do this, you

first need to acquire the user’s public SSH key. The user may already have this – on a

Linux machine, he will probably find the key in the configuration directory, .ssh, in a file

named id_rsa.pub or id_ed25519.pub depending upon the algorithm used to generate

the key. Otherwise, he can easily generate a new key. On a Unix-like machine, this is a

matter of running the ssh-keygen command and copying the value that it generates:

$ ssh-keygen -t ed25519 -C "you@example.com"
$ cat ~/.ssh/id_ed25519.pub

As the repository administrator, I will have asked you for a copy of this key. Once I

have it, I must add it to the git user’s SSH setup on the repository server. This is merely a

matter of pasting the public key into the .ssh/authorized_keys file. I may need to create

the .ssh configuration directory for the first key I set up (I am running these commands

from the git user’s home directory):

$ mkdir .ssh
$ chmod 0700 .ssh

Now, I can create the .ssh/authorized_keys file and paste in the user’s key:

$ vi .ssh/authorized_keys
$ chmod 0700 .ssh/authorized_keys

Note A common cause of SSH access failure is the creation of configuration
files with overly liberal permissions. The SSH configuration environment should
be readable and writable to the account’s owner only. Pro OpenSSH by Michael
Stahnke (Apress, 2005) covers SSH comprehensively.

Chapter 6 Version Control with Git

103

�Closing Down Shell Access for the Git User

No server should be any more open than it needs to be. You may want to enable your

user to access Git commands, but probably not much more.

You can see the shell associated with a user on a Linux server by looking at the file,

/etc/passwd. Here is the relevant line for the git account on my remote server:

git:x:1001:1001::/home/git:/bin/bash

Git provides a special shell, named git-shell, that restricts the user to selected

commands only. I can enable this program for logins by editing /etc/passwd:

git:x:1001:1001::/home/git:/usr/bin/git-shell

Now, if I attempt to log in via SSH, I’m told the score and logged out:

$ ssh git@poppch19.vagrant.internal
Last login: Mon Apr 15 14:25:05 2024 from 192.168.33.1
fatal: Interactive git shell is not enabled.
hint: ~/git-shell-commands should exist and have read and execute
access. Connection to 192.168.33.71 closed.

�Beginning a Project
Now that I have a remote Git server and access to it from my local account, it’s time to

add my work in progress to the repository at /var/git/megaquiz.

Before I start, I take a good look at my files and directories and remove any

temporary items I might find.

Failure to do this is a common annoyance. Temporary items to watch for include

automatically generated files such as composer packages, build directories, installer

logs, and so on.

Chapter 6 Version Control with Git

104

Note  You can specify files and patterns to ignore by placing a file named
.gitignore in your repository. On a Linux system, the man gitignore
command should provide examples of file name wildcarding that you can amend
to exclude the various lock files and temporary directories created by your build
processes, editors, and IDEs. This text is also available online at https://git-
scm.com/docs/gitignore.

Before I go any further, I should register my identity with Git – this makes it easier to

track who does what in the repository:

$ git config --global user.name "poppbook"
$ git config --global user.email "poppbook@getinstance.com"
$ git config --global init.defaultBranch "main"

I have also configured Git to default to a branch named main. This keeps us in line

with GitHub which defaults to main. Now that I have established my personal details and

ensured that my project is clean, I can set it up and push its code to the server:

$ cd /home/mattz/work/megaquiz
$ git init
Initialized empty Git repository in /home/mattz/work/megaquiz/.git/

Now, it’s time to add my files:

$ git add .

Git is now tracking all the files and directories under megaquiz. Tracked files can

be in three states: unmodified, modified, or staged. You can check this by running the

command git status:

$ git status
On branch main
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#

Chapter 6 Version Control with Git

https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore

105

new file: composer.json
new file: composer.lock
new file: main.php
new file: src/command/Command.php
new file: src/command/CommandContext.php
new file: src/command/FeedbackCommand.php
new file: src/command/LoginCommand.php
new file: src/quizobjects/User.php
new file: src/quiztools/AccessManager.php
new file: src/quiztools/ReceiverFactory.php
#

Thanks to my previous git add command, all my files are staged for commit. I can

go ahead now and execute the commit command:

$ git commit -m'initial commit'
[main (root-commit) a5ca2d4] initial commit
10 files changed, 1638 insertions(+)
create mode 100644 composer.json
create mode 100644 composer.lock
create mode 100755 main.php
create mode 100755 src/command/Command.php
create mode 100755 src/command/CommandContext.php
create mode 100755 src/command/FeedbackCommand.php
create mode 100755 src/command/LoginCommand.php
create mode 100755 src/quizobjects/User.php
create mode 100755 src/quiztools/AccessManager.php
create mode 100644 src/quiztools/ReceiverFactory.php

I add a message via the -m flag. If I omitted this, then Git would launch an editor that

I can use to add my check-in message.

If you are accustomed to version control systems such as CVS and Subversion, you

might think that we’re done. And although I could happily continue editing, adding,

committing, and branching from here, there is an additional stage I need to consider if I

want to share this code using a central repository. As we will see later on in the chapter,

Git allows us to manage multiple project branches. Thanks to this feature, I can maintain

a branch for each release but also keep my bleeding-edge risky development safely out

Chapter 6 Version Control with Git

106

of my production code. We have configured Git so that, when we start out, it sets up a

single branch named main by default. I can confirm the state of my branches with the

command git branch:

$ git branch -a
* main

The -a flag specifies that Git should show us both local and remote branches (the

default is to omit the remote ones). And the output shows the main branch.

In fact, I have done nothing yet to associate my local repository with the remote

server. It’s time to put that right:

$ git remote add origin git@poppch19.vagrant.internal:/var/git/megaquiz

This command is disappointingly quiet, given the work that it has done. In fact, it

is the equivalent of telling Git to “associate the nickname origin with the given server

location. Furthermore, set up a tracking relationship between the local branch main and

a remote equivalent.”

To confirm all of this, I check with Git that the remote handle origin has been set up:

$ git remote -v
origin git@poppch19.vagrant.internal:/var/git/megaquiz (fetch)
origin git@poppch19.vagrant.internal:/var/git/megaquiz (push)

Of course, if you used a service like GitHub, you would use your equivalent of the git
remote add step shown in Figure 6-2. In my case, that looks like this:

$ git remote add origin git@github.com:poppbook/megaquiz.git

Do not run the preceding command, though, unless you really want to push to my

GitHub repo! I am sticking to my self-hosted Git repository for now.

I still haven’t sent any actual files to my Git server, however, so that’s my next step:

$ git push origin main
Counting objects: 16, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (15/15), done.
Writing objects: 100% (16/16), 8.87 KiB | 0 bytes/s, done.
Total 16 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), done.

Chapter 6 Version Control with Git

107

To git@github.com:poppbook/megaquiz.git
* [new branch] main -> main

Now, I can run the git branch command again to confirm that the remote version of

the main branch has appeared:

$ git branch -a
* main
 remotes/origin/main

Or to see only the remote branches:

$ git branch –r
 origin/main

Note I have established what is called a tracking branch. This is a local branch
that is associated with a remote twin.

�Cloning the Repository
For the purposes of this chapter, I have invented a team member named Bob. Bob is

working with me on the megaquiz project. Naturally, he wants his own version of the

code. I have already added his public key to the Git server, so he is good to go. In the

parallel world of GitHub, I have invited Bob to join my project, and he has added his own

public key to his account. The effect is the same; Bob can acquire the repository using

the command git clone:

$ git clone git@github.com:poppbook/megaquiz.git
Cloning into 'megaquiz'...
remote: Enumerating objects: 16, done.
remote: Counting objects: 100% (16/16), done.
remote: Compressing objects: 100% (13/13), done.
remote: Total 16 (delta 2), reused 16 (delta 2), pack-reused 0
Receiving objects: 100% (16/16), 8.87 KiB | 0 bytes/s, done.
Resolving deltas: 100% (2/2), done.

Chapter 6 Version Control with Git

108

Note A lthough I cloned over ssh here, Git supports cloning over https if your
server also supports it.

Now, both of us can develop locally and, when we’re ready, share our code with one

another.

�Updating and Committing
Bob is, of course, a fine and talented fellow – except, that is, for one common and highly

annoying trait: he cannot leave other people’s code alone.

Bob is smart and inquisitive, easily excited by shiny new avenues of development,

and he’s keen to help optimize new code. As a result, everywhere I turn, I seem to see the

hand of Bob. Bob has added to my documentation, and he has implemented an idea I

mentioned over coffee. I may have to kill Bob. In the meantime, however, I must handle

the fact that the code on which I am working needs to be merged with Bob’s input.

Here’s a file called quizobjects/User.php. At the moment, it contains nothing but

the barest of bones:

namespace poppbook\megaquiz\quizobjects;

class User
{
}

I have decided to add some documentation. I begin by adding a file comment to my

version of the file:

namespace poppbook\megaquiz\quizobjects;

/**
 * @license http://www.example.com Borsetshire Open License
 * @package quizobjects
 */
class User
{
}

Chapter 6 Version Control with Git

109

Remember that a file can have three states: unmodified, modified, and staged. The

User.php file has now moved from unmodified to modified. I can see this with the git
status command:

$ git status
On branch main
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
�(use "git checkout -- <file>..." to discard changes in working

directory)
#
modified: src/quizobjects/User.php
#
no changes added to commit (use "git add" and/or "git commit -a")

User.php has been modified, but not yet staged for commit. I can change this state

using the command git add:

$ git add src/quizobjects/User.php
$ git status
On branch main
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: src/quizobjects/User.php
#

Now, I am ready to commit:

$ git commit -m'added documentation' src/quizobjects/User.php
[main 997622c] added documentation
1 file changed, 5 insertions(+)

A Git commit only affects my local repository. If I am sure that the world is ready for

my change, I must push my code to the remote repository:

$ git push origin main
Counting objects: 9, done.
Delta compression using up to 2 threads.

Chapter 6 Version Control with Git

110

Compressing objects: 100% (4/4), done.
Writing objects: 100% (5/5), 537 bytes | 0 bytes/s, done.
Total 5 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To git@github.com:poppbook/megaquiz.git
 ce5a604..997622c main -> main

Meanwhile, working in his own sandbox, Bob is keen as ever, and he has created a

class comment:

namespace poppbook\megaquiz\quizobjects;

/**
 * @package quizobjects
 */
class User
{
}

Now, it’s Bob’s turn to add, commit, and push. Because the adding and committing

parts of this are so commonly run together, Git allows you to combine them into a single

command:

$ git commit -a -m'my great documentation'
[main 13de456] my great documentation
1 file changed, 4 insertions(+)

So, we now have two distinct versions of User.php. There’s the version I just pushed

to the remote repository, and there is Bob’s version, committed, but not yet pushed. Let’s

see what happens when Bob tries to push his local version to the remote repository:

$ git push origin main
To git@github.com:poppbook/megaquiz.git
! [rejected] main -> main (fetch first)
error: failed to push some refs to
'git@github.com:poppbook/megaquiz.git'
hint: Updates were rejected because the remote contains work that you do

Chapter 6 Version Control with Git

111

hint: not have locally. This is usually caused by another
repository pushing
hint: to the same ref. You may want to first merge the remote
changes (e.g.,
hint: 'git pull') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

As you can see, Git won’t let you push if there’s an update to apply. Bob must first

pull down my version of the User.php file:

$ git pull origin main
remote: Enumerating objects: 9, done.
remote: Counting objects: 100% (9/9), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 5 (delta 1), reused 5 (delta 1), pack-reused 0 Unpacking
objects: 100% (5/5), done.
From github.com:poppbook/megaquiz
* branch main -> FETCH_HEAD
Auto-merging src/quizobjects/User.php
CONFLICT (content): Merge conflict in src/quizobjects/User.php
Automatic merge failed; fix conflicts and then commit the result.

Git will happily merge data from two sources into the same file, so long as the

changes don’t overlap. Git has no means of handling changes that affect the same

lines. How can it decide what is to have priority? Should the repository overwrite Bob’s

changes or the other way around? Should both changes coexist? Which should go first?

Git has no choice but to report a conflict and let Bob sort out the problem.

Here’s what Bob sees when he opens the file:

/**
<<<<<<< HEAD
 * @package quizobjects
 */
=======
 * @license http://www.example.com Borsetshire Open License
 * @package quizobjects
 */

Chapter 6 Version Control with Git

112

>>>>>>> f36c6244521dbd137b37b76414e3cea2071958d2

namespace poppbook\megaquiz\quizobjects;

class User
{
}

Git includes both Bob’s comment and the conflicting changes, together with

metadata that tells him which part originates where. The conflicting information is

separated by a line of equals signs. Bob’s input is signaled by a line of less than symbols

followed by “HEAD”. The remote changes are included on the other side of the divide.

Note T he long list of numbers and letters shown in the conflict message is a
commit ID. That is, a SHA-1 hash which references an individual commit. Such
references can be used by various Git tools and are also shown in the git log
command output which provides a record of parent commits from a given starting
point. You will also see them in web interfaces that show commit histories. HEAD,
here, refers to the tip (the most recent commit) of the currently checked out
branch. You can find out the commit ID for HEAD (and much more) by running git
show HEAD.

Now that Bob has identified the conflict, he can edit the file to fix the collision:

/**
 * @license http://www.example.com Borsetshire Open License
 * @package quizobjects
 */

namespace poppbook\megaquiz\quizobjects;

class User
{
}

Chapter 6 Version Control with Git

113

Next, Bob resolves the conflict by staging the file:

$ git add src/quizobjects/User.php
$ git commit -m'documentation merged'
[main c99d3f5] documentation merged

And now, finally, he can push to the remote repository:

$ git push origin main

�Adding and Removing Files and Directories
Projects change shape as they develop. Version control software must take account of

this, allowing users to add new files and remove deadwood that would otherwise get in

the way.

�Adding a File
You have seen the add subcommand many times already. I used it during my project

setup to add my code to the empty megaquiz repository and, subsequently, to stage files

for commit. By running git add on an untracked file or directory, you ask Git to track it –

and stage it for commit. Here, I add a document called CompositeQuestion.php to the

project:

$ touch src/quizobjects/CompositeQuestion.php
$ git add src/quizobjects/CompositeQuestion.php

In a real-world situation, I would probably start out by adding some content to

CompositeQuestion.php. Here, I confine myself to creating an empty file using the

standard touch command. Once I have added a document, I must still invoke the commit

subcommand to complete the addition:

$ git commit -m'initial check in'
[main 323bec3] initial check in
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 src/quizobjects/CompositeQuestion.php

CompositeQuestion.php is now in the local repository.

Chapter 6 Version Control with Git

114

�Removing a File
Should I discover that I have been too hasty and need to remove the document, it should

come as no surprise to learn that I can use a subcommand called rm:

$ git rm src/quizobjects/CompositeQuestion.php

Once again, a commit is required to finish the job. As usual, I can confirm this by

running git status:

$ git status
On branch main
Your branch is ahead of 'origin/main' by 1 commit.
(use "git push" to publish your local commits)
#
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
deleted: src/quizobjects/CompositeQuestion.php
#
$ git commit -m'removed Question'
[main 5bf88aa] removed CompositeQuestion
1 file changed, 0 insertions(+), 0 deletions(-)
delete mode 100644 src/quizobjects/CompositeQuestion.php

�Adding a Directory
You can also add and remove directories with add and rm. Let’s say Bob wants to make a

new directory available:

$ mkdir resources
$ touch resources/blah.gif
$ git add resources/
$ git status
On branch main
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

Chapter 6 Version Control with Git

115

#
new file: resources/blah.gif
#

Notice how the contents of resources are added automatically to the repository.

Now, Bob can commit and then push the whole lot to the remote repository in the

usual way.

Note  Be careful of using git add with directories; it is greedy! The command
will pick up any files and directories beneath the given directory. It is always a
good idea to check the operation with git status.

�Removing Directories
As you might expect, you can remove directories with the rm subcommand. In this

situation, however, I must tell Git that I wish it to remove the directory’s contents by

passing an -r flag to the subcommand. Here, I profoundly disagree with Bob’s decision

to add a resources directory:

$ git rm -r resources/

�Renaming Files or Directories
If you’re feeling less drastic, you might opt to simply rename a file or directory with

git mv. This command accepts two arguments: a file, directory, or a symlink and a

destination.

$ git mv storage/ files

�Tagging a Release
All being well, a project will eventually reach a state of readiness, and you will want to

ship it or deploy it. Whenever you make a release, you should leave a bookmark in your

repository, so that you can always revisit the code at that point. As you might expect, you

can create a tag in your code with the git tag command:

Chapter 6 Version Control with Git

116

$ git tag -a 'v1.0.0' -m'release 1.0.0'

By specifying -a here, I create an annotated tag. This stores rich information about

my tag, including information about the commit it references, a tagging message, the

date of the tag, and the tagging user. If I were to omit -m when creating an annotated tag,

Git would launch an editor window and prompt me to provide a message.

I could also have created a lightweight tag by omitting -a and -m. A lightweight tag

stores only a commit ID. Either approach would work for tagging a release.

You can see the tags associated with your repository by running git tag with no

arguments:

$ git tag
v1.0.0

For long-lived projects you may accrue hundreds of tags. That can make the default

git tag command unwieldy. You can use wildcards to narrow things down by specifying

the -l flag and a filter argument. Here, for example, I return all tags that begin with v1.

$ git tag -l v1*

Of course, that’s a little redundant in this case since I have only have one tag to list!

We have been working locally up until this point. In order to get the tag onto the

remote repository, we must use the --tags flag with the git push subcommand:

$ git push origin --tags
Counting objects: 1, done.
Writing objects: 100% (1/1), 159 bytes | 0 bytes/s, done.
Total 1 (delta 0), reused 0 (delta 0)
To git@github.com:poppbook/megaquiz.git
* [new tag] v1.0.0 -> v1.0.0

Using the --tags flag causes all local tags to be pushed to the remote repository.

Of course, any action you take on a GitHub repo can be tracked on the site. You can

see my release tag in Figure 6-4.

Chapter 6 Version Control with Git

117

Figure 6-4.  Viewing a tag on GitHub

Once you can bookmark your code with a tag, it makes sense to wonder how you

might go about revisiting old releases. For this, however, you should first spend some

time looking at branching – something at which Git is particularly good.

�Branching a Project
Once my project has been released, I can pack it away and wander off to do something

new, right? After all, it was so elegantly written that bugs are an impossibility, not to

mention so thoroughly specified that no user could possibly require any new features!

Meanwhile, back in the real world, I must continue to work with the code base on at

least two levels. Bug reports should be trickling in right about now, and the wish list for

version 1.2.0 will be swelling with demands for fantastic new features. How do I reconcile

these forces? I need to fix the bugs as they are reported, and I need to push on with

primary development. I could fix the bugs as part of development and release everything

in one go, when the next version is stable. But then, users may have a long wait before

they see any problems addressed. This is plainly unacceptable. On the other hand,

Chapter 6 Version Control with Git

118

I could release as I go. In that scenario, I risk shipping broken code. Clearly, I need two

strands to my development. I will continue to add new and risky features to the project’s

main branch (often called the trunk), but I should now create a branch for my new

release on which I can add only bug fixes.

Note T his way of managing branches is by no means the only game in town.
Developers argue constantly about the best way of organizing branches and
managing releases and bug fixes. One of the most popular approaches is git-
flow (neatly described at https://danielkummer.github.io/git-flow-
cheatsheet/). Under this practice, main is the release branch. New code goes
on a develop branch, and it’s merged to main at release time. Each unit of
active development has its own feature branch, which gets merged into develop
when stable.

I can both create and switch to a new branch using the git checkout command.

First, let’s take a quick look at the state of my branches:

$ git branch -a
* main
 remotes/origin/main

As you can see, I have a single branch, main, and its remote equivalent. Now, if I

invoke git checkout with the -b option, I will create and switch to a new branch with

the latest commit in main as its merge base (the originating commit back to which I may,

at some point, merge my changes).

$ git checkout -b megaquiz-branch1.0
Switched to a new branch 'megaquiz-branch1.0'

To track my use of branches, I will use a particular file as an example, src/command/
FeedbackCommand.php. It seems that I created my bug fix branch just in time. Users have

started to report that they are unable to use the feedback mechanism in the system. I

locate the bug:

//...
$result = $msgSystem->despatch($email, $msg, $topic);
if (! $user) {

Chapter 6 Version Control with Git

https://danielkummer.github.io/git-flow-cheatsheet/
https://danielkummer.github.io/git-flow-cheatsheet/

119

 $this->context->setError($msgSystem->getError());
//...

I should, in fact, be testing $result and not $user. Here is my edit:

//...
$result = $msgSystem->dispatch($email, $msg, $topic);
if (! $result) {
 $this->context->setError($msgSystem->getError());
//...

Because I am working on the branch megaquiz-branch1.0, I can commit

this change:

$ git add src/command/FeedbackCommand.php
$ git commit -m'bugfix'
[megaquiz-branch1.0 6e56ade] bugfix
1 file changed, 1 insertion(+), 1 deletion(-)

Of course, this commit is local. I need to use the git push command to get the

branch onto the remote repository:

$ git push origin megaquiz-branch1.0
Counting objects: 9, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 456 bytes | 0 bytes/s, done.
Total 5 (delta 3), reused 0 (delta 0)
remote: Resolving deltas: 100% (3/3), completed with 3 local objects.
remote:
remote: Create a pull request for 'megaquiz-branch1.0' on GitHub by
visiting:
remote: https://github.com/poppbook/megaquiz/pull/new/megaquiz-branch1.0
remote:
To git@github.com:poppbook/megaquiz.git
* [new branch] megaquiz-branch1.0 -> megaquiz-branch1.0

Chapter 6 Version Control with Git

120

Now, what about Bob? He will inevitably want to pitch in and fix some bugs. First, he

invokes git fetch, which acquires any new information from the server. Then, he can

look at all available branches with git branch -a.

$ git fetch
$ git branch -a
* main
 remotes/origin/HEAD -> origin/main
 remotes/origin/main
 remotes/origin/megaquiz-branch1.0

Now, Bob can switch to a local branch which will track the remote one:

$ git checkout megaquiz-branch1.0

Notice that Bob did not use the -b option. That is only used when you want need to

create a nonexistent branch.

Branch megaquiz-branch1.0 set up to track remote branch
megaquiz-branch1.0 from origin.
Switched to a new branch 'megaquiz-branch1.0'

Bob is good to go now. He can add and commit his own fixes, and when he pushes,

they will end up on the remote branch.

Meanwhile, I would like to add some bleeding-edge enhancements on the trunk –

that is, my main branch. Let’s look again at the state of my branches from the perspective

of my local repository:

$ git branch -a
 main
* megaquiz-branch1.0
 remotes/origin/main
 remotes/origin/megaquiz-branch1.0

I can switch to an existing branch by invoking git checkout:

$ git checkout main
Switched to branch 'main'
Your branch is up-to-date with 'origin/main'.

Chapter 6 Version Control with Git

121

When I look now at command/FeedbackCommand.php, I see that my bug fix has

magically disappeared. Of course, it’s still stored under megaquiz-branch1.0. Later, I can

merge the fix into the main branch, so there’s no need to worry. Instead, I can focus on

adding new code:

class FeedbackCommand extends Command
{
 public function execute(CommandContext $context): bool
 {
 // new and risky development
 // goes here
 $msgSystem = ReceiverFactory::getMessageSystem();
 $email = $context->get('email');
 // ...

All I have done here is to add a comment to simulate an addition to the code. I can

now commit and push this:

$ git commit -am'new development on main'
$ git push origin main

So I now have parallel branches. Of course, sooner or later, I will want my main

branch to benefit from the bug fixes that I have committed on megaquiz-branch1.0.

I can do this on the command line, but first, let’s pause to look at a feature supported

by GitHub and similar services like Bitbucket. The pull request (often abbreviated to PR)

allows me to request a code review before merging a branch. So before megaquiz-
branch1.0 hits main, I can ask Bob to check my work. As you can see in Figure 6-5,

GitHub detects the branch and gives me the opportunity to issue my pull request.

Chapter 6 Version Control with Git

122

Figure 6-5.  GitHub makes issuing pull requests easy

I hit the ‘Compare & pull request’ button and add a comment before submitting the

pull request. You can see the result of that in Figure 6-6.

Now, Bob can examine my changes and add any comments he may have. GitHub

shows him exactly what has changed. You can see Bob’s comment in Figure 6-7.

Chapter 6 Version Control with Git

123

Figure 6-6.  Issuing the pull request

Chapter 6 Version Control with Git

124

Figure 6-7.  The changes covered by a pull request

Once Bob approves my pull request, I can merge directly from the browser, or

I can return to the command line. This is pretty easy. Git provides a subcommand

named merge:

$ git checkout main
Already on 'main'

In fact, I’m already on the main branch – but it can’t hurt to be sure. Now, I perform

the actual merge:

$ git merge --no-commit megaquiz-branch1.0
Auto-merging src/command/FeedbackCommand.php
Automatic merge went well; stopped before committing as requested

By passing in the --no-commit flag, I keep the merge uncommitted – which gives me

another chance to check all is well. Once I am satisfied, I can go ahead and commit.

$ git commit -m'merge from megaquiz-branch1.0'
[main e1b5169] merge from megaquiz-branch1.0

Chapter 6 Version Control with Git

125

Note T o merge or not to merge? The choice is not always as straightforward
as it might seem. In some cases, for example, your bug fix may be the kind of
temporary work that is supplanted by a more thorough refactoring on the trunk,
or it may no longer apply due to a change in specification. This is necessarily a
judgment call. Most teams I have worked in, however, tend to merge to the trunk
where possible while keeping work on the branch to the bare minimum. New
features for us generally appear on the trunk and find their way quickly to users
through a “release early and often” policy.

Now, when I look at the version of FeedbackCommand on the main branch, I confirm

that all changes have been merged:

public function execute (CommandContext $context): bool
{
 // new and risky development
 // goes here
 $msgSystem = ReceiverFactory::getMessageSystem();
 $email = $context->get('email');
 $msg = $context->get('pass');
 $topic = $context->get('topic');
 $result = $msgSystem->despatch($email, $msg, $topic);
 if (! $result) {
 $this->context->setError($msgSystem->getError());
 return false;
 }

The execute() method now includes both my simulated main development and the

bug fix.

Let’s recap where we are right now. I am back on the main branch. I can check this at

any time with git status. More specifically, I can also determine the commit ID at the

tip of that branch with git show:

$ git show HEAD

Chapter 6 Version Control with Git

126

This provides lots of information, but I can see that HEAD on main points to a commit

ID which starts 52e3c68.

commit 52e3c680572f70a3497267b569844b950bbb3007 (HEAD -> main, origin/main)
Author: mattz <matt@getinstance.com>
...

If I create a new branch from this point with our old friend git checkout -b
<branchname>, I will change branches, but until I perform any further commits on the

new branch, my new HEAD will point to the same commit – 52e3c68.

Let’s confirm this. First, I create the new branch:

$ git checkout -b some-new-dev
Switched to a new branch 'some-new-dev'

Now that I’ve switched to some-new-dev, I can get information about the HEAD of

the branch:

$ git show HEAD
commit 52e3c680572f70a3497267b569844b950bbb3007 (HEAD -> some-new-dev,
origin/main, main)
Author: mattz <matt@getinstance.com>
...

So, I am parked at the same commit but I’m on a different branch. Once I start

committing to some-new-dev, my HEAD there will point to a new commit ID. But I will

be able to find the merge base – the common ancestor – for the two branches with git
merge-base:

$ git merge-base main some-new-dev
52e3c680572f70a3497267b569844b950bbb3007

Now, this is not something you’re likely to do very often – but it is useful here for

illustration purposes. We can see that merging from some-new-dev to main will use the

common ancestor – commit ID 52e3c68 – in its merge strategy.

This is useful background to another variation on git checkout.

First, let’s switch back to main.

$ git checkout main

Chapter 6 Version Control with Git

127

I created a branch when I first “released” megaquiz version 1.0, and that’s what we

have been working with. Remember, however, that I also created a tag at that stage. I

promised at the time that I would show you how to access the tag.

The trick here is to create a new branch from main with the commit the tag points to

at its HEAD.

$ git checkout -b v1.0.0-branch v1.0.0
Switched to a new branch 'v1.0.0-branch'

This looks like the git checkout -b <branchname> example you’ve already seen,

except this time, I have provided an additional argument. This is an optional <start-
point> value. In this case, that means the commit pointed to by the tag v1.0.0. So,

as before, I have created a new branch – named v1.0.0-branch here – but its HEAD is

defined by the provided start point rather than defaulting to the HEAD of the main branch

as before.

Let’s run git show:

$ git show HEAD
commit 7091f38e28d1c58dfcc7a1343435a1a6082cd869 (HEAD -> v1.0.0-branch,
tag: v1.0.0)
Author: mattz <matt@getinstance.com>

So, my new branch has a HEAD which points to the commit referenced by the v1.0.0

tag – 7091f38. I can develop from here, push the branch, and share just as you have seen.

When ready, if I want, I can merge my new changes back to main.

Note  Git is an amazingly versatile and useful tool. Like all powerful tools, its
use can occasionally lead to unintended consequences. For those moments that
you have backed yourself into a corner and need to reset things fast, technical
reviewer Paul Tregoing recommends https://dangitgit.com/en (actually, he
recommended the swearier version!). The site is full of recipes that might just save
your sanity, so it is well worth bookmarking if you work seriously with Git.

Two other Git commands that are worth having in your arsenal are git stash
and git stash apply. When you are up to your ears in local edits but are called
to switch branches, your first option is to commit your work in progress. You may

Chapter 6 Version Control with Git

https://dangitgit.com/en

128

not want to commit rough code, though. You might think that your only choice then
is to throw away your local changes or copy them to temporary files. If you run git
stash, however, all local changes are tucked away for you behind the scenes,
and your branch is returned to its state at the last commit. You can go off and do
your urgent work and, when you are ready, run git stash apply to get your
uncommitted work back. It’s like magic!

�Summary
Git comprises an enormous number of tools, each with a daunting range of options

and capabilities. I can only hope to provide a brief introduction in the space available.

Nonetheless, if you only use the features that I have covered in this chapter, you should

see the benefit in your own work, whether through protection against data loss or

improvements in collaborative working.

In this chapter, we took a tour through the basics of Git. I looked briefly at

configuration before importing a project. I checked out, committed, and updated

code and then showed you how to tag and export a release. I ended the chapter with

a brief look at branches, demonstrating their usefulness in maintaining concurrent

development and bug fix strands in a project.

There is one issue that I have glossed over here, to some extent. We established the

principle that developers should check out their own versions of a project. On the whole,

however, projects will not run in place. In order to test their changes, developers need

to deploy code locally. Sometimes, this is as simple as copying over a few directories.

More often, however, deployment must address a whole range of configuration issues. In

upcoming chapters, we will look at some techniques for automating this process.

Chapter 6 Version Control with Git

129
© Matt Zandstra 2025
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_7

CHAPTER 7

Testing with PHPUnit
Every component in a system depends, to a greater or lesser extent, on the

implementation of its peers for its own continued smooth running. By definition, then,

development breaks systems. As you improve your classes and packages, you must

remember to amend any code that works with them. For some changes, this can create a

ripple effect, affecting components far away from the code you originally changed. Eagle-

eyed vigilance and an encyclopedic knowledge of a system’s dependencies can help to

address this problem. Of course, while these are excellent virtues, systems soon grow too

complex for every unwanted effect to be easily predicted, not least because systems often

combine the work of many developers. To address this problem, it is a good idea to test

every component regularly. This, of course, is a repetitive and complex task, and as such,

it lends itself well to automation.

Among the test solutions available to PHP programmers, PHPUnit is perhaps the

most ubiquitous and certainly the most fully featured tool. In this chapter, you will learn

the following about PHPUnit:

•	 Installation: Using Composer to install PHPUnit

•	 Writing tests: Creating test cases and using assertion methods

•	 Handling exceptions: Strategies for confirming failure

•	 Running multiple tests: Collecting tests into suites

•	 Constructing assertion logic: Using constraints

•	 Faking components: Mocks and stubs

•	 Testing web applications: Testing with and without additional tools

https://doi.org/10.1007/979-8-8688-0779-4_7#DOI

130

�Functional Tests and Unit Tests
Testing is essential in any project. Even if you don’t formalize the process, you must

have found yourself developing informal lists of actions that put your system through

its paces. This process soon becomes wearisome, and that can lead to a fingers-crossed

attitude to your projects.

One approach to testing starts at the interface of a project, modeling the various ways

in which a user might negotiate the system. This is probably the way you would go when

testing by hand, although there are various frameworks for automating the process.

These functional tests are sometimes called acceptance tests because a list of actions

performed successfully can be used as criteria for signing off a project phase. Using

this approach, you typically treat the system as a black box – your tests remain willfully

ignorant of the hidden components that collaborate to form the system under test.

Whereas functional tests operate from without, unit tests work from the inside out.

Unit testing tends to focus on classes, with test methods grouped together in test cases.

Each test case puts one class through a rigorous workout, checking that each method

performs as advertised and fails as it should. The objective, as far as possible, is to test

each component in isolation from its wider context. This often supplies you with a

sobering verdict on the success of your mission to decouple the parts of your system.

Tests can be run as part of the build process, directly from the command line, or even

via a web page. In this chapter, I’ll concentrate on the command line.

Unit testing is a good way of ensuring the quality of design in a system. Tests reveal

the responsibilities of classes and functions. Some programmers even advocate a test-

first approach. You should, they say, write the tests before you even begin work on a

class. This lays down a class’s purpose, ensuring a clean interface and short, focused

methods. Personally, I have never aspired to this level of purity – it just doesn’t suit my

style of coding. Nevertheless, I attempt to write tests as I go. Maintaining a test harness

provides me with the security I need to refactor my code. I can pull down and replace

entire packages with the knowledge that I have a good chance of catching unexpected

errors elsewhere in the system.

Chapter 7 Testing with PHPUnit

131

�Testing by Hand
In the last section, I said that testing was essential in every project. I could have said

instead that testing is inevitable in every project. We all test. The tragedy is that we often

throw away this good work.

So, let’s create some classes to test. Here is a class that stores and retrieves user

information. For the sake of demonstration, it generates arrays rather than the User

objects you’d normally expect to use:

class UserStore
{
 private array $users = [];

 public function addUser(string $name, string $mail, string $pass): bool
 {
 if (isset($this->users[$mail])) {
 throw new \Exception(
 "User {$mail} already in the system"
);
 }

 if (strlen($pass) < 5) {
 throw new \Exception(
 "Password must have 5 or more letters"
);
 }

 $this->users[$mail] = [
 'pass' => $pass,
 'mail' => $mail,
 'name' => $name
];

 return true;
 }

Chapter 7 Testing with PHPUnit

132

 public function notifyPasswordFailure(string $mail): void
 {
 if (isset($this->users[$mail])) {
 $this->users[$mail]['failed'] = time();
 }
 }

 public function getUser(string $mail): array
 {
 return ($this->users[$mail]);
 }
}

This class accepts user data with the addUser() method and retrieves it via

getUser(). The user’s email address is used as the key for retrieval. If you’re like me,

you’ll write some sample implementation as you develop, just to check that things are

behaving as you designed them:

$store = new UserStore();
$store->addUser(
 "bob williams",
 "bob@example.com",
 "12345"
);
$store->notifyPasswordFailure("bob@example.com");
$user = $store->getUser("bob@example.com");
print_r($user);

Here is the output:

Array
(
 [pass] => 12345
 [mail] => bob@example.com
 [name] => bob williams
 [failed] => 1715099246
)

Chapter 7 Testing with PHPUnit

133

This is the sort of thing that I might add to the foot of a file as I work on the class it

contains. The test validation is performed manually, of course; it’s up to me to eyeball

the results and confirm that the data returned by UserStore::getUser() corresponds

with the information I added initially. It’s a test of sorts, nevertheless.

Here is a client class that uses UserStore to confirm that a user has provided the

correct authentication information:

class Validator
{
 public function __construct(private UserStore $store)
 {
 }

 public function validateUser(string $mail, string $pass): bool
 {
 if (! is_array($user = $this->store->getUser($mail))) {
 return false;
 }

 if ($user['pass'] == $pass) {
 return true;
 }

 $this->store->notifyPasswordFailure($mail);

 return false;
 }
}

The class requires a UserStore object, which it saves in the $store property. This

property is used by the validateUser() method to ensure, first of all, that the user

referenced by the given email address exists in the store and, second, that the user’s

password matches the provided argument. If both these conditions are fulfilled, the

method returns true. Once again, I might test this as I go along:

$store = new UserStore();
$store->addUser("bob williams", "bob@example.com", "12345");
$validator = new Validator($store);

Chapter 7 Testing with PHPUnit

134

if ($validator->validateUser("bob@example.com", "12345")) {
 print "pass, friend!\n";
}

I instantiate a UserStore object, which I prime with data and pass to a newly

instantiated Validator object. I can then confirm a username and password combination.

Once I’m finally satisfied with my work, I could delete these sanity checks altogether

or comment them out. This is a terrible waste of a valuable resource. These tests could

form the basis of a harness to scrutinize the system as I develop. One of the tools that

might help me to do this is PHPUnit.

�Introducing PHPUnit
PHPUnit is a member of the xUnit family of testing tools. The ancestor of these is SUnit,

a framework invented by Kent Beck to test systems built with the Smalltalk language.

The xUnit framework was probably established as a popular tool, however, by the

Java implementation, jUnit, and by the rise to prominence of agile methodologies like

Extreme Programming (XP) and Scrum, all of which place great emphasis on testing.

You can get PHPUnit with Composer:

$ composer require --dev phpunit/phpunit

This will install PHPUnit and add a variation on the following to your composer.
json file:

{
 "require-dev": {
 "phpunit/phpunit": "^12"
 }
}

You will find the phpunit script at vendor/bin/phpunit.

If you don’t want to use Composer, you can download a PHP archive (.phar) file. You

can then make the archive executable:

$ wget https://phar.phpunit.de/phpunit.phar
$ chmod 755 phpunit.phar
$ sudo mv phpunit.phar /usr/local/bin/phpunit

Chapter 7 Testing with PHPUnit

135

Note I show commands that are input at the command line with a leading $
to represent a command prompt and distinguish them from any output they may
produce.

�Creating a Test Case
Armed with PHPUnit, I can write tests for the UserStore class. Tests for each target

component should be collected in a single class that extends PHPUnit\Framework\
TestCase, one of the classes made available by the PHPUnit package. Here’s how to

create a minimal test case class:

namespace popp\ch20\batch01;

use PHPUnit\Framework\TestCase;

class UserStoreTest extends TestCase
{

 protected function setUp(): void
 {
 }

 protected function tearDown(): void
 {
 }

}

I named the test case class UserStoreTest. It is often useful to place your test in the

same namespace as the class under test. This will give you easy access to the class under

test and its peers, and the structure of your test files will likely mirror that of your system.

Remember that, thanks to Composer’s support for PSR-4, you can maintain separate

directory structures for class files in the same package.

Here’s how we might do this in a composer.json file:

 "autoload": {
 "psr-4": {

Chapter 7 Testing with PHPUnit

136

 "popp\": ["myproductioncode/", "mytestcode/"]
 }
 }

In this code, I have nominated two directories that map to the popp namespace. I

can now maintain these in parallel, making it easy to keep my test and production code

separate.

Note  You can also configure autoloading for your tests with the autoload-dev
key. This works in tandem with the autoload equivalent but is not applied in
production mode (i.e., when composer update or composer install are run
with the --no-dev flag).

The setUp() method is automatically invoked for each test method, allowing us

to set up a stable and suitably primed environment for the test. tearDown() is invoked

after each test method is run. If your tests change the wider environment of your system,

you can use this method to reset state. The common platform managed by setUp() and

tearDown() is known as a fixture.

In order to test the UserStore class, I need an instance of it. I can instantiate this in

setUp() and assign it to a property. Let’s create a test method as well:

namespace popp\ch20\batch01;

use PHPUnit\Framework\TestCase;

class UserStoreTest extends TestCase
{
 private UserStore $store;

 protected function setUp(): void
 {
 $this->store = new UserStore();
 }

 protected function tearDown(): void
 {
 }

Chapter 7 Testing with PHPUnit

137

 public function testGetUser(): void
 {
 $this->store->addUser("bob williams", "a@b.com", "12345");
 $user = $this->store->getUser("a@b.com");
 $this->assertEquals("a@b.com", $user['mail']);
 $this->assertEquals("bob williams", $user['name']);
 $this->assertEquals("12345", $user['pass']);
 }
}

Note R emember that setUp() and tearDown() are called once for every test
method in your class. If you want to include code that will be run once before all
the test methods in a class, you can implement the static setUpBeforeClass()
method. Conversely, for code that should be run after all the test methods in a
class, implement tearDownAfterClass() (also a static method).

Test methods should be named to begin with the word “test” and should require no

arguments. This is because the test case class is manipulated using reflection.

Note R eflection is covered in detail in Volume 1, Chapter 5.

The object that runs the tests looks at all the methods in the class and invokes only

those that match this pattern (i.e., methods that begin with “test”).

Although it was deprecated in PHPUnit 11, the package allowed you to use

annotations rather than method names to specify test methods:

/**
 * @test
 */
public function GetUser(): void
{
 // ...
}

Chapter 7 Testing with PHPUnit

https://doi.org/10.1007/979-8-8688-0779-4_5

138

As of PHPUnit 12, you can still use an attribute for the same purpose.

use PHPUnit\Framework\TestCase;
use PHPUnit\Framework\Attributes\Test;

class UserStoreAttributeTest extends TestCase
{
 #[Test]
 public function AddUserShortPass(): void
 {
 // ...
 }

 // ...

The attribute form was supported in PHPUnit 11 too.

In the full example above, I tested the retrieval of user information. I don’t need

to instantiate UserStore for each test because I handled that in setUp(). Because

setUp() is invoked for each test, the $store property is guaranteed to contain a newly

instantiated object.

Within the testgetUser() method, I first provide UserStore::addUser() with

dummy data, and then I retrieve that data and test each of its elements.

There is one additional issue to be aware of here before we can run our test. I am

using use statements without require or require_once. In other words, I am relying

on autoloading. Finding and including the autoload file is handled automatically if you

installed PHPUnit with Composer and if the autoload file for your project was generated

in the same context. This may not always be the case, however. I may be running a

global PHPUnit command which knows nothing of my local autoload, for example, or

I may have downloaded a phar file. In this case, how do I tell my tests how to locate the

generated autoload.php file? I could put a require_once statement in the test class (or

a superclass), but that would break the PSR-1 rule that class files should not have side

effects. The simplest thing to do is to tell PHPUnit about the autoload.php file from the

command line:

$ phpunit src/ch20/batch01/UserStoreTest.php --bootstrap vendor/
autoload.php
PHPUnit 12.0.10 by Sebastian Bergmann and contributors.

Chapter 7 Testing with PHPUnit

139

Runtime: PHP 8.3.7

... 3 / 3 (100%)

Time: 00:00.001, Memory: 25.30 MB

OK (3 tests, 5 assertions)

For future examples, I will use a version of PHPUnit that was installed with

Composer along with the tests and system under test.

�Assertion Methods
An assertion in programming is a statement or method that allows you to check your

assumptions about an aspect of your system. In using an assertion, you typically define

an expectation that something is the case, that $cheese is "blue" or $pie is "apple". If

your expectation is confounded, a warning of some kind will be generated. Assertions

are such a good way of adding safety to a system that PHP supports them natively inline

and allows you to turn them off in a production context.

Note S ee the manual page at https://php.net/assert for more information
on PHP’s support for assertions.

PHPUnit supports assertions through a set of methods that can be called either

statically or on an instance of a class that extends PHPUnit\Framework\TestCase.

In the previous example, I used a TestCase method, assertEquals(). This method

compares its two provided arguments and checks them for equivalence. If they do not

match, the test method will be chalked up as a failed test. Having subclassed PHPUnit\
Framework\TestCase, I have access to a set of assertion methods. Some of these methods

are listed in Table 7-1.

Chapter 7 Testing with PHPUnit

https://php.net/assert

140

Table 7-1.  Some PHPUnit\Framework\TestCase Assert Methods

Method Description

assertEquals($val1, $val2,
$message)

Fail if $val1 is not equivalent to $val2.

assertFalse($expression,
$message)

Evaluate $expression; fail if it does not resolve to

false.

assertTrue($expression,
$message)

Evaluate $expression; fail if it does not resolve to

true.

assertNotNull($val, $message) Fail if $val is null.

assertNull($val, $message) Fail if $val is anything other than null.

assertSame($val1, $val2,
$message)

Fail if $val1 and $val2 are not references to the same

object or if they are variables of different types or values.

assertNotSame($val1, $val2,
$message)

Fail if $val1 and $val2 are references to the same

object or variables of the same type and value.

assertMatchesRegularExpression
($regexp, $val, $message)

Fail if $val is not matched by the regular expression,

$regexp.

assertEqualsCanonicalizing
($val1, $val2, $message)

Fail if $val1 is not equivalent to $val2. This is usually

used for complex values. PHPUnit will attempt to

canonicalize the values prior to comparison, sorting

arrays and first converting objects to arrays if needed.

�Testing Exceptions
Your focus as a coder is usually to make systems that work and work well. Often,

that mentality carries through to testing, especially if you are testing your own code.

The temptation is to test that a method behaves as advertised. It’s easy to forget how

important it is to test for failure. How good is a method’s error checking? Does it throw

an exception when it should? Does it throw the right exception? Does it clean up after an

error if, for example, an operation is half complete before the problem occurs? It is your

role as a tester to check all of this. Luckily, PHPUnit can help.

Chapter 7 Testing with PHPUnit

141

Here is a test that checks the behavior of the UserStore class when an operation fails:

public function testAddUserShortPass(): void
{
 try {
 $this->store->addUser("bob williams", "bob@example.com", "ff");
 } catch (\Exception $e) {
 �$this->assertEquals("Password must have 5 or more letters",

$e->getMessage());
 return;
 }

 $this->fail("Short password exception expected");
}

If you look back at the UserStore::addUser() method, you will see that I throw

an exception if the user’s password is less than five characters long. My test attempts

to confirm this. I add a user with an illegal password in a try clause. If the expected

exception is thrown, then flow skips to the catch clause, and all is well. If the addUser()

method does not throw an exception as expected, the execution flow reaches the fail()

method call.

Another way to test that an exception is thrown is to use an assertion method called

expectException(), which requires the name of the exception type you expect to be

thrown (either Exception or a subclass). If the test method exits without the correct

exception having been thrown, the test will fail.

Note T he expectException() method was added in PHPUnit 5.2.0.

Here’s a quick reimplementation of the previous test:

public function testAddUserShortPassNew(): void
{
 $this->expectException(\Exception::class);
 $this->store->addUser("bob williams", "bob@example.com", "ff");
}

Chapter 7 Testing with PHPUnit

142

So, given that there is a neat way of testing for exceptions, why did I show

the older approach at all? In most circumstances, the simplest approach – using

expectException() – will be the best. However, occasionally, you may want to perform

further tests on the exception, on the state of the object under test, or you may want to

clean up some side effect. In such cases, it may still make sense to go old school.

�Running Test Suites
If I am testing the UserStore class, I should also test Validator. Here is a cut-down

version of a class called ValidateTest that tests the Validator::validateUser()

method:

namespace popp\ch20\batch02;

use PHPUnit\Framework\TestCase;

class ValidatorTest extends TestCase
{
 private Validator $validator;

 protected function setUp(): void
 {
 $store = new UserStore();
 $store->addUser("bob williams", "bob@example.com", "12345");
 $this->validator = new Validator($store);
 }

 public function testValidateCorrectPass(): void
 {
 $this->assertTrue(
 $this->validator->validateUser("bob@example.com", "12345"),
 "Expecting successful validation"
);
 }

}

Chapter 7 Testing with PHPUnit

143

So now that I have more than one test case, how do I go about running them

together? The easiest way is to place your test classes in a common root directory. You

can then specify this directory, and PHPUnit will run all the tests beneath it. Here, I run

ValidatorTest along with additional test files that I have placed in the same directory:

$ phpunit src/ch20/batch02/
PHPUnit 12.0.10 by Sebastian Bergmann and contributors.

Runtime: PHP 8.3.7

........ 8 / 8 (100%)

Time: 00:00.018, Memory: 8.00 MB

OK (8 tests, 14 assertions)

�Constraints
In most circumstances, you will use off-the-peg assertions in your tests. In fact, at a

stretch, you can achieve an awful lot with AssertTrue() alone (although it is considered

best practice to use more specialized assertions where possible). As of PHPUnit

3.0, PHPUnit\Framework\TestCase included a set of factory methods that return

PHPUnit\Framework\Constraint objects. You can combine these and pass them to

TestCase::assertThat() in order to construct your own assertions.

It’s time for a quick example. The UserStore object should not allow duplicate email

addresses to be added. Here’s a test that confirms this:

// UserStoreTest

public function testAddUserDuplicate(): void
{
 try {
 $this->store->addUser("bob williams", "a@b.com", "123456");
 $this->store->addUser("bob stevens", "a@b.com", "123456");
 $this->fail("Exception should have been thrown");
 } catch (\Exception $e) {

Chapter 7 Testing with PHPUnit

144

 $const = $this->logicalAnd(
 $this->logicalNot($this->containsEqual("bob stevens")),
 $this->isArray(),
);
 $this->assertThat($this->store->getUser("a@b.com"), $const);
 }
}

This test adds a user to the UserStore object and then adds a second user with

the same email address. The test thereby confirms that an exception is thrown with

the second call to addUser(). In the catch clause, I build a constraint object using the

convenience methods available to us. These return corresponding instances of PHPUnit\
Framework\Constraint. Let’s break down the composite constraint in the previous

example:

$this->containsEqual("bob stevens")

The containsEqual() method returns a PHPUnit\Framework\Constraint\
TraversableContainsEqual object. When passed to assertThat(), this object will

generate an error if the test subject does not contain an element matching the given

value ("bob stevens").

I can negate this, though, by passing this constraint to another: PHPUnit\Framework\
Constraint\LogicalNot.

$this->logicalNot($this->containsEqual("bob stevens")),

Now, the assertThat assertion will fail if the test value (which must be traversable)

contains an element that matches the string, "bob stevens".

$this->isArray()

This method returns an instance of the PHPUnit\Framework\Constraint\IsType

constraint which, as you’d expect, checks type.

Chapter 7 Testing with PHPUnit

145

Note A less elegant way of checking for an array, isType('array'), is
deprecated as of PHPUnit 12.

Now, I can combine my singular type check constraint and my composite constraint

in a logicalAnd() constraint:

$this->logicalAnd(
 $this->logicalNot($this->containsEqual("bob stevens")),
 $this->isType('array'),
);

In this way, you can build up quite complex logical structures. My finished constraint

can be summarized as follows: “Do not fail if the test value is an array and does not

contain the string "bob stevens".” You could build much more involved constraints in

this way. The constraint is run against a value by passing both to assertThat().

You could achieve all this with standard assertion methods, of course, but

constraints have a couple of virtues. First, they form nice logical blocks with clear

relationships among components (although good use of formatting may be necessary

to support clarity). Second, and more important, a constraint is reusable. You can set up

a library of complex constraints and use them in different tests. You can even combine

complex constraints with one another:

$const = $this->logicalAnd(
 $a_complex_constraint,
 $another_complex_constraint
);

Table 7-2 shows some of the constraint methods available in a TestCase class.

Chapter 7 Testing with PHPUnit

146

Table 7-2.  Some Constraint Methods

TestCase Method Constraint Fails Unless…

greaterThan($num) Test value is greater than $num.

containsEqual($val) Test value (traversable) contains an element that

matches $val.

identicalTo($val) Test value is a reference to the same object as

$val or, for nonobjects, is of the same type and

value.

greaterThanOrEqual($num) Test value is greater than or equal to $num.

lessThan($num) Test value is less than $num.

lessThanOrEqual($num) Test value is less than or equal to $num.

equalTo($value) Test value equals $value.

equalTo($value, $delta) Test value equals $value. $delta defines a

margin of error for numeric comparisons.

stringContains($str,
$casesensitive=true)

Test value contains $str. This is case sensitive

by default.

matchesRegularExpression($pattern) Test value matches the regular expression in

$pattern.

logicalAnd(PHPUnit\Framework\
Constraint $const, [, $const..])

All provided constraints pass.

logicalOr(PHPUnit\Framework\
Constraint $const, [, $const..])

At least one of the provided constraints matches.

logicalNot(PHPUnit\Framework\
Constraint $const)

The provided constraint does not pass.

�Mocks and Stubs
Unit tests aim to test a component in isolation of the system that contains it to the

greatest possible extent. Few components exist in a vacuum, however. Even nicely

decoupled classes require access to other objects as method arguments. Many classes

also work directly with databases or the file system.

Chapter 7 Testing with PHPUnit

147

You have already seen one way of dealing with this. The setUp() and tearDown()

methods can be used to manage a fixture (i.e., a common set of resources for your tests,

which might include database connections, configured objects, a scratch area on the file

system, etc.).

Note  Using setUp() and tearDown() can be memory intensive because
these methods are invoked for every test method in a suite. You can mitigate
this problem somewhat by placing expensive processes in the static
setUpBeforeClass() and tearDownAfterClass() methods and sharing
resources between your test methods.

Another approach is to fake the context of the class you are testing. This involves

creating objects that pretend to be the objects that do real stuff. For example, you might

pass a fake database mapper to your test object’s constructor. Because this fake object

shares a type with the real mapper class (extends from a common abstract base or even

overrides the genuine class itself), your subject is none the wiser. You can prime the fake

object with valid data. Objects that provide a sandbox of this sort for unit tests are known

as stubs. They can be useful because they allow you to focus in on the class you want to

test without inadvertently testing the entire edifice of your system at the same time.

Fake objects can be taken a stage further than this, however. Because the object

you are testing is likely to call a fake object in some way, you can prime it to confirm the

invocations you are expecting. Using a fake object in this way – telling it how, when, and

how many times it should be called – is known as behavior verification, and it is what

distinguishes a mock object from a stub.

You can build mocks yourself by creating classes hard-coded to return certain values

and to report on method invocations. This is a simple process, but it can be time-

consuming.

PHPUnit provides access to an easier and more dynamic solution. It will generate

mock objects on the fly for you. It does this by examining the class you wish to mock and

building a child class that overrides its methods. Once you have this mock instance, you

can call methods on it to prime it with data and to set the conditions for success.

Chapter 7 Testing with PHPUnit

148

Let’s build an example. The UserStore class contains a method called

notifyPasswordFailure(), which sets a field for a given user. This should be called

by Validator when an attempt to set a password fails. Here, I mock up the UserStore

class so that it both provides data to the Validator object and confirms that its

notifyPasswordFailure() method was called as expected:

// ValidatorTest

 public function testValidateFalsePass(): void
 {
 $store = $this->createMock(UserStore::class);
 $this->validator = new Validator($store);

 $store->expects($this->once())
 ->method('notifyPasswordFailure')
 ->with($this->equalTo('bob@example.com'));

 $store->expects($this->any())
 ->method("getUser")
 ->willReturn([
 "name" => "bob williams",
 "mail" => "bob@example.com",
 "pass" => "right"
]);

 $this->validator->validateUser("bob@example.com", "wrong");
 }

Mock objects created with TestCase::createMock() use a fluent interface; that is,

they have a language-like structure. These are much easier to use than to describe. Such

constructs work from left to right, each invocation returning an object reference, which

can then be invoked with a further modifying method call (itself returning an object).

This can make for easy use but painful debugging.

In the previous example, I called the TestCase method, createMock(), passing it

UserStore::class, the full name of the class I wish to mock. This dynamically generates

a class and instantiates an object from it. I store this mock object in $store and pass

it to Validator. This causes no error because the object’s newly minted class extends

UserStore. I have fooled Validator into accepting an imposter into its midst.

Chapter 7 Testing with PHPUnit

149

Mock objects generated by PHPUnit have an expects() method. This method

requires a matcher object which defines the cardinality of the expectation; that is, it

dictates the number of times a method should be called. You will almost certainly use

one of a range of convenience methods that TestCase makes available to generate the

correct object for this purpose. You can see these methods in Table 7-3.

Table 7-3.  Some Matcher Methods

TestCase Method Match Fails Unless…

any() Zero or more calls are made to the corresponding method (useful for stub

objects that return values but don’t test invocations)

never() No calls are made to the corresponding method

atLeastOnce() One or more calls are made to the corresponding method

atLeast($num) At least $num calls are made to the corresponding method

atMost($num) At most $num calls are made to the corresponding method

once() A single call is made to the corresponding method

exactly($num) $num calls are made to the corresponding method

Having set up the match requirement, I need to specify a method to which it applies.

The expects() method returns an object which provides a method named method() for

this purpose. I can simply call that with a method name. This is enough to get some real

mocking done:

$store->expects($this->once())
 ->method('notifyPasswordFailure');

I need to go further, however, and check the parameters that are passed to

notifyPasswordFailure(). InvocationMocker::method() returns an instance of the

object it was called on. InvocationMocker includes a method name, with(), which

accepts a variable list of parameters to match. It also accepts constraint objects, so you

can test ranges and so on. Armed with this, you can complete the statement and ensure

that the expected parameter is passed to notifyPasswordFailure():

$store->expects($this->once())
 ->method('notifyPasswordFailure')
 ->with($this->equalTo('bob@example.com'));

Chapter 7 Testing with PHPUnit

150

You can see why this is known as a fluent interface. It reads a bit like a sentence:

“The $store object expects a single call to the notifyPasswordFailure() method with

parameter bob@example.com.”

Notice that I passed a constraint to with(). Actually, that’s redundant; any bare

arguments are converted to constraints internally, so I could write the statement

like this:

$store->expects($this->once())
 ->method('notifyPasswordFailure')
 ->with('bob@example.com');

Sometimes, you only want to use PHPUnit’s mocks as stubs, that is, as objects that

return values to allow your tests to run. In such cases, you can invoke InvocationMo
cker::willReturn() from the call to method(). The willReturn() method requires

the return value (or values if the method is to be called repeatedly) that the associated

method should be primed to return.

$store->method("getUser")
 ->willReturn([
 "name" => "bob@example.com",
 "pass" => "right"
]);

I omit the expects() stage altogether here since I’m not monitoring behavior

and begin by specifying the getUser() method. Next, I call willReturn() with my

expected value.

You can alternatively pass multiple values to willReturn(). Each one of these will be

returned by your mocked method as it is called repeatedly.

�Tests Succeed When They Fail
Although most agree that testing is a fine thing, you grow to really love it generally only

after it has saved your bacon a few times. Let’s simulate a situation where a change in

one part of a system has an unexpected effect elsewhere.

The UserStore class has been running for a while when, during a code review,

it is agreed that it would be neater for the class to generate User objects rather than

associative arrays. Here is the new version:

Chapter 7 Testing with PHPUnit

151

namespace popp\ch20\batch03;

class UserStore
{
 private array $users = [];

 public function addUser(string $name, string $mail, string $pass): bool
 {
 if (isset($this->users[$mail])) {
 throw new \Exception(
 "User {$mail} already in the system"
);
 }

 $this->users[$mail] = new User($name, $mail, $pass);

 return true;
 }

 public function notifyPasswordFailure(string $mail): void
 {
 if (isset($this->users[$mail])) {
 $this->users[$mail]->failed(time());
 }
 }

 public function getUser(string $mail): ?User
 {
 if (isset($this->users[$mail])) {
 return ($this->users[$mail]);
 }

 return null;
 }
}

Chapter 7 Testing with PHPUnit

152

Here is the simple User class:

namespace popp\ch20\batch03;

class User
{
 private string $pass;
 private ?string $failed;

 �public function __construct(private string $name, private string $mail,
string $pass)

 {
 if (strlen($pass) < 5) {
 throw new \Exception(
 "Password must have 5 or more letters"
);
 }

 $this->pass = $pass;
 }

 public function getMail(): string
 {
 return $this->mail;
 }

 public function getPass(): string
 {
 return $this->pass;
 }

 public function failed(string $time): void
 {
 $this->failed = $time;
 }

}

Of course, I amend the UserStoreTest class to account for these changes. Consider

this code designed to work with an array:

Chapter 7 Testing with PHPUnit

153

public function testGetUser(): void
{
 $this->store->addUser("bob williams", "a@b.com", "12345");
 $user = $this->store->getUser("a@b.com");
 $this->assertEquals($user['mail'], "a@b.com");
 $this->assertEquals($user['name'], "bob williams");
 $this->assertEquals($user['pass'], "12345");
}

It is now converted into code designed to work with an object, like this:

public function testGetUser(): void
{
 $this->store->addUser("bob williams", "a@b.com", "12345");
 $user = $this->store->getUser("a@b.com");
 $this->assertEquals($user->getMail(), "a@b.com");
}

I also need to update testAddUserDuplicate() so that it expects an object rather

than an array:

public function testAddUserDuplicate(): void
{
 try {
 $ret = $this->store->addUser("bob williams", "a@b.com", "123456");
 $ret = $this->store->addUser("bob stevens", "a@b.com", "123456");
 self::fail("Exception should have been thrown");
 } catch (\Exception $e) {
 �self::assertThat($this->store->getUser("a@b.com"), $this

->isObject());
 // perform other checks
 }
}

Chapter 7 Testing with PHPUnit

154

That should mean that I’m all set, right? When I come to run my test suite, however, I

am rewarded with a warning that my work is not yet done:

$ phpunit src/ch20/batch03/
...

1) popp\ch20\batch03\ValidatorTest::testValidateCorrectPass
Expecting successful validation
Failed asserting that false is true.

/Users/mattz/work/popp7/popp7-repo/src/ch20/batch03/ValidatorTest.php:27

...

Although my tests relating to User pass, my ValidatorTest class has caught some

issues related to the fact that I have not updated the Validator to account for the new

return value. Let’s focus on the failure referenced above:

public function testValidateCorrectPass(): void
{
 $this->assertTrue(
 $this->validator->validateUser("bob@example.com", "12345"),
 "Expecting successful validation"
);
}

And here is the Validator::validateUser() method that has let me down:

public function validateUser(string $mail, string $pass): bool
{
 if (! is_array($user = $this->store->getUser($mail))) {
 return false;
 }

 if ($user['pass'] == $pass) {
 return true;
 }

Chapter 7 Testing with PHPUnit

155

 $this->store->notifyPasswordFailure($mail);

 return false;
}

So, User::getUser() now returns an object and not an array. getUser() originally

returned an array containing user data on success or null on failure. I validated users

by checking for an array using the is_array() function. Now, of course, this condition

is never met and the validateUser() method will always return false. Without the test

framework, the Validator would have simply rejected all users as invalid without fuss or

warning.

It is a relatively quick fix to bring validateUser() method into line.

public function validateUser(string $mail, string $pass): bool
{
 $user = $this->store->getUser($mail);
 if (is_null($user)) {
 return false;
 }
 $testpass = $user->getPass();
 if ($testpass == $pass) {
 return true;
 }

 $this->store->notifyPasswordFailure($mail);
 return false;
}

Now, imagine making the neat little change to UserStore::getUser() on a Friday

night without a test framework in place. Think about the frantic text messages that

would drag you out of your pub, armchair, or restaurant: “What have you done? All our

customers are locked out!”

The most insidious bugs don’t cause the interpreter to report that something is

wrong. They hide in perfectly legal code, and they silently break the logic of your system.

Many bugs don’t manifest themselves where you are working; they are caused there,

but the effects pop up elsewhere, days or even weeks later. A test framework can help

you catch at least some of these, preventing rather than discovering problems in your

systems.

Chapter 7 Testing with PHPUnit

156

Write tests as you code, and run them often. If someone reports a bug, first add a test

to your framework to confirm it. Next, fix the bug so that the test is passed. Bugs have a

funny habit of recurring in the same area. Writing tests to prove bugs and then to guard

the fix against subsequent problems is known as regression testing. Incidentally, if you

keep a separate directory of regression tests, remember to name your files descriptively.

On one project, our team decided to name our regression tests after Bugzilla ticket

numbers. We ended up with a directory containing 400 test files, each with a name like

test_973892.php. Finding an individual test became a tedious chore!

�Writing Web Tests
So long as its individual components are properly independent, a web application

should be just as testable as any other system using the techniques this chapter has

covered. We saw in Volume 1 that, by deploying a dependency injection container (or,

less commonly these days, a service locator), you can support orthogonality in your

classes (i.e., minimize hidden dependencies and maximize configurability). A controller

method in a typical web application will accept a Request object and return a Response

object. By providing a preconfigured Request (often a stub), you can pretty easily run a

controller method through its paces. You can then examine the generated Response for

an expected state.

By using mocks and stubs across the board in addition to your Request and Response

objects, you can isolate the controller method and narrow the number of components

that the unit test activates. Alternatively, with a test configuration, you can create a basic

functional test that exercises real components in the system.

Approaches like this are great for testing the inputs and output of a web application.

There are some distinct limitations, however. This method won’t capture the browser

experience. Where a web application uses JavaScript, and other client-side cleverness,

testing the text generated by your system won’t tell you whether the user is interacting

with a sane interface.

Luckily, there is a solution.

Chapter 7 Testing with PHPUnit

157

�Introducing Selenium
Selenium (https://www.selenium.dev/) is a set of tools that can be used for automating

web browsers. This ecosystem includes (but is in no way limited to) tools and APIs for

authoring and running browser tests.

In this brief introduction, I’ll create a quick test for a mocked up system. The test will

work in conjunction with the Selenium server via an API called php-webdriver.

�Getting Selenium

Probably the easiest way to get up and running with Selenium is via the Docker image.

If you have Docker installed, you can simply fire a Selenium server up with a single

command:

$ docker run -d -p 4444:4444 -p 7900:7900 --net=host --shm-size="2g"
selenium/standalone-chrome:latest

The --net host flag here is only necessary if you will be testing a locally hosted

system – that is, you will referencing localhost URLs in your test files. Do not use

the --net option if you are using a Mac (also see the note below you are using an ARM-

based Mac).

Note  You can find out more about running Selenium with Docker at https://
hub.docker.com/r/selenium/standalone-chrome and https://
github.com/SeleniumHQ/docker-selenium.

If you’re using an ARM-based Mac, you can read about how to run Selenium
with Docker at https://www.selenium.dev/blog/2024/multi-arch-
images-via-docker-selenium/ which recommends a different docker run
invocation.

$ docker run --rm -it -p 4444:4444 -p 5900:5900 -p 7900:7900
 --shm-size 2g selenium/standalone-chromium:latest

For any Mac, if you intend to test a locally hosted system (i.e., by using URLs that
would typically reference localhost), you should amend your tests to use host.
docker.internal instead of localhost.

Chapter 7 Testing with PHPUnit

https://www.selenium.dev/
https://hub.docker.com/r/selenium/standalone-chrome
https://hub.docker.com/r/selenium/standalone-chrome
https://github.com/SeleniumHQ/docker-selenium
https://github.com/SeleniumHQ/docker-selenium
https://www.selenium.dev/blog/2024/multi-arch-images-via-docker-selenium/
https://www.selenium.dev/blog/2024/multi-arch-images-via-docker-selenium/

158

If, for some reason, you fail to explicitly end a session in your test suite (I’ll show you

how to do this shortly), you might find that subsequent test runs are held up until the

session times out. You can adjust the timeout period by adding an environment variable

with the -e option to docker run. Here, I set the timeout to ten seconds:

-e SE_NODE_SESSION_TIMEOUT=10

The first time you invoke the docker run command for Selenium, you’ll see activity

as Docker downloads the required images. Thereafter, the command will initialize much

faster and with a little less output.

Now, I’m ready to proceed.

�PHPUnit and Selenium

Although PHPUnit has provided APIs for working with Selenium in the past, the best

solution is currently a third-party library that provides the bindings we need.

�Introducing php-webdriver

WebDriver (https://www.selenium.dev/documentation/webdriver/) is the

mechanism by which Selenium controls browsers, and it was introduced with Selenium

2. Selenium supports various language libraries for WebDriver. Although php-webdriver

is not among them, it is under active development and mirrors the official APIs. This

is very handy when you want to look up a technique, since many examples you’ll find

online will be offered in Java which means they will apply readily to php-webdriver with

a little porting of code.

You can add php-webdriver to your project with Composer:

$ composer require php-webdriver/webdriver

�The System Under Test

I will be working with a mocked up version of a venue listings system I created in Volume 1,

Chapter 12. You don’t need to know anything about that system for this example, however.

The mockup consists of two crude scripts AddVenue.php and AddSpace.php which, between

them, simulate the process of creating a venue and then adding a sub-venue (a “space”).

Here is AddVenue.php:

<?php

Chapter 7 Testing with PHPUnit

https://www.selenium.dev/documentation/webdriver/
https://doi.org/10.1007/979-8-8688-0779-4_12

159

$venue_name = $_REQUEST['venue_name'] ?? null;
?>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Add a Venue</title>
 </head>
 <body>
<?php if (is_null($venue_name)) { ?>
<div>no name provided</div>
<div>
<form method="post">
 <input type="text" value="" name="venue_name" />
 <input type="submit" value="submit" />
</form>
</div>
<?php } else { ?>
<h1>Add a Space for Venue '<?php print $venue_name ?>'</h1>

<div>
'<?php print $venue_name ?>' added (22) please add name for the space
</div>

[add space]
<form method="post" action="AddSpace.php">
 <input type="text" value="" name="space_name"/>
 <input type="hidden" name="cmd" value="AddSpace" />
 <input type="hidden" name="venue_id" value="22" />
 �<input type="hidden" name="venue_name" value="<?php print $venue_

name ?>" />
 <input type="submit" value="submit" />
</form>
<?php } ?>

</body>
</html>

Chapter 7 Testing with PHPUnit

160

This either presents a form for “creating” a venue or, if a venue name has been

provided by a previous submission, a second form for “adding” a space. This form

submits values to a second, even simpler, script: AddSpace.php.

<?php
 $venue_name = $_REQUEST['venue_name'] ?? "-";
 $space_name = $_REQUEST['space_name'] ?? "-";
?>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Here are the venues</title>
 </head>
 <body>

 <h1>Here are the venues</h1>

 <div>
 space '<?php print $space_name ?>' added (47)</td>
 </div>

 <div>
 <?php print $venue_name ?>

 <?php print $space_name ?>

 </div>

 </body>
</html>

This script – also crude – pretends to have added a space and, using $_REQUEST

elements, constructs a summary.

I will run this script locally using PHP’s built-in development server.

$ php -S 0.0.0.0:8784 -t .

I run the command above from the directory that contains AddVenue.php and

AddSpace.php. Now, I can follow the dummy flow in my browser by navigating to

http://localhost:8784/AddVenue.php.

Chapter 7 Testing with PHPUnit

161

The fact that I’m testing a locally hosted system is the reason I included --net host

in my docker run invocation. This tells the created container to use the host system’s

network.

Remember, though, that you should not use this option if you’re running Selenium

on a Mac using Docker even if you need to access local URLs. As you will see, there is an

alternative syntax you can use within your tests on a Mac to access your localhost URLs.

�Creating the Test Skeleton

Time to start creating the tests. I’ll kick off with a boilerplate test class:

namespace popp\ch20\batch04;

use Facebook\WebDriver\Remote\DesiredCapabilities;
use Facebook\WebDriver\Remote\RemoteWebDriver;
use PHPUnit\Framework\TestCase;

class SeleniumTest1 extends TestCase
{
 protected function setUp(): void
 {
 }

 protected function tearDown(): void
 {
 }

 public function testAddVenue(): void
 {
 }
}

I specify some of the php-webdriver classes I will be using and then create a bare-

bones test class. Now to make this test do something.

Chapter 7 Testing with PHPUnit

162

�Connecting to Selenium

In order to make the connection to Selenium, I need to pass a URL and a configuration

array to a class named RemoteWebDriver. The URL for the Selenium server is usually

http://127.0.0.1:4444/wd/hub.

namespace popp\ch20\batch04;

use Facebook\WebDriver\Remote\DesiredCapabilities;
use Facebook\WebDriver\Remote\RemoteWebDriver;
use PHPUnit\Framework\TestCase;

class SeleniumTest2 extends TestCase
{
 private RemoteWebDriver $driver;

 protected function setUp(): void
 {
 $host = "http://127.0.0.1:4444/wd/hub";
 $capabilities = DesiredCapabilities::chrome();
 $this->driver = RemoteWebDriver::create($host, $capabilities);
 }

 protected function tearDown(): void
 {
 $this->driver->quit();
 }

 public function testAddVenue(): void
 {
 }
}

If you installed php-webdriver with Composer, you can see a full list of

capabilities in the class file at vendor/php-webdriver/webdriver/lib/Remote/
WebDriverCapabilityType.php. For my present purposes, however, I really only need to

specify the minimum configuration needed to run the Chrome browser. This is provided

by the convenience method DesiredCapabilities::chrome(). I pass the host string and

the returned $capabilities array to the static RemoteWebDriver::create() method

and store the resulting object reference in the $driver property.

Chapter 7 Testing with PHPUnit

163

The tearDown() method invokes RemoteWebDriver::quit(). This method closes

all browser windows and ends the test session. If you fail to end a session, you’ll need to

wait for it to time out before you can run a new test suite. Having a browser hang around

can be useful if you need to interact with it during development (perhaps to investigate

the cause of a failure), but usually, you’ll want the session to end promptly so that you

can run a new test suite.

If I were to run this test and monitor the session (I will show you how to do this), I

would see that Selenium launches a fresh browser window in preparation for further

action and then promptly closes it again.

Let’s add that further action.

�Writing the Test

For this basic test, I will navigate to AddVenue.php, add a venue, confirm the expected

response, and then add a space. Finally, I will confirm the output generated by

AddSpace.php.

Here is my test:

namespace popp\ch20\batch04;

use Facebook\WebDriver\Remote\DesiredCapabilities;
use Facebook\WebDriver\Remote\RemoteWebDriver;
use Facebook\WebDriver\WebDriverBy;
use PHPUnit\Framework\TestCase;

class SeleniumTest3 extends TestCase
{

 // setUp(), tearDown() etc

 public function testAddVenue(): void
 {
 $this->driver->get("http://localhost:8784/AddVenue.php");
 �$venel = $this->driver->findElement(WebDriverBy::name("venue_

name"));
 $venel->sendKeys("my_test_venue");
 $venel->submit();

Chapter 7 Testing with PHPUnit

164

 $tdel = $this->driver->findElement(WebDriverBy::xpath("//div[1]"));
 �$this->assertMatchesRegularExpression("/'my_test_venue' added/",

$tdel->getText());

 �$spacel = $this->driver->findElement(WebDriverBy::name("space_
name"));

 $spacel->sendKeys("my_test_space");
 $spacel->submit();

 �$el = $this->driver->findElement(WebDriverBy::xpath("//div[1]"));
 �$this->assertMatchesRegularExpression("/'my_test_space' added/",

$el->getText());
 }

}

Note this line:

$this->driver->get("http://localhost:8784/AddVenue.php");

The Selenium server will access my computer’s version of localhost here rather

than its own thanks to the --net host option I set when launching with docker run.

Once again, you should not use this option on a Mac. Instead, omit --net host, and use

host.docker.internal instead of localhost in the test itself:

$this->driver->get("http://host.docker.internal:8784/AddVenue.php");

Here’s what happens when I run this test on the command line:

$ phpunit src/ch20/batch04/SeleniumTest3.php
PHPUnit 12.0.10 by Sebastian Bergmann and contributors.

Runtime: PHP 8.3.7

. 1 / 1 (100%)

Time: 00:12.159, Memory: 8.00 MB

OK (1 test, 2 assertions)

Chapter 7 Testing with PHPUnit

165

Of course, the command-line output is not all that happens. If you are looking in

the right place, you can watch as Selenium launches a browser window and performs

its specified operations within it. I have to admit, I find this effect a little eerie! There

are various ways you can get to see this. If you have a VNC client, you can connect it to

localhost:5900. Otherwise, you can point your browser at http://localhost:7900/?a
utoconnect=1&resize=scale&password=secret (or http://localhost:4444 if you want

more controls and information). By default, you may have to provide a password, which

is, cryptically, “secret.”

Let’s run through the code. First, I invoke WebDriver::get(), which acquires my

starting page. Note that this method expects a full URL (which does not need to be local

to the Selenium server host). In this case, I am accessing my mocked up script AddVenue.
php script running locally using PHP’s built-in development server on port 8784

(remember to use host.docker.internal rather than localhost on a Mac). Selenium

will load the specified document into the browser it has launched. You can see this page

in Figure 7-1.

Figure 7-1.  The AddVenue page loaded by Selenium

Chapter 7 Testing with PHPUnit

166

Once the page has loaded, I have access to it via the WebDriver API. I can acquire a

reference to a page element using the RemoteWebDriver::findElement() method. This

requires an object of type WebDriverBy. The WebDriverBy class provides a set of factory

methods, each of which returns a WebDriverBy object configured to specify a particular

means of locating an element. My form element has a name attribute set to "venue_
name", so I use the WebDriverBy::name() method to tell findElement() to look for an

element this way. Table 7-4 lists all of the available factory methods.

Table 7-4.  WebDriverBy Factory Methods

Method Description

className() Find elements by CSS class name

cssSelector() Find elements by CSS selector

id() Find an element by its id

name() Find elements by name attribute

linkText() Find elements by their link text

partialLinkText() Find elements by a fragment of link text

tagName() Find elements by their tag

xpath() Find elements that match an Xpath expression

Once I have a reference to the venue_name form element, an object of type

RemoteWebElement, I can use its sendKeys() method to set a value. It’s important to note

that sendKeys() does more than just set a value. It also simulates the act of typing into an

element. This is useful for testing systems that use JavaScript to capture keyboard events.

With my new value set, I submit the form. The API is smart about this. When I call

submit() on an element, Selenium locates the containing form and submits it.

Submitting the form, of course, causes a new page to be loaded. So, next I check that

all is as I expect. Once again, I use WebDriver::findElement(), although this time I pass

it a WebDriverBy object configured for Xpath. If my search is successful, findElement()

will return a new RemoteWebElement object. If my search fails, on the other hand, the

resulting exception will bring down my test. Assuming that all is well, I acquire the

element’s value using the RemoteWebElement::getText() method.

At this stage, I have submitted the form and checked the state of the returned web

page. You can see the page in Figure 7-2.

Chapter 7 Testing with PHPUnit

167

Figure 7-2.  The AddSpace page

Now, all that remains is to populate the form once again, submit, and check the new

page. I use techniques that you have already encountered to achieve this.

Of course, I’ve only just scratched the surface of Selenium here. But I hope this

discussion has been enough to give you an idea of the possibilities. If you want to

learn more, there is a complete Selenium manual at https://www.selenium.dev/
documentation/.

�A Note of Caution
It’s easy to get carried away with the benefits that automated tests can offer. I add unit

tests to my projects, and I use PHPUnit for functional tests, as well. That is, I test at the

level of the system, as well as that of the class. I have seen real and observable benefits,

but I believe that these come at a price.

Tests add a number of costs to your development. As you build safety into the

project, for example, you are also adding a time penalty into the build process that can

impact releases. The time it takes to write tests is part of this, but so is the time it takes to

Chapter 7 Testing with PHPUnit

https://www.selenium.dev/documentation/
https://www.selenium.dev/documentation/

168

run them. On one system, we may have suites of functional tests that run against more

than one database and more than one version control system. Add a few more contextual

variables like that, and we face a real barrier to running the test suite. Of course, tests

that aren’t run aren’t useful. One answer to this is to fully automate your tests, so runs

are kicked off by a scheduling application like cron. Another is to maintain a subset of

your tests that can be easily run by developers as they commit code. These should sit

alongside your longer, slower test run.

Another issue to consider is the brittle nature of many test harnesses. Your tests may

give you confidence to make changes, but as your test coverage increases along with the

complexity of your system, it becomes easier to break multiple tests. Of course, this is

often what you want. You want to know when expected behavior does not occur or when

unexpected behavior does.

Oftentimes, however, a test harness can break because of a relatively trivial change,

such as the wording of a feedback string. Every broken test is an urgent matter, but it can

be frustrating to have to change 30 test cases to address a minor alteration in architecture

or output. Unit tests are less prone than functional tests to problems of this sort because,

by and large, they focus on each component in isolation.

The cost involved in keeping tests in step with an evolving system is a trade-off that

you simply have to factor in. On the whole, I believe the benefits justify the costs.

You can also do some things to reduce the fragility of a test harness. It’s a good idea

to write tests with the expectation of change built in, to some extent. I tend to use regular

expressions to test output rather than direct equality tests, for example. Testing for a few

keywords is less likely to make my test fail when I remove a newline character from an

output string. Of course, making your tests too forgiving is also a danger, so it is a matter

of using your judgment.

Another issue is the extent to which you should use mocks and stubs to fake the

system beyond the component you wish to test. Some insist that you should isolate your

component as much as possible and mock everything around it. This works for me in

some projects. In others, however, I have found that maintaining a system of mocks can

become a time sink. Not only do you have the cost of keeping your tests in line with your

system, but you must keep your mocks up to date. Imagine changing the return type of

a method. If you fail to update the method of the corresponding stub object to return

the new type, client tests may pass in error. With a complex fake system, there is a real

danger of bugs creeping into mocks. Debugging tests is frustrating work, especially when

the system itself is not at fault.

Chapter 7 Testing with PHPUnit

169

I tend to play this by ear. I use mocks and stubs by default, but I’m unapologetic about

moving to real components if the costs begin to mount up. You may lose some focus on

the test subject, but this comes with the bonus that errors originating in the component’s

context are at least real problems with the system. You can, of course, use a combination of

real and fake elements. I routinely use an in-memory database in test mode, for example.

As you may have gathered, I am not an ideologue when it comes to testing. I

routinely “cheat” by combining real and mocked components, and because priming data

is repetitive, I often centralize test fixtures into what Martin Fowler calls object mothers.

These classes are simple factories that generate primed objects for the purpose of

testing. Shared fixtures of this sort are anathema to some.

Having pointed out some of the problems that testing may force you to confront,

it is worth reiterating a few points that, for my money, trump all objections. Testing

accomplishes several things:

•	 It helps you prevent bugs (to the extent that you find them during

development and refactoring).

•	 It helps you discover bugs (as you extend test coverage).

•	 It encourages you to focus on the design of your system.

•	 It lets you improve code design with less fear that changes will cause

more problems than they solve.

•	 It gives you confidence when you ship code.

In every project for which I’ve written tests, I’ve had occasion to be grateful for that

fact sooner or later.

�Summary
In this chapter, I revisited the kinds of tests we all write as developers but all too often

thoughtlessly discard. From there, I introduced PHPUnit, which lets you write the same

kind of throwaway tests during development but then keep them and feel the lasting

benefit! I created a test case implementation, and I covered the available assertion

methods. I also examined constraints and explored the devious world of mock objects.

Next, I discussed and demonstrated some techniques for testing web applications using

PHPUnit and Selenium. Finally, I risked the ire of some by warning of the costs that tests

incur and discussing the trade-offs involved.

Chapter 7 Testing with PHPUnit

171
© Matt Zandstra 2025
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_8

CHAPTER 8

Vagrant
Where do you run your code?

Maybe you have a development environment you have honed to perfection with

a favorite editor and any number of useful development tools. Of course, your perfect

setup for writing code is probably very different from the best system on which to run

it. And that’s a challenge that Vagrant can help you with. Using Vagrant, you get to work

on your local machine and run your code on a system that’s all but identical to your

production server. In this chapter, I will show you how. We will cover the following:

•	 Basic setup: From installation to choosing your first box

•	 Logging in: Investigating your virtual machine with ssh

•	 Mounting host directories: Editing code on your host machine and

having it available transparently in your Vagrant box

•	 Provisioning: Writing a script to install packages and configure

Apache and MySQL

•	 Setting a hostname: Configuring your box so that you can access it

using a custom hostname

�The Problem
As always, let’s spend a little time defining the problem space. It is relatively easy,

these days, to configure a LAMP stack on most desktop or laptop computers. Even so, a

personal computer is unlikely to match your production environment. Is it running the

same version of PHP? What about Apache and MariaDB? If you’re using Elasticsearch,

you may need to consider Java or Python, too. The list soon grows. Developing

against one set of tools on a particular platform can sometimes be problematic if your

production stack is significantly different.

https://doi.org/10.1007/979-8-8688-0779-4_8#DOI

172

You might give up and shift your development to a remote machine – there are

plenty of cloud vendors who will allow you to spin up a box quickly. But that’s not a free

option, and, depending upon your editor of choice, a remote system may not integrate

well with the development tools you wish to use.

So, it may be worth the effort of matching the packages on your computer as closely as

possible with those installed on the production system. The match won’t be perfect, but

perhaps it will be good enough, and you’ll probably catch most issues on the staging server.

What happens, though, when you begin work on a second project with radically

different requirements? We have seen that Composer does a great job of keeping

dependencies separate, but there are still global packages like PHP, MariaDB, and

Apache or Nginx to keep in line.

Note  If you decide to develop on remote systems, I recommend making the
effort to learn how to use the vim editor. Despite its quirks, it is extremely powerful,
and you can be 99% certain that either vim or its more basic ancestor vi will be
available on any Unix-like system you encounter.

Virtualization is a potential solution and a good one. It can be a pain installing an

operating system, though, and there can be considerable configuration hassles.

If only there were a tool that made creating a production-like development

environment on a local virtual machine relatively simple. OK, it’s obvious that now I’m

going to say that just such a tool exists. Well, one does. It’s called Vagrant.

Note  There is, of course, another option to consider. Docker provides a
lightweight container-based solution to this problem. In a Docker development
environment, you break your system down into individual service containers which
communicate with one another over a local network. Docker containers (at least
when run on a Linux host) operate directly on the host machine’s kernel (rather
than via a virtualization engine like VirtualBox), making them very easy to deploy.
We will examine Docker in more detail in the next chapter. Many development
teams have migrated, or are migrating, to Docker for development. Vagrant
remains a good option, however, especially when you need to faithfully replicate a
development stack in a production environment.

Chapter 8 Vagrant

173

�A Little Setup
It is tempting to say that Vagrant gives you a development environment with a single

command. That can be true – but you do have to install the requisite software first. Given

that, and a configuration file that you can check out from your project’s version control

repository, launching a new environment truly can involve a single command.

Let’s get started with the setup first. Vagrant requires a virtualization platform. It

supports several, but I will use VirtualBox. My host machine runs Fedora, but you can

install VirtualBox on any Linux distribution and on Windows. It is supported on Intel-

based Macs but not, unfortunately, on Apple Silicon Macs. You can find the download

page at https://www.virtualbox.org/wiki/Downloads, together with instructions for

your platform.

Once you have VirtualBox installed, you’ll need Vagrant, of course. The download

page is at https://developer.hashicorp.com/vagrant/install. Once we have

installed these applications, our next task will be to choose the box we’ll run our code on.

�Choosing and Installing a Vagrant Box
Probably the easiest way to acquire a Vagrant box is to use the search interface at

https://portal.cloud.hashicorp.com/vagrant/discover. Since many production

systems run Debian, that’s what I will look for. You can see the fruits of my research in

Figure 8-1.

Chapter 8 Vagrant

https://www.virtualbox.org/wiki/Downloads
https://developer.hashicorp.com/vagrant/install
https://portal.cloud.hashicorp.com/vagrant/discover

174

Figure 8-1.  Searching for a Vagrant box

Debian12 looks about right for my needs. I can click the listing for the box that

interests me to get setup instructions. This gives me enough information to get a Vagrant

environment running. Usually when you run Vagrant, it will read a configuration file

named Vagrantfile – but since I am starting from scratch, I need to ask Vagrant to

generate one:

$ vagrant init generic/debian12
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

As you can see, I pass Vagrant the name of the box I want to work with, and it uses

this information to generate some minimal configuration.

If I open up the generated Vagrantfile document, I can see this (among much other

boilerplate):

Chapter 8 Vagrant

175

Vagrant.configure("2") do |config|
 # �The most common configuration options are documented and

commented below.
 # For a complete reference, please see the online documentation at
 # https://docs.vagrantup.com.

 # �Every Vagrant development environment requires a box. You can
search for

 # boxes at https://vagrantcloud.com/search.
 config.vm.box = "generic/debian12"

At this point, I have only gotten as far as generating configuration. Next, I must run

the all-important vagrant up command. If you work with Vagrant often, you will soon

find this command very familiar. It kicks off your Vagrant session by downloading and

provisioning your new box (if necessary), then booting it:

$ vagrant up --provider virtualbox

Because the generic/debian12 box supports a number of providers – that is,

virtualization engines – I must initially specify virtualbox. Once I have created my

environment, I can leave that flag out for future runs of vagrant up.

In this case, though, I am running this command for the first time with the generic/
debian12 virtual machine, so Vagrant starts by downloading the box:

Bringing machine 'default' up with 'virtualbox' provider...
==> �default: Box 'generic/debian12' could not be found. Attempting to find

and install...
 default: Box Provider: virtualbox
 default: Box Version: >= 0
==> �default: Loading metadata for box 'generic/debian12'
 default: URL: https://vagrantcloud.com/generic/debian12
==> �default: Adding box 'generic/debian12' (v4.3.12) for provider:

virtualbox
 �default: Downloading: https://vagrantcloud.com/generic/boxes/debian12/

versions/4.3.12/providers/virtualbox/amd64/vagrant.box
==> �default: Successfully added box 'generic/debian12' (v4.3.12) for

'virtualbox'!

Chapter 8 Vagrant

176

==> default: Importing base box 'generic/debian12'...
==> �default: Checking if box 'generic/debian12' version '4.3.12' is up

to date...

...

Vagrant stores the box (under ~/.vagrant.d/boxes/) so that you won’t have to

download it again on your system – even if you run multiple virtual machines. Then, it

configures and boots the machine (it provides lots of detail as it does so). Once it has

finished running, I can test it out by logging in to my new machine:

$ vagrant ssh
$ pwd
/home/vagrant

I run the vagrant ssh command to log in and then run pwd to confirm my working

directory on the box. I might also check the operating system:

$ cat /etc/debian_version
12.4

So, we’re in and it all looks sane! What have we won? Well, we have access to a

machine that somewhat resembles our production environment. Anything else? Quite a

lot, in fact. I said earlier that I would like to edit files on my local machine but run them

in a production-like space. Let’s set that up.

Time to leave the box again and get back to the host machine:

$ exit

�Mounting Local Directories on the Vagrant Box
Let’s put some sample files together. I ran my first vagrant init and vagrant up

commands in a directory I named infrastructure. I will resurrect the woo project I used

in Chapter 7 (a dummy version of the system I developed in Volume 1). Putting all that

together, my development environment looks a little like this:

ch21/
 infrastructure/
 Vagrantfile

Chapter 8 Vagrant

https://doi.org/10.1007/979-8-8688-0779-4_7

177

 webwoo/
 AddVenue.php
 index.php
 Main.php
 AddSpace.php

Note  You’ll encounter references to ch21 in some of the code examples in this
chapter. That’s because, while this is Chapter 8 of Volume 2, it is also the 21st
chapter across both volumes of PHP 8 Objects, Patterns, and Practice.

Our challenge is to set up the environment so that we can work with webwoo files

locally but run them transparently using a stack installed on the Debian box. Depending

upon our configuration, Vagrant will attempt to mount directories on the host machine

within the guest box.

So, let’s instruct Vagrant to mount the infrastructure directory as /vagrant on the

box. That will come in handy when we write a script to provision the box. We will also

need to mount the webwoo directory, so that its contents can be served.

I open up Vagrantfile and add these lines within the configuration section of the

document – that is, between Vagrant.configure("2") do |config| and end:

config.vm.synced_folder ".", "/vagrant"
config.vm.synced_folder "../webwoo", "/var/www/poppch21"

I can find the best place to put this line by searching the commented boilerplate for

the string synced_folder. I find a sample configuration line that looks very like my own.

With these directives, I am telling Vagrant to mount the infrastructure directory on the

guest box at /vagrant and webwoo directory at /var/www/poppch21. In order to see that in

effect, I need to reboot the box. There’s a new command for this (which should be run on

the host system and not within the virtual machine):

$ vagrant reload

Chapter 8 Vagrant

https://doi.org/10.1007/979-8-8688-0779-4_8

178

The virtual machine shuts down and reboots cleanly. Vagrant mounts the

infrastructure (/vagrant) and webwoo (/var/www/poppch21) directories. Here’s an

extract from the command’s output:

==> default: Mounting shared folders...
 �default: /vagrant => /home/mattz/localwork/popp7/src/ch21/

infrastructure
 �default: /var/www/poppch21 => /home/mattz/localwork/popp7/src/

ch21/webwoo

I can log in quickly to confirm that /var/www/poppch21 is in place:

$ vagrant ssh
$ ls /var/www/poppch21/
AddSpace.php AddVenue.php index.php Main.php

By the same token, if we were to look at /vagrant on the VM, we’d see the contents

of the infrastructure directory. So, now I can run a sexy IDE on my local machine and

have the changes it makes transparently available on the guest box!

Note A note from technical reviewer and Windows user Paul Tregoing: Don’t
use a VirtualBox shared file system (which underpins Vagrant’s synced folder in
this example) if running a Windows host. If you do so, you may encounter issues
with case sensitivity and lack of symlink support. In this scenario, it’s better to run
Samba (most distributions install this as smbd) on the guest OS and map a network
drive on the host for a more seamless experience. There are lots of online guides
out there for this.

Of course, placing files on a Debian VM is not the same as running the system. A

typical Vagrant box comes without too much preinstalled. The assumption is that the

developer will want to customize the environment according to need and circumstance.

The next stage is to provision our box.

Chapter 8 Vagrant

179

�Provisioning
Once again, provisioning is directed by the Vagrantfile document. Vagrant supports

several tools designed for provisioning machines, including Chef (https://www.chef.
io/products/chef-infra), Puppet (https://puppet.com), and Ansible (https://www.
ansible.com). They’re all worth investigating. For the purposes of this example, though,

I’m going to use a good old-fashioned shell script.

Note  I cover Ansible in Chapter 10.

Once again, I begin with Vagrantfile:

config.vm.provision "shell", path: "setup.sh"

This should be reasonably clear. I’m telling Vagrant to use a shell script to provision

my box, and I specify setup.sh as the script which should be executed.

What you put in your shell script depends upon your requirements, of course. I’m

going to begin by setting a couple of variables.

VAGRANTDIR=/vagrant
SERVERDIR=/var/www/poppch21/

I can use these variables throughout the setup script. At the time of writing, PHP 8.3

is not available by default on Debian 12. However, it’s not particularly difficult to install.

Here, I’m adapting the approach recommended by PHP Watch:

apt-get -y install apt-transport-https
curl -sSLo /usr/share/keyrings/deb.sury.org-php.gpg https://packages.sury.
org/php/apt.gpg
sh -c 'echo "deb [signed-by=/usr/share/keyrings/deb.sury.org-php.gpg] \
https://packages.sury.org/php/ $(lsb_release -sc) main" > /etc/apt/sources.
list.d/php.list'
apt-get update

apt-get -y install php8.3 php8.3-cli php8.3-{bz2,curl,mbstring,intl}
apt-get -y install php8.3-fpm
a2enconf php8.3-fpm

Chapter 8 Vagrant

https://www.chef.io/products/chef-infra
https://www.chef.io/products/chef-infra
https://puppet.com
https://www.ansible.com
https://www.ansible.com
https://doi.org/10.1007/979-8-8688-0779-4_10

180

I use the apt package management system to install apt-transport-https which

supports downloads over HTTPS and then add the Sury PHP package list to the system’s

list of packages at /etc/apt/sources.list.d/php.list. This makes PHP 8.3 available.

I run apt-get update to update the system. Then, I install PHP 8.3 and various PHP

extensions.

Because I’m going to run PHP with Apache using FPM (FastCGI Process Manager),

I install the php8.3-fpm package. This will add a configuration to the Apache web server

which comes installed on this box. I enable this configuration using the a2enconf.

Note  You can find the original version of this part of the setup script and
more explanation at https://php.watch/articles/php-8.3-install-
upgrade-on-debian-ubuntu#detailed.

Of course, other distributions will require different strategies for installation. The

main takeaway here is that I have installed PHP 8.3 and some PHP extensions. A quick

search will provide you with equivalent scripts for your distribution of choice.

I write the script as it currently stands to a file named setup.sh which I place in the

infrastructure directory alongside Vagrantfile.

Now, how do I kick off the provisioning process? If the config.vm.provision

directive and the setup.sh script had both been in place when I first ran vagrant
up, then the provisioning would have been automatic. As it is, I’ll now need to run it

manually:

$ vagrant provision

This will spew an awful lot of information onto your terminal as the setup.sh script

is run within the Vagrant box. Let’s see if it worked:

$ vagrant ssh
$ php -v
PHP 8.3.6 (cli) (built: Apr 22 2024 10:06:36) (NTS)
Copyright (c) The PHP Group
Zend Engine v4.3.6, Copyright (c) Zend Technologies
 with Zend OPcache v8.3.6, Copyright (c), by Zend Technologies

Chapter 8 Vagrant

https://php.watch/articles/php-8.3-install-upgrade-on-debian-ubuntu#detailed
https://php.watch/articles/php-8.3-install-upgrade-on-debian-ubuntu#detailed

181

�Setting Up the Web Server
Of course, even with Apache installed and configured to work with PHP, the system is not

ready to be run. First of all, I need to further configure Apache so that it can serve our code.

The easiest way to do this is to create a configuration file that can be copied into place. In the

case of Debian, the location in question for this is usually /etc/apache2/conf-available/.

Let’s call the configuration file poppch21.conf and drop it into the infrastructure

directory:

<VirtualHost *:80>
 ServerName poppch21.vagrant.internal
 ServerAlias poppch21.vagrant.internal
 ServerAdmin matt@getinstance.com
 DocumentRoot /var/www/poppch21
 ErrorLog ${APACHE_LOG_DIR}/poppch21-error_log
 CustomLog ${APACHE_LOG_DIR}/poppch21-access_log common
</VirtualHost>

<directory /var/www/poppch21/>
 Options Indexes FollowSymLinks
 AllowOverride None
 Require all granted
</directory>

I’ll return to that hostname a little later. Leaving aside that tantalizing detail, this is

enough to tell Apache about our /var/www/poppch21 directory and to set up logging. Of

course, I’ll also have to update setup.sh to copy the configuration file at provision time:

cp $VAGRANTDIR/poppch21.conf /etc/apache2/sites-available
a2dissite 000-default.conf
a2ensite poppch21.conf
systemctl start apache2
systemctl enable apache2

I copy the configuration file into place. Then, I run a utility named a2dissite

to disable the default configuration – which is a little greedy. By the same token, the

a2ensite command enables our newly copied configuration. Then, I restart the web

server so that the configuration is picked up. I also run systemctl enable to ensure that

the server will be started at boot time.

Chapter 8 Vagrant

182

After making this change, I can rerun the provision script:

$ vagrant provision

It’s important to note that those parts of the setup script we previously covered will

also be rerun. When you create a provisioning script, you must design it so it can be

executed repeatedly without serious repercussions. Luckily, apt-get detects that my

specified packages have already been installed and grumbles harmlessly.

�Setting Up MariaDB
For many applications, you’ll need to make sure that a database is available and ready

for connections. Here’s a simple addition to my setup script to install the MariaDB

application:

apt-get -y install mariadb-server
/usr/bin/mysqladmin -s -u root password 'vagrant' || echo " -- unable to
create pass - probably already done"
domysqldb vagrant poppch21_vagrant vagrant vagrant

MariaDB is the modern replacement for MySQL (forked originally from the MySQL

source and implementing familiar MySQL tools and commands). I install it with apt-
get. I run the mysqladmin command to create a root password. This will fail after the

first run because the password will already be set, so I use the -s flag to suppress error

messages and print a message of my own if the command fails. Then, I create a database,

a user, and a password by running a local function: domysqldb. Here it is:

function domysqldb {
 ROOTPASS=$1
 DBNAME=$2
 DBUSER=$3
 DBPASS=$4
 MYSQL=mysql
 MYSQLROOTCMD="mysql -uroot -p$ROOTPASS"
 echo "root command is $MYSQLROOTCMD"

 echo "creating database $DBNAME..."
 echo "CREATE DATABASE IF NOT EXISTS $DBNAME" | $MYSQLROOTCMD || \
 die "unable to create db";

Chapter 8 Vagrant

183

 echo "DB creation done"
 echo "granting privileges for $DBUSER"

 �echo "grant all on $DBNAME.* to $DBUSER@'localhost' identified by
\"$DBPASS\""

 �echo "grant all on $DBNAME.* to $DBUSER@'localhost' identified by
\"$DBPASS\"" | \

 $MYSQLROOTCMD || die "unable to grand privs for user $DBUSER"
 echo "FLUSH PRIVILEGES" | $MYSQL -uroot -p"$ROOTPASS" || \
 die "unable to flush privs"
 echo "done granting privileges for $DBUSER"
}

This simple function creates a database and configures access control by piping

command strings to MariaDB. I place it near the top of the setup.sh script so that the calling

code can find it. With this function in place, I can provision again and then test my database:

$ vagrant provision
$ vagrant ssh
$ mysql -u root -pvagrant poppch21_vagrant
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 52
Server version: 10.11.6-MariaDB-0+deb12u1 Debian 12

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [poppch21_vagrant]>

We now have a running database and a web server. It’s time to see the code in action.

�Configuring a Hostname
We have logged in to our new production-like development environment several times,

so networking is more or less taken care of. Even though I’ve configured a web server,

I’ve yet to use it. That’s because we still need to support a hostname for our VM. So let’s

add one to Vagrantfile (again, within the configure block):

config.vm.hostname = "poppch21.vagrant.internal"
config.vm.network :private_network, ip: "192.168.56.10"

Chapter 8 Vagrant

184

I invent a hostname and use the config.vm.hostname directive to add it. I also

configure private networking with config.vm.network, assigning a static IP address. You

should use private address space for this – an unused IP address beginning with 192.168

should work.

Because this is an invented hostname, we must configure our operating system to

handle the resolution. On a Unix-like system, that means editing a system file, /etc/
hosts on the host machine (not within the Vagrant virtual machine). In this case, I would

add the following:

192.168.56.10 poppch21.vagrant.internal

Note  The hosts file on Windows can be found at c:\Windows\System32\
Drivers\etc\hosts.

Not overly onerous, but we are working toward a one-command install for our team,

so it would be good to have a way of automating this step. Fortunately, Vagrant supports

plug-ins, and the hostmanager plug-in does exactly what we need. To add a plug-in, you

simply run the vagrant plugin install command:

$ vagrant plugin install vagrant-hostmanager
Installing the 'vagrant-hostmanager' plugin. This can take a few
minutes...
Installed the plugin 'vagrant-hostmanager (1.8.10)'!

Then, you can explicitly tell the plug-in to update /etc/hosts, like this:

$ vagrant hostmanager --provider=virtualbox
[vagrant-hostmanager:guest] Updating hosts file on the virtual machine
default...

In order to make this process automatic for our team members, we should explicitly

enable hostmanager in Vagrantfile:

config.hostmanager.enabled = true

Chapter 8 Vagrant

185

With the configuration changes in place, we should run vagrant reload in order to

apply them. Then, it’s the moment of truth! Will our system run in the browser? As you

can see in Figure 8-2, the system should work just fine.

Figure 8-2.  Accessing a configured system on a Vagrant box

�Wrapping It Up
So, we have gone from nothing to a fully working development environment. Given that

it took a chapter’s worth of effort to get here, it might seem like a bit of a cheat to say that

Vagrant is quick and easy. There are two answers to that. First, once you have done this

a few times, it becomes a pretty simple matter to spin up yet another Vagrant setup –

certainly much easier than trying to juggle multiple dependency stacks by hand.

More importantly, though, the real speed and efficiency gain does not lie with

the person who sets Vagrant up. Imagine a new developer coming in to your project

expecting days’ worth of downloads, configuration file edits, and wiki-clicking.

Chapter 8 Vagrant

186

Imagine telling her, “Install Vagrant and VirtualBox. Check out the code. From the

infrastructure directory, run ‘vagrant up’.” And that’s it! Compare that with some of the

painful onboarding processes you have experienced or heard described.

Of course, we’ve only scratched the surface in this chapter. As you need to configure

Vagrant to do more for you, the official site at https://www.vagrantup.com will provide

you with all the support you need.

Table 8-1 provides a quick reminder of the Vagrant commands we encountered in

this chapter (and a few useful additions).

Table 8-1.  Some Vagrant Commands

Command Description

vagrant up Boot the virtual machine and provision if not yet provisioned.

vagrant reload Halt the system and bring it back up (will not run provision again

unless run with the –provision flag).

vagrant plugin list List the installed plug-ins.

vagrant plugin install
<plugin-name>

Install a plug-in.

vagrant provision Run the provision step again (useful if you have updated provision

scripts).

vagrant halt Gracefully shut down the virtual machine.

vagrant suspend Stop the virtual machine process and save state.

vagrant resume Resume a previously suspended virtual machine process.

vagrant init Create a new Vagrantfile document.

vagrant destroy Destroy the virtual machine. Don’t worry, you can always start

again with vagrant up!

Chapter 8 Vagrant

https://www.vagrantup.com

187

�Summary
In this chapter, I introduced Vagrant, the application that lets you work in a production-

like development environment without sacrificing your authoring tools. I covered

installation, the choosing of a distribution, and initial setup – including mounting your

development directories. Once we had a virtual machine to play with, I moved on to the

provisioning process – covering package installation as well as database and web server

configuration. Finally, I looked at hostname management, and I showed our system

working in the browser!

Chapter 8 Vagrant

189
© Matt Zandstra 2025
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_9

CHAPTER 9

Docker
Docker is a powerful platform for managing lightweight containers. In plainer English,

Docker provides you with tools to run all of your system’s components as discrete, fast,

interoperable services. Each service can be provided with the environment it needs

to do its job (a database service might require MariaDB, for example) often with little

or no provisioning required. Together, these services can be used to deploy a reusable

tool, a quick demo, a development environment, or a full production-ready stack. The

crucial selling point of Docker is that each container packages up an entire system’s

worth of dependencies, libraries, and components into a self-contained and easily

distributable form.

This chapter will cover

•	 Getting Docker: Options for installation

•	 Concepts: Some key terms

•	 Acquiring images: Getting useful images from Docker Hub

•	 Generating containers: How to create and configure powerful services

from the command line

•	 Building your own images: Create customized services

•	 System management: Starting, stopping, viewing, and accessing

containers

•	 Docker Compose: Taking control to the next level with container

orchestration

https://doi.org/10.1007/979-8-8688-0779-4_9#DOI

190

�What Is Docker?
I love both Vagrant and VirtualBox (the virtualization engine I usually run beneath

Vagrant’s hood). Still, it is undeniable that a full virtual machine is something of a

monolith and that provisioning a working development environment can be quite

the project. It can easily take 20 minutes to provision a complex working system from

scratch. There is a special agony when provisioning fails at the final step for the fifth time

and you face the prospect of tweaking the setup script and beginning yet again from the

top. What’s more, even when all works as it should, a virtual machine duplicates much

of the stack that your operating system is already using, draining a significant fraction of

your system’s resources.

When running on Linux, Docker (https://docs.docker.com) does not create an

entire virtual machine with its own complement of drivers and subsystems. Instead, it

allows you to create multiple specialized services or containers, each one running on

your host machine’s kernel. This makes each container fast and lightweight. Because

images already exist to support common services, such as databases, web servers,

and cache systems, you can stitch together and initialize a working development

environment surprisingly quickly.

Docker on non-Linux systems does deploy a virtual machine under the hood.

However, even then, you still benefit from Docker’s flexibility and convenience and from

the way that containers use layered base images, allowing resources to be shared from

container to container.

�Getting Docker
The Docker documentation site provides a comprehensive overview of installation

methods across multiple operating systems and Linux distributions at https://docs.
docker.com/engine/install/.

Note  In this chapter, I will be working with Docker CE, also known as Docker
Engine. If you would prefer a GUI environment, you can install Docker Desktop
(https://docs.docker.com/desktop/). As well as a full dashboard
experience, this platform also provides the command-line tools I discuss here.

Chapter 9 Docker

https://docs.docker.com
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/desktop/

191

You may be able to install Docker using your distribution’s package management

system, though you should check the available version. As of this writing, the Docker

Engine is at version 28. Alternatively, you might use the convenience script provided at

https://get.docker.com. I will be running this on Fedora and Debian distributions.

$ curl -fsSL https://get.docker.com -o install-docker.sh
$ sudo sh install-docker.sh

By default, you will need to run Docker commands as root in order to access the Unix

socket that the Docker daemon creates. This can be tiresome, so you can take a few steps

that let you run Docker commands without resorting to sudo all the time. The easiest

(but not the most secure) solution is to create a docker group on your system and add

this group to your user.

$ sudo groupadd docker
$ sudo usermod -aG docker $USER
$ newgrp docker

If you installed Docker with the install-docker.sh script, the docker group will

already have been added to your system, making the first line of the previous example

redundant. However, running it will do no harm.

If you want to avoid running Docker without root privileges, you can configure

Docker Engine to run in “rootless mode.” The documentation provides instructions for

a range of operating systems and distributions at https://docs.docker.com/engine/
security/rootless/.

In order to do anything useful at this point, you may need to start the

Docker daemon:

$ sudo systemctl start docker

Hopefully, now, we’re ready to run something. I can start by checking my version:

$ docker -v

It looks like I have the latest version as of this writing:

Docker version 28.0.4, build b8034c0

Chapter 9 Docker

https://get.docker.com
https://docs.docker.com/engine/security/rootless/
https://docs.docker.com/engine/security/rootless/

192

�Running an Image
Now that I have Docker and confirmed my version, it might be a little more interesting to

get and run an image.

$ docker run hello-world

Here is the output. It’s worth including it in full because it nicely summarizes the

process.

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
e6590344b1a5: Pull complete
Digest: sha256:7e1a4e2d11e2ac7a8c3f768d4166c2defeb09d2a750b010412b6
ea13de1efb19
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (amd64)
 3. �The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
 4. �The Docker daemon streamed that output to the Docker client,
 which sent it to your terminal.

I invoked docker run, passing it the name of an image, hello-world. If you look at

the output, you’ll see that no hello-world existed locally, so Docker searched for it on a

remote repository stored, by default on the Docker Hub registry (https://hub.docker.
com/). Note that Docker does not just look for hello-world. It looks for hello-
world:latest. Images are tagged – so that you can provide different flavors and versions.

The default (and implicit) tag is latest.

After my initial run, the hello-world:latest image was cached locally so that I

won’t have to acquire it from the remote server next time. It was used to create a running

instance – a container upon which a command was run. It is generally best practice

to design images that generate containers as specific services – in this case, one that is

Chapter 9 Docker

https://hub.docker.com/
https://hub.docker.com/

193

solely responsible for greeting the world! Such services can then be combined to build a

system. This is a radically different approach than the one you would take with Vagrant,

in which a single VM will tend to encapsulate a complete system.

I can examine local images with docker image ls. This can often produce a torrent

of output, but, in my newly installed environment, the list is minimal:

REPOSITORY TAG IMAGE ID CREATED SIZE
hello-world latest 74cc54e27dc4 2 months ago 10.1kB

�Establishing Some Docker Terms
Before we go on, I should pause to itemize some of the terms and concepts I have rushed

us through.

Unless they are already locally cached, Docker acquires its images from a registry

(Docker Hub by default). More specifically, an image will be retrieved from a repository

which is a namespace within a registry. When we invoke docker run or, as you’ll see,

docker pull, we acquire an image. An image is a bundle of data that defines a template

by which a container is generated. A container is an instance of an image. This, then, is

broadly analogous to the relationship between classes and objects.

Although it’s technically possible to create a single container which runs multiple

processes, it’s considered best practice to configure each of your containers to support a

single service and then to build systems composed of multiple containers as necessary.

As you’ll see, Docker is designed around this strategy.

Table 9-1 recaps these terms.

Table 9-1.  Some Basic Docker Concepts

Term Description

Registry A server side application (like Docker Hub or GitHub Packages) for storing images.

Repository A namespaced collection of images within a registry (the Docker Hub default

repository is library).

Image According to the Docker documentation, an image is a “standardized package that

includes all of the files, binaries, libraries, and configurations to run a container.”

Container An instance of an image, usually designed to run a single service. Multiple containers

are often configured to work with one another in order to create an application.

Chapter 9 Docker

194

Note R emote image hosting is beyond the remit of this chapter. However, you
can read more about working with Docker Hub at https://docs.docker.com/
docker-hub/ and more about running your own registry at https://www.
docker.com/blog/how-to-use-your-own-registry-2/. Many hosting
services such as GitLab and GitHub provide their own registries.

�Acquiring an Image with docker pull
As we’ve seen, docker run first acquires and then executes a container. Now, let’s break

this down. We can acquire an image without actually creating a container.

Like most major projects, PHP has an official Docker image (at https://hub.
docker.com/_/php). We can cache it locally with docker pull.

$ docker pull php:8.3-cli

Here is my output:

8.3-cli: Pulling from library/php
6e909acdb790: Pull complete
31ee84c3cc06: Pull complete
13905c22d489: Pull complete
c1eb1d4cecd3: Pull complete
5dbf261cfd05: Pull complete
7a438ed196d8: Pull complete
291095bacc82: Pull complete
a0afc926b258: Pull complete
82ad65460e66: Pull complete
Digest: sha256:e39867114478af8d8950b679738068deeffa1fa762810aa2
1f6999990411563e
Status: Downloaded newer image for php:8.3-cli
docker.io/library/php:8.3-cli

Before we proceed, take a look at that last line. This is the full image name. It

incorporates components representing the registry, repository, name, and tag.

Chapter 9 Docker

https://docs.docker.com/docker-hub/
https://docs.docker.com/docker-hub/
https://www.docker.com/blog/how-to-use-your-own-registry-2/
https://www.docker.com/blog/how-to-use-your-own-registry-2/
https://hub.docker.com/_/php
https://hub.docker.com/_/php

195

Now that I have acquired my image, I can view it locally once again with the docker
image ls command.

$ docker image ls php:8.3-cli
REPOSITORY TAG IMAGE ID CREATED SIZE
php 8.3-cli cacad2f4349d 3 weeks ago 535MB

Let’s push on and do something more interesting with our php image.

�Creating and Invoking a Container with docker run
We have already encountered docker run, but let’s look at the command in a little

more detail.

The docker run command requires an image name and accepts any additional

arguments that the container needs in order to run its primary command. It implicitly

pulls an image. That is, it downloads the image and stores it locally. It then uses the

image to create and execute a container. A container is configured to invoke a command

and exit on completion.

As you might expect, the php container runs PHP. In fact, by default, it runs php -a.

However, it is configured in quite a specific way with regard to the arguments you pass

it. If the first argument after the image is a flag (like -v or --version), it will implicitly

pass this, and any subsequent arguments, along to the php executable. Otherwise, it will

override default behavior and run whatever you pass to it as a standalone command.

Note  If you need to learn more about a particular image, the command docker
image inspect <image-reference> is invaluable. It’s like print_r()
for Docker images! Its cousins docker container inspect and docker
network inspect are similarly useful.

So, if I run a php:8.3-cli container with a command, like this:

$ docker run php:8.3-cli whoami

I will get the output “root.” However, if I pass in a flag as the first argument, the

behavior changes:

$ docker run php:8.3-cli -r 'print "hello\n";'

Chapter 9 Docker

196

Thanks to the way that this container is configured, the arguments -r and ‘print

“hello”;’ are passed to PHP. Unsurprisingly, therefore, the output for this is “hello.”

It’s important to understand that the way that a container will interpret arguments

provided to docker run may vary somewhat according to implementation. We’ll see how

when we cover building our own images below.

Note  You can read more about docker run and its many many flags at
https://docs.docker.com/reference/cli/docker/container/run/.

�Listing Containers
We have already examined a couple of images. Now, let’s look at the container we’ve

created. The command for this is docker container ls (though there are various aliases

for this command, notably docker ps). If I were to run docker container ls with no

other arguments, I would not see my container. That’s because, by default, the command

only shows running containers.

A quick look at the documentation at https://docs.docker.com/reference/
cli/docker/container/ls/, though, tells me that the -a flag will show all containers,

running or not. As you might expect, invoking the command with that flag can generate a

lot of output so you might want to pipe it into grep or, as here, use the --filter flag.

$ docker container ls -a --filter=ancestor=php:8.3-cli

This tells Docker to show all containers, running or not, that are derived from the

php:8.3-cli image.

Here is the output (formatted for readability).

CONTAINER ID IMAGE STATUS NAMES
db3bbe0e040f php:8.3-cli Exited (0) 5 seconds ago focused_solomon

As you can see, Docker allocates both an ID and a handy name – “focused_

solomon” – to the container. You can allocate your own name with the --name option to

docker run if you wish.

Chapter 9 Docker

https://docs.docker.com/reference/cli/docker/container/run/
https://docs.docker.com/reference/cli/docker/container/ls/
https://docs.docker.com/reference/cli/docker/container/ls/

197

Note T he output from docker container ls is pretty extensive. So
throughout this chapter, I am formatting it to reduce the fields shown.
In order to do this, I use the --format flag like this: $ docker ps
 --filter=ancestor=php:8.3-cli \ --format "table {{.ID}}\t{{.
Image}}\t{{.Status}}\t{{.Names}}".

�Accessing a Container with docker run
We have already seen that we can usually pass our own command to a container when

calling docker run. With the correct flags, we can use this fact to interact with a tool on

the container – including a shell.

Here, I use the bash shell:

$ docker run -it php:8.3-cli /bin/bash
root@1ecf6ab5dbc4:/# ls
bin boot dev etc home lib media mnt opt proc root run sbin
srv sys tmp usr var
root@1ecf6ab5dbc4:/# exit
exit

I invoked docker run with two options. The -i (or --interactive) option sends

any input you generate to the command you provide. In this case, that’s the /bin/bash

shell application rather than PHP. The -t (or --tty) option attaches a pseudo-TTY –

which means that you experience a terminal-like experience. So, I’m able to access the

container and work with the command line.

�Running a Container in the Background
By default, a container will run in the foreground, hogging your terminal session until

you stop it (e.g., with a call to docker container stop <name-or-id> run from another

terminal). This can be a pain when you’re kicking off a long running process. If you

call docker run with the -d (or --detach) flag, however, the container will run in the

background, and its ID will be output.

Chapter 9 Docker

198

Let’s try it out:

$ docker run -d php:8.3-cli \
 �-r 'for ($x=0; ; $x++) { file_put_contents("/tmp/count", "{$x}\n");

sleep(1); }'

So, this tiny script writes a number to a file (/tmp/count) once a second until killed.

However, the container runs in detached mode, so that I can work with it in other ways.

Because docker run in detached mode outputs the container ID, I have that to hand.

I can also use docker container ls (or its synonym, docker ps) and see that my

container is running.

$ docker ps

Here is the (reformatted) output:

CONTAINER ID IMAGE STATUS NAMES
5ce2ccca805c php:8.3-cli Up 10 seconds sleepy_mestorf

Now that I have the container running a long-term process (in a real project, we’d

likely be running a web server or a database), I might want to access the container to

take a poke about while it’s in operation. Since docker run creates a new container, I’m

going to need another way of accessing sleepy_mestorf.

�Accessing a Container with docker exec
The docker exec (alias docker container exec) command accepts the name or id

of a running container and a command argument. It will attempt to run the provided

command in the container. Like docker run, it supports -i and -t flags for interactive

running and pseudo-TTY operation. That means we can invoke a shell and take a look at

the container at work.

$ docker exec -it sleepy_mestorf /bin/bash

Here’s my session:

root@5ce2ccca805c:/# cat /tmp/count
94
root@5ce2ccca805c:/#

Chapter 9 Docker

199

I invoked docker exec using the automatically allocated container name, sleepy_
mestorf (your container would be given a different random name). I could have used the

less friendly container ID –5ce2ccca805c in this case. Once in, I peek at the /tmp/count

file to confirm that my little script has been at work.

You can read more about the docker exec command at https://docs.docker.com/
reference/cli/docker/container/exec/.

Don’t forget, incidentally, that, once I’m back on my host machine’s command line, I

can put an end to sleepy_mestorf with docker container stop:

$ docker container stop sleepy_mestorf

This will end the operation of the container and output its identifier.

sleepy_mestorf

�Building Your Own Image
You can go a long way working with off-the-peg images acquired from Docker Hub. Still,

it won’t be long before you need some customization. You may wish to amend the way

that a container is run or to ensure that particular libraries or configurations are bundled

into your image.

Let’s begin with the first case. I would like to create an image that runs my counter

script by default rather than php -a.

Here’s a script named counter.php:

print "Arguments: ";
print_r($argv);
print "Beginning the count...\n";
/*
for ($x=0; ; $x++) {
 file_put_contents("/tmp/count", "{$x}\n");
 sleep(1);
}
*/

Chapter 9 Docker

https://docs.docker.com/reference/cli/docker/container/exec/
https://docs.docker.com/reference/cli/docker/container/exec/

200

As you can see, I’ve commented out the counting altogether here and just added

some messaging. For now, I don’t actually want the container to stick around, just to

make some noise and quietly exit. Note that my messaging includes a rundown of any

provided arguments.

Now, in order to build my customized image, I need to create a file named

Dockerfile:

FROM php:8.3-cli
WORKDIR /var/myapp
COPY counter.php counter.php
CMD ["php", "counter.php"]

The Dockerfile is a set of instructions for building an image. You’ll always start with

a FROM instruction, which specifies a base image. If you don’t need any specific tool, you

might choose a lower level image like ubuntu. Unsurprisingly, I’m using php:8.3-cli

once again for this example.

The WORKDIR instruction sets the working directory for subsequent instructions and

for the primary process that the container will end up running. If the path does not exist,

it will be created.

COPY accepts two arguments. The first of these should point to a local (host machine)

file or directory. The second should specify a destination within the container.

Finally, CMD should define the default command that should be invoked by docker
run. Because it’s more suited for collaboration with another instruction, ENTRYPOINT (I’ll

return to that), I have used the so-called “exec form” here in which the command and

any arguments are quoted and placed inside a set of square brackets. I could equally

have used the “shell form,” in which the command is unquoted. That would have looked

like this: CMD php counter.php.

The documentation for Dockerfile at https://docs.docker.com/reference/
dockerfile covers all available instructions.

Now that I have my components ready, it’s time to build the image:

$ docker build -t mycounter .

This command will create an image based on either a directory path or a URL. For

the purposes of this chapter, I’ll focus on the former use case, so I pass in a reference to

my current working directory which contains the Dockerfile.

Chapter 9 Docker

https://docs.docker.com/reference/dockerfile
https://docs.docker.com/reference/dockerfile

201

The -t or --tag flag allows you to name and tag your image in the format name:tag.

If, as I have, you omit the tag, then Docker will default to latest.

If all goes well, I should have an image named mycounter. Let’s check.

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
mycounter latest 6a4b3ef7f909 10 seconds ago 535MB
...

And there it is! Let’s run the image and see what happens.

$ docker run mycounter

Here’s my output:

Arguments: Array
(
 [0] => counter.php
)
Beginning the count...

�In the Weeds with CMD and ENTRYPOINT
Any image you create will inherit characteristics from the base image you specify. The

Dockerfile associated with php:8.3-cli defines its own CMD as ["php", "-a"]. I have

overridden this, as you have seen, so that, by default, php counter.php is run instead.

What would happen, though, if I were to provide an argument? Let’s try it.

$ docker run mycounter pwd

As you might expect, intuitively, this will cause the pwd command to be run rather

than my own php counter.php.

/var/myapp

If, on the other hand, I provide a flag here, I get a different output. Here’s my

invocation:

$ docker run mycounter -v

Chapter 9 Docker

202

Because of the magic built in to the php image, this will invoke php with the -v flag:

PHP 8.3.8 (cli) (built: Jun 13 2024 05:33:35) (NTS)
Copyright (c) The PHP Group
Zend Engine v4.3.8, Copyright (c) Zend Technologies

So, what’s going on here? As we have seen, the CMD instruction is easily overridden

by providing an argument to docker run. Less easy to casually set aside is another

instruction: ENTRYPOINT. This defines a command that is always run. Anything specified

in CMD (or overridden by providing arguments to docker run) is passed along to the

command specified in ENTRYPOINT (use the exec form if you want to configure this

behavior into your Dockerfile). Since ENTRYPOINT often just invokes whatever it

has been given (typically running /bin/sh -c), this does not usually change much –

whatever you define as an argument to docker run will get passed to the shell and

executed.

So, this is where the php image performs its cleverness. Its ENTRYPOINT invokes a

script that detects an initial flag argument (i.e., an argument beginning with -) and, if

a match is found, passes everything along to PHP. That trigger was -v in my example.

Otherwise, it attempts to execute whatever argument has been passed (pwd in my

example).

Let’s rewrite our Dockerfile to override ENTRYPOINT.

FROM php:8.3-cli
WORKDIR /var/myapp
COPY counter.php counter.php
ENTRYPOINT ["php", "counter.php"]
CMD []

I’ll build a new version of the mycounter image using a tag:

$ docker image build -t mycounter:entry .

I’ll take a look at my images just to confirm my new addition:

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
mycounter entry c5de90beef5d 10 seconds ago 535MB
mycounter latest 6a4b3ef7f909 5 minutes ago 535MB
...

Chapter 9 Docker

203

Having confirmed that mycounter:entry is there as expected, I can begin to

work with it. I have emptied CMD so, by default, counter.php will be invoked without

arguments. However, if I provide additional arguments on the command line, you can

see, thanks to the way that I’ve build counter.php, that everything I add is passed along

to counter.php.

$ docker run mycounter:entry ls will not run
Arguments: Array
(
 [0] => counter.php
 [1] => ls
 [2] => will
 [3] => not
 [4] => run
)
Beginning the count...

My docker run arguments ls will not run override the empty CMD instruction

and end up passed along to the script I defined in the ENTRYPOINT instruction. The script

dutifully snitches and gives us some insight into the process.

The relationship between ENTRYPOINT and CMD can be confusing. It’s made more so

by way that exec and shell modes affect the operations of these instructions. In Table 9-2,

I break down the relationships between these instructions and modes.

Table 9-2.  How CMD and ENTRYPOINT Interact in Shell Mode and Exec Mode

Instruction Mode Example Behavior

ENTRYPOINT shell ls -al Implicitly passes argument to /bin/sh -c. Will not assign CMD

values as additional arguments.

ENTRYPOINT exec ["ls",
"-al"]

Directly invokes the given command. Will assign CMD values (or

command-line overrides) as additional arguments.

CMD shell ls -al Implicitly generates a shell call like /bin/sh -c ls -al.

Unless overridden, passes this full statement to ENTRYPOINT.

CMD exec ["ls",
"-al"]

Unless overridden, passes all arguments to ENTRYPOINT

without implicit additions.

Chapter 9 Docker

204

�Mounting a Local Directory
You have seen that you can use the COPY instruction to build an image containing local

scripts and configuration. This is useful for setting up a relatively static container. It

is less useful, however, for a fast changing file, such as a script under development.

To model that situation, here is a very simple script that I have saved to a file named

mytest.php.

print "OUTSIDE IN!\n";

If I used COPY to build myself an image, I could run this easily enough. But every time

I make a change, I’d have to rebuild my image. Luckily, I have recourse to the -v

(or --volume) option. This sets up a bind mount which causes a given directory or file

to be mounted within a container. The -v option requires a single argument which

comprises a local path and a destination path separated by a colon (:). Let’s try it out.

$ docker run --rm -v $PWD:/var/myapp -w /var/myapp php:8.3-cli php
mytest.php

Let’s begin with -v. I map my current working directory on the host environment to a

directory (/var/myapp) within the container I am initializing. This directory is created if

it does not already exist.

I have added a couple more options here which can come in handy. The -w

(or --workdir) option allows you specify your working directory within the container.

This is important if the image is not configured by default to use the same directory you

have specified with -v. The --rm option will cause the container to be removed after use.

If you don’t specify this, the container you create will persist in a stopped state, cluttering

up your docker ps -a listings.

After all that, you’ll not be surprised to learn that running this example results in

this output:

OUTSIDE IN!

While that is not terribly exciting, consider that you can edit mytest.php or reference

an entirely different PHP file as you wish without having to build a new image.

So, we now have very nearly enough information to build a tiny web development

environment with a single command.

Chapter 9 Docker

205

�A Single Command Development Environment
Although we could use NGINX or Apache for this, I’m going to keep things simple by

using PHP’s built-in web server.

docker run -d \
 -p 3020:8080 \
 -v $PWD:/var/myapp \
 -w /var/myapp \
 php:8.3 \
 php -S 0.0.0.0:8080 -t .

Let’s run through the aspects of this I have already covered. I use the -d option to run

the container in a detached state. I configure a bind mount with -v so that my current

directory is mounted at /var/myapp within the container. With -w, I set the working

directory to /var/myapp as well. This is important because, when the primary command

(php -S 0.0.0.0:8080 -t .), is invoked, I need it to operate upon my directory.

The -p (or --publish) option describes the mapping of an external port to an

internal counterpart. I configured the built-in web server to listen for requests on port

8080 within the container. Thanks to the port mapping, the server can be reached via

port 3020 from my host environment. This kind of mapping can come in useful when

running multiple containers, since many might otherwise compete for standard ports on

the host machine.

Figure 9-1 shows the mytest.php script in operation.

Chapter 9 Docker

206

Figure 9-1.  PHP’s built-in web server running in a single container

�Building a System Out of Multiple Containers
As we’ve discussed, a Docker container should run one principle command.

Incidentally, this is not the same as running a single process. A web server, for example,

will likely spawn multiple subprocesses. How, then, might I create a system that includes

a database? To say nothing of all the other components a modern application might

require: API, Elasticsearch, and Redis. It soon mounts up.

Let’s model this with a second container that we’ll use to run a MariaDB instance. I’ll

begin with some SQL to create a table and tuck it away in a file at mariadbsetup/1.sql.

CREATE TABLE IF NOT EXISTS `quiz` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `quizname` VARCHAR(256) NOT NULL,
 PRIMARY KEY (`id`)
);
INSERT INTO quiz (quizname) values("my lovely quiz");

Chapter 9 Docker

207

So, I will create a single table named quiz and insert a row.

As you might expect, there’s an official MariaDB Docker image available. You can

read about it at https://hub.docker.com/_/mariadb. Like the PHP image, mariadb

provides some very useful magic. Let’s give it a spin.

docker run -d \
 -p 4172:3306 \
 --env MARIADB_ROOT_PASSWORD=megaquiz \
 --env MARIADB_USER=testuser \
 --env MARIADB_PASSWORD=testuser \
 --env MARIADB_DATABASE=megaquiz \
 -v $PWD:/var/myapp \
 -v $PWD/mariadbsetup:/docker-entrypoint-initdb.d \
 -w $PWD \
 mariadb

Notice that I am using yet another option to docker run. --env (or -e) sets an

environment variable within the container. The MariaDB image is configured to

recognize and act on various such variables. I list a few in Table 9-3, and you can see the

full set at https://mariadb.com/kb/en/mariadb-server-docker-official-image-
environment-variables/.

Table 9-3.  Some Environment Variables Used by the MariaDB Docker Image

Environment Variable Description

MARIADB_ROOT_PASSWORD Set the root password

MARIADB_ALLOW_EMPTY_ROOT_
PASSWORD

If set to a truthy value will run without a root password

(inherently insecure)

MARIADB_DATABASE Creates the specified database

MARIADB_USER The non-privileged user name

MARIADB_PASSWORD The non-privileged user’s password

For this command, in addition to my current directory, I mount the mariadbsetup

directory and map it to /docker-entrypoint-initdb.d. Any SQL files placed in this

directory (in our case a single file named 1.sql) will be invoked in alphabetical order.

Chapter 9 Docker

https://hub.docker.com/_/mariadb
https://mariadb.com/kb/en/mariadb-server-docker-official-image-environment-variables/
https://mariadb.com/kb/en/mariadb-server-docker-official-image-environment-variables/

208

Once that container is running, I can confirm that the database is available.

$ echo "select * from quiz" | \
 mysql -u testuser -p -h 127.0.0.1 -P 4172 megaquiz

I pipe a simple SQL statement to MariaDB, specifying port 4172. Here’s my output:

Enter password:
id quizname
1 my lovely quiz

I am prompted for a password. Remember that I set that using the MARIADB_PASSWORD

environment variable when I ran the mariadb image. After that, I see the result of my

SELECT statement.

Well, that’s a great start. I have a web-ready PHP container and a database container.

But how can I make them talk to one another? Before I answer that question, perhaps it’s

time to tidy up.

�Removing Images and Containers
It’s very easy to let old images and containers accumulate over time (especially if

you’re using docker run without the --rm option). This can result in overlong listings,

unnecessary resource usage, and port collisions.

I have two containers running that I’ll need to stop and remove so that I can generate

replacements. Here’s a modified listing:

CONTAINER ID IMAGE PORTS NAMES
b58783418150 php:8.3 0.0.0.0:3020->8080/tcp wonderful_mayer
51f2a35a4c5e mariadb 0.0.0.0:4172->3306/tcp eloquent_meninsky

The command to stop a running container is docker container stop. This

command will accept either a container name or an ID (or multiple names/IDs). Once

the container is stopped, it can be removed with docker container rm. Once again, this

requires a name or an ID (and accepts multiple container references).

I’ll go ahead and perform those housekeeping actions:

$ docker container stop 51f2a35a4c5e
$ docker container rm 51f2a35a4c5e

Chapter 9 Docker

209

$ docker container stop b58783418150
$ docker container rm b58783418150

I could have saved myself some time by simply invoking docker container rm

with the -f (or --force) option which will implicitly stop the container itself before

removing it.

$ docker container rm -f 51f2a35a4c5e
$ docker container rm -f b58783418150

Remember that I also built two variations of an image named mycounter:

mycounter:latest and mycounter:entry. I can filter my overlong image list to

find them:

$ docker image ls --filter "reference=mycounter"

Here’s my output.

REPOSITORY TAG IMAGE ID CREATED SIZE
mycounter entry a248e671e70d 2 days ago 530MB
mycounter latest 48f668f05d05 2 days ago 530MB

I can delete each of these with docker image rm. At least, I can try.

$ docker image rm a248e671e70d

When I attempt to delete the first of the listed images, I hit a snag. Docker is still

managing a stopped container which was generated from this image.

Error response from daemon: conflict: unable to delete a248e671e70d
(must be forced) - image is being used by stopped container 22d92508d6e5

I could examine the container, but I know that it is disposable so I can rerun the

docker image rm with the -f (or --force) option:

$ docker image rm -f a248e671e70d
$ docker rmi -f 48f668f05d05

Although using -f here forces the removal of the images, it doesn’t actually remove

the containers too. I need to do that myself.

Chapter 9 Docker

210

To that end, how about a general cleanup? The docker image prune command will

remove any images which are not tagged and not used by any container. Or, if you add

the -a option, it will remove all images which are not used by a container.

The docker container prune command will remove all stopped containers.

Now that I’ve tidied up my docker environment, I can return to getting my containers

to talk to one another.

�Creating and Using a Named Bridge Network
In order to get my containers to cooperate, I need to create a named network. I can do

this with a new command: docker network create.

$ docker network create quiznet

In order to use the newly created quiznet network, I can reference it from docker
run using the --network option. I also name the container with the --name option. This

is important – we’ll use the name later.

docker run -d \
 --name quizdb \
 --network quiznet \
 -p 4172:3306 \
 --env MARIADB_ROOT_PASSWORD=megaquiz \
 --env MARIADB_USER=testuser \
 --env MARIADB_PASSWORD=testuser \
 --env MARIADB_DATABASE=megaquiz \
 -v $PWD:/var/myapp \
 -v $PWD/mariadbsetup:/docker-entrypoint-initdb.d \
 -w $PWD \
 mariadb

It’s time to regenerate the PHP container so that it can talk to the database. However,

to do that, I’ll need call docker run on more than the vanilla php image. That’s because

the PHP executable does not come with the pdo_mysql extension by default. Luckily, the

image does provide a handy script for installing extensions: docker-php-ext-install. I

can run this from the Dockerfile during build using a new instruction: RUN.

Chapter 9 Docker

211

Here is my Dockerfile:

FROM php:8.3
WORKDIR /var/myapp
RUN docker-php-ext-install pdo pdo_mysql
CMD ["php", "-S", "0.0.0.0:8080", "-t", "."]

Now, let’s build the image:

$ docker build -t quizimg .

I have tagged the image quizimg so that I can reference it when I call docker run:

docker run -d \
 --rm \
 --name quizapp \
 --network quiznet \
 -p 3020:8080 \
 -v $PWD:/var/myapp \
 -w /var/myapp \
 quizimg

So, the quizapp container is also configured to work with the quiznet network. Other

than that, and the fact that the image contains a database-ready PHP executable, it’s

pretty much identical to the older iteration.

So what do we have now? Here are the two running containers which share the

quiznet network:

CONTAINER ID IMAGE PORTS NAMES
5155420d7748 quizimg 0.0.0.0:3020->8080/tcp quizapp
71939c0b6338 mariadb 0.0.0.0:4172->3306/tcp quizdb

Let’s see how they work together. I’ll create a script named index.php which will

attempt to make a database connection. I’ll need to save it in my bind mount directory

so that it ends up in the /var/myapp directory of the quizimg container and can be seen

by the server. Here’s the script:

$host = 'quizdb';
$db = 'megaquiz';
$user = 'testuser';

Chapter 9 Docker

212

$pass = 'testuser';
$dsn = "mysql:host=$host;dbname=$db;charset=utf8mb4";
$pdo = new PDO($dsn, $user, $pass);
$stmt = $pdo->prepare("SELECT * FROM quiz");
$stmt->execute([]);

while($row = $stmt->fetch()) {
 print $row['quizname'] . "
";
}

There is not much to this script. I construct a DSN (data source name) which

references the megaquiz database along with the username and password I

configured when I created the quizdb container. The magic, as far as inter-container

communication is concerned, lies with the $host variable which contains the name of

a container, quizdb, on the shared network. Having connected to the database, I make

a simple SELECT query and output the results. Note that I did not have to specify a port

here. The port mapping I defined maps an external port to an internal one. Within my

containers, the internal ports are used.

In Figure 9-2, I visit http://localhost:3020/ and see the results of a successful

network connection.

Figure 9-2.  A database query across containers

Chapter 9 Docker

213

Although this is impressive, it’s also a massive pain to set up. I must build an image,

create a network, and use docker run twice with quite complex arguments just to get my

simple web app up and running. Of course I could script the process, but even that’s a

chore. If only there was a tool for orchestrating multiple containers. And, of course, there

is! Before I move on to docker compose, I’ll clean up.

$ docker container rm -f quizapp
$ docker container rm -f quizdb
$ docker network rm quiznet

�Docker Compose
We’ve covered enough detail to get a development environment working with

Docker using commands such as docker build and docker run in conjunction with

Dockerfile configuration as needed. However, it has to be admitted that the process

became progressively more unwieldy as I piled on more and more steps and options.

Docker Compose is a tool for bringing all of this work together into a single YAML

configuration file. In one place, you can define all the services that make up your stack

as well as any necessary networks and volumes. What’s more, it provides straightforward

tools for starting, stopping, and rebuilding your environment, as well as for essential

tasks like viewing logs and checking your system’s status.

Don’t worry, though. The concepts you’ve already encountered won’t be

wasted here!

Note  YAML (https://yaml.org/) is a compact but human-friendly data
serialization language. Like JSON (to which it is related), it allows an author to
represent complex data structures in documents which are both easy for humans
to understand and for computers to parse.

Chapter 9 Docker

https://yaml.org/

214

�Resetting the Project
I’ll begin again here with a single container. All I’ll need for that is a single Compose file

and a basic script to prove that my set up works. My initial directory structure will look

like this:

compose.yaml
web/
 index.php

The script index.php will just output a cheery message for now.

print "docker compose!";

�The Compose File
As I have discussed, Docker Compose is managed using a YAML configuration file. This

should be named compose.yaml (the preferred name according to documentation) or

docker-compose.yaml (the .yml extension is also acceptable).

Here’s my Compose file:

services:
 quizapp:
 image: php:8.3
 command: php -S 0.0.0.0:8080 -c conf/php.ini -t web
 working_dir: /var/myapp
 ports:
 - "3020:8080"
 volumes:
 - .:/var/myapp

At its core, a Compose file defines a set of services. Here, I begin with a quizapp service.

The image definition defines the image that will form the basis of a running container. The

command definition establishes the primary process of the service. working_dir is similar to

the -w option in the docker run command or to the WORKDIR instruction in Dockerfile –

it sets (and creates if necessary) the working directory within the container. The ports

definition establishes port mapping and volumes mounts local files or directories within

the container. Local paths run relative to the location of the Compose file.

Chapter 9 Docker

215

Let’s get the system running:

$ docker compose up

By default, the output to docker compose up is often very verbose. It will show you

the process by which all images are acquired and the containers are configured. Then,

it will track the logs for each of the primary commands. For this minimal example, the

output (formatted a little here) is pretty manageable.

[+] Running 1/1
- Container batch04-quizapp-1 Created 0.0s
Attaching to quizapp-1
quizapp-1 | [Mon Apr 7 16:44:42 2025] PHP 8.3.19
Development Server (http://0.0.0.0:8080) started

If I had run this with a -d (or --detach) option, the containers would start in the

background. As it is, I can only watch in this particular terminal window until I stop

the process by hitting Ctl-C. In a separate terminal, though, I can confirm the running

container using docker ps (output edited).

CONTAINER ID IMAGE STATUS NAMES
c50fb3aa56eb php:8.3 Up 6 minutes batch04-quizapp-1

The name of the container is constructed in part from the service name and the

name of the Compose file’s parent directory. I should now be able to confirm that

the web server in the quizapp service is running by pointing my browser at http://
localhost:3020 as shown in Figure 9-3.

Chapter 9 Docker

216

Figure 9-3.  The quizapp service in operation

�Combining Docker Compose and Dockerfile
If I am to recreate my previous example, I will need more than the php:8.3 base image.

I need to add the pdo_mysql extension, which means building an image. For this,

I’m going to use exactly the same Dockerfile as before, but I’ll tuck it away under a

subdirectory. So, my directory structure now looks like this:

compose.yaml
web/
 index.php
dockerdir/
 quizapp/
 Dockerfile

Now, instead of specifying the php:8.3 image, we need to build our own based

upon it.

services:
 quizapp:
 build: ./dockerdir/quizapp

Chapter 9 Docker

217

 command: php -S 0.0.0.0:8080 -c conf/php.ini -t web
 working_dir: /var/myapp
 ports:
 - "3020:8080"
 volumes:
 - .:/var/myapp

So, the only difference here is that I have swapped image for a build definition. This

specifies the path to the directory that contains the Dockerfile. Since I’m still running

my previous iteration of this configuration, I should first stop it with Ctl-C. For good

measure, I could then run docker compose rm to remove the stopped container.

When I run docker compose up after my edit, Docker will first build an image for the

server and then create a new container.

�Adding a Second Service
Let’s add a MariaDB container to the mix. Although I won’t need to build my own image

for this, I do want to set up the database as before. I’ll need to add my SQL file in order to

create the quiz table and mount the directory. Here’s my new directory structure:

compose.yaml
web/
 index.php
dockerdir/
 quizapp/
 Dockerfile
 quizdb/
 mariadbsetup/
 01.sql

We have already seen the contents of that 01.sql file. Remember that it contains SQL

to create a quiz table and insert a row. Now, I’ll add the quizdb service to compose.yaml.

services:

 # ...

Chapter 9 Docker

218

 quizdb:
 image: mariadb
 restart: always
 environment:
 MARIADB_ROOT_PASSWORD: quizroot
 MARIADB_DATABASE: megaquiz
 MARIADB_USER: testuser
 MARIADB_PASSWORD: testuser
 volumes:
 - ./dockerdir/quizdb/mariadbsetup:/docker-entrypoint-initdb.d
 ports:
 - "4172:3306"

I have included a restart definition here. This defines a restart policy (always) that

causes the container to start again if, for any reason other than a manual intervention,

it stops operating. Also new here is the environment definition, which I use to set

environment variables that the mariadb image deploys when configuring MariaDB in the

container.

I might choose, this time, to run Docker Compose in the background with docker
compose up -d. If you go that route, you can run docker compose stop from the same

directory to stop all services but keep the containers or docker compose down to stop

and remove the running containers.

While Docker Compose is running in the background, you can tail log output at any

time with docker compose logs -f. That -f flag means “follow,” and you can omit it if

you just want to grab a snapshot of the logs rather than tail them. You can focus log output

by specifying a service. So, if I only wanted to track log output for the quizdb service (the

name I defined in the compose.yaml file), I would run docker compose logs -f quizdb.

I can confirm again that MariaDB is accessible via port 4172 from the host machine.

I can also inspect my running containers with docker compose ps (similar to docker
container ls but pre-filtered for the current Docker Compose configuration).

Although, if I needed to do any advanced network configuration, I could create a

network definition and set custom drivers, specify pre-existing networks, and so on,

none of that is necessary to get my containers linked up. All running services are already

visible to one another via their service names. This means that quizapp can access the

database via the host quizdb and vice versa. So, now I can update index.php so that it

makes a network connection to quizdb and runs a query.

Chapter 9 Docker

219

As a reminder, here is that script:

$host = 'quizdb';
$db = 'megaquiz';
$user = 'testuser';
$pass = 'testuser';
$dsn = "mysql:host=$host;dbname=$db;charset=utf8mb4";
$pdo = new PDO($dsn, $user, $pass);
$stmt = $pdo->prepare("SELECT * FROM quiz");
$stmt->execute([]);

while($row = $stmt->fetch()) {
 print $row['quizname'] . "
";
}

I have come full circle now. I can access my script from a browser at http://
localhost:3020 and see it in operation as in Figure 9-2. Although functionally identical

to the docker run version, however, my system is much easier to manage now. I do not

have to worry about individually starting and stopping containers or about creating a

network and joining my containers to it.

�What About Composer?
Composer is an integral part of most PHP projects, so it’s worth considering how one

should go about incorporating it. Of course, I’ll need a composer.json file. This is my

final directory layout for the Docker Compose example:

compose.yaml
composer.json
web/
 index.php
dockerdir/
 quizapp/
 Dockerfile
 quizdb/
 mariadbsetup/
 01.sql

Chapter 9 Docker

220

I have just configured composer.json to install a sample package or two. How

should I go about running composer install or composer update? One approach for

development is to simply run these commands from the host machine. After all, the

directory containing the vendor/ is mounted. This is not a good solution, however,

since your host machine’s configuration may not match that of your PHP container.

Indeed, some developers might not even have PHP or Composer installed on their host

machines.

Another approach might be to install composer into your php container by adding

something like this to your Dockerfile.

RUN curl -sS https://getcomposer.org/installer | \
 php -- --install-dir=/usr/local/bin \
 --filename=composer \
 && composer install

Or, similarly, by applying one of the various other mechanisms described for

programmatically installing Composer at https://getcomposer.org/doc/faqs/how-to-
install-composer-programmatically.md.

While this approach can be made to work, there is a much neater solution that

epitomizes Docker’s architectural philosophy.

We can add a composer service to the Compose file.

services:

 # ...

 composer:
 image: composer
 working_dir: /var/myapp
 command: ["composer", "install"]
 volumes:
 - .:/var/myapp

Chapter 9 Docker

https://getcomposer.org/doc/faqs/how-to-install-composer-programmatically.md
https://getcomposer.org/doc/faqs/how-to-install-composer-programmatically.md

221

This uses the official Composer image (https://hub.docker.com/_/composer).

I mount the base directory, as I do in the quizapp service. Then, I define composer
install as the container’s primary command. This will run when I invoke docker
compose up -d. The container will stop once the command has finished running, and

that’s fine for my purposes.

While this use of a Composer service is very clean, I have to admit that, in the

wild, I have more often seen it invoked in a Dockerfile or form setup script than using

this method.

�Some Docker Compose Commands
I’ll conclude this section with Table 9-4 – an overview of some useful Docker Compose

commands. You have seen most, but not all, of them already. Docker Compose

commands operate on services defined by a compose.yaml (or equivalent) file in the

current directory or as referenced by the -f option.

Table 9-4.  Some Docker Compose Commands

Command Description

docker compose up Start all services. Build images and create containers as necessary. Use

the -d option to run in detached mode.

docker compose stop Stop all containers but keep them.

docker compose down Stop and remove all containers.

docker compose rm Remove all stopped containers.

docker compose logs Show all logs. You can specify a service name to narrow your view and

use the -f option (or --follow) to follow the log output.

docker compose ps View container statuses.

docker compose restart Restart all services (or those specified as arguments).

Chapter 9 Docker

https://hub.docker.com/_/composer

222

�Summary
Docker is a hugely powerful technology, and a single chapter like this can only provide

an introduction. However, you should find enough information here to get you up and

running with Docker for day-to-day development. Once you get started, I think you’ll

find containers addictive.

In this chapter, I covered Docker core concepts. I explored techniques for acquiring

and building images and generating containers. I joined containers up to one another

via a bridge network and built a small working environment with a web server and a

database server. Finally, I introduced Docker Compose, a powerful tool for managing

your containers.

Chapter 9 Docker

223
© Matt Zandstra 2025
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_10

CHAPTER 10

Automating Build
and Deployment
with Ansible
If version control is one side of the coin, then automated build is the other. Version

control allows multiple developers to work collaboratively on a single project. But that

code remains inert until it is properly deployed and combined with configuration in

an environment with all dependencies in place. Such dependencies will include the

wider software stack – the Linux distribution, the configured web server, a database and

schema, the presence of PHP installed with the correct extensions. Additionally, a system

will also require numerous libraries, probably installed and updated via Composer, as

well as front-end libraries which may be included using tools like NPM. As a project

grows in power and complexity, so the number of steps required to install and update an

instance will increase.

This requirement holds for development environments, but it is also important

to be able to deploy staging and production instances of a system with a minimum of

impedance.

In this chapter, I introduce you to Ansible, which can handle all the jobs mentioned

so far and many more besides. This chapter will cover the following:

•	 Getting and installing Ansible: Who builds the builder

•	 Command-line tools: An overview of Ansible and its CLI commands

•	 The building blocks: Playbooks, plays, tasks, modules, and inventories

explained

•	 Deploying to multiple hosts: From a local directory to 30 servers;

Ansible is designed to scale

https://doi.org/10.1007/979-8-8688-0779-4_10#DOI

224

•	 Checking out a repository: Getting your code in place

•	 Copying and altering files: Managing configuration

•	 Ansible vault: Keeping your secrets (and letting you store them in a

version control system)

•	 Variables: Managing data that changes according to context

�What Is Ansible?
Ansible (https://docs.ansible.com) is an “automation engine.” It is designed, in

particular, to manage the provisioning of servers, the deployment of applications, and

the management of configuration. In other words, all the essentials that many books and

articles about programming wave their figurative hands at. “Those values can be stored

in a configuration file. Remember not to check secrets into version control. This is just a

detail and we’ll leave it to you to work it all out for yourself.”

Well, in this chapter, we’ll take a crack using Ansible to manage the deployment

of a small PHP application across multiple hosts. We’ll look at a strategy for managing

configuration data across modes – production, staging, and development. We’ll store

some secrets without exposing them unencrypted either to a version control system or to

unauthorized team members.

�Getting Ansible
There are a whole bunch of ways of installing Ansible. It’s probably easiest, though, to

use your operating system’s package management system. For example, on my Fedora

machine, I use dnf:

$ sudo dnf install ansible

Or on my Mac, I might use Homebrew:

$ brew install ansible

Chapter 10 Automating Build and Deployment with Ansible

https://docs.ansible.com

225

Note T he Ansible documentation site provides exhaustive coverage of many
of the ways you can install the system at https://docs.ansible.com/
ansible/latest/installation_guide/index.html.

�Confirming Your Install
Once you have installed Ansible, it’s a good idea to check that it all looks sane. I’ll run a

command that you’ll see a lot more of in this chapter: ansible-playbook.

$ ansible-playbook --version

Here’s the output on my Mac – the so-called control node which will deploy code on

three Linux hosts (the managed nodes):

ansible-playbook [core 2.16.7]
 config file = None
 �configured module search path = ['/Users/mattz/.ansible/plugins/modules',
'/usr/share/ansible/plugins/modules']

 �ansible python module location = /opt/homebrew/Cellar/ansible/9.6.0/
libexec/lib/python3.12/site-packages/ansible

 �ansible collection location = /Users/mattz/.ansible/collections:/usr/
share/ansible/collections

 executable location = /opt/homebrew/bin/ansible-playbook
 �python version = 3.12.3 (main, Apr 9 2024, 16:03:47) [Clang 14.0.0
(clang-1400.0.29.202)] (/opt/homebrew/Cellar/ansible/9.6.0/libexec/
bin/python)

 jinja version = 3.1.4
 libyaml = True

That seems sane enough, if a tad verbose. Let’s cover off what I’ve installed very

quickly.

Chapter 10 Automating Build and Deployment with Ansible

https://docs.ansible.com/ansible/latest/installation_guide/index.html
https://docs.ansible.com/ansible/latest/installation_guide/index.html

226

�Command-Line Utilities
Although we’ll only use three commands in this chapter, we have actually installed quite

a few tools. Table 10-1 summarizes some of the available Ansible commands.

Table 10-1.  Some Ansible Command-Line Utilities

Utility Description

ansible-playbook Runs a playbook (a deployment script) in conjunction with other files to

manage multiple remote hosts.

ansible-galaxy Installs collections and roles – that is, components that extend Ansible’s

functionality.

ansible Runs a given command. Typically used for testing or for one-off

scenarios.

ansible-doc Provides information on installed modules.

ansible-pull Retrieves a playbook from a version control repository and executes on

a target host.

ansible-console A console environment for running Ansible commands.

ansible-inventory Shows Ansible inventory information (i.e., information about a set of

managed hosts).

ansible-vault Encrypt and decrypt secrets that can be safely stored in version control

and included in application configuration.

ansible-config View configuration.

The (inexhaustive) list of utilities in Table 10-1 might seem daunting, but, luckily, you

can go a long way with the few commands we cover in this chapter. Let’s get started with

an inevitable Hello, World.

Chapter 10 Automating Build and Deployment with Ansible

227

�Hello, Ansible
The command we’ll encounter mostly throughout the rest of this chapter is ansible-
playbook. This command combines a script – or playbook – (optionally alongside an

inventory of hosts) and runs these instructions on the specified targets.

Note Y ou can read about playbooks at https://docs.ansible.com/
ansible/latest/playbook_guide/playbooks_intro.html.

Let’s create an initial playbook:

001-playbook.yml

- name: Ansible Says Hello
 hosts: 127.0.0.1
 connection: local

 tasks:
 - name: Send Output
 ansible.builtin.debug:
 msg: Hello, world!

A playbook consists of a set of named plays which themselves consist of set of

playbook keywords (hosts, for example, specifies a target host or references a group of

hosts specified in an inventory) and tasks. A task (like the Send Output example above)

invokes a module (a function) which will be applied to the target hosts.

As you can see, playbooks are written in YAML format. YAML (YAML Ain’t Markup

Language) is a subset of JSON – a data serialization language designed to be compact

and human-friendly. You can read more about it at https://yaml.org/.

So, lets run through this example line by line. I have created a playbook (which

I’ve saved in a file named 001-playbook.yml). This consists of a single play: Ansible
Says Hello.

I have used two playbook keywords: hosts tells Ansible where we will be working

and connection tells it we will be operating on a local environment.

Chapter 10 Automating Build and Deployment with Ansible

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html
https://yaml.org/

228

Note Y ou can read more about playbook keywords at https://docs.
ansible.com/ansible/latest/reference_appendices/playbooks_
keywords.html.

Then, I move on the tasks section of the play. I have defined only one: Send Output.

This uses the ansible.builtin.debug module (https://docs.ansible.com/ansible/
latest/collections/ansible/builtin/debug_module.html) which accepts and

outputs a msg parameter.

A module can be thought of as a function. They are also referred to as “task plug-ins.”

Modules support parameters and attributes which determine how they are run. They are

collected in namespaced collections which can be installed with the ansible-galaxy

command. You can run a module directly with the ansible command, but you’ll see

them most often as part tasks in playbooks.

Let’s run the playbook:

$ ansible-playbook 001-playbook.yml

And I’m rewarded with quite a lot of output:

[WARNING]: No inventory was parsed, only implicit localhost is available
[WARNING]: provided hosts list is empty, only localhost is available. Note
that the implicit localhost does not match 'all'

PLAY [Ansible Says Hello] ***

TASK [Gathering Facts] **
ok: [127.0.0.1]

TASK [Send Output] **
ok: [127.0.0.1] => {
 "msg": "Hello, world!"
}

PLAY RECAP **
127.0.0.1 : ok=2 changed=0 unreachable=0 failed=0
 skipped=0 rescued=0 ignored=0

Chapter 10 Automating Build and Deployment with Ansible

https://docs.ansible.com/ansible/latest/reference_appendices/playbooks_keywords.html
https://docs.ansible.com/ansible/latest/reference_appendices/playbooks_keywords.html
https://docs.ansible.com/ansible/latest/reference_appendices/playbooks_keywords.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/debug_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/debug_module.html

229

Notably, Ansible has sent out its greeting, along with a lot of other information (that

will be more useful when we’re running multiple tasks and applying them to many

remote hosts).

It’s also worth noting those warnings in the output. Ansible is happiest when it’s

engaging with a list of remote hosts. Let’s see how that works.

�Inventories: Working with Hosts
An inventory (https://docs.ansible.com/ansible/latest/inventory_guide/
intro_inventory.html) is a file which collects together lists of hosts – often organized

in named groups. You can create an inventory in YAML format or opt for the even more

compact (but less flexible) INI format.

Let’s create an inventory file at inventories/example/hosts.ini:

[myservers]
192.168.1.98
192.168.1.7
192.168.1.82

If the script is running on my Mac – my control node – the IP addresses in this

inventory file refer to three managed nodes (also known as three battered laptops

humming away in various nooks around my house).

Note I f you are coding along and you don’t have a bunch of servers to play
with, you could always spin up some Vagrant machines and use their IPs in your
inventory file. I covered Vagrant in Chapter 8.

Here’s the equivalent – hosts.yml – formatted with YAML:

myservers:
 hosts:
 192.168.1.98:
 192.168.1.7:
 192.168.1.82:

Chapter 10 Automating Build and Deployment with Ansible

https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html
https://doi.org/10.1007/979-8-8688-0779-4_8

230

By default, Ansible connects to servers via OpenSSH. Unless you specify a remote

user for your servers, it will use your username (more accurately, it will use the

username associated with the “control node”). I will be specifying a remote user for host

connections later on.

Before you run a playbook that connects to a remote machine, you need to ensure

that you have SSH access to the target servers. Ideally, you will add a public key to your

target servers, making Ansible’s access relatively frictionless. If your servers are properly

configured with your public key, you should be able to access them over SSH without a

password. If, when you generated your key pair you specified a passphrase, you can use

a tool called ssh-agent to store it in memory at the start of your session. You can read

more about Ansible and connection methods at https://docs.ansible.com/ansible/
latest/inventory_guide/connection_details.html.

Note I covered generating a key pair and adding a public key to a target server in
Chapter 6 in the section “Providing Access to Users.”

Don’t despair if you haven’t set up key-based access to your servers. If you are
able to connect to your remote hosts using a password, you can specify the
 --ask-pass option when you run ansible-playbook. That will cause Ansible
to use password authentication, and you will be prompted for your password
as needed.

Now, I create a playbook designed to work with either version of this inventory file:

002-playbook.yml

- name: Pingy ping ping
 hosts: myservers
 remote_user: webuser
 tasks:
 - name: Ping my hosts
 ansible.builtin.ping:

 - name: Run pwd
 ansible.builtin.shell:

Chapter 10 Automating Build and Deployment with Ansible

https://docs.ansible.com/ansible/latest/inventory_guide/connection_details.html
https://docs.ansible.com/ansible/latest/inventory_guide/connection_details.html
https://doi.org/10.1007/979-8-8688-0779-4_6

231

 cmd: pwd
 register: loc

 - name: Print pwd output
 ansible.builtin.debug:
 var: loc.stdout

So, my new play here is a little different. Rather than specify a particular IP address,

I have referenced a group – myservers. I no longer need the connection keyword here

because a remote connection is assumed. I have added a new keyword though: remote_
user specifies the user I will connect as on each target host.

This time round, I’ve defined three tasks. The first, Ping my hosts, uses the

ansible.builtin.ping module. This does a lot more than just confirm that the lights are

on at the target host as we shall see.

While I’m at it, I define a task named Run pwd which invokes ansible.builtin.
shell (https://docs.ansible.com/ansible/latest/collections/ansible/builtin/
shell_module.html). This, as you might expect, invokes a given command – pwd in this

case. A module generates a return value in JSON format. The register task keyword

will create a variable to which it will assign the task’s output. This can be used later in

the play.

In this case, “later in the play” means the Print pwd output task which, once again,

uses the built-in ansible.builtin.debug module. This time, though, instead of msg, I

use var to output a variable value. Remember, I registered loc in the previous task. The

more specific loc.stdout refers to an element in the JSON we expect ansible.builtin.
shell to have generated. The full output for a single call to ansible.builtin.shell

might look something like this:

 {
 "changed": true,
 "cmd": "pwd",
 "delta": "0:00:00.004249",
 "end": "2024-06-09 12:17:08.613542",
 "failed": false,
 "msg": "",
 "rc": 0,
 "start": "2024-06-09 12:17:08.609293",
 "stderr": "",

Chapter 10 Automating Build and Deployment with Ansible

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/shell_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/shell_module.html

232

 "stderr_lines": [],
 "stdout": "/home/webuser",
 "stdout_lines": [
 "/home/webuser"
]
 }

Because this value is quite extensive, it makes sense to narrow down our own output

by focusing on an individual element: stdout, in this case.

Now, I can run the playbook, this time specifying an inventory file.

$ ansible-playbook -i inventories/example/hosts.ini 002-playbook.yml

I include my inventory file with -i flag. I could also have just referenced a directory

and Ansible would have happily parsed all contained files.

Here’s my output:

PLAY [Pingy ping ping] **

TASK [Gathering Facts] **
ok: [192.168.1.82]
ok: [192.168.1.7]
ok: [192.168.1.98]

TASK [Ping my hosts] **
ok: [192.168.1.82]
ok: [192.168.1.98]
ok: [192.168.1.7]

TASK [Run pwd] **
changed: [192.168.1.82]
changed: [192.168.1.98]
changed: [192.168.1.7]

TASK [Print pwd output] ***
ok: [192.168.1.98] => {
 "loc.stdout": "/home/webuser"
}

Chapter 10 Automating Build and Deployment with Ansible

233

ok: [192.168.1.7] => {
 "loc.stdout": "/home/webuser"
}
ok: [192.168.1.82] => {
 "loc.stdout": "/home/webuser"
}

PLAY RECAP **
192.168.1.7 : ok=4 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

192.168.1.82 : ok=4 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

192.168.1.98 : ok=4 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

As you can see, each task runs three times – once for each host in the myservers

group. The ping module runs successfully. Although the output does not show the actual

results of our calls to ansible.builtin.ping, it looks like this in each case:

 {
 "changed": false,
 "failed": false,
 "ping": "pong"
 }

However, the data here is less important to us than the fact that module ran

successfully.

The Run pwd task reports a successful execution for each host, but, as discussed, in

order to see the output, I use the Print pwd output task.

In order to run, the ping module, like most others that act on remote servers,

requires full access to its target host. Typically, this means that you will have installed

your key in the relevant user account for each host. Remember, however, that if you

have not set up keys on your target servers but do have password access, you can use

the --ask-pass option to force password authentication:

$ ansible-playbook --ask-pass -i inventories/example/hosts.ini
002-playbook.yml
SSH password:

Chapter 10 Automating Build and Deployment with Ansible

234

�Checking Out a Git Repository
Having demonstrated the use of a playbook with an inventory, I’ll bring things back on

track with a playbook which will perform an actual deployment.

We really have all we need for this apart from the addition of a new built-in module:

003-playbook.yml

- name: Deploy code
 hosts: myservers
 remote_user: webuser
 tasks:
 - name: clone
 ansible.builtin.git:
 repo: 'git@github.com:poppbook/megaquiz.git'
 dest: /home/webuser/app
 version: v1.0.1

As you might expect, the ansible.builtin.git module (https://docs.ansible.
com/ansible/latest/collections/ansible/builtin/git_module.html) checks out a

Git repository. Reflecting Git’s power and complexity, the module accepts many possible

arguments, but we only need three to clone or pull our repository. The repo parameter

accepts the repository’s address. dest defines the destination directory. version requires

information about what to check out. This could be a branch name, a SHA-1 hash

representing a commit, or, as in this example, a tag.

Let’s run it:

$ ansible-playbook -i inventories/example/hosts.ini 003-playbook.yml
PLAY [Deploy code] **

TASK [Gathering Facts] **

ok: [192.168.1.82]
ok: [192.168.1.7]
ok: [192.168.1.98]

TASK [clone] **

Chapter 10 Automating Build and Deployment with Ansible

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/git_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/git_module.html

235

ok: [192.168.1.98]
ok: [192.168.1.82]
ok: [192.168.1.7]

PLAY RECAP **
192.168.1.7 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

192.168.1.82 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

192.168.1.98 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

So, my run was glitch-free. You may find you need to deal with initial gremlins. As

I’ve already discussed, you need either to have configured key-based access to your

servers or specify the --ask-pass option in order to fall back to password authentication.

Also, make sure that your target servers are configured for access to your Git repository.

Having run this playbook with an inventory as above, I confirm that each of my hosts

now has the megaquiz repo installed in its /home/webuser/app directory.

�Copying a Configuration File
If deployment simply meant checking out some code, we’d be done by now. At minimum,

though, most applications require configuration.

Let’s add a couple of tasks which will copy a configuration file into each environment.

004-playbook.yml

- name: Megaquiz playbook
 hosts: myservers
 remote_user: webuser
 tasks:
 - name: clone
 ansible.builtin.git:
 repo: 'git@github.com:poppbook/megaquiz.git'
 dest: /home/webuser/app
 version: v1.0.0

Chapter 10 Automating Build and Deployment with Ansible

236

 - name: Make sure destination dir exists
 ansible.builtin.file:
 path: /home/webuser/app/conf
 state: directory

 - name: copy
 ansible.builtin.copy:
 src: res/megaquiz1.ini
 dest: /home/webuser/app/conf/megaquiz.ini

I introduce two new modules here. ansible.builtin.file (https://docs.ansible.
com/ansible/latest/collections/ansible/builtin/file_module.html) performs

file operations. The path parameter specifies a location on the target host. When set to

directory, the state argument causes any specified directories to be recursively created.

As you’d expect, ansible.builtin.copy will copy a file over from the control node

to the target hosts. src specifies the source file and dest should contain the path on

the host.

Now, assuming that I have a useful configuration file in res/megaquiz1.ini, it will

appear in /home/webuser/app/conf/megaquiz.ini.

�Some More on Variables
We’re heading for a section on injecting values into a configuration file. In order to get

there, though, we need to step back and cover some more on variables in Ansible.

�Declaring Variables with vars
You have already seen the register task keyword, which declares a variable and assigns

the result of the task’s module to it. You can also declare variables with the vars

playbook keyword.

Here’s a new playbook which amends the Hello, World example to use a variable.

005-playbook.yml

- name: Ansible Says Something
 hosts: 127.0.0.1
 connection: local

Chapter 10 Automating Build and Deployment with Ansible

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html

237

 vars:
 person: Bob

 tasks:
 - name: Send output
 ansible.builtin.debug:
 msg: Hello, {{ person }}!

As you can see, I declare the person variable and set it to Bob. Notice, though, how I

have incorporated the variable into the ansible.builtin.debug module’s msg argument.

If you’re a Twig user, then that syntax might seem eerily familiar. In fact, this is an

example of Jinja2 (https://jinja.palletsprojects.com), the templating language

which inspired Twig and which is used by Ansible in various ways.

No prizes for guessing the output: here. We should be saying hello to Bob:

TASK [Send output] **
ok: [127.0.0.1] => {
 "msg": "Hello, Bob!"
}

�Overriding Variables from the Command Line
The vars keyword provides a prominent place to declare a value that might be used in

several places. It might seem that its usefulness is limited in that the variable’s value is

fixed. However, you can also use -e (or --extra-vars) flag to ansible-playbook to

override the value of any variables you declare.

$ ansible-playbook -e "person=Harry" 005-playbook.yml

And now, Bob is Harry:

TASK [Send output] **
ok: [127.0.0.1] => {
 "msg": "Hello, Harry!"
}

Chapter 10 Automating Build and Deployment with Ansible

https://jinja.palletsprojects.com

238

�Placing Variables in Files
Although you could conceivably add more and more -e flags to your command-line

calls, that approach would soon become unwieldy. A neater approach might be to define

a file for your variables.

Here’s vars/vars.yml:

person: Mary

We’d expect to add a lot more elements to this list of course.

I can reference my new variables file with the vars_files playbook keyword:

006-playbook.yml

- name: Ansible Says Something
 hosts: 127.0.0.1
 vars_files: vars/vars.yml
 connection: local

 tasks:
 - name: Send output
 ansible.builtin.debug:
 msg: Hello, {{ person }}!

And now, we greet someone new:

TASK [Send output] **
ok: [127.0.0.1] => {
 "msg": "Hello, Mary!"
}

Of course, I have come full circle now. My reference to the vars/vars.yml file is itself

hard-coded. I can overcome that, though, by combining vars and vars_files like this:

006_1-playbook.yml

- name: Ansible Says Something
 hosts: 127.0.0.1
 vars:
 myvars: vars

Chapter 10 Automating Build and Deployment with Ansible

239

 vars_files:
 vars/{{ myvars }}.yml
 connection: local

 tasks:
 - name: Send output
 ansible.builtin.debug:
 msg: Hello, {{ person }}!

This is functionally identical to the previous example. But by declaring the myvars

variable and using it in the file path added to vars_files, I render it amenable to

overriding. I can now change the variable file by invoking the playbook like this:

$ ansible-playbook --extra-vars "myvars=altvars" 006_1-playbook.yml

This will result in the inclusion of a file at vars/altvars.yml.

Note T here is much more to variables. See the documentation at https://
docs.ansible.com/ansible/latest/playbook_guide/playbooks_
variables.html. There is another useful trick to come later in this chapter too!

�Interpolating Values into a File
When I copied the megaquiz.ini file over to my servers, I made no changes to it. In some

circumstances, however, I might not want all values checked in to version control – ei-

ther because they change according to context or because they are sensitive in nature.

I can use a module called ansible.builtin.template (https://docs.ansible.com/
ansible/latest/collections/ansible/builtin/template_module.html) to combine a

template file with a set of variables.

Here’s a new variables file named vars/vars2.yml:

user: keisha

My new configuration file at res/megaquiz2.ini looks like this:

user={{ user }}
dbname=megaquiz

Chapter 10 Automating Build and Deployment with Ansible

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_variables.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/template_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/template_module.html

240

As you can see, I’m using Jinja2 again. When the final configuration file is generated,

I will hope to find “keisha” assigned to the user element.

Here is my amended playbook:

007-playbook.yml

- name: Interpolate conf
 hosts: myservers
 vars_files: vars/vars2.yml
 remote_user: webuser
 tasks:

 # ...

 - name: copy / interpolate
 ansible.builtin.template:
 src: res/megaquiz2.ini
 dest: /home/webuser/app/conf/megaquiz.ini

This usage of ansible.builtin.template is syntactically similar to the ansible.
builtin.copy example we have already seen. The functional difference, however, is that

the module will apply any variables we have set to the template referenced in the src

argument.

Let’s run the playbook.

$ ansible-playbook -i inventories/example/hosts.ini 007-playbook.yml

The output tells me that all went well, so I log in to webuser@192.168.1.98 and take a

look at /home/webuser/app/conf/megaquiz.ini.

user=keisha
dbname=megaquiz

My interpolation appears to have worked!

Chapter 10 Automating Build and Deployment with Ansible

241

�Managing Secrets with Ansible Vault
Every project has its secrets – and it’s not good policy to push such data to a version

control repository, even a private one, without first encrypting it. Of course, you could

store these values on your local machine or write them down on the back of an envelope.

In the end though, the problem is the same – you either risk exposing your keys or losing

them if you can’t check them in to a repository of some kind.

Ansible vault (https://docs.ansible.com/ansible/latest/vault_guide/index.
html) provides a good solution to this problem. It allows you to both encrypt and decrypt

sensitive data, which can then be stored alongside your code in relative safety.

Let’s work through an example. I will store a dummy API key in a file named vars/
secrets1.yml:

quizkey: all_89876786

This starts out, of course, as a plain unencrypted file. The ansible-vault (https://
docs.ansible.com/ansible/latest/cli/ansible-vault.html) command will change

all that.

$ ansible-vault encrypt --vault-id myproject@prompt vars/secrets1.yml

Ansible prompts me for a password and confirms my encryption.

New vault password (myproject):
Confirm new vault password (myproject):
Encryption successful

The encrypt subcommand here should be self-explanatory. --vault-id is not

technically required, but it is a good idea to use it, since it allows the user to manage

multiple passwords for a system. So junior developers might have one level of access,

while those that require it can be given the access they need to deploy to production.

The argument to vault-id consists of two parts split by a @ symbol. The first part

is the ID itself – the name I am using to label the password I want to associate with my

encrypted file. The second part is the source. It indicates the source of the password.

In this chapter, I’ll always use prompt for this, but you could also specify a password file

(containing only the password) or a script.

Chapter 10 Automating Build and Deployment with Ansible

https://docs.ansible.com/ansible/latest/vault_guide/index.html
https://docs.ansible.com/ansible/latest/vault_guide/index.html
https://docs.ansible.com/ansible/latest/cli/ansible-vault.html
https://docs.ansible.com/ansible/latest/cli/ansible-vault.html

242

Having run ansible-vault encrypt, this is what my vars/secrets1.yml file

looks like:

$ANSIBLE_VAULT;1.2;AES256;myproject
373063313232653533383965363865663235613633356532626261303231326433343065
66383430
3863353937336139626331316462346464653838643363620a30383737323832313766
3165666438
65346630306533656338633536373831656564356664383966303634616161333930
383738326432
3631643237393363390a313366646438386332386135626166343138333538633234
303162616339
61643233313137393237613737303531613566616132613039333631316462633432

Of course, I will also need to be able to edit the file:

$ ansible-vault edit --vault-id myproject@prompt vars/secrets1.yml

I can now use my new password and the secrets file in conjunction with a playbook:

008-playbook.yml

- name: Whisper the secret
 hosts: 127.0.0.1
 vars_files: vars/secrets1.yml
 connection: local

 tasks:
 - name: Send output
 ansible.builtin.debug:
 msg: The secret key is {{ quizkey }}!

So, I did not need to do anything different in the play itself. I can treat a secrets1.
yml just like any other variables file. Ansible is smart enough to understand that it’s

dealing with an encrypted file and acquire a password according to the source specification:

$ ansible-playbook --vault-id myproject@prompt 008-playbook.yml

Chapter 10 Automating Build and Deployment with Ansible

243

Here’s the relevant fragment of output:

TASK [Send output] **
ok: [127.0.0.1] => {
 "msg": "The secret key is all_89876786!"
}

So, now I can deploy code from a Git repository. I can populate and copy a

configuration file. I can manage secrets. Next, let’s consolidate all that and even add a

new feature or two.

�Checking in on Megaquiz
As you know, the --vault-id flag to ansible-vault and other Ansible commands allows

you to specify different passwords according to context. Let’s build on that to create a

deployment setup that supports three different project modes: development, staging, and

production. Here is a potential directory structure:

megaquiz.yml

inventories/
 development/
 hosts.ini
 staging/
 hosts.ini
 production/
 hosts.ini

res/
 megaquiz.ini

vars/
 development/
 secrets.yml
 staging/
 secrets.yml
 production/
 secrets.yml

Chapter 10 Automating Build and Deployment with Ansible

244

In addition to a playbook: megaquiz.yml, I create three directories, inventories/ for

inventory files, res/ for a configuration file template, and vars/ for encrypted variables

files. In the cases of both inventories/ and vars/, I create subdirectories for develop-
ment/ staging/ and production/ in which to store the hosts or secrets files.

For this example, I’m reusing the same set of values in all the hosts.ini files. In a

real-world environment, these would vary.

Here are the contents of one file:

[myservers]
192.168.1.98
192.168.1.7
192.168.1.82

The file at res/megaquiz.ini is a template that will combine hard-coded base values

and variables – from both encrypted and unencrypted sources.

dbuser={{ dbuser }}
dbhost=db
quizkey={{ quizkey }}

Here is one of the secrets files – vars/production/secrets.yml – before encryption

(or, later, in edit mode):

quizkey: prodkey_3333333

As a reminder, here’s how I can encrypt the file:

$ ansible-vault encrypt --vault-id production@prompt vars/production/
secrets.yml

And, at last, here is the megaquiz.yml playbook:

megaquiz.yml

- name: Deploy megaquiz
 hosts: myservers
 remote_user: webuser
 vars_files: "vars/{{ MODE }}/secrets.yml"
 tasks:

Chapter 10 Automating Build and Deployment with Ansible

245

 - name: clone
 ansible.builtin.git:
 repo: 'git@github.com:poppbook/megaquiz.git'
 dest: /home/webuser/app
 version: v1.0.1

 - name: Make sure destination dir exists
 ansible.builtin.file:
 path: /home/webuser/app/conf
 state: directory

 - name: copy / interpolate
 ansible.builtin.template:
 src: res/megaquiz.ini
 dest: /home/webuser/app/conf/megaquiz.ini

This should be pretty familiar by now. Let’s work through it anyway. The playbook

contains a single play: “Deploy megaquiz.” The hosts playbook keyboard specifies

myservers – the group I use in all my hosts.ini files. vars_files specifies a path that

incorporates a variable, MODE, to create a path to a secrets file.

You have seen each of the tasks before. In turn, they clone or checkout the megaquiz

repository, create the conf directory, and generate a configuration file using the

ansible.builtin.template module to combine variables with the template in res/
megaquiz.ini.

This, of course, begs some questions. Where does MODE come from? Although the

quizkey variable appears to be provided by secrets.yml, what provides dbuser which is

also expected by the template?

The answer lies, once again, in the -e flag to ansible-playbook:

$ ansible-playbook --vault-id development@prompt \
 -e "MODE=development dbuser=bloop" \
 -i inventories/development/hosts.ini \
 megaquiz.yml

The most important variable here is MODE. As you have already seen, I could use this

to generate a path to a variable file, but I chose instead to generate a second

variable, dbuser. This is fine for my current purposes, but it won’t scale well. I’d likely

move dbuser to a file as soon as the need to support more variables emerges.

Chapter 10 Automating Build and Deployment with Ansible

246

Before we wrap up by covering a final module, let’s take in one more variable-related

feature that Ansible supports.

�Inventory Variables
So far, I have declared variables using the var and var_files playbook keywords. I have

also used the -e or --extra-vars command-line flag. We have not yet encountered

another common way to manage variables: inventories. This makes sense, of course,

because a host or group of hosts will often correspond with a set of variable data.

You can add variables directly to your inventory file or, using a specially named

directory, to your inventory environment. Here, for example, I set a variable for each host

in my staging inventory:

[myservers]
192.168.1.98 dbuser=elbow
192.168.1.7 dbuser=hats
192.168.1.82 dbuser=flimflam

I am using INI format here. All I need to in this case is tack my variable key/value

pairs onto the end of each host. The YAML equivalent is a little more verbose:

myservers:
 hosts:
 192.168.1.98:
 dbuser: elbow2
 192.168.1.7:
 dbuser: hats2
 192.168.1.82:
 dbuser: flimflam2

Thanks to this trick, I no longer need to specify the dbuser variable when I invoke

ansible-playbook.

Of course, it’s probably more useful (and less work) to set variables at the group level.

This is also supported. Here is the INI version:

[myservers]
192.168.1.98

Chapter 10 Automating Build and Deployment with Ansible

247

192.168.1.7
192.168.1.82

[myservers:vars]
dbuser=prodish

Here’s the YAML equivalent:

myservers:
 vars:
 dbuser: groupish
 hosts:
 192.168.1.98:
 192.168.1.7:
 192.168.1.82:

Ansible supports a variation to these techniques. If you place a directory named

host_vars in your current working directory or, more often, at the same level as your

inventory files, then a YAML file named after the current host will be read, and any

contained variables will be set. The same is true for inventory groups, except that the

directory should be named group_vars and any contained files should be matched to

groups and not hosts.

Let’s implement this last feature.

Look again at the directory structure I created for my inventories:

inventories/
 development/
 hosts.ini
 staging/
 hosts.ini
 production/
 hosts.ini

As you know, an inventory can contain groups, which in turn break down into hosts.

Ansible provides two implicit groups for every inventory: all which contains all the

hosts in that inventory and ungrouped which contains a list of hosts which do not belong

to any explicit groups. I am going to create variable files for the implicit all group in

each of my inventories. Here is what my new directory structure will look like:

Chapter 10 Automating Build and Deployment with Ansible

248

inventories/
 development/
 hosts.ini
 group_vars/
 all.yml
 staging/
 hosts.ini
 group_vars/
 all.yml
 production/
 hosts.ini
 group_vars/
 all.yml

Here is inventories/production/group_vars/all.yml:

MODE: production
dbuser: bob

Now, I can run the playbook and pick up the required variables without command-line

variable arguments. My choice of inventory drives the selection of variables and the

construction of a filepath which resolves to the correct secrets file.

$ ansible-playbook --vault-id development@prompt -i inventories/
development/hosts.ini megaquiz.yml

Of course, were this a real-world PHP project, I’d likely need to run Composer as part

of a deploy.

�The Composer Module
The community.general.composer module (https://docs.ansible.com/ansible/
latest/collections/community/general/composer_module.html) supports most

Composer operations.

Up until now, we have used built-in modules. This module is part of the community.
general collection which you may need to install.

$ ansible-galaxy collection install community.general

Chapter 10 Automating Build and Deployment with Ansible

https://docs.ansible.com/ansible/latest/collections/community/general/composer_module.html
https://docs.ansible.com/ansible/latest/collections/community/general/composer_module.html

249

Now, in a new task, I can use community.general.composer to run composer
install on each of my projects (so long as Composer is installed on the remote hosts).

megaquiz.yml

...

 - name: composer
 community.general.composer:
 command: install
 working_dir: /home/webuser/app

At this point, I’ve arrived at a pretty functional and extensible deployment environment.

Of course, there’s much more to Ansible. For example, a composer install can

sometimes be a slow process. It would be nice to make the composer task optional. As

you might expect, Ansible has us covered.

�Conditionals
Ansible allows you to specify that a task is run only when a condition is met (https://
docs.ansible.com/ansible/latest/playbook_guide/playbooks_conditionals.html).

You can achieve this with the when task keyword:

megaquiz.yml

...

 - name: composer
 when: docomposer is defined
 community.general.composer:
 command: install
 working_dir: /home/webuser/app

The when keyword expects a test that uses the Jinja2 templating language (https://
jinja.palletsprojects.com/en/3.1.x/templates/#tests). So, is defined will

resolve to True if a variable has been set.

Since, by default, no docomposer variable is declared, the play will step over the

composer task.

Chapter 10 Automating Build and Deployment with Ansible

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_conditionals.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_conditionals.html
https://jinja.palletsprojects.com/en/3.1.x/templates/#tests
https://jinja.palletsprojects.com/en/3.1.x/templates/#tests

250

TASK [composer] ***
skipping: [192.168.1.98]
skipping: [192.168.1.7]
skipping: [192.168.1.82]

However, the task will be run if the docomposer variable is set:

$ ansible-playbook --vault-id development@prompt \
 -i inventories/development/hosts.ini \
 -e docomposer=yes \
 megaquiz.yml

�Summary
Serious development rarely happens all in one place. A code base needs to be separated

from its installation so that work in progress does not pollute production code that needs

to remain functional at all times. Version control allows developers to check out a project

and work on it in their own space. This requires that they should be able to configure the

project easily for their environments. Then, in order to get new features into the world,

the code needs to be functionally checked in a staging instance of a system. Finally,

releases need to make their way to production. All this should be made as friction-free as

possible.

In this chapter, I have covered some of the basics of Ansible, an automation engine,

designed to do all of this and more. I described playbooks, plays, tasks, modules, and

inventories – enough to encompass Ansible fundamentals. Then, I moved on to some

practical examples, including getting code, adding configuration, managing secrets, and

juggling variable data.

Of course, I have only scratched the surface of Ansible’s capabilities. Nevertheless,

once you are up and running with the tools and features described here, you’ll find it easy

to add new tasks and modules to your playbooks to achieve pretty much anything you

might want to do, from provisioning an entire suite of servers to adding a configuration

directive to an installed application.

Chapter 10 Automating Build and Deployment with Ansible

251
© Matt Zandstra 2025
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_11

CHAPTER 11

PHP on the Command
Line
Once upon a time, the acronym PHP stood for Personal Home Page. Even after the

language was renamed and the initials resolved to the recursive PHP Hypertext

Preprocessor, the name remained overtly a webby affair. Nonetheless, PHP works very

well on the command line. In fact, if you’re sure that your target environment will furnish

you with the PHP interpreter, it may be the best possible tool for your shell scripting

tasks. Written in the right way, a PHP script created for the command line can do

everything that a more traditional shell script can do, with all the power and familiarity

of a fully featured object-oriented language and the rich library infrastructure provided

by Composer.

This chapter will cover the following:

•	 Scripts and autoloading: Finding library files from your script

•	 Acquiring arguments: Getting essential application information from

the command line

•	 The whole shebang: Running scripts without invoking PHP on the

command line

•	 Errors and interoperability: Failing informatively

•	 Building usage messages: How to create self-documenting scripts

•	 Parsing options: Extracting options from positional arguments

•	 Encapsulating output: Managing warnings and primary output

•	 Console input: Prompting the user for information

•	 Piped input: Accepting data piped from other commands

https://doi.org/10.1007/979-8-8688-0779-4_11#DOI

252

•	 Packaging scripts with Composer: Adding your scripts to the vendor/
bin directory

•	 Distributing a runnable archive: Generating a Phar package

�Why the Command Line?
If you spend a lot of time building PHP systems, your focus is often, almost inevitably,

somewhat Web-oriented. That said, any larger project quickly accumulates ancillary

coding requirements. There are test fixtures to generate, server and database tasks to

automate, scheduled housekeeping scripts, monitoring tools, integrity checkers. The list

grows and grows with the complexity of your project.

You could, of course, use shell scripts for many of these tasks. And, sometimes, that’s

probably the right call. There are good reasons however to consider using PHP itself for

command-line scripting jobs. First of all, if your context is a PHP project, then you almost

certainly have the PHP interpreter available, so why not take advantage of its power

and familiarity? You may feel a lot more comfortable writing more involved scripts in

PHP than shell scripts. What’s more, you get to leverage the power of Composer and its

thousands of libraries. Even better, because those requirements are handled locally by

Composer, you don’t have to worry quite as much that a script’s dependencies might go

missing in some project contexts.

Another factor to bear in mind is that you can build PHP command-line utilities that

are tightly integrated into your system. That means they will be able to leverage your

environment to perform housekeeping tasks from within your application’s context.

You might, for example, need to prune a database once a month. You can create a PHP

script to perform the task as a Cron script – called from the command line – but with

operational access to application libraries and configuration.

Of course, by definition, PHP is less seamlessly integrated into the shell than a shell

script. Even so, as I’ll discuss at the end of the chapter, there are plenty of options (maybe

even too many options) for invoking shell commands from within a PHP script where

necessary. So, when it comes to creating command-line utilities, PHP might offer you the

best of both worlds.

Chapter 11 PHP on the Command Line

253

�A Dummy Function
In Volume 1, I looked at controller actions in web applications. A controller action offers

a thin layer that sits in front of an application’s underlying functionality. We might

think of a command-line script of any complexity in a similar way. While, for trivial use

cases, you can throw the meat of your application directly into your script file, it’s often

much cleaner to treat the script itself as an orchestrator, managing input from the user,

invoking methods in a deeper system, and presenting the result. To simulate that kind of

structure, I’ll begin here by mocking up some deeper logic for my script to invoke.

Here is a class containing a simple static method for converting string values to their

uppercase equivalents. Let’s imagine it’s a very complicated and involved process!

namespace popp\ch24\batch01;

class Converter
{
 public static function upper(string $str): string
 {
 return strtoupper($str);
 }
}

I begin my structure, then, with a single class file:

src/
 Converter.php

I can test this with a couple of lines tucked temporarily under the class (or in a script

that is already configured to find the Converter class).

$txt = file_get_contents(__DIR__ . "/res/test.txt");
print Converter::upper($txt);

Of course, even if I were to break those lines into a standalone script file, that hard-

coded path to test.txt means that it would not be terribly useful.

We will need a separate script that can detect user input and can find the class file at

src/Converter.php. So, let’s get started.

Chapter 11 PHP on the Command Line

254

�Autoloading
I will create an initial file at scripts/conv.php. In order for it to find src/Converter.
php, I have two choices. I could use require_once or a similar statement. That would

work, but I will win more flexibility and reserve the ability to access more tools by using

Composer. To that end, I’ll need to generate and access an autoload.php file.

Note I cover Composer in Chapter 5.

I have two files at this point. An empty script in scripts/conv.php and my

Converter class file at src/Converter.php:

scripts/
 conv.php
src/
 Converter.php

In order to connect them up, I’ll use a composer.json file at the root of my script

environment. I am using the popp\ch24\batch01 namespace:

{
 "name": "popp/conv",
 "autoload": {
 "psr-4": {
 "popp\\ch24\\batch01\\": ["./scripts", "./src"]
 }
 }
}

This associates both the scripts/ and src/ directories with the same namespace. To

activate this relationship, I must generate the autoload file:

$ composer dump-autoload

By running this, I generate a vendor/ directory containing an autoload.php file.

Now, here’s what my script environment might look like:

Chapter 11 PHP on the Command Line

https://doi.org/10.1007/979-8-8688-0779-4_5

255

composer.json
scripts/
 conv.php
src/
 Converter.php
vendor/
 autoload.php
res/
 text.txt

I’ve also added a directory named res which contains a text file I’ll be using

throughout the chapter to put my code through its paces.

Now that’s all in place, my components will be able to find one another. This will

allow me to add third-party libraries to my script later and to expand the environment.

I will add a single require_once statement to conv.php which will configure autoloading.

namespace popp\ch24\batch01;

require_once(__DIR__ . "/../vendor/autoload.php");

�Acquiring Arguments
Now that conv.php can access the Converter class, I’ll create a minimal script that

accepts command-line input.

namespace popp\ch24\batch01;

require_once(__DIR__ . "/../vendor/autoload.php");

if (count($argv) <= 1) {
 exit("not enough arguments\n");
}

$file = $argv[1];
if (! file_exists($file)) {
 exit("no file at '{$file}'\n");
}

$txt = file_get_contents($file);
print Converter::upper($txt);

Chapter 11 PHP on the Command Line

256

When PHP is run from the command line, the $argv superglobal array is

automatically populated. The first element will contain the path with which the script

was called. Subsequent elements correspond to any given arguments. So, the script

above is already pretty usable.

$ php scripts/conv.php res/test.txt

The test.txt file happens to contain an extract from the poem “Jabberwocky” by

Lewis Carroll. Here’s the script’s rather shouty output.

’TWAS BRILLIG, AND THE SLITHY TOVES
 DID GYRE AND GIMBLE IN THE WABE:
ALL MIMSY WERE THE BOROGOVES,
 AND THE MOME RATHS OUTGRABE.

�The Shebang
Notice that, in calling conv.php, I actually invoked PHP and passed it the path to

the script. I could have made it possible to call the script directly by changing its file

permissions and including a “shebang” (otherwise known as a “hashbang”) line. The

shebang is so-called because of its leading #! characters. This line, which should be the

first in the script, tells the shell to pass the current file to a particular command. In this

case, of course, that command is php. Here’s an amended version of conv.php.

#!/usr/bin/env php
<?php

if (count($argv) <= 1) {
 exit("not enough arguments\n");
}

// ...

The shebang here invokes /usr/bin/env with the argument php. The env command

searches the $PATH environment variable for the given executable and attempts to call it.

I might more directly have used #!/usr/bin/php. This would have worked for me in one

of my environments but would have failed, however, in another because PHP is installed

in a different location there. It’s more portable, therefore, to use env which is likely to be

found in a common location.

Chapter 11 PHP on the Command Line

257

Now, I can change the file permissions on conv.php to make it executable and then

run the script directly (or, at least, have it seem that way).

$ chmod +x ./scripts/conv.php
$./scripts/conv.php res/test.txt

�Error Conditions
You might think that by invoking the exit() language function with a useful message,

I have adequately handled error conditions. While that’s probably true in functional

terms, it’s not true as far as script interoperability is concerned. Command-line scripts

on Unix-like systems exit with a status code that can run from 0 to 255 (however, a PHP

script should only ever use the range 0 to 254 because 255 is reserved by the executable).

An exit code of 0 signals that no error occurred. An error code of 1 signals a general error.

Although, by convention, other numbers have meanings, it’s enough for our purposes

to switch between zero and nonzero exit codes according to whether or not an error was

encountered.

Note P rior to PHP 8.4, exit() was a language construct rather than a function.

The problem with calling exit() with a string, as I did above, is that, even though it

announces a problem, it actually causes the script to terminate with an exit status of 0.

We can confirm that with a simple shell script:

$ php scripts/conv.php || echo "EXPECTING THIS TO BE TRIGGERED"

Because conv.php requires an argument and I have not provided one, the script will

fail here.

If you place a well-behaved command into a shell conditional and it does not run

successfully (i.e., if it renders a nonzero exit status), then it will be treated as false. So,

ideally, the fragment above would have caused the trigger message to be output. In fact,

though, all I saw is this:

not enough arguments

The conv.php script explained that it failed, but the shell saw it as a successfully

completed command.

Chapter 11 PHP on the Command Line

258

To improve matters, I can change the way that I run exit(). By passing it an integer

rather than a string, I can cause my script to end with the given exit status. In doing that,

I lose the ability to generate output. This is a good thing, however, because exit() sends

string output to STDOUT and, in case of error, we should actually output to STDERR so

that anyone using our scripts can handle output and error messages separately if they

need to.

So, for my output, I can use fputs() with the STDERR constant:

if (count($argv) <= 1) {
 fputs(STDERR, "not enough arguments\n");
 exit(1);
}

$file = $argv[1];
if (! file_exists($file)) {
 fputs(STDERR, "no file at '{$file}'\n");
 exit(1);
}

$txt = file_get_contents($file);
print Converter::upper($txt);

Having made this change, when I run my script as above, the shell recognizes an

error condition and outputs its trigger message.

not enough arguments
EXPECTING THIS TO BE TRIGGERED

Now, when someone needs to use conv.php in a shell script, they can stop execution

if the command exits with an error condition – making it a good shell citizen!

�Usage
Another element of scripting good practice is the usage message. This usually combines

any available error feedback with information about how to interact with the script. For

anything but the most basic script, I’ll generally build a function to generate a usage

message of some kind very early on.

Chapter 11 PHP on the Command Line

259

Here’s a usage() function for conv.php:

function usage(?string $msg = null): string
{
 $argv = $GLOBALS['argv'];
 $usage = "usage: $argv[0] <file>\n";
 $usage .= "\n";

 if (! is_null($msg)) {
 $usage .= "{$msg}\n\n";
 }

 return $usage;
}

Note O f course, by putting a function in a file which also causes side effects (by
generating output), I breach the standard in PSR-1 which forbids this combination.
I could fix this by moving usage() into a separate file. I covered PHP standards in
Chapter 3.

Now, I can add some more information to any errors I generate.

if (count($argv) <= 1) {
 fputs(STDERR, usage("not enough arguments\n"));
 exit(1);
}

I’ll call the latest iteration of my script with no arguments.

$ php scripts/conv3.php

And now, as well as an error, I get information about how to fix my call.

usage: scripts/conv3.php <file>

not enough arguments

Chapter 11 PHP on the Command Line

https://doi.org/10.1007/979-8-8688-0779-4_3

260

�Handling Arguments and Options
We’ve already established that the $argv array is populated with the script name and

any further arguments. While this is useful, there is a pretty significant drawback. The

process which populates $argv does not distinguish between positional arguments and

options.

As a reminder, when I call conv3.php like this:

$ php scripts/conv3.php res/test.txt

This is what $argv looks like:

Array
(
 [0] => scripts/conv3.php
 [1] => res/test.txt
)

Here, res/test.txt is what is known as a positional argument.

So, what would happen if I wanted to support a set of arguments that look more like

the following?

$ php scripts/conv3.php -v -o /tmp/out.txt -c res/test.txt

Unfortunately, this places us at the edge of quite an awkward set of problems.

�Options
An option is a special argument that modifies the behavior of a command. You will

usually expect options to be placed directly after the command path and before any

positional arguments. If you’re familiar with the Linux shell, you should recognize

commands like

$ ls -l /tmp

This is a command, followed by a short option (-l) and a positional argument

(the /tmp directory).

You can combine short options:

$ ls -aR /tmp

Chapter 11 PHP on the Command Line

261

A command may also support long options (though there is no conventional

guarantee that every long option has a short equivalent or vice versa). A long option is

often (but not always) preceded by two dashes rather than one.

$ ls --all --recursive /tmp

Options can conventionally accept arguments in either form. These are equivalent,

for example:

$ grep -C 2 hats /tmp/products/*
$ grep --context=2 hats /tmp/products/*

It’s important to note that there is nothing fundamental about the form of options. One

dash or two, the presence of an equals sign for arguments, it’s all a matter of convention.

Given that PHP will not automatically manage options, this is something of a parsing

adventure. Here is a call to a script called play-args.php which does nothing but pass

$argv to print_r():

$ php scripts/play-args.php -a -b with-arg --context=20 -de pos1 pos2

We can see that, according to the conventions already discussed, -b accepts an

argument (with-arg). The --context option also expects or accepts an argument. Again,

conventionally, -d and -e are separate options run together here. We can’t know from

the example alone whether -e accepts an argument (pos1) or whether pos1 is the first

positional argument.

PHP does not trouble itself with any of this; it just breaks down each individual block

of text into elements:

Array
(
 [0] => scripts/play-args.php
 [1] => -a
 [2] => -b
 [3] => with-arg
 [4] => --context=20
 [5] => -de
 [6] => pos1
 [7] => pos2
)

Chapter 11 PHP on the Command Line

262

As programmers, we’re up to this challenge. Thankfully, we do not have to reinvent

this particular wheel.

�Introducing getopt
PHP provides a function named getopt() which offers a pretty usable solution to the

problem of acquiring options and disambiguating them from positional arguments. The

method requires a string argument which should contain a pattern describing the short

options accepted. It also optionally accepts an array argument for long options and an

index which will be populated with the start index of the positional arguments in $argv

once parsing is complete.

Let’s define the rules I discussed in the previous example:

$options = getopt("ab:de", ["long-a", "context:"], $index);
print_r($options);

So here, I define “ab:de” for my short options. This specifies that getopt() will

recognize -a, -b (with a required argument), -d, and -e. For the second argument, I

specify --long-a and --context (with a required argument).

As you can see, for both long and short arguments, adding a colon (:) modifier

specifies a required argument. If I wanted to specify an optional argument in either case,

I would use a double colon (::) instead.

With my option specifiers in place, the $options array will be neatly populated:

Array
(
 [a] =>
 [b] => with-arg
 [context] => 20
 [d] =>
 [e] =>
)

But what about my positional arguments pos1 and pos2? Remember that the third

argument to getopt() is populated with the index of the first positional argument after

the options have been parsed. Because I know that, it’s just a matter of deploying array_
slice() to extract the argument portion of $argv.

Chapter 11 PHP on the Command Line

263

$options = getopt("ab:de", ["long-a", "context:"], $index);
print_r($options);
$newargs = array_slice($argv, $index);
print_r($newargs);

Here is the output from that second print_r() which shows the $newargs array.

Array
(
 [0] => pos1
 [1] => pos2
)

�The Problem with getopt()
In many cases, getopt() will be perfectly fine for your needs. It does not require that you

load a third-party library, and it gets the job done. However, if you want to throw an error

on invalid flags, you’re out of luck. This might seem like a minor point, but imagine a

mission-critical script that supports a --dry-run flag:

$ very-dangerous-deletion-script --dry-rune /home/mattz

If you’re using getopt() here, it will happily ignore my --dry-rune typo and run the

script in anger. This is quite a risky prospect.

The other, less important, problem is that getopt() does not help you to automate

your usage message – and these can get gnarly as your list of options and arguments

grows. As you might expect, there is a Composer package to address these issues. It’s a

lucky coincidence that I opted to use Composer for autoloading!

�Using GetOpt.php
GetOpt.php is a well-featured object-oriented tool for parsing options. While the

getopt() function is fine for quick and dirty scripts, you’ll likely want GetOpt.php or a

similar package for any complex or critical application.

Chapter 11 PHP on the Command Line

264

Note I n fact, GetOpt.php does a lot more than parse options. If you’re planning to
build a larger system, it’s worth checking out the package’s support for sub-
commands in the documentation at http://getopt-php.github.io/
getopt-php/.

You can install the package with Composer:

$ composer require ulrichsg/getopt-php

Once I have the package installed, I can incorporate some of its key components into

my command-line script and instantiate a GetOpt object.

use GetOpt\GetOpt;
use GetOpt\Option;
use GetOpt\Argument;
use GetOpt\Operand;

$getopt = new GetOpt();

Here, aside from creating a GetOpt object, I set the script up to work with options,

arguments, and operands. Of these, only the term operand should be new to you. That’s

the term the GetOpt.php package uses to describe positional arguments.

Now, I’m ready to define and apply my first option:

$getopt->addOption((new Option('a', 'long-a', GetOpt::NO_ARGUMENT))-
>setDescription('about the a flag'));

Thanks to good object-oriented design, you can almost read this as plain English.

I create an Option object and pass it to GetOpt::addOption(). The Option constructor

accepts a string argument representing a short option and another for an equivalent long

option. You must provide at least one of these. The constructor also accepts an optional

string value which should describe the option’s argument requirement. If provided,

this should match one of the GetOpt string constants concerned with argument

requirements. I describe these in Table 11-1.

Chapter 11 PHP on the Command Line

http://getopt-php.github.io/getopt-php/
http://getopt-php.github.io/getopt-php/

265

Table 11-1.  GetOpt Argument Constants

Constant Value Description

GetOpt\GetOpt::NO_ARGUMENT ':noArg' No argument (default)

GetOpt\GetOpt::REQUIRED_ARGUMENT ':requiredArg' Argument required

GetOpt\GetOpt::OPTIONAL_ARGUMENT ':optionalArg' Argument optional

GetOpt\GetOpt::MULTIPLE_ARGUMENT ':multipleArg' Accepts multiple arguments

(at least one)

The Option class supports a setDescription() method which requires a string

argument. This will become more obviously useful when I come to generate a usage

message. So, having created an Option object, I call Option::setDescription().

So, I’ve configured support for the a flag alongside its --long-a equivalent. Next, I’ll

build in support for -b.

$getopt->addOption((new Option('b', null, GetOpt::REQUIRED_ARGUMENT))-
>setDescription('about the b flag'));

Note that as I’ve configured it here, the -b option has no long option equivalent.

Next, I add support for the short -d and -e options.

$getopt->addOption((new Option('d', null, GetOpt::NO_ARGUMENT))-
>setDescription('about the d flag'));
$getopt->addOption((new Option('e', null, GetOpt::NO_ARGUMENT))-
>setDescription('about the e flag'));

Of course, requiring an argument (as I did for -b) is not the same as validating

it. GetOpt.php supports that too. The GetOpt::setArgument() method accepts an

Argument object which allows you to provide a validation function.

$contopt = new Option(null, 'context', GetOpt::REQUIRED_ARGUMENT);
$contopt->setDescription("context scope");
$contopt->setArgument(new Argument(null, 'is_numeric', 'number of lines'));
$getopt->addOption($contopt);

Chapter 11 PHP on the Command Line

266

The Argument constructor accepts a default (scalar) value, a callable validation

routine, and an argument name. All of these are optional. For validation, I have

referenced the built-in is_numeric() function, but for more complex requirements (a

valid file path, for example), you can easily provide a your own anonymous function

which should accept the argument to test and resolve to a Boolean.

Once I have built up my options configuration, I’m ready to tell the GetOpt object to

parse $argv.

$ret = $getopt->process();

I have not handled any error conditions here. In real-world code, I might wrap

GetOpt::process() in a try/catch clause to handle one of several error conditions

that the method might encounter during parsing (for an unknown option or an invalid

argument, for example).

Once the parsing is complete, I can access an options array with

GetOpt::getOptions() and an array of positional arguments with

GetOpt::getOperands().

$options = $getopt->getOptions();
$newargs = $getopt->getOperands();

print_r($options);
print_r($newargs);

Independently of processing, I can also generate a usage message:

print $getopt->getHelpText();

Let’s put our options parsing configuration through its paces:

$ php scripts/play-args-getopt.php -a -b with-arg --context=20 -de
pos1 pos2

Remember, my example includes three outputs: options, positional arguments, and

a usage message. Here’s the options output:

Array
(
 [a] => 1
 [long-a] => 1

Chapter 11 PHP on the Command Line

267

 [b] => with-arg
 [d] => 1
 [e] => 1
 [context] => 20
)

Note here that since I defined them as equivalent, both the “a” and “long-a” elements

are populated – even though I only provided -a on the command line. The classic

getopts() function has no concept of equivalence, so it will only populate the option it

encounters in the argument list.

Here’s my list of positional arguments (operands in the GetOpts.php lexicon):

Array
(
 [0] => pos1
 [1] => pos2
)

Finally, a very labor-saving usage message:

Usage: scripts/play-args-getopt.php [options] [operands]

Options:
 -a, --long-a about the a flag
 -b <arg> about the b flag
 -d about the d flag
 -e about the e flag
 --context <output file> context scope

This last is particularly useful because it saves you having to keep a long string in line

with your evolving options and arguments – like this:

$argv = $GLOBALS['argv'];
$usage = "\n";
$usage .= sprintf("usage: %s [options] [args]\n", $argv[0]);
$usage .= "Options:\n";
$usage .= sprintf("%6s %-12s %-6s %s\n", "-a", "--long-a", "", "about the
a flag");

Chapter 11 PHP on the Command Line

268

$usage .= sprintf("%6s %-12s %-6s %s\n", "-b", "", "<arg>", "about the
b flag");
$usage .= sprintf("%6s %-12s %-6s %s\n", "-d", "", "", "about the d flag");
$usage .= sprintf("%6s %-12s %-6s %s\n", "-e", "", "", "about the e flag");
$usage .= sprintf("%6s %-12s %-6s %s\n", "", "--context", "<num>", "context
scope");

Of course, it isn’t hard to create something like this – or something even simpler

using a heredoc string – but, in my experience, hand-maintained usage messages quickly

fall out of alignment with configuration.

�Enforcing Positional Arguments
GetOpt.php can manage operands (positional arguments) as well as options. In my

initial example, I instantiated a GetOpts object with no constructor arguments. In fact,

it can accept two arguments. The first is a string of the kind accepted by getopts() and

the second is a settings array. I can use the settings array, along with Operand objects, to

define and enforce positional arguments. Let’s start again from the top:

$getopt = new GetOpt(null, [GetOpt::SETTING_STRICT_OPERANDS => true]);

// handle options as before ...

$getopt->addOperand(
 new Operand('pos1', Operand::REQUIRED)
);
$getopt->addOperand(
 new Operand('pos2', Operand::REQUIRED)
);

The Operand class constructor requires a name and accepts a requirement constant –

one of Operand::REQUIRED, Operand::OPTIONAL, or Operand::MULTIPLE. I create two

Operand objects and pass them to my GetOpt instance. Since I’ve decided to be strict

about my positional arguments, I have configured GetOpt with GetOpt::SETTING_
STRICT_OPERANDS set to true.

Chapter 11 PHP on the Command Line

269

Now, if I fail to provide two positional arguments, $getopt->process() will throw an

exception.

PHP Fatal error: Uncaught GetOpt\ArgumentException\Missing: Operand pos1
is required in ...

Furthermore, the usage string will be automatically updated.

Usage: scripts/play-args-getopt-args.php [options] <pos1> <pos2>

Options:
 -a, --long-a about the a flag
 -b <arg> about the b flag
 -d about the d flag
 -e about the e flag
 --context <output file> context scope

Personally, I tend to enforce and validate my own positional arguments, since I

prefer the flexibility that affords me. I might, for example, want to relax or alter my

argument requirements when certain flags (like --help) are present. Nonetheless,

operand management is a nice additional feature.

�Handling Output
We saw in Volume 1 that, in web programming, it’s a good idea to use Response objects

to manage output. This makes components easier to test and allows for changes in

implementation. In a quick command-line script, I would likely go ahead and use print

or fputs(). But for a slightly larger project, I like to create a class to encapsulate output.

This can then be passed to other objects in my system which should not be making

decisions about output.

Here’s a basic implementation:

class Output
{
 public int $verbosity = 0;
 private $handle = STDOUT;

Chapter 11 PHP on the Command Line

270

 public function setFileMode(string $path, $destructive = true)
 {
 $mode = $destructive ? "w" : "a";
 $this->handle = fopen($path, $mode);
 }

 public function say(string $str): void
 {
 fputs($this->handle, $str);
 }

 public function warn(string $str): void
 {
 fputs(STDERR, $str);
 }

 public function debug(string $str): void
 {
 if ($this->verbosity > 0) {
 fputs(STDERR, $str);
 }
 }
}

This simple class offers three output methods: say(), warn(), and debug(). By

default, as you might expect, say() outputs a string to STDOUT and warn() outputs to

STDERR. The debug() method also sends output to STDERR but only if the $verbosity

property is set to a nonzero value. An additional method, setFileMode(), accepts a path

and alters the output handle so that say() will write output to a file.

Of course, a more complete implementation of the Output class would include more

error checking and would allow for file mode to be disabled as well as set.

You will see Output in operation in future examples. In fact, we can get started with

that right away.

Chapter 11 PHP on the Command Line

271

�Updating the Example Script
By way of consolidation, I’ll apply what I’ve covered so far to the basic converter script.

I’ll add two new options: -h to generate the usage message and -o to allow the user

to specify an output file. Here’s a version of the script that uses GetOpt.php:

use GetOpt\GetOpt;
use GetOpt\Option;
use GetOpt\Argument;
use GetOpt\ArgumentException;

// script globals
$output = new Output();
$getopt = new GetOpt();

// convenience functions
function croak(string $msg): void
{
 global $output, $getopt;
 $output->warn(usage($msg));
 exit(1);
}

function usage(?string $msg = null): string
{
 global $getopt;
 $usage = $getopt->getHelpText();
 if (! is_null($msg)) {
 $usage .= "\n{$msg}\n\n";
 }
 return $usage;
}

// configuration
$getopt->addOption((new Option('h', 'help', GetOpt::NO_ARGUMENT))-
>setDescription("this help message"));
$fileopt = (new Option('o', 'output', GetOpt::REQUIRED_ARGUMENT))-
>setDescription('output to file');

Chapter 11 PHP on the Command Line

272

$fileopt->setArgument(new Argument(null, null, 'file'));
$getopt->addOption($fileopt);

// execution
try {
 $ret = $getopt->process();
} catch (ArgumentException $e) {
 croak($e->getMessage());
}

$options = $getopt->getOptions();
$newargs = $getopt->getOperands();

if (isset($options['help'])) {
 $output->say(usage());
 exit(0);
}

if (isset($options['o'])) {
 $output->setFileMode($options['o']);
}

if (! count($newargs)) {
 croak("not enough arguments");
}

$file = $newargs[0];
if (! file_exists($file)) {
 croak("no file at '{$file}'");
}

$txt = file_get_contents($file);
$output->say(Converter::upper($txt));

There’s nothing genuinely new here. Note the croak() convenience function. This

sends the usage output to STDERR via Output::warn() and exits the script with a nonzero

status code (hard-coded to 1 here). The Output class is also useful for the -o flag. I don’t

have to do anything more complicated than call Output::setFileMode() if this option is

set (although, once again, a little more error checking would not go amiss).

Chapter 11 PHP on the Command Line

273

It’s not hard to replicate this script without GetOpt.php. Here are the main points of

difference:

function usage(?string $msg = null): string
{
 $argv = $GLOBALS['argv'];
 $usage = sprintf("usage: %s <file>\n", $argv[0]);
 �$usage .= sprintf("%6s %-12s %-6s %s\n", "-h", "--help", "", "this help

message");
 �$usage .= sprintf("%6s %-12s %-6s %s\n", "-o", "--output", "", "output

to a file");
 $usage .= "\n";
 if (! is_null($msg)) {
 $usage .= "{$msg}\n\n";
 }
 return $usage;
}

// configuration
$rest_index = null;
$options = getopt("ho:", ['help', 'output:'], $rest_index);
$newargs = array_slice($argv, $rest_index);

Everything else is broadly the same for this version of the script, except that

unexpected options won’t cause an error and, because getopt() does not have a

concept of equivalence, I need to check for the long and short versions of any options

that have both.

From now on, I will stick to using GetOpt.php.

�Adding Verbose Mode
With this set up, we already have enough in place to add a -v option to enable

verbose output.

$getopt->addOption((new Option('v', 'verbose', GetOpt::NO_ARGUMENT))-
>setDescription('verbose mode'));

// ...

Chapter 11 PHP on the Command Line

274

if (isset($options['verbose'])) {
 $output->verbosity = 1;
}

// ...

// this will output only if the user has invoked with '-v'
$output->debug("beginning...\n");

So, if the user calls the script with -v or --verbose, the script sets the

Output::$verbosity property to 1. Thereafter, all calls to Output::debug() will be sent

to STDERR. As a reminder, here’s Output::debug() again:

public function debug(string $str): void
{
 if ($this->verbosity > 0) {
 fputs(STDERR, $str);
 }
}

Let’s give it a whirl (this time in a script named conv_go2.php):

$ php scripts/conv_go2.php -v -o /tmp/blah.txt res/test.txt
beginning...
reading file...

Because I specified -v, my debug messages are played. We don’t see any other

output because I set -o to /tmp/blah.txt. I can confirm that my script worked though by

examining that file:

$ cat /tmp/blah.txt
’TWAS BRILLIG, AND THE SLITHY TOVES
 DID GYRE AND GIMBLE IN THE WABE:
ALL MIMSY WERE THE BOROGOVES,
 AND THE MOME RATHS OUTGRABE.

...

Chapter 11 PHP on the Command Line

275

�Prompted Input
We have dealt with options and positional arguments which are probably the most

common forms of script input. Sometimes, though, you want to prompt the user from

within a script. There are various ways of doing this, but I will opt for readline():

$getopt->addOption((new Option('c', 'console', GetOpt::NO_ARGUMENT))-
>setDescription("console mode"));

// ...

if (isset($options['console'])) {
 $output->debug("reading from console...\n");
 while (($input = readline("I> ")) !== false) {
 $output->say(Converter::upper("{$input}\n"));
 }
} else {
 $output->debug("reading file...\n");
 if (! count($newargs)) {
 croak("not enough arguments");
 }
 $file = $newargs[0];
 if (! file_exists($file)) {
 croak("no file at '{$file}'");
 }
 $txt = file_get_contents($file);
 $output->say(Converter::upper($txt));
}

The readline() function accepts an optional prompt string and returns a line of

user input (with the newline stripped). It will return false if there is nothing left to read.

If the -c flag is set, the script enters console mode and prompts for user input. The script

will continue until killed with Ctrl-C or Ctrl-D.

$ php ./scripts/conv_go2.php -c
I> The Owl and the Pussy-cat went to sea
THE OWL AND THE PUSSY-CAT WENT TO SEA
I> In a beautiful pea-green boat,

Chapter 11 PHP on the Command Line

276

IN A BEAUTIFUL PEA-GREEN BOAT,
I>

�Piped Input
One of the beauties of commands on Unix-like systems is the ability to chain them

together. I might, for example, use cat to join and output SQL queries from two files and

pipe the result into the mariadb command.

In order to make the converter script capable of reading piped content, I need a

function to check whether such input is available.

function pipeThere(): bool
{
 $read = [STDIN];
 $write = [];
 $except = [];
 $timeout = 0;
 $streamCount = stream_select($read, $write, $except, $timeout);
 return (bool) $streamCount;
}

// ...

if (pipeThere()) {
 $output->debug("piped input...\n");
 while (!feof(STDIN)) {
 $line = fgets(STDIN);
 $output->say(Converter::upper($line));
 }
} elseif (isset($options['console'])) {
 $output->debug("reading from console...\n");

 // ...

Chapter 11 PHP on the Command Line

277

} else {
 $output->debug("reading file...\n");

 // ...

}

The pipeThere() function makes use of the built-in stream_select() function to

detect content waiting to be consumed from STDIN. stream_select() requires three

arrays, one containing readable streams, another containing writeable streams, and a

third containing high-priority streams to be checked. A fourth argument should contain

a timeout value in seconds. If the timeout value is set to 0, the function will test and

return right away. The function returns an integer representing the number of streams

that match the test or false if no streams become available for reading or writing. I am

only interested in checking the status of STDIN, so I add that to the $read array and leave

the others empty. I only want to perform a quick check so my timeout value is set to 0.

I call pipeThere() at the start of script operation. If the script is offered piped input,

pipeThere() will return true, and I accept input from STDIN rather than a file or from

console input.

Let’s try it out:

$ cat res/test.txt | php scripts/conv_go3.php
’TWAS BRILLIG, AND THE SLITHY TOVES
 DID GYRE AND GIMBLE IN THE WABE:
ALL MIMSY WERE THE BOROGOVES,
 AND THE MOME RATHS OUTGRABE.

�Packaging Up
There are various options for distributing a script. The most obvious, of course, is

Composer. This is particularly attractive in the case of my example because I am already

using Composer to manage autoloading and to incorporate dependencies. In some

circumstances, I may want to make it particularly easy for others to run my script. For

such situations, I may choose to generate a binary. Let’s look at both options.

Chapter 11 PHP on the Command Line

278

�Distribution with Composer
Given the ground covered in this chapter, this is what my project directory might look

like at this point:

composer.json
scripts/
 conv.php
src/
 Converter.php
 Output.php
res/
 test.txt

I would like to make the conv.php script available to any project that uses mine. Of

course, were I to create a Packagist repo named popp/conv my script would become

available. But its location, vendor/popp/conv/scripts/conv.php, would not be

particularly intuitive. I’d like conv.php to appear in a more accessible location such as

vendor/bin. Users already working with a Composer-installed PHPUnit will be primed

to expect a script there.

In order to identify conv.php as a script, I must specify a bin element in my

composer.json file:

{
 "name": "popp/conv",
 "bin": ["scripts/conv.php"],
 "autoload": {
 "psr-4": {
 "popp\\ch24\\batch03\\": ["scripts/", "src/"]
 }
 },
 "require": {
 "composer-runtime-api": "^2.2",
 "ulrichsg/getopt-php": "^4.0"
 }
}

Chapter 11 PHP on the Command Line

279

The only new element here is the bin element which tells Composer that it should

treat scripts/conv.php as special. Slightly confusingly, this will have no effect on my

project directory. Rather, it will change the file made available to a user who installs

popp/conv (probably using composer require). Since I’m not actually ready to upload

my project to Packagist (see Chapter 5 for more on that), how can I test my setup?

Luckily, I can create a test project to install my work in progress locally. My project

directory is named batch03. I will create a test project in a sibling directory batch04

containing a single composer.json file. Here it is:

{
 "repositories": [
 {
 "type": "path",
 "url": "../batch03",
 "options": {
 "symlink": true
 }
 }
],
 "require": {
 "popp/conv": "@dev"
 }
}

This sets up popp/conv as a requirement and, through the repositories element,

specifies the ../batch03 directory as its location. Notice also the options subelement

where I specify that I wish to use a symlink rather than a copy of the source directory.

After I have run composer update, I should find that I have a vendor/ directory in

my client (batch04/) directory containing the popp/conv package alongside all the

dependencies it specifies. Thanks to my options specification, the conv/popp project

will be included as a symlink, which means I can continue developing locally without

having to reinstall every time I make a change and wish to test from a client perspective!

Are you lost? Let’s ground things with another snapshot of some key files and

directories before continuing:

Here again is my project directory. This is where I develop my popp/conv package

and my little command-line script.

Chapter 11 PHP on the Command Line

https://doi.org/10.1007/979-8-8688-0779-4_5

280

batch03/
 composer.json
 scripts/
 conv.php
 src/
 Converter.php
 Output.php

I have set up the batch04 directory as a client environment for testing. I generate a

vendor/ directory there thanks to configuration in the batch04/composer.json file. This

references project conv/popp in the batch03/ directory which it includes as a symlink.

batch04
 composer.json
 vendor/
 bin/
 conv.php
 popp
 conv -> ../../../batch03/
 # many other directories

If I take a peek inside my new binary file at vendor/bin/conv.php, I can see that

rather than copy over (or link to) conv.php the file that has been installed, there is a stub

which simply references the scripts/conv.php file within the package.

namespace Composer;

$GLOBALS['_composer_bin_dir'] = __DIR__;
$GLOBALS['_composer_autoload_path'] = __DIR__ . '/..' . '/autoload.php';

return include __DIR__ . '/..' . '/popp/conv/scripts/conv.php';

Notice also that it creates a couple of handy global variables. Of particular use to me

here is $_composer_autoload_path. Remember that I included autoload.php originally

using a relative path: __DIR__ . "../vendor/autoload.php". This path will no longer

be correct when my script is buried away under vendor/popp/conv/scripts/. Thanks

to the stub script that Composer has created, however, I can incorporate $_composer_
autoload_path into my require_once statement so that it is correct both when run

locally and when run from within vendor/.

Chapter 11 PHP on the Command Line

281

I’ll head back to batch03 and update my scripts/conv.php file to take advantage

of this:

namespace popp\ch24\batch03;

require_once($_composer_autoload_path ?? __DIR__ . "/../vendor/
autoload.php");

Now, I return to batch04/ where my test install lives and check that my script is sane:

$./vendor/bin/conv.php
Usage: ./vendor/bin/conv.php [options] [operands]

Options:
 -h, --help this help message
 -v, --verbose verbose mode
 -c, --console console mode
 -o, --output <file> output to file

not enough arguments

�Creating a Phar
So, we have seen how we might create a package suitable for distribution to Packagist for

inclusion in other projects. But that requires a certain amount of knowledge from script

users. You might also want to distribute a binary that can just be downloaded and run. A

Phar is just that. It is a bundle of resources combined into a single file (usually with the

.phar suffix) that can be run either directly or via PHP. A Phar still requires the presence

on the target system of a PHP interpreter, but, if that’s in place, it’s usually a pretty plug-

n-play experience for an end user. In this book, I have discussed or demonstrated the

Phar format in the context of phpDocumentor, PHPUnit, and Composer.

PHP itself provides a suite of tools for building your own Phar files. These are

documented at https://www.php.net/manual/en/book.phar.php. If you have created

your command-line script in a Composer context however, I recommend a tool

named phar-composer which takes a Composer environment and bundles it up into

Phar format.

Chapter 11 PHP on the Command Line

https://www.php.net/manual/en/book.phar.php

282

You can install phar-composer via Composer, but the recommended approach is to

acquire and run phar-composer itself as a Phar.

$ curl -JOL https://clue.engineering/phar-composer-latest.phar
$ mv phar-composer-*.phar phar-composer.phar
$ chmod 755 phar-composer.phar
$./phar-composer.phar --version

As already discussed, my version of the Composer project containing the scripts/
conv.php command-line tool is in a directory named batch03/. I have downloaded

composer-phar to a sibling directory at batch04 which is where I’m based for this

example. Before I run the tool, I must invoke composer update in batch03/ in order to

generate the project’s vendor/ directory and populate it with the latest dependencies.

$ cd ../batch03/
$ composer update
Loading composer repositories with package information
Updating dependencies
Lock file operations: 1 install, 0 updates, 0 removals
 - Locking ulrichsg/getopt-php (v4.0.3)
Writing lock file
Installing dependencies from lock file (including require-dev)
Package operations: 1 install, 0 updates, 0 removals
 - Installing ulrichsg/getopt-php (v4.0.3): Extracting archive
Generating autoload files
No security vulnerability advisories found.

Now, I can change back to my phar-composer directory and run a new

command: build.

$ cd -
$ php -d phar.readonly=off ./phar-composer.phar build ../batch03/
conv.phar

Why did I include that -d option? For security reasons, Phar writing is disabled in the

php.ini configuration by default. Adding this option ensures the readonly directive is

toggled off for the duration of the command’s execution. Here’s the output:

[1/1] Creating phar conv.phar

Chapter 11 PHP on the Command Line

283

 - Adding main package "popp/conv"
 - Adding composer base files
 - �Adding dependency "ulrichsg/getopt-php" from "vendor/ulrichsg/

getopt-php/"
 - Setting main/stub
 Using referenced chmod 0755
 Applying chmod 0755

 OK - Creating conv.phar (132.7 KiB) completed after 0s

And that should be it! I have generated a file named conv.phar which I can share

with my team members:

$./conv.phar -h
Usage: ./conv.phar [options] [operands]

Options:
 -h, --help this help message
 -v, --verbose
 -c, --console console mode
 -o, --output <file>

�Executing Shell Commands
This chapter is less about calling shell commands from PHP than it is about creating

utilities in PHP that can be called from the shell. In fact, calling external binaries,

“shelling out” as it’s sometimes dubbed, is often frowned upon. That’s because the

practice scales poorly in a web context and sets up dependencies that can be hard

to manage. On the other hand, if you’re creating a PHP script designed to run on the

command line, perhaps to perform some useful task in your project, then shelling out

might be just what you need. Such scripts are often quick and dirty utilities, creatures

of the shell. It makes perfect sense to build them to invoke other commands. If they’re

designed for use during development or deployment, then performance and scalability

is less likely to be a consideration than it would be in a web component.

PHP is a pragmatic language, and this book is for pragmatic programmers. So let’s

take a quick look at some of the options for shelling out.

Chapter 11 PHP on the Command Line

284

All the examples in this section will work with a shell command stored in the same

variable:

$command = "wc README.md";

The command wc calculates and outputs the number of lines, words, and characters

in a given file. wc README.md outputs the following when run on the command line in my

repository (once I’ve gotten around to creating a README.md file, of course):

120 511 3249 README.md

I’ll begin with passthru():

$nullOrFalse = passthru($command, $status);
// returns: null for success / false for failure
// command status: captured by $status variable reference
// output: raw passed to STDOUT (good for binary data)

The passthru() function accepts a command to run and an optional variable which,

if provided, will be populated by the exit status of the command. It returns null if the

given command has been provided or generates a ValueError if the command argument

is empty. The output of the given command is not captured by passthru(). Instead, it is

sent to STDOUT. Because it is not processed in any way, this command can be used in a

web context for generating binary data.

Note E xit codes in Unix-like systems run from 0 (success) to 255. Any nonzero
result is an error condition. On the command line, you can acquire the exit code of
the last command run with the $? variable. The “success” of a program execution
function is not related to the command’s exit code. The function’s return value
addresses the successful running of a command; the execution code is the
command’s own assessment of its success.

Similar to passthru(), the system() command sends text to the browser line by line,

making it better suited for text than binary output in a web context.

Chapter 11 PHP on the Command Line

285

$nullOrFalse = system($command, $status);
// returns: last line of output (false on failure)
// command status: captured by $status variable reference
// output: text passed to STDOUT

system() requires a command argument and optionally accepts a variable

to be populated with the exit status. The function returns the last line of the

command’s output.

If you need to capture a command’s output into an array, then exec() is the function

you want.

$lastline = exec($command, $output, $status);
// returns: last line of output (false on failure)
// command status: captured by $status variable reference
// output: added to $output array

Unsurprisingly, exec() requires a command argument. It optionally accepts two

further arguments. The first of these it will populate with an array of output lines. The

second, again, will contain the exit code. The method returns the last line of any output

(or false on failure).

Finally, for a quick hack, backticks will get the job done.

$output = `$command`; // same as `shell_exec()`
// returns: command output (null for error/no output, false if pipe can't
be established)
// command status: not available
// output: returned

This is as easy as anything. Simply wrap the command in backticks then assign, or

otherwise work with, the output. You won’t get the exit status, so this is not an option to

go for if you’re worried about a failure condition.

This is not an exhaustive list, but it should be enough for most needs. I summarize

the program execution functions in Table 11-2.

Chapter 11 PHP on the Command Line

286

Table 11-2.  Some Program Execution Functions

Function or Language
Construct

Output Exit Status Returns Notes

passthru($cmd,
$status)

Sent to STDOUT $status

populated

null on success Best for passing

through binary data

system($cmd,
$status)

Sent to STDOUT $status

populated

null on success Better suited to text

output

exec($cmd,
$output, $status)

$output

populated as

array

$status

populated

Last line of output

(or false on fail)

-

backticks (``) Returns output No status Output Identical to shell_
exec()

Note P assing untrusted data to exec() and its cousins is a huge security
risk. Do not pass along user-provided data to the shell without first checking and
sanitizing it (or, preferably, don’t pass it along at all).

�Summary
In this chapter, I covered much of what you need to build a user-friendly command-

line application in PHP. I looked at various ways of leveraging Composer for your script,

from autoloading, to accessing tools, to making scripts available for other users. I

covered command-line arguments and the thorny issue of parsing options. I examined

gathering data piped in from other commands and via user prompts and suggested a

strategy for encapsulating output. I used the composer-phar tool to generate a runnable

Phar archive for distribution. Finally, I compared some techniques for “shelling out” –

invoking shell commands from within your PHP scripts.

Chapter 11 PHP on the Command Line

287
© Matt Zandstra 2025
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_12

CHAPTER 12

Continuous Integration
In previous chapters, you’ve seen a plethora of tools that are designed to support a

well-managed project. Unit testing, documentation, build, and version control are all

fantastically useful. But tools, and testing in particular, can be bothersome.

Even if your tests only take a few minutes to run, you’re often too focused on coding

to run them. Not only that, but you have clients and colleagues waiting for new features.

The temptation to keep on coding is always there. But bugs are much easier to fix close

to the time they are hatched. That’s because you’re more likely to know which change

caused the problem and are better able to come up with a quick fix.

In this chapter, I introduce continuous integration, a practice that automates the

build and test process and brings together some of the tools and techniques you’ve

encountered in recent chapters.

This chapter will cover these topics:

•	 Defining continuous integration

•	 Preparing a project for CI

•	 Looking at Jenkins: A CI server

•	 Checking out and testing your code with Jenkins

•	 Introducing GitHub Actions

•	 Checking out your code and running automated tests with

GitHub Actions

https://doi.org/10.1007/979-8-8688-0779-4_12#DOI

288

�What Is Continuous Integration?
In the bad old days, integration was something you did after you’d finished the fun stuff.

It was also the stage at which you realized how much work you still had to do. Integration

is the process by which all of the parts of your project are bundled up into packages that

can be shipped and deployed. It’s not glamorous, and it’s actually hard.

Integration is tied up also with QA. You can’t ship a product if it isn’t fit for purpose.

That means tests. Lots of tests. If you haven’t been testing much prior to the integration

stage, it probably also means nasty surprises. Lots of them.

You know from Chapter 7 that it’s best practice to test early and often. Most of us

accept that this is the ideal, but how often does the reality match up?

If you practice test-oriented development (a term I prefer to test-first development,

because it better reflects the reality of most good projects I’ve seen), then the writing

of tests is less hard than you might think. After all, you write tests as you code anyway.

Every time you develop a component, you create code fragments, perhaps at the bottom

of the class file, that instantiate objects and call their methods. If you gather up those

throwaway scraps of code, written to put your component through its paces during

development, you’ve got yourself a test case. Stick them into a class and add them to

your suite.

Oddly, it’s often the running of tests that people avoid. Over time, tests take longer to

run. Failures related to known issues creep in, making it hard to diagnose new problems.

Also, you suspect someone else committed code that broke the tests, and you don’t have

time to hold up your own work while you fix issues that are someone else’s fault. Better to

run a couple of tests related to your work than the whole suite.

Failing to run tests, and therefore to fix the problems that they could reveal, makes

issues harder and harder to address. The biggest overhead in hunting for bugs is usually

the diagnosis and not the cure. Very often, a fix can be applied in a matter of minutes, set

against perhaps hours searching for the reason a test failed. If a test fails within minutes

or hours of a commit, however, you’re more likely to know where to look for the problem.

Software build suffers from a similar problem. If you don’t install your project often,

you’re likely to find that, although everything runs fine on your development box, an

installed instance falls over with an obscure error message. The longer you’ve gone

between builds, the more obscure the reason for the failure will likely be to you.

It’s often something simple: an undeclared dependency upon a library on your

system or some class files you failed to check in. These are easy to fix if you’re on hand.

But what if a build failure occurs when you’re out of the office? Whichever unlucky team

Chapter 12 Continuous Integration

https://doi.org/10.1007/979-8-8688-0779-4_7

289

member gets the job of building and releasing the project won’t know about your setup

and won’t have easy access to those missing files.

Integration issues are magnified by the number of people involved in a project. You

may like and respect all of your team members, but we all know that they are much

more likely than you are to leave tests unrun. And then, they commit a week’s work of

development at 4 p.m. on Friday, just as you’re about to declare the project good to go

for a release.

Continuous integration (CI) reduces some of these problems by automating the

build and test process.

CI is both a set of practices and a set of tools. As a practice, it requires frequent

commits of project code (at least daily). With each commit, tests should be run and

any packages should be built. You’ve already seen some of the tools required for CI, in

particular PHPUnit and Ansible. Individual tools aren’t enough, however. A higher-level

system is required to coordinate and automate the process.

Without the higher system, a CI server, it’s likely that the practice of CI will simply

succumb to our natural tendency to skip the chores. After all, we’d rather be coding.

Having a system like this in place offers clear benefits. First, your project gets built

and tested frequently. That’s the ultimate aim and benefit of CI. That it’s automated,

however, adds two further dimensions. The test and build happens in a different thread

to that of development. It happens behind the scenes and doesn’t require that you stop

work to run tests. Also, as with testing, CI encourages good design. In order for it to be

possible to automate installation in a remote location, you’re forced to consider ease of

installation from the start.

I don’t know how many times I’ve come across projects where the installation

procedure was an arcane secret known only to a few developers. “You mean you

didn’t set up the URL rewriting?” asks one old hand with barely concealed contempt.

“Honestly, the rewrite rules are in the Wiki, you know. Just paste them into the Apache

config file.” Developing with CI in mind means making systems easier to test and install.

This might mean a little more work up front, but it makes our lives easier down the line.

Much easier.

So, to start off, I’m going to lay down some of that expensive groundwork. In fact,

you’ll find that in most of the sections to come, you’ve encountered these preparatory

steps already.

Chapter 12 Continuous Integration

290

�Preparing a Project for CI
First of all, of course, I need a project to integrate continuously. Now, I’m a lazy soul, so

I’ll look for some code that comes with tests already written. The obvious candidate is

the project I created in Chapter 7 to illustrate PHPUnit. I’m going to name it userthing,

because it’s a thing, with a User object in it.

First of all, here is a breakdown of my project directory:

test/
 util/
 ValidatorTest.php
 persist/
 UserStoreTest.php
src/
 util/
 Validator.php
 domain/
 User.php
 persist/
 UserStore.php

As you can see, I’ve tidied up the structure a little, adding some package directories.

Within the code, I’ve supported the package structure with the use of namespaces.

I’ve separated my test directory from the rest of my source code. I’ll need to set up my

autoload rules so that PHP can locate all the system’s classes during testing. I’ll add a

composer.json file at the top level:

{
 "autoload": {
 "psr-4": {
 "userthing\\": ["src/", "test/"]
 }
 }
}

Now that I have a project, I should add it to a version control system.

Chapter 12 Continuous Integration

https://doi.org/10.1007/979-8-8688-0779-4_7

291

�CI and Version Control

Version control is essential for CI. A CI system needs to acquire the most recent version

of a project without manual intervention (at least once things have been set up).

I will add userthing to GitHub.

Note I cover the process of adding a project to GitHub in Chapter 6.

Figure 12-1 shows my GitHub project some time after initial import. We will cover

the included .github/workflows directory shortly.

Figure 12-1.  The userthing GitHub repository

Chapter 12 Continuous Integration

https://doi.org/10.1007/979-8-8688-0779-4_6

292

�Unit Tests

Unit tests are the key to continuous integration. It’s no good successfully building a

project that contains broken code. The easiest way to install it is via Composer.

$ composer require --dev phpunit/phpunit

This is the approach I’ll take for my example. Because PHPUnit will be installed

under the vendor/ directory, my development directory will remain independent of the

wider system.

Here’s my complete composer.json:

{
 "require-dev": {
 "phpunit/phpunit": "^12.1"
 },
 "autoload": {
 "psr-4": {
 "userthing\\": ["src/", "test/"]
 }
 }
}

Because I ran composer require, I also created a vendor/ directory which provides

me with the phpunit script and autoload.php which handles autoloading for my

application.

Note I covered Composer in Chapter 5.

In Chapter 7, I wrote tests for a version of the userthing code I’ll be working with in

this chapter too. Here, I run them once again (from within my project directory), to make

sure my reorganization has not broken anything new:

$./vendor/bin/phpunit test/

After a few false starts and quick fixes, my test run confirms that things look

relatively sane:

PHPUnit 11.3.1 by Sebastian Bergmann and contributors.

Chapter 12 Continuous Integration

https://doi.org/10.1007/979-8-8688-0779-4_5
https://doi.org/10.1007/979-8-8688-0779-4_7

293

Runtime: PHP 8.3.7

....... 7 / 7 (100%)

Time: 00:00.021, Memory: 8.00 MB

OK (7 tests, 7 assertions)

I’ll add, commit, and push my composer.json file along with any other changes.

Remember that you should not commit the auto-generated vendor/ directory. This

should be generated afresh during the build process on a target environment.

�Getting and Installing Jenkins
So, I have some useful tests that I can use to monitor the basic sanity of my project. Of

course, left to myself I’d soon lose interest in running them. In fact, I’d probably revert

to the old idea of an integration phase and pull out the tests only when I’m close to a

release, by which time their effectiveness as early-warning systems will be irrelevant.

What I need is a CI server to build my project and run the tests for me.

Jenkins (formerly named Hudson) is an open source continuous integration server.

Although it is written in Java, Jenkins is easy to use with PHP tools. That’s because

the continuous integration server stands outside of the projects it builds, kicking off

and monitoring the results of various commands. Jenkins also integrates well with

PHP because it is designed to support plug-ins, and there is a highly active developer

community working to extend the server’s core functionality.

Note  Why Jenkins? Jenkins is very easy to use and extend. It is well established,
and it has an active user community. It’s free and open source. Plug-
ins that support integration with PHP (and that includes most build and test tools
you might think of) are available. There are many CI server solutions out there,
however. A previous version of this book focused on CruiseControl (http://
cruisecontrol.sourceforge.net/), and this remains a good option. We will
also shortly examine GitHub Actions which is also a compelling alternative.

Chapter 12 Continuous Integration

http://cruisecontrol.sourceforge.net/
http://cruisecontrol.sourceforge.net/

294

�Installing Jenkins
The Jenkins site provides good installation instructions at https://www.jenkins.io/
doc/book/installing/.

I will opt for the Docker approach, which is a great way to get up and running

without worrying too much about your host environment. Here’s how you might run

a Docker Jenkins container according to the documentation for the official image at

https://github.com/jenkinsci/docker/blob/master/README.md:

$ docker run \
 -p 8080:8080 \
 -p 50000:50000 \
 --restart=on-failure \
 -v jenkins_home:/var/jenkins_home \
 jenkins/jenkins:lts-jdk17

That will get you a container running the Jenkins system on a Debian distribution.

However, I will want to install and test the userthing application, which means I will

need PHP.

Note A lthough, for the sake of simplicity, I will initially build and run tests within
the main Jenkins container, it is a better idea to configure one or more remote
Jenkins agents to perform builds under the control of a central node. I will cover
this approach later in the chapter.

In this chapter, I’m assuming a basic knowledge of Docker. If you need a refresher,
I cover Docker in Chapter 9.

Luckily, it’s very easy to add PHP 8.3 to a Debian system. You can find

documentation for a popular approach at https://deb.sury.org. I can use those

instructions (specifically at https://packages.sury.org/php/README.txt) as the basis

of a script which, combined with a Dockerfile, can be deployed to create a PHP-capable

environment based on the official Jenkins Docker image. Here’s the Dockerfile:

Chapter 12 Continuous Integration

https://www.jenkins.io/doc/book/installing/
https://www.jenkins.io/doc/book/installing/
https://github.com/jenkinsci/docker/blob/master/README.md:
https://doi.org/10.1007/979-8-8688-0779-4_9
https://deb.sury.org
https://packages.sury.org/php/README.txt

295

FROM jenkins/jenkins:lts-jdk17

USER root

COPY --chmod=0755 install-php .
RUN ./install-php

USER jenkins

Here’s that referenced install-php script:

apt-get update
apt-get install -y curl lsb-release
curl -sSLo /usr/share/keyrings/deb.sury.org-php.gpg https://packages.sury.
org/php/apt.gpg
sh -c 'echo "deb [signed-by=/usr/share/keyrings/deb.sury.org-php.gpg]
https://packages.sury.org/php/ $(lsb_release -sc) main" > /etc/apt/sources.
list.d/php.list'
apt-get update
apt-get install -y php8.3 php8.3-cli composer php8.3-dom php8.3-simplexml
php8.3-mbstring

I build myself an image named jenkins_php like this:

$ docker build . --tag=jenkins_php

With that image in place, I can adapt the docker run call we’ve already seen to create

a new, PHP-capable Jenkins container from the jenkins_php image:

$ docker network create jenkins
$ docker run \
 -p 8080:8080 \
 -p 50000:50000 \
 --restart=on-failure \
 -v jenkins_home:/var/jenkins_home \
 --network jenkins \
 jenkins_php

Before invoking docker run, I create a bridge network named jenkins, and I join the

new container to it using the --network option. This becomes useful later when I need

to connect an agent node to the same network. Also, note the jenkins_home volume.

Chapter 12 Continuous Integration

296

This does not exist on my local system, so it will be created as a docker volume. This will

persist across containers, so that I can tear down and reinstall my container without

losing my Jenkins configuration. This Docker feature came in very handy during the

writing of this chapter!

Here is an extract from the docker run command’s output:

Jenkins initial setup is required. An admin user has been created and a
password generated.
Please use the following password to proceed to installation:

73e8df01b1594263a506aee84ff9630e

This may also be found at: /var/jenkins_home/secrets/initialAdminPassword

I have configured Jenkins run on the default port of 8080. When I fire up my browser

and visit http://localhost:8080/, I see something like the screen in Figure 12-2.

Figure 12-2.  The install screen

Chapter 12 Continuous Integration

297

The instructions in Figure 12-2 are pretty self-explanatory so I grab the password

from the Docker command’s output (yours would be different, of course) and enter

it into the provided text field. Then, I’m presented with a choice: install with popular

plug-ins or pick my own? I opt for the most popular plug-ins, which I know will get

me support for Git, among other things. If you want a slim system, you might choose

to select only those plug-ins you need. After that, it’s time to create a username and

password before finishing up installation.

�Installing Jenkins Plug-ins
Jenkins is highly customizable, and although I’m going to stick to basic build and test

in this chapter, you’ll likely want to perform more operations on your code over time.

From within the Jenkins web interface, you can check on what’s available by clicking

on Manage Jenkins in the main screen and then choosing Plugins from the panel. From

there, you can check your Installed plugins or add new ones from Available plugins.

You can see the Jenkins plug-in page in Figure 12-3.

Figure 12-3.  The Jenkins plug-in screen

Chapter 12 Continuous Integration

298

�Setting Up Git in Jenkins
Before I can use the Git plug-in, I need to ensure that I have access to a Git repository. In

Chapter 6, I described the process of generating a public key in order to access a private

Git repository. If you’ve worked through that process, you should already have access to

a public and private key pair. As a reminder, here’s how you can create a new pair and

add the public key to the Git repository.

$ ssh-keygen -f ~/.ssh/jenkins_gitub_key

This command will create two files: ~/.ssh/jenkins_github_key for the private key

and ~/.ssh/jenkins_github_key.pub for the public key.

Note U sually, when you run ssh-keygen, the output location is important. The
.ssh directory is where the SSH daemon looks for its credentials. In this chapter,
though, I will be acquiring the contents of these files and passing them directly to
clients and servers. Neither the locations nor the names of the files really matter
very much beyond that unless you also want to use the keys with your ssh
command.

Now, I can add the public key to my userthing GitHub project as shown in

Figure 12-4.

Chapter 12 Continuous Integration

https://doi.org/10.1007/979-8-8688-0779-4_6

299

Figure 12-4.  Adding a deploy key to a GitHub project

GitHub is ready for Jenkins, but I still need to apply the private key to my Jenkins

environment. Before I do that, though, I can save myself much frustration by setting up

my host key configuration. That is, the information that is usually stored in the ~/.ssh/
known_hosts file when you connect to a new server for the first time via SSH. Failing to

have that information in place in Jenkins will likely prevent your Git connection from

succeeding – the topic of many forum queries and Stack Overflow wails. You can grab the

string you need from the command line by running:

$ ssh-keyscan -H github.com

Chapter 12 Continuous Integration

300

Once I have that output, I head to Manage Jenkins from the main screen and choose

Security. I scroll down to Git Host Key Verification Configuration. From the Host Key

Verification Strategy drop-down, I choose Manually provided keys. I add the keyscan

value there and save.

Time to set up a job with my private key.

From the Jenkins dashboard, I choose Create Job, name my job (userthing in my

case), choose Freestyle Project, and hit OK. I am presented with a configuration screen.

From the left-hand menu, I select Source Code Management and click the Git radio

button to reveal the input fields I need. I add my Repository URL (this is the value you

would use for a git clone operation). I ignore the immediate error message and choose

Add under Credentials.

Note I could also have applied my Git credentials from the Manage Jenkins
screen. I’ll take that approach below when I add another key.

There is only one option on offer by default – Jenkins. Most of the fields then

presented are self-explanatory. The essential requirements are Kind which I set to SSH

Username with private key, Username which requires the GitHub user, poppbook in

my case, and Enter directly for the Private Key. I select and paste in the private key I

generated earlier. You can see a portion of that interface in Figure 12-5.

Chapter 12 Continuous Integration

301

Figure 12-5.  Adding a secret key to the Git section in the Jenkins job
configuration screen

Once I’ve added that, the connection error message should disappear, and I can

proceed with some confidence that Jenkins can access my Git project. Figure 12-6 shows

that happy state.

Chapter 12 Continuous Integration

302

Figure 12-6.  Git configured for a Jenkins job

Note T here are also various plug-ins you can use to manage Git credentials
including SSH Agent, OAuth Credentials, and Kubernetes Credentials.

One more step is needed before I can perform an initial build. I must choose the

branch. I scroll a little further until I find Branches to build. I change the default to main

(the branch I wish to build and test) and save my configuration for now.

�Configuring Composer and PHPUnit
Of course, it’s not enough to check out the code. I need to run composer install to

prepare the build for testing. I have configured the Jenkins environment for this by

creating the jenkins_php image. Remember, thanks to the jenkins_home volume which

persists independently of containers, I can regenerate this image with new affordances

as I need them, and any containers configured to use it will retain state across iterations.

Chapter 12 Continuous Integration

303

Note I n the longer term, it is not advisable to share your core Jenkins node with
your build environment. A more mature configuration would make use of agents. I
cover this below.

So, how can I add composer install to my build? Jenkins provides a Build Steps

menu item in the job configuration screen. From there, as you can see in Figure 12-7, I

can easily add Execute shell build steps. In fact, I configure Jenkins to run both Composer

and PHPUnit.

Figure 12-7.  An Execute shell build step

Now, at last, I can confirm that I have a testable environment.

Chapter 12 Continuous Integration

304

�Running the First Build
In saving the configuration, I return to my job’s main screen. From there, I choose Build

Now to run the build process. This is the moment of truth! A link for the build should

appear in the Build History area of the screen. I click that and then Console Output

to confirm that the process went ahead as hoped. You can see some of the output in

Figure 12-8.

Figure 12-8.  Console output

So, Jenkins has successfully checked the userthing code out from the Git server and

run both composer install and the PHPUnit tests. Now that the basics are set up, it is

easy enough to add additional features such as code coverage reports as needed.

�Triggering Builds
All of this automation is almost useless if someone in your team must remember to kick

off each build with a manual click. Naturally, Jenkins provides mechanisms by which

builds can be automatically triggered.

Chapter 12 Continuous Integration

305

You can set Jenkins to build, or to poll the version control repository, at specified

intervals. These can be set using cron format, which provides fine, although somewhat

arcane, control over scheduling. Luckily, Jenkins provides good online help for the

format, and there are simple aliases if you don’t require precision scheduling. The aliases

include @hourly, @midnight, @daily, @weekly, and @monthly. In Figure 12-9, I configure

the build to run once daily, or every time the repository changes, based upon a poll for

changes that should take place once an hour.

Figure 12-9.  Scheduled builds and SCM polling

Polling is expensive and scheduling is crude. Luckily, there is a smarter way of

doing things. I can set up a webhook in my GitHub configuration area to notify Jenkins

when a push (or any other important event) occurs. You can see that configuration in

Figure 12-10.

Chapter 12 Continuous Integration

306

Figure 12-10.  Setting up a webhook in GitHub

Because my local environment is not publicly available, I have used an API gateway

system named Ngrok (https://ngrok.com/) to forward incoming requests to my Jenkins

host at http://localhost:8080. Note that the trailing slash on /github-webhook/ is

required.

Note N grok installs a tiny app on your local system which establishes a
connection to a remote server. This server listens on a custom, publicly available,
URL which can be reached by external services (like GitHub or Bitbucket). When
a webhook request (for example) is sent to the public URL, the payload is passed
along to the listener on your system. This then invokes a configured local URL. It
is a great workaround for development systems that need to be contacted
occasionally by external services but which should not become public-facing.
You can find installation instructions at https://ngrok.com/docs/getting-
started/.

Chapter 12 Continuous Integration

https://ngrok.com/
https://ngrok.com/docs/getting-started/
https://ngrok.com/docs/getting-started/

307

I have configured GitHub to send an application/json notification to the /github-
webhook/ endpoint.

In my Jenkins job configuration, I swap out the clumsy Build periodically and Poll

SCM options, replacing them with GitHub hook trigger for GITScm polling which makes

this /github-webhook/ URL available. This option also has Jenkins poll GitHub but

only in response to a webhook notification. This means that builds will be triggered

only as needed and without the need for scheduled polling. Figure 12-11 shows this

configuration.

Figure 12-11.  Webhook trigger for GitScm polling

I can now confirm my trigger by making a trivial change to my userthing branch,

committing it, and then pushing to GitHub. Within seconds, I see a new build

commencing on my Jenkins dashboard!

Chapter 12 Continuous Integration

308

�A Jenkins Agent
You may have spotted a huge problem with the architecture I have stitched together so

far. I created an environment which will happily build my PHP project. That’s because I

am using a custom image that is based on the jenkins/jenkins:lts-jdk17 image. That

works nicely because the image includes PHP 8.3. But what if our team also managed a

project which absolutely had to run on PHP 8.2? My clever solution won’t stretch very far

as I add different projects with wildly differing or even mutually exclusive requirements.

This is where Jenkins agents come in. With this model, the main Jenkins system

acts as a controller node managing any number of remote agents, each of which

can be configured to run jobs. This fixes my conflicting requirements problem. It

also distributes the work that Jenkins has to perform, so that resources can be better

managed across multiple servers.

�Creating a PHP-Capable Agent Image

Once again, I’m going to take advantage of Docker for my example. I’ll begin with a very

simple Dockerfile (which I’ll place in its own directory):

FROM jenkins/ssh-agent:jdk17

COPY --chmod=0755 install-php .
RUN ./install-php

You have already seen the install-php script. It will simply deploy PHP 8.3 and

Composer into a new container based on the jenkins/ssh-agent:jdk17 image. I will

place a copy of this script in the directory containing my new Dockerfile so that it will

be accessible.

Now, I can build myself a PHP-capable Jenkins agent named php-agent:

$ docker build . -t php-agent

That’s it for build! But I still need to manage the communication between the main

Jenkins node and the new agent.

Chapter 12 Continuous Integration

309

�Another Key Pair

Before I can usefully start the agent, I must create another key.

$ ssh-keygen -f ~/.ssh/jenkins_agent_key

As before, this command will create two files: ~/.ssh/jenkins_agent_key for the

private key and ~/.ssh/jenkins_agent_key.pub for the public key. Note that the name

of the key is not important. The generated files do not even have to remain under ~/.
ssh/. We will be assigning the keys to configuration in both the main Jenkins node (the

private key will go there) and the agent (it will get the public key as an environment

variable). This will allow the main node to manage the agent.

So, I must store the private key in Jenkins. From the main screen, I click Manage

Jenkins and select Credentials, then (Global). That takes me to the global credentials

management screen. From here, I can click Add Credentials. I am presented a screen

that may be familiar. I negotiated a version of the same form when I installed my GitHub

key. This time, I add values as specified in Table 12-1. Then, I paste in the private key I

generated to ~/.ssh/jenkins_agent_key, and then I click Create.

Table 12-1.  Fields for Adding Global Key-Based Credentials

Field Value Required?

Kind SSH Username with password Yes

Scope Global Yes (default)

ID Jenkins No

Description Jenkins key No

Username jenkins Yes (important)

Jenkins should now be ready to talk to the agent I configured in the previous section.

Mind you, it does not yet exist yet. I need to create the container.

Chapter 12 Continuous Integration

310

�Running the Agent

Remember that I have an image tagged php-agent. I need to create a container based on

that. The built-in node already has my jenkins_agent private key. The new container

will need the corresponding public key provided as an environment variable. Because

that’s verbose, I’ll create a tiny script to grab it and incorporate it into the docker run

invocation:

MYPUB=`cat ~/.ssh/jenkins_agent_key.pub`
docker run -d --rm \
 --name=agent1 \
 -p 2200:22 \
 -e "JENKINS_AGENT_SSH_PUBKEY=${MYPUB}" \
 --network jenkins \
 php-agent

So, I create a new container based on the php-agent image. I name it agent1. Here is

where my earlier creation of the jenkins network comes in handy. I use the --network

option to join agent1 to it. Now, the container will be accessible on the network as

agent1. I pass the container the public key in the form of an environment variable:

JENKINS_AGENT_SSH_PUBKEY. I map the external port 2200 to the internal ssh port (22).

Of course, at some point, it’s likely that you will host your agent and controller nodes

on different machines. At this point, you can dispense with the Jenkins bridge network. I

covered some of the basics of Docker networking in Chapter 9.

�Configuring Jenkins to Speak to the Agent

Once that’s running, I have two CI containers in operation – the Jenkins built-in node

and a PHP-capable agent. Let’s see if agent1 is accessible.

From the main screen, I head to Manage Jenkins and select Nodes. Once at the Nodes

screen, I can click New Node. I name it agent1 (this name matches the name of my

Docker container for convenience – but the match is not necessary here) and select the

only Type option available: Permanent Agent (as shown in Figure 12-12).

Chapter 12 Continuous Integration

https://doi.org/10.1007/979-8-8688-0779-4_9

311

Figure 12-12.  Initial creation of an agent in Jenkins

Then, I click Create. Here’s where the real configuration happens. Table 12-2 shows

the values I set. You should be able to leave blank or accept the defaults for any fields not

specified in the table.

Chapter 12 Continuous Integration

312

Table 12-2.  Fields for Associating an Agent with Jenkins

Field Value Required?

Name agent1 (or your own option) Yes

Description Anything you want No

Remote root directory /home/jenkins/ Yes

Launch method Launch agents via SSH Yes

Host agent1 (the name here is important – it should be the

container name if using a bridge network as in this example,

otherwise the host on which the agent is running)

Yes

Credentials Choose your key from the drop-down Yes

Host Key Verification
Strategy

Manually trusted key Verification Strategy Yes

Once I have filled out the fields specified in Table 12-2, I click Save to create my agent

configuration, and I’m sent back to the Nodes screen. I click agent1 and arrive at the new

agent’s management screen. From there, if all is well, I can connect to the agent. I check

on the progress of that by viewing the Log as shown in Figure 12-13.

Chapter 12 Continuous Integration

313

Figure 12-13.  Log showing successful agent connection

Figure 12-13 shows a successful connection. Back in the real world, of course,

you may encounter an error and be forced to troubleshoot. If you run into problems,

confirm that the agent is running and is configured with the expected port (the default

of 22 within the jenkins network in my case). Check that your agent’s key is configured

with the username jenkins (find your key configuration under Manage Jenkins ➤

Credentials). Return to your agent configuration (located under Manage Jenkins ➤

Nodes), and double-check the values there. In particular, ensure that you have specified

the correct host, port, key, and remote directory. Once you have one agent managed

from the built-in node, it should be very easy to add more!

Chapter 12 Continuous Integration

314

�Associating Jobs with the Agent

Now that I have a working agent, I can associate my userthing job with it in the job

configuration screen (from the main screen, click on the job name, and then select

Configure from the left-hand menu). The option to force a build to occur on an agent

rather than the built-in node can be found in the General section. Check Restrict where

this project can be run, and enter the name of the agent. You can see this configuration in

Figure 12-14.

Figure 12-14.  Associating a job with an agent

If you are running many agents, you might want to bundle groups together using

labels. For my purposes, though, I can simply create a one-to-one relationship between

the job and the agent using the agent name. From now on, my userthing job will build

on agent1.

Chapter 12 Continuous Integration

315

Finally, then, I’ll kick off a build and watch my agent in action. Thanks to my

configuration, it should once again just be a matter of committing and pushing to the

userthing repository on GitHub. Sure enough, seconds after pushing to the main branch,

the build appears on my dashboard. You can see the build report in Figure 12-15.

Figure 12-15.  A job run on an agent node

�GitHub Actions
When it comes to continuous integration (and the related topic of continuous delivery),

Jenkins is far from the only game in town. These days, the popular Git platforms also

offer CI solutions. Since GitHub is the largest of these (and since I happen to have used it

to manage the userthing repository), I will replicate this chapter’s simple example using

GitHub Actions.

Chapter 12 Continuous Integration

316

�Why GitHub Actions?
GitHub Actions (https://docs.github.com/en/actions) provide highly configurable

workflow systems that you can use to analyze, test, or deploy code from within your

repository. These actions are individual units of configurable functionality that you can

source or even create. They can be stitched into jobs within workflow scripts which you

can define within your code repository.

Although they are less mature than venerable systems like Jenkins, they offer some

distinct advantages. In particular, your workflows are, by definition, embedded into your

version control repository, making it easy to trigger workflows in response to key events

(such as pushes to particular branches, pull requests, or even issues raised) without

the song and dance that is necessary to link external tools. Such integration means that

you win functionality without the need for a separate CI platform, thereby reducing the

number of components in your stack. There are many pre-built actions available (we will

encounter php-actions a little later, for example), and, because the GitHub Actions uses

Docker’s containerization at its core, it’s also relatively easy to create your own.

There is, of course, a downside. Like most SaaS offerings, GitHub Actions are

something of a black box. You are at the mercy of a closed implementation. This means

that you may not be able to patch defects and may, at some point, hit arbitrary rate limits

or changes in pricing or terms of use. The use of GitHub Actions may also lock you in

to GitHub, making it harder to migrate to another version control repository without

reimplementing some or all of your CI systems.

Let’s take a tour of some of the basics.

�The Basics
You can create a workflow script directly within your project. I am already working

with userthing – a private repository on GitHub. I’ll kick things off by creating a file at

.github/workflows/run-tests.yml. Here it is:

name: Run Tests
run-name: Test run intiated by ${{ github.actor }}
on: push
jobs:
 build-test:
 runs-on: ubuntu-latest

Chapter 12 Continuous Integration

https://docs.github.com/en/actions

317

 steps:
 - name: envelope
 run: |
 echo "event -- ${{ github.event_name }}"
 echo "on -- ${{ runner.os }}"
 �echo "branch/repo -- ${{ github.ref_name }} / ${{ github.

repository }}"

Note T he .github/workflows/ directory should be placed in your project’s
root directory.

As you may recognize, this is a YML file. The name element defines the high-level

title. Once you have committed and pushed your workflow file and selected the Actions

tab in your GitHub repository, you will find the name displayed in the left-hand side

menu. The value assigned to the run-name keyword is applied to individual runs. As you

can see, this supports contextual information, so it may vary from run to run. In this case,

I reference github.actor (the GitHub user who initiated the run). A context is an object

which provides variable information. Contexts support properties – which can be strings

or other objects. The run-name string can access two contexts: github which contains

information about the workflow run and inputs which can access custom fields passed

in from another workflow. Table 12-3 shows just a few of the many properties provided

by github. You can find the full list and much more about contexts at https://docs.
github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/
accessing-contextual-information-about-workflow-runs.

Table 12-3.  Some github Context Object Properties

Property Description

github.actor The username associated with a run

github.event_name The name of the event that triggered the workflow

github.ref_name The branch or tag associated with the run

github.repository The full repository name

github.repositoryUrl The repository URL

Chapter 12 Continuous Integration

https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/accessing-contextual-information-about-workflow-runs
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/accessing-contextual-information-about-workflow-runs
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/accessing-contextual-information-about-workflow-runs

318

The on keyword defines the event or events that should trigger a workflow. This can

be as simple as a single string like push, or pull_request, or it can become much more

complex. To trigger a workflow when a pull request is opened and targets the develop

branch, for example, you’d specify:

on:
 pull_request:
 types:
 - opened
 branches:
 - 'develop'

You can learn more about the gory details of events that trigger workflows at

https://docs.github.com/en/actions/writing-workflows/choosing-when-your-
workflow-runs/events-that-trigger-workflows.

A workflow is made up of one or more jobs. These will run in parallel by default, but

they can be configured run consecutively. I will only define a single job in my Run tests

workflow. I name this build-test.

Within the build-test job, then, the runs-on keyword defines the container in

which my job will be run. Although you can self-host containers, the standard GitHub-

hosted containers include variations on ubuntu, macos, and windows. You can read

more about your options at https://docs.github.com/en/actions/using-github-
hosted-runners.

A job is made up of multiple steps. A step can run a command or invoke an action.

Each step runs in its own process and has access to the workspace (the container defined

by runs-on). There are various sub-elements to a step. So far, you’ve seen name which

defines a name for display in a run report and run which invokes a command on the

shell (or multiple commands if you use multiline YAML syntax, as I have here).

Well, that’s a lot of explanation for what amounts to a glorified Hello, World example!

Nevertheless, it has set me up for future fragments which will be somewhat less verbose.

Let’s try things out at this stage, though.

Because I have set the on element to push, all I need to do to get the workflow to play

is commit and push the file at .github/workflows/run-tests.yml.

$ git add .github/workflows/run-tests.yml
$ git commit -m'added workflow';
$ git push origin main

Chapter 12 Continuous Integration

https://docs.github.com/en/actions/writing-workflows/choosing-when-your-workflow-runs/events-that-trigger-workflows
https://docs.github.com/en/actions/writing-workflows/choosing-when-your-workflow-runs/events-that-trigger-workflows
https://docs.github.com/en/actions/using-github-hosted-runners
https://docs.github.com/en/actions/using-github-hosted-runners

319

I will see nothing but the standard confirmation of a Git commit and push on the

command line. It should be a different matter in the GitHub Web environment, however.

From my userthing repository screen, when I click the Actions tab, I should find that

my script has run. In fact, by the time I snapped Figure 12-16, I had already run it a

few times!

Figure 12-16.  An early version of the “Run Tests” workflow

From there, I can click my most recent run and, by selecting Usage, view my run

output. You can see the Envelope step in Figure 12-17.

Chapter 12 Continuous Integration

320

Figure 12-17.  The Envelope step from a “Run Tests” workflow run

�Checking Out the Code
For my next step, I need to check out the repository to my workspace. For this, I’ll use my

first action:

name: Run Tests
run-name: Test run intiated by ${{ github.actor }}
on: push
jobs:
 build-test:
 runs-on: ubuntu-latest
 steps:
 # ...
 - name: Check out repository code
 uses: actions/checkout@v4

Chapter 12 Continuous Integration

321

An action performs a function in your workflow. It takes the form of a JavaScript

file or a Docker container, but from the perspective of a workflow, it is simply a

component that can incorporate a steps block. You can find actions for many

tasks via the GitHub Marketplace at https://github.com/marketplace. The

documentation for each action provides a Usage panel. As you can see, the uses

keyword includes the action (comprising an action string and an optional version

indicator after the @ character). If you need to specify any supported inputs to the

action, you can use the with keyword. Although, as you can see in the documentation

at https://github.com/marketplace/actions/checkout, actions/checkout

does support many inputs, the default behavior is good enough for my purposes.

You can see the actions/checkout action in operation in Figure 12-18.

Figure 12-18.  The actions/checkout action

�Running Composer
Next, of course, I must run composer install on my checked out code. A marketplace

search reveals php-actions/composer. The documentation tells me that the latest

version is v6.

Chapter 12 Continuous Integration

https://github.com/marketplace
https://github.com/marketplace/actions/checkout

322

name: Run Tests
run-name: Test run intiated by ${{ github.actor }}
on: push
jobs:
 build-test:
 runs-on: ubuntu-latest
 steps:
 # ...
 - name: Composer
 uses: php-actions/composer@v6

Note I n fact, php-actions is a collection of many useful actions for CI on
GitHub. Find them at https://github.com/php-actions/.

I add the step to my job then commit and push. Figure 12-19 shows the Composer

step from my workflow run.

Figure 12-19.  The php-actions/composer action

Chapter 12 Continuous Integration

https://github.com/php-actions/

323

�Running PHPUnit
All I need to do now to catch up with my Jenkins example is add a step for running my

tests. As you would expect, there is a php-actions/phpunit action.

name: Run Tests
run-name: Test run intiated by ${{ github.actor }}
on: push
jobs:
 build-test:
 runs-on: ubuntu-latest
 steps:
 # ...
 - name: PHPUnit Tests
 uses: php-actions/phpunit@v4
 with:
 bootstrap: vendor/autoload.php
 args: test/

This is the first example here of an action that uses the with keyword to gather

further information. Without bootstrap, for example, my classes would not be able to

find one another. The action is smart enough to invoke the version of PHPUnit I specified

in my composer file – although I could have passed a version argument to with.

Figure 12-20 shows my tests in action.

Chapter 12 Continuous Integration

324

Figure 12-20.  The php-actions/phpunit action

�What Next?
Now that you know the basics of both Jenkins and GitHub Actions, the rest is up to you.

Once you have automated your PHPUnit tests, it’s easy enough to add code coverage

reports, for example. Or you might want to check that any pull requests comply with

coding standards or pass a baseline PHPStan level. You’ll also want to check out the

notification options offered by both platforms. If a build fails in obscurity, then, arguably,

there was not much point to the automation.

This is a chapter about continuous integration, but you may also have seen

references to CI/CD. The CD part of that acronym stands for continuous delivery.

To grossly simplify a topic that justifies its own book, this means deploying code

automatically once all automated checks pass. Of course, you’d want to be satisfied with

the quality and extent of your tests before you implemented CD, but thanks to tools

such as Ansible, both GitHub Actions and Jenkins are more than capable of driving a CD

pipeline.

Chapter 12 Continuous Integration

325

�Summary
In this chapter, I prepared a small project for CI. In addition to the code and some

sample unit tests, I configured Composer to support autoloading and install PHPUnit.

I created a GitHub repository. Then, I set up Jenkins with Docker and showed you how

to add a project to the system and automate building and testing in response to GitHub

events. I introduced Jenkins Agents which allow you to separate build environments

from the built-in node. Finally, I introduced GitHub Actions and ran through a similar

set of build and test steps.

Chapter 12 Continuous Integration

327
© Matt Zandstra 2025
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_13

CHAPTER 13

PHP Practice
When I first started learning about programming, picking shiny thick-backed tomes from

the shelves in a London bookshop, I discovered worlds of possibility. I soon encountered

unexpected practical barriers, however. Just how could I get those Perl algorithms to

dance on the server? My Java code compiled locally, but I had no idea how it should

be packaged and delivered. Of course, the answers were out there online, and there

were books that covered them too. I found my way to a book about the Unix shell, for

example, when I discovered that for some arcane reason (permissions) I could not write

any files from my CGI scripts. Nonetheless, the shiniest, most exciting programming

books treated issues such as documentation, testing, and deployment with a somewhat

dismissive air, as if these were minor matters that could be left to the reader to sort out.

They were right. I sorted them out. But not without much trial, error, and frustration.

The chapters in this volume, therefore, address some of the issues I might have

wished were given more prominence back when I was first sorting my classes from my

objects. In this chapter, I recap some of these topics:

•	 Testing: Why you should do it.

•	 Standards and standards tools: Keeping your code compliant and

bug-free.

•	 Inline documentation: Treating your colleagues (and your future self)

with kindness.

•	 Development environments: Using virtualization and containerization

to build sandboxes to play in.

•	 Version control: Branch and share code; roll back when things

go wrong.

•	 Build and deployment: Manage dependencies and configuration; get

your code into the world.

https://doi.org/10.1007/979-8-8688-0779-4_13#DOI

328

•	 Command-line scripting: PHP is not just for the Web.

•	 Continuous integration: Always be building, always be testing.

�Practice
The issues that I covered in this volume are often ignored by texts and coders alike. In

my own life as a programmer, I discovered that these tools and techniques were at least

as relevant to the success of a project as design. There is little doubt that issues such as

documentation and automated build are less revelatory in nature than more abstract

wonders such as the Composite pattern.

Note  Let’s just remind ourselves of the beauty of Composite: a simple inheritance
tree whose objects can be joined at runtime to form structures that are also trees
but are orders of magnitude more flexible and complex. Multiple objects share a
single interface by which they are presented to the outside world. The interplay
between simple and complex, multiple and singular, has got to get your pulse
racing – that’s not just software design, it’s poetry.

Even if issues such as documentation and build, testing, and version control are

more prosaic than patterns, they are no less important. In the real world, a fantastic

design will not survive if multiple developers cannot easily contribute to it or understand

the source. Systems become hard to maintain and extend without automated testing.

Without build tools, no one is going to bother to deploy your work. As PHP’s user

base widens, so does our responsibility as developers to ensure quality and ease of

deployment.

A project exists in two modes. A project is its structures of code and functionality –

the logical machine. In a less abstract sense, it is also a set of files and directories, a

ground for cooperation, a set of sources and targets, and a subject for transformation.

In this sense, a project is a system from the outside as much as it is within the logic of

its code. Mechanisms for build, testing, documentation, and version control require

the same attention to detail as do the routines such mechanisms support. Focus on the

metasystem with as much fervor as you do on the system itself.

Chapter 13 PHP Practice

329

�Testing
Although testing is part of the framework that one applies to a project from the outside,

it is intimately integrated into the code itself. Because total decoupling is not possible,

or even desirable, test frameworks are a powerful way of monitoring the ramifications

of change. Altering the return type of a method could influence client code elsewhere,

causing bugs to emerge weeks or months after the change is made. A test framework

gives you half a chance of catching errors of this kind (the better the tests, the better the

odds here).

Testing is also a tool for improving object-oriented design. Testing first (or at least

concurrently) helps you to focus on a class’s interface and think carefully about the

responsibility and behavior of every method. I introduced PHPUnit, which is used for

testing, in Chapter 7.

�Standards and Standards Tools
I am a contrarian by nature. I hate being told what to do. Words like compliance instantly

invoke a fight-or-flight response in me. But counterintuitive as it may seem, standards

drive innovation. That is because they drive interoperability. The rise of the Internet

was fueled in part by the fact that open standards are built into its core. Websites can

link to one another, and web servers can be reused in any domain because protocols

are well known and respected. A solution in a silo may be better than a widely accepted

and applied standard, but what if the silo burns down? What if it is bought and the new

owner decides to charge for access? What happens when some people decide that the

silo next door is better? In Chapter 3, I discussed PSR, PHP Standard Recommendations.

I focused, in particular, on standards for autoloading, which have done much to clean

up the way that PHP developers include classes. I also looked at PSR-12, the standard

for coding style. Programmers have strong feelings about the placement of braces and

the deployment of argument lists, but agreeing to abide by a common set of rules makes

for readable and consistent code and allows us to use tools to check and reformat our

source files.

Larry Wall, the creator of Perl, famously named laziness as one of the great virtues

of a programmer. So, while I agree that compliance to a shared style is generally a good

idea, I also welcome tools that can check for compliance and, as far as possible, fix any

issues without the need for manual editing. In Chapter 4, I looked at PHP_CodeSniffer,

a set of two tools that do just that. I also covered PHPStan. Like PHP_CodeSniffer, this

Chapter 13 PHP Practice

https://doi.org/10.1007/979-8-8688-0779-4_7
https://doi.org/10.1007/979-8-8688-0779-4_3
https://doi.org/10.1007/979-8-8688-0779-4_4

330

static analysis tool checks for compliance with good practice. Even better, it can catch

bugs in your system, rooting out variable name typos and type mismatches among very

many other code smells.

�Inline Documentation
Your code is not as clear as you think it is. A stranger visiting a code base for the first time

can be faced with a daunting task. Even you, as author of the code, will eventually forget

how it all hangs together. For inline documentation, you should look at phpDocumentor

(https://phpdoc.org/) which allows you to document as you go and automatically

generates hyperlinked output. The output from phpDocumentor is particularly useful

in an object-oriented context, as it allows the user to click around from class to class.

As classes are often contained in their own files, reading the source directly can involve

following complex trails from source file to source file.

The PHPDoc format, which phpDocumentor supports, is also used by tools and

IDEs to provide hints for features (such as typed collections) which are not enforced

directly by PHP.

See Chapter 2 for more on both phpDocumentor and PHPDoc.

�Development Environments
I first taught myself Perl many years ago from several impressively thick books. I thought

I had pretty much cracked the whole programming game when I finally understood the

code examples and tried them out on my old Mac desktop using MacPerl (long before

macOS and Homebrew). To be fair, I had made some progress. But the translation from

the camel icon on my computer to a Linux server running Apache was another journey

altogether. Even when I’d made the transition, this meant installing and running code

changes over a horribly slow dial up connection. A laborious process. So, I worked

out how to dual boot Linux, and then, I was at last able to approximate a production

environment for local development. That was a great step forward. Until, that is, I

discovered that the configuration I had created for one project did not play well with the

requirements of another. I was forced either to run separate machines or to compromise

in complicated ways on my single Linux partition.

The answer was, of course, virtualization. With tools such as VirtualBox, I was able to

run completely independent environments on a single machine. Even so, the setup was a

Chapter 13 PHP Practice

https://phpdoc.org/
https://doi.org/10.1007/979-8-8688-0779-4_2

331

chore in each case. Then, I discovered Vagrant, a platform which sits above virtualization

layers such as VirtualBox or VMware and makes choosing, acquiring, and configuring a

base box much simpler.

Very soon, the first step I took in any project I embarked upon was to create

a production-like development environment using Vagrant. The very process of

automating this provisioning provided invaluable insight into a new code base and a

satisfying productivity boost over less flexible development environments.

I still use and love Vagrant for some projects. Because it uses full virtualization, it

allows you to maintain a very good approximation of a full production environment

during development. In terms of speed, flexibility, and reliability, though, Docker

represents a further step forward. When run on Linux, it runs services in containers

directly on the host machine’s kernel, which means that, at the cost of some isolation, an

environment springs rather than creaks into life.

I covered Vagrant in Chapter 8 and Docker in Chapter 9.

�Version Control
Collaboration is hard. Let’s face it: people are awkward. Programmers are even worse.

Once you’ve sorted out the roles and tasks on your team, the last thing you want to

deal with is clashes in the source code itself. As you saw in Chapter 6, Git (along with

similar tools such as CVS and Subversion) enables you to merge the work of multiple

programmers into a single repository. Where clashes are unavoidable, Git flags the fact

and points you to the source to fix the problem.

Even if you are a solo programmer, version control is a necessity. Git supports

branching, so that you can maintain a software release and develop the next version at

the same time, merging bug fixes from the stable release to the development branch.

Git also provides a record of every key commit made on your project. This means

that you can roll back by date or tag to any moment. This will save your project

someday – believe me.

�Build and Deployment
Version control without some automation around build and deployment is of limited

use. A project of any complexity takes work to deploy. Various files need to be moved

to different places on a system, configuration files need to be transformed so that they

Chapter 13 PHP Practice

https://doi.org/10.1007/979-8-8688-0779-4_8
https://doi.org/10.1007/979-8-8688-0779-4_9
https://doi.org/10.1007/979-8-8688-0779-4_6

332

incorporate the right values for the target server, database tables need to be set up. I

covered two tools designed for installation in this volume.

The first, Composer (see Chapter 5), manages library dependencies. It handles –

near flawlessly – intra-package requirements so that you almost never find yourself

trapped in so-called “dependency hell.” Because it installs most of your project

requirements in a local directory, you do not need to worry about clashes between

projects or between separate services which are part of the same project.

The second tool I covered was Ansible (see Chapter 10). This is a powerful

deployment platform – a tool with enough power and flexibility to automate the

installation of the largest and most labyrinthine project across any number of servers. It

is particularly good at two perennial problems: managing secrets without exposing them

to your version control system and handling system configuration.

Together, Composer and Ansible can transform deployment from a chore to a matter

of a line or two at the command prompt.

�Command-Line Scripting
While PHP is known primarily as a web programming language, it can also be used to

create powerful command-line tools. As a PHP programmer, you will likely have the

PHP interpreter at hand in many if not most environments (and if you don’t, these

days, Docker can always provide it without changing the host machine’s configuration).

That means you can take advantage of PHP’s power, ease of use, and vast repository of

libraries to build a command-line tool ranging in scope from a small utility to a fully

featured application. What’s more, because you’re coding in PHP, you can also create

command-line utilities to perform actions that integrate tightly with any larger web

systems in your project. I covered programming on the command line in Chapter 11.

�Continuous Integration
It is not enough to be able to test and build a project; you have to do it all the time. This

becomes increasingly important as a project grows in complexity and you manage

multiple branches. You should build and test the stable branch from which you make

minor bug fix releases, an experimental development branch or two, and your main

trunk. If you were to try to do all that manually, even with the aid of build and test tools,

you’d never get around to any coding. Of course, all coders hate that, so build and testing

inevitably get skimped on.

Chapter 13 PHP Practice

https://doi.org/10.1007/979-8-8688-0779-4_5
https://doi.org/10.1007/979-8-8688-0779-4_10
https://doi.org/10.1007/979-8-8688-0779-4_11

333

In Chapter 12, I looked at continuous integration, a practice and a set of tools that

automate the build and test processes as much as possible.

�What I Missed
A few tool categories I have had to omit from this book due to time and space constraints

are, nonetheless, supremely useful for any project. In most cases, there is more than one

good tool for the job at hand, so, although I’ll suggest one or two, you may want to spend

some time talking with other developers and digging around with your favorite search

engine before you make your choice.

If your project has more than one developer or even just an active client, then you

will need a tool to track bugs and tasks. Like version control, a bug tracker is one of those

productivity tools that, once you have tried it on a project, you cannot imagine not using.

Trackers allow users to report problems with a project, but they are just as often used

as a means of describing required features and allocating their implementation to team

members.

You can get a snapshot of open tasks at any time, narrowing the search according to

product, task owner, version number, and priority. Each task has its own page, in which

you can discuss any ongoing issues. Discussion entries and changes in task status can be

copied by mail to team members, so it’s easy to keep an eye on things without going to

the tracker URL all the time.

There are many tools out there. Even after all this time, though, I often return to the

venerable Bugzilla (https://www.bugzilla.org). Bugzilla is free and open source and

has all the features most developers could need. It is a downloadable product, so you will

have to run it on your own server. It still looks a little Web 1.0, but it’s none the worse for

that. If you do not want to host your own tracker, and you have or prefer your interfaces a

little prettier (and have deeper pockets), you might look at the Atlassian’s SAAS solution,

Jira (https://www.atlassian.com/software/jira). I have also successfully used

GitHub’s built in issue tracker for some of my projects.

For high-level task tracking and project planning (especially if you’re interested in

using a Kanban system), you might also look at Trello (https://trello.com).

A tracker is generally just one of a suite of collaboration tools you will want to use

to share information around a project. At a price, you can use an integrated solution

such as Basecamp (https://basecamp.com/) or Atlassian tools (https://www.
atlassian.com/). Or you may choose to stitch together a tools ecosystem using a variety

Chapter 13 PHP Practice

https://doi.org/10.1007/979-8-8688-0779-4_12
https://www.bugzilla.org
https://www.atlassian.com/software/jira
https://trello.com
https://basecamp.com/
https://www.atlassian.com/
https://www.atlassian.com/

334

of applications. To facilitate communication within your team, for example, you will

probably need a mechanism for chat or messaging. Perhaps the most popular tool for

this at the time of this writing is Slack (https://slack.com). Slack is a multiroomed web-

based chat environment. If you’re old school like me, you might instantly think of IRC

(Internet Relay Chat) – and you’d be right: there’s little you can do with Slack that you

couldn’t do with IRC, except that Slack is browser based, easy to use, and has integration

with other services already built-in. Slack is free unless you need premium features.

Other options include Mattermost (https://mattermost.com) – which is similar to Slack

but can be self-hosted – and Discord (https://discord.com/).

Speaking of old school, you might also consider using a mailing list for your project.

My favorite mailing list software is Mailman (https://list.org/), which is free,

relatively easy to install, and highly configurable.

For cooperatively editable text documents and spreadsheets, Google Docs (https://
docs.google.com/) is probably the easiest solution.

Although inline documentation is important, projects also generate a writhing

heap of written material. This can include usage instructions, consultation on future

directions, client assets, meeting minutes, and party announcements. During the

lifetime of a project, such materials are very fluid, and a mechanism is often needed to

allow people to collaborate in their evolution.

A wiki (wiki is apparently derived from the Hawaiian word wikiwiki meaning “very

fast”) is the perfect tool for creating collaborative webs of hyperlinked documents.

Pages can be created or edited at the click of a button, and hyperlinks are automatically

generated for words that match page names. A wiki is another one of those tools that

seems so simple, essential, and obvious that you are sure you probably had the idea

first but just didn’t get around to doing anything about it. There are a number of wikis

to choose from. I have had good experience with DokuWiki, which you can find at

https://www.dokuwiki.org/dokuwiki.

For documentation (and for writing in general), though, I have tended, increasingly, to

pare back to simple text documents and version control. For formatting, I use Markdown,

a lightweight markup language. It is easy to read before rendering and usually is clean

and well balanced afterward (though, as with all rendering, you are at the mercy of the

renderer). The best starting place for Markdown is https://commonmark.org/. After years

of struggling with Word and Word-compatible word processors, I am very grateful that

Apress let me use Markdown for this edition of the book!

Chapter 13 PHP Practice

https://slack.com
https://mattermost.com
https://discord.com/
https://list.org/
https://docs.google.com/
https://docs.google.com/
https://www.dokuwiki.org/dokuwiki
https://commonmark.org/

335

Note A lthough I did not omit this tool (see Chapter 6), it is worth mentioning that
shifting to a plain text format made it possible for us to make extensive use of Git
in the development of this book.

�Summary
In this chapter, I wrapped things up, revisiting the core topics that make up the book.

Although I haven’t tackled any concrete issues such as individual patterns or object

functions here, this chapter should serve as a reasonable summary of this book’s

concerns.

There is never enough room or time to cover all the material that one would like.

Nevertheless, I hope that this book and its companion (Volume 1) has served to make

one argument: PHP is all grown up. It is now one of the most popular programming

languages in the world. I hope that PHP remains the hobbyist’s favorite language and

that many new PHP programmers are delighted to discover how far they can get with just

a little code. At the same time, though, more and more professional teams are building

large systems with PHP. Such projects deserve more than a just-do-it approach. Through

its extension layer, PHP has always been a versatile language, providing a gateway to

hundreds of applications and libraries. Its object-oriented support, on the other hand,

gains you access to a different set of tools. Once you begin to think in objects, you can

chart the hard-won experience of other programmers. You can navigate and deploy

pattern languages developed with reference not just to PHP but to Smalltalk, C++, C#,

or Java, too. It is our responsibility to meet this challenge with careful design and good

practice. The future is reusable.

Chapter 13 PHP Practice

https://doi.org/10.1007/979-8-8688-0779-4_6

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Good (and Bad) Practice
	Beyond Code
	Borrowing a Wheel
	Playing Nice
	Giving Your Code Wings
	Standards
	Vagrant and Docker
	Testing
	Command-Line Scripting
	Continuous Integration
	Summary

	Chapter 2: Generating Documentation with phpDocumentor
	Why Document?
	Installation
	Generating Documentation
	DocBlock Comments
	Documenting Classes
	File-Level Documentation
	Documenting Properties
	Documenting Methods
	Creating Links in Documentation
	Summary

	Chapter 3: PHP Standards
	Why Standards?
	What Are PHP Standards Recommendations?
	Why PSR in Particular?
	Who Are PSRs For?

	Coding with Style
	PSR-1 Basic Coding Standard
	Opening and Closing Tags
	Side Effects
	Naming
	More Rules and an Example

	PSR-12 Extended Coding Style
	Starting and Ending a PHP Document
	Starting and Ending a Class
	Working with Traits
	Declaring Properties and Constants
	Starting and Ending a Method
	Single-Line Declarations
	Multiline Declarations
	Return Types

	Lines and Indentation
	Calling Methods and Functions
	Flow of Control
	Finishing the ConfReader Class

	PSR-4 Autoloading
	The Rules That Matter to Us

	PSR-11 Container Interface
	Summary

	Chapter 4: Refactoring and Standards Tools
	PHP_CodeSniffer
	Checking and Fixing Your Code
	Managing the Scope of an Analysis
	Creating Your Own Sniff
	Defining a Standard
	A Bad Date File
	Creating the Sniff
	Combining Multiple Standards

	PHPStan
	Installing PHPStan
	Running PHPStan
	Rule Levels
	Telling PHPStan to Ignore Errors

	Array Arguments: Correcting Outside the Language
	Summary

	Chapter 5: Using and Creating Components with Composer
	What Is Composer?
	Installing Composer
	Installing a (Set of) Package(s)
	Installing a Package from the Command Line
	Versions
	require-dev

	Composer and Autoload
	Creating Your Own Package
	Adding Package Information
	Platform Packages

	Distribution Through Packagist
	Keeping It Private
	Summary

	Chapter 6: Version Control with Git
	Why Use Version Control?
	Getting Git
	Using an Online Git Repository
	Configuring a Git Server
	Creating the Remote Repository
	Preparing the Repository for Local Users
	Providing Access to Users
	Closing Down Shell Access for the Git User

	Beginning a Project
	Cloning the Repository

	Updating and Committing
	Adding and Removing Files and Directories
	Adding a File
	Removing a File
	Adding a Directory
	Removing Directories
	Renaming Files or Directories

	Tagging a Release
	Branching a Project
	Summary

	Chapter 7: Testing with PHPUnit
	Functional Tests and Unit Tests
	Testing by Hand
	Introducing PHPUnit
	Creating a Test Case
	Assertion Methods
	Testing Exceptions
	Running Test Suites
	Constraints
	Mocks and Stubs
	Tests Succeed When They Fail

	Writing Web Tests
	Introducing Selenium
	Getting Selenium
	PHPUnit and Selenium
	Introducing php-webdriver
	The System Under Test
	Creating the Test Skeleton
	Connecting to Selenium
	Writing the Test

	A Note of Caution
	Summary

	Chapter 8: Vagrant
	The Problem
	A Little Setup
	Choosing and Installing a Vagrant Box

	Mounting Local Directories on the Vagrant Box
	Provisioning
	Setting Up the Web Server
	Setting Up MariaDB
	Configuring a Hostname

	Wrapping It Up
	Summary

	Chapter 9: Docker
	What Is Docker?
	Getting Docker
	Running an Image
	Establishing Some Docker Terms
	Acquiring an Image with docker pull
	Creating and Invoking a Container with docker run
	Listing Containers
	Accessing a Container with docker run
	Running a Container in the Background
	Accessing a Container with docker exec
	Building Your Own Image
	In the Weeds with CMD and ENTRYPOINT

	Mounting a Local Directory
	A Single Command Development Environment
	Building a System Out of Multiple Containers
	Removing Images and Containers
	Creating and Using a Named Bridge Network
	Docker Compose
	Resetting the Project
	The Compose File
	Combining Docker Compose and Dockerfile

	Adding a Second Service
	What About Composer?
	Some Docker Compose Commands

	Summary

	Chapter 10: Automating Build and Deployment with Ansible
	What Is Ansible?
	Getting Ansible
	Confirming Your Install
	Command-Line Utilities
	Hello, Ansible
	Inventories: Working with Hosts
	Checking Out a Git Repository
	Copying a Configuration File
	Some More on Variables
	Declaring Variables with vars
	Overriding Variables from the Command Line
	Placing Variables in Files

	Interpolating Values into a File
	Managing Secrets with Ansible Vault
	Checking in on Megaquiz
	Inventory Variables
	The Composer Module
	Conditionals
	Summary

	Chapter 11: PHP on the Command Line
	Why the Command Line?
	A Dummy Function
	Autoloading
	Acquiring Arguments
	The Shebang
	Error Conditions
	Usage
	Handling Arguments and Options
	Options
	Introducing getopt
	The Problem with getopt()
	Using GetOpt.php
	Enforcing Positional Arguments

	Handling Output
	Updating the Example Script
	Adding Verbose Mode

	Prompted Input
	Piped Input

	Packaging Up
	Distribution with Composer
	Creating a Phar

	Executing Shell Commands
	Summary

	Chapter 12: Continuous Integration
	What Is Continuous Integration?
	Preparing a Project for CI
	CI and Version Control
	Unit Tests

	Getting and Installing Jenkins
	Installing Jenkins
	Installing Jenkins Plug-ins
	Setting Up Git in Jenkins
	Configuring Composer and PHPUnit
	Running the First Build
	Triggering Builds
	A Jenkins Agent
	Creating a PHP-Capable Agent Image
	Another Key Pair
	Running the Agent
	Configuring Jenkins to Speak to the Agent
	Associating Jobs with the Agent

	GitHub Actions
	Why GitHub Actions?
	The Basics
	Checking Out the Code
	Running Composer
	Running PHPUnit
	What Next?
	Summary

	Chapter 13: PHP Practice
	Practice
	Testing
	Standards and Standards Tools
	Inline Documentation
	Development Environments
	Version Control
	Build and Deployment
	Command-Line Scripting
	Continuous Integration
	What I Missed

	Summary

