PHP 8 Objects,
Patterns, and
Practice: Volume 2

Mastering Essential Development Tools

Seventh Edition

Matt Zandstra

APICSS®

PHP 8 Objects, Patterns,
and Practice: Volume 2

Matt Zandstra

Apress-

PHP 8 Objects, Patterns, and Practice: Volume 2: Mastering Essential
Development Tools, Seventh Edition

Matt Zandstra
Brighton, UK

ISBN-13 (pbk): 979-8-8688-0778-7 ISBN-13 (electronic): 979-8-8688-0779-4
https://doi.org/10.1007/979-8-8688-0779-4

Copyright © 2025 by Matt Zandstra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson Prior
Editorial Assistant: Jacob Shmulewitz

Cover designed by eStudioCalamar
Cover image designed by Pawel Czerwinski on Unsplash

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/services/
source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-0779-4

To Louise. Still the whole point.

Table of Contents

About the AUROFcccccemmiimsmnsesnssns s n e nnn s xiii
Acknowledgments.......ccccuuiisnnmeenmmmmmmsssssssssssnmmmessssssssssssnnssesssssssssnnnnnssesssssssnnnnnnnnnnss XV
INtroduction........cccimiimmmnsmsmnses s —————— Xvii
Chapter 1: Good (and Bad) PractiCecccusmsrsssmsmsssnsmsssnsesssssssssnsssssssssssssssssnnssssnnsss 1
BEYONU COURceeeeereeereecresese e se e se s se s s e s e s e e e s e nse e s re e nen e e nnnnnes 2
BOrrOWING @ WHEEL........ccerveeriresincsirie s nnnnnnnns 2
Playing NICEveceerriirreseriese s s e e e e e b e p e e e e e R e s 5
GIVING YOUF COUE WINQS....ccererrererserieressesessessessessssessessesssssssessessssssssssessesssssssessesasssssessesaesssssssesseses 6
B3] £ L0210 P 7
Vagrant and DOCKET.........occvcreiisr e e s p e 8
2] T S 8
CommaNd-Line SCHPLINGcovveeerrerernesesese s 10
ContinUOUS INTEGIALiON........ccoviicerice e 10
E 1] 4= 7R 11
Chapter 2: Generating Documentation with phpDocumentorccucceemrensssnnnsnnsns 13
WRY DOCUMENT?cveererrereesessersesaesessessessessesssessesaessssessessesasssssessessesssnsssessessessessssessesssssnnensensens 14
1LY 03 R 15
Generating DOCUMENTALIONccoveecerrererecr e 15
DOCBIOCK COMMENTS.......covieerrieriesesisesessese s e se e se s s se s s ssasessssssenns 18
DOCUMENTING CIASSEScvvieerrrierreesrssesessese s sr s s e s sr s s s e sr e sa e sr s snns 20
File-Level DOCUMENTALIONccccverereiisicse s 21
DocumMENTing ProOPEITiESccccveveeririer e sttt e e s se e a e s a e s a e s sn e e s en 22

https://doi.org/10.1007/979-8-8688-0779-4_1
https://doi.org/10.1007/979-8-8688-0779-4_1
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_1#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_2
https://doi.org/10.1007/979-8-8688-0779-4_2
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec7

TABLE OF CONTENTS

Documenting Methods........cccvveriinnie e s a e s s 23
Creating Links in DOCUMENTALION........cc.ccoreeirecerr s 25
SUIMIMANY.....eeeeeeeceeree e ae e e e e e e s ae e s e e s e e e e e Re e e ae e re e e e e Re e e se e nennnensennas 29
Chapter 3: PHP Standardsc.ccousseemmmmsssnnnmmssssssnmmssssssnmssssssssmsssssssssssssssssssssssnnnnnsss 31
WHY STANUAIAS?cceeecereserese s e s e s ne e 31
What Are PHP Standards RecommendationS?cccuvcrnenrnennnnsesnsessnesssssessssesessesessssesenses 32
Why PSR in PartiCUIAr?..........ccoveermenerrnsesenesenese e s sssssssssssessssessssssssssessssssssssnens 34
WHO Arg PSRS FOI? ...t sn e st sn s e s s 34

{0 Lo 1T T TRy R 35
PSR-1 Basic Coding STandardccccveerrrrverenieninseniesess s e sessessessssessessessssessessenes 36
PSR-12 Extended Coding StYIE.......cccvcvvrernrrrereresersere e s sse s e saessssessesaessssessessenes 39
T T (0] o 1o o O 47
The Rules That Matter 10 US ... sessse s 47
PSR-11 Container INTEIFACEcccoverrneercrererne e 51
SUIMIMANY.....eeeeeeeceeecse e ae e e e e e s Re e e e e s e s e e e Re e s ae e re e e e sRe e e re e nennnennennns 53
Chapter 4: Refactoring and Standards TOOISccuusseermmssssnnnmsssssssnsmssssnsnssssssnsnsssns 55
[3 [00T [T] RS 56
Checking and FiXing YOUr COEccooveerrrererenmrresesesesess s sessese e sessssessssessssesessesenns 56
Managing the Scope of @an ANAIYSIS.........cccrerrnrerrrrenerese s 59
Creating YOUur OWN Sniff........ccoveemenmnnsesnsesssssesese s s s s sssssssessssesessssenns 61

o 1 OSSO RSSO 69
INSEAlliNG PHPSTAN ..ot 69
RUNNING PHPSTAN.........ccoiieicctnce e 69
BUIB LBVEIS ...ttt e 70
Telling PHPSaN t0 IgNOre EITOrS........ccovecinesenreserinesssesessesessssessssessssssesssssssssessssssesssssssssenens 72
Array Arguments: Correcting Outside the Language........ccccvverererrerierenensensessessesessessessessssessessens 74
E 11114 7R 76

https://doi.org/10.1007/979-8-8688-0779-4_2#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_2#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_3
https://doi.org/10.1007/979-8-8688-0779-4_3
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec24
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec25
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec26
https://doi.org/10.1007/979-8-8688-0779-4_3#Sec27
https://doi.org/10.1007/979-8-8688-0779-4_4
https://doi.org/10.1007/979-8-8688-0779-4_4
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec13
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec14
https://doi.org/10.1007/979-8-8688-0779-4_4#Sec15

TABLE OF CONTENTS

Chapter 5: Using and Creating Components with COmposer........cccccusuenrrsssssnsssans 77
WhaL IS COMPOSEI?veeeceecerieer s st e sas et e s et e et be e st e st e ae e pe e ais 78
INSEAIlING COMPOSEN ... e e se s e e se s e ne e e e e 78
Installing a (Set 0f) PACKAGE(S) «..vvreererererreserrssmressessssessssssssessesessenns 79

Installing a Package from the Command Ling.........c.cccovierrenennncsnnesnsnesnseses s sesessesenns 80
L= 650 SO SPRTS R STR 81
LYo UL o[- O SO OSRPRSN 83
Composer and AUL0I0Ad..........ccocrerenirirrre e 85
Creating YOUr OWN PACKAQEccvceruerirreriereriesersere s e e s e saeses e ssessesassessessesassassessesaesssssssenseses 86
Adding Package INformationccovcrcerennnniniens s s s snes 86
Platform PACKAGEScccverrererierieresis s stesesses e saesesessessess e e ssesaesaesessesaesasssssessesaessssesnessees 87
Distribution Through PackagiSt...........ccccvvrrnnnnininiinne e ssesssssaessnssens 88
Keeping It PriVALe.........cccvciiesrcirc st s p e s 92
SUIMIMAIY.....eeeereecreree s e se e e e e e e s ae e s e e e s e e e e e Re e e ae e ne e e e e Re e s se e neennennnnnes 94

Chapter 6: Version Control with Gitcccovsnsmmmmmmmmmnnnnmmsssssnmn .. 95
Why Use Version CONIOI?ccoveevmenemenernsesesesesssessssessssssessssessssesessssesssssssssssssssssssssssssssssnses 95
GELEING Gt ...uvvieereeseseseee e r e e e e r e n e 97
Using an Online Git REPOSITOrY......ccccvevirrriereresirsere s s s e e s s s sse e sesaesaesesesaesnes 98
(0T T 0T a0 = T L R T R 100

Creating the Remote REPOSITONY.......ccvcererrrreriereriesessere s sese e sss s saesessessessessssessesneses 101
Beginning @ ProjECL........cccciiiiircre e e 103
Cloning the REPOSIIOIYcoceeerererirrerirc st se s s se s e se s 107
Updating and COmMMILtiNGcccovvriiiniinn s s 108
Adding and Removing Files and Dir€CtOMEScuovrererernsmsessesesessressessssssesesesessesessssessssessnnes 113
AdAING @ Fil.....ccveeeeierercsereser s e nr e nne e 113
22T LoV T s T S 114
AddiNg @ DIFECLOMYcvvvererrererreseressesesesesssse s e s e srs e s s e s e sss e sessssessssessssesensesssenens 114
RemMOVING DIF€CIOMEScoveerrrererreseseneressesesese e sss e ses e s e s se e s e s sss e sesssssssssensnses 115
Renaming Files or DireCIONIEScvvrervrerrrererese s nenns 115

vii

https://doi.org/10.1007/979-8-8688-0779-4_5
https://doi.org/10.1007/979-8-8688-0779-4_5
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_5#Sec13
https://doi.org/10.1007/979-8-8688-0779-4_6
https://doi.org/10.1007/979-8-8688-0779-4_6
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec13
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec14
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec15
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec16
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec17

TABLE OF CONTENTS

TagQing @ REIBASE........cccceriririr et e s 115
Branching @ PrOjECT.........cccuiiiircrnesr s s 117
£ 0T T 128
Chapter 7: Testing with PHPUNItL.......cccccmmriiiininnsssmssnnnnnnsssssssssssssssssssssssssssssssssnnas 129
Functional Tests and Unit TESTS.......ccuvcrnrrninninrnss s s nenns 130
Testing DY HaN(.........coveiiicereesine e sr e 131
INtroduCing PHPURIL........cccciirrirerier et re s s s se s e sae s se s s sae e s saesnesa s e naesnens 134
Creating @ TEST CASEciuevierierere s sere st sae e s ae e e e e nae e 135
ASSErtion MEthoUS.........cceireriiriii e 139
TeStiNg EXCEPLIONS......co vt r e s a e e s s p e e 140
RUNNING TEST SUILESevuerievteirere s ser s s s sae s sae s a e se e saesae e s naennes 142
L0104 £ 11O 143
MOCKS @Nd STUDS ..o ——————— 146
Tests Succeed When They Falil ... ses e ses e ssssessessesnes 150
WHTING WED TSTS.....oiciicie s r e s s s s s 156
Lo Lo o TqTo Y= LY 11T O 157
ANOLE OF CAULION ... e e e 167
£ 0T T 169
Chapter 8: Vagrant.........ccccceemmmmmmmmisssssssssnmmmmmsssssssssssssnssssssssssssssssnsssessssssnsnnnnnsnnnss 171
THE PrODIBIM ... s ne e s nnn e 171
A LILEIE SEIUP....eceereceriee e e 173
Choosing and Installing @ Vagrant BOXcccuevuenenesemnsmnsnesesssessssessssssssssessssssssssssssess 173
Mounting Local Directories on the Vagrant BoX........cccccvevreriennsnienesnsensessesesessessessessssessessens 176
o 01V 1o SR 179
Setting Up the WED SEIVENcvvvrerererir s sessese e ssssessessesaesassessessessssessessesasssssensessens 181
Setting Up MariaDBcccccvevernienieresss s sessese e ssesesse s sasssssessessessssessessesasssssensessens 182
Configuring @ HOSINAMEcccererieierirere s s e s e s s s s se s saesaess s e ssesnesaesesnesneses 183
WEAPPING TEUD o e b e e s e s 185
£ 0T T 187

viii

https://doi.org/10.1007/979-8-8688-0779-4_6#Sec18
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec19
https://doi.org/10.1007/979-8-8688-0779-4_6#Sec20
https://doi.org/10.1007/979-8-8688-0779-4_7
https://doi.org/10.1007/979-8-8688-0779-4_7
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec20
https://doi.org/10.1007/979-8-8688-0779-4_7#Sec21
https://doi.org/10.1007/979-8-8688-0779-4_8
https://doi.org/10.1007/979-8-8688-0779-4_8
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_8#Sec10

TABLE OF CONTENTS

Chapter 9: DOCKETccuiseurrmssssnnnmsssssssnssssssnssesssssnnssssssnnnssssssnnnnsssssnnnnsssssnnnsssssnnnnnss 189
WRAL IS DOCKEI?cveeececeresssseeese e se e s sas s se s ses s nesansans 190
LC L0100 (- 190
RUNNING @N IMAQEeireerrecrrresire s nr s 192
Establishing SOme DOCKEr TEIMS........cccvvverienerrinernsessse s ss s e sens 193
Acquiring an Image With dOCKEE PUIL........cecvririererinrirrere e sa s s e sseses e saesnens 194
Creating and Invoking a Container With doCKEr rUN........cccvevrvriniene e sseenes 195
LiStiNG CONTAINETScoveeriecrirerire st sttt se e e 196
Accessing a Container With dOCKEr FUN ..o snens 197
Running a Container in the Backgroundcccccvvennennesersssssessse s sessesenns 197
Accessing a Container With dOCKE BXECccvveerrrermresernsesssesese s s se s ssenes 198
Building YOUr OWN IMAQEcovveriererererseresessssenessessssessessessesessessessesssssssessessesessessessesssssssesaens 199

In the Weeds with CMD and ENTRYPOINTcccovninnmnnssssssssesess s ens 201
Mounting @ LOCAI DIr€CIOIYcicerierieeiirierie s r s sa e s se s sr e s e e a e 204
A Single Command Development ENVIronment.............cccovvenecninncnnccnnnesese s sessesesenns 205
Building a System Out of Multiple CONtAINETS........c..ccorrerrererescrerere e 206
Removing Images and CONtAINESc.cucvrererenmrnsmsessesesese s s sessssessssessssesessssenns 208
Creating and Using a Named Bridge NEtWOrKccccoeernennenennnnnsesssesess s sessesens 210
DOCKET COMPOSEueveeeerersertesereressesessesse e s s e s e saesae e s e ssesaese e e saesaese e e ssesaesae e e e saesaessnnensnsnens 213

ReSEttiNg the PrOJECT.....c.cvicircere et s sa e e 214

The COMPOSE FilBcoveererereresersere st ses e s s e s s a e se s s s p e nnen 214

Combining Docker Compose and DOCKEITEccvvrrererersenienenr e se e sae s 216
AddiNg @ SECONU SBIVICE ...e.evereerrererierererresessere s e s se s sse s s ssessesas s s e s sesaesa e e nsesaesaesessensesaens 217

What ADOUL COMPOSEI? ...ccueruerrererrerersessssessessessesssssssessesssssssessessesssssssessessessssssessesssssssessesaes 219

Some Docker CompPoSE COMMANGScovvververererrersersesessesessessessessssessessessesessessessessssessessens 221
£ 11T 1117 OO 222

Chapter 10: Automating Build and Deployment with Ansible.........c.ccussenrensssnnnnns 223
WhEL IS ANSIDIB?......ceceeeeeeeec e esne e r e ne e e nne e 224
GELtiNG ANSIDIE ... 224
Confirming YOUF INSTAIL.........ceoeiiernesrresire e 225

ix

https://doi.org/10.1007/979-8-8688-0779-4_9
https://doi.org/10.1007/979-8-8688-0779-4_9
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec13
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec14
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec15
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec16
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec17
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec18
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec19
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec20
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec21
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec22
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec23
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec24
https://doi.org/10.1007/979-8-8688-0779-4_9#Sec25
https://doi.org/10.1007/979-8-8688-0779-4_10
https://doi.org/10.1007/979-8-8688-0779-4_10
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec3

TABLE OF CONTENTS

Command-Line ULIlItIES.......ccceeerererincrcserisssssss s e ssssas 226
g o] Lo T] 227
Inventories: Working With HOSES..........cccorerrerrerc s 229
Checking Out @ Git REPOSITOrYccoveererererreseresesesesess s e s s e s sessssessssesessssenns 234
Copying @ Configuration Filec.ucvvenninnnesrneses s s sens 235
Some More 0N VAriaDIEScocvrerinmsesiresssssse s s es 236
Declaring Variables With VArscocvcverevninienenn s sese s ssssessessessssessessesasssssessesaes 236
Overriding Variables from the Command Line.........c.cccvirvrrniniennnenseniesesessessesesessesessens 237
Placing Variables iN FIlES.......cucvererrrriererisserese s sessesse e sessessessessssessessessssessessesassessessesaes 238
Interpolating Values into @ File......c.ccuveiiininnn e 239
Managing Secrets with Ansible Vaull............cccoovrrinnicnre e 241
Checking in 0N MEQAQUIZ..........coeeerreererererere e s 243
INVENTOrY Variables.......ccceveeerrrerirenere e 246
The COMPOSEr MOUUIEcccrveerirriieree s sr s sr e nrnne e 248
0] 100 R 249
£ 1134 R 250
Chapter 11: PHP on the Command Line.......cccussemmmmsssnnnmsssssnsnssssssssssssssssssssssssnnnss 251
Why the CommMAaNd LINE? ... e st sesae e st sesnenens 252
A DUMMY FUNCHION. ... nr s 253
L LH (0] 07 Vo] o PSS 254
ACQUITING AFGUIMENES ...c.veveiirierrse e sr e e er e sr e pa e nr s 255
LS4 1=T - T o O 256
=0T 0 0] P 257
12T OSSOSO 258
Handling Arguments and OPlIONS. ... 260
OPLIONS e ———————————————— 260
Lo 1T oL 013 (0] 1 P 262
The Problem with getopt()......c.ouoerreererrererererrseserese s 263
USING GEIOPL.PRP.c.cere e —————————— 263
Enforcing Positional ArgUMENTSccoeeirerrererec e 268

https://doi.org/10.1007/979-8-8688-0779-4_10#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec13
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec14
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec15
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec16
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec17
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec18
https://doi.org/10.1007/979-8-8688-0779-4_10#Sec19
https://doi.org/10.1007/979-8-8688-0779-4_11
https://doi.org/10.1007/979-8-8688-0779-4_11
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec13

TABLE OF CONTENTS

0 010 J0) 10T O 269
Updating the EXample SCHPL........ccccoiviiniinn s snens 271
Adding Verbose MOE.........ccccoeininnine s 273
Prompied INPUL ..o e e 275
PIPEA INPUL ... e s 276

Lo T o 1T N o TS 277
Distribution With COMPOSELc.ccciiririrerr e e 278

L0 T 0 T 4 T 281
Executing Shell COMMANGSccccceriiernennnesenese e s 283
£ 1] 34 R 286
Chapter 12: Continuous Integration...........ccccuseemnmmssssnnnmmnsssssnmmsssssnmmsssssseesssnn 287
What Is Continuous INtEgration?.........cceevrevernsrierensnsersesesesessese e ssssesse e ssessssessessesssssssessees 288
Preparing @ ProjeCt fOr Cl........ccvevevriniererinserere s sessesseseesessessessessssessessesssssssessesasssssessesaes 290
Getting and Installing JENKINS........ccccvrirrenrnierre e se s ses e senns 293
INSTAINNG JENKINS ..ot e p s e s 294
Installing Jenkins PIUG=iNScccociiiiiinisnin s s sns s 297
Setting Up Git in JENKINScouveeirecirescrrccrere et se s e 298
Configuring Composer and PHPURILccovvirinnicrn st seens 302
Running the First BUild ... s 304
Triggering BUIlUS. ..o e e e s 304

A JENKINS AQENL.......o et e 308

LC T [H AT 0] 3T 315
Why GItHUD ACLIONS? ... e 316
THE BASICS -..vueuerrenereesererscsesseserseesessesesseesse e sessesessssesse e ses s sesss e ssesessesesessssssssnsssesesenssssssenens 316
Checking QUL the COTEcoeveerecrerce e 320
RUNNING COMPOSETeeeecrircreresesese e s e e e e s s see e s e sns e nenas 321
RUNNING PHPURNIL ...t 323
WRAE NEXE? ... e se e e ne e e nne s 324

ES 110110 325

https://doi.org/10.1007/979-8-8688-0779-4_11#Sec14
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec15
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec16
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec17
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec18
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec19
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec20
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec21
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec22
https://doi.org/10.1007/979-8-8688-0779-4_11#Sec23
https://doi.org/10.1007/979-8-8688-0779-4_12
https://doi.org/10.1007/979-8-8688-0779-4_12
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec11
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec12
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec18
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec19
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec20
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec21
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec22
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec23
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec24
https://doi.org/10.1007/979-8-8688-0779-4_12#Sec25

TABLE OF CONTENTS

Chapter 13: PHP PractiCeccciuusemmnmmssssnnnmssssssnnsssssssssssssssssssssssssnnsssssnsnssssssnnnnss 327
[0 72T (T 328
TSN et ———————————— 329
Standards and Standards TOOIScovrerererererenenesesere e ens 329
INliNE DOCUMENTALION........covieereer e 330
Development ENVIFONMENTS.........cccccvvnieiiennsnne e sss s enes 330
VEISION CONTIOLceceeeereeecereseseees e se s 331
Build and Deployment ... s 331
Command-Line SCHPLING.......ccverrrirre e sae s 332
Continuous INTEGrationcccecrrcerre s e 332
WRAL | IMISSEA......cecieeeererceeeeserie e s e e se s e nnenens 333
£ 7 S 335
BiblIOgraphy ..cccccccuriissssnnmmmssssnnmmssssssnmmssssssnmsssssnsnnsssssnnnssssssnnnsssssnnnnnssssnnnnsssssnnnnssssn 337
INO@X . ueeeiiienssssnnnsssnnssssansssssnssssansssssnsnssan s s ssn s s s snnn e nsnnnanssnna s annan s snnn s nnnnnsnnnnnsnnnnnnnnnss 341

xii

https://doi.org/10.1007/979-8-8688-0779-4_13
https://doi.org/10.1007/979-8-8688-0779-4_13
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec1
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec2
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec3
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec4
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec5
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec6
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec7
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec8
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec9
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec10
https://doi.org/10.1007/979-8-8688-0779-4_13#Sec11

About the Author

Matt Zandstra has worked as a web programmer, consultant, and writer for over two
decades. In addition to this book, he is the author of Sams Teach Yourself PHP in 24
Hours (three editions) and a contributor to DHTML Unleashed. He has written articles
for Linux Magazine, Zend, IBM DeveloperWorks, and PHP Architect magazine and also
writes fiction.

Matt was a senior developer/tech lead at Yahoo and API tech lead at LoveCrafts.
He now runs an agency that advises companies on their architectures and system
management and develops systems primarily with PHP, Python, and Java.

xiii

Acknowledgments

I have benefited from the support of many people while working on this edition. But
as always, I must also look back to the book’s origins. I tried out some of this book’s
underlying concepts in a talk in Brighton, back when we were all first marveling at

the shiny possibilities of PHP 5. Thanks to Andy Budd, who hosted the talk, and to the
vibrant Brighton developer community. Thanks also to Jessey White-Cinis, who was at
that meeting and who put me in touch with Martin Streicher at Apress.

Once again, this time around, the Apress team has provided enormous support,
feedback, and encouragement. I am lucky to have benefited from such professionalism.
I'm delighted that my friend and colleague, Paul Tregoing, agreed again to act as
technical reviewer despite many other projects including his own book. This edition
has greatly benefited from Paul’s knowledge, insight, and attention to detail - many

thanks Paul!

Thanks and love to my wife, Louise. The production of this book has coincided with
the university careers of my children Holly and Viola who have struggled with their own
deadlines and creative blocks. Thanks are due to them for keeping me company at the
kitchen table as we found our separate ways together!

I write to music, and in previous editions of this book, I remembered the great D],
John Peel, champion of the underground and the eclectic. The soundtrack for this
edition was largely provided by BBC Radio 3’s Late Junction and Six Music's Freak
Zone both played on a loop. Thanks to the DJs and musicians who continue to keep
things weird.

Introduction

When I decided to learn to program, I went out to a bookshop on Tottenham Court
Road in London and bought myself a book about Perl. Excited, I started building an
application before I'd even finished the fourth chapter, which is how I managed to write
a working forum application without yet knowing how to define a subroutine. That's
another story, though (one involving very very big loops). Once I had finished reading
the book and rounded out my understanding, I felt sure I had learned everything I
needed to know. I was ready.

It was only then that I began to perceive new gaps in my knowledge. Some of it was
relatively easy to fix. I was able to find books on the Unix shell and CGI to address the
most obvious chasm. But, even after that, I had questions. Where would I store my code?
How would I collaborate with other developers without overwriting their work or having
my own work clobbered? How should I source libraries and manage dependencies?
What about development environments? What was the best way to deploy my code?
How could I test the systems I built?

The answers could be found online - though search in those days was rudimentary. I
spent a lot of time on the Usenet search engine DejaNews and pieced together a working
practice. In retrospect, it was somewhat suboptimal in all sorts of ways, but it was
enough to help me get systems into the world. Over the years, I joined teams and learned
from knowledgeable people. I searched out more books. My practice improved.

The coverage gap was not the fault of that Perl book's author. He did a brilliant job
within the book's remit. But when I came to pitch a book about coding with objects in
PHP, I thought about the extent of that remit. Although I wanted to write about objects
and design, I did not want to do so in an absolute vacuum. I wanted to write a practical
book - a book that helped with the last yard of development too. So I added practice to
my PHP, objects, and patterns proposal.

xvii

INTRODUCTION

PHP 8 Objects, Patterns, and Practice has evolved over the years and grown from a
slim volume to a full on doorstopper. When the time came for a seventh edition, I had
additions in mind as usual. As well as revising the existing topics covered by the Practice
section, I wanted to include more on continuous integration, to add new subjects such
as PHPStan, Docker, Ansible, and command-line PHP scripting.

Of course, that was impossible. The sixth edition was huge. There was no way we
could create a seventh edition that was even larger. Unless, of course, we broke the book
into two volumes. So that is what we did. I hope you enjoy the result.

xviii

CHAPTER 1

Good (and Bad) Practice

In the previous volume, I focused on coding, concentrating particularly on the role of
design in building flexible and reusable tools and applications. Development doesn’t
end with code, however. It is possible to come away from books and courses with a solid
understanding of a language, yet still encounter problems when it comes to running and
deploying a project.

In this volume, I will move beyond code to cover some of the tools and techniques
that form the underpinnings of a successful development process. This chapter will
cover the following:

o Third-party packages: Where to get them and when to use them.

e Deployment: Pushing your code across servers, applying
configuration.

e Version control: Bringing harmony to the development process.

e Documentation: Writing code that is easy to understand, use,
and extend.

e Unit testing: A tool for automated bug detection and prevention.
e Standards: Why it's sometimes good to follow the herd.

o Development environments: Every developer needs a lab of their own.
A coder should be able to work safely with a system that resembles
the production environment, no matter their hardware or OS.

e Scripting the command line: PHP may be known as a web technology,
but it can be just as powerful on the command line.

e Continuous integration: Using this practice and set of tools to
automate project builds and tests as well as to warn of problems as
they occur.

© Matt Zandstra 2025
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_1

https://doi.org/10.1007/979-8-8688-0779-4_1#DOI

CHAPTER 1 GOOD (AND BAD) PRACTICE

Beyond Code

When I first graduated from working on my own and took a place in a development
team, I was astonished at how much stuff other developers seemed to have to know.
Good-natured arguments simmered endlessly over issues of vital-seeming importance:
Which is the best text editor? Should the team standardize on an integrated development
environment? Should we impose a coding standard? How should we test our code?
Should we document as we develop? Sometimes, these issues seemed more important
than the code itself, and my colleagues seemed to have acquired their encyclopedic
knowledge of the domain through some strange process of osmosis.

The books I had read on PHP, Perl, and Java certainly didn’t stray from the code
itself to any great extent. As I discussed in the previous volume, many books about
programming rarely diverge from their tight focus on functions and syntax to take in
code design. If design is off topic, you can be sure that wider issues such as version
control and testing are rarely discussed. This is not a criticism - if a book professes to
cover the main features of a language, it should be no surprise that this is principally
what it does.

In learning about code, however, I found that I had neglected many of the mechanics
of a project’s day-to-day life. I discovered that some of these details were critical to the
success or failure of projects I helped develop. In this chapter, and in more detail in
coming chapters, I will look beyond code to explore some of the tools and techniques on
which the success of your projects may depend.

Borrowing a Wheel

When faced with a challenging but discrete requirement in a project (the need to parse a
particular format, perhaps, or to use a novel protocol in talking to a remote server), there
is a lot to be said for building a component that addresses the need. It can also be one of
the best ways to learn your craft. In creating a package, you gain insight into a problem
and file away new techniques that might have wider application.

You invest at once in your project and in your own skills. By keeping functionality
internal to your system, you can save your users from having to download third-party
packages. Occasionally, too, you may sidestep thorny licensing issues. There’s nothing like
the sense of satisfaction you can get when you test a component you designed yourself
and find that, wonder of wonders, it works - it does exactly what you wrote on the tin.

CHAPTER 1 GOOD (AND BAD) PRACTICE

There is a dark side to all this, of course. Many packages represent an investment of
thousands of person-hours: a resource that you may not have on hand. You may be able
to address this by developing only the functionality needed specifically by your project,
whereas a third-party tool might fulfill a myriad of other needs as well. The question
remains, however: If a freely available tool exists, why are you squandering your talents
in reproducing it? Do you have the time and resources to develop, test, and debug your
package? Might not this time be better deployed elsewhere?

I am one of the worst offenders when it comes to wheel reinvention. Picking apart
problems and inventing solutions to them is a fundamental part of what we do as coders.
Getting down to some serious architecture is a more rewarding prospect than writing
some glue to stitch together three or four existing components. When this temptation
comes over me, I remind myself of projects past. Although the choice to build from
scratch has never killed a project in my experience, I have seen it devour schedules and
murder profit margins. There I sit with a manic gleam in my eye, hatching plots and
spinning class diagrams, failing to notice as I obsess over the details of my component
that the big picture is now a distant memory.

Now, when I map out a project, I try to develop a feel for what belongs inside the
code base and what should be treated as a third-party requirement. For example, your
application may generate (or read) an RSS feed, and you may need to validate email
addresses and automate mailouts, authenticate users, or read from a standard-format
configuration file. All of these needs can be fulfilled by external packages.

In previous versions of this book, I suggested that PEAR (PHP Extension and
Application Repository) was the way to go for packages. Times change, though, and
the PHP world has very definitely moved to the Composer dependency manager
and its default repository, Packagist (https://packagist.org). Because Composer
manages packages on a per-project basis, it is less prone to the dreaded dependency hell
syndrome (where different packages require incompatible versions of the same library).
Besides, the fact that all the action has moved to Composer/Packagist means that
you’re more likely to find what you're looking for there. What’s more, many of the PEAR
packages are available through Packagist (https://packagist.org/packages/pear/).

So, once you have defined your needs, your first stop should be the Packagist
site. You can then use Composer to install your package and to manage package
dependencies. I will cover Composer in more detail in Chapter 5.

https://packagist.org
https://packagist.org/packages/pear/
https://doi.org/10.1007/979-8-8688-0779-4_5

CHAPTER 1 GOOD (AND BAD) PRACTICE

To give you some idea of what'’s available using Composer and Packagist, here are
just a few of the things you can do with the packages you'll find there:

o Cache output with pear/cache_lite

o Test the efficiency of your code with the athletic/athletic
benchmark library

o Abstract the details of database access with doctrine/dbal
o Extract RSS feeds with simplepie/simplepie

o Access REST APIs with guzzlehttp/guzzle

o Parse configuration file formats with symfony/config

o Parse and manipulate URLs with league/uri

The Packagist website provides a powerful search facility. You may find packages that
address your needs there, or you may need to cast your net wider using a search engine.
Either way, you should always take time to assess existing packages before setting out to
potentially reinvent that wheel.

The fact that you have a need - and that a package exists to address it - should not
be the start and end of your deliberations. Although it is preferable to use a package
where it will save you otherwise unnecessary development, in some cases, it can add
overhead without real gain. You may find that a clean and focused class will get the
job done without bloat or that PHP provides a decent built-in solution. Nonetheless,
many programmers, myself included, often place too much emphasis on the creation of
original code, sometimes to the detriment of their projects.

Note The unwillingness to use third-party tools and solutions is often built-in

at the institutional level. This tendency to treat external products with suspicion

is sometimes known as the not invented here syndrome. As a further note, the
technical reviewer and fellow sf fan Paul Tregoing points out that Not Invented Here
is also the name of a ship in lain M. Banks’ Culture series.

This emphasis on authorship may be one reason that there often seems to be more
creation than actual use of reusable code.

CHAPTER 1 GOOD (AND BAD) PRACTICE

Effective programmers see original code as just one of the tools available to aid them
in engineering a project’s successful outcome. Such programmers look at the resources
they have at hand and deploy them effectively. If a package exists to take some strain,
then that is a win. To steal and paraphrase an aphorism from the Perl world: good coders
are lazy.

Playing Nice

The truth of Sartre’s famous dictum that “Hell is other people” is proved on a daily

basis in some software projects. This might describe the relationship between clients
and developers, symptomized by the many ways that lack of communication leads to
creeping features and skewed priorities. But the cap fits, too, for happily communicative
and cooperative team members when it comes to sharing code.

As soon as a project has more than one developer, version control becomes a critical
issue. A single coder may work on code in place, saving a copy of her working directory at
key points in development. Introduce another programmer to the mix, and this strategy
breaks down in minutes. If the new developer works in the same development directory,
then there is a real chance that one programmer will overwrite the work of his colleague
when saving, unless both are very careful to always work on different files.

Alternatively, our two developers can each take a version of the code base to work on
separately. That works fine until the moment comes to reconcile the two versions. Unless
the developers have worked on entirely different sets of files, the task of merging two or
more development strands rapidly becomes an enormous headache.

This is where Git, Subversion, and similar tools come in. Using a version control
system, you can check out your own version of a code base and work on it until you are
happy with the result. You can then update your version with any changes that your
colleagues have been making. The version control software will automatically merge
these changes into your files, notifying you of any conflicts it cannot handle. Once you
have tested this new hybrid, you can save it to the central repository, making it available
to other developers.

Version control systems provide you with other benefits. They keep a complete
record of all stages of a project, so you can roll back to, or grab a snapshot of, any point
in the project’s lifetime. You can also create branches, so that you can maintain a public
release at the same time as a bleeding-edge development version.

CHAPTER 1 GOOD (AND BAD) PRACTICE

Once you have used version control on a project, you will not want to attempt
another without it. Working simultaneously with multiple branches of a project can be
a conceptual challenge, especially at first, but the benefits soon become clear. Version
control is just too useful to live without. I cover Git in Chapter 17.

Note The current edition of this book was written and edited in plain text
(Markdown format) using Git as a collaboration tool.

Giving Your Code Wings

Have you ever seen your code grounded because it is just too hard to build? This is
especially a danger for projects that are developed in place. Such projects settle into
their context, with passwords and directories, databases, and helper application
invocations programmed right into the code. Deploying a project of this kind can be a
major undertaking, with teams of programmers picking through source code to amend
settings, so that they fit the new environment.

This problem can be eased to some degree by providing a centralized configuration
file or class so that settings can be changed in one place. But even then, deployment
can be a chore. The difficulty or ease of build will impede or encourage frequent
deployments during development.

As with any repetitive and time-consuming task, build should be automated. A
deployment tool can determine default values for install locations, check and change
permissions, create databases, and initialize variables, among a dizzying range of other
tasks. In fact, such a tool should be able to do just about anything you need to get an
application from a source directory in a distribution to full deployment.

Cloud products such as Amazon’s AWS CodePipeline have made it possible to create
test and staging environments as needed. Good deployment solutions are essential in
order to take full advantage of these resources. It's no good being able to provision a
server on an automated basis if you can’t also deploy your system on the fly.

Of course, the most straightforward way to move code is by using a version control
system like Git. You can also acquire third-party dependencies (or your own packages) using
Composer which, together with the Packagist repository, provides access to thousands of
libraries. Powerful as these tools are, they do not cover configuration management, and
even for simple use cases, they'd need to be orchestrated. I cover Composer in Chapter 5.

6

https://doi.org/10.1007/979-8-8688-0779-4_17
https://doi.org/10.1007/979-8-8688-0779-4_5

CHAPTER 1 GOOD (AND BAD) PRACTICE

In Chapter 10, I introduce Ansible. This powerful deployment tool can install your
code onto multiple servers, typically utilizing Git to acquire core code and Composer
for third-party dependencies. Build is about much more than the process of placing
file A in location B, however. Ansible can manage your system’s secrets and general
configuration. It can also run tests and other quality control tools or even manage
server-level provisioning.

Standards

I mentioned previously that this book shifted its focus from PEAR to Composer. Is this
because Composer is much better than PEAR? I do love lots of things about Composer,
and these might (in fact, probably would) swing the decision on their own. The
principal reason the book shifted a couple of editions back, though, is that everyone
else had shifted. Composer has become the standard for dependency management.
That is crucial because it means that when I find a package at Packagist, I am also
likely to find all its dependencies and related packages. I'll even find many of the PEAR
packages there.

Choosing a standard for dependency management, then, ensures availability and
interoperability. But standards apply beyond packages and dependencies to the ways
that systems work and to the ways that we code. If we agree on protocols, then our
systems and teams can integrate seamlessly with one another. And, as more and more
components mix across more and more systems, that is increasingly essential.

Where a definitive way of handling, say, logging, is needed, it is obviously ideal that
we adopt the best protocol. But the quality of the recommendation (which will dictate
formats, log levels, etc.) is possibly less important than the fact that we all comply with it.
It’s no good implementing the best standard if you're the only person doing it.

In Chapter 15, I discuss standards in more detail with particular reference to a set
of recommendations managed by the PHP-FIG group. These PSRs (PHP Standards
Recommendations) cover everything from caching to security. In the chapter, I will focus
on PSR-1 and PSR-12, recommendations which address the thorny issue of coding style
(where do you like to put your braces? And how do you feel about someone else telling
you to change the way you do it?). Then, I'll move on to the absolute boon of PSR-4,
which covers autoloading (support for PSR-4 is another area in which Composer excels).

https://doi.org/10.1007/979-8-8688-0779-4_10
https://doi.org/10.1007/979-8-8688-0779-4_15

CHAPTER 1 GOOD (AND BAD) PRACTICE

Vagrant and Docker

What operating system does your team use? Some organizations mandate a particular
combination of hardware and software, of course. Often, though, there will be a mix. One
developer may have a development machine running Fedora. Another might swear by
his MacBook, and a third may stick with his Alienware Windows box (he probably likes it
for gaming).

Chances are the production system will run on something else entirely - Debian,
perhaps.

It can be a pain getting a system to work across multiple platforms, and it can be a
risk if none of those platforms resemble the production system. You really don’t want to
discover issues related to the production OS after you've gone live. In practice, of course,
you'll likely deploy to a staging environment first. Even so, wouldn’t it be better to catch
these problems early?

Vagrant is a technology that uses virtualization to give all team members a
development environment that is as close as possible to production. Getting up and
running should be as simple as invoking a command or two, and, best of all, everyone
can stick with their favorite machines and distributions (I'm a Fedora guy, for the
record).

Although Vagrant is a fantastic tool, it is also both monolithic and resource hungry.

In order to get an environment up and running, you must create an entire server
environment running on a virtual machine. Docker provides a powerful lightweight
alternative. Instead of running a single silo running its own kernel, Docker allows you to
deploy multiple small containers - one for each of your system’s services. Because, behind
the scenes, a container runs directly on the host machine’s operating system (on Linux, at
least), it is easy to deploy, runs fast, and is relatively sparing on resources. By orchestrating
such containers, you can build a powerful development environment very quickly.

I cover Vagrant in Chapter 8 and Docker in Chapter 9.

Testing

When you create a class, you are probably pretty sure that it works. You will, after all,
have put it through its paces during development. You'll also have run your system with
the component in place, checking that it integrates well and that your new functionality
is available and performing as expected.

https://doi.org/10.1007/979-8-8688-0779-4_8
https://doi.org/10.1007/979-8-8688-0779-4_9

CHAPTER 1 GOOD (AND BAD) PRACTICE

Can you be sure that your class will carry on working as expected, though? That
might seem like a silly question. After all, you've checked your code once; why should it
stop working arbitrarily? Well, of course, it won’t; nothing happens arbitrarily, and if you
never add another line of code to your system, you can probably breathe easy. If, on the
other hand, your project is active, then it’s inevitable that your component’s context will
change and highly likely that the component itself will be altered in any number of ways.

Let’s look at these issues in turn. First, how can changing a component’s context
introduce errors? Even in a system where components are nicely decoupled from one
another, they remain interdependent. Objects used by your class return values, perform
actions, and accept data. If any of these behaviors change, the effects on the operation of
your class might cause the kind of error that’s easy to catch - the kind where your system
falls over with a convenient error message that includes a file name and line number.
Much more insidious, though, is the kind of change that does not cause an engine-level
error but nonetheless confuses your component. If your class makes an assumption
based on another class’s data, a change in that data might cause it to make a wrong
decision. Your class is now in error and without a change to a line of code.

And it’s likely that you will go on altering the class you've just completed. Often,
these changes will be minor and obvious - so minor, in fact, that you won'’t feel the
need to run through the careful checks you performed during development. You'll
have probably forgotten them all, anyhow, unless you kept them in some way (perhaps
commented out at the bottom of your class file). Small changes, though, have a way of
causing large unintended consequences - consequences that might have been caught
had you thought to put a test harness in place.

A test harness is a set of automated tests that can be applied to your system as a
whole or to its individual classes. Well deployed, a test harness helps you to prevent bugs
from occurring and from recurring. A single change may cause a cascade of errors, and
the test harness can help you to locate and eliminate these. This means you can make
changes with some confidence that you are not breaking anything. It is quite satisfying
to make an improvement to your system and then see a list of failed tests. These are all
errors that might have propagated within your system and which now it won’t have to
suffer in production.

CHAPTER 1 GOOD (AND BAD) PRACTICE

Command-Line Scripting

Typically, any project you work on sprouts a thicket of command-line scripts. You'll need
to clear down databases, set up test data, run periodic clean up or data population tasks,
and send out mail shots. The list tends to just grow and grow.

Since, by definition, you're already working with PHP, the language can be an
excellent choice for scripting on the shell. You're likely to have the PHP interpreter to
hand, after all. You can achieve pretty much everything with PHP that you can with a
shell script, with the added bonus that you're deploying a familiar language. Thanks to
Composer, you have access to thousands of powerful libraries, making it easy to build
scripts for almost any purpose. What's more, if you are developing a web application in
PHP, you can easily integrate your PHP shell scripts into it, giving your command-line
utilities seamless access to your software API, and, because you will be using application
configuration, you can take easy advantage of system components like databases or web
services.

Of course, there are considerations to take into account when building command-
line scripts in any language. You need to manage options and positional arguments,
for example. Given the potential variations in argument forms and requirements,
parsing these can be surprisingly challenging. For more complex scripts, you may want
to interactively prompt the user for input or even accept piped data. You also need to
consider how to communicate error conditions and usage information to the user as
well as managing general output and debug messaging.

I cover all this and more in Chapter 11.

Continuous Integration

Have you ever created a schedule that made everything okay? You start with an
assignment: a code commission maybe or a school project. It’s big and scary, and failure
lurks. But you get out a sheet of paper, and you slice it up into manageable tasks. You
determine the books to read and the components to write. Maybe you highlight the tasks
in different colors. Individually, none of the tasks is actually that scary, it turns out. And
gradually, as you plan, you conquer the deadline. As long as you do a little bit every day,
you'll be fine. You can relax.

10

https://doi.org/10.1007/979-8-8688-0779-4_11

CHAPTER 1 GOOD (AND BAD) PRACTICE

Sometimes, though, that schedule takes on a talismanic power. You hold it up like a
shield to protect yourself from doubt and from the creeping fear that perhaps this time
you’ll crash and burn. And it’s only after several weeks that you realize the schedule is
not magic on its own. You actually have to do the work, too. By then, of course, lulled by
the schedule’s reassuring power, you have let things slide. There’s nothing for it but to
make a new schedule. This time, it will be less reassuring.

Testing and building are like that, too. You have to run your tests. You have to build
your projects and build them in fresh environments regularly; otherwise, the magic
won't work.

And if writing tests is a pain, running them can be a chore, especially as they gain in
complexity and failures interrupt your plans. Of course, if you were running them more
often, you'd probably have fewer failures, and those you did have would stand a good
chance of relating to new code that’s fresh in your mind.

It's easy to get comfortable in a sandbox. After all, you've got all your toys there: little
scriptlets that make your life easy, development tools, and useful libraries. The trouble is
your project may be getting too comfortable in your sandbox, too. It may begin to rely on
uncommitted code or dependencies that you have left out of your build files. That means
it’s broken anywhere else but where you work.

The only answer is to build, build, and build again. And do it in a reasonably virgin
environment each time.

Of course, it’s all very well to advise this; it’s quite another matter to do it. Coders as
a breed tend to like to code. They want to keep the meetings and the housekeeping to a
minimum. That’s where continuous integration (CI) comes in. CI is both a practice and
a set of tools to make the practice as easy as it possibly can be. Ideally, builds and tests
should be entirely automatic or at least launchable from a single command or click. Any
problems will be tracked, and you will be notified before an issue becomes too serious.

I will talk more about CI in Chapter 12.

Summary

A developer’s aim is always to deliver a working system. Writing good code is an essential
part of this aim’s fulfillment, but it is not the whole story.

In this chapter, I introduced dependency management with Composer and
Packagist. I also covered version control. Once you can install your code and the
components upon which it depends, you'll need to deploy the system to staging and

11

https://doi.org/10.1007/979-8-8688-0779-4_12

CHAPTER 1 GOOD (AND BAD) PRACTICE

production environments, managing configuration so that it works appropriately in each
context. I introduced Ansible, a tool designed for the purpose. I also discussed Docker
and Vagrant, two approaches to creating production-like development environments.
I'looked at quality control, taking in both standards and automated testing. Even if your
project is web-based, it will likely require scripts for automating development tasks or
for performing scheduled work. I briefly explored some issues relating to command-line
scripting with PHP. Finally, I introduced CI, a set of tools to automate build and testing.

12

CHAPTER 2

Generating
Documentation
with phpDocumentor

Remember that tricky bit of code? The method that called a legacy library and returned
an array of objects which were indexed by product IDs. Or was it product names?

Even with argument and return type declarations in modern PHP, the behavior of your
components can remain obscure from the standpoint of source code alone.

Coding is a messy and complex business, and it’s hard to keep track of the way your
systems work and what needs doing. The problem becomes worse when you add more
programmers to the project. Whether you need to signpost potential danger areas or
fantastic features, documentation can help you. For a large code base, documentation or
its absence can make or break a project.

This chapter will cover

e The phpDocumentor application: Installing phpDocumentor and
running it from the command line

e Documentation syntax: The DocBlock comment and
documentation tags

e Documenting your code: Using DocBlock comments to provide
information about classes, properties, and methods

e Creating links in documentation: Linking to websites and to other
documentation elements

13
© Matt Zandstra 2025

M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_2

https://doi.org/10.1007/979-8-8688-0779-4_2#DOI

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

Why Document?

Programmers love and loathe documentation in equal measure. When you are under
pressure from deadlines, with managers or customers peering over your shoulders,
documentation is often the first thing to be jettisoned. The overwhelming drive is to get
results. Write elegant code, certainly (though that can be another sacrifice), but with a
code base undergoing rapid evolution, documentation can feel like a real waste of time.
After all, you'll probably have to change your classes several times in as many days. Of
course, everyone agrees that it’s desirable to have good documentation. It’s just that no
one wants to undermine productivity in order to make it happen.

Imagine a very large project. The code base is enormous, consisting of very clever
code written by very clever people. The team members have been working on this single
project (or set of related subprojects) for over five years. They know each other well, and
they understand the code absolutely. Documentation is sparse, of course. Everyone
has a map of the project in their heads, and a set of unofficial coding conventions that
provide clues as to what is going on in any particular area. Then the team is extended.
The two new coders are given a good basic introduction to the complex architecture and
thrown in. This is the point at which the true cost of undocumented code begins to tell.
What would otherwise have been a few weeks of acclimatization soon becomes months.
Confronted with an undocumented class, the new programmers are forced to trace
the arguments to every method, track down every referenced global, and check all the
methods in the inheritance hierarchy. And with each trail followed, the process begins
again. If, like me, you have been one of those new team members, you soon learn to love
documentation.

Lack of documentation costs. It costs in time, as new team members join a project or
existing colleagues shift beyond their area of specialization. It costs in errors as coders
fall into the traps that all projects set. Methods which are designed for use in a specific
context are invoked from the wrong component. A function declares that it returns an
array or null - but the logic which determines which will get furnished is unclear, so a
new coder makes a best guess. Functionality that already exists is needlessly recreated.

Documentation is a hard habit to get into because you don’t feel the pain of
neglecting it straightaway. Documentation needn’t be difficult, though, if you work at it
as you code. This process can be significantly eased if you add your documentation in
the source itself as you code. You can then run a tool to extract the comments into neatly
formatted web pages. This chapter is about just such a tool.

14

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

phpDocumentor (https://www.phpdoc.org/) was originally based on a Java tool
called JavaDoc. Both systems extract special comments from source code, building
sophisticated application programming interface (API) documentation from both the
coder’s comments and the code constructs they find in the source.

Installation

Unusually for a PHP tool, Composer is not the recommended way to install
phpDocumentor. The project maintainers warn that installing with Composer brings
with it a high probability of dependency conflicts so, for that reason, probably the easiest
way to get up and running is the phar archive.

Get the archive
$ wget https://phpdoc.org/phpDocumentor.phar

move somewhere central
$ mv phpDocumentor.phar ~/bin/phpdoc

make it executable
$ chmod 755 ~/bin/phpdoc

I downloaded the file phpDocumentor . phar and saved it to my local bin/ directory. I
also renamed it to phpdoc, partly because that’s quicker to type and partly because it is a
common practice. I ensured that the archive was runnable using the chmod command.

You can also use the official Docker image:

$ docker run --rm -v ${PWD}:/data phpdoc/phpdoc:3

This assumes you want to run phpDocumentor against your current directory. If
that’s not the case, change ${PWD} to point to a more relevant subdirectory.

Generating Documentation

It might seem odd to generate documentation before we have even written any,
but phpDocumentor parses the code structures in our source code, so it can gather
information about your project before you even start.

15

https://www.phpdoc.org/

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

I am going to document aspects of an imaginary project called “megaquiz.” It
consists of two directories, command and quiztools, which contain class files. These are
also the names of packages in the project.

By default, phpDocumentor will run on the current working directory (though you
have already seen that you can specify a different directory with Docker’s -v flag). It is
probably more useful, though, to specify your source and target directories.

Let’s run it:

$ phpdoc \
--title=megaquiz \
--target=src/ch15/docs \
--directory=src/ch15/megaquiz

The --directory flag denotes the directory whose contents you intend to document
(you can also use the single letter flag -d with no equals sign for its argument). --target
(or -t) denotes your target directory (the directory to which you wish to write the
documentation files). Use --title to set a project title.

Here is the command-line output from the previous command:

phpDocumentor v3.4.3

Parsing files

Applying transformations (can take a while)
All done in 0 seconds!

Now, in my specified documentation directory at src/ch15/docs, I should find my
documentation generated as HTML files. I can open index.html to find a surprising
amount of detail. Because my classes are namespaced, my classes are already organized
into a package-like structure.

You can see the popp\ch15\megaquiz\command classes, for example, in Figure 2-1.

16

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

v @ megaquiz x + - B X
- C @File)var/popp/src/ch1l5/docs/namespaces/popp-ch15-megaquiz-command.html b+ A O a
Chrome is being controlled by automated test software X
F f
Namespaces popp ch15 megaquiz On this page
popp command Table Of Contents
ch15 Classes
Table of Contents
Packages
Application Classes
Reports Commang
Deprecated CommandContext
Errors FeedbackCommand
Markers LoginCommand
Indices
Files

Figure 2-1. phpDocumentor renders classes by namespace

Note phpDocumentor supports a @package tag which you can use to apply
logical package categories to your documented classes. If you’re defining
namespaces in your project, however, using @package as well can represent a
needless maintenance overhead and may cause confusion.

As you can see, phpDocumentor shows all the classes in the selected namespace
(popp\ch15\megaquiz\command). If any had been defined, it would also show any
functions, interfaces, or traits. The class names are all hyperlinks. In Figure 2-2, you can
see some of the documentation for the Command class.

phpDocumentor is smart enough to recognize that Command is an abstract class.
Notice also that it has reported both the name and the type of the argument required by
the execute() method as well as its return type.

17

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

Because this level of detail alone is enough to provide an easily navigable overview of
a large project, it is a huge improvement over having no documentation at all. However, I
can improve it further by adding comments to my source code.

v @ megaquiz x |+ - O X
“ c @ File /var/popp/src/ch15/docs/classes/popp-ch15-megaquiz-command-Command.html w Z O a
Chrome is being controlled by automated test software X
I
Namespaces popp ch15 megaquiz command On this page
popp Command Table Of Contents
ch15 Method
in package Application
- Methods
PaCKages Abstract ' Yes ——
Application LA RER
o e Table of Contents
Deprecated
Errors Methods
Markers
execute() : bool
Indices
Files

Methods

Figure 2-2. Default documentation for the Command class

DocBlock Comments

DocBlock comments are specially formatted to be recognized by a documentation
application. They take the form of standard multiline comments. Standard, that is, with
the single addition of an asterisk to each line within the comment:

/**
* My DocBlock comment

*/

18

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

phpDocumentor is designed to expect special content within DocBlocks. This
content includes normal text descriptive of the element to be documented (for our
purposes, a file, class, method, or property). It also includes special keywords called
tags. Tags are defined using the at sign (@) and may be associated with arguments. So the
following DocBlock placed at the top of a class tells phpDocumentor about the author:

/**
* @author Bob Bobson
*/
If I add this comment to classes in my project, phpDocumentor will include
attribution in its output as you can see in Figure 2-3.

v @ megaquiz b + = B
— (¢ @ File /var/popp/src/ch15/docs/classes/popp-ch15-megaquiz-command-Command.html b+ g Z O a
Chrome is being controlled by automated test software X
Py
Namespaces popp c¢h15 megaquiz command On this page
popp Command Table Of Contents
i in package Applicatio —
r é f : n
! & Pl Methods
Packages Abstract Yes o
Application Command.php
Reports Tags
Deprecated author
Errors Bob Bobson
Markers
Indices
- Table of Contents

Methods

Figure 2-3. Documentation output that recognizes the @author tag

19

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

Documenting Classes

Let’s add some more tags and text that are useful in class- or file-level DocBlocks. I
should identify the class, explain its uses, and add authorship and copyright information.
Here is the Command class in its entirety:

namespace popp\ch15\megaquiz\command;

/**

* Defines core functionality for commands.

* Command classes perform specific tasks in a system via
* the execute() method

*

* @author Bob Bobson

* @copyright 2024 Hidden Hat Technologies Ltd

*/

abstract class Command

{

abstract public function execute(CommandContext $context): bool;

The DocBlock comment has grown significantly. The first sentence is a one-line
summary. This is emphasized in the output and extracted for use in overview listings.
The subsequent lines of text contain more detailed description. It is here that you can
provide detailed usage information for the programmers who come after you. As we will
see, this section can contain links to other elements in the project and fragments of code
in addition to descriptive text. I also include the @author tag, which you have already
seen, and a @copyright tag. You can see the effect of my extended class comment in
Figure 2-4.

20

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

v @ megaquiz X + = ET
<« Cc @ File /var/popp/src/ch15/docs/classes/popp-ch15-megaquiz-command-Command.html b+ g Z O &
Chrome is being controlled by automated test software X
Pre
Namespaces popp ch15 megaquiz command On this page
popp Command Table Of Contents
ch15 2 Methods
in package Application
N Methods
PaCKageS Abstract = Yes
Application Command.php
Reports Defines core functionality for commands.
Deprecated Command classes perform specific tasks in a system via the
Errors execute() method
Markers
Tags
Indices stithor
Files Bob Bobson

Figure 2-4. Class details in documentation output

Notice that I didn’t need to tell phpDocumentor that the Command class is abstract.
This confirms something that we already know, that phpDocumentor interrogates the
classes with which it works even without our help. But it is also important to see that
DocBlocks are contextual. phpDocumentor understands that we are documenting a
class in the previous listing, because the DocBlock it encounters immediately precedes a
class declaration.

File-Level Documentation

Although I tend to think in terms of classes rather than of the files that contain them, a
file-level comment can be a good place to insert copyright and license information. A file
comment should be the first DocBlock in a document. It should not directly precede a
coding construct (like a class, for example).

21

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

Many open source projects require that every file includes a license notice or a link
to one. Page-level DocBlock comments can be used, therefore, for including license
information that you do not want to repeat on a class-by-class basis. You can use the
@license tag for this. @1icense should be followed by a URL, pointing to a license
document and a description:

/**
* @license https://opensource.org/license/mit The MIT License

*/

Documenting Properties

Once upon a time, all properties were mixed in PHP. That is, a property could potentially
contain a value of any type. These days, of course, we can, and usually should, constrain

the types of our properties. As you might expect, phpDocumentor will detect and report

any property type declarations.

There are still plenty of situations, however, where more information is valuable. You
may wish to explain what a property is used for or to provide information about types
contained within a collection.

We can document a property, variable, or constant with the @var tag. This will
accept three arguments which can be placed on a single line. These are type, name, and
description.

Here are some properties documented in the CommandContext class:

class CommandContext

{

/** @var string appname The application name */
public readonly string $appname;

/** @var array<string, mixed> params Encapsulated keys/values */
private array $params = [];

/** @var string error An error message */

public string $error = "";

/...

22

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

As you can see, I provide a type, a name, and a description for each property. For the
params array, I also use a special notation to specify the type of both the keys and values
in the array. This generic notation is a standard way of describing the types that make
up collections. Generics, which define and constrain collection types, are supported
in many other languages such as TypeScript and Java. Although PHP does not support
defining generics within the language, the notation is useful both for anyone reading the
documentation as well as other tools that might use the phpdoc - notably IDEs and static
analysis tools such as PHPStan.

You can see the documented properties in Figure 2-5.

v @ megaquiz X + — =l

<« C @ File /var/popp/src/ch15/docs/classes/popp-ch15-megaquiz-command-CommandContexthtml ¥y Z O &

Chrome is being controlled by automated test software.
On this page

Properties

Table Of Contents

$appname

CommandContext.php

public string $appname

appname The application name

$error -

ommandContext.php

public string $error = ""

error An error message

$params
php

CommandContext.php

Figure 2-5. Documenting properties

Documenting Methods

Together with classes, methods lie at the heart of a documentation project. At the very
least, readers need to understand the arguments to a method, the operation performed,

and its return value.

23

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

As with class-level DocBlock comments, method documentation should consist of
two blocks of text: a one-line summary and an optional description. You can provide
information about each argument to the method with the @param tag. Each @param tag
should begin a new line and should be followed by the argument name, its type, and a
short description.

You can document the method’s return type with the @return tag. @return
should begin a new line and should be followed by the return value’s type and a short
description. I put these elements together here:

/**
* Perform the key operation encapsulated by the class.
* Command classes encapsulate a single operation. They
* are easy to add to and remove from a project, can be
stored after instantiation and execute() invoked at

*

*

leisure.
@param $context CommandContext Shared contextual data
@return bool false on failure, true on success

*

*

*/

abstract public function execute(CommandContext $context): bool;

It may seem strange to add more documentation than code to a document.
Documentation in abstract classes is particularly important, though, because it provides
directions for developers who need to understand how to extend the class. If you are
worried about the amount of dead space the PHP engine must parse and discard for a
well-documented project, it is a relatively trivial matter to add code to your build tools to
strip out comments on installation.

You can see our documentation’s output in Figure 2-6.

24

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

v @ megaquiz X + — =i b

<« C @ File /var/popp/src/ch15/docs/classes/popp-ch15-megaquiz-command-Command.html w A 0O &

Chrome is being controlled by automated test software. X
TTErT T On this page =

Table Of Contents
execute() Method

Command.php

Methods

Perform the key operation encapsulated by the class. executel

public abstract execute($context) : bool

Command classes encapsulate a single operation. They are
easy to add to and remove from a project, can be stored
after instantiation and execute() invoked at leisure.

Parameters

$context :

CommandContext Shared contextual data
Return values

bool —
false on failure, true on success

Figure 2-6. Documenting methods

Creating Links in Documentation

phpDocumentor generates a hyperlinked documentation environment for you.
Sometimes, though, you will want to generate your own hyperlinks, either to other
elements within documentation or to external sites. In this section, we will look at the
tags for both of these.

As you construct a DocBlock comment, you may want to talk about a related class,
property, or method. To make it easy for the user to navigate to this feature, you can
use the @see tag. @see requires a reference to a class using the fully qualified or relative
class name (so, for example if you are documenting from the popp\ch15\megaquiz\
command namespace, you can just use a class name to refer to another class in the same
namespace). You can also append double colons followed by an element such as a
method (Command: :execute()) or a property (CommandContext: : $applicationName).

25

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

Once you've referenced your target element, you can add some label text. So, in the
following DocBlock comment, I document the CommandContext class and emphasize the
fact that it is commonly used in the Command: : execute() method:

[**

* Encapsulates data for passing to, from and between Commands.

*

Commands require disparate data according to context. The
CommandContext object is passed to the {@see Command::execute()}
method, and contains data in key/value format. The class

* automatically extracts the contents of the $ REQUEST
superglobal.

*

*

*

*

* @see Command::execute() the execute method
*/
class CommandContext

{
/...

As you can see in Figure 2-7, the @see tag resolves to a link. Clicking this will lead you
to the Command: :execute () method. Notice also a new feature. You can apply some tags
inline within description text by wrapping them in braces.

26

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

v @ megaquiz X + — X

« c @ File /var/popp/src/ch15/docs/classes/popp-ch15-megaquiz-command-CommandContext.html ¥y Z O a

Chrome is being controlled by automated test software. X
Namespaces popp ch15 megaquiz command On this page

Table Of Contents

popp CommandContext bro

1
Tt in package Application

Packages CommandContext.php Pr.opertles
$appname
Application Encapsulates data for passing to, from and between e
Reports Commands. Ll
Methods
Deprecated Commands require disparate data according to context. The ;
Errors CommandContext object is passed to the Command::execute()
Markers method, and contains data in key/value format. The class
automatically extracts the contents of the $_REQUEST
Indices superglobal.
Files

Tags

see

mman ite() the execute method

Figure 2-7. Creating a link with the @see tag (inline and block)

You can also create web links using the @1ink tag. Simply combine @1ink with a URL

and a description.
@link http://www.example.com More info

Once again, the URL is the target, and the description that follows it is the clickable
text. As with @see, you can also use @1ink inline.

You may want to make a reciprocal link. Command uses CommandContext objects, so I
can create a link from Command: : execute() to the CommandContext class and a reciprocal
link in the opposite direction. I could, of course, do this with two @see tags.

@uses handles it all with a single tag, however:

abstract class Command

{
/**

* Perform the key operation encapsulated by the class.

27

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

Command classes encapsulate a single operation. They
are easy to add to and remove from a project, can be
stored after instantiation and execute() invoked at
leisure.

@param $context CommandContext Shared contextual data
@return bool false on failure, true on success
@uses CommandContext

@link https://en.wikipedia.org/wiki/Command pattern

* ¥ X X X ¥ x X

*/

abstract public function execute(CommandContext $context): bool;

So, by adding the @uses tag to the Command: :execute() documentation, I create a
link to the CommandContext class page. In this CommandContext class documentation, a
“Used by” link will appear which leads back to Command: :execute().

You can see some of this in action in Figure 2-8.

v @ megaquiz x + 2 = e

<« (6] @ File /var/popp/src/ch15/docs/classes/popp-ch15-megaquiz-command-Command.html w A 0 &

Chrome is being controlled by automated test software. X
On this page

execute()

" ol B Table Of Contents
Command.php

Method

Perform the key operation encapsulated by the class. Methods

xecute

public abstract execute($context) : bool

Command classes encapsulate a single operation. They are
easy to add to and remove from a project, can be stored
after instantiation and execute() invoked at leisure.

Parameters

$context :

CommandContext Shared contextual data
Tags
uses

mmandCor

link

https://en.wikipedia.org/wiki/Command pattern

Figure 2-8. Documentation including @1ink and @uses tags

28

CHAPTER 2 GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

Summary

In this chapter, I covered the core features of phpDocumentor. You encountered the
DocBlock comment syntax and the tags that can be used with it. I looked at approaches
to documenting classes, properties, and methods, and you were provided with enough
material to transform your documentation and thus improve collaborative working
immeasurably (especially when used in conjunction with build tools and version
control). There is a lot more to this application than I have space to cover, though, so be
sure to check the phpDocumentor home page at https://www.phpdoc.org.

29

https://www.phpdoc.org

CHAPTER 3

PHP Standards

Unless you are a lawyer or a health inspector, the topic of standards probably does not
make your heart race. However, what standards help us achieve is worth getting excited
about. Standards promote interoperability, and that gives us access to a vast array of
compatible tools and framework components.

This chapter will cover several important aspects of standards:

o Why standards: What are standards and why they matter

e PHP Standards Recommendations: Their origins and purpose
e PSR-I1: The Basic Coding Standard

e PSR-12: Extended Coding Style

e PSR-4: Autoloading

Why Standards?

Design patterns interoperate. That is built-in at their core. A problem described in a
design pattern suggests a particular solution, which in turn generates architectural
consequences. These are then well addressed by new patterns. Patterns also help
developers to interoperate because they provide a shared vocabulary. Object-oriented
systems tend to privilege the principle of playing nice.

As we increasingly share each other’s components though, this informal tendency
toward interoperability is not always enough. Tools like Composer allow us to mix and
match tools in our projects. These components may be designed as stand-alone libraries,
or they may be pieces from a wider framework. Either way, once deployed in our system,
they must be capable of working beside and in collaboration with any number of other
components. By adhering to core standards, we make it less likely that our work will run
into compatibility issues.

31
© Matt Zandstra 2025

M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_3

https://doi.org/10.1007/979-8-8688-0779-4_3#DOI

CHAPTER 3 PHP STANDARDS

In some senses, the nature of a standard is less important than the fact that it
is adhered to. Personally, for example, I don’t love every aspect of the PSR-12 style
guidelines. In most circumstances, including this book, I have adopted the standard.
Other developers on my teams will hopefully find my code easier to work with because
they will engage with it in a format that is familiar. For other standards, such as
autoloading, failure to observe a common standard will result in components that may
not work together at all without additional middleware.

Standards are probably not the most exciting aspect of programming. However, there
is an interesting contradiction at their core. It may seem that a standard closes down
creativity. After all, standards tell you what you can and can’t do. You must comply. You
might think that this is hardly the stuff of innovation. And yet, we owe the great flowering
of creativity that the Internet has ushered into our lives to the fact that every node on
this network of networks conforms to open standards. Proprietary systems stuck within
walled gardens are necessarily limited in scope and often in longevity - no matter how
clever their code or slick their interfaces. The Internet, with its shared protocols, ensures
that any site can link to any other site. Most browsers support standard HTML, CSS, and
JavaScript. The interfaces we can build within these standards are not always the most
impressive we might imagine (though the limitations are much less than they were); still,
abiding by them enables us to maximize the reach of our work.

Used well, standards promote openness, cooperation, and, ultimately, creativity.
This is true, even if a standard itself enforces some limitations.

What Are PHP Standards Recommendations?

At the 2009 php|tek] conference, a group of framework developers formed an
organization they called the PHP Framework Interop Group (PHP-FIG). Since then,
developers have come on board from other key components. Their purpose was to build
standards, so that their systems could better coexist.

The group vote on standards proposals which progress from Draft through Review
and, finally, to Accepted status.

Table 3-1 lists the current standards at the time of this writing.

32

CHAPTER 3 PHP STANDARDS

Table 3-1. Accepted PHP Standards Recommendations

PSR Number Name Description

1 Basic Coding Standard Fundamentals such as PHP tags and basic naming
conventions

3 Logger Interface Rules for log levels and logger behaviors

4 Autoloading Standard Conventions for naming classes and namespaces,
as well as their mapping to the file system

6 Caching Interface Rules for cache management, including data types,
cache item lifetime, error handling, etc.

7 HTTP Message Interface Conventions for HTTP requests and responses

11 Container Interface A common interface for dependency injection
containers

12 Extended Coding Style Guide Code formatting, including rules for placement of
braces, argument lists, etc.

13 Hypermedia Links Interfaces for describing hypermedia links

14 Event Dispatcher Definition for event management

15 HTTP Handlers Common interfaces for HTTP server request
handlers

16 Simple Cache A common interface for caching libraries (a
simplification of PSR-6)

17 HTTP Factories A common standard for factories that create PSR-
7-compliant HTTP objects

18 HTTP Client Interface for sending HTTP requests and receiving
HTTP responses

20 Clock A simple interface for reading the system clock

33

CHAPTER 3 PHP STANDARDS

Why PSR in Particular?

So, why choose one standard and not another? It happens that the PHP Framework
Interop Group - the originators of PSRs - has a pretty great pedigree, and the

standards themselves therefore make sense. But also, these are the standards that the
major frameworks and components are adopting. If you are using Composer to add
functionality to your projects, you are already consuming code that complies with PSRs.
By using its conventions for autoloading and its style guides, you are likely building code
that is ready for collaboration with other people and components.

Note One set of standards is not inherently superior to another. When you choose
whether to adopt a standard, your choice may be driven by your judgment of the
recommendation’s merits. Alternatively, you might make a pragmatic choice based
on the context within which you are working. If you’re working in the WordPress
community, for example, you might want to adopt the style defined in the Core
Contributor Handbook at https://developer.wordpress.org/coding-
standards/wordpress-coding-standards/php/. Such a choice is part of
the point of standards, which are all about the cooperation of people and software.

PSRs are a good bet because they are supported by key framework and component
projects, including Phing, Composer, PEAR, Symfony, and Zend 2. Like patterns,
standards are infectious - you're probably already benefiting from them.

Who Are PSRs For?

Ostensibly, PSRs are designed for the creators of frameworks. The fact that the
membership of the PHP-FIG group rapidly widened to include the creators of tools

as well as frameworks, however, shows that standards have wide relevance. That said,
unless you are creating a logger, you may not need to worry too much about the details of
PSR-3 (beyond ensuring any logging tool you use is itself compliant). On the other hand,
ifyou've read Volume 1, chances are you are as likely to be creating tools as you are to be
consuming them. So, it’s also likely that you'll find something relevant to you either in
the present standards or the standards to come.

34

https://developer.wordpress.org/coding-standards/wordpress-coding-standards/php/
https://developer.wordpress.org/coding-standards/wordpress-coding-standards/php/

CHAPTER 3 PHP STANDARDS

And then, there are the standards that matter to all of us. Unglamorous as style
guides are, for example, they are relevant to every programmer. And while the rules that
govern autoloading really apply to those who create autoloaders (and the main game
in town is probably Composer’s), they also fundamentally affect how we organize our
classes, our packages, and our files.

For these reasons, I will focus on coding style and autoloading for the rest of this chapter.

Coding with Style

I tend to find pull request comments like “your braces are in the wrong place”
disproportionately irritating. Such input often seems nitpicky and perilously close to
bike-shedding.

Note In case you have not come across it, the verb “to bike-shed” refers to the
tendency in some reviewers to criticize unimportant elements of a project under
scrutiny. The implication is that such elements are chosen because they fit within the
scope of the commenter’s competence. So, given a skyscraper to assess, a particular
manager might focus not on the vast and complex tower of glass and steel but on the
much easier to comprehend bike shed around the back. Wikipedia has a good history
of the term: https://en.wikipedia.org/wiki/Law of triviality.

And yet, T have come to see that conforming to a common style can help improve the
quality of code. This is mainly a matter of readability (regardless of the reasoning behind
a particular rule). If a team abides by the same rules for indentations, brace placement,
argument lists, and so on, then a developer can quickly assess and contribute to a
colleague’s code.

So, in a previous edition of the book, I committed to edit all code examples so that
they conformed to PSR-1 and PSR-12. I asked my colleague and technical reviewer Paul
Tregoing to hold me to that, too. This was a promise that was so easy to make at the
planning stage - and much more effort than I expected. This brings me to the first style
guide lesson I learned. If possible, adopt a standard early for your project. Refactoring to
a code style will likely tie up resources and make it hard to examine code differences that
span The Time of the Great Reformat.

So what changes have I had to apply? Let’s start with the basics.

35

https://en.wikipedia.org/wiki/Law_of_triviality

CHAPTER 3 PHP STANDARDS

PSR-1 Basic Coding Standard

These are the fundamentals for PHP code. You can find them in detail at https://www.
php-fig.org/psr/psr-1/. Let’s break them down.

Opening and Closing Tags

First of all, a PHP section should open either with <?php or <?=. In other words, the short
opening tag, <?, should not be used nor should any other variation. A section should
close with ?> only (or, as we shall see, no tag at all).

Note PSRs follow a set of definitions for words such as SHOULD and MUST
which determine the degree of compliance a directive should command. While
this chapter will rely on the plain English meanings of such words, the absolute
intended meanings within the context of PSR are defined at https://www.ietf.
org/rfc/rfc2119.txt.

Side Effects

A PHP file should declare classes, interfaces, functions, and the like, or it should perform
an action (such as reading or writing to a file or sending output to the browser); however,
it should not do both. If you are accustomed to using require_once() to include other
class files, this will trip you up straightaway because the act of including another file is a
side effect. Just as patterns beget patterns, so standards tend to require other standards.
The correct way to handle class dependencies is through a PSR-4-compliant autoloader.

So, is it legal for a class you declare to write to a file in one of its methods? That is
perfectly acceptable because the effect is not kicked off by the file’s inclusion. In other
words, it’s an execution effect, not a side effect.

So what kind of file might perform actions rather than declare classes? Think of the
script that initiates an application.

36

https://www.php-fig.org/psr/psr-1/
https://www.php-fig.org/psr/psr-1/
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt

CHAPTER 3 PHP STANDARDS
Here is a listing that performs actions as a direct result of inclusion:
namespace popp\ch16\batcho1;
require once(_DIR . "/../../../vendor/autoload.php");
$tree = new Tree();
print "loaded " . get class($tree) . "\n";
Here is a PHP file that declares a class with no side effects:
namespace popp\ch16\batcho1;

class Tree

{
}

Note In other chapters, | largely omit namespace declarations and use
directives in order to focus on the code. Since this chapter is about the mechanics
of formatting class files, | will include namespace and use statements where
appropriate.

Naming

Classes must be declared in upper camel case, also known as studly caps or PascalCase.
In other words, a class name should begin with a capital letter. The rest of the name
should be lowercase unless it consists of multiple words. In this instance, each word
should begin with an uppercase letter, like this:

class MyClassName

Properties can be named in any way, although consistency is called for. I tend to use
camel case, an approach similar to studly caps, but without the leading capital letter:

private string $myPropertyName
Methods must be declared in camel case:
public function myMethodName()

37

CHAPTER 3 PHP STANDARDS
Class constants must be uppercase, with words separated by underscores:

public const MY NAME IS = 'matt’;

More Rules and an Example

Classes, namespaces, and files should be declared in accordance with the PSR-4
Autoloading Standard. We will come to that later in the chapter, however. PHP
documents must be saved as UTF-8 encoded files (without a byte order mark or BOM).

Note More accurately, PSR-1 states that namespaces and classes MUST follow
an autoloading PSR. This would include the now-deprecated PSR-0 which specifies
support for PEAR-style class naming.

Finally, for PSR-1, let’s get it all wrong - and then put it right. Here is a class file that
breaks all the rules:

<?
require once("conf/ConfFile.ini");

class conf reader {
const ModeFile = 1;
const Mode DB = 2;

private $conf file;
private $confValues = [];

function read conf() {
// implementation

Can you spot all the issues? First of all, I used a short opening tag. I also failed to
declare a namespace (though we haven'’t yet covered this requirement in detail). In
naming my class, I used underscores and no capitals, rather than studly caps. And I used
two formats for my constant names, neither of which are the required one - all capitals
with words separated by underscores. Although both my property names were legal,

38

CHAPTER 3 PHP STANDARDS

I failed to make them consistent; specifically, I used underscores for $conf_file and
camel case for $confValues. In naming my method, read_conf(), [used an underscore
rather than camel case.

Let’s fix those itemized issues.

<?php
namespace popp\chi6\batcho1;

class ConfReader {
const MODE_FILE = 1;
const MODE DB = 2;

private $confFile;
private $confValues = [];

function readConf() {
// implementation

This fixes things up as far as PSR-1 is concerned but we are not done. There is still
PSR-12 to consider.

PSR-12 Extended Coding Style

The Extended Coding Style (PSR-12) builds upon PSR-1 and replaces a deprecated
standard: PSR-2. Let’s jump in and look at some of the rules.

Starting and Ending a PHP Document

We have already seen that PSR-1 requires that PHP blocks open with <?php or <?=.
PSR-12 stipulates that pure PHP files should not have an ending ?> tag but should end
with a single blank line. It’s all too easy to end a file with a closing tag and then let an
extra new line creep in. This can result in formatting bugs as well as errors when you set
HTTP headers (you cannot do this after content has already been sent to the browser).
Table 3-2 describes, in order, the statements that might form a valid PHP document.

39

CHAPTER 3 PHP STANDARDS

Table 3-2. PHP Statements

Statement Example
Opening PHP tag <?php
A file-level DocBlock [**
* File doc
*/

Declare statements

Namespace declaration

Use import statements (classes)
Use import statements (functions)

Use import statements (constants)

The remainder of the code in the file

declare(strict types=1);
namespace popp;

use other\Service;

use function other\myFunc

use const other\MY CONST;

A PHP document should follow the structure in Table 3-2 (though any elements that

are not necessary for legal PHP code may be omitted). namespace declarations should be

followed by a blank line, and a block of use declarations should be followed by a blank

line. Do not put more than one use declaration on the same line:

namespace popp\chi6\batcho1;

use popp\ch10\batcho6\PollutionDecorator;

use popp\ch10\batcho6\DiamondDecorator;

use popp\ch10\batcho6\Plains;

// begin class

Note Compound namespaces (with a depth of now more than two) are also
allowed by PSR-12. So, a form like this would be legal:

use popp\ch10\{
batcho6\PollutionDecorator,
batcho6\DiamondDecorator,
batcho6\Plains,

b

40

CHAPTER 3 PHP STANDARDS

Starting and Ending a Class

The class keyword, the class name, and extends and implements must all be placed on
the same line. Where a class implements multiple interfaces, each interface name can
be included on the same line as the class declaration, or it can be placed indented on
its own line. Indentation, by the way, must be four spaces. If you choose to place your
interface names on multiple lines, the first item must be placed on its own line rather
than directly after the implements keyword. Class braces should begin on the line after
the class declaration and end on their own line (directly after the class contents). So, a
class declaration might look something like this:

class EarthGame extends Game implements

Playable,
Savable
{
// class body
}

However, you could equally place the interface names on a single line:

class EarthGame extends Game implements Playable, Savable

{
// class body

}

In the case of interfaces, you can specify multiple classes to extend from applying
the same rules as for implements - that is with all classes on one line or broken into a list
with each class on its own line.

Working with Traits

When adding a trait to a class, you must add the use statement to the line directly after
the class’s opening brace. Although PHP allows you to group your traits onto a single
line, PSR-12 requires that you place each use statement on its own line. If your class
provides its own elements in addition to the use statements, you must leave a blank line
before proceeding with nontrait content. Otherwise, you must close the class block on
the line directly after the last use statement.

41

CHAPTER 3 PHP STANDARDS
Here is a class that imports two traits and provides a method of its own:
namespace popp\ch16\batcho1;

class Tree

{

use GrowTools;
use TerrainUtil;

public function draw(): void

{

// implementation

If you declare a block for as or insteadof statements, it should spread over multiple
lines. The opening brace should begin on the same line as the use statement. The block
should then use one line per statement. Finally, the closing brace should end on its own
line, like this:

namespace popp\ch16\batcho1;

class Marsh

{

use GrowTools {
GrowTools::dimension as size;

}

use TerrainUtil;

public function draw(): void

{

// implementation

42

CHAPTER 3 PHP STANDARDS

Declaring Properties and Constants

Properties and constants must have a declared visibility (public, private, or
protected). The var keyword is not acceptable. We have already covered the format for
property and constant names as part of PSR-1.

Starting and Ending a Method

All methods must have a declared visibility (public, private, or protected). The
visibility keyword must follow abstract or final, but precede static. Method
arguments with default values should be placed at the end of the argument list.

Single-Line Declarations

Method braces should begin on the line after the method name and end on their own
line (directly after the method code). A list of method arguments should not begin or end
with a space (i.e., they should snuggle in close to the wrapping parentheses). For each
argument, the comma should be flush with the preceding argument name (or the default
value), but it should then be followed by a space. Let’s clarify things with an example:

final public static function generateTile(int $diamondCount, bool $polluted
= false): array

// implementation

Multiline Declarations

A single-line method declaration is not practical in cases where there are many
arguments. In this situation, you can break the argument list so that each argument
(including type, argument variable, default value, and comma) is placed indented on
its own line. In this case, the closing parenthesis should be placed on the line after the
argument list, flush with the start of the method declaration. The opening brace should
follow the closing parenthesis on the same line, separated by a space. The method body
should begin on a new line. Once again, that sounds much more complicated than it is.
An example should make it clearer:

43

CHAPTER 3 PHP STANDARDS

public function _ construct(
int $size,
string $name,
bool $wraparound = false,
bool $aliens = false

) A

// implementation

Return Types

A return type declaration should be on the same line as the closing parenthesis. The
colon should directly follow the closing parenthesis. The colon should be separated from
the return type by a single space. For multiline declarations, the return type declaration
should precede the opening brace on the same line separated by a space.

final public static function findTilesMatching(
int $diamondCount,
bool $polluted = false

): array {
// implementation

PSR-12 does not mandate the use of return type declarations. However, since the
introduction of void, mixed, and nullable types, it should be possible to provide a
declaration that matches all circumstances.

Lines and Indentation

As mentioned briefly above, you must use four spaces rather than tabs for indentation.
It’s worth checking your editor settings - you can configure good editors to use spaces
rather than a tab when you press the Tab key. You should also wrap your text before your
line reaches 120 characters (though this is not mandatory). Ideally, lines longer than 80
characters should be split across multiple lines of no more than 80 characters each. Lines
must end with Unix line feed characters and not other platform-specific combinations
(such as CR in Macs and CR/LF on Windows). Again, check your editor’s settings for this,
since it will likely use your operating system’s default line ending characters.

44

CHAPTER 3 PHP STANDARDS

Calling Methods and Functions

Do not place a space between the method name and the opening parenthesis. You can
apply the same rules to the argument list in a method call as you do to the argument list
in a method declaration. In other words, for a single-line call, leave no space after the
opening parenthesis or before the closing parenthesis. A comma should follow directly
after each argument, with a single space falling before the next one. If you need to use
multiple lines for a method call, each argument should sit indented on its own line, and
the closing parenthesis should fall on a new line:

$earthgame = new EarthGame(
5)
"earth",
true,
true
);

$earthgame: :generateTile(5, true);

Flow of Control

Flow control keywords (if, for, while, etc.) must be followed by a single space.
However, the opening parenthesis must not be followed by a space. Similarly, the closing
parenthesis must not be preceded by a space. So, the contents should be snug in their
brackets. In contrast to class and (single line) function declarations, the opening brace
for the flow control block must begin on the same line as the closing parenthesis. The
closing brace should sit on its own line. Here’s a quick example:

$tile = [];
for ($x = 0; $x < $diamondCount; $x++) {
if ($polluted) {
$tile[] = new PollutionDecorator(new DiamondDecorator(new
Plains()));
} else {
$tile[] = new DiamondDecorator(new Plains());

45

CHAPTER 3 PHP STANDARDS

Notice the space after both for and if. The for and if expressions are flush to the
parentheses that contain them. In both cases, the closing parenthesis is followed by a
space and then the opening brace for the flow control body.

Expressions in parentheses may be split across multiple lines, with each line
indented at least once. Where the expressions are broken, the Boolean operators can go
either at the beginning or end of each line, but your choice must be consistent.

$ret = [];
$count = count($this->tiles);
for (
$x = 0;
$x < $count;
$x++
) {
if (
$this->tiles[$x]->isPolluted() 88&
$this->tiles[$x]->hasDiamonds() 8&8&
I ($this->tiles[$x]->isPlains())
) {
$ret[] = $x;

}

return $ret;

Finishing the ConfReader Class

Remember ConfReader? In the previous version, I fixed all issues up to PSR-1
compliance. But that work would not pass muster for PSR-12. In addition to various
minor spacing issues, I failed to declare visibility on my constants and methods. For the
sake of completeness, let’s finish the work off now.

namespace popp\ch16\batcho1;

class ConfReader

{
public const MODE_FILE = 1;

public const MODE_DB = 2;

46

CHAPTER 3 PHP STANDARDS

private string $confFile;
private array $confValues = [];

public function readConf(): void

{

// implementation

PSR-4 Autoloading

We looked at PHP’s support for autoloading in Volume 1. I showed how to use the
spl_autoload register() function to automatically require files based on the name
of an as yet unloaded class. Although this is powerful, it is also a kind of behind-the-
scenes magic. This is fine in a single project but a recipe for great confusion if multiple
components come together and all use different conventions for loading class files.

The Autoloading Standard (PSR-4) requires frameworks to conform to a common set
of rules, thereby adding some discipline to the magic.

This is great news for developers. It means that we can more or less ignore the
mechanics of requiring files and focus instead on class dependencies.

The Rules That Matter to Us

The main purpose of PSR-4 is to define rules for autoloader developers. However, those
rules inevitably determine the way we must declare namespaces and classes. Here are
some of the basics.

As specified in PSR-1, a fully qualified class name (i.e., the name of a class, including
its namespaces) must include an initial “vendor” namespace. So, a class must have at
least one namespace.

Let’s say that our vendor namespace is popp. We can declare a class in this way:

namespace popp;

class Services

{
}

47

CHAPTER 3 PHP STANDARDS

The fully qualified class name for this class is popp\Services.

The initial namespaces in a path must correspond to one or more base directories.
We can use this to map a set of sub-namespaces to a starting directory. If, for example,
we want to work with the namespace popp\library (and nothing else under the popp
namespace), then we might map that to a top-level directory to spare us from having to
maintain an empty popp/ directory.

Let’s set up a composer. json file to perform that mapping:

{
"autoload": {
"psr-4": {
"popp\\library\\": "mylib"
}
}
}

Notice that I don’t even need to call the base directory, "library". This is an
arbitrary mapping of popp\library to the my\1lib directory. Now I can create a class file
under the mylib directory:

// mylib/LibraryCatalogue.php
namespace popp\library;

use popp\library\inventory\Book;

class LibraryCatalogue

{
private array $books = [];
public function addBook(Book $book): void
{
$this->books[] = $book;
}
}

In order to be found, the LibraryCatalogue class must be placed in a file with
exactly the same name (with the obvious addition of the . php extension).

48

CHAPTER 3 PHP STANDARDS

After a base directory (mylib) has been associated with initial namespaces (popp\
library), there must then be a direct relation between subsequent directories and
sub-namespaces. It happens that I have already referenced a class named popp\
library\inventory\Book in my LibraryCatalogue class. That class file should therefore
be placed in the mylib/inventory directory:

// mylib/library/inventory/Book.php
namespace popp\library\inventory;

class Book

{

// implementation

Remember the rule that the initial namespaces in a path must correspond to one or
more base directories? So far, we have made a one-to-one relationship between popp\
library and mylib. There’s actually no reason why we can’t map the popp\library
namespace to more than one base directory. Let’s add a directory named additional to
the mapping; here’s the amendment to composer. json:

{
"autoload": {
"psr-4": {
"popp\\library\\": ["mylib", "additional"]
}
}
}

Now I can create the additional/inventory directories and a class to go in them:
// additional/inventory/Ebook.php
namespace popp\library\inventory;

class Ebook extends Book

{

// implementation

49

CHAPTER 3 PHP STANDARDS

Next, let’s create a top-level runner script, index. php, to instantiate these classes:
require once("vendor/autoload.php");
use popp\library\LibraryCatalogue;

// will be found under mylib/
use popp\library\inventory\Book;

// will be found under additional/
use popp\library\inventory\Ebook;

$catalogue = new LibraryCatalogue();
$catalogue->addBook(new Book());
$catalogue->addBook(new Ebook());

Note You must use Composer to generate the autoload file, vendor/autoload.
php, and this file must be included in some way before you gain access to the
logic you have declared in composer . json. You can do this by running the
command composer install (or by running composer dump-autoload if
you just want to regenerate the autoload file in an environment that is already
installed). You can learn more about Composer in Chapter 18.

Remember the rule about side effects? A PHP file should declare classes, interfaces,
functions, and the like, or it should perform an action. However, it should not do both.
This script falls into the taking action category. Crucially, it calls require once() to
include the autoload code generated using the configuration in the composer. json file.
Thanks to this, all the classes are located, despite the fact that Ebook has been placed in
an entirely separate base directory from the rest.

Why would I want to maintain two separate directories for the same core
namespace? One possible reason is for unit tests that you want to keep separate from
production code. You may also manage plug-ins and extensions that will not ship with
every version of your system.

50

https://doi.org/10.1007/979-8-8688-0779-4_18

CHAPTER 3 PHP STANDARDS

Note Be sure to keep an eye on all the PSR standards at https://www.php-
fig.org/psr.This is a fast-moving area, and you'll likely find that standards
relevant to you are on their way.

PSR-11 Container Interface

This is something of an aside, since most of us will use a dependency injection
container rather than write one. However, I created just such a container in Volume 1
(first implemented Chapter 9 and used extensively in Chapters 12 and 13) so it’s worth
covering in brief here. You may remember that a dependency injection container
supports the Inversion of Control pattern using various means (often including
configuration, reflection, and attribute comments) to instantiate or otherwise populate
objects. The container acts as a repository for objects which can be accessed via a key
(usually, but not always, the object’s class name) and which can then be automatically
used in the creation and configuration of yet more objects.

The PSR-11 standard is comparatively brief. It mostly consists of a set of interfaces
which are made available in the package Psr\Container. The most important of these
is ContainerInterface, which defines the behavior of a compliant IoC container. Two
lesser interfaces ContainerExceptionInterface and NotFoundExceptionInterface
should be implemented by any exceptions thrown by the container.

You can add the Psr\Container package to a project with

$ composer require psr/container

The container I created in Chapter 9 of Volume 1 was already close to compliance.
Without going back into implementation details, here’s what it takes to make it PSR-11
compliant:

use Psr\Container\ContainerInterface;

class Container implements ContainerInterface

{
public function has(string $class): bool
{
/...
}

51

https://www.php-fig.org/psr
https://www.php-fig.org/psr
https://doi.org/10.1007/979-8-8688-0779-4_9
https://doi.org/10.1007/979-8-8688-0779-4_12
https://doi.org/10.1007/979-8-8688-0779-4_13
https://doi.org/10.1007/979-8-8688-0779-4_9

CHAPTER 3 PHP STANDARDS

public function get(string $class): object

{
/...

There’s more to Container than the methods shown here, of course, but these are
what the standard demands. The ContainerInterface interface does not specify a
return type for get(), but the bool return type for the has() method is required.

In my implementation of the get() method (and the methods it invokes internally), I
throw two types of exception. Firstly, if I have not already stored a particular object and I
cannot locate a class corresponding to the given string, I throw a NotFoundException.

use Psr\Container\NotFoundExceptionInterface;

class NotFoundException extends \Exception implements
NotFoundExceptionInterface

{

}

If I can find a class matching a get() invocation but then cannot instantiate an
object from it for some reason, I throw a ContainerException.

use Psr\Container\ContainerExceptionInterface;

class ContainerException extends \Exception implements
ContainerExceptionInterface

{
}

These classes simply extend Exception and implement their corresponding
Psr\Container interfaces. Because of this, a client can catch either
ContainerExceptionInterface or NotFoundExceptionInterface and then act
accordingly.

52

CHAPTER 3 PHP STANDARDS

Summary

In this chapter, I wrestled a little with the possibility that standards are less than
fantastically exciting - and then made a case for their power. Standards get integration
issues out of our way, so that we can get on and do amazing things. I looked at PSR-1

and PSR-12, the standards for basic coding and for wider coding style. Next, I went on

to discuss PSR-4, the standard for autoloaders. I did not delve into PSR-0, the older
autoloading standard which supports old PEAR-style package naming, but you may want
to look it up. Finally, I worked through a Composer-based example that showed PSR-4-
compliant autoloading in practice.

53

CHAPTER 4

Refactoring and
Standards Tools

As coders, ideally, we work to automate drudgery (the qualification is necessary because
we've all encountered systems that have clearly been written to make everyone’s lives
worse rather than better). In doing so, though, we must often endure our own parade of
tedious tasks. While standards make for better, more interoperable code, for example,
the need for compliance adds yet another layer of effort to our development routines.
And that’s before we hunt for misspelled variables, loose method signatures, and all
manner of other bug magnets.

Luckily, there are tools available to help with, or even fully automate, the drudgery.
In this chapter, I will look briefly at two of the best of these: PHP_CodeSniffer and
PHPStan. The chapter will cover

e Running PHP_CodeSniffer: Checking standards compliance in your
projects

e PHP Code Beautifier and Fixer: Automatically correcting PHP_
CodeSniffer errors

o Custom standards: Writing your own sniffs

e PHPStan: Finding deeper issues in your code with this powerful static
analysis tool

55
© Matt Zandstra 2025

M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_4

https://doi.org/10.1007/979-8-8688-0779-4_4#DOI

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

PHP_CodeSniffer

Even if Chapter 3 covered every single directive in PSR-12 (which it does not), it would
be hard to keep it all in your mind. After all, we have other things to think about - like the
design and implementation of our systems. So, given that we have bought into the value
of coding standards, how do we comply without using too much of our time or focus? We
use a tool, of course.

PHP_CodeSniffer allows you to detect and even repair standards violations - and
not just for PSR. You can get it by following the instructions at https://github.com/
squizlabs/PHP_CodeSniffer. There are Composer and PEAR options, but here’s how
you can download the PHP archive files:

$ curl -OL https://phars.phpcodesniffer.com/phpcs.phar
$ curl -OL https://phars.phpcodesniffer.com/phpcbf.phar

Why two downloads? The first is for the main PHP_CodeSniffer script: phpcs, which
diagnoses and reports on violations. The second is for an extension: phpcbf, or PHP
Code Beautifier and Fixer, which can fix a lot of them.

Checking and Fixing Your Code

Let’s put the tools through their paces. First, here is a scrappily formatted piece of code:

namespace popp\chi7\batcho1;
class ebookParser {

function _ construct(string $path , $format=0) {
if ($format>1)
$this->setFormat(1);
}

function setformat(int $format) {
// do something with $format

Rather than run through the problems here, let’s have PHP_CodeSniffer do it for us:

$ php phpcs.phar --standard=PSR12 src/ch17/batcho1/EbookParser.php

56

https://doi.org/10.1007/979-8-8688-0779-4_3
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

FILE: /var/popp/src/ch17/batcho1/phpcsBroken.php

oo 00

O W W o0 o

10

ERROR

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

ERROR
ERROR
ERROR

[x]
[x]

[x]
[x]
[x]
[x]
[x]
[x]

[x]
[]
[x]

Header blocks must be separated by a single blank line
Class name "ebookParser" is not in PascalCase format
Opening brace must not be followed by a blank line
Opening brace of a class must be on the line after the
definition

Visibility must be declared on method " construct”
Expected 0 spaces between argument "$path" and

comma; 1 found

Incorrect spacing between argument "$format" and equals
sign; expected 1 but found 0

Incorrect spacing between default value and equals sign
for argument "$format"; expected 1 but found 0
Expected 0 spaces before closing parenthesis; 1 found
Opening brace should be on a new line

Inline control structures are not allowed

Expected at least 1 space before ">"; 0 found

Expected at least 1 space after ">"; 0 found

Space after opening parenthesis of function call
prohibited

Expected 0 spaces before closing parenthesis; 1 found
Visibility must be declared on method "setformat"
Opening brace should be on a new line

Time: 174ms; Memory: 8MB

That’s an exhausting number of problems for just a few lines of code. Luckily, as

the output indicates, we can fix a lot of these with very little effort by running phpcbf

(applied to a copy so as to keep my formatting errors for another time):

$ php phpcbf.phar --standard=PSR12 src/chi17/batcho1/EbookParser.php

57

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

Here is the command’s output:

PHPCBF RESULT SUMMARY

Time: 233ms; Memory: 8MB

N

Now, if I run phpcs again, the situation is much improved:

FILE: /var/popp/src/chi7/batcho1/EbookParser.php

6 | ERROR | Class name "ebookParser" is not in PascalCase format
8 | ERROR | Visibility must be declared on method " construct”
15 | ERROR | Visibility must be declared on method "setformat"

Time: 335ms; Memory: 8MB

I'll go ahead and add the visibility declarations and then change the name of the
class - a quick job! Now I have a stylishly compliant code file:

namespace popp\ch17\batcho1;

class EbookParser

{

public function construct(string $path, $format = 0)

{
if ($format > 1) {
$this->setFormat(1);

58

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

public function setformat(int $format)

{
// do something with $format

Managing the Scope of an Analysis

So far, I have invoked the phpcs and phpcbf commands with a path to an individual file.
As you might expect, you can also pass along a path to a directory. PHP_CodeSniffer will
work recursively through the directory and generate a report for all valid files found.

$./phpcs.phar --standard=PSR12 src/ch17/batcho2/

Depending upon the number of files within a directory, this will often result in a
very large report. In such cases, I often pipe the output through the more command or
redirect to a file. You can reduce the output somewhat by suppressing warnings with
the -n option. This will limit the output to errors only.

$./phpcs.phar --standard=PSR12 -n src/chi7/batcho2/

You can also skip files and directories with the --ignore option. This is particularly
useful if you'd like to avoid getting reports on third-party code beneath a vendor/
directory. You can also specify part or all of a file name.

$./phpcs.phar --standard=PSR12 --ignore=vendor,Blah src/ch17/batcho2/

Here, I exclude any path containing vendor or Blah. I could get a little more granular
using wildcards. I might want to block a directory named Blah, for example, but still
check a file name BlahTools. php:

$./phpcs.phar --standard=PSR12 --ignore=vendor,Blah/* src/ch17/batcho2/

If you're sure that a particular file should be exempt from analysis, you can add a
directive to the source:

// phpcs:ignoreFile

class DefiantlyBad {
// T am non-compliant and proud

59

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

Or if you're breaking the rules for good reason in only part of your source file, you
can selectively disable and re-enable analysis:

namespace popp\ch17\batcho2;

class PartiallyBad
{

public function construct()
{
}

// phpcs:disable
function intentionalRulebreaking() {}
// phpcs:enable

}

I have, throughout, been specifying the PSR12 standard using the --standard option.
That’s because the default standard is PEAR and I have been focusing on PSR standards in
this book. I can review the available standards using the -1 option.

$./phpcs.phar -i
The installed coding standards are MySource, PEAR, PSR1, PSR2, PSR12, Squiz
and Zend

A standard is made up of (usually) multiple sniffs. You can get a list of the sniffs for a
standard using the -e option.

$./phpcs.phar --standard=PSR12 -e
Here’s some truncated output:
The PSR12 standard contains 60 sniffs

Generic (15 sniffs)
Generic.ControlStructures.InlineControlStructure
Generic.Files.ByteOrderMark
Generic.Files.LineEndings
Generic.Files.LinelLength
Generic.Formatting.DisallowMultipleStatements

60

CHAPTER 4 REFACTORING AND STANDARDS TOOLS
Armed with that information, I can limit my review to a particular set of sniffs:

$./phpcs.phar --standard=PSR12 --sniffs=PSR12.Classes.OpeningBraceSpace
src/ch17/batcho1/

Creating Your Own Sniff

PHP_CodeSniffer is an extremely useful tool when used without much customization.
However, teams inevitably negotiate and enforce their own standards and practices in
addition to those set by third-party bodies.

A team I worked with, for example, mandated that developers should avoid a range
of procedural functions in favor of object-oriented equivalents. So a class that used
the date() function should be refactored to employ the DateTime class. Keeping track
of rules like this during code reviews can quickly become a chore as they evolve and
multiply.

Luckily, PHP_CodeSniffer supports custom standards and sniffs. Let’s create a
standard containing a sniff that discourages the use of date().

Defining a Standard

I'm going to call my standard NoProc. A minimal setup consists of a directory named
after the standard and a file named ruleset.xml. So this is my file structure:

NoProc/
ruleset.xml

The ruleset.xml file can be quite extensive (you can see all the directives it supports
athttps://github.com/PHPCSStandards/PHP CodeSniffer/wiki/Annotated-Ruleset).
Luckily, though, it only takes a few lines to create a viable standard.

<ruleset name="NoProc">
<description>A standard which discourages use of certain functions where
00 alternatives should be used.</description>

</ruleset>

So, a minimal standard needs a ruleset element with a hame attribute and a
description sub-element.

61

https://github.com/PHPCSStandards/PHP_CodeSniffer/wiki/Annotated-Ruleset

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

So that’s it! T have a new standard - albeit one with no rules. I still need to tell phpcs
about it by adding the standard to configuration.

$./phpcs.phar --config-set installed paths $PWD/NoProc/

phpcs tells us where it saved the value.
Using config file: /Users/mattz/work/popp7/popp7-repo/CodeSniffer.conf
Config value "installed paths" added successfully

Let’s see if phpcs knows about NoProc:

$./phpcs.phar -i
The installed coding standards are MySource, PEAR, PSR1, PSR2, PSR12,
Squiz, Zend and NoProc

A Bad Date File

In order to have something for a sniff to work with, I'll create a scrappy file. In addition
to using date(), I'll add all sorts of whitespace and mix in various language elements
confusingly named date. I'll call this throwaway file BadDate.php.

namespace {
Date("now");

$date =
/* bloop */ date(DATE_ATOM);

print r($date);
}

namespace testClass {
class

/** tricksy **/
date {

function date(): void {
print "date!!!";

62

CHAPTER 4

}

}

namespace testEnum {
enum date {
}

}

namespace testInterface {
interface date

{
}
}
namespace testTrait {
trait date
{
}
}

REFACTORING AND STANDARDS TOOLS

What an ugly piece of work! All the better to put the parser through its paces, though.

This is that rare circumstance in which bad code is good.

Creating the Sniff

A sniff is a class that implements the interface PHP_CodeSniffer\Sniffs\Sniff. Here is

the interface (stripped of inline documentation):
namespace PHP_CodeSniffer\Sniffs;
use PHP_CodeSniffer\Files\File;

interface Sniff

{

public function register();

public function process(File $phpcsFile, $stackPtr);

63

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

I'll begin, then, by creating an empty sniff class. There are some simple rules that
will simplify the process. By default, the library will look for my sniff under the standard
(NoProc) directory within a directory named Sniffs. You can create subdirectories for
different types of sniff. You should name your class so that it (and therefore its class file)
contains the substring Sniff.

Note Fun fact: it took me the best part of an afternoon to work out why my sniff
(a class whose name did not contain Sniff) was not being recognized by PHP_
CodeSniffer.

Having created an empty class, my file structure looks like this:

NoProc/
ruleset.xml
Sniffs/
Dates/
NoProceduralDateSniff.php

Here’s my NoProceduralDateSniff class template - as yet unimplemented:
namespace PHP_CodeSniffer\Standards\NoProc\Sniffs\Dates;

use PHP_CodeSniffer\Sniffs\Sniff;
use PHP_CodeSniffer\Files\File;
use PHP CodeSniffer\Util\Tokens;

class NoProceduralDateSniff implements Sniff

{

public function register(): array

{
}

public function process(File $file, $position): void
{
}

64

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

The register () method should return an array of PHP parser tokens (the elements
into which a script is broken into during compilation). As a target file is processed, if
one of the tokens returned by register () is encountered, the process() method will be
invoked. This is called with two arguments: a PHP_CodeSniffer\Files\File object and
an integer index for the current token.

You can see a list of parser tokens at https://www.php.net/manual/en/tokens.php,
although PHP_CodeSniffer actually breaks down source code into a more detailed set.
This might seem daunting if you're new to it, but, in fact, you can work out what'’s going
on pretty easily by running phpcs against a file with the -vv option set to crank up its
verbosity.

$./phpcs.phar -vv src/ch17/batcho2/BadDate.php
Here’s a very small sample from the output:

% START PHP TOKENIZING *

Process token [0]: T _OPEN_TAG => <?php\n

Process token [1]: T COMMENT => /*.listing-17.20-*/
Process token [2]: T WHITESPACE => \n

Process token [3]: T STRING => Date

Process token 4 : T OPEN_PARENTHESIS => (

Process token [5]: T_CONSTANT ENCAPSED STRING => "now"
Process token 6 : T CLOSE_PARENTHESIS =>)

Process token 7 : T_SEMICOLON => ;

By running this over a small sample script, you can see how PHP_CodeSniffer breaks it
down into tokens. It turns out that the date in date("now"), the date in function date(),
and the date in class date are all rendered as the T_STRING constant. This is also true of
enumerations, interfaces, and traits. That complicates my task a little but not too much
since functionis parsed asa T_FUNCTION token, classasaT_CLASS token, and so on. By
matching identifiers for the kinds of elements I am not looking for, I can rule them out.

I'll begin with the register() method. I can see from the debug output above that a
T_STRING token should be the sniff’s trigger:

public function register(): array

{
return [\T_STRING];

65

https://www.php.net/manual/en/tokens.php

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

So now, NoProceduralDateSniff will be activated for each T_STRING token
in a target file. Activation, here, means the invocation of process(). Here’s my
implementation of that:

public function process(File $file, $position): void

{
$tokens = $file->getTokens();

$content = $tokens[$position]['content'];

if (strtolower($content) != "date") {
return;

}

$tokenBefore = $file->findPrevious(
Tokens: :$emptyTokens,
($position - 1),

null,
true
);
$tokenCode = $tokens[$tokenBefore]['code'];
if (
$tokenCode == T_FUNCTION
Il $tokenCode == T_CLASS
Il $tokenCode == T_INTERFACE
Il $tokenCode == T_TRAIT
Il $tokenCode == T_ENUM
) {
$tokenCodeStr = $tokens[$tokenBefore]['type'];
return ;
}
$error = "Looks like a procedural date() consider using

DateTime class”;
$file->addError($error, $position, "ProdDate");

66

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

As you can see, most of my work here is with the PHP_CodeSniffer\Files\File
object which represents the file being parsed. It’s worth diving into some of its useful
methods for sniff authors.

File maintains an array of the tokens that make up the file under review. It makes
this available via the getTokens () method. The provided $position argument contains
the index of the current token. Acquiring the token at the $position index will render an
associative array with, among other fields, a code element (corresponding to the value
T_STRING in this case), a type element containing a string representation of the code,
and a content element (the string “Date” for the first match in my test script).

If the match is not for a token with the content “date” (ignoring case), then I
know that this is not the token I am looking for, and I dismiss the issue with a return
statement. Otherwise, some more investigation is needed. In particular, since I'm only
interested in a function call, I need to rule out the declarations of methods, classes,
interfaces, enumerations, and traits named date. Once these declarations are excluded,
I am most likely looking at a match. So, as I discovered by studying the output from my
verbose parse, I need to look for a preceding T_FUNCTION, T_CLASS, T_INTERFACE, T_ENUM,
or T_TRAIT token in order to exclude the wrong kinds of date.

This is where the findPrevious () method becomes useful. findPrevious() looks
for a preceding token. It requires two arguments. First, $types, a token (or an array of
tokens) to define the search. Then, $start the starting point from which to search in
the token array. It optionally accepts $end which defaults to null but which should
otherwise contain an end index for the search. Next, it accepts $exclude, a Boolean,
talse by default, which inverts the match rule when set to true. That means that a
search will match anything other than one of the specified tokens. Finally, it accepts
$local, another Boolean. This also defaults to false. When this is set to true, the search
will be limited to the current statement.

Here’s my findPrevious () call again:

$tokenBefore = $file->findPrevious(
Tokens: :$emptyTokens,
($position - 1),
null,
true

)5

67

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

I call it with a handy array of whitespace tokens made available by the PHP
CodeSniffer\Util\Tokens class and with a starting index. I don’t set an end argument,
but I do invert the search. That means I'm looking for the first previous token that is not
white space. Once I've acquired this, I can test its type. If 've found one of the declaration
tokens, then I can safely return. Otherwise, it looks like I'm in business. In this case, I'm
in the business of calling addError (). This method requires an error string, the token
index, and a unique self-generated error code. (Out of scope here, it further accepts a
data array for interpolating values into the error string, a severity integer, and a Boolean
indicating whether the error is automatically fixable.)

Before I move on, it’s worth mentioning a couple of other useful File methods.
findNext() is identical in signature and function to findPrevious()except that it
searches forward and not backward. Similarly, addWarning() is identical to addExrror ()
except that it generates a warning rather than an error. Finally getDeclarationName()
requires a token stack index pointing to a method, class, interface, enumeration, or trait
declaration and returns the name. It will throw an exception if the referenced token is
not of a relevant type.

Now that I have my solitary sniff in place, I can try out the standard:

$./phpcs.phar --standard=NoProc src/ch17/batcho2/BadDate.php
FILE: /Users/mattz/work/popp7/popp7-repo/src/chi7/batcho2/BadDate.php

5 | ERROR | Looks like a procedural date() consider using DateTime class
8 | ERROR | Looks like a procedural date() consider using DateTime class

Time: 27ms; Memory: 6MB

Combining Multiple Standards

Even if I were to round out my NoProc standard, it would really only be useful as an
extension to a more complete standard. I can combine NoProc with, for example, PSR12
in a couple of ways. I can do this at runtime by adding both standards to my command
invocation:

$./phpcs.phar --standard=PSR12,NoProc src/ch17/batcho2/BadDate.php

68

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

I can also amend the standard itself so that NoProc always incorporates PSR12. To do
this, I'll simply add a rule element to my ruleset.xml file.

<ruleset name="NoProc">
<description>A standard which discourages use of certain functions where
00 alternatives should be used.</description>
<rule ref="PSR12"/>

</ruleset>

The effect of the two approaches is identical, but the second automates the inclusion
of the PSR12 standard.

PHPStan

Standards promote interoperability and good practice. By definition, the tools that enforce
them are necessarily limited in scope to the standards they enforce. If you want to find a
wider range of potential problems in your code, however, there are other options. Your
IDE may well be running an analysis for you as you code, for example. Luckily, for those,
like me, who prefer to stick with an editor such as Vim, a set of utilities collectively known
as static analysis tools can be employed. They are so-called because they read and analyze
source code without running it. Among the best and most popular of these is PHPStan.

Installing PHPStan

The easiest way to install PHPStan is with Composer.
$ composer require --dev phpstan/phpstan

This will install the libraries you need and make a command-line script available at
vendor/bin/phpstan.

Running PHPStan

You can run an analysis very simply with the analyse command. Remember my
EbookParser example? Now that it’s perfectly PSR12 compliant, let’s see what PHPStan
makes of it.

$ php vendor/bin/phpstan analyse --no-progress --no-ansi EbookParser.php

69

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

I am running the command with the flags - -no-progress to hide a dynamic progress
report and --no-ansi to suppress some prettification that won’t play well in these pages.
I'll not show these flags in future examples. Here’s my report:

[OK] No errors

Tip of the Day:

PHPStan is performing only the most basic checks.

You can pass a higher rule level through the --level option

(the default and current level is 0) to analyse code more thoroughly.

No errors? Great! It looks like my work is done. However, as the tool itself tells us,
things aren’t that simple.

Rule Levels

PHPStan applies rule levels running from a lenient 0 to a forbiddingly strict 9. Table 4-1
summarizes some of the checks associated with these levels.

Table 4-1. PHPStan Rule Levels

Level Description

0 Basic checks including unknown classes and functions, method and function invocations
with the incorrect number of arguments

—

Undefined variables

Unknown methods called on objects and classes
Property types, return types

Redundant code

Argument types which don’t match parameter declarations
More undeclared types

Checks on union parameter type declarations

Report unchecked use of types that might be null

© o N oo o b~ w DN

Strict mixed type checks

70

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

If you're working with a pre-existing code base, you might find an initial report quite
shocking, especially if you dial the severity up to 9. I tend to start at about level 6 for
my checks.

$ php vendor/bin/phpstan analyse --level=6 EbookParser.php

At once, I find that my perfectly compliant class is, nonetheless, somewhat imperfect.

Line EbookParser.php

8 Constructor of class popp\chi7\batcho1i\EbookParser has an unused
parameter $path.
8 Method popp\ch17\batcho1\EbookParser:: construct() has parameter

$format with no type specified.
15 Method popp\ch17\batcho1\EbookParser::setformat() has no return
type specified.

These are all easy enough to fix. I'll go ahead and set things right.

class EbookParserFixed

{

private int $format;
private string $path;

public function _ construct(string $path, int $format = 0)

{
$this->path = $path;
if ($format > 1) {
$this->setFormat(1);

}

public function setFormat(int $format): void

{
$this->format = $format;

71

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

Of course, sometimes when you fix a bug or an issue, you simply expose another one
right behind it. PHPStan immediately spots new problems:

$ php vendor/bin/phpstan analyse --level=6 EbookParserFixed.php

Line EbookParserFixed.php
7 Property popp\chi7\batcho3\EbookParser::$format is never read, only
written.
See: https://phpstan.org/developing-extensions/always-read-
written-properties
8 Property popp\chi7\batcho3\EbookParser::$path is never read, only
written.
See: https://phpstan.org/developing-extensions/always-read-
written-properties

I can fix the issue with $format either by removing it or using it some way. I'll create
an accessor method:

public function getFormat(): int
{

return $this->format;

Telling PHPStan to Ignore Errors

My EbookParser class is a work in progress. I don’t want to remove the currently unused
$path property. At the same time, though, I would rather not see the error report every
time I run PHPStan. I can tell the tool to forgive errors by adding a PHPDoc directive to
my source file. To do that, I need to specify an error identifier. I can see the identifier to
use by running an analysis with the -v flag.

72

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

$ php vendor/bin/phpstan analyse --level=6 -v EbookParserFixed.php

Line EbookParserFixed.php

7 Property popp\chi7\batcho3\EbookParserFixed::$format is never read,
only written.
property.onlyhWritten
See: https://phpstan.org/developing-extensions/always-read-
written-properties
8 Property popp\ch17\batcho3\EbookParserFixed::$path is never read,
only written.
property.onlylWritten
See: https://phpstan.org/developing-extensions/always-read-
written-properties

This slightly more verbose output informs me that the error I need to ignore is
property.onlyhWritten:

class EbookParserFixed2

{

private int $format;
/** @phpstan-ignore property.onlyWritten */
private string $path;

/] ...
Let’s run again with that in place:
$ php vendor/bin/phpstan analyse --level=6 EbookParserFixed2.php
And now, my known errors are forgiven:

[OK] No errors

73

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

Array Arguments: Correcting Outside the Language

Not everything that PHPStan checks for can be corrected with PHP code alone. Imagine
that I decided to refactor the $path constructor parameter and property specifying an
array rather than a string so that I can manage multiple filepaths. Here’s my amendment:

class EbookParserFixed3

{
private int $format;
/** @phpstan-ignore property.onlyWritten */
private array $path;

public function _ construct(array $path, int $format = 0)
{
$this->path = $path;
if ($format > 1) {
$this->setFormat(1);

}
/...

When I review this at rule level 6 or higher, I see this error:

Line EbookParserFixed3.php
9 Property popp\chi7\batcho3\EbookParserFixed3::$path type has no
value type specified in iterable type array.
See: https://phpstan.org/blog/solving-phpstan-no-value-type-
specified-in-iterable-type
11 Method popp\ch17\batcho3\EbookParserFixed3:: construct()
has parameter $path with no value type specified in iterable
type array.
See: https://phpstan.org/blog/solving-phpstan-no-value-type-
specified-in-iterable-type

[ERROR] Found 2 errors

74

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

This makes a lot of sense. Modern PHP can be pinned down very well as far as type
is concerned. But collections remain untyped. We encountered one solution in Volume
1 - the use of typed collection classes. But if you're sticking with arrays, then you're also
stuck as far as enforcing type is concerned. One solution, supported by IDEs and tools
such as PHPStan, is the use of PHPDoc. By telling static analysis tools our expectations
for array contents, we help them to enforce our rules. So, I can fix the error:

class EbookParserFixed4

{

private int $format;
/** @phpstan-ignore property.onlyWritten */
private array $path;

/**
* Constructor
%

* @param string[] $path A list of paths to process

* @param int $format A format value 0-4

*/

public function construct(array $path, int $format = 0)

{
$this->path = $path;
if ($format > 1) {
$this->setFormat(1);

}

And we get a clean bill of health once again.

75

CHAPTER 4 REFACTORING AND STANDARDS TOOLS

Summary

In this chapter, I examined two tools for maintaining code quality in your projects. I
covered the use of PHP_CodeSniffer for detecting coding standards violations and the
phpcbf extension which can automatically correct many violations. I created a custom
standard named NoProc containing a single sniff for detecting usage of the date()
function. I introduced PHPStan, a static analysis tool for finding bugs and design issues
in PHP code. I showed how to adjust the tool’s sensitivity, to disable it for known errors,
and to handle collection typing errors with PHPDoc.

76

CHAPTER 5

Using and Creating
Components
with Composer

Programmers aspire to produce reusable code. This is one of the great goals in object-
oriented coding. We like to abstract useful functionality from the messiness of specific
context, turning a particular solution into a tool that can be used again and again. To
come at this from another angle, if programmers love the reusable, they hate duplication.
By creating libraries that can be reapplied, programmers avoid the need to implement
similar solutions across multiple projects.

Even if we avoid duplication in our own code, though, there is a wider issue. For
every tool you create, how many other programmers have implemented the same
solution? This is wasted effort on an epic scale: Wouldn'’t it be much more sensible for
programmers to collaborate and to focus their energies on making a single tool better,
rather than producing hundreds of variations on a theme?

In order to do this, we need to get our hands on existing libraries. But then, the
packages we need will likely require other libraries in order to do their work. So, we need
a tool which can handle downloading and installing packages, as well as manage their
dependencies. That is where Composer comes in; it does all this and more besides.

This chapter will cover several key issues:

e Installation: Downloading and setting up Composer
o Requirements: Using composer . json to get packages

o Versions: Specifying versions so as to get the latest code without
breaking your system

77
© Matt Zandstra 2025

M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_5

https://doi.org/10.1007/979-8-8688-0779-4_5#DOI

CHAPTER 5 USING AND CREATING COMPONENTS WITH COMPOSER

e Packagist: Configuring your code for public access

e Private repositories: Leveraging Composer using a private repository

What Is Composer?

Strictly speaking, Composer is a dependency manager rather than a package manager.
This, it seems, is because it handles component relationships on a local basis rather than
centrally as Yum and Apt do. If you think that this is an overly fine distinction, you could
be right. However we define it, Composer allows you to specify packages. It downloads
them to a local directory (vendor), finds and downloads all dependencies, and then
makes all this code available to your project via an autoloader.

As always, we need to begin by getting the tool.

Installing Composer

You can download Composer at https://getcomposer.org/download/. You will find an
installer mechanism there. You can also install a stable phar file like this:

$ wget https://getcomposer.org/composer-stable.phar
$ chmod 755 composer-stable.phar
$ sudo mv composer-stable.phar ~/bin/composer

I download the archive and run chmod to ensure that it is executable. Then, I copy it
into a central location so that I can run it easily from anywhere in my system. Now I can
test the command:

$ composer --version

The output confirms both the version and the fact that the command is
probably sane.

Composer version 2.7.2 2024-03-11 17:12:18

78

https://getcomposer.org/download/

CHAPTER5 USING AND CREATING COMPONENTS WITH COMPOSER

Installing a (Set of) Package(s)

Why did I do that funky bit with the parentheses in the title for this section? Because
packages inevitably beget packages - sometimes a lot of packages.

Let’s begin with a library that stands alone, though. Imagine that we're building an
application which needs to communicate with OpenAl. A little bit of research leads me
to the orhanerday/open-ai package. In order to install this, I need to generate a JSON
file named composer. json and then define a require element:

{
"require": {
"orhanerday/open-ai": "5.*"

I begin with a directory that is empty apart from the composer. json file. Once I run a
Composer command, though, we’ll see a change:

$ composer update
Here's the output:

Loading composer repositories with package information
Updating dependencies
Lock file operations: 0 installs, 1 update, 0 removals
- Upgrading orhanerday/open-ai (5.1 => 5.2)
Writing lock file
Installing dependencies from lock file (including require-dev)
Package operations: 1 install, 0 updates, 0 removals
- Installing orhanerday/open-ai (5.2): Extracting archive
Generating autoload files
1 package you are using is looking for funding.
Use the "composer fund™ command to find out more!
No security vulnerability advisories found.

So what has been generated? Let’s take a look by running 1s:

composer.json composer.lock vendor

79

CHAPTER 5 USING AND CREATING COMPONENTS WITH COMPOSER

Composer installs packages into vendor/. It also generates a file named composer.
lock. This specifies the exact versions of all packages installed. If you're using version
control, you can commit this file. If another developer runs composer install with a
composer . lock file present, package versions will be installed on their system exactly
as specified. In this way, the team can stay in sync with one another, and you can be
sure that your production environment exactly matches the development and test
environments. If a developer runs composer install and no composer.lock file is
present, then the effect is the same as running composer update - dependencies will be
calculated anew, and a composer . lock file will be generated.

You can override the lock file by running composer update again. This will generate
a new lock file. Typically, you will run this to keep current with new package versions (if
you are using ranges or, as I have, wildcards).

Installing a Package from the Command Line

Asyou have seen, I can create the composer. json file using an editor. But you can also
have Composer do it for you. This is particularly useful if you need to kick off with a
single package. When you invoke composer require on the command line, Composer
will download the specified package and install it into vendor/ for you. It will also
generate a composer. json file, which you can then edit and extend:

$ composer require orhanerday/open-ai
Output:

./composer.json has been created

Running composer update orhanerday/open-ai

Loading composer repositories with package information
Updating dependencies

Nothing to modify in lock file

Writing lock file

Installing dependencies from lock file (including require-dev)
Nothing to install, update or remove

Generating autoload files

80

CHAPTER5 USING AND CREATING COMPONENTS WITH COMPOSER

1 package you are using is looking for funding.
Use the "composer fund™ command to find out more!
No security vulnerability advisories found.

Using version ~5.1 for orhanerday/open-ai

Versions

Composer is designed to support semantic versioning. In essence, this involves defining
a package’s version with three numbers separated by dots: major, minor, and patch.

If you fix a bug, add no functionality, and do not break backward compatibility, you
should increment the patch number. If you add new functionality but do not break
backward compatibility, you should increment the middle minor number. If your new
version breaks backward compatibility (in other words, if client code would break if

this new version were suddenly switched in), then you should increment the first major

version number.

Note You can read more about the semantic versioning convention at https://
semver.org.

You should bear this in mind when specifying versions in your composer. json file:
if you are too liberal in your ranges or wildcards, you may find that your system breaks
on update.

Table 5-1 shows some of the ways that you can specify versions with Composer.

81

https://semver.org
https://semver.org

USING AND CREATING COMPONENTS WITH COMPOSER

CHAPTER 5

"IN9LI0YS [nJasn 1sow auy) Ajjesauab si

SIYL "0°0°¢ ‘Burpnjour jou Ing ‘0 dn ['€°| WOJ) Yydew (M T € T, ‘9A0QR pue ' | 1e yodlew
10U ||IM T €T~ 3)Iym ‘oS “abueyd Buiyealq 1xau ay} ‘Buipnjaur Jou 1ng ‘ol dn yarew [jipm
"8A0Qe 10 0°0°Z 18 UY91BW Ou 8 Ued 813y} pue ‘wnwiuiw sy sI €1 ‘€° T

10} ‘0S "9$BaJoul UBD palyoads Jaquinu [eul) ayl pue ‘wnwiuiw ay} sI Jaquinu uaalb ay)

" J0,, AJ19ads 01 || yum Jo (,pue,, 01 1usjeainba) adeds

€Ty

€ T.

19189

(uoistan Jolew) apjiL

B UHM SBAIJ08.IP 9S8} SUlquI0d UBd NoA "sabues xa|dwod AJ10ads 0} =< pue ‘< ‘=>‘>8s| 77 T=> 0°7 1< uostiedwo)

Jaquinu 3se| 8y} Uey} Jaybiy ou pue Jaquinu 311} a3 UBY) JOMO] OU UOISISA B |[eisu| L°T°T-0°0°T abuey
‘piedpiim

ay} Buiyorew uoISIan 9|qe|ieAR 1S81e| U} puly INg SIaquinu payioads 19exa ay [[eisu| AN pJeIPIIM

"uoIsJan uanib ayy [eisul Ajug [ARAN" 19eX3

S3J0N gjdwex3 adf]

SUO1SI9A a8VYIVJ puv 4asoduio) °*1-S aqVyJ,

82

CHAPTER5 USING AND CREATING COMPONENTS WITH COMPOSER

Note You can further influence the way that composer selects packages by
adding stability suffixes to your version constraint strings. By adding @ followed
by one of dev, alpha, beta, and RC (running from least to most stable), you will
allow composer to consider nonstable versions in its calculations. Composer can
work this out by looking at the Git tag names. So, 1.2.*@dev can match the tag
1.2.2-dev. You can also use the stability flag stable to signal that you do not
want to include bleeding-edge code. This will match version tags which are not
defined as dev, beta, and so on.

require-dev

Very often, you need packages during development that are unnecessary in a production
context. You will want to run tests locally, for example, but you are unlikely to need
PHPUnit available on your public site.

Composer addresses this by supporting a separate require-dev element. You can
add packages here, just as you can for the require element:

{
"require-dev": {
"phpunit/phpunit": "*"
b
"require": {
"orhanerday/open-ai": "~5.0"
}
}

Now, when we run composer update, PHPUnit and all sorts of dependent packages
are downloaded and installed:

Loading composer repositories with package information
Updating dependencies

Nothing to modify in lock file

Installing dependencies from lock file (including require-dev)
Package operations: 27 installs, 0 updates, 0 removals

83

CHAPTER 5 USING AND CREATING COMPONENTS WITH COMPOSER

- Installing orhanerday/open-ai (5.1): Extracting archive
- Installing sebastian/version (5.0.0): Extracting archive
- Installing sebastian/type (5.0.0): Extracting archive

Generating autoload files

25 packages you are using are looking for funding.
Use the "composer fund™ command to find out more!
No security vulnerability advisories found.

If you're installing in a production context, however, you can pass the --no-dev flag
to composer install, and Composer will download only those packages specified in the
require element:

$ composer install --no-dev
Installing dependencies from lock file
Verifying lock file contents can be installed on current platform.
Package operations: 1 install, 0 updates, O removals
- Installing orhanerday/open-ai (5.1): Extracting archive
Generating autoload files
1 package you are using is looking for funding.
Use the "composer fund™ command to find out more!

Note As a reminder, when you run the composer install command,
Composer looks for a file named composer . lock. If this file is not present, the
command will behave like composer update — dependencies will be freshly
calculated, and the composer . Lock file will be generated. This records the exact
version of every file you installed under vendor/.

If you run composer install and a composer.lock file is already present
alongside composer . json, Composer will fetch the package versions it finds
there. This is useful because you can commit a composer . lock file to your
version control repository and be sure that your team will download the same
versions of all the packages you have installed. If you need to override composer.
lock, either to get the latest versions of packages or because you have changed
composer . json, you should run composer update to override the lock file.

84

CHAPTER5 USING AND CREATING COMPONENTS WITH COMPOSER

Composer and Autoload

We covered autoloading in some detail in Chapter 3. For the sake of completeness,
however, it is worth looking at it briefly here. Composer generates a file named
autoload.php, which handles class loading for the packages it downloads. You can also
leverage this functionality for your own code by including autoload. php (usually by
invoking require_once). Once you have done this, any class you declare in your system
will be found automatically when accessed in your code, so long as your directories and
file names mirror your namespaces and class names.

In other words, a class named poppbook\megaquiz\command\CommandContext must
be placed in a file named CommandContext . php in the poppbook/megaquiz/command/
directory.

If you want to mix things up (perhaps by omitting a redundant leading directory
or two or by adding a test directory to the search path), then you can use the autoload
element to map a namespace to your file structure, like this:

"autoload": {
||psr_4": {
"poppbook\\megaquiz\\": ["src", "test"]

In order to generate the latest autoload. php file, I need to run one of composer
install (will also install anything specified in the lock file) or composer update (will
also install the latest packages that match the specification in composer. json). If you do
not want to install or update any packages, you can use composer dump-autoload which
will only generate autoload files.

Now, so long as autoload.php is included, my classes are easily discoverable. Thanks
to my autoload configuration, the poppbook\megaquiz\command\CommandContext
class will be found in src/command/CommandContext . php. Not only that, because I have
referenced more than one target (test as well as src), I can also create test classes that
belong to the poppbook\megaquiz namespace under the test/ directory.

Turn to the “PSR-4 Autoloading” section in Chapter 3 to follow a more in-depth
example.

85

https://doi.org/10.1007/979-8-8688-0779-4_3
https://doi.org/10.1007/979-8-8688-0779-4_3

CHAPTER 5 USING AND CREATING COMPONENTS WITH COMPOSER

Creating Your Own Package

If you have worked with PEAR in the past, you might expect a section on creating a
package to involve an entirely new package file. In fact, we've already been creating a
package throughout this chapter. We just have to add some more information and then
find a way to make our code available to others.

Adding Package Information

You really do not have to add that much information to make a viable package, but
you absolutely need a name so that it can be referenced and found. I'll also include
description and authors elements to provide more complete information.

"name": "poppbook/megaquiz",
"description”: "a truly mega quiz",
"authors": [
{
"name": "matt zandstra",
"email": "matt@getinstance.com"

1,

These fields should be mostly self-explanatory. The exception might be that leading
namespace - poppbook in this case - which is separated from the actual package name
by a forward slash. This is known as the vendor name and it’s a PSR-4 requirement. As
you might expect, the vendor name becomes a top-level directory under vendor/ when
your package is installed. This is often the organization name used by the package owner
in GitHub or Bitbucket.

With all that in place, you are ready to commit your package to your version control
host of choice. If you're not sure what that involves, you can learn a lot more about this
subject in Chapter 6.

Note Composer supports a version field, but it is considered better practice
to use a tag in Git to track your package’s version. Composer will automatically
recognize this.

86

https://doi.org/10.1007/979-8-8688-0779-4_6

CHAPTER5 USING AND CREATING COMPONENTS WITH COMPOSER

Remember that you should not push the vendor directory (at least not usually -
there are some arguable exceptions to that rule). However, it is a good idea to track the
generated composer. lock file alongside composer.json.

Platform Packages

Although you cannot use Composer to install system-wide packages, you can specify system-
wide requirements, so that your package will only install in a system which is ready for it.

A platform package is specified with a single key, though in a couple of cases the key
is further broken down by type, using a dash. I list the available types in Table 5-2.

Table 5-2. Platform Packages

Type Example Description
PHP "php": "8.*" The PHP version
Extension "ext-xml": ">2" A PHP extension

Library "lib-iconv": "~2" A system library used by PHP

HHVM "hhvm": "~2" An HHVM version (HHVM is a virtual machine that supports
an extended version of PHP)

Let’s try it out:
{

"require": {
"orhanerday/open-ai": "~5.0",
"ext-xml": "*",

"ext-gd": "*"

}

}

In the preceding code, I specify that my package requires the xml and gd extensions.
Now, it’s time to run update:

$ composer update

Loading composer repositories with package information

Updating dependencies

Your requirements could not be resolved to an installable set of packages.
87

CHAPTER 5 USING AND CREATING COMPONENTS WITH COMPOSER

Problem 1
- Root composer.json requires PHP extension ext-gd * but it is
missing from your system. Install or enable PHP's gd extension.

To enable extensions, verify that they are enabled in your
.ini files:
- /usr/local/etc/php/conf.d/docker-php-ext-sodium.ini
You can also run “php --ini” in a terminal to see which
files are
used by PHP in CLI mode.
Alternatively, you can run Composer with " --ignore-platform-
req=ext-gd’
to temporarily ignore these required extensions.

It looks as though I was set up for XML; however, GD, an image manipulation
package, is not installed on my system, so Composer throws an error. Notice that
Composer gave me an option. I could, if I wanted, rerun the command with the flag
--ignore-platform-reg=ext-gd. Of course, my code might not run as expected without
the required extension.

Distribution Through Packagist

If you've been working through this chapter, you might have wondered where the
packages we have been installing actually come from. It feels a lot like magic, but (as you
might expect) there is a package repository behind the scenes. It is called Packagist, and
it can be found at https://packagist.org. Solong as your code can be found in a public
Git repository, it can be made available through Packagist.

Let’s give it a shot. I have pushed my megaquiz project to GitHub, so now I need to
tell Packagist about my repository. Once I have signed up, I simply add the URL of my
repository. You can see this in Figure 5-1.

88

https://packagist.org

CHAPTER5 USING AND CREATING COMPONENTS WITH COMPOSER

? Packagist X B
| @ g

€& > C @ packagistorg/packages/submit

Packagist

Search packages...

Submit package

Repository URL (Git/Svn/Hg)

https://www.github.com/poppbook/megaquiz

Trying to share private code?
Use Private Packagist to share code through Composer without publishing it for everyone on Packagist.org.

Please make sure you have read the package naming conventions before submitting your package. The
authoritative name of your package will be taken from the composer.json file inside the master branch or
trunk of your repository, and it can not be changed after that.

Do not submit forks of existing packages. If you need to test changes to a package that you forked to patch,
use VCS Repositories instead. If however it is a real long-term fork you intend on maintaining feel free to
submit it.

If you need help or if you have any questions please get in touch with the Composer community.

Figure 5-1. Adding a package to Packagist

Once I've added megaquiz, Packagist locates the repository, checks the composer.

json file, and displays a control panel. You can see that in Figure 5-2.

Packagist tells me that I have not set license information. I can fix this at any time by

adding a license element to the composer. json file:

89

CHAPTER 5 USING AND CREATING COMPONENTS WITH COMPOSER

‘ % poppbook/megaquiz - Pacl X ‘ -+ =

& - (C & packagistorg/packages/poppbook/megaquiz * O

PaCkagi st Submit poppbook-bob

poppbook/megaquiz

3 composer require poppbook/megaquiz

This package is not auto-updated. Please set up the GitHub Hook for Packagist so that it gets updated
whenever you push!

I There is no license information available for the latest version (v1.0.0) of this package.

a truly mega quiz

= 3 2
=a

Maintainers Installs: 0
E 2TV Dependents: 0

14
4ll=d)] Suggesters: 0

anm
ANST 3 Security: 0

Stars: 0

DiEElE Watchers: 2
github.com/poppbook/megaquiz Forks: 0 v

Figure 5-2. The package control panel

"license": "Apache-2.0",

Packagist has also failed to find any version information. I'll fix this by adding a tag to

the GitHub repository:

$ git tag -a 'v1.0.0' -m 'v1.0.0'
$ git push -tags

Note If you think I'm cheating by skimming over this Git stuff, you’re right. |
cover both Git and GitHub in some detail in Chapter 6.

90

Now, Packagist knows about my version number. You can see that in Figure 5-3.

https://doi.org/10.1007/979-8-8688-0779-4_6

CHAPTER5 USING AND CREATING COMPONENTS WITH COMPOSER

iy

poppbook/megaquiz - Pack X | + - B X

< C & packagist.org/packages/poppbook/megaquiz * O

Packagist Browse Submit poppbook-bob

a truly mega quiz

@
e

Maintainers

ry
(&)

pruEy
Kauid

OV S
lanva

Details

b.com/poppbook/megaquiz

- ON OO OO o

v1.0.0 2021-01-02 19:41 UTC
requires requires (dev)
® ext-xml: * * phpunit/phpunit: *

braham/twitteroauth: 2.0.*

suggests provides

conflicts replaces

Figure 5-3. Packagist knows the version

At this point, anyone can include megaquiz from another package. Here is a minimal
composer.json file:

{
"require": {
"poppbook/megaquiz": "*"

I specify the vendor name and the package name. Riskily, I am happy to accept any
version at all. Let’s go ahead and install:

$ composer update

Loading composer repositories with package information
Updating dependencies

Lock file operations: 2 installs, 0 updates, 0 removals

91

CHAPTER 5 USING AND CREATING COMPONENTS WITH COMPOSER

- Locking orhanerday/open-ai (5.1)
- Locking poppbook/megaquiz (v1.0.1)
Writing lock file
Installing dependencies from lock file (including require-dev)
Package operations: 2 installs, 0 updates, 0 removals
- Downloading poppbook/megaquiz (v1.0.1)
- Installing orhanerday/open-ai (5.1): Extracting archive
- Installing poppbook/megaquiz (v1.0.1): Extracting archive
Generating autoload files
1 package you are using is looking for funding.
Use the "composer fund™ command to find out more!
No security vulnerability advisories found.

Notice that the dependencies I specified when I set up megaquiz are also
downloaded.

Keeping It Private

Of course, you don’t always want to publish your code to the world. Sometimes, you
need to share only with a smaller set of authorized users.

Here is a private package named getinstance/wtnlang-php which contains a library
for a scripting language:

{

"name": "getinstance/wtnlang-php",
"description": "it's a wtn language",
"license": "private",

"authors": [

{

"name": "matt zandstra",
"email": "matt@getinstance.com"

1,
"autoload": {

Ilpsr_4ll: {

92

CHAPTER5 USING AND CREATING COMPONENTS WITH COMPOSER

"getinstance\\wtnlang\\": ["src/", "test/unit"]

})

"require": {
"aura/cli": "~2.2",
"monolog/monolog": "~3.5"

}s

"require-dev": {
"phpunit/phpunit": "~11.1"

This is hosted in a private Bitbucket repository, so it’s not available via Packagist. So,
how would I include it in a project? I simply need to tell Composer where to look. I can
do this by creating or adding to the repositories element:

{
"repositories": [
{
"type": "vcs",
"url": "git@bitbucket.org:getinstance/wtnlang-php.git"
}
1,
"require": {
"poppbook/megaquiz": "*",
"getinstance/wtnlang-php": "dev-develop"
}
}

I could have specified a version for getinstance/wtnlang-php in the require block,
and that would correspond to a tag in the Git repository, but, by using the dev- prefix,
I can call for a branch. This is very useful during development. So now, so long as I have
access to getinstance/wtnlang-php, I can install both my private package and megaquiz

at once:

$ composer update
Loading composer repositories with package information

93

CHAPTER 5 USING AND CREATING COMPONENTS WITH COMPOSER

Updating dependencies
Nothing to modify in lock file
Installing dependencies from lock file (including require-dev)
Package operations: 7 installs, 0 updates, 0 removals
- Syncing getinstance/wtnlang-php (dev-develop f33515e) into cache
- Installing composer/ca-bundle (1.5.0): Extracting archive
- Installing psr/log (3.0.0): Extracting archive
- Installing monolog/monolog (3.5.0): Extracting archive
- Installing aura/cli (2.2.0): Extracting archive
- Installing getinstance/wtnlang-php (dev-develop f33515e): Cloning
t33515e3f7 from cache
- Installing orhanerday/open-ai (5.1): Extracting archive
- Installing poppbook/megaquiz (v1.0.1): Extracting archive
Generating autoload files
3 packages you are using are looking for funding.
Use the “composer fund® command to find out more!
No security vulnerability advisories found.

Summary

You should leave this chapter with a sense of how easy it is to leverage Composer
packages to add power to your projects. Through the composer. json file, you can also
make your code accessible to other users, whether publicly by using Packagist or by
specifying your own repository. This approach automates dependency downloads for
your users and allows third-party packages to use yours without the need for bundling.

94

CHAPTER 6

Version Control with Git

All disasters have their tipping point, the moment at which order finally breaks down
and events simply spiral out of control. Do you ever find yourself in projects like that?
Are you able to spot that crucial moment?

Perhaps it’s when you make “just a couple of changes” and find that you have
brought everything crashing down around you (and, even worse, you're not quite sure
how to get back to the point of stability you have just destroyed). It could be when you
realize that three members of your team have been working on the same set of classes
and merrily saving over each other’s work. Or perhaps it’s when you discover that a bug
fix that you have implemented twice has somehow disappeared from the code base yet
again. Wouldn't it be nice if there were a tool to help you manage collaborative working,
allowing you to take snapshots of your projects, roll them back if necessary, and then
merge multiple strands of development? In this chapter, we look at Git, a tool that does
all that and more.

This chapter will cover the following aspects of working with Git:

e Basic configuration: Exploring some tips for setting up Git
o Importing: Starting a new project

o Committing changes: Saving your work to the repository

o Updating: Merging other people’s work with your own

e Branching: Maintaining parallel strands of development

Why Use Version Control?

If it hasn’t already, version control will change your life (if only your life as a developer).
How many times have you reached a stable moment in a project, drawn a breath, and
plunged onward into development chaos once again? How easy was it to revert to the
stable version when it came time to demonstrate your work in progress? Of course, you

95
© Matt Zandstra 2025

M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_6

https://doi.org/10.1007/979-8-8688-0779-4_6#DOI

CHAPTER6 VERSION CONTROL WITH GIT

may have saved a snapshot of your project when it reached a stable moment, probably
by duplicating your development directory. Now, imagine that your colleague is working
on the same code base. Perhaps he has saved a stable copy of the code as you have. The
difference is that his copy is a snapshot of his work, not yours. Of course, he has a messy
development directory, too. So you have four versions of your project to coordinate.
Now, imagine a project with four programmers and a web Ul developer. You're looking
pale. Perhaps you would like to lie down?

Git exists exclusively to address this problem. Using Git, all of your developers can
clone their own copies of the code base from a central repository. Whenever they reach a
stable point in their code, they can pull the latest code from the server and merge it with
their own recent work. When they are ready, and after they have fixed any conflicts and
run all tests, they can push their new stable synthesis back into the shared repository.

Git is a distributed version control system. This means that, once they have acquired
a branch, users commit to their own local repository without the need for a network
connection. There are a number of benefits to this. It means that day-to-day operations
are faster and that you can work easily on planes and trains and in automobiles.
Ultimately, however, you can share an authoritative repository with your teammates.

The fact that each developer can merge their work into a central repository means
that reconciling multiple strands of development is made vastly easier. Even better, you
can check out versions of your code base based on a date or a label. So when your code
reaches a stable point, suitable for showing to a client as work in progress, for example,
you can tag that with an arbitrary label. You can then use that tag to check out the correct
code base when your client swoops into your office looking to impress an investor.

Wait! There’s more! You can also manage multiple strands of development at the
same time. If this sounds needlessly complicated, imagine a mature project. You have
already shipped the first version, and you're well into development of version 2. Does
version 1.n go away in the meantime? Of course not. Your users are spotting bugs and
requesting enhancements all the time. You may be months away from shipping version
2, so where do you make and test the changes? Git lets you maintain distinct branches of
the code base. So you might create a bug fix branch of your version 1.n for development
on the current production code. At key points, this branch can be merged back into the
version 2 code (the trunk), so that your new release can benefit from improvements to

version 1.n.

96

CHAPTER6 VERSION CONTROL WITH GIT

Note Git is not the only version control system available. You might also like
to look into Subversion (https://subversion.apache.org/) or Mercurial
(https://www.mercurial-scm.org/). This chapter is necessarily a brief
introduction to a large topic. Luckily, however, Pro Git by Scott Chacon (Apress,
2014) covers the topic with depth and clarity. Not only that, but a web version is
available online at https://git-scm.com/book/en/v2.

Let’s get on and look at some of these features in practice.

Getting Git

If you are working with a Unix-like operating system (such as Linux or FreeBSD), you
may already have Git installed and ready to use.

Note | show commands that are input at the command line with a leading dollar
sign ($) to represent the command prompt to distinguish them from any output
they may produce.

Try typing this from the command line:
$ git help

You should see some usage information that will confirm that you are ready to
get started. If you do not already have Git, you should consult your distribution’s
documentation. You will almost certainly have access to a simple installation
mechanism such as Yum or Apt, or you can acquire Git directly from https://git-scm.
com/downloads.

Note Technical reviewer Paul Tregoing also recommends Git for Windows
(https://gitforwindows.org/) which comes with Git, naturally, but also a set
of useful open source tools.

97

https://subversion.apache.org/
https://www.mercurial-scm.org/
https://git-scm.com/book/en/v2
https://git-scm.com/downloads
https://git-scm.com/downloads
https://gitforwindows.org/

CHAPTER6 VERSION CONTROL WITH GIT

Using an Online Git Repository

You may have noticed by now that this book often goes it alone. I almost never argue
that you should reinvent the wheel; rather, you should at least get a sense of what goes
into wheel construction before buying one ready-made. For this reason, I'll be covering
the mechanics of setting up and maintaining your own central Git repository in the next
section. Let’s get real, though. You'll almost certainly use a specialized host to manage
your repositories. There are a number of these to choose from, though the biggest
players are probably Bitbucket (https://bitbucket.org), GitHub (https://github.
org), and GitLab (https://about.gitlab.com/).

So, which should you choose? As a rule of thumb, GitHub is the standard for open
source products. So, I'll sign up with GitHub for my project. Figure 6-1 shows my next
decision, which is the choice between a public and a private repository. I'll opt for a
public project (because I'm creating an open source project).

v) New repository x + - O X

“ C 25 github.com/new % A 0O a

®
= (’ New repository) + ~ (O] &

Create a new repository

Required fields are marked with an asterisk (*)

Owner * Repository name *
poppbook ~ / megaquiz
©@ megaquiz is available

Great repository names are short and memorable. Need inspiration? How about
laughing-octo-computing-machine ?
Description (optional)

q Public
o AW

a Private

Figure 6-1. Getting started with a GitHub project

98

https://bitbucket.org
https://github.org
https://github.org
https://about.gitlab.com/

CHAPTER 6 VERSION CONTROL WITH GIT

Asyou can see, in Figure 6-1, GitHub confirms that the megaquiz repository is
available within my namespace. At this point, GitHub offers some helpful instructions
for importing my project. You can see those in Figure 6-2.

v) New repository x () poppbook/megaquiz x +

€« C %5 github.com/poppbook/megaquiz = 8 - DA |

Quick setup — if you’ve done this kind of thing before

HTTPS SSH git@github.com:poppbook/megaquiz.git [[}

Get started by creating a new file or uploading an existing file. We recommend every repository include a README, LICENSE, and

gitignore.

...Or create a new repository on the command line

echo "# megaquiz" >> README.md
git init

git add README.md

git commit -m "first commit"
git branch -M main

git remote add origin git@github.com:poppbook/megaquiz.git
git push -u origin main

...or push an existing repository from the command line

git remote add origin git@github.com:poppbook/megaquiz.git @
git branch -M main
git push -u origin main

Figure 6-2. GitHub’s import instructions

I'm not ready to run those commands yet, though. GitHub needs to be able to
validate me when I push files to the server. In order to do that, it requires my public key. I
describe one way of generating such a key in the next section, “Configuring a Git Server.”
Once I have a public key, I can add it from the SSH and GPG keys link in GitHub’s User
Settings screen.

You can see GitHub’s settings screen for SSH and GPG keys in Figure 6-3.

99

CHAPTER6 VERSION CONTROL WITH GIT

v () New repository x () SSH and GPG keys x + -0 %

« c ¢ github.com/settings/keys [+ ¢ A 0 &

®
= O Settings + ~ (O

Go to your personal profile

poppbook (poppbook)

er al

2 Public profile SSH keys m

&3 Account

¢ Appearance This is a list of SSH keys associated with your account. Remove any keys that you do not

recognize
ft Accessibility o
Authentication keys
£\ Notifications
poppbook-key
Access p SHA256 : MgKKOVOUORUO7 /HQDT pQQ8pWAOA+45eL BaXMfqZ91i18
&3 Billing and plans v BH) ToHes ORI A0, £UCR
£ Emails
() Password and authentication Check out our guide to connecti Hub using SSH keys or troubleshoot
(p) Sessions
| & ssHand GPG keys GPG keys T

[Zl) Organizations

Figure 6-3. Adding an SSH key

Now, I'm ready to start adding files to my repository. Before we get into that, though,
we should step back and spend some time following the do-it-yourself route.

Configuring a Git Server

Git is different from traditional version control systems in two key ways. First, under

the hood, it stores snapshots of files rather than the changes made to files between
commits. Second, and more obviously to the user, it operates locally to your system until
you choose to push to or pull from a remote repository. This means that you are not
dependent on an Internet connection to get on with your work.

You do not need a single remote repository in order to work with Git, but in practice,
it almost always makes sense to have a shared source of authority if you are working
with a team.

In this section, I look at the steps needed to get a remote Git server up and running. I

assume root access to a Linux machine.

100

CHAPTER6 VERSION CONTROL WITH GIT

Creating the Remote Repository

In order to create a Git repository, I must first create a containing directory. I login to a
freshly provisioned remote server via SSH. I am going to create my repository under
/var/git. Generally speaking, only the root user can create and modify directories there,
so I run the following command using sudo:

$ sudo mkdir -p /var/git/megaquiz
$ cd /var/git/megaquiz/

I create /var/git, a parent directory for my repositories and a subdirectory for a
sample project called megaquiz. Now, I can prepare the directory itself:

$ sudo git init --bare
Initialized empty Git repository in /var/git/megaquiz/

The --bare flag tells Git to initialize a repository without a working directory. Git will
complain if you try to push to a repository that has not been created in this way.

At the moment, only the root user can mess around under /var/ git.Ican change
this by creating a user and a group named git and making it the directory’s owner:

$ sudo adduser git
$ sudo chown -R git:git /var/git
Preparing the Repository for Local Users

Although this is a designated remote server, I should also ensure that local users
can commit to the repository. If you're not careful, this can cause ownership and
permissions issues (especially if users with sudo privileges push code).

$ sudo chmod -R g+rws /var/git

This gives members of the git group write access to /var/git and causes all files
and directories created here to take on the git group. Now, as long as I ensure that they
are members of the git group, local users will be able to write to the repository.

You can add a local user to the git group like this:

$ sudo usermod -aG git bob

Now, user bob is a member of the git group.

101

CHAPTER6 VERSION CONTROL WITH GIT

Providing Access to Users

The owner of the bob user mentioned in the previous section can log in to the server and
interact with the repository from his shell. Generally, though, you won’t want to provide
shell access to all your users. In any case, most users will prefer to take advantage of Git’s
distributed nature and to work locally with their cloned data.

One way to grant a user SSH access is via public key authentication. To do this, you
first need to acquire the user’s public SSH key. The user may already have this - on a
Linux machine, he will probably find the key in the configuration directory, .ssh, in a file
named id rsa.puborid ed25519.pub depending upon the algorithm used to generate
the key. Otherwise, he can easily generate a new key. On a Unix-like machine, this is a
matter of running the ssh-keygen command and copying the value that it generates:

$ ssh-keygen -t ed25519 -C "you@example.com"
$ cat ~/.ssh/id_ed25519.pub

As the repository administrator, I will have asked you for a copy of this key. Once I
have it, I must add it to the git user’s SSH setup on the repository server. This is merely a
matter of pasting the public key into the .ssh/authorized_keys file. I may need to create
the .ssh configuration directory for the first key I set up (I am running these commands
from the git user’s home directory):

$ mkdir .ssh
$ chmod 0700 .ssh

Now, I can create the .ssh/authorized keys file and paste in the user’s key:

$ vi .ssh/authorized keys
$ chmod 0700 .ssh/authorized keys

Note A common cause of SSH access failure is the creation of configuration
files with overly liberal permissions. The SSH configuration environment should
be readable and writable to the account’s owner only. Pro OpenSSH by Michael
Stahnke (Apress, 2005) covers SSH comprehensively.

102

CHAPTER6 VERSION CONTROL WITH GIT

Closing Down Shell Access for the Git User

No server should be any more open than it needs to be. You may want to enable your
user to access Git commands, but probably not much more.

You can see the shell associated with a user on a Linux server by looking at the file,
/etc/passwd. Here is the relevant line for the git account on my remote server:

git:x:1001:1001::/home/git:/bin/bash

Git provides a special shell, named git-shell, that restricts the user to selected
commands only. I can enable this program for logins by editing /etc/passwd:

git:x:1001:1001:: /home/git:/usr/bin/git-shell
Now, if I attempt to log in via SSH, I'm told the score and logged out:

$ ssh git@poppch19.vagrant.internal

Last login: Mon Apr 15 14:25:05 2024 from 192.168.33.1

fatal: Interactive git shell is not enabled.

hint: ~/git-shell-commands should exist and have read and execute
access. Connection to 192.168.33.71 closed.

Beginning a Project

Now that I have a remote Git server and access to it from my local account, it’s time to
add my work in progress to the repository at /var/git/megaquiz.

Before I start, I take a good look at my files and directories and remove any
temporary items I might find.

Failure to do this is a common annoyance. Temporary items to watch for include
automatically generated files such as composer packages, build directories, installer
logs, and so on.

103

CHAPTER6 VERSION CONTROL WITH GIT

Note You can specify files and patterns to ignore by placing a file named
.gitignore in your repository. On a Linux system, the man gitignore
command should provide examples of file name wildcarding that you can amend
to exclude the various lock files and temporary directories created by your build
processes, editors, and IDEs. This text is also available online at https://git-
scm.com/docs/gitignore.

Before I go any further, I should register my identity with Git - this makes it easier to
track who does what in the repository:

$ git config --global user.name "poppbook"
$ git config --global user.email "poppbook@getinstance.com"
$ git config --global init.defaultBranch "main"

I have also configured Git to default to a branch named main. This keeps us in line
with GitHub which defaults to main. Now that I have established my personal details and
ensured that my project is clean, I can set it up and push its code to the server:

$ cd /home/mattz/work/megaquiz
$ git init
Initialized empty Git repository in /home/mattz/work/megaquiz/.git/

Now, it’s time to add my files:
$ git add .

Git is now tracking all the files and directories under megaquiz. Tracked files can
be in three states: unmodified, modified, or staged. You can check this by running the
command git status:

$ git status
On branch main

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)
#

104

https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore

CHAPTER6 VERSION CONTROL WITH GIT

new file: composer.json

new file: composer.lock

new file: main.php

new file: src/command/Command.php

new file: src/command/CommandContext.php
new file: src/command/FeedbackCommand.php
new file: src/command/LoginCommand.php

new file: src/quizobjects/User.php

new file: src/quiztools/AccessManager.php
new file: src/quiztools/ReceiverFactory.php

e

Thanks to my previous git add command, all my files are staged for commit. I can
go ahead now and execute the commit command:

$ git commit -m'initial commit'

[main (root-commit) a5ca2d4] initial commit

10 files changed, 1638 insertions(+)

create mode 100644 composer.json

create mode 100644 composer.lock

create mode 100755 main.php

create mode 100755 src/command/Command.php

create mode 100755 src/command/CommandContext.php
create mode 100755 src/command/FeedbackCommand.php
create mode 100755 src/command/LoginCommand.php
create mode 100755 src/quizobjects/User.php

create mode 100755 src/quiztools/AccessManager.php
create mode 100644 src/quiztools/ReceiverFactory.php

I add a message via the -m flag. If I omitted this, then Git would launch an editor that
I can use to add my check-in message.

If you are accustomed to version control systems such as CVS and Subversion, you
might think that we’re done. And although I could happily continue editing, adding,
committing, and branching from here, there is an additional stage I need to consider if I
want to share this code using a central repository. As we will see later on in the chapter,
Git allows us to manage multiple project branches. Thanks to this feature, I can maintain
a branch for each release but also keep my bleeding-edge risky development safely out

105

CHAPTER6 VERSION CONTROL WITH GIT

of my production code. We have configured Git so that, when we start out, it sets up a
single branch named main by default. I can confirm the state of my branches with the
command git branch:

$ git branch -a
* main

The -a flag specifies that Git should show us both local and remote branches (the
default is to omit the remote ones). And the output shows the main branch.

In fact, I have done nothing yet to associate my local repository with the remote
server. It’s time to put that right:

$ git remote add origin git@poppch19.vagrant.internal:/var/git/megaquiz

This command is disappointingly quiet, given the work that it has done. In fact, it
is the equivalent of telling Git to “associate the nickname origin with the given server
location. Furthermore, set up a tracking relationship between the local branch main and
aremote equivalent.”

To confirm all of this, I check with Git that the remote handle origin has been set up:

$ git remote -v
origin git@poppch19.vagrant.internal:/var/git/megaquiz (fetch)
origin git@poppch19.vagrant.internal:/var/git/megaquiz (push)

Of course, if you used a service like GitHub, you would use your equivalent of the git
remote add step shown in Figure 6-2. In my case, that looks like this:

$ git remote add origin git@github.com:poppbook/megaquiz.git

Do not run the preceding command, though, unless you really want to push to my
GitHub repo! I am sticking to my self-hosted Git repository for now.
I still haven’t sent any actual files to my Git server, however, so that’s my next step:

$ git push origin main

Counting objects: 16, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (15/15), done.

Writing objects: 100% (16/16), 8.87 KiB | 0 bytes/s, done.
Total 16 (delta 2), reused 0 (delta 0)

remote: Resolving deltas: 100% (2/2), done.

106

CHAPTER6 VERSION CONTROL WITH GIT

To git@github.com:poppbook/megaquiz.git
* [new branch] main -> main

Now, I can run the git branch command again to confirm that the remote version of
the main branch has appeared:

$ git branch -a
* main
remotes/origin/main

Or to see only the remote branches:

$ git branch -r
origin/main

Note | have established what is called a tracking branch. This is a local branch
that is associated with a remote twin.

Cloning the Repository

For the purposes of this chapter, I have invented a team member named Bob. Bob is
working with me on the megaquiz project. Naturally, he wants his own version of the
code. I have already added his public key to the Git server, so he is good to go. In the
parallel world of GitHub, I have invited Bob to join my project, and he has added his own
public key to his account. The effect is the same; Bob can acquire the repository using
the command git clone:

$ git clone git@github.com:poppbook/megaquiz.git

Cloning into 'megaquiz’...

remote: Enumerating objects: 16, done.

remote: Counting objects: 100% (16/16), done.

remote: Compressing objects: 100% (13/13), done.

remote: Total 16 (delta 2), reused 16 (delta 2), pack-reused 0
Receiving objects: 100% (16/16), 8.87 KiB | 0 bytes/s, done.
Resolving deltas: 100% (2/2), done.

107

CHAPTER6 VERSION CONTROL WITH GIT

Note Although I cloned over ssh here, Git supports cloning over https if your
server also supports it.

Now, both of us can develop locally and, when we’re ready, share our code with one
another.

Updating and Committing

Bob is, of course, a fine and talented fellow - except, that is, for one common and highly
annoying trait: he cannot leave other people’s code alone.

Bob is smart and inquisitive, easily excited by shiny new avenues of development,
and he’s keen to help optimize new code. As a result, everywhere I turn, I seem to see the
hand of Bob. Bob has added to my documentation, and he has implemented an idea I
mentioned over coffee. I may have to kill Bob. In the meantime, however, I must handle
the fact that the code on which I am working needs to be merged with Bob’s input.

Here’s a file called quizobjects/User.php. At the moment, it contains nothing but
the barest of bones:

namespace poppbook\megaquiz\quizobjects;

class User

{
}

I have decided to add some documentation. I begin by adding a file comment to my
version of the file:

namespace poppbook\megaquiz\quizobjects;

/**
* @license http://www.example.com Borsetshire Open License
* @package quizobjects
*/
class User
{
}

108

CHAPTER6 VERSION CONTROL WITH GIT

Remember that a file can have three states: unmodified, modified, and staged. The
User.php file has now moved from unmodified to modified. I can see this with the git
status command:

$ git status

On branch main

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working

directory)
#
modified: src/quizobjects/User.php
#

no changes added to commit (use "git add" and/or "git commit -a")

User.php has been modified, but not yet staged for commit. I can change this state
using the command git add:

$ git add src/quizobjects/User.php

$ git status

On branch main

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: src/quizobjects/User.php

H OH

Now, I am ready to commit:

$ git commit -m'added documentation' src/quizobjects/User.php
[main 997622c] added documentation
1 file changed, 5 insertions(+)

A Git commit only affects my local repository. If I am sure that the world is ready for
my change, I must push my code to the remote repository
$ git push origin main
Counting objects: 9, done.
Delta compression using up to 2 threads.

109

CHAPTER6 VERSION CONTROL WITH GIT

Compressing objects: 100% (4/4), done.
Writing objects: 100% (5/5), 537 bytes | 0 bytes/s, done.
Total 5 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To git@github.com:poppbook/megaquiz.git
ce5a604..997622c main -> main

Meanwhile, working in his own sandbox, Bob is keen as ever, and he has created a
class comment:

namespace poppbook\megaquiz\quizobjects;

/**

* @package quizobjects
*/

class User

{

}

Now, it’s Bob’s turn to add, commit, and push. Because the adding and committing
parts of this are so commonly run together, Git allows you to combine them into a single
command:

$ git commit -a -m'my great documentation’
[main 13de456] my great documentation
1 file changed, 4 insertions(+)

So, we now have two distinct versions of User.php. There’s the version I just pushed
to the remote repository, and there is Bob’s version, committed, but not yet pushed. Let’s
see what happens when Bob tries to push his local version to the remote repository:

$ git push origin main

To git@github.com:poppbook/megaquiz.git

I [rejected] main -> main (fetch first)

error: failed to push some refs to
'git@github.com:poppbook/megaquiz.git"

hint: Updates were rejected because the remote contains work that you do

110

CHAPTER6 VERSION CONTROL WITH GIT

hint: not have locally. This is usually caused by another

repository pushing

hint: to the same ref. You may want to first merge the remote

changes (e.g.,

hint: 'git pull') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Asyou can see, Git won't let you push if there’s an update to apply. Bob must first
pull down my version of the User . php file:

$ git pull origin main

remote: Enumerating objects: 9, done.

remote: Counting objects: 100% (9/9), done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 5 (delta 1), reused 5 (delta 1), pack-reused 0 Unpacking
objects: 100% (5/5), done.

From github.com:poppbook/megaquiz

* branch main -> FETCH_HEAD

Auto-merging src/quizobjects/User.php

CONFLICT (content): Merge conflict in src/quizobjects/User.php
Automatic merge failed; fix conflicts and then commit the result.

Git will happily merge data from two sources into the same file, so long as the
changes don'’t overlap. Git has no means of handling changes that affect the same
lines. How can it decide what is to have priority? Should the repository overwrite Bob’s
changes or the other way around? Should both changes coexist? Which should go first?
Git has no choice but to report a conflict and let Bob sort out the problem.

Here’s what Bob sees when he opens the file:

/**

<<<<<<< HEAD

* @package quizobjects
*/

* @license http://www.example.com Borsetshire Open License
* @package quizobjects
*/

111

CHAPTER 6 VERSION CONTROL WITH GIT
>>>>>>> 136€6244521dbd137b37b76414e3cea2071958d2
namespace poppbook\megaquiz\quizobjects;

class User

{
}

Git includes both Bob’s comment and the conflicting changes, together with
metadata that tells him which part originates where. The conflicting information is
separated by a line of equals signs. Bob’s input is signaled by a line of less than symbols
followed by “HEAD”. The remote changes are included on the other side of the divide.

Note The long list of numbers and letters shown in the conflict message is a
commit ID. That is, a SHA-1 hash which references an individual commit. Such
references can be used by various Git tools and are also shown in the git log
command output which provides a record of parent commits from a given starting
point. You will also see them in web interfaces that show commit histories. HEAD,
here, refers to the tip (the most recent commit) of the currently checked out
branch. You can find out the commit ID for HEAD (and much more) by running git
show HEAD.

Now that Bob has identified the conflict, he can edit the file to fix the collision:

/**
* @license http://www.example.com Borsetshire Open License
* @package quizobjects

*/
namespace poppbook\megaquiz\quizobjects;

class User

{
}

112

CHAPTER 6 VERSION CONTROL WITH GIT
Next, Bob resolves the conflict by staging the file:

$ git add src/quizobjects/User.php
$ git commit -m'documentation merged’
[main c99d3f5] documentation merged

And now, finally, he can push to the remote repository:

$ git push origin main

Adding and Removing Files and Directories

Projects change shape as they develop. Version control software must take account of
this, allowing users to add new files and remove deadwood that would otherwise get in
the way.

Adding a File

You have seen the add subcommand many times already. I used it during my project
setup to add my code to the empty megaquiz repository and, subsequently, to stage files
for commit. By running git add on an untracked file or directory, you ask Git to track it -
and stage it for commit. Here, I add a document called CompositeQuestion.php to the
project:

$ touch src/quizobjects/CompositeQuestion.php
$ git add src/quizobjects/CompositeQuestion.php

In areal-world situation, I would probably start out by adding some content to
CompositeQuestion.php. Here, I confine myself to creating an empty file using the
standard touch command. Once I have added a document, I must still invoke the commit
subcommand to complete the addition:

$ git commit -m'initial check in'

[main 323bec3] initial check in

1 file changed, 0 insertions(+), 0 deletions(-)

create mode 100644 src/quizobjects/CompositeQuestion.php

CompositeQuestion.php is now in the local repository.

113

CHAPTER6 VERSION CONTROL WITH GIT

Removing a File

Should I discover that I have been too hasty and need to remove the document, it should
come as no surprise to learn that I can use a subcommand called rm:

$ git rm src/quizobjects/CompositeQuestion.php

Once again, a commit is required to finish the job. As usual, I can confirm this by
running git status:

$ git status

On branch main

Your branch is ahead of 'origin/main' by 1 commit.

(use "git push" to publish your local commits)

#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

deleted: src/quizobjects/CompositeQuestion.php
#

$ git commit -m'removed Question'

[main 5bf88aa] removed CompositeQuestion

1 file changed, 0 insertions(+), 0 deletions(-)

delete mode 100644 src/quizobjects/CompositeQuestion.php

Adding a Directory

You can also add and remove directories with add and rm. Let’s say Bob wants to make a
new directory available:

$ mkdir resources

$ touch resources/blah.gif

$ git add resources/

$ git status

On branch main

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

114

CHAPTER6 VERSION CONTROL WITH GIT

new file: resources/blah.gif

Notice how the contents of resources are added automatically to the repository.
Now, Bob can commit and then push the whole lot to the remote repository in the

usual way.

Note Be careful of using git add with directories; it is greedy! The command
will pick up any files and directories beneath the given directory. It is always a
good idea to check the operation with git status.

Removing Directories

As you might expect, you can remove directories with the rm subcommand. In this
situation, however, I must tell Git that I wish it to remove the directory’s contents by
passing an -1 flag to the subcommand. Here, I profoundly disagree with Bob’s decision
to add a resources directory:

$ git rm -r resources/

Renaming Files or Directories

If you're feeling less drastic, you might opt to simply rename a file or directory with
git mv. This command accepts two arguments: a file, directory, or a symlink and a

destination.

$ git mv storage/ files

Tagging a Release

All being well, a project will eventually reach a state of readiness, and you will want to
ship it or deploy it. Whenever you make a release, you should leave a bookmark in your
repository, so that you can always revisit the code at that point. As you might expect, you
can create a tag in your code with the git tag command:

115

CHAPTER6 VERSION CONTROL WITH GIT
$ git tag -a 'v1.0.0' -m'release 1.0.0'

By specifying -a here, I create an annotated tag. This stores rich information about
my tag, including information about the commit it references, a tagging message, the
date of the tag, and the tagging user. If I were to omit -m when creating an annotated tag,
Git would launch an editor window and prompt me to provide a message.

I could also have created a lightweight tag by omitting -a and -m. A lightweight tag
stores only a commit ID. Either approach would work for tagging a release.

You can see the tags associated with your repository by running git tag with no
arguments:

$ git tag
v1.0.0

For long-lived projects you may accrue hundreds of tags. That can make the default
git tag command unwieldy. You can use wildcards to narrow things down by specifying
the -1 flag and a filter argument. Here, for example, I return all tags that begin with v1.

$ git tag -1 va*

Of course, that’s a little redundant in this case since I have only have one tag to list!
We have been working locally up until this point. In order to get the tag onto the
remote repository, we must use the --tags flag with the git push subcommand:

$ git push origin --tags

Counting objects: 1, done.

Writing objects: 100% (1/1), 159 bytes | 0 bytes/s, done.
Total 1 (delta 0), reused 0 (delta 0)

To git@github.com:poppbook/megaquiz.git

* [new tag] v1.0.0 -> v1.0.0

Using the --tags flag causes all local tags to be pushed to the remote repository.
Of course, any action you take on a GitHub repo can be tracked on the site. You can
see my release tag in Figure 6-4.

116

CHAPTER6 VERSION CONTROL WITH GIT

v () Releases - poppbook/me x + - O x
« Cc ¢ github.com/poppbook/megaquiz/releases 3 % A O a
®
= O poppbook / megaquiz Q + - ® 1 (=)
> Code () Issues [Pullrequests (& Actions [Projects [0 wiki (@ Security |~ Insights 8 Settings

Releases Tags Draft a new release Q Find a release

1 minute ago V1 0 0

Compare « v Assets 2

)Source code (zip

Z)Source code (tar.gz

Figure 6-4. Viewing a tag on GitHub

Once you can bookmark your code with a tag, it makes sense to wonder how you
might go about revisiting old releases. For this, however, you should first spend some
time looking at branching - something at which Git is particularly good.

Branching a Project

Once my project has been released, I can pack it away and wander off to do something
new, right? After all, it was so elegantly written that bugs are an impossibility, not to
mention so thoroughly specified that no user could possibly require any new features!

Meanwhile, back in the real world, I must continue to work with the code base on at
least two levels. Bug reports should be trickling in right about now, and the wish list for
version 1.2.0 will be swelling with demands for fantastic new features. How do I reconcile
these forces? I need to fix the bugs as they are reported, and I need to push on with
primary development. I could fix the bugs as part of development and release everything
in one go, when the next version is stable. But then, users may have a long wait before
they see any problems addressed. This is plainly unacceptable. On the other hand,

117

CHAPTER6 VERSION CONTROL WITH GIT

I could release as I go. In that scenario, I risk shipping broken code. Clearly, I need two
strands to my development. I will continue to add new and risky features to the project’s
main branch (often called the trunk), but I should now create a branch for my new
release on which I can add only bug fixes.

Note This way of managing branches is by no means the only game in town.
Developers argue constantly about the best way of organizing branches and
managing releases and bug fixes. One of the most popular approaches is git-
flow (neatly described at https://danielkummer.github.io/git-flow-
cheatsheet/). Under this practice, main is the release branch. New code goes
on a develop branch, and it'’s merged to main at release time. Each unit of
active development has its own feature branch, which gets merged into develop
when stable.

I can both create and switch to a new branch using the git checkout command.
First, let’s take a quick look at the state of my branches:

$ git branch -a
* main
remotes/origin/main

Asyou can see, I have a single branch, main, and its remote equivalent. Now, if I
invoke git checkout with the -b option, I will create and switch to a new branch with
the latest commit in main as its merge base (the originating commit back to which I may,
at some point, merge my changes).

$ git checkout -b megaquiz-branch1.0
Switched to a new branch 'megaquiz-branchi.0'

To track my use of branches, I will use a particular file as an example, src/command/
FeedbackCommand. php. It seems that I created my bug fix branch just in time. Users have
started to report that they are unable to use the feedback mechanism in the system. I
locate the bug:

/...
$result = $msgSystem->despatch($email, $msg, $topic);

if (! $user) {

118

https://danielkummer.github.io/git-flow-cheatsheet/
https://danielkummer.github.io/git-flow-cheatsheet/

CHAPTER6 VERSION CONTROL WITH GIT

$this->context->setError($msgSystem->getError());
//...

I'should, in fact, be testing $result and not $user. Here is my edit:

//...

$result = $msgSystem->dispatch($email, $msg, $topic);

if (! $result)
$this->context->setError($msgSystem->getError());

/...

Because I am working on the branch megaquiz-branch1.0, I can commit
this change:

$ git add src/command/FeedbackCommand.php

$ git commit -m'bugfix’

[megaquiz-branch1.0 6e56ade] bugfix

1 file changed, 1 insertion(+), 1 deletion(-)

Of course, this commit is local. I need to use the git push command to get the
branch onto the remote repository:

$ git push origin megaquiz-branchi.0

Counting objects: 9, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (5/5), done.

Writing objects: 100% (5/5), 456 bytes | 0 bytes/s, done.

Total 5 (delta 3), reused 0 (delta 0)

remote: Resolving deltas: 100% (3/3), completed with 3 local objects.
remote:

remote: Create a pull request for 'megaquiz-branch1.0' on GitHub by
visiting:

remote: https://github.com/poppbook/megaquiz/pull/new/megaquiz-branchi.0
remote:

To git@github.com:poppbook/megaquiz.git

* [new branch] megaquiz-branch1.0 -> megaquiz-branchi.0

119

CHAPTER6 VERSION CONTROL WITH GIT

Now, what about Bob? He will inevitably want to pitch in and fix some bugs. First, he
invokes git fetch, which acquires any new information from the server. Then, he can
look at all available branches with git branch -a.

$ git fetch

$ git branch -a

* main
remotes/origin/HEAD -> origin/main
remotes/origin/main
remotes/origin/megaquiz-branch1.0

Now, Bob can switch to a local branch which will track the remote one:
$ git checkout megaquiz-branchi.0

Notice that Bob did not use the -b option. That is only used when you want need to
create a nonexistent branch.

Branch megaquiz-branch1.0 set up to track remote branch
megaquiz-branch1.0 from origin.
Switched to a new branch 'megaquiz-branchi.0’

Bob is good to go now. He can add and commit his own fixes, and when he pushes,
they will end up on the remote branch.

Meanwhile, I would like to add some bleeding-edge enhancements on the trunk -
that is, my main branch. Let’s look again at the state of my branches from the perspective
of my local repository:

$ git branch -a
main

* megaquiz-branch1.0
remotes/origin/main
remotes/origin/megaquiz-branchi.0

I can switch to an existing branch by invoking git checkout:

$ git checkout main
Switched to branch 'main'
Your branch is up-to-date with 'origin/main’.

120

CHAPTER6 VERSION CONTROL WITH GIT

When I look now at command/FeedbackCommand. php, I see that my bug fix has
magically disappeared. Of course, it’s still stored under megaquiz-branch1.0. Later, I can
merge the fix into the main branch, so there’s no need to worry. Instead, I can focus on
adding new code:

class FeedbackCommand extends Command

{

public function execute(CommandContext $context): bool
{
// new and risky development
// goes here
$msgSystem = ReceiverFactory::getMessageSystem();
$email = $context->get('email’);

/...

All T have done here is to add a comment to simulate an addition to the code. I can
now commit and push this:

$ git commit -am'new development on main'
$ git push origin main

So I now have parallel branches. Of course, sooner or later, I will want mymain
branch to benefit from the bug fixes that I have committed on megaquiz-branch1.o0.

I can do this on the command line, but first, let’s pause to look at a feature supported
by GitHub and similar services like Bitbucket. The pull request (often abbreviated to PR)
allows me to request a code review before merging a branch. So before megaquiz-
branch1.0 hits main, I can ask Bob to check my work. As you can see in Figure 6-5,
GitHub detects the branch and gives me the opportunity to issue my pull request.

121

CHAPTER6 VERSION CONTROL WITH GIT

v () poppbook/megaquiz x + - O x
< C 23 github.com/poppbook/megaquiz [4 Z O a

. L]
= o poppbook / megaquiz Q + - O n a

<> Code (Issues I Pullrequests (® Actions [Projects [0 wiki @ Security |~ Insights 8 Settings

megaquiz Pub s? Pin ®Unwatch 1 ~ y - Y Star 0 -

¥ megaquiz-branch1.0 had recent pushes 3 seconds ago Compare & pull request About B
No description, website, or
¥ main ~ F © Go to file + <> Code ~

topics provided.

A Activity
poppbook new development on main 52e3c68 - 1 hour ago {0 3 Commits ¥s Ostars
® 1watching
il src new development on mair 1 hour ago Y 0 forks
[composer.json hange package 1 hour age
Releases 1
D composer.lock nital commit 2 hours agc —
© v1.0.0 (Latest
[main.php nitial commit 2 hours ago <o ag
Packages v

Figure 6-5. GitHub makes issuing pull requests easy

I hit the ‘Compare & pull request’ button and add a comment before submitting the
pull request. You can see the result of that in Figure 6-6.

Now, Bob can examine my changes and add any comments he may have. GitHub
shows him exactly what has changed. You can see Bob’s comment in Figure 6-7.

122

CHAPTER 6 VERSION CONTROL WITH GIT

v () Megaquizbranchl.0byp x 4 = O X
€ » C & github.com/poppbook/megaquiz/pull/1 % A O a
. . :
= O poppbook / megaquiz Q + ~ ||O[I1] |8

<> Code () Issues I] Pullrequests 1 (® Actions [Projects [0 wiki © Security |~ Insights

Megaquiz branchl1.0 #1 Bt <> Code -

ISReIENE Poppbook wants to merge 2 commits into main from megaquiz-branchi.e (&

Q) Conversation 0 - Commits 2 [E) Checks 0 Files changed 1 +1-2 mmm

poppbook commented now Owner Reviewers @
No reviews

oops should be testing $result . Eyeballs please @poppbook-bob
Still in progress? Convert to draft

Assignees i
EF poppbook added 2 commits 11 minutes ago No one—assign yourself
b twoak 83ae5Te | apers &
o bugfix fogfssh None yet

Figure 6-6. Issuing the pull request

123

CHAPTER6 VERSION CONTROL WITH GIT

v () Megaquiz branch1.0 by x + - g X
< C % github.com/poppbook/megaquiz/pull/1/files [4 A 0 &
1% Open Megaquiz branch1.0 #1 ’ . 0/1 files viewed Review changes
ANy all commits ~ File filter v Conversations~ Jumpto~ &3~
7- 3 mmm src/command/FeedbackCommand.php (5 € 9 TR
15

xecute(CommandContext $context): bool

$msg = $context->get('pass’');
Stopic = Scontext->get('topic');
$result = $msgSystem->despatch($email, S$msg, Stopic);
27 - if (! Suser) {
26 + if (! Sresult) {
"% poppbook-bob nov Collaborator
Nice catch!
®
(N
Resolve conversation
Sthis->context->setError(SmsaSvstem->aetError()): ¥

Figure 6-7. The changes covered by a pull request

Once Bob approves my pull request, I can merge directly from the browser, or
I can return to the command line. This is pretty easy. Git provides a subcommand
named merge:

$ git checkout main
Already on 'main’

In fact, I'm already on the main branch - but it can’t hurt to be sure. Now, I perform
the actual merge:

$ git merge --no-commit megaquiz-branchi.o
Auto-merging src/command/FeedbackCommand.php
Automatic merge went well; stopped before committing as requested

By passing in the --no-commit flag, I keep the merge uncommitted - which gives me
another chance to check all is well. Once I am satisfied, I can go ahead and commit.

$ git commit -m'merge from megaquiz-branchi.0'
[main e1b5169] merge from megaquiz-branchi.0

124

CHAPTER6 VERSION CONTROL WITH GIT

Note To merge or not to merge? The choice is not always as straightforward
as it might seem. In some cases, for example, your bug fix may be the kind of
temporary work that is supplanted by a more thorough refactoring on the trunk,
or it may no longer apply due to a change in specification. This is necessarily a
judgment call. Most teams | have worked in, however, tend to merge to the trunk
where possible while keeping work on the branch to the bare minimum. New
features for us generally appear on the trunk and find their way quickly to users
through a “release early and often” policy.

Now, when Ilook at the version of FeedbackCommand on the main branch, I confirm
that all changes have been merged:

public function execute (CommandContext $context): bool
{
// new and risky development
// goes here
$msgSystem = ReceiverFactory::getMessageSystem();
$email = $context->get('email');
$msg = $context->get('pass’);
$topic = $context->get('topic');
$result = $msgSystem->despatch($email, $msg, $topic);
if (! $result) {
$this->context->setError ($msgSystem->getError());
return false;

}

The execute() method now includes both my simulated main development and the
bug fix.

Let’s recap where we are right now. I am back on the main branch. I can check this at
any time with git status. More specifically, I can also determine the commit ID at the
tip of that branch with git show:

$ git show HEAD

125

CHAPTER6 VERSION CONTROL WITH GIT

This provides lots of information, but I can see that HEAD on main points to a commit
ID which starts 52e3c68.

commit 52e3c680572170a3497267b569844b950bbb3007 (HEAD -> main, origin/main)
Author: mattz <matt@getinstance.com>

If I create a new branch from this point with our old friend git checkout -b
<branchname>, I will change branches, but until I perform any further commits on the
new branch, my new HEAD will point to the same commit - 52e3c68.

Let’s confirm this. First, I create the new branch:

$ git checkout -b some-new-dev
Switched to a new branch 'some-new-dev'

Now that I've switched to some-new-dev, I can get information about the HEAD of
the branch:

$ git show HEAD

commit 52e3c680572170a3497267b569844b950bbb3007 (HEAD -> some-new-dev,
origin/main, main)

Author: mattz <matt@getinstance.com>

So, I am parked at the same commit but I'm on a different branch. Once I start
committing to some-new-dev, my HEAD there will point to a new commit ID. But I will
be able to find the merge base - the common ancestor - for the two branches with git
merge-base:

$ git merge-base main some-new-dev
52e3c680572170a3497267b569844b950bbb3007

Now, this is not something you're likely to do very often - but it is useful here for
illustration purposes. We can see that merging from some-new-dev to main will use the
common ancestor - commit ID 52e3c68 - in its merge strategy.

This is useful background to another variation on git checkout.

First, let’s switch back to main.

$ git checkout main

126

CHAPTER6 VERSION CONTROL WITH GIT

I created a branch when I first “released” megaquiz version 1.0, and that’s what we
have been working with. Remember, however, that I also created a tag at that stage. I
promised at the time that I would show you how to access the tag.

The trick here is to create a new branch from main with the commit the tag points to
at its HEAD.

$ git checkout -b v1.0.0-branch vi.0.0
Switched to a new branch 'vi.0.0-branch’

This looks like the git checkout -b <branchname> example you've already seen,
except this time, I have provided an additional argument. This is an optional <start-
point> value. In this case, that means the commit pointed to by the tag v1.0.0. So,
as before, I have created a new branch - named v1.0.0-branch here - but its HEAD is
defined by the provided start point rather than defaulting to the HEAD of the main branch
as before.

Let'srungit show:

$ git show HEAD

commit 7091f38e28d1c58dfcc7a1343435a1a6082cd869 (HEAD -> v1.0.0-branch,
tag: v1.0.0)

Author: mattz <matt@getinstance.com>

So, my new branch has a HEAD which points to the commit referenced by the v1.0.0
tag - 7091138. I can develop from here, push the branch, and share just as you have seen.
When ready, if I want, I can merge my new changes back to main.

Note Git is an amazingly versatile and useful tool. Like all powerful tools, its

use can occasionally lead to unintended consequences. For those moments that
you have backed yourself into a corner and need to reset things fast, technical
reviewer Paul Tregoing recommends https://dangitgit.com/en (actually, he
recommended the swearier version!). The site is full of recipes that might just save
your sanity, so it is well worth bookmarking if you work seriously with Git.

Two other Git commands that are worth having in your arsenal are git stash
and git stash apply.When you are up to your ears in local edits but are called
to switch branches, your first option is to commit your work in progress. You may

127

https://dangitgit.com/en

CHAPTER6 VERSION CONTROL WITH GIT

not want to commit rough code, though. You might think that your only choice then
is to throw away your local changes or copy them to temporary files. If you run git
stash, however, all local changes are tucked away for you behind the scenes,

and your branch is returned to its state at the last commit. You can go off and do
your urgent work and, when you are ready, run git stash apply to get your
uncommitted work back. It’s like magic!

Summary

Git comprises an enormous number of tools, each with a daunting range of options
and capabilities. I can only hope to provide a brief introduction in the space available.
Nonetheless, if you only use the features that I have covered in this chapter, you should
see the benefit in your own work, whether through protection against data loss or
improvements in collaborative working.

In this chapter, we took a tour through the basics of Git. I looked briefly at
configuration before importing a project. I checked out, committed, and updated
code and then showed you how to tag and export a release. I ended the chapter with
a brieflook at branches, demonstrating their usefulness in maintaining concurrent
development and bug fix strands in a project.

There is one issue that I have glossed over here, to some extent. We established the
principle that developers should check out their own versions of a project. On the whole,
however, projects will not run in place. In order to test their changes, developers need
to deploy code locally. Sometimes, this is as simple as copying over a few directories.
More often, however, deployment must address a whole range of configuration issues. In
upcoming chapters, we will look at some techniques for automating this process.

128

CHAPTER 7

Testing with PHPUnit

Every component in a system depends, to a greater or lesser extent, on the
implementation of its peers for its own continued smooth running. By definition, then,
development breaks systems. As you improve your classes and packages, you must
remember to amend any code that works with them. For some changes, this can create a
ripple effect, affecting components far away from the code you originally changed. Eagle-
eyed vigilance and an encyclopedic knowledge of a system’s dependencies can help to
address this problem. Of course, while these are excellent virtues, systems soon grow too
complex for every unwanted effect to be easily predicted, not least because systems often
combine the work of many developers. To address this problem, it is a good idea to test
every component regularly. This, of course, is a repetitive and complex task, and as such,
it lends itself well to automation.

Among the test solutions available to PHP programmers, PHPUnit is perhaps the
most ubiquitous and certainly the most fully featured tool. In this chapter, you will learn
the following about PHPUnit:

e Installation: Using Composer to install PHPUnit

o Writing tests: Creating test cases and using assertion methods
e Handling exceptions: Strategies for confirming failure

* Running multiple tests: Collecting tests into suites

e Constructing assertion logic: Using constraints

o Faking components: Mocks and stubs

o Testing web applications: Testing with and without additional tools

129
© Matt Zandstra 2025

M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_7

https://doi.org/10.1007/979-8-8688-0779-4_7#DOI

CHAPTER 7 TESTING WITH PHPUNIT

Functional Tests and Unit Tests

Testing is essential in any project. Even if you don’t formalize the process, you must
have found yourself developing informal lists of actions that put your system through
its paces. This process soon becomes wearisome, and that can lead to a fingers-crossed
attitude to your projects.

One approach to testing starts at the interface of a project, modeling the various ways
in which a user might negotiate the system. This is probably the way you would go when
testing by hand, although there are various frameworks for automating the process.
These functional tests are sometimes called acceptance tests because a list of actions
performed successfully can be used as criteria for signing off a project phase. Using
this approach, you typically treat the system as a black box - your tests remain willfully
ignorant of the hidden components that collaborate to form the system under test.

Whereas functional tests operate from without, unit tests work from the inside out.
Unit testing tends to focus on classes, with test methods grouped together in test cases.
Each test case puts one class through a rigorous workout, checking that each method
performs as advertised and fails as it should. The objective, as far as possible, is to test
each component in isolation from its wider context. This often supplies you with a
sobering verdict on the success of your mission to decouple the parts of your system.

Tests can be run as part of the build process, directly from the command line, or even
via a web page. In this chapter, I'll concentrate on the command line.

Unit testing is a good way of ensuring the quality of design in a system. Tests reveal
the responsibilities of classes and functions. Some programmers even advocate a test-
first approach. You should, they say, write the tests before you even begin work on a
class. This lays down a class’s purpose, ensuring a clean interface and short, focused
methods. Personally, I have never aspired to this level of purity - it just doesn’t suit my
style of coding. Nevertheless, I attempt to write tests as I go. Maintaining a test harness
provides me with the security I need to refactor my code. I can pull down and replace
entire packages with the knowledge that I have a good chance of catching unexpected
errors elsewhere in the system.

130

CHAPTER 7 TESTING WITH PHPUNIT

Testing by Hand

In the last section, I said that testing was essential in every project. I could have said

instead that testing is inevitable in every project. We all test. The tragedy is that we often

throw away this good work.

So, let’s create some classes to test. Here is a class that stores and retrieves user

information. For the sake of demonstration, it generates arrays rather than the User

objects you'd normally expect to use:

class UserStore

{

private array $users = [];

public function addUser(string $name, string $mail, string $pass): bool
{
if (isset($this->users[$mail])) {
throw new \Exception(
"User {$mail} already in the system"
)
}
if (strlen($pass) < 5) {

throw new \Exception(
"Password must have 5 or more letters"
)5
}
$this->users[$mail] = [
'pass' => $pass,
'mail’ => $mail,
"name’ => $name

Is

return true;

131

CHAPTER 7 TESTING WITH PHPUNIT

public function notifyPasswordFailure(string $mail): void

{
if (isset($this->users[$mail])) {
$this->users[$mail]['failed'] = time();

}
}
public function getUser(string $mail): array
{
return ($this->users[$mail]);
}

This class accepts user data with the addUser () method and retrieves it via
getUser(). The user’s email address is used as the key for retrieval. If you're like me,
you’ll write some sample implementation as you develop, just to check that things are
behaving as you designed them:

$store = new UserStore();
$store->addUser (

"bob williams",

"bob@example.com",

"12345"
);
$store->notifyPasswordFailure("bob@example.com");
$user = $store->getUser("bob@example.com");
print_r($user);

Here is the output:

Array

(
[pass] => 12345
[mail] => bob@example.com
[name] => bob williams
[failed] => 1715099246

132

CHAPTER 7 TESTING WITH PHPUNIT

This is the sort of thing that I might add to the foot of a file as I work on the class it
contains. The test validation is performed manually, of course; it’s up to me to eyeball
the results and confirm that the data returned by UserStore: :getUser () corresponds
with the information I added initially. It’s a test of sorts, nevertheless.

Here is a client class that uses UserStore to confirm that a user has provided the
correct authentication information:

class Validator

{
public function _ construct(private UserStore $store)
{
}
public function validateUser(string $mail, string $pass): bool
{
if (! is_array($user = $this->store->getUser($mail))) {
return false;
}
if ($user['pass'] == $pass) {
return true;
}
$this->store->notifyPasswordFailure($mail);
return false;
}
}

The class requires a UserStore object, which it saves in the $store property. This
property is used by the validateUser () method to ensure, first of all, that the user
referenced by the given email address exists in the store and, second, that the user’s
password matches the provided argument. If both these conditions are fulfilled, the
method returns true. Once again, I might test this as I go along:

$store = new UserStore();
$store->addUser("bob williams", "bob@example.com", "12345");
$validator = new Validator($store);

133

CHAPTER 7 TESTING WITH PHPUNIT

if ($validator->validateUser("bob@example.com", "12345")) {
print "pass, friend!\n";

Iinstantiate a UserStore object, which I prime with data and pass to a newly
instantiated Validator object. I can then confirm a username and password combination.

Once I'm finally satisfied with my work, I could delete these sanity checks altogether
or comment them out. This is a terrible waste of a valuable resource. These tests could
form the basis of a harness to scrutinize the system as I develop. One of the tools that
might help me to do this is PHPUnit.

Introducing PHPUnit

PHPUnit is a member of the xUnit family of testing tools. The ancestor of these is SUnit,

a framework invented by Kent Beck to test systems built with the Smalltalk language.

The xUnit framework was probably established as a popular tool, however, by the

Java implementation, jUnit, and by the rise to prominence of agile methodologies like

Extreme Programming (XP) and Scrum, all of which place great emphasis on testing.
You can get PHPUnit with Composer:

$ composer require --dev phpunit/phpunit

This will install PHPUnit and add a variation on the following to your composer.
json file:

{
"require-dev": {
"phpunit/phpunit": "~12"

You will find the phpunit script at vendor/bin/phpunit.
If you don’t want to use Composer, you can download a PHP archive (.phar) file. You
can then make the archive executable:

$ wget https://phar.phpunit.de/phpunit.phar
$ chmod 755 phpunit.phar
$ sudo mv phpunit.phar /usr/local/bin/phpunit

134

CHAPTER 7 TESTING WITH PHPUNIT

Note | show commands that are input at the command line with a leading $
to represent a command prompt and distinguish them from any output they may
produce.

Creating a Test Case

Armed with PHPUnit, I can write tests for the UserStore class. Tests for each target
component should be collected in a single class that extends PHPUnit\Framework\
TestCase, one of the classes made available by the PHPUnit package. Here’s how to
create a minimal test case class:

namespace popp\ch20\batcho1;
use PHPUnit\Framework\TestCase;

class UserStoreTest extends TestCase

{

protected function setUp(): void

{
}

protected function tearDown(): void

{
}

I named the test case class UserStoreTest. It is often useful to place your test in the
same namespace as the class under test. This will give you easy access to the class under
test and its peers, and the structure of your test files will likely mirror that of your system.
Remember that, thanks to Composer’s support for PSR-4, you can maintain separate
directory structures for class files in the same package.

Here’s how we might do this in a composer. json file:

"autoload": {
"psr_4": {

135

CHAPTER 7 TESTING WITH PHPUNIT

"popp\": ["myproductioncode/", "mytestcode/"]

}

In this code, have nominated two directories that map to the popp namespace. I
can now maintain these in parallel, making it easy to keep my test and production code
separate.

Note You can also configure autoloading for your tests with the autoload-dev
key. This works in tandem with the autoload equivalent but is not applied in
production mode (i.e., when composer update or composer install are run
with the --no-dev flag).

The setUp() method is automatically invoked for each test method, allowing us
to set up a stable and suitably primed environment for the test. tearDown() is invoked
after each test method is run. If your tests change the wider environment of your system,
you can use this method to reset state. The common platform managed by setUp() and
tearDown () is known as a fixture.

In order to test the UserStore class, I need an instance of it. I can instantiate this in
setUp() and assign it to a property. Let’s create a test method as well:

namespace popp\ch20\batcho1;
use PHPUnit\Framework\TestCase;

class UserStoreTest extends TestCase

{

private UserStore $store;

protected function setUp(): void

{

$this->store = new UserStore();
}
protected function tearDown(): void
{
}

136

CHAPTER 7 TESTING WITH PHPUNIT

public function testGetUser(): void

{
$this->store->addUser("bob williams", "a@b.com", "12345");
$user = $this->store->getUser("a@b.com");
$this->assertEquals("a@b.com”, $user['mail']);
$this->assertEquals("bob williams", $user['name']);
$this->assertEquals("12345", $user['pass']);

}

Note Remember that setUp() and tearDown() are called once for every test
method in your class. If you want to include code that will be run once before all
the test methods in a class, you can implement the static setUpBeforeClass()
method. Conversely, for code that should be run after all the test methods in a
class, implement tearDownAfterClass () (also a static method).

Test methods should be named to begin with the word “test” and should require no
arguments. This is because the test case class is manipulated using reflection.

Note Reflection is covered in detail in Volume 1, Chapter 5.

The object that runs the tests looks at all the methods in the class and invokes only
those that match this pattern (i.e., methods that begin with “test”).

Although it was deprecated in PHPUnit 11, the package allowed you to use
annotations rather than method names to specify test methods:

/**

* @test

*/

public function GetUser(): void

{
/...

137

https://doi.org/10.1007/979-8-8688-0779-4_5

CHAPTER 7 TESTING WITH PHPUNIT

As of PHPUnit 12, you can still use an attribute for the same purpose.

use PHPUnit\Framework\TestCase;
use PHPUnit\Framework\Attributes\Test;

class UserStoreAttributeTest extends TestCase
{
#[Test]
public function AddUserShortPass(): void
{
/] ...
}

/] ...

The attribute form was supported in PHPUnit 11 too

In the full example above, I tested the retrieval of user information. I don’t need
to instantiate UserStore for each test because I handled that in setUp(). Because
setUp() is invoked for each test, the $store property is guaranteed to contain a newly
instantiated object.

Within the testgetUser () method, I first provide UserStore: :addUser () with
dummy data, and then I retrieve that data and test each of its elements.

There is one additional issue to be aware of here before we can run our test. I am
using use statements without require or require_once. In other words, I am relying
on autoloading. Finding and including the autoload file is handled automatically if you
installed PHPUnit with Composer and if the autoload file for your project was generated
in the same context. This may not always be the case, however. I may be running a
global PHPUnit command which knows nothing of my local autoload, for example, or
I may have downloaded a phar file. In this case, how do I tell my tests how to locate the
generated autoload.php file? I could put a require_once statement in the test class (or
a superclass), but that would break the PSR-1 rule that class files should not have side
effects. The simplest thing to do is to tell PHPUnit about the autoload. php file from the
command line:

$ phpunit src/ch20/batcho1/UserStoreTest.php --bootstrap vendor/
autoload.php
PHPUnit 12.0.10 by Sebastian Bergmann and contributors.

138

CHAPTER 7 TESTING WITH PHPUNIT
Runtime: PHP 8.3.7
3 / 3 (100%)
Time: 00:00.001, Memory: 25.30 MB
OK (3 tests, 5 assertions)

For future examples, I will use a version of PHPUnit that was installed with
Composer along with the tests and system under test.

Assertion Methods

An assertion in programming is a statement or method that allows you to check your
assumptions about an aspect of your system. In using an assertion, you typically define
an expectation that something is the case, that $cheese is "blue" or $pieis "apple”.If
your expectation is confounded, a warning of some kind will be generated. Assertions
are such a good way of adding safety to a system that PHP supports them natively inline
and allows you to turn them off in a production context.

Note See the manual page at https://php.net/assert for more information
on PHP’s support for assertions.

PHPUnit supports assertions through a set of methods that can be called either
statically or on an instance of a class that extends PHPUnit\Framework\TestCase.

In the previous example, I used a TestCase method, assertEquals(). This method
compares its two provided arguments and checks them for equivalence. If they do not
match, the test method will be chalked up as a failed test. Having subclassed PHPUnit\
Framework\TestCase, I have access to a set of assertion methods. Some of these methods
are listed in Table 7-1.

139

https://php.net/assert

CHAPTER 7 TESTING WITH PHPUNIT

Table 7-1. Some PHPUnit\Framework\TestCase Assert Methods

Method Description

assertEquals($vali, $val2, Fail if $vala is not equivalent to $val2.
$message)

assertFalse($expression, Evaluate $expression; fail if it does not resolve to
$message) false.

assertTrue($expression, Evaluate $expression; fail if it does not resolve to
$message) true.

assertNotNull($val, $message) Failif $valis null.

assertNull($val, $message) Fail if $val is anything other than null.
assertSame($vali, $val2, Fail if $vala and $val2 are not references to the same
$message) object or if they are variables of different types or values.
assertNotSame($vali, $val2, Fail if $vala and $val2 are references to the same
$message) object or variables of the same type and value.
assertMatchesRegularExpression Fail if $val is not matched by the regular expression,
($regexp, $val, $message) $regexp.

assertEqualsCanonicalizing Fail if $vala is not equivalent to $val2. This is usually
($vali, $val2, $message) used for complex values. PHPUnit will attempt to

canonicalize the values prior to comparison, sorting
arrays and first converting objects to arrays if needed.

Testing Exceptions

Your focus as a coder is usually to make systems that work and work well. Often,

that mentality carries through to testing, especially if you are testing your own code.

The temptation is to test that a method behaves as advertised. It’s easy to forget how
important it is to test for failure. How good is a method’s error checking? Does it throw
an exception when it should? Does it throw the right exception? Does it clean up after an
error if, for example, an operation is half complete before the problem occurs? It is your
role as a tester to check all of this. Luckily, PHPUnit can help.

140

CHAPTER 7 TESTING WITH PHPUNIT

Here is a test that checks the behavior of the UserStore class when an operation fails:

public function testAddUserShortPass(): void

{
try {
$this->store->addUser("bob williams", "bob@example.com", "ff");
} catch (\Exception $e) {
$this->assertEquals("Password must have 5 or more letters"”,
$e->getMessage());
return;
}
$this->fail("Short password exception expected");
}

If you look back at the UserStore: :addUser () method, you will see that I throw
an exception if the user’s password is less than five characters long. My test attempts
to confirm this. I add a user with an illegal password in a try clause. If the expected
exception is thrown, then flow skips to the catch clause, and all is well. If the addUser ()
method does not throw an exception as expected, the execution flow reaches the fail()
method call.

Another way to test that an exception is thrown is to use an assertion method called
expectException(), which requires the name of the exception type you expect to be
thrown (either Exception or a subclass). If the test method exits without the correct
exception having been thrown, the test will fail.

Note The expectException() method was added in PHPUnit 5.2.0.

Here’s a quick reimplementation of the previous test:

public function testAddUserShortPassNew(): void
{

$this->expectException(\Exception::class);
$this->store->addUser("bob williams", "bob@example.com", "ff");

141

CHAPTER 7 TESTING WITH PHPUNIT

So, given that there is a neat way of testing for exceptions, why did I show
the older approach at all? In most circumstances, the simplest approach - using
expectException() - will be the best. However, occasionally, you may want to perform
further tests on the exception, on the state of the object under test, or you may want to
clean up some side effect. In such cases, it may still make sense to go old school.

Running Test Suites

If T am testing the UserStore class, I should also test Validator. Here is a cut-down
version of a class called ValidateTest that tests the Validator: :validateUser()
method:

namespace popp\ch20\batcho2;
use PHPUnit\Framework\TestCase;

class ValidatorTest extends TestCase

{
private Validator $validator;
protected function setUp(): void
{
$store = new UserStore();
$store->addUser("bob williams", "bob@example.com", "12345");
$this->validator = new Validator($store);
}
public function testValidateCorrectPass(): void
{
$this->assertTrue(
$this->validator->validateUser("bob@example.com”, "12345"),
"Expecting successful validation"
);
}
}

142

CHAPTER 7 TESTING WITH PHPUNIT

So now that I have more than one test case, how do I go about running them
together? The easiest way is to place your test classes in a common root directory. You
can then specify this directory, and PHPUnit will run all the tests beneath it. Here, I run
ValidatorTest along with additional test files that I have placed in the same directory:

$ phpunit src/ch20/batcho2/
PHPUnit 12.0.10 by Sebastian Bergmann and contributors.

Runtime: PHP 8.3.7
........ 8 / 8 (100%)
Time: 00:00.018, Memory: 8.00 MB

OK (8 tests, 14 assertions)

Constraints

In most circumstances, you will use off-the-peg assertions in your tests. In fact, at a
stretch, you can achieve an awful lot with AssertTrue() alone (although it is considered
best practice to use more specialized assertions where possible). As of PHPUnit
3.0, PHPUnit\Framework\TestCase included a set of factory methods that return
PHPUnit\Framework\Constraint objects. You can combine these and pass them to
TestCase::assertThat() in order to construct your own assertions.

It’s time for a quick example. The UserStore object should not allow duplicate email
addresses to be added. Here’s a test that confirms this:

// UserStoreTest

public function testAddUserDuplicate(): void

{

try {
$this->store->addUser("bob williams", "a@b.com", "123456");

$this->store->addUser("bob stevens", "a@b.com", "123456");
$this->fail("Exception should have been thrown");
} catch (\Exception $e) {

143

CHAPTER 7 TESTING WITH PHPUNIT

$const = $this->logicalAnd(
$this->logicalNot($this->containsEqual("bob stevens")),
$this->isArray(),

);

$this->assertThat($this->store->getUser("a@b.com"), $const);

This test adds a user to the UserStore object and then adds a second user with
the same email address. The test thereby confirms that an exception is thrown with
the second call to addUsex (). In the catch clause, I build a constraint object using the
convenience methods available to us. These return corresponding instances of PHPUNnit\
Framework\Constraint. Let’s break down the composite constraint in the previous
example:

$this->containsEqual("bob stevens")

The containsEqual() method returns a PHPUnit\Framework\Constraint\
TraversableContainsEqual object. When passed to assertThat(), this object will
generate an error if the test subject does not contain an element matching the given
value ("bob stevens").

I can negate this, though, by passing this constraint to another: PHPUnit\Framework\
Constraint\LogicalNot.

$this->logicalNot($this->containsEqual("bob stevens")),

Now, the assertThat assertion will fail if the test value (which must be traversable)
contains an element that matches the string, "bob stevens".

$this->isArray()

This method returns an instance of the PHPUnit\Framework\Constraint\IsType
constraint which, as you'd expect, checks type.

144

CHAPTER 7 TESTING WITH PHPUNIT

Note A less elegant way of checking for an array, isType('array'), is
deprecated as of PHPUnit 12.

Now, I can combine my singular type check constraint and my composite constraint
ina logicalAnd() constraint:

$this->logicalAnd(
$this->logicalNot($this->containsEqual("bob stevens")),
$this->isType('array'),

);

In this way, you can build up quite complex logical structures. My finished constraint
can be summarized as follows: “Do not fail if the test value is an array and does not

m"wn»

contain the string "bob stevens"” You could build much more involved constraints in
this way. The constraint is run against a value by passing both to assertThat().

You could achieve all this with standard assertion methods, of course, but
constraints have a couple of virtues. First, they form nice logical blocks with clear
relationships among components (although good use of formatting may be necessary
to support clarity). Second, and more important, a constraint is reusable. You can set up
a library of complex constraints and use them in different tests. You can even combine

complex constraints with one another:

$const = $this->logicalAnd(
$a_complex constraint,
$another complex constraint

)5

Table 7-2 shows some of the constraint methods available in a TestCase class.

145

CHAPTER 7 TESTING WITH PHPUNIT

Table 7-2. Some Constraint Methods

TestCase Method Constraint Fails Unless...

greaterThan($num) Test value is greater than $num.

containskEqual($val) Test value (traversable) contains an element that
matches $val.

identicalTo($val) Test value is a reference to the same object as

greaterThanOrEqual($num)
lessThan($num)
lessThanOrEqual($num)
equalTo($value)
equalTo($value, $delta)

stringContains($str,
$casesensitive=true)

$val or, for nonobjects, is of the same type and
value.

Test value is greater than or equal to $num.
Test value is less than $num.

Test value is less than or equal to $num.
Test value equals $value.

Test value equals $value. $delta defines a
margin of error for numeric comparisons.

Test value contains $str. This is case sensitive
by default.

matchesRegularExpression($pattern) Test value matches the regular expression in
$pattern.

logicalAnd(PHPUnit\Framework\
Constraint $const, [, $const..])

logicalOr (PHPUnit\Framework\
Constraint $const, [, $const..])

logicalNot (PHPUnit\Framework\
Constraint $const)

All provided constraints pass.

At least one of the provided constraints matches.

The provided constraint does not pass.

Mocks and Stubs

Unit tests aim to test a component in isolation of the system that contains it to the
greatest possible extent. Few components exist in a vacuum, however. Even nicely
decoupled classes require access to other objects as method arguments. Many classes
also work directly with databases or the file system.

146

CHAPTER 7 TESTING WITH PHPUNIT

You have already seen one way of dealing with this. The setUp() and tearDown()
methods can be used to manage a fixture (i.e., a common set of resources for your tests,
which might include database connections, configured objects, a scratch area on the file
system, etc.).

Note Using setUp() and tearDown() can be memory intensive because
these methods are invoked for every test method in a suite. You can mitigate
this problem somewhat by placing expensive processes in the static
setUpBeforeClass() and tearDownAfterClass() methods and sharing
resources between your test methods.

Another approach is to fake the context of the class you are testing. This involves
creating objects that pretend to be the objects that do real stuff. For example, you might
pass a fake database mapper to your test object’s constructor. Because this fake object
shares a type with the real mapper class (extends from a common abstract base or even
overrides the genuine class itself), your subject is none the wiser. You can prime the fake
object with valid data. Objects that provide a sandbox of this sort for unit tests are known
as stubs. They can be useful because they allow you to focus in on the class you want to
test without inadvertently testing the entire edifice of your system at the same time.

Fake objects can be taken a stage further than this, however. Because the object
you are testing is likely to call a fake object in some way, you can prime it to confirm the
invocations you are expecting. Using a fake object in this way - telling it how, when, and
how many times it should be called - is known as behavior verification, and it is what
distinguishes a mock object from a stub.

You can build mocks yourself by creating classes hard-coded to return certain values
and to report on method invocations. This is a simple process, but it can be time-
consuming.

PHPUnit provides access to an easier and more dynamic solution. It will generate
mock objects on the fly for you. It does this by examining the class you wish to mock and
building a child class that overrides its methods. Once you have this mock instance, you
can call methods on it to prime it with data and to set the conditions for success.

147

CHAPTER 7 TESTING WITH PHPUNIT

Let’s build an example. The UserStore class contains a method called
notifyPasswordFailure(), which sets a field for a given user. This should be called
by Validator when an attempt to set a password fails. Here, I mock up the UserStore
class so that it both provides data to the Validator object and confirms that its
notifyPasswordFailure() method was called as expected:

// ValidatorTest

public function testValidateFalsePass(): void

{
$store = $this->createMock(UserStore::class);
$this->validator = new Validator($store);

$store->expects($this->once())
->method('notifyPasswordFailure")
->with($this->equalTo('bob@example.com'));

$store->expects($this->any())
->method("getUser™)
->willReturn([
"name" => "bob williams",
"mail" => "bob@example.com",
"pass" => "right"

D;

$this->validator->validateUser("bob@example.com", "wrong");

}

Mock objects created with TestCase: : createMock() use a fluent interface; that is,
they have a language-like structure. These are much easier to use than to describe. Such
constructs work from left to right, each invocation returning an object reference, which
can then be invoked with a further modifying method call (itself returning an object).
This can make for easy use but painful debugging.

In the previous example, I called the TestCase method, createMock(), passing it
UserStore: :class, the full name of the class I wish to mock. This dynamically generates
a class and instantiates an object from it. I store this mock object in $store and pass
itto Validator. This causes no error because the object’s newly minted class extends
UserStore. I have fooled Validator into accepting an imposter into its midst.

148

CHAPTER 7 TESTING WITH PHPUNIT

Mock objects generated by PHPUnit have an expects() method. This method
requires a matcher object which defines the cardinality of the expectation; that is, it
dictates the number of times a method should be called. You will almost certainly use
one of a range of convenience methods that TestCase makes available to generate the
correct object for this purpose. You can see these methods in Table 7-3.

Table 7-3. Some Matcher Methods

TestCase Method Match Fails Unless...

any() Zero or more calls are made to the corresponding method (useful for stub
objects that return values but don’t test invocations)

never () No calls are made to the corresponding method

atLeastOnce() One or more calls are made to the corresponding method

atLeast($num) At least $num calls are made to the corresponding method

atMost($num) At most $num calls are made to the corresponding method

once() A single call is made to the corresponding method

exactly($num) $num calls are made to the corresponding method

Having set up the match requirement, I need to specify a method to which it applies.
The expects() method returns an object which provides a method named method() for
this purpose. I can simply call that with a method name. This is enough to get some real
mocking done:

$store->expects($this->once())
->method('notifyPasswordFailure');

I need to go further, however, and check the parameters that are passed to
notifyPasswordFailure(). InvocationMocker: :method() returns an instance of the
object it was called on. InvocationMocker includes a method name, with(), which
accepts a variable list of parameters to match. It also accepts constraint objects, so you
can test ranges and so on. Armed with this, you can complete the statement and ensure
that the expected parameter is passed to notifyPasswordFailure():

$store->expects($this->once())
->method(' notifyPasswordFailure")
->with($this->equalTo('bob@example.com'));

149

CHAPTER 7 TESTING WITH PHPUNIT

You can see why this is known as a fluent interface. It reads a bit like a sentence:
“The $store object expects a single call to the notifyPasswordFailure() method with
parameter bob@example.com.

Notice that I passed a constraint to with(). Actually, that’s redundant; any bare
arguments are converted to constraints internally, so I could write the statement
like this:

$store->expects($this->once())
->method('notifyPasswordFailure")
->with('bob@example.com');

Sometimes, you only want to use PHPUnit’s mocks as stubs, that is, as objects that
return values to allow your tests to run. In such cases, you can invoke InvocationMo
cker: :willReturn() from the call to method(). The willReturn() method requires
the return value (or values if the method is to be called repeatedly) that the associated
method should be primed to return.

$store->method("getUser")
->willReturn(]
"name" => "bob@example.com",
"pass" => "right"

D;

I omit the expects () stage altogether here since I'm not monitoring behavior
and begin by specifying the getUser () method. Next, I call willReturn() with my
expected value.

You can alternatively pass multiple values to willReturn(). Each one of these will be
returned by your mocked method as it is called repeatedly.

Tests Succeed When They Fail

Although most agree that testing is a fine thing, you grow to really love it generally only
after it has saved your bacon a few times. Let’s simulate a situation where a change in
one part of a system has an unexpected effect elsewhere.

The UserStore class has been running for a while when, during a code review,
itis agreed that it would be neater for the class to generate User objects rather than
associative arrays. Here is the new version:

150

CHAPTER 7 TESTING WITH PHPUNIT
namespace popp\ch20\batcho3;

class UserStore

{
private array $users = [];
public function addUser(string $name, string $mail, string $pass): bool
{
if (isset($this->users[$mail])) {
throw new \Exception(
"User {$mail} already in the system"
);
}
$this->users[$mail] = new User($name, $mail, $pass);
return true;
}
public function notifyPasswordFailure(string $mail): void
{
if (isset($this->users[$mail])) {
$this->users[$mail]->failed(time());
}
}
public function getUser(string $mail): ?User
{
if (isset($this->users[$mail])) {
return ($this->users[$mail]);
}
return null;
}
}

151

CHAPTER 7 TESTING WITH PHPUNIT
Here is the simple User class:
namespace popp\ch20\batcho3;

class User

{
private string $pass;
private ?string $failed;

public function _ construct(private string $name, private string $mail,
string $pass)

{

if (strlen($pass) < 5) {

throw new \Exception(
"Password must have 5 or more letters"
);

}

$this->pass = $pass;
}
public function getMail(): string
{

return $this->mail;
}
public function getPass(): string
{

return $this->pass;
}
public function failed(string $time): void
{

$this->failed = $time;
}

Of course, I amend the UserStoreTest class to account for these changes. Consider
this code designed to work with an array:

152

public function testGetUser(): void

CHAPTER 7 TESTING WITH PHPUNIT

{
$this->store->addUser("bob williams", "a@b.com", "12345");
$user = $this->store->getUser("a@b.com");
$this->assertEquals($user['mail'], "a@b.com");
$this->assertEquals($user['name'], "bob williams");
$this->assertEquals($user['pass'], "12345");

}

It is now converted into code designed to work with an object, like this:

public function testGetUser(): void

{
$this->store->addUser("bob williams", "a@b.com", "12345");
$user = $this->store->getUser("a@b.com");
$this->assertEquals($user->getMail(), "a@b.com");

}

I also need to update testAddUserDuplicate() so that it expects an object rather

than an array:

public function testAddUserDuplicate(): void

{

try {
$ret = $this->store->addUser("bob williams", "a@b.com", "123456");
$ret = $this->store->addUser("bob stevens", "a@b.com", "123456");
self::fail("Exception should have been thrown");

} catch (\Exception $e) {
self::assertThat($this->store->getUser("a@b.com"), $this
->isObject());

// perform other checks

}

}

153

CHAPTER 7 TESTING WITH PHPUNIT

That should mean that I'm all set, right? When I come to run my test suite, however, I
am rewarded with a warning that my work is not yet done:

$ phpunit src/ch20/batcho3/
...

1) popp\ch20\batcho3\ValidatorTest::testValidateCorrectPass
Expecting successful validation
Failed asserting that false is true.

/Users/mattz/work/popp7/popp7-repo/src/ch20/batcho3/ValidatorTest.php:27
...

Although my tests relating to User pass, my ValidatorTest class has caught some
issues related to the fact that I have not updated the Validator to account for the new
return value. Let’s focus on the failure referenced above:

public function testValidateCorrectPass(): void

{
$this->assertTrue(
$this->validator->validateUser ("bob@example.com”, "12345"),
"Expecting successful validation"
);
}

And here is the Validator: :validateUser () method that has let me down:

public function validateUser(string $mail, string $pass): bool

{
if (! is_array($user = $this->store->getUser($mail))) {
return false;

}

if ($user['pass'] == $pass) {
return true;

154

CHAPTER 7 TESTING WITH PHPUNIT
$this->store->notifyPasswordFailure($mail);

return false;

So, User: :getUser () now returns an object and not an array. getUser () originally
returned an array containing user data on success or null on failure. I validated users
by checking for an array using the is_array() function. Now, of course, this condition
is never met and the validateUser () method will always return false. Without the test
framework, the Validator would have simply rejected all users as invalid without fuss or
warning.

It is a relatively quick fix to bring validateUser () method into line.

public function validateUser(string $mail, string $pass): bool
{
$user = $this->store->getUser($mail);
if (is_null($user)) {
return false;
}
$testpass = $user->getPass();
if ($testpass == $pass) {
return true;

}

$this->store->notifyPasswordFailure($mail);
return false;

Now, imagine making the neat little change to UserStore: :getUser () on a Friday
night without a test framework in place. Think about the frantic text messages that
would drag you out of your pub, armchair, or restaurant: “What have you done? All our
customers are locked out!”

The most insidious bugs don’t cause the interpreter to report that something is
wrong. They hide in perfectly legal code, and they silently break the logic of your system.
Many bugs don’t manifest themselves where you are working; they are caused there,
but the effects pop up elsewhere, days or even weeks later. A test framework can help
you catch at least some of these, preventing rather than discovering problems in your

systems.

155

CHAPTER 7 TESTING WITH PHPUNIT

Write tests as you code, and run them often. If someone reports a bug, first add a test
to your framework to confirm it. Next, fix the bug so that the test is passed. Bugs have a
funny habit of recurring in the same area. Writing tests to prove bugs and then to guard
the fix against subsequent problems is known as regression testing. Incidentally, if you
keep a separate directory of regression tests, remember to name your files descriptively.
On one project, our team decided to name our regression tests after Bugzilla ticket
numbers. We ended up with a directory containing 400 test files, each with a name like
test 973892.php. Finding an individual test became a tedious chore!

Writing Web Tests

So long as its individual components are properly independent, a web application
should be just as testable as any other system using the techniques this chapter has
covered. We saw in Volume 1 that, by deploying a dependency injection container (or,
less commonly these days, a service locator), you can support orthogonality in your
classes (i.e., minimize hidden dependencies and maximize configurability). A controller
method in a typical web application will accept a Request object and return a Response
object. By providing a preconfigured Request (often a stub), you can pretty easily run a
controller method through its paces. You can then examine the generated Response for
an expected state.

By using mocks and stubs across the board in addition to your Request and Response
objects, you can isolate the controller method and narrow the number of components
that the unit test activates. Alternatively, with a test configuration, you can create a basic
functional test that exercises real components in the system.

Approaches like this are great for testing the inputs and output of a web application.
There are some distinct limitations, however. This method won’t capture the browser
experience. Where a web application uses JavaScript, and other client-side cleverness,
testing the text generated by your system won’t tell you whether the user is interacting
with a sane interface.

Luckily, there is a solution.

156

CHAPTER 7 TESTING WITH PHPUNIT

Introducing Selenium

Selenium (https://www.selenium.dev/) is a set of tools that can be used for automating
web browsers. This ecosystem includes (but is in no way limited to) tools and APIs for
authoring and running browser tests.

In this brief introduction, I'll create a quick test for a mocked up system. The test will
work in conjunction with the Selenium server via an API called php-webdriver.

Getting Selenium

Probably the easiest way to get up and running with Selenium is via the Docker image.
If you have Docker installed, you can simply fire a Selenium server up with a single
command:

$ docker run -d -p 4444:4444 -p 7900:7900 --net=host --shm-size="2g"
selenium/standalone-chrome:latest

The --net host flag here is only necessary if you will be testing a locally hosted
system - that is, you will referencing localhost URLs in your test files. Do not use
the --net option if you are using a Mac (also see the note below you are using an ARM-
based Mac).

Note You can find out more about running Selenium with Docker at https://
hub.docker.com/r/selenium/standalone-chrome and https://
github.com/SeleniumHQ/docker-selenium.

If you’re using an ARM-based Mac, you can read about how to run Selenium

with Docker at https://www.selenium.dev/blog/2024/multi-arch-
images-via-docker-selenium/ which recommends a different docker run
invocation.

$ docker run --rm -it -p 4444:4444 -p 5900:5900 -p 7900:7900
--shm-size 2g selenium/standalone-chromium:latest

For any Mac, if you intend to test a locally hosted system (i.e., by using URLs that
would typically reference localhost), you should amend your tests to use host.
docker.internal instead of localhost.

157

https://www.selenium.dev/
https://hub.docker.com/r/selenium/standalone-chrome
https://hub.docker.com/r/selenium/standalone-chrome
https://github.com/SeleniumHQ/docker-selenium
https://github.com/SeleniumHQ/docker-selenium
https://www.selenium.dev/blog/2024/multi-arch-images-via-docker-selenium/
https://www.selenium.dev/blog/2024/multi-arch-images-via-docker-selenium/

CHAPTER 7 TESTING WITH PHPUNIT

If, for some reason, you fail to explicitly end a session in your test suite (I'll show you
how to do this shortly), you might find that subsequent test runs are held up until the
session times out. You can adjust the timeout period by adding an environment variable
with the -e option to docker run. Here, I set the timeout to ten seconds:

-e SE_NODE_SESSION TIMEOUT=10

The first time you invoke the docker run command for Selenium, you'll see activity
as Docker downloads the required images. Thereafter, the command will initialize much
faster and with a little less output.

Now, I'm ready to proceed.

PHPUnit and Selenium

Although PHPUnit has provided APIs for working with Selenium in the past, the best
solution is currently a third-party library that provides the bindings we need.

Introducing php-webdriver

WebDriver (https://www.selenium.dev/documentation/webdriver/) is the
mechanism by which Selenium controls browsers, and it was introduced with Selenium
2. Selenium supports various language libraries for WebDriver. Although php-webdriver
is not among them, it is under active development and mirrors the official APIs. This
is very handy when you want to look up a technique, since many examples you'll find
online will be offered in Java which means they will apply readily to php-webdriver with
a little porting of code.

You can add php-webdriver to your project with Composer:

$ composer require php-webdriver/webdriver

The System Under Test

I'will be working with a mocked up version of a venue listings system I created in Volume 1,

Chapter 12. You don’t need to know anything about that system for this example, however.

The mockup consists of two crude scripts AddVenue. php and AddSpace. php which, between

them, simulate the process of creating a venue and then adding a sub-venue (a “space”).
Here is AddVenue. php:

<?php

158

https://www.selenium.dev/documentation/webdriver/
https://doi.org/10.1007/979-8-8688-0779-4_12

CHAPTER 7 TESTING WITH PHPUNIT

$venue name = $ REQUEST['venue name'] ?? null;
>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Add a Venue</title>
</head>
<body>
<?php if (is_null($venue name)) { 2>
<div>no name provided</div>
<div>
<form method="post">

<input type="text" value="" name="venue name" />
<input type="submit" value="submit" />

</form>

</div>

<?php } else { 2>

<h1>Add a Space for Venue '<?php print $venue name ?>'</h1>

<div>
"<?php print $venue name ?>' added (22) please add name for the space
</div>

[add space]
<form method="post" action="AddSpace.php">

<input type="text" value="" name="space name"/>
<input type="hidden" name="cmd" value="AddSpace" />
<input type="hidden" name="venue id" value="22" />

<input type="hidden" name="venue name" value="<?php print $venue

name ?>" />
<input type="submit" value="submit" />
</form>
<?php }
</body>
</html>

159

CHAPTER 7 TESTING WITH PHPUNIT

This either presents a form for “creating” a venue or, if a venue name has been
provided by a previous submission, a second form for “adding” a space. This form
submits values to a second, even simpler, script: AddSpace. php.

<?php
$venue _name = $ REQUEST['venue name'] ?? "-";
$space_name = $ REQUEST['space_name'] ?? "-";

?>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Here are the venues</title>
</head>
<body>

<h1>Here are the venues</h1>

<div>
space '<?php print $space name ?>' added (47)</td>
</div>

<div>

<?php print $venue name ?>

8nbsp; <?php print $space name ?>

</div>

</body>
</html>

This script - also crude - pretends to have added a space and, using $ REQUEST
elements, constructs a summary.

I will run this script locally using PHP’s built-in development server.
$ php -S 0.0.0.0:8784 -t .

I run the command above from the directory that contains AddVenue. php and
AddSpace.php. Now, I can follow the dummy flow in my browser by navigating to
http://localhost:8784/AddVenue.php.

160

CHAPTER 7 TESTING WITH PHPUNIT

The fact that I'm testing a locally hosted system is the reason I included --net host
in my docker runinvocation. This tells the created container to use the host system’s
network.

Remember, though, that you should not use this option if you're running Selenium
on a Mac using Docker even if you need to access local URLs. As you will see, there is an
alternative syntax you can use within your tests on a Mac to access your localhost URLs.

Creating the Test Skeleton
Time to start creating the tests. I'll kick off with a boilerplate test class:
namespace popp\ch20\batcho4;

use Facebook\WebDriver\Remote\DesiredCapabilities;
use Facebook\WebDriver\Remote\RemoteWebDriver;
use PHPUnit\Framework\TestCase;

class SeleniumTestl extends TestCase

{
protected function setUp(): void

{
}

protected function tearDown(): void

{
}

public function testAddVenue(): void

{
}

I specify some of the php-webdriver classes I will be using and then create a bare-
bones test class. Now to make this test do something.

161

CHAPTER 7 TESTING WITH PHPUNIT

Connecting to Selenium

In order to make the connection to Selenium, I need to pass a URL and a configuration
array to a class named RemotelWebDriver. The URL for the Selenium server is usually
http://127.0.0.1:4444/wd/hub.

namespace popp\ch20\batcho4;

use Facebook\WebDriver\Remote\DesiredCapabilities;
use Facebook\WebDriver\Remote\RemoteWebDriver;
use PHPUnit\Framework\TestCase;

class SeleniumTest2 extends TestCase

{
private RemoteWebDriver $driver;
protected function setUp(): void
{
$host = "http://127.0.0.1:4444/wd/hub";
$capabilities = DesiredCapabilities::chrome();
$this->driver = RemoteWebDriver::create($host, $capabilities);
}
protected function tearDown(): void
{
$this->driver->quit();
}
public function testAddVenue(): void
{
}
}

If you installed php-webdriver with Composer, you can see a full list of
capabilities in the class file at vendor/php-webdriver/webdriver/lib/Remote/
WebDriverCapabilityType.php. For my present purposes, however, I really only need to
specify the minimum configuration needed to run the Chrome browser. This is provided
by the convenience method DesiredCapabilities: :chrome(). I pass the host string and
the returned $capabilities array to the static RemoteWebDriver: :create() method
and store the resulting object reference in the $driver property.
162

CHAPTER 7 TESTING WITH PHPUNIT

The tearDown () method invokes RemoteWebDriver: :quit(). This method closes
all browser windows and ends the test session. If you fail to end a session, you'll need to
wait for it to time out before you can run a new test suite. Having a browser hang around
can be useful if you need to interact with it during development (perhaps to investigate
the cause of a failure), but usually, you'll want the session to end promptly so that you
can run a new test suite.

If I were to run this test and monitor the session (I will show you how to do this), I
would see that Selenium launches a fresh browser window in preparation for further
action and then promptly closes it again.

Let’s add that further action.

Writing the Test

For this basic test, I will navigate to AddVenue.php, add a venue, confirm the expected
response, and then add a space. Finally, I will confirm the output generated by
AddSpace.php.

Here is my test:

namespace popp\ch20\batcho4;

use Facebook\WebDriver\Remote\DesiredCapabilities;
use Facebook\WebDriver\Remote\RemoteWebDriver;

use Facebook\WebDriver\WebDriverBy;

use PHPUnit\Framework\TestCase;

class SeleniumTest3 extends TestCase

{
// setUp(), tearDown() etc

public function testAddVenue(): void

{
$this->driver->get("http://localhost:8784/AddVenue.php");
$venel = $this->driver->findElement(WebDriverBy: :name("venue
name"));
$venel->sendKeys("my test venue");
$venel->submit();

163

CHAPTER 7 TESTING WITH PHPUNIT

$tdel = $this->driver->findElement(WebDriverBy::xpath("//div[1]"));
$this->assertMatchesRegularExpression("/'my test venue' added/",
$tdel->getText());

$spacel = $this->driver->findElement(WebDriverBy: :name("space
name"));

$spacel->sendKeys("my test space");

$spacel->submit();

$el = $this->driver->findElement(WebDriverBy::xpath("//div[1]"));
$this->assertMatchesRegularExpression("/'my test space' added/",
$el->getText());

Note this line:
$this->driver->get("http://localhost:8784/AddVenue.php");

The Selenium server will access my computer’s version of localhost here rather
than its own thanks to the --net host option I set when launching with docker run.
Once again, you should not use this option on a Mac. Instead, omit --net host, and use
host.docker.internal instead of localhost in the test itself:

$this->driver->get("http://host.docker.internal:8784/AddVenue.php");
Here’s what happens when I run this test on the command line:

$ phpunit src/ch20/batcho4/SeleniumTest3.php
PHPUnit 12.0.10 by Sebastian Bergmann and contributors.

Runtime: PHP 8.3.7
1/ 1 (100%)
Time: 00:12.159, Memory: 8.00 MB

OK (1 test, 2 assertions)

164

CHAPTER 7 TESTING WITH PHPUNIT

Of course, the command-line output is not all that happens. If you are looking in
the right place, you can watch as Selenium launches a browser window and performs
its specified operations within it. have to admit, I find this effect a little eerie! There
are various ways you can get to see this. If you have a VNC client, you can connect it to
localhost:5900. Otherwise, you can point your browser at http://localhost:7900/?a
utoconnect=18resize=scale&password=secret (or http://localhost:4444 if you want
more controls and information). By default, you may have to provide a password, which
is, cryptically, “secret.”

Let’s run through the code. First, I invoke WebDriver: :get (), which acquires my
starting page. Note that this method expects a full URL (which does not need to be local
to the Selenium server host). In this case, am accessing my mocked up script AddVenue.
php script running locally using PHP’s built-in development server on port 8784
(remember to use host.docker.internal rather than localhost on a Mac). Selenium
will load the specified document into the browser it has launched. You can see this page
in Figure 7-1.

v @ Adda Venue X + =Bl X
€ Cc ® localhost:8784/AddVenue.php A O a
Chrome is being controlled by automated test software. X

no name provided
submit

Figure 7-1. The AddVenue page loaded by Selenium

165

CHAPTER 7 TESTING WITH PHPUNIT

Once the page has loaded, I have access to it via the WebDriver API. I can acquire a
reference to a page element using the RemoteWebDriver: : findElement () method. This
requires an object of type WebDriverBy. The WebDriverBy class provides a set of factory
methods, each of which returns a WebDriverBy object configured to specify a particular
means of locating an element. My form element has a name attribute set to "venue_
name", so I use the WebDriverBy: :name() method to tell findElement() to look for an
element this way. Table 7-4 lists all of the available factory methods.

Table 7-4. WebDriverBy Factory Methods

Method Description

className() Find elements by CSS class name
cssSelector() Find elements by CSS selector

id() Find an element by its id

name() Find elements by name attribute

linkText() Find elements by their link text
partiallinkText() Find elements by a fragment of link text
tagName() Find elements by their tag

xpath() Find elements that match an Xpath expression

Once I have a reference to the venue_name form element, an object of type
RemoteWebElement, I can use its sendKeys () method to set a value. It's important to note
that sendKeys () does more than just set a value. It also simulates the act of typing into an
element. This is useful for testing systems that use JavaScript to capture keyboard events.

With my new value set, I submit the form. The API is smart about this. When I call
submit() on an element, Selenium locates the containing form and submits it.

Submitting the form, of course, causes a new page to be loaded. So, next I check that
all is as I expect. Once again, I use WebDriver: : findElement(), although this time I pass
it a WebDriverBy object configured for Xpath. If my search is successful, findElement()
will return a new RemotelebElement object. If my search fails, on the other hand, the
resulting exception will bring down my test. Assuming that all is well, I acquire the
element’s value using the RemoteWebElement: :getText() method.

At this stage, I have submitted the form and checked the state of the returned web
page. You can see the page in Figure 7-2.

166

CHAPTER 7 TESTING WITH PHPUNIT

v @ Adda Venue X e - 0O x
o C @ localhost:8784/AddVenue.php Z O a
Chrome is being controlled by automated test software. X

Add a Space for Venue 'my_test_venue'

'my_test_venue' added (22)
please add name for the space
[add space]
submit

Figure 7-2. The AddSpace page

Now, all that remains is to populate the form once again, submit, and check the new
page. I use techniques that you have already encountered to achieve this.

Of course, I've only just scratched the surface of Selenium here. But I hope this
discussion has been enough to give you an idea of the possibilities. If you want to
learn more, there is a complete Selenium manual at https://www.selenium.dev/
documentation/.

A Note of Caution

It’s easy to get carried away with the benefits that automated tests can offer. I add unit
tests to my projects, and I use PHPUnit for functional tests, as well. That is, I test at the
level of the system, as well as that of the class. I have seen real and observable benefits,
but I believe that these come at a price.

Tests add a number of costs to your development. As you build safety into the
project, for example, you are also adding a time penalty into the build process that can
impact releases. The time it takes to write tests is part of this, but so is the time it takes to

167

https://www.selenium.dev/documentation/
https://www.selenium.dev/documentation/

CHAPTER 7 TESTING WITH PHPUNIT

run them. On one system, we may have suites of functional tests that run against more
than one database and more than one version control system. Add a few more contextual
variables like that, and we face a real barrier to running the test suite. Of course, tests
that aren’t run aren’t useful. One answer to this is to fully automate your tests, so runs
are kicked off by a scheduling application like cron. Another is to maintain a subset of
your tests that can be easily run by developers as they commit code. These should sit
alongside your longer, slower test run.

Another issue to consider is the brittle nature of many test harnesses. Your tests may
give you confidence to make changes, but as your test coverage increases along with the
complexity of your system, it becomes easier to break multiple tests. Of course, this is
often what you want. You want to know when expected behavior does not occur or when
unexpected behavior does.

Oftentimes, however, a test harness can break because of a relatively trivial change,
such as the wording of a feedback string. Every broken test is an urgent matter, but it can
be frustrating to have to change 30 test cases to address a minor alteration in architecture
or output. Unit tests are less prone than functional tests to problems of this sort because,
by and large, they focus on each component in isolation.

The cost involved in keeping tests in step with an evolving system is a trade-off that
you simply have to factor in. On the whole, I believe the benefits justify the costs.

You can also do some things to reduce the fragility of a test harness. It’s a good idea
to write tests with the expectation of change built in, to some extent. I tend to use regular
expressions to test output rather than direct equality tests, for example. Testing for a few
keywords is less likely to make my test fail when I remove a newline character from an
output string. Of course, making your tests too forgiving is also a danger, so it is a matter
of using your judgment.

Another issue is the extent to which you should use mocks and stubs to fake the
system beyond the component you wish to test. Some insist that you should isolate your
component as much as possible and mock everything around it. This works for me in
some projects. In others, however, I have found that maintaining a system of mocks can
become a time sink. Not only do you have the cost of keeping your tests in line with your
system, but you must keep your mocks up to date. Imagine changing the return type of
a method. If you fail to update the method of the corresponding stub object to return
the new type, client tests may pass in error. With a complex fake system, there is a real
danger of bugs creeping into mocks. Debugging tests is frustrating work, especially when
the system itself is not at fault.

168

CHAPTER 7 TESTING WITH PHPUNIT

I tend to play this by ear. I use mocks and stubs by default, but I'm unapologetic about
moving to real components if the costs begin to mount up. You may lose some focus on
the test subject, but this comes with the bonus that errors originating in the component’s
context are at least real problems with the system. You can, of course, use a combination of
real and fake elements. I routinely use an in-memory database in test mode, for example.

As you may have gathered, I am not an ideologue when it comes to testing. I
routinely “cheat” by combining real and mocked components, and because priming data
is repetitive, I often centralize test fixtures into what Martin Fowler calls object mothers.
These classes are simple factories that generate primed objects for the purpose of
testing. Shared fixtures of this sort are anathema to some.

Having pointed out some of the problems that testing may force you to confront,
it is worth reiterating a few points that, for my money, trump all objections. Testing
accomplishes several things:

o Ithelpsyou prevent bugs (to the extent that you find them during
development and refactoring).

o Ithelpsyou discover bugs (as you extend test coverage).
e Itencouragesyou to focus on the design of your system.

o Itlets you improve code design with less fear that changes will cause
more problems than they solve.

» Itgives you confidence when you ship code.

In every project for which I've written tests, I've had occasion to be grateful for that

fact sooner or later.

Summary

In this chapter, I revisited the kinds of tests we all write as developers but all too often
thoughtlessly discard. From there, I introduced PHPUnit, which lets you write the same
kind of throwaway tests during development but then keep them and feel the lasting
benefit! I created a test case implementation, and I covered the available assertion
methods. I also examined constraints and explored the devious world of mock objects.
Next, I discussed and demonstrated some techniques for testing web applications using
PHPUnit and Selenium. Finally, I risked the ire of some by warning of the costs that tests
incur and discussing the trade-offs involved.

169

CHAPTER 8

Vagrant

Where do you run your code?

Maybe you have a development environment you have honed to perfection with
a favorite editor and any number of useful development tools. Of course, your perfect
setup for writing code is probably very different from the best system on which to run
it. And that’s a challenge that Vagrant can help you with. Using Vagrant, you get to work
on your local machine and run your code on a system that'’s all but identical to your
production server. In this chapter, I will show you how. We will cover the following:

e Basic setup: From installation to choosing your first box
o Logging in: Investigating your virtual machine with ssh

e Mounting host directories: Editing code on your host machine and
having it available transparently in your Vagrant box

o Provisioning: Writing a script to install packages and configure
Apache and MySQL

o Setting a hostname: Configuring your box so that you can access it
using a custom hostname

The Problem

As always, let’s spend a little time defining the problem space. It is relatively easy,

these days, to configure a LAMP stack on most desktop or laptop computers. Even so, a
personal computer is unlikely to match your production environment. Is it running the
same version of PHP? What about Apache and MariaDB? If you're using Elasticsearch,
you may need to consider Java or Python, too. The list soon grows. Developing

against one set of tools on a particular platform can sometimes be problematic if your
production stack is significantly different.

171
© Matt Zandstra 2025

M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_8

https://doi.org/10.1007/979-8-8688-0779-4_8#DOI

CHAPTER 8 VAGRANT

You might give up and shift your development to a remote machine - there are
plenty of cloud vendors who will allow you to spin up a box quickly. But that’s not a free
option, and, depending upon your editor of choice, a remote system may not integrate
well with the development tools you wish to use.

So, it may be worth the effort of matching the packages on your computer as closely as
possible with those installed on the production system. The match won’t be perfect, but
perhaps it will be good enough, and you'll probably catch most issues on the staging server.

What happens, though, when you begin work on a second project with radically
different requirements? We have seen that Composer does a great job of keeping
dependencies separate, but there are still global packages like PHP, MariaDB, and
Apache or Nginx to keep in line.

Note If you decide to develop on remote systems, | recommend making the
effort to learn how to use the vim editor. Despite its quirks, it is extremely powerful,
and you can be 99% certain that either vim or its more basic ancestor vi will be
available on any Unix-like system you encounter.

Virtualization is a potential solution and a good one. It can be a pain installing an
operating system, though, and there can be considerable configuration hassles.

If only there were a tool that made creating a production-like development
environment on a local virtual machine relatively simple. OK, it’s obvious that now I'm
going to say that just such a tool exists. Well, one does. It’s called Vagrant.

Note There is, of course, another option to consider. Docker provides a
lightweight container-based solution to this problem. In a Docker development
environment, you break your system down into individual service containers which
communicate with one another over a local network. Docker containers (at least
when run on a Linux host) operate directly on the host machine’s kernel (rather
than via a virtualization engine like VirtualBox), making them very easy to deploy.
We will examine Docker in more detail in the next chapter. Many development
teams have migrated, or are migrating, to Docker for development. Vagrant
remains a good option, however, especially when you need to faithfully replicate a
development stack in a production environment.

172

CHAPTER 8 VAGRANT

A Little Setup

It is tempting to say that Vagrant gives you a development environment with a single
command. That can be true - but you do have to install the requisite software first. Given
that, and a configuration file that you can check out from your project’s version control
repository, launching a new environment truly can involve a single command.

Let’s get started with the setup first. Vagrant requires a virtualization platform. It
supports several, but I will use VirtualBox. My host machine runs Fedora, but you can
install VirtualBox on any Linux distribution and on Windows. It is supported on Intel-
based Macs but not, unfortunately, on Apple Silicon Macs. You can find the download
page at https://www.virtualbox.org/wiki/Downloads, together with instructions for
your platform.

Once you have VirtualBox installed, you'll need Vagrant, of course. The download
page is at https://developer.hashicorp.com/vagrant/install. Once we have
installed these applications, our next task will be to choose the box we’ll run our code on.

Choosing and Installing a Vagrant Box

Probably the easiest way to acquire a Vagrant box is to use the search interface at
https://portal.cloud.hashicorp.com/vagrant/discover. Since many production
systems run Debian, that’s what I will look for. You can see the fruits of my research in
Figure 8-1.

173

https://www.virtualbox.org/wiki/Downloads
https://developer.hashicorp.com/vagrant/install
https://portal.cloud.hashicorp.com/vagrant/discover

CHAPTER 8 VAGRANT

v @ HashiCorp Cloud Platform x + = EIae
td P

< c 25 portal.cloud.hashicorp.com/vagrant/discover?query=debian%2012 w PAS -

Discover Vagrant Boxes

Q debian 12 Provider v Architecture v 53 Sort by: Most downloaded v
Box name Lale.sl Downloads e Providers Architectures
Version Release
amdé4
docker parallels
i386 arm
virtualbox qemu
- generic/debian12 4312 246,894 438 days ago armé4
vmware_desktop
ppc6ale
hyperv libvirt
unknown
amd64
o debian/bookwormé4 12.20250126.1 43,597 63 days ago libvirt virtualbox

unknown

Figure 8-1. Searching for a Vagrant box

Debian12 looks about right for my needs. I can click the listing for the box that
interests me to get setup instructions. This gives me enough information to get a Vagrant
environment running. Usually when you run Vagrant, it will read a configuration file
named Vagrantfile - but since I am starting from scratch, I need to ask Vagrant to

generate one:

$ vagrant init generic/debiani2

A “Vagrantfile' has been placed in this directory. You are now
ready to "vagrant up’ your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
“vagrantup.com’ for more information on using Vagrant.

As you can see, I pass Vagrant the name of the box I want to work with, and it uses
this information to generate some minimal configuration.

If T open up the generated Vagrantfile document, I can see this (among much other
boilerplate):

174

CHAPTER 8 VAGRANT

Vagrant.configure("2") do Iconfig
The most common configuration options are documented and
commented below.
For a complete reference, please see the online documentation at
https://docs.vagrantup.com.

Every Vagrant development environment requires a box. You can
search for

boxes at https://vagrantcloud.com/search.

config.vm.box = "generic/debian12"

At this point, I have only gotten as far as generating configuration. Next, I must run
the all-important vagrant up command. If you work with Vagrant often, you will soon
find this command very familiar. It kicks off your Vagrant session by downloading and
provisioning your new box (if necessary), then booting it:

$ vagrant up --provider virtualbox

Because the generic/debian12 box supports a number of providers - that is,
virtualization engines - I must initially specify virtualbox. Once I have created my
environment, I can leave that flag out for future runs of vagrant up.

In this case, though, I am running this command for the first time with the generic/
debian12 virtual machine, so Vagrant starts by downloading the box:

Bringing machine 'default' up with 'virtualbox' provider...

==> default: Box 'generic/debiani2' could not be found. Attempting to find
and install...
default: Box Provider: virtualbox
default: Box Version: >= 0

==> default: Loading metadata for box 'generic/debiani2’
default: URL: https://vagrantcloud.com/generic/debian12

==> default: Adding box 'generic/debiani12' (v4.3.12) for provider:
virtualbox
default: Downloading: https://vagrantcloud.com/generic/boxes/debian12/
versions/4.3.12/providers/virtualbox/amd64/vagrant.box

==> default: Successfully added box 'generic/debiani2' (v4.3.12) for
"virtualbox'!

175

CHAPTER 8 VAGRANT

==> default: Importing base box 'generic/debiani2'...
==> default: Checking if box 'generic/debiani12' version '4.3.12" is up
to date...

Vagrant stores the box (under ~/.vagrant.d/boxes/) so that you won’t have to
download it again on your system - even if you run multiple virtual machines. Then, it
configures and boots the machine (it provides lots of detail as it does so). Once it has
finished running, I can test it out by logging in to my new machine:

$ vagrant ssh
$ pwd
/home/vagrant

Irun the vagrant ssh command to log in and then run pwd to confirm my working
directory on the box. I might also check the operating system:

$ cat /etc/debian version
12.4

So, we're in and it all looks sane! What have we won? Well, we have access to a
machine that somewhat resembles our production environment. Anything else? Quite a
lot, in fact. I said earlier that I would like to edit files on my local machine but run them
in a production-like space. Let’s set that up.

Time to leave the box again and get back to the host machine:

$ exit

Mounting Local Directories on the Vagrant Box

Let’s put some sample files together. I ran my first vagrant init and vagrant up
commands in a directory I named infrastructure. I will resurrect the woo project I used
in Chapter 7 (a dummy version of the system I developed in Volume 1). Putting all that
together, my development environment looks a little like this:

ch21/
infrastructure/
Vagrantfile

176

https://doi.org/10.1007/979-8-8688-0779-4_7

CHAPTER 8 VAGRANT

webwoo/
AddVenue.php
index.php
Main.php
AddSpace.php

Note You’ll encounter references to ch21 in some of the code examples in this
chapter. That’s because, while this is Chapter 8 of Volume 2, it is also the 21st
chapter across both volumes of PHP 8 Objects, Patterns, and Practice.

Our challenge is to set up the environment so that we can work with webwoo files
locally but run them transparently using a stack installed on the Debian box. Depending
upon our configuration, Vagrant will attempt to mount directories on the host machine
within the guest box.

So, let’s instruct Vagrant to mount the infrastructure directory as /vagrant on the
box. That will come in handy when we write a script to provision the box. We will also
need to mount the webwoo directory, so that its contents can be served.

Iopen up Vagrantfile and add these lines within the configuration section of the
document - that is, between Vagrant.configure("2") do Iconfigl and end:

", "/vagrant"
. ./webwoo", "/var/www/poppch21"

config.vm.synced folder
config.vm.synced folder

I can find the best place to put this line by searching the commented boilerplate for
the string synced_folder. I find a sample configuration line that looks very like my own.
With these directives, I am telling Vagrant to mount the infrastructure directory on the
guest box at /vagrant and webwoo directory at /var/www/poppch21. In order to see that in
effect, I need to reboot the box. There’s a new command for this (which should be run on
the host system and not within the virtual machine):

$ vagrant reload

177

https://doi.org/10.1007/979-8-8688-0779-4_8

CHAPTER 8 VAGRANT

The virtual machine shuts down and reboots cleanly. Vagrant mounts the
infrastructure (/vagrant) and webwoo (/var/www/poppch21) directories. Here’s an
extract from the command’s output:

==> default: Mounting shared folders...
default: /vagrant => /home/mattz/localwork/popp7/src/ch21/
infrastructure
default: /var/www/poppch21 => /home/mattz/localwork/popp7/src/
ch21/webwoo

I can log in quickly to confirm that /var/www/poppch21 is in place:

$ vagrant ssh
$ 1s /var/www/poppch21/
AddSpace.php AddVenue.php index.php Main.php

By the same token, if we were to look at /vagrant on the VM, we'd see the contents
of the infrastructure directory. So, now I can run a sexy IDE on my local machine and
have the changes it makes transparently available on the guest box!

Note A note from technical reviewer and Windows user Paul Tregoing: Don’t

use a VirtualBox shared file system (which underpins Vagrant’s synced folder in

this example) if running a Windows host. If you do so, you may encounter issues
with case sensitivity and lack of symlink support. In this scenario, it’s better to run
Samba (most distributions install this as smbd) on the guest 0S and map a network
drive on the host for a more seamless experience. There are lots of online guides
out there for this.

Of course, placing files on a Debian VM is not the same as running the system. A
typical Vagrant box comes without too much preinstalled. The assumption is that the
developer will want to customize the environment according to need and circumstance.

The next stage is to provision our box.

178

CHAPTER 8 VAGRANT

Provisioning

Once again, provisioning is directed by the Vagrantfile document. Vagrant supports
several tools designed for provisioning machines, including Chef (https://www.chef.
io/products/chef-infra), Puppet (https://puppet.com), and Ansible (https://www.
ansible.com). They're all worth investigating. For the purposes of this example, though,
I'm going to use a good old-fashioned shell script.

Note | cover Ansible in Chapter 10.

Once again, I begin with Vagrantfile:
config.vm.provision "shell", path: "setup.sh"

This should be reasonably clear. I'm telling Vagrant to use a shell script to provision
my box, and I specify setup. sh as the script which should be executed.

What you put in your shell script depends upon your requirements, of course. I'm
going to begin by setting a couple of variables.

VAGRANTDIR=/vagrant
SERVERDIR=/var/www/poppch21/

I can use these variables throughout the setup script. At the time of writing, PHP 8.3
is not available by default on Debian 12. However, it’s not particularly difficult to install.
Here, I'm adapting the approach recommended by PHP Watch:

apt-get -y install apt-transport-https

curl -sSLo /usr/share/keyrings/deb.sury.org-php.gpg https://packages.sury.
org/php/apt.gpg

sh -c 'echo "deb [signed-by=/usr/share/keyrings/deb.sury.org-php.gpg] \
https://packages.sury.org/php/ $(1sb release -sc) main" > /etc/apt/sources.
list.d/php.list’

apt-get update

apt-get -y install php8.3 php8.3-cli php8.3-{bz2,curl,mbstring,intl}
apt-get -y install php8.3-fpm
a2enconf php8.3-fpm

179

https://www.chef.io/products/chef-infra
https://www.chef.io/products/chef-infra
https://puppet.com
https://www.ansible.com
https://www.ansible.com
https://doi.org/10.1007/979-8-8688-0779-4_10

CHAPTER 8 VAGRANT

I use the apt package management system to install apt-transport-https which
supports downloads over HTTPS and then add the Sury PHP package list to the system’s
list of packages at /etc/apt/sources.list.d/php.list. This makes PHP 8.3 available.
Irun apt-get update to update the system. Then, I install PHP 8.3 and various PHP
extensions.

Because I'm going to run PHP with Apache using FPM (FastCGI Process Manager),
Iinstall the php8.3-fpm package. This will add a configuration to the Apache web server
which comes installed on this box. I enable this configuration using the a2encont.

Note You can find the original version of this part of the setup script and
more explanation at https://php.watch/articles/php-8.3-install-
upgrade-on-debian-ubuntu#detailed.

Of course, other distributions will require different strategies for installation. The
main takeaway here is that I have installed PHP 8.3 and some PHP extensions. A quick
search will provide you with equivalent scripts for your distribution of choice.

I write the script as it currently stands to a file named setup.sh which I place in the
infrastructure directory alongside Vagrantfile.

Now, how do I kick off the provisioning process? If the config.vm.provision
directive and the setup.sh script had both been in place when I first ran vagrant
up, then the provisioning would have been automatic. As it is, I'll now need to run it
manually:

$ vagrant provision

This will spew an awful lot of information onto your terminal as the setup.sh script
is run within the Vagrant box. Let’s see if it worked:

$ vagrant ssh
$ php -v
PHP 8.3.6 (cli) (built: Apr 22 2024 10:06:36) (NTS)
Copyright (c) The PHP Group
Zend Engine v4.3.6, Copyright (c) Zend Technologies
with Zend OPcache v8.3.6, Copyright (c), by Zend Technologies

180

https://php.watch/articles/php-8.3-install-upgrade-on-debian-ubuntu#detailed
https://php.watch/articles/php-8.3-install-upgrade-on-debian-ubuntu#detailed

CHAPTER 8 VAGRANT

Setting Up the Web Server

Of course, even with Apache installed and configured to work with PHP, the system is not
ready to be run. First of all, I need to further configure Apache so that it can serve our code.
The easiest way to do this is to create a configuration file that can be copied into place. In the
case of Debian, the location in question for this is usually /etc/apache2/conf-available/.

Let’s call the configuration file poppch21.conf and drop it into the infrastructure
directory:

<VirtualHost *:80>

ServerName poppch21.vagrant.internal

ServerAlias poppch2i.vagrant.internal

ServerAdmin matt@getinstance.com

DocumentRoot /var/www/poppch21

ErrorLog ${APACHE_LOG DIR}/poppch21i-error log

CustomLog ${APACHE_LOG DIR}/poppch21-access log common
</VirtualHost>

<directory /var/www/poppch21/>
Options Indexes FollowSymLinks
AllowOverride None
Require all granted
</directory>

I'll return to that hostname a little later. Leaving aside that tantalizing detail, this is
enough to tell Apache about our /var/www/poppch21 directory and to set up logging. Of
course, I'll also have to update setup.sh to copy the configuration file at provision time:

cp $VAGRANTDIR/poppch21.conf /etc/apache2/sites-available
a2dissite 000-default.conf

a2ensite poppch21.conf

systemctl start apache2

systemctl enable apache2

I copy the configuration file into place. Then, I run a utility named a2dissite
to disable the default configuration - which is a little greedy. By the same token, the
a2ensite command enables our newly copied configuration. Then, I restart the web
server so that the configuration is picked up. I also run systemctl enable to ensure that
the server will be started at boot time.
181

CHAPTER 8 VAGRANT
After making this change, I can rerun the provision script:
$ vagrant provision

It’s important to note that those parts of the setup script we previously covered will
also be rerun. When you create a provisioning script, you must design it so it can be
executed repeatedly without serious repercussions. Luckily, apt-get detects that my
specified packages have already been installed and grumbles harmlessly.

Setting Up MariaDB

For many applications, you'll need to make sure that a database is available and ready
for connections. Here'’s a simple addition to my setup script to install the MariaDB
application:

apt-get -y install mariadb-server

/usr/bin/mysqladmin -s -u root password 'vagrant' Il echo " -- unable to
create pass - probably already done"

domysqldb vagrant poppch21 vagrant vagrant vagrant

MariaDB is the modern replacement for MySQL (forked originally from the MySQL
source and implementing familiar MySQL tools and commands). I install it with apt-
get. Irun the mysqladmin command to create a root password. This will fail after the
first run because the password will already be set, so I use the -s flag to suppress error
messages and print a message of my own if the command fails. Then, I create a database,
a user, and a password by running a local function: domysqldb. Here it is:

function domysqldb {
ROOTPASS=$1
DBNAME=$2
DBUSER=$3
DBPASS=$4
MYSQL=mysql
MYSQLROOTCMD="mysql -uroot -p$ROOTPASS"
echo "root command is $MYSQLROOTCMD"

echo "creating database $DBNAME..."
echo "CREATE DATABASE IF NOT EXISTS $DBNAME" | $MYSQLROOTCMD II \
die "unable to create db";

182

CHAPTER 8 VAGRANT

echo "DB creation done"
echo "granting privileges for $DBUSER"

echo "grant all on $DBNAME.* to $DBUSER@'localhost' identified by
\"$DBPASS\""
echo "grant all on $DBNAME.* to $DBUSER@'localhost’ identified by
\"$DBPASS\"" | \

$MYSQLROOTCMD Il die "unable to grand privs for user $DBUSER"
echo "FLUSH PRIVILEGES" | $MYSQL -uroot -p"$ROOTPASS" I \

die "unable to flush privs"
echo "done granting privileges for $DBUSER"

This simple function creates a database and configures access control by piping
command strings to MariaDB. I place it near the top of the setup. sh script so that the calling
code can find it. With this function in place, I can provision again and then test my database:

$ vagrant provision

$ vagrant ssh

$ mysql -u root -pvagrant poppch21 vagrant

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 52

Server version: 10.11.6-MariaDB-0+deb12ul Debian 12

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
MariaDB [poppch21 vagrant]>

We now have a running database and a web server. It’s time to see the code in action.

Configuring a Hostname

We have logged in to our new production-like development environment several times,
so networking is more or less taken care of. Even though I've configured a web server,
I've yet to use it. That’s because we still need to support a hostname for our VM. So let’s
add one to Vagrantfile (again, within the configure block):

config.vm.hostname = "poppch21i.vagrant.internal”
config.vm.network :private network, ip: "192.168.56.10"

183

CHAPTER 8 VAGRANT

Iinvent a hostname and use the config.vm.hostname directive to add it. I also
configure private networking with config.vm.network, assigning a static IP address. You
should use private address space for this - an unused IP address beginning with 192.168
should work.

Because this is an invented hostname, we must configure our operating system to
handle the resolution. On a Unix-like system, that means editing a system file, /etc/
hosts on the host machine (not within the Vagrant virtual machine). In this case, I would
add the following:

192.168.56.10 poppch21.vagrant.internal

Note The hosts file on Windows can be found at c: \Windows\System32\
Drivers\etc\hosts.

Not overly onerous, but we are working toward a one-command install for our team,
so it would be good to have a way of automating this step. Fortunately, Vagrant supports
plug-ins, and the hostmanager plug-in does exactly what we need. To add a plug-in, you
simply run the vagrant plugin install command:

$ vagrant plugin install vagrant-hostmanager

Installing the 'vagrant-hostmanager' plugin. This can take a few
minutes...

Installed the plugin 'vagrant-hostmanager (1.8.10)"!

Then, you can explicitly tell the plug-in to update /etc/hosts, like this:

$ vagrant hostmanager --provider=virtualbox
[vagrant-hostmanager:guest] Updating hosts file on the virtual machine
default...

In order to make this process automatic for our team members, we should explicitly
enable hostmanager in Vagrantfile:

config.hostmanager.enabled = true

184

CHAPTER 8 VAGRANT

With the configuration changes in place, we should run vagrant reload in order to
apply them. Then, it’s the moment of truth! Will our system run in the browser? As you
can see in Figure 8-2, the system should work just fine.

@ Add a Venue ® + v - O X

& C A Notsecure | poppch21.vagrant.internal/AddVenue.php Q < % 0O a

Add a Space for Venue 'bob'

'bob' added (22)

please add name for the space

[add space]

k || submit |

Figure 8-2. Accessing a configured system on a Vagrant box

Wrapping It Up

So, we have gone from nothing to a fully working development environment. Given that
it took a chapter’s worth of effort to get here, it might seem like a bit of a cheat to say that
Vagrant is quick and easy. There are two answers to that. First, once you have done this
a few times, it becomes a pretty simple matter to spin up yet another Vagrant setup -
certainly much easier than trying to juggle multiple dependency stacks by hand.

More importantly, though, the real speed and efficiency gain does not lie with
the person who sets Vagrant up. Imagine a new developer coming in to your project
expecting days’ worth of downloads, configuration file edits, and wiki-clicking.

185

CHAPTER 8 VAGRANT

Imagine telling her, “Install Vagrant and VirtualBox. Check out the code. From the
infrastructure directory, run ‘vagrant up” And that’s it! Compare that with some of the
painful onboarding processes you have experienced or heard described.

Of course, we've only scratched the surface in this chapter. As you need to configure
Vagrant to do more for you, the official site at https://www.vagrantup.comwill provide
you with all the support you need.

Table 8-1 provides a quick reminder of the Vagrant commands we encountered in
this chapter (and a few useful additions).

Table 8-1. Some Vagrant Commands

Command Description
vagrant up Boot the virtual machine and provision if not yet provisioned.
vagrant reload Halt the system and bring it back up (will not run provision again

unless run with the —provision flag).
vagrant plugin list List the installed plug-ins.

vagrant plugin install Install a plug-in.
<plugin-name>

vagrant provision Run the provision step again (useful if you have updated provision
scripts).

vagrant halt Gracefully shut down the virtual machine.

vagrant suspend Stop the virtual machine process and save state.

vagrant resume Resume a previously suspended virtual machine process.

vagrant init Create a new Vagrantfile document.

vagrant destroy Destroy the virtual machine. Don’t worry, you can always start

again with vagrant up!

186

https://www.vagrantup.com

CHAPTER 8 VAGRANT

Summary

In this chapter, I introduced Vagrant, the application that lets you work in a production-
like development environment without sacrificing your authoring tools. I covered
installation, the choosing of a distribution, and initial setup - including mounting your
development directories. Once we had a virtual machine to play with, I moved on to the
provisioning process - covering package installation as well as database and web server
configuration. Finally, I looked at hostname management, and I showed our system

working in the browser!

187

CHAPTER 9

Docker

Docker is a powerful platform for managing lightweight containers. In plainer English,

Docker provides you with tools to run all of your system’s components as discrete, fast,

interoperable services. Each service can be provided with the environment it needs

to do its job (a database service might require MariaDB, for example) often with little
or no provisioning required. Together, these services can be used to deploy a reusable
tool, a quick demo, a development environment, or a full production-ready stack. The
crucial selling point of Docker is that each container packages up an entire system’s
worth of dependencies, libraries, and components into a self-contained and easily

distributable form.

This chapter will cover

Getting Docker: Options for installation
Concepts: Some key terms
Acquiring images: Getting useful images from Docker Hub

Generating containers: How to create and configure powerful services
from the command line

Building your own images: Create customized services

System management: Starting, stopping, viewing, and accessing
containers

Docker Compose: Taking control to the next level with container

orchestration

© Matt Zandstra 2025

M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_9

189

https://doi.org/10.1007/979-8-8688-0779-4_9#DOI

CHAPTER9 DOCKER

What Is Docker?

Ilove both Vagrant and VirtualBox (the virtualization engine I usually run beneath
Vagrant’s hood). Still, it is undeniable that a full virtual machine is something of a
monolith and that provisioning a working development environment can be quite

the project. It can easily take 20 minutes to provision a complex working system from
scratch. There is a special agony when provisioning fails at the final step for the fifth time
and you face the prospect of tweaking the setup script and beginning yet again from the
top. What'’s more, even when all works as it should, a virtual machine duplicates much
of the stack that your operating system is already using, draining a significant fraction of
your system'’s resources.

When running on Linux, Docker (https://docs.docker.com) does not create an
entire virtual machine with its own complement of drivers and subsystems. Instead, it
allows you to create multiple specialized services or containers, each one running on
your host machine’s kernel. This makes each container fast and lightweight. Because
images already exist to support common services, such as databases, web servers,
and cache systems, you can stitch together and initialize a working development
environment surprisingly quickly.

Docker on non-Linux systems does deploy a virtual machine under the hood.
However, even then, you still benefit from Docker’s flexibility and convenience and from
the way that containers use layered base images, allowing resources to be shared from
container to container.

Getting Docker

The Docker documentation site provides a comprehensive overview of installation
methods across multiple operating systems and Linux distributions at https://docs.
docker.com/engine/install/.

Note In this chapter, | will be working with Docker CE, also known as Docker
Engine. If you would prefer a GUI environment, you can install Docker Desktop
(https://docs.docker.com/desktop/). As well as a full dashboard

experience, this platform also provides the command-line tools | discuss here.

190

https://docs.docker.com
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/desktop/

CHAPTER9 DOCKER

You may be able to install Docker using your distribution’s package management
system, though you should check the available version. As of this writing, the Docker
Engine is at version 28. Alternatively, you might use the convenience script provided at
https://get.docker.com. I will be running this on Fedora and Debian distributions.

$ curl -fsSL https://get.docker.com -o install-docker.sh
$ sudo sh install-docker.sh

By default, you will need to run Docker commands as root in order to access the Unix
socket that the Docker daemon creates. This can be tiresome, so you can take a few steps
that let you run Docker commands without resorting to sudo all the time. The easiest
(but not the most secure) solution is to create a docker group on your system and add
this group to your user.

$ sudo groupadd docker
$ sudo usermod -aG docker $USER
$ newgrp docker

If you installed Docker with the install-docker. sh script, the docker group will
already have been added to your system, making the first line of the previous example
redundant. However, running it will do no harm.

If you want to avoid running Docker without root privileges, you can configure
Docker Engine to run in “rootless mode.” The documentation provides instructions for
arange of operating systems and distributions at https://docs.docker.com/engine/
security/rootless/.

In order to do anything useful at this point, you may need to start the
Docker daemon:

$ sudo systemctl start docker

Hopefully, now, we're ready to run something. I can start by checking my version:
$ docker -v

It looks like I have the latest version as of this writing:

Docker version 28.0.4, build b8034c0

191

https://get.docker.com
https://docs.docker.com/engine/security/rootless/
https://docs.docker.com/engine/security/rootless/

CHAPTER9 DOCKER

Running an Image

Now that I have Docker and confirmed my version, it might be a little more interesting to
get and run an image.

$ docker run hello-world

Here is the output. It's worth including it in full because it nicely summarizes the
process.

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

€6590344b1a5: Pull complete

Digest: sha256:7elaj4e2dlle2ac7a8c3f768d4166c2defeb09d2a750b010412b6
eal3delefb19

Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client,
which sent it to your terminal.

Iinvoked docker run, passing it the name of an image, hello-world. If you look at
the output, you'll see that no hello-world existed locally, so Docker searched for it on a
remote repository stored, by default on the Docker Hub registry (https://hub.docker.
com/). Note that Docker does not just look for hello-world. It looks for hello-
world:latest. Images are tagged - so that you can provide different flavors and versions.
The default (and implicit) tag is latest.

After my initial run, the hello-world:latest image was cached locally so that I
won’t have to acquire it from the remote server next time. It was used to create a running
instance - a container upon which a command was run. It is generally best practice
to design images that generate containers as specific services - in this case, one that is

192

https://hub.docker.com/
https://hub.docker.com/

CHAPTER9 DOCKER

solely responsible for greeting the world! Such services can then be combined to build a
system. This is a radically different approach than the one you would take with Vagrant,
in which a single VM will tend to encapsulate a complete system.

I can examine local images with docker image ls. This can often produce a torrent
of output, but, in my newly installed environment, the list is minimal:

REPOSITORY TAG IMAGE ID CREATED SIZE
hello-world latest 74cc54e27dc4 2 months ago 10.1kB

Establishing Some Docker Terms

Before we go on, I should pause to itemize some of the terms and concepts I have rushed
us through.

Unless they are already locally cached, Docker acquires its images from a registry
(Docker Hub by default). More specifically, an image will be retrieved from a repository
which is a namespace within a registry. When we invoke docker run or, as you'll see,
docker pull, we acquire an image. An image is a bundle of data that defines a template
by which a container is generated. A container is an instance of an image. This, then, is
broadly analogous to the relationship between classes and objects.

Although it’s technically possible to create a single container which runs multiple
processes, it’s considered best practice to configure each of your containers to support a
single service and then to build systems composed of multiple containers as necessary.
As you'll see, Docker is designed around this strategy.

Table 9-1 recaps these terms.

Table 9-1. Some Basic Docker Concepts

Term Description

Registry A server side application (like Docker Hub or GitHub Packages) for storing images.

Repository A namespaced collection of images within a registry (the Docker Hub default
repository is 1ibrary).

Image According to the Docker documentation, an image is a “standardized package that
includes all of the files, binaries, libraries, and configurations to run a container.”

Container An instance of an image, usually designed to run a single service. Multiple containers
are often configured to work with one another in order to create an application.

193

CHAPTER9 DOCKER

Note Remote image hosting is beyond the remit of this chapter. However, you
can read more about working with Docker Hub at https://docs.docker.com/
docker-hub/ and more about running your own registry at https://www.
docker.com/blog/how-to-use-your-own-registry-2/. Many hosting
services such as GitLab and GitHub provide their own registries.

Acquiring an Image with docker pull

As we've seen, docker run first acquires and then executes a container. Now, let’s break
this down. We can acquire an image without actually creating a container.

Like most major projects, PHP has an official Docker image (at https://hub.
docker.com/_/php). We can cache it locally with docker pull.

$ docker pull php:8.3-cli
Here is my output:

8.3-cli: Pulling from library/php
6e909acdb790: Pull complete

31ee84c3cc06: Pull complete

13905c22d489: Pull complete

clebid4cecd3: Pull complete

5dbf261cfdo5: Pull complete

7a438ed196d8: Pull complete

291095bacc82: Pull complete

a0afc926b258: Pull complete

82ad65460e66: Pull complete

Digest: sha256:e39867114478af8d8950b679738068deeffalfa762810aa2
1f6999990411563e

Status: Downloaded newer image for php:8.3-cli
docker.io/library/php:8.3-cli

Before we proceed, take a look at that last line. This is the full image name. It
incorporates components representing the registry, repository, name, and tag.

194

https://docs.docker.com/docker-hub/
https://docs.docker.com/docker-hub/
https://www.docker.com/blog/how-to-use-your-own-registry-2/
https://www.docker.com/blog/how-to-use-your-own-registry-2/
https://hub.docker.com/_/php
https://hub.docker.com/_/php

CHAPTER9 DOCKER

Now that I have acquired my image, I can view it locally once again with the docker
image ls command.

$ docker image ls php:8.3-cli
REPOSITORY TAG IMAGE ID CREATED SIZE
php 8.3-cli cacad2f4349d 3 weeks ago 535MB

Let’s push on and do something more interesting with our php image.

Creating and Invoking a Container with dockexr run

We have already encountered docker run, butlet’s look at the command in a little
more detail.

The docker run command requires an image name and accepts any additional
arguments that the container needs in order to run its primary command. It implicitly
pulls an image. That is, it downloads the image and stores it locally. It then uses the
image to create and execute a container. A container is configured to invoke a command
and exit on completion.

As you might expect, the php container runs PHP. In fact, by default, it runs php -a.
However, it is configured in quite a specific way with regard to the arguments you pass
it. If the first argument after the image is a flag (like -v or --version), it will implicitly
pass this, and any subsequent arguments, along to the php executable. Otherwise, it will
override default behavior and run whatever you pass to it as a standalone command.

Note If you need to learn more about a particular image, the command docker
image inspect <image-reference> isinvaluable. It's like print r()

for Docker images! Its cousins docker container inspect and docker
network inspect are similarly useful.

So, if I'tun a php:8.3-cli container with a command, like this:
$ docker run php:8.3-cli whoami

I'will get the output “root” However, if I pass in a flag as the first argument, the
behavior changes:

$ docker run php:8.3-cli -r 'print "hello\n";

195

CHAPTER9 DOCKER

Thanks to the way that this container is configured, the arguments -1 and ‘print
“hello”;” are passed to PHP. Unsurprisingly, therefore, the output for this is “hello.”

It’s important to understand that the way that a container will interpret arguments
provided to docker run may vary somewhat according to implementation. We’'ll see how
when we cover building our own images below.

Note You can read more about docker run and its many many flags at
https://docs.docker.com/reference/cli/docker/container/run/.

Listing Containers

We have already examined a couple of images. Now, let’s look at the container we've
created. The command for this is docker container 1s (though there are various aliases
for this command, notably docker ps). If I were to run docker container ls with no
other arguments, I would not see my container. That’s because, by default, the command
only shows running containers.

A quick look at the documentation at https://docs.docker.com/reference/
cli/docker/container/1s/, though, tells me that the -a flag will show all containers,
running or not. As you might expect, invoking the command with that flag can generate a
lot of output so you might want to pipe it into grep or, as here, use the --filter flag.

$ docker container 1s -a --filter=ancestor=php:8.3-cli

This tells Docker to show all containers, running or not, that are derived from the
php:8.3-cliimage.
Here is the output (formatted for readability).

CONTAINER ID IMAGE STATUS NAMES
db3bbeoe04of php:8.3-cli Exited (0) 5 seconds ago focused solomon

Asyou can see, Docker allocates both an ID and a handy name - “focused_
solomon” - to the container. You can allocate your own name with the --name option to
docker run if you wish.

196

https://docs.docker.com/reference/cli/docker/container/run/
https://docs.docker.com/reference/cli/docker/container/ls/
https://docs.docker.com/reference/cli/docker/container/ls/

CHAPTER9 DOCKER

Note The output from docker container ls is pretty extensive. So
throughout this chapter, | am formatting it to reduce the fields shown.

In order to do this, | use the --format flag like this: $ docker ps
--filter=ancestor=php:8.3-cli \ --format "table {{.ID}}\t{{.
Image}}\t{{.Status}}\t{{.Names}}".

Accessing a Container with docker run

We have already seen that we can usually pass our own command to a container when
calling docker run. With the correct flags, we can use this fact to interact with a tool on
the container - including a shell.

Here, I use the bash shell:

$ docker run -it php:8.3-cli /bin/bash

root@1lecf6absdbc4: /# 1s

bin boot dev etc home 1lib media mnt opt proc root run sbin
srv sys tmp usr var

root@lecf6absdbca: /# exit

exit

Iinvoked docker run with two options. The -1i (or --interactive) option sends
any input you generate to the command you provide. In this case, that’s the /bin/bash
shell application rather than PHP. The -t (or --tty) option attaches a pseudo-TTY -
which means that you experience a terminal-like experience. So, I'm able to access the
container and work with the command line.

Running a Container in the Background

By default, a container will run in the foreground, hogging your terminal session until
you stop it (e.g., with a call to docker container stop <name-or-id> run from another
terminal). This can be a pain when you're kicking off a long running process. If you

call docker runwith the -d (or --detach) flag, however, the container will run in the
background, and its ID will be output.

197

CHAPTER9 DOCKER
Let’s try it out:

$ docker run -d php:8.3-cli \
-r 'for ($x=0; ; $x++) { file put contents("/tmp/count”, "{$x}\n");
sleep(1); }'

So, this tiny script writes a number to a file (/tmp/count) once a second until killed.
However, the container runs in detached mode, so that I can work with it in other ways.
Because docker runin detached mode outputs the container ID, I have that to hand.

I can also use docker container 1s (or its synonym, docker ps)and see that my

container is running.
$ docker ps
Here is the (reformatted) output:

CONTAINER ID IMAGE STATUS NAMES
5ce2ccca805c php:8.3-cli Up 10 seconds sleepy mestorf

Now that I have the container running a long-term process (in a real project, we’d
likely be running a web server or a database), I might want to access the container to
take a poke about while it’s in operation. Since docker run creates a new container, I'm
going to need another way of accessing sleepy mestorf.

Accessing a Container with docker exec

The docker exec (alias docker container exec)command accepts the name or id

of a running container and a command argument. It will attempt to run the provided
command in the container. Like docker run, it supports -i and -1 flags for interactive
running and pseudo-TTY operation. That means we can invoke a shell and take a look at
the container at work.

$ docker exec -it sleepy mestorf /bin/bash
Here’s my session:

root@5ce2ccca8osc: /# cat /tmp/count

94
root@5ce2ccca805c: /#

198

CHAPTER9 DOCKER

Iinvoked docker exec using the automatically allocated container name, sleepy
mestorf (your container would be given a different random name). I could have used the
less friendly container ID -5ce2ccca805c¢ in this case. Once in, I peek at the /tmp/count
file to confirm that my little script has been at work.

You can read more about the docker exec command at https://docs.docker.com/
reference/cli/docker/container/exec/.

Don’t forget, incidentally, that, once I'm back on my host machine’s command line, I
can put an end to sleepy mestorf with docker container stop:

$ docker container stop sleepy mestorf
This will end the operation of the container and output its identifier.

sleepy mestorf

Building Your Own Image

You can go a long way working with off-the-peg images acquired from Docker Hub. Still,
itwon’t be long before you need some customization. You may wish to amend the way
that a container is run or to ensure that particular libraries or configurations are bundled
into your image.

Let’s begin with the first case. I would like to create an image that runs my counter
script by default rather than php -a.

Here’s a script named counter. php:

print "Arguments: ";
print_r($argv);
print "Beginning the count...\n";
/%
for ($x=0; ; $x++) {
file put contents("/tmp/count”, "{$x}\n");
sleep(1);

199

https://docs.docker.com/reference/cli/docker/container/exec/
https://docs.docker.com/reference/cli/docker/container/exec/

CHAPTER9 DOCKER

As you can see, I've commented out the counting altogether here and just added
some messaging. For now, I don’t actually want the container to stick around, just to
make some noise and quietly exit. Note that my messaging includes a rundown of any
provided arguments.

Now, in order to build my customized image, I need to create a file named
Dockerfile:

FROM php:8.3-cli

WORKDIR /var/myapp

COPY counter.php counter.php
CMD ["php", "counter.php"]

The Dockerfile is a set of instructions for building an image. You'll always start with
a FROM instruction, which specifies a base image. If you don’t need any specific tool, you
might choose a lower level image like ubuntu. Unsurprisingly, I'm using php:8.3-cli
once again for this example.

The WORKDIR instruction sets the working directory for subsequent instructions and
for the primary process that the container will end up running. If the path does not exist,
it will be created.

COPY accepts two arguments. The first of these should point to a local (host machine)
file or directory. The second should specify a destination within the container.

Finally, CMD should define the default command that should be invoked by docker
run. Because it’s more suited for collaboration with another instruction, ENTRYPOINT (I'1l
return to that), I have used the so-called “exec form” here in which the command and
any arguments are quoted and placed inside a set of square brackets. I could equally
have used the “shell form,” in which the command is unquoted. That would have looked
like this: CMD php counter.php.

The documentation for Dockerfile at https://docs.docker.com/reference/
dockerfile covers all available instructions.

Now that I have my components ready, it’s time to build the image:

$ docker build -t mycounter .

This command will create an image based on either a directory path or a URL. For
the purposes of this chapter, I'll focus on the former use case, so I pass in a reference to
my current working directory which contains the Dockerfile.

200

https://docs.docker.com/reference/dockerfile
https://docs.docker.com/reference/dockerfile

CHAPTER9 DOCKER

The -t or --tag flag allows you to name and tag your image in the format name: tag.
If, as I have, you omit the tag, then Docker will default to 1latest.
If all goes well, I should have an image named mycounter. Let’s check.

$ docker image 1s
REPOSITORY TAG IMAGE ID CREATED SIZE
mycounter latest 6a4b3ef7f909 10 seconds ago 535MB

And there it is! Let’s run the image and see what happens.
$ docker run mycounter
Here’s my output:

Arguments: Array

(

[0] => counter.php

)

Beginning the count...

In the Weeds with CMD and ENTRYPOINT

Any image you create will inherit characteristics from the base image you specify. The
Dockerfile associated with php:8.3-cli defines its own CMD as ["php", "-a"].Ihave
overridden this, as you have seen, so that, by default, php counter.php is run instead.
What would happen, though, if I were to provide an argument? Let’s try it.

$ docker run mycounter pwd

As you might expect, intuitively, this will cause the pwd command to be run rather
than my own php counter.php.

/var/myapp

If, on the other hand, I provide a flag here, I get a different output. Here’s my

invocation:

$ docker run mycounter -v

201

CHAPTER9 DOCKER
Because of the magic built in to the php image, this will invoke php with the -v flag:

PHP 8.3.8 (cli) (built: Jun 13 2024 05:33:35) (NTS)
Copyright (c) The PHP Group
Zend Engine v4.3.8, Copyright (c) Zend Technologies

So, what'’s going on here? As we have seen, the CMD instruction is easily overridden
by providing an argument to docker run. Less easy to casually set aside is another
instruction: ENTRYPOINT. This defines a command that is always run. Anything specified
in CMD (or overridden by providing arguments to docker run) is passed along to the
command specified in ENTRYPOINT (use the exec form if you want to configure this
behavior into your Dockerfile). Since ENTRYPOINT often just invokes whatever it
has been given (typically running /bin/sh -c), this does not usually change much -
whatever you define as an argument to docker run will get passed to the shell and
executed.

So, this is where the php image performs its cleverness. Its ENTRYPOINT invokes a
script that detects an initial flag argument (i.e., an argument beginning with -) and, if
a match is found, passes everything along to PHP. That trigger was -v in my example.
Otherwise, it attempts to execute whatever argument has been passed (pwd in my
example).

Let’s rewrite our Dockerfile to override ENTRYPOINT.

FROM php:8.3-cli

WORKDIR /var/myapp

COPY counter.php counter.php
ENTRYPOINT ["php", "counter.php"]
CMD []

I'll build a new version of the mycounter image using a tag:
$ docker image build -t mycounter:entry .
I'll take a look at my images just to confirm my new addition:

$ docker image 1s

REPOSITORY TAG IMAGE ID CREATED SIZE
mycounter entry c5de9obeef5d 10 seconds ago 535MB
mycounter latest 6a4b3ef7f909 5 minutes ago 535MB

202

CHAPTER9 DOCKER

Having confirmed that mycounter:entry is there as expected, I can begin to
work with it. have emptied CMD so, by default, counter.php will be invoked without
arguments. However, if I provide additional arguments on the command line, you can
see, thanks to the way that I've build counter.php, that everything I add is passed along
to counter.php.

$ docker run mycounter:entry 1ls will not run
Arguments: Array

(
[0] => counter.php
[1] => 1s
[2] => will
[3] => not
[4] => run
)

Beginning the count...

My docker runargumentsls will not run override the empty CMD instruction
and end up passed along to the script I defined in the ENTRYPOINT instruction. The script
dutifully snitches and gives us some insight into the process.

The relationship between ENTRYPOINT and CMD can be confusing. It's made more so
by way that exec and shell modes affect the operations of these instructions. In Table 9-2,
I break down the relationships between these instructions and modes.

Table 9-2. How CMD and ENTRYPOINT Interact in Shell Mode and Exec Mode

Instruction Mode Example Behavior

ENTRYPOINT shell 1s -al Implicitly passes argument to /bin/sh -c. Will not assign CMD
values as additional arguments.

ENTRYPOINT exec ["1s", Directly invokes the given command. Will assign CMD values (or
"-al"] command-line overrides) as additional arguments.

CMD shell 1s -al Implicitly generates a shell call like /bin/sh -c 1s -al.
Unless overridden, passes this full statement to ENTRYPOINT.

CMD exec ["1s", Unless overridden, passes all arguments to ENTRYPOINT
“-al"] without implicit additions.

203

CHAPTER9 DOCKER

Mounting a Local Directory

You have seen that you can use the COPY instruction to build an image containing local
scripts and configuration. This is useful for setting up a relatively static container. It

is less useful, however, for a fast changing file, such as a script under development.

To model that situation, here is a very simple script that I have saved to a file named
mytest.php.

print "OUTSIDE IN!\n";

If I used COPY to build myself an image, I could run this easily enough. But every time
I make a change, I'd have to rebuild my image. Luckily, I have recourse to the -v
(or --volume) option. This sets up a bind mount which causes a given directory or file
to be mounted within a container. The -v option requires a single argument which
comprises a local path and a destination path separated by a colon (:). Let’s try it out.

$ docker run --rm -v $PWD:/var/myapp -w /var/myapp php:8.3-cli php
mytest.php

Let’s begin with -v. I map my current working directory on the host environment to a
directory (/var/myapp) within the container I am initializing. This directory is created if
it does not already exist.

I have added a couple more options here which can come in handy. The -w
(or --workdir) option allows you specify your working directory within the container.
This is important if the image is not configured by default to use the same directory you
have specified with -v. The --rm option will cause the container to be removed after use.
If you don’t specify this, the container you create will persist in a stopped state, cluttering
up your docker ps -alistings.

After all that, you’ll not be surprised to learn that running this example results in
this output:

OUTSIDE IN!

While that is not terribly exciting, consider that you can edit mytest.php or reference
an entirely different PHP file as you wish without having to build a new image.

So, we now have very nearly enough information to build a tiny web development
environment with a single command.

204

CHAPTER9 DOCKER

A Single Command Development Environment

Although we could use NGINX or Apache for this, I'm going to keep things simple by
using PHP’s built-in web server.

docker run -d \
-p 3020:8080 \
-v $PWD:/var/myapp \
-w /var/myapp \
php:8.3 \
php -S 0.0.0.0:8080 -t .

Let’s run through the aspects of this I have already covered. I use the -d option to run
the container in a detached state. I configure a bind mount with -v so that my current
directory is mounted at /var/myapp within the container. With -w, I set the working
directory to /var/myapp as well. This is important because, when the primary command
(php -S 0.0.0.0:8080 -t .),isinvoked, I need it to operate upon my directory.

The -p (or --publish) option describes the mapping of an external port to an
internal counterpart. I configured the built-in web server to listen for requests on port
8080 within the container. Thanks to the port mapping, the server can be reached via
port 3020 from my host environment. This kind of mapping can come in useful when
running multiple containers, since many might otherwise compete for standard ports on
the host machine.

Figure 9-1 shows the mytest. php script in operation.

205

CHAPTER9 DOCKER

v @ host.docker.internal:3020 x +

€« C | @ localhost:3020/mytest.php O a

OUTSIDE IN!

Figure 9-1. PHP’s built-in web server running in a single container

Building a System Out of Multiple Containers

As we've discussed, a Docker container should run one principle command.
Incidentally, this is not the same as running a single process. A web server, for example,
will likely spawn multiple subprocesses. How, then, might I create a system that includes
a database? To say nothing of all the other components a modern application might
require: API, Elasticsearch, and Redis. It soon mounts up.

Let’s model this with a second container that we’ll use to run a MariaDB instance. I'll
begin with some SQL to create a table and tuck it away in a file at mariadbsetup/1.sql.

CREATE TABLE IF NOT EXISTS “quiz™ (
“id® int(11) NOT NULL AUTO_INCREMENT,
“quizname® VARCHAR(256) NOT NULL,
PRIMARY KEY (“id)
)5
INSERT INTO quiz (quizname) values("my lovely quiz");

206

CHAPTER9 DOCKER

So, I will create a single table named quiz and insert a row.

As you might expect, there’s an official MariaDB Docker image available. You can
read about it at https://hub.docker.com/ /mariadb. Like the PHP image, mariadb
provides some very useful magic. Let’s give it a spin.

docker run -d \
-p 4172:3306 \
--env MARIADB ROOT_ PASSWORD=megaquiz \
--env MARIADB USER=testuser \
--env MARIADB PASSWORD=testuser \
--env MARIADB DATABASE=megaquiz \
-v $PWD: /var/myapp \
-v $PWD/mariadbsetup:/docker-entrypoint-initdb.d \
-w $PWD \
mariadb

Notice that I am using yet another option to docker run. --env (or -€) sets an
environment variable within the container. The MariaDB image is configured to
recognize and act on various such variables. I list a few in Table 9-3, and you can see the
full set at https://mariadb.com/kb/en/mariadb-server-docker-official-image-
environment-variables/.

Table 9-3. Some Environment Variables Used by the MariaDB Docker Image

Environment Variable Description

MARIADB_ROOT_PASSWORD Set the root password

MARIADB ALLOW_EMPTY_ROOT _ If set to a truthy value will run without a root password
PASSWORD (inherently insecure)

MARIADB_DATABASE Creates the specified database

MARIADB_USER The non-privileged user name

MARIADB_PASSWORD The non-privileged user’s password

For this command, in addition to my current directory, I mount the mariadbsetup
directory and map it to /docker-entrypoint-initdb.d. Any SQL files placed in this
directory (in our case a single file named 1.sql) will be invoked in alphabetical order.

207

https://hub.docker.com/_/mariadb
https://mariadb.com/kb/en/mariadb-server-docker-official-image-environment-variables/
https://mariadb.com/kb/en/mariadb-server-docker-official-image-environment-variables/

CHAPTER 9 DOCKER
Once that container is running, I can confirm that the database is available.

$ echo "select * from quiz" I \
mysql -u testuser -p -h 127.0.0.1 -P 4172 megaquiz

I pipe a simple SQL statement to MariaDB, specifying port 4172. Here’s my output:

Enter password:
id quizname
1 my lovely quiz

I am prompted for a password. Remember that I set that using the MARIADB_PASSWORD
environment variable when I ran the mariadb image. After that, I see the result of my
SELECT statement.

Well, that’s a great start. I have a web-ready PHP container and a database container.
But how can I make them talk to one another? Before I answer that question, perhaps it’s
time to tidy up.

Removing Images and Containers

It’s very easy to let old images and containers accumulate over time (especially if
you're using docker runwithout the --rm option). This can result in overlong listings,
unnecessary resource usage, and port collisions.

I have two containers running that I'll need to stop and remove so that I can generate
replacements. Here’s a modified listing:

CONTAINER ID IMAGE PORTS NAMES
b58783418150 php:8.3 0.0.0.0:3020->8080/tcp wonderful mayer
51f2a35a4c5e mariadb 0.0.0.0:4172->3306/tcp eloquent_meninsky

The command to stop a running container is docker container stop. This
command will accept either a container name or an ID (or multiple names/IDs). Once
the container is stopped, it can be removed with docker container rm. Once again, this
requires a name or an ID (and accepts multiple container references).

I'll go ahead and perform those housekeeping actions:

$ docker container stop 51f2a35a4c5e
$ docker container rm 51f2a35a4c5e

208

CHAPTER9 DOCKER

$ docker container stop b58783418150
$ docker container rm b58783418150

I could have saved myself some time by simply invoking docker container rm
with the -f (or --force) option which will implicitly stop the container itself before
removing it.

$ docker container rm -f 51f2a35a4c5e
$ docker container rm -f b58783418150

Remember that I also built two variations of an image named mycounter:
mycounter:latest and mycounter:entry. I can filter my overlong image list to
find them:

$ docker image ls --filter "reference=mycounter"
Here’s my output.

REPOSITORY TAG IMAGE ID CREATED SIZE
mycounter entry a248e671e70d 2 days ago 530MB
mycounter latest 48f668f05d05 2 days ago 530MB

I can delete each of these with docker image rm. Atleast, I can try.
$ docker image rm a248e671e70d

When I attempt to delete the first of the listed images, I hit a snag. Docker is still
managing a stopped container which was generated from this image.

Error response from daemon: conflict: unable to delete a248e671e70d
(must be forced) - image is being used by stopped container 22d92508d6e5

I could examine the container, but I know that it is disposable so I can rerun the
docker image rmwith the -f (or --force) option:

$ docker image rm -f a248e671e70d
$ docker rmi -f 48f668f05d05

Although using -f here forces the removal of the images, it doesn’t actually remove
the containers too. I need to do that myself.

209

CHAPTER9 DOCKER

To that end, how about a general cleanup? The docker image prune command will
remove any images which are not tagged and not used by any container. Oy, if you add
the -a option, it will remove all images which are not used by a container.

The docker container prune command will remove all stopped containers.

Now that I've tidied up my docker environment, I can return to getting my containers
to talk to one another.

Creating and Using a Named Bridge Network

In order to get my containers to cooperate, I need to create a named network. I can do
this with a new command: docker network create.

$ docker network create quiznet

In order to use the newly created quiznet network, I can reference it from docker
run using the --network option. I also name the container with the --name option. This
is important - we’ll use the name later.

docker run -d \
--name quizdb \
--network quiznet \
-p 4172:3306 \
--env MARTADB_ROOT PASSWORD=megaquiz \
--env MARIADB USER=testuser \
--env MARIADB PASSWORD=testuser \
--env MARIADB DATABASE=megaquiz \
-v $PWD: /var/myapp \
-v $PWD/mariadbsetup:/docker-entrypoint-initdb.d \
-w $PWD \
mariadb

It's time to regenerate the PHP container so that it can talk to the database. However,
to do that, I'll need call docker run on more than the vanilla php image. That’s because
the PHP executable does not come with the pdo_mysql extension by default. Luckily, the
image does provide a handy script for installing extensions: docker-php-ext-install.I
can run this from the Dockerfile during build using a new instruction: RUN.

210

CHAPTER9 DOCKER

Here is my Dockerfile:

FROM php:8.3

WORKDIR /var/myapp

RUN docker-php-ext-install pdo pdo_mysql
CMD ["php", "-S", "0.0.0.0:8080", "-t", "."]

Now, let’s build the image:
$ docker build -t quizimg .
I have tagged the image quizimg so thatI can reference it when I call docker run

docker run -d \
--rm \
--name quizapp \
--network quiznet \
-p 3020:8080 \
-v $PWD:/var/myapp \
-w /var/myapp \
quizimg

So, the quizapp container is also configured to work with the quiznet network. Other
than that, and the fact that the image contains a database-ready PHP executable, it’s
pretty much identical to the older iteration.

So what do we have now? Here are the two running containers which share the
quiznet network:

CONTAINER ID IMAGE PORTS NAMES
5155420d7748 quizimg 0.0.0.0:3020->8080/tcp quizapp
71939c0b6338 mariadb 0.0.0.0:4172->3306/tcp quizdb

Let’s see how they work together. I'll create a script named index. php which will
attempt to make a database connection. I'll need to save it in my bind mount directory
so that it ends up in the /var/myapp directory of the quizimg container and can be seen
by the server. Here’s the script:

$host = 'quizdb';
$db = 'megaquiz';
$user = 'testuser’;

211

CHAPTER9 DOCKER

$pass = 'testuser';

$dsn = "mysql:host=$host;dbname=$db;charset=utf8mb4";
$pdo = new PDO($dsn, $user, $pass);

$stmt = $pdo->prepare("SELECT * FROM quiz");
$stmt->execute([]);

while($row = $stmt->fetch()) {
print $row['quizname'] . "
";

There is not much to this script. I construct a DSN (data source name) which
references the megaquiz database along with the username and password I
configured when I created the quizdb container. The magic, as far as inter-container
communication is concerned, lies with the $host variable which contains the name of
a container, quizdb, on the shared network. Having connected to the database, I make
a simple SELECT query and output the results. Note that I did not have to specify a port
here. The port mapping I defined maps an external port to an internal one. Within my
containers, the internal ports are used.

In Figure 9-2, I visit http://localhost:3020/ and see the results of a successful

network connection.
v @ host.docker.internal:3020 x + - O X
¢« > C ® localhost:3020 A O 2

my lovely quiz

Figure 9-2. A database query across containers

212

CHAPTER9 DOCKER

Although this is impressive, it’s also a massive pain to set up. I must build an image,
create a network, and use docker run twice with quite complex arguments just to get my
simple web app up and running. Of course I could script the process, but even that’s a
chore. If only there was a tool for orchestrating multiple containers. And, of course, there
is! Before I move on to docker compose, I'll clean up.

$ docker container rm -f quizapp
$ docker container rm -f quizdb
$ docker network rm quiznet

Docker Compose

We've covered enough detail to get a development environment working with
Docker using commands such as docker build and docker runin conjunction with
Dockerfile configuration as needed. However, it has to be admitted that the process
became progressively more unwieldy as I piled on more and more steps and options.
Docker Compose is a tool for bringing all of this work together into a single YAML
configuration file. In one place, you can define all the services that make up your stack
as well as any necessary networks and volumes. What’s more, it provides straightforward
tools for starting, stopping, and rebuilding your environment, as well as for essential
tasks like viewing logs and checking your system’s status.
Don’t worry, though. The concepts you've already encountered won’t be
wasted here!

Note YAML (https://yaml.org/)is a compact but human-friendly data
serialization language. Like JSON (to which it is related), it allows an author to
represent complex data structures in documents which are both easy for humans
to understand and for computers to parse.

213

https://yaml.org/

CHAPTER9 DOCKER

Resetting the Project

I'll begin again here with a single container. All I'll need for that is a single Compose file
and a basic script to prove that my set up works. My initial directory structure will look
like this:

compose.yaml
web/
index.php

The script index. php will just output a cheery message for now.

print "docker compose!";

The Compose File

As I have discussed, Docker Compose is managed using a YAML configuration file. This
should be named compose.yaml (the preferred name according to documentation) or
docker-compose.yaml (the .yml extension is also acceptable).

Here’s my Compose file:

services:
quizapp:
image: php:8.3
command: php -S 0.0.0.0:8080 -c conf/php.ini -t web
working dir: /var/myapp
ports:
- "3020:8080"
volumes:
- .:/var/myapp

At its core, a Compose file defines a set of services. Here, I begin with a quizapp service.
The image definition defines the image that will form the basis of a running container. The
command definition establishes the primary process of the service. working_dir is similar to
the -w option in the docker run command or to the WORKDIR instruction in Dockerfile -
it sets (and creates if necessary) the working directory within the container. The ports
definition establishes port mapping and volumes mounts local files or directories within
the container. Local paths run relative to the location of the Compose file.

214

CHAPTER9 DOCKER
Let’s get the system running:
$ docker compose up

By default, the output to docker compose up is often very verbose. It will show you
the process by which all images are acquired and the containers are configured. Then,
it will track the logs for each of the primary commands. For this minimal example, the
output (formatted a little here) is pretty manageable.

[+] Running 1/1

- Container batch04-quizapp-1 Created 0.0s
Attaching to quizapp-1

quizapp-1 | [Mon Apr 7 16:44:42 2025] PHP 8.3.19
Development Server (http://0.0.0.0:8080) started

If T had run this with a -d (or --detach) option, the containers would start in the
background. As it is, I can only watch in this particular terminal window until I stop
the process by hitting Ct1-C. In a separate terminal, though, I can confirm the running
container using docker ps (output edited).

CONTAINER ID IMAGE STATUS NAMES
c50fb3aas6eb php:8.3 Up 6 minutes batch04-quizapp-1

The name of the container is constructed in part from the service name and the
name of the Compose file’s parent directory. I should now be able to confirm that
the web server in the quizapp service is running by pointing my browser at http://
localhost:3020 as shown in Figure 9-3.

215

CHAPTER9 DOCKER

v @ host.docker.internal:3020 x +

€« > C ® localhost:3020 A O 2

docker compose!

Figure 9-3. The quizapp service in operation

Combining Docker Compose and Dockerfile

If T am to recreate my previous example, I will need more than the php:8.3 base image.
Ineed to add the pdo_mysql extension, which means building an image. For this,

I'm going to use exactly the same Dockerfile as before, but I'll tuck it away under a
subdirectory. So, my directory structure now looks like this:

compose.yaml
web/
index.php
dockerdir/
quizapp/
Dockerfile

Now, instead of specifying the php:8.3 image, we need to build our own based
upon it.

services:

quizapp:
build: ./dockerdir/quizapp

216

CHAPTER9 DOCKER

command: php -S 0.0.0.0:8080 -c conf/php.ini -t web
working dir: /var/myapp
ports:
- "3020:8080"
volumes:
- .:/var/myapp

So, the only difference here is that I have swapped image for a build definition. This
specifies the path to the directory that contains the Dockerfile. Since I'm still running
my previous iteration of this configuration, I should first stop it with Ct1-C. For good
measure, I could then run docker compose rmto remove the stopped container.

When I run docker compose up after my edit, Docker will first build an image for the
server and then create a new container.

Adding a Second Service

Let’s add a MariaDB container to the mix. Although I won’t need to build my own image
for this, I do want to set up the database as before. I'll need to add my SQL file in order to
create the quiz table and mount the directory. Here’s my new directory structure:

compose.yaml
web/
index.php
dockerdir/
quizapp/
Dockerfile
quizdb/
mariadbsetup/
01.sql

We have already seen the contents of that 01.sql file. Remember that it contains SQL
to create a quiz table and insert a row. Now, I'll add the quizdb service to compose.yaml.

services:

217

CHAPTER9 DOCKER

quizdb:
image: mariadb
restart: always
environment:
MARIADB_ROOT PASSWORD: quizroot
MARIADB_DATABASE: megaquiz
MARIADB USER: testuser
MARIADB_PASSWORD: testuser
volumes:
- ./dockerdir/quizdb/mariadbsetup:/docker-entrypoint-initdb.d
ports:
- "4172:3306"

I have included a restart definition here. This defines a restart policy (always) that
causes the container to start again if, for any reason other than a manual intervention,
it stops operating. Also new here is the environment definition, which I use to set
environment variables that the mariadb image deploys when configuring MariaDB in the
container.

I might choose, this time, to run Docker Compose in the background with docker
compose up -d.Ifyou go that route, you can run docker compose stop from the same
directory to stop all services but keep the containers or docker compose down to stop
and remove the running containers.

While Docker Compose is running in the background, you can tail log output at any
time with docker compose logs -f.That -f flag means “follow,” and you can omit it if
you just want to grab a snapshot of the logs rather than tail them. You can focus log output
by specifying a service. So, if I only wanted to track log output for the quizdb service (the
name I defined in the compose.yaml file), would run docker compose logs -f quizdb.

I can confirm again that MariaDB is accessible via port 4172 from the host machine.

I can also inspect my running containers with docker compose ps (similar to docker
container 1s but pre-filtered for the current Docker Compose configuration).

Although, if I needed to do any advanced network configuration, I could create a
network definition and set custom drivers, specify pre-existing networks, and so on,
none of that is necessary to get my containers linked up. All running services are already
visible to one another via their service names. This means that quizapp can access the
database via the host quizdb and vice versa. So, now I can update index.php so that it
makes a network connection to quizdb and runs a query.

218

CHAPTER9 DOCKER

As areminder, here is that script:

$host = 'quizdb';
$db = 'megaquiz’;
$user = 'testuser’;

$pass = 'testuser’;

$dsn = "mysql:host=$host;dbname=$db;charset=utf8mb4";
$pdo = new PDO($dsn, $user, $pass);

$stmt = $pdo->prepare("SELECT * FROM quiz");
$stmt->execute([]);

while($row = $stmt->fetch()) {
print $row['quizname'] . "
";

I have come full circle now. I can access my script from a browser at http://
localhost:3020 and see it in operation as in Figure 9-2. Although functionally identical
to the docker run version, however, my system is much easier to manage now. I do not
have to worry about individually starting and stopping containers or about creating a
network and joining my containers to it.

What About Composer?

Composer is an integral part of most PHP projects, so it’s worth considering how one
should go about incorporating it. Of course, I'll need a composer. json file. This is my
final directory layout for the Docker Compose example:

compose.yaml
composer.json
web/
index.php
dockerdir/
quizapp/
Dockerfile
quizdb/
mariadbsetup/
01.sql

219

CHAPTER9 DOCKER

I have just configured composer. json to install a sample package or two. How
should I go about running composer install or composer update? One approach for
development is to simply run these commands from the host machine. After all, the
directory containing the vendor/ is mounted. This is not a good solution, however,
since your host machine’s configuration may not match that of your PHP container.
Indeed, some developers might not even have PHP or Composer installed on their host
machines.

Another approach might be to install composer into your php container by adding
something like this to your Dockerfile.

RUN curl -sS https://getcomposer.org/installer | \
php -- --install-dir=/usr/local/bin \
--filename=composer \

&& composer install

Or, similarly, by applying one of the various other mechanisms described for
programmatically installing Composer at https://getcomposer.org/doc/faqs/how-to-
install-composer-programmatically.md.

While this approach can be made to work, there is a much neater solution that
epitomizes Docker’s architectural philosophy.

We can add a composer service to the Compose file.

services:

...

composer:
image: composer
working dir: /var/myapp
command: ["composer", "install"]
volumes:
- .:/var/myapp

220

https://getcomposer.org/doc/faqs/how-to-install-composer-programmatically.md
https://getcomposer.org/doc/faqs/how-to-install-composer-programmatically.md

CHAPTER9 DOCKER

This uses the official Composer image (https://hub.docker.com/ /composer).
I mount the base directory, as I do in the quizapp service. Then, I define composer
install as the container’s primary command. This will run when I invoke docker
compose up -d. The container will stop once the command has finished running, and
that’s fine for my purposes.

While this use of a Composer service is very clean, I have to admit that, in the
wild, I have more often seen it invoked in a Dockerfile or form setup script than using
this method.

Some Docker Compose Commands

I'll conclude this section with Table 9-4 - an overview of some useful Docker Compose
commands. You have seen most, but not all, of them already. Docker Compose
commands operate on services defined by a compose.yaml (or equivalent) file in the
current directory or as referenced by the -f option.

Table 9-4. Some Docker Compose Commands

Command Description

docker compose up Start all services. Build images and create containers as necessary. Use
the -d option to run in detached mode.

docker compose stop Stop all containers but keep them.
docker compose down Stop and remove all containers.
docker compose rm Remove all stopped containers.

docker compose logs Show all logs. You can specify a service name to narrow your view and
use the -f option (or --follow) to follow the log output.

docker compose ps View container statuses.

docker compose restart Restart all services (or those specified as arguments).

221

https://hub.docker.com/_/composer

CHAPTER9 DOCKER

Summary

Docker is a hugely powerful technology, and a single chapter like this can only provide
an introduction. However, you should find enough information here to get you up and
running with Docker for day-to-day development. Once you get started, I think you'll
find containers addictive.

In this chapter, I covered Docker core concepts. I explored techniques for acquiring
and building images and generating containers. I joined containers up to one another
via a bridge network and built a small working environment with a web server and a
database server. Finally, I introduced Docker Compose, a powerful tool for managing

your containers.

222

CHAPTER 10

Automating Build
and Deployment
with Ansible

If version control is one side of the coin, then automated build is the other. Version
control allows multiple developers to work collaboratively on a single project. But that
code remains inert until it is properly deployed and combined with configuration in
an environment with all dependencies in place. Such dependencies will include the
wider software stack - the Linux distribution, the configured web server, a database and
schema, the presence of PHP installed with the correct extensions. Additionally, a system
will also require numerous libraries, probably installed and updated via Composer, as
well as front-end libraries which may be included using tools like NPM. As a project
grows in power and complexity, so the number of steps required to install and update an
instance will increase.

This requirement holds for development environments, but it is also important
to be able to deploy staging and production instances of a system with a minimum of
impedance.

In this chapter, I introduce you to Ansible, which can handle all the jobs mentioned
so far and many more besides. This chapter will cover the following:

o Getting and installing Ansible: Who builds the builder
e Command-line tools: An overview of Ansible and its CLI commands

o The building blocks: Playbooks, plays, tasks, modules, and inventories
explained

o Deploying to multiple hosts: From a local directory to 30 servers;
Ansible is designed to scale

223
© Matt Zandstra 2025

M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_10

https://doi.org/10.1007/979-8-8688-0779-4_10#DOI

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

e Checking out a repository: Getting your code in place
e Copying and altering files: Managing configuration

o Ansible vault: Keeping your secrets (and letting you store them in a

version control system)

o Variables: Managing data that changes according to context

What Is Ansible?

Ansible (https://docs.ansible.com) is an “automation engine.” It is designed, in
particular, to manage the provisioning of servers, the deployment of applications, and
the management of configuration. In other words, all the essentials that many books and
articles about programming wave their figurative hands at. “Those values can be stored
in a configuration file. Remember not to check secrets into version control. This is just a
detail and we’ll leave it to you to work it all out for yourself.”

Well, in this chapter, we’ll take a crack using Ansible to manage the deployment
of a small PHP application across multiple hosts. We'll look at a strategy for managing
configuration data across modes - production, staging, and development. We'll store
some secrets without exposing them unencrypted either to a version control system or to
unauthorized team members.

Getting Ansible

There are a whole bunch of ways of installing Ansible. It’s probably easiest, though, to
use your operating system’s package management system. For example, on my Fedora
machine, I use dn+:

$ sudo dnf install ansible
Or on my Mac, I might use Homebrew:

$ brew install ansible

224

https://docs.ansible.com

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

Note The Ansible documentation site provides exhaustive coverage of many
of the ways you can install the system at https://docs.ansible.com/
ansible/latest/installation guide/index.html.

Confirming Your Install

Once you have installed Ansible, it’s a good idea to check that it all looks sane. I'll run a
command that you'll see a lot more of in this chapter: ansible-playbook.

$ ansible-playbook --version

Here’s the output on my Mac - the so-called control node which will deploy code on
three Linux hosts (the managed nodes):

ansible-playbook [core 2.16.7]
config file = None
configured module search path = ['/Users/mattz/.ansible/plugins/modules’,
'/usr/share/ansible/plugins/modules"]
ansible python module location = /opt/homebrew/Cellar/ansible/9.6.0/
libexec/lib/python3.12/site-packages/ansible
ansible collection location = /Users/mattz/.ansible/collections:/usr/
share/ansible/collections
executable location = /opt/homebrew/bin/ansible-playbook
python version = 3.12.3 (main, Apr 9 2024, 16:03:47) [Clang 14.0.0
(clang-1400.0.29.202)] (/opt/homebrew/Cellar/ansible/9.6.0/1ibexec/
bin/python)
jinja version = 3.1.4
libyaml = True

That seems sane enough, if a tad verbose. Let’s cover off what I've installed very
quickly.

225

https://docs.ansible.com/ansible/latest/installation_guide/index.html
https://docs.ansible.com/ansible/latest/installation_guide/index.html

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

Command-Line Utilities

Although we’ll only use three commands in this chapter, we have actually installed quite
a few tools. Table 10-1 summarizes some of the available Ansible commands.

Table 10-1. Some Ansible Command-Line Utilities

Utility Description

ansible-playbook Runs a playbook (a deployment script) in conjunction with other files to
manage multiple remote hosts.

ansible-galaxy Installs collections and roles — that is, components that extend Ansible’s
functionality.

ansible Runs a given command. Typically used for testing or for one-off
scenarios.

ansible-doc Provides information on installed modules.

ansible-pull Retrieves a playbook from a version control repository and executes on

a target host.
ansible-console A console environment for running Ansible commands.

ansible-inventory Shows Ansible inventory information (i.e., information about a set of
managed hosts).

ansible-vault Encrypt and decrypt secrets that can be safely stored in version control
and included in application configuration.

ansible-config View configuration.

The (inexhaustive) list of utilities in Table 10-1 might seem daunting, but, luckily, you
can go a long way with the few commands we cover in this chapter. Let’s get started with
an inevitable Hello, World.

226

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

Hello, Ansible

The command we’ll encounter mostly throughout the rest of this chapter is ansible-
playbook. This command combines a script - or playbook - (optionally alongside an
inventory of hosts) and runs these instructions on the specified targets.

Note You can read about playbooks at https://docs.ansible.com/
ansible/latest/playbook guide/playbooks intro.html.

Let’s create an initial playbook:
001-playbook.yml

- name: Ansible Says Hello
hosts: 127.0.0.1
connection: local

tasks:
- name: Send Output
ansible.builtin.debug:
msg: Hello, world!

A playbook consists of a set of named plays which themselves consist of set of
playbook keywords (hosts, for example, specifies a target host or references a group of
hosts specified in an inventory) and tasks. A task (like the Send Output example above)
invokes a module (a function) which will be applied to the target hosts.

As you can see, playbooks are written in YAML format. YAML (YAML Ain’t Markup
Language) is a subset of JSON - a data serialization language designed to be compact
and human-friendly. You can read more about it at https://yaml.org/.

So, lets run through this example line by line. I have created a playbook (which
I've saved in a file named 001-playbook.yml). This consists of a single play: Ansible
Says Hello.

I have used two playbook keywords: hosts tells Ansible where we will be working
and connection tells it we will be operating on a local environment.

227

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.html
https://yaml.org/

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

Note You can read more about playbook keywords at https://docs.
ansible.com/ansible/latest/reference appendices/playbooks
keywords.html.

Then, I move on the tasks section of the play. I have defined only one: Send Output.
This uses the ansible.builtin.debug module (https://docs.ansible.com/ansible/
latest/collections/ansible/builtin/debug module.html) which accepts and
outputs a msg parameter.

A module can be thought of as a function. They are also referred to as “task plug-ins.’
Modules support parameters and attributes which determine how they are run. They are
collected in namespaced collections which can be installed with the ansible-galaxy
command. You can run a module directly with the ansible command, but you'll see
them most often as part tasks in playbooks.

Let’s run the playbook:

$ ansible-playbook 001-playbook.yml
And I'm rewarded with quite a lot of output:

[WARNING]: No inventory was parsed, only implicit localhost is available
[WARNING]: provided hosts list is empty, only localhost is available. Note
that the implicit localhost does not match 'all'

PLAY [Ansible Says Hello] *¥kiwkirtiiiiimiitiibihiiiikiimtiitiibbiortiok

TASK [Gathering Facts] K3k ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk sk ok sk ok sk ok sk sk ok sk ok sk ok skok sk sk k

ok: [127.0.0.1]

TASK [Send Output] ¥¥rkkiskikiiiiotiokiikioobbiortobioriorooriorok

ok: [127.0.0.1] => {
"msg": "Hello, world!"

}

PLAY RECAP kkskokskksokskkokksokskiofokktomkokkokoiokokokotokkokkokokkokkokkokskokkoto okt fokokokok o ok

127.0.0.1 : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

228

https://docs.ansible.com/ansible/latest/reference_appendices/playbooks_keywords.html
https://docs.ansible.com/ansible/latest/reference_appendices/playbooks_keywords.html
https://docs.ansible.com/ansible/latest/reference_appendices/playbooks_keywords.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/debug_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/debug_module.html

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

Notably, Ansible has sent out its greeting, along with a lot of other information (that
will be more useful when we’re running multiple tasks and applying them to many
remote hosts).

It’s also worth noting those warnings in the output. Ansible is happiest when it’s
engaging with a list of remote hosts. Let’s see how that works.

Inventories: Working with Hosts

An inventory (https://docs.ansible.com/ansible/latest/inventory guide/
intro_inventory.html) is a file which collects together lists of hosts - often organized
in named groups. You can create an inventory in YAML format or opt for the even more
compact (but less flexible) INI format.

Let’s create an inventory file at inventories/example/hosts.ini:

[myservers]
192.168.1.98
192.168.1.7
192.168.1.82

If the script is running on my Mac - my control node - the IP addresses in this
inventory file refer to three managed nodes (also known as three battered laptops
humming away in various nooks around my house).

Note If you are coding along and you don’t have a bunch of servers to play
with, you could always spin up some Vagrant machines and use their IPs in your
inventory file. | covered Vagrant in Chapter 8.

Here’s the equivalent - hosts.yml - formatted with YAML:

myservers:
hosts:
192.168.1.98:
192.168.1.7:
192.168.1.82:

229

https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html
https://doi.org/10.1007/979-8-8688-0779-4_8

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

By default, Ansible connects to servers via OpenSSH. Unless you specify a remote
user for your servers, it will use your username (more accurately, it will use the
username associated with the “control node”). I will be specifying a remote user for host
connections later on.

Before you run a playbook that connects to a remote machine, you need to ensure
that you have SSH access to the target servers. Ideally, you will add a public key to your
target servers, making Ansible’s access relatively frictionless. If your servers are properly
configured with your public key, you should be able to access them over SSH without a
password. If, when you generated your key pair you specified a passphrase, you can use
a tool called ssh-agent to store it in memory at the start of your session. You can read
more about Ansible and connection methods at https://docs.ansible.com/ansible/
latest/inventory guide/connection details.html.

Note | covered generating a key pair and adding a public key to a target server in
Chapter 6 in the section “Providing Access to Users.”

Don’t despair if you haven’t set up key-based access to your servers. If you are
able to connect to your remote hosts using a password, you can specify the
--ask-pass option when you run ansible-playbook. That will cause Ansible
to use password authentication, and you will be prompted for your password

as needed.

Now, I create a playbook designed to work with either version of this inventory file:
002-playbook.yml

- name: Pingy ping ping
hosts: myservers
remote_user: webuser
tasks:

- name: Ping my hosts
ansible.builtin.ping:

- name: Run pwd
ansible.builtin.shell:

230

https://docs.ansible.com/ansible/latest/inventory_guide/connection_details.html
https://docs.ansible.com/ansible/latest/inventory_guide/connection_details.html
https://doi.org/10.1007/979-8-8688-0779-4_6

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

cmd: pwd
register: loc

- name: Print pwd output
ansible.builtin.debug:
var: loc.stdout

So, my new play here is a little different. Rather than specify a particular IP address,
I have referenced a group - myservers. I no longer need the connection keyword here
because a remote connection is assumed. I have added a new keyword though: remote
user specifies the user I will connect as on each target host.

This time round, I've defined three tasks. The first, Ping my hosts, uses the
ansible.builtin.ping module. This does a lot more than just confirm that the lights are
on at the target host as we shall see.

While I'm at it, I define a task named Run pwd which invokes ansible.builtin.
shell (https://docs.ansible.com/ansible/latest/collections/ansible/builtin/
shell module.html). This, as you might expect, invokes a given command - pwd in this
case. A module generates a return value in JSON format. The register task keyword
will create a variable to which it will assign the task’s output. This can be used later in
the play.

In this case, “later in the play” means the Print pwd output task which, once again,
uses the built-in ansible.builtin.debug module. This time, though, instead of msg, I
use var to output a variable value. Remember, I registered loc in the previous task. The
more specific loc.stdout refers to an element in the JSON we expect ansible.builtin.
shell to have generated. The full output for a single call to ansible.builtin.shell
might look something like this:

{

"changed": true,

"cmd": "pwd",

"delta": "0:00:00.004249",

"end": "2024-06-09 12:17:08.613542",
"failed": false,

"msg": "",

"rc": 0,

"start": "2024-06-09 12:17:08.609293",
"stderr": "",

231

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/shell_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/shell_module.html

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

"stderr lines": [],
"stdout": "/home/webuser",
"stdout lines": [

" /home/webuser"

}

Because this value is quite extensive, it makes sense to narrow down our own output
by focusing on an individual element: stdout, in this case.
Now, I can run the playbook, this time specifying an inventory file.

$ ansible-playbook -i inventories/example/hosts.ini 002-playbook.yml

Iinclude my inventory file with -1 flag. I could also have just referenced a directory
and Ansible would have happily parsed all contained files.
Here’s my output:

PLAY [Pingy ping ping] K3k ok ok ok ok ok ok ok ok ok ok ok sk >k sk ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok sk ok sk sk ok sk sk sk ok sk sk ok sk >k sk ok skok sk sk k

TASK [Gathering Facts] 3k 3k 3k sk ok ok sk sk sk 3k 3k 3k sk sk Sk sk ok ok sk sk sk 3k 3k sk sk sk sk ok ok sk sk sk 3k 3k sk sk sk sk sk sk sk skesk sk sk sk sk sk sk sk sk
ok: [192.168.1.82]

ok: [192.168.1.7]
ok: [192.168.1.98]

TASK [Ping my hOStS] >k >k ok ok ok 3k ok >k >k ok ok ok ok ok >k >k ok ok ok Sk ok >k >k ok sk Sk 3k ok >k ok ok ok ok sk ok >k >k ok ok k ok ok >k ok sk ok sk sk sk sk ok sk ok k

ok: [192.168.1.82]
ok: [192.168.1.98]
ok: [192.168.1.7]

TASK [Run de] ko sk sk sk sk 3k 3k 3k 3k Sk Sk sk ok ok sk sk sk 3k 3k sk sk Sk Sk ok ok sk sk sk 3k 3k sk sk Sk sk sk ok sk sk sk sk >k sk sk sk sk sk sk skoske sk sk sk sk sk sk sk sk sk
changed: [192.168.1.82]

changed: [192.168.1.98]

changed: [192.168.1.7]

TASK [Print PWd Output] 3k 3k 3k Sk ok ok sk sk sk 3k 3k 3k 3k Sk sk ok ok sk sk sk 3k 3k 3k sk Sk sk sk ok sk sk sk sk 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk

ok: [192.168.1.98] => {
"loc.stdout": "/home/webuser"

232

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

ok: [192.168.1.7] => {
"loc.stdout": "/home/webuser"

}

ok: [192.168.1.82] => {
"loc.stdout": "/home/webuser"

}

192.168.1.7 : ok=4 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
192.168.1.82 : ok=4 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
192.168.1.98 : ok=4 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Asyou can see, each task runs three times - once for each host in the myservers
group. The ping module runs successfully. Although the output does not show the actual
results of our calls to ansible.builtin.ping, it looks like this in each case:

{

"changed": false,
"failed": false,
Ilping": Ilpongll

}

However, the data here is less important to us than the fact that module ran
successfully.

The Run pwd task reports a successful execution for each host, but, as discussed, in
order to see the output, I use the Print pwd output task.

In order to run, the ping module, like most others that act on remote servers,
requires full access to its target host. Typically, this means that you will have installed
your key in the relevant user account for each host. Remember, however, that if you
have not set up keys on your target servers but do have password access, you can use
the --ask-pass option to force password authentication:

$ ansible-playbook --ask-pass -i inventories/example/hosts.ini
002-playbook.yml
SSH password:

233

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

Checking Out a Git Repository

Having demonstrated the use of a playbook with an inventory, I'll bring things back on
track with a playbook which will perform an actual deployment.
We really have all we need for this apart from the addition of a new built-in module:

003-playbook.yml

- name: Deploy code
hosts: myservers
remote user: webuser

tasks:
- name: clone
ansible.builtin.git:

repo: 'git@github.com:poppbook/megaquiz.git'
dest: /home/webuser/app
version: v1.0.1

As you might expect, the ansible.builtin.git module (https://docs.ansible.
com/ansible/latest/collections/ansible/builtin/git module.html) checks outa
Git repository. Reflecting Git’s power and complexity, the module accepts many possible
arguments, but we only need three to clone or pull our repository. The repo parameter
accepts the repository’s address. dest defines the destination directory. version requires
information about what to check out. This could be a branch name, a SHA-1 hash
representing a commit, or, as in this example, a tag.

Let’s run it:

$ ansible-playbook -i inventories/example/hosts.ini 003-playbook.yml
PLAY [Deploy code] Frkrkikikikikikkokopkopokokokokiokiokiokiokiokiokokokioliokkok

kokokokook ok k >k k k

TASK [Gathering Facts] >k 3k ok ok ok 3k >k >k >k ok ok k ok >k >k ok ok ok ok 3k >k >k ok ok ok k ok >k >k ok ok ok 3k ok >k >k ok ok ok k >k >k >k ok ok ok k >k

*okokkok kok ok kok

ok: [192.168.1.82]
ok: [192.168.1.7]
ok: [192.168.1.98]

TASK [Clone] 3k ok >k 3k ok ok ok ok ok ok 3k ok sk ok ok ok >k Sk ok sk ok sk ok ok ok ok Sk ok ok ok ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk sk ok sk sk sk ok sk sk ok sk k sk k

Kook ok

234

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/git_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/git_module.html

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

ok: [192.168.1.98]
ok: [192.168.1.82]
ok: [192.168.1.7]

192.168.1.7 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
192.168.1.82 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
192.168.1.98 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

So, my run was glitch-free. You may find you need to deal with initial gremlins. As
I've already discussed, you need either to have configured key-based access to your
servers or specify the --ask-pass option in order to fall back to password authentication.
Also, make sure that your target servers are configured for access to your Git repository.

Having run this playbook with an inventory as above, I confirm that each of my hosts
now has the megaquiz repo installed in its /home/webuser/app directory.

Copying a Configuration File

If deployment simply meant checking out some code, we’d be done by now. At minimum,
though, most applications require configuration.
Let’s add a couple of tasks which will copy a configuration file into each environment.

004-playbook.yml

- name: Megaquiz playbook
hosts: myservers
remote user: webuser
tasks:
- name: clone
ansible.builtin.git:
repo: 'git@github.com:poppbook/megaquiz.git'
dest: /home/webuser/app
version: v1.0.0

235

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

- name: Make sure destination dir exists
ansible.builtin.file:
path: /home/webuser/app/conf
state: directory

- name: copy
ansible.builtin.copy:
src: res/megaquizi.ini
dest: /home/webuser/app/conf/megaquiz.ini

Lintroduce two new modules here. ansible.builtin.file (https://docs.ansible.
com/ansible/latest/collections/ansible/builtin/file module.html) performs
file operations. The path parameter specifies a location on the target host. When set to
directory, the state argument causes any specified directories to be recursively created.

Asyou'd expect, ansible.builtin.copy will copy a file over from the control node
to the target hosts. src specifies the source file and dest should contain the path on
the host.

Now, assuming that I have a useful configuration file in res/megaquizi.ini, it will
appear in /home/webuser/app/conf/megaquiz.ini.

Some More on Variables

We're heading for a section on injecting values into a configuration file. In order to get
there, though, we need to step back and cover some more on variables in Ansible.

Declaring Variables with vars

You have already seen the register task keyword, which declares a variable and assigns
the result of the task’s module to it. You can also declare variables with the vars
playbook keyword.

Here’s a new playbook which amends the Hello, World example to use a variable.

005-playbook.yml

- name: Ansible Says Something
hosts: 127.0.0.1
connection: local

236

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

vars:
person: Bob

tasks:
- name: Send output
ansible.builtin.debug:
msg: Hello, {{ person }}!

Asyou can see, I declare the person variable and set it to Bob. Notice, though, how I
have incorporated the variable into the ansible.builtin.debug module’s msg argument.
If you're a Twig user, then that syntax might seem eerily familiar. In fact, this is an
example of Jinja2 (https://jinja.palletsprojects.com), the templating language
which inspired Twig and which is used by Ansible in various ways.

No prizes for guessing the output: here. We should be saying hello to Bob:

TASK [Send output] >k 3k ok ok ok ok ok ok ok ok ok ok ok sk >k sk ok sk ok ok sk ok ok ok sk ok k sk ok sk ok sk ok ok sk ok sk ok sk ok sk sk ok sk sk kok sk sk ok sk ok sk k sk

ok: [127.0.0.1] => {
"msg": "Hello, Bob!"

Overriding Variables from the Command Line

The vars keyword provides a prominent place to declare a value that might be used in
several places. It might seem that its usefulness is limited in that the variable’s value is
fixed. However, you can also use -e (or --extra-vars) flag to ansible-playbook to
override the value of any variables you declare.

$ ansible-playbook -e "person=Harry" 005-playbook.yml

And now, Bob is Harry:

TASK [Send output] ¥¥rkkioskisisiiioiokiiokioioobiiortokiopiorooionok

ok: [127.0.0.1] => {

msg": "Hello, Harry!"

237

https://jinja.palletsprojects.com

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

Placing Variables in Files

Although you could conceivably add more and more -e flags to your command-line
calls, that approach would soon become unwieldy. A neater approach might be to define
a file for your variables.

Here’s vars/vars.yml:

person: Mary

We'd expect to add a lot more elements to this list of course.
I can reference my new variables file with the vars_files playbook keyword:

006-playbook.yml

- name: Ansible Says Something
hosts: 127.0.0.1
vars_files: vars/vars.yml
connection: local

tasks:
- name: Send output
ansible.builtin.debug:
msg: Hello, {{ person }}!

And now, we greet someone new:

TASK [Send output] ¥¥xkkiskiskiiiiotiokiikioobiiorkiobioriorooionok

ok: [127.0.0.1] => {
"msg": "Hello, Mary!"

Of course, I have come full circle now. My reference to the vars/vars.yml file is itself
hard-coded. I can overcome that, though, by combining vars and vars_files like this:

006 _1-playbook.yml

- name: Ansible Says Something
hosts: 127.0.0.1
vars:
myvars: vars

238

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

vars_files:
vars/{{ myvars }}.yml
connection: local

tasks:
- name: Send output
ansible.builtin.debug:
msg: Hello, {{ person }}!

This is functionally identical to the previous example. But by declaring the myvars
variable and using it in the file path added to vars_files, Irender it amenable to
overriding. I can now change the variable file by invoking the playbook like this:

$ ansible-playbook --extra-vars "myvars=altvars" 006 1-playbook.yml

This will result in the inclusion of a file at vars/altvars.yml.

Note There is much more to variables. See the documentation at https://
docs.ansible.com/ansible/latest/playbook guide/playbooks
variables.html. There is another useful trick to come later in this chapter too!

Interpolating Values into a File

When I copied the megaquiz.ini file over to my servers, I made no changes to it. In some
circumstances, however, I might not want all values checked in to version control - ei-
ther because they change according to context or because they are sensitive in nature.

I can use a module called ansible.builtin.template (https://docs.ansible.com/
ansible/latest/collections/ansible/builtin/template module.html) to combine a
template file with a set of variables.

Here’s a new variables file named vars/vars2.yml:

user: keisha
My new configuration file at res/megaquiz2.ini looks like this:

user={{ user }}
dbname=megaquiz

239

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_variables.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_variables.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/template_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/template_module.html

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

Asyou can see, I'm using Jinja2 again. When the final configuration file is generated,
I'will hope to find “keisha” assigned to the user element.
Here is my amended playbook:

007-playbook.yml

- name: Interpolate conf
hosts: myservers
vars_files: vars/vars2.yml
remote_user: webuser
tasks:

...

- name: copy / interpolate
ansible.builtin.template:
src: res/megaquiz2.ini
dest: /home/webuser/app/conf/megaquiz.ini

This usage of ansible.builtin.template is syntactically similar to the ansible.
builtin.copy example we have already seen. The functional difference, however, is that
the module will apply any variables we have set to the template referenced in the src
argument.

Let’s run the playbook.
$ ansible-playbook -i inventories/example/hosts.ini 007-playbook.yml

The output tells me that all went well, so Ilog in to webuser@192.168.1.98 and take a
look at /home/webuser/app/conf/megaquiz.ini.

user=keisha
dbname=megaquiz

My interpolation appears to have worked!

240

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

Managing Secrets with Ansible Vault

Every project has its secrets - and it’s not good policy to push such data to a version
control repository, even a private one, without first encrypting it. Of course, you could
store these values on your local machine or write them down on the back of an envelope.
In the end though, the problem is the same - you either risk exposing your keys or losing
them if you can’t check them in to a repository of some kind.

Ansible vault (https://docs.ansible.com/ansible/latest/vault guide/index.
html) provides a good solution to this problem. It allows you to both encrypt and decrypt
sensitive data, which can then be stored alongside your code in relative safety.

Let’s work through an example. I will store a dummy API key in a file named vars/
secretsi.yml:

quizkey: all 89876786

This starts out, of course, as a plain unencrypted file. The ansible-vault (https://
docs.ansible.com/ansible/latest/cli/ansible-vault.html) command will change
all that.

$ ansible-vault encrypt --vault-id myproject@prompt vars/secretsi.yml
Ansible prompts me for a password and confirms my encryption.

New vault password (myproject):
Confirm new vault password (myproject):
Encryption successful

The encrypt subcommand here should be self-explanatory. --vault-id is not
technically required, but it is a good idea to use it, since it allows the user to manage
multiple passwords for a system. So junior developers might have one level of access,
while those that require it can be given the access they need to deploy to production.

The argument to vault-id consists of two parts split by a @ symbol. The first part
is the ID itself - the name I am using to label the password I want to associate with my
encrypted file. The second part is the source. It indicates the source of the password.
In this chapter, I'll always use prompt for this, but you could also specify a password file
(containing only the password) or a script.

241

https://docs.ansible.com/ansible/latest/vault_guide/index.html
https://docs.ansible.com/ansible/latest/vault_guide/index.html
https://docs.ansible.com/ansible/latest/cli/ansible-vault.html
https://docs.ansible.com/ansible/latest/cli/ansible-vault.html

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

Having run ansible-vault encrypt, this is what my vars/secretsi.yml file
looks like:

$ANSIBLE VAULT;1.2;AES256;myproject
373063313232653533383965363865663235613633356532626261303231326433343065
66383430
3863353937336139626331316462346464653838643363620a30383737323832313766
3165666438
65346630306533656338633536373831656564356664383966303634616161333930
383738326432
3631643237393363390a313366646438386332386135626166343138333538633234
303162616339
61643233313137393237613737303531613566616132613039333631316462633432

Of course, I will also need to be able to edit the file:
$ ansible-vault edit --vault-id myproject@prompt vars/secretsi.yml

I can now use my new password and the secrets file in conjunction with a playbook:
008-playbook.yml

- name: Whisper the secret
hosts: 127.0.0.1
vars_files: vars/secretsi.yml
connection: local

tasks:
- name: Send output
ansible.builtin.debug:
msg: The secret key is {{ quizkey }}!

So, I did not need to do anything different in the play itself. I can treat a secrets1.
yml just like any other variables file. Ansible is smart enough to understand that it’s
dealing with an encrypted file and acquire a password according to the source specification:

$ ansible-playbook --vault-id myproject@prompt 008-playbook.yml

242

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

Here’s the relevant fragment of output:

TASK [Send Output] >k >k >k ok ok 3k ok ok >k ok sk sk ok sk sk >k ok ok ok ok Sk ok >k ok ok sk Sk sk sk sk ok ok ok ok Sk sk sk >k ok sk sk sk sk sk ok sk sk sk sk sk sk sk skske sk k

ok: [127.0.0.1] => {
"msg": "The secret key is all 89876786!"

So, now I can deploy code from a Git repository. I can populate and copy a
configuration file. I can manage secrets. Next, let’s consolidate all that and even add a
new feature or two.

Checking in on Megaquiz

As you know, the --vault-id flag to ansible-vault and other Ansible commands allows
you to specify different passwords according to context. Let’s build on that to create a
deployment setup that supports three different project modes: development, staging, and
production. Here is a potential directory structure:

megaquiz.yml

inventories/
development/
hosts.ini
staging/
hosts.ini
production/
hosts.ini

res/
megaquiz.ini

vars/
development/
secrets.yml
staging/
secrets.yml
production/
secrets.yml

243

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

In addition to a playbook: megaquiz.yml, I create three directories, inventories / for
inventory files, res/ for a configuration file template, and vars/ for encrypted variables
files. In the cases of both inventories/ and vars/, I create subdirectories for develop-
ment/ staging/ and production/ in which to store the hosts or secrets files.

For this example, I'm reusing the same set of values in all the hosts.ini files. In a
real-world environment, these would vary.

Here are the contents of one file:

[myservers]
192.168.1.98
192.168.1.7
192.168.1.82

The file at res/megaquiz.ini is a template that will combine hard-coded base values
and variables - from both encrypted and unencrypted sources.

dbuser={{ dbuser }}
dbhost=db

quizkey={{ quizkey }}

Here is one of the secrets files - vars/production/secrets.yml - before encryption
(or, later, in edit mode):

quizkey: prodkey 3333333
As areminder, here’s how I can encrypt the file:

$ ansible-vault encrypt --vault-id production@prompt vars/production/
secrets.yml

And, at last, here is the megaquiz.yml playbook:
megaquiz.yml

- name: Deploy megaquiz
hosts: myservers
remote_user: webuser
vars files: "vars/{{ MODE }}/secrets.yml"
tasks:

244

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

- name: clone
ansible.builtin.git:
repo: 'git@github.com:poppbook/megaquiz.git'
dest: /home/webuser/app
version: v1.0.1

- name: Make sure destination dir exists
ansible.builtin.file:
path: /home/webuser/app/conf
state: directory

- name: copy / interpolate
ansible.builtin.template:
SYC: res/megaquiz.ini

dest: /home/webuser/app/conf/megaquiz.ini

This should be pretty familiar by now. Let’s work through it anyway. The playbook
contains a single play: “Deploy megaquiz.” The hosts playbook keyboard specifies
myservers - the group I use in all my hosts.ini files. vars_files specifies a path that
incorporates a variable, MODE, to create a path to a secrets file.

You have seen each of the tasks before. In turn, they clone or checkout the megaquiz
repository, create the conf directory, and generate a configuration file using the
ansible.builtin.template module to combine variables with the template in res/
megaquiz.ini.

This, of course, begs some questions. Where does MODE come from? Although the
quizkey variable appears to be provided by secrets.yml, what provides dbuser which is
also expected by the template?

The answer lies, once again, in the -e flag to ansible-playbook:

$ ansible-playbook --vault-id development@prompt \
-e "MODE=development dbuser=bloop" \
-i inventories/development/hosts.ini \
megaquiz.yml

The most important variable here is MODE. As you have already seen, I could use this
to generate a path to a variable file, but I chose instead to generate a second
variable, dbuser. This is fine for my current purposes, but it won’t scale well. I'd likely
move dbuser to a file as soon as the need to support more variables emerges.

245

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

Before we wrap up by covering a final module, let’s take in one more variable-related
feature that Ansible supports.

Inventory Variables

So far, I have declared variables using the var and var_files playbook keywords. I have
also used the -e or --extra-vars command-line flag. We have not yet encountered
another common way to manage variables: inventories. This makes sense, of course,
because a host or group of hosts will often correspond with a set of variable data.

You can add variables directly to your inventory file or, using a specially named
directory, to your inventory environment. Here, for example, I set a variable for each host
in my staging inventory:

[myservers]

192.168.1.98 dbuser=elbow
192.168.1.7 dbuser=hats
192.168.1.82 dbuser=flimflam

I am using INI format here. All I need to in this case is tack my variable key/value
pairs onto the end of each host. The YAML equivalent is a little more verbose:

myservers:
hosts:
192.168.1.98:
dbuser: elbow2
192.168.1.7:
dbuser: hats2
192.168.1.82:

dbuser: flimflam2

Thanks to this trick, I no longer need to specify the dbuser variable when I invoke
ansible-playbook.

Of course, it’s probably more useful (and less work) to set variables at the group level.
This is also supported. Here is the INI version:

[myservers]
192.168.1.98

246

CHAPTER 10

192.168.1.7
192.168.1.82

[myservers:vars]
dbuser=prodish

Here’s the YAML equivalent:

myservers:
vars:
dbuser: groupish
hosts:
192.168.1.98:
192.168.1.7:
192.168.1.82:

AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

Ansible supports a variation to these techniques. If you place a directory named

host_vars in your current working directory or, more often, at the same level as your

inventory files, then a YAML file named after the current host will be read, and any

contained variables will be set. The same is true for inventory groups, except that the

directory should be named group vars and any contained files should be matched to

groups and not hosts.
Let’s implement this last feature.

Look again at the directory structure I created for my inventories:

inventories/
development/
hosts.ini
staging/
hosts.ini
production/
hosts.ini

As you know, an inventory can contain groups, which in turn break down into hosts.

Ansible provides two implicit groups for every inventory: all which contains all the

hosts in that inventory and ungrouped which contains a list of hosts which do not belong

to any explicit groups. I am going to create variable files for the implicit all group in

each of my inventories. Here is what my new directory structure will look like:

247

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

inventories/
development/
hosts.ini
group vars/
all.yml
staging/
hosts.ini
group vars/
all.yml
production/
hosts.ini
group_vars/
all.yml

Here is inventories/production/group vars/all.yml:

MODE: production
dbuser: bob

Now, I can run the playbook and pick up the required variables without command-line
variable arguments. My choice of inventory drives the selection of variables and the
construction of a filepath which resolves to the correct secrets file.

$ ansible-playbook --vault-id development@prompt -i inventories/
development/hosts.ini megaquiz.yml

Of course, were this a real-world PHP project, I'd likely need to run Composer as part
of a deploy.

The Composer Module

The community.general.composer module (https://docs.ansible.com/ansible/
latest/collections/community/general/composer module.html) supports most
Composer operations.

Up until now, we have used built-in modules. This module is part of the community.
general collection which you may need to install.

$ ansible-galaxy collection install community.general

248

https://docs.ansible.com/ansible/latest/collections/community/general/composer_module.html
https://docs.ansible.com/ansible/latest/collections/community/general/composer_module.html

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

Now, in a new task, I can use community.general.composer to run composer
install on each of my projects (so long as Composer is installed on the remote hosts).

megaquiz.yml

- name: composer
community.general.composer:
command: install
working dir: /home/webuser/app

At this point, I've arrived at a pretty functional and extensible deployment environment.
Of course, there’s much more to Ansible. For example, a composer install can
sometimes be a slow process. It would be nice to make the composer task optional. As

you might expect, Ansible has us covered.

Conditionals

Ansible allows you to specify that a task is run only when a condition is met (https://
docs.ansible.com/ansible/latest/playbook guide/playbooks conditionals.html).
You can achieve this with the when task keyword:

megaquiz.yml
...

- name: composer
when: docomposer is defined
community.general.composer:

command: install
working dir: /home/webuser/app

The when keyword expects a test that uses the Jinja2 templating language (https://
jinja.palletsprojects.com/en/3.1.x/templates/#tests).So, is defined will
resolve to True if a variable has been set.

Since, by default, no docomposer variable is declared, the play will step over the
composer task.

249

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_conditionals.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_conditionals.html
https://jinja.palletsprojects.com/en/3.1.x/templates/#tests
https://jinja.palletsprojects.com/en/3.1.x/templates/#tests

CHAPTER 10 AUTOMATING BUILD AND DEPLOYMENT WITH ANSIBLE

TASK [Composer] >k 3k >k ok ok ok ok ok sk ok sk ok ok sk >k sk ok sk ok sk ok ok ok ok Sk dk sk sk ok sk ok sk sk ok sk ok sk ok sk ok sk ok sk sk ok sk ok skk ok sk k sk sk skok sk sk >k

skipping: [192.168.1.98]
skipping: [192.168.1.7]
skipping: [192.168.1.82]

However, the task will be run if the docomposer variable is set:

$ ansible-playbook --vault-id development@prompt \
-i inventories/development/hosts.ini \
-e docomposer=yes \
megaquiz.yml

Summary

Serious development rarely happens all in one place. A code base needs to be separated
from its installation so that work in progress does not pollute production code that needs
to remain functional at all times. Version control allows developers to check out a project
and work on it in their own space. This requires that they should be able to configure the
project easily for their environments. Then, in order to get new features into the world,
the code needs to be functionally checked in a staging instance of a system. Finally,
releases need to make their way to production. All this should be made as friction-free as
possible.

In this chapter, I have covered some of the basics of Ansible, an automation engine,
designed to do all of this and more. I described playbooks, plays, tasks, modules, and
inventories - enough to encompass Ansible fundamentals. Then, I moved on to some
practical examples, including getting code, adding configuration, managing secrets, and
juggling variable data.

Of course, I have only scratched the surface of Ansible’s capabilities. Nevertheless,
once you are up and running with the tools and features described here, you'll find it easy
to add new tasks and modules to your playbooks to achieve pretty much anything you
might want to do, from provisioning an entire suite of servers to adding a configuration
directive to an installed application.

250

CHAPTER 11

PHP on the Command
Line

Once upon a time, the acronym PHP stood for Personal Home Page. Even after the
language was renamed and the initials resolved to the recursive PHP Hypertext
Preprocessor, the name remained overtly a webby affair. Nonetheless, PHP works very
well on the command line. In fact, if you're sure that your target environment will furnish
you with the PHP interpreter, it may be the best possible tool for your shell scripting
tasks. Written in the right way, a PHP script created for the command line can do
everything that a more traditional shell script can do, with all the power and familiarity
of a fully featured object-oriented language and the rich library infrastructure provided
by Composer.

This chapter will cover the following:

e Scripts and autoloading: Finding library files from your script

e Acquiring arguments: Getting essential application information from
the command line

e The whole shebang: Running scripts without invoking PHP on the

command line
e Errors and interoperability: Failing informatively
e Building usage messages: How to create self-documenting scripts
e Parsing options: Extracting options from positional arguments
e Encapsulating output: Managing warnings and primary output
e Console input. Prompting the user for information

e Piped input: Accepting data piped from other commands

251
© Matt Zandstra 2025

M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_11

https://doi.org/10.1007/979-8-8688-0779-4_11#DOI

CHAPTER 11 PHP ON THE COMMAND LINE

o Packaging scripts with Composer: Adding your scripts to the vendor/
bin directory

o Distributing a runnable archive: Generating a Phar package

Why the Command Line?

If you spend a lot of time building PHP systems, your focus is often, almost inevitably,
somewhat Web-oriented. That said, any larger project quickly accumulates ancillary
coding requirements. There are test fixtures to generate, server and database tasks to
automate, scheduled housekeeping scripts, monitoring tools, integrity checkers. The list
grows and grows with the complexity of your project.

You could, of course, use shell scripts for many of these tasks. And, sometimes, that’s
probably the right call. There are good reasons however to consider using PHP itself for
command-line scripting jobs. First of all, if your context is a PHP project, then you almost
certainly have the PHP interpreter available, so why not take advantage of its power
and familiarity? You may feel a lot more comfortable writing more involved scripts in
PHP than shell scripts. What’s more, you get to leverage the power of Composer and its
thousands of libraries. Even better, because those requirements are handled locally by
Composer, you don’t have to worry quite as much that a script’s dependencies might go
missing in some project contexts.

Another factor to bear in mind is that you can build PHP command-line utilities that
are tightly integrated into your system. That means they will be able to leverage your
environment to perform housekeeping tasks from within your application’s context.

You might, for example, need to prune a database once a month. You can create a PHP
script to perform the task as a Cron script - called from the command line - but with
operational access to application libraries and configuration.

Of course, by definition, PHP is less seamlessly integrated into the shell than a shell
script. Even so, as I'll discuss at the end of the chapter, there are plenty of options (maybe
even too many options) for invoking shell commands from within a PHP script where
necessary. So, when it comes to creating command-line utilities, PHP might offer you the
best of both worlds.

252

CHAPTER 11 PHP ON THE COMMAND LINE

A Dummy Function

In Volume 1, Ilooked at controller actions in web applications. A controller action offers
a thin layer that sits in front of an application’s underlying functionality. We might
think of a command-line script of any complexity in a similar way. While, for trivial use
cases, you can throw the meat of your application directly into your script file, it’s often
much cleaner to treat the script itself as an orchestrator, managing input from the user,
invoking methods in a deeper system, and presenting the result. To simulate that kind of
structure, I'll begin here by mocking up some deeper logic for my script to invoke.

Here is a class containing a simple static method for converting string values to their
uppercase equivalents. Let’s imagine it’s a very complicated and involved process!

namespace popp\ch24\batcho1;

class Converter

{
public static function upper(string $str): string
{
return strtoupper($str);
}
}
I begin my structure, then, with a single class file:
src/

Converter.php

I can test this with a couple of lines tucked temporarily under the class (or in a script
that is already configured to find the Converter class).

$txt = file get contents(DIR . "/res/test.txt");
print Converter::upper($txt);

Of course, even if I were to break those lines into a standalone script file, that hard-
coded path to test.txt means that it would not be terribly useful.

We will need a separate script that can detect user input and can find the class file at
src/Converter.php. So, let’s get started.

253

CHAPTER 11 PHP ON THE COMMAND LINE

Autoloading

I will create an initial file at scripts/conv.php. In order for it to find src/Converter.
php, Thave two choices. I could use require_once or a similar statement. That would
work, but I will win more flexibility and reserve the ability to access more tools by using
Composer. To that end, I'll need to generate and access an autoload. php file.

Note | cover Composer in Chapter 5.

I have two files at this point. An empty script in scripts/conv.php and my
Converter class file at stc/Converter. php

scripts/
conv.php

src/
Converter.php

In order to connect them up, I'll use a composer. json file at the root of my script
environment. I am using the popp\ch24\batcho1 namespace:

{
"name": "popp/conv",
"autoload": {
"psr-4": {
"popp\\ch24\\batcho1\\": ["./scripts", "./src"]
}
}
}

This associates both the scripts/ and src/ directories with the same namespace. To
activate this relationship, I must generate the autoload file:

$ composer dump-autoload

By running this, I generate a vendor/ directory containing an autoload. php file.
Now, here’s what my script environment might look like:

254

https://doi.org/10.1007/979-8-8688-0779-4_5

CHAPTER 11 PHP ON THE COMMAND LINE

composer.json
scripts/
conv.php
src/
Converter.php
vendor/
autoload.php
res/
text.txt

I've also added a directory named res which contains a text file I'll be using
throughout the chapter to put my code through its paces.

Now that’s all in place, my components will be able to find one another. This will
allow me to add third-party libraries to my script later and to expand the environment.

I'will add a single require_once statement to conv. php which will configure autoloading.

namespace popp\ch24\batcho1;

require_once(_ DIR__ . "/../vendor/autoload.php");

Acquiring Arguments

Now that conv. php can access the Converter class, I'll create a minimal script that
accepts command-line input.

namespace popp\ch24\batcho1;
require once(_DIR . "/../vendor/autoload.php");

if (count($argv) <= 1) {
exit("not enough arguments\n");

}

$file = $argv[1];

if (! file exists($file)) {
exit("no file at '{$file}'\n");

}

$txt = file get contents($file);

print Converter::upper($txt);
255

CHAPTER 11 PHP ON THE COMMAND LINE

When PHP is run from the command line, the $argv superglobal array is
automatically populated. The first element will contain the path with which the script
was called. Subsequent elements correspond to any given arguments. So, the script
above is already pretty usable.

$ php scripts/conv.php res/test.txt

The test.txt file happens to contain an extract from the poem “Jabberwocky” by
Lewis Carroll. Here’s the script’s rather shouty output.

>TWAS BRILLIG, AND THE SLITHY TOVES
DID GYRE AND GIMBLE IN THE WABE:
ALL MIMSY WERE THE BOROGOVES,
AND THE MOME RATHS OUTGRABE.

The Shebang

Notice that, in calling conv. php, I actually invoked PHP and passed it the path to

the script. I could have made it possible to call the script directly by changing its file
permissions and including a “shebang” (otherwise known as a “hashbang”) line. The
shebang is so-called because of its leading #! characters. This line, which should be the
first in the script, tells the shell to pass the current file to a particular command. In this
case, of course, that command is php. Here’s an amended version of conv. php.

#!/usr/bin/env php
<?php

if (count($argv) <= 1) {
exit("not enough arguments\n");

}
/...

The shebang here invokes /usr/bin/env with the argument php. The env command
searches the $PATH environment variable for the given executable and attempts to call it.
I might more directly have used #! /usr/bin/php. This would have worked for me in one
of my environments but would have failed, however, in another because PHP is installed
in a different location there. It's more portable, therefore, to use env which is likely to be

found in a common location.

256

CHAPTER 11 PHP ON THE COMMAND LINE

Now, I can change the file permissions on conv.php to make it executable and then
run the script directly (or, at least, have it seem that way).

$ chmod +x ./scripts/conv.php
$./scripts/conv.php res/test.txt

Error Conditions

You might think that by invoking the exit () language function with a useful message,

I have adequately handled error conditions. While that’s probably true in functional
terms, it’s not true as far as script interoperability is concerned. Command-line scripts
on Unix-like systems exit with a status code that can run from 0 to 255 (however, a PHP
script should only ever use the range 0 to 254 because 255 is reserved by the executable).
An exit code of 0 signals that no error occurred. An error code of 1 signals a general error.
Although, by convention, other numbers have meanings, it's enough for our purposes

to switch between zero and nonzero exit codes according to whether or not an error was

encountered.

Note Prior to PHP 8.4, exit () was a language construct rather than a function.

The problem with calling exit () with a string, as I did above, is that, even though it
announces a problem, it actually causes the script to terminate with an exit status of 0.
We can confirm that with a simple shell script:

$ php scripts/conv.php Il echo "EXPECTING THIS TO BE TRIGGERED"

Because conv.php requires an argument and I have not provided one, the script will
fail here.

If you place a well-behaved command into a shell conditional and it does not run
successfully (i.e., if it renders a nonzero exit status), then it will be treated as false. So,
ideally, the fragment above would have caused the trigger message to be output. In fact,
though, all I saw is this:

not enough arguments

The conv. php script explained that it failed, but the shell saw it as a successfully
completed command.

257

CHAPTER 11 PHP ON THE COMMAND LINE

To improve matters, I can change the way that I run exit(). By passing it an integer
rather than a string, I can cause my script to end with the given exit status. In doing that,
I lose the ability to generate output. This is a good thing, however, because exit() sends
string output to STDOUT and, in case of error, we should actually output to STDERR so
that anyone using our scripts can handle output and error messages separately if they
need to.

So, for my output, I can use fputs() with the STDERR constant:

if (count($argv) <= 1) {
fputs(STDERR, "not enough arguments\n");
exit(1);

}

$file = $argv[1];

if (! file exists($file)) {
fputs(STDERR, "no file at '{$file}'\n");
exit(1);

}

$txt = file get contents($file);
print Converter::upper($txt);

Having made this change, when I run my script as above, the shell recognizes an
error condition and outputs its trigger message.

not enough arguments
EXPECTING THIS TO BE TRIGGERED

Now, when someone needs to use conv. php in a shell script, they can stop execution
if the command exits with an error condition - making it a good shell citizen!

Usage

Another element of scripting good practice is the usage message. This usually combines
any available error feedback with information about how to interact with the script. For
anything but the most basic script, I'll generally build a function to generate a usage

message of some kind very early on.

258

CHAPTER 11 PHP ON THE COMMAND LINE
Here's a usage() function for conv. php:

function usage(?string $msg = null): string

{
$argv = $GLOBALS['argv'];
$usage = "usage: $argv[0] <file>\n";
$usage .= "\n";

if (! is_null($msg)) {
$usage .= "{$msg}\n\n";
}

return $usage;

Note Of course, by putting a function in a file which also causes side effects (by
generating output), | breach the standard in PSR-1 which forbids this combination.
| could fix this by moving usage() into a separate file. | covered PHP standards in
Chapter 3.

Now, I can add some more information to any errors I generate.

if (count($argv) <= 1) {
fputs(STDERR, usage("not enough arguments\n"));
exit(1);

I'll call the latest iteration of my script with no arguments.
$ php scripts/conv3.php

And now, as well as an error, I get information about how to fix my call.
usage: scripts/conv3.php <file>

not enough arguments

259

https://doi.org/10.1007/979-8-8688-0779-4_3

CHAPTER 11 PHP ON THE COMMAND LINE

Handling Arguments and Options

We've already established that the $argv array is populated with the script name and
any further arguments. While this is useful, there is a pretty significant drawback. The
process which populates $argv does not distinguish between positional arguments and
options.

As areminder, when I call conv3. php like this:

$ php scripts/conv3.php res/test.txt
This is what $argv looks like:

Array

(
[0] => scripts/conv3.php

[1] => res/test.txt

Here, res/test.txt is what is known as a positional argument.
So, what would happen if I wanted to support a set of arguments that look more like
the following?

$ php scripts/conv3.php -v -o /tmp/out.txt -c res/test.txt

Unfortunately, this places us at the edge of quite an awkward set of problems.

Options

An option is a special argument that modifies the behavior of a command. You will
usually expect options to be placed directly after the command path and before any
positional arguments. If you're familiar with the Linux shell, you should recognize
commands like

$ 1s -1 /tmp

This is a command, followed by a short option (-1) and a positional argument
(the /tmp directory).
You can combine short options:

$ 1s -aR /tmp

260

CHAPTER 11 PHP ON THE COMMAND LINE

A command may also support long options (though there is no conventional
guarantee that every long option has a short equivalent or vice versa). A long option is
often (but not always) preceded by two dashes rather than one.

$ 1s --all --recursive /tmp

Options can conventionally accept arguments in either form. These are equivalent,

for example:

$ grep -C 2 hats /tmp/products/*
$ grep --context=2 hats /tmp/products/*

It’s important to note that there is nothing fundamental about the form of options. One
dash or two, the presence of an equals sign for arguments, it’s all a matter of convention.

Given that PHP will not automatically manage options, this is something of a parsing
adventure. Here is a call to a script called play-args.php which does nothing but pass
$argv to print_r():

$ php scripts/play-args.php -a -b with-arg --context=20 -de posi pos2

We can see that, according to the conventions already discussed, -b accepts an
argument (with-arg). The --context option also expects or accepts an argument. Again,
conventionally, -d and -e are separate options run together here. We can’t know from
the example alone whether -e accepts an argument (pos1) or whether pos1 is the first
positional argument.

PHP does not trouble itself with any of this; it just breaks down each individual block
of text into elements:

Array
(
[0] => scripts/play-args.php
[1] => -a
[2] => -b
[3] => with-arg
[4] => --context=20
[5] => -de
[6] => pos1
[7] => pos2
)

261

CHAPTER 11 PHP ON THE COMMAND LINE

As programmers, we're up to this challenge. Thankfully, we do not have to reinvent
this particular wheel.

Introducing getopt

PHP provides a function named getopt () which offers a pretty usable solution to the
problem of acquiring options and disambiguating them from positional arguments. The
method requires a string argument which should contain a pattern describing the short
options accepted. It also optionally accepts an array argument for long options and an
index which will be populated with the start index of the positional arguments in $argv
once parsing is complete.

Let’s define the rules I discussed in the previous example:

$options = getopt(“"ab:de", ["long-a", "context:"], $index);
print_r($options);

So here, I define “ab:de” for my short options. This specifies that getopt () will
recognize -a, -b (with a required argument), -d, and -e. For the second argument, I
specify --long-a and --context (with a required argument).

As you can see, for both long and short arguments, adding a colon (:) modifier
specifies a required argument. If wanted to specify an optional argument in either case,
I would use a double colon (: :) instead.

With my option specifiers in place, the $options array will be neatly populated:

Array

(
[a] =>
[b] => with-arg
[context] => 20
[d] =>
[e] =>

But what about my positional arguments pos1 and pos2? Remember that the third
argument to getopt () is populated with the index of the first positional argument after
the options have been parsed. Because I know that, it’s just a matter of deploying array
slice() to extract the argument portion of $argv.

262

CHAPTER 11 PHP ON THE COMMAND LINE

$options = getopt("ab:de", ["long-a", "context:"], $index);
print_r($options);

$newargs = array slice($argv, $index);

print_r($newargs);

Here is the output from that second print_r() which shows the $newargs array.

Array
(
[0] => pos1
[1] => pos2
)

The Problem with getopt()

In many cases, getopt () will be perfectly fine for your needs. It does not require that you
load a third-party library, and it gets the job done. However, if you want to throw an error
on invalid flags, you're out of luck. This might seem like a minor point, but imagine a
mission-critical script that supports a --dry-run flag:

$ very-dangerous-deletion-script --dry-rune /home/mattz

If you're using getopt () here, it will happily ignore my --dry-rune typo and run the
script in anger. This is quite a risky prospect.

The other, less important, problem is that getopt() does not help you to automate
your usage message - and these can get gnarly as your list of options and arguments
grows. As you might expect, there is a Composer package to address these issues. It’s a
lucky coincidence that I opted to use Composer for autoloading!

Using GetOpt.php

GetOpt.php is a well-featured object-oriented tool for parsing options. While the
getopt () function is fine for quick and dirty scripts, you'll likely want GetOpt.php or a
similar package for any complex or critical application.

263

CHAPTER 11 PHP ON THE COMMAND LINE

Note In fact, GetOpt.php does a lot more than parse options. If you’re planning to
build a larger system, it’s worth checking out the package’s support for sub-
commands in the documentation at http://getopt-php.github.io/
getopt-php/.

You can install the package with Composer:
$ composer require ulrichsg/getopt-php

Once I have the package installed, I can incorporate some of its key components into
my command-line script and instantiate a GetOpt object.

use GetOpt\GetOpt;
use GetOpt\Option;
use GetOpt\Argument;
use GetOpt\Operand;

$getopt = new GetOpt();

Here, aside from creating a GetOpt object, I set the script up to work with options,
arguments, and operands. Of these, only the term operand should be new to you. That'’s
the term the GetOpt.php package uses to describe positional arguments.

Now, I'm ready to define and apply my first option:

$getopt->addOption((new Option('a', 'long-a', GetOpt::NO ARGUMENT))-
>setDescription('about the a flag'));

Thanks to good object-oriented design, you can almost read this as plain English.
I create an Option object and pass it to GetOpt: :addOption(). The Option constructor
accepts a string argument representing a short option and another for an equivalent long
option. You must provide at least one of these. The constructor also accepts an optional
string value which should describe the option’s argument requirement. If provided,
this should match one of the GetOpt string constants concerned with argument
requirements. I describe these in Table 11-1.

264

http://getopt-php.github.io/getopt-php/
http://getopt-php.github.io/getopt-php/

CHAPTER 11 PHP ON THE COMMAND LINE

Table 11-1. GetOpt Argument Constants

Constant Value Description

GetOpt\GetOpt::NO ARGUMENT ":noArg' No argument (default)
GetOpt\GetOpt: :REQUIRED ARGUMENT ':requiredArg' Argument required
GetOpt\GetOpt::OPTIONAL ARGUMENT ':optionalArg' Argument optional

GetOpt\GetOpt::MULTIPLE ARGUMENT ':multipleArg' Accepts multiple arguments
(at least one)

The Option class supports a setDescription() method which requires a string
argument. This will become more obviously useful when I come to generate a usage
message. So, having created an Option object, I call Option: :setDescription().

So, I've configured support for the a flag alongside its --1ong-a equivalent. Next, I'll
build in support for -b.

$getopt->addoption((new Option('b', null, GetOpt::REQUIRED ARGUMENT))-
>setDescription('about the b flag'));

Note that as I've configured it here, the -b option has no long option equivalent.
Next, I add support for the short -d and -e options.

$getopt->addoption((new Option('d', null, GetOpt::NO ARGUMENT))-
>setDescription('about the d flag'));
$getopt->addoption((new Option('e', null, GetOpt::NO ARGUMENT))-
>setDescription('about the e flag'));

Of course, requiring an argument (as I did for -b) is not the same as validating
it. GetOpt.php supports that too. The GetOpt: : setArgument () method accepts an
Argument object which allows you to provide a validation function.

$contopt = new Option(null, 'context', GetOpt::REQUIRED ARGUMENT);
$contopt->setDescription("context scope");

$contopt->setArgument(new Argument(null, 'is numeric', 'number of lines'));
$getopt->addOption($contopt);

265

CHAPTER 11 PHP ON THE COMMAND LINE

The Argument constructor accepts a default (scalar) value, a callable validation
routine, and an argument name. All of these are optional. For validation, I have
referenced the built-in is_numeric() function, but for more complex requirements (a
valid file path, for example), you can easily provide a your own anonymous function
which should accept the argument to test and resolve to a Boolean.

Once I have built up my options configuration, I'm ready to tell the GetOpt object to
parse $argv.

$ret = $getopt->process();

I'have not handled any error conditions here. In real-world code, I might wrap
GetOpt::process() in a try/catch clause to handle one of several error conditions
that the method might encounter during parsing (for an unknown option or an invalid
argument, for example).

Once the parsing is complete, I can access an options array with
GetOpt::getOptions() and an array of positional arguments with
GetOpt::getOperands().

$options = $getopt->getOptions();
$newargs = $getopt->getOperands();

print_r($options);
print_r($newargs);

Independently of processing, I can also generate a usage message:
print $getopt->getHelpText();
Let’s put our options parsing configuration through its paces:

$ php scripts/play-args-getopt.php -a -b with-arg --context=20 -de
posl pos2

Remember, my example includes three outputs: options, positional arguments, and
a usage message. Here’s the options output:

Array

(
[a] => 1
[long-a] => 1

266

CHAPTER 11 PHP ON THE COMMAND LINE

[b] => with-arg
[d] => 1
[e] => 1
[context] => 20

Note here that since I defined them as equivalent, both the “a” and “long-a” elements
are populated - even though I only provided -a on the command line. The classic
getopts() function has no concept of equivalence, so it will only populate the option it
encounters in the argument list.

Here’s my list of positional arguments (operands in the GetOpts.php lexicon):

Array
(
[0] => pos1
[1] => pos2
)

Finally, a very labor-saving usage message:

Usage: scripts/play-args-getopt.php [options] [operands]

Options:
-a, --long-a about the a flag
-b <arg> about the b flag
-d about the d flag
-e about the e flag

--context <output file> context scope

This last is particularly useful because it saves you having to keep a long string in line
with your evolving options and arguments - like this:

$argv = $GLOBALS['argv'];

$usage = "\n";

$usage .= sprintf("usage: %s [options] [args]\n", $argv[o]);

$usage .= "Options:\n";

$usage .= sprintf("%6s %-12s %-6s %s\n", "-a", "--long-a", "", "about the
a flag");

267

CHAPTER 11 PHP ON THE COMMAND LINE

$usage .= sprintf("%6s %-12s %-6s %s\n", "-b", "", "<arg>", "about the

b flag");

$usage .= sprintf("%6s %-12s %-6s %s\n", "-d", "", "", "about the d flag");
$usage .= sprintf("%6s %-12s %-6s %s\n", "-e", "", "", "about the e flag");
$usage .= sprintf("%6s %-12s %-6s %s\n", "", "--context", "<num>", "context
scope");

Of course, it isn’t hard to create something like this - or something even simpler
using a heredoc string - but, in my experience, hand-maintained usage messages quickly
fall out of alignment with configuration.

Enforcing Positional Arguments

GetOpt.php can manage operands (positional arguments) as well as options. In my
initial example, I instantiated a GetOpts object with no constructor arguments. In fact,
it can accept two arguments. The first is a string of the kind accepted by getopts() and
the second is a settings array. I can use the settings array, along with Operand objects, to
define and enforce positional arguments. Let’s start again from the top:

$getopt = new GetOpt(null, [GetOpt::SETTING STRICT OPERANDS => true]);

// handle options as before ...

$getopt->addOperand(

new Operand('pos1', Operand::REQUIRED)
)
$getopt->addOperand(

new Operand('pos2', Operand::REQUIRED)
)

The Operand class constructor requires a name and accepts a requirement constant -
one of Operand: :REQUIRED, Operand: :OPTIONAL, or Operand: :MULTIPLE. I create two
Operand objects and pass them to my GetOpt instance. Since I've decided to be strict

about my positional arguments, I have configured GetOpt with GetOpt: : SETTING
STRICT OPERANDS set to true.

268

CHAPTER 11 PHP ON THE COMMAND LINE

Now, if I fail to provide two positional arguments, $getopt->process() will throw an
exception.

PHP Fatal error: Uncaught GetOpt\ArgumentException\Missing: Operand posi
is required in ...

Furthermore, the usage string will be automatically updated.

Usage: scripts/play-args-getopt-args.php [options] <posi> <pos2>

Options:
-a, --long-a about the a flag
-b <arg> about the b flag
-d about the d flag
-e about the e flag

--context <output file> context scope

Personally, I tend to enforce and validate my own positional arguments, since I
prefer the flexibility that affords me. I might, for example, want to relax or alter my
argument requirements when certain flags (like --help) are present. Nonetheless,
operand management is a nice additional feature.

Handling Output

We saw in Volume 1 that, in web programming, it’s a good idea to use Response objects
to manage output. This makes components easier to test and allows for changes in
implementation. In a quick command-line script, I would likely go ahead and use print
or fputs(). But for a slightly larger project, I like to create a class to encapsulate output.
This can then be passed to other objects in my system which should not be making
decisions about output.

Here’s a basic implementation:

class Output
{

public int $verbosity = 0;
private $handle = STDOUT;

269

CHAPTER 11 PHP ON THE COMMAND LINE

public function setFileMode(string $path, $destructive = true)
{

$mode = $destructive ? "w" : "a";
$this->handle = fopen($path, $mode);
}
public function say(string $str): void
{
fputs($this->handle, $str);
}
public function warn(string $str): void
{
fputs(STDERR, $str);
}
public function debug(string $str): void
{
if ($this->verbosity > 0) {
fputs(STDERR, $str);
}
}

This simple class offers three output methods: say(), warn(), and debug(). By
default, as you might expect, say() outputs a string to STDOUT and warn() outputs to
STDERR. The debug() method also sends output to STDERR but only if the $verbosity
property is set to a nonzero value. An additional method, setFileMode(), accepts a path
and alters the output handle so that say () will write output to a file.

Of course, a more complete implementation of the Output class would include more
error checking and would allow for file mode to be disabled as well as set.

You will see Output in operation in future examples. In fact, we can get started with
that right away.

270

CHAPTER 11 PHP ON THE COMMAND LINE

Updating the Example Script

By way of consolidation, I'll apply what I've covered so far to the basic converter script.
I'll add two new options: -h to generate the usage message and -o to allow the user
to specify an output file. Here’s a version of the script that uses GetOpt.php:

use GetOpt\GetOpt;

use GetOpt\Option;

use GetOpt\Argument;

use GetOpt\ArgumentException;

// script globals
$output = new Output();
$getopt = new GetOpt();

// convenience functions
function croak(string $msg): void

{
global $output, $getopt;
$output->warn(usage($msg));
exit(1);
}
function usage(?string $msg = null): string
{
global $getopt;
$usage = $getopt->getHelpText();
if (! is_null($msg)) {
$usage .= "\n{$msg}\n\n";
}
return $usage;
}

// configuration

$getopt->addoption((new Option('h', "help', GetOpt::NO ARGUMENT))-
>setDescription("this help message"));

$fileopt = (new Option('o', 'output', GetOpt::REQUIRED ARGUMENT))-
>setDescription('output to file');

271

CHAPTER 11 PHP ON THE COMMAND LINE

$fileopt->setArgument(new Argument(null, null, 'file'));
$getopt->addOption($fileopt);

// execution

try {
$ret = $getopt->process();

} catch (ArgumentException $e) {
croak($e->getMessage());

}

$options = $getopt->getOptions();
$newargs = $getopt->getOperands();

if (isset($options['help'])) {
$output->say(usage());
exit(0);

}

if (isset($options['o'])) {
$output->setFileMode($options['o0']);
}

if (! count($newargs)) {
croak("not enough arguments”);

}

$file = $newargs[o];

if (! file exists($file)) {
croak("no file at '{$file}'");

}

$txt = file get contents($file);
$output->say(Converter: :upper($txt));

There’s nothing genuinely new here. Note the croak() convenience function. This
sends the usage output to STDERR via Output: :warn() and exits the script with a nonzero
status code (hard-coded to 1 here). The Output class is also useful for the -o flag. I don’t
have to do anything more complicated than call Output: : setFileMode() if this option is
set (although, once again, a little more error checking would not go amiss).

272

CHAPTER 11 PHP ON THE COMMAND LINE

It’s not hard to replicate this script without GetOpt.php. Here are the main points of
difference:

function usage(?string $msg = null): string

{
$argv = $GLOBALS['argv'];
$usage = sprintf("usage: %s <file>\n", $argv[o0]);
$usage .= sprintf("%6s %-12s %-6s %s\n", "-h", "--help", "", "this help
message");
$usage .= sprintf("%6s %-12s %-6s %s\n", "-o", "--output", "", "output
to a file");
$usage .= "\n";
if (! is_null($msg)) {
$usage .= "{$msg}\n\n";
}
return $usage;
}

// configuration

$rest_index = null;

$options = getopt("ho:", ['help', 'output:'], $rest index);
$newargs = array slice($argv, $rest index);

Everything else is broadly the same for this version of the script, except that
unexpected options won't cause an error and, because getopt () does not have a
concept of equivalence, I need to check for the long and short versions of any options
that have both.

From now on, I will stick to using GetOpt.php.

Adding Verbose Mode

With this set up, we already have enough in place to add a -v option to enable
verbose output.

$getopt->addOption((new Option('v', 'verbose', GetOpt::NO ARGUMENT))-
>setDescription('verbose mode'));

/] ...

273

CHAPTER 11 PHP ON THE COMMAND LINE

if (isset($options['verbose'])) {
$output->verbosity = 1;

}
/...

// this will output only if the user has invoked with '-v
$output->debug("beginning...\n");

So, if the user calls the script with -v or --verbose, the script sets the
Output: :$verbosity property to 1. Thereafter, all calls to Output: : debug() will be sent
to STDERR. As a reminder, here’s Output : :debug() again:

public function debug(string $str): void
{
if ($this->verbosity > 0) {
fputs(STDERR, $str);

Let’s give it a whirl (this time in a script named conv_go2.php):

$ php scripts/conv_go2.php -v -o /tmp/blah.txt res/test.txt
beginning...
reading file...

Because I specified -v, my debug messages are played. We don’t see any other
output because I set -o to /tmp/blah.txt. I can confirm that my script worked though by
examining that file:

$ cat /tmp/blah.txt
>TWAS BRILLIG, AND THE SLITHY TOVES
DID GYRE AND GIMBLE IN THE WABE:
ALL MIMSY WERE THE BOROGOVES,
AND THE MOME RATHS OUTGRABE.

274

CHAPTER 11 PHP ON THE COMMAND LINE

Prompted Input

We have dealt with options and positional arguments which are probably the most
common forms of script input. Sometimes, though, you want to prompt the user from
within a script. There are various ways of doing this, but I will opt for readline():

$getopt->addoption((new Option('c', 'console', GetOpt::NO ARGUMENT))-
>setDescription("console mode"));

/...

if (isset($options['console'])) {
$output->debug("reading from console...\n");
while (($input = readline("I> ")) !== false) {
$output->say(Converter: :upper ("{$input}\n"));
}
} else {
$output->debug("reading file...\n");
if (! count($newargs)) {
croak("not enough arguments");
}
$file = $newargs[0];
if (! file exists($file)) {
croak("no file at '{$file}'");
}
$txt = file get contents($file);
$output->say(Converter: :upper($txt));

The readline() function accepts an optional prompt string and returns a line of
user input (with the newline stripped). It will return false if there is nothing left to read.
If the -c flag is set, the script enters console mode and prompts for user input. The script
will continue until killed with Ctrl-C or Ctrl-D.

$ php ./scripts/conv _go2.php -c

I> The Owl and the Pussy-cat went to sea
THE OWL AND THE PUSSY-CAT WENT TO SEA
I> In a beautiful pea-green boat,

275

CHAPTER 11 PHP ON THE COMMAND LINE

IN A BEAUTIFUL PEA-GREEN BOAT,
I>

Piped Input

One of the beauties of commands on Unix-like systems is the ability to chain them
together. I might, for example, use cat to join and output SQL queries from two files and
pipe the result into the mariadb command.

In order to make the converter script capable of reading piped content, I need a
function to check whether such input is available.

function pipeThere(): bool

{
$read = [STDIN];
$write = [];
$except = [];
$timeout = 0;
$streamCount = stream select($read, $write, $except, $timeout);
return (bool) $streamCount;
}
/] ...

if (pipeThere()) {
$output->debug("piped input...\n");
while (!feof(STDIN)) {
$line = fgets(STDIN);
$output->say(Converter: :upper($line));

}
} elseif (isset($options['console'])) {

$output->debug("reading from console...\n");

/...

276

CHAPTER 11 PHP ON THE COMMAND LINE

} else {
$output->debug("reading file...\n");
/] ...

}

The pipeThere() function makes use of the built-in stream select() function to
detect content waiting to be consumed from STDIN. stream_select() requires three
arrays, one containing readable streams, another containing writeable streams, and a
third containing high-priority streams to be checked. A fourth argument should contain
a timeout value in seconds. If the timeout value is set to 0, the function will test and
return right away. The function returns an integer representing the number of streams
that match the test or false if no streams become available for reading or writing. I am
only interested in checking the status of STDIN, so I add that to the $read array and leave
the others empty. I only want to perform a quick check so my timeout value is set to 0.

I call pipeThere() at the start of script operation. If the script is offered piped input,
pipeThere() will return true, and I accept input from STDIN rather than a file or from
console input.

Let’s try it out:

$ cat res/test.txt | php scripts/conv_go3.php
>TWAS BRILLIG, AND THE SLITHY TOVES

DID GYRE AND GIMBLE IN THE WABE:
ALL MIMSY WERE THE BOROGOVES,

AND THE MOME RATHS OUTGRABE.

Packaging Up

There are various options for distributing a script. The most obvious, of course, is
Composer. This is particularly attractive in the case of my example because I am already
using Composer to manage autoloading and to incorporate dependencies. In some
circumstances, I may want to make it particularly easy for others to run my script. For
such situations, I may choose to generate a binary. Let’s look at both options.

277

CHAPTER 11 PHP ON THE COMMAND LINE

Distribution with Composer

Given the ground covered in this chapter, this is what my project directory might look
like at this point:

composer.json
scripts/
conv.php
src/
Converter.php
Output.php
res/
test.txt

I would like to make the conv. php script available to any project that uses mine. Of
course, were I to create a Packagist repo named popp/conv my script would become
available. But its location, vendor/popp/conv/scripts/conv.php, would not be
particularly intuitive. I'd like conv. php to appear in a more accessible location such as
vendor/bin. Users already working with a Composer-installed PHPUnit will be primed
to expect a script there.

In order to identify conv.php as a script, I must specify a bin element in my
composer . json file:

{

"name": "popp/conv",

"bin": ["scripts/conv.php"],

"autoload": {

"psr-4": {
"popp\\ch24\\batcho3\\": ["scripts/", "src/"]
}

})

"require": {
"composer-runtime-api": "2.2",
"ulrichsg/getopt-php": "~4.0"

}

}

278

CHAPTER 11 PHP ON THE COMMAND LINE

The only new element here is the bin element which tells Composer that it should
treat scripts/conv.php as special. Slightly confusingly, this will have no effect on my
project directory. Rather, it will change the file made available to a user who installs
popp/conv (probably using composer require). Since I'm not actually ready to upload
my project to Packagist (see Chapter 5 for more on that), how can I test my setup?

Luckily, I can create a test project to install my work in progress locally. My project
directory is named batch03. I will create a test project in a sibling directory batcho4
containing a single composer. json file. Here it is:

{
"repositories": [
{
"type": "path",
"url": "../batcho3",
"options": {
"symlink": true
}
}
1
"require": {
"popp/conv": "@dev"
}
}

This sets up popp/conv as a requirement and, through the repositories element,
specifies the . ./batcho3 directory as its location. Notice also the options subelement
where I specify that I wish to use a symlink rather than a copy of the source directory.
After I have run composer update, I should find that I have a vendor/ directory in
my client (batcho4/) directory containing the popp/conv package alongside all the
dependencies it specifies. Thanks to my options specification, the conv/popp project
will be included as a symlink, which means I can continue developing locally without
having to reinstall every time I make a change and wish to test from a client perspective!

Are you lost? Let’s ground things with another snapshot of some key files and
directories before continuing:

Here again is my project directory. This is where I develop my popp/conv package
and my little command-line script.

279

https://doi.org/10.1007/979-8-8688-0779-4_5

CHAPTER 11 PHP ON THE COMMAND LINE

batcho3/
composer.json
scripts/
conv.php
src/
Converter.php
Output.php

I have set up the batcho4 directory as a client environment for testing. I generate a
vendor/ directory there thanks to configuration in the batcho4/composer. json file. This
references project conv/popp in the batcho3/ directory which it includes as a symlink.

batcho4
composer.json
vendor/
bin/
conv.php
popp
conv -> ../../../batcho3/
many other directories

If I take a peek inside my new binary file at vendor/bin/conv.php, I can see that
rather than copy over (or link to) conv. php the file that has been installed, there is a stub
which simply references the scripts/conv.php file within the package.

namespace Composer;

$GLOBALS[' composer _bin dir'] = DIR_;

$GLOBALS[' composer autoload path'] = DIR . '/..' . '/autoload.php';
return include DIR . '/..' . '/popp/conv/scripts/conv.php';

Notice also that it creates a couple of handy global variables. Of particular use to me
hereis $ composer autoload path. Remember thatIincluded autoload.php originally
using a relative path: _DIR . "../vendor/autoload.php". This path will no longer
be correct when my script is buried away under vendor /popp/conv/scripts/. Thanks
to the stub script that Composer has created, however, I can incorporate $_composer
autoload pathinto my require once statement so that it is correct both when run
locally and when run from within vendor/.

280

CHAPTER 11 PHP ON THE COMMAND LINE

I'll head back to batch03 and update my scripts/conv.php file to take advantage
of this:

namespace popp\ch24\batcho3;

require once($_composer autoload path ?? DIR . "/../vendor/
autoload.php");

Now, I return to batch04/ where my test install lives and check that my script is sane:

$./vendor/bin/conv.php
Usage: ./vendor/bin/conv.php [options] [operands]

Options:
-h, --help this help message
-v, --verbose verbose mode
-c, --console console mode

-0, --output <file> output to file

not enough arguments

Creating a Phar

So, we have seen how we might create a package suitable for distribution to Packagist for
inclusion in other projects. But that requires a certain amount of knowledge from script
users. You might also want to distribute a binary that can just be downloaded and run. A
Phar is just that. It is a bundle of resources combined into a single file (usually with the
.phar sulffix) that can be run either directly or via PHP. A Phar still requires the presence
on the target system of a PHP interpreter, but, if that’s in place, it’s usually a pretty plug-
n-play experience for an end user. In this book, I have discussed or demonstrated the
Phar format in the context of phpDocumentor, PHPUnit, and Composer.

PHP itself provides a suite of tools for building your own Phar files. These are
documented at https://www.php.net/manual/en/book.phar.php. If you have created
your command-line script in a Composer context however, I recommend a tool
named phar-composer which takes a Composer environment and bundles it up into
Phar format.

281

https://www.php.net/manual/en/book.phar.php

CHAPTER 11 PHP ON THE COMMAND LINE

You can install phar-composer via Composer, but the recommended approach is to
acquire and run phar-composer itself as a Phar.

$ curl -JOL https://clue.engineering/phar-composer-latest.phar
$ mv phar-composer-*.phar phar-composer.phar

$ chmod 755 phar-composer.phar

$./phar-composer.phar --version

As already discussed, my version of the Composer project containing the scripts/
conv. php command-line tool is in a directory named batch03/. I have downloaded
composer-phar to a sibling directory at batch04 which is where I'm based for this
example. Before I run the tool, I must invoke composer update in batch03/ in order to
generate the project’s vendor/ directory and populate it with the latest dependencies.

$ cd ../batcho3/
$ composer update
Loading composer repositories with package information
Updating dependencies
Lock file operations: 1 install, 0 updates, 0 removals
- Locking ulrichsg/getopt-php (v4.0.3)
Writing lock file
Installing dependencies from lock file (including require-dev)
Package operations: 1 install, 0 updates, 0 removals
- Installing ulrichsg/getopt-php (v4.0.3): Extracting archive
Generating autoload files
No security vulnerability advisories found.

Now, I can change back to my phar-composer directory and run a new
command: build.

$cd -
$ php -d phar.readonly=off ./phar-composer.phar build ../batcho3/
conv.phar

Why did I include that -d option? For security reasons, Phar writing is disabled in the
php.ini configuration by default. Adding this option ensures the readonly directive is
toggled off for the duration of the command’s execution. Here’s the output:

[1/1] Creating phar conv.phar

282

CHAPTER 11 PHP ON THE COMMAND LINE

- Adding main package "popp/conv"

- Adding composer base files

- Adding dependency "ulrichsg/getopt-php" from "vendor/ulrichsg/
getopt-php/"

- Setting main/stub
Using referenced chmod 0755
Applying chmod 0755

OK - Creating conv.phar (132.7 KiB) completed after 0s

And that should be it! I have generated a file named conv.phar which I can share
with my team members:

$./conv.phar -h
Usage: ./conv.phar [options] [operands]

Options:
-h, --help this help message
-v, --verbose
-c, --console console mode
-0, --output <file>

Executing Shell Commands

This chapter is less about calling shell commands from PHP than it is about creating
utilities in PHP that can be called from the shell. In fact, calling external binaries,
“shelling out” as it’s sometimes dubbed, is often frowned upon. That’s because the
practice scales poorly in a web context and sets up dependencies that can be hard
to manage. On the other hand, if you're creating a PHP script designed to run on the
command line, perhaps to perform some useful task in your project, then shelling out
might be just what you need. Such scripts are often quick and dirty utilities, creatures
of the shell. It makes perfect sense to build them to invoke other commands. If they're
designed for use during development or deployment, then performance and scalability
is less likely to be a consideration than it would be in a web component.

PHP is a pragmatic language, and this book is for pragmatic programmers. So let’s
take a quick look at some of the options for shelling out.

283

CHAPTER 11 PHP ON THE COMMAND LINE

All the examples in this section will work with a shell command stored in the same
variable:

$command = "wc README.md";

The command wc calculates and outputs the number of lines, words, and characters
in a given file. wc README.md outputs the following when run on the command line in my
repository (once I've gotten around to creating a README . md file, of course):

120 511 3249 README.md
I'll begin with passthru():

$nullOrFalse = passthru($command, $status);

// returns: null for success / false for failure

// command status: captured by $status variable reference
// output: raw passed to STDOUT (good for binary data)

The passthru() function accepts a command to run and an optional variable which,
if provided, will be populated by the exit status of the command. It returns null if the
given command has been provided or generates a ValueError if the command argument
is empty. The output of the given command is not captured by passthru(). Instead, it is
sent to STDOUT. Because it is not processed in any way, this command can be used in a
web context for generating binary data.

Note Exit codes in Unix-like systems run from 0 (success) to 255. Any nonzero
result is an error condition. On the command line, you can acquire the exit code of
the last command run with the $? variable. The “success” of a program execution
function is not related to the command’s exit code. The function’s return value
addresses the successful running of a command; the execution code is the
command’s own assessment of its success.

Similar to passthru(), the system() command sends text to the browser line by line,
making it better suited for text than binary output in a web context.

284

CHAPTER 11 PHP ON THE COMMAND LINE

$nullOrFalse = system($command, $status);

// returns: last line of output (false on failure)

// command status: captured by $status variable reference
// output: text passed to STDOUT

system() requires a command argument and optionally accepts a variable
to be populated with the exit status. The function returns the last line of the
command’s output.

If you need to capture a command’s output into an array, then exec() is the function
you want.

$lastline = exec($command, $output, $status);

// returns: last line of output (false on failure)

// command status: captured by $status variable reference
// output: added to $output array

Unsurprisingly, exec () requires a command argument. It optionally accepts two
further arguments. The first of these it will populate with an array of output lines. The
second, again, will contain the exit code. The method returns the last line of any output
(or false on failure).

Finally, for a quick hack, backticks will get the job done.

$output = “$command™; // same as “shell exec()’

// returns: command output (null for error/no output, false if pipe can't
be established)

// command status: not available

// output: returned

This is as easy as anything. Simply wrap the command in backticks then assign, or
otherwise work with, the output. You won’t get the exit status, so this is not an option to
go for if you're worried about a failure condition.

This is not an exhaustive list, but it should be enough for most needs. I summarize
the program execution functions in Table 11-2.

285

CHAPTER 11 PHP ON THE COMMAND LINE

Table 11-2. Some Program Execution Functions

Function or Language Output Exit Status Returns Notes
Construct

passthru($cmd, Sentto STDOUT $status null on success Best for passing

$status) populated through binary data
system($cmd, Sentto STDOUT ~ $status null onsuccess Better suited to text
$status) populated output
exec($cmd, $output $status Last line of output -
$output, $status) populated as populated (or false on fail)

array
backticks () Returns output No status Output Identical to shell

exec()

Note Passing untrusted data to exec() and its cousins is a huge security
risk. Do not pass along user-provided data to the shell without first checking and
sanitizing it (or, preferably, don’t pass it along at all).

Summary

In this chapter, I covered much of what you need to build a user-friendly command-
line application in PHP. I looked at various ways of leveraging Composer for your script,
from autoloading, to accessing tools, to making scripts available for other users. I
covered command-line arguments and the thorny issue of parsing options. I examined
gathering data piped in from other commands and via user prompts and suggested a
strategy for encapsulating output. I used the composer-phar tool to generate a runnable
Phar archive for distribution. Finally, I compared some techniques for “shelling out” -
invoking shell commands from within your PHP scripts.

286

CHAPTER 12

Continuous Integration

In previous chapters, you've seen a plethora of tools that are designed to support a
well-managed project. Unit testing, documentation, build, and version control are all
fantastically useful. But tools, and testing in particular, can be bothersome.

Even if your tests only take a few minutes to run, you're often too focused on coding
to run them. Not only that, but you have clients and colleagues waiting for new features.
The temptation to keep on coding is always there. But bugs are much easier to fix close
to the time they are hatched. That’s because you're more likely to know which change
caused the problem and are better able to come up with a quick fix.

In this chapter, I introduce continuous integration, a practice that automates the
build and test process and brings together some of the tools and techniques you've
encountered in recent chapters.

This chapter will cover these topics:

e Defining continuous integration

o Preparing a project for CI

» Looking at Jenkins: A CI server

e Checking out and testing your code with Jenkins
e Introducing GitHub Actions

e Checking out your code and running automated tests with
GitHub Actions

287
© Matt Zandstra 2025

M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_12

https://doi.org/10.1007/979-8-8688-0779-4_12#DOI

CHAPTER 12 CONTINUOUS INTEGRATION

What Is Continuous Integration?

In the bad old days, integration was something you did after you'd finished the fun stuff.
It was also the stage at which you realized how much work you still had to do. Integration
is the process by which all of the parts of your project are bundled up into packages that
can be shipped and deployed. It’s not glamorous, and it’s actually hard.

Integration is tied up also with QA. You can’t ship a product if it isn’t fit for purpose.
That means tests. Lots of tests. If you haven’t been testing much prior to the integration
stage, it probably also means nasty surprises. Lots of them.

You know from Chapter 7 that it’s best practice to test early and often. Most of us
accept that this is the ideal, but how often does the reality match up?

If you practice test-oriented development (a term I prefer to test-first development,
because it better reflects the reality of most good projects I've seen), then the writing
of tests is less hard than you might think. After all, you write tests as you code anyway.
Every time you develop a component, you create code fragments, perhaps at the bottom
of the class file, that instantiate objects and call their methods. If you gather up those
throwaway scraps of code, written to put your component through its paces during
development, you've got yourself a test case. Stick them into a class and add them to
your suite.

Oddly, it’s often the running of tests that people avoid. Over time, tests take longer to
run. Failures related to known issues creep in, making it hard to diagnose new problems.
Also, you suspect someone else committed code that broke the tests, and you don’t have
time to hold up your own work while you fix issues that are someone else’s fault. Better to
run a couple of tests related to your work than the whole suite.

Failing to run tests, and therefore to fix the problems that they could reveal, makes
issues harder and harder to address. The biggest overhead in hunting for bugs is usually
the diagnosis and not the cure. Very often, a fix can be applied in a matter of minutes, set
against perhaps hours searching for the reason a test failed. If a test fails within minutes
or hours of a commit, however, you're more likely to know where to look for the problem.

Software build suffers from a similar problem. If you don’t install your project often,
you're likely to find that, although everything runs fine on your development box, an
installed instance falls over with an obscure error message. The longer you've gone
between builds, the more obscure the reason for the failure will likely be to you.

It's often something simple: an undeclared dependency upon a library on your
system or some class files you failed to check in. These are easy to fix if you're on hand.
But what if a build failure occurs when you're out of the office? Whichever unlucky team

288

https://doi.org/10.1007/979-8-8688-0779-4_7

CHAPTER 12 CONTINUQUS INTEGRATION

member gets the job of building and releasing the project won’t know about your setup
and won't have easy access to those missing files.

Integration issues are magnified by the number of people involved in a project. You
may like and respect all of your team members, but we all know that they are much
more likely than you are to leave tests unrun. And then, they commit a week’s work of
development at 4 p.m. on Friday, just as you're about to declare the project good to go
for a release.

Continuous integration (CI) reduces some of these problems by automating the
build and test process.

Clis both a set of practices and a set of tools. As a practice, it requires frequent
commits of project code (at least daily). With each commit, tests should be run and
any packages should be built. You've already seen some of the tools required for CI, in
particular PHPUnit and Ansible. Individual tools aren’t enough, however. A higher-level
system is required to coordinate and automate the process.

Without the higher system, a CI server, it’s likely that the practice of CI will simply
succumb to our natural tendency to skip the chores. After all, we’d rather be coding.

Having a system like this in place offers clear benefits. First, your project gets built
and tested frequently. That’s the ultimate aim and benefit of CI. That it’s automated,
however, adds two further dimensions. The test and build happens in a different thread
to that of development. It happens behind the scenes and doesn’t require that you stop
work to run tests. Also, as with testing, CI encourages good design. In order for it to be
possible to automate installation in a remote location, you're forced to consider ease of
installation from the start.

I don’t know how many times I've come across projects where the installation
procedure was an arcane secret known only to a few developers. “You mean you
didn’t set up the URL rewriting?” asks one old hand with barely concealed contempt.
“Honestly, the rewrite rules are in the Wiki, you know. Just paste them into the Apache
config file” Developing with CI in mind means making systems easier to test and install.
This might mean a little more work up front, but it makes our lives easier down the line.
Much easier.

So, to start off, I'm going to lay down some of that expensive groundwork. In fact,
you'll find that in most of the sections to come, you've encountered these preparatory
steps already.

289

CHAPTER 12 CONTINUOUS INTEGRATION

Preparing a Project for Cl

First of all, of course, I need a project to integrate continuously. Now, I'm a lazy soul, so
I'll look for some code that comes with tests already written. The obvious candidate is
the project I created in Chapter 7 to illustrate PHPUnit. I'm going to name it userthing,
because it’s a thing, with a User object in it.

First of all, here is a breakdown of my project directory:

test/
util/
ValidatorTest.php
persist/
UserStoreTest.php
src/
util/
Validator.php
domain/
User.php
persist/
UserStore.php

As you can see, I've tidied up the structure a little, adding some package directories.
Within the code, I've supported the package structure with the use of namespaces.
I've separated my test directory from the rest of my source code. I'll need to set up my
autoload rules so that PHP can locate all the system’s classes during testing. I'll add a
composer . json file at the top level:

{
"autoload": {

"psr-4": {
"userthing\\": ["src/", "test/"]

Now that I have a project, I should add it to a version control system.

290

https://doi.org/10.1007/979-8-8688-0779-4_7

CHAPTER 12 CONTINUQUS INTEGRATION

ClI and Version Control

Version control is essential for CI. A CI system needs to acquire the most recent version
of a project without manual intervention (at least once things have been set up).
I will add userthing to GitHub.

Note I cover the process of adding a project to GitHub in Chapter 6.

Figure 12-1 shows my GitHub project some time after initial import. We will cover
the included .github/workflows directory shortly.

v) poppbook/userthing X + - o x
<« c 25 github.com/poppbook/userthing % A O a
= O poppbook / userthing & Q + - ollnlla

<> Code (©) Issues I Pullrequests () Actions [Projects (@ Security [~ Insights

userthing Privaee @Umaich 2 v Y Fok 0 + | fy Star 0 |

¥ main ~ ¥ © Go to file + About 3

No description, website, or topics

poppbook readme 008cf10 - last week) provided.
B github/workflows expose tests last week 0 Readme
5 A~ Activity
B src initial import 2 weeks ago
Y Ostars
W test initial import 2 weeks ago ® 2 watching
. % 0 forks
[.gitignore initial import 2 weeks ago
[README.md readme last week Releases
[composer.json initial import 2 weeks ago
[composer.lock added pr-tests last week

Figure 12-1. The userthing GitHub repository

291

https://doi.org/10.1007/979-8-8688-0779-4_6

CHAPTER 12 CONTINUOUS INTEGRATION

Unit Tests

Unit tests are the key to continuous integration. It’s no good successfully building a
project that contains broken code. The easiest way to install it is via Composer.

$ composer require --dev phpunit/phpunit

This is the approach I'll take for my example. Because PHPUnit will be installed
under the vendor/ directory, my development directory will remain independent of the
wider system.

Here’s my complete composer . json:

{
"require-dev": {
"phpunit/phpunit": "~12.1"
})
"autoload": {
"psr-4": {
"userthing\\": ["src/", "test/"]
}
}
}

Because I ran composer require, I also created a vendor/ directory which provides
me with the phpunit script and autoload.php which handles autoloading for my
application.

Note | covered Composer in Chapter 5.

In Chapter 7, I wrote tests for a version of the userthing code I'll be working with in
this chapter too. Here, I run them once again (from within my project directory), to make
sure my reorganization has not broken anything new:

$./vendor/bin/phpunit test/

After a few false starts and quick fixes, my test run confirms that things look
relatively sane:

PHPUnit 11.3.1 by Sebastian Bergmann and contributors.

292

https://doi.org/10.1007/979-8-8688-0779-4_5
https://doi.org/10.1007/979-8-8688-0779-4_7

CHAPTER 12 CONTINUQUS INTEGRATION
Runtime: PHP 8.3.7
....... 7 / 7 (100%)
Time: 00:00.021, Memory: 8.00 MB
OK (7 tests, 7 assertions)

I'll add, commit, and push my composer. json file along with any other changes.
Remember that you should not commit the auto-generated vendor/ directory. This
should be generated afresh during the build process on a target environment.

Getting and Installing Jenkins

So, I have some useful tests that I can use to monitor the basic sanity of my project. Of
course, left to myself I'd soon lose interest in running them. In fact, I'd probably revert
to the old idea of an integration phase and pull out the tests only when I'm close to a
release, by which time their effectiveness as early-warning systems will be irrelevant.
What I need is a CI server to build my project and run the tests for me.

Jenkins (formerly named Hudson) is an open source continuous integration server.
Although it is written in Java, Jenkins is easy to use with PHP tools. That’s because
the continuous integration server stands outside of the projects it builds, kicking off
and monitoring the results of various commands. Jenkins also integrates well with
PHP because it is designed to support plug-ins, and there is a highly active developer
community working to extend the server’s core functionality.

Note Why Jenkins? Jenkins is very easy to use and extend. It is well established,
and it has an active user community. It’s free and open source. Plug-

ins that support integration with PHP (and that includes most build and test tools
you might think of) are available. There are many Cl server solutions out there,
however. A previous version of this book focused on CruiseControl (http://
cruisecontrol.sourceforge.net/), and this remains a good option. We will
also shortly examine GitHub Actions which is also a compelling alternative.

293

http://cruisecontrol.sourceforge.net/
http://cruisecontrol.sourceforge.net/

CHAPTER 12 CONTINUOUS INTEGRATION

Installing Jenkins

The Jenkins site provides good installation instructions at https://www.jenkins.io/
doc/book/installing/.

I'will opt for the Docker approach, which is a great way to get up and running
without worrying too much about your host environment. Here’s how you might run
a Docker Jenkins container according to the documentation for the official image at
https://github.com/jenkinsci/docker/blob/master/README .md:

$ docker run \
-p 8080:8080 \
-p 50000:50000 \
--restart=on-failure \
-v jenkins home:/var/jenkins home \
jenkins/jenkins:1ts-jdk17

That will get you a container running the Jenkins system on a Debian distribution.
However, I will want to install and test the userthing application, which means I will
need PHP.

Note Although, for the sake of simplicity, | will initially build and run tests within
the main Jenkins container, it is a better idea to configure one or more remote
Jenkins agents to perform builds under the control of a central node. | will cover
this approach later in the chapter.

In this chapter, I'm assuming a basic knowledge of Docker. If you need a refresher,
| cover Docker in Chapter 9.

Luckily, it's very easy to add PHP 8.3 to a Debian system. You can find
documentation for a popular approach at https://deb.sury.org. I can use those
instructions (specifically at https://packages.sury.org/php/README. txt) as the basis
of a script which, combined with a Dockerfile, can be deployed to create a PHP-capable
environment based on the official Jenkins Docker image. Here’s the Dockerfile:

294

https://www.jenkins.io/doc/book/installing/
https://www.jenkins.io/doc/book/installing/
https://github.com/jenkinsci/docker/blob/master/README.md:
https://doi.org/10.1007/979-8-8688-0779-4_9
https://deb.sury.org
https://packages.sury.org/php/README.txt

CHAPTER 12 CONTINUQUS INTEGRATION
FROM jenkins/jenkins:1ts-jdk17
USER root

COPY --chmod=0755 install-php .
RUN ./install-php

USER jenkins
Here’s that referenced install-php script:

apt-get update

apt-get install -y curl lsb-release

curl -sSLo /usr/share/keyrings/deb.sury.org-php.gpg https://packages.sury.
org/php/apt.gpg

sh -c 'echo "deb [signed-by=/usr/share/keyrings/deb.sury.org-php.gpg]
https://packages.sury.org/php/ $(1sb release -sc) main" > /etc/apt/sources.
list.d/php.list’

apt-get update

apt-get install -y php8.3 php8.3-cli composer php8.3-dom php8.3-simplexml
php8.3-mbstring

I build myself an image named jenkins_php like this:
$ docker build . --tag=jenkins php

With that image in place, I can adapt the docker run call we've already seen to create
a new, PHP-capable Jenkins container from the jenkins_php image:

$ docker network create jenkins

$ docker run \
-p 8080:8080 \
-p 50000:50000 \
--restart=on-failure \
-v jenkins_home:/var/jenkins home \
--network jenkins \
jenkins_php

Before invoking docker run, I create a bridge network named jenkins, and I join the
new container to it using the --network option. This becomes useful later when I need
to connect an agent node to the same network. Also, note the jenkins_home volume.

295

CHAPTER 12 CONTINUOUS INTEGRATION

This does not exist on my local system, so it will be created as a docker volume. This will
persist across containers, so that I can tear down and reinstall my container without
losing my Jenkins configuration. This Docker feature came in very handy during the
writing of this chapter!

Here is an extract from the docker run command’s output:

Jenkins initial setup is required. An admin user has been created and a
password generated.
Please use the following password to proceed to installation:

73e8df01b1594263a506aee841f9630e
This may also be found at: /var/jenkins home/secrets/initialAdminPassword

I have configured Jenkins run on the default port of 8080. When I fire up my browser
and visit http://localhost:8080/, I see something like the screen in Figure 12-2.

v £ signin [Jenkins] x + - o x

< C | ® localhost:8080/login?from=%2F A &

Getting Started

Unlock Jenkins

To ensure Jenkins is securely set up by the administrator, a
password has been written to the log (not sure where to find it?) and
this file on the server:

/var/jenkins_home/secrets/initialAdminPassword

Please copy the password from either location and paste it
below.

Administrator password

Figure 12-2. The install screen

296

CHAPTER 12 CONTINUQUS INTEGRATION

The instructions in Figure 12-2 are pretty self-explanatory so I grab the password
from the Docker command’s output (yours would be different, of course) and enter
it into the provided text field. Then, I'm presented with a choice: install with popular
plug-ins or pick my own? I opt for the most popular plug-ins, which I know will get
me support for Git, among other things. If you want a slim system, you might choose
to select only those plug-ins you need. After that, it’s time to create a username and
password before finishing up installation.

Installing Jenkins Plug-ins

Jenkins is highly customizable, and although I'm going to stick to basic build and test

in this chapter, you'll likely want to perform more operations on your code over time.

From within the Jenkins web interface, you can check on what’s available by clicking

on Manage Jenkins in the main screen and then choosing Plugins from the panel. From

there, you can check your Installed plugins or add new ones from Available plugins.
You can see the Jenkins plug-in page in Figure 12-3.

v G Installed plugins - Plugin® x + - 0O X
< (¢} ® localhost:8080/manage/pluginManager/installed PAS -

? Jenkins Q ov &
Dashboard Manage Jenkins Plugins

Plugins Q git

@y Updates Name | Enabled

Available plugins Git client plugin

s} Installed plugins Utility plugin for Git support in Jenkins

€33 Advanced settings) .
Git plugin

:= Download progress This plugin integrates Git with Jenkins.
R I L ht ugi

GitHub API

Plugin

This plugin provides GitHub API for other
plugins.

GitHub Branch
Source Plugin

Multibranch projects and organization folders 0 @
from GitHub. Maintained bv CloudBees. Inc

Figure 12-3. The Jenkins plug-in screen
297

CHAPTER 12 CONTINUOUS INTEGRATION

Setting Up Git in Jenkins

Before I can use the Git plug-in, I need to ensure that I have access to a Git repository. In
Chapter 6, I described the process of generating a public key in order to access a private
Git repository. If you've worked through that process, you should already have access to
a public and private key pair. As a reminder, here’s how you can create a new pair and
add the public key to the Git repository.

$ ssh-keygen -f ~/.ssh/jenkins gitub_ key

This command will create two files: ~/.ssh/jenkins_github_key for the private key
and ~/.ssh/jenkins_github key.pub for the public key.

Note Usually, when you run ssh-keygen, the output location is important. The
.ssh directory is where the SSH daemon looks for its credentials. In this chapter,
though, I will be acquiring the contents of these files and passing them directly to
clients and servers. Neither the locations nor the names of the files really matter
very much beyond that unless you also want to use the keys with your ssh
command.

Now, I can add the public key to my userthing GitHub project as shown in
Figure 12-4.

298

https://doi.org/10.1007/979-8-8688-0779-4_6

v () Add deploy key

CHAPTER 12 CONTINUQUS INTEGRATION

+

€ C 25 github.com/poppbook/userthing/settings/keys/new (A + 4 Z O a

= o poppbook / userthing 8

aj||+ ~ |0 &

<> Code (© lIssues 19 Pullrequests () Actions [Projects () Security |~ Insights 3 Settings

&2 General

Access

A Collaborators

Code and automation
¥ Branches

O Tags

E3+ Rules

(® Actions

& Webhooks

9 Codespaces

S Pages

Security
@) Code security and analysis

I £ Deploy keys

Deploy keys / Add new

Title
jenkins

Key

ssh-rsa
AAAAB3NzaClyc2EAAAADAQABAAABGQDBDSLUMaeykiZp4GLE0pUMEdNfL1uZgjWSnQvCVI

pb \ e+AnceP3gh3Fgll4kZFNvIVTIB00FusGJgfsHWwzhPOINgLBIHGbAXGfNQCXGR
mwMD9:

XREMAMMSLIWUaBi20RSWDYBGogO500+SLXUBCeOXbKI/ENACUaTEYB1pGRAGT
Q/zy5D+LO7NI4u2tc8/1
a2-nistp521', 'ssh-ed25519
(] Allow write access
Can this key be used to push to this repository? Deploy keys always have pull access

Add key

Figure 12-4. Adding a deploy key to a GitHub project

GitHub is ready for Jenkins, but I still need to apply the private key to my Jenkins

environment. Before I do that, though, I can save myself much frustration by setting up

my host key configuration. That is, the information that is usually stored in the ~/.ssh/

known_hosts file when you connect to a new server for the first time via SSH. Failing to

have that information in place in Jenkins will likely prevent your Git connection from

succeeding - the topic of many forum queries and Stack Overflow wails. You can grab the

string you need from the command line by running:

$ ssh-keyscan -H github.com

299

CHAPTER 12 CONTINUOUS INTEGRATION

Once I have that output, I head to Manage Jenkins from the main screen and choose
Security. I scroll down to Git Host Key Verification Configuration. From the Host Key
Verification Strategy drop-down, I choose Manually provided keys. 1 add the keyscan
value there and save.

Time to set up a job with my private key.

From the Jenkins dashboard, I choose Create Job, name my job (userthing in my
case), choose Freestyle Project, and hit OK. I am presented with a configuration screen.
From the left-hand menu, I select Source Code Management and click the Git radio
button to reveal the input fields I need. I add my Repository URL (this is the value you
would use for a git clone operation). I ignore the immediate error message and choose
Add under Credentials.

Note | could also have applied my Git credentials from the Manage Jenkins
screen. I'll take that approach below when | add another key.

There is only one option on offer by default - Jenkins. Most of the fields then
presented are self-explanatory. The essential requirements are Kind which I set to SSH
Username with private key, Username which requires the GitHub user, poppbook in
my case, and Enter directly for the Private Key. I select and paste in the private key I
generated earlier. You can see a portion of that interface in Figure 12-5.

300

CHAPTER 12 CONTINUQUS INTEGRATION

v G userthing Config [Jenkins] X + o x

& C | ® localhost:8080/job/userthing/configure Z O &

A enkins Credentials Provider: Jenkins

Description 2

jenkins-key

Username

poppbook
Treat username as secret ?

Private Key

o Enter directly

Enter New Secret Below

Figure 12-5. Adding a secret key to the Git section in the Jenkins job
configuration screen

Once I've added that, the connection error message should disappear, and I can
proceed with some confidence that Jenkins can access my Git project. Figure 12-6 shows
that happy state.

301

CHAPTER 12 CONTINUOUS INTEGRATION

v £ userthing Config [Jenkins] x +

= I
€« (¢} ® localhost:8080/job/userthing/configure A O a
Dashboard userthing Configuration
© it 2
Configure

Repositories 2

@ General

I’ Source Code Management

Repository URL ? *
git@github.com:poppbook/userthing.git

® Build Triggers

Credentials ?
@ Build Environment
poppbook (jenkins-key) w

=

¢S Build Steps

Add ~
& Post-build Actions

Advanced v

Add Repository

Figure 12-6. Git configured for a Jenkins job

Note There are also various plug-ins you can use to manage Git credentials
including SSH Agent, OAuth Credentials, and Kubernetes Credentials.

One more step is needed before I can perform an initial build. I must choose the
branch. I scroll a little further until I find Branches to build. I change the default to main
(the branch I wish to build and test) and save my configuration for now.

Configuring Composer and PHPUnit

Of course, it’s not enough to check out the code. I need to run composer install to
prepare the build for testing. I have configured the Jenkins environment for this by
creating the jenkins php image. Remember, thanks to the jenkins_home volume which
persists independently of containers, I can regenerate this image with new affordances

as I need them, and any containers configured to use it will retain state across iterations.

302

CHAPTER 12 CONTINUQUS INTEGRATION

Note In the longer term, it is not advisable to share your core Jenkins node with
your build environment. A more mature configuration would make use of agents. |
cover this below.

So, how can I add composer install to my build? Jenkins provides a Build Steps
menu item in the job configuration screen. From there, as you can see in Figure 12-7, I
can easily add Execute shell build steps. In fact, I configure Jenkins to run both Composer
and PHPUnit.

v @ userthing Config [Jenkins] x +
< c ® localhost:8080/job/userthing/configure O a

Dashboard userthing Configuration

Configure Build Steps

= ?
£33 General = Execute shell ?

Command
I) Source Code Management

See the list of available environment variables

>) Build Triggers
O i composer install

@ Build Environment vendor/bin/phpunit test
+= Build Steps

@ Post-build Actions

Advanced v

Add build step v

Figure 12-7. An Execute shell build step

Now, at last, I can confirm that I have a testable environment.

303

CHAPTER 12 CONTINUOUS INTEGRATION

Running the First Build

In saving the configuration, I return to my job’s main screen. From there, I choose Build
Now to run the build process. This is the moment of truth! A link for the build should
appear in the Build History area of the screen. I click that and then Console Output

to confirm that the process went ahead as hoped. You can see some of the output in
Figure 12-8.

v G userthing #2 Console [Jle: x + = (a5l 7

« > C ® localhost:8080/job/userthing/2/console A O a

Dashboard userthing #2 Console Output

B status -, Console
~ Output

% Download) copy View as plain text

</> Changes

Console Output Started by user admin
Running as SYSTEM
Building in workspace /var/jenkins home/workspace/userthing
The recommended git tool is: NONE
using credential 82allbd5-b4d5-46ce-83b0-a7763491f3fe
> git rev-parse --resolve-git-dir
/var/jenkins_home/workspace/userthing/.git # timeout=10
0 Git Build Data Fetching changes from the remote Git repository

> git config remote.origin.url

(4 Edit Build Information

] Delete build ‘#2’

® Timings

git@github.com:poppbook/userthing.git # timeout=10

Fetching upstream changes from git@github.com:poppbook/userthing.git

> git --version # timeout=160

> git --version # 'git version 2.39.2'

using GIT SSH to set credentials jenkins-key

Verifying host key using manually-configured host key entries

> git fetch --tags --force --progress -- -

Figure 12-8. Console output

So, Jenkins has successfully checked the userthing code out from the Git server and
run both composer install and the PHPUnit tests. Now that the basics are set up, it is
easy enough to add additional features such as code coverage reports as needed.

Triggering Builds

All of this automation is almost useless if someone in your team must remember to kick
off each build with a manual click. Naturally, Jenkins provides mechanisms by which
builds can be automatically triggered.

304

CHAPTER 12 CONTINUQUS INTEGRATION

You can set Jenkins to build, or to poll the version control repository, at specified
intervals. These can be set using cron format, which provides fine, although somewhat
arcane, control over scheduling. Luckily, Jenkins provides good online help for the
format, and there are simple aliases if you don’t require precision scheduling. The aliases
include @hourly, @midnight, @daily, @weekly, and @monthly. In Figure 12-9, I configure
the build to run once daily, or every time the repository changes, based upon a poll for
changes that should take place once an hour.

v £ userthing Config [Jenkins] X + - o x
“~ C | ® localhost:8080/job/userthing/configure Z O a
Dashboard userthing Configuration

Build periodically ?
Configure Schedule ?

@daily

@ General

I) Source Code Management

Would last have run at Sunday, August 18, 202
rdinat al Tin
@ Build Environment 2024 at 9:27:53 PM Coordinated Universa

¢ Build Triggers

e o GitHub hook tri for GITS lling 2
¢S Build Steps ItHub hook trigger for cm polling

Poll SCM 2
@ Post-build Actions
Schedule 2

@hourly

Figure 12-9. Scheduled builds and SCM polling

Polling is expensive and scheduling is crude. Luckily, there is a smarter way of
doing things. I can set up a webhook in my GitHub configuration area to notify Jenkins
when a push (or any other important event) occurs. You can see that configuration in
Figure 12-10.

305

CHAPTER 12 CONTINUOUS INTEGRATION

v £ userthing Config [Jenkins] x) Webhook - https://e50f-5- X +

< c 23 github.com/poppbook/userthing/settings/hooks/4968153717tab=settings [« ¢ Z O a

Access

Ay Collaborators

Code and automation
¥ Branches

© Tags

E3 Rules

() Actions

&% Webhooks

2 cCodespaces

= Pages

Security
@) Code security and analysis
/> Deploy keys

[*] Secrets and variables

Integrations

(@) GitHub Apps

Settings Recent Deliveries

We'll send a POST request to the URL below with details of any subscribed events. You can
also specify which data format you'd like to receive (JSON, x-www-form-urlencoded, efc).
More information can be found in our developer documentation.

Payload URL *
https://e50f-5-133-46-154.ngrok-free.app/github-webhook/

Content type *

application/json $

Secret

SSL verification
E] By default, we verify SSL certifi

cates when delivering payloads

® Enable SSL verification) Disable (not recommended)

Which events would you like to trigger this webhook?

@ Liaot tho oot oriont

Figure 12-10. Setting up a webhook in GitHub

Because my local environment is not publicly available, I have used an API gateway
system named Ngrok (https://ngrok.com/) to forward incoming requests to my Jenkins
host at http://localhost:8080. Note that the trailing slash on /github-webhook/ is
required.

Note Ngrok installs a tiny app on your local system which establishes a
connection to a remote server. This server listens on a custom, publicly available,
URL which can be reached by external services (like GitHub or Bitbucket). When
a webhook request (for example) is sent to the public URL, the payload is passed
along to the listener on your system. This then invokes a configured local URL. It
is a great workaround for development systems that need to be contacted
occasionally by external services but which should not become public-facing.
You can find installation instructions at https://ngrok.com/docs/getting-
started/.

306

https://ngrok.com/
https://ngrok.com/docs/getting-started/
https://ngrok.com/docs/getting-started/

CHAPTER 12 CONTINUQUS INTEGRATION

I have configured GitHub to send an application/json notification to the /github-
webhook/ endpoint.

In my Jenkins job configuration, I swap out the clumsy Build periodically and Poll
SCM options, replacing them with GitHub hook trigger for GITScm polling which makes
this /github-webhook/ URL available. This option also has Jenkins poll GitHub but
only in response to a webhook notification. This means that builds will be triggered
only as needed and without the need for scheduled polling. Figure 12-11 shows this

configuration.
v G userthing Config [Jenkins] x 4+ - O X
“~ C | @ localhost:8080/job/userthing/configure Z O a
Dashboard userthing Configuration
Build periodically ?
Conﬁgure GitHub hook trigger for GITScm polling ?
Poll SCM ?
@ General

I) Source Code Management
Build Environment

¢ Build Triggers

. . Delete workspace before build starts
@ Build Environment

Use secret text(s) or file(s) ?
¢S Build Steps
Add timestamps to the Console Output

Post-build Actions
@ Inspect build log for published build scans
Terminate a build if it's stuck

Wwith Ant ?

Figure 12-11. Webhook trigger for GitScm polling

I can now confirm my trigger by making a trivial change to my userthing branch,
committing it, and then pushing to GitHub. Within seconds, I see a new build
commencing on my Jenkins dashboard!

307

CHAPTER 12 CONTINUOUS INTEGRATION

A Jenkins Agent

You may have spotted a huge problem with the architecture I have stitched together so

far. I created an environment which will happily build my PHP project. That’s because I

am using a custom image that is based on the jenkins/jenkins:1ts-jdk17 image. That

works nicely because the image includes PHP 8.3. But what if our team also managed a

project which absolutely had to run on PHP 8.2? My clever solution won't stretch very far

as I add different projects with wildly differing or even mutually exclusive requirements.
This is where Jenkins agents come in. With this model, the main Jenkins system

acts as a controller node managing any number of remote agents, each of which

can be configured to run jobs. This fixes my conflicting requirements problem. It

also distributes the work that Jenkins has to perform, so that resources can be better

managed across multiple servers.

Creating a PHP-Capable Agent Image

Once again, I'm going to take advantage of Docker for my example. I'll begin with a very
simple Dockerfile (which I'll place in its own directory):

FROM jenkins/ssh-agent:jdk17

COPY --chmod=0755 install-php .
RUN ./install-php

You have already seen the install-php script. It will simply deploy PHP 8.3 and
Composer into a new container based on the jenkins/ssh-agent:jdk17 image. I will
place a copy of this script in the directory containing my new Dockerfile so that it will
be accessible.

Now, I can build myself a PHP-capable Jenkins agent named php-agent:

$ docker build . -t php-agent

That'’s it for build! But I still need to manage the communication between the main
Jenkins node and the new agent.

308

CHAPTER 12 CONTINUQUS INTEGRATION

Another Key Pair

Before I can usefully start the agent, I must create another key.
$ ssh-keygen -f ~/.ssh/jenkins_agent key

As before, this command will create two files: ~/.ssh/jenkins_agent key for the
private key and ~/.ssh/jenkins_agent key.pub for the public key. Note that the name
of the key is not important. The generated files do not even have to remain under ~/.
ssh/. We will be assigning the keys to configuration in both the main Jenkins node (the
private key will go there) and the agent (it will get the public key as an environment
variable). This will allow the main node to manage the agent.

So, I must store the private key in Jenkins. From the main screen, I click Manage
Jenkins and select Credentials, then (Global). That takes me to the global credentials
management screen. From here, I can click Add Credentials. 1 am presented a screen
that may be familiar. I negotiated a version of the same form when I installed my GitHub
key. This time, I add values as specified in Table 12-1. Then, I paste in the private key I
generated to ~/.ssh/jenkins_agent_key, and then I click Create.

Table 12-1. Fields for Adding Global Key-Based Credentials

Field Value Required?
Kind SSH Username with password Yes

Scope Global Yes (default)
ID Jenkins No
Description Jenkins key No

Username jenkins Yes (important)

Jenkins should now be ready to talk to the agent I configured in the previous section.
Mind you, it does not yet exist yet. I need to create the container.

309

CHAPTER 12 CONTINUOUS INTEGRATION

Running the Agent

Remember that I have an image tagged php-agent. I need to create a container based on
that. The built-in node already has my jenkins_agent private key. The new container
will need the corresponding public key provided as an environment variable. Because
that’s verbose, I'll create a tiny script to grab it and incorporate it into the docker run

invocation:

MYPUB="cat ~/.ssh/jenkins agent key.pub®
docker run -d --rm \
--name=agent1 \
-p 2200:22 \
-e "JENKINS AGENT SSH PUBKEY=${MYPUB}" \
--network jenkins \
php-agent

So, I create a new container based on the php-agent image. I name it agent1. Here is
where my earlier creation of the jenkins network comes in handy. I use the --network
option to join agent1 to it. Now, the container will be accessible on the network as
agenti. I pass the container the public key in the form of an environment variable:
JENKINS_AGENT_SSH_PUBKEY.Imap the external port 2200 to the internal ssh port (22).

Of course, at some point, it’s likely that you will host your agent and controller nodes
on different machines. At this point, you can dispense with the Jenkins bridge network. I
covered some of the basics of Docker networking in Chapter 9.

Configuring Jenkins to Speak to the Agent

Once that’s running, I have two CI containers in operation - the Jenkins built-in node
and a PHP-capable agent. Let’s see if agent1 is accessible.

From the main screen, I head to Manage Jenkins and select Nodes. Once at the Nodes
screen, I can click New Node. I name it agent1 (this name matches the name of my
Docker container for convenience - but the match is not necessary here) and select the
only Type option available: Permanent Agent (as shown in Figure 12-12).

310

https://doi.org/10.1007/979-8-8688-0779-4_9

CHAPTER 12 CONTINUQUS INTEGRATION

v & New node [Jenkins] x [-

€ (] ® localhost:8080/manage/computer/new Z O a

Q. Search (CTRL+K)

Dashboard Manage Jenkins Nodes New node

New node

Node name

agentl

Type

° Permanent Agent

to Jenkins. This is called

Nt agent

er agent ty S :H,M — for example

hen you are adding a physical computer, virtual

nanaged outside Jenkins, etc

Figure 12-12. Initial creation of an agent in Jenkins

Then, I click Create. Here’s where the real configuration happens. Table 12-2 shows
the values I set. You should be able to leave blank or accept the defaults for any fields not

specified in the table.

311

CHAPTER 12 CONTINUOUS INTEGRATION

Table 12-2. Fields for Associating an Agent with Jenkins

Field Value Required?
Name agent1 (or your own option) Yes
Description Anything you want No
Remote root directory ~ /home/jenkins/ Yes
Launch method Launch agents via SSH Yes
Host agent1 (the name here is important — it should be the Yes

container name if using a bridge network as in this example,
otherwise the host on which the agent is running)

Credentials Choose your key from the drop-down Yes

Host Key Verification ~ Manually trusted key Verification Strategy Yes
Strategy

Once I have filled out the fields specified in Table 12-2, I click Save to create my agent
configuration, and I'm sent back to the Nodes screen. I click agentI and arrive at the new
agent’s management screen. From there, if all is well, I can connect to the agent. I check
on the progress of that by viewing the Log as shown in Figure 12-13.

312

CHAPTER 12 CONTINUQUS INTEGRATION

v £ agentl log [Jenkins] X + - O X

< C ® localhost:8080/computer/agentl/log PAS 2

Dashboard Nodes agentl Log

[04/20/25 20:37:47] [SSH] Starting sftp client.

[04/20/25 20:37:47] [SSH] Copying latest remoting.jar...

Source agent hash is A2E96D08OOOE53966B4B8F68E4999483. Installed agent hash is
A2E96D080OOES3966B4BBF68E4999483

Verified agent jar. No update is necessary.

Expanded the channel window size to 4MB

[04/20/25 20:37:47] [SSH] Starting agent process: cd "/home/jenkins" && java -jar
remoting.jar -workDir /home/jenkins -jar-cache /home/jenkins/remoting/jarCache
Apr 20, 2025 8:37:47 PM org.jenkinsci.remoting.engine.WorkDirManager
initializeWorkDir

INFO: Using /home/jenkins/remoting as a remoting work directory

Apr 20, 2025 8:37:47 PM org.jenkinsci.remoting.engine.WorkDirManager setupLogging
INFO: Both error and output logs will be printed to /home/jenkins/remoting
<===[JENKINS REMOTING CAPACITY]===>channel started

Remoting version: 3283.v92c105e0f819

Launcher: SSHLauncher

Communication Protocol: Standard in/out

This is a Unix agent

Agent successfully connected and online

Figure 12-13. Log showing successful agent connection

Figure 12-13 shows a successful connection. Back in the real world, of course,
you may encounter an error and be forced to troubleshoot. If you run into problems,
confirm that the agent is running and is configured with the expected port (the default
of 22 within the jenkins network in my case). Check that your agent’s key is configured
with the username jenkins (find your key configuration under Manage Jenkins »
Credentials). Return to your agent configuration (located under Manage Jenkins »
Nodes), and double-check the values there. In particular, ensure that you have specified
the correct host, port, key, and remote directory. Once you have one agent managed
from the built-in node, it should be very easy to add more!

313

CHAPTER 12 CONTINUOUS INTEGRATION

Associating Jobs with the Agent

Now that I have a working agent, I can associate my userthing job with it in the job
configuration screen (from the main screen, click on the job name, and then select
Configure from the left-hand menu). The option to force a build to occur on an agent
rather than the built-in node can be found in the General section. Check Restrict where
this project can be run, and enter the name of the agent. You can see this configuration in
Figure 12-14.

v £ userthing Config [Jenkins] x + — O %
< C ® localhost:8080/job/userthing/configure A -
Dashboard userthing Configuration
. Discard old builds ?
Configure
GitHub project
€33 General

This project is parameterized ?
Iﬂ Source Code Management

Throttle builds ?
) Triggers

) Execute concurrent builds if necessary ?
@ Environment

Restrict where this project can be run ?

:S Build Steps Label Expression ?

@ Post-build Actions agentl

Label agentl matches 1

e. Permis s or other restrictions

provided by plugins may her reduce that list

Advanced v

Figure 12-14. Associating a job with an agent

If you are running many agents, you might want to bundle groups together using
labels. For my purposes, though, I can simply create a one-to-one relationship between
the job and the agent using the agent name. From now on, my userthing job will build
on agenti.

314

CHAPTER 12 CONTINUQUS INTEGRATION

Finally, then, I'll kick off a build and watch my agent in action. Thanks to my
configuration, it should once again just be a matter of committing and pushing to the
userthing repository on GitHub. Sure enough, seconds after pushing to the main branch,
the build appears on my dashboard. You can see the build report in Figure 12-15.

v £ agentl [Jenkins] X o+ - o x
< c ® localhost:8080/computer/agentl/ PAS -
Q Jenkins Q @ mattz v [log out
v
Dashboard Nodes agentl
Agent
(] status g / Add description Mark this node temporarily offline ©)
agentl
i Delete Agent
@ Configure Monitoring Data v

iid Hi
& Build History Projects tied to agentl

Load Statistics

: Last Last Last
Script Console = N T 0 Success Failure Duration
24 sec
@ userthing N/A 18 sec >

#3

System Information
Disconnect

~
O teg
®
X

Icon: S M IS

Build Executor Status 01 v

Figure 12-15. A job run on an agent node

GitHub Actions

When it comes to continuous integration (and the related topic of continuous delivery),
Jenkins is far from the only game in town. These days, the popular Git platforms also
offer CI solutions. Since GitHub is the largest of these (and since I happen to have used it
to manage the userthing repository), I will replicate this chapter’s simple example using
GitHub Actions.

315

CHAPTER 12 CONTINUOUS INTEGRATION

Why GitHub Actions?

GitHub Actions (https://docs.github.com/en/actions) provide highly configurable
workflow systems that you can use to analyze, test, or deploy code from within your
repository. These actions are individual units of configurable functionality that you can
source or even create. They can be stitched into jobs within workflow scripts which you
can define within your code repository.

Although they are less mature than venerable systems like Jenkins, they offer some
distinct advantages. In particular, your workflows are, by definition, embedded into your
version control repository, making it easy to trigger workflows in response to key events
(such as pushes to particular branches, pull requests, or even issues raised) without
the song and dance that is necessary to link external tools. Such integration means that
you win functionality without the need for a separate CI platform, thereby reducing the
number of components in your stack. There are many pre-built actions available (we will
encounter php-actions a little later, for example), and, because the GitHub Actions uses
Docker’s containerization at its core, it’s also relatively easy to create your own.

There is, of course, a downside. Like most SaaS offerings, GitHub Actions are
something of a black box. You are at the mercy of a closed implementation. This means
that you may not be able to patch defects and may, at some point, hit arbitrary rate limits
or changes in pricing or terms of use. The use of GitHub Actions may also lock you in
to GitHub, making it harder to migrate to another version control repository without
reimplementing some or all of your CI systems.

Let’s take a tour of some of the basics.

The Basics

You can create a workflow script directly within your project. I am already working
with userthing - a private repository on GitHub. I'll kick things off by creating a file at
.github/workflows/run-tests.yml. Here it is:

name: Run Tests
run-name: Test run intiated by ${{ github.actor }}
on: push
jobs:
build-test:
runs-on: ubuntu-latest

316

https://docs.github.com/en/actions

CHAPTER 12 CONTINUQUS INTEGRATION

steps:
- name: envelope
run: |
echo "event -- ${{ github.event name }}"
echo "on -- ${{ runner.os }}"
echo "branch/repo -- ${{ github.ref name }} / ${{ github.
repository }}"

Note The .github/workflows/ directory should be placed in your project’s
root directory.

As you may recognize, this is a YML file. The name element defines the high-level
title. Once you have committed and pushed your workflow file and selected the Actions
tab in your GitHub repository, you will find the name displayed in the left-hand side
menu. The value assigned to the run-name keyword is applied to individual runs. As you
can see, this supports contextual information, so it may vary from run to run. In this case,
I reference github.actor (the GitHub user who initiated the run). A context is an object
which provides variable information. Contexts support properties - which can be strings
or other objects. The run-name string can access two contexts: github which contains
information about the workflow run and inputs which can access custom fields passed
in from another workflow. Table 12-3 shows just a few of the many properties provided
by github. You can find the full list and much more about contexts at https://docs.
github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/
accessing-contextual-information-about-workflow-runs

Table 12-3. Some github Context Object Properties

Property Description

github.actor The username associated with a run
github.event_name The name of the event that triggered the workflow
github.ref name The branch or tag associated with the run
github.repository The full repository name
github.repositoryUrl The repository URL

317

https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/accessing-contextual-information-about-workflow-runs
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/accessing-contextual-information-about-workflow-runs
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/accessing-contextual-information-about-workflow-runs

CHAPTER 12 CONTINUOUS INTEGRATION

The on keyword defines the event or events that should trigger a workflow. This can
be as simple as a single string like push, or pull request, or it can become much more
complex. To trigger a workflow when a pull request is opened and targets the develop
branch, for example, you'd specify:

on:
pull request:
types:
- opened
branches:
- 'develop'

You can learn more about the gory details of events that trigger workflows at
https://docs.github.com/en/actions/writing-workflows/choosing-when-your-
workflow-runs/events-that-trigger-workflows.

A workflow is made up of one or more jobs. These will run in parallel by default, but
they can be configured run consecutively. I will only define a single job in my Run tests
workflow. I name this build-test.

Within the build-test job, then, the runs-on keyword defines the container in
which my job will be run. Although you can self-host containers, the standard GitHub-
hosted containers include variations on ubuntu, macos, and windows. You can read
more about your options at https://docs.github.com/en/actions/using-github-
hosted-runners

A job is made up of multiple steps. A step can run a command or invoke an action.
Each step runs in its own process and has access to the workspace (the container defined
by runs-on). There are various sub-elements to a step. So far, you've seen name which
defines a name for display in a run report and run which invokes a command on the
shell (or multiple commands if you use multiline YAML syntax, as I have here).

Well, that’s a lot of explanation for what amounts to a glorified Hello, World example!
Nevertheless, it has set me up for future fragments which will be somewhat less verbose.
Let’s try things out at this stage, though.

Because I have set the on element to push, all I need to do to get the workflow to play
is commit and push the file at . github/workflows/run-tests.yml.

$ git add .github/workflows/run-tests.yml
$ git commit -m'added workflow';
$ git push origin main

318

https://docs.github.com/en/actions/writing-workflows/choosing-when-your-workflow-runs/events-that-trigger-workflows
https://docs.github.com/en/actions/writing-workflows/choosing-when-your-workflow-runs/events-that-trigger-workflows
https://docs.github.com/en/actions/using-github-hosted-runners
https://docs.github.com/en/actions/using-github-hosted-runners

CHAPTER 12 CONTINUQUS INTEGRATION

I'will see nothing but the standard confirmation of a Git commit and push on the
command line. It should be a different matter in the GitHub Web environment, however.
From my userthing repository screen, when I click the Actions tab, I should find that
my script has run. In fact, by the time I snapped Figure 12-16, I had already run it a

few times!
v () Workflow runs - poppbool x + - B X
<« C 25 github.com/poppbook/userthing/actions (K « ¢ A O a
= O poppbook / userthing & (o} + -~ O &8

<> Code () Issues I Pullrequests (® Actions [Projects () Security |~ Insights 2 Settings

Actions New workflow All workflows Q. Filter workflow runs
Showing runs from all workflows
I All workflows

18 workflow runs

Run Tests

Management Event ~ Status ~ Branch ~ Actor ~

£ Caches

© Attestations - @ Test run intiated by getinstancemz & now

main

Run Tests #4: Commit G 1
Runners z ==
@ Test run intiated by getinstancemz B2
2 hours ago
Run Tests #3: Commit 2fd222e pushed by = .
11s
U{‘THEINHCL'W Z @
@ Test run intiated by getinstancemz
- mair

Run Test ommit 68z ushed by

getinstanc

Figure 12-16. An early version of the “Run Tests” workflow

From there, I can click my most recent run and, by selecting Usage, view my run
output. You can see the Envelope step in Figure 12-17.

319

CHAPTER 12 CONTINUOUS INTEGRATION

v Testrunintiated by geti X + = I
€« C 5 github.com/poppbook/userthing/actions/runs/10443412862/job/28916797469 G ¢ A O a
= O poppbook / userthing & Q Type [7) to search + -~ |0 &

<> Code (© Issues 17 Pullrequests () Actions [Projects () Security |~ Insights 3 Settings

< Run Tests
@ Test run intiated by getinstancemz #4 Re-run all jobs
(@ Summary
build-test
Jobs 4
@ build-test
| oo
Run details ~ ° envelope
(Usage i
&Y Workflow file 2 -- push"

-- Linux"

Figure 12-17. The Envelope step from a “Run Tests” workflow run

Checking Out the Code

For my next step, I need to check out the repository to my workspace. For this, I'll use my

first action:

name: Run Tests
run-name: Test run intiated by ${{ github.actor }}
on: push
jobs:
build-test:
runs-on: ubuntu-latest
steps:
...
- name: Check out repository code
uses: actions/checkout@v4

320

CHAPTER 12 CONTINUQUS INTEGRATION

An action performs a function in your workflow. It takes the form of a JavaScript
file or a Docker container, but from the perspective of a workflow, it is simply a
component that can incorporate a steps block. You can find actions for many
tasks via the GitHub Marketplace at https://github.com/marketplace. The
documentation for each action provides a Usage panel. As you can see, the uses
keyword includes the action (comprising an action string and an optional version
indicator after the @ character). If you need to specify any supported inputs to the
action, you can use the with keyword. Although, as you can see in the documentation
athttps://github.com/marketplace/actions/checkout, actions/checkout
does support many inputs, the default behavior is good enough for my purposes.
You can see the actions/checkout action in operation in Figure 12-18.

v Testrunintiated by geti X o+ = =l %%
€ (6] 25 github.com/poppbook/userthing/actions/runs/10443747676/job/28917516884 T % J O a2

(@ Summary build-test

Jobs
| © build-test > © se

@ envelope
Run details
v Check out repository code
% Usage ° . Y
&9 Workflow file 1 »Run utava

poppbook/userthing
» Getting Git n info
Temporarily overriding HO home/runner/work/_temp/5e117903-2c13-4005-ad20
before making global git hanges

Adding repository directory to the temporary git global config as a safe directory

T T
i Deleting the contents of '/home/runner/work/userthing/userthing'
» Initializing the repc
» Disabling automatic garbage collection
1 » Setting up auth
» Fetching the repository
1 » Determining the checkout info

+ » Checking out the ref

'4606798c569cbece584f feeb|

Figure 12-18. The actions/checkout action

Running Composer

Next, of course, must run composer install on my checked out code. A marketplace
search reveals php-actions/composer. The documentation tells me that the latest
version is v6.

321

https://github.com/marketplace
https://github.com/marketplace/actions/checkout

CHAPTER 12 CONTINUOUS INTEGRATION

name: Run Tests
run-name: Test run intiated by ${{ github.actor }}
on: push
jobs:
build-test:
runs-on: ubuntu-latest
steps:
...
- name: Composer
uses: php-actions/composer@vé

Note In fact, php-actions is a collection of many useful actions for CI on
GitHub. Find them at https://github.com/php-actions/.

I add the step to my job then commit and push. Figure 12-19 shows the Composer
step from my workflow run.

v @ Testrunintiated by getin x + o

€« C 5 github.com/poppbook/userthing/actions/runs/10448848155/job/28930041758 (B15 ¢ PASEN |

(@ Summary build-test
eded 2 mir

Jobs

I @ build-test v @ Composer
1 » Run php-actions/composergvé
Run details
) » Run set -e
(}/s Usage 4 Building PHP latest with ex

(including require-dev)

& Workflow file nt platform.

- Downloadin
- Downloadin
- Downloadin

- Downloading phpunit/php-timer

Figure 12-19. The php-actions/composer action

322

https://github.com/php-actions/

CHAPTER 12 CONTINUQUS INTEGRATION

Running PHPUnit

All T need to do now to catch up with my Jenkins example is add a step for running my
tests. As you would expect, there is a php-actions/phpunit action.

name: Run Tests
run-name: Test run intiated by ${{ github.actor }}
on: push
jobs:
build-test:
runs-on: ubuntu-latest
steps:
...
- name: PHPUnit Tests
uses: php-actions/phpunit@v4

with:
bootstrap: vendor/autoload.php
args: test/

This is the first example here of an action that uses the with keyword to gather
further information. Without bootstrap, for example, my classes would not be able to
find one another. The action is smart enough to invoke the version of PHPUnit I specified
in my composer file - although I could have passed a version argument to with.

Figure 12-20 shows my tests in action.

323

CHAPTER 12 CONTINUOUS INTEGRATION

v @ Testrunintiated by getin. x +

<« c 25 github.com/poppbook/userthing/actions/runs/10449157253/job/28930910479 C &% 2 O 2

(@ Summary build-test
eded 1 min

Jobs

l @ build-test v @ PHPUt Tests

Run details
er 9 ug 19 ©
(5 Usage 55 ru cker 4096 Aug 19 ©

3 ot 4096 Aug 1
& Workflow file :

PHPUNit 11.3.1 by Sebastian Bergmann and contributors.

) Runtime: PHP 8.3.10

Figure 12-20. The php-actions/phpunit action

What Next?

Now that you know the basics of both Jenkins and GitHub Actions, the rest is up to you.
Once you have automated your PHPUnit tests, it’s easy enough to add code coverage
reports, for example. Or you might want to check that any pull requests comply with
coding standards or pass a baseline PHPStan level. You'll also want to check out the
notification options offered by both platforms. If a build fails in obscurity, then, arguably,
there was not much point to the automation.

This is a chapter about continuous integration, but you may also have seen
references to CI/CD. The CD part of that acronym stands for continuous delivery.
To grossly simplify a topic that justifies its own book, this means deploying code
automatically once all automated checks pass. Of course, you'd want to be satisfied with
the quality and extent of your tests before you implemented CD, but thanks to tools
such as Ansible, both GitHub Actions and Jenkins are more than capable of driving a CD
pipeline.

324

CHAPTER 12 CONTINUQUS INTEGRATION

Summary

In this chapter, I prepared a small project for CI. In addition to the code and some
sample unit tests, I configured Composer to support autoloading and install PHPUnit.
I created a GitHub repository. Then, I set up Jenkins with Docker and showed you how
to add a project to the system and automate building and testing in response to GitHub
events. [introduced Jenkins Agents which allow you to separate build environments
from the built-in node. Finally, I introduced GitHub Actions and ran through a similar

set of build and test steps.

325

CHAPTER 13

PHP Practice

When I first started learning about programming, picking shiny thick-backed tomes from
the shelves in a London bookshop, I discovered worlds of possibility. I soon encountered
unexpected practical barriers, however. Just how could I get those Perl algorithms to
dance on the server? My Java code compiled locally, but I had no idea how it should
be packaged and delivered. Of course, the answers were out there online, and there
were books that covered them too. I found my way to a book about the Unix shell, for
example, when I discovered that for some arcane reason (permissions) I could not write
any files from my CGI scripts. Nonetheless, the shiniest, most exciting programming
books treated issues such as documentation, testing, and deployment with a somewhat
dismissive air, as if these were minor matters that could be left to the reader to sort out.
They were right. I sorted them out. But not without much trial, error, and frustration.

The chapters in this volume, therefore, address some of the issues I might have
wished were given more prominence back when I was first sorting my classes from my
objects. In this chapter, I recap some of these topics:

e Testing: Why you should do it.

e Standards and standards tools: Keeping your code compliant and
bug-free.

o Inline documentation: Treating your colleagues (and your future self)
with kindness.

o Development environments: Using virtualization and containerization
to build sandboxes to play in.

e Version control: Branch and share code; roll back when things
g0 wrong.

e Build and deployment: Manage dependencies and configuration; get
your code into the world.

327
© Matt Zandstra 2025

M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 2, https://doi.org/10.1007/979-8-8688-0779-4_13

https://doi.org/10.1007/979-8-8688-0779-4_13#DOI

CHAPTER 13 PHP PRACTICE

e Command-line scripting: PHP is not just for the Web.

o Continuous integration: Always be building, always be testing.

Practice

The issues that I covered in this volume are often ignored by texts and coders alike. In
my own life as a programmer, I discovered that these tools and techniques were at least
as relevant to the success of a project as design. There is little doubt that issues such as
documentation and automated build are less revelatory in nature than more abstract
wonders such as the Composite pattern.

Note Let’s just remind ourselves of the beauty of Composite: a simple inheritance
tree whose objects can be joined at runtime to form structures that are also trees
but are orders of magnitude more flexible and complex. Multiple objects share a
single interface by which they are presented to the outside world. The interplay
between simple and complex, multiple and singular, has got to get your pulse
racing — that’s not just software design, it’s poetry.

Even if issues such as documentation and build, testing, and version control are
more prosaic than patterns, they are no less important. In the real world, a fantastic
design will not survive if multiple developers cannot easily contribute to it or understand
the source. Systems become hard to maintain and extend without automated testing.
Without build tools, no one is going to bother to deploy your work. As PHP’s user
base widens, so does our responsibility as developers to ensure quality and ease of
deployment.

A project exists in two modes. A project is its structures of code and functionality -
the logical machine. In a less abstract sense, it is also a set of files and directories, a
ground for cooperation, a set of sources and targets, and a subject for transformation.
In this sense, a project is a system from the outside as much as it is within the logic of
its code. Mechanisms for build, testing, documentation, and version control require
the same attention to detail as do the routines such mechanisms support. Focus on the
metasystem with as much fervor as you do on the system itself.

328

CHAPTER 13 PHP PRACTICE

Testing

Although testing is part of the framework that one applies to a project from the outside,
itis intimately integrated into the code itself. Because total decoupling is not possible,
or even desirable, test frameworks are a powerful way of monitoring the ramifications
of change. Altering the return type of a method could influence client code elsewhere,
causing bugs to emerge weeks or months after the change is made. A test framework
gives you half a chance of catching errors of this kind (the better the tests, the better the
odds here).

Testing is also a tool for improving object-oriented design. Testing first (or at least
concurrently) helps you to focus on a class’s interface and think carefully about the
responsibility and behavior of every method. I introduced PHPUnit, which is used for
testing, in Chapter 7.

Standards and Standards Tools

I am a contrarian by nature. I hate being told what to do. Words like compliance instantly
invoke a fight-or-flight response in me. But counterintuitive as it may seem, standards
drive innovation. That is because they drive interoperability. The rise of the Internet
was fueled in part by the fact that open standards are built into its core. Websites can
link to one another, and web servers can be reused in any domain because protocols
are well known and respected. A solution in a silo may be better than a widely accepted
and applied standard, but what if the silo burns down? What if it is bought and the new
owner decides to charge for access? What happens when some people decide that the
silo next door is better? In Chapter 3, I discussed PSR, PHP Standard Recommendations.
I focused, in particular, on standards for autoloading, which have done much to clean
up the way that PHP developers include classes. I also looked at PSR-12, the standard
for coding style. Programmers have strong feelings about the placement of braces and
the deployment of argument lists, but agreeing to abide by a common set of rules makes
for readable and consistent code and allows us to use tools to check and reformat our
source files.

Larry Wall, the creator of Perl, famously named laziness as one of the great virtues
of a programmer. So, while I agree that compliance to a shared style is generally a good
idea, I also welcome tools that can check for compliance and, as far as possible, fix any
issues without the need for manual editing. In Chapter 4, I looked at PHP_CodeSniffer,
a set of two tools that do just that. I also covered PHPStan. Like PHP_CodeSniffer, this

329

https://doi.org/10.1007/979-8-8688-0779-4_7
https://doi.org/10.1007/979-8-8688-0779-4_3
https://doi.org/10.1007/979-8-8688-0779-4_4

CHAPTER 13 PHP PRACTICE

static analysis tool checks for compliance with good practice. Even better, it can catch
bugs in your system, rooting out variable name typos and type mismatches among very
many other code smells.

Inline Documentation

Your code is not as clear as you think it is. A stranger visiting a code base for the first time
can be faced with a daunting task. Even you, as author of the code, will eventually forget
how it all hangs together. For inline documentation, you should look at phpDocumentor
(https://phpdoc.org/) which allows you to document as you go and automatically
generates hyperlinked output. The output from phpDocumentor is particularly useful

in an object-oriented context, as it allows the user to click around from class to class.

As classes are often contained in their own files, reading the source directly can involve
following complex trails from source file to source file.

The PHPDoc format, which phpDocumentor supports, is also used by tools and
IDEs to provide hints for features (such as typed collections) which are not enforced
directly by PHP.

See Chapter 2 for more on both phpDocumentor and PHPDoc.

Development Environments

I first taught myself Perl many years ago from several impressively thick books. I thought
I had pretty much cracked the whole programming game when I finally understood the
code examples and tried them out on my old Mac desktop using MacPerl (long before
macOS and Homebrew). To be fair, I had made some progress. But the translation from
the camel icon on my computer to a Linux server running Apache was another journey
altogether. Even when I'd made the transition, this meant installing and running code
changes over a horribly slow dial up connection. A laborious process. So, I worked
out how to dual boot Linux, and then, I was at last able to approximate a production
environment for local development. That was a great step forward. Until, that is, I
discovered that the configuration I had created for one project did not play well with the
requirements of another. I was forced either to run separate machines or to compromise
in complicated ways on my single Linux partition.

The answer was, of course, virtualization. With tools such as VirtualBox, I was able to
run completely independent environments on a single machine. Even so, the setup was a

330

https://phpdoc.org/
https://doi.org/10.1007/979-8-8688-0779-4_2

CHAPTER 13 PHP PRACTICE

chore in each case. Then, I discovered Vagrant, a platform which sits above virtualization
layers such as VirtualBox or VMware and makes choosing, acquiring, and configuring a
base box much simpler.

Very soon, the first step I took in any project I embarked upon was to create
a production-like development environment using Vagrant. The very process of
automating this provisioning provided invaluable insight into a new code base and a
satisfying productivity boost over less flexible development environments.

I still use and love Vagrant for some projects. Because it uses full virtualization, it
allows you to maintain a very good approximation of a full production environment
during development. In terms of speed, flexibility, and reliability, though, Docker
represents a further step forward. When run on Linux, it runs services in containers
directly on the host machine’s kernel, which means that, at the cost of some isolation, an
environment springs rather than creaks into life.

I covered Vagrant in Chapter 8 and Docker in Chapter 9.

Version Control

Collaboration is hard. Let’s face it: people are awkward. Programmers are even worse.
Once you've sorted out the roles and tasks on your team, the last thing you want to
deal with is clashes in the source code itself. As you saw in Chapter 6, Git (along with
similar tools such as CVS and Subversion) enables you to merge the work of multiple
programmers into a single repository. Where clashes are unavoidable, Git flags the fact
and points you to the source to fix the problem.

Even if you are a solo programmer, version control is a necessity. Git supports
branching, so that you can maintain a software release and develop the next version at
the same time, merging bug fixes from the stable release to the development branch.

Git also provides a record of every key commit made on your project. This means
that you can roll back by date or tag to any moment. This will save your project
someday - believe me.

Build and Deployment

Version control without some automation around build and deployment is of limited
use. A project of any complexity takes work to deploy. Various files need to be moved
to different places on a system, configuration files need to be transformed so that they

331

https://doi.org/10.1007/979-8-8688-0779-4_8
https://doi.org/10.1007/979-8-8688-0779-4_9
https://doi.org/10.1007/979-8-8688-0779-4_6

CHAPTER 13 PHP PRACTICE

incorporate the right values for the target server, database tables need to be set up. I
covered two tools designed for installation in this volume.

The first, Composer (see Chapter 5), manages library dependencies. It handles -
near flawlessly - intra-package requirements so that you almost never find yourself
trapped in so-called “dependency hell.” Because it installs most of your project
requirements in a local directory, you do not need to worry about clashes between
projects or between separate services which are part of the same project.

The second tool I covered was Ansible (see Chapter 10). This is a powerful
deployment platform - a tool with enough power and flexibility to automate the
installation of the largest and most labyrinthine project across any number of servers. It
is particularly good at two perennial problems: managing secrets without exposing them
to your version control system and handling system configuration.

Together, Composer and Ansible can transform deployment from a chore to a matter
of aline or two at the command prompt.

Command-Line Scripting

While PHP is known primarily as a web programming language, it can also be used to
create powerful command-line tools. As a PHP programmer, you will likely have the
PHP interpreter at hand in many if not most environments (and if you don’t, these
days, Docker can always provide it without changing the host machine’s configuration).
That means you can take advantage of PHP’s power, ease of use, and vast repository of
libraries to build a command-line tool ranging in scope from a small utility to a fully
featured application. What’s more, because you're coding in PHP, you can also create
command-line utilities to perform actions that integrate tightly with any larger web
systems in your project. I covered programming on the command line in Chapter 11.

Continuous Integration

It is not enough to be able to test and build a project; you have to do it all the time. This
becomes increasingly important as a project grows in complexity and you manage
multiple branches. You should build and test the stable branch from which you make
minor bug fix releases, an experimental development branch or two, and your main
trunk. If you were to try to do all that manually, even with the aid of build and test tools,
you’d never get around to any coding. Of course, all coders hate that, so build and testing
inevitably get skimped on.

332

https://doi.org/10.1007/979-8-8688-0779-4_5
https://doi.org/10.1007/979-8-8688-0779-4_10
https://doi.org/10.1007/979-8-8688-0779-4_11

CHAPTER 13 PHP PRACTICE

In Chapter 12, Ilooked at continuous integration, a practice and a set of tools that
automate the build and test processes as much as possible.

What | Missed

A few tool categories I have had to omit from this book due to time and space constraints
are, nonetheless, supremely useful for any project. In most cases, there is more than one
good tool for the job at hand, so, although I'll suggest one or two, you may want to spend
some time talking with other developers and digging around with your favorite search
engine before you make your choice.

If your project has more than one developer or even just an active client, then you
will need a tool to track bugs and tasks. Like version control, a bug tracker is one of those
productivity tools that, once you have tried it on a project, you cannot imagine not using.
Trackers allow users to report problems with a project, but they are just as often used
as a means of describing required features and allocating their implementation to team
members.

You can get a snapshot of open tasks at any time, narrowing the search according to
product, task owner, version number, and priority. Each task has its own page, in which
you can discuss any ongoing issues. Discussion entries and changes in task status can be
copied by mail to team members, so it’s easy to keep an eye on things without going to
the tracker URL all the time.

There are many tools out there. Even after all this time, though, I often return to the
venerable Bugzilla (https://www.bugzilla.org). Bugzilla is free and open source and
has all the features most developers could need. It is a downloadable product, so you will
have to run it on your own server. It still looks a little Web 1.0, but it’s none the worse for
that. If you do not want to host your own tracker, and you have or prefer your interfaces a
little prettier (and have deeper pockets), you might look at the Atlassian’s SAAS solution,
Jira (https://www.atlassian.com/software/jira). I have also successfully used
GitHub’s built in issue tracker for some of my projects.

For high-level task tracking and project planning (especially if you're interested in
using a Kanban system), you might also look at Trello (https://trello.com).

A tracker is generally just one of a suite of collaboration tools you will want to use
to share information around a project. At a price, you can use an integrated solution
such as Basecamp (https://basecamp.com/) or Atlassian tools (https://www.
atlassian.com/). Or you may choose to stitch together a tools ecosystem using a variety

333

https://doi.org/10.1007/979-8-8688-0779-4_12
https://www.bugzilla.org
https://www.atlassian.com/software/jira
https://trello.com
https://basecamp.com/
https://www.atlassian.com/
https://www.atlassian.com/

CHAPTER 13 PHP PRACTICE

of applications. To facilitate communication within your team, for example, you will
probably need a mechanism for chat or messaging. Perhaps the most popular tool for
this at the time of this writing is Slack (https://slack.com). Slack is a multiroomed web-
based chat environment. If you're old school like me, you might instantly think of IRC
(Internet Relay Chat) - and you'd be right: there’s little you can do with Slack that you
couldn’t do with IRC, except that Slack is browser based, easy to use, and has integration
with other services already built-in. Slack is free unless you need premium features.
Other options include Mattermost (https://mattermost.com) - which is similar to Slack
but can be self-hosted - and Discord (https://discord.com/).

Speaking of old school, you might also consider using a mailing list for your project.
My favorite mailing list software is Mailman (https://1list.org/), which is free,
relatively easy to install, and highly configurable.

For cooperatively editable text documents and spreadsheets, Google Docs (https://
docs.google.com/) is probably the easiest solution.

Although inline documentation is important, projects also generate a writhing
heap of written material. This can include usage instructions, consultation on future
directions, client assets, meeting minutes, and party announcements. During the
lifetime of a project, such materials are very fluid, and a mechanism is often needed to
allow people to collaborate in their evolution.

A wiki (wiki is apparently derived from the Hawaiian word wikiwiki meaning “very
fast”) is the perfect tool for creating collaborative webs of hyperlinked documents.

Pages can be created or edited at the click of a button, and hyperlinks are automatically
generated for words that match page names. A wiki is another one of those tools that
seems so simple, essential, and obvious that you are sure you probably had the idea
first but just didn’t get around to doing anything about it. There are a number of wikis
to choose from. I have had good experience with DokuWiki, which you can find at
https://www.dokuwiki.org/dokuwiki.

For documentation (and for writing in general), though, I have tended, increasingly, to
pare back to simple text documents and version control. For formatting, I use Markdown,
a lightweight markup language. It is easy to read before rendering and usually is clean
and well balanced afterward (though, as with all rendering, you are at the mercy of the
renderer). The best starting place for Markdown is https://commonmark.org/. After years
of struggling with Word and Word-compatible word processors, I am very grateful that
Apress let me use Markdown for this edition of the book!

334

https://slack.com
https://mattermost.com
https://discord.com/
https://list.org/
https://docs.google.com/
https://docs.google.com/
https://www.dokuwiki.org/dokuwiki
https://commonmark.org/

CHAPTER 13 PHP PRACTICE

Note Although I did not omit this tool (see Chapter 6), it is worth mentioning that
shifting to a plain text format made it possible for us to make extensive use of Git
in the development of this book.

Summary

In this chapter, I wrapped things up, revisiting the core topics that make up the book.
Although I haven’t tackled any concrete issues such as individual patterns or object
functions here, this chapter should serve as a reasonable summary of this book’s
concerns.

There is never enough room or time to cover all the material that one would like.
Nevertheless, I hope that this book and its companion (Volume 1) has served to make
one argument: PHP is all grown up. It is now one of the most popular programming
languages in the world. I hope that PHP remains the hobbyist’s favorite language and
that many new PHP programmers are delighted to discover how far they can get with just
alittle code. At the same time, though, more and more professional teams are building
large systems with PHP. Such projects deserve more than a just-do-it approach. Through
its extension layer, PHP has always been a versatile language, providing a gateway to
hundreds of applications and libraries. Its object-oriented support, on the other hand,
gains you access to a different set of tools. Once you begin to think in objects, you can
chart the hard-won experience of other programmers. You can navigate and deploy
pattern languages developed with reference not just to PHP but to Smalltalk, C++, C#,
or Java, too. It is our responsibility to meet this challenge with careful design and good
practice. The future is reusable.

335

https://doi.org/10.1007/979-8-8688-0779-4_6

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Good (and Bad) Practice
	Beyond Code
	Borrowing a Wheel
	Playing Nice
	Giving Your Code Wings
	Standards
	Vagrant and Docker
	Testing
	Command-Line Scripting
	Continuous Integration
	Summary

	Chapter 2: Generating Documentation with phpDocumentor
	Why Document?
	Installation
	Generating Documentation
	DocBlock Comments
	Documenting Classes
	File-Level Documentation
	Documenting Properties
	Documenting Methods
	Creating Links in Documentation
	Summary

	Chapter 3: PHP Standards
	Why Standards?
	What Are PHP Standards Recommendations?
	Why PSR in Particular?
	Who Are PSRs For?

	Coding with Style
	PSR-1 Basic Coding Standard
	Opening and Closing Tags
	Side Effects
	Naming
	More Rules and an Example

	PSR-12 Extended Coding Style
	Starting and Ending a PHP Document
	Starting and Ending a Class
	Working with Traits
	Declaring Properties and Constants
	Starting and Ending a Method
	Single-Line Declarations
	Multiline Declarations
	Return Types

	Lines and Indentation
	Calling Methods and Functions
	Flow of Control
	Finishing the ConfReader Class

	PSR-4 Autoloading
	The Rules That Matter to Us

	PSR-11 Container Interface
	Summary

	Chapter 4: Refactoring and Standards Tools
	PHP_CodeSniffer
	Checking and Fixing Your Code
	Managing the Scope of an Analysis
	Creating Your Own Sniff
	Defining a Standard
	A Bad Date File
	Creating the Sniff
	Combining Multiple Standards

	PHPStan
	Installing PHPStan
	Running PHPStan
	Rule Levels
	Telling PHPStan to Ignore Errors

	Array Arguments: Correcting Outside the Language
	Summary

	Chapter 5: Using and Creating Components with Composer
	What Is Composer?
	Installing Composer
	Installing a (Set of) Package(s)
	Installing a Package from the Command Line
	Versions
	require-dev

	Composer and Autoload
	Creating Your Own Package
	Adding Package Information
	Platform Packages

	Distribution Through Packagist
	Keeping It Private
	Summary

	Chapter 6: Version Control with Git
	Why Use Version Control?
	Getting Git
	Using an Online Git Repository
	Configuring a Git Server
	Creating the Remote Repository
	Preparing the Repository for Local Users
	Providing Access to Users
	Closing Down Shell Access for the Git User

	Beginning a Project
	Cloning the Repository

	Updating and Committing
	Adding and Removing Files and Directories
	Adding a File
	Removing a File
	Adding a Directory
	Removing Directories
	Renaming Files or Directories

	Tagging a Release
	Branching a Project
	Summary

	Chapter 7: Testing with PHPUnit
	Functional Tests and Unit Tests
	Testing by Hand
	Introducing PHPUnit
	Creating a Test Case
	Assertion Methods
	Testing Exceptions
	Running Test Suites
	Constraints
	Mocks and Stubs
	Tests Succeed When They Fail

	Writing Web Tests
	Introducing Selenium
	Getting Selenium
	PHPUnit and Selenium
	Introducing php-webdriver
	The System Under Test
	Creating the Test Skeleton
	Connecting to Selenium
	Writing the Test

	A Note of Caution
	Summary

	Chapter 8: Vagrant
	The Problem
	A Little Setup
	Choosing and Installing a Vagrant Box

	Mounting Local Directories on the Vagrant Box
	Provisioning
	Setting Up the Web Server
	Setting Up MariaDB
	Configuring a Hostname

	Wrapping It Up
	Summary

	Chapter 9: Docker
	What Is Docker?
	Getting Docker
	Running an Image
	Establishing Some Docker Terms
	Acquiring an Image with docker pull
	Creating and Invoking a Container with docker run
	Listing Containers
	Accessing a Container with docker run
	Running a Container in the Background
	Accessing a Container with docker exec
	Building Your Own Image
	In the Weeds with CMD and ENTRYPOINT

	Mounting a Local Directory
	A Single Command Development Environment
	Building a System Out of Multiple Containers
	Removing Images and Containers
	Creating and Using a Named Bridge Network
	Docker Compose
	Resetting the Project
	The Compose File
	Combining Docker Compose and Dockerfile

	Adding a Second Service
	What About Composer?
	Some Docker Compose Commands

	Summary

	Chapter 10: Automating Build and Deployment with Ansible
	What Is Ansible?
	Getting Ansible
	Confirming Your Install
	Command-Line Utilities
	Hello, Ansible
	Inventories: Working with Hosts
	Checking Out a Git Repository
	Copying a Configuration File
	Some More on Variables
	Declaring Variables with vars
	Overriding Variables from the Command Line
	Placing Variables in Files

	Interpolating Values into a File
	Managing Secrets with Ansible Vault
	Checking in on Megaquiz
	Inventory Variables
	The Composer Module
	Conditionals
	Summary

	Chapter 11: PHP on the Command Line
	Why the Command Line?
	A Dummy Function
	Autoloading
	Acquiring Arguments
	The Shebang
	Error Conditions
	Usage
	Handling Arguments and Options
	Options
	Introducing getopt
	The Problem with getopt()
	Using GetOpt.php
	Enforcing Positional Arguments

	Handling Output
	Updating the Example Script
	Adding Verbose Mode

	Prompted Input
	Piped Input

	Packaging Up
	Distribution with Composer
	Creating a Phar

	Executing Shell Commands
	Summary

	Chapter 12: Continuous Integration
	What Is Continuous Integration?
	Preparing a Project for CI
	CI and Version Control
	Unit Tests

	Getting and Installing Jenkins
	Installing Jenkins
	Installing Jenkins Plug-ins
	Setting Up Git in Jenkins
	Configuring Composer and PHPUnit
	Running the First Build
	Triggering Builds
	A Jenkins Agent
	Creating a PHP-Capable Agent Image
	Another Key Pair
	Running the Agent
	Configuring Jenkins to Speak to the Agent
	Associating Jobs with the Agent

	GitHub Actions
	Why GitHub Actions?
	The Basics
	Checking Out the Code
	Running Composer
	Running PHPUnit
	What Next?
	Summary

	Chapter 13: PHP Practice
	Practice
	Testing
	Standards and Standards Tools
	Inline Documentation
	Development Environments
	Version Control
	Build and Deployment
	Command-Line Scripting
	Continuous Integration
	What I Missed

	Summary

