
PHP 8 Objec t s,
Pat terns, and
Prac tice: Volume 1

Mastering OO Enhancements and Design
Patterns
—
Seventh Edition
—
Matt Zandstra

PHP 8 Objects, Patterns,
and Practice: Volume 1

Mastering OO Enhancements
and Design Patterns

Seventh Edition

Matt Zandstra

PHP 8 Objects, Patterns, and Practice: Volume 1: Mastering OO Enhancements and
Design Patterns, Seventh Edition

ISBN-13 (pbk): 979-8-8688-0481-6		 ISBN-13 (electronic): 979-8-8688-0482-3
https://doi.org/10.1007/979-8-8688-0482-3

Copyright © 2024 by Matt Zandstra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson Prior
Development Editor: James Markham
Editorial Assistant: Gryffin Winkler

Cover designed by eStudioCalamar

Cover image designed by Pawel Czerwinski on Unsplash

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/services/
source-code.

If disposing of this product, please recycle the paper

Matt Zandstra
Brighton, UK

https://doi.org/10.1007/979-8-8688-0482-3

To Louise. Still the whole point.

v

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

Part I: �Objects�� 1

Chapter 1: ��PHP: Design and Management��� 3

The Problem��� 3

PHP and Other Languages��� 5

About These Books�� 8

What’s New in the Seventh Edition�� 8

Volume 1�� 9

Part 1: Objects�� 9

Part 2: Patterns��� 9

Summary��� 10

Chapter 2: ��PHP and Objects��� 11

The Accidental Success of PHP Objects��� 11

In the Beginning: PHP/FI��� 11

Syntactic Sugar: PHP 3��� 12

PHP 4 and the Quiet Revolution�� 12

Change Embraced: PHP 5��� 15

PHP 7: Closing the Gap��� 16

PHP 8: The Consolidation Continues��� 17

Advocacy and Agnosticism: The Object Debate��� 17

Summary��� 18

Table of Contents

vi

Chapter 3: ��Object Basics��� 19

Classes and Objects��� 19

A First Class�� 19

A First Object (or Two)�� 20

Setting Properties in a Class�� 21

Working with Methods��� 25

Creating a Constructor Method�� 27

Constructor Property Promotion��� 30

Default Arguments and Named Arguments�� 31

Arguments and Types��� 32

Base Types�� 33

Some Other Type-Checking Functions�� 38

Type Declarations: Class Types��� 38

Type Declarations: Scalar Types��� 41

mixed Types��� 44

Union Types�� 45

Intersection Types��� 48

DNF Types: Combining Union and Intersection Type Declarations�� 48

Nullable Types�� 49

Return Type Declarations��� 49

Inheritance��� 51

The Inheritance Problem�� 52

Working with Inheritance��� 58

Public, Private, and Protected: Managing Access to Your Classes�� 67

Typed Properties��� 71

readonly Properties��� 72

readonly Classes��� 74

The ShopProduct Classes��� 75

Summary��� 78

Table of Contents

vii

Chapter 4: ��Advanced Features��� 79

Static Methods and Properties��� 80

Constant Properties��� 85

Enumerations��� 86

Backed Enumerations��� 88

Enumerations with Methods��� 90

Abstract Classes�� 91

Interfaces��� 94

Traits�� 97

A Problem for Traits to Solve�� 98

Defining and Using a Trait��� 99

Using More Than One Trait�� 100

Combining Traits and Interfaces��� 101

Managing Method Name Conflicts with insteadof�� 102

Aliasing Overridden Trait Methods�� 104

Using Static Methods in Traits�� 105

Accessing Host Class Properties�� 106

Defining Abstract Methods in Traits�� 107

Changing Access Rights to Trait Methods�� 108

Late Static Bindings: The static Keyword��� 109

Handling Errors�� 113

Exceptions�� 116

Final Classes and Methods�� 126

The Internal Error Class��� 128

Working with Interceptors�� 129

Defining Destructor Methods��� 138

Copying Objects with __clone()��� 140

Defining String Values for Your Objects�� 144

Callbacks, Anonymous Functions, and Closures�� 146

Anonymous Classes��� 154

Summary��� 156

Table of Contents

viii

Chapter 5: ��Object Tools�� 157

PHP and Packages��� 157

PHP Packages and Namespaces�� 158

Autoload��� 170

The Class and Object Functions��� 176

Looking for Classes�� 177

Learning About an Object or Class��� 178

Getting a Fully Qualified String Reference to a Class��� 180

Learning About Methods�� 181

Learning About Properties�� 184

Learning About Inheritance�� 184

Method Invocation�� 185

The Reflection API�� 188

Getting Started��� 188

Time to Roll Up Your Sleeves�� 189

Examining a Class�� 192

Examining Methods�� 194

Examining Method Arguments��� 197

Using the Reflection API��� 200

Attributes��� 205

Summary��� 210

Chapter 6: ��Objects and Design�� 211

Defining Code Design��� 211

Object-Oriented and Procedural Programming�� 212

Responsibility��� 218

Cohesion��� 219

Coupling��� 219

Orthogonality�� 219

Choosing Your Classes��� 220

Polymorphism�� 221

Encapsulation�� 224

Table of Contents

ix

Forget How to Do It�� 225

Four Signposts��� 226

Code Duplication�� 226

The Class Who Knew Too Much�� 227

The Jack of All Trades��� 227

Conditional Statements�� 227

The UML��� 228

Class Diagrams��� 228

Sequence Diagrams��� 237

Summary��� 239

Part II: �Patterns��� 241

Chapter 7: ��What Are Design Patterns? Why Use Them?�� 243

What Are Design Patterns?�� 243

A Design Pattern Overview�� 246

Name�� 247

The Problem��� 247

The Solution�� 247

Consequences�� 248

The Gang of Four Format��� 248

Why Use Design Patterns?��� 249

A Design Pattern Defines a Problem�� 250

A Design Pattern Defines a Solution��� 250

Design Patterns Are Language Independent�� 250

Patterns Define a Vocabulary��� 250

Patterns Are Tried and Tested��� 251

Patterns Are Designed for Collaboration�� 252

Design Patterns Promote Good Design��� 252

Design Patterns Are Used by Popular Frameworks�� 252

PHP and Design Patterns��� 252

Summary��� 253

Table of Contents

x

Chapter 8: ��Some Pattern Principles�� 255

The Pattern Revelation��� 255

Composition and Inheritance��� 256

The Problem��� 256

Using Composition�� 260

Decoupling��� 264

The Problem��� 264

Loosening Your Coupling�� 266

Code to an Interface, Not to an Implementation�� 269

The Concept That Varies�� 270

Patternitis��� 271

The Patterns��� 272

Patterns for Generating Objects��� 272

Patterns for Organizing Objects and Classes��� 272

Task-Oriented Patterns��� 272

Enterprise Patterns��� 272

Database Patterns�� 273

Summary��� 273

Chapter 9: ��Generating Objects��� 275

Problems and Solutions in Generating Objects�� 275

The Singleton Pattern�� 282

The Problem��� 282

Implementation�� 283

Consequences�� 286

Factory Method Pattern��� 287

The Problem��� 287

Implementation�� 291

Consequences�� 294

Abstract Factory Pattern�� 295

The Problem��� 295

Implementation�� 297

Table of Contents

xi

Consequences�� 299

Prototype�� 302

The Problem��� 302

Implementation�� 303

Pushing to the Edge: Service Locator�� 308

Splendid Isolation: Dependency Injection�� 310

The Problem��� 310

Implementation�� 312

Consequences�� 336

Summary��� 337

Chapter 10: ��Patterns for Flexible Object Programming��� 339

Structuring Classes to Allow Flexible Objects�� 339

The Composite Pattern��� 340

The Problem��� 340

Implementation�� 344

Consequences�� 350

Composite in Summary�� 356

The Decorator Pattern�� 357

The Problem��� 357

Implementation�� 360

Consequences�� 366

The Facade Pattern�� 366

The Problem��� 366

Implementation�� 369

Consequences�� 370

Summary��� 371

Chapter 11: ��Performing and Representing Tasks�� 373

The Interpreter Pattern�� 373

The Problem��� 374

Implementation�� 375

Interpreter Issues��� 387

Table of Contents

xii

The Strategy Pattern�� 388

The Problem��� 388

Implementation�� 389

The Observer Pattern��� 394

Implementation�� 398

The Visitor Pattern�� 406

The Problem��� 406

Implementation�� 408

Visitor Issues�� 416

The Command Pattern��� 417

The Problem��� 417

Implementation�� 417

The Null Object Pattern�� 424

The Problem��� 425

Implementation�� 428

Summary��� 430

Chapter 12: ��Enterprise Patterns�� 431

Architecture Overview��� 432

The Patterns��� 432

Applications and Layers��� 433

Creating and Discovering Object Instances�� 436

Registry�� 436

Inversion of Control�� 441

The Presentation Layer�� 444

Front Controller�� 445

More Flexible Routing��� 462

Application Controller��� 470

Page Controller��� 485

Template View and View Helper��� 492

Table of Contents

xiii

The Business Logic Layer�� 496

Transaction Script��� 497

Domain Model�� 502

Summary��� 507

Chapter 13: ��Database Patterns�� 509

The Data Layer��� 509

Data Mapper�� 510

The Problem��� 510

Implementation�� 512

Collections and Domain Objects��� 522

Consequences�� 525

Lazy Load��� 526

The Problem��� 527

Implementation�� 528

Consequences�� 531

Identity Map��� 531

The Problem��� 532

Implementation�� 533

Consequences�� 537

Unit of Work��� 538

The Problem��� 538

Implementation�� 538

Consequences�� 544

Refactoring Tight Coupling��� 544

Domain Object Factory��� 550

The Problem��� 551

Implementation�� 551

Consequences�� 552

Table of Contents

xiv

The Identity Object��� 555

The Problem��� 555

Implementation�� 555

Consequences�� 564

The Selection Factory and Update Factory Patterns�� 564

The Problem��� 565

Implementation�� 565

Consequences�� 571

What’s Left of Data Mapper Now?��� 572

Summary��� 575

Chapter 14: ��Objects and Patterns�� 577

Objects��� 577

Choice��� 578

Encapsulation and Delegation�� 578

Decoupling�� 579

Reusability�� 580

Aesthetics��� 580

Patterns�� 581

What Patterns Buy Us��� 582

Patterns and Principles of Design�� 583

Summary��� 585

��Appendix A: Bibliography�� 587

��Appendix B: A Simple Parser��� 591

Index�� 623

Table of Contents

xv

About the Author

Matt Zandstra has worked as a web programmer, consultant, and writer for over two

decades. In addition to this book, he is the author of SAMS Teach Yourself PHP in 24

Hours (three editions) and is a contributor to DHTML Unleashed. He has written articles

for Linux Magazine, Zend, IBM DeveloperWorks, and php|architect Magazine and also

writes fiction. 

Matt was a senior developer/tech lead at Yahoo and API tech lead at LoveCrafts.

He now runs an agency that advises companies on their architectures and system

management and develops systems primarily with PHP, Python, and Java.

xvii

About the Technical Reviewer
Paul Tregoing has worked with PHP for over 15 years, beginning with five years as a

senior software engineer in the frontpage team at Yahoo! He was the technical editor for

PHP Objects, Patterns, and Practice (fifth and sixth editions).

xix

Acknowledgments

I have benefited from the support of many people while working on this edition. But

as always, I must also look back to the book’s origins. I tried out some of this book’s

underlying concepts in a talk in Brighton, back when we were all first marveling at

the shiny possibilities of PHP 5. Thanks to Andy Budd, who hosted the talk, and to the

vibrant Brighton developer community. Thanks also to Jessey White-Cinis, who was at

that meeting and who put me in touch with Martin Streicher at Apress.

Once again, this time around the Apress team has provided enormous support,

feedback, and encouragement. I am lucky to have benefited from such professionalism.

I’m delighted that my friend and colleague, Paul Tregoing, agreed again to act as

Technical Reviewer despite many other projects including his own book. This edition

has greatly benefited from Paul’s knowledge, insight, and attention to detail—many

thanks, Paul!

Thanks and love to my wife, Louise. The production of this book has coincided with

the university careers of my children Holly and Viola who have struggled with their own

deadlines and creative blocks. Thanks are due to them for keeping me company at the

kitchen table as we found our separate ways together!

Thanks to Steven Metsker for his kind permission to reimplement in PHP a

simplified version of the parser API he presented in his book Building Parsers with Java

(Addison-Wesley Professional, 2001).

I write to music, and, in previous editions of this book, I remembered the great

DJ, John Peel, champion of the underground and the eclectic. The soundtrack for this

edition was largely provided by BBC Radio 3’s Late Junction and Six Music’s Freak

Zone both played on a loop. Thanks to the DJs and musicians who continue to keep

things weird.

xxi

Introduction

When I first conceived of this book, object-oriented (OO) design in PHP was an esoteric

topic. The intervening years have not only seen the inexorable rise of PHP as an object-

oriented language but also the march of the framework. Frameworks are incredibly

useful, of course. They manage the guts and the glue of many (perhaps, these days, most)

web applications. What’s more, they often exemplify precisely the principles of design

that this book explores.

There is, though, a danger for developers here. This is the fear that one might find

oneself relegated to userland, forced to wait for remote gurus to fix bugs or add features

at their whim. It’s a short step from this standpoint to a kind of exile in which one is

left regarding the innards of a framework as advanced magic and one’s own work as

not much more than a minor adornment stuck up on top of a mighty unknowable

infrastructure.

Although I’m an inveterate reinventor of wheels, the thrust of my argument is not

that we should all throw away our frameworks and build complex applications from the

ground up (at least not always). It is rather that, as developers, we should understand the

problems that frameworks solve and the strategies they use to solve them. We should be

able to evaluate the tools we build upon not only functionally but in terms of the design

decisions their creators have made and to judge the quality of their implementations.

And, yes, when the conditions are right, we should go ahead and build our own spare

and focused applications and, over time, compile our own libraries of reusable code.

I hope this book goes some way toward helping PHP developers apply design-

oriented insights to their platforms and libraries and provides some of the conceptual

tools needed when it’s time to go it alone.

I wrote the preceding words as the introduction to the sixth edition of this book, and

they stand well enough that I’m happy to repeat them here.

But what else to say? I note in the book that work on patterns in architecture—

especially A Pattern Language by Christopher Alexander—lies at the root of software

design patterns. I sometimes feel as if, decades ago, I built a house on a plain. Not alone,

no house stands alone, but set somewhat apart from other structures. It was built with

tools and plans borrowed from nearby towns, and a few I made up for myself, and it

xxii

served well for years. And then, one morning, I awoke to notice that a city was growing

up around it—skyscrapers and neighborhoods, transit and communications systems.

The city’s politicians, architects, and builders—true innovators—were all at work busily

constructing higher and mightier structures, linking them up with ever newer and neater

systems and processes. This was daunting, but also a delight. Inspired, I have added

floors to the house. I have remodeled its interior. Over the years, it has come to lean on

its neighbors, to incorporate the ideas and principles of the city into its core. The house

remains an idiosyncratic creation, firmly rooted in its original foundations but always

drawing from its peers as its early rooms continue to evolve and as it supports annexes

and storeys that were once unimaginable. I very much hope you like it here.

Introduction

PART I

Objects

3
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3_1

CHAPTER 1

PHP: Design
and Management
In July 2004, PHP 5.0 was released. This version introduced a suite of radical

enhancements. Perhaps first among these was radically improved support for object-

oriented programming. This stimulated much interest in objects and design within the

PHP community. In fact, this was an intensification of a process that began when version

4 first made object-oriented programming with PHP a serious reality. And, although

this was a step change, it was really only the beginning of PHP’s radical shift to embrace

object orientation. The theme was taken up and extended by both PHP 7 and PHP 8, as

you’ll see.

In this chapter, I look at some of the needs that coding with objects can address. I

very briefly summarize some aspects of the evolution of patterns and related practices.

I also outline the topics covered by this book. I will look at the following:

•	 The evolution of disaster: A project goes bad.

•	 Design and PHP: How object-oriented design techniques took root in

the PHP community.

•	 This book: Objects and patterns.

�The Problem
The problem is that PHP is just too easy. It tempts you to try out your ideas and flatters

you with good results. You write much of your code straight into your web pages,

because PHP is designed to support that. You add utility functions (such as database

access code) to files that can be included from page to page, and before you know it, you

have a working web application.

https://doi.org/10.1007/979-8-8688-0482-3_1#DOI

4

You are well on the road to ruin. You don’t realize this, of course, because your

site looks fantastic. It performs well, your clients are happy, and your users are

spending money.

Trouble strikes when you go back to the code to begin a new phase. Now you have a

larger team, some more users, and a bigger budget. Yet, without warning, things begin to

go wrong. It’s as if your project has been poisoned.

Your new programmer is struggling to understand code that is second nature to you,

although perhaps a little byzantine in its twists and turns. She is taking longer than you

expected to reach full strength as a team member.

A simple change, estimated at a day, takes three days when you discover that you

must update 20 or more web pages as a result.

One of your coders saves his version of a file over major changes you made to the

same code some time earlier. The loss is not discovered for three days, by which time you

have amended your own local copy. It takes a day to sort out the mess, holding up a third

developer who was also working on the file.

Because of the application’s popularity, you need to shift the code to a new server. The

project has to be installed by hand, and you discover that file paths, database names, and

passwords are hard-coded into many source files. You halt work during the move because

you don’t want to overwrite the configuration changes the migration requires. The estimated

two hours becomes eight as it is revealed that someone did something clever involving the

Apache module ModRewrite, and the application now requires this to operate properly.

You finally launch phase 2. All is well for a day and a half. The first bug report comes

in as you are about to leave the office. The client phones minutes later to complain. Her

report is similar to the first, but a little more scrutiny reveals that it is a different bug

causing similar behavior. You remember the simple change back at the start of the phase

that necessitated extensive modifications throughout the rest of the project.

You realize that not all of the required modifications are in place. This is either

because they were omitted to start with or because the files in question were overwritten

in merge collisions. You hurriedly make the modifications needed to fix the bugs. You’re

in too much of a hurry to test the changes, but they are a simple matter of copy and

paste, so what can go wrong?

The next morning, you arrive at the office to find that a shopping basket module has

been down all night. The last-minute changes you made omitted a leading quotation

mark, rendering the code unusable. Of course, while you were asleep, potential

customers in other time zones were wide awake and ready to spend money at your store.

You fix the problem, mollify the client, and gather the team for another day’s firefighting.

Chapter 1 PHP: Design and Management

5

This everyday tale of coding folk may seem a little over the top, but I have seen all

these things happen over and over again. Many PHP projects start their life small and

evolve into monsters.

Because the presentation layer also contains application logic, duplication creeps in

early as database queries, authentication checks, form processing, and more are copied

from page to page. Every time a change is required to one of these blocks of code, it must

be made everywhere that the code is found, or bugs will surely follow.

Lack of documentation makes the code hard to read, and lack of testing allows

obscure bugs to go undiscovered until deployment. The changing nature of a client’s

business often means that code evolves away from its original purpose until it is

performing tasks for which it is fundamentally unsuited. Because such code has often

evolved as a seething, intermingled lump, it is hard, if not impossible, to switch out and

rewrite parts of it to suit the new purpose.

Now, none of this is bad news if you are a freelance PHP consultant. Assessing

and fixing a system like this can fund expensive espresso drinks and streaming service

subscriptions for six months or more. More seriously, though, problems of this sort can

mean the difference between a business’s success and failure.

�PHP and Other Languages
PHP’s phenomenal popularity meant that its boundaries were tested early and hard. As

you will see in the next chapter, PHP started life as a set of macros for managing personal

home pages. With the advent of PHP 3 and, to a greater extent, PHP 4, the language

rapidly became the successful power behind large enterprise websites. In many ways,

however, the legacy of PHP’s beginnings carried through into script design and project

management. In some quarters, PHP retained an unfair reputation as a hobbyist

language, best suited for presentation tasks.

About this time (around the turn of the millennium), new ideas were gaining

currency in other coding communities. An interest in object-oriented design galvanized

the Java community. Since Java is an object-oriented language, you may think that this

is a redundancy. Java provides a grain that is easier to work with than against, of course,

but using classes and objects does not in itself determine a particular design approach.

Chapter 1 PHP: Design and Management

6

The concept of the design pattern as a way of describing a problem, together with the

essence of its solution, was first discussed in the 1970s. Perhaps aptly, the idea originated

in the field of architecture, not computer science, in a seminal work by Christopher

Alexander: A Pattern Language (Oxford University Press, 1977). By the early 1990s,

object-oriented programmers were using the same technique to name and describe

problems of software design. The seminal book on design patterns, Design Patterns:

Elements of Reusable Object-Oriented Software (Addison-Wesley Professional, 1995), by

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (henceforth referred

to in this book by their affectionate nickname, the Gang of Four), is still indispensable

today. The patterns it contains are a required first step for anyone starting out in this

field, which is why most of the patterns in this book are drawn from it.

The Java language itself deployed many core patterns in its API, but it wasn’t until the

late 1990s that design patterns seeped into the consciousness of the coding community

at large. Patterns quickly infected the computer sections of Main Street bookstores, and

the first flame wars began on mailing lists and in forums.

Whether you think that patterns are a powerful way of communicating craft

knowledge or largely hot air (and, given the title of this book, you can probably guess

where I stand on that issue), it is hard to deny that the emphasis on software design they

have encouraged is beneficial in itself.

Related topics also grew in prominence. Among them was eXtreme Programming

(XP), championed by Kent Beck. XP is an approach to projects that encourages flexible,

design-oriented, highly focused planning and execution.

Prominent among XP’s principles is an insistence that testing is crucial to a project’s

success. Tests should be automated, run often, and preferably designed before their

target code is written.

XP also dictates that projects should be broken down into small (very small)

iterations. Both code and requirements should be scrutinized at all times. Architecture

and design should be a shared and constant issue, leading to the frequent revision

of code.

If XP was the militant wing of the design movement, then the moderate tendency

is well represented by one of the best books about programming that I have ever read:

The Pragmatic Programmer: From Journeyman to Master by Andrew Hunt and David

Thomas (Addison-Wesley Professional, 1999).

Chapter 1 PHP: Design and Management

7

XP was deemed a tad cultish by some, but it grew out of two decades of object-

oriented practice at the highest level, and its principles were widely cannibalized. In

particular, code revision, known as refactoring, was taken up as a powerful adjunct to

patterns. Refactoring has evolved since the 1980s, but it was codified in Martin Fowler’s

catalog of refactorings, Refactoring: Improving the Design of Existing Code (Addison-

Wesley Professional), which was published in 1999 and defined the field.

Testing, too, became a hot issue with the rise to prominence of XP and patterns. The

importance of automated tests was further underlined by the release of the powerful JUnit

test platform, which became a key weapon in the Java programmer’s armory. A landmark

article on the subject, “Test Infected: Programmers Love Writing Tests” by Kent Beck and

Erich Gamma (http://junit.sourceforge.net/doc/testinfected/testing.htm), gives

an excellent introduction to the topic and remains hugely influential.

PHP 4 was released at about this time, bringing with it improvements in efficiency

and, crucially, enhanced support for objects. These enhancements made fully object-

oriented projects a possibility. Programmers embraced this feature, somewhat to the

surprise of Zend founders Zeev Suraski and Andi Gutmans, who had joined Rasmus

Lerdorf to manage PHP development. As you shall see in the next chapter, PHP’s object

support was by no means perfect. But with discipline and careful use of syntax, one

could really begin to think in objects and PHP at the same time.

Nevertheless, design disasters such as the one depicted at the start of this chapter

remained common. Design culture was some way off and almost nonexistent in books

about PHP. Online, however, the interest was clear. Leon Atkinson wrote a piece about

PHP and patterns for Zend in 2001, and Harry Fuecks launched his journal at www.

phppatterns.com (now defunct) in 2002. Pattern-based framework projects such as

BinaryCloud began to emerge, as well as tools for automated testing and documentation.

The release of the first PHP 5 beta in 2003 ensured the future of PHP as a language for

object-oriented programming. Zend Engine 2 provided greatly improved object support.

Equally important, it sent a signal that objects and object-oriented design were now

central to the PHP project.

Over the years, PHP 5 continued to evolve and improve, incorporating important

new features such as namespaces and closures. During this time, it secured its

reputation as the best choice for server-side web programming.

PHP 7, released in December 2015, represented a continuation of this trend. In

particular, it provided support for both parameter and return type declarations—two

features that many developers (together with previous editions of this book) had been

Chapter 1 PHP: Design and Management

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://www.phppatterns.com
http://www.phppatterns.com

8

clamoring for over the years. There were many other features and improvements

including anonymous classes, improved memory usage, and boosted speed. Over the

years, the language grew steadily more robust, cleaner, and more fun to work with from

the perspective of an object-oriented coder.

PHP 8 was released in November 2020, almost exactly five years after the release of

PHP 7. It brought with it a slew of new features including attributes (sometimes called

annotations in other languages), named arguments, union types, and constructor

property promotion.

�About These Books
Over the years, as PHP’s object-oriented footprint has grown, PHP 8 Objects, Patterns,

and Practice has grown alongside it. The sixth edition weighed in at over 800 pages.

Inevitably, for this edition, the trend has continued. In fact, we’ve leaned into the process

and added several entirely new chapters. In order to support this new content, the book

is now published in two volumes. Volume 1 covers objects and patterns. Volume 2 covers

tools and best practice.

�What’s New in the Seventh Edition
PHP is a living language, and as such it’s under constant review and development. This

new edition, too, has been reviewed and thoroughly updated to take account of changes

and new opportunities.

I cover a whole range of features introduced since the previous edition including

read-only classes, enumerations, typed class constants, and various additions to

argument and return types. To reflect changes in accepted best practice, I have largely

deprecated the Service Locator (also known as Registry) pattern in the later chapters of

Volume 1. Instead, I use Inversion of Control pattern, deploying a dependency injection

(DI) container component that I cover in detail in Chapter 9.

Some of the additions coming to Volume 2 include chapters on Docker, command-

line PHP, and code quality tools. A chapter on inline documentation makes a return to

the book in this edition. All other chapters are revised as usual to reflect the evolution of

tools and best practice.

Chapter 1 PHP: Design and Management

9

�Volume 1
This book does not attempt to break new ground in the field of object-oriented design;

in that respect, it perches precariously on the shoulders of giants. Instead, I examine,

in the context of PHP, some well-established design principles and some key patterns

(particularly those inscribed in Design Patterns, the classic Gang of Four book).

�Part 1: Objects
I begin Volume 1 with a quick look at the history of PHP and objects, charting their shift

from afterthought in PHP 3 to core feature in PHP 5.

You can still be an experienced and successful PHP programmer with little

or no knowledge of objects. For this reason, I start from first principles to explain

objects, classes, and inheritance. Even at this early stage, I look at some of the object

enhancements that PHP 5, PHP 7, and PHP 8 introduced.

The basics established, I delve deeper into our topic, examining PHP’s more

advanced object-oriented features. I also devote a chapter to the tools that PHP provides

to help you work with objects and classes.

It is not enough, however, to know how to declare a class and to use it to instantiate

an object. You must first choose the right participants for your system and decide the

best ways for them to interact. These choices are much harder to describe and to learn

than the bald facts about object tools and syntax. I finish Part 1 with an introduction to

object-oriented design with PHP.

�Part 2: Patterns
A pattern describes a problem in software design and provides the kernel of a solution.

“Solution” here does not mean the kind of cut-and-paste code that you might find in a

cookbook (excellent though cookbooks are as resources for the programmer). Instead,

a design pattern describes an approach that can be taken to solve a problem. A sample

implementation may be given, but it is less important than the concept that it serves to

illustrate.

Part 2 begins by defining design patterns and describing their structure. I also look at

some of the reasons behind their popularity.

Chapter 1 PHP: Design and Management

10

Patterns tend to promote and follow certain core design principles. An

understanding of these can help in analyzing a pattern’s motivation and can usefully

be applied to all programming. I discuss some of these principles. I also examine the

Unified Modeling Language (UML), a platform-independent way of describing classes

and their interactions.

Although this book is not a pattern catalog, I examine some of the most famous and

useful patterns. I describe the problem that each pattern addresses, analyze the solution,

and present an implementation example in PHP.

�Summary
This is a book about object-oriented design and programming. It is also about tools for

managing a PHP codebase from collaboration through to deployment.

These two themes address the same problem from different but complementary

angles. The primary aim is to build systems that achieve their objectives and lend

themselves well to collaborative development.

A secondary goal lies in the aesthetics of software systems. As programmers, we

build machines that have shape and action. We invest many hours of our working day,

and many days of our lives, writing these shapes into being. We want the tools we build,

whether individual classes and objects, software components, or end products, to form

an elegant whole. The process of version control, testing, documentation, and build does

more than support this objective: it is part of the shape we want to achieve. Just as we

want clean and clever code, we want a codebase that is designed well for developers and

users alike. The mechanics of sharing, reading, and deploying the project should be as

important as the code itself.

Chapter 1 PHP: Design and Management

11
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3_2

CHAPTER 2

PHP and Objects
Objects were not always a key part of the PHP project. In fact, they were once described

as an afterthought by PHP’s designers.

As afterthoughts go, this one has proved remarkably resilient. In this chapter, I

introduce this book’s coverage of objects by summarizing the development of PHP’s

object-oriented features.

We will look at the following:

•	 PHP/FI 2.0: PHP, but not as we know it.

•	 PHP 3: Objects make their first appearance.

•	 PHP 4: Object-oriented programming grows up.

•	 PHP 5: Objects at the heart of the language.

•	 PHP 7: Closing the gap.

•	 PHP 8: The consolidation continues.

�The Accidental Success of PHP Objects
With PHP’s extensive object support and so many object-oriented PHP libraries and

applications in circulation, the rise of the object in PHP may seem like the culmination

of a natural and inevitable process. In fact, nothing could be further from the truth.

�In the Beginning: PHP/FI
The genesis of PHP as we know it today lies with two tools developed by Rasmus Lerdorf

using Perl. PHP stood for Personal Home Page Tools. FI stood for Form Interpreter.

Together, they comprised macros for sending SQL statements to databases, processing

forms, and flow control.

https://doi.org/10.1007/979-8-8688-0482-3_2#DOI

12

These tools were rewritten in C and combined under the name PHP/FI 2.0. The

language at this stage looked different from the syntax we recognize today, but not that

different. There was support for variables, associative arrays, and functions. Objects,

however, were not even on the horizon.

�Syntactic Sugar: PHP 3
In fact, even as PHP 3 was in the planning stage, objects were off the agenda. The

principal architects of PHP 3 were Zeev Suraski and Andi Gutmans. PHP 3 was a

complete rewrite of PHP/FI 2.0, but objects were not deemed a necessary part of the

new syntax.

According to Zeev Suraski, support for classes was added almost as an afterthought

(on August 27, 1997, to be precise). Classes and objects were actually just another way to

define and access associative arrays.

Of course, the addition of methods and inheritance made classes much more than

glorified associative arrays, but there were still severe limitations on what you might do

with your classes. In particular, you could not access a parent class’s overridden methods

(don’t worry if you don’t know what this means yet; I will explain later). Another

disadvantage that I will examine in the next section was the less than optimal way that

objects were passed around in PHP scripts.

That objects were a marginal issue at this time is underlined by their lack of

prominence in official documentation. The manual devoted one sentence and a code

example to objects. The example did not illustrate inheritance or properties.

�PHP 4 and the Quiet Revolution
If PHP 4 was yet another groundbreaking step for the language, most of the core changes

took place beneath the surface. The Zend Engine (its name derived from Zeev and Andi)

was written from scratch to power the language. The Zend Engine is one of the main

components that drive PHP. Any PHP function you might care to call is in fact part of

the high-level extension layer. These do the busywork they were named for, like talking

to database APIs or juggling strings for you. Beneath that, the Zend Engine manages

memory, delegates control to other components, and translates the familiar PHP syntax

you work with every day into runnable bytecode. It is the Zend Engine that we have to

thank for core language features like classes.

Chapter 2 PHP and Objects

13

From our objective perspective, the fact that PHP 4 made it possible to override

parent methods and access them from child classes was a major benefit.

A major drawback remained, however. Assigning an object to a variable, passing it

to a function, or returning it from a method resulted in a copy being made. Consider an

assignment like this:

$my_obj = new User('bob');

$other = $my_obj;

This resulted in the existence of two User objects rather than two references to the

same User object. In most object-oriented languages, you would expect assignment

by reference rather than by value. This means that you would pass and assign handles

that point to objects rather than copy the objects themselves. The default pass-by-value

behavior resulted in many obscure bugs as programmers unwittingly modified objects

in one part of a script, expecting the changes to be seen via references elsewhere.

Throughout this book, you will see many examples in which I maintain multiple

references to the same object.

Luckily, there was a way of enforcing pass by reference, but it meant remembering to

use a clumsy construction.

Here’s how you would assign by reference:

$other =& $my_obj;

// $other and $my_obj point to same object

This enforces pass by reference:

function setSchool(& $school)

{

 // $school is now a reference to not a copy of passed object

}

And here is return by reference:

function & getSchool()

{

 // returning a reference not a copy

 return $this->school;

}

Chapter 2 PHP and Objects

14

Although this worked fine, it was easy to forget to add the ampersand, and that

meant it was all too easy for bugs to creep into object-oriented code. These were

particularly hard to track down, because they rarely caused any reported errors, just

plausible but broken behavior.

Coverage of syntax in general, and objects in particular, was extended in the PHP

manual, and object-oriented coding began to bubble up to the mainstream. Objects

in PHP were not uncontroversial (then, as now, no doubt), and threads like “Do I need

objects?” were common flame-bait in mailing lists. Indeed, the Zend site played host

to articles that encouraged object-oriented programming side by side with others that

sounded a warning note. Pass-by-reference issues and controversy notwithstanding,

many coders just got on and peppered their code with ampersand characters.

Object-oriented PHP grew in popularity. Zeev Suraski wrote this in an article for DevX.com

(https://web.archive.org/web/20070123002512/https://www.devx.com/webdev/

Article/10007/0/page/1):

One of the biggest twists in PHP’s history was that despite the

very limited functionality, and despite a host of problems and

limitations, object-oriented programming in PHP thrived and

became the most popular paradigm for the growing numbers

of off-the-shelf PHP applications. This trend, which was mostly

unexpected, caught PHP in a suboptimal situation. It became

apparent that objects were not behaving like objects in other OO

languages, and were instead behaving like [associative] arrays.

As noted in the previous chapter, interest in object-oriented design became obvious

in sites and articles online. PHP’s official software repository, PEAR, itself embraced

object-oriented programming. With hindsight, it’s easy to think of PHP’s adoption of

object-oriented support as a reluctant capitulation to an inevitable force. It’s important

to remember that although object-oriented programming has been around since the

1960s, it really gained ground in the mid-1990s. Java, the great popularizer, was not

released until 1995. A superset of C, a procedural language, C++, has been around

since 1979. After a long evolution, it arguably made the leap to the big time during the

1990s. Perl 5 was released in 1994, another revolution within a formerly procedural

language that made it possible for its users to think in objects (although some argue that

Perl’s object-oriented support also felt like something of an afterthought). For a small

procedural language, PHP developed its object support remarkably fast, showing a real

responsiveness to the requirements of its users.

Chapter 2 PHP and Objects

http://devx.com
https://web.archive.org/web/20070123002512/https://www.devx.com/webdev/Article/10007/0/page/1
https://web.archive.org/web/20070123002512/https://www.devx.com/webdev/Article/10007/0/page/1

15

�Change Embraced: PHP 5
PHP 5 represented an explicit endorsement of objects and object-oriented programming.

That is not to say that objects were the only way to work with PHP (this book does not say

that either, by the way). Objects were, however, recognized as a powerful and important

means for developing enterprise systems, and PHP fully supported them in its core design.

Arguably, one significant effect of the enhancements in PHP 5 was the adoption of

the language by larger Internet companies. Both Yahoo! and Facebook, for example,

started using PHP extensively within their platforms. With version 5, PHP became one of

the standard languages for development and enterprise on the Internet.

Objects had moved from afterthought to language driver. Perhaps the most

important change was the new apparent pass-by-reference behavior that replaced the

evils of object copying. That was only the beginning, however. Throughout this book,

and particularly in this part of it, we will encounter many more enhancements, including

private and protected methods and properties, the static keyword, namespaces, type

hints (now called type declarations), and exceptions. PHP 5 was around for a long time

(about 12 years), and important new features were released incrementally.

Note  It is worth noting that PHP did not strictly speaking move to pass by
reference with the introduction of PHP 5, and this has not changed. Instead, by
default, when an object is assigned, passed to a method, or returned from one,
an identifier to that object is copied. So, unless you pin matters down and enforce
pass by reference with the ampersand character, you are still performing a copy
operation. In practical terms, however, there is usually little difference between this
kind of copying and pass by reference since you reference the same target object
with your copied identifier as you did with your original.

PHP 5.3, for example, brought namespaces. These let you create a named scope

for classes and functions, so that you are less likely to run into duplicate names as you

include libraries and expand your system. They also rescue you from ugly but necessary

naming conventions such as this:

class megaquiz_util_Conf

{

}

Chapter 2 PHP and Objects

16

Class names such as this are the recommended way of preventing clashes between

packages in older versions of PHP, but they can make for tortuous code.

PHP 5 releases also ushered in support for closures, generators, traits, and late static

bindings.

�PHP 7: Closing the Gap
Programmers are a demanding lot. For many lovers of design patterns, there were two

key features that PHP still lacked. These were scalar type declarations and enforced

return types. With PHP 5, it was possible to enforce the type of an argument passed to a

function or method, so long as you only needed to require an object, an array, or, later,

callable code. Scalar values (like integers, strings, and floats) could not be enforced at

all. Furthermore, if you wanted to declare a method or a function’s return type, you were

altogether out of luck.

As you will see, object-oriented design often uses a method declaration as a kind of

contract. The method demands certain inputs, and, reciprocally, it promises to give you

a particular type of data back. PHP 5 programmers were forced to rely on comments,

convention, and manual type checking to maintain contracts of this kind in many cases.

Developers and commentators often complained about this. Here is a quote from the

fourth edition of this book:

there is still no commitment to provide support for hinted return

types. This would allow you to declare in a method or function’s

declaration the object type that it returns. This would then be

enforced by the PHP engine. Hinted return types would further

improve PHP’s support for pattern principles (principles such as

“code to an interface, not an implementation”). I hope one day to

revise this book to cover that feature!

I’m pleased to write that the day did arrive! PHP 7 introduced scalar type

declarations (previously known as type hints) and return type declarations. What’s more,

PHP 7.4 took type safety even further by introducing typed properties. Naturally, all of

that is covered in this edition.

PHP 7 also provided other nice-to-haves, including anonymous classes and some

namespace enhancements.

Chapter 2 PHP and Objects

17

�PHP 8: The Consolidation Continues
PHP has always been a great magpie, borrowing shiny proven features from other

languages. PHP 8 introduces many new features including attributes, often known in

other languages as annotations. These handy tags can be used to provide additional

contextual information about classes, methods, properties, and constants in a system.

Furthermore, PHP 8 has continued to extend its support for type declarations.

Particularly interesting in this area is the union type declaration. This allows you to

declare that the type of a property or parameter should be constrained to one of several

specified types. You can lock down your types at the same time as taking advantage of

PHP’s type flexibility. The very definition of having your cake and eating it!

Since the previous edition, PHP 8 releases have also brought us read-only properties

and classes, enumerations, and typed class constants among much else. As minor

versions of PHP 8 were released, so support for type declarations evolved. PHP 8.1

allowed for type intersections (which allows the programmer to require that an

argument conforms to more than one type at once), and PHP 8.2 introduced so-

called Disjunctive Normal Form (DNF) types, that is, types enforce compliance to more

complex logical requirements.

As PHP has evolved to embrace objects, so its built-in features have changed. Where

appropriate, classes and objects are replacing stand-alone functions. Support for the

legacy resource type is gradually being phased out in favor of specialized objects.

Note  For more on the shift away from the resource type, see the RFC from
October 2023 by Máté Kocsis at https://wiki.php.net/rfc/
resource_to_object_conversion.

�Advocacy and Agnosticism: The Object Debate
Objects and object-oriented design seem to stir passions on both sides of the enthusiasm

divide. Many excellent programmers have produced excellent code for years without

using objects, and PHP continues to be a superb platform for procedural web

programming.

Chapter 2 PHP and Objects

https://wiki.php.net/rfc/resource_to_object_conversion
https://wiki.php.net/rfc/resource_to_object_conversion

18

This book naturally displays an object-oriented bias throughout, a bias that reflects

my object-infected outlook. Because this book is a celebration of objects, and an

introduction to object-oriented design, it is inevitable that the emphasis is unashamedly

object oriented. Nothing in this book is intended, however, to suggest that objects are the

one true path to coding success with PHP.

Whether a developer chose to work with PHP as an object-oriented language was

once a matter of preference. This is still true to the extent that one can create perfectly

acceptable working systems using functions and global code. Some great tools (e.g.,

WordPress) are still procedural in their underlying architecture (though even these may

make extensive use of objects these days). It is, however, becoming increasingly hard to

work as a PHP programmer without using and understanding PHP’s support for objects,

not least because the third-party libraries you are likely to rely upon in your projects will

themselves likely be object oriented.

Still, as you read, it is worth bearing in mind the famous Perl motto, “There’s more

than one way to do it.” This is especially true of smaller scripts, where quickly getting a

working example up and running is more important than building a structure that will

scale well into a larger system (scratch projects of this sort are often known as “spikes”).

Code is a flexible medium. The trick is to know when your quick proof of concept

is becoming the root of a larger development and to call a halt before lasting design

decisions are made for you by the sheer weight of your code. Now that you have decided

to take a design-oriented approach to your growing project, I hope that this book

provides the help that you need to get started building object-oriented architectures.

�Summary
This short chapter placed objects in their context in the PHP language. The future for

PHP is very much bound up with object-oriented design. In the next few chapters,

I take a snapshot of PHP’s current support for object features and introduce some

design issues.

Chapter 2 PHP and Objects

19
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3_3

CHAPTER 3

Object Basics
Objects and classes lie at the heart of this book, and, since the introduction of PHP 5

two decades ago, they have lain at the heart of PHP, too. In this chapter, I establish the

groundwork for more in-depth coverage of objects and design by examining PHP’s core

object-oriented features. If you are new to object-oriented programming, you should

read this chapter carefully.

This chapter will cover the following topics:

•	 Classes and objects: Declaring classes and instantiating objects

•	 Constructor methods: Automating the setup of your objects

•	 Base types and class types: Why type matters

•	 Inheritance: Why we need inheritance and how to use it

•	 Visibility: Streamlining your object interfaces and protecting your

methods and properties from meddling

�Classes and Objects
The first barrier to understanding object-oriented programming is the strange and

wonderful relationship between the class and the object. For many people, it is this

relationship that represents the first moment of revelation, the first flash of object-

oriented excitement. So let’s not skimp on the fundamentals.

�A First Class
Classes are often described in terms of objects. This is interesting, because objects are

often described in terms of classes. This circularity can make the first steps in object-

oriented programming hard going. Because it’s classes that shape objects, we should

begin by defining a class.

https://doi.org/10.1007/979-8-8688-0482-3_3#DOI

20

In short, a class is a code template used to generate one or more objects. You declare

a class with the class keyword and an arbitrary class name. Class names can be any

combination of numbers and letters, although they must not begin with a number.

They can also contain underscore characters. The code associated with a class must be

enclosed within braces. Here, I combine these elements to build a class:

class ShopProduct

{

 // class body

}

The ShopProduct class in the example is already a legal class, although it is not

terribly useful yet. I have done something quite significant, however. I have defined a

type; that is, I have created a category of data that I can use in my scripts. The power of

this should become clearer as you work through the chapter.

�A First Object (or Two)
If a class is a template for generating objects, it follows that an object is data that has

been structured according to the template defined in a class. An object is said to be an

instance of its class. It is of the type defined by the class.

I use the ShopProduct class as a mold for generating ShopProduct objects. To do this,

I need the new operator. The new operator is used in conjunction with the name of a class,

like this:

$product1 = new ShopProduct();

$product2 = new ShopProduct();

The new operator is invoked with a class name as its only operand and returns an

instance of that class; in our example, it generates a ShopProduct object.

I have used the ShopProduct class as a template to generate two ShopProduct

objects. Although they are functionally identical (i.e., empty), $product1 and $product2

are different objects of the same type generated from a single class.

If you are still confused, try this analogy. Think of a class as a cast in a machine that

makes plastic ducks. Our objects are the ducks that this machine generates. The type of thing

generated is determined by the mold from which it is pressed. The ducks look identical in

every way, but they are distinct entities. In other words, they are different instances of the

same type. The ducks may even have their own serial numbers to prove their identities.

Chapter 3 Object Basics

21

Every object that is created in a PHP script is also given its own unique identifier. (Note that

the identifier is unique for the life of the object; that is, PHP reuses identifiers, even within a

process.) I can demonstrate this by printing out the $product1 and $product2 objects:

var_dump($product1);

var_dump($product2);

Executing these functions produces (something very like) the following output:

object(poppch03batch01ShopProduct)#235 (0) {

}

object(poppch03batch01ShopProduct)#234 (0) {

}

Note I n ancient versions of PHP (up to version 5.1), you could print an object
directly. This casted the object to a string containing the object’s ID. From PHP 5.2
onward, the language no longer supported this magic, and any attempt to treat an
object as a string now causes an error unless a method named __toString()
is defined in the object’s class. I look at methods later in this chapter, and I cover
__toString() in Chapter 4.

By passing the objects to var_dump(), I extract useful information, including, after

the hash sign, each object’s internal identifier.

In order to make these objects more interesting, I can amend the ShopProduct class

to support special data fields called properties.

�Setting Properties in a Class
Classes can define special variables called properties. A property, also known as a

member variable, holds data that can vary from object to object. So in the case of

ShopProduct objects, you may wish to manipulate title and price fields, for example.

A property in a class looks similar to a standard variable except that, in declaring a

property, you must precede the property variable with a visibility keyword. This can be

public, protected, or private, and it determines the location in your code from which

the property can be accessed. Public properties are accessible outside the class, for

example, and private properties can only be accessed by code within the class.

Chapter 3 Object Basics

22

I will return to these keywords and the issue of visibility later in this chapter. For now,

I will declare some properties using the public keyword:

class ShopProduct

{

 public $title = "default product";

 public $producerMainName = "main name";

 public $producerFirstName = "first name";

 public $price = 0;

}

As you can see, I set up four properties, assigning a default value to each of them.

Any objects I instantiate from the ShopProduct class will now be prepopulated with

default data. The public keyword in each property declaration ensures that I can access

the property from outside of the object context.

Note  While the code in the previous listing is legal, it would not be considered
well formed in a modern project. That is because, since PHP 7.4, you can and
should declare the types of properties as well as their visibility. I cover typed
properties later on in this chapter.

You can access property variables on an object-by-object basis using the characters

'->' (the object operator) in conjunction with an object variable and property name,

like this:

$product1 = new ShopProduct();

print $product1->title;

Because the properties are defined as public, you can assign values to them just as

you can read them, replacing any default value set in the class:

$product1 = new ShopProduct();

$product2 = new ShopProduct();

$product1->title = "My Antonia";

$product2->title = "Catch 22";

Chapter 3 Object Basics

23

By declaring and setting the $title property in the ShopProduct class, I ensure that

all ShopProduct objects have this property when first created. This means code that uses

this class can work with ShopProduct objects based on that assumption. Because I can

reset it, though, the value of $title may vary from object to object.

Note  Code that uses a class, function, or method is often described as the
(class’s, function’s, or method’s) client or as client code. You will see this term
frequently in the coming chapters.

In fact, PHP does not force us to declare all our properties in the class. You could add

properties dynamically to an object, like this:

$product1->arbitraryAddition = "treehouse";

However, this method of assigning properties to objects is not considered good

practice in object-oriented programming and, as of PHP 8.2, attempting to do this will

trigger a deprecation warning. This will look something like this:

Deprecated: Creation of dynamic property ShopProduct::$arbitraryAddition is

deprecated in Runner.php on line 34

Note I f you really want to use a dynamic property, you can use an
AllowDynamicProperties attribute to tell the interpreter not to complain about
dynamic property creation in relation to a particular class. I cover attributes in
Chapter 5.

You can suppress deprecation warnings by negating the E_DEPRECATED constant
in your error_reporting value, either in your php.ini file (e.g., error_
reporting = E_ALL & ~E_DEPRECATED) or within your code (e.g., error_
reporting(E_ALL & ~E_DEPRECATED);). This approach can be useful if you
must rely on a noisy third-party library. It is not recommended to turn off such
warnings globally during development as today’s warnings are tomorrow’s fatals.

Chapter 3 Object Basics

24

Why is it bad practice to set properties dynamically? When you create a class, you

define a type. You inform the world that your class (and any object instantiated from it)

consists of a particular set of fields and functions. If your ShopProduct class defines a

$title property, then any code that works with ShopProduct objects can proceed on the

assumption that a $title property will be available. There can be no guarantees about

properties that have been dynamically set, though.

My objects are still cumbersome at this stage. When I need to work with an object’s

properties, I must currently do so from outside the object. I reach in to set and get

property information. Setting multiple properties on multiple objects will soon become

a chore:

$product1 = new ShopProduct();

$product1->title = "My Antonia";

$product1->producerMainName = "Cather";

$product1->producerFirstName = "Willa";

$product1->price = 5.99;

I work once again with the ShopProduct class, overriding all the default property

values one by one until I have set all product details. Now that I have set some data, I can

also access it:

print "author: {$product1->producerFirstName} "

 . "{$product1->producerMainName}\n";

This outputs the following:

author: Willa Cather

This used to be more risky than it is now thanks to the deprecation of dynamic

properties. Prior to PHP 8.2, you could misspell or forget a property name, and PHP

would not warn you. Now, you’ll get a warning, but you can still make the assignment.

For example, assume I want to type this line:

$product1->producerFirstName = "Shirley";

$product1->producerMainName = "Jackson";

Unfortunately, I mistakenly type it like this:

$product1->producerFirstName = "Shirley";

$product1->producerSecondName = "Jackson";

Chapter 3 Object Basics

25

The PHP engine will issue a deprecation warning, but it will go ahead and create

the new $producerSecondName property for me – thereby failing to set the value on

$producerMainName as intended. When I come to print the author’s name, I will get

unexpected results.

Another problem is that my class is altogether too relaxed. I am not forced to

set a title, a price, or producer names. Client code can be sure that these properties

exist, but is likely to be confronted with default values as often as not. Ideally, I would

like to encourage anyone who instantiates a ShopProduct object to set meaningful

property values.

Finally, I have to jump through hoops to do something that I will probably want to do

quite often. As we have seen, printing the full author name is a tiresome process.

It would be nice to have the object handle such drudgery on my behalf.

All of these problems can be addressed by giving the ShopProduct object its own set

of functions that can be used to manipulate property data from within the object context.

�Working with Methods
Just as properties allow your objects to store data, methods allow your objects to perform

tasks. Methods are special functions declared within a class. As you might expect, a

method declaration resembles a function declaration. The function keyword precedes

a method name, followed by an optional list of argument variables in parentheses. The

method body is enclosed by braces:

public function myMethod($argument, $another)

{

 // ...

}

Method declarations are placed inside the class body and accept a number of

qualifiers, including a visibility keyword. Like properties, methods can be declared

public, protected, or private. By declaring a method public, you ensure that it can

be invoked from outside of the current object. If you omit the visibility keyword in your

method declaration, the method will be declared public implicitly. It is considered good

practice, however, to declare visibility explicitly for all methods (I will return to method

modifiers later in the chapter).

Chapter 3 Object Basics

26

While we are on the topic of good practice, I am also skirting over another couple

of features that a good method should include. These are argument and return type

declarations, and I cover them later in the chapter.

Note I n Volume 2, I cover rules for best practices in code. The coding style
standard PSR-12 requires that visibility is declared for all methods.

class ShopProduct

{

 public $title = "default product";

 public $producerMainName = "main name";

 public $producerFirstName = "first name";

 public $price = 0;

 public function getProducer()

 {

 return $this->producerFirstName . " "

 . $this->producerMainName;

 }

}

In most circumstances, you will invoke a method using an object variable in

conjunction with the object operator, -> and the method name. Parentheses are placed

immediately after the method name. Just like regular functions, the parentheses trigger

the call (and any variables or expressions inside the parentheses are passed to the

method as arguments).

$product1 = new ShopProduct();

$product1->title = "My Antonia";

$product1->producerMainName = "Cather";

$product1->producerFirstName = "Willa";

$product1->price = 5.99;

print "author: {$product1->getProducer()}\n";

Chapter 3 Object Basics

27

This outputs the following:

author: Willa Cather

I add the getProducer() method to the ShopProduct class. Notice that I declare

getProducer() public, which means it can be called from outside the class.

I introduce a feature in this method’s body. The $this pseudo-variable is present

when a method is called via an object (we will encounter another way that methods can

be called in the next chapter). $this is the mechanism by which an object can refer to

itself in order to access properties or other methods defined in the class. If you find this

concept hard to swallow, try replacing $this with the phrase “the current instance.”

Consider the following statement:

$this->producerFirstName

This translates to the following:

the $producerFirstName property of the current instance

So the getProducer() method combines and returns the $producerFirstName and

$producerMainName properties, saving me from the chore of performing this task every

time I need to quote the full producer name.

This has improved the class a little. I am still stuck with a great deal of unwanted

flexibility, though. I rely on the client coder to change a ShopProduct object’s properties

from their default values. This is problematic in two ways. First, it takes five lines to

properly initialize a ShopProduct object, and no coder will thank you for that. Second, I

have no way of ensuring that any of the properties are set when a ShopProduct object is

initialized.

What I need is a method that is called automatically when an object is instantiated

from a class.

�Creating a Constructor Method
A constructor method is invoked when an object is created. You can use it to set things

up, ensuring that essential properties are assigned values and any necessary preliminary

work is completed.

Chapter 3 Object Basics

28

Note I n versions previous to PHP 5, a constructor method took on the name of the
class that enclosed it. So the ShopProduct class would use a ShopProduct()
method as its constructor. This was deprecated as of PHP 7 and no longer works at
all as of PHP 8. Name your constructor method __construct().

Note that the method name begins with two underscore characters. You will see

this naming convention for many other special methods in PHP classes. Here, I define a

constructor for the ShopProduct class:

Note B uilt-in methods which begin this way are known as magic methods
because they are automatically invoked in specific circumstances. You can read
more about them in the PHP manual at www.php.net/manual/en/language
.oop5.magic.php. Although it is not illegal to do so, because double underscores
have such a specific connotation, it is a good idea to avoid using them in your own
custom methods.

class ShopProduct

{

 public $title;

 public $producerMainName;

 public $producerFirstName;

 public $price = 0;

 public function __construct(

 $title,

 $firstName,

 $mainName,

 $price

) {

 $this->title = $title;

 $this->producerFirstName = $firstName;

 $this->producerMainName = $mainName;

 $this->price = $price;

 }

Chapter 3 Object Basics

http://www.php.net/manual/en/language.oop5.magic.php
http://www.php.net/manual/en/language.oop5.magic.php

29

 public function getProducer()

 {

 return $this->producerFirstName . " "

 . $this->producerMainName;

 }

}

Once again, I gather functionality into the class, saving effort and duplication in the

code that uses it. The __construct() method is invoked when an object is created using

the new operator:

$product1 = new ShopProduct(

 "My Antonia",

 "Willa",

 "Cather",

 5.99

);

print "author: {$product1->getProducer()}\n";

This produces the following:

author: Willa Cather

Any arguments supplied are passed to the constructor. So in my example, I pass

the title, the first name, the main name, and the product price to the constructor. The

constructor method uses the pseudo-variable $this to assign values to each of the

object’s properties.

Note A ShopProduct object is now easier to instantiate and safer to use.
Instantiation and setup are completed in a single statement. Any code that uses a
ShopProduct object can be reasonably sure that all its properties are initialized.

You can leave a property uninitialized without error. But any attempt to access that
property will then result in a fatal error.

Chapter 3 Object Basics

30

�Constructor Property Promotion
While we have made the ShopProduct class safer and, from a client perspective, more

convenient, we have also introduced quite a lot of boilerplate. Take a look back at the

class as it stands. In order to instantiate an object with four properties, we need a total of

three sets of references to the data. First of all, we declare the properties, then we provide

constructor arguments to hold the data, and then we bring it all together when we assign

the method arguments to the properties. PHP 8 provides a feature called constructor

property promotion which offers a welcome shortcut. By including a visibility keyword

for your constructor arguments, you can combine them with property declarations and

assign to them at the same time. Here is a new version of ShopProduct:

class ShopProduct

{

 public function __construct(

 public $title,

 public $producerFirstName,

 public $producerMainName,

 public $price

) {

 }

 public function getProducer()

 {

 return $this->producerFirstName . " "

 . $this->producerMainName;

 }

}

Both declaration of and assignment to the properties in the constructor method

signature are handled implicitly. By reducing repetition, this also reduces the chance of

bugs creeping into code. By making the class more compact, it makes it easier for those

reading source code to focus on the logic.

Note  Constructor property promotion was introduced in PHP 8.

Chapter 3 Object Basics

31

Predictability is an important aspect of object-oriented programming. You should

design your classes so that users of objects can be sure of their features. One way you can

make an object safe is to render predictable the types of data it holds in its properties. One

might ensure that a $name property is always made up of character data, for example. But

how can you achieve this if property data is passed in from outside the class? In the next

section, I examine a mechanism you can use to enforce object types in method declarations.

�Default Arguments and Named Arguments
Over time, method argument lists can grow long and unwieldy. This can make working with

a class increasingly difficult as it becomes hard to keep track of the arguments its methods

demand. We can make things easier for client coders by providing default values in method

definitions. Let’s say, for example, that we need a title for our ShopProduct object but would

accept empty string values for the producer names and a zero value for the price. As things

stand with ShopProduct, the calling code would need to provide all this data:

$product1 = new ShopProduct("Shop Catalogue", "", "", 0);

We can streamline this instantiation by providing default values for our arguments.

In the next example, I do just that:

class ShopProduct

{

 public function __construct(

 public $title,

 public $producerFirstName = "",

 public $producerMainName = "",

 public $price = 0

) {

 }

 // ...

}

These assignments are only activated if the calling code does not provide values in its

call. Now, a call to the constructor need only specify one value: the title.

$product1 = new ShopProduct("Shop Catalogue");

Chapter 3 Object Basics

32

Default argument values can make working with methods more convenient, but, as

is so often the way, they can also cause unintended complications. What would happen

to my nice compact constructor call if I wanted to provide a price but would still like the

producer names to fall back to their defaults? Prior to PHP 8, I would be stuck. I would

have to provide the empty producer names in order to specify the price. That brings us

full circle. And I would also need to work out what kind of values the constructor expects

for empty producer name values. Should I pass empty strings? Or null values? Far from

saving work, my support for default values may well have sown confusion.

Luckily, PHP 8 provides named arguments. In my method call, I can now specify

each argument name ahead of the value I wish to pass.

PHP will then associate each argument value with the correct parameter in the

method signature regardless of the order in the calling code.

$product1 = new ShopProduct(

 price: 0.7,

 title: "Shop Catalogue"

);

Note the syntax here: I tell PHP I want to set the $price argument to 0.7 by first

specifying the argument name, price, then a colon, and then the value I want to provide.

Because I have used named arguments, their order in the call is no longer relevant, and I

no longer need to provide the empty producer name values.

�Arguments and Types
A type determines the way data can be managed in your scripts. You use the string type

to display character data, for example, and manipulate such data with string functions.

Integers are used in mathematical expressions, Booleans are used in test expressions,

and so on. These categories are known as base types. On a higher level, though, a class

defines a type. A ShopProduct object, therefore, belongs to the base type object, but it

also belongs to the ShopProduct class type. In this section, I will look at types of both

kinds in relation to class methods.

Method and function definitions do not necessarily require that an argument should

be of a particular type. This is both a curse and a blessing. The fact that an argument can

be of any type offers you flexibility. You can build methods that respond intelligently to

Chapter 3 Object Basics

33

different data types, tailoring functionality to changing circumstances. This flexibility can

also cause ambiguity to creep into code when a method body expects an argument to

hold one type but gets another.

As you’ll see throughout these volumes, it’s generally good practice to declare types

everywhere that you can. This helps in creating clear and safe code.

�Base Types
PHP is a loosely typed language. This means that there is no necessity for a variable to be

declared to hold a particular data type. The variable $number could hold the value 2 and

the string "two" within the same scope. In strongly typed languages, such as C or Java,

you must declare the type of a variable before assigning a value to it, and, of course, the

value must be of the specified type.

This does not mean that PHP has no concept of type. Every value that can be

assigned to a variable has a type. You can determine the type of a variable’s value using

one of PHP’s type-checking functions. Table 3-1 lists the base types recognized in PHP

and their corresponding test functions. Each function accepts a variable or value and

returns true if this argument is of the relevant type.

Table 3-1.  Base Types and Checking Functions in PHP

Type-Checking Function Type Description

is_bool() Boolean One of the two special values true or false

is_integer() Integer A whole number. Alias of is_int() and is_long()

is_float() Float A floating-point number (a number with a decimal point).

Alias of is_double()

is_string() String Character data

is_object() Object An object

is_resource() Resource A handle for identifying and working with external

resources such as databases or files

is_array() Array An array

is_null() Null An unassigned value

is_callable() Object A callable value (such as a function or a method)

Chapter 3 Object Basics

34

Checking the type of a variable can be particularly important when you work with

method and function arguments.

�Base Types: An Example

You need to keep a close eye on types in your code. Here’s an example of one of the many

type-related problems that you could encounter.

Imagine that you are extracting configuration settings from an XML file. The

<resolvedomains></resolvedomains> XML element tells your application whether

it should attempt to resolve IP addresses to domain names, a useful but relatively

expensive process.

Here is some sample XML:

<settings>

 <resolvedomains>false</resolvedomains>

</settings>

The string "false" is extracted by your application and passed as a flag to a method

called outputAddresses(), which displays IP address data. Here is outputAddresses():

class AddressManager

{

 private $addresses = ["209.131.36.159", "216.58.213.174"];

 public function outputAddresses($resolve)

 {

 foreach ($this->addresses as $address) {

 print $address;

 if ($resolve) {

 print " (" . gethostbyaddr($address) . ")";

 }

 print "\n";

 }

 }

}

Chapter 3 Object Basics

35

Of course, the AddressManager class could do with some improvement. It’s not

very useful to hard-code IP addresses into a class, for example. Nevertheless, the

outputAddresses() method loops through the $addresses array property, printing each

element. If the $resolve argument variable itself resolves to true, the method outputs

the domain name, as well as the IP address.

Here’s one approach that uses the settings XML configuration element in

conjunction with the AddressManager class. See if you can spot how it is flawed:

$settings = simplexml_load_file(__DIR__ . "/resolve.xml");

$manager = new AddressManager();

$manager->outputAddresses((string)$settings->resolvedomains);

The code fragment uses the SimpleXML API to acquire a value for the resolvedomains

element. In this example, I know that this value is the text element "false", and I cast it

to a string as the SimpleXML documentation suggests I should.

This code will not behave as you might expect. In passing the string "false" to the

outputAddresses() method, I misunderstand the implicit assumption the method

makes about the argument. The method is expecting a Boolean value (i.e., true or false).

The string "false" will, in fact, resolve to true in a test. This is because PHP will helpfully

cast a nonempty string value to the Boolean true for you in a test context. Consider

this code:

if ("false") {

 // ...

}

It is actually equivalent to this:

if (true) {

 // ...

}

There are a number of approaches you might take to fix this.

You could make the outputAddresses() method more forgiving, so that it recognizes

a string and applies some basic rules to convert it to a Boolean equivalent:

Chapter 3 Object Basics

36

public function outputAddresses($resolve)

{

 if (is_string($resolve)) {

 �$resolve = (preg_match("/^(false|no|off)$/i", $resolve)) ?
false : true;

 }

 // ...

}

There are good design reasons for avoiding an approach like this, however. Generally

speaking, it is better to provide a clear and strict interface for a method or function

than it is to offer a fuzzily forgiving one. Fuzzy and forgiving functions and methods can

promote confusion and thereby breed bugs.

You could take another approach: Leave the outputAddresses() method as it is and

include a comment containing clear instructions that the $resolve argument should

contain a Boolean value. This approach essentially tells the coder to read the small print

or reap the consequences:

/**

 * Outputs the list of addresses.

 * If $resolve is true then each address will be resolved

 * @param $resolve boolean Resolve the address?

 */

public function outputAddresses($resolve)

{

 // ...

}

This is a reasonable approach, assuming your client coders are diligent readers of

documentation (or use clever editors that recognize annotations of this sort).

Note  You can read more about writing and generating inline documentation in
Volume 2.

Chapter 3 Object Basics

37

Finally, you could make outputAddresses() strict about the type of data it is

prepared to find in the $resolve argument. For base types like Boolean, there was

really only one way to do this prior to the release of PHP 7. You would have to write

code to examine incoming data and take some kind of action if it does not match the

required type:

public function outputAddresses($resolve)

{

 if (! is_bool($resolve)) {

 // do something drastic

 }

}

This approach can be used to force client code to provide the correct data type in the

$resolve argument or to issue a warning.

Note I n the next section, “Type Declarations: Class Types,” I will describe a much
better way of constraining the type of arguments passed to methods and functions.

Converting a string argument on the client’s behalf would be friendly but would

probably present other problems. In providing a conversion mechanism, you second-

guess the context and intent of the client. By enforcing the Boolean data type, on the

other hand, you leave the client to decide whether to map strings to Boolean values and

determine which word should map to true or false. The outputAddresses() method,

meanwhile, concentrates on the task it is designed to perform. This emphasis on

performing a specific task in deliberate ignorance of the wider context is an important

principle in object-oriented programming, and I will return to it frequently throughout

the book.

In fact, your strategies for dealing with argument types will depend on the

seriousness of any potential bugs on the one hand and the benefits of flexibility on the

other. PHP coerces many base values for you, depending on context. Numbers in strings

are converted to their integer or floating-point equivalents when used in a mathematical

expression, for example. So your code might be naturally forgiving of type errors.

Chapter 3 Object Basics

38

On the whole, however, it is best to err on the side of strictness when it comes to both

object and base types. Luckily, PHP 8 provides more tools than ever before to enforce

type safety.

�Some Other Type-Checking Functions
We have seen variable handling functions that check for base types. While we are

checking on the contents of our variables, it is worth mentioning a few functions that go

beyond checking base types to provide more general information about ways that data

held in a variable might be used. I list these in Table 3-2.

Table 3-2.  Pseudo-type-Checking Functions

Function Description

is_countable() An array or an object that can be passed to the count() function

is_iterable() A traversable data structure—that is, one that can be looped through using

foreach

is_callable() Code that can be invoked—often an anonymous function or a function

name (callables are also documented by PHP as base types)

is_numeric() Either an int, a float, or a string which can be resolved to a number

The functions described in Table 3-2 do not check for specific types so much as

ways you can treat the values you test. If is_callable() returns true for a variable,

for example, you know that you can treat it like a function or method and invoke it.

Similarly, you can loop through a value that passes the is_iterable() test—even though

it may be a special kind of object rather than an array.

�Type Declarations: Class Types
If a function or method parameter has no declared type, the argument passed at call

time can contain any base type. By the same token, therefore, it can include objects

of any class. This flexibility has its uses, but can present problems in the context of a

method definition.

Chapter 3 Object Basics

39

Imagine a method designed to work with a ShopProduct object:

class ShopProductWriter

{

 public function write($shopProduct)

 {

 $str = $shopProduct->title . ": "

 . $shopProduct->getProducer()

 . " (" . $shopProduct->price . ")\n";

 print $str;

 }

}

You can test this class like this:

$product1 = new ShopProduct("My Antonia", "Willa", "Cather", 5.99);

$writer = new ShopProductWriter();

$writer->write($product1);

This outputs the following:

My Antonia: Willa Cather (5.99)

The ShopProductWriter class contains a single method, write(). The write()

method expects to be given a ShopProduct object and uses its properties and methods

to construct and print a summary string. I used the name of the argument variable,

$shopProduct, as a signal that the method expects a ShopProduct object, but I did not

enforce this. That means I could be passed an unexpected object or base type and be

none the wiser until I begin trying to work with the $shopProduct argument. By that

time, my code may already have acted on the assumption that it has been passed a

genuine ShopProduct object.

Note  You might wonder why I didn’t add the write() method directly to
ShopProduct. The reason lies with areas of responsibility. The ShopProduct
class is responsible for managing product data; the ShopProductWriter is
responsible for writing it. You will begin to see why this division of labor can be
useful as you read this chapter.

Chapter 3 Object Basics

40

To address this problem, PHP 5 introduced class type declarations (known then as

type hints). To add a class type declaration to a method argument, you simply place a

class name in front of the method argument you need to constrain. So I can amend the

write() method thus:

public function write(ShopProduct $shopProduct)

{

 // ...

}

Now the write() method will only accept the $shopProduct argument if it contains

an object of type ShopProduct.

Here is a basic class:

class Wrong

{

}

And here is a snippet that tries to call write() with a Wrong object:

$writer = new ShopProductWriter();

$writer->write(new Wrong());

Because the write() method contains a class type declaration, passing it a Wrong

object causes a fatal error:

TypeError: popp\ch03\batch08\ShopProductWriter::write(): Argument #1

($shopProduct) must be of type

popp\ch03\batch04\ShopProduct, popp\ch03\batch08\Wrong given, called in

/var/popp/src/ch03/batch08/Runner.php on ...

Note I n the TypeError example output, you might have noticed that the classes
referenced included much additional information. The Wrong class is quoted as
popp\ch03\batch08\Wrong, for example. These are examples of namespaces,
and you will encounter them in great detail in Chapter 4.

Chapter 3 Object Basics

41

This saves me from having to test the type of the argument before I work with it.

It also makes the method signature much clearer for the client coder. She can see the

requirements of the write() method at a glance. She does not have to worry about some

obscure bug arising from a type error because the declaration is rigidly enforced.

Even though this automated type checking is a great way of preventing bugs, it is

important to understand that type declarations are checked at runtime. This means that

a class declaration will only report an error at the moment that an unwanted object is

passed to the method. If a call to write() is buried in a conditional clause that only runs

on Christmas morning, you may find yourself working the holiday if you haven’t checked

your code carefully.

�Type Declarations: Scalar Types
Up until the release of PHP 7, it was only possible to constrain objects and a couple of

other types (callable and array). PHP 7 at last introduced scalar type declarations. This

allows you to enforce the Boolean, string, integer, and float types in your argument list.

Armed with scalar type declarations, I can add some constraints to the

ShopProduct class:

class ShopProduct

{

 public string $producerFirstName;

 public string $producerMainName;

 public function __construct(

 public string $title,

 public string $firstName,

 public string $mainName,

 public float $price

) {

 $this->title = $title;

 $this->producerFirstName = $firstName;

 $this->producerMainName = $mainName;

 $this->price = $price;

 }

 // ...

}

Chapter 3 Object Basics

42

With the constructor method shored up in this way, I can be sure that the $title,

$firstName, and $mainName arguments will always contain string data and that $price

will contain a float. I can demonstrate this by instantiating ShopProduct with the wrong

information:

// will fail

$product = new ShopProduct("title", "first", "main", []);

I attempt to instantiate a ShopProduct object. I pass three strings to the constructor,

but I fail at the final hurdle by passing in an empty array instead of the required float.

Thanks to type declarations, PHP won’t let me get away with that:

TypeError: popp\ch03\batch09\ShopProduct:: construct(): Argument #4

($price) must be of type float, array given, called in...

By default, PHP will implicitly cast arguments to the required type, where possible.

This is an example of the tension between safety and flexibility we encountered earlier.

The new implementation of the ShopProduct class, for example, will quietly turn a string

into a float for us. So, this instantiation would not fail:

$product = new ShopProduct("title", "first", "main", "4.22");

Behind the scenes, the string "4.22" becomes the float 4.22. So far, so useful. But

think back to the problem we encountered with the AddressManager class. The string

"false" was quietly resolving to the Boolean true. By default, this will still happen if

I use a bool type declaration in the AddressManager::outputAddresses() method

like this:

public function outputAddresses(bool $resolve)

{

 // ...

}

Now consider a call that passes along a string like this:

$manager->outputAddresses("false");

Because of implicit casting, it is functionally identical to one that passes the Boolean

value true.

Chapter 3 Object Basics

43

You can make scalar type declarations strict, although only on a file-by-file basis.

Here, I turn on strict type declarations and call outputAddresses() with a string

once again:

declare(strict_types=1);

$manager->outputAddresses("false");

Because I declare strict typing, this call causes a TypeError to be thrown:

TypeError: popp\ch03\batch09\AddressManager::outputAddresses(): Argument

#1 ($resolve) must be of type bool, string given, called in...

Note A strict_types declaration applies to the file from which a call is made,
and not to the file in which a function or method is implemented. So it’s up to client
code to enforce strictness.

You may need to make an argument optional, but nonetheless constrain its type if it

is provided. You can do this by providing a default value:

class ConfReader

{

 public function getValues(array $default = [])

 {

 $values = [];

 // do something to get values

 // merge the provided defaults (it will always be an array)

 $values = array_merge($default, $values);

 return $values;

 }

}

Chapter 3 Object Basics

44

�mixed Types
The mixed type declaration introduced in PHP 8.0 might be seen as an example of

syntactic sugar—that is, it does not do very much in itself. There is no functional

difference between this:

class Storage

{

 public function add(string $key, $value)

 {

 // do something with $key and $value

 }

}

and this:

class Storage

{

 public function add(string $key, mixed $value)

 {

 // do something with $key and $value

 }

}

In the second version, I declared that the $value argument to add() would accept

mixed—in other words, any type from array, bool, callable, int, float, null, object,

resource, or string. So declaring a mixed $value is the same as leaving $value without

a type declaration in an argument list. So why bother with the mixed declaration at all?

In essence, you are declaring that the argument intentionally accepts any value. A bare

argument might be intended to accept any value—or it may have been left without a type

declaration because the code author was lazy. mixed removes doubt and uncertainty,

and, for that reason, it is useful.

To sum up, in Table 3-3, I list the stand-alone type declarations supported by PHP.

Chapter 3 Object Basics

45

Table 3-3.  Type Declarations

Type Declaration Since Description

array 5.1 An array. Can default to null or an array

int 7.0 An integer. Can default to null or an integer

float 7.0 A floating-point number (a number with a decimal point). An integer

will be accepted—even with strict mode enabled. Can default to

null, a float, or an integer

callable 5.4 Callable code (such as an anonymous function). Can default to null

bool 7.0 A Boolean. Can default to null or a Boolean

string 5.0 Character data. Can default to null or a string

self 5.0 A reference to the containing class

[a class type] 5.0 The type of a class (or, later, an interface or enumeration). Can

default to null

iterable 7.1 Can be traversed with foreach (not necessarily an array—could

implement Traversable)

object 7.2 An object

mixed 8.0 Explicit notification that the value can be of any type

true 8.2 The value must be explicitly true (and not just truthy)

false 8.2 The value must be explicitly false (and not just falsey)

null 8.2 The value must be explicitly null

�Union Types
There is quite a gulf between the all-inclusive mixed declaration and the relative

strictness of type declarations. What do you do if you need to constrain an argument to

two, three, or more named types? Until PHP 8, the only way you could achieve this was

by testing for type within the body of a method. Let’s return to the Storage class with a

new requirement. The add() should only accept a string or a Boolean value as its $value

method. Here is an implementation that checks type within the method body:

Chapter 3 Object Basics

46

class Storage

{

 public function add(string $key, $value)

 {

 if (! is_bool($value) && ! is_string($value)) {

 �error_log("value must be string or Boolean - given: " .

gettype($value));

 return false;

 }

 // do something with $key and $value

 }

}

Note I n fact, rather than return false, we would likely throw an exception. You
can read more about exceptions in Chapter 4.

Although this manual checking gets the job done, it is unwieldy and hard to read.

Luckily, PHP 8 introduced a new feature: union types which allow you to combine two or

more types separated by a pipe symbol to make a composite type declaration.

Here is my reimplementation of Storage:

class Storage

{

 public function add(string $key, string|bool $value)
 {

 // do something with $key and $value

 }

}

If I now attempt to set $value to anything other than a float or a Boolean, I will trip a

now-familiar TypeError.

Chapter 3 Object Basics

47

If I wanted to make add() a little more forgiving, I can also use a union type to allow

a null value:

class Storage

{

 public function add(string $key, string|bool|null $value)
 {

 // do something with $key and $value

 }

}

Union type declarations will work just as well with object type declarations. This

example will accept either an object of type ShopProduct or a null value:

public function setShopProduct(ShopProduct|null $product)
{

 // do something with $product

}

Because many methods accept or return false as an alternative value, PHP 8

supports the false type in the context of unions. So, in this example, I will accept either

a ShopProduct object or false:

Note  Until PHP 8.2, the false type declaration could only be used in a union. As
of 8.2, you can specify true and false as stand-alone types.

 public function setShopProduct2(ShopProduct|false $product)
 {

 // do something with $product

 }

}

This is more useful than the union ShopProduct|bool because I do not want to accept

true in any scenario.

Chapter 3 Object Basics

48

Note  Union types were added in PHP 8.

�Intersection Types
Less common than union types, but occasionally useful, intersection types were

introduced with PHP 8.1. These allow you to require that a given argument matches

more than one type. Thanks to interfaces, a feature that we will encounter later, objects

often belong to multiple types.

To constrain a parameter using an intersection type, you must combine two or more

types using the & character. Here’s an example:

public function logObject(Traversable&Stringable $logme): void

{

 // do something with $logme

}

An object that fulfills the Traversable type can be iterated like an array using the

foreach statement. An object that fulfills Stringable must resolve to a string when

printed or otherwise accessed in a context in which a string is expected. Both of these

must be the case for any object passed to the logObject() method.

Intersection types must be made up of only class or interface types, so if you try to

add in an int or a mixed, you’ll raise a fatal error.

�DNF Types: Combining Union and Intersection
Type Declarations
As of PHP 8.2, you can combine union and intersection type declarations. DNF stands

for Disjunctive Normal Form, which essentially means you can OR together sets of types

or parenthesized types ANDed together. You can include null as a type:

public function addObject((Traversable & Stringable)|Loggable|null
$addme): void

{

 $this->collection[] = $addme;

}

Chapter 3 Object Basics

49

So here, for example, addObject() will accept an object which is both Traversable

and Stringable or is of the type Loggable. Alternatively (for some reason, I strain to

invent), it will accept a null value.

�Nullable Types
Where a union type accepts a union of null with one other type (e.g., string|null), there

is an equivalent argument you can use. The nullable type consists of a type declaration

preceded by a question mark. So this version of Storage will accept either a string or null:

class Storage

{

 public function add(string $key, ?string $value)

 {

 // do something with $key and $value

 }

}

When I described class type declarations, I implied that types and classes are

synonymous. There is a key difference between the two, however. When you define

a class, you also define a type, but a type can describe an entire family of classes. The

mechanism by which different classes can be grouped together under a type is called

inheritance. I discuss inheritance in the next section.

�Return Type Declarations
Just as we can declare the type of an argument, so we can use return type declarations to

constrain the types that our methods return. A return type declaration is placed directly

after a method or function’s closing parenthesis and takes the form of a colon character

followed by the type. The same set of types is supported when declaring a return type as

when declaring argument types. So here I constrain the return type of a method named

getPlayLength():

public function getPlayLength(): int

{

 return $this->playLength;

}

Chapter 3 Object Basics

50

If this method fails to return an integer value when called, PHP will generate

an error:

TypeError: popp\ch03\batch15\RecordProduct::getPlayLength(): Return value

must be of type int, none returned

Because the return value is enforced in this way, any code that calls this method can

treat its return value as an integer with assurance.

Return type declarations also support nullable, union, intersection, and DNF types.

Let’s enforce a union type:

public function getPrice(): int|float
{

 return ($this->price - $this->discount);

}

There are three types that are supported by return type declarations and not by

argument type declarations: void, never, and static. With the void pseudo-

type, you declare that a method will not return a value. So, for example, because the

setDiscount() method is designed to set rather than provide a value, I use a void return

type declaration here:

public function setDiscount(int|float $num): void
{

 $this->discount = $num;

}

The never pseudo-type, which was introduced in PHP 8.1, is stricter than void. A

method which uses the never return type must either throw an exception (we will cover

exceptions in Chapter 4) or call exit(). If the method returns (implicitly or explicitly)

without ending execution, the PHP engine will throw a fatal error.

class Poller

{

 public function poll(): never

 {

 while ($this->doImportantThing()) {

 sleep(1);

 }

Chapter 3 Object Basics

51

 exit;

 }

 public function doImportantThing(): bool

 {

 return true;

 }

}

So here I create a class Poller with a poll() method which declares that it will not

return. It repeatedly calls a dummy method, doImportantThing(), which returns a Boolean

value. If, in a more complete implementation, doImportantThing() were to return false,

the while loop in poll() would end and the final exit() call would be executed. If I were to

remove exit() here, PHP would end execution anyway with a fatal error:

TypeError: popp\ch03\batch15\Poller::poll(): never-returning function must

not implicitly return

Note A s you will see in Chapter 4, if an Exception or a TypeError is “caught”
by client code, program execution can optionally be allowed to continue. This
means that you can never definitively say never.

The static return type specifies a reference to the current class. We will look in more

detail at working with classes in Chapter 4.

�Inheritance
Inheritance is the means by which one or more classes can be derived from a base class.

A class that inherits from another is said to be a subclass of it. This relationship is

often described in terms of parents and children. A child class is derived from and inherits

characteristics from the parent. These characteristics consist of both properties and

methods. The child class will typically add new functionality to that provided by its parent

(also known as a superclass); for this reason, a child class is said to extend its parent.

Before I dive into the syntax of inheritance, I’ll examine the problems it can help you

to solve.

Chapter 3 Object Basics

52

�The Inheritance Problem
Look again at the ShopProduct class. At the moment, it is nicely generic. It can handle all

sorts of products:

$product1 = new ShopProduct("My Antonia", "Willa", "Cather", 5.99);

$product2 = new ShopProduct(

 "Exile on Coldharbour Lane",

 "The",

 "Alabama 3",

 10.99

);

print "author: " . $product1->getProducer() . "\n";

print "artist: " . $product2->getProducer() . "\n";

Here’s the output:

author: Willa Cather

artist: The Alabama 3

Separating the producer name into two parts works well with both books and

records. I want to be able to sort on “Alabama 3” and “Cather,” not on “The” and “Willa.”

Laziness is an excellent design strategy, so there is no need to worry about using

ShopProduct for more than one kind of product at this stage.

If I add some new requirements to my example, however, things rapidly become

more complicated. Imagine, for example, that you need to represent data specific to

books and records. For records, you must store the total playing time; for books, the total

number of pages. There could be any number of other differences, but this will serve to

illustrate the issue.

How can I extend my example to accommodate these changes? Two options

immediately present themselves. First, I could throw all the data into the ShopProduct

class. Second, I could split ShopProduct into two separate classes.

Chapter 3 Object Basics

53

Let’s examine the first approach. Here, I combine record- and book-related data in a

single class:

class ShopProduct

{

 public $numPages;

 public $playLength;

 public $title;

 public $producerMainName;

 public $producerFirstName;

 public $price;

 public function __construct(

 string $title,

 string $firstName,

 string $mainName,

 float $price,

 int $numPages = 0,

 int $playLength = 0

) {

 $this->title = $title;

 $this->producerFirstName = $firstName;

 $this->producerMainName = $mainName;

 $this->price = $price;

 $this->numPages = $numPages;

 $this->playLength = $playLength;

 }

 public function getNumberOfPages(): int

 {

 return $this->numPages;

 }

 public function getPlayLength(): int

 {

 return $this->playLength;

 }

Chapter 3 Object Basics

54

 public function getProducer(): string

 {

 return $this->producerFirstName . " "

 . $this->producerMainName;

 }

}

I have provided method access to the $numPages and $playLength properties

to illustrate the divergent forces at work here. An object instantiated from this class

will include a redundant method and, for a record, must be instantiated using an

unnecessary constructor argument: a record will store information and functionality

relating to book pages, and a book will support play-length data. This is probably

something you could live with right now. But what would happen if I added more

product types, each with its own methods, and then added more methods for each type?

Our class would become increasingly complex and hard to manage.

So forcing fields that don’t belong together into a single class leads to bloated objects

with redundant properties and methods.

The problem doesn’t end with data, either. I run into difficulties with functionality

as well. Consider a method that summarizes a product. The sales department has

requested a clear summary line for use in invoices. They want me to include the

playing time for records and a page count for books, so I will be forced to provide

different implementations for each type. I could try using a flag to keep track of the

object’s format.

Here’s an example:

public function getSummaryLine(): string

{

 $base = "{$this->title} ({$this->producerMainName}, ";

 $base .= "{$this->producerFirstName})";

 if ($this->type == 'book') {

 $base .= ": page count - {$this->numPages}";

 } elseif ($this->type == 'record') {

 $base .= ": playing time - {$this->playLength}";

 }

 return $base;

}

Chapter 3 Object Basics

55

In order to set the $type property, I could test the $numPages argument to the

constructor. Still, once again, the ShopProduct class has become more complex than

necessary. As I add more differences to my formats, or add new formats, these functional

differences will become even harder to manage. Perhaps I should try another approach

to this problem.

As ShopProduct is beginning to feel like two classes in one, I could accept this and

create two types rather than one. Here’s how I might do it:

Note I t’s a testament to the longevity of this book that I have decided to change
the name of one of my example classes from CdProduct to RecordProduct.
Although the record is an older format than the now outmoded CD, it remains
popular in certain circles, and I’m reasonably confident that vinyl will never die!

class RecordProduct

{

 public $playLength;

 public $title;

 public $producerMainName;

 public $producerFirstName;

 public $price;

 public function __construct(

 string $title,

 string $firstName,

 string $mainName,

 float $price,

 int $playLength

) {

 $this->title = $title;

 $this->producerFirstName = $firstName;

 $this->producerMainName = $mainName;

 $this->price = $price;

 $this->playLength = $playLength;

 }

Chapter 3 Object Basics

56

 public function getPlayLength(): int

 {

 return $this->playLength;

 }

 public function getSummaryLine(): string

 {

 $base = "{$this->title} ({$this->producerMainName}, ";

 $base .= "{$this->producerFirstName})";

 $base .= ": playing time - {$this->playLength}";

 return $base;

 }

 public function getProducer(): string

 {

 return $this->producerFirstName . " "

 . $this->producerMainName;

 }

}

class BookProduct

{

 public $numPages;

 public $title;

 public $producerMainName;

 public $producerFirstName;

 public $price;

 public function __construct(

 string $title,

 string $firstName,

 string $mainName,

 float $price,

 int $numPages

) {

Chapter 3 Object Basics

57

 $this->title = $title;

 $this->producerFirstName = $firstName;

 $this->producerMainName = $mainName;

 $this->price = $price;

 $this->numPages = $numPages;

 }

 public function getNumberOfPages(): int

 {

 return $this->numPages;

 }

 public function getSummaryLine(): string

 {

 $base = "{$this->title} ({$this->producerMainName}, ";

 $base .= "{$this->producerFirstName})";

 $base .= ": page count - {$this->numPages}";

 return $base;

 }

 public function getProducer(): string

 {

 return $this->producerFirstName . " "

 . $this->producerMainName;

 }

}

I have addressed the complexity issue, but at a cost. I can now create a

getSummaryLine() method for each format without having to test a flag. Neither class

maintains fields or methods that are not relevant to it.

The cost lies in duplication. The getProducerName() method is exactly the same in

each class. Each constructor sets a number of identical properties in the same way. This

is another unpleasant odor you should train yourself to sniff out.

If I need the getProducer() methods to behave identically for each class, any

changes I make to one implementation will need to be made for the other. Without care,

the classes will soon slip out of synchronization.

Chapter 3 Object Basics

58

Even if I am confident that I can maintain the duplication, my worries are not over. I

now have two types rather than one.

Remember the ShopProductWriter class? Its write() method is designed to work

with a single type: ShopProduct. How can I amend this to work as before? I could remove

the class type declaration from the method signature, but then I must trust to luck that

write() is passed an object of the correct type.

The quickest and safest answer here would be to use a feature we’ve already

encountered: union type declarations.

class ShopProductWriter

{

 public function write(RecordProduct|BookProduct $shopProduct): void
 {

 $str = "{$shopProduct->title}: "

 . $shopProduct->getProducer()

 . " ({$shopProduct->price})\n";

 print $str;

 }

}

Although this neatly constrains the argument that can be passed to write(), I have

to trust that each type (RecordProduct and BookProduct) will continue to support the

same fields and methods as the other. It was all much neater when I simply demanded

a single type because I could be confident that the ShopProduct class supported a

particular interface.

The record and book aspects of the ShopProduct class don’t work well together

but can’t live apart, it seems. I want to work with books and records as a single type

while providing a separate implementation for each format. I want to provide common

functionality in one place to avoid duplication, but allow each format to handle some

method calls differently. I need to use inheritance.

�Working with Inheritance
Inheritance is a mechanism which allows you to create parent/child relationships

between classes. A parent class (often called the superclass) provides core functionality

which can be used by any extending child classes. Where permitted, these child classes

Chapter 3 Object Basics

59

inherit the parent class’s methods and properties. They can override any inherited

methods or properties and add new ones. This relationship is hierarchical, and it’s

perfectly fine for a child class to have its own child classes. The first step in building an

inheritance (family) tree is to find the elements of the base class that don’t fit together or

that need to be handled differently.

I know that the getPlayLength() and getNumberOfPages() methods do not

belong together. I also know that I need to create different implementations for the

getSummaryLine() method.

Let’s use these differences as the basis for two derived classes:

class ShopProduct

{

 public $numPages;

 public $playLength;

 public $title;

 public $producerMainName;

 public $producerFirstName;

 public $price;

 public function __construct(

 string $title,

 string $firstName,

 string $mainName,

 float $price,

 int $numPages = 0,

 int $playLength = 0

) {

 $this->title = $title;

 $this->producerFirstName = $firstName;

 $this->producerMainName = $mainName;

 $this->price = $price;

 $this->numPages = $numPages;

 $this->playLength = $playLength;

 }

Chapter 3 Object Basics

60

 public function getProducer(): string

 {

 return $this->producerFirstName . " "

 . $this->producerMainName;

 }

 public function getSummaryLine(): string

 {

 $base = "{$this->title} ({$this->producerMainName}, ";

 $base .= "{$this->producerFirstName})";

 return $base;

 }

}

class RecordProduct extends ShopProduct

{

 public function getPlayLength(): int

 {

 return $this->playLength;

 }

 public function getSummaryLine(): string

 {

 $base = "{$this->title} ({$this->producerMainName}, ";

 $base .= "{$this->producerFirstName})";

 $base .= ": playing time - {$this->playLength}";

 return $base;

 }

}

class BookProduct extends ShopProduct

{

 public function getNumberOfPages(): int

 {

 return $this->numPages;

 }

Chapter 3 Object Basics

61

 public function getSummaryLine(): string

 {

 $base = "{$this->title} ({$this->producerMainName}, ";

 $base .= "{$this->producerFirstName})";

 $base .= ": page count - {$this->numPages}";

 return $base;

 }

}

To create a child class, you must use the extends keyword in the class declaration. In

the example, I created two new classes, BookProduct and RecordProduct. Both extend

the ShopProduct class.

Because the derived classes do not define constructors, the parent class’s constructor

is automatically invoked when they are instantiated. The child classes inherit the

parent’s non-private methods and properties (i.e., anything with a visibility of public

or protected). This means that you can call the getProducer() method on an object

instantiated from the RecordProduct class, even though getProducer() is defined in the

ShopProduct class:

$product2 = new RecordProduct(

 "Exile on Coldharbour Lane",

 "The",

 "Alabama 3",

 10.99,

 0,

 60

);

print "artist: {$product2->getProducer()}\n";

So both the child classes inherit the behavior of the common parent. You can treat

a BookProduct object as if it were a ShopProduct object. You can pass a BookProduct or

RecordProduct object to the ShopProductWriter class’s write() method, and all will

work as expected.

Chapter 3 Object Basics

62

Notice that both the RecordProduct and BookProduct classes provide their own

implementation of the getSummaryLine() method; this is called overriding: the child

class replaces the parent’s implementation with its own.

The superclass’s implementation of this method might seem redundant because

it is overridden by both its children. Nevertheless, it provides basic functionality that

new child classes might use. The method’s presence also provides a guarantee to client

code that all ShopProduct objects will provide a getSummaryLine() method. Later on,

you will see how it is possible to make this promise in a base class without providing

any implementation at all. Each child ShopProduct class inherits its parent’s properties.

Both BookProduct and RecordProduct access the $title property in their versions of

getSummaryLine().

Inheritance can be a difficult concept to grasp at first. By defining a class that extends

another, you ensure that an object instantiated from it is defined by the characteristics

of first the child and then the parent class. Another way of thinking about this is in terms

of searching. When I invoke $product2->getProducer(), there is no such method to

be found in the RecordProduct class, and the invocation falls through to the default

implementation in ShopProduct. When I invoke $product2->getSummaryLine(), on the

other hand, the getSummaryLine() method is found in RecordProduct and invoked.

The same is true of property accesses. When I access $title in the BookProduct

class’s getSummaryLine() method, the property is not defined in the BookProduct class.

It is acquired instead from the parent class, from ShopProduct. The $title property

applies equally to both subclasses, and therefore it belongs in the superclass.

A quick look at the ShopProduct constructor, however, shows that I am still managing

data in the base class that should be handled by its children. The BookProduct class

should handle the $numPages argument and property, and the RecordProduct class

should handle the $playLength argument and property. To make this work, I will define

constructor methods in each of the child classes.

�Constructors and Inheritance

When you define a constructor in a child class, you become responsible for passing

any arguments on to the parent. If you fail to do this, you can end up with a partially

constructed object.

To invoke a method in a parent class, you must first find a way of referring to the class

itself: a handle. PHP provides us with the parent keyword for this purpose.

Chapter 3 Object Basics

63

To refer to a method in the context of a class rather than an object, you use :: rather

than ->:

Note A s you’ll see in Chapter 4, parent is one of a number of built-in ways for a
method to reference classes in its hierarchy. For example, just as a class can refer
to its parent’s class using parent, it can refer to its own class using the self
keyword.

parent::__construct()

Note I cover the scope resolution operator (::) in more detail in Chapter 4.

The preceding snippet means “Invoke the __construct() method of the parent

class.” Here, I amend my example so that each class handles only the data that is

appropriate to it:

class ShopProduct

{

 public $producerMainName;

 public $producerFirstName;

 public function __construct(

 public string $title,

 $firstName,

 $mainName,

 public float $price

) {

 $this->producerFirstName = $firstName;

 $this->producerMainName = $mainName;

 $this->price = $price;

 }

Chapter 3 Object Basics

64

 public function getProducer(): string

 {

 return $this->producerFirstName . " "

 . $this->producerMainName;

 }

 public function getSummaryLine(): string

 {

 $base = "{$this->title} ({$this->producerMainName}, ";

 $base .= "{$this->producerFirstName})";

 return $base;

 }

}

class BookProduct extends ShopProduct

{

 public $numPages;

 public function __construct(

 string $title,

 string $firstName,

 string $mainName,

 float $price,

 int $numPages

) {

 parent::__construct(

 $title,

 $firstName,

 $mainName,

 $price

);

 $this->numPages = $numPages;

 }

 public function getNumberOfPages(): int

 {

 return $this->numPages;

 }

Chapter 3 Object Basics

65

 public function getSummaryLine(): string

 {

 $base = "{$this->title} ($this->producerMainName, ";

 $base .= "$this->producerFirstName)";

 $base .= ": page count - {$this->numPages}";

 return $base;

 }

}

class RecordProduct extends ShopProduct

{

 public $playLength;

 public function __construct(

 string $title,

 string $firstName,

 string $mainName,

 float $price,

 int $playLength

) {

 parent::__construct(

 $title,

 $firstName,

 $mainName,

 $price

);

 $this->playLength = $playLength;

 }

 public function getPlayLength(): int

 {

 return $this->playLength;

 }

 public function getSummaryLine(): string

 {

 $base = "{$this->title} ({$this->producerMainName}, ";

 $base .= "{$this->producerFirstName})";

Chapter 3 Object Basics

66

 $base .= ": playing time - {$this->playLength}";

 return $base;

 }

}

Each child class invokes the constructor of its parent before setting its own

properties. The base class now knows only about its own data. Child classes are generally

specializations of their parents. As a rule of thumb, you should avoid giving parent

classes any special knowledge about their children.

Note P rior to PHP 5, constructors took on the name of the enclosing class.
The new unified constructors use the name __construct(). Using the old
syntax, a call to a parent constructor would tie you to that particular class:
parent::ShopProduct();. The old constructor syntax was deprecated in PHP
7.0 and removed altogether in PHP 8.

�Invoking an Overridden Method

The parent keyword can be used with any method that overrides its counterpart in a

parent class. When you override a method, you may not wish to obliterate the functionality

of the parent, but rather to extend it. You can achieve this by calling the parent class’s

method in the current object’s context. If you look again at the getSummaryLine() method

implementations, you will see that they duplicate a lot of code. It would be better to use

rather than reproduce the functionality already developed in the ShopProduct class:

// ShopProduct

 public function getSummaryLine(): string

 {

 $base = "{$this->title} ({$this->producerMainName}, ";

 $base .= "{$this->producerFirstName})";

 return $base;

 }

// BookProduct

Chapter 3 Object Basics

67

 public function getSummaryLine(): string

 {

 $base = parent::getSummaryLine();

 $base .= ": page count - $this->numPages";

 return $base;

 }

I set up the core functionality for the getSummaryLine() method in the ShopProduct

base class.

Rather than reproduce this in the RecordProduct and BookProduct subclasses,

I simply call the parent method before proceeding to add more data to the

summary string.

Now that you have seen the basics of inheritance, I will reexamine property and

method visibility in light of the full picture.

�Public, Private, and Protected: Managing Access
to Your Classes
So far, I have declared all properties public. Public access was the default setting for

methods and for properties if you used the old var keyword in your property declaration.

Note  var remains legal in PHP and is a synonym for public. However, it is
regarded as obsolete, and its use is not encouraged.

As we have seen, elements in your classes can be declared public, private, or

protected:

•	 Public properties and methods can be accessed from any context and

by any client code.

•	 A private method or property can only be accessed from within the

enclosing class. Even subclasses have no access.

•	 A protected method or property can only be accessed from within

either the enclosing class or from a subclass. No external code is

granted access.

Chapter 3 Object Basics

68

So how is this useful to us? Visibility keywords allow you to expose only those aspects

of a class that are required by a client. This sets a clear interface for your object.

By preventing a client from accessing certain properties, access control can

also help prevent bugs in your code. Imagine, for example, that you want to allow

ShopProduct objects to support a discount. You could add a $discount property and a

setDiscount() method:

// ShopProduct class

 public $discount = 0;

//...

 public function setDiscount(int $num): void

 {

 $this->discount = $num;

 }

Armed with a mechanism for setting a discount, you can create a getPrice()

method that takes account of the discount that has been applied:

public function getPrice(): int|float
{

 return ($this->price - $this->discount);

}

At this point, you have a problem. You only want to expose the adjusted price to

the world, but a client can easily bypass the getPrice() method and access the $price

property:

print "The price is {$product1->price}n";

This will print the raw price and not the discount-adjusted price you wish to present.

You can put a stop to this straightaway by making the $price property private. This will

prevent direct access, forcing clients to use the getPrice() method. Any attempt from

outside the ShopProduct class to access the $price property will fail. As far as the wider

world is concerned, this property has ceased to exist.

Chapter 3 Object Basics

69

Setting properties to private can be an overzealous strategy. A private property

cannot be accessed by a child class. Imagine that our business rules state that books

alone should be ineligible for discounts. You could override the getPrice() method so

that it returns the $price property, applying no discount:

// BookProduct

 public function getPrice(): int|float
 {

 return $this->price;

 }

As the private $price property is declared in the ShopProduct class and not

BookProduct, the attempt to access it here will fail. The solution to this problem is to

declare the $price variable protected, thereby granting access to descendant classes.

Remember that a protected property or method cannot be accessed from outside

the class hierarchy in which it was declared. It can only be accessed from within its

originating class or from within children of the originating class.

As a general rule, err on the side of privacy. Make properties private or protected

at first and relax your restriction only as needed. Many (if not most) methods in your

classes will be public, but once again, if in doubt, lock it down. A method that provides

local functionality for other methods in your class has no relevance to your class’s users.

Make it private or protected.

�Accessor Methods

Even when client programmers need to work with values held by your class, it is often a

good idea to deny direct access to properties, providing methods instead that relay the

needed values. Such methods are known as accessors or getters and setters.

You have already seen one benefit afforded by accessor methods. You can use an

accessor to filter a property value according to circumstances, as was illustrated by the

getPrice() method.

You can also use a setter method to enforce a property type. Type declarations can

be used to constrain method arguments, but a property can contain data of any type.

Remember the ShopProductWriter class that uses a ShopProduct object to output list

Chapter 3 Object Basics

70

data? I can develop this further, so that it writes any number of ShopProduct objects at

one time:

class ShopProductWriter

{

 public $products = [];

 public function addProduct(ShopProduct $shopProduct): void

 {

 $this->products[] = $shopProduct;

 }

 public function write(): void

 {

 $str = "";

 foreach ($this->products as $shopProduct) {

 $str .= "{$shopProduct->title}: ";

 $str .= $shopProduct->getProducer();

 $str .= " ({$shopProduct->getPrice()})\n";

 }

 print $str;

 }

}

The ShopProductWriter class is now much more useful. It can hold many

ShopProduct objects and write data for them all in one go. I must trust my client coders

to respect the intentions of the class, though. Despite the fact that I have provided an

addProduct() method, I have not prevented programmers from manipulating the

$products property directly. Not only could someone add the wrong kind of object to the

$products array property, but they could even overwrite the entire array and replace it

with a scalar value. I can prevent this by making the $products property private:

class ShopProductWriter

{

 private $products = [];

 //...

Chapter 3 Object Basics

71

It’s now impossible for external code to damage the $products property. All access

must be via the addProduct() method, and the class type declaration I use in the

method declaration ensures that only ShopProduct objects can be added to the array

property.

�Typed Properties
So, by combining type declarations in method signatures with property visibility

declarations, you can control the property types in your classes. Here is another

example: a Point class in which I use type declarations and property visibility to manage

the property types.

class Point

{

 private $x = 0;

 private $y = 0;

 public function setVals(int $x, int $y)

 {

 $this->x = $x;

 $this->y = $y;

 }

 public function getX(): int

 {

 return $this->x;

 }

 public function getY(): int

 {

 return $this->y;

 }

}

Because the $x and $y properties are private, they can only be set via the setVals()

method—and because setVals() will only accept integer values, you can be sure that $x

and $y always contain integers.

Chapter 3 Object Basics

72

Of course, because these properties are set private, the only way they can be

accessed is through getter or accessor methods.

We were stuck with this method of fixing the types of properties up until PHP version

7.4 which introduced typed properties. This allows us to declare types for our properties.

Here is a version of Point that takes advantage of this:

class Point

{

 public int $x = 0;

 public int $y = 0;

}

I have made the properties $x and $y public and used type declaration to constrain

their types. Because of this, I can choose, if I want, to get rid of the setVals() method

without sacrificing control. I also no longer need the getX() and getY() methods. Point

is now an exceptionally simple class, but, even with both its properties public, it offers

the world guarantees about the data it holds.

Let’s try to set a string on one of those properties:

$point = new Point();

$point->x = "a";

PHP won’t let us get away with that:

TypeError: Cannot assign string to property popp\ch03\batch11\Point::$x

of type int

Note  Union types can also be used in type property declarations.

�readonly Properties
We have seen how using protected and private properties is a good way of managing

an object’s data. By allowing mediated access to protected properties through getter

and setter methods, we are able to offer the control and information a client component

might need without compromising consistency. Still, although such methods are useful,

they can be a chore to create, and they can bulk up your classes.

Chapter 3 Object Basics

73

We have also explored the use of typed properties to dispense with the need for

accessor methods in some situations (where you don’t need to perform a secondary

action when a property is changed and you’re happy to allow the property to be altered

directly from outside).

Still, until the release of PHP 8.1, if you wanted to make a property readable but not

writable, you would have no choice but to offer getter methods. Here, for example, is an

implementation of an immutable Point class:

class Point

{

 public function __construct(private int $x, private int $y)

 {

 }

 public function getX(): int

 {

 return $this->x;

 }

 public function getY(): int

 {

 return $this->y;

 }

}

Because we don’t want the user to be able to change the $x and $y properties of

a Point object, we are forced to make the properties private and to provide getter

methods. The readonly keyword gives us another option in a situation like this. If you

declare a property readonly, it can be set only once from the object or class context.

It can never be set from outside the class (that includes child classes—even if the

property is set to public or protected). You must declare a type for a readonly property,

and you cannot set a default value. Also, you cannot apply readonly to a static property.

With the rules out the way, let’s refactor Point:

class Point

{

 public readonly int $x;

 public readonly int $y;

Chapter 3 Object Basics

74

 public function __construct(int $x, int $y)

 {

 $this->x = $x;

 $this->y = $y;

 }

}

Because I have declared the $x and $y properties readonly, I can set them once in

the constructor. Client components can now access $point->x and $point->y once

again. Any attempt to change the values will result in an error:

PHP Fatal error: Uncaught Error: Cannot modify readonly property

Point::$x in ...

If I want an even more compact implementation, I can use readonly in conjunction

with constructor property promotion like this:

class Point

{

 public function __construct(

 public readonly int $x,

 public readonly int $y

) {

 }

}

�readonly Classes
If you need to declare all properties in a class readonly, then, as of PHP 8.3, you have

another option. You can declare the entire class readonly. This will implicitly apply

readonly status to all properties. The same rules apply, therefore. All properties must

be declared with a type, none can have a default value, and you cannot declare a static

property.

Note I will cover the concept of static properties and methods in Chapter 4.

Chapter 3 Object Basics

75

Let’s move the readonly declaration from the properties in Point to the class itself:

readonly class Point

{

 public function __construct(

 public int $x,

 public int $y

) {

 }

}

Note  Declaring a class readonly can have some unintended consequences.
In particular, it can interfere with tools and techniques which dynamically extend
classes for the purposes of testing (see Volume 2 for more on testing).

�The ShopProduct Classes
Let’s close this chapter by amending the ShopProduct class and its children to lock down

access control and to incorporate some of the other features we have covered:

class ShopProduct

{

 private int|float $discount = 0;
 public readonly string $producer;

 public function __construct(

 public readonly string $title,

 public readonly string $producerFirstName,

 public readonly string $producerMainName,

 protected int|float $price
) {

 $this->producer = $this->producerFirstName . " "

 . $this->producerMainName;

 }

Chapter 3 Object Basics

76

 public function setDiscount(int|float $num): void
 {

 $this->discount = $num;

 }

 public function getDiscount(): float|int
 {

 return $this->discount;

 }

 public function getPrice(): int|float
 {

 return ($this->price - $this->discount);

 }

 public function getSummaryLine(): string

 {

 $base = "{$this->title} ({$this->producerMainName}, ";

 $base .= "{$this->producerFirstName})";

 return $base;

 }

}

Having closed down access to most properties in previous examples, I’ve now

reversed course and declared $title, $producerFirstName, and $producerMainName

public. Because I also declared them readonly, these properties can be safely read

directly—removing the need for accessor methods like getTitle(). On the other hand, I

have kept $price restricted from direct access by declaring it protected. This is because

I want to hide the actual price and apply any discount myself in the getPrice() method.

Note that I have used a union in my type declarations for $price in the constructor and

for $discount both in the setDiscount() method and in the property declaration.

Let’s look at the final version of RecordProduct:

class RecordProduct extends ShopProduct

{

 public function __construct(

 string $title,

 string $firstName,

Chapter 3 Object Basics

77

 string $mainName,

 int|float $price,
 public readonly int $playLength

) {

 parent::__construct(

 $title,

 $firstName,

 $mainName,

 $price

);

 }

 public function getSummaryLine(): string

 {

 $base = "{$this->title} ({$this->producerMainName}, ";

 $base .= "{$this->producerFirstName})";

 $base .= ": playing time - {$this->playLength}";

 return $base;

 }

}

Again, I am using property promotion in the constructor’s signature. This time, it is

for one argument alone: $playLength. I can take advantage of readonly here too and

declare the property public.

Because I am passing on the remainder of the constructor arguments to the

parent class, I do not set visibility for them. I use them instead within the body of the

constructor.

Finally, here’s BookProduct:

class BookProduct extends ShopProduct

{

 public function __construct(

 string $title,

 string $firstName,

 string $mainName,

 int|float $price,
 public readonly int $numPages

Chapter 3 Object Basics

78

) {

 parent::__construct(

 $title,

 $firstName,

 $mainName,

 $price

);

 }

 public function getSummaryLine(): string

 {

 $base = parent::getSummaryLine();

 $base .= ": page count - $this->numPages";

 return $base;

 }

 public function getPrice(): int|float
 {

 return $this->price;

 }

}

Once again, I mostly pass the constructor arguments here along to the parent class.

I use constructor property promotion to declare $numPages public and readonly. The

getPrice() method overrides the parent’s default implementation because we don’t

support discounts for books. Similarly, this class’s version of getSummaryLine() provides

book-specific summary information.

�Summary
This chapter covered a lot of ground, taking a class from an empty implementation

through to a fully featured inheritance hierarchy. You took in some design issues,

particularly with regard to type and inheritance. You saw PHP’s support for visibility and

explored some of its uses. In the next chapter, I will show you more of PHP’s object-

oriented features.

Chapter 3 Object Basics

79
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3_4

CHAPTER 4

Advanced Features
You have already seen how class type hinting and access control give you more control

over a class’s interface. In this chapter, I will delve deeper into PHP’s object-oriented

features.

This chapter will cover several subjects:

•	 Static methods and properties: Accessing data and functionality

through classes rather than objects

•	 Class constants: Defining immutable class variables

•	 Enumerations: Special class-like constructs that manage

multiple fields

•	 Abstract classes and interfaces: Separating design from

implementation

•	 Traits: Sharing implementation between class hierarchies

•	 Error handling: Introducing exceptions

•	 Final classes and methods: Limiting inheritance

•	 Interceptor methods: Automating delegation

•	 Destructor methods: Cleaning up after your objects

•	 Cloning objects: Making object copies

•	 Resolving objects to strings: Creating a summary method

•	 Callbacks: Adding functionality to components with anonymous

functions and classes

https://doi.org/10.1007/979-8-8688-0482-3_4#DOI

80

�Static Methods and Properties
All of the examples in the previous chapter worked with objects. I characterized

classes as templates from which objects are produced and objects as active instances

of classes—the things whose methods you invoke and whose properties you access.

I implied that, in object-oriented programming, the real work is done by instances of

classes. Classes, after all, are merely templates for objects.

In fact, it is not that simple. You can access both methods and properties in the

context of a class rather than that of an object. Such methods and properties are “static”

and must be declared as such by using the static keyword:

class StaticExample

{

 public static int $aNum = 0;

 public static function sayHello(): void

 {

 print "hello";

 }

}

Static methods are functions that operate in the context of a class rather than an

object instance. They cannot themselves access any normal properties in the class

because these would belong to an object; however, they can access static properties. If

you change a static property, all instances of that class are able to access the new value.

Because you access a static element via a class and not an instance, you do not need

a variable that references an object. Instead, you use the class name in conjunction with

::, as in this example:

print StaticExample::$aNum;

StaticExample::sayHello();

Note  You can also use an object reference (e.g., $myobj) with :: to access
static properties ($myobj::$aNum) and methods ($myobj::sayHello()).

This syntax should be familiar from the previous chapter. I used :: with parent to

access an overridden method. Now, as then, I am accessing class rather than object data.

Class code can use the parent keyword to access a superclass without using its class name.

Chapter 4 Advanced Features

81

To access a static method or property from within the same class (rather than from a

child), I would use the self keyword. self is to classes what the $this pseudo-

variable is to objects. So from outside the StaticExample class, I access the $aNum property

using its class name:

StaticExample::$aNum;

From within a class, I can use the self keyword:

class StaticExample2

{

 public static int $aNum = 0;

 public static function sayHello(): void

 {

 self::$aNum++;

 print "hello (" . self::$aNum . ")\n";

 }

}

Note  Making a method call using parent is the only circumstance in which
it is considered best practice to use a static reference to a nonstatic method. In
fact, strictly speaking, you can use self or static from within a class to access
a local method or property, but this is generally regarded as confusing and is
therefore not encouraged.

Unless you are accessing an overridden method, you should only ever use :: to

access a method or property that has been explicitly declared static.

In documentation, however, you will often see static syntax used to refer to a method

or property. This does not mean that the item in question is necessarily static, just

that it belongs to a certain class. The write() method of the ShopProductWriter class

might be referred to as ShopProductWriter::write(), for example, even though the

write() method is not static. You will see this syntax here when that level of specificity is

appropriate.

Chapter 4 Advanced Features

82

By definition, static methods and properties are invoked on classes and not

objects. For this reason, they are often referred to as class variables and properties. As a

consequence of this class orientation, you cannot use the $this pseudo-variable inside a

static method.

So, why would you use a static method or property? Static elements have a number

of characteristics that can be useful. First, they are available from anywhere in your script

(assuming that you have access to the class). This means you can access functionality

without needing to pass an instance of the class from object to object or, worse, storing

an instance in a global variable. Second, a static property is available to every instance

of a class, so you can set values that you want to be available to all members of a type.

Finally, the fact that you don’t need an instance to access a static property or method can

save you from instantiating an object purely to get at a simple function.

To illustrate this, I will build a static method for the ShopProduct class that automates

the instantiation of ShopProduct objects. Using SQLite, I might define a products table

like this:

CREATE TABLE products (

 id INTEGER PRIMARY KEY AUTOINCREMENT,

 type TEXT,

 firstname TEXT,

 mainname TEXT,

 title TEXT,

 price float,

 numpages int,

 playlength int,

 discount int)

Now I want to build a getInstance() method that accepts a row ID and PDO object,

uses them to acquire a database row, and then returns a ShopProduct object. I can

add these methods to the ShopProduct class I created in the previous chapter. As you

probably know, PDO stands for PHP Data Object. The PDO class provides a common

interface to different database applications:

Chapter 4 Advanced Features

83

// ShopProduct class...

 private int $id = 0;

 // ...

 public function setID(int $id): void

 {

 $this->id = $id;

 }

 // ...

 public static function getInstance(int $id, \PDO $pdo): ShopProduct

 {

 $stmt = $pdo->prepare("select * from products where id=?");

 $result = $stmt->execute([$id]);

 $row = $stmt->fetch();

 if (empty($row)) {

 return null;

 }

 if ($row['type'] == "book") {

 $product = new BookProduct(

 $row['title'],

 $row['firstname'],

 $row['mainname'],

 (float) $row['price'],

 (int) $row['numpages']

);

 } elseif ($row['type'] == "record") {

 $product = new RecordProduct(

 $row['title'],

 $row['firstname'],

 $row['mainname'],

 (float) $row['price'],

 (int) $row['playlength']

);

 } else {

Chapter 4 Advanced Features

84

 �$firstname = (is_null($row['firstname'])) ? "" :

$row['firstname'];

 $product = new ShopProduct(

 $row['title'],

 $firstname,

 $row['mainname'],

 (float) $row['price']

);

 }

 $product->setId((int) $row['id']);

 $product->setDiscount((int) $row['discount']);

 return $product;

 }

As you can see, the getInstance() method returns a ShopProduct object and,

based on a type flag, is smart enough to work out the precise specialization it should

instantiate. I have omitted any error handling to keep the example compact. In a real-

world version of this, for example, I would not be so trusting as to assume that the

provided PDO object had been initialized to talk to the correct database. In fact, I would

probably wrap the PDO inside a class that would guarantee this behavior. You can read

more about object-oriented coding and databases in Chapter 13.

This method is more useful in a class context than an object context. It lets you

convert raw data from the database into an object easily, without requiring that you have

a ShopProduct object to start with. The method does not use any instance properties or

methods, so there is no reason why it should not be declared static. Given a valid PDO

object, I can invoke the method from anywhere in an application:

$dsn = "sqlite:/tmp/products.sqlite3";

$pdo = new \PDO($dsn, null, null);

$pdo->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);

$obj = ShopProduct::getInstance(1, $pdo);

Methods like this act as “factories” in that they take raw materials (such as row

data or configuration information) and use them to produce objects. The term factory

is applied to code designed to generate object instances. You will encounter factory

examples again in future chapters.

Chapter 4 Advanced Features

85

In some ways, of course, this example poses as many problems as it solves. Although

I make the ShopProduct::getInstance() method accessible from anywhere in a system

without the need for a ShopProduct instance, I also demand that client code provides

a PDO object. Where is this to be found? And is it really good practice for a parent class

to have such intimate knowledge of its children? (Hint: No, it is not.) Problems of this

kind—where to acquire key objects and values and how much classes should know

about one another—are very common in object-oriented programming. I examine

various approaches to object generation in Chapter 9.

Note A s we will discuss throughout this book, an overreliance on static methods
is often regarded as problematic. In particular, static methods can make a system
harder to test because they are often not compatible with tools that generate
mocks and stubs (i.e., faked up versions of classes designed to help in creating the
context for a test). I will discuss mocks and stubs in Volume 2.

�Constant Properties
Some properties should not be changed. The Answer to Life, the Universe, and

Everything is 42, and you want it to stay that way. Error and status flags will often be

hard-coded into your classes. Although they should be publicly and statically available,

client code should not be able to change them.

PHP allows you to define constant properties within a class. Like global

constants, class constants cannot be changed once they are set. A constant property

is declared with the const keyword. Constants are not prefixed with a dollar sign like

regular properties. By convention (and mandatorily according to PHP Standards

Recommendations), they should be named using only uppercase characters:

class ShopProduct

{

 public const AVAILABLE = 0;

 public const OUT_OF_STOCK = 1;

Chapter 4 Advanced Features

86

As of PHP 8.3, you can specify a type for a class constant. This has the effect of

preventing subclasses from changing its type. Declaring a type is generally good practice,

therefore, unless you are modifying a class in an existing library where the change could

break any child classes that are already using it:

class ShopProduct

{

 public const int AVAILABLE = 0;

 public const int OUT_OF_STOCK = 1;

Constant properties can contain only scalar or array values. You cannot assign an

object to a constant. Like static properties, constant properties are accessed through the

class and not an instance. Just as you define a constant without a dollar sign, no leading

symbol is required when you refer to one:

print ShopProduct::AVAILABLE;

Note S upport for constant visibility modifiers was introduced in PHP 7.1. They
work in just the same way as visibility modifiers do for properties.

Attempting to set a value on a constant once it has been declared will cause a

parse error.

You should use constants when your property needs to be available across

all instances of a class, as well as when the property value needs to be fixed and

unchanging.

As of PHP 8.3, you can reference class constants using a variable enclosed in braces

in place of the constant name. Here, I do just that:

$status = "AVAILABLE";

print ShopProduct::{$status};

�Enumerations
As we have seen, constants are a good way of managing status flags in classes. As I

did with AVAILABLE and OUT_OF_STOCK, you can use class constants to define a range

of potential values for a particular kind of status—availability in this case—and then

Chapter 4 Advanced Features

87

assign one of these to a property to signal the condition of an object. This is a valid

approach, but, especially if there are more than a few potential values, it can become a

pain to manage. If you accept an integer representing a status in a constructor or a setter

method, for example, you will likely need to test the provided value against the available

defined constants.

PHP 8.1 introduced enumerations, which are a neat solution to this problem. An

enumeration is a special class which cannot be directly intantiated and which defines a

set of named fields. An enumeration is declared with the enum keyword. Its fields, which

resemble properties, are declared with case.

Let’s try it out. Imagine that we need to maintain a status representing product type

in ShopProduct. Rather than creating half a dozen class constants, I’ll define a single

enumeration:

enum Prodcat

{

 case household;

 case clothing;

 case reading;

 case audio;

 case grocery;

}

The Prodcat enumeration defines a set of fields that describe product types. We can

reference an individual field using :: between the name of the enumeration and the

name of the field:

$prodtype = Prodcat::reading;

print_r($prodtype);

Behind the scenes, Prodcat::reading resolves to an instance of a special Prodcat

object with a name property set to the field name (case is sensitive). Here’s my output

from the previous example:

popp\ch04\batch25\Prodcat Enum

(

 [name] => reading

)

Chapter 4 Advanced Features

88

Because of this, I can require a Prodcat argument in a method or function signature

without needing to worry about whether or not it contains a valid field. Here’s an

extremely curtailed version of ShopProduct that does just that:

class ShopProduct

{

 public function __construct(private Prodcat $cat)

 {

 }

 public function getCat(): Prodcat

 {

 return $this->cat;

 }

}

I can test the type of a Prodcat enumeration just as I might any object. Typically, I

might compare two Prodcat references against one another. Alternatively, I could access

the $name property and use that as the basis of a test:

$product = new ShopProduct(Prodcat::audio);

if ($product->getCat() === Prodcat::audio) {

 print "it is audio\n";

}

if ($product->getCat()->name == "audio") {

 print "it is audio\n";

}

�Backed Enumerations
Remember our AVAILABLE and OUT_OF_STOCK class constants? We declared them as

integers. Because enumerations resolve to objects, we are no longer required to do this.

However, there are some cases where it can be useful to match enumeration fields to

simple values. When the time comes to write data from a ShopProduct object to storage,

Chapter 4 Advanced Features

89

I might need a way to translate my Prodcat property—ShopProduct::$cat—to a

simple value. Then, by the same token, I would need to translate that value back into an

enumeration when constructing an object from stored data.

The answer is backed enumerations. Each field in a backed enumeration will resolve

to a value. Let’s extend Prodcat:

enum Prodcat: int

{

 case household = 1;

 case clothing = 2;

 case reading = 3;

 case audio = 4;

 case grocery = 5;

}

The only real changes here are that I have specified the type after a colon in my enum

declaration, and I have defined an integer value for each element. My enumeration

works in exactly the same way as before except that, now, my enum object will have a new

property: $value.

$prodtype = Prodcat::audio;

print Prodcat::audio->value . "\n";

// output: 4

So now, if I need to write my ShopProduct category to storage, I can save a simple

integer without having to create my own mapping logic.

What happens, though, when I need to work in the other direction—to take the value

4 and convert it back into Prodcat::audio? Backed enumerations provide a special

method: from() which will take value of the type supported by a backed enumeration

and convert it into the corresponding enum object:

$prodtype = Prodcat::from(4);

print $prodtype->value . "\n";

// output: 4

If I were to provide an invalid value (a value not defined in the enum), the

from() method would throw a fatal error. If I want more lenient behavior, I can use

tryFrom() instead. This will return null if the given value does not resolve to an

enumeration object.

Chapter 4 Advanced Features

90

�Enumerations with Methods
Because an enumeration is a special kind of class, you can define methods within it.

This lets you enhance an enumeration with additional functionality. Here, for example,

I return a bool according to whether or not the Prodcat type represents a leisure product

(a book or a record):

enum Prodcat: int

{

 case household = 1;

 case clothing = 2;

 case reading = 3;

 case audio = 4;

 case grocery = 5;

 public function isLeisure(): bool

 {

 return match ($this) {

 self::reading, self::audio => true,

 default => false

 };

 }

}

So I can check a Prodcat enumeration object by calling isLeisure() on it:

$test1 = Prodcat::audio->isLeisure();

// true

$product = new ShopProduct(Prodcat::clothing);

$test2 = $product->getCat()->isLeisure();

// false

You can also define static methods in enumerations. You might typically do this in

order to generate a particular enumeration element. In this trivial example, I create a

static method generate a random enumeration element:

Chapter 4 Advanced Features

91

enum Prodcat: int

{

 case household = 1;

 case clothing = 2;

 case reading = 3;

 case audio = 4;

 case grocery = 5;

 //

 public static function getRand(): static

 {

 $num = rand(1, 5);

 return self::from($num);

 }

}

You can invoke this on the enumeration just as you would call a static method on a

standard class:

$cat = Prodcat::getRand();

�Abstract Classes
An abstract class cannot be instantiated. Instead, it defines (and, optionally, partially

implements) the interface for any class that might extend it. You define an abstract class

with the abstract keyword. Here, I redefine the ShopProductWriter class I created in

the previous chapter, this time as an abstract class:

abstract class ShopProductWriter

{

 protected array $products = [];

 public function addProduct(ShopProduct $shopProduct): void

 {

 $this->products[] = $shopProduct;

 }

}

Chapter 4 Advanced Features

92

You can create methods and properties as normal, but any attempt to instantiate an

abstract object in this way will cause an error:

$writer = new ShopProductWriter();

You can see the error in this output:

Error: Cannot instantiate abstract class

popp\ch04\batch03\ShopProductWriter

In most cases, an abstract class will contain at least one abstract method (an abstract

class without abstract methods is almost certainly redundant). These are declared, once

again, with the abstract keyword. An abstract method cannot have an implementation.

You declare it in the normal way but end the declaration with a semicolon rather than a

method body. Here, I add an abstract write() method to the ShopProductWriter class:

abstract class ShopProductWriter

{

 protected array $products = [];

 public function addProduct(ShopProduct $shopProduct): void

 {

 $this->products[] = $shopProduct;

 }

 abstract public function write(): void;

}

In creating an abstract method, you ensure that an implementation will be available

in all concrete child classes, but you leave the details of that implementation undefined.

If I were to create a class derived from ShopProductWriter that does not implement

the write() method like this:

class ErroredWriter extends ShopProductWriter

{

}

Chapter 4 Advanced Features

93

running the code would generate the following error:

Fatal error: Class popp\ch04\batch03\ErroredWriter contains 1 abstract

method and must therefore be declared abstract or implement the

remaining methods (popp\ch04\batch03ShopProductWriter::write) in...

So any class that extends an abstract class must implement all abstract methods

or itself be declared abstract. An extending class is responsible for more than simply

implementing an abstract method. In doing so, it must reproduce the method signature.

This means that the access control of the implementing method cannot be stricter than

that of the abstract method. The implementing method should also require the same

number of arguments as the abstract method, reproducing any class type declarations.

Here are two implementations of ShopProductWriter. First, XmlProductWriter:

class XmlProductWriter extends ShopProductWriter

{

 public function write(): void

 {

 $writer = new \XMLWriter();

 $writer->openMemory();

 $writer->startDocument('1.0', 'UTF-8');

 $writer->startElement("products");

 foreach ($this->products as $shopProduct) {

 $writer->startElement("product");

 $writer->writeAttribute("title", $shopProduct->getTitle());

 $writer->startElement("summary");

 $writer->text($shopProduct->getSummaryLine());

 $writer->endElement(); // summary

 $writer->endElement(); // product

 }

 $writer->endElement(); // products

 $writer->endDocument();

 print $writer->flush();

 }

}

Chapter 4 Advanced Features

94

This is the more basic TextProductWriter:

class TextProductWriter extends ShopProductWriter

{

 public function write(): void

 {

 $str = "PRODUCTS:\n";

 foreach ($this->products as $shopProduct) {

 $str .= $shopProduct->getSummaryLine() . "\n";

 }

 print $str;

 }

}

So, I have created two classes, each with its own implementation of the write()

method. The first outputs XML and the second outputs text. A method that requires a

ShopProductWriter object will not know when called which of these two classes it has

received, but it can be absolutely certain that a write() method is implemented. Note

that I don’t test the type of $products before treating it as an array. This is because this

property is both declared an array and initialized in the ShopProductWriter class.

�Interfaces
Although abstract classes let you provide some measure of implementation, interfaces

are pure templates. An interface can only define functionality; it can never implement

it. An interface is declared with the interface keyword. It can contain properties and

method declarations but not method bodies.

Here’s an interface:

interface Chargeable

{

 public function getPrice(): float;

}

As you can see, an interface looks very much like a class. Any class that incorporates

this interface commits to implementing all the methods it defines, or it must be declared

abstract.

Chapter 4 Advanced Features

95

A class can implement an interface using the implements keyword in its declaration.

Once you have done this, the process of implementing an interface is the same as

extending an abstract class that contains only abstract methods. Now I will make the

ShopProduct class implement Chargeable:

class ShopProduct implements Chargeable

{

 // ...

 protected float $price;

 // ...

 public function getPrice(): float

 {

 return $this->price;

 }

 // ...

}

ShopProduct already had a getPrice() method, so why might it be useful to implement

the Chargeable interface? Once again, the answer has to do with types. An implementing

class takes on the type of the class it extends and the interface that it implements.

This means that the RecordProduct class belongs to the following:

RecordProduct

ShopProduct

Chargeable

This can be exploited by client code. To know an object’s type is to know its

capabilities. Consider this method:

public function recordInfo(RecordProduct $prod): int

{

 // we know we can call getPlayLength()

 $length = $prod->getPlayLength();

 // ...

}

The method knows that the $prod object has a getPlayLength() method in addition

to all the methods defined in the ShopProduct class and Chargeable interface.

Chapter 4 Advanced Features

96

Passed the same object, however, a method with a more generic type requirement—

ShopProduct rather than RecordProduct—can only know that the provided object

contains ShopProduct methods.

public function addProduct(ShopProduct $prod)

{

 // even if $prod is a RecordProduct object

 // we don't *know* this -- so we can't

 // presume to use getPlayLength()

 // ...

}

Without further testing, the method will know nothing of the

getPlayLength() method.

Passed the same RecordProduct object, a method which required a Chargeable

object knows nothing at all of the ShopProduct or RecordProduct types:

public function addChargeableItem(Chargeable $item)

{

 // all we know about $item is that it

 // is a Chargeable object -- the fact that it

 // is also a RecordProduct object is irrelevant.

 // We can only be sure of getPrice()

 //

 //...

}

This method is only concerned with whether the $item argument contains a

getPrice() method.

Because any class can implement an interface (in fact, a class can implement any

number of interfaces), interfaces effectively join types that are otherwise unrelated. I

might define an entirely new class that implements Chargeable:

class Shipping implements Chargeable

{

 public function __construct(private float $price)

 {

 }

Chapter 4 Advanced Features

97

 public function getPrice(): float

 {

 return $this->price;

 }

}

I can pass a Shipping object to the addChargeableItem() method just as I can pass it

a ShopProduct object.

The important thing to a client working with a Chargeable object is that it can call

a getPrice() method. Any other available methods are associated with other types,

whether through the object’s own class, a superclass, or another interface. These are

irrelevant to the client.

A class can both extend a superclass and implement any number of interfaces. The

extends clause should precede the implements clause:

class Consultancy extends TimedService implements Bookable, Chargeable

{

 // ...

}

Notice that the Consultancy class implements more than one interface. Multiple

interfaces follow the implements keyword in a comma-separated list.

PHP only supports inheritance from a single parent, so the extends keyword can

precede a single class name only.

If you would like to share functionality across multiple classes outside of their

singular inheritance hierarchy, there are various possible approaches you might take.

In Chapter 8, for example, we will encounter the Strategy pattern. The language itself

supports traits, another mechanism for adding shared functionality to classes.

�Traits
As we have seen, interfaces help you manage the fact that, like Java, PHP does not

support multiple inheritance. In other words, a class in PHP can only extend a single

parent. However, you can make a class promise to implement as many interfaces as you

like; for each interface it implements, the class takes on the corresponding type.

Chapter 4 Advanced Features

98

So interfaces provide types without implementation. But what if you want to share an

implementation across inheritance hierarchies? PHP 5.4 introduced traits, and these let

you do just that.

A trait is a class-like structure that cannot itself be instantiated but can be

incorporated into classes. Any methods defined in a trait become available as part of

any class that uses it. A trait changes the structure of a class, but doesn’t change its type.

Think of traits as includes for classes.

Let’s look at why a trait might be useful.

�A Problem for Traits to Solve
Here is a version of the ShopProduct class with a calculateTax() method:

class ShopProduct

{

 private int $taxrate = 20;

// ...

 public function calculateTax(float $price): float

 {

 return (($this->taxrate / 100) * $price);

 }

}

The calculateTax() method accepts a $price argument and calculates a sales tax

amount based on the private $taxrate property.

Of course, a subclass gains access to calculateTax(). But what about entirely

different class hierarchies? Imagine a class named UtilityService, which inherits from

another class, Service. If UtilityService needs to use an identical routine, I might find

myself duplicating calculateTax() in its entirety. Here is Service:

abstract class Service

{

 // service oriented stuff

}

Chapter 4 Advanced Features

99

And here is UtilityService:

class UtilityService extends Service

{

 private int $taxrate = 20;

 public function calculateTax(float $price): float

 {

 return (($this->taxrate / 100) * $price);

 }

}

Because UtilityService and ShopProduct do not share any common base classes,

they cannot easily share the calculateTax() implementation. We are forced, therefore,

to copy and paste our implementation from one class to another.

�Defining and Using a Trait
One of the core object-oriented design goals I will cover in this book is the removal of

duplication. As you will see in Chapter 11, one solution to this kind of duplication is to

factor it out into a reusable strategy class. Traits provide another approach—less elegant,

perhaps, but certainly effective.

Here, I declare a single trait that defines a calculateTax() method, and then I

include it in both ShopProduct and UtilityService:

trait PriceUtilities

{

 private int $taxrate = 20;

 public function calculateTax(float $price): float

 {

 return (($this->taxrate / 100) * $price);

 }

 // other utilities

}

Chapter 4 Advanced Features

100

I declare the PriceUtilities trait with the trait keyword. The body of a trait looks

very similar to that of a class. It is simply a set of methods and properties collected

within braces. Once I have declared it, I can access the PriceUtilities trait from within

my classes. I do this with the use keyword followed by the name of the trait I wish to

incorporate. So having declared and implemented the calculateTax() method in a

single place, I go ahead and incorporate it into the ShopProduct class:

class ShopProduct

{

 use PriceUtilities;

}

Also, of course, I add it to the UtilityService class:

class UtilityService extends Service

{

 use PriceUtilities;

}

Now, when I invoke these classes, I know that they share the PriceUtilities

implementation without duplication. If I were to find a bug in PriceUtilities, I could

fix it in a single place:

$p = new ShopProduct();

print $p->calculateTax(100) . "\n";

$u = new UtilityService();

print $u->calculateTax(100) . "\n";

�Using More Than One Trait
You can include multiple traits in a class by listing each one after the use keyword,

separated by commas. In this example, I define and apply a new trait, IdentityTrait,

keeping my original PriceUtilities trait:

Chapter 4 Advanced Features

101

trait IdentityTrait

{

 public function generateId(): string

 {

 return uniqid();

 }

}

By applying both PriceUtilities and IdentityTrait with the use keyword, I make

the calculateTax() and the generateId() methods available to the ShopProduct class.

This means the class offers both the calculateTax() and generateId() methods:

class ShopProduct

{

 use PriceUtilities;

 use IdentityTrait;

}

Note T he IdentityTrait trait provides the generateId() method. In fact,
a database can be used to generate an identifier for a row (and, therefore, for an
object), but you might switch in a local implementation to avoid relying on that
functionality. You can find out more about objects, databases, and unique identifiers
in Chapter 13, which covers the Identity Map pattern.

Now I can call both the generateId() and calculateTax() methods on a

ShopProduct class:

$p = new ShopProduct();

print $p->calculateTax(100) . "\n";

print $p->generateId() . "\n";

�Combining Traits and Interfaces
Although traits are useful, they don’t change the type of the class to which they are

applied. So when you apply the IdentityTrait trait to multiple classes, they won’t share

a type that could be hinted for in a method signature.

Chapter 4 Advanced Features

102

Luckily, traits play well with interfaces. I can define an interface that requires a

generateId() method and then declare that ShopProduct implements it:

interface IdentityObject

{

 public function generateId(): string;

}

If I want ShopProduct to fulfill the IdentityObject type, I must now make it

implement the IdentityObject interface:

class ShopProduct implements IdentityObject

{

 use PriceUtilities;

 use IdentityTrait;

}

As before, ShopProduct uses the IdentityTrait trait. However, the method this

imports, generateId(), now also fulfills a commitment to the IdentityObject interface.

This means that we can pass ShopProduct objects to methods and functions that use

type hinting to demand IdentityObject instances, like this:

public static function storeIdentityObject(IdentityObject $idobj)

{

 // do something with the IdentityObject

}

�Managing Method Name Conflicts with insteadof
The ability to combine traits is a nice feature, but sooner or later conflicts are inevitable.

Consider what would happen, for example, if I were to use two traits that provide a

calculateTax() method:

trait TaxTools

{

 public function calculateTax(float $price): float

 {

 return 222;

 }

}

Chapter 4 Advanced Features

103

Because I have included two traits that contain a calculateTax() method, PHP is

unable to work out which should override the other. The result is a fatal error:

Fatal error: Trait method popp\ch04\batch06_3TaxTools::calculateTax has

not been applied as popp\ch04\batch06_3UtilityService::calculateTax,

because of collision with popp\ch04\batch06_3PriceUtilities::calculate

Tax in...

To fix this problem, I can use the insteadof keyword. Here’s how:

class UtilityService extends Service

{

 use PriceUtilities;

 use TaxTools {

 TaxTools::calculateTax insteadof PriceUtilities;

 }

}

In order to apply further directives to a use statement, I must first add a body. I do

this with opening and closing braces. Within this block, I use the insteadof operator.

This requires a fully qualified method reference (i.e., one that identifies both the trait and

the method names, separated by a scope resolution operator) on the left-hand side. On

the right-hand side, insteadof requires the name of the trait whose equivalent method

should be overridden:

TaxTools::calculateTax insteadof PriceUtilities;

The preceding snippet means “Use the calculateTax() method of TaxTools instead

of the method of the same name in PriceUtilities.”

So when I run this code:

$u = new UtilityService();

print $u->calculateTax(100) . "\n";

I get the dummy output I planted in TaxTools::calculateTax():

222

Chapter 4 Advanced Features

104

�Aliasing Overridden Trait Methods
We have seen that you can use insteadof to disambiguate methods of the same name.

What do you do, though, if you want to then access the overridden method? The as

operator allows you to alias trait methods. Once again, the as operator requires a full

reference to a method on its left-hand side. On the right-hand side of the operator, you

should put the name of the alias. So here, for example, I reinstate the calculateTax()

method of the PriceUtilities trait using the new name basicTax():

class UtilityService extends Service

{

 use PriceUtilities;

 use TaxTools {

 TaxTools::calculateTax insteadof PriceUtilities;

 PriceUtilities::calculateTax as basicTax;

 }

}

Now the UtilityService class has acquired two methods: the TaxTools version of

calculateTax() and the PriceUtilities version aliased to basicTax(). Let’s run these

methods:

$u = new UtilityService();

print $u->calculateTax(100) . "\n";

print $u->basicTax(100) . "\n";

This gives the following output:

222

20

So PriceUtilities::calculateTax() has been resurrected as part of the

UtilityService class under the name basicTax().

Note  Where a method name clashes between traits, it is not enough to alias one
of the method names in the use block. You must first determine which method
supersedes the other using the insteadof operator. Then you can reassign the
discarded method a new name with the as operator.

Chapter 4 Advanced Features

105

Incidentally, you can also use method name aliasing where there is no name clash.

You might, for example, want to use a trait method to implement an abstract method

signature declared in a parent class or in an interface.

�Using Static Methods in Traits
Most of the examples you have seen so far could use static methods because they do not

store instance data. There’s nothing complicated about placing a static method in a trait.

Here, I change the PriceUtilities::$taxrate property and the PriceUtilities::

calculateTax() methods so that they are static:

trait PriceUtilities

{

 private static int $taxrate = 20;

 public static function calculateTax(float $price): float

 {

 return ((self::$taxrate / 100) * $price);

 }

 // other utilities

}

Here is UtilityService back to its minimal form:

class UtilityService extends Service

{

 use PriceUtilities;

}

This version of UtilityService simply opts to use the PriceUtilities trait which

contains the new static version of calculateTax(). There is a key difference, now, when

it comes to calling the calculateTax() method:

print UtilityService::calculateTax(100) . "\n";

I must now call the method on the class rather than on an object. As you might

expect, this script outputs the following:

20

Chapter 4 Advanced Features

106

So, static methods are declared in traits and accessed via the host class in the

normal way.

�Accessing Host Class Properties
You might assume that static methods are really the only way to go as far as traits are

concerned. Even trait methods that are not declared static are essentially static in nature,

right? Well, wrong, in fact. You can access properties and methods in a host class:

trait PriceUtilities

{

 public function calculateTax(float $price): float

 {

 // is this good design?

 return (($this->taxrate / 100) * $price);

 }

 // other utilities

}

In the preceding code, I amend the PriceUtilities trait so that it accesses a property

in its host class. Here is a host—PriceUtilities—amended to declare the property:

class UtilityService extends Service

{

 use PriceUtilities;

 public int $taxrate = 20;

}

If you think that this is a bad design, you’re right. It’s a spectacularly bad design.

Although it’s useful for the trait to access data set by its host class, there is nothing to

require the UtilityService class to actually provide a $taxrate property. Remember

that traits should be usable across many different classes. What is the guarantee or even

the likelihood that any host classes will declare a $taxrate?

On the other hand, it would be great to be able to establish a contract that says,

essentially, “If you use this trait, then you must provide it certain resources.”

In fact, you can achieve exactly this effect. Traits support abstract methods.

Chapter 4 Advanced Features

107

�Defining Abstract Methods in Traits
You can define abstract methods in a trait in just the same way you would in a class.

When a trait is used by a class, it takes on the commitment to implement any abstract

methods it declares.

Note P rior to PHP 8, method signatures for abstract methods defined in traits
were not always fully enforced. This meant that in some circumstances argument
and return types might vary in the implementing class from those set down in the
abstract method declaration. This loophole has now been shut.

Armed with this knowledge, I can reimplement my previous example so that the trait

forces any class that uses it to provide tax rate information:

trait PriceUtilities

{

 public function calculateTax(float $price): float

 {

 // better design.. we know getTaxRate() is implemented

 return (($this->getTaxRate() / 100) * $price);

 }

 abstract public function getTaxRate(): float;

 // other utilities

}

By declaring an abstract getTaxRate() method in the PriceUtilities trait, I force

the UtilityService class to provide an implementation:

class UtilityService extends Service

{

 use PriceUtilities;

 public function getTaxRate(): float

 {

 return 20;

 }

}

Chapter 4 Advanced Features

108

Thanks to the abstract declaration in the trait, if I had not provided a getTaxRate()

method, I would have been rewarded with a fatal error.

�Changing Access Rights to Trait Methods
You can, of course, declare a trait method public, private, or protected. However, you

can also change this access from within the class that uses the trait. You have already

seen that the as operator can be used to alias a method name. If you use an access

modifier on the right-hand side of this operator, it will change the method’s access level

rather than its name.

Imagine, for example, you would like to use calculateTax() from within

UtilityService, but not make it available to implementing code. Here’s how you would

change the use statement:

class UtilityService extends Service

{

 use PriceUtilities {

 PriceUtilities::calculateTax as private;

 }

 public function __construct(private float $price)

 {

 }

 public function getTaxRate(): float

 {

 return 20;

 }

 public function getFinalPrice(): float

 {

 return ($this->price + $this->calculateTax($this->price));

 }

}

Chapter 4 Advanced Features

109

I deploy the as operator in conjunction with the private keyword in order to

set private access to calculateTax(). This means I can access the method from

getFinalPrice(). Here’s an external attempt to access calculateTax():

$u = new UtilityService(100);

print $u->calculateTax() . "\n";

By design, this code will generate an error:

Error: Call to private method

popp\ch04\batch06_9\UtilityService::calculateTax() from context ...

As of PHP 8.2, you can declare constants in traits. Here, I add a CURRENCY constant to

PriceUtilities:

trait PriceUtilities

{

 public const string CURRENCY = "USD";

�Late Static Bindings: The static Keyword
Now that you’ve seen abstract classes, traits, and interfaces, it’s time to return briefly to

static methods. You saw that a static method can be used as a factory, a way of generating

instances of the containing class. If you’re as lazy a coder as me, you might chafe at the

duplication in an example like this:

abstract class DomainObject

{

 abstract public static function create(): DomainObject;

}

class User extends DomainObject

{

 public static function create(): User

 {

 return new User();

 }

}

Chapter 4 Advanced Features

110

class Document extends DomainObject

{

 public static function create(): Document

 {

 return new Document();

 }

}

I create a superclass named DomainObject with an abstract static create() method.

Then I create two child classes, User and Document; each, by contract, must implement a

static create() method.

Note  Why would I use a static factory method when a constructor performs the
work of creating an object already? In Chapter 13, I’ll describe a pattern called
Identity Map. An Identity Map component generates and manages a new object
only if an object with the same distinguishing characteristics is not already under
management. If the target object already exists, it is returned. A factory method
like create() would make a good client for a component of this sort.

This code works fine, but it has an annoying amount of duplication. I don’t want to

have to create boilerplate code like this for every DomainObject child class that I create.

Instead, I’ll try pushing the create() method up to the superclass:

abstract class DomainObject

{

 public static function create(): DomainObject

 {

 return new self();

 }

}

Well, that looks neat. I now have common code in one place, and I’ve used self as a

reference to the class. But I have made an assumption about the self keyword. In fact, it

does not act for classes exactly the same way that $this does for objects. self does not

refer to the calling context; it refers to the context of resolution. So if I run the previous

example, I get this:

Chapter 4 Advanced Features

111

Error: Cannot instantiate abstract class

popp\ch04\batch06\DomainObject

So self resolves to DomainObject, the place where create() is defined, and not to

Document, the class on which it was called. Until PHP 5.3, this was a serious limitation,

which spawned many rather clumsy workarounds. PHP 5.3 introduced a concept called

late static bindings. The most obvious manifestation of this feature is the keyword:

static. static is similar to self, except that it refers to the invoked rather than the

containing class. In this case, it means that calling Document::create() results in a new

Document object and not a doomed attempt to instantiate a DomainObject object.

So now I can take advantage of my inheritance relationship in a static context:

abstract class DomainObject

{

 public static function create(): DomainObject

 {

 return new static();

 }

}

class User extends DomainObject

{

}

class Document extends DomainObject

{

}

Now if we call create() on one of the child classes, we should no longer cause an

error—and get back an object related to the class we called and not to the class that

houses create():

print_r(Document::create());

Here is the output:

popp\ch04\batch07\Document Object

(

)

Chapter 4 Advanced Features

112

The static keyword can be used for more than just instantiation. Like self and

parent, static can be used as an identifier for static method calls, even from a nonstatic

context. Let’s say I want to include the concept of a group for my DomainObject classes.

By default, in my new classification, all classes fall into category “default,” but I’d like to

be able to override this for some branches of my inheritance hierarchy:

abstract class DomainObject

{

 private string $group;

 public function __construct()

 {

 $this->group = static::getGroup();

 }

 public static function create(): DomainObject

 {

 return new static();

 }

 public static function getGroup(): string

 {

 return "default";

 }

}

class User extends DomainObject

{

}

class Document extends DomainObject

{

 public static function getGroup(): string

 {

 return "document";

 }

}

class SpreadSheet extends Document

{

}

Chapter 4 Advanced Features

113

print_r(User::create());

print_r(SpreadSheet::create());

I introduced a constructor to the DomainObject class. It uses the static keyword to

invoke a static method: getGroup(). DomainObject provides the default implementation,

but Document overrides it. I also created a new class, SpreadSheet, that extends

Document. Here’s the output:

popp\ch04\batch07\User Object (

 [group:popp\ch04\batch07\DomainObject:private] => default

)

popp\ch04\batch07\SpreadSheet Object (

 [group:popp\ch04\batch07\DomainObject:private] => document

)

For the User class, not much clever needs to happen. The DomainObject constructor

calls getGroup() and finds it locally. In the case of SpreadSheet, though, the search

begins at the invoked class, SpreadSheet itself. It provides no implementation, so the

getGroup() method in the Document class is invoked. Before PHP 5.3 and late static

binding, I would have been stuck with the self keyword here, which would only look for

getGroup() in the DomainObject class.

�Handling Errors
Things go wrong. Files are misplaced, database servers are left uninitialized, URLs

are changed, XML files are mangled, permissions are poorly set, and disk quotas are

exceeded. The list goes on and on. In the fight to anticipate every problem, a simple

method can sometimes sink under the weight of its own error-handling code.

Here is a simple Conf class that stores, retrieves, and sets data in an XML

configuration file:

class Conf

{

 private \SimpleXMLElement $xml;

 private \SimpleXMLElement $lastmatch;

Chapter 4 Advanced Features

114

 public function __construct(private string $file)

 {

 $this->xml = simplexml_load_file($file);

 }

 public function write(): void

 {

 file_put_contents($this->file, $this->xml->asXML());

 }

 public function get(string $str): ?string

 {

 $matches = $this->xml->xpath("/conf/item[@name=\"$str\"]");

 if (count($matches)) {

 $this->lastmatch = $matches[0];

 return (string)$matches[0];

 }

 return null;

 }

 public function set(string $key, string $value): void

 {

 if (! is_null($this->get($key))) {

 $this->lastmatch[0] = $value;

 return;

 }

 $conf = $this->xml->conf;

 $this->xml->addChild('item', $value)->addAttribute('name', $key);

 }

}

The Conf class uses the SimpleXml extension to access name value pairs. Here’s the

kind of format with which it is designed to work:

<?xml version="1.0"?>

<conf>

 <item name="user">bob</item>

Chapter 4 Advanced Features

115

 <item name="host">localhost</item>

 <item name="pass">newpass</item>

</conf>

The Conf class’s constructor accepts a file path, which it passes to simplexml_load_

file(). It stores the resulting SimpleXmlElement object in a property called $xml. The

get() method uses XPath to locate an item element with the given name attribute,

returning its value. set() either changes the value of an existing item or creates a new

one. Finally, the write() method saves the new configuration data back to the file.

Like much example code, the Conf class is highly simplified. In particular, it has no

strategy for handling nonexistent or unwriteable files. It is also optimistic in outlook.

It assumes that the XML document will be well formed and will contain the expected

elements.

Testing for these error conditions is relatively trivial, but I must still decide how to

respond to them should they arise. There are generally two options.

First, I could end execution. This is simple but drastic. My humble class would

then take responsibility for bringing an entire script crashing down around it. Although

methods such as __construct() and write() are well placed to detect errors, they do

not have the information to decide how to handle them.

Rather than handle the error in my class, then, I could return an error flag of some

kind. This could be a Boolean or an integer value such as 0 or -1. Some classes will also

set an error string or flag, so that the client code can request more information after a

failure.

Many PEAR packages combined these two approaches by returning an error object

(an instance of PEAR_Error), which acted as a notification that an error had occurred

and contained the error message within it. This behavior was eventually deprecated.

The problem here is that you pollute your return value. You have to rely on the client

coder to test for the return type every time your error-prone method is called. This can

be risky. Trust no one!

When you return an error value to calling code, there is no guarantee that the client

will be any better equipped than your method to decide how to handle the error. If

this is the case, then the problem begins all over again. The client method will have to

determine how to respond to the error condition, maybe even implementing a different

error-reporting strategy.

Chapter 4 Advanced Features

116

�Exceptions
PHP 5 introduced exceptions to PHP, a radically different way of handling error

conditions. Different for PHP, that is—the concept was already very much part of

languages such as Java and C++. Exceptions address all of the issues that I have raised so

far in this section.

An exception is a special object instantiated from the built-in Exception class (or

from a derived class). As you will see, developers often extend Exception in order to

signal specific kinds of error condition.

Objects of type Exception are designed to hold and report error information.

The Exception class constructor accepts two optional arguments, a message

string and an error code. The class provides some useful methods for analyzing error

conditions. These are described in Table 4-1.

The Exception class is fantastically useful for providing error notification and

debugging information (the getTrace() and getTraceAsString() methods are

particularly helpful in this regard). In fact, it is almost identical to the PEAR_Error class

that was discussed earlier. There is much more to an exception than the information it

holds, though.

Table 4-1.  The Exception Class’s Public Methods

Method Description

getMessage() Get the message string that was passed to the constructor

getCode() Get the code integer that was passed to the constructor

getFile() Get the file in which the exception was generated

getLine() Get the line number at which the exception was generated

getPrevious() Get a nested Exception object

getTrace() Get a multidimensional array tracing the method calls that led to the

exception, including method, class, file, and argument data

getTraceAsString() Get a string version of the data returned by getTrace()

__toString() Called automatically when the Exception object is used in string

context. Returns a string describing the exception details

Chapter 4 Advanced Features

117

�Throwing an Exception

The throw keyword is used in conjunction with an Exception object. It halts execution

of the current method and passes responsibility for handling the error back to the calling

code. The client code can either ignore the exception, passing it on to its own calling

context, or handle it with a try/catch clause. Here, I amend the __construct() method

to use the throw statement:

public function __construct(private string $file)

{

 if (! file_exists($file)) {

 throw new \Exception("file '{$file}' does not exist");

 }

 $this->xml = simplexml_load_file($file);

}

The write() method can use a similar construct:

public function write(): void

{

 if (! is_writeable($this->file)) {

 throw new \Exception("file '{$this->file}' is not writeable");

 }

 print "{$this->file} is apparently writeable\n";

 file_put_contents($this->file, $this->xml->asXML());

}

try {

 $conf = new Conf("/tmp/conf01.xml");

 print "user: " . $conf->get('user') . "\n";

 print "host: " . $conf->get('host') . "\n";

 $conf->set("pass", "newpass");

 $conf->write();

} catch (\Exception $e) {

 // handle error in some way

}

Chapter 4 Advanced Features

118

As you can see, the catch block superficially resembles a method declaration. When

an exception is thrown, the catch block in the invoking context is called. The Exception

object is automatically passed in as the argument variable.

Just as execution is halted within the throwing method when an exception is thrown,

so it is within the try block—control passes directly to the catch block. There, you can

perform any error recovery tasks available to you. If you can, avoid falling back on a die

statement. By invoking die, you make testing harder and might prevent other code in

your system from performing necessary cleanup operations. If you cannot recover from

an error, you can always throw a new exception:

} catch (\Exception $e) {

 // handle error in some way

 // or

 throw new \Exception("Conf error: " . $e->getMessage());

}

Alternatively, you can just rethrow the exception you have been given:

try {

 $conf = new Conf("nonexistent/not_there.xml");

} catch (\Exception $e) {

 // handle error...

 // or rethrow

 throw $e;

}

If you have no need of the Exception object itself in your error handling, you can, as

of PHP 8, omit the exception argument altogether and just specify the type:

try {

 $conf = new Conf("nonexistent/not_there.xml");

} catch (\Exception) {

 // handle error without using the Exception object

}

Chapter 4 Advanced Features

119

�Subclassing Exception

You can create classes that extend the Exception class as you would with any user-

defined class. There are two reasons why you might want to do this. First, you can extend

the class’s functionality. Second, the fact that a derived class defines a new class type can

aid error handling in itself.

You can, in fact, define as many catch blocks as you need for a try statement. The

particular catch block invoked will depend on the type of the thrown exception and the

class type hint in the argument list. Here are some simple classes that extend Exception:

class XmlException extends \Exception

{

 public function __construct(private \LibXmlError $error)

 {

 $shortfile = basename($error->file);

 �$msg = "[{$shortfile}, line {$error->line}, col {$error->column}]

{$error->message}";

 $this->error = $error;

 parent::__construct($msg, $error->code);

 }

 public function getLibXmlError(): \LibXmlError

 {

 return $this->error;

 }

}

class FileException extends \Exception

{

}

class ConfException extends \Exception

{

}

Chapter 4 Advanced Features

120

The LibXmlError class is generated behind the scenes when SimpleXml encounters

a broken XML file. It has $message and $code properties, and it resembles the

Exception class. I take advantage of this similarity and use the LibXmlError object in

the XmlException class. The FileException and ConfException classes do nothing

more than subclass Exception. I can now use these classes in my code and amend both

construct() and write():

// Conf class...

 public function __construct(private string $file)

 {

 if (! file_exists($file)) {

 throw new FileException("file '$file' does not exist");

 }

 $this->xml = simplexml_load_file($file, null, LIBXML_NOERROR);

 if (! is_object($this->xml)) {

 throw new XmlException(libxml_get_last_error());

 }

 $matches = $this->xml->xpath("/conf");

 if (! count($matches)) {

 throw new ConfException("could not find root element: conf");

 }

 }

 public function write(): void

 {

 if (! is_writeable($this->file)) {

 �throw new FileException("file '{$this->file}' is not

writeable");

 }

 file_put_contents($this->file, $this->xml->asXML());

 }

__construct() throws either an XmlException, a FileException, or a

ConfException, depending on the kind of error it encounters. Note that I pass the option

flag LIBXML_NOERROR to simplexml_load_file(). This suppresses warnings, leaving

me free to handle them with my XmlException class after the fact. If I encounter a

Chapter 4 Advanced Features

121

malformed XML file, I know that an error has occurred because simplexml_load_file()

won’t have returned an object. I can then access the error using libxml_get_last_

error().

The write() method throws a FileException if the $file property points to an

unwriteable entity.

So, I have established that __construct() might throw one of three possible

exceptions. How can I take advantage of this? Here’s some code that instantiates a

Conf object:

class Runner

{

 public static function init()

 {

 try {

 $conf = new Conf(__DIR__ . "/conf.broken.xml");

 print "user: " . $conf->get('user') . "\n";

 print "host: " . $conf->get('host') . "\n";

 $conf->set("pass", "newpass");

 $conf->write();

 } catch (FileException $e) {

 // permissions issue or non-existent file

 throw $e;

 } catch (XmlException $e) {

 // broken xml

 } catch (ConfException $e) {

 // wrong kind of XML file

 } catch (\Exception $e) {

 // backstop: should not be called

 }

 }

}

I provide a catch block for each class type. The block invoked depends on the

exception type thrown. The first to match will be executed, so remember to place the

most generic type at the end and the most specialized at the start. For example, if you

Chapter 4 Advanced Features

122

were to place the catch block for Exception ahead of the block for XmlException and

ConfException, neither of these would ever be invoked. This is because both of these

classes belong to the Exception type and would therefore match the first test.

The first catch block (FileException) is invoked if there is a problem with

the configuration file (if the file is nonexistent or unwriteable). The second block

(XmlException) is invoked if an error occurs in parsing the XML file (e.g., if an element

is not closed). The third block (ConfException) is invoked if a valid XML file does not

contain the expected root conf element. The final block (Exception) should not be

reached because my methods only generate the three exceptions, which are explicitly

handled. It is often a good idea to have a “backstop” block like this, in case you add new

exceptions to the code during development.

Note  If you do provide a “backstop” catch block, you should ensure that you
actually do something about the exception in most instances—failing silently can
cause bugs which are hard to diagnose.

The benefit of these fine-grained catch blocks is that they allow you to apply

different recovery or failure mechanisms to different errors. For example, you may

decide to end execution, log the error and continue, or explicitly rethrow an error.

Another trick you can play here is to throw a new exception that wraps the current

one. This allows you to stake a claim to the error and add your own contextual

information while retaining the data encapsulated by the exception you have caught.

So what happens if an exception is not caught by client code? It is implicitly

rethrown, and the client’s own calling code is given the opportunity to catch it. This

process continues either until the exception is caught or until it can no longer be thrown.

At this point, a fatal error occurs. Here’s what would happen if I did not catch one of the

exceptions in my example:

PHP Fatal error: Uncaught exception 'FileException' with message

'file 'nonexistent/not_there.xml' does not exist' in ...

So, when you throw an exception, you force the client to take responsibility for

handling it. This is not an abdication of responsibility. An exception should be thrown

when a method has detected an error, but does not have the contextual information to

be able to handle it intelligently. The write() method in my example knows when the

Chapter 4 Advanced Features

123

attempt to write will fail, and it knows why, but it does not know what to do about it. This

is as it should be. If I were to make the Conf class more knowledgeable than it currently

is, it would lose focus and become less reusable.

�Cleaning Up After try/catch Blocks with finally

The way that code flow is affected by exceptions can cause unexpected problems. For

example, cleanup code or other essential housekeeping may not be performed after an

exception is generated within a try block. As you have seen, if an exception is generated

within a try block, the flow moves directly to the relevant catch block. Code that closes

database connections or file handles may not get called, and status information might

not be updated.

Imagine, for example, that Runner::init() keeps a log of its actions. It logs the

start of the initialization process, any errors encountered, and then it logs the end of

the initialization process. Here, I provide a typically simplified example of this kind of

logging:

public static function init(): void

{

 try {

 $fh = fopen("/tmp/log.txt", "a");

 fputs($fh, "start\n");

 $conf = new Conf(dirname(__FILE__) . "/conf.broken.xml");

 print "user: " . $conf->get('user') . "\n";

 print "host: " . $conf->get('host') . "\n";

 $conf->set("pass", "newpass");

 $conf->write();

 fputs($fh, "end\n");

 fclose($fh);

 } catch (FileException $e) {

 // permissions issue or non-existent file

 fputs($fh, "file exception\n");

 throw $e;

 } catch (XmlException $e) {

 fputs($fh, "xml exception\n");

 // broken xml

Chapter 4 Advanced Features

124

 } catch (ConfException $e) {

 fputs($fh, "conf exception\n");

 // wrong kind of XML file

 } catch (\Exception $e) {

 fputs($fh, "general exception\n");

 // backstop: should not be called

 }

}

I open a file, log.txt; I write to it; and then I call my configuration code. If an

exception is encountered in this process, I log this fact in the relevant catch block. I end

the try block by writing to the log and closing its file handle.

Of course, this last step will never be reached if an exception is encountered. The

flow passes straight to the relevant catch block, and the rest of the try block is never run.

Here is the log output when an XML exception is generated:

start

xml exception

As you can see, the logging began, and the file exception was noted, but the portion

of code that registers the end of logging was never reached, and so the log was not

updated with that.

You might think that the solution would be to place the final logging step outside of

the try/catch block altogether. This would not work reliably. If a generated exception is

caught, and the try block allows execution to continue, then the flow will move beyond

the try/catch construct. However, a catch block could rethrow the exception, or it might

end script execution altogether.

To help programmers deal with problems like this, PHP 5.5 introduced a new

keyword: finally. If you’re familiar with Java, it’s likely you’ll have seen this before.

Although catch blocks are only conditionally run when matching exceptions are thrown,

a finally block is always run, whether or not an exception is generated within the

try block.

I can fix this problem by moving the code that closes my file handle and generates a

last log message to a finally block:

Chapter 4 Advanced Features

125

public static function init2(): void

{

 $fh = fopen("/tmp/log.txt", "a");

 try {

 fputs($fh, "start\n");

 $conf = new Conf(dirname(__FILE__) . "/conf.not-there.xml");

 print "user: " . $conf->get('user') . "\n";

 print "host: " . $conf->get('host') . "\n";

 $conf->set("pass", "newpass");

 $conf->write();

 } catch (FileException $e) {

 // permissions issue or non-existent file

 fputs($fh, "file exception\n");

 //throw $e;

 } catch (XmlException $e) {

 fputs($fh, "xml exception\n");

 // broken xml

 } catch (ConfException $e) {

 fputs($fh, "conf exception\n");

 // wrong kind of XML file

 } catch (Exception $e) {

 fputs($fh, "general exception\n");

 // backstop: should not be called

 } finally {

 fputs($fh, "end\n");

 fclose($fh);

 }

}

Because the log write and the fclose() invocation are wrapped in a finally block,

these statements will be run even if, as is the case when a FileException is caught, the

exception is rethrown.

Here, now, is the log text when a FileException is generated:

start

file exception

end

Chapter 4 Advanced Features

126

Note A finally block will be run if an invoked catch block rethrows an
exception or returns a value. However, calling die() or exit() in a try or catch
block will end script execution, and the finally block will not be run.

�Final Classes and Methods
Inheritance allows for enormous flexibility within a class hierarchy. You can override a

class or method so that a call in a client method will achieve radically different effects,

according to which class instance it has been passed. Sometimes, though, a class or

method should remain fixed and unchanging. If you have achieved the definitive

functionality for your class or method, and you feel that overriding it can only damage

the ultimate perfection of your work, you may need the final keyword.

final puts a stop to inheritance. A final class cannot be subclassed. Less drastically,

a final method cannot be overridden.

Here’s a final class:

final class Checkout

{

 // ...

}

Here’s an attempt to subclass the Checkout class:

class IllegalCheckout extends Checkout

{

 // ...

}

This produces an error:

Fatal error: Class popp\ch04\batch13\IllegalCheckout may not inherit

from final class (popp\ch04\batch13\Checkout) in ...

Chapter 4 Advanced Features

127

I could relax matters somewhat by declaring a method in Checkout final, rather than

the whole class. The final keyword should be placed in front of any other modifiers

such as protected or static, like this:

class Checkout

{

 final public function totalize(): void

 {

 // calculate bill

 }

}

I can now subclass Checkout, but any attempt to override totalize() will cause a

fatal error:

class IllegalCheckout extends Checkout

{

 final public function totalize(): void

 {

 // change bill calculation

 }

}

Good object-oriented code tends to emphasize the well-defined interface. Behind

the interface, though, implementations will often vary. Different classes or combinations

of classes conform to common interfaces but behave differently in different

circumstances. By declaring a class or method final, you limit this flexibility. There

will be times when this is desirable, and you will see some of them later in the book.

However, you should think carefully before declaring something final. Are there really no

circumstances in which overriding would be useful? Even if you’re not likely to override

a class explicitly, test fremeworks such as PHPUnit often override classes when mocking

components. You could always change your mind later on, of course, but this might not

be so easy if you are distributing a library for others to use. Use final with care.

Note  You can also declare a const as final, thereby preventing a subclass
overriding any value you set.

Chapter 4 Advanced Features

128

�The Internal Error Class
Back when exceptions were first introduced, the world of trying and catching applied

primarily to code written in PHP and not the core engine. Internally generated errors

maintained their own logic. This could get messy if you wanted to manage core errors

in the same way as code-generated exceptions. PHP 7 introduced a way to address this

issue with the Error class. This implements Throwable—the same built-in interface that

the Exception class implements, and therefore it can be treated in the same way. This

also means the methods described in Table 4-1 are honored. Error is subclassed for

individual error types. Here’s how you might catch a parse error generated by an eval

statement:

try {

 eval("illegal code");

} catch (\Error $e) {

 print get_class($e) . "\n";

 print $e->getMessage();

} catch (\Exception $e) {

 // do something with an Exception

}

Here’s the output:

ParseError

syntax error, unexpected identifier "code"

So you can match some types of internal errors in catch blocks, either by specifying

the Error superclass or by specifying a more specific subclass. Table 4-2 shows the

current Error subclasses.

Chapter 4 Advanced Features

129

Table 4-2.  The Built-In Error Classes Introduced by PHP 7

Error Description

ArgumentCountError Thrown when too few arguments are passed to a user-defined method

or function

ArithmeticError Thrown for math-related errors—particularly those related to bitwise

arithmetic

AssertionError Thrown when the assert() language construct (used in debugging)

fails

CompileError Thrown when PHP code is malformed and cannot be compiled for

running

DivisionByZeroError Thrown when an attempt is made to divide a number by zero

ParseError Thrown when a runtime attempt to parse PHP (e.g., using eval()) fails

TypeError Thrown when an argument of the wrong type is passed to a method,

a method returns a value of the wrong type, or an incorrect number of

arguments are passed to a method

�Working with Interceptors
PHP provides built-in interceptor methods that can intercept messages sent to

undefined methods and properties. This is also known as overloading, but as that term

means something quite different in Java and C++, I think it is better to talk in terms of

interception.

PHP supports various built-in interceptor or “magic” methods. Like __construct(),

these are invoked for you when the right conditions are met. Table 4-3 describes some of

these methods.

Chapter 4 Advanced Features

130

Table 4-3.  Interceptor Methods for Working with Undefined Properties

and Methods

Method Description

__get($property) Invoked when an undefined property is accessed

__set($property, $value) Invoked when a value is assigned to an undefined property

__isset($property) Invoked when isset() is called on an undefined property

__unset($property) Invoked when unset() is called on an undefined property

__call($method, $arg_array) Invoked when an undefined nonstatic method is called

__callStatic($method, $arg_

array)

Invoked when an undefined static method is called

Note  You can read more about interceptor or magic methods at the PHP manual
page: www.php.net/manual/en/language.oop5.magic.php.

The __get() and __set() methods are designed for working with properties that

have not been declared in a class (or its parents).

__get() is invoked when client code attempts to read an undeclared property. It is

called automatically with a single string argument containing the name of the property

that the client is attempting to access. Whatever you return from the __get() method

will be sent back to the client as if the target property exists with that value. Here’s a

quick example:

class Person

{

 public function __get(string $property): mixed

 {

 $method = "get{$property}";

 if (method_exists($this, $method)) {

 return $this->$method();

 }

 }

Chapter 4 Advanced Features

http://www.php.net/manual/en/language.oop5.magic.php

131

 public function getName(): string

 {

 return "Bob";

 }

 public function getAge(): int

 {

 return 44;

 }

}

When a client attempts to access an undefined property, the __get() method is

invoked. I have implemented __get() to take the property name and construct a new

string, prepending the word “get.” I pass this string to a function called method_exists(),

which accepts an object and a method name and tests for method existence. If the

method does exist, I invoke it and pass its return value to the client. Assume the client

requests a $name property:

$p = new Person();

print $p->name;

In this case, the getName() method is invoked behind the scenes:

Bob

If the method does not exist, I do nothing. The property that the user is attempting to

access will resolve to null.

The __isset() method works in a similar way to __get(). It is invoked after the

client calls isset() on an undefined property. Here’s how I might extend Person:

public function __isset(string $property): bool

{

 $method = "get{$property}";

 return (method_exists($this, $method));

}

Chapter 4 Advanced Features

132

Now a cautious user can test a property before working with it:

$p = new Person();

if (isset($p->name)) {

 print $p->name;

}

Note that the null coalescing operator (??) implicitly calls isset() on its left operand. So

the statement in this example will first invoke Person::__isset() (which will confirm that

$p->name is set) and will then access the “property,” causing Person::__get() to be invoked:

$p = new Person();

print $p->name ?? "[no name]";

The __set() method is invoked when client code attempts to assign to an undefined

property. It is passed two arguments: the name of the property and the value the client is

attempting to set. You can then decide how to work with these arguments. Here, I further

amend the Person class:

class Person

{

 private ?string $myname;

 private ?int $myage;

 public function __set(string $property, mixed $value): void

 {

 $method = "set{$property}";

 if (method_exists($this, $method)) {

 $this->$method($value);

 }

 }

 public function setName(?string $name): void

 {

 $this->myname = $name;

 if (! is_null($name)) {

 $this->myname = strtoupper($this->myname);

 }

 }

Chapter 4 Advanced Features

133

 public function setAge(?int $age): void

 {

 $this->myage = $age;

 }

}

In this example, I work with “setter” methods rather than “getters.” If a user attempts

to assign to an undefined property, the __set() method is invoked with the property

name and the assigned value. I test for the existence of the appropriate method and

invoke it if it exists. In this way, I can filter the assigned value.

Note R emember that methods and properties in PHP documentation are
frequently spoken of in static terms in order to identify them with their classes. So
you might talk about the Person::$name property, even though the property is
not declared static and would in fact be accessed via an object.

So if I create a Person object and then attempt to set a property called

Person::$name, the __set() method is invoked because this class does not define a

$name property. The method is passed the string "name" and the value that the client

assigned. How the value is then used depends on the implementation of __set(). In

this example, I construct a method name out of the property argument combined with

the string "set". The setName() method is found and duly invoked. This transforms the

incoming value and stores it in a real property:

$p = new Person();

$p->name = "bob";

// the $myname property becomes 'bob'

As you might expect, __unset() mirrors __set(). When unset() is called on an

undefined property, __unset() is invoked with the name of the property. You can then

do what you like with the information. This example passes null to a method resolved

using the same technique that you saw used by __set():

Chapter 4 Advanced Features

134

public function __unset(string $property): void

{

 $method = "set{$property}";

 if (method_exists($this, $method)) {

 $this->$method(null);

 }

}

The __call() method is probably the most useful of all the interceptor methods. It

is invoked when an undefined method is called by client code. __call() is invoked with

the method name and an array holding all arguments passed by the client. Any value

that you return from the __call() method is returned to the client as if it were returned

by the method invoked.

The __call() method can be useful for delegation. Delegation is the mechanism

by which one object passes method invocations on to a second. It is similar to

inheritance, in that a child class passes on a method call to its parent implementation.

With inheritance, the relationship between child and parent is fixed, so the ability to

switch the receiving object at runtime means that delegation can be more flexible than

inheritance. An example clarifies things a little. Here is a simple class for formatting

information from the Person class:

class PersonWriter

{

 public function writeName(Person $p): void

 {

 print $p->getName() . "\n";

 }

 public function writeAge(Person $p): void

 {

 print $p->getAge() . "\n";

 }

}

Chapter 4 Advanced Features

135

I could, of course, subclass this to output Person data in various ways. Here is an

implementation of the Person class that uses both a PersonWriter object and the

__call() method:

class Person

{

 public function __construct(private PersonWriter $writer)

 {

 }

 public function __call(string $method, array $args): mixed

 {

 if (method_exists($this->writer, $method)) {

 return $this->writer->$method($this);

 }

 }

 public function getName(): string

 {

 return "Bob";

 }

 public function getAge(): int

 {

 return 44;

 }

}

The Person class here demands a PersonWriter object as a constructor argument

and stores it in a property variable. In the __call() method, I use the provided $method

argument, testing for a method of the same name in the PersonWriter object I have

stored. If I encounter such a method, I delegate the method call to the PersonWriter

object, passing my current instance to it (in the $this pseudo-variable). Consider what

happens if the client makes this call to Person:

$person = new Person(new PersonWriter());

$person->writeName();

Chapter 4 Advanced Features

136

In this case, the __call() method is invoked. I find a method called writeName()

in my PersonWriter object and invoke it. This saves me from manually invoking the

delegated method like this:

public function writeName(): void

{

 $this->writer->writeName($this);

}

Using interceptor methods, the Person class magically gains two new methods.

Although automated delegation can save a lot of legwork, there can be a cost in clarity.

If you rely too much on delegation, you present the world with a dynamic interface that

resists reflection (the runtime examination of class facets) and is not always clear to the

client coder at first glance. This is because the logic that governs the interaction between

a delegating class and its target can be obscure—buried in methods like __call() rather

than signaled up front by inheritance relationships or method type hints, as is the case

for similar relationships.

The interceptor methods have their place, but they should be used with care, and

classes that rely on them should document this fact very clearly. Be aware that, in

some cases, their use might confuse advanced editors which catch missing methods or

properties.

I will return to the topics of delegation and reflection later in the book.

The __get() and __set() interceptor methods can also be used to manage

composite properties. This can be a convenience for the client programmer. Imagine, for

example, an Address class that manages a house number and a street name. Ultimately,

this object data will be written to database fields, so the separation of number and

street is sensible. But if house numbers and street names are commonly acquired in

undifferentiated lumps, then you might want to help the class’s user. Here is a class that

manages a composite property, Address::$streetaddress:

class Address

{

 private string $number;

 private string $street;

 �public function __construct(string $maybenumber, string

$maybestreet = null)

Chapter 4 Advanced Features

137

 {

 if (is_null($maybestreet)) {

 $this->streetaddress = $maybenumber;

 } else {

 $this->number = $maybenumber;

 $this->street = $maybestreet;

 }

 }

 public function __set(string $property, mixed $value): void

 {

 if ($property === "streetaddress") {

 if (preg_match("/^(\d+.*?)[\s,]+(.+)$/", $value, $matches)) {

 $this->number = $matches[1];

 $this->street = $matches[2];

 } else {

 �throw new \Exception("unable to parse street address:

'{$value}'");

 }

 }

 }

 public function __get(string $property): mixed

 {

 if ($property === "streetaddress") {

 return $this->number . " " . $this->street;

 }

 }

}

When a user instantiates an Address object with a single argument, the constructor

detects the lack of a $maybestreet argument and assigns $maybenumber to the

(nonexistent) $streetaddress property. This assignment causes the __set() interceptor

method to be invoked. There, I test for the property name, streetaddress. Before I can

set the $number and $street properties, I must first ensure that the provided value can

be parsed and then go ahead and extract the fields. For this example, I have set simple

rules. An address can be parsed if it begins with a number and has spaces or commas

Chapter 4 Advanced Features

138

ahead of a second part. Thanks to back references, if the check passes, I already have

the data I’m looking for in the $matches array, and I assign values to the $number and

$street properties. If the parse fails, I throw an exception. So when a string such as 221b

Bakers Street is assigned to Address::$streetaddress, it’s actually the $number and

$street properties that get populated. I can demonstrate this with print_r():

$address = new Address("221b Bakers Street");

print_r($address);

When we run code, we can see that the parts of the address have been extracted

thanks to the assignment to $streetaddress in the class’s constructor:

popp\ch04\batch16\Address Object

(

 [number:popp\ch04\batch16\Address:private] => 441b

 [street:popp\ch04\batch16\Address:private] => Bakers Street

)

The __get() method is much more straightforward, of course. Whenever

the Address::$streetaddress property is accessed, __get() is invoked. In my

implementation of this interceptor, I test for streetaddress, and, if I find a match, I

return a concatenation of the $number and $street properties.

Note  __get(), __set(), and __call() are also automatically invoked when
a client attempts to access an inaccessible method or property (i.e., methods or
properties which are set to private or protected and are therefore hidden from
the calling context).

�Defining Destructor Methods
You have seen that the __construct() method is automatically invoked when an object

is instantiated. PHP 5 also introduced the __destruct() method. This is invoked just

before an object is flagged for garbage collection; that is, before it is expunged from

memory. You can use this method to perform any final cleaning up that might be

necessary.

Chapter 4 Advanced Features

139

Imagine, for example, a class that saves itself to a database when so ordered. I could

use the __destruct() method to ensure that an instance saves its data when it is deleted:

class Person

{

 private int $id;

 public function __construct(protected string $name, private int $age)

 {

 $this->name = $name;

 $this->age = $age;

 }

 public function setId(int $id): void

 {

 $this->id = $id;

 }

 public function __destruct()

 {

 if (! empty($this->id)) {

 // save Person data

 print "saving person\n";

 }

 }

}

The __destruct() method is invoked whenever you call the unset() function on an

object or when no further references to the object exist in the process. So if I create and

destroy a Person object, you can see the __destruct() method come into play:

$person = new Person("bob", 44);

$person->setId(343);

unset($person);

print "unset complete\n";

Here is the output:

saving person

unset complete

Chapter 4 Advanced Features

140

Although tricks like this are fun, it’s worth sounding a note of caution. __call(),

__destruct(), and their colleagues are sometimes called magic methods. As you will

know if you have ever read a fantasy novel, magic is not always a good thing. Magic is

arbitrary and unexpected. Magic bends the rules. Magic incurs hidden costs.

In the case of __destruct(), for example, you can end up saddling clients with

unwelcome surprises. Think about the Person class. It performs a database write in

its __destruct() method. Now imagine a novice developer idly putting the Person

class through its paces. He doesn’t spot the __destruct() method, and he sets about

instantiating a set of Person objects. Passing values to the constructor, he assigns the

CEO’s secret and faintly obscene nickname to the $name property and then sets $age at

150. He runs his test script a few times, trying out colorful name and age combinations.

The next morning, his manager asks him to step into a meeting room to explain why

the database contains insulting Person data. The moral? Do not trust magic.

�Copying Objects with __clone()
In PHP 4, copying an object was a simple matter of assigning from one variable to

another:

class CopyMe

{

}

$first = new CopyMe();

$second = $first;

// PHP 4: $second and $first are 2 distinct objects

// PHP 5 plus: $second and $first refer to one object

This “simple matter” was a source of many bugs, as object copies were accidentally

spawned when variables were assigned, methods were called, and objects were

returned. This was made worse by the fact that there was no way of testing two variables

to see whether they referred to the same object. Equivalence tests would tell you whether

all fields were the same (==) or whether both variables were objects (===), but not

whether they pointed to the same object.

Chapter 4 Advanced Features

141

In PHP, a variable that seems to contain an object in fact contains an identifier that

references the underlying data structure. When such a variable is assigned or passed

in to a method, the identifier it contains is copied. However, each copy continues to

point to the same object. This means that, in my previous example, $first and $second

contain identifiers pointing to the same object rather than two copies of the object.

Although this is generally what you want when working with objects, there will be

occasions when you need to get a copy of an object.

PHP provides the clone keyword for just this purpose. clone operates on an object

instance, producing a by-value copy:

$first = new CopyMe();

$second = clone $first;

// PHP 5 plus: $second and $first are 2 distinct objects

The issues surrounding object copying only start here. Consider the Person class that

I implemented in the previous section. A default copy of a Person object would contain

the identifier (the $id property), which in a full implementation I would use to locate the

correct row in a database. If I allow this property to be copied, a client coder can end up

with two distinct objects representing the same data entity (database row), which may

not be what she wanted when she made her copy.

Luckily, you can control what is copied when clone is invoked on an object. You

do this by implementing a special method called __clone() (note the leading two

underscores that are characteristic of magic methods). __clone() is called automatically

when the clone keyword is invoked on an object.

When you implement __clone(), it is important to understand the context in which

the method runs. __clone() is run on the copied object and not the original. Here, I add

__clone() to yet another version of the Person class:

class Person

{

 private int $id = 0;

 public function __construct(private string $name, private int $age)

 {

 }

Chapter 4 Advanced Features

142

 public function setId(int $id): void

 {

 $this->id = $id;

 }

 public function __clone(): void

 {

 $this->id = 0;

 }

}

When clone is invoked on a Person object, a new copy is made, and its __clone()

method is invoked. This means that anything I do in __clone() overwrites the default

copy I already made. In this case, I ensure that the copied object’s $id property is set

to zero:

$person = new Person("bob", 44);

$person->setId(343);

$person2 = clone $person;

// $person2 now has an $id of 0

A shallow copy ensures that primitive properties are copied from the old object to

the new. Properties that are objects have their identifiers copied but not their underlying

data, though, which may not be what you want or expect when cloning an object. Say

that I give the Person object an Account object property. This object holds a balance that

I want copied to the cloned object. What I don’t want, though, is for both Person objects

to hold references to the same account:

class Account

{

 public function __construct(public float $balance)

 {

 }

}

class Person

{

 private int $id;

Chapter 4 Advanced Features

143

 public function __construct(

 private string $name,

 private int $age,

 public Account $account

) {

 }

 public function setId(int $id): void

 {

 $this->id = $id;

 }

 public function __clone(): void

 {

 $this->id = 0;

 }

}

$person = new Person("bob", 44, new Account(200));

$person->setId(343);

$person2 = clone $person;

// give $person some money

$person->account->balance += 10;

// $person2 sees the credit too

print $person2->account->balance;

// output:

// 210

$person holds a reference to an Account object that I have kept publicly accessible

for the sake of brevity (as you know, I would usually restrict access to a property,

providing an accessor method, if necessary). When the clone is created, it holds a

reference to the same Account object that $person references. I demonstrate this by

adding to the $person object’s Account and confirming the increased balance via

$person2.

Chapter 4 Advanced Features

144

If I do not want an object property to be shared after a clone operation, then it is up

to me to clone it explicitly in the __clone() method (and to repeat this recursively where

the object references run deeper than a single level):

public function __clone(): void

{

 $this->id = 0;

 $this->account = clone $this->account;

}

�Defining String Values for Your Objects
Another Java-inspired feature introduced by PHP 5 was the __toString() method.

Before PHP 5.2, if you printed an object, it would resolve to a string. These days, things

are a little more complicated. Here’s a basic class:

class StringThing

{

}

Now, let’s create an instance of the class and print it:

$st = new StringThing();

print $st;

This code will produce an error like this:

Object of class popp\ch04\batch22\StringThing could not be converted to

string ...

By implementing a __toString() method, you can control how your objects

represent themselves when accessed in string context (or explicitly cast to a string).

__toString() should be written to return a string value. The method is invoked

automatically when your object is passed to print or echo, and its return value is

substituted. Here, I add a __toString() version to a minimal Person class:

Chapter 4 Advanced Features

145

class Person

{

 public function getName(): string

 {

 return "Bob";

 }

 public function getAge(): int

 {

 return 44;

 }

 public function __toString(): string

 {

 $desc = $this->getName() . " (age ";

 $desc .= $this->getAge() . ")";

 return $desc;

 }

}

Now when I print a Person object, the object will resolve to this:

$person = new Person();

print $person;

The __toString() method is particularly useful for logging and error reporting, as

well as for classes whose main task is to convey information. The Exception class, for

example, summarizes exception data in its __toString() method.

As of PHP 8, any class that implements a __toString() method is implicitly declared

as implementing the built-in Stringable interface. That means you can use a union type

declaration to constrain arguments and properties. Here’s an example:

public static function printThing(string|\Stringable $str): void
{

 print $str;

}

Chapter 4 Advanced Features

146

We could pass a string or our Person object to the printThing() method, and it

would happily accept either, secure in the knowledge that it could work with whatever

we passed along in any string-like fashion it chose.

�Callbacks, Anonymous Functions, and Closures
Although not strictly an object-oriented feature, anonymous functions are useful enough

to mention here because you may encounter them in object-oriented applications that

utilize callbacks.

Note A callback is a block of executable code that can be stored in a variable or
passed to methods and functions for later invocation.

To kick things off, here are a couple of classes:

class Product

{

 public function __construct(public string $name, public float $price)

 {

 }

}

class ProcessSale

{

 private array $callbacks;

 public function registerCallback(callable $callback): void

 {

 $this->callbacks[] = $callback;

 }

 public function sale(Product $product): void

 {

 print "{$product->name}: processing \n";

 foreach ($this->callbacks as $callback) {

 $callback($product);

Chapter 4 Advanced Features

147

 // could also use:

 // call_user_func($callback, $product);

 }

 }

}

This code is designed to run my various callbacks. It consists of two classes, Product

and ProcessSale. Product simply stores $name and $price properties. I’ve made these

public for the purposes of brevity. Remember, in the real world, you’d probably want to

make your properties private or protected and provide accessor methods if necessary.

ProcessSale consists of two methods. The first, registerCallback(), accepts

a callable type and adds it to the $callbacks array property. The second method,

sale(), accepts a Product object, outputs a message about it, and then loops through

the $callbacks array property.

It passes each element to call_user_func(), which calls the code, passing it a

reference to the product. All of the following examples will work with the framework.

Why are callbacks useful? They allow you to plug functionality into a component

at runtime that is not directly related to that component’s core task. By making a

component callback-aware, you give others the power to extend your code in contexts

you don’t yet know about.

Imagine, for example, that a future user of ProcessSale wants to create a log of sales.

If the user has access to the class, she might add logging code directly to the sale()

method. This isn’t always a good idea, though. If she is not the maintainer of the package

that provides ProcessSale, then her amendments will be overwritten the next time

the package is upgraded. Even if she is the maintainer of the component, adding many

incidental tasks to the sale() method will begin to overwhelm its core responsibility and

potentially make it less usable across projects. I will return to these themes in the next

section.

Luckily, though, I made ProcessSale callback-aware. Here, I create a callback that

simulates logging:

$processor = new ProcessSale();

$processor->registerCallback(function ($product) {

 print " logging ({$product->name})\n";

});

Chapter 4 Advanced Features

148

$processor->sale(new Product("shoes", 6));

print "\n";

$processor->sale(new Product("coffee", 6));

Here, I create an anonymous function. That is, I use the function keyword inline

and without a function name. Note that because this is an inline statement, a semicolon

is required at the end of the code block. My anonymous function can be stored in a

variable and passed to functions and methods as a parameter. That’s just what I do,

assigning the function to the $logger variable and passing that to the ProcessSale::

registerCallback() method. Finally, I create a couple of products and pass them to the

sale() method. The sale is then processed (in reality, a simple message is printed about

the product), and any callbacks are executed. Here is the code in action:

shoes: processing

 logging (shoes)

coffee: processing

 logging (coffee)

PHP 7.4 introduced a new way of declaring anonymous functions. Arrow functions

are functionally very similar to the anonymous functions you’ve already encountered.

The syntax is much more compact, however. Instead of the function keyword, they are

defined by fn, then parentheses for an argument list, and finally, in place of braces, an

arrow operator (=>) followed by a single expression. This compact form makes arrow

functions very handy for building small callbacks for custom sorts and the like. As an

additional bonus, arrow functions can access variables from their wider context without

the need for a use clause.

Here, I replace the $logger anonymous function with an exact equivalent using an

arrow function:

$logger = fn($product) => print " logging ({$product->name})\n";

The arrow function is much more compact, but, because you define only a single

expression, it is best used for relatively simple tasks.

Of course, callbacks needn’t be anonymous. You can use the name of a function, or

even an object reference and a method, as a callback. Here, I do just that:

Chapter 4 Advanced Features

149

class Mailer

{

 public function doMail(Product $product): void

 {

 print " mailing ({$product->name})\n";

 }

}

$processor = new ProcessSale();

$processor->registerCallback([new Mailer(), "doMail"]);

$processor->sale(new Product("shoes", 6));

print "\n";

$processor->sale(new Product("coffee", 6));

I create a class: Mailer. Its single method, doMail(), accepts a Product object and

outputs a message about it. When I call registerCallback(), I pass it an array. The

first element is a Mailer object, and the second is a string that matches the name of the

method I want invoked.

Remember that registerCallback() uses a type declaration to enforce a callable

argument. PHP is smart enough to recognize an array of this sort as callable. A valid

callback in array form should have an object as its first element and the name of a

method as its second element. I pass that test here, and here is my output:

shoes: processing

 mailing (shoes)

coffee: processing

 mailing (coffee)

You can have a method return an anonymous function—something like this:

class Totalizer

{

 public static function warnAmount(): callable

 {

 return function (Product $product) {

 if ($product->price > 5) {

 print " reached high price: {$product->price}\n";

 }

Chapter 4 Advanced Features

150

 };

 }

}

$processor = new ProcessSale();

$processor->registerCallback(Totalizer::warnAmount());

$processor->sale(new Product("shoes", 6));

print "\n";

$processor->sale(new Product("coffee", 6));

Apart from the convenience of using the warnAmount() method as a factory for the

anonymous function, I have not added much of interest here. But this structure allows

me to do much more than just generate an anonymous function. It allows me to take

advantage of closures. Anonymous functions can reference variables declared in the

anonymous functions’ parent context. This is a hard concept to grasp at times. It’s as if

the anonymous function continues to remember the context in which it was created.

Imagine that I want Totalizer::warnAmount() to do two things. First of all, I’d like it to

accept an arbitrary target amount. Second, I want it to keep a tally of prices as products

are sold. When the total exceeds the target amount, the function will perform an action

(in this case, as you might have guessed, it will simply write a message).

I can make my anonymous function track variables from its wider context with a

use clause:

class Totalizer2

{

 public static function warnAmount($amt): callable

 {

 $count = 0;

 return function ($product) use ($amt, &$count) {

 $count += $product->price;

 print " count: $count\n";

 if ($count > $amt) {

 print " high price reached: {$count}\n";

 }

 };

 }

}

Chapter 4 Advanced Features

151

$processor = new ProcessSale();

$processor->registerCallback(Totalizer2::warnAmount(8));

$processor->sale(new Product("shoes", 6));

print "\n";

$processor->sale(new Product("coffee", 6));

The anonymous function returned by Totalizer2::warnAmount() specifies two

variables in its use clause. The first is $amt. This is the argument that warnAmount()

accepted. The second closure variable is $count. $count is declared in the body of

warnAmount() and set initially to zero. Notice that I prepend an ampersand to the $count

variable in the use clause. This means the variable will be accessed by reference rather

than by value in the anonymous function. In the body of the anonymous function, I

increment $count by the product’s value and then test the new total against $amt. If the

target value has been reached, I output a notification.

Here is the code in action:

shoes: processing

 count: 6

coffee: processing

 count: 12

 high price reached: 12

This demonstrates that the callback is keeping track of $count between invocations.

Both $count and $amt remain associated with the function because they were present to

the context of its declaration and because they were specified in its use clause.

Arrow functions also generate closures (like anonymous functions, they resolve to an

instance of the built-in Closure class). Unlike anonymous functions, which require an

explicit association with closure variables, they automatically get a by-value copy of all

variables available in the current context. Here is an example:

$markup = 3;

$counter = fn(Product $product) => print "($product->name) marked up

price: " .

 ($product->price + $markup) . "\n";

$processor = new ProcessSale();

$processor->registerCallback($counter);

Chapter 4 Advanced Features

152

$processor->sale(new Product("shoes", 6));

print "\n";

$processor->sale(new Product("coffee", 6));

I am able to access $markup within the anonymous function I pass to

ProcessSale::sale(). However, because the function only has access by value, any

manipulation I perform within the function will not affect the source variable.

PHP 7.1 introduced a new way of managing closures in object context. The

Closure::fromCallable() method allows you to generate a closure which gives calling

code access to a callable’s context at the time of creation. So, if the callable is created

in the context of a method, that means you retain access to the object’s classes and

properties when invoking the closure.

PHP 8.1 took this a stage further and made the functionality part of the core language

with the “first class callable syntax.” This slightly confusing construct looks a little like

a function call but actually causes the referenced callable to be returned as a closure—

that is, with access to the callable’s context. It is confusing because the syntax, (...),

which can be applied to any expression that can be called, itself looks very much like an

invocation.

Here is a version of the Totalizer series of classes that uses object properties to

achieve the same result as the last example:

class Totalizer3

{

 private float $count = 0;

 private float $amt = 0;

 public function warnAmount(int $amt): callable

 {

 $this->amt = $amt;

 // from PHP 7.1

 // return \Closure::fromCallable([$this, "processPrice"]);

 // from PHP 8.1

 return $this->processPrice(...);

 }

Chapter 4 Advanced Features

153

 private function processPrice(Product $product): void

 {

 $this->count += $product->price;

 print " count: {$this->count}\n";

 if ($this->count > $this->amt) {

 print " high price reached: {$this->count}\n";

 }

 }

}

The warnAmount() method is not static in this example. That is because, thanks to

the first class callable syntax, I return a callback to the processPrice() method that has

access to the wider object. Remember, $this->processPrice(...) does not invoke the

processPrice() method. It returns a Closure object which retains access to the context

of creation.

I set the $amt property and return my callable method reference. processPrice(),

when called, increments a $count property and issues a warning when the $amt property

value is reached. If processPrice() were a public method, I could have simply returned

[$this, "processPrice"]. As we have seen, PHP is clever enough to work out that such

a two-element array should resolve as callable. There are two good reasons why I might

want to use the (...) syntax, however. Firstly, I can give controlled access to private

or protected methods without having to expose them to the whole world—offering

enhanced functionality while controlling access. Secondly, I get a performance boost

because there is an overhead involved in working out whether the return value is truly

callable.

Here, I use Totalizer3 with the unchanged ProcessSale class:

$totalizer3 = new Totalizer3();

$processor = new ProcessSale();

$processor->registerCallback($totalizer3->warnAmount(8));

$processor->sale(new Product("shoes", 6));

print "\n";

$processor->sale(new Product("coffee", 6));

Chapter 4 Advanced Features

154

�Anonymous Classes
PHP 7 introduced anonymous classes. These are useful when you need to create and

derive an instance from a small class, when the parent class in question is simple and

specific to the local context.

Let’s return to our PersonWriter example. I’ll start off by creating an interface

this time:

interface PersonWriter

{

 public function write(Person $person): void;

}

Now, here’s a version of the Person class that can use a PersonWriter object:

class Person

{

 public function output(PersonWriter $writer): void

 {

 $writer->write($this);

 }

 public function getName(): string

 {

 return "Bob";

 }

 public function getAge(): int

 {

 return 44;

 }

}

The output() method accepts a PersonWriter instance and then passes an instance

of the current class to its write() method. In this way, the Person class is nicely

insulated from the implementation of the writer.

Chapter 4 Advanced Features

155

Moving on to client code, if we need a writer to print name and age values for a

Person object, we might go ahead and create a class in the usual way. But it’s such a trivial

implementation that we could equally create a class and pass it to Person at the same time:

$person = new Person();

$person->output(

 new class implements PersonWriter {

 public function write(Person $person): void

 {

 print $person->getName() . " " . $person->getAge() . "\n";

 }

 }

);

As you can see, you can declare an anonymous class with the keywords new class.

You can then add any extends and implements clauses required before creating the

class block.

Anonymous classes do not support closures. In other words, variables declared in a

wider context cannot be accessed within the class. However, you can pass values to an

anonymous class’s constructor. Let’s create a slightly more complex PersonWriter:

$person = new Person();

$person->output(

 new class ("/tmp/persondump") implements PersonWriter {

 private string $path;

 public function __construct(string $path)

 {

 $this->path = $path;

 }

 public function write(Person $person): void

 {

 �file_put_contents($this->path, $person->getName() . " " .

$person->getAge() . "\n");

 }

 }

);

Chapter 4 Advanced Features

156

I passed a path argument to the constructor. This value was stored in the $path

property and eventually used by the write() method.

Of course, if your anonymous class begins to grow in size and complexity, it becomes

more sensible to create a named class in a class file. This is especially true if you find

yourself duplicating your anonymous class in more than one place.

�Summary
In this chapter, we came to grips with PHP’s advanced object-oriented features. Some

of these will become familiar as you work through the book. In particular, I will return

frequently to abstract classes, exceptions, and static methods.

In the next chapter, I take a step back from built-in object features and look at classes

and functions designed to help you work with objects.

Chapter 4 Advanced Features

157
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3_5

CHAPTER 5

Object Tools
As we have seen, PHP supports object-oriented programming through language

constructs such as classes and methods. The language also provides wider support

through functions and classes designed to help you work with objects.

In this chapter, we will look at some tools and techniques that you can use to

organize, test, and manipulate objects and classes.

This chapter will cover the following tools and techniques:

•	 Namespaces: Organize your code into discrete package-like

compartments

•	 Include paths: Setting central accessible locations for your

library code

•	 Class and object functions: Functions for inspecting objects, classes,

properties, and methods

•	 The Reflection API: A powerful suite of built-in classes that provide

unprecedented access to class information at runtime

•	 Attributes: PHP’s implementation of annotations—a mechanism by

which classes, methods, properties, and parameters can be enhanced

with rich information using tags in source code

�PHP and Packages
A package is a set of related classes and functions, usually grouped together in some

way. Packages can be used to separate parts of a system from one another. Some

programming languages formally recognize packages and provide them with distinct

namespaces. PHP has no native concept of a package, but as of PHP 5.3, it introduced

namespaces. I’ll look at this feature in the next section. I’ll also take a look at the old way

of organizing classes into package-like structures.

https://doi.org/10.1007/979-8-8688-0482-3_5#DOI

158

�PHP Packages and Namespaces
Although PHP does not intrinsically support the concept of a package, developers have

traditionally used both naming schemes and the file system to organize their code into

package-like structures.

Until PHP 5.3, developers were forced to name their files in a shared context. In

other words, if you named a class ShoppingBasket, it would become instantly available

across your system. This caused two major problems. First, and most damaging, was the

possibility of naming collisions. You might think that this is unlikely. After all, all you

have to do is remember to give all your classes unique names, right? The trouble is, we

all rely increasingly on library code. This is a good thing, of course, because it promotes

code reuse. But assume your project does this:

require_once __DIR__ . "/../useful/Outputter.php";

class Outputter

{

 // output data

}

Now assume you incorporate the included file at useful/Outputter.php:

class Outputter

{

 //

}

Well, you can guess what will happen, right? This happens:

PHP Fatal error: Cannot declare class Outputter because the name is

already in use in /var/popp/src/ch05/batch01/useful/Outputter.php on

line 4

Back before the introduction of namespaces, there was a conventional workaround

to this problem. The answer was to prepend package names to class names, using

underscores as separators, so that class names were guaranteed to be unique:

// my/Outputter.php

require_once __DIR__ . "/../useful/Outputter.php";

Chapter 5 Object Tools

159

class my_Outputter

{

 // output data

}

 // useful/Outputter.php

class useful_Outputter

{

 //

}

The problem here was that, as projects got more involved, class names grew longer

and longer. It was not an enormous issue, but it somewhat degraded code readability

and made it harder to hold class names in your head while you worked. Many

cumulative coding hours were lost to typos.

This convention is no longer common, but, if you’re maintaining legacy code, you

might still come across it. For that reason, I’ll return briefly to the old way of handling

packages later in this chapter.

�Namespaces to the Rescue

PHP 5.3 introduced namespaces. In essence, a namespace is a bucket in which you can

place your classes, functions, and variables. Within a namespace, you can access these

items without qualification. From outside, you must either import the namespace or

reference it in order to access the items it contains.

Confused? An example should help. Here, I rewrite the previous example using

namespaces:

namespace my;

require_once __DIR__ . "/../useful/Outputter.php";

class Outputter

{

 // output data

}

Chapter 5 Object Tools

160

Note  Notice that I explicitly use require_once in this example to include one
class file from another. Namespaces do not themselves automatically handle the
inclusion of files. We will cover strategies for managing that problem later in the
chapter.

namespace useful;

class Outputter

{

 //

}

Notice the namespace keyword. As you might expect, this keyword establishes a

namespace. If you are using this feature, then the namespace declaration must be the

first statement in its file. I have created two namespaces: my and useful. Typically,

though, you’ll want to have deeper namespaces. You’ll start with an organization or

project identifier. Then you’ll want to further qualify this by package. PHP lets you

declare nested namespaces. To do this, you simply use a backslash character to divide

each level:

namespace popp\ch05\batch04\util;

class Debug

{

 public static function helloWorld(): void

 {

 print "hello from Debug\n";

 }

}

You will typically use a name related to a product or organization to define a

repository. I might use one of my domains: getinstance.com, for example. Because a

domain name is unique to its owner, this is a trick that Java developers typically use for

their package names. They invert domain names so that they run from the most generic

to the most specific. Alternatively, I might use the namespace I have chosen for code

Chapter 5 Object Tools

https://getinstance.com

161

examples in this book: popp, for the book name. Once I’ve identified my repository, I

might go on to define packages. In this case, I use the chapter and then a numbered

batch. This allows me to organize groups of examples into discrete buckets. So at this

point in the chapter, I am at popp\ch05\batch04. Finally, I can further organize code by

category. I’ve gone with util.

So how would I reference the class and method? In fact, it depends where you’re

doing the calling from. If you are invoking from within the namespace, you can go ahead

and call the method directly:

Debug::helloWorld();

This is known as an unqualified name. Because I’m already in the popp\ch05\

batch04\util namespace, I don’t have to prepend any kind of path to the class name. If I

were accessing the class from outside of a namespaced context, I could do this:

\popp\ch05\batch04\Debug::helloworld();

What output would I get from the following code?

namespace main;

 popp\ch05\batch04\Debug::helloworld();

That’s a trick question. In fact, this is my output:

PHP Fatal error: Class 'popp\ch05\batch04\Debug' not found in...

That’s because I’m using a relative namespace here. PHP is looking below the

namespace main for popp\ch05\batch04\util and not finding it. Just as you can

make absolute URLs and file paths by starting off with a separator, so you can with

namespaces. This version of the example fixes the previous error:

namespace main;

 \popp\ch05\batch04\Debug::helloworld();

That leading backslash tells PHP to begin its search at the root, and not from the

current namespace.

Chapter 5 Object Tools

162

But aren’t namespaces supposed to help you cut down on typing? The Debug class

declaration is shorter, certainly, but those calls are just as wordy as they would have been

with the old naming convention. You can get around this with the use keyword. This

allows you to alias other namespaces within the current namespace. Here’s an example:

namespace main;

use popp\ch05\batch04\util;

 util\Debug::helloWorld();

The popp\ch05\batch04\util namespace is imported and implicitly aliased to

util. Notice that I didn’t begin with a leading backslash character. The argument to

use is searched from root space and not from the current namespace. If I don’t want to

reference a namespace at all, I can import the Debug class itself:

namespace main;

use popp\ch05\batch04\util\Debug;

 Debug::helloWorld();

This is the convention that is most often used. But what would happen if I already

had a Debug class in the calling namespace? Here is such a class:

namespace popp\ch05\batch04;

class Debug

{

 public static function helloWorld(): void

 {

 print "hello from popp\\ch05\\batch04\\Debug\n";

 }

}

And here is some calling code from the popp\ch05\batch04 namespace which

references both Debug classes:

namespace popp\ch05\batch04;

use popp\ch05\batch04\util\Debug;

use popp\ch05\batch04\Debug;

Debug::helloWorld();

Chapter 5 Object Tools

163

As you might expect, this causes a fatal error:

PHP Fatal error: Cannot use popp\ch05\batch04\Debug as Debug because the

name is already in use in...

So I seem to have come full circle, arriving back at class name collisions. Luckily,

there’s an answer for this problem. I can make my alias explicit:

namespace popp\ch05\batch04;

use popp\ch05\batch04\util\Debug;

use popp\ch05\batch04\Debug as CoreDebug;

CoreDebug::helloWorld();

By using the as clause to use, I am able to change the Debug alias to CoreDebug.

If you are writing code in a namespace and you want to access a class, trait, or

interface that resides in root (non-namespaced) space (e.g., PHP’s core classes such as

Exception, Error, Closure), you can simply precede the name with a backslash. Here’s a

class declared in root space:

class TreeLister

{

 public static function helloWorld(): void

 {

 print "hello from root namespace\n";

 }

}

And here’s some namespaced code:

namespace popp\ch05\batch04\util;

class TreeLister

{

 public static function helloWorld(): void

 {

 print "hello from " . __NAMESPACE__ . "\n";

 }

}

Chapter 5 Object Tools

164

namespace popp\ch05\batch04;

use popp\ch05\batch04\util\TreeLister;

 TreeLister::helloWorld(); // access local

 \TreeLister::helloWorld(); // access from root

The namespaced code declares its own TreeLister class. The client code uses the

local version, specifying the full path with a use statement. A name qualified with a

single backslash accesses a similarly named class in the root namespace.

Here’s the output from the previous fragment:

hello from popp\ch05\batch04\util

hello from root namespace

This output is worth showing because it demonstrates the operation of the

__NAMESPACE__ constant. This will output the current namespace, and it’s useful in

debugging.

You can declare more than one namespace in the same file using the syntax you have

already seen. You can also use an alternative syntax that uses braces with the namespace

keyword:

namespace com\getinstance\util {

 class Debug

 {

 public static function helloWorld(): void

 {

 print "hello from Debug\n";

 }

 }

}

namespace other {

 \com\getinstance\util\Debug::helloWorld();

}

Chapter 5 Object Tools

165

If you must combine multiple namespaces in the same file, then this is the

recommended practice. However, PHP’s official coding standards actively discourage

this approach. It is best practice to define namespaces on a per-file basis.

Note  You can’t use both the brace and line namespace syntaxes in the same file.
You must choose one and stick to it throughout.

�Using the File System to Simulate Packages

Whichever version of PHP you use, you should organize classes using the file system,

which affords a kind of package structure. For example, you might create util and

business directories and include class files with the require_once statement, like this:

require_once('business/Customer.php');

require_once('util/WebTools.php');

You could also use include_once with the same effect. The only difference between

the include and require language constructs lies in their handling of errors. A file

invoked using require will bring down your entire process when you meet an error. The

same error encountered via a call to include will merely generate a warning and end

execution of the included file, leaving the calling code to continue. This makes require

and require_once the safe choice for including library files and include and include_

once useful for operations like templating.

Note  require and require_once are statements, not functions. This means
that, although you can, you do not need to use parentheses when deploying them.

Figure 5-1 shows the util and business packages from the point of view of the

Nautilus file manager.

Chapter 5 Object Tools

166

Figure 5-1.  PHP packages organized using the file system

Note  require_once accepts a path to a file and includes it evaluated in the
current script. The statement will only incorporate its target if it has not already
been incorporated elsewhere. This one-shot approach is particularly useful when
accessing library code because it prevents the accidental redefinition of classes
and functions. This can happen when the same file is included by different parts of
your script in a single process using a statement like require or include.

It is customary to use require and require_once in preference to the
similar include and include_once statements. This is because a fatal error
encountered in a file accessed with the require statement takes down the
entire script. The same error encountered in a file accessed using the include
statements will cause the execution of the included file to cease, but will only
generate a warning in the calling script. The former, more drastic behavior, is safer.

There is an overhead associated with the use of require_once when compared
with require. If you need to squeeze every last millisecond out of your system,
you may like to consider using require instead. As is so often the case, this is a
trade-off between efficiency and convenience.

As far as PHP is concerned, there is nothing special about this structure. You

are simply placing library scripts in different directories. It does lend itself to clean

organization and can be used in parallel with either namespaces or a naming

convention.

Chapter 5 Object Tools

167

�Emulating Namespaces with Underscores

Back before namespaces were introduced, developers were forced to resort to

conventions in order to avoid class name collisions. The most common of these was to

combine package paths with class names, using underscores as separators. The template

for best practice here was undoubtedly PEAR.

Note PEAR stands for the PHP Extension and Application Repository. It is an
officially maintained archive of packages and tools that add to PHP’s functionality.
Core PEAR packages are included in the PHP distribution, and others can be
added using a simple command-line tool. You can browse the PEAR packages
at https://pear.php.net. While it is still active, PEAR has largely been
supplanted by Packagist (https://packagist.org/) which is used with the
Composer dependency manager (https://getcomposer.org/).

Although PEAR packages now often use namespaces, some packages still use the

file system and name their classes according to their package path, with each directory

name separated by an underscore character.

For example, PEAR includes a package called XML, which has an RPC subpackage.

The RPC package contains a file called Server.php. The class defined inside Server.

php is not called Server, as you might expect. Without namespaces, that would sooner or

later clash with another Server class elsewhere in the PEAR project or in a user’s code.

Instead, the class is named XML_RPC_Server. This approach was made for unattractive

class names. It did, however, make code easy to read because a class name always

described its own context.

�Include Paths

When you organize your components, there are two perspectives that you should bear in

mind. I have covered the first, where files and directories are placed on the file system.

But you should also consider the way that components access one another. I have

glossed over the issue of include paths so far in this section.

When you include a file, you could refer to it using a relative path from the current

working directory or an absolute path on the file system.

Chapter 5 Object Tools

https://pear.php.net
https://packagist.org/
https://getcomposer.org/

168

Note A lthough it is important to understand the way that include paths work and
the issues involved in requiring files, it is also important to bear in mind that many
modern systems no longer rely upon require statements at the class level. Instead,
they use a combination of autoload and namespaces. I will cover autoload later and
then look in more detail at practical autoload recommendations in Volume 2.

The examples you have seen so far have occasionally specified a fixed relationship

between the requiring and required files:

require_once __DIR__ . "/../useful/Outputter.php";

This works quite nicely, except that it hard-codes the relationship between files.

There must always be a useful directory alongside the calling class’s containing

directory.

Perhaps the worst approach is the tortuous relative path:

require_once('../../projectlib/business/User.php');

This is problematic because the path specified here is not relative to the file that

contains this require_once statement, but to a configured calling context (often, but not

always, the current working directory). Paths like this are a recipe for confusion (and in

my experience almost always a sign that a system will need considerable improvement

in other areas, too).

You could use an absolute path, of course:

require_once('/home/john/projectlib/business/User.php');

This will work for a single instance, but it’s brittle. By specifying paths in this much

detail, you freeze the library file into a particular context. Whenever you install the

project on a new server, all require statements will need changing to account for a

new file path. This can make libraries hard to relocate and impractical to share among

projects without making copies. In either case, you lose the package idea in all the

additional directories. Is it the business package, or is it the projectlib/business

package?

If you must manually include files in your code, the neatest approach is to decouple

the invoking code from the library. You have already seen a structure like this:

require_once('business/User.php');

Chapter 5 Object Tools

169

In previous examples that used a path like this, we implicitly assumed a relative

path. business/User.php, in other words, was functionally identical to ./business/

User.php. But what if the preceding require statement could be made to work from any

directory on a system? You can do this with the include path. This is a list of directories

that PHP searches when attempting to require a file. You can add to this list by altering

the include_path directive. include_path is usually set in PHP’s central configuration

file, php.ini. It defines a list of directories separated by colons on Unix-like systems and

semicolons on Windows systems:

include_path = ".:/usr/local/lib/php-libraries"

If you’re using Apache, you can also set include_path in the server application’s

configuration file (usually called httpd.conf) or a per-directory Apache configuration

file (usually called .htaccess) with this syntax:

php_value include_path value .:/usr/local/lib/php-libraries

Note  .htaccess files are particularly useful in web space provided by some
hosting companies, which provide very limited access to the server environment.

When you use a require statement or a file system function such as fopen() with

a nonabsolute path that does not exist relative to the current working directory, the

directories in the include path are searched automatically, beginning with the first in

the list (in the case of fopen(), you must include a flag in its argument list to enable

this feature). When the target file is encountered, the search ends, and the statement or

function completes its task.

So by placing a package directory in an include directory, you need only refer to

packages and files in your require statements.

You may need to add a directory to the include_path so that you can maintain your

own library directory. To do this, you can edit the php.ini file (remember that, for the

PHP server module, you will need to restart your server for the changes to take effect).

If you do not have the privileges necessary to work with the php.ini file, you can set

the include path from within your scripts using the set_include_path() function. set_

include_path() accepts an include path (as it would appear in php.ini) and changes

the include_path setting for the current process only. The php.ini file probably already

Chapter 5 Object Tools

170

defines a useful value for include_path, so rather than overwrite it, you can access it

using the get_include_path() function and append your own directory. Here’s how you

can add a directory to the current include path:

set_include_path(get_include_path() . PATH_SEPARATOR .

"/home/john/phplib/");

The PATH_SEPARATOR constant will resolve to a colon on a Unix system and a semicolon

on a Windows platform. So, for reasons of portability, its use is considered best practice.

With /home/john/phplib/ in the include path, we can now use a logical rather than

a literal path with require_once. In other words, we can invoke require_once using

business/User.php rather than “/home/john/projectlib/business/User.php” no matter

where we call from within the project. Of course, this is still somewhat inflexible in that the

project must reside at /home/john/phplib/. Let’s see how we can make things even easier.

�Autoload
Although it’s neat to use require_once in conjunction with the include path, many

developers are doing away with require statements altogether at a high level and relying

instead on autoload.

Note P revious editions of this book discussed a built-in function called __
autoload() which provided a cruder version of the functionality discussed in this
section. This function was deprecated as of PHP 7.2.0 and removed in PHP 8.

To do this, you should organize your classes so that each sits in its own file. Each

class file should bear a fixed relationship to the name of the class it contains. So you

might define a ShopProduct class in a file named ShopProduct.php with directories

corresponding to elements of the class’s namespace.

PHP 5 introduced autoload functionality to help automate the inclusion of class files.

The default support is pretty basic but still useful. It can be enabled by calling a function

named spl_autoload_register() with no arguments. Then, if autoload functionality

has been activated in this way, when you attempt to instantiate an unknown class,

PHP will invoke a built-in function called spl_autoload(). This will use the provided

class name (converted to lowercase) to search your include path for files named either

classname.php or classname.inc (where classname is the name of the unknown class).

Chapter 5 Object Tools

171

Here’s a simple example:

spl_autoload_register();

$writer = new Writer();

Assuming I have not already included a file containing a Writer object, this

instantiation looks bound to fail. However, because I have set up autoloading, PHP

will attempt to include a file named writer.php or writer.inc and will then try the

instantiation a second time. If one of these files exists, and contains a class named

Writer, then all will be well.

This default behavior supports namespaces, substituting directory names for each

package:

spl_autoload_register();

$writer = new util\Writer();

The preceding code will find a file named writer.php (note the lowercase name) in

a directory named util.

What if I happen to name my class files case-dependently? That is, what if I name

them with the capital letters preserved? If I had placed the Writer class in a file named

Writer.php, then the default implementation would have failed to find it.

Luckily, I can register my own custom function to handle different sets of

conventions. In order to take advantage of this, I must pass a reference to a custom

function to spl_autoload_register(). My autoload function should require a single

argument. Then, if the PHP engine encounters an attempt to instantiate an unknown

class, it will invoke this function, passing it the unknown class name as a string. It is up

to the autoload function to define a strategy for locating and then including the missing

class file. Once the autoload function has been invoked, PHP will attempt to instantiate

the class once again.

Here’s a simple autoload function:

$basic = function (string $classname): void {

 $file = __DIR__ . "/" . "{$classname}.php";

 if (file_exists($file)) {

 require_once($file);

 }

};

\spl_autoload_register($basic);

Chapter 5 Object Tools

172

Here’s a class to load:

class Blah

{

 public function wave(): void

 {

 print "saying hi from root";

 }

}

Now, let’s instantiate Blah and invoke the wave() method:

$blah = new Blah();

$blah->wave();

Having failed to instantiate Blah initially, the PHP engine will see that I have

registered an autoload function with the spl_autoload_register() function and pass

it the string, "Blah". My implementation simply attempts to include the file Blah.php.

This will only work, of course, if the file is in the same directory as the file in which the

autoload function was declared. In a real-world example, I would have to combine

include path configuration with my autoload logic (this is precisely what Composer’s

autoload implementation does).

If I want to provide old school support, I might automate PEAR package includes.

Here is a new Blah:

class util_Blah

{

 public function wave(): void

 {

 print "saying hi from underscore file";

 }

}

Let’s amend our autoload function so that it understands this naming convention:

$underscores = function (string $classname) {

 $path = str_replace('_', DIRECTORY_SEPARATOR, $classname);

 $path = __DIR__ . "/$path";

Chapter 5 Object Tools

173

 if (file_exists("{$path}.php")) {

 require_once("{$path}.php");

 }

};

\spl_autoload_register($underscores);

Now, let’s call it:

$blah = new util_Blah();

$blah->wave();

The autoload function matches underscores in the supplied $classname and

replaces each with the DIRECTORY_SEPARATOR character (/ on Unix systems). I attempt

to include the class file (util/Blah.php). If the class file exists, and the class it contains

has been named correctly, the object should be instantiated without an error. Of course,

this does require the programmer to observe a naming convention that forbids the

underscore character in a class name, except where it divides up packages.

What about namespaces? We’ve seen that the default autoload functionality

supports namespaces. But if we override that default, it’s up to us to provide namespace

support. This is just a matter of matching and replacing backslash characters:

namespace util;

class LocalPath

{

 public function wave(): void

 {

 print "hello from " . get_class($this);

 }

}

Note  Until PHP 8.3, you could call get_class() without an argument and the
current object context would be assumed. This behavior is now deprecated for
both get_class() and get_parent_class(). Both functions now require an
object as their parameter.

Chapter 5 Object Tools

174

$namespaces = function (string $path) {

 if (preg_match('/\\\\/', $path)) {

 $path = str_replace('\\', DIRECTORY_SEPARATOR, $path);

 }

 if (file_exists("{$path}.php")) {

 require_once("{$path}.php");

 }

};

\spl_autoload_register($namespaces);

$obj = new util\LocalPath();

$obj->wave();

The value that is passed to the autoload function is always normalized to a fully

qualified name, without a leading backslash, so there is no need to worry about aliasing

or relative namespaces at the point of instantiation.

Note that this solution is by no means perfect. The file_exists() function does

not take account of the include path, so it will not accurately reflect all circumstances

in which require_once will operate perfectly well. There are various solutions to this.

You might roll your own path-aware version of file_exists() or attempt to require the

file in a try clause (catching Error in this case and not Exception). Luckily, however,

PHP provides the stream_resolve_include_path() function. This will return a string

representing the absolute filename of a provided path or, crucially for our purposes,

false if the file cannot be found in the include path:

$namespaces = function (string $path) {

 if (preg_match('/\\\\/', $path)) {

 $path = str_replace('\\', DIRECTORY_SEPARATOR, $path);

 }

 if (\stream_resolve_include_path("{$path}.php") !== false) {

 require_once("{$path}.php");

 }

};

\spl_autoload_register($namespaces);

$obj = new util\LocalPath();

$obj->wave();

Chapter 5 Object Tools

175

What if I wanted to support both PEAR-style class names and namespaces? I could

combine my autoload implementations into a single custom function. Or, I could use the

fact that spl_autoload_register() stacks its autoload functions:

$underscores = function (string $classname) {

 $path = str_replace('_', DIRECTORY_SEPARATOR, $classname);

 $path = __DIR__ . "/$path";

 if (\stream_resolve_include_path("{$path}.php") !== false) {

 require_once("{$path}.php");

 }

};

$namespaces = function (string $path) {

 if (preg_match('/\\\\/', $path)) {

 $path = str_replace('\\', DIRECTORY_SEPARATOR, $path);

 }

 if (\stream_resolve_include_path("{$path}.php") !== false) {

 require_once("{$path}.php");

 }

};

\spl_autoload_register($namespaces);

\spl_autoload_register($underscores);

$blah = new util_Blah();

$blah->wave();

$obj = new util\LocalPath();

$obj->wave();

When it encounters an unknown class, the PHP engine will invoke the autoload

functions in turn (according to the order in which they were registered), stopping when

instantiation is possible or when all options have been exhausted.

There is obviously an overhead to this kind of stacking, so why does PHP support it?

In a real-world project, you’d likely combine the namespace and underscore strategies

into a single function. However, components in large systems and in third-party libraries

may need to register their own autoload mechanisms. Stacking allows multiple parts of

a system to register autoload strategies independently, without overwriting one another.

Chapter 5 Object Tools

176

In fact, a library that only needs an autoload mechanism briefly can pass the name of its

custom autoload function (or any kind of callable such as an anonymous function) to

spl_autoload_unregister() to clean up after itself!

�The Class and Object Functions
PHP provides a powerful set of functions for interacting with classes and objects. Why is

this useful? After all, you probably wrote most of the classes you are using in your script.

In fact, you don’t always know at runtime about the classes that you are using. You

may have designed a system to work transparently with third-party bolt-on classes, for

example. In this case, you will typically instantiate an object given only a class name.

PHP allows you to use strings to refer to classes dynamically, like this:

namespace tasks;

class Task

{

 public function doSpeak(): void

 {

 print "hello\n";

 }

}

$classname = "Task";

require_once("tasks/{$classname}.php");

$classname = "tasks\\$classname";

$myObj = new $classname();

$myObj->doSpeak();

This script might acquire the string I assign to $classname from a configuration

file or by comparing a web request with the contents of a directory. You can then use

the string to load a class file and instantiate an object. Notice that I’ve constructed a

namespace qualification in this fragment. Typically, you would do something like this

when you want your system to be able to run user-created plug-ins. Before you do

anything as risky as that in a real project, you would have to check that the class exists,

that it has the methods you are expecting, and so on.

Chapter 5 Object Tools

177

Note E ven with safeguards in place, you should be extremely wary of
dynamically installing third-party plug-in code. You should never automatically
run code uploaded by users. Any plug-in so installed would typically execute with
the same privileges as your core code, so a malicious plug-in author could wreak
havoc on your system.

This isn’t to say that plug-ins aren’t a fine idea. Allowing third-party developers to
enhance a core system can offer great flexibility. To ensure greater security, you
might support a directory for plug-ins, but require that the code files be installed
by a system’s administrator, either directly or from within a password-protected
management environment. The administrator would either personally check
the plug-in code before installation or would source plug-ins from a reputable
repository. This is the way that the popular blogging platform, WordPress, handles
plug-ins.

Some class functions have been superseded by the more powerful Reflection API,

which I will examine later in the chapter. Their simplicity and ease of use make them a

first port of call in some instances, however.

�Looking for Classes
The class_exists() function accepts a string representing the class to check for and

returns a Boolean true value if the class exists and false otherwise.

Using this function, I can make the previous fragment a little safer:

$base = __DIR__;

$classname = "Task";

$path = "{$base}/tasks/{$classname}.php";

if (! file_exists($path)) {

 throw new \Exception("No such file as {$path}");

}

require_once($path);

$qclassname = "tasks\\$classname";

Chapter 5 Object Tools

178

if (! class_exists($qclassname)) {

 throw new \Exception("No such class as $qclassname");

}

$myObj = new $qclassname();

$myObj->doSpeak();

Of course, you can’t be sure that the class in question does not require constructor

arguments. For that level of safety, you would have to turn to the Reflection API, covered

later in the chapter. Nevertheless, class_exists() does allow you to check that the class

exists before you work with it.

Note R emember, as stated previously, you should always be wary of any data
provided by outside sources. Test it and treat it before using it in any way. In the
case of a file path, you should escape or remove dots and directory separators to
prevent an unscrupulous user from changing directories and including unexpected
files. However, when I describe ways of building systems that are easily extensible,
these techniques generally cover a deployment’s owner (with the write privileges
that implies), and not her external users.

You can also get an array of all classes defined in your script process using the

get_declared_classes() function:

print_r(get_declared_classes());

This will list user-defined and built-in classes. Remember that it only returns the

classes declared at the time of the function call. You may run require or require_once

later on and thereby add to the number of classes in your script.

�Learning About an Object or Class
As you know, you can constrain the object types of method arguments using class type

hinting. Even with this tool, you can’t always be certain of an object’s type.

There are a number of basic tools available to check the type of an object. First of all,

you can check the class of an object with the get_class() function. This accepts any

object as an argument and returns its class name as a string:

Chapter 5 Object Tools

179

$product = self::getProduct();

if (get_class($product) === 'popp\ch05\batch05\RecordProduct') {

 print "\$product is a RecordProduct object\n";

}

In the fragment, I acquire something from the getProduct() function. To be

absolutely certain that it is a RecordProduct object, I use the get_class() method.

Note  I covered the RecordProduct and BookProduct classes in Chapter 3.

Here’s the getProduct() function:

public static function getProduct()

{

 return new RecordProduct(

 "Exile on Coldharbour Lane",

 "The",

 "Alabama 3",

 10.99,

 60.33

);

}

getProduct() simply instantiates and returns a RecordProduct object. I will make

good use of this function in this section. Of course, I should really have declared a return

type for getProduct(). This would have eliminated doubt. For the purposes of this

example, let’s assume that this is a legacy method and that we can’t be sure of the type

that it returns.

The get_class() function is a very specific tool. You often want a more general

confirmation of a class’s type. You may want to know that an object belongs to the

ShopProduct family, but you don’t care whether its actual class is BookProduct or

RecordProduct. To this end, PHP provides the instanceof operator.

Note PHP 4 did not support instanceof. Instead, it provided the is_a()
function, which was deprecated in PHP 5.0 but restored to the fold with PHP 5.3.

Chapter 5 Object Tools

180

The instanceof operator works with two operands, the object to test on the left of

the keyword and the class or interface name on the right. It resolves to true if the object

is an instance of the given type:

$product = self::getProduct();

if ($product instanceof \popp\ch05\batch05\RecordProduct) {

 print "\$product is an instance of RecordProduct\n";

}

�Getting a Fully Qualified String Reference to a Class
Namespaces have cleaned up much that was ugly about object-oriented PHP. We no

longer have to tolerate ridiculously long class names or risk naming collisions (legacy

code aside). On the other hand, with aliasing and with relative namespace references, it

can be a chore to resolve some class paths so that they are fully qualified.

Here are some examples of hard-to-resolve class names:

namespace mypackage;

use util as u;

use util\db\Querier as q;

class Local

{

}

// Resolve these:

// Aliased namespace

// u\Writer;

// Aliased class

// q;

// Class referenced in local context

// Local

It’s not too hard to work out how these class references resolve, but it would be a pain

to write code to capture every possibility. Given u\Writer, for example, an automated

resolver would need to know that u is aliased to util and is not a namespace in its own

Chapter 5 Object Tools

181

right. Helpfully, PHP 5.5 introduced the ClassName::class syntax. In other words, given

a class reference, you can append a scope resolution operator and the class keyword to

get the fully qualified class name:

print u\Writer::class . "\n";

print q::class . "\n";

print Local::class . "\n";

The preceding snippet outputs this:

util\Writer

util\db\Querier

mypackage\Local

As of PHP 8, you can also call ::class on an object. So, for example, given an

instance of ShopProduct, I can get the full class name like this:

$bookp = new BookProduct(

 "Catch 22",

 "Joseph",

 "Heller",

 11.99,

 300

);

print $bookp::class;

Running this outputs

popp\ch04\batch02\BookProduct

Note that this convenient syntax does not offer new functionality—you have already

encountered the get_class() function which achieves the same result.

�Learning About Methods
You can acquire a list of all the methods in a class using the get_class_methods()

function. This requires a class name and returns an array containing the names of all the

methods in the class:

print_r(get_class_methods(BookProduct::class));

Chapter 5 Object Tools

182

Assuming the BookProduct class exists, you might see something like this:

Array

(

 [0] => __construct

 [1] => getNumberOfPages

 [2] => getSummaryLine

 [3] => getPrice

 [4] => setID

 [5] => getProducerFirstName

 [6] => getProducerMainName

 [7] => setDiscount

 [8] => getDiscount

 [9] => getTitle

 [10] => getProducer

 [11] => getInstance

)

In the example, I pass a string containing a class name to get_class_methods()

and dump the returned array with the print_r() function. I could alternatively have

passed an object to get_class_methods() with the same result. Only the names of public

methods will be included in the returned list.

As you have seen, you can store a method name in a string variable and invoke it

dynamically together with an object, like this:

$product = self::getProduct();

$method = "getTitle"; // define a method name

print $product->$method(); // invoke the method

Of course, this can be dangerous. What happens if the method does not exist? As you

might expect, your script will fail with an error. You have already encountered one way of

testing that a method exists:

if (in_array($method, get_class_methods($product))) {

 print $product->$method(); // invoke the method

}

Chapter 5 Object Tools

183

I check that the method name exists in the array returned by get_class_methods()

before invoking it.

PHP provides more specialized tools for this purpose. You can check method

names to some extent with two functions: is_callable() and method_exists(). is_

callable() is the more sophisticated of the two functions. It accepts a string variable

representing a function name as its first argument and returns true if the function exists

and can be called. To apply the same test to a method, you should pass it an array in

place of the function name. The array must contain an object or class name as its first

element and the method name to check as its second element. The function will return

true if the method exists in the class:

if (is_callable([$product, $method])) {

 print $product->$method(); // invoke the method

}

is_callable() optionally accepts a second argument, a Boolean. If you set this to

true, the function will only check the syntax of the given method or function name, not

for its actual existence. It also accepts an optional third argument which should be a

variable. If provided, this will be populated with a string representation of your provided

callable.

Here, I call is_callable() with that optional third argument which I then output:

$method = "getTitle"; // define a method name

if (is_callable([$product, $method], false, $callableName)) {

 print $callableName;

}

And here is my output:

popp\ch05\batch05\RecordProduct::getTitle

Such functionality may come in handy for the purposes of documentation or logging.

The method_exists() function requires an object (or a class name) and a method

name and returns true if the given method exists in the object’s class:

if (method_exists($product, $method)) {

 print $product->$method(); // invoke the method

}

Chapter 5 Object Tools

184

�Learning About Properties
Just as you can query the methods of a class, so can you query its fields. The get_class_

vars() function requires a class name and returns an associative array. The returned

array contains field names as its keys and field values as its values. Let’s apply this test to

the RecordProduct object. For the purposes of illustration, we add a public property to

the class, RecordProduct::$coverUrl:

print_r(get_class_vars(RecordProduct::class));

Only the public property is shown:

Array (

 [coverUrl] => cover url

)

If you have an object reference to hand, you could also pass it to get_object_vars()

to get similar results.

Note  For more information about an object’s properties, you can also use
get_mangled_object_vars() which accepts an object variable and returns
an associative array. This return value includes coverage of private and protected
member variables.

�Learning About Inheritance
The class functions also allow us to chart inheritance relationships. We can find the

parent of a class, for example, with get_parent_class(). This function requires either

an object or a class name, and it returns the name of the superclass, if any. If no such

class exists—that is, if the class we are testing does not have a parent—then the function

returns false.

print get_parent_class(BookProduct::class);

As you might expect, this yields the parent class: ShopProduct.

Chapter 5 Object Tools

185

We can also test whether a class is a descendant of another using the is_subclass_of()

function. This requires a child object (or the name of a class) and the name of the parent

class. The function returns true if the second argument is a superclass of the first argument:

$product = self::getBookProduct(); // acquire an object

if (is_subclass_of($product, ShopProduct::class)) {

 print "BookProduct is a subclass of ShopProduct\n";

}

is_subclass_of() will return true when a parent class is provided for an object, but

also for a grandparent or any kind of ancestor. It will only tell you about class inheritance

relationships, however. It will not tell you that a class implements an interface. For that,

you should use the instanceof operator. Or, you can use a function that is part of the

SPL (Standard PHP Library). class_implements() accepts a class name or an object

reference and returns an array of interface names:

if (in_array('someInterface', class_implements($product))) {

 print "BookProduct is an interface of someInterface\n";

}

�Method Invocation
You have already encountered an example in which I used a string to invoke a method

dynamically:

$product = self::getProduct();

$method = "getTitle"; // define a method name

print $product->$method(); // invoke the method

PHP also provides the call_user_func() method to achieve the same end. call_

user_func() can invoke any kind of callable (such as a function name or an anonymous

function). Here, I invoke a function, by passing along the function name in a string:

$returnVal = call_user_func("myFunction");

To invoke a method, I can pass along an array. The first element of this should be an

object (or, for static calls, a string containing a fully qualified class name), and the second

should be the name of the method to invoke:

$returnVal = call_user_func([$myObj, "methodName"]);

Chapter 5 Object Tools

186

Any further arguments passed into call_user_func() will be treated as the

arguments to the target function or method and passed in the same order, like this:

$product = self::getBookProduct(); // Acquire a BookProduct object

call_user_func([$product, 'setDiscount'], 20);

This dynamic call is, of course, equivalent to this:

$product->setDiscount(20);

The call_user_func() method won’t change your life greatly because you can

equally use a string directly in place of the method name, like this:

$method = "setDiscount";

$product->$method(20);

Much more impressive, though, is the related call_user_func_array() function.

This operates in the same way as call_user_func(), as far as selecting the target

method or function is concerned. Crucially, though, it accepts any arguments required

by the target method as an array.

Note B eware—arguments passed to a function or method using
call_user_func() are not passed by reference.

So why is this useful? Occasionally, you are given arguments in array form. Unless

you know in advance the number of arguments you are dealing with, it can be difficult

to pass them on. In Chapter 4, I looked at the interceptor methods that can be used to

create delegator classes. Here’s a simple example of a __call() method:

public function __call(string $method, array $args): mixed

{

 if (method_exists($this->thirdpartyShop, $method)) {

 return $this->thirdpartyShop->$method();

 }

}

Chapter 5 Object Tools

187

As you have seen, the __call() method is invoked when an undefined method

is called by client code. In this example, I maintain an object in a property called

$thirdpartyShop. If I find a method in the stored object that matches the $method

argument, I invoke it. I blithely assume that the target method does not require any

arguments, which is where my problems begin. When I write the __call() method, I

have no way of telling how large the $args array may be from invocation to invocation.

If I pass $args directly to the delegate method, I will pass a single array argument, and

not the separate arguments it may be expecting. call_user_func_array() solves the

problem perfectly:

public function __call(string $method, array $args): mixed

{

 if (method_exists($this->thirdpartyShop, $method)) {

 return call_user_func_array(

 [

 $this->thirdpartyShop,

 $method

],

 $args

);

 }

}

Since PHP 7.4, however, there is another approach to this problem. If you precede

an array argument with three dots (...) in a function or method call, then the array

values will be “unpacked” and passed along as if you had made the invocation with each

element as a discrete argument in the list. This is much easier to do than to explain!

Here’s a version of the previous example which uses array unpacking:

public function __call(string $method, array $args): mixed

{

 if (method_exists($this->thirdpartyShop, $method)) {

 return $this->thirdpartyShop->$method(...$args);

 }

}

Chapter 5 Object Tools

188

�The Reflection API
PHP’s Reflection API is to PHP what the java.lang.reflect package is to Java. It

consists of built-in classes for analyzing properties, methods, and classes. It’s similar

in some respects to existing object functions, such as get_class_vars(), but is more

flexible and provides much greater detail. It’s also designed to work with PHP’s object-

oriented features, such as access control, interfaces, and abstract classes, in a way that

the older, more limited class functions are not.

�Getting Started
The Reflection API can be used to examine more than just classes. For example,

the ReflectionFunction class provides information about a given function, and

ReflectionExtension yields insight about an extension compiled into the language.

Table 5-1 lists some of the classes in the API.

Table 5-1.  Key Classes in the Reflection API

Class Description

Reflection Provides a static export() method for summarizing class

information

ReflectionAttribute Contextual information about classes, properties, constants, or

parameters

ReflectionClass Class information and tools

ReflectionClassConstant Information about a constant

ReflectionException An error class

ReflectionExtension PHP extension information

ReflectionFunction Function information and tools

ReflectionGenerator Information about a generator

ReflectionMethod Class method information and tools

ReflectionNamedType Information about a function’s or method’s return type (union

return types are described with ReflectionUnionType)

(continued)

Chapter 5 Object Tools

189

Between them, the classes in the Reflection API provide unprecedented runtime

access to information about the objects, functions, and extensions in your scripts.

The Reflection API’s power and reach mean you should usually use it in preference

to the class and object functions for more sophisticated requirements. You might want

to generate class diagrams or documentation, for example, or to save object information

to a database, examining an object’s accessor (getter and setter) methods to extract field

names. Building a framework that invokes methods in module classes according to a

naming scheme is another use of reflection.

�Time to Roll Up Your Sleeves
You have already encountered some functions for examining the attributes of classes.

These are useful but often limited. Here’s a tool that is up to the job. ReflectionClass

provides methods that reveal information about every aspect of a given class, whether

it’s a user-defined or an internal class. The constructor of ReflectionClass accepts a

class or interface name (or an object instance) as its sole argument:

$prodclass = new \ReflectionClass(RecordProduct::class);

print $prodclass;

Class Description

ReflectionObject Object information and tools (inherits from ReflectionClass)

ReflectionParameter Method argument information

ReflectionProperty Class property information

ReflectionType Information about a function’s or method’s return type

ReflectionUnionType A collection of ReflectionType objects for a union type

declaration

ReflectionIntersectionType A collection of ReflectionType objects for an intersection

type declaration

ReflectionZendExtension PHP Zend extension information

Table 5-1.  (continued)

Chapter 5 Object Tools

190

Once you’ve created a ReflectionClass object, you can instantly dump all sorts of

information about the class, simply by accessing it in string context. Here’s an abridged

extract from the output generated when I print my ReflectionClass instance for

RecordProduct:

Class [<user> class popp\ch04\batch02\RecordProduct extends popp\ch04\

batch02\ShopProduct] {

 @@ /usr/src/myapp/src/ch04/batch02/RecordProduct.php 7-54

 - Constants [2] {

 Constant [public int AVAILABLE] { 0 }

 Constant [public int OUT_OF_STOCK] { 1 }

 }

 - Static properties [0] {

 }

 - Static methods [1] {

 �Method [<user, inherits popp\ch04\batch02\ShopProduct> static public

method getInstance] {

 @@ /usr/src/myapp/src/ch04/batch02/ShopProduct.php 94 - 131

 - Parameters [2] {

 Parameter #0 [<required> int $id]

 Parameter #1 [<required> PDO $pdo]

 }

 - Return [popp\ch04\batch02\ShopProduct]

 }

 }

 - Properties [3] {

 Property [private int $playLength = 0]

 Property [public int $status]

 Property [protected int|float $price]
 }

...

Chapter 5 Object Tools

191

Note A utility method, Reflection::export(), was once the standard way
to dump ReflectionClass information. This was deprecated in PHP 7.4 and
removed entirely in PHP 8.0.

As you can see, ReflectionClass provides remarkable access to information about

a class. The string output provides summary information about almost every aspect

of RecordProduct, including the access control status of properties and methods, the

arguments required by every method, and the location of every method within the script

document. Compare that with a more established debugging function. The var_dump()

function is a general-purpose tool for summarizing data. You must instantiate an object

before you can extract a summary, and even then it provides nothing like the detail made

available by ReflectionClass:

$record = new RecordProduct("record1", "bob", "bobbleson", 4, 50);

var_dump($record);

Here’s the output:

object(popp\ch04\batch02\RecordProduct)#326 (7) {

 ["status"]=>

 uninitialized(int)

 ["title":"popp\ch04\batch02\ShopProduct":private]=>

 string(7) "record1"

 ["producerMainName":"popp\ch04\batch02\ShopProduct":private]=>

 string(9) "bobbleson"

 ["producerFirstName":"popp\ch04\batch02\ShopProduct":private]=>

 string(3) "bob"

 ["price":protected]=>

 float(4)

 ["discount":"popp\ch04\batch02\ShopProduct":private]=>

 int(0)

 ["id":"popp\ch04\batch02\ShopProduct":private]=>

 int(0)

 ["playLength":"popp\ch04\batch02\RecordProduct":private]=>

 int(50)

}

Chapter 5 Object Tools

192

var_dump() and its cousin print_r() are fantastically convenient tools for exposing

the data in your scripts. For classes and functions, the Reflection API takes things to a

whole new level, though.

�Examining a Class
A crude dump of a ReflectionClass instance can provide a great deal of useful

information for debugging, but we can use the API in more specialized ways. Let’s work

directly with the Reflection classes.

You’ve already seen how to instantiate a ReflectionClass object:

$prodclass = new \ReflectionClass(RecordProduct::class);

Next, I will use the ReflectionClass object to investigate RecordProduct within a

script. What kind of class is it? Can an instance be created? Here’s a function to answer

these questions:

// class ClassInfo

public static function getData(\ReflectionClass $class): string

{

 $details = "";

 $name = $class->getName();

 �$details .= ($class->isUserDefined())

? "$name is user defined\n" : "" ;

 �$details .= ($class->isInternal())

? "$name is built-in\n" : "" ;

 �$details .= ($class->isInterface())

? "$name is interface\n" : "" ;

 �$details .= ($class->isAbstract())

? "$name is an abstract class\n" : "" ;

 �$details .= ($class->isFinal())

? "$name is a final class\n" : "" ;

 �$details .= ($class->isInstantiable())

? "$name can be instantiated\n" : "$name can not be instantiated\n" ;

 �$details .= ($class->isCloneable())

? "$name can be cloned\n" : "$name can not be cloned\n" ;

Chapter 5 Object Tools

193

 return $details;

}

$prodclass = new \ReflectionClass(RecordProduct::class);

print ClassInfo::getData($prodclass);

I create a ReflectionClass object, assigning it to a variable called $prodclass by

passing the RecordProduct class name to ReflectionClass’s constructor. $prodclass is

then passed to a method named ClassInfo::classData() that demonstrates some of

the methods that can be used to query a class.

The methods should be self-explanatory, but here’s a brief description of some

of them:

•	 ReflectionClass::getName() returns the name of the class being

examined.

•	 The ReflectionClass::isUserDefined() method returns

true if the class has been declared in PHP code, and

ReflectionClass::isInternal() yields true if the class is built-in.

•	 You can test whether a class is abstract with

ReflectionClass::isAbstract() and whether it’s an interface with

ReflectionClass::isInterface().

•	 If you want to get an instance of the class, you can test the feasibility

of that with ReflectionClass::isInstantiable().

•	 You can check whether a class is cloneable with the ReflectionClass

::isCloneable() method.

•	 You can even examine a user-defined class’s source code. The

ReflectionClass object provides access to its class’s filename and to

the start and finish lines of the class in the file.

Here’s a quick-and-dirty method that uses ReflectionClass to access the source of

a class:

class ReflectionUtil

{

 public static function getClassSource(\ReflectionClass $class): string

 {

 $path = $class->getFileName();

Chapter 5 Object Tools

194

 $lines = @file($path);

 $from = $class->getStartLine();

 $to = $class->getEndLine();

 $len = $to - $from + 1;

 return implode(array_slice($lines, $from - 1, $len));

 }

}

print ReflectionUtil::getClassSource(

 new \ReflectionClass(RecordProduct::class)

);

ReflectionUtil is a simple class with a single static method, ReflectionUtil::get

ClassSource(). That method takes a ReflectionClass object as its only argument and

returns the referenced class’s source code. ReflectionClass::getFileName() provides

the path to the class’s file as an absolute path, so the code should be able to go right

ahead and open it. file() obtains an array of all the lines in the file. ReflectionClass:

:getStartLine() provides the class’s start line; ReflectionClass::getEndLine() finds

the final line. From there, it’s simply a matter of using array_slice() to extract the lines

of interest.

To keep things brief, this code omits error handling (by placing the character @ in

front of the call to file()). In a real-world application, you’d want to check arguments

and result codes.

�Examining Methods
Just as ReflectionClass is used to examine a class, a ReflectionMethod object

examines a method.

You can get an array of ReflectionMethod objects from ReflectionClas

s::getMethods(). Alternatively, if you need to work with a specific method,

ReflectionClass::getMethod() accepts a method name and returns the relevant

ReflectionMethod object.

You can also instantiate ReflectionMethod directly, passing it either a class/method

string, the class name and method name, or an object and a method name.

Chapter 5 Object Tools

195

Here is what those variations might look like:

$record = new RecordProduct("record1", "bob", "bobbleson", 4, 50);

$classname = RecordProduct::class;

$rmethod1 = new \ReflectionMethod("{$classname}::__construct");

// class/method string

$rmethod2 = new \ReflectionMethod($classname, "__construct");

// class name and method name

$rmethod3 = new \ReflectionMethod($record, "__construct");

// object and method name

Here, we use ReflectionClass::getMethods() to put the ReflectionMethod class

through its paces:

$prodclass = new \ReflectionClass(RecordProduct::class);

$methods = $prodclass->getMethods();

foreach ($methods as $method) {

 print ClassInfo::methodData($method);

 print "\n----\n";

}

// class ClassInfo

public static function methodData(\ReflectionMethod $method): string

{

 $details = "";

 $name = $method->getName();

 �$details .= ($method->isUserDefined())

? "$name is user defined\n" : "" ;

 �$details .= ($method->isInternal())

? "$name is built-in\n" : "" ;

 �$details .= ($method->isAbstract())

? "$name is an abstract class\n" : "" ;

 �$details .= ($method->isPublic())

? "$name is public\n" : "" ;

Chapter 5 Object Tools

196

 �$details .= ($method->isProtected())

? "$name is protected\n" : "" ;

 �$details .= ($method->isPrivate())

? "$name is private\n" : "" ;

 �$details .= ($method->isStatic())

? "$name is static\n" : "" ;

 �$details .= ($method->isFinal())

? "$name is final\n" : "" ;

 �$details .= ($method->isConstructor())

? "$name is the constructor\n" : "" ;

 �$details .= ($method->returnsReference())

? "$name returns a reference (as opposed to a value)\n" : "" ;

 return $details;

}

The code uses ReflectionClass::getMethods() to get an array of

ReflectionMethod objects and then loops through the array, passing each object to

methodData().

The names of the methods used in methodData() reflect their intent: the code checks

whether the method is user-defined, built-in, abstract, public, protected, static, or final.

You can also check whether the method is the constructor for its class and whether or

not it returns a reference.

There’s one caveat: ReflectionMethod::returnsReference() doesn’t return true if

the tested method simply returns an object or an argument declared a reference in the

method signature. Instead, ReflectionMethod::returnsReference() returns true only

if the method in question has been explicitly declared to return a reference (by placing

an ampersand character in front of the method name).

As you might expect, you can access a method’s source code using a technique

similar to the one used previously with ReflectionClass:

// class ReflectionUtil

public static function getMethodSource(\ReflectionMethod $method): string

{

 $path = $method->getFileName();

 $lines = @file($path);

 $from = $method->getStartLine();

Chapter 5 Object Tools

197

 $to = $method->getEndLine();

 $len = $to - $from + 1;

 return implode(array_slice($lines, $from - 1, $len));

}

$class = new \ReflectionClass(RecordProduct::class);

$method = $class->getMethod('getSummaryLine');

print ReflectionUtil::getMethodSource($method);

Because ReflectionMethod provides us with getFileName(), getStartLine(), and

getEndLine() methods, it’s a simple matter to extract the method’s source code.

�Examining Method Arguments
Now that method signatures can constrain the types of object arguments, the ability

to examine the arguments declared in a method signature becomes useful. The

Reflection API provides the ReflectionParameter class just for this purpose. To get a

ReflectionParameter object, you need the help of a ReflectionMethod object. The Re

flectionMethod::getParameters() method returns an array of ReflectionParameter

objects.

You can also instantiate a ReflectionParameter object directly in the usual way. The

constructor to ReflectionParameter requires a callable argument and either an integer

representing the parameter number (indexed from zero) or a string representing the

argument name.

So, all four of these instantiations are equivalent. Each establishes a

ReflectionParameter object for the second argument to the constructor of the

RecordProduct class:

$classname = RecordProduct::class;

$rparam1 = new \ReflectionParameter([$classname, "__construct"], 1);

$rparam2 = new \ReflectionParameter([$classname, "__construct"],

"firstName");

$record = new RecordProduct("record1", "bob", "bobbleson", 4, 50);

$rparam3 = new \ReflectionParameter([$record, "__construct"], 1);

$rparam4 = new \ReflectionParameter([$record, "__construct"], "firstName");

Chapter 5 Object Tools

198

ReflectionParameter can tell you the name of an argument and whether the

variable is passed by reference (i.e., with a preceding ampersand in the method

declaration). It can also tell you the class required by argument hinting and whether the

method will accept a null value for the argument.

Here are some of ReflectionParameter’s methods in action:

$class = new \ReflectionClass(MyRecordProduct::class);

$method = $class->getMethod("__construct");

$params = $method->getParameters();

foreach ($params as $param) {

 print ClassInfo::argData($param) . "\n";

}

// class ClassInfo

public static function argData(\ReflectionParameter $arg): string

{

 $details = "";

 $declaringclass = $arg->getDeclaringClass();

 $name = $arg->getName();

 $position = $arg->getPosition();

 $details .= "\$$name has position $position\n";

 if ($arg->hasType()) {

 $type = $arg->getType();

 $typename = self::typeStr($type);

 $details .= "\$$name should be type {$typename}\n";

 }

 if ($arg->isPassedByReference()) {

 $details .= "\${$name} is passed by reference\n";

 }

 if ($arg->isDefaultValueAvailable()) {

 $def = $arg->getDefaultValue();

 $details .= "\${$name} has default: $def\n";

 }

Chapter 5 Object Tools

199

 if ($arg->allowsNull()) {

 $details .= "\${$name} can be null\n";

 }

 return $details;

}

private static function typeStr(\ReflectionType $type): string

{

 if ($type instanceof \ReflectionNamedType) {

 return $type->getName();

 }

 $ret = "(";

 $types = $type->getTypes();

 $typestrs = [];

 $sep = ($type instanceof \ReflectionIntersectionType) ? "&" : "|";
 foreach ($types as $utype) {

 $typename = self::typeStr($utype);

 $typestrs[] = $typename;

 }

 $ret .= implode(" $sep ", $typestrs) . ")";

 return $ret;

}

Using the ReflectionClass::getMethod() method, the code acquires a

ReflectionMethod object. It then uses ReflectionMethod::getParameters() to

get an array of ReflectionParameter objects. The argData() function uses the

ReflectionParameter object it was passed to acquire information about the parameter.

First, it gets the parameter’s variable name with ReflectionParameter::getN

ame(). The ReflectionParameter::getType() method returns a ReflectionType

object, which should be one of ReflectionNamedType, ReflectionUnionType, or

ReflectionIntersectionType. It passes this to the private typeStr() method which

either returns a simple type name or recursively constructs a string describing the

composite type.

Back in the argData() method, the code then checks whether the parameter is a

reference with isPassedByReference(), and, finally, it looks for the availability of a

default value, which it then adds to the return string.

Chapter 5 Object Tools

200

�Using the Reflection API
With the basics of the Reflection API under your belt, you can now put the API to work.

Imagine that you’re creating a class that calls Module objects dynamically. That is,

it can accept plug-ins written by third parties that can be slotted into the application

without the need for any hard-coding. To achieve this, you might define an execute()

method in the Module interface or abstract base class, forcing all child classes to define

an implementation. You could allow the users of your system to list Module classes in

an external XML configuration file. Your system can use this information to aggregate a

number of Module objects before calling execute() on each one.

What happens, however, if each Module requires different information to do its job?

In that case, the XML file can provide property keys and values for each Module, and the

creator of each Module can provide setter methods for each property name. Given that

foundation, it’s up to your code to ensure that the correct setter method is called for the

correct property name.

Here’s some groundwork for the Module interface and a couple of implementing

classes:

class Person

{

 public function __construct(public string $name)

 {

 }

}

interface Module

{

 public function execute(): void;

}

class FtpModule implements Module

{

 public function setHost(string $host): void

 {

 print "FtpModule::setHost(): $host\n";

 }

Chapter 5 Object Tools

201

 public function setUser(string|int $user): void
 {

 print "FtpModule::setUser(): $user\n";

 }

 public function execute(): void

 {

 // do things

 }

}

class PersonModule implements Module

{

 public function setPerson(Person $person): void

 {

 print "PersonModule::setPerson(): {$person->name}\n";

 }

 public function execute(): void

 {

 // do things

 }

}

Here, PersonModule and FtpModule both provide empty implementations of the

execute() method. Each class also implements setter methods that do nothing but

report that they were invoked. The system lays down the convention that all setter

methods must expect a single argument: either a string or an object that can be

instantiated with a single string argument. The PersonModule::setPerson() method

expects a Person object, so I include a Person class in my example.

To work with PersonModule and FtpModule, the next step is to create a ModuleRunner

class. It will use a multidimensional array indexed by module name to represent

configuration information provided in the XML file. Here’s that code:

class ModuleRunner

{

 private array $configData = [

 PersonModule::class => ['person' => 'bob'],

Chapter 5 Object Tools

202

 FtpModule::class => [

 'host' => 'example.com',

 'user' => 'anon'

]

];

 private array $modules = [];

 // ...

}

The ModuleRunner::$configData property contains references to the two Module

classes. For each module element, the code maintains a subarray containing a set of

properties. ModuleRunner’s init() method is responsible for creating the correct Module

objects, as shown here:

// class ModuleRunner

public function init(): void

{

 $interface = new \ReflectionClass(Module::class);

 foreach ($this->configData as $modulename => $params) {

 $module_class = new \ReflectionClass($modulename);

 if (! $module_class->isSubclassOf($interface)) {

 throw new \Exception("unknown module type: $modulename");

 }

 $module = $module_class->newInstance();

 foreach ($module_class->getMethods() as $method) {

 $this->handleMethod($module, $method, $params);

 // we cover handleMethod() in a future listing!

 }

 array_push($this->modules, $module);

 }

}

$test = new ModuleRunner();

$test->init();

Chapter 5 Object Tools

203

The init() method loops through the ModuleRunner::$configData array, and for

each module element, it attempts to create a ReflectionClass object. An exception

is generated when ReflectionClass’s constructor is invoked with the name of a

nonexistent class, so in a real-world context, I would include more error handling here.

I use the ReflectionClass::isSubclassOf() method to ensure that the module class

belongs to the Module type.

Before you can invoke the execute() method of each Module, an instance has to be

created. That’s the purpose of ReflectionClass::newInstance(). That method accepts

any number of arguments, which it passes on to the relevant class’s constructor method.

If all’s well, it returns an instance of the class (for production code, be sure to code

defensively: check that the constructor method for each Module object doesn’t require

arguments before creating an instance).

ReflectionClass::getMethods() returns an array of all ReflectionMethod

objects available for the class. For each element in the array, the code invokes the

ModuleRunner::handleMethod() method. It then passes it a Module instance, the

ReflectionMethod object, and an array of properties to associate with the Module.

handleMethod() verifies and invokes the Module object’s setter methods:

// class ModuleRunner

public function handleMethod(Module $module, \ReflectionMethod $method,

array $args): bool

{

 $name = $method->getName();

 $params = $method->getParameters();

 if (count($params) != 1 || substr($name, 0, 3) != "set") {
 return false;

 }

 $property = strtolower(substr($name, 3));

 if (! isset($args[$property])) {

 return false;

 }

Chapter 5 Object Tools

204

 if (! $params[0]->hasType()) {

 $method->invoke($module, $args[$property]);

 return true;

 }

 $arg_type = $params[0]->getType();

 �if ($arg_type instanceof \ReflectionNamedType && class_exists

($arg_type->getName())) {

 $method->invoke(

 $module,

 � �(new \ReflectionClass($arg_type->getName()))->

newInstance($args[$property])

);

 } else {

 $method->invoke($module, $args[$property]);

 }

 return true;

}

handleMethod() first checks that the method is a valid setter. In the code, a valid

setter method must be named setXXXX() and must declare one—and only one—

parameter.

Assuming that the parameter checks out, the code then extracts a property name

by removing set from the beginning of the method name and converting the resulting

substring to lowercase characters. That string is used to test the $args array argument.

This array contains the user-supplied properties that are to be associated with the Module

object. If the $args array doesn’t contain the property, the code gives up and returns false.

If the property name extracted from the module method matches an element in the

$args array, I can go ahead and invoke the correct setter method. To do that, the code

must check the type of the first (and only) required argument of the setter method. If the

parameter has a type declaration (ReflectionParameter::hasType()) and the specified

type resolves to a class, then we know that the method expects an object. Otherwise, we

assume that it expects a primitive.

To call the setter method, I need a new Reflection API method.

ReflectionMethod::invoke() requires an object (or null for a static method)

and any number of method arguments to pass on to the method it represents.

Chapter 5 Object Tools

205

ReflectionMethod::invoke() throws an exception if the provided object does not

match its method. I call this method in one of two ways. If the setter method doesn’t

require an object argument, I call ReflectionMethod::invoke() with the user-supplied

property string. If the method requires an object (which I can test for using class_

exists with the type name), I use the property string to instantiate an object of the

correct type. This is then passed to the setter.

The example assumes that the required object can be instantiated with a single

string argument to its constructor. It’s best, of course, to check this before calling Reflect

ionClass::newInstance().

By the time that the ModuleRunner::init() method has run its course, the object

has a store of Module objects, all primed with data. The class can now be given a method

to loop through the Module objects, calling execute() on each one.

�Attributes
Many languages provide a mechanism by which special tags in source files can be made

available to the code. These are often known as annotations. Although there have been

some userland implementations in PHP packages (notably, e.g., the Doctrine database

library and Symfony routing component) until PHP 8, there was no support for this

feature at a language level. This changed with the introduction of attributes.

Essentially, an attribute is a special tag that allows you to add additional information

to a class, method, property, parameter, or constant. This information becomes available

to a system through reflection.

So what can you use attributes for? Typically, a method might provide more

information about the way that it expects to be used. Client code might scan a class to

discover methods that should be automatically run, for example. I’ll mention other use

cases as we go.

Let’s declare and access an attribute:

namespace popp\ch05\batch09;

#[info]

class Person

{

}

Chapter 5 Object Tools

206

So an attribute is declared with a string token enclosed by #[and]. In this case,

I have chosen #[info]. In many code examples, I exclude a namespace declaration

because the code will run equally well within a declared namespace or in the root

namespace. In this case, though, it is worth noting the namespace. I’ll return to

this point.

Now to access the attribute:

$rpers = new \ReflectionClass(Person::class);

$attrs = $rpers->getAttributes();

foreach ($attrs as $attr) {

 print $attr->getName() . "\n";

}

I instantiate a ReflectionClass object so that I can examine Person. Then I call the

getAttributes() method. This returns an array of ReflectionAttribute objects. Refle

ctionAttribute::getName() returns the name of the attribute I declared.

Here is the output:

popp\ch05\batch09\info

So, in my output, the attribute is namespaced. The popp\ch05\batch09 portion of

the name in my attribute declaration is implicit. I can reference an attribute according to

the same rules and aliases we use to reference a class. So declaring [#info] within the

popp\ch05\batch09 namespace is equivalent to declaring [#popp\ch05\batch09\info]

elsewhere. In fact, as you’ll see, you can even declare a class that can be instantiated for

any attribute you reference.

Attributes can be applied to various aspects of PHP. Table 5-2 lists features that can

be annotated along with corresponding Reflection classes.

Table 5-2.  PHP Features That Are Amenable to Attributes

Feature Acquisition

Class ReflectionClass::getAttributes()

Property ReflectionProperty::getAttributes()

Function/Method ReflectionFunction::getAttributes()

Parameter ReflectionParameter::getAttributes()

Constant ReflectionConstant::getAttributes()

Chapter 5 Object Tools

207

Here is an example of an attribute applied to a method:

#[moreinfo]

public function setName(string $name): void

{

 $this->name = $name;

}

Now to access it. You should find the process pretty familiar:

$rpers = new \ReflectionClass(Person::class);

$rmeth = $rpers->getMethod("setName");

$attrs = $rmeth->getAttributes();

foreach ($attrs as $attr) {

 print $attr->getName() . "\n";

}

The output should be familiar now, as well. We display a fully namespaced path to

moreinfo:

popp\ch05\batch09\moreinfo

There is already some use in what you’ve seen so far. We might include an attribute

as a flag of some kind. For example, a Debug attribute could be associated with methods

that should only be invoked during development. There is still more to attributes,

however. We can define a type and provide further information through arguments.

This opens up new possibilities. In a routing library, I might assert the URL endpoint

a method should map to. In an event system, an attribute might signal that a class or

method should be associated with a particular event.

In this example, I define an attribute that includes two arguments:

#[ApiInfo("The 3 digit company identifier", "A five character

department tag")]

public function setInfo(int $companyid, string $department): void

{

 $this->companyid = $companyid;

 $this->department = $department;

}

Chapter 5 Object Tools

208

Once I have acquired a ReflectionAttribute object, I can access the arguments

using the getArguments() method:

$rpers = new \ReflectionClass(Person::class);

$rmeth = $rpers->getMethod("setInfo");

$attrs = $rmeth->getAttributes();

foreach ($attrs as $attr) {

 print $attr->getName() . "\n";

 foreach ($attr->getArguments() as $arg) {

 print " - $arg\n";

 }

}

Here is the output:

popp\ch05\batch09\ApiInfo

 - The 3 digit company identifier

 - A five character department tag

As I mentioned, you can explicitly map an attribute to a class. Here is a simple

ApiInfo class:

namespace popp\ch05\batch09;

use Attribute;

#[Attribute]

class ApiInfo

{

 �public function __construct(public string $compinfo, public string

$depinfo)

 {

 }

}

In order to properly make the association between the attribute and my class, I must

remember to use Attribute and also apply the built-in [#Attribute] to the class.

Chapter 5 Object Tools

209

At the time of instantiation, any arguments to the associated attribute are automatically

passed along to the corresponding class’s constructor. In this case, I simply assign the data

to corresponding properties. In a real-world application, I would probably perform some

additional processing or provide associated functionality to justify the declaration of a class.

It is important to understand that the attribute class is not automatically invoked. We

must do that through ReflectionAttribute::newInstance(). Here, I adapt my client

code to work with the new class:

$rpers = new \ReflectionClass(Person::class);

$rmeth = $rpers->getMethod("setInfo");

$attrs = $rmeth->getAttributes();

foreach ($attrs as $attr) {

 print $attr->getName() . "\n";

 $attrobj = $attr->newInstance();

 print " - " . $attrobj->compinfo . "\n";

 print " - " . $attrobj->depinfo . "\n";

}

Although I’m accessing the attribute data through the ApiInfo object, the effect

here is identical. I call ReflectionAttribute::newInstance(), and then I access the

populated properties.

Wait, though! That last example has a deep and potentially fatal flaw. Multiple

attributes can be added to a method. We cannot be sure, therefore, that every attribute

assigned to the setInfo() method is an instance of ApiInfo. Those property accesses to

ApiInfo::$compinfo and ApiInfo::$depinfo are bound to fail for any attribute that is

not of type ApiInfo.

Luckily, we can apply a filter to getAttributes():

$rpers = new \ReflectionClass(Person::class);

$rmeth = $rpers->getMethod("setInfo");

$attrs = $rmeth->getAttributes(ApiInfo::class);

Now, only exact matches for ApiInfo::class will be returned—rendering the rest of

the code safe. We could relax things a little further like this:

$rpers = new \ReflectionClass(Person::class);

$rmeth = $rpers->getMethod("setInfo");

$attrs = $rmeth->getAttributes(ApiInfo::class, \ReflectionAttribute::

IS_INSTANCEOF);

Chapter 5 Object Tools

210

By passing along a second parameter, ReflectionAttribute::IS_INSTANCEOF, to Re

flectionAttribute::getAttributes(), I loosen the filter to match the specified class

and any extending or implementing child classes or interfaces.

Table 5-3 lists the methods of ReflectionAttribute we have encountered.

Table 5-3.  Some ReflectionAttribute Methods

Method Description

getName() Returns a fully namespaced type for the attribute

getArguments() Returns an array of all arguments associated with the referenced attribute

newInstance() Instantiates and returns an instance of the attribute class, having passed any

arguments to the constructor

Note  In Chapter 9, I work through a much more sophisticated example of
attribute usage.

�Summary
In this chapter, I covered some of the techniques and tools that you can use to manage

your libraries and classes. I explored PHP’s namespace feature. You saw that we can

combine include paths, namespaces, autoload, and the file system to provide a flexible

organization for classes.

We also examined PHP’s object and class functions, before taking things to the

next level with the powerful Reflection API. We used the Reflection classes to build a

simple example that illustrates one of the potential uses that Reflection has to offer.

Finally, we combined the Reflection classes with attributes: a major feature introduced

with PHP 8.

Chapter 5 Object Tools

211
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3_6

CHAPTER 6

Objects and Design
Now that we have seen the mechanics of PHP’s object support in some detail, we

will step back from the details and consider how best to use the tools that we have

encountered. In this chapter, I introduce you to some of the issues surrounding objects

and design. I will also look at the UML, a powerful graphical language for describing

object-oriented systems.

This chapter will cover the following topics:

•	 Design basics: What I mean by design and how object-oriented design

differs from procedural code

•	 Class responsibilities: How to decide what to include in a class

•	 Encapsulation: Hiding implementation and data behind a class’s

interface

•	 Polymorphism: Using a common supertype to allow the transparent

substitution of specialized subtypes at runtime

•	 The UML: Using diagrams to describe object-oriented architectures

�Defining Code Design
One sense of code design concerns the definition of a system: the determination of a

system’s requirements, scope, and objectives. What does the system need to do? For

whom does it need to do it? What are the outputs of the system? Do they meet the stated

need? On a lower level, design can be taken to mean the process by which you define the

participants of a system and organize their relationships. This chapter is concerned with

the second sense: the definition and disposition of classes and objects.

So what is a participant? An object-oriented system is made up of classes. It is

important to decide the nature of these players in your system. Classes are made up, in

part, of methods; so in defining your classes, you must decide which methods belong

https://doi.org/10.1007/979-8-8688-0482-3_6#DOI

212

together. As you will see, though, classes are often combined in inheritance relationships

to conform to common interfaces. It is these interfaces, or types, that should be your first

port of call in designing your system.

There are other relationships that you can define for your classes. You can create

classes that are composed of other types or that manage lists of other type instances. You

can design classes that simply use other objects. The potential for such relationships of

composition or use is built into your classes (e.g., through the use of type declarations

in method signatures), but the actual object relationships take place at runtime, which

can add flexibility to your design. You will see how to model these relationships in this

chapter, and we’ll explore them further throughout the book.

As part of the design process, you must decide when an operation should belong

to a type and when it should belong to another class used by the type. Everywhere you

turn, you are presented with choices, decisions that might lead to clarity and elegance or

might mire you in compromise.

In this chapter, I will examine some issues that can influence a few of these choices.

�Object-Oriented and Procedural Programming
How does object-oriented design differ from the more traditional procedural code? It is

tempting to say that the primary distinction is that object-oriented code has objects in it.

This is neither true nor useful. In PHP, you will often find procedural code using objects.

You may also come across classes that contain tracts of procedural code. The presence

of classes does not guarantee object-oriented design, even in a language such as Java,

which forces you to do most things inside a class.

One core difference between object-oriented and procedural code can be found in

the way that responsibility is distributed. Procedural code takes the form of a sequential

series of commands and function calls. The controlling code tends to take responsibility

for handling differing conditions. This top-down control can result in the development

of duplications and dependencies across a project. Object-oriented code tries to

minimize these dependencies by moving responsibility for handling tasks away from

client code and toward the objects in the system.

In this section, I’ll set up a simple problem and then analyze it in terms of both

object-oriented and procedural code to illustrate these points. My project is to build a

quick tool for reading from and writing to configuration files. In order to maintain focus

on the structures of the code, I will omit implementation details in these examples.

Chapter 6 Objects and Design

213

I’ll begin with a procedural approach to this problem. To start with, I will read and

write text in this format:

key:value

I need only two functions for this purpose:

function readParams(string $filepath): array

{

 $params = [];

 // read text parameters from file at $filepath

 return $params;

}

function writeParams(array $params, string $filepath): void

{

 // write text parameters to file at $filepath

}

The readParams function requires the name of a source file. It attempts to open

it and reads each line, looking for key/value pairs. It builds up an associative array as

it goes. Finally, it returns the array to the controlling code. writeParams() accepts an

associative array and the path to a source file. It loops through the associative array,

writing each key/value pair to the file. Here’s some client code that works with the

functions:

$file = "/tmp/params.txt";

$params = [

 "key1" => "val1",

 "key2" => "val2",

 "key3" => "val3",

];

writeParams($params, $file);

$output = readParams($file);

print_r($output);

Chapter 6 Objects and Design

214

This code is relatively compact and should be easy to maintain. The writeParams()

function is called to create param.txt and to write to it with something like this:

key1:val1

key2:val2

key3:val3

The readParams() function parses the same format.

In many projects, scope grows and evolves. Let’s fake this by introducing a new

requirement. The code must now also handle an XML structure that looks like this:

<params>

 <param>

 <key>my key</key>

 <val>my val</val>

 </param>

</params>

The parameter file should be read in XML mode if the parameter file ends in .xml.

Although this is not difficult to accommodate, it threatens to make my code much harder

to maintain. I really have two options at this stage. I can check the file extension in the

controlling code, or I can test inside my read and write functions. Here, I go for the latter

approach:

function readParams(string $filepath): array

{

 $params = [];

 if (preg_match("/\.xml$/i", $filepath)) {

 // read XML parameters from $filepath

 } else {

 // read text parameters from $filepath

 }

 return $params;

}

Chapter 6 Objects and Design

215

function writeParams(array $params, string $filepath): void

{

 if (preg_match("/\.xml$/i", $filepath)) {

 // write XML parameters to $filepath

 } else {

 // write text parameters to $filepath

 }

}

Note I llustrative code always involves a difficult balancing act. It needs to be
clear enough to make its point, which often means sacrificing error checking
and fitness for its ostensible purpose. In other words, the example here is really
intended to illustrate issues of design and duplication rather than the best way
to parse and write file data. For this reason, I omit implementation where it is not
relevant to the issue at hand.

As you can see, I have had to use the test for the XML extension in each of the

functions. It is this repetition that might cause us problems down the line. If I were to be

asked to include yet another parameter format, I would need to remember to keep the

readParams() and writeParams() functions in line with one another.

Now I’ll address the same problem with some simple classes. First, I create an

abstract base class that will define the interface for the type:

abstract class ParamHandler

{

 protected array $params = [];

 public function __construct(protected string $filepath)

 {

 }

 public function addParam(string $key, string $val): void

 {

 $this->params[$key] = $val;

 }

Chapter 6 Objects and Design

216

 public function getAllParams(): array

 {

 return $this->params;

 }

 public static function getInstance(string $filename): ParamHandler

 {

 if (preg_match("/\.xml$/i", $filename)) {

 return new XmlParamHandler($filename);

 }

 return new TextParamHandler($filename);

 }

 abstract public function write(): void;

 abstract public function read(): void;

}

I define the addParam() method to allow the user to add parameters to the protected

$params property and getAllParams() to provide access to a copy of the array.

I also create a static getInstance() method that tests the file extension and returns

a particular subclass according to the results. Crucially, I define two abstract methods,

read() and write(), ensuring that any subclasses will support this interface.

Note P lacing a static method for generating child objects in the parent class
is convenient. Such a design decision has its own consequences, however. The
ParamHandler type is now essentially limited to working with the concrete
classes in this central conditional statement. What happens if you need to handle
another format? Of course, if you are the maintainer of ParamHandler, you can
always amend the getInstance() method. If you are a client coder, however,
changing this library class may not be so easy (in fact, changing it won’t be hard,
but you face the prospect of having to reapply your patch every time you reinstall
the package that provides it). I will discuss issues of object creation in Chapter 9.

Chapter 6 Objects and Design

217

Now, I’ll define the subclasses, once again omitting the details of implementation to

keep the example clean:

class XmlParamHandler extends ParamHandler

{

 public function write(): void

 {

 // write XML

 // using $this->params

 }

 public function read(): void

 {

 // read XML

 // and populate $this->params

 }

}

class TextParamHandler extends ParamHandler

{

 public function write(): void

 {

 // write text

 // using $this->params

 }

 public function read(): void

 {

 // read text

 // and populate $this->params

 }

}

Chapter 6 Objects and Design

218

These classes simply provide implementations of the write() and read() methods.

Each class will write and read according to the appropriate format. Client code will write

to both text and XML formats entirely transparently, according to the file extension:

$test = ParamHandler::getInstance(__DIR__ . "/params.xml");

$test->addParam("key1", "val1");

$test->addParam("key2", "val2");

$test->addParam("key3", "val3");

$test->write(); // writing in XML format

We can also read from either file format:

$test = ParamHandler::getInstance(__DIR__ . "/params.txt");

$test->read(); // reading in text format

$params = $test->getAllParams();

print_r($params);

So what can we learn from these two approaches?

�Responsibility
The controlling code in the procedural example takes responsibility for deciding about

format—not once, but twice. The conditional code is tidied away into functions, certainly,

but this merely disguises the fact of a single flow, making decisions as it goes. Calls to

readParams() and to writeParams() take place in different contexts, so we are forced to

repeat the file extension test in each function (or to perform variations on this test).

In the object-oriented version, this choice about file format is made in the static

getInstance() method, which tests the file extension only once, serving up the correct

subclass. The client code takes no responsibility for implementation. It uses the provided

object with no knowledge of, or interest in, the particular subclass it belongs to. It knows

only that it is working with a ParamHandler object and that it will support write() and

read(). While the procedural code busies itself about details, the object-oriented code

works only with an interface, unconcerned about the details of implementation. Because

responsibility for implementation lies with the objects and not with the client code, it

would be easy to switch in support for new formats transparently.

Chapter 6 Objects and Design

219

�Cohesion
Cohesion is the extent to which proximate procedures are related to one another. Ideally,

you should create components that share a clear responsibility. If your code spreads

related routines widely, you will find them harder to maintain as you have to hunt

around to make changes.

Our ParamHandler classes collect related procedures into a common context. The

methods for working with XML inhabit a common context in which they can share data

and where changes to one method can easily be reflected in another if necessary (e.g., if

you needed to change an XML element name). The ParamHandler classes can therefore

be said to have high cohesion.

The procedural example, on the other hand, separates related procedures. The code

for working with XML is spread across functions.

�Coupling
Tight coupling occurs when discrete parts of a system’s code are tightly bound up with

one another so that a change in one part necessitates changes in the others. Tight

coupling is by no means unique to procedural code, though the sequential nature of

such code makes it prone to the problem.

You can see this kind of coupling in the procedural example. The writeParams() and

readParams() functions run the same test on a file extension to determine how they should

work with data. Any change in logic you make to one will have to be implemented in the

other. If you were to add a new format, for example, you would have to bring the functions

into line with one another, so that they both implement a new file extension test in the same

way. This problem can only get worse as you add new parameter-related functions.

The object-oriented example decouples the individual subclasses from one another

and from the client code. If you were required to add a new parameter format, you could

simply create a new subclass, amending a single test in the static getInstance() method.

�Orthogonality
The killer combination of components with tightly defined responsibilities that are also

independent from the wider system is sometimes referred to as orthogonality. Andrew

Hunt and David Thomas discuss this subject in their book, The Pragmatic Programmer,

20th Anniversary Edition (Addison-Wesley, 2019).

Chapter 6 Objects and Design

220

Orthogonality, it is argued, promotes reuse in that components can be plugged into

new systems without needing any special configuration. Such components will have

clear inputs and outputs, independent of any wider context. Orthogonal code makes

change easier because the impact of altering an implementation will be localized to the

component being altered. Finally, orthogonal code is safer. The effects of bugs should

be limited in scope. An error in highly interdependent code can easily cause knock-on

effects in the wider system.

There is nothing automatic about loose coupling and high cohesion in a class

context. We could, after all, embed our entire procedural example into one misguided

class. So how can we achieve this balance in our code? I usually start by considering the

classes that should live in my system.

�Choosing Your Classes
It can be surprisingly difficult to define the boundaries of your classes, especially as they

will evolve with any system that you build.

It can seem straightforward when you are modeling the real world. Object-oriented

systems often feature software representations of real things—Person, Invoice, and Shop

classes abound. This would seem to suggest that defining a class is a matter of finding

the things in your system and then giving them agency through methods. This is not a

bad starting point, but it does have its dangers. If you see a class as a noun, a subject

for any number of verbs, then you may find it bloating as ongoing development and

requirement changes call for it to do more and more things.

Let’s consider the ShopProduct example that we created in Chapter 3. Our system

exists to offer products to a customer, so defining a ShopProduct class is an obvious

choice. But is that the only decision we need to make? We provide methods such as

getTitle() and getPrice() for accessing product data. When we are asked to provide

a mechanism for outputting summary information for invoices and delivery notes, it

seems to make sense to define a write() method. When the client asks us to provide

the product summaries in different formats, we look again at our class. We duly create

writeXML() and writeHTML() methods in addition to the write() method. Or we add

conditional code to write() to output different formats, according to an option flag.

Either way, the problem here is that the ShopProduct class is now trying to do

too much. It is struggling to manage strategies for display, as well as for managing

product data.

Chapter 6 Objects and Design

221

How should you think about defining classes? The best approach is to think of a

class as having a primary responsibility and to make that responsibility as singular and

focused as possible. Put the responsibility into words. It has been said that you should be

able to describe a class’s responsibility in 25 words or fewer, rarely using the words “and”

or “or.” If your sentence gets too long or mired in clauses, it is probably time to consider

defining new classes along the lines of some of the responsibilities you have described.

So ShopProduct classes are responsible for managing product data. If we add

methods for writing to different formats, we begin to add a new area of responsibility:

product display. As you saw in Chapter 3, we actually defined two types based on these

separate responsibilities. The ShopProduct type remained responsible for product

data, and the ShopProductWriter type took on responsibility for displaying product

information. Individual subclasses refined these responsibilities.

Note  Very few design rules are entirely inflexible. You will sometimes see code
for saving object data in an otherwise unrelated class, for example. Although this
would seem to violate the rule that a class should have a single focus, it can be
the most convenient place for the functionality to live because a method has to
have full access to an instance’s fields. Using local methods for persistence can
also save us from creating a parallel hierarchy of persistence classes mirroring our
savable classes and thereby introducing unavoidable coupling. We deal with other
strategies for object persistence in Chapter 12. Avoid religious adherence to design
rules; they are not a substitute for analyzing the problem before you. Try to remain
alive to the reasoning behind the rule and emphasize that over the rule itself.

�Polymorphism
Polymorphism, or class switching, is a common feature of object-oriented systems. You

have encountered it several times already in this book.

Polymorphism is the maintenance of multiple implementations behind a common

interface. This sounds complicated, but in fact it should be very familiar to you by now.

The need for polymorphism is often signaled by the presence of extensive conditional

statements in your code.

Chapter 6 Objects and Design

222

When I first created the ShopProduct class in Chapter 3, I experimented with a single

class that managed functionality for books and records, in addition to generic products.

In order to provide summary information, I relied on a conditional statement:

public function getSummaryLine(): string

{

 $base = "{$this->title} ({$this->producerMainName}, ";

 $base .= "{$this->producerFirstName})";

 if ($this->type == 'book') {

 $base .= ": page count - {$this->numPages}";

 } elseif ($this->type == 'record') {

 $base .= ": playing time - {$this->playLength}";

 }

 return $base;

}

These statements suggested the shape for the two subclasses: RecordProduct and

BookProduct.

By the same token, the conditional statements in my procedural parameter example

contained the seeds of the object-oriented structure I finally arrived at. I repeated the

same condition in two parts of the script:

function readParams(string $filepath): array

{

 $params = [];

 if (preg_match("/\.xml$/i", $filepath)) {

 // read XML parameters from $filepath

 } else {

 // read text parameters from $filepath

 }

 return $params;

}

Chapter 6 Objects and Design

223

function writeParams(array $params, string $filepath): void

{

 if (preg_match("/\.xml$/i", $filepath)) {

 // write XML parameters to $filepath

 } else {

 // write text parameters to $filepath

 }

}

Each clause suggested one of the subclasses I finally produced: XmlParamHandler

and TextParamHandler. These extended the abstract base class ParamHandler’s write()

and read() methods:

// could return XmlParamHandler or TextParamHandler

$test = ParamHandler::getInstance($file);

$test->read(); // could be XmlParamHandler::read() or

TextParamHandler::read()

$test->addParam("newkey1", "newval1");

$test->write(); // could be XmlParamHandler::write() or

TextParamHandler::write()

It is important to note that polymorphism doesn’t banish conditionals. Methods

such as ParamHandler::getInstance() will often determine which objects to return

based on switch or if statements. These tend to centralize the conditional code into one

place, though.

As you have seen, PHP enforces the interfaces defined by abstract classes. This

is helpful because we can be sure that a concrete child class will support exactly the

same method signatures as those defined by an abstract parent. This includes type

declarations and access controls. Client code can, therefore, treat all children of a

common superclass interchangeably (as long as it only relies on only functionality

defined in the parent).

Chapter 6 Objects and Design

224

�Encapsulation
Encapsulation simply means the hiding of data and functionality from a client. And once

again, it is a key object-oriented concept.

On the simplest level, you encapsulate data by declaring members private or

protected. By hiding a property from client code, you enforce an interface and prevent

the accidental corruption of an object’s data.

Polymorphism illustrates another kind of encapsulation. By placing different

implementations behind a common interface, you hide these underlying strategies

from the client. This means that any changes that are made behind this interface are

transparent to the wider system. You can add new classes or change the code in a class

without causing errors. The interface is what matters, not the mechanisms working

beneath it. The more independent these mechanisms are kept, the less chance that

changes or repairs will have a knock-on effect in your projects.

Encapsulation is, in some ways, one of the central planks of object-oriented

programming. Your objective should be to make each part as independent as possible

from its peers. Classes and methods should receive as much information as is necessary

to perform their allotted tasks, which should be limited in scope and clearly identified.

The introduction of the private, protected, and public keywords has made

encapsulation easier. Encapsulation is also a state of mind, though. PHP 4 provided no

formal support for hiding data. Privacy had to be signaled using documentation and naming

conventions. An underscore, for example, is a common way of signaling a private property:

var $_touchezpas;

Code had to be checked closely, of course, because privacy was not strictly enforced.

Interestingly, though, errors were rare because the structure and style of the code made

it pretty clear which properties wanted to be left alone.

By the same token, even after PHP 5 arrived, we could break the rules and discover

the exact subtype of an object that we were using in a class-switching context simply by

using the instanceof operator:

public function workWithProducts(ShopProduct $prod)

{

 if ($prod instanceof RecordProduct) {

 // do record thing

Chapter 6 Objects and Design

225

 } elseif ($prod instanceof BookProduct) {

 // do book thing

 }

}

You may have a very good reason to do this, but, in general, it carries a slightly

uncertain odor. By querying the specific subtype in the example, I am setting up a

dependency. Although the specifics of the subtype were hidden by polymorphism,

it would have been possible to have changed the ShopProduct inheritance hierarchy

entirely with no ill effects. This code ends that. Now, if I need to rationalize the

RecordProduct and BookProduct classes, I may create unexpected side effects in the

workWithProducts() method.

There are two lessons to take away from this example. First, encapsulation helps

you create orthogonal code. Second, the extent to which encapsulation is enforceable

is beside the point. Encapsulation is a technique that should be observed equally by

classes and their clients.

�Forget How to Do It
If you are like me, the mention of a problem will set your mind racing, looking for

mechanisms that might provide a solution. You might select functions that will address

an issue, revisit clever regular expressions, and track down Composer packages. You

probably have some pasteable code in an old project that does something somewhat

similar. At the design stage, you can profit by setting all that aside for a while. Empty your

head of procedures and mechanisms.

Think only about the key participants of your system: the types it will need and

their interfaces. Of course, your knowledge of process will inform your thinking. A class

that opens a file will need a path, database code will need to manage table names and

passwords, and so on. Let the structures and relationships in your code lead you, though.

You will find that the implementation falls into place easily behind a well-

defined interface. You then have the flexibility to switch out, improve, or extend an

implementation should you need to, without affecting the wider system.

In order to emphasize interface, think in terms of abstract base classes or interfaces

rather than concrete children. In my parameter-fetching code, for example, the interface

is the most important aspect of the design. I want a type that reads and writes name/

value pairs. It is this responsibility that is important about the type, not the actual

Chapter 6 Objects and Design

226

persistence medium or the means of storing and retrieving data. I design the system

around the abstract ParamHandler class and only add in the concrete strategies for

actually reading and writing parameters later on. In this way, I build both polymorphism

and encapsulation into my system from the start. The structure lends itself to class

switching.

Having said that, of course, I knew from the start that there would be text and XML

implementations of ParamHandler, and there is no question that this influenced my

interface. There is always a certain amount of mental juggling to do when designing

interfaces.

In Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley

Professional, 1995), the Gang of Four summed up this principle with the phrase,

“Program to an interface, not an implementation.” It is a good one to add to your coder’s

handbook.

�Four Signposts
Very few people get it absolutely right at the design stage. Most of us amend our code as

requirements change or as we gain a deeper understanding of the nature of the problem

we are addressing.

As you amend your code, it can easily drift beyond your control. A method is added

here and a new class there, and gradually your system begins to decay. As you have

seen already, your code can point the way to its own improvement. These pointers

in code are sometimes referred to as code smells—that is, features in code that may

suggest particular fixes or at least call you to look again at your design. In this section, I

distill some of the points already made into four signs that you should watch out for as

you code.

�Code Duplication
Duplication is one of the great evils in code. If you get a strange sense of déjà vu as you

write a routine, chances are you have a problem.

Take a look at the instances of repetition in your system. Perhaps they belong

together. Duplication generally means tight coupling. If you change something

fundamental about one routine, will the similar routines need amendment? If this is the

case, they probably belong in the same class.

Chapter 6 Objects and Design

227

�The Class Who Knew Too Much
It can be a pain passing parameters around from method to method. Why not simply

reduce the pain by using a global variable? With a global, everyone can get at the data.

Global variables have their place, but they do need to be viewed with some level of

suspicion. That’s quite a high level of suspicion, by the way. By using a global variable,

or by giving a class any kind of knowledge about its wider domain, you anchor it into its

context, making it less reusable and dependent on code beyond its control. Remember,

you want to decouple your classes and routines and not create interdependence. Try to

limit a class’s knowledge of its context. I will look at some strategies for doing this later in

the book.

�The Jack of All Trades
Is your class trying to do too many things at once? If so, see if you can list the

responsibilities of the class. You may find that one of them will form the basis of a good

class itself.

Leaving an overzealous class unchanged can cause particular problems if you create

subclasses. Which responsibility are you extending with the subclass? What would you

do if you needed a subclass for more than one responsibility? You are likely to end up

with too many subclasses or an overreliance on conditional code.

�Conditional Statements
You will use if and switch statements with perfectly good reason throughout your

projects. Sometimes, though, such structures can be a cry for polymorphism.

If you find that you are testing for certain conditions frequently within a class,

especially if you find these tests mirrored across more than one method, this could

be a sign that your one class should be two or more. See whether the structure of the

conditional code suggests responsibilities that could be expressed in classes. The new

classes should implement a shared abstract base class. Chances are that you will then

have to work out how to pass the right class to client code. I will cover some patterns for

creating objects in Chapter 9.

Chapter 6 Objects and Design

228

�The UML
So far in this book, I have let the code speak for itself, and I have used short examples to

illustrate concepts such as inheritance and polymorphism. This is useful because PHP

is a common currency here: it’s a language we have in common, if you have read this far.

As our examples grow in size and complexity, though, using code alone to illustrate the

broad sweep of design becomes somewhat absurd. It is hard to see an overview in a few

lines of code.

UML stands for Unified Modeling Language. The initials are correctly used with the

definite article. This isn’t just a unified modeling language; it is the Unified Modeling

Language.

Perhaps this magisterial tone derives from the circumstances of the language’s

forging. According to Martin Fowler (UML Distilled, Addison-Wesley Professional, 1999),

the UML emerged as a standard only after long years of intellectual and bureaucratic

sparring among the great and good of the object-oriented design community.

The result of this struggle is a powerful graphical syntax for describing object-

oriented systems. We will only scratch the surface in this section, but you will soon find

that a little UML (sorry, a little of the UML) goes a long way.

Class diagrams in particular can describe structures and patterns so that their

meaning shines through. This luminous clarity is often harder to find in code fragments

and bullet points.

�Class Diagrams
Although class diagrams are only one aspect of the UML, they are perhaps the most

ubiquitous. Because they are particularly useful for describing object-oriented

relationships, I will primarily use these in this book.

�Representing Classes

As you might expect, classes are the main constituents of class diagrams. A class is

represented by a named box (see Figure 6-1).

Chapter 6 Objects and Design

229

Figure 6-1.  A class

The class is divided into three sections, with the name displayed in the first. These

dividing lines are optional when we present no more information than the class name.

In designing a class diagram, we may find that the level of detail in Figure 6-1 is enough

for some classes. We are not obligated to represent every field and method or even every

class in a class diagram.

Abstract classes are represented either by italicizing the class name (see Figure 6-2)

or by adding {abstract} to the class name (see Figure 6-3). The first method is the more

common of the two, but the second is more useful when you are making notes.

Figure 6-2.  An abstract class

Figure 6-3.  An abstract class defined using a constraint

Note T he {abstract} syntax is an example of a constraint. Constraints are
used in class diagrams to describe the way in which specific elements should be
used. There is no special structure for the text between the braces; it should simply
provide a short clarification of any conditions that may apply to the element.

Chapter 6 Objects and Design

230

Interfaces are defined in the same way as classes, except that they must include a

stereotype (i.e., an extension to the UML), as shown in Figure 6-4.

Figure 6-4.  An interface

�Attributes

Broadly speaking, attributes describe a class’s properties. Attributes are listed in the

section directly beneath the class name (see Figure 6-5).

Figure 6-5.  An attribute

Let’s take a close look at the attribute in the example. The initial symbol represents

the level of visibility, or access control, for the attribute. Table 6-1 shows the three

symbols available.

Table 6-1.  Visibility Symbols

Symbol Visibility Explanation

+ Public Available to all code

- Private Available to the current class only

Protected Available to the current class and its subclasses only

The visibility symbol is followed by the name of the attribute. In this case, I am

describing the ShopProduct::$price property. A colon is used to separate the attribute

name from its type (and optionally, a default value can be supplied at the end, delimited

by an equals sign).

Once again, you need only include as much detail as is necessary for clarity.

Chapter 6 Objects and Design

231

�Operations

Operations describe methods; or, more properly, they describe the calls that

can be made on an instance of a class. Figure 6-6 shows two operations in the

ShopProduct class.

Figure 6-6.  Operations

As you can see, operations use a similar syntax to that used by attributes. The

visibility symbol precedes the method name. A list of parameters is enclosed in

parentheses. The method’s return type, if any, is delineated by a colon. Parameters are

separated by commas and follow the attribute syntax, with the attribute name separated

from its type by a colon.

As you might expect, this syntax is relatively flexible. You can omit the visibility

flag and the return type. Parameters are often represented by their type alone, as the

argument name is not usually significant.

�Describing Inheritance and Implementation

The UML describes the inheritance relationship as generalization. This relationship is

signified by a solid line leading from the subclass to its parent. The line is tipped with an

empty closed arrowhead.

Figure 6-7 shows the relationship between the ShopProduct class and its child

classes.

Chapter 6 Objects and Design

232

Figure 6-7.  Describing inheritance

The UML describes the relationship between an interface and the classes that

implement it as realization. The line for this relationship is broken rather than solid. So,

if the ShopProduct class were to implement the Chargeable interface, we could add it to

our class diagram, as in Figure 6-8.

Figure 6-8.  Describing interface implementation

�Associations

Inheritance is only one of a number of relationships in an object-oriented system. An

association occurs when a class property is declared to hold a reference to an instance

(or instances) of another class.

In Figure 6-9, we model two classes and create an association between them.

Figure 6-9.  A class association

At this stage, we are vague about the nature of this relationship. We have only

specified that a Teacher object will have a reference to one or more Pupil objects, or vice

versa. This relationship may or may not be reciprocal.

Chapter 6 Objects and Design

233

You can use arrows to describe the direction of the association. If the Teacher class

has an instance of the Pupil class but not the other way round, then you should make

your association an arrow leading from the Teacher to the Pupil class. This association,

which is called unidirectional, is shown in Figure 6-10.

Figure 6-10.  A unidirectional association

Notice that the line used to denote an association ends with an open arrowhead, in

contrast to the closed head used to denote a generalization (inheritance relationship). If

each class has a reference to the other, you can use a double-headed arrow to describe a

bidirectional relationship, as in Figure 6-11.

Figure 6-11.  A bidirectional association

You can also specify the number of instances of a class that are referenced by another

in an association (this is also known as “cardinality” of an association). You do this by

placing a number or range beside each class. You can also use an asterisk (*) to stand

for any number. In Figure 6-12, there can be one Teacher object and zero or more Pupil

objects.

Figure 6-12.  Defining multiplicity for an association

In Figure 6-13, there can be one Teacher object and between five and ten Pupil

objects in the association.

Chapter 6 Objects and Design

234

Figure 6-13.  Defining multiplicity for an association with a range

�Aggregation and Composition

Aggregation and composition are similar to association. All describe a situation in

which a class holds a permanent reference to one or more instances of another. With

aggregation and composition, though, the referenced instances form an intrinsic part of

the referring object.

In the case of aggregation, the contained objects are a core part of the container,

but they can also be contained by other objects at the same time. The aggregation

relationship is illustrated by a line that begins with an unfilled diamond.

In Figure 6-14, I define two classes: SchoolClass and Pupil. The SchoolClass class

aggregates Pupil.

Figure 6-14.  Aggregation

Chapter 6 Objects and Design

235

Pupils make up a class, but the same Pupil object can be referred to by different

SchoolClass instances at the same time. If I were to disband a school class, I would not

necessarily delete the pupil, who may attend other classes.

Composition represents an even stronger relationship than this. In composition,

the contained object can be referenced by its container only. It should be deleted when

the container is deleted. Composition relationships are depicted in the same way as

aggregation relationships, except that the diamond should be filled (see Figure 6-15).

Figure 6-15.  Composition

A Person class maintains a reference to a SocialSecurityData object. The contained

instance can belong only to the containing Person object.

�Describing Use

The use relationship is described as a dependency in the UML. It is the most transient of

the relationships discussed in this section because it does not describe a permanent link

between classes.

A used class may be passed as an argument or acquired as a result of a method call.

The Report class in Figure 6-16 uses a ShopProductWriter object. The use

relationship is shown by the broken line and open arrowhead that connects the two.

It does not, however, maintain this reference as a property in the same way that a

ShopProductWriter object maintains an array of ShopProduct objects.

Chapter 6 Objects and Design

236

Figure 6-16.  A dependency relationship

�Using Notes

Class diagrams can capture the structure of a system, but they provide no sense of

process. Figure 6-16 tells us about the classes in our system. From Figure 6-16, you know

that a Report object uses a ShopProductWriter, but you don’t know the mechanics of

this. In Figure 6-17, I use a note to clarify things somewhat.

Figure 6-17.  Using a note to clarify a dependency

As you can see, a note consists of a box with a folded corner. It will often contain

scraps of pseudo-code.

This clarifies Figure 6-16; you can now see that the Report object uses a

ShopProductWriter to output product data. This is hardly a revelation, but use

relationships are not always so obvious. In some cases, even a note might not provide

enough information. Luckily, you can model the interactions of objects in your system,

as well as the structure of your classes.

Chapter 6 Objects and Design

237

�Sequence Diagrams
A sequence diagram is object based rather than class based. It is used to model a process

in a system step by step.

Let’s build up a simple diagram, modeling the means by which a Report object

writes product data. A sequence diagram presents the participants of a system from left

to right (see Figure 6-18).

Figure 6-18.  Objects in a sequence diagram

I have labeled my objects with class names alone. If I had more than one instance of

the same class working independently in my diagram, I would include an object name

using the format, label:class (e.g., product1:ShopProduct).

You show the lifetime of the process you are modeling from top to bottom, as in

Figure 6-19.

Figure 6-19.  Object lifelines in a sequence diagram

Chapter 6 Objects and Design

238

The vertical broken lines represent the lifetime of the objects in the system. The

larger boxes that follow the lifelines represent the focus of a process. If you read

Figure 6-19 from top to bottom, you can see how the process moves among objects in the

system. This is hard to read without showing the messages that are passed between the

objects. I add these in Figure 6-20.

Figure 6-20.  The complete sequence diagram

The arrows represent the messages sent from one object to another. Because the

arrowheads are solid in this diagram, they denote synchronous requests. That is, the calling

component waits for its call to complete. Return values are often left implicit (although

they can be represented by a broken line, passing from the invoked object to the message

originator). Each message is labeled using the relevant method call. You can be quite flexible

with your labeling, although there is some syntax. Square brackets represent a condition:

[okToPrint]

write()

This snippet means that the write() invocation should only be made if the

correct condition is met. An asterisk is used to indicate a repetition; optionally, further

clarification can be in square brackets:

*[for each ShopProduct]

write()

Chapter 6 Objects and Design

239

You can interpret Figure 6-20 from top to bottom. First, a Report object

acquires a list of ShopProduct objects from a ProductStore object. It passes

these to a ShopProductWriter object, which stores references to them (though

we can only infer this from the diagram). The ShopProductWriter object calls

ShopProduct::getSummaryLine() for every ShopProduct object it references, adding the

result to its output.

As you can see, sequence diagrams can model processes, freezing slices of dynamic

interaction and presenting them with surprising clarity.

Note  Look at Figures 6-16 and 6-20. Notice how the class diagram illustrates
polymorphism, showing the classes derived from ShopProductWriter and
ShopProduct. Now notice how this detail becomes transparent when we
model the communication among objects. Where possible, we want objects to
work with the most general types available, so that we can hide the details of
implementation.

�Summary
In this chapter, I went beyond the nuts and bolts of object-oriented programming to look

at some key design issues. I examined features such as encapsulation, loose coupling,

and cohesion that are essential aspects of a flexible and reusable object-oriented system.

I went on to look at the UML, laying groundwork that will be essential in working with

patterns later in the book.

Chapter 6 Objects and Design

PART II

Patterns

243
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3_7

CHAPTER 7

What Are Design
Patterns? Why Use
Them?
Most problems we encounter as programmers have been handled time and again by

others in our community. Design patterns can provide us with the means to mine that

wisdom. Once a pattern becomes a common currency, it enriches our language, making

it easy to share design ideas and their consequences. Design patterns simply distill

common problems, define tested solutions, and describe likely outcomes. Many books

and articles focus on the details of computer languages, such as the available functions,

classes and methods, and so on. Pattern catalogs concentrate instead on how you

can move on from these basics (the “what”) to an understanding of the problems and

potential solutions in your projects (the “why” and “how”).

In this chapter, I introduce you to design patterns and look at some of the reasons for

their popularity. This chapter will cover the following:

•	 Pattern basics: What are design patterns?

•	 Pattern structure: What are the key elements of a design pattern?

•	 Pattern benefits: Why are patterns worth your time?

�What Are Design Patterns?
In the world of software, a pattern is a tangible manifestation of an
organization’s tribal memory.

—Grady Booch in Core J2EE Patterns

https://doi.org/10.1007/979-8-8688-0482-3_7#DOI

244

[A pattern is] a solution to a problem in a context.

—The Gang of Four, Design Patterns: Elements of Reusable
Object-Oriented Software

As these quotations imply, a design pattern provides analysis of a particular problem and

describes good practice for its solution.

Problems tend to recur, and, as programmers, we must solve them time and time

again. How should we handle an incoming request? How can we translate this data into

instructions for our system? How should we acquire data? Present results? Over time,

we answer these questions with a greater or lesser degree of elegance and evolve an

informal set of techniques that we use and reuse in our projects. These techniques are

patterns of design.

Design patterns inscribe and formalize these problems and solutions, making hard-

won experience available to the wider programming community. Patterns are (or should

be) essentially bottom-up and not top-down. They are rooted in practice and not theory.

That is not to say that there isn’t a strong theoretical element to design patterns (as we

will see in the next chapter), but patterns are based on real-world techniques used by

real programmers. Renowned pattern-hatcher Martin Fowler says that he discovers

patterns; he does not invent them. For this reason, many patterns will engender a sense

of déjà vu as you recognize techniques you have used yourself.

A catalog of patterns is not a cookbook. Recipes can be followed slavishly; code can

be copied and slotted into a project with minor changes. You do not always need even

to understand all the code used in a recipe. Design patterns inscribe approaches to

particular problems. The details of implementation may vary enormously according to

the wider context. This context might include the programming language you are using,

the nature of your application, the size of your project, and the specifics of the problem.

Let’s say, for example, that your project requires that you create a templating system.

Given the name of a template file, you must parse it and build a tree of objects to

represent the tags you encounter.

You start off with a default parser that scans the text for trigger tokens. When it

finds a match, it hands off responsibility for the hunt to another parser object, which is

specialized for reading the internals of tags. This continues examining template data

until it either fails, finishes, or finds another trigger. If it finds a trigger, it, too, must

hand off responsibility to a specialist—perhaps an argument parser. Collectively, these

components form what is known as a recursive descent parser.

Chapter 7 What Are Design Patterns? Why Use Them?

245

So these are your participants: a MainParser, a TagParser, and an ArgumentParser.

You create a ParserFactory class to create and return these objects.

Of course, nothing is easy, and you’re informed late in the game that you must

support more than one syntax in your templates. Now, you need to create a parallel

set of parsers according to the syntax: an OtherTagParser, an OtherArgumentParser,

and so on.

This is your problem: you need to generate a different set of objects according to the

circumstance, and you want this to be more or less transparent to other components

in the system. It just so happens that the Gang of Four defines the following problem

in their book’s summary page for the pattern Abstract Factory, “Provide an interface

for creating families of related or dependent objects without specifying their concrete

classes.”

That fits nicely. It is the nature of our problem that determines and shapes our use of

this pattern. There is nothing cut and paste about the solution either, as you can see in

Chapter 9, in which I cover Abstract Factory.

The very act of naming a pattern is valuable; it contributes to the kind of common

vocabulary that has arisen naturally over the years in older crafts and professions.

Such shorthand greatly aids collaborative design as alternative approaches and their

various consequences are weighed and tested. When you discuss your alternative parser

families, for example, you can simply tell colleagues that the system creates each set

of objects using the Abstract Factory pattern. They will nod sagely, either immediately

enlightened or making a mental note to look it up later. The point is that this bundle of

concepts and consequences has a handle, which makes for a useful shorthand, as I’ll

illustrate later in this chapter.

Finally, it is illegal, according to international law, to write about patterns without

quoting Christopher Alexander, an architecture academic whose work heavily

influenced the original object-oriented pattern advocates. He states in A Pattern

Language (Oxford University Press, 1977):

Each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same

way twice.

Chapter 7 What Are Design Patterns? Why Use Them?

246

It is significant that this definition (which applies to architectural problems and

solutions) begins with the problem and its wider setting and then proceeds to a solution.

There has been much criticism over the years that design patterns have been overused,

especially by inexperienced programmers. This is often a sign that solutions have

been applied where the problem and context are not present. Patterns are more than a

particular organization of classes and objects, cooperating in a particular way. Patterns

are structured to define the conditions in which solutions should be applied and to

discuss the effects of the solution.

In this book, I will focus on a particularly influential strand in the patterns field: the

form described in Design Patterns: Elements of Reusable Object-Oriented Software by

the Gang of Four (Addison-Wesley Professional, 1995). It concentrates on patterns in

object-oriented software development and inscribes some of the classic patterns that are

present in most modern object-oriented projects.

The Gang of Four book is important because it inscribes key patterns and because it

describes the design principles that inform and motivate these patterns. We will look at

some of these principles in the next chapter.

Note T he patterns described by the Gang of Four and in this book are really
instances of a pattern language. A pattern language is a catalog of problems and
solutions organized together so that they complement one another, forming an
interrelated whole. There are pattern languages for other problem spaces, such
as visual design and project management (and architecture, of course). When I
discuss design patterns here, I refer to problems and solutions in object-oriented
software development.

�A Design Pattern Overview
At heart, a design pattern consists of four parts: the name, the problem, the solution, and

the consequences.

Chapter 7 What Are Design Patterns? Why Use Them?

247

�Name
Names matter. They enrich the language of programmers; a few short words can stand in

for quite complex problems and solutions. They must balance brevity and description.

The Gang of Four claims, “Finding good names has been one of the hardest parts of

developing our catalog.”

Martin Fowler agrees: “Pattern names are crucial, because part of the purpose

of patterns is to create a vocabulary that allows developers to communicate more

effectively” (Patterns of Enterprise Application Architecture, Addison-Wesley

Professional, 2002).

In Patterns of Enterprise Application Architecture, Martin Fowler refines a database

access pattern I first encountered in Core J2EE Patterns by Deepak Alur, Dan Malks,

and John Crupi (Prentice Hall, 2001). Fowler defines two patterns that describe

specializations of the older pattern. The logic of his approach is clearly correct (one of

the new patterns models domain objects, while the other models database tables, a

distinction that was vague in the earlier work). Nonetheless, it was hard to train myself

to think in terms of the new patterns. I had been using the name of the original in design

sessions and documents for so long that it had become part of my language.

�The Problem
No matter how elegant the solution (and some are very elegant indeed), the problem

and its context are the grounds of a pattern. Recognizing a problem is harder than

applying any one of the solutions in a pattern catalog. This is one reason that some

pattern solutions can be misapplied or overused.

Patterns describe a problem space with great care. The problem is described in brief

and then contextualized, often with a typical example and one or more diagrams. It is

broken down into its specifics, its various manifestations. Any warning signs that might

help in identifying the problem are described.

�The Solution
The solution is summarized initially in conjunction with the problem. It is also described

in detail, often using UML class and interaction diagrams. The pattern usually includes a

code example.

Chapter 7 What Are Design Patterns? Why Use Them?

248

Although code may be presented, the solution is never cut and paste. The pattern

describes an approach to a problem. There may be hundreds of nuances in its

implementation. Think about instructions for sowing a food crop. If you simply follow a

set of steps blindly, you are likely to go hungry come harvest time. More useful would be

a pattern-based approach that covers the various conditions that may apply. The basic

solution to the problem (making your crop grow) will always be the same (prepare soil,

plant seeds, irrigate, harvest crop), but the actual steps you take will depend on all sorts

of factors, such as your soil type, your location, the orientation of your land, local pests,

and so on.

Martin Fowler refers to solutions in patterns as “half-baked.” That is, the coder must

take away the concept and finish it for themselves.

�Consequences
Every design decision you make will have wider consequences. This should include

the satisfactory resolution of the problem in question, of course. A solution, once

deployed, may be ideally suited to work with other patterns. There may also be dangers

to watch for.

�The Gang of Four Format
As I write, I have five pattern catalogs on the desk in front of me. A quick look at the

patterns in each confirms that none of them use the same structure. Some are formal;

some are fine-grained, with many subsections; and others are discursive.

There are a number of well-defined pattern structures, including the original form

developed by Christopher Alexander (the Alexandrian form) and the narrative approach

favored by the Portland Pattern Repository (the Portland form). Because the Gang of

Four book is so influential, and because we will cover many of the patterns they describe,

let’s examine a few of the sections they include in their patterns:

•	 Intent: A brief statement of the pattern’s purpose. You should be able

to see the point of the pattern at a glance.

•	 Motivation: The problem described, often in terms of a typical

situation. The anecdotal approach can help make the pattern easy

to grasp.

Chapter 7 What Are Design Patterns? Why Use Them?

249

•	 Applicability: An examination of the different situations in which you

might apply the pattern. While the motivation describes a typical

problem, this section defines specific situations and weighs the

merits of the solution in the context of each.

•	 Structure/interaction: These sections may contain UML class and

interaction diagrams describing the relationships among classes and

objects in the solution.

•	 Implementation: This section looks at the details of the solution. It

examines any issues that may come up when applying the technique

and provides tips for deployment.

•	 Sample code: I always skip ahead to this section. I find that a simple

code example often provides a way into a pattern. The example is

often chopped down to the basics in order to lay the solution bare. It

could be in any object-oriented language. Of course, in this book, it

will always be PHP.

•	 Known uses: These describe real systems in which the pattern

(problem, context, and solution) occurs. Some people say that for

a pattern to be genuine, it must be found in at least three publicly

available contexts. This is sometimes called the “rule of three.”

•	 Related patterns: Some patterns imply others. In applying one

solution, you can create the context in which another becomes

useful. This section examines these synergies. It may also discuss

patterns that have similarities to the problem or the solution, as well

as any antecedents (i.e., patterns defined elsewhere on which the

current pattern builds).

�Why Use Design Patterns?
So what benefits can patterns bring? Given that a pattern is a problem defined and a

solution described, the answer should be obvious. Patterns can help you solve common

problems. There is more to patterns, of course.

Chapter 7 What Are Design Patterns? Why Use Them?

250

�A Design Pattern Defines a Problem
How many times have you reached a stage in a project and found that there is no going

forward? Chances are you must backtrack some way before starting out again.

By defining common problems, patterns can help you improve your design.

Sometimes, the first step to a solution is recognizing that you have a problem.

�A Design Pattern Defines a Solution
Having defined and recognized the problem (and made certain that it is the right

problem), a pattern gives you access to a solution, together with an analysis of the

consequences of its use. Although a pattern does not absolve you of the responsibility

to consider the implications of a design decision, you can at least be certain that you are

using a tried-and-tested technique.

�Design Patterns Are Language Independent
Patterns define objects and solutions in object-oriented terms. This means that many

patterns apply equally in more than one language. When I first started using patterns, I

read code examples in C++ and Smalltalk and then deployed my solutions in Java. Others

transfer with modifications to the pattern’s applicability or consequences, but remain

valid. Either way, patterns can help you as you move between languages. Equally, an

application that is built on good object-oriented design principles can be relatively easy

to port between languages (although there are always issues that must be addressed).

�Patterns Define a Vocabulary
By providing developers with names for techniques, patterns make communication

richer. Imagine a design meeting. I have already described my Abstract Factory solution,

and now I need to describe my strategy for managing the data the system compiles. I

describe my plans to Bob:

Me: I’m thinking of using a Composite.

Bob: I don’t think you’ve thought that through.

Chapter 7 What Are Design Patterns? Why Use Them?

251

Okay, Bob didn’t agree with me. He never does. But he knew what I was talking about

and therefore why my idea sucked. Let’s play that scene through again without a design

vocabulary.

Me: I intend to use a tree of objects that share the same type. The

type’s interface will provide methods for adding child objects of its

own type. In this way, we can build up complex combinations of

implementing objects at runtime.

Bob: Huh?

Patterns, or the techniques they describe, tend to interoperate. The Composite

pattern lends itself to collaboration with the Visitor pattern, for example:

Me: And then we can use Visitors to summarize the data.

Bob: You’re missing the point.

Ignore Bob. I won’t describe the tortuous nonpattern version of this; I will cover

Composite in Chapter 10 and Visitor in Chapter 11.

The point is that, without a pattern language, we would still use these techniques.

They precede their naming and organization. If patterns did not exist, they would evolve

on their own, anyway. Any tool that is used sufficiently will eventually acquire a name.

�Patterns Are Tried and Tested
So if patterns document good practice, is naming the only truly original thing about

pattern catalogs? In some senses, that would seem to be true. Patterns represent best

practice in an object-oriented context. To some highly experienced programmers, this

may seem an exercise in repackaging the obvious. To the rest of us, patterns provide

access to problems and solutions we would otherwise have to discover the hard way.

Patterns make design accessible. As pattern catalogs emerge for more and more

specializations, even the highly experienced can find benefits as they move into new

aspects of their fields. A GUI programmer can gain fast access to common problems and

solutions in enterprise programming, for example. A web programmer can quickly chart

strategies for avoiding the pitfalls that lurk in tablet and smartphone projects.

Chapter 7 What Are Design Patterns? Why Use Them?

252

�Patterns Are Designed for Collaboration
By their nature, patterns should be generative and composable. This means that you

should be able to apply one pattern and thereby create conditions suitable for the

application of another. In other words, in using a pattern, you may find other doors

opened for you.

Pattern catalogs are usually designed with this kind of collaboration in mind, and the

potential for pattern composition is always documented in the pattern itself.

�Design Patterns Promote Good Design
Design patterns demonstrate and apply principles of object-oriented design. So a study

of design patterns can yield more than a specific solution in a context. You can come

away with a new perspective on the ways that objects and classes can be combined to

achieve an objective.

�Design Patterns Are Used by Popular Frameworks
This book is primarily about designing from the ground up. The patterns and principles

covered here should enable you to design your own core frameworks with the needs

of your projects in mind. However, laziness is also a virtue, and you may wish to work

with (or you may inherit code that already uses) a framework such as Zend, Laravel, or

Symfony. A good understanding of core design patterns will help you as you engage with

these framework APIs.

�PHP and Design Patterns
There is little in this chapter that is specific to PHP, which is characteristic of our topic

to some extent. Many patterns apply to many object-capable languages with few or no

implementation issues.

Note T echnical reviewer Paul Tregoing recommends the excellent PHP overview
of classic patterns at https://refactoring.guru/design-patterns/php.
And, of course, read on!

Chapter 7 What Are Design Patterns? Why Use Them?

https://refactoring.guru/design-patterns/php

253

This is not always the case, of course. Some enterprise patterns work well in

languages in which an application process continues to run between server requests.

PHP does not work that way. A new script execution is kicked off for every request. This

means that some patterns need to be treated with more care.

Front Controller, for example, often requires some serious initialization time. This

is fine when the initialization takes place once at application startup, but it’s more of an

issue when it must take place for every request. That is not to say that we can’t use the

pattern; it is commonly used by PHP frameworks. We must simply ensure that we take

account of PHP-related issues when we discuss the pattern. PHP forms the context for all

the patterns that this book examines.

I referred to object-capable languages earlier in this section. You could code in PHP

without defining any classes at all. With a few notable exceptions, however, objects and

object-oriented design lie at the heart of most PHP projects and libraries.

�Summary
In this chapter, I introduced design patterns, showed you their structure (using the Gang

of Four form), and suggested some reasons why you might want to use design patterns in

your scripts.

It is important to remember that design patterns are not snap-on solutions that can

be combined like components to build a project. They are suggested approaches to

common problems. These solutions embody some key design principles. It is these that

we will examine in the next chapter.

Chapter 7 What Are Design Patterns? Why Use Them?

255
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3_8

CHAPTER 8

Some Pattern Principles
Although design patterns simply describe solutions to problems, they tend to emphasize

solutions that promote reusability and flexibility. To achieve this, they manifest some key

object-oriented design principles. We will encounter some of them in this chapter and in

more detail throughout the rest of the book.

This chapter will cover the following topics:

•	 Composition: How to use object aggregation to achieve greater

flexibility than you could with inheritance alone

•	 Decoupling: How to reduce dependency between elements in

a system

•	 The power of the interface: Patterns and polymorphism

•	 Pattern categories: The types of patterns that this book will cover

�The Pattern Revelation
I first started working with objects in the Java language. As you might expect, it took

a while before some concepts clicked. When it did happen, though, it happened very

fast, almost with the force of revelation. The elegance of inheritance and encapsulation

bowled me over. I could sense that this was a different way of defining and building

systems. I got polymorphism, working with a type and switching implementations

at runtime. It seemed to me that this understanding would solve most of my design

problems and help me design beautiful and elegant systems.

All the books on my desk at the time focused on language features and the very many

APIs available to the Java programmer. Beyond a brief definition of polymorphism, there

was little attempt to examine design strategies.

https://doi.org/10.1007/979-8-8688-0482-3_8#DOI

256

Language features alone do not engender object-oriented design. Although my

projects fulfilled their functional requirements, the kind of design that inheritance,

encapsulation, and polymorphism had seemed to offer continued to elude me.

My inheritance hierarchies grew wider and deeper as I attempted to build a new

class for every eventuality. The structure of my systems made it hard to convey messages

from one tier to another without giving intermediate classes too much awareness of their

surroundings, binding them into the application and making them unusable in new

contexts.

It wasn’t until I discovered Design Patterns: Elements of Reusable Object-Oriented

Software (Addison-Wesley Professional, 1995), otherwise known as the Gang of Four

book, that I realized I had missed an entire design dimension. By that time, I had already

discovered some of the core patterns for myself, but others contributed to a new way of

thinking.

I found that I had overprivileged inheritance in my designs, trying to build too much

functionality into my classes. But where else can functionality go in an object-

oriented system?

I found the answer in composition. Software components can be defined at runtime

by combining objects in flexible relationships. The Gang of Four boiled this down into a

principle: “favor composition over inheritance.” The patterns described ways in which

objects could be combined at runtime to achieve a level of flexibility impossible in an

inheritance tree alone.

�Composition and Inheritance
Inheritance is a powerful way of designing for changing circumstances or contexts. It can

limit flexibility, however, especially when classes take on multiple responsibilities.

�The Problem
As you know, child classes inherit the methods and properties of their parents (as long as

they are protected or public elements). You can use this fact to design child classes that

provide specialized functionality.

Figure 8-1 presents a simple example using the UML.

Chapter 8 Some Pattern Principles

257

Figure 8-1.  A parent class and two child classes

The abstract Lesson class in Figure 8-1 models a lesson in a college. It defines

abstract cost() and chargeType() methods. The diagram shows two implementing

classes, FixedPriceLesson and TimedPriceLesson, which provide distinct charging

mechanisms for lessons.

Using this inheritance scheme, I can switch between lesson implementations. Client

code will know only that it is dealing with a Lesson object, so the details of cost will be

transparent.

What happens, though, if I introduce a new set of specializations? I need to handle

lectures and seminars. Because these organize enrollment and lesson notes in different

ways, they require separate classes. Now I have two forces that operate upon my design. I

need to handle pricing strategies and separate lectures and seminars.

Figure 8-2 shows a brute-force solution.

Figure 8-2.  A poor inheritance structure

Chapter 8 Some Pattern Principles

258

Figure 8-2 shows a hierarchy that is clearly faulty. I can no longer use the inheritance

tree to manage my pricing mechanisms without duplicating great swathes of

functionality. The pricing strategies are mirrored across the Lecture and Seminar class

families.

At this stage, I might consider using conditional statements in the Lesson superclass,

removing those unfortunate duplications. Essentially, I remove the pricing logic from

the inheritance tree altogether, moving it up into the superclass. This is the reverse of

the usual refactoring, where you replace a conditional with polymorphism. Here is an

amended Lesson class:

abstract class Lesson

{

 public const FIXED = 1;

 public const TIMED = 2;

 �public function __construct(protected int $duration, private int

$costtype = 1)

 {

 }

 public function cost(): int

 {

 switch ($this->costtype) {

 case self::TIMED:

 return (5 * $this->duration);

 break;

 case self::FIXED:

 return 30;

 break;

 default:

 $this->costtype = self::FIXED;

 return 30;

 }

 }

 public function chargeType(): string

 {

 switch ($this->costtype) {

Chapter 8 Some Pattern Principles

259

 case self::TIMED:

 return "hourly rate";

 break;

 case self::FIXED:

 return "fixed rate";

 break;

 default:

 $this->costtype = self::FIXED;

 return "fixed rate";

 }

 }

 // more lesson methods...

}

Let’s create placeholder classes that extend Lesson. First, a Lecture class:

class Lecture extends Lesson

{

 // Lecture-specific implementations ...

}

Next, a Seminar class:

class Seminar extends Lesson

{

 // Seminar-specific implementations ...

}

Because the Lesson parent manages pricing strategies, the extending classes can be

written to focus only their lecture- or seminar-related characteristics. Here’s how I might

work with these classes:

$lecture = new Lecture(5, Lesson::FIXED);

print "{$lecture->cost()} ({$lecture->chargeType()})\n";

$seminar = new Seminar(3, Lesson::TIMED);

print "{$seminar->cost()} ({$seminar->chargeType()})\n";

Chapter 8 Some Pattern Principles

260

And here’s the output:

30 (fixed rate)

15 (hourly rate)

You can see the new class diagram in Figure 8-3.

Figure 8-3.  Inheritance hierarchy improved by removing cost calculations from
subclasses

I have made the class structure much more manageable, but at a cost. Using

conditionals in this code is a retrograde step. Usually, you would try to replace a

conditional statement with polymorphism. Here, I have done the opposite. As you can

see, this has forced me to duplicate the conditional statement across the chargeType()

and cost() methods.

I seem doomed to duplicate code unless I can find an elegant way to choose which

algorithm is used at runtime.

�Using Composition
I can use the Strategy pattern to compose my way out of trouble. Strategy is used to move

a set of algorithms into a separate type. By moving cost calculations, I can simplify the

Lesson type. You can see this in Figure 8-4.

Chapter 8 Some Pattern Principles

261

Figure 8-4.  Moving algorithms into a separate type

I create an abstract class, CostStrategy, which defines the abstract methods, cost()

and chargeType(). The cost() method requires an instance of Lesson, which it will

use to generate cost data. I provide two concrete subclasses for CostStrategy. Lesson

objects work only with the CostStrategy type, not a specific implementation, so I can

add new cost algorithms at any time by subclassing CostStrategy. This would require

no changes at all to any Lesson classes.

Here’s a simplified version of the new Lesson class illustrated in Figure 8-4:

abstract class Lesson

{

 �public function __construct(private int $duration, private CostStrategy

$costStrategy)

 {

 }

 public function cost(): int

 {

 return $this->costStrategy->cost($this);

 }

 public function chargeType(): string

 {

 return $this->costStrategy->chargeType();

 }

Chapter 8 Some Pattern Principles

262

 public function getDuration(): int

 {

 return $this->duration;

 }

 // more lesson methods...

}

Here, again, are my empty Lecture and Seminar classes:

class Lecture extends Lesson

{

 // Lecture-specific implementations ...

}

class Seminar extends Lesson

{

 // Seminar-specific implementations ...

}

The Lesson class requires a CostStrategy object, which it stores as a property.

The Lesson::cost() method simply invokes CostStrategy::cost(). Equally,

Lesson::chargeType() invokes CostStrategy::chargeType(). This explicit invocation

of another object’s method in order to fulfill a request is known as delegation. In my

example, the CostStrategy object is the delegate of Lesson. The Lesson class washes its

hands of responsibility for cost calculations and passes on the task to a CostStrategy

implementation. Here, it is caught in the act of delegation:

public function cost(): int

{

 return $this->costStrategy->cost($this);

}

Here is the CostStrategy class, together with its implementing children:

abstract class CostStrategy

{

 abstract public function cost(Lesson $lesson): int;

 abstract public function chargeType(): string;

}

Chapter 8 Some Pattern Principles

263

class TimedCostStrategy extends CostStrategy

{

 public function cost(Lesson $lesson): int

 {

 return ($lesson->getDuration() * 5);

 }

 public function chargeType(): string

 {

 return "hourly rate";

 }

}

class FixedCostStrategy extends CostStrategy

{

 public function cost(Lesson $lesson): int

 {

 return 30;

 }

 public function chargeType(): string

 {

 return "fixed rate";

 }

}

I can change the way that any Lesson object calculates cost by passing it a different

CostStrategy object at runtime. This approach then makes for highly flexible code.

Rather than building functionality into my code structures statically, I can combine and

recombine objects dynamically:

$lessons[] = new Seminar(4, new TimedCostStrategy());

$lessons[] = new Lecture(4, new FixedCostStrategy());

foreach ($lessons as $lesson) {

 print "lesson charge {$lesson->cost()}. ";

 print "Charge type: {$lesson->chargeType()}\n";

}

Chapter 8 Some Pattern Principles

264

As you can see, one effect of this structure is that I have focused the responsibilities

of my classes. CostStrategy objects are responsible solely for calculating cost, and

Lesson objects manage lesson data.

Note O f course, while the Strategy pattern is neat, it begs the question: where do
all these objects come from? I deal with that issue in Chapter 9.

So composition can make your code more flexible because objects can be

combined to handle tasks dynamically in many more ways than you can anticipate in an

inheritance hierarchy alone. There can be a penalty with regard to readability, though.

Because composition tends to result in more types, with relationships that aren’t fixed

with the same predictability as they are in inheritance relationships, it can be slightly

harder to digest the relationships in a system.

�Decoupling
You saw in Chapter 6 that it makes sense to build independent components. A system

with highly interdependent classes can be hard to maintain. A change in one location

can require a cascade of related changes across the system.

�The Problem
Reusability is one of the key objectives of object-oriented design, and tight coupling

is its enemy. You can diagnose tight coupling when you see that a change to one

component of a system necessitates many changes elsewhere. You should aspire to

create independent components, so that you can make changes without a domino effect

of unintended consequences. When you alter a component, the extent to which it is

independent is related to the likelihood that your changes will cause other parts of your

system to fail.

You saw an example of tight coupling in Figure 8-2. Because the cost logic was

mirrored across the Lecture and Seminar types, a change to TimedPriceLecture would

necessitate a parallel change to the same logic in TimedPriceSeminar. By updating one

class and not the other, I would break my system—without any warning from the PHP

engine. My first solution, using a conditional statement, produced a similar dependency

between the cost() and chargeType() methods.

Chapter 8 Some Pattern Principles

265

By applying the Strategy pattern, I distilled my cost algorithms into the CostStrategy

type, locating them behind a common interface and implementing each only once.

Coupling of another sort can occur when many classes in a system are embedded

explicitly into a platform or environment. Let’s say that you are building a system

that works with a MySQL database, for example. You might use methods such as

mysqli::query() to speak to the database server.

Should you be required to deploy the system on a server that does not support

MySQL, you could convert your entire project to use SQLite. You would be forced to

make changes throughout your code, though, and face the prospect of maintaining two

parallel versions of your application.

The problem here is not the system’s dependency on an external platform. Such a

dependency is inevitable. You need to work with code that speaks to a database. The

problem comes when such code is scattered throughout a project. Talking to databases

is not the primary responsibility of most classes in a system, so the best strategy is to

extract such code and group it together behind a common interface. In this way, you

promote the independence of your classes. At the same time, by concentrating your

gateway code in one place, you make it much easier to switch to a new platform without

disturbing your wider system. This process, the hiding of implementation behind a clean

interface, is known as encapsulation. The Doctrine database library solves this problem

with the DBAL (database abstraction layer) project. This provides a single point of access

for multiple databases.

The Doctrine\DBAL\DriverManager class provides a static method called

getConnection() that accepts a parameter array. According to the makeup of this array,

it returns a particular implementation of an interface called Doctrine\DBAL\Driver. You

can see a simplified representation of the class structure in Figure 8-5.

Figure 8-5.  The DBAL package decouples client code from database objects

Note  Static attributes and operations should be underlined in the UML.

Chapter 8 Some Pattern Principles

266

The DBAL package, then, lets you decouple your application code from the specifics

of your database platform. You should be able to run a single system with MySQL,

SQLite, MSSQL, and others without changing a line of code (apart from your configuring

parameters, of course).

�Loosening Your Coupling
To handle database code flexibly, you should decouple the application logic from the

specifics of the database platform it uses. You will see lots of opportunities for this kind

of separation of components in your own projects.

Imagine, for example, that the Lesson system must incorporate a registration

component to add new lessons to the system. As part of the registration procedure,

an administrator should be notified when a lesson is added. The system’s users can’t

agree whether this notification should be sent by mail or by text message. In fact,

they’re so argumentative that you suspect they might want to switch to a new mode of

communication in the future. What’s more, they want to be notified of all sorts of things,

so that a change to the notification mode in one place will mean a similar alteration in

many other places.

If you’ve hard-coded calls to a Mailer class or a Texter class, then your system is

tightly coupled to a particular notification mode, just as it would be tightly coupled to a

database platform by the use of a specialized database API.

Here is some code that hides the implementation details of a notifier from the system

that uses it. First of all, a RegistrationMgr class that works with Lesson objects:

class RegistrationMgr

{

 public function register(Lesson $lesson): void

 {

 // do something with this Lesson

 // now tell someone

 $notifier = Notifier::getNotifier();

 $notifier->inform("new lesson: cost ({$lesson->cost()})");

 }

}

Chapter 8 Some Pattern Principles

267

RegistrationMgr needs to send out notifications, so it works with a Notifier:

abstract class Notifier

{

 public static function getNotifier(): Notifier

 {

 // acquire concrete class according to

 // configuration or other logic

 if (rand(1, 2) === 1) {

 return new MailNotifier();

 } else {

 return new TextNotifier();

 }

 }

 abstract public function inform($message): void;

}

The Notifier class does not itself implement notification strategies. It has children

for that:

class MailNotifier extends Notifier

{

 public function inform($message): void

 {

 print "MAIL notification: {$message}\n";

 }

}

class TextNotifier extends Notifier

{

 public function inform($message): void

 {

 print "TEXT notification: {$message}\n";

 }

}

Chapter 8 Some Pattern Principles

268

So I create RegistrationMgr, a sample client for my Notifier classes. The Notifier

class is abstract, but it does implement a static method, getNotifier(), which fetches a

concrete Notifier object (TextNotifier or MailNotifier). In a real project, the choice

of Notifier would be determined by a flexible mechanism, such as a configuration

file. Here, I cheat and make the choice randomly. MailNotifier and TextNotifier do

nothing more than print out the message they are passed along with an identifier to

show which one has been called.

Notice how the knowledge of which concrete Notifier should be used has been

focused in the Notifier::getNotifier() method. I could send notifier messages from

a hundred different parts of my system, and a change in Notifier would only have to be

made in that one method.

Here is some code that calls the RegistrationMgr:

$lessons1 = new Seminar(4, new TimedCostStrategy());

$lessons2 = new Lecture(4, new FixedCostStrategy());

$mgr = new RegistrationMgr();

$mgr->register($lessons1);

$mgr->register($lessons2);

And here’s the output from a typical run:

TEXT notification: new lesson: cost (20)

MAIL notification: new lesson: cost (30)

Figure 8-6 shows these classes.

Figure 8-6.  The Notifier class separates client code from Notifier implementations

Notice how similar the structure in Figure 8-6 is to that formed by the Doctrine

components shown in Figure 8-5.

Chapter 8 Some Pattern Principles

269

�Code to an Interface, Not to an Implementation
This principle is one of the all-pervading themes of this book. You saw in Chapter 6

(and in the last section) that you can hide different implementations behind the

common interface defined in a superclass. Client code can then require an object of the

superclass’s type rather than that of an implementing class, unconcerned by the specific

implementation it is actually getting.

Parallel conditional statements, like the ones I rooted out from Lesson::cost() and

Lesson::chargeType(), are a common sign that polymorphism is needed. They make

code hard to maintain because a change in one conditional expression necessitates

a change in its siblings. Conditional statements are occasionally said to implement a

“simulated inheritance.”

By placing the cost algorithms in separate classes that implement CostStrategy, I

remove duplication. I also make it much easier should I need to add new cost strategies

in the future.

From the perspective of client code, it is often a good idea to require abstract or

general types in your methods’ parameters. By requiring more specific types, you could

limit the flexibility of your code at runtime.

Having said that, of course, the level of generality you choose in your argument hints

is a matter of judgment. Make your choice too general, and your method may become

less safe. If you require the specific functionality of a subtype, then accepting a differently

equipped sibling into a method could be risky.

Still, make your choice of argument declaration too restricted, and you lose the

benefits of polymorphism. Take a look at this altered extract from the Lesson class:

public function __construct(private int $duration, private

FixedCostStrategy $costStrategy)

{

}

There are two issues arising from the design decision in this example. First,

the Lesson object is now tied to a specific cost strategy, which closes down my

ability to compose dynamic components. Second, the explicit reference to the

FixedPriceStrategy class forces me to maintain that particular implementation.

Chapter 8 Some Pattern Principles

270

By requiring a common interface, I can combine a Lesson object with any

CostStrategy implementation:

public function __construct(private int $duration, private CostStrategy

$costStrategy)

{

}

I have, in other words, decoupled my Lesson class from the specifics of cost calculation.

All that matters is the interface and the guarantee that the provided object will honor it.

Of course, coding to an interface can often simply defer the question of how

to instantiate your objects. When I say that a Lesson object can be combined with

any CostStrategy interface at runtime, I beg the question, “But where does the

CostStrategy object come from?”

When you create an abstract superclass, there is always the issue of how its children

should be instantiated. Which child do you choose and according to which condition?

This subject forms a category of its own in the Gang of Four pattern catalog, and I will

examine this further in the next chapter.

�The Concept That Varies
It’s easy to interpret a design decision once it has been made, but how do you decide

where to start?

The Gang of Four recommends that you “encapsulate the concept that varies.”

In terms of my lesson example, the varying concept is the cost algorithm. Not only is

the cost calculation one of two possible strategies in the example, but it is obviously a

candidate for expansion: special offers, overseas student rates, introductory discounts—

all sorts of possibilities present themselves.

I quickly established that subclassing for this variation was inappropriate, and I

resorted to a conditional statement. By bringing my variation into the same class, I

underlined its suitability for encapsulation.

The Gang of Four recommends that you actively seek varying elements in your

classes and assess their suitability for encapsulation in a new type. Each alternative in

a suspect conditional may be extracted to form a class that extends a common abstract

parent. This new type can then be used by the class or classes from which it was

extracted. This has the following effects:

Chapter 8 Some Pattern Principles

271

•	 Focusing responsibility

•	 Promoting flexibility through composition

•	 Making inheritance hierarchies more compact and focused

•	 Reducing duplication

So how do you spot variation? One sign is the misuse of inheritance. This might

include inheritance deployed according to multiple forces at one time (e.g., lecture/

seminar and fixed/timed cost). It might also include subclassing on an algorithm

where the algorithm is incidental to the core responsibility of the type. The other sign of

variation suitable for encapsulation is, as you have seen, a conditional expression.

�Patternitis
One problem for which there is no pattern is the unnecessary or inappropriate use

of patterns. This has earned patterns a bad name in some quarters. Because pattern

solutions are neat, it is tempting to apply them wherever you see fit, whether they truly

fulfill a need or not.

The eXtreme Programming (XP) methodology offers a couple of principles that

might apply here. The first is, “You aren’t going to need it” (often abbreviated to YAGNI).

This is generally applied to application features, but it also makes sense for patterns.

When I build large environments in PHP, I tend to split my application into layers,

separating application logic from presentation and persistence layers. I use all sorts of

core and enterprise patterns in conjunction with one another.

When I am asked to build a feedback form for a small business website, however,

I may simply use procedural code in a single-page script. I do not need enormous

amounts of flexibility; I won’t be building on the initial release. I don’t need to use

patterns that address problems in larger systems. Instead, I apply the second XP

principle: “Do the simplest thing that works.”

When you work with a pattern catalog, the structure and process of the solution are

what stick in the mind, consolidated by the code example. Before applying a pattern,

though, pay close attention to the problem, or “when to use it,” section and then read

up on the pattern’s consequences. In some contexts, the cure may be worse than the

disease.

Chapter 8 Some Pattern Principles

272

�The Patterns
This book is not a pattern catalog. Nevertheless, in the coming chapters, I will introduce

a few of the key patterns in use at the moment, providing PHP implementations and

discussing them in the broad context of PHP programming.

The patterns described will be drawn from classic catalogs, including Design

Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley Professional,

1995), Patterns of Enterprise Application Architecture by Martin Fowler (Addison-Wesley

Professional, 2002), and Core J2EE Patterns: Best Practices and Design Strategies (Prentice

Hall, 2001) by Alur et al. I use the Gang of Four’s categorization as a starting point,

dividing patterns into five categories, as follows.

�Patterns for Generating Objects
These patterns are concerned with the instantiation of objects. This is an important

category given the principle, “Code to an interface.” If you are working with abstract

parent classes in your design, then you must develop strategies for instantiating objects

from concrete subclasses. It is these objects that will be passed around your system.

�Patterns for Organizing Objects and Classes
These patterns help you organize the compositional relationships of your objects. More

simply, these patterns show how you combine objects and classes.

�Task-Oriented Patterns
These patterns describe the mechanisms by which classes and objects cooperate to

achieve objectives.

�Enterprise Patterns
I look at some patterns that describe typical Internet programming problems and

solutions. Drawn largely from Patterns of Enterprise Application Architecture and Core

J2EE Patterns: Best Practices and Design Strategies, the patterns deal with presentation

and application logic.

Chapter 8 Some Pattern Principles

273

�Database Patterns
This section provides an examination of patterns that help with storing and retrieving

data and with mapping objects to and from databases.

�Summary
In this chapter, I examined some of the principles that underpin many design patterns.

I looked at the use of composition to enable object combination and recombination at

runtime, resulting in more flexible structures than would be available using inheritance

alone. I also introduced you to decoupling, the practice of extracting software

components from their context to make them more generally applicable. Finally, I

reviewed the importance of interface as a means of decoupling clients from the details of

implementation.

In the coming chapters, I will examine some design patterns in detail.

Chapter 8 Some Pattern Principles

275
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3_9

CHAPTER 9

Generating Objects
Creating objects is a messy business. So, many object-oriented designs deal with

nice, clean abstract classes, taking advantage of the impressive flexibility afforded by

polymorphism (the switching of concrete implementations at runtime). To achieve this

flexibility, though, I must devise strategies for object generation. This is the topic I will

look at in this chapter.

This chapter will cover the following patterns:

•	 The Singleton pattern: A special class that generates one—and only

one—object instance

•	 The Factory Method pattern: Building an inheritance hierarchy of

creator classes

•	 The Abstract Factory pattern: Grouping the creation of functionally

related products

•	 The Prototype pattern: Using clone to generate objects

•	 The Service Locator pattern: Asking your system for objects

•	 The Dependency Injection pattern: Letting your system give

you objects

�Problems and Solutions in Generating Objects
Object creation can be a weak point in object-oriented design. In the previous chapter,

you saw the principle, “Code to an interface, not to an implementation.” To this end, you

are encouraged to work with abstract supertypes in your classes. This makes code more

flexible, allowing you to use objects instantiated from different concrete subclasses at

runtime. This has the side effect that object instantiation is deferred.

https://doi.org/10.1007/979-8-8688-0482-3_9#DOI

276

Here’s an abstract class named Employee that accepts a name string in its constructor

and sets up an abstract fire() method (you can tell that this is not going to go well for

Employee objects):

abstract class Employee

{

 public function __construct(protected string $name)

 {

 }

 abstract public function fire(): void;

}

This is a concrete class that extends Employee:

class Minion extends Employee

{

 public function fire(): void

 {

 print "{$this->name}: I'll clear my desk\n";

 }

}

Now, here’s a client class that generates and then works with Minion objects:

class NastyBoss

{

 private array $employees = [];

 public function addEmployee(string $employeeName): void

 {

 $this->employees[] = new Minion($employeeName);

 }

Chapter 9 Generating Objects

277

 public function projectFails(): void

 {

 if (count($this->employees) > 0) {

 $emp = array_pop($this->employees);

 $emp->fire();

 }

 }

}

Time to put the code through its paces:

$boss = new NastyBoss();

$boss->addEmployee("harry");

$boss->addEmployee("bob");

$boss->addEmployee("mary");

$boss->projectFails();

Here is the output:

mary: I'll clear my desk

As you can see, I define an abstract base class, Employee, with a downtrodden

implementation, Minion. Given a name string, the NastyBoss::addEmployee() method

instantiates a new Minion object. Whenever a NastyBoss object runs into trouble (via

the NastyBoss::projectFails() method), it looks for an Employee (which, right now,

means a Minion) to fire.

By instantiating a Minion object directly in the NastyBoss class, we limit flexibility. If

a NastyBoss object could work with any instance of the Employee type, we could make

our code amenable to variation at runtime as we add more Employee specializations. You

should find the polymorphism in Figure 9-1 familiar.

Chapter 9 Generating Objects

278

Figure 9-1.  Working with an abstract type enables polymorphism

If the NastyBoss class does not instantiate a Minion object, where does it come from?

Authors often duck out of this problem by constraining an argument type in a method

declaration and then conveniently omitting to show the instantiation in anything other

than a test context:

class NastyBoss

{

 private array $employees = [];

 public function addEmployee(Employee $employee): void

 {

 $this->employees[] = $employee;

 }

 public function projectFails(): void

 {

 if (count($this->employees)) {

 $emp = array_pop($this->employees);

 $emp->fire();

 }

 }

}

Chapter 9 Generating Objects

279

Let’s introduce some variation by adding a new Employee subtype:

class CluedUp extends Employee

{

 public function fire(): void

 {

 print "{$this->name}: I'll call my union rep\n";

 }

}

Again, we try the code out:

$boss = new NastyBoss();

$boss->addEmployee(new Minion("harry"));

$boss->addEmployee(new CluedUp("bob"));

$boss->addEmployee(new Minion("mary"));

$boss->projectFails();

$boss->projectFails();

$boss->projectFails();

Although this version of the NastyBoss class works with the Employee type, and

therefore benefits from polymorphism, I still haven’t defined a strategy for object

creation. Instantiating objects is a dirty business, but it has to be done. This chapter is

about classes and objects that work with concrete classes, so that the rest of your classes

do not have to.

If there is a principle to be found here, it is “delegate object instantiation.” I did this

implicitly in the previous example by demanding that an Employee object be passed to

the NastyBoss::addEmployee() method. I could, however, equally delegate to a separate

class or method that takes responsibility for generating Employee objects. Here, I add a

static method to the Employee class that implements a strategy for object creation:

abstract class Employee

{

 �private static $types = [Minion::class, CluedUp::class,

WellConnected::class];

Chapter 9 Generating Objects

280

 public static function recruit(string $name): Employee

 {

 $num = rand(1, count(self::$types)) - 1;

 $class = self::$types[$num];

 return new $class($name);

 }

 public function __construct(protected string $name)

 {

 }

 abstract public function fire(): void;

}

Here’s a third Employee implementation:

class WellConnected extends Employee

{

 public function fire(): void

 {

 print "{$this->name}: I'll call my dad\n";

 }

}

As you can see, this takes a name string and uses it to instantiate a particular

Employee subtype at random. I can now delegate the details of instantiation to the

Employee class’s recruit() method:

$boss = new NastyBoss();

$boss->addEmployee(Employee::recruit("harry"));

$boss->addEmployee(Employee::recruit("bob"));

$boss->addEmployee(Employee::recruit("mary"));

Chapter 9 Generating Objects

281

You saw a simple example of such a class in Chapter 4. I placed a static method in the

ShopProduct class called getInstance(). getInstance() is responsible for generating

the correct ShopProduct subclass based on a database query. The ShopProduct class,

therefore, has a dual role. It defines the ShopProduct type, but it also acts as a factory for

concrete ShopProduct objects.

Note I use the term “factory” frequently in this chapter. A factory is a class or
method with responsibility for generating objects.

Here is the getInstance() method from that class:

public static function getInstance(int $id, \PDO $pdo): ?ShopProduct

{

 $stmt = $pdo->prepare("select * from products where id=?");

 $result = $stmt->execute([$id]);

 $row = $stmt->fetch();

 if (empty($row)) {

 return null;

 }

 if ($row['type'] == "book") {

 // instantiate a BookProduct object

 } elseif ($row['type'] == "cd") {

 // instantiate a RecordProduct object

 } else {

 // instantiate a ShopProduct object

 }

 $product->setId((int) $row['id']);

 $product->setDiscount((int) $row['discount']);

 return $product;

}

Chapter 9 Generating Objects

282

The getInstance() method uses a large if/else statement to determine which

subclass to instantiate. Conditionals like this are quite common in factory code.

Although you should attempt to excise large conditional statements from your projects,

doing so often has the effect of pushing the conditional back to the moment at which an

object is generated. This is not generally a serious problem because you remove parallel

conditionals from your code in pushing the decision-making back to this point.

In this chapter, then, I will examine some of the key Gang of Four patterns for

generating objects.

�The Singleton Pattern
The global variable is one of the great bugbears of the object-oriented programmer. The

reasons should be familiar to you by now. Global variables tie classes into their context,

undermining encapsulation (see Chapters 6 and 8 for more on this). A class that relies on

global variables becomes impossible to pull out of one application and use in another,

without first ensuring that the new application itself defines the same global variables.

Although this is undesirable, the unprotected nature of global variables can be

a greater problem. Once you start relying on global variables, it is perhaps just a

matter of time before one of your libraries declares a global that clashes with another

declared elsewhere. You have seen already that, if you are not using namespaces,

PHP is vulnerable to class name clashes. But this is much worse. PHP will not warn

you when globals collide. The first you will know about it is when your script begins

to behave oddly. Worse still, you may not notice any issues at all in your development

environment. By using globals, though, you potentially leave your users exposed to new

and interesting conflicts when they attempt to deploy your library alongside others.

Globals remain a temptation, however. This is because there are times when the sin

inherent in global access seems a price worth paying in order to give all of your classes

access to an object.

�The Problem
Well-designed systems generally pass object instances around via method calls. Each

class retains its independence from the wider context, collaborating with other parts

of the system via clear lines of communication. Sometimes, though, you find that

this forces you to use some classes as conduits for objects that do not concern them,

introducing dependencies in the name of good design.

Chapter 9 Generating Objects

283

Imagine a Preferences class that holds application-level information. We might use

a Preferences object to store data such as Data Source Name (DSN) strings (Data Source

Names are strings that hold the information needed to connect to a database), URL

roots, file paths, and so on. This is the sort of information that will vary from installation

to installation. The object may also be used as a notice board, a central location for

messages that could be set or retrieved by otherwise unrelated objects in a system.

Passing a Preferences object around from object to object may not always be a

good idea. Many classes that do not otherwise use the object could be forced to accept it

simply so that they could pass it on to the objects that they work with. This is just another

kind of coupling.

You also need to be sure that all objects in your system are working with the same

Preferences object. You do not want objects setting values on one object, while others

read from an entirely different one.

Let’s distill the forces in this problem:

•	 A Preferences object should be available to any object in

your system.

•	 A Preferences object should not be stored in a global variable, which

can be overwritten.

•	 There should be no more than one Preferences object in play

in the system. This means that object Y can set a property in the

Preferences object, and object Z can retrieve the same property,

without either one talking to the other directly (assuming both have

access to the Preferences object).

�Implementation
To address this problem, I can start by asserting control over object instantiation. Here, I

create a class that cannot be instantiated from outside of itself. That may sound difficult,

but it’s simply a matter of defining a private constructor:

class Preferences

{

 private array $props = [];

Chapter 9 Generating Objects

284

 private function __construct()

 {

 }

 public function setProperty(string $key, string $val): void

 {

 $this->props[$key] = $val;

 }

 public function getProperty(string $key): string

 {

 return $this->props[$key];

 }

}

Of course, at this point, the Preferences class is entirely unusable. I have taken

access restriction to an absurd level. Because the constructor is declared private, no

client code can instantiate an object from it. The setProperty() and getProperty()

methods are therefore redundant.

Here, I use a static method and a static property to mediate object instantiation:

class Preferences

{

 private array $props = [];

 private static self $instance;

 private function __construct()

 {

 }

 public static function getInstance(): Preferences

 {

 if (empty(self::$instance)) {

 self::$instance = new Preferences();

 }

 return self::$instance;

 }

Chapter 9 Generating Objects

285

 public function setProperty(string $key, string $val): void

 {

 $this->props[$key] = $val;

 }

 public function getProperty(string $key): string

 {

 return $this->props[$key];

 }

}

The $instance property is private and static, so it cannot be accessed from outside

the class or in object context. The getInstance() method has access, though. Because

getInstance() is public and static, it can be called via the class from anywhere in a script:

$pref = Preferences::getInstance();

$pref->setProperty("name", "matt");

unset($pref); // remove the reference

$pref2 = Preferences::getInstance();

print $pref2->getProperty("name") . "\n"; // demonstrate value is not lost

The output is the single value we added to the Preferences object initially, available

through a separate access:

matt

A static method cannot access object properties because it is, by definition, invoked

in a class and not an object context. It can, however, access a static property. When

getInstance() is called, I check the Preferences::$instance property. If it is empty,

then I create an instance of the Preferences class and store it in the property. Then I

return the instance to the calling code. Because the static getInstance() method is part

of the Preferences class, I have no problem instantiating a Preferences object, even

though the constructor is private. The $props array is not static, of course. It must be

accessed in object context. But, thanks to the restriction put in place by the Singleton

pattern, there can only ever be one object instantiated in a process to access the

property.

Chapter 9 Generating Objects

286

Figure 9-2 shows the Singleton pattern.

Figure 9-2.  An example of the Singleton pattern

�Consequences
So, how does the Singleton approach compare to using a global variable? First, the

bad news. Both Singletons and global variables are prone to misuse. Because the same

instance of a Singleton can be accessed from anywhere in a system, they can serve to

create dependencies that can be hard to debug. Change a Singleton, and classes that use

it may be affected. Dependencies are not a problem in themselves. After all, we create a

dependency every time we declare that a method requires an argument of a particular

type. The problem is that the global nature of the Singleton lets a programmer bypass

the lines of communication defined by class interfaces. When a Singleton is used, the

dependency is hidden away inside a method and not declared in its signature. This

can make it harder to trace the relationships within a system. Singleton classes should

therefore be deployed sparingly and with care.

Nevertheless, I think that moderate use of the Singleton pattern can improve

the design of a system, saving you from horrible contortions as you pass objects

unnecessarily around your system.

Chapter 9 Generating Objects

287

Singletons represent an improvement over global variables in an object-oriented

context. You cannot overwrite a Singleton with the wrong kind of data. Furthermore, you

can group operations and bundles of data together within a Singleton class, making it a

much superior option to an associative array or a set of scalar variables.

�Factory Method Pattern
Object-oriented design emphasizes the abstract class (or interface) over the

implementation. That is, it works with generalizations rather than specializations. The

Factory Method pattern addresses the problem of how to create object instances when your

code focuses on abstract types. The answer? Let specialist classes handle instantiation.

�The Problem
Imagine a personal organizer project that manages Appointment objects, among other

object types. Your business group has forged a relationship with another company, and

you must communicate appointment data to it using a format called BloggsCal. The

business group warns you that you may face yet more formats as time wears on, though.

Staying at the level of interface alone, you can identify two participants right away.

You need a data encoder that converts your Appointment objects into a proprietary

format. Let’s call that class ApptEncoder. You need a manager class that will retrieve an

encoder and maybe work with it to communicate with a third party. You might call that

CommsManager. Using the terminology of the pattern, the CommsManager is the creator, and

the ApptEncoder is the product. You can see this structure in Figure 9-3.

Figure 9-3.  Abstract creator and product classes

How do you get your hands on a real concrete ApptEncoder, though?

You could demand that an ApptEncoder be passed to the CommsManager. As we will

see, with a strategy known as “dependency injection,” this is a perfectly reasonable

approach, but for now that would simply defer the problem. For our current purposes,

we want the buck to stop about here. So here I instantiate a BloggsApptEncoder object

directly within the CommsManager class.

Chapter 9 Generating Objects

288

First of all, let’s create the abstract ApptEncoder class:

abstract class ApptEncoder

{

 abstract public function encode(): string;

}

Here is the concrete BloggsApptEncoder:

class BloggsApptEncoder extends ApptEncoder

{

 public function encode(): string

 {

 return "Appointment data encoded in BloggsCal format\n";

 }

}

The CommsManager class can be hard-coded to generate a BloggsApptEncoder object:

class CommsManager

{

 public function getApptEncoder(): ApptEncoder

 {

 return new BloggsApptEncoder();

 }

}

So, the CommsManager class is responsible for generating BloggsApptEncoder objects.

When the sands of corporate allegiance inevitably shift, and we are asked to convert our

system to work with a new format called MegaCal, we can simply add a conditional into

the CommsManager::getApptEncoder() method. This is the strategy we have used in

the past, after all. Let’s build a new implementation of CommsManager that handles both

BloggsCal and MegaCal formats. We’re going to use a type flag for this. In the past, we

might have used class constants to define our potential ApptEncoder types. Now, though,

we can use an enum:

Chapter 9 Generating Objects

289

enum EncoderType

{

 case bloggs;

 case mega;

}

The EncoderType enumeration gives us two options: bloggs and mega. An instance of

this can now be passed to an adapted CommsManager:

class CommsManager

{

 public function __construct(private EncoderType $mode)

 {

 }

 public function getApptEncoder(): ApptEncoder

 {

 return match ($this->mode) {

 EncoderType::bloggs => new BloggsApptEncoder(),

 EncoderType::mega => new MegaApptEncoder()

 };

 }

}

To complete the participants, here is the new concrete MegaApptEncoder class:

class MegaApptEncoder extends ApptEncoder

{

 public function encode(): string

 {

 return "Appointment data encoded in MegaCal format\n";

 }

}

Chapter 9 Generating Objects

290

Let’s try it out:

$man = new CommsManager(EncoderType::mega);

print (get_class($man->getApptEncoder())) . "\n";

$man = new CommsManager(EncoderType::bloggs);

print (get_class($man->getApptEncoder())) . "\n";

So I use the EncoderType enumeration to define the two modes in which the script

might be run: mega and bloggs. I use a match statement in the getApptEncoder() method

to test the $mode property and instantiate the appropriate implementation of ApptEncoder.

Note T he match expression was introduced in PHP 8.0. It is similar to a switch
statement but resolves to a value.

There is little wrong with this approach. Conditionals are sometimes considered

examples of bad “code smells,” but object creation often requires a conditional at some point.

You should be less sanguine if you see duplicate conditionals creeping into your code. The

CommsManager class provides functionality for communicating calendar data. Imagine that

the protocols you work with require you to provide header and footer data to delineate each

appointment. I can extend the previous example to support a getHeaderText() method:

class CommsManager

{

 public function __construct(private EncoderType $mode)

 {

 }

 public function getApptEncoder(): ApptEncoder

 {

 return match ($this->mode) {

 EncoderType::bloggs => new BloggsApptEncoder(),

 EncoderType::mega => new MegaApptEncoder()

 };

 }

Chapter 9 Generating Objects

291

 public function getHeaderText(): string

 {

 return match ($this->mode) {

 EncoderType::bloggs => "BloggsCal header\n",

 EncoderType::mega => "MegaCal header\n"

 };

 }

}

As you can see, the need to support header output has forced me to duplicate the

protocol conditional test. This will become unwieldy as I add new protocols, especially if

I also add a getFooterText() method.

So, let’s summarize the problem so far:

I do not know until runtime the kind of object I need to produce

(BloggsApptEncoder or MegaApptEncoder).

I need to be able to add new product types with relative ease

(SyncML support is just a new business deal away!).

Each product type is associated with a context that requires

other customized operations (e.g., getHeaderText(),

getFooterText()).

Additionally, I am using conditional statements, and you have seen already that

these are naturally replaceable by polymorphism. The Factory Method pattern enables

you to use inheritance and polymorphism to encapsulate the creation of concrete

products. In other words, you create a CommsManager subclass for each protocol, each

one implementing the getApptEncoder() method.

�Implementation
The Factory Method pattern splits creator classes from the products they are designed

to generate. The creator is a factory class that defines a method for generating a product

object. If no default implementation is provided, it is left to creator child classes to

perform the instantiation. Typically, each creator subclass instantiates a parallel product

child class.

Chapter 9 Generating Objects

292

I can redesignate CommsManager as an abstract class. That way, I keep a flexible

superclass and put all my protocol-specific code in the concrete subclasses. You can see

this alteration in Figure 9-4.

Figure 9-4.  Concrete creator and product classes

Let’s build out some simplified code. First, as a reminder, here’s ApptEncoder and the

dummy BloggsApptEncoder implementation again:

abstract class ApptEncoder

{

 abstract public function encode(): string;

}

class BloggsApptEncoder extends ApptEncoder

{

 public function encode(): string

 {

 return "Appointment data encoded in BloggsCal format\n";

 }

}

Chapter 9 Generating Objects

293

Now we refactor CommsManager, turning it into an abstract class:

abstract class CommsManager

{

 abstract public function getHeaderText(): string;

 abstract public function getApptEncoder(): ApptEncoder;

 abstract public function getFooterText(): string;

}

We create BloggsCommsManager—a concrete CommsManager implementation:

class BloggsCommsManager extends CommsManager

{

 public function getHeaderText(): string

 {

 return "BloggsCal header\n";

 }

 public function getApptEncoder(): ApptEncoder

 {

 return new BloggsApptEncoder();

 }

 public function getFooterText(): string

 {

 return "BloggsCal footer\n";

 }

}

Finally, we put the code through its paces:

$mgr = new BloggsCommsManager();

print $mgr->getHeaderText();

print $mgr->getApptEncoder()->encode();

print $mgr->getFooterText();

Chapter 9 Generating Objects

294

Here is the output:

BloggsCal header

Appointment data encoded in BloggsCal format

BloggsCal footer

So, when I am required to implement MegaCal, supporting it is simply a matter of

writing a new implementation for my abstract classes. Figure 9-5 shows the MegaCal

classes.

Figure 9-5.  Extending the design to support a new protocol

�Consequences
Notice that the creator classes mirror the product hierarchy. This is a common

consequence of the Factory Method pattern and disliked by some as a special kind

of code duplication. Another issue is the possibility that the pattern could encourage

unnecessary subclassing. If your only reason for subclassing a creator is to deploy the

Factory Method pattern, you may need to think again (that’s why I introduced the header

and footer constraints to the example here).

Chapter 9 Generating Objects

295

I have focused only on appointments in my example. If I extend it somewhat to

include to-do items and contacts, I face a new problem. I need a structure that will

handle sets of related implementations at one time.

The Factory Method pattern is often used with the Abstract Factory pattern, as you

will see in the next section.

�Abstract Factory Pattern
In large applications, you may need factories that produce related sets of classes. The

Abstract Factory pattern addresses this problem.

�The Problem
Let’s look again at the organizer example. I manage encoding in two formats, BloggsCal

and MegaCal. I can grow this structure horizontally by adding more encoding formats,

but how can I grow vertically, adding encoders for different types of information

management objects? In fact, I have been working toward this pattern already.

In Figure 9-6, you can see the parallel families with which I will want to work. These

are appointments (Appt), things to do (Ttd), and contacts (Contact).

Chapter 9 Generating Objects

296

Figure 9-6.  Three product families

The BloggsCal classes are unrelated to one another by inheritance (although

they could implement a common interface), but they are functionally parallel. If the

system is currently working with BloggsTtdEncoder, it should also be working with

BloggsContactEncoder.

To see how I enforce this, you can begin with the interface, as I did with the Factory

Method pattern (see Figure 9-7).

Chapter 9 Generating Objects

297

Figure 9-7.  An abstract creator and its abstract products

�Implementation
The abstract CommsManager class defines the interface for generating each of the three

products (ApptEncoder, TtdEncoder, and ContactEncoder). You need to implement

a concrete creator in order to actually generate the concrete products for a particular

family. I illustrate that for the BloggsCal format in Figure 9-8.

Figure 9-8.  Adding a concrete creator and some concrete products

Chapter 9 Generating Objects

298

Here is a code version of CommsManager and BloggsCommsManager:

abstract class CommsManager

{

 abstract public function getHeaderText(): string;

 abstract public function getApptEncoder(): ApptEncoder;

 abstract public function getTtdEncoder(): TtdEncoder;

 abstract public function getContactEncoder(): ContactEncoder;

 abstract public function getFooterText(): string;

}

class BloggsCommsManager extends CommsManager

{

 public function getHeaderText(): string

 {

 return "BloggsCal header\n";

 }

 public function getApptEncoder(): ApptEncoder

 {

 return new BloggsApptEncoder();

 }

 public function getTtdEncoder(): TtdEncoder

 {

 return new BloggsTtdEncoder();

 }

 public function getContactEncoder(): ContactEncoder

 {

 return new BloggsContactEncoder();

 }

 public function getFooterText(): string

 {

 return "BloggsCal footer\n";

 }

}

Chapter 9 Generating Objects

299

Notice that I use the Factory Method pattern in this example. getContactEncoder()

is abstract in CommsManager and implemented in BloggsCommsManager. Design patterns

tend to work together in this way, one pattern creating the context that lends itself to

another. In Figure 9-9, I add support for the MegaCal format.

Figure 9-9.  Adding concrete creators and some concrete products

�Consequences
So, let’s look at what this pattern buys:

•	 First, I decouple my system from the details of implementation. I

can add or remove any number of encoding formats in my example

without causing a knock-on effect.

•	 I enforce the grouping of functionally related elements of my system.

So, by using BloggsCommsManager, I am guaranteed that I will work

only with BloggsCal-related classes.

•	 Adding new products can be a pain. Not only do I have to create

concrete implementations of the new product, but I also have

to amend the abstract creator and every one of its concrete

implementers in order to support it.

Chapter 9 Generating Objects

300

Many implementations of the Abstract Factory pattern use the Factory Method

pattern. This may be because most examples are written in Java or C++. PHP, however,

does not have to enforce a return type for a method (though it now can), which affords us

some flexibility that we might leverage.

Rather than create separate methods for each Factory Method, you can create a

single make() method that uses an enumeration argument to determine which object to

return. First, an interface for all encoder classes:

interface Encoder

{

 public function encode(): string;

}

Now, here’s the abstract CommsManager:

abstract class CommsManager

{

 abstract public function getHeaderText(): string;

 abstract public function make(ProdType $type): Encoder;

 abstract public function getFooterText(): string;

}

So the make() method signature here requires a ProdType enumeration which an

implementation will use to determine the Encoder to return.

Here is ProdType:

enum ProdType

{

 case appt;

 case ttd;

 case contact;

}

Chapter 9 Generating Objects

301

We can get concrete with a BloggsCommsManager which provides the logic for

generating a particular kind of Bloggs encoder:

class BloggsCommsManager extends CommsManager

{

 public function getHeaderText(): string

 {

 return "BloggsCal header\n";

 }

 public function make(ProdType $type): Encoder

 {

 return match ($type) {

 ProdType::appt => new BloggsApptEncoder(),

 ProdType::contact=> new BloggsContactEncoder(),

 ProdType::ttd=> new BloggsTtdEncoder(),

 };

 }

 public function getFooterText(): string

 {

 return "BloggsCal footer\n";

 }

}

As you can see, I have made the class interface more compact. I’ve done this at a

considerable cost, though. In using a factory method, I define a clear interface and

force all concrete factory objects to honor it. In using a single make() method, I must

remember to support all product objects in all the concrete creators. I also introduce

parallel conditionals, as each concrete creator must implement the same enumeration

test. A client class cannot be certain that concrete creators generate all the products

because the internals of make() are a matter of choice in each case.

On the other hand, I can build more flexible creators. The base creator class can provide

a make() method that guarantees a default implementation of each product family. Concrete

children could then modify this behavior selectively. It would be up to implementing creator

classes to call the default make() method after providing their own implementation.

You will see another variation on the Abstract Factory pattern in the next section.

Chapter 9 Generating Objects

302

�Prototype
The emergence of parallel inheritance hierarchies can be a problem with the

Factory Method pattern. This is a kind of coupling that makes some programmers

uncomfortable. Every time you add a product family, you are forced to create

an associated concrete creator (e.g., the BloggsCal encoders are matched by

BloggsCommsManager). In a system that grows fast enough to encompass many products,

maintaining this kind of relationship can quickly become tiresome.

One way of avoiding this dependency is to use PHP’s clone keyword to duplicate

existing concrete products. The concrete product classes themselves then become the

basis of their own generation. This is the Prototype pattern. It enables you to replace

inheritance with composition. This in turn promotes runtime flexibility and reduces the

number of classes you must create.

�The Problem
Imagine a Civilization-style web game in which units operate on a grid of tiles. Each

tile can represent sea, plains, or forests. The terrain type constrains the movement

and combat abilities of units occupying the tile. You might have a TerrainFactory

object that serves up Sea, Forest, and Plains objects. You decide that you will allow

the user to choose among radically different environments, so the Sea object is an

abstract superclass implemented by MarsSea and EarthSea. Forest and Plains objects

are similarly implemented. The forces here lend themselves to the Abstract Factory

pattern. You have distinct product hierarchies (Sea, Plains, Forests), with strong family

relationships cutting across inheritance (Earth, Mars). Figure 9-10 presents a class

diagram that shows how you might deploy the Abstract Factory and Factory Method

patterns to work with these products.

Chapter 9 Generating Objects

303

Figure 9-10.  Handling terrains with the Abstract Factory method

As you can see, I rely on inheritance to group the terrain family for the products that

a factory will generate. This is a workable solution, but it requires a large inheritance

hierarchy, and it is relatively inflexible. When you do not want parallel inheritance

hierarchies, and when you need to maximize runtime flexibility, the Prototype pattern

can be used in a powerful variation on the Abstract Factory pattern.

�Implementation
When you work with the Abstract Factory/Factory Method patterns, you must decide, at

some point, which concrete creator you wish to use, probably by checking some kind of

preference flag. As you must do this anyway, why not simply create a factory class that

stores concrete products and then populate this during initialization? You can cut down

on a couple of classes this way and, as you shall see, take advantage of other benefits.

Here’s some simple code that uses the Prototype pattern in a factory. First of all, let’s

create some terrain classes:

Chapter 9 Generating Objects

304

class Plains

{

}

class Forest

{

}

class Sea

{

}

class EarthPlains extends Plains

{

}

class EarthSea extends Sea

{

}

class EarthForest extends Forest

{

}

class MarsSea extends Sea

{

}

class MarsForest extends Forest

{

}

class MarsPlains extends Plains

{

}

Chapter 9 Generating Objects

305

Now we can build a TerrainFactory class to manage terrain combinations:

class TerrainFactory

{

 �public function __construct(private Sea $sea, private Plains $plains,

private Forest $forest)

 {

 }

 public function getSea(): Sea

 {

 return clone $this->sea;

 }

 public function getPlains(): Plains

 {

 return clone $this->plains;

 }

 public function getForest(): Forest

 {

 return clone $this->forest;

 }

}

Let’s run the code:

$factory = new TerrainFactory(

 new EarthSea(),

 new EarthPlains(),

 new EarthForest()

);

print_r($factory->getSea());

print_r($factory->getPlains());

print_r($factory->getForest());

Chapter 9 Generating Objects

306

Here is the output:

popp\ch09\batch11\EarthSea Object

(

)

popp\ch09\batch11\EarthPlains Object

(

)

popp\ch09\batch11\EarthForest Object

(

)

As you can see, I load up a concrete TerrainFactory with instances of product

objects. When a client calls getSea(), I return a clone of the Sea object that I cached

during initialization. This structure buys me additional flexibility. Want to play a game

on a new planet with Earth-like seas and forests, but Mars-like plains? No need to write a

new creator class—you can simply change the mix of classes you add to TerrainFactory:

$factory = new TerrainFactory(

 new EarthSea(),

 new MarsPlains(),

 new EarthForest()

);

So the Prototype pattern allows you to take advantage of the flexibility afforded by

composition. You get more than that, though. Because you are storing and cloning objects

at runtime, you reproduce object state when you generate new products. Imagine that Sea

objects have a $navigability property. The property influences the amount of movement

energy a sea tile saps from a vessel and can be set to adjust the difficulty level of a game:

class Sea

{

 public function __construct(private int $navigability)

 {

 }

}

Chapter 9 Generating Objects

307

Now when I initialize the TerrainFactory object, I can add a Sea object

with a navigability modifier. This will then hold true for all Sea objects served by

TerrainFactory:

$factory = new TerrainFactory(

 new EarthSea(-1),

 new EarthPlains(),

 new EarthForest()

);

This flexibility is also apparent when the object you wish to generate is composed of

other objects.

Note I covered object cloning in Chapter 4. The clone keyword generates a
shallow copy of any object to which it is applied. This means that the product
object will have the same properties as the source. If any of the source’s properties
are objects, then these will not be copied into the product. Instead, the product
will reference the same object properties. It is up to you to change this default
and to customize object copying in any other way, by implementing a __clone()
method. This is called automatically when the clone keyword is used.

Perhaps all Sea objects can contain Resource objects (FishResource, OilResource,

etc.). According to a preference flag, we might give all Sea objects a FishResource by

default. Remember that if your products reference other objects, you should implement

a __clone() method to ensure that you make a deep copy:

class Contained

{

}

class Container

{

 public Contained $contained;

Chapter 9 Generating Objects

308

 public function __construct()

 {

 $this->contained = new Contained();

 }

 public function __clone()

 {

 // Ensure that cloned object holds a

 // clone of self::$contained and not

 // a reference to it

 $this->contained = clone $this->contained;

 }

}

�Pushing to the Edge: Service Locator
I promised that this chapter would deal with the logic of object creation, doing away with

the sneaky buck-passing of many object-oriented examples. Yet some patterns here have

slyly dodged the decision-making part of object creation, if not the creation itself.

The Singleton pattern is not guilty. The logic for object creation is built-in and

unambiguous. The Abstract Factory pattern groups the creation of product families into

distinct concrete creators. How do we decide which concrete creator to use, though?

The Prototype pattern presents us with a similar problem. Both these patterns handle

the creation of objects, but they defer the decision as to which object or group of objects

should be created.

The particular concrete creator that a system chooses is often decided according to

the value of a configuration switch of some kind. This could be located in a database,

a configuration file, or a server file (such as Apache’s directory-level configuration file,

usually called .htaccess), or it could even be hard-coded as a PHP variable or property.

Because PHP applications must be reconfigured for every request or CLI call, you need

script initialization to be as painless as possible. For this reason, I often opt to hard-

code configuration flags in PHP code. This can be done by hand or by writing a script

that autogenerates a class file. Here’s a crude class that includes a flag for calendar

protocol types:

Chapter 9 Generating Objects

309

class Settings

{

 public const string COMMSTYPE = 'Mega';

}

Now that I have a flag (however inelegant), I can create a class that uses it to decide

which CommsManager to serve on request. It is quite common to see a Singleton used in

conjunction with the Abstract Factory pattern, so let’s do that:

class AppConfig

{

 private static AppConfig $instance;

 private CommsManager $commsManager;

 private function __construct()

 {

 $this->commsManager = match (Settings::COMMSTYPE) {

 "Mega" => new MegaCommsManager(),

 default => new BloggsCommsManager()

 };

 }

 public static function getInstance(): AppConfig

 {

 self::$instance ??= new self();

 return self::$instance;

 }

 public function getCommsManager(): CommsManager

 {

 return $this->commsManager;

 }

}

Chapter 9 Generating Objects

310

The AppConfig class is a standard Singleton. For that reason, I can get an AppConfig

instance anywhere in the system, and I will always get the same one. The class’s

constructor is private and is run at most once in a process—the first time getInstance()

is called. It tests the Settings::COMMSTYPE constant, instantiating a concrete

CommsManager object according to its value. Now my script can get a CommsManager

object and work with it without ever knowing about its concrete implementations or the

concrete classes it generates:

$commsMgr = AppConfig::getInstance()->getCommsManager();

$commsMgr->getApptEncoder()->encode();

Because AppConfig manages the work of finding and creating components for us,

it is an instance of what’s known as the Service Locator pattern. It’s neat but it does

introduce a more benign dependency than direct instantiation. Any classes using its

service must explicitly invoke this monolith, binding them to the wider system. For this

reason, some prefer another approach.

�Splendid Isolation: Dependency Injection
In the previous section, I used a flag and a conditional statement within a factory to

determine which of two CommsManager classes to serve up. The solution was not as

flexible as it might have been. The classes on offer were hard-coded within a single

locator, with a choice of two components built-in to a conditional. That inflexibility was a

facet of my demonstration code, though, rather than a problem with Service Locator, per

se. I could have used any number of strategies to locate, instantiate, and return objects

on behalf of client code. The real reason Service Locator is often treated with suspicion,

however, is the fact that a component must explicitly invoke the locator. This feels a little,

well, global. And object-oriented developers are rightly suspicious of all things global.

Not only that, but this call sets up a hidden dependency which bypasses the method

signature of the calling code.

�The Problem
Whenever you use the new operator, you close down the possibility of polymorphism

within that scope. Imagine a method that deploys a hard-coded BloggsApptEncoder

object, for example:

Chapter 9 Generating Objects

311

class AppointmentMaker

{

 public function makeAppointment(): string

 {

 $encoder = new BloggsApptEncoder();

 return $encoder->encode();

 }

}

This might work for our initial needs, but it will not allow any other ApptEncoder

implementation to be switched in at runtime. That limits the ways in which the class can

be used, and it makes the class harder to test.

Note  Unit tests are usually designed to focus on specific classes and methods in
isolation from a wider system. If the class under test includes a directly instantiated
object, then all sorts of code extraneous to the test may be executed—possibly
causing errors and unexpected side effects. If, on the other hand, a class under test
acquires objects it works with in some way other than direct instantiation, it can be
provided with fake—mock or stub—objects for the purposes of testing.

Direct instantiations make code hard to test. Much of this chapter addresses

precisely this kind of inflexibility. But, as I pointed out in the previous section, I have

skated over the fact that, even if we use the Prototype or Abstract Factory patterns,

instantiation has to happen somewhere. Here again is a fragment of code that creates a

Prototype object:

$factory = new TerrainFactory(

 new EarthSea(),

 new EarthPlains(),

 new EarthForest()

);

Chapter 9 Generating Objects

312

The Prototype TerrainFactory class called here is a step in the right direction—it

demands generic types: Sea, Plains, and Forest. The class leaves it up to the client code

to determine which implementations should be provided. But how is this done?

�Implementation
Much of our code calls out to factories. As we have seen, this model is known as the

Service Locator pattern. A method delegates responsibility to a provider which it trusts to

find and serve up an instance of the desired type. The Prototype example inverts this; it

simply expects the instantiating code to provide implementations at call time. There’s no

magic here—it’s simply a matter of requiring types in a constructor’s signature, instead

of creating them directly within the method. A variation on this is to provide setter

methods, so that clients can pass in objects before invoking a method that uses them.

So let’s fix up AppointmentMaker in this way:

class AppointmentMaker2

{

 public function __construct(private ApptEncoder $encoder)

 {

 }

 public function makeAppointment(): string

 {

 return $this->encoder->encode();

 }

}

AppointmentMaker2 has given up control—it no longer creates the

BloggsApptEncoder, and we have gained flexibility. What about the logic for the actual

creation of ApptEncoder objects, though? Where do the dreaded new statements live? We

need an assembler component to take on the job.

Let’s build a component—a Dependency Injection container—which supports

various strategies for managing the instantiation, storage, and injection of objects.

Chapter 9 Generating Objects

313

�Dependency Injection from a Configuration File

A common strategy here uses a configuration file to figure out which implementations

should be instantiated. There are tools to help us with this, but this book is all about

doing it ourselves, so let’s build a very naive implementation.

I’ll start with a crude XML format which describes the relationships between abstract

classes and their preferred implementations:

<objects>

 <class name="popp\ch09\batch06\ApptEncoder">

 <instance inst="popp\ch09\batch06\BloggsApptEncoder" />

 </class>

</objects>

This asserts that where we ask for an ApptEncoder, our tool should generate a

BloggsApptEncoder. Of course, we have to create the assembler. This component will

become a dependency injection container, so let’s start as we mean to go on. We’ll call

the class Container:

class Container

{

 private array $components = [];

 public function __construct(string $conf)

 {

 $this->configure($conf);

 }

 private function configure(string $conf): void

 {

 $data = simplexml_load_file($conf);

 foreach ($data->class as $class) {

 $name = (string)$class['name'];

 $resolvedname = $name;

Chapter 9 Generating Objects

314

 if (isset($class->instance)) {

 if (isset($class->instance[0]['inst'])) {

 $resolvedname = (string)$class->instance[0]['inst'];

 }

 }

 $this->components[$name] = function () use ($resolvedname) {

 $rclass = new \ReflectionClass($resolvedname);

 return $rclass->newInstance();

 };

 }

 }

 public function get(string $class): object

 {

 if (isset($this->components[$class])) {

 $inst = $this->components[$class]();

 } else {

 $rclass = new \ReflectionClass($class);

 $inst = $rclass->newInstance();

 }

 return $inst;

 }

}

This is a little dense at first reading, so let’s work through it briefly. Most of the real

action takes place in configure(). The method accepts a path which is passed on from

the constructor. It uses the simplexml extension to parse the configuration XML. In a

real project, of course, we’d add more error handling here and throughout. For now, I’m

pretty trusting of the XML I’m parsing.

For every <class> element, I extract the fully qualified class name and store it in the

$name variable. I also create a $resolvedname variable which will hold the name of the

concrete class we will generate. Assuming an <instance> element is found (and in later

examples, you will see that it will not always be present), I assign the correct value to

$resolvedname.

Chapter 9 Generating Objects

315

I don’t want to create an object unless and until it’s needed, so I create an

anonymous function which will do the creation when called upon and then add it to the

$components property.

The get() method takes a given class name and resolves it to an instance. It does this

in one of two ways. If the provided class name is a key in the $components array, then I

extract and run the corresponding anonymous function. If, on the other hand, I can find

no record of the provided class, I can still gamely attempt to create an instance. We will

refine this fallback feature later on. Finally, I return the result.

Let’s put this code through its paces:

$assembler = new Container("src/ch09/batch14_1/objects.xml");

$encoder = $assembler->get(ApptEncoder::class);

$apptmaker = new AppointmentMaker2($encoder);

$out = $apptmaker->makeAppointment();

print $out;

Because ApptEncoder::class resolves to popp\ch09\batch06\ApptEncoder—the

key established in the objects.xml file—a BloggsApptEncoder object is instantiated and

returned. You can see that demonstrated by the output from this fragment:

Appointment data encoded in BloggsCal format

As you have seen, the code is clever enough to create a concrete object even if it isn’t

in the configuration file:

$assembler = new Container("src/ch09/batch14_1/objects.xml");

$encoder = $assembler->get(MegaApptEncoder::class);

$apptmaker = new AppointmentMaker2($encoder);

$out = $apptmaker->makeAppointment();

print $out;

There is no MegaApptEncoder key in the configuration file, but, because the

MegaApptEncoder class exists and is instantiable, the Container class is able to create

and return an instance.

Chapter 9 Generating Objects

316

But what about objects with constructors that require arguments? We can achieve

that without much more work. Remember the most recent TerrainFactory class?

It demands a Sea, a Plains, and a Forest object. Here, I amend my XML format to

accommodate this requirement:

<objects>

 <class name="popp\ch09\batch11\TerrainFactory">

 <arg num="0" inst="popp\ch09\batch11\EarthSea" />

 <arg num="1" inst="popp\ch09\batch11\MarsPlains" />

 <arg num="2" inst="popp\ch09\batch11\Forest" />

 </class>

 <class name="popp\ch09\batch11\Forest">

 <instance inst="popp\ch09\batch11\EarthForest" />

 </class>

 <class name="popp\ch09\batch14\AppointmentMaker2">

 <arg num="0" inst="popp\ch09\batch06\BloggsApptEncoder" />

 </class>

</objects>

I’ve described two classes from this chapter: TerrainFactory and

AppointmentMaker2. I want TerrainFactory to be instantiated with an EarthSea object,

a MarsPlains object, and an EarthForest object. I would also like AppointmentMaker2

to be passed a BloggsApptEncoder object. Because TerrainFactory and

AppointmentMaker2 are already concrete classes, I do not need to provide <instance>

elements in either case.

While EarthSea and MarsPlains are concrete classes, note that Forest is abstract.

This is a neat piece of logical recursion. Although Forest cannot itself be instantiated,

there is a corresponding <class> element which defines a concrete instance. Do you

think a new version of Container will be able to cope with these requirements?

class Container

{

 private array $components = [];

Chapter 9 Generating Objects

317

 public function __construct(string $conf)

 {

 $this->configure($conf);

 }

 private function configure(string $conf): void

 {

 $data = simplexml_load_file($conf);

 foreach ($data->class as $class) {

 $args = [];

 $name = (string)$class['name'];

 $resolvedname = $name;

 foreach ($class->arg as $arg) {

 $argclass = (string)$arg['inst'];

 $args[(int)$arg['num']] = $argclass;

 }

 if (isset($class->instance)) {

 if (isset($class->instance[0]['inst'])) {

 $resolvedname = (string)$class->instance[0]['inst'];

 }

 }

 ksort($args);

 �$this->components[$name] = function () use ($resolvedname,

$args) {

 $expandedargs = [];

 foreach ($args as $arg) {

 $expandedargs[] = $this->get($arg);

 }

 $rclass = new \ReflectionClass($resolvedname);

 return $rclass->newInstanceArgs($expandedargs);

 };

 }

 }

Chapter 9 Generating Objects

318

 public function get(string $class): object

 {

 if (isset($this->components[$class])) {

 $inst = $this->components[$class]();

 } else {

 $rclass = new \ReflectionClass($class);

 $inst = $rclass->newInstance();

 }

 return $inst;

 }

}

Let’s take a closer look at what is new here.

Firstly, in the configure() method, I now loop through any arg elements in each

class element and build up a list of argument class names:

foreach ($class->arg as $arg) {

 $argclass = (string)$arg['inst'];

 $args[(int)$arg['num']] = $argclass;

}

Then, in the anonymous builder function, I really don’t have to do much to expand

each of these elements into object instances for passing into my class’s constructor. I

have already created the get() method for this purpose, after all:

ksort($args);

$this->components[$name] = function () use ($resolvedname, $args) {

 $expandedargs = [];

 foreach ($args as $arg) {

 $expandedargs[] = $this->get($arg);

 }

 $rclass = new \ReflectionClass($resolvedname);

 return $rclass->newInstanceArgs($expandedargs);

};

Chapter 9 Generating Objects

319

Note I f you are considering working with a Dependency Injection assembler/
container (rather than building one from scratch), there are some good options
available to you. You should look at a couple of options: PHP-DI and Symfony
DI. You can find out more about PHP-DI at https://php-di.org/; you can
learn more about the Symfony DI component at http://symfony.com/doc/
current/components/dependency_injection/introduction.html.

So we can now maintain the flexibility of our components and handle instantiation

dynamically. Let’s try out the Container class:

$assembler = new Container("src/ch09/batch14/objects.xml");

$apptmaker = $assembler->get(AppointmentMaker2::class);

$out = $apptmaker->makeAppointment();

print $out;

Once we have a Container, object acquisition takes up a single statement. The

AppointmentMaker2 class is free of its previous hard-coded dependency on an

ApptEncoder instance. A developer can now use the configuration file to control what

classes are used at runtime, as well as to test AppointmentMaker2 in isolation from the

wider system.

�Dependency Injection with Attributes

We can also use the attributes feature introduced with PHP 8 to shift some of this

logic from the configuration file to the classes themselves, and we can do this without

sacrificing the functionality we have already defined.

Note I covered attributes in Chapter 5.

Chapter 9 Generating Objects

https://php-di.org/;
http://symfony.com/doc/current/components/dependency_injection/introduction.html
http://symfony.com/doc/current/components/dependency_injection/introduction.html

320

Here is another XML file. I’m not introducing any new features here. In fact, the

configuration file is taking responsibility for less logic:

<objects>

 <class name="popp\ch09\batch06\ApptEncoder">

 <instance inst="popp\ch09\batch06\BloggsApptEncoder" />

 </class>

 <class name="popp\ch09\batch11\Sea">

 <instance inst="popp\ch09\batch11\EarthSea" />

 </class>

 <class name="popp\ch09\batch11\Plains">

 <instance inst="popp\ch09\batch11\MarsPlains" />

 </class>

 <class name="popp\ch09\batch11\Forest">

 <instance inst="popp\ch09\batch11\EarthForest" />

 </class>

</objects>

I want to generate a new version of TerrainFactory. If the definition for this is

not evident in the configuration file, then where might I find it? The answer lies in the

TerrainFactory class itself:

class TerrainFactory

{

 #[InjectConstructor(Sea::class, Plains::class, Forest::class)]

 �public function __construct(private Sea $sea, private Plains $plains,

private Forest $forest)

 {

 }

 public function getSea(): Sea

 {

 return clone $this->sea;

 }

Chapter 9 Generating Objects

321

 public function getPlains(): Plains

 {

 return clone $this->plains;

 }

 public function getForest(): Forest

 {

 return clone $this->forest;

 }

}

This is just the Prototype TerrainFactory class you have already seen but with the

crucial addition of the InjectConstructor attribute. This requires a boilerplate class

definition:

use Attribute;

#[Attribute]

class InjectConstructor

{

 public array $classname;

 public function __construct(string ...$classname)

 {

 $this->classname = $classname;

 }

}

So, the InjectConstructor attribute defines my required behavior. I want my

dependency injection example to provide concrete instances of the Sea, Plains, and

Forest abstract classes. Time once again for the hardworking Container class to step up.

I can add a hook to support this new functionality to the get() method:

public function get(string $class): object

{

 if (isset($this->components[$class])) {

 // instance already added by some means

Chapter 9 Generating Objects

322

 $inst = $this->components[$class]();

 $rclass = new \ReflectionClass($inst::class);

 } else {

 $rclass = new \ReflectionClass($class);

 $inst = $this->getObjectFromAttribute($rclass);

 // do something with a null $inst...

 }

 return $inst;

}

This change might seem nicely compact. But I haven’t finished yet. If I find

the provided class key—the $class argument variable—in the $components array

property, I simply rely on the corresponding anonymous function to take care of

instantiation. If not, then the logic may be found in attributes and call a new method:

getObjectFromAttribute(). Here it is:

private function getObjectFromAttribute(\ReflectionClass $rclass): ?object

{

 $rconstructor = $rclass->getConstructor();

 $methods = $rclass->getMethods();

 if (is_null($rconstructor)) {

 return null;

 }

 $attributes = $rconstructor->getAttributes(InjectConstructor::class);

 if (! count($attributes)) {

 return null;

 }

 $injectconstructor = $attributes[0];

 $constructorargs = [];

 foreach ($injectconstructor->getArguments() as $arg) {

 $constructorargs[] = $this->get($arg);

 }

 return $rclass->newInstanceArgs($constructorargs);

}

Chapter 9 Generating Objects

323

I loop through all methods in the target class looking for an InjectConstructor

attribute. If I find one, then I treat the related method as a constructor. I expand each

of the attribute arguments into an object instance in its own right and then pass the

finished list to ReflectionClass::newInstanceArgs().

Note the use of recursion here. In order to expand the attribute argument to an

object, I pass the class name back to get().

If, on the other hand, I don’t find the InjectConstructor attribute in the target class,

then there is no attribute to work with and I return null. As things stand, this would lead

to an error condition, since the code you’ve seen within get() assumes that $inst has

been successfully populated with an object.

We’ll look at what to with a failed call to getObjectFromAttribute() in a while. First,

though, let’s try out the attribute code. With properly configured classes, I can, in theory,

generate a magically populated TerrainFactory object.

$container = new Container("src/ch09/batch15/objects.xml");

$terrainfactory = $container->get(TerrainFactory::class);

$plains = $terrainfactory->getPlains(); // MarsPlains

When the Container object is called with the TerrainFactory name, the method,

Container::get(), first looks in its $components array for a matching configuration

element. In this case, it does not find one. So then it loops through the methods in

TerrainFactory and lights upon the InjectConstructor attribute. This has three

arguments. For each of these, it recursively calls get(). In each of these cases, it does

find a configuration element which provides a class from which an argument can be

instantiated.

Note T his example code does not check for circular recursion. At the very least, a
production version of this should prevent recursive calls to get() from running to
too many levels.

Finally, let’s round things out with a new attribute. Inject is similar to

InjectConstructor except that it should be applied to standard methods. These will be

called after the target object is instantiated. Here is the attribute in use:

Chapter 9 Generating Objects

324

class AppointmentMaker

{

 private ApptEncoder $encoder;

 #[InjectConstructor()]

 public function __construct()

 {

 }

 #[Inject(ApptEncoder::class)]

 public function setApptEncoder(ApptEncoder $encoder)

 {

 $this->encoder = $encoder;

 }

 public function makeAppointment(): string

 {

 return $this->encoder->encode();

 }

}

The directive here is that the AppointmentMaker class should be provided with an

ApptEncoder object after instantiation.

Note I n order to get the initial AppointmentMaker object at this point, I require
an empty constructor with an InjectConstructor attribute. Later on, we’ll
once again make the Container class more adaptable, so that it doesn’t need an
attribute or constructor.

Here is the boilerplate Inject class which corresponds to the attribute:

use Attribute;

#[Attribute]

Chapter 9 Generating Objects

325

class Inject

{

 public function __construct(public string $classname)

 {

 }

}

As with InjectConstructor, it really does not do anything useful except fill the

namespace. Time to add support for Inject to Container:

public function get(string $class): object

{

 // create $inst -- our object instance

 // and a list of \ReflectionMethod objects

 $this->injectMethods($inst, $rclass->getMethods());

 return $inst;

}

private function injectMethods(object $inst, array $methods): void

{

 foreach ($methods as $method) {

 foreach ($method->getAttributes(Inject::class) as $attribute) {

 $args = [];

 foreach ($attribute->getArguments() as $argstring) {

 $args[] = $this->get($argstring);

 }

 $method->invokeArgs($inst, $args);

 }

 }

}

I have omitted most of get() since it does not change here. The only addition is a call to

a new method: injectMethods(). This accepts the new instantiated object and an array of

ReflectionMethod objects. It then performs a familiar dance, looping through any methods

with Inject attributes, acquiring the attribute arguments, and passing each back to get().

Once an argument list has been compiled, the method is invoked on the instance.

Chapter 9 Generating Objects

326

Here is some client code:

$container = new Container("src/ch09/batch15/objects.xml");

$apptmaker = $container->get(AppointmentMaker::class);

$output = $apptmaker->makeAppointment();

print $output;

So, when I call get(), it creates an AppointmentMaker instance according to the flow

we have explored. It then calls injectMethods() which finds a method with an Inject

attribute in the AppointmentMaker class. The attribute’s argument specifies ApptEncoder.

This class key is passed to get() in a recursive call. Because our configuration

file specifies BloggsApptEncoder as the resolution for ApptEncoder, this object is

instantiated and passed to the setter method.

Once again, this is demonstrated by the output which is

Appointment data encoded in BloggsCal format

�Dependency Injection with Autowire Support

Remember that comment in get() that promised to do something more when

configuration and then attributes failed to render a valid object? In this section, we’re

going to address that by trying something called autowiring. This simply means that,

where it has not been given any directives, the component will attempt to generate an

object instance using reflection alone.

In the very earliest versions of the Container class, I defaulted to a very crude version

of this approach by calling ReflectionClass::newInstance() on the class name. This

worked but only if the class in question had a constructor which required no arguments.

Now, let’s add this functionality back but with a boost. First, I’ll add a call to a new

method getObjectFromAutowire():

// findme

public function get(string $class): object

{

 if (isset($this->components[$class])) {

 // instance already added by some means

Chapter 9 Generating Objects

327

 $inst = $this->components[$class]();

 $rclass = new \ReflectionClass($inst::class);

 } else {

 $rclass = new \ReflectionClass($class);

 $inst = $this->getObjectFromAttribute($rclass);

 // do something with a null $inst...

 if (is_null($inst)) {

 $inst = $this->getObjectFromAutowire($rclass);

 }

 }

Here’s that method:

private function getObjectFromAutowire(\ReflectionClass $rclass): object

{

 if (! $rclass->isInstantiable()) {

 t�hrow new \Exception("{$rclass->getName()} can not be

instantiated");

 }

 $rconstructor = $rclass->getConstructor();

 if (is_null($rconstructor)) {

 return $rclass->newInstance();

 }

 $constructorargs = [];

 foreach ($rconstructor->getParameters() as $param) {

 $name = $param->getType() &&

 $param->getType() instanceof \ReflectionNamedType &&

 ! $param->getType()->isBuiltin()

 ? $param->getType()->getName()

 : null;

 if (is_null($name)) {

 �throw new \Exception("unable to autowire {$rclass->

getName()}");

 }

Chapter 9 Generating Objects

328

 $constructorargs[] = $this->get($name);

 }

 return $rclass->newInstanceArgs($constructorargs);

}

The getObjectFromAutowire() method requires a ReflectionClass object. I kick

off with a check that the target class can actually be instantiated. If so, and I can’t find

a constructor, then I can call ReflectionClass::newInstance() to generate an object

with no further work.

Then it’s time to dig into any required arguments. I loop through the constructor

method’s defined parameters. If the type is named (and not, for example, an intersection

or union type) and not built-in, I have half a chance of getting an instance from it. I have

already done that work, of course. I can simply call get() with the type. I assign the result

to a local $constructorargs array.

Finally, assuming I haven’t tripped any exceptions along the way, I call ReflectionC

lass::newInstanceArgs() to generate my object with the required argument list.

Let’s try it out. Here is a sample class named Pinger:

class Pinger

{

 public function __construct(private PingReporter $reporter)

 {

 }

 public function execute(): void

 {

 $this->reporter->report("all is well");

 }

}

Pinger is very basic—its constructor requires a PingReporter object, and its sole

execute() method calls PingReporter::report(). Here is PingReporter:

Chapter 9 Generating Objects

329

class PingReporter

{

 public function report(string $str): void

 {

 print $str;

 }

}

Because PingReporter is unambiguous, I hope that autowiring will work here. Let’s

confirm it:

$container = new Container("src/ch09/batch15/objects.xml");

$pinger = $container->get(Pinger::class);

$pinger->execute(); // "all is well"

Of course, this would not work if PingReporter were abstract. In that case, there

would be no way for getObjectFromAutowire() to resolve an instantiable class. We

could fix that with a configuration file entry, mapping the abstract type to a concrete

child class, of course.

What about a still more complicated scenario, though? An instance of a built-in class,

for example, or a string value that must be extracted from a configuration file at runtime.

For that, we might need more flexibility. Perhaps a programmatic solution.

�Dependency Injection with Programmatic Configuration

Let’s set up an example that the current version of Container would not handle. The

ThingChecker class defines a constructor that requires an instance of the built-in

DateTime class and a string value:

class CheckThing

{

 �public function __construct(private \DateTime $datetag, private string

$cssClass)

 {

 }

Chapter 9 Generating Objects

330

 public function __toString()

 {

 return ($this->datetag->format(\DateTime::ATOM) .

 " class: {$this->cssClass}");

 }

}

This class does nothing but demonstrate its state through a __toString() method. It

remains a challenge to the Container class, however, thanks to that constructor.

Let’s create a method in Container that will allow us to preconfigure object

instantiation:

public function customGen(string $name, callable $func): void

{

 $container = $this;

 �$this->components[$name] = function () use ($container, $func):

object {

 return $func($container);

 };

}

This code is pretty trusting, and we might want to work to add some more checks.

Essentially, though, whatever we do, we’re handing the configuration over to an external

context. We expect a callable routine which, when the time comes, we will call with this

instance of the Container. It is up to the provided closure to resolve to an object which

corresponds to the given name.

It is sometimes hard to remember what part of a container sets up a potential and

what part actually generates objects. As a reminder, methods like configure() and

customGen() add to an array of anonymous functions, indexed by class names. Each of

these elements will resolve to its key’s corresponding object when its function is invoked.

The get() method performs that invocation and converts the anonymous function to

an object.

Chapter 9 Generating Objects

331

Let’s look at the customGen() method in action:

$container = new Container("src/ch09/batch15/objects.xml");

$container->customGen(CheckThing::class, function (Container $container):

object {

 $now = new \DateTime("now", new \DateTimeZone("UTC"));

 $css = "myclass";

 return new CheckThing($now, $css);

});

$checker = $container->get(CheckThing::class);

print "{$checker}\n";

I can perform any kind of initialization process I need within the closure I build to

send to customGen. Because the container provides an instance of itself when it calls my

function, I can even acquire objects from the container itself.

�Adding an Object to a Container

In some circumstances, I may already have an object to hand which I would like to make

available via the Container. We already have customGen() which we can use for this.

Let’s do that within Container for convenience:

public function add(string $name, object $item): void

{

 $this->customGen($name, fn ($container) => $item);

}

Because customGen() accepts a closure which resolves to an object, we simply pass

wrap an existing object in an anonymous function and pass it along with a key. Although,

conventionally, we’re expecting this to be a class name, we don’t enforce this by design.

We want to be able to map an abstract class name to a particular implementation, for

example, or even to use a custom key in some circumstances.

Chapter 9 Generating Objects

332

�The Entire Container Class

Here is the whole of Container. It comprises a limited proof of concept dependency

injection container class in less than 150 lines!

class Container

{

 private array $components = [];

 public function __construct(?string $conf = null)

 {

 if (! is_null($conf)) {

 $this->configure($conf);

 }

 }

 private function configure(string $conf): void

 {

 $data = simplexml_load_file($conf);

 foreach ($data->class as $class) {

 $args = [];

 $name = (string)$class['name'];

 $resolvedname = $name;

 foreach ($class->arg as $arg) {

 $argclass = (string)$arg['inst'];

 $args[(int)$arg['num']] = $argclass;

 }

 if (isset($class->instance)) {

 if (isset($class->instance[0]['inst'])) {

 $resolvedname = (string)$class->instance[0]['inst'];

 }

 }

 ksort($args);

 $�this->components[$name] = function () use ($resolvedname,

$args) {

 $expandedargs = [];

Chapter 9 Generating Objects

333

 foreach ($args as $arg) {

 $expandedargs[] = $this->get($arg);

 }

 $rclass = new \ReflectionClass($resolvedname);

 return $rclass->newInstanceArgs($expandedargs);

 };

 }

 }

 public function add(string $name, object $item): void

 {

 $this->customGen($name, fn ($container) => $item);

 }

 public function customGen(string $name, callable $func): void

 {

 $container = $this;

 �$this->components[$name] = function () use ($container, $func):

object {

 return $func($container);

 };

 }

 public function has(string $class): bool

 {

 if (isset($this->components[$class])) {

 return true;

 }

 if (class_exists($class)) {

 return true;

 }

 return false;

 }

Chapter 9 Generating Objects

334

 public function get(string $class): object

 {

 // create $inst -- our object instance

 // and a list of \ReflectionMethod objects

 if (isset($this->components[$class])) {

 // instance already added by some means

 $inst = $this->components[$class]();

 $rclass = new \ReflectionClass($inst::class);

 } else {

 $rclass = new \ReflectionClass($class);

 $inst = $this->getObjectFromAttribute($rclass);

 if (is_null($inst)) {

 $inst = $this->getObjectFromAutowire($rclass);

 }

 }

 $this->injectMethods($inst, $rclass->getMethods());

 $this->add(get_class($inst), $inst);

 return $inst;

 }

 private function injectMethods(object $inst, array $methods): void

 {

 foreach ($methods as $method) {

 foreach ($method->getAttributes(Inject::class) as $attribute) {

 $args = [];

 foreach ($attribute->getArguments() as $argstring) {

 $args[] = $this->get($argstring);

 }

 $method->invokeArgs($inst, $args);

 }

 }

 }

Chapter 9 Generating Objects

335

 �private function getObjectFromAttribute(\ReflectionClass

$rclass): ?object

 {

 $rconstructor = $rclass->getConstructor();

 $methods = $rclass->getMethods();

 if (is_null($rconstructor)) {

 return null;

 }

 �$attributes = $rconstructor->getAttributes(InjectConstructor::

class);

 if (! count($attributes)) {

 return null;

 }

 $injectconstructor = $attributes[0];

 $constructorargs = [];

 foreach ($injectconstructor->getArguments() as $arg) {

 $constructorargs[] = $this->get($arg);

 }

 return $rclass->newInstanceArgs($constructorargs);

 }

 �private function getObjectFromAutowire(\ReflectionClass

$rclass): object

 {

 if (! $rclass->isInstantiable()) {

 �throw new \Exception("{$rclass->getName()} can not be

instantiated");

 }

 $rconstructor = $rclass->getConstructor();

 if (is_null($rconstructor)) {

 return $rclass->newInstance();

 }

 $constructorargs = [];

 foreach ($rconstructor->getParameters() as $param) {

 $name = $param->getType() &&

Chapter 9 Generating Objects

336

 $param->getType() instanceof \ReflectionNamedType &&

 ! $param->getType()->isBuiltin()

 ? $param->getType()->getName()

 : null;

 if (is_null($name)) {

 �throw new \Exception("unable to autowire {$rclass-

>getName()}");

 }

 $constructorargs[] = $this->get($name);

 }

 return $rclass->newInstanceArgs($constructorargs);

 }

}

�Consequences
So, now we’ve seen two options for object creation. The AppConfig class was an instance

of Service Locator (i.e., a class with the ability to find components or services on behalf

of its client). Using dependency injection certainly makes for more elegant client code.

The AppointmentMaker2 class is blissfully unaware of strategies for object creation. It

simply does its job. This is the ideal for a class, of course. We want to design classes that

can focus on their responsibilities, isolated as far as possible from the wider system.

However, this purity does come at a price. The object assembler component hides a lot

of magic. We must treat it as a black box and trust it to conjure up objects on our behalf.

This is fine, so long as the magic works. Unexpected behavior can be hard to debug.

The Service Locator pattern, on the other hand, is simpler, though it embeds your

components into a wider system. It is not the case that, used well, a Service Locator

makes testing harder. Nor does it make a system inflexible. A Service Locator can be

configured to serve up arbitrary components for testing or according to configuration.

But a hard-coded call to a Service Locator makes a component dependent upon it.

Because the call is made from within the body of a method, the relationship between

the client and the target component (which is provided by the Service Locator) is also

somewhat obscured. This relationship is made explicit in the Dependency Injection

example because it is declared in the constructor method’s signature.

Chapter 9 Generating Objects

337

So, which approach should we choose? To some extent, it’s a matter of preference.

For my own part, I tend to prefer to start with the simplest solution and then to refactor

to greater complexity, if needed. For that reason, I usually opt initially for Service

Locator. It requires less up-front configuration. I can create a Registry class in a few lines

of code and increase its flexibility according to the requirements. As my projects grow

more complex however, I will often migrate to a dependency injection solution and

benefit from cleaner, more reusable, less knowing classes. Although it was fun to build

a toy implementation here, I would recommend using a mature and well-maintained

library. I recommend PHP-DI (https://php-di.org/).

�Summary
This chapter covered some of the tricks that you can use to generate objects. I began by

examining the Singleton pattern, which provides global access to a single instance. Next,

I looked at the Factory Method pattern, which applies the principle of polymorphism

to object generation. And I combined Factory Method with the Abstract Factory pattern

to generate creator classes that instantiate sets of related objects. I also looked at the

Prototype pattern and saw how object cloning can allow composition to be used in

object generation. Finally, I examined two strategies for object creation: Service Locator

and Dependency Injection.

Chapter 9 Generating Objects

https://php-di.org/

339
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3_10

CHAPTER 10

Patterns for Flexible
Object Programming
With strategies for generating objects covered, we’re free now to look at some strategies

for structuring classes and objects. I will focus in particular on the principle that

composition provides greater flexibility than inheritance. The patterns I examine in this

chapter are once again drawn from the Gang of Four catalog.

This chapter will cover a trio of patterns:

•	 The Composite pattern: Composing structures in which groups of

objects can be used as if they were individual objects

•	 The Decorator pattern: A flexible mechanism for combining objects

at runtime to extend functionality

•	 The Facade pattern: Creating a simple interface to complex or

variable systems

�Structuring Classes to Allow Flexible Objects
Way back in Chapter 3, I said that beginners often confuse objects and classes. This was

only half true. In fact, most of the rest of us occasionally scratch our heads over UML

class diagrams, attempting to reconcile the static inheritance structures they show with

the dynamic object relationships their objects will enter into off the page.

Remember the pattern principle, “Favor composition over inheritance”? This

principle distills this tension between the organization of classes and objects. In order

to build flexibility into our projects, we structure our classes so that their objects can be

composed into useful structures at runtime.

https://doi.org/10.1007/979-8-8688-0482-3_10#DOI

340

This is a common theme running through the first two patterns of this chapter.

Inheritance is an important feature in both, but part of its importance lies in providing

the mechanism by which composition can be used to represent structures and extend

functionality.

�The Composite Pattern
The Composite pattern is perhaps the most extreme example of inheritance deployed in

the service of composition. It is a simple and yet breathtakingly elegant design. It is also

fantastically useful. Be warned, though; it is so neat, you might be tempted to overuse

this strategy.

The Composite pattern is a simple way of aggregating and then managing groups

of similar objects so that an individual object is indistinguishable to a client from a

collection of objects. The pattern is, in fact, very simple, but it is also often confusing.

One reason for this is the similarity in structure of the classes in the pattern to the

organization of their objects. Inheritance hierarchies are trees, beginning with the

superclass at the root and branching out into specialized subclasses. The inheritance

tree of classes laid down by the Composite pattern is designed to allow the easy

generation and traversal of a tree of objects.

If you are not already familiar with this pattern, you have every right to feel confused

at this point. Let’s try an analogy to illustrate the way that single entities can be treated

in the same way as collections of things. Given broadly irreducible ingredients such as

cereals and meat (or soya if you prefer), we can make a food product—a sausage, for

example. We then act on the result as a single entity. Just as we eat, cook, buy, or sell

meat, we can eat, cook, buy, or sell the sausage that the meat in part composes. We

might take the sausage and combine it with the other composite ingredients to make

a pie, thereby rolling a composite into a larger composite. We behave in the same way

to the collection as we do to the parts. The Composite pattern helps us to model this

relationship between collections and components in our code.

�The Problem
Managing groups of objects can be quite a complex task, especially if the objects in

question might also contain objects of their own. This kind of problem is very common

in coding. Think of invoices, with line items that summarize additional products or

Chapter 10 Patterns for Flexible Object Programming

341

services, or things-to-do lists with items that themselves contain multiple subtasks.

In content management, we can’t move for trees of sections, pages, articles, or media

components. Managing these structures from the outside can quickly become daunting.

Let’s return to a previous scenario. I am designing a system based on a game called

Civilization. A player can move units around hundreds of tiles that make up a map.

Individual counters can be grouped together to move, fight, and defend themselves

as a unit.

I’ll kick things off with an abstract supertype:

abstract class Unit

{

 abstract public function bombardStrength(): int;

}

Now I can create a couple of extending classes. I’ll start with an Archer class:

class Archer extends Unit

{

 public function bombardStrength(): int

 {

 return 4;

 }

}

Next, I’ll go high-tech with a LaserCannonUnit class:

class LaserCannonUnit extends Unit

{

 public function bombardStrength(): int

 {

 return 44;

 }

}

Chapter 10 Patterns for Flexible Object Programming

342

The Unit class defines an abstract bombardStrength() method, which sets the

attack strength of a unit bombarding an adjacent tile. I implement this in both the

Archer and LaserCannonUnit classes. These classes would also contain information

about movement and defensive capabilities, but I’ll keep things simple. I could define a

separate class to group units together, like this:

class Army

{

 private array $units = [];

 public function addUnit(Unit $unit): void

 {

 array_push($this->units, $unit);

 }

 public function bombardStrength(): int

 {

 $ret = 0;

 foreach ($this->units as $unit) {

 $ret += $unit->bombardStrength();

 }

 return $ret;

 }

}

Let’s try that out:

$unit1 = new Archer();

$unit2 = new LaserCannonUnit();

$army = new Army();

$army->addUnit($unit1);

$army->addUnit($unit2);

print $army->bombardStrength();

Chapter 10 Patterns for Flexible Object Programming

343

The Army class has an addUnit() method that accepts a Unit object. Unit objects are

stored in an array property called $units. I calculate the combined strength of my army

in the bombardStrength() method. This simply iterates through the aggregated Unit

objects, calling the bombardStrength() method of each one. Here is the output:

48

This model is perfectly acceptable, as long as the problem remains as simple as this.

What would happen, though, if I were to add some new requirements? Let’s say that an

army should be able to combine with other armies. Each army should retain its own

identity so that it can disentangle itself from the whole at a later date. The Arch Duke’s

brave forces might share common cause today with General Soames’s assault upon the

exposed flank of the enemy, but a domestic rebellion may send his army scurrying home

at any time. For this reason, I can’t just decant the units from each army into a new force.

I could amend the Army class to accept Army objects as well as Unit objects:

public function addArmy(Army $army): void

{

 array_push($this->armies, $army);

}

Then I’d need to amend the bombardStrength() method to iterate through all armies

as well as units:

public function bombardStrength(): int

{

 $ret = 0;

 foreach ($this->units as $unit) {

 $ret += $unit->bombardStrength();

 }

 foreach ($this->armies as $army) {

 $ret += $army->bombardStrength();

 }

 return $ret;

}

Chapter 10 Patterns for Flexible Object Programming

344

This additional complexity is not too problematic at the moment. Remember,

though, I would need to do something similar in methods like defensiveStrength(),

movementRange(), and so on. My game is going to be richly featured. Already the

business group is calling for troop carriers that can hold up to ten units to improve their

movement range on certain terrains. Clearly, a troop carrier is similar to an army in that

it groups units. It also has its own characteristics. I could further amend the Army class

to handle TroopCarrier objects, but I know that there will be a need for still more unit

groupings. It is clear that I need a more flexible model.

Let’s look again at the model I have been building. All the classes I created shared the

need for a bombardStrength() method. In effect, a client does not need to distinguish

between an army, a unit, or a troop carrier. They are functionally identical. They need

to move, attack, and defend. Those objects that contain others need to provide methods

for adding and removing them. These similarities lead us to an inevitable conclusion.

Because container objects share an interface with the objects that they contain, they are

naturally suited to share a type family.

�Implementation
The Composite pattern defines a single inheritance hierarchy that lays down two distinct

sets of responsibilities. We have already seen both of these in our example. Classes in the

pattern must support a common set of operations as their primary responsibility. For

us, that means the bombardStrength() method. Classes must also support methods for

adding and removing child objects.

Figure 10-1 shows a class diagram that illustrates the Composite pattern as applied to

our problem.

Chapter 10 Patterns for Flexible Object Programming

345

Figure 10-1.  The Composite pattern

As you can see, all the units in this model extend the Unit class. A client can be sure,

then, that any Unit object will support the bombardStrength() method. So an Army can

be treated in exactly the same way as an Archer.

The Army and TroopCarrier classes are composites: they are designed to hold Unit

objects. The Archer and LaserCannon classes are leaves, designed to support unit

operations, but not to hold other Unit objects. There is actually an issue as to whether

leaves should honor the same interface as composites, as they do in Figure 10-1. The

diagram shows TroopCarrier and Army aggregating other units, even though the leaf

classes are also bound to implement addUnit(). I will return to this question shortly.

Here is the abstract Unit class:

abstract class Unit

{

 abstract public function addUnit(Unit $unit): void;

 abstract public function removeUnit(Unit $unit): void;

 abstract public function bombardStrength(): int;

}

Chapter 10 Patterns for Flexible Object Programming

346

As you can see, I lay down the basic functionality for all Unit objects here. Now, let’s

see how a composite object might implement these abstract methods:

class Army extends Unit

{

 private array $units = [];

 public function addUnit(Unit $unit): void

 {

 if (in_array($unit, $this->units, true)) {

 return;

 }

 $this->units[] = $unit;

 }

 public function removeUnit(Unit $unit): void

 {

 $idx = array_search($unit, $this->units, true);

 if (is_int($idx)) {

 array_splice($this->units, $idx, 1, []);

 }

 }

 public function bombardStrength(): int

 {

 $ret = 0;

 foreach ($this->units as $unit) {

 $ret += $unit->bombardStrength();

 }

 return $ret;

 }

}

The addUnit() method checks whether I have already added the same Unit object

before storing it in the private $units array property. removeUnit() uses a similar check

to remove a given Unit object from the property.

Chapter 10 Patterns for Flexible Object Programming

347

Note I n checking whether I have already added a particular object to the
addUnit() method, I use in_array() with a third Boolean true argument. This
tightens the strictness of in_array() such that it will only match references to
the same object. The third argument to array_search() works in the same way,
returning an array index only if the provided search value is an equivalent object
reference to one found in the array.

Army objects, then, can store Units of any kind, including other Army objects, or

leaves such as Archer or LaserCannonUnit. Because all units are guaranteed to support

bombardStrength(), our Army::bombardStrength() method simply iterates through all

the child Unit objects stored in the $units property, calling the same method on each.

One problematic aspect of the Composite pattern is the implementation of add

and remove functionality. The classic pattern places add() and remove() methods in

the abstract superclass. This ensures that all classes in the pattern share a common

interface. As you can see here, though, it also means that leaf classes must provide an

implementation:

class UnitException extends \Exception

{

}

class Archer extends Unit

{

 public function addUnit(Unit $unit): void

 {

 throw new UnitException($this::class . " is a leaf");

 }

 public function removeUnit(Unit $unit): void

 {

 throw new UnitException($this::class . " is a leaf");

 }

Chapter 10 Patterns for Flexible Object Programming

348

 public function bombardStrength(): int

 {

 return 4;

 }

}

I do not want to make it possible to add a Unit object to an Archer object, so I throw

exceptions if addUnit() or removeUnit() is called. I will need to do this for all leaf

objects, so I could perhaps improve my design by replacing the abstract addUnit()/

removeUnit() methods in Unit with default implementations:

abstract class Unit

{

 public function addUnit(Unit $unit): void

 {

 throw new UnitException($this::class . " is a leaf");

 }

 public function removeUnit(Unit $unit): void

 {

 throw new UnitException($this::class . " is a leaf");

 }

 abstract public function bombardStrength(): int;

}

Now my Archer class no longer has to provide an implementation:

class Archer extends Unit

{

 public function bombardStrength(): int

 {

 return 4;

 }

}

Chapter 10 Patterns for Flexible Object Programming

349

This removes duplication in leaf classes, but has the drawback that a composite

is not forced at compile time to provide an implementation of addUnit() and

removeUnit(), which could cause problems down the line.

I will look in more detail at some of the problems presented by the Composite

pattern in the next section. Let’s end this section by examining some of its benefits:

•	 Flexibility: Because everything in the Composite pattern shares a

common supertype, it is very easy to add new composite or leaf

objects to the design without changing a program’s wider context.

•	 Simplicity: A client using a Composite structure has a straightforward

interface. There is no need for a client to distinguish between an

object that is composed of others and a leaf object (except when

adding new components). A call to Army::bombardStrength()

may cause a cascade of delegated calls behind the scenes; but to

the client, the process and result are exactly equivalent to those

associated with calling Archer::bombardStrength().

•	 Implicit reach: Objects in the Composite pattern are organized in a

tree. Each composite holds references to its children. An operation

on a particular part of the tree, therefore, can have a wide effect. We

might remove a single Army object from its Army parent and add it to

another. This simple act is wrought on one object, but it has the effect

of changing the status of the Army object’s referenced Unit objects

and of their own children.

•	 Explicit reach: Tree structures are easy to traverse. They can be

iterated in order to gain information or to perform transformations.

We will look at a particularly powerful technique for this in the next

chapter when we deal with the Visitor pattern.

Often, you really see the benefit of a pattern only from the client’s perspective, so

here are a couple of armies:

// create an army

$main_army = new Army();

Chapter 10 Patterns for Flexible Object Programming

350

// add some units

$main_army->addUnit(new Archer());

$main_army->addUnit(new LaserCannonUnit());

// create a new army

$sub_army = new Army();

// add some units

$sub_army->addUnit(new Archer());

$sub_army->addUnit(new Archer());

$sub_army->addUnit(new Archer());

// add the second army to the first

$main_army->addUnit($sub_army);

// all the calculations handled behind the scenes

print "attacking with strength: {$main_army->bombardStrength()}\n";

I create a new Army object and add some primitive Unit objects. I repeat

the process for a second Army object that I then add to the first. When I call

Unit::bombardStrength() on the first Army object, all the complexity of the structure

that I have built up is entirely hidden. Here is my output:

attacking with strength: 60

�Consequences
If you’re anything like me, you would have heard alarm bells ringing when you saw the

code extract for the Archer class. Why do we put up with these redundant addUnit() and

removeUnit() methods in leaf classes that do not need to support them? An answer of

sorts lies in the transparency of the Unit type.

If a client is passed a Unit object, it knows that the addUnit() method will be

present. The Composite pattern principle that primitive (leaf) classes have the same

interface as composites is upheld. This does not actually help you much because you

still do not know how safe you might be calling addUnit() on any Unit object you might

come across.

Chapter 10 Patterns for Flexible Object Programming

351

If I move these add/remove methods down so that they are available only to

composite classes, then passing a Unit object to a method leaves me with the problem

that I do not know by default whether or not it supports addUnit(). Nevertheless, leaving

booby-trapped methods lying around in leaf classes makes me uncomfortable. It adds

no value and confuses a system’s design because the interface effectively lies about its

own functionality.

You can split composite classes off into their own CompositeUnit subtype quite

easily. First of all, I excise the add/remove behavior from Unit:

abstract class Unit

{

 public function getComposite(): ?CompositeUnit

 {

 return null;

 }

 public function canBoardVehicle(): bool

 {

 return true;

 }

 abstract public function bombardStrength(): int;

}

Notice the new getComposite() and canBoardVehicle() methods. I will return

to these in a little while. Now, I need a new abstract class to hold addUnit() and

removeUnit(). I can even provide default implementations:

abstract class CompositeUnit extends Unit

{

 private array $units = [];

 public function getComposite(): ?CompositeUnit

 {

 return $this;

 }

Chapter 10 Patterns for Flexible Object Programming

352

 public function addUnit(Unit $unit): void

 {

 if (in_array($unit, $this->units, true)) {

 return;

 }

 $this->units[] = $unit;

 }

 public function removeUnit(Unit $unit): void

 {

 $idx = array_search($unit, $this->units, true);

 if (is_int($idx)) {

 array_splice($this->units, $idx, 1, []);

 }

 }

 public function getUnits(): array

 {

 return $this->units;

 }

}

The CompositeUnit class is declared abstract, even though it does not itself declare

an abstract method. It does, however, extend Unit, and it does not implement the

abstract bombardStrength() method. Army (and any other composite classes) can now

extend CompositeUnit. The classes in my example are now organized as in Figure 10-2.

Chapter 10 Patterns for Flexible Object Programming

353

Figure 10-2.  Moving add/remove methods out of the base class

The annoying, useless implementations of add/remove methods in the leaf classes

are gone, but the client must still check to see whether it has a CompositeUnit before it

can use addUnit().

This is where the getComposite() method comes into its own. By default,

this method returns a null value. Only in a CompositeUnit class does it return

CompositeUnit. So if a call to this method returns an object, we should be able to call

addUnit() on it. Here’s a client that uses this technique:

class UnitScript

{

 public static function joinExisting(

 Unit $newUnit,

 Unit $occupyingUnit

): CompositeUnit {

 $comp = $occupyingUnit->getComposite();

 if (! is_null($comp)) {

 $comp->addUnit($newUnit);

Chapter 10 Patterns for Flexible Object Programming

354

 } else {

 $comp = new Army();

 $comp->addUnit($occupyingUnit);

 $comp->addUnit($newUnit);

 }

 return $comp;

 }

}

The joinExisting() method accepts two Unit objects. The first is a newcomer to a

tile, and the second is a prior occupier. If the second Unit is a CompositeUnit, then the

first will attempt to join it. If not, then a new Army will be created to cover both units.

I have no way of knowing at first whether the $occupyingUnit argument contains a

CompositeUnit. A call to getComposite() settles the matter, though. If getComposite()

returns an object, I can add the new Unit object to it directly. If not, I create the new Army

object and add both.

I could simplify this model further by having the Unit::getComposite() method

return an Army object prepopulated with the current Unit. Or I could return to the

previous model (which did not distinguish structurally between composite and leaf

objects) and have Unit::addUnit() do the same thing: create an Army object and add

both Unit objects to it. This is neat, but it presupposes that you know in advance the

type of composite you would like to use to aggregate your units. Your business logic

will determine the kinds of assumptions you can make when you design methods like

getComposite() and addUnit().

These contortions are symptomatic of a drawback to the Composite pattern.

Simplicity is achieved by ensuring that all classes are derived from a common base. The

benefit of simplicity is sometimes bought at a cost to type safety. The more complex your

model becomes, the more manual type checking you are likely to have to do. Let’s say

that I have a Cavalry object. If the rules of the game state that you cannot put a horse on

a troop carrier, I have no automatic way of enforcing this with the Composite pattern.

You may have noticed that I created a canBoardVehicle() method in the Unit base

class. This always returns true unless overridden like this:

Chapter 10 Patterns for Flexible Object Programming

355

class Cavalry extends Unit

{

 public function bombardStrength(): int

 {

 return 3;

 }

 public function canBoardVehicle(): bool

 {

 return false;

 }

}

This at least provides me with a mechanism for checking on the capability of a Unit

from the TroopCarrier::addUnit() method:

class TroopCarrier extends CompositeUnit

{

 public function addUnit(Unit $unit): void

 {

 if (! $unit->canBoardVehicle()) {

 throw new UnitException("Can't transport this kind of unit");

 }

 parent::addUnit($unit);

 }

 public function bombardStrength(): int

 {

 return 0;

 }

}

Chapter 10 Patterns for Flexible Object Programming

356

I could have used instanceof here, but that is not good practice. Components

should know about capability rather than type. Even though canBoardVehicle() is an

improvement over a type check, it is still far from ideal. If you have too many special

cases of this kind, the drawbacks of the Composite pattern begin to outweigh its benefits.

Composite works best when most of the components are interchangeable.

Another issue to bear in mind is the cost of some Composite operations. The

Army::bombardStrength() method is typical in that it sets off a cascade of calls to the

same method down the tree. For a large tree with lots of subarmies, a single call can

cause an avalanche behind the scenes. bombardStrength() is not itself very expensive,

but what would happen if some leaves performed a complex calculation to arrive at their

return values? One way around this problem is to cache the result of a method call of this

sort in the parent object, so that subsequent invocations are less expensive. You need

to be careful, though, to ensure that the cached value does not grow stale. You should

devise strategies to wipe any caches whenever any operations take place on the tree. This

may require that you give child objects references to their parents.

Finally, a note about persistence. The Composite pattern is elegant, but it doesn’t

lend itself neatly to storage in a relational database. This is because, by default,

you access the entire structure only through a cascade of references. To construct

a Composite structure from a database in the natural way, you would have to make

multiple expensive queries. You can get around this problem by assigning an ID to the

whole tree, so that all components can be drawn from the database in one go. Having

acquired all the objects, however, you would still have the task of recreating the parent/

child references, which themselves would have to be stored in the database. This is not

difficult, but it is somewhat messy.

Although Composites sit uneasily with relational databases, they lend themselves

very well indeed to storage in XML or JSON and, therefore, in various NoSQL stores such

as MongoDB, CouchDB, and Elasticsearch. This is because in both cases elements are

often themselves composed of trees of subelements.

�Composite in Summary
So the Composite pattern is useful when you need to treat a collection of things in the

same way as you would an individual, either because the collection is intrinsically like

a component (armies and archers) or because the context gives the collection the same

characteristics as the component (line items in an invoice). Composites are arranged

Chapter 10 Patterns for Flexible Object Programming

357

in trees, so an operation on the whole can affect the parts, and data from the parts is

transparently available via the whole. The Composite pattern makes such operations and

queries transparent to the client. Trees are easy to traverse (as we shall see in the next

chapter). It is easy to add new component types to Composite structures.

On the downside, Composites rely on the similarity of their parts. As soon as

we introduce complex rules as to which composite object can hold which set of

components, our code can become hard to manage. Composites do not lend themselves

well to storage in relational databases.

�The Decorator Pattern
While the Composite pattern helps us to create a flexible representation of aggregated

components, the Decorator pattern uses a similar structure to help us to modify

the functionality of concrete components. Once again, the key to this pattern lies in

the importance of composition at runtime. Inheritance is a neat way of building on

characteristics laid down by a parent class. This neatness can lead you to hard-code

variation into your inheritance hierarchies, often causing inflexibility.

�The Problem
Building all your functionality into an inheritance structure can result in an explosion

of classes in a system. Even worse, as you try to apply similar modifications to different

branches of your inheritance tree, you are likely to see duplication emerge.

Let’s return to our game. Here, I define a Tile class and a derived type:

abstract class Tile

{

 abstract public function getWealthFactor(): int;

}

class Plains extends Tile

{

 private int $wealthfactor = 2;

Chapter 10 Patterns for Flexible Object Programming

358

 public function getWealthFactor(): int

 {

 return $this->wealthfactor;

 }

}

A tile represents a square on which my units might be found. Each tile has certain

characteristics. In this example, I have defined a getWealthFactor() method that affects

the revenue a particular square might generate if owned by a player. As you can see,

Plains objects have a wealth factor of 2. Obviously, tiles manage other data. They might

also hold a reference to image information, so that the board can be drawn. Once again,

I’ll keep things simple here.

I need to modify the behavior of the Plains object to handle the effects of natural

resources and human abuse. I wish to model the occurrence of diamonds on the

landscape and the damage caused by pollution. One approach might be to inherit from

the Plains object:

class DiamondPlains extends Plains

{

 public function getWealthFactor(): int

 {

 return parent::getWealthFactor() + 2;

 }

}

class PollutedPlains extends Plains

{

 public function getWealthFactor(): int

 {

 return parent::getWealthFactor() - 4;

 }

}

Chapter 10 Patterns for Flexible Object Programming

359

I can now acquire a polluted tile very easily:

$tile = new PollutedPlains();

print $tile->getWealthFactor();

Here is the output:

-2

You can see the class diagram for this example in Figure 10-3.

Figure 10-3.  Building variation into an inheritance tree

This structure is obviously inflexible. I can get plains with diamonds. I can get

polluted plains. But can I get them both? Clearly not, unless I am willing to perpetrate

the horror that is PollutedDiamondPlains. This situation can only get worse when I

introduce the Forest class, which can also have diamonds and pollution.

This is an extreme example, of course, but the point is made. Relying entirely on

inheritance to define your functionality can lead to a multiplicity of classes and a

tendency toward duplication.

Chapter 10 Patterns for Flexible Object Programming

360

Let’s take a more commonplace example at this point. Serious web applications

often have to perform a range of actions on a request before a task is initiated to form a

response. You might need to authenticate the user, for example, and to log the request.

Perhaps you should process the request to build a data structure from raw input. Finally,

you must perform your core processing. You are presented with the same problem.

You can extend the functionality of a base ProcessRequest class with additional

processing in a derived LogRequest class, in a StructureRequest class, and in an

AuthenticateRequest class. You can see this class hierarchy in Figure 10-4.

Figure 10-4.  More hard-coded variations

What happens, though, when you need to perform logging and authentication, but

not data preparation? Do you create a LogAndAuthenticateProcessor class? Clearly, it is

time to find a more flexible solution.

�Implementation
Rather than use only inheritance to solve the problem of varying functionality, the

Decorator pattern uses composition and delegation. In essence, Decorator classes

manage a reference to an instance of another class of their own type. A Decorator will

implement an operation so that it calls the same operation on the object to which it has a

reference before (or after) performing its own actions. In this way, it is possible to build a

pipeline of Decorator objects at runtime.

Chapter 10 Patterns for Flexible Object Programming

361

Let’s rewrite our game example to illustrate this:

abstract class Tile

{

 abstract public function getWealthFactor(): int;

}

class Plains extends Tile

{

 private int $wealthfactor = 2;

 public function getWealthFactor(): int

 {

 return $this->wealthfactor;

 }

}

abstract class TileDecorator extends Tile

{

 protected Tile $tile;

 public function __construct(Tile $tile)

 {

 $this->tile = $tile;

 }

}

Here, I have declared Tile and Plains classes as before, but I have also introduced

a new class: TileDecorator. This does not implement getWealthFactor(), so it must

be declared abstract. I define a constructor that requires a Tile object, which it stores

in a property called $tile. I make this property protected so that child classes can gain

access to it. Now I’ll redefine the Pollution and Diamond classes:

Chapter 10 Patterns for Flexible Object Programming

362

class DiamondDecorator extends TileDecorator

{

 public function getWealthFactor(): int

 {

 return $this->tile->getWealthFactor() + 2;

 }

}

class PollutionDecorator extends TileDecorator

{

 public function getWealthFactor(): int

 {

 return $this->tile->getWealthFactor() - 4;

 }

}

Each of these classes extends TileDecorator. This means that they have a reference

to a Tile object. When getWealthFactor() is invoked, each of these classes invokes the

same method on its Tile reference before making its own adjustment.

By using composition and delegation like this, you make it easy to combine objects

at runtime. Because all the objects in the pattern extend Tile, the client does not need

to know which combination it is working with. It can be sure that a getWealthFactor()

method is available for any Tile object, whether it is decorating another behind the

scenes or not:

$tile = new Plains();

print $tile->getWealthFactor(); // 2

Plains is a component. It simply returns 2.

$tile = new DiamondDecorator(new Plains());

print $tile->getWealthFactor(); // 4

DiamondDecorator has a reference to a Plains object. It invokes getWealthFactor()

before adding its own weighting of 2.

$tile = new PollutionDecorator(new DiamondDecorator(new Plains()));

print $tile->getWealthFactor(); // 0

Chapter 10 Patterns for Flexible Object Programming

363

PollutionDecorator has a reference to a DiamondDecorator object, which has its

own Tile reference.

You can see the class diagram for this example in Figure 10-5.

Figure 10-5.  The Decorator pattern

This model is very extensible. You can add new decorators and components very

easily. With lots of decorators, you can build very flexible structures at runtime. The

component class, Plains in this case, can be significantly modified in many ways

without the need to build the totality of the modifications into the class hierarchy. In

plain English, this means you can have a polluted Plains object that has diamonds,

without having to create a PollutedDiamondPlains object.

The Decorator pattern builds up pipelines that are very useful for creating filters.

The java.io package makes great use of decorator classes. The client coder can combine

decorator objects with core components to add filtering, buffering, compression, and so

on to core methods like read(). My web request example can also be developed into a

configurable pipeline. Here’s a simple implementation that uses the Decorator pattern:

class RequestHelper

{

}

abstract class ProcessRequest

{

 abstract public function process(RequestHelper $req): void;

}

Chapter 10 Patterns for Flexible Object Programming

364

class MainProcess extends ProcessRequest

{

 public function process(RequestHelper $req): void

 {

 print __CLASS__ . ": doing something useful with request\n";

 }

}

abstract class DecorateProcess extends ProcessRequest

{

 public function __construct(protected ProcessRequest $processrequest)

 {

 }

}

As before, we define an abstract superclass (ProcessRequest), a concrete component

(MainProcess), and an abstract decorator (DecorateProcess). MainProcess::process()

does nothing but report that it has been called. DecorateProcess stores a ProcessRequest

object on behalf of its children. Here are some simple concrete decorator classes:

class LogRequest extends DecorateProcess

{

 public function process(RequestHelper $req): void

 {

 print __CLASS__ . ": logging request\n";

 $this->processrequest->process($req);

 }

}

class AuthenticateRequest extends DecorateProcess

{

 public function process(RequestHelper $req): void

 {

 print __CLASS__ . ": authenticating request\n";

 $this->processrequest->process($req);

 }

}

Chapter 10 Patterns for Flexible Object Programming

365

class StructureRequest extends DecorateProcess

{

 public function process(RequestHelper $req): void

 {

 print __CLASS__ . ": structuring request data\n";

 $this->processrequest->process($req);

 }

}

Each process() method outputs a message before calling the referenced

ProcessRequest object’s own process() method. You can now combine objects

instantiated from these classes at runtime to build filters that perform different actions

on a request and in different orders. Here’s some code to combine objects from all these

concrete classes into a single filter:

$process = new AuthenticateRequest(

 new StructureRequest(

 new LogRequest(

 new MainProcess()

)

)

);

$process->process(new RequestHelper());

This code gives the following output:

popp\ch10\batch07\AuthenticateRequest: authenticating request

popp\ch10\batch07\StructureRequest: structuring request data

popp\ch10\batch07\LogRequest: logging request

popp\ch10\batch07\MainProcess: doing something useful with request

Note T his example is, in fact, also an instance of an enterprise pattern called
Intercepting Filter. Intercepting Filter is described in Core J2EE Patterns: Best
Practices and Design Strategies (Prentice Hall, 2001) by Alur et al.

Chapter 10 Patterns for Flexible Object Programming

366

�Consequences
Like the Composite pattern, Decorator can be confusing. It is important to remember

that both composition and inheritance are coming into play at the same time. So

LogRequest inherits its interface from ProcessRequest, but it is acting as a wrapper

around another ProcessRequest object.

Because a decorator object forms a wrapper around a child object, it helps to

keep the interface as sparse as possible. If you build a heavily featured base class, then

decorators are forced to delegate to all public methods in their contained object. This

can be done in the abstract decorator class, but it still introduces the kind of coupling

that can lead to bugs.

Some programmers create decorators that do not share a common type with the

objects they modify. As long as they fulfill the same interface as these objects, this

strategy can work well. You get the benefit of being able to use the built-in interceptor

methods to automate delegation (implementing call() to catch calls to nonexistent

methods and invoking the same method on the child object automatically). However, by

doing this, you also lose the safety afforded by class type checking. In our examples so

far, client code can demand a Tile or a ProcessRequest object in its argument list and

be certain of its interface, whether or not the object in question is heavily decorated.

�The Facade Pattern
You may have had occasion to stitch third-party systems into your own projects in the

past. Whether or not the code is object oriented, it will often be daunting, large, and

complex. Your own code, too, may become a challenge to the client programmer who

needs only to access a few features. The Facade pattern is a way of providing a simple,

clear interface to complex systems.

�The Problem
Systems tend to evolve large amounts of code that is really only useful within the system

itself. Just as classes define clear public interfaces and hide their guts away from the rest

of the world, so should well-designed systems. However, it is not always clear which

parts of a system are designed to be used by client code and which are best hidden.

Chapter 10 Patterns for Flexible Object Programming

367

As you work with subsystems (like web forums or gallery applications), you may

occasionally make calls deep into the logic of the code. If the subsystem code is subject

to change over time, and your code interacts with it at many different points, you could

find yourself with a serious maintenance problem as the subsystem evolves.

Similarly, when you build your own systems, it is a good idea to organize distinct

parts into separate tiers. Typically, you may have a tier responsible for application logic,

another for database interaction, another for presentation, and so on. You should aspire

to keep these tiers as independent of one another as you can, so that a change in one

area of your project will have minimal repercussions elsewhere. If code from one tier is

tightly integrated into code from another, then this objective is hard to meet.

Here is some deliberately confusing procedural code that makes a song-and-dance

routine of the simple process of getting log information from a file and turning it into

object data:

function getProductFileLines(string $file): array

{

 return file($file);

}

function getProductObjectFromId(int $id, string $productname): Product

{

 // some kind of database lookup

 return new Product($id, $productname);

}

function getNameFromLine(string $line): string

{

 if (preg_match("/.*-(.*)\s\d+/", $line, $array)) {

 return str_replace('_', ' ', $array[1]);

 }

 return '';

}

function getIDFromLine($line): int

{

 if (preg_match("/^(\d{1,3})-/", $line, $array)) {

Chapter 10 Patterns for Flexible Object Programming

368

 return (int)$array[1];

 }

 return -1;

}

class Product

{

 public int $id;

 public string $name;

 public function __construct(int $id, string $name)

 {

 $this->id = $id;

 $this->name = $name;

 }

}

Let’s imagine that the internals of this code are more complicated than they actually

are and that I am stuck with using it rather than rewriting it from scratch. For example,

assume I have to turn a file that contains lines like these into an array of objects:

234-ladies_jumper 55

532-gents_hat 44

To do so, I must call all of these functions (note that, for the sake of brevity, I don’t

extract the final number, which represents a price):

$lines = getProductFileLines(__DIR__ . '/test2.txt');

$objects = [];

foreach ($lines as $line) {

 $id = getIDFromLine($line);

 $name = getNameFromLine($line);

 $objects[$id] = getProductObjectFromID($id, $name);

}

print_r($objects);

Chapter 10 Patterns for Flexible Object Programming

369

Here is the output:

Array

(

 [234] => Product Object

 (

 [id] => 234

 [name] => ladies jumper

)

 [532] => Product Object

 (

 [id] => 532

 [name] => gents hat

)

)

If I call these functions directly like this throughout my project, my code will become

tightly wound into the subsystem it is using. This could cause problems if the subsystem

changes or if I decide to switch it out entirely. I really need to introduce a gateway

between the system and the rest of our code.

�Implementation
Here is a simple class that provides an interface to the procedural code you encountered

in the previous section:

class ProductFacade

{

 private array $products = [];

 public function __construct(private string $file)

 {

 $this->compile();

 }

Chapter 10 Patterns for Flexible Object Programming

370

 private function compile(): void

 {

 $lines = getProductFileLines($this->file);

 foreach ($lines as $line) {

 $id = getIDFromLine($line);

 $name = getNameFromLine($line);

 $this->products[$id] = getProductObjectFromID($id, $name);

 }

 }

 public function getProducts(): array

 {

 return $this->products;

 }

 public function getProduct(string $id): ?\Product

 {

 return $this->products[$id] ?? null;

 }

}

From the point of view of the client code, access to Product objects from a log file is

much simplified:

$facade = new ProductFacade(__DIR__ . '/test2.txt');

$object = $facade->getProduct("234");

�Consequences
A Facade is really a very simple concept. It is just a matter of creating a single point of

entry for a tier or subsystem. This has a number of benefits. It helps decouple distinct

areas in a project from one another. It is useful and convenient for client coders to have

access to simple methods that achieve clear ends. It reduces errors by focusing the use of

a subsystem in one place; changes to the subsystem should cause failure in a predictable

location. Errors are also minimized by Facade classes in complex subsystems where

client code might otherwise use internal functions incorrectly.

Chapter 10 Patterns for Flexible Object Programming

371

Despite the simplicity of the Facade pattern, it is all too easy to forget to use it,

especially if you are familiar with the subsystem you are working with. There is a balance

to be struck, of course. On the one hand, the benefit of creating simple interfaces to

complex systems should be clear. On the other hand, one could abstract systems with

reckless abandon and then abstract the abstractions. If you are making significant

simplifications for the clear benefit of client code, and/or shielding it from systems that

might change, then you are probably right to implement the Facade pattern.

�Summary
In this chapter, I looked at a few of the ways that classes and objects can be organized

in a system. In particular, I focused on the principle that composition can be used to

engender flexibility where inheritance fails. In both the Composite and Decorator

patterns, inheritance is used to promote composition and to define a common interface

that provides guarantees for client code.

You also saw delegation used effectively in these patterns. Finally, I looked at the

simple but powerful Facade pattern. Facade is one of those patterns that many people

have been using for years without having a name to give it. Facade lets you provide a

clean point of entry to a tier or subsystem. In PHP, the Facade pattern is also used to

create object wrappers that encapsulate blocks of procedural code.

Chapter 10 Patterns for Flexible Object Programming

373
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3_11

CHAPTER 11

Performing and
Representing Tasks
In this chapter, we get active. I look at patterns that help you to get things done, whether

interpreting a mini-language or encapsulating an algorithm.

This chapter will walk you through several patterns:

•	 The Interpreter pattern: Building a mini-language interpreter that can

be used to create scriptable applications

•	 The Strategy pattern: Identifying algorithms in a system and

encapsulating them into their own types

•	 The Observer pattern: Creating hooks for alerting disparate objects

about system events

•	 The Visitor pattern: Applying an operation to all the nodes in a tree

of objects

•	 The Command pattern: Creating command objects that can be saved

and passed around

•	 The Null Object pattern: Using nonoperational objects in place of

null values

�The Interpreter Pattern
Languages are written in other languages (at least at first). PHP itself, for example, is

written in C. By the same token, odd as it may sound, you can define and run your

own languages using PHP. Of course, any language you might create will be slow and

somewhat limited. Nonetheless, mini-languages can be very useful, as you will see in

this chapter.

https://doi.org/10.1007/979-8-8688-0482-3_11#DOI

374

�The Problem
When you create web (or command-line) interfaces in PHP, you give the user access

to functionality. The trade-off in interface design is between power and ease of use.

As a rule, the more power you give your user, the more cluttered and confusing your

interface becomes. Good interface design can help a lot here, of course. But if 90% of

users are using the same 30% of your features, the costs of piling on the functionality

may outweigh the benefits. You may wish to consider simplifying your system for most

users. But what of the power users, that 10% who use your system’s advanced features?

Perhaps you can accommodate them in a different way. By offering such users a domain

language (often called a DSL—Domain-Specific Language), you might actually extend

the power of your application.

Of course, you have a programming language at hand right away. It’s called

PHP. Here’s how you could allow your users to script your system:

$form_input = $_REQUEST['form_input'];

// contains: "print file_get_contents('/etc/passwd');"

eval($form_input);

This approach to making an application scriptable is clearly insane. Just in case the

reasons are not blatantly obvious, they boil down to two issues: security and complexity.

The security issue is well addressed in the example. By allowing users to execute PHP via

your script, you are effectively giving them access to the server the script runs on. The

complexity issue is just as big a drawback. No matter how clear your code is, the average

user is unlikely to extend it easily and certainly not from the browser window.

A mini-language, though, can address both these problems. You can design

flexibility into the language, reduce the possibility that the user can do damage, and keep

things focused.

Imagine an application for authoring quizzes. Producers design questions and

establish rules for marking the answers submitted by contestants. It is a requirement that

quizzes must be marked without human intervention, even though some answers can be

typed into a text field by users.

Here’s a question:

How many members in the Design Patterns gang?

Chapter 11 Performing and Representing Tasks

375

You can accept “four” or “4” as correct answers. You might create a web interface

that allows a producer to use a regular expression for marking responses:

^4|four$

Most producers are not hired for their knowledge of regular expressions, however. To

make everyone’s life easier, you might implement a more user-friendly mechanism for

marking responses:

$input equals "4" or $input equals "four"

You propose a language that supports variables, an operator called equals, and

Boolean logic (or and and). Programmers love naming things, so let’s call it MarkLogic.

It should be easy to extend, as you envisage lots of requests for richer features. Let’s leave

aside the issue of parsing input for now and concentrate on a mechanism for plugging

these elements together at runtime to produce an answer. This, as you might expect, is

where the Interpreter pattern comes in.

�Implementation
A language contains expressions (i.e., things that resolve to a value). As you can see in

Table 11-1, even a tiny language like MarkLogic needs to keep track of a lot of elements.

Table 11-1.  Elements of the MarkLogic Grammar

Description EBNF Meta-
identifier

Class Name Example

Variable Variable VariableExpression $input

String literal stringLiteral LiteralExpression "four"

Boolean and andExpr BooleanAndExpression $input equals '4' and

$other equals '6'

Boolean or orExpr BooleanOrExpression $input equals '4' or

$other equals '6'

Equality test eqExpr BooleanEqualsExpression $input equals '4'

Chapter 11 Performing and Representing Tasks

376

Table 11-1 lists EBNF names. So what is EBNF all about? EBNF is a syntactic

meta-language that you can use to describe a language grammar. EBNF stands for

Extended Backus-Naur Form. It consists of a series of lines (called productions),

each one consisting of a name and a description that takes the form of references

to other productions and to terminals (i.e., elements that are not themselves made

up of references to other productions). Here is one way of describing my grammar

using EBNF:

Expr = operand { orExpr | andExpr }
Operand = ('(' expr ')' | ? string literal ? | variable) { eqExpr }
orExpr = 'or' operand

andExpr = 'and' operand

eqExpr = 'equals' operand

variable = '$' , ? word ?

Some symbols have special meanings (that should be familiar from regular

expression notation): | (more properly a definition separator) can be loosely thought of

as or for, for example. You can group identifiers using parentheses. So in the example,

an expression (Expr) consists of an Operand followed by zero or more of either orExpr

or andExpr. An Operand can be an Expr in parentheses (i.e., an Expr wrapped in literal

“(” and “)” characters), a quoted string (I have omitted the production for this), or

a variable followed by zero or more instances of eqExpr. Once you get the hang of

referring from one production to another, EBNF becomes quite easy to read.

In Figure 11-1, I represent the elements of my grammar as classes.

Chapter 11 Performing and Representing Tasks

377

Figure 11-1.  The Interpreter classes that make up the MarkLogic language

As you can see, BooleanAndExpression and its siblings inherit from

OperatorExpression. This is because these classes all perform their operations upon

other Expression objects. VariableExpression and LiteralExpression are terminal

expressions, representing the lowest level of grammar defined in the EBNF. They work

directly with values.

All Expression objects implement an interpret() method that is defined in the

abstract base class, Expression. The interpret() method expects an InterpreterContext

object that is used as a shared data store. Each Expression object can store data in the

InterpreterContext object. The InterpreterContext will then be passed along to other

Expression objects. So that data can be retrieved easily from the InterpreterContext, the

Expression base class implements a getKey() method that returns a unique handle. Let’s

see how this works in practice with an implementation of Expression:

abstract class Expression

{

 private static int $keycount = 0;

 private string $key;

Chapter 11 Performing and Representing Tasks

378

 abstract public function interpret(InterpreterContext $context);

 public function getKey(): string

 {

 if (! isset($this->key)) {

 self::$keycount++;

 $this->key = (string)self::$keycount;

 }

 return $this->key;

 }

}

class LiteralExpression extends Expression

{

 private mixed $value;

 public function __construct(mixed $value)

 {

 $this->value = $value;

 }

 public function interpret(InterpreterContext $context): void

 {

 $context->replace($this, $this->value);

 }

}

class InterpreterContext

{

 private array $expressionstore = [];

 public function replace(Expression $exp, mixed $value): void

 {

 $this->expressionstore[$exp->getKey()] = $value;

 }

Chapter 11 Performing and Representing Tasks

379

 public function lookup(Expression $exp): mixed

 {

 return $this->expressionstore[$exp->getKey()];

 }

}

$context = new InterpreterContext();

$literal = new LiteralExpression('four');

$literal->interpret($context);

print $context->lookup($literal) . "\n";

Here’s the output:

four

I’ll begin with the InterpreterContext class. As you can see, it is really only a front

end for an associative array, $expressionstore, which I use to hold data. The replace()

method accepts an Expression object as key and a value of any type and then adds the

pair to $expressionstore. It also provides a lookup() method for retrieving data.

The Expression class defines the abstract interpret() method and a concrete

getKey() method that uses a static counter value to generate, store, and return a string

identifier.

This method is used by InterpreterContext::lookup() and

InterpreterContext::replace() to index data.

The LiteralExpression class defines a constructor that accepts a value argument.

The interpret() method requires an InterpreterContext object. I simply call

replace() using getKey() to define the key for retrieval and the $value property.

This will become a familiar pattern as you examine the other Expression classes. The

interpret() method always inscribes its results upon the InterpreterContext object.

I include some client code as well, instantiating both an InterpreterContext

object and a LiteralExpression object (with a value of "four"). I pass the

InterpreterContext object to LiteralExpression::interpret(). The interpret()

method stores the key/value pair in InterpreterContext, from where I retrieve the

value by calling lookup().

Chapter 11 Performing and Representing Tasks

380

Here’s the remaining terminal class. VariableExpression is a little more

complicated:

class VariableExpression extends Expression

{

 �public function __construct(private string $name, private mixed

$val = null)

 {

 }

 public function interpret(InterpreterContext $context): void

 {

 if (! is_null($this->val)) {

 $context->replace($this, $this->val);

 $this->val = null;

 }

 }

 public function setValue(mixed $value): void

 {

 $this->val = $value;

 }

 public function getKey(): string

 {

 return $this->name;

 }

}

$context = new InterpreterContext();

$myvar = new VariableExpression('input', 'four');

$myvar->interpret($context);

print $context->lookup($myvar) . "\n";

// output: four

Chapter 11 Performing and Representing Tasks

381

$newvar = new VariableExpression('input');

$newvar->interpret($context);

print $context->lookup($newvar) . "\n";

// output: four

$myvar->setValue("five");

$myvar->interpret($context);

print $context->lookup($myvar) . "\n";

// output: five

print $context->lookup($newvar) . "\n";

// output: five

The VariableExpression class accepts both name and value arguments for storage

in property variables. I provide the setValue() method, so that client code can change

the value at any time.

The interpret() method checks whether or not the $val property has a nonnull

value. If the $val property has a value, it sets it on the InterpreterContext. I then set

the $val property to null. This is in case interpret() is called again after another

identically named instance of VariableExpression has changed the value in the

InterpreterContext object. This is quite a limited variable, accepting only string values.

If you intend to extend your language, you should consider having it work with other

Expression objects, so that it can contain the results of tests and operations. For now,

though, VariableExpression will do the work I need of it. Notice that I have overridden

the getKey() method, so that variable values are linked to the variable name and not to

an arbitrary static ID.

Operator expressions in the language all work with two other Expression objects in

order to get their job done. It makes sense, therefore, to have them extend a common

superclass. Here is the OperatorExpression class:

abstract class OperatorExpression extends Expression

{

 �public function __construct(protected Expression $l_op, protected

Expression $r_op)

 {

 }

Chapter 11 Performing and Representing Tasks

382

 public function interpret(InterpreterContext $context): void

 {

 $this->l_op->interpret($context);

 $this->r_op->interpret($context);

 $result_l = $context->lookup($this->l_op);

 $result_r = $context->lookup($this->r_op);

 $this->doInterpret($context, $result_l, $result_r);

 }

 abstract protected function doInterpret(

 InterpreterContext $context,

 $result_l,

 $result_r

): void;

}

OperatorExpression is an abstract class. It implements interpret(), but it also

defines the abstract doInterpret() method.

The constructor demands two Expression objects, $l_op and $r_op, which it stores

in properties.

The interpret() method begins by invoking interpret() on both its operand

properties (if you have read the previous chapter, you might notice that I am creating

an instance of the Composite pattern here). Once the operands have been run,

interpret() still needs to acquire the values that this yields. It does this by calling

InterpreterContext::lookup() for each property. It then calls doInterpret(), leaving

it up to child classes to decide what to do with the results of these operations.

Note  doInterpret() is an instance of the Template Method pattern. In this
pattern, a parent class both defines and calls an abstract method, leaving it up to
child classes to provide an implementation. This can streamline the development of
concrete classes, as shared functionality is handled by the superclass, leaving the
children to concentrate on clean, narrow objectives.

Chapter 11 Performing and Representing Tasks

383

Here’s the BooleanEqualsExpression class, which tests two Expression objects for

equality:

class BooleanEqualsExpression extends OperatorExpression

{

 protected function doInterpret(

 InterpreterContext $context,

 mixed $result_l,

 mixed $result_r

): void {

 $context->replace($this, $result_l == $result_r);

 }

}

BooleanEqualsExpression only implements the doInterpret() method, which

tests the equality of the operand results it has been passed by the interpret() method,

placing the result in the InterpreterContext object.

To wrap up the Expression classes, here are BooleanOrExpression and

BooleanAndExpression:

class BooleanOrExpression extends OperatorExpression

{

 protected function doInterpret(

 InterpreterContext $context,

 mixed $result_l,

 mixed $result_r

): void {

 $context->replace($this, $result_l || $result_r);
 }

}

Chapter 11 Performing and Representing Tasks

384

class BooleanAndExpression extends OperatorExpression

{

 protected function doInterpret(

 InterpreterContext $context,

 mixed $result_l,

 mixed $result_r

): void {

 $context->replace($this, $result_l && $result_r);

 }

}

Instead of testing for equality, the BooleanOrExpression class applies a logical or

operation and stores the result of that via the InterpreterContext::replace() method.

BooleanAndExpression, of course, applies a logical and operation.

I now have enough code to execute the mini-language fragment I quoted earlier.

Here it is again:

$input equals "4" or $input equals "four"

Here’s how I can build this statement up with my Expression classes:

$context = new InterpreterContext();

$input = new VariableExpression('input');

$statement = new BooleanOrExpression(

 new BooleanEqualsExpression($input, new LiteralExpression('four')),

 new BooleanEqualsExpression($input, new LiteralExpression('4'))

);

I instantiate a variable called "input" but hold off on providing a value for it.

I then create a BooleanOrExpression object that will compare the results from

two BooleanEqualsExpression objects. The first of these objects compares the

VariableExpression object stored in $input with a LiteralExpression containing the

string "four"; the second compares $input with a LiteralExpression object containing

the string "4".

Chapter 11 Performing and Representing Tasks

385

Now, with my statement prepared, I am ready to provide a value for the input

variable and run the code:

foreach (["four", "4", "52"] as $val) {

 $input->setValue($val);

 print "$val:\n";

 $statement->interpret($context);

 if ($context->lookup($statement)) {

 print "top marks\n\n";

 } else {

 print "dunce hat on\n\n";

 }

}

In fact, I run the code three times, with three different values. The first time through, I

set the temporary variable $val to "four", assigning it to the input VariableExpression

object using its setValue() method. I then call interpret() on the topmost Expression

object (the BooleanOrExpression object that contains references to all other expressions

in the statement). Here are the internals of this invocation, step by step:

•	 $statement calls interpret() on its $l_op property (the first

BooleanEqualsExpression object).

•	 The first BooleanEqualsExpression object calls interpret() on its

$l_op property (a reference to the input VariableExpression object,

which is currently set to "four").

•	 The input VariableExpression object writes its current value to the

provided InterpreterContext object by calling InterpreterContext

::replace().

•	 The first BooleanEqualsExpression object calls interpret() on its

$r_op property (a LiteralExpression object charged with the value

"four").

•	 The LiteralExpression object registers its key and its value with

InterpreterContext.

Chapter 11 Performing and Representing Tasks

386

•	 The first BooleanEqualsExpression object retrieves the

values for $l_op ("four") and $r_op ("four") from the

InterpreterContext object.

•	 The first BooleanEqualsExpression object compares these two

values for equality and then registers the result (true) and its key

with the InterpreterContext object.

•	 Back at the top of the tree, the $statement object

(BooleanOrExpression) calls interpret() on its $r_op property. This

resolves to a value (false, in this case) in the same way the $l_op

property did.

•	 The $statement object retrieves values for each of its operands from

the InterpreterContext object and compares them using ||. It is

comparing true and false, so the result is true. This final result is

stored in the InterpreterContext object.

And all that is only for the first iteration through the loop. Here is the final output:

four:

top marks

4:

top marks

52:

dunce hat on

You may need to read through this section a few times before the process clicks.

The old issue of object vs. class trees might confuse you, here. Expression classes are

arranged in an inheritance hierarchy, just as Expression objects are composed into a

tree at runtime. As you read back through the code, keep this distinction in mind.

Figure 11-2 shows the complete class diagram for the example.

Chapter 11 Performing and Representing Tasks

387

Figure 11-2.  The Interpreter pattern deployed

�Interpreter Issues
Once you set up the core classes for an Interpreter pattern implementation, it becomes

easy to extend. The price you pay is in the sheer number of classes you could end up

creating. For this reason, Interpreter is best applied to relatively small languages. If you

have a need for a general-purpose programming language, you would do better to look

for a third-party tool to use.

Because Interpreter classes often perform very similar tasks, it is worth keeping an

eye on the classes you create with a view to factoring out duplication.

Many people approaching the Interpreter pattern for the first time are disappointed,

after some initial excitement, to discover that it does not address parsing. This means

that you are not yet in a position to offer your users a nice, friendly language. Appendix B

contains some rough code to illustrate one strategy for parsing a mini-language.

Chapter 11 Performing and Representing Tasks

388

�The Strategy Pattern
Classes often try to do too much. It’s understandable: you create a class that performs a

few related actions; and, as you code, some of these actions need to be varied according

to the circumstances. At the same time, your class needs to be split into subclasses.

Before you know it, your design is being pulled apart by competing forces.

Note I also examine the Stragety pattern in Chapter 8.

�The Problem
Since I have recently built a marking language, I’m sticking with the quiz example.

Quizzes need questions, so you build a Question class, giving it a mark() method. All is

well until you need to support different marking mechanisms.

Imagine that you are asked to support the simple MarkLogic language, marking by

straight match and regular expression. Your first thought might be to subclass for these

differences, as in Figure 11-3.

Figure 11-3.  Defining subclasses according to marking strategies

This would serve you well, as long as marking remains the only aspect of the

class that varies. Imagine, though, that you are called on to support different kinds of

questions: those that are text based and those that support rich media. This presents you

with a problem when it comes to incorporating these forces in one inheritance tree, as

you can see in Figure 11-4.

Chapter 11 Performing and Representing Tasks

389

Figure 11-4.  Defining subclasses according to two forces

Not only have the number of classes in the hierarchy ballooned, but you also

necessarily introduce repetition. Your marking logic is reproduced across each branch of

the inheritance hierarchy.

Whenever you find yourself repeating an algorithm across siblings in an inheritance

tree (whether through subclassing or repeated conditional statements), consider

abstracting these behaviors into their own type.

�Implementation
As with all the best patterns, Strategy is simple and powerful. When classes must support

multiple implementations of an interface (e.g., multiple marking mechanisms), the best

approach is often to extract these implementations and place them in their own type

rather than to extend the original class to handle them.

So, in the example, your approach to marking might be placed in a Marker type.

Figure 11-5 shows the new structure.

Chapter 11 Performing and Representing Tasks

390

Figure 11-5.  Extracting algorithms into their own type

Remember the Gang of Four principle, “Favor composition over inheritance”? This

is an excellent example. By defining and encapsulating the marking algorithms, you

reduce subclassing and increase flexibility. You can add new marking strategies at any

time without the need to change the Question classes at all. All Question classes know

is that they have an instance of a Marker at their disposal and that it is guaranteed by

its interface to support a mark() method. The details of implementation are entirely

somebody else’s problem.

Here are the Question classes rendered as code:

abstract class Question

{

 �public function __construct(protected string $prompt, protected Marker

$marker)

 {

 }

 public function mark(string $response): bool

 {

 return $this->marker->mark($response);

 }

}

Chapter 11 Performing and Representing Tasks

391

class TextQuestion extends Question

{

 // do text question specific things

}

class AVQuestion extends Question

{

 // do audiovisual question specific things

}

As you can see, I have left the exact nature of the difference between TextQuestion

and AVQuestion to the imagination. The Question base class provides all the real

functionality, storing a prompt property and a Marker object. When Question::mark()

is called with a response from the end user, the method simply delegates the problem

solving to its Marker object.

Now it’s time to define some simple Marker objects:

abstract class Marker

{

 public function __construct(protected string $test)

 {

 }

 abstract public function mark(string $response): bool;

}

class MarkLogicMarker extends Marker

{

 private MarkParse $engine;

 public function __construct(string $test)

 {

 parent::__construct($test);

 $this->engine = new MarkParse($test);

 }

Chapter 11 Performing and Representing Tasks

392

 public function mark(string $response): bool

 {

 return $this->engine->evaluate($response);

 }

}

class MatchMarker extends Marker

{

 public function mark(string $response): bool

 {

 return ($this->test == $response);

 }

}

class RegexpMarker extends Marker

{

 public function mark(string $response): bool

 {

 return (preg_match($this->test, $response) === 1);

 }

}

There should be little, if anything, that is particularly surprising about the Marker

classes themselves. Note that the MarkParse object is designed to work with the simple

parser developed in Appendix B. The key here is in the structure that I have defined,

rather than in the detail of the strategies themselves. I can swap RegexpMarker for

MatchMarker, with no impact on the Question class.

Notice that in MarkLogicParser I directly instantiate a MarkParse object. This is not

ideal in that it bakes in a particular implementation, rendering the code inflexible and

making testing harder. It would probably be better to use a pattern like Dependency

Injection to instantiate and supply the MarkParse object.

Note I covered Dependency Injection in detail in Chapter 9.

Chapter 11 Performing and Representing Tasks

393

Of course, you must still decide what method to use to choose between concrete

Marker objects. I have seen two real-world approaches to this problem. In the first,

producers used radio buttons to select the preferred marking strategy. In the second,

the structure of the marking condition itself was used; that is, a match statement was

left plain:

five

A MarkLogic statement was preceded by a colon:

:$input equals 'five'

And a regular expression used forward slashes:

/f.ve/

Here is some code to run the classes through their paces:

$markers = [

 new RegexpMarker("/f.ve/"),

 new MatchMarker("five"),

 new MarkLogicMarker('$input equals "five"')

];

foreach ($markers as $marker) {

 print get_class($marker) . "\n";

 $question = new TextQuestion("how many beans make five", $marker);

 foreach (["five", "four"] as $response) {

 print " response: $response: ";

 if ($question->mark($response)) {

 print "well done\n";

 } else {

 print "never mind\n";

 }

 }

}

Chapter 11 Performing and Representing Tasks

394

I construct three strategy objects, using each in turn to help construct a

TextQuestion object. The TextQuestion object is then tried against two sample

responses. Here is the output (including namespaces):

popp\ch11\batch02\RegexpMarker

 response: five: well done

 response: four: never mind

popp\ch11\batch02\MatchMarker

 response: five: well done

 response: four: never mind

popp\ch11\batch02\MarkLogicMarker

 response: five: well done

 response: five: never mind

In the example, I passed specific data (the $response variable) from the client to the

strategy object via the mark() method. Sometimes, you may encounter circumstances

in which you don’t always know in advance how much information the strategy object

will require when its operation is invoked. You can delegate the decision as to what data

to acquire by passing the strategy an instance of the client itself. The strategy can then

query the client in order to build the data it needs.

�The Observer Pattern
Orthogonality is a virtue I have described before. One of our objectives as programmers

should be to build components that can be altered or moved with minimal impact on

other components. If every change we make to one component necessitates a ripple of

changes elsewhere in the codebase, the task of development can quickly become a spiral

of bug creation and elimination.

Of course, orthogonality is often just a dream. Elements in a system must have

embedded references to other elements. You can, however, deploy various strategies

to minimize this. You have seen various examples of polymorphism in which the client

understands a component’s interface, but the actual component may vary at runtime.

In some circumstances, you may wish to drive an even greater wedge between

components than this. Consider a class responsible for handling a user’s access to

a system:

Chapter 11 Performing and Representing Tasks

395

enum LoginStatus: int

{

 case unknown = 1;

 case wrongpass = 2;

 case access = 3;

}

class Login

{

 private array $status = [];

 �public function handleLogin(string $user, string $pass, string

$ip): bool

 {

 $isvalid = false;

 switch (rand(1, 3)) {

 case 1:

 $this->setStatus(LoginStatus::access, $user, $ip);

 $isvalid = true;

 break;

 case 2:

 $this->setStatus(LoginStatus::wrongpass, $user, $ip);

 $isvalid = false;

 break;

 case 3:

 $this->setStatus(LoginStatus::unknown, $user, $ip);

 $isvalid = false;

 break;

 }

 print "returning " . (($isvalid) ? "true" : "false") . "\n";

 return $isvalid;

 }

Chapter 11 Performing and Representing Tasks

396

 �private function setStatus(LoginStatus $status, string $user, string

$ip): void

 {

 $this->status = [$status, $user, $ip];

 }

 public function getStatus(): array

 {

 return $this->status;

 }

}

In a real-world example, of course, the handleLogin() method would validate

the user against a storage mechanism. As it is, this class fakes the login process using

the rand() function. There are three potential outcomes of a call to handleLogin().

The status flag may be set to the enumeration object LoginStatus::access,

LoginStatus::wrongpass, or LoginStatus::unknown.

Because the Login class is a gateway guarding the treasures of your business team,

it may excite much interest during development and in the months beyond. Marketing

might call you up and ask that you keep a log of IP addresses. You can add a call to your

system’s Logger class:

public function handleLogin(string $user, string $pass, string $ip): bool

{

 $isvalid=false;

 switch (rand(1, 3)) {

 case 1:

 $this->setStatus(LoginStatus::access, $user, $ip);

 $isvalid = true;

 break;

 case 2:

 $this->setStatus(LoginStatus::wrongpass, $user, $ip);

 $isvalid = false;

 break;

Chapter 11 Performing and Representing Tasks

397

 case 3:

 $this->setStatus(LoginStatus::unknown, $user, $ip);

 $isvalid = false;

 break;

 }

 Logger::logIP($user, $ip, $this->getStatus());

 return $isvalid;

}

Worried about security, the systems team might ask for notification of failed logins.

Once again, you can return to the login method and add a new call:

if (! $isvalid) {

 Notifier::mailWarning(

 $user,

 $ip,

 $this->getStatus()

);

}

The business development team might announce a tie-in with a particular ISP,

asking that a cookie be set when particular users log in. And so on, and so on.

These are all easy enough requests to fulfill, but addressing them comes at a cost to

your design. The Login class soon becomes very tightly embedded into this particular

system. You cannot pull it out and drop it into another product without going through

the code line by line and removing everything that is specific to the old system. This

isn’t too hard, of course, but then you are off down the road of cut-and-paste coding.

Now that you have two similar but distinct Login classes in your systems, you find that

an improvement to one will necessitate the same changes in the other—until, inevitably

and gracelessly, they fall out of alignment with one another.

So what can you do to save the Login class? The Observer pattern is a great fit here.

Chapter 11 Performing and Representing Tasks

398

�Implementation
At the core of the Observer pattern is the unhooking of client elements (the observers)

from a central class (the subject). Observers need to be informed when events occur that

the subject knows about. At the same time, you do not want the subject to have a hard-

coded relationship with its observer classes.

To achieve this, you can allow observers to register themselves with the subject. You

give the Login class three new methods, attach(), detach(), and notify(), and enforce

this using an interface called Observable:

interface Observable

{

 public function attach(Observer $observer): void;

 public function detach(Observer $observer): void;

 public function notify(): void;

}

class Login implements Observable

{

 private array $observers = [];

 private array $status = [];

 public function attach(Observer $observer): void

 {

 $this->observers[] = $observer;

 }

 public function detach(Observer $observer): void

 {

 $this->observers = array_filter(

 $this->observers,

 function ($a) use ($observer) {

 return (! ($a === $observer));

 }

);

 }

Chapter 11 Performing and Representing Tasks

399

 public function notify(): void

 {

 foreach ($this->observers as $obs) {

 $obs->update($this);

 }

 }

 // ...

}

So the Login class manages a list of observer objects. These can be added by a third

party using the attach() method and removed via detach(). The notify() method is

called to tell the observers that something of interest has happened. The method simply

loops through the list of observers, calling update() on each one.

The Login class itself calls notify() from its handleLogin() method:

public function handleLogin(string $user, string $pass, string $ip): bool

{

 $isvalid = false;

 switch (rand(1, 3)) {

 case 1:

 $this->setStatus(LoginStatus::access, $user, $ip);

 $isvalid = true;

 break;

 case 2:

 $this->setStatus(LoginStatus::wrongpass, $user, $ip);

 $isvalid = false;

 break;

 case 3:

 $this->setStatus(LoginStatus::unknown, $user, $ip);

 $isvalid = false;

 break;

 }

 $this->notify();

 return $isvalid;

}

Chapter 11 Performing and Representing Tasks

400

Here’s the interface for the Observer class:

interface Observer

{

 public function update(Observable $observable): void;

}

Any object that uses this interface can be added to the Login class via the attach()

method. Here’s a concrete instance:

class LoginAnalytics implements Observer

{

 public function update(Observable $observable): void

 {

 // not type safe!

 $status = $observable->getStatus();

 print __CLASS__ . ": doing something with status info\n";

 }

}

Notice how the observer object uses the instance of Observable to get more

information about the event. It is up to the subject class to provide methods that

observers can query to learn about state. In this case, I have defined a method called

getStatus() that observers can call to get a snapshot of the current state of play.

This addition also highlights a problem, though. By calling Login::getStatus(), the

LoginAnalytics class assumes more knowledge than it safely can. It is making this call

on an Observable object, but there’s no guarantee that this will also be a Login object.

I have a couple of options here. I could extend the Observable interface to include a

getStatus() declaration and perhaps rename it to something like ObservableLogin to

signal that it is specific to the Login type.

Alternatively, I could keep the Observable interface generic and make the Observer

classes responsible for ensuring that their subjects are of the correct type. They could

even handle the chore of attaching themselves to their subject. Since there will be more

than one type of Observer, and since I’m planning to perform some housekeeping that is

common to all of them, here’s an abstract superclass to handle the donkey work:

Chapter 11 Performing and Representing Tasks

401

abstract class LoginObserver implements Observer

{

 private Login $login;

 public function __construct(Login $login)

 {

 $this->login = $login;

 $login->attach($this);

 }

 public function update(Observable $observable): void

 {

 if ($observable === $this->login) {

 $this->doUpdate($observable);

 }

 }

 abstract public function doUpdate(Login $login): void;

}

The LoginObserver class requires a Login object in its constructor. It stores a

reference and calls Login::attach(). When update() is called, it checks that the

provided Observable object is the correct reference. It then calls a Template Method:

doUpdate(). I can now create a suite of LoginObserver objects, all of which can be

secure they are working with a Login object and not just any old Observable:

class SecurityMonitor extends LoginObserver

{

 public function doUpdate(Login $login): void

 {

 $status = $login->getStatus();

 if ($status[0] === LoginStatus::wrongpass) {

 // send mail to sysadmin

 print __CLASS__ . ": sending mail to sysadmin\n";

 }

 }

}

Chapter 11 Performing and Representing Tasks

402

class GeneralLogger extends LoginObserver

{

 public function doUpdate(Login $login): void

 {

 $status = $login->getStatus();

 // add login data to log

 print __CLASS__ . ": add login data to log\n";

 }

}

class PartnershipTool extends LoginObserver

{

 public function doUpdate(Login $login): void

 {

 $status = $login->getStatus();

 // check $ip address

 // set cookie if it matches a list

 print __CLASS__ . ": set cookie if it matches a list\n";

 }

}

Creating and attaching LoginObserver classes is now achieved in one go at the time

of instantiation:

$login = new Login();

new SecurityMonitor($login);

new GeneralLogger($login);

new PartnershipTool($login);

So now I have created a flexible association between the subject classes and the

observers. You can see the class diagram for the example in Figure 11-6.

Chapter 11 Performing and Representing Tasks

403

Figure 11-6.  The Observer pattern

PHP provides built-in support for the Observer pattern through the bundled SPL

(Standard PHP Library) extension. The SPL is a set of tools that help with common,

largely object-oriented problems. The Observer aspect of this OO Swiss Army knife

consists of three elements: SplObserver, SplSubject, and SplObjectStorage.

SplObserver and SplSubject are interfaces and exactly parallel the Observer and

Observable interfaces shown in this section’s example. SplObjectStorage is a utility

class designed to provide improved storage and removal of objects. Here’s an edited

version of the Observer implementation:

class Login implements \SplSubject

{

 private \SplObjectStorage $storage;

 private array $status = [];

Chapter 11 Performing and Representing Tasks

404

 // ...

 public function __construct()

 {

 $this->storage = new \SplObjectStorage();

 }

 public function attach(\SplObserver $observer): void

 {

 $this->storage->attach($observer);

 }

 public function detach(\SplObserver $observer): void

 {

 $this->storage->detach($observer);

 }

 public function notify(): void

 {

 foreach ($this->storage as $obs) {

 $obs->update($this);

 }

 }

 // ...

}

abstract class LoginObserver implements \SplObserver

{

 public function __construct(private Login $login)

 {

 $login->attach($this);

 }

 public function update(\SplSubject $subject): void

 {

 if ($subject === $this->login) {

 $this->doUpdate($subject);

 }

Chapter 11 Performing and Representing Tasks

405

 }

 abstract public function doUpdate(Login $login): void;

}

There are no real differences, as far as SplObserver (which was Observer) and

SplSubject (which was Observable) are concerned—except, of course, I no longer

need to declare the interfaces, and I must alter my type declarations according to the

new names. SplObjectStorage provides you with a really useful service, however. You

may have noticed that, in my initial example, my implementation of Login::detach()

applied array_filter (together with an anonymous function) to the $observers array,

in order to find and remove the argument object. The SplObjectStorage class does this

work for you under the hood. It implements attach() and detach() methods and can be

passed to foreach and iterated like an array.

Note  You can read more about SPL in the PHP documentation at https://www.
php.net/spl. In particular, you will find many iterator tools there. I cover PHP’s
built-in Iterator interface in Chapter 13.

Another approach to the problem of communicating between an Observable class

and its Observer could be to pass specific state information via the update() method,

rather than an instance of the subject class. For a quick-and-dirty solution, this is often

the approach I would take initially. So in the example, update() would expect a status

flag, the username, and IP address (probably in an array for portability), rather than an

instance of Login. This saves you from having to write a state method in the Login class.

On the other hand, where the subject class stores a lot of state, passing an instance of it

to update() allows observers much more flexibility.

You could also lock down type completely, by making the Login class refuse to work

with anything other than a specific type of observer class (LoginObserver, perhaps).

If you want to do that, then you may consider some kind of runtime check on objects

passed to the attach() method; otherwise, you may need to reconsider the Observable

interface altogether.

Once again, I have used composition at runtime to build a flexible and extensible

model. The Login class can be extracted from its context and dropped into an entirely

different project without qualification. There, it might work with a different set of

observers.

Chapter 11 Performing and Representing Tasks

https://www.php.net/spl
https://www.php.net/spl

406

�The Visitor Pattern
As you have seen, many patterns aim to build structures at runtime, following the

principle that composition is more flexible than inheritance. The ubiquitous Composite

pattern is an excellent example of this. When you work with collections of objects, you

may need to apply various operations to the structure that involve working with each

individual component. Such operations can be built into the components themselves.

After all, components are often best placed to invoke one another.

This approach is not without issues. You do not always know about all the operations

you may need to perform on a structure. If you add support for new operations to your

classes on a case-by-case basis, you can bloat your interface with responsibilities that

don’t really fit. As you might guess, the Visitor pattern addresses these issues.

�The Problem
Think back to the Composite example from the previous chapter. For a game, I created

an army of components such that the whole and its parts can be treated interchangeably.

You saw that operations can be built into components. Typically, leaf objects perform an

operation, and composite objects call on their children to perform the operation:

class Army extends CompositeUnit

{

 public function bombardStrength(): int

 {

 $strength = 0;

 foreach ($this->units() as $unit) {

 $strength += $unit->bombardStrength();

 }

 return $strength;

 }

}

Chapter 11 Performing and Representing Tasks

407

class LaserCanonUnit extends Unit

{

 public function bombardStrength(): int

 {

 return 44;

 }

}

Where this operation is integral to the responsibility of the composite class, there is

no problem. There are more peripheral tasks, however, that may not sit so happily on the

interface.

Here’s an operation that dumps textual information about leaf nodes. It could be

added to the abstract Unit class:

abstract class Unit

{

 // ...

 public function textDump($num = 0): string

 {

 $txtout = "";

 $pad = 4 * $num;

 $txtout .= sprintf("%{$pad}s", "");

 $txtout .= get_class($this) . ": ";

 $txtout .= "bombard: " . $this->bombardStrength() . "\n";

 return $txtout;

 }

 // ...

}

Chapter 11 Performing and Representing Tasks

408

This method can then be overridden in the CompositeUnit class:

abstract class CompositeUnit extends Unit

{

 // ...

 public function textDump($num = 0): string

 {

 $txtout = parent::textDump($num);

 foreach ($this->units as $unit) {

 $txtout .= $unit->textDump($num + 1);

 }

 return $txtout;

 }

}

I could go on to create methods for counting the number of units in the tree, for

saving components to a database, and for calculating the food units consumed by

an army.

Why would I want to include these methods in the composite’s interface? There is

only one really compelling answer. I include these disparate operations here because this

is where an operation can gain easy access to related nodes in the composite structure.

Although it is true that ease of traversal is part of the Composite pattern, it does not

follow that every operation that needs to traverse the tree should therefore claim a place

in the Composite’s interface.

So these are the forces at work: I want to take full advantage of the easy traversal

afforded by my object structure, but I want to do this without bloating the interface.

�Implementation
I’ll begin with the interfaces. In the abstract Unit class, I define an accept() method:

abstract class Unit

{

 // ...

Chapter 11 Performing and Representing Tasks

409

 public function accept(ArmyVisitor $visitor): void

 {

 $refthis = new \ReflectionClass(get_class($this));

 $method = "visit" . $refthis->getShortName();

 $visitor->$method($this);

 }

 protected function setDepth($depth): void

 {

 $this->depth = $depth;

 }

 public function getDepth(): int

 {

 return $this->depth;

 }

}

As you can see, the accept() method expects an ArmyVisitor object to be passed

to it. PHP allows you dynamically to define the method on the ArmyVisitor you wish to

call, so I construct a method name based on the name of the current class and invoke

that method on the provided ArmyVisitor object. If the current class is Army, then I

invoke ArmyVisitor::visitArmy(). If the current class is TroopCarrier, then I invoke

ArmyVisitor::visitTroopCarrier() and so on. This saves me from implementing

accept() on every leaf node in my class hierarchy.

Note  Versions of this pattern for other languages can take advantage of
overloading for their implementations. They can simply pass a Composite element
object to a visitor’s visit() method. The visitor can overload multiple versions of
visit() to accept different Composite subtypes. The language will ensure that
the correct version of visit() is invoked according to the argument provided.

While I was in the area, I also added two methods of convenience: getDepth()

and setDepth(). These can be used to store and retrieve the depth of a unit in a

tree. setDepth() is invoked by the unit’s parent when it adds it to the tree from

CompositeUnit::addUnit():

Chapter 11 Performing and Representing Tasks

410

abstract class CompositeUnit extends Unit

{

 // ...

 public function addUnit(Unit $unit): void

 {

 foreach ($this->units as $thisunit) {

 if ($unit === $thisunit) {

 return;

 }

 }

 $unit->setDepth($this->depth + 1);

 $this->units[] = $unit;

 }

 public function accept(ArmyVisitor $visitor): void

 {

 parent::accept($visitor);

 foreach ($this->units as $thisunit) {

 $thisunit->accept($visitor);

 }

 }

}

I included an accept() method in this fragment. This calls Unit::accept() to

invoke the relevant visit() method on the provided ArmyVisitor object. Then it loops

through any child objects calling accept(). In fact, because accept() overrides its

parent operation, the accept() method allows me to do two things:

Invoke the correct visitor method for the current component

Pass the visitor object to all the current element children via

the accept() method (assuming the current component is

composite)

Chapter 11 Performing and Representing Tasks

411

I have yet to define the interface for ArmyVisitor. The accept() methods should give

you some clue. The visitor class will define visit() methods for each of the concrete

classes in the class hierarchy. This allows me to provide different functionality for

different objects. In my version of this class, I also define a default vist() method that is

automatically called if implementing classes choose not to provide specific handling for

particular Unit classes:

abstract class ArmyVisitor

{

 abstract public function visit(Unit $node): void;

 public function visitArcher(Archer $node): void

 {

 $this->visit($node);

 }

 public function visitCavalry(Cavalry $node): void

 {

 $this->visit($node);

 }

 public function visitLaserCanonUnit(LaserCanonUnit $node): void

 {

 $this->visit($node);

 }

 public function visitTroopCarrierUnit(TroopCarrier $node): void

 {

 $this->visit($node);

 }

 public function visitArmy(Army $node): void

 {

 $this->visit($node);

 }

}

Chapter 11 Performing and Representing Tasks

412

So now it’s just a matter of providing implementations of ArmyVisitor, and I am

ready to go. Here is the simple text dump code reimplemented as an ArmyVisitor object:

class TextDumpArmyVisitor extends ArmyVisitor

{

 private string $text = "";

 public function visit(Unit $node): void

 {

 $txt = "";

 $pad = 4 * $node->getDepth();

 $txt .= sprintf("%{$pad}s", "");

 $txt .= get_class($node) . ": ";

 $txt .= "bombard: " . $node->bombardStrength() . "\n";

 $this->text .= $txt;

 }

 public function getText(): string

 {

 return $this->text;

 }

}

Let’s look at some client code and then walk through the whole process:

$main_army = new Army();

$main_army->addUnit(new Archer());

$main_army->addUnit(new LaserCanonUnit());

$main_army->addUnit(new Cavalry());

$textdump = new TextDumpArmyVisitor();

$main_army->accept($textdump);

print $textdump->getText();

Chapter 11 Performing and Representing Tasks

413

This code yields the following output:

popp\ch11\batch08\Army: bombard: 50

 popp\ch11\batch08\Archer: bombard: 4

 popp\ch11\batch08\LaserCanonUnit: bombard: 44

 popp\ch11\batch08\Cavalry: bombard: 2

I create an Army object. Because Army is composite, it has an addUnit() method,

and I use this to add some more Unit objects. I then create the TextDumpArmyVisitor

object, which I pass to Army::accept(). The accept() method constructs a method

call and invokes TextDumpArmyVisitor::visitArmy(). In this case, I have provided no

special handling for Army objects, so the call is passed on to the generic visit() method.

visit() has been passed a reference to the Army object. It invokes its methods (including

the newly added getDepth(), which tells anyone who needs to know how far down the

composition tree the unit is) in order to generate summary data. The call to visitArmy()

is complete, so the Army::accept() operation now calls accept() on its children in turn,

passing the visitor along. In this way, the ArmyVisitor class visits every object in the tree.

With the addition of just a couple of methods, I have created a mechanism by which

new functionality can be plugged into my composite classes without compromising their

interface and without lots of duplicated traversal code.

On certain squares in the game, armies are subject to a tax. The tax collector visits

the army and levies a fee for each unit it finds. Different units are taxable at different

rates. Here’s where I can take advantage of the specialized methods in the visitor class:

class TaxCollectionVisitor extends ArmyVisitor

{

 private int $due = 0;

 private string $report = "";

 public function visit(Unit $node): void

 {

 $this->levy($node, 1);

 }

Chapter 11 Performing and Representing Tasks

414

 public function visitArcher(Archer $node): void

 {

 $this->levy($node, 2);

 }

 public function visitCavalry(Cavalry $node): void

 {

 $this->levy($node, 3);

 }

 public function visitTroopCarrierUnit(TroopCarrier $node): void

 {

 $this->levy($node, 5);

 }

 private function levy(Unit $unit, int $amount): void

 {

 $this->report .= "Tax levied for " . get_class($unit);

 $this->report .= ": $amount\n";

 $this->due += $amount;

 }

 public function getReport(): string

 {

 return $this->report;

 }

 public function getTax(): int

 {

 return $this->due;

 }

}

In this simple example, I make no direct use of the Unit objects passed to the various

visit methods. I do, however, use the specialized nature of these methods, levying

different fees according to the specific type of the invoking Unit object.

Chapter 11 Performing and Representing Tasks

415

Here’s some client code:

$main_army = new Army();

$main_army->addUnit(new Archer());

$main_army->addUnit(new LaserCanonUnit());

$main_army->addUnit(new Cavalry());

$taxcollector = new TaxCollectionVisitor();

$main_army->accept($taxcollector);

print $taxcollector->getReport();

print "TOTAL: ";

print $taxcollector->getTax() . "\n";

The TaxCollectionVisitor object is passed to the Army object’s accept() method,

as before. Once again, Army passes a reference to itself to the visitArmy() method,

before calling accept() on its children. The components are blissfully unaware of the

operations performed by their visitor. They simply collaborate with its public interface,

each one passing itself dutifully to the correct method for its type.

In addition to the methods defined in the ArmyVisitor class, TaxCollectionVisitor

provides two summary methods, getReport() and getTax(). Invoking these provides

the data you might expect:

Tax levied for popp\ch11\batch08\Army: 1

Tax levied for popp\ch11\batch08\Archer: 2

Tax levied for popp\ch11\batch08\LaserCanonUnit: 1

Tax levied for popp\ch11\batch08\Cavalry: 3

TOTAL: 7

Figure 11-7 shows the participants in this example.

Chapter 11 Performing and Representing Tasks

416

Figure 11-7.  The Visitor pattern

�Visitor Issues
The Visitor pattern, then, is another pattern that combines simplicity and power. There

are a few things to bear in mind when deploying this pattern, however.

First, although it is perfectly suited to the Composite pattern, Visitor can, in fact, be

used with any collection of objects. So, you might use it with a list of objects where each

object stores a reference to its siblings, for example.

By externalizing operations, you may risk compromising encapsulation. That is, you

may need to expose the guts of your visited objects in order to let visitors do anything

useful with them. You saw, for example, that for the first Visitor example, I was forced to

provide an additional method (getDepth()) in the Unit superclass in order to provide

information for TextDumpArmyVisitor objects. You also saw this dilemma previously in

the Observer pattern.

Because iteration is separated from the operations that visitor objects perform, you

must relinquish a degree of control. For example, you cannot easily create a visit()

method that does something both before and after child nodes are iterated. One way

around this would be to move responsibility for iteration into the visitor objects. The

trouble with this is that you may end up duplicating the traversal code from visitor to

visitor.

By default, I prefer to keep traversal internal to the visited classes, but externalizing

it provides you with one distinct advantage. You can vary the way that you work through

the visited classes on a visitor-by-visitor basis.

Chapter 11 Performing and Representing Tasks

417

�The Command Pattern
In recent years, I have rarely completed a web project without deploying this pattern.

Originally conceived in the context of graphical user interface design, command objects

make for good enterprise application design, encouraging a separation between the

controller (request and dispatch handling) and domain model (application logic) tiers.

Put more simply, the Command pattern makes for systems that are well organized and

easy to extend.

�The Problem
All systems must make decisions about what to do in response to a user’s request. In

PHP, that decision-making process is often handled by a spread of point-of-contact

pages. In selecting a page (feedback.php), the user clearly signals the functionality and

interface they requires. Increasingly, PHP developers are opting for a single point-

of-contact approach (as I will discuss in the next chapter). In either case, however, the

receiver of a request must delegate to a tier more concerned with application logic.

This delegation is particularly important in cases where the user can make requests to

different pages. Without it, duplication inevitably creeps into the project.

So, imagine you have a project with a range of tasks that need performing. In

particular, the system must allow some users to log in and others to submit feedback.

You could create login.php and feedback.php pages that handle these tasks,

instantiating specialist classes to get the job done. Unfortunately, a user interface in

a system rarely maps neatly to the tasks that the system is designed to complete. You

may require login and feedback capabilities on every page, for example. If pages must

handle many different tasks, then perhaps you should think of tasks as things that can be

encapsulated. In doing this, you make it easy to add new tasks to your system, and you

build a boundary between your system’s tiers. This brings us to the Command pattern.

�Implementation
The interface for a command object could not get much simpler. It requires a single

method: execute().

Chapter 11 Performing and Representing Tasks

418

In Figure 11-8, I have represented Command as an abstract class. At this level of

simplicity, it could be defined instead as an interface. I tend to use abstract classes for

this purpose because I often find that the base class can also provide useful common

functionality for its derived objects.

Figure 11-8.  The Command class

There are up to three other participants in the Command pattern: the client, which

instantiates the command object; the invoker, which deploys the object; and the receiver

on which the command operates.

The receiver can be given to the command in its constructor by the client, or it can

be acquired from a factory object of some kind. For a long time, I preferred the latter

approach, keeping the constructor method clear of arguments. All Command objects can

then be instantiated in exactly the same way. More recently, I have often shifted my

approach to take advantage of dependency injection containers. This can result in more

complex and varied constructor methods but, thanks to inversion of control, tends to

leave Command components less embedded in their wider systems and therefore easier

to test. For this example, I’ll mock up a CommandFactory class.

Here’s the abstract base class:

abstract class Command

{

 abstract public function execute(CommandContext $context): bool;

}

And here’s a concrete Command class:

class LoginCommand extends Command

{

 public function execute(CommandContext $context): bool

 {

 // In a real-world class, we'd acquire objects here to

Chapter 11 Performing and Representing Tasks

419

 // validate a user and to generate a User object. For now

 // we'll generate an empty object

 $user_obj = new \stdClass();

 $context->addParam("user", $user_obj);

 return true;

 }

}

The LoginCommand might work with something like an AccessManager class to handle

the nuts and bolts of logging users into the system and generating a User object.

Notice that the Command::execute() method demands a CommandContext object.

This is a mechanism by which request data can be passed to Command objects and by

which responses can be channeled back to the view layer. Using an object in this way

is useful because I can pass different parameters to commands without breaking the

interface.

Note I n real-world PHP applications, you will often see Command classes and
methods with execute() or similar methods that accept a Request object which
encapsulates an HTTP request and return a Response object which will determine
how the result of the request will be displayed. We will look in more detail at this in
Chapter 12.

The CommandContext is essentially an object wrapper around an associative array

variable, though it is frequently extended to perform additional helpful tasks. Here is a

simple CommandContext implementation:

class CommandContext

{

 private array $params = [];

 private string $error = "";

 public function addParam(string $key, $val): void

 {

 $this->params[$key] = $val;

 }

Chapter 11 Performing and Representing Tasks

420

 public function get(string $key): ?string

 {

 return $this->params[$key] ?? null;

 }

 public function setError(string $error): string

 {

 $this->error = $error;

 return $this->error;

 }

 public function getError(): string

 {

 return $this->error;

 }

}

So, armed with a CommandContext object, the LoginCommand can access request data:

the submitted username and password. If the command encounters an error condition,

it lodges an error message with the CommandContext object for use by the presentation

layer and returns false. This is by no means the only way of handling the result of a

Command execution. You might alternatively return an object that describes the result

and incorporates logic for presentation.

In this example, LoginCommand simply returns true. Note that Command objects do

not themselves perform much logic. They check input, handle error conditions, and

cache data, as well as calling on other objects to perform operations. If you find that

application logic creeps into your command classes, it is often a sign that you should

consider refactoring. Such code invites duplication, as it is inevitably copied and pasted

between commands. You should at least look at where such functionality belongs. It may

be best moved down into your business objects or possibly into a Facade layer.

In my example, I am still missing the client, the class that generates command

objects, and the invoker, the class that works with the generated command. We will

examine the logic by which a client might select a Command in Chapter 12. For now, here

is a massively simplified client:

Chapter 11 Performing and Representing Tasks

421

class CommandFactory

{

 public static function getCommand(string $action = 'Default'): Command

 {

 // A real-world class would implement an algorithm to map

 �// an incoming action string (possibly contained in a

Request object)

 �// and map it to a Command. For now, we use a match statement

to select

 // one of three hard-coded commands

 return match ($action) {

 "feedback" => new FeedbackCommand(),

 "login" => new LoginCommand(),

 default => new DefaultCommand()

 };

 }

}

The CommandFactory class simply looks for a particular class. The details of this are

not part of the Command pattern (I will cover this in Chapter 12). The key here is that the

details of Command acquisition are encapsulated.

Note  We will examine strategies for routing – the mechanism by which a request
is mapped to a Command method – in Chapter 12.

The invoker is now simplicity itself:

class Controller

{

 private CommandContext $context;

 public function __construct()

 {

 $this->context = new CommandContext();

 }

Chapter 11 Performing and Representing Tasks

422

 public function getContext(): CommandContext

 {

 return $this->context;

 }

 public function process(): void

 {

 $action = $this->context->get('action');

 $action = (is_null($action)) ? "default" : $action;

 $cmd = CommandFactory::getCommand($action);

 if (! $cmd->execute($this->context)) {

 // handle failure

 } else {

 // success

 // dispatch view

 }

 }

}

Here is some code to invoke the class:

$controller = new Controller();

$context = $controller->getContext();

$context->addParam('action', 'login');

$context->addParam('username', 'bob');

$context->addParam('pass', 'tiddles');

$controller->process();

print $context->getError();

Before I call Controller::process(), I fake a web request by setting parameters on

the CommandContext object instantiated in the controller’s constructor. The process()

method acquires the "action" parameter (falling back to the string "default" if no

action parameter is present). The method then delegates object instantiation to the

CommandFactory object. It invokes execute() on the returned command. Notice how the

Chapter 11 Performing and Representing Tasks

423

controller has no idea about the command’s internals. It is this independence from the

details of command execution that makes it possible for you to add new Command classes

with a relatively small impact on this framework.

Here’s one more Command class:

class FeedbackCommand extends Command

{

 public function execute(CommandContext $context): bool

 {

 $email = $context->get('email');

 $msg = $context->get('msg');

 $topic = $context->get('topic');

 // acquire an object (or expect it via DI) which

 // will handle the message

 return true;

 }

}

Note T he framework for running commands presented here is a simplified
version of another pattern that you will encounter: the Front Controller. I will return
to this in much more detail in Chapter 12.

This class will be run in response to a "feedback" action string, without the need for

any changes in the controller or CommandFactory classes.

Figure 11-9 shows the participants of the Command pattern.

Chapter 11 Performing and Representing Tasks

424

Figure 11-9.  Command pattern participants

�The Null Object Pattern
Half the problems that programmers face seem to be related to type. That’s one reason

PHP has increasingly supported type checks for method declarations and returns. If

dealing with a variable that contains the wrong type is a problem, dealing with one that

contains no type at all is at least as bad. This happens all the time, since functions often

return null when they fail to generate a useful value. You can avoid inflicting this issue

on yourself and others by using the Null Object pattern in your projects. As you will see,

while the other patterns in this chapter try to get stuff done, Null Object is designed to do

nothing as gracefully as possible.

Chapter 11 Performing and Representing Tasks

425

�The Problem
If your method has been charged with the task of finding an object, sometimes there is

little to be done but to admit defeat. The information provided by the calling code may

be stale or a resource may be unavailable. If the failure is catastrophic, you might choose

to throw an exception. Often, though, you’ll want to be a little more forgiving. In such a

case, returning a null value might seem like a good way of signaling failure to the client.

The problem here is that your method is breaking its contract. If it has committed

to return an object with a certain method, then returning null forces the client code to

adjust to unexpected circumstances.

Let’s return once again to our game. And let’s say that a class named TileForces

keeps track of information about units on a particular tile. Our game maintains

local saved information about the units in the system, and a component named

UnitAcquisition is responsible for turning this metadata into an array of objects.

Here is the TileForces constructor:

class TileForces

{

 private int $x;

 private int $y;

 private array $units = [];

 public function __construct(int $x, int $y, UnitAcquisition $acq)

 {

 $this->x = $x;

 $this->y = $y;

 $this->units = $acq->getUnits($this->x, $this->y);

 }

 // ...

}

Chapter 11 Performing and Representing Tasks

426

The TileForces object does little but delegate to the provided UnitAcquisition

object to get an array of Unit objects. Let’s build a fake UnitAcquisition object:

class UnitAcquisition

{

 public function getUnits(int $x, int $y): array

 {

 // 1. looks up x and y in local data and gets a list of unit ids

 // 2. goes off to a data source and gets full unit data

 // here's some fake data

 $army = new Army();

 $army->addUnit(new Archer());

 $found = [

 new Cavalry(),

 null,

 new LaserCanonUnit(),

 $army

];

 return $found;

 }

}

In this class, I hide the process of getting Unit data. Of course, in a real system,

some actual lookup would be performed here. I have contented myself with a few direct

instantiations. Notice, though, that I embedded a sneaky null value in the $found array.

This might happen, for example, if our network game client holds metadata that has

fallen out of alignment with the state of data on a server.

Armed with its array of Unit objects, TileForces can provide some functionality:

// TileForces

public function firepower(): int

{

 $power = 0;

Chapter 11 Performing and Representing Tasks

427

 foreach ($this->units as $unit) {

 $power += $unit->bombardStrength();

 }

 return $power;

}

Let’s put the code through its paces:

$acquirer = new UnitAcquisition();

$tileforces = new TileForces(4, 2, $acquirer);

$power = $tileforces->firepower();

print "power is {$power}\n";

Thanks to that lurking null, this code causes an error:

Error: Call to a member function bombardStrength() on null

TileForces::firepower() cycles through its $units array, calling

bombardStrength() on each Unit. The attempt to invoke a method on a null value, of

course, causes an error.

The most obvious solution is to check each element of the array before working

with it:

// TileForces

public function firepower(): int

{

 $power = 0;

 foreach ($this->units as $unit) {

 if (! is_null($unit)) {

 $power += $unit->bombardStrength();

 }

 }

 return $power;

}

Chapter 11 Performing and Representing Tasks

428

On its own, this isn’t too much of a problem. But imagine a version of TileForces

that performs all sorts of operations on the elements in its $units property. As soon as

we begin to replicate the is_null() check in multiple places, we are presented once

again with a particular code smell. Often, the answer to parallel chunks of client code is

to replace multiple conditionals with polymorphism. We can do that here, too.

�Implementation
The Null Object pattern allows us to delegate the doing of nothing to a class of an

expected type. In this case, I will create a NullUnit class:

class NullUnit extends Unit

{

 public function bombardStrength(): int

 {

 return 0;

 }

 public function getHealth(): int

 {

 return 0;

 }

 public function getDepth(): int

 {

 return 0;

 }

}

This implementation of Unit respects the interface, but does precisely nothing. Now,

I can amend UnitAcquisition to create a NullUnit rather than use a null:

public function getUnits(int $x, int $y): array

{

 $army = new Army();

 $army->addUnit(new Archer());

Chapter 11 Performing and Representing Tasks

429

 $found = [

 new Cavalry(),

 new NullUnit(),

 new LaserCanonUnit(),

 $army

];

 return $found;

}

The client code in TileForces can call any methods it likes on a NullUnit object

without problem or error:

// TileForces

public function firepower(): int

{

 $power = 0;

 foreach ($this->units as $unit) {

 $power += $unit->bombardStrength();

 }

 return $power;

}

Take a look at any substantial project and count up the number of inelegant checks

that have been forced on its coders by methods that return null values. How many of

those checks could be dispensed with if more of us used Null Object?

Of course, sometimes you will need to know that you are dealing with a null object.

The most obvious way of doing this would be to test an object with the instanceof

operator. That is even less elegant than the original is_null() call, however.

Perhaps the neatest solution is to add an isNull() method to both a base class

(returning false) and to the Null Object (returning true):

if (! $unit->isNull()) {

 // do something

} else {

 print "null - no action\n";

}

Chapter 11 Performing and Representing Tasks

430

That gives us the best of both worlds. Any method of a NullUnit object can be safely

called. And any Unit object can be queried for null status.

�Summary
In this chapter, I wrapped up my examination of the Gang of Four patterns, placing a

strong emphasis on how to get things done. I began by showing you how to design a

mini-language and build its engine with the Interpreter pattern.

In the Strategy pattern, you encountered another way of using composition to

increase flexibility and reduce the need for repetitive subclassing. And with the Observer

pattern, you learned how to solve the problem of notifying disparate and varying

components about system events. You also revisited the Composite example; and with

the Visitor pattern, you learned how to pay a call on, and apply many operations to, every

component in a tree. You even saw how the Command pattern can help you to build an

extensible tiered system. Finally, you saved yourself a heap of checking for nulls with the

Null Object pattern.

In the next chapter, I will step further beyond the Gang of Four to examine some

patterns specifically oriented toward enterprise programming.

Chapter 11 Performing and Representing Tasks

431
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3_12

CHAPTER 12

Enterprise Patterns
PHP is, first and foremost, a language designed for the Web. And, because of its extensive

support for objects, we can take advantage of patterns hatched in the context of other

object-oriented languages, particularly Java.

I develop a single example with many variations in this chapter, using it to illustrate

the patterns I cover. Remember, though, that by choosing to use one pattern, you are not

committed to using all of the patterns that work well with it. Nor should you feel that the

implementations presented here are the only way you might go about deploying these

patterns. Rather, you should use the examples here to help you understand the thrust of

the patterns described, feeling free to extract what you need for your projects.

Because of the amount of material to cover, this is one of this book’s longest and

most involved chapters, and it may be a challenge to traverse it in one sitting. It is

divided into an introduction and two main parts. These dividing lines might make good

break points.

I also describe the individual patterns in the “Architecture Overview” section.

Although these are interdependent to some extent, you should be able to jump straight

to any particular pattern and work through it independently, moving on to related

patterns at your leisure.

This chapter will cover several key topics:

•	 Architecture overview: An introduction to the layers that typically

comprise an enterprise application

•	 Managing application components: Using Inversion of Control or a

Registry

•	 Presentation layer: Tools for managing and responding to requests

and for presenting data to the user

•	 Business logic layer: Getting to the real purpose of your system, which

is addressing business problems

https://doi.org/10.1007/979-8-8688-0482-3_12#DOI

432

�Architecture Overview
With a lot of ground to cover, let’s kick off with an overview of the patterns to come,

followed by an introduction to building layered, or tiered, applications.

�The Patterns
I will explore several patterns in this chapter. You may read from start to finish or dip into

those patterns that fit your needs or pique your interest:

•	 Registry: This pattern, which is also known as Service Locator, can

be useful for making data available to all classes in a process. It has,

however, fallen out of favor in recent years for reasons we will discuss.

•	 Inversion of Control: Rather than have classes query a Registry for

required components, this pattern defines the requirements in

method signatures and has calling code manage fulfilment. We

covered this pattern in Chapter 9 but make good use of it here.

•	 Front Controller: Define a single point of entry for a system. While

this requires more up-front design than other approaches, it is more

scalable and flexible. Over the years, the ready availability of good

libraries has rendered this approach relatively easy to deploy making

it appropriate even for small projects.

•	 Application Controller: Create a class to manage view logic and

command selection.

•	 Template View: Create pages that manage display and user interface

only, incorporating dynamic information into display markup with as

little raw code as possible.

•	 Page Controller: Lighter weight but less flexible than Front Controller,

a Page Controller manages requests at the page level. With the growth

of mature lightweight microframeworks, this pattern is used less

often than it was.

•	 Transaction Script: When you want to get things done fast, with

minimal up-front planning, fall back on procedural library code for

your application logic. This pattern does not scale well.

Chapter 12 Enterprise Patterns

433

•	 Domain Model: At the opposite pole from Transaction Script, use this

pattern to build object-based models of your business participants

and processes.

�Applications and Layers
Many (most, in fact) of the patterns in this chapter are designed to promote the

independent operation of several distinct tiers in an application. Just as classes represent

specializations of responsibilities, so do the tiers of an enterprise system, albeit on a

coarser scale. Figure 12-1 shows a typical breakdown of the layers in a system.

Figure 12-1.  The layers, or tiers, in a typical enterprise system

The structure shown in Figure 12-1 is not written in stone: some of these tiers may

be combined, and different strategies can be used for communication between them,

depending on the complexity of your system. Nonetheless, Figure 12-1 illustrates a

model that emphasizes flexibility and reuse, and many enterprise applications follow it

to a large extent.

The view layer contains the interface that a system’s users actually see and interact

with. It is responsible for presenting the results of a user’s request and providing the

mechanism by which the next request can be made to the system.

Chapter 12 Enterprise Patterns

434

The command and control layer processes the request from the user. Based on this

analysis, it delegates to the business logic layer any processing required in order to fulfill

the request. It then chooses which view is best suited to present the results to the user. In

practice, this and the view layer are often combined into a single presentation layer. Even

so, the role of display should be strictly separated from those of request handling and

business logic invocation.

The business logic layer is responsible for seeing to the business of a request. It

performs any required calculations and marshals the resulting data.

The data layer insulates the rest of the system from the mechanics of saving and

acquiring persistent information. In some systems, the command and control layer

uses the data layer to acquire the business objects with which it needs to work. In other

systems, the data layer is hidden as much as possible.

So what is the point of dividing a system in this way? As with so much else in this

book, the answer lies with decoupling. By keeping business logic independent of the

view layer, you make it possible to add new interfaces to your system with little or no

rewriting.

Imagine a system for managing event listings (this will be a very familiar example

by the end of the chapter). The end user will naturally require a slick HTML interface.

Administrators maintaining the system may require a command-line interface for

building into automated systems. At the same time, you may be developing versions

of the system to work with cell phones and other handheld devices. You may consider

making a RESTful API available for third-party tools.

If you originally combined the underlying logic of your system with the HTML view

layer (which is still a common strategy), adding any of these requirements to an existing

system would trigger an instant rewrite. If, on the other hand, you had created a tiered

system, you would be able to bolt on new presentation strategies without the need to

reconsider your business logic and data layers.

By the same token, persistence strategies are subject to change. Once again, you

should be able to switch between storage models with minimal impact on the other tiers

in a system.

Testing is another good reason for creating systems with separate tiers. Web

applications are notoriously hard to test. In an insufficiently tiered system, automated

tests must negotiate the HTML interface at one end and risk triggering random queries

to a database at the other, even when their focus is aimed at neither of these areas.

Although any testing is better than none, such tests are necessarily haphazard. In a

Chapter 12 Enterprise Patterns

435

tiered system, on the other hand, the classes that face other tiers are often written so

that they extend an abstract superclass or implement an interface. This supertype can

then support polymorphism. In a test context, an entire tier can be replaced by a set

of dummy objects (often called “stubs” or “mock” objects). In this way, you can test

business logic using a fake data layer, for example. You can read more about testing in

Volume 2.

Layers are useful even if you think that testing is for wimps and your system will only

ever have a single interface. By creating tiers with distinct responsibilities, you build a

system whose constituent parts are easier to extend and debug. You limit duplication

by keeping code with the same kinds of responsibility in one place (rather than lacing

a system with database calls, for example, or with display strategies). Adding to such a

system is relatively easy because your changes tend to be nicely vertical, as opposed to

messily horizontal.

A new feature, in a tiered system, might require a new interface component,

additional request handling, some more business logic, and an amendment to your

storage mechanism. That’s vertical change. In a nontiered system, you might add your

feature and then remember that five separate pages reference your amended database

table. Or was it six? There may be dozens of places where your new interface may

potentially be invoked, so you need to work through your system, adding code for that.

This is horizontal amendment.

In reality, of course, you never entirely escape from horizontal dependencies of this

sort, especially when it comes to navigation elements in the interface. A tiered system

can help minimize the need for horizontal amendment, however.

Note  While many of these patterns have been around for a while (patterns reflect
well-tried practices, after all), the names and boundaries are drawn either from
Martin Fowler’s key work on enterprise patterns, Patterns of Enterprise Application
Architecture (Addison-Wesley Professional, 2002), or from the influential Core J2EE
Patterns: Best Practices and Design Strategies (Prentice Hall, 2001) by Alur et al.
For the sake of consistency, I have tended to use Fowler’s naming conventions
where the two sources diverge.

All the examples in this chapter revolve around a fictional listings system with the

whimsical-sounding name, “Woo,” which stands for something like “What’s On Outside.”

Chapter 12 Enterprise Patterns

436

Participants of the system include venues (e.g., theaters, clubs, or cinemas), spaces

(e.g., Screen 1 or The Stage Upstairs), and events (e.g., The Long Good Friday or The

Importance of Being Earnest).

Remember that the aim of this chapter is to illustrate key enterprise design patterns

and not to build a working system. Reflecting the interdependent nature of design

patterns, most of these examples overlap to a large extent with code examples, making

good use of ground covered elsewhere in the chapter. As this code is mainly designed to

demonstrate enterprise patterns, much of it does not fulfill all the criteria demanded by

a production system. In particular, I omit error checking where it might stand in the way

of clarity. You should approach the examples as a means of illustrating the patterns they

implement, rather than as building blocks in a framework or application.

�Creating and Discovering Object Instances
Most of the patterns in this book find a natural place in the layers of an enterprise

architecture. But, before we get to that, we need to decide where to instantiate the

objects that get passed around the system and how to get them where they need to go. As

we’ve seen in previous chapters, this is always a problem in object-oriented code.

As far as instantiation goes, the rule of thumb should be that this stays fairly strictly

at the initialization phase of an application—that is, in the command and control layer.

Once we’ve created our objects there (or instituted logic for creating them lazily on

demand), however, we still need to build mechanisms that allow them to be accessed by

the components in our system.

Let’s look at two potential solutions to this problem.

�Registry
The Registry pattern (also known as Service Locator) is all about providing system-wide

access to objects and shared data. To provide this functionality, a Registry is usually an

instance of the Singleton pattern, which you encountered in Chapter 9. This makes it

global by nature. Although it is true that singleton objects do not suffer from all the ills

that beset global variables (e.g., you cannot overwrite a singleton by accident), they do

tend to bind classes into a system, thereby introducing coupling.

Nonetheless, it can be a real problem getting essential data from the exterior of a

system to its otherwise serenely independent depths. The Registry pattern provides an

attractive (some would say fatally attractive) fix for this problem.

Chapter 12 Enterprise Patterns

437

�The Problem

As you have seen, many enterprise systems are divided into layers, with each layer

communicating with its neighbors only through tightly defined conduits. This separation

of tiers makes an application flexible. You can replace or otherwise develop each tier

with the minimum impact on the rest of the system. What happens, though, when you

acquire information in a tier that you later need in another, noncontiguous, layer?

Let’s say that I acquire configuration data in an ApplicationHelper class:

class ApplicationHelper

{

 public function getOptions(string $optionfile): array

 {

 if (! file_exists($optionfile)) {

 throw new AppException("Could not find options file");

 }

 $options = \simplexml_load_file($optionfile);

 $dsn = (string)$options->dsn;

 // what do we do with this now?

 // ...

 }

}

Acquiring the information is easy enough, but how would I get it to the data layer,

where it is later used? And what about all the other configuration information I must

disseminate throughout my system?

One answer would be to pass this information around the system from object to

object: from a controller object responsible for handling requests to objects in the

business logic layer and, finally, to an object responsible for talking to the database.

This is entirely feasible. You could pass the ApplicationHelper object itself around

or, alternatively, a more specialized Context object. Either way, contextual information

could be transmitted through the layers of your system to the object or objects that

need it. This approach is quite brittle, however, and you could easily find yourself in a

situation where you’re forced to alter the interface of some classes so that they can relay

context, whether they need to use it or not. Clearly, this undermines loose coupling to

some extent.

Chapter 12 Enterprise Patterns

438

The Registry pattern provides a neat alternative that is not without its own

consequences.

A Registry is simply a class that provides access to data (usually, but not exclusively,

objects) via static methods (or via instance methods on a Singleton). Every object in a

system, therefore, has access to these objects.

The term “Registry” is drawn from Fowler’s Patterns of Enterprise Application

Architecture; but, as with all patterns, implementations pop up everywhere. In The

Pragmatic Programmer: From Journeyman to Master (Addison-Wesley Professional,

1999), Andrew Hunt and David Thomas liken a Registry class to a police incident notice

board. Detectives on one shift leave evidence and sketches on the board, which are then

picked up by new detectives on another shift. The pattern is also commonly known as

Service Locator.

�Implementation

Figure 12-2 shows a Registry object that stores and serves Request objects.

Figure 12-2.  A simple registry

Here is this class in code form:

class Registry

{

 private static Registry $instance;

 private ContractRepository $contractrepo;

 private function __construct()

 {

 }

Chapter 12 Enterprise Patterns

439

 public static function instance(): self

 {

 self::$instance ??= new self();

 return self::$instance;

 }

 public function getContractRepository(): ContractRepository

 {

 $this->contractrepo ??= new ContractRepository();

 return $this->contractrepo;

 }

}

You can then access the same ContractRepository from any part of your system:

public function createContract(Request $request, Response $response):

Response

{

 // do some stuff

 $reg = Registry::instance();

 $contractrepo = $reg->getContractRepository();

 $contractrepo->create($contract);

 return $response;

}

As you can see, the Registry is simply a Singleton (see Chapter 9 if you need a

reminder about Singleton classes). The code creates and returns a sole instance of

the Registry class via the instance() method. This can then be used to retrieve a

ContractRepository object.

A Registry class can do more than just instantiate, store, and return objects. It might

do some setup behind the scenes as well, perhaps retrieving data from a configuration

file or combining a number of objects:

Chapter 12 Enterprise Patterns

440

class Registry

{

 private static ?Registry $instance;

 private TreeBuilder $treeBuilder;

 private TreeConf $treeconf;

 private function __construct()

 {

 }

 public static function instance(): self

 {

 self::$instance ??= new self();

 return self::$instance;

 }

 public function treeBuilder(): TreeBuilder

 {

 if (! isset($this->treeBuilder)) {

 $treeconf = $this->treeConf();

 $this->treeBuilder = new TreeBuilder($treeconf);

 // maybe some more setup here

 }

 return $this->treeBuilder;

 }

 public function treeConf(): TreeConf

 {

 if (! isset($this->treeconf)) {

 $this->treeconf = new TreeConf();

 // do some stuff to initialize TreeConf

 }

 return $this->treeconf;

 }

}

Chapter 12 Enterprise Patterns

441

TreeBuilder and TreeConf are just dummy classes here, included to simulate a

slightly more complex scenario for instantiation. In order to get a TreeBuilder object,

you first need a TreeConf object, which itself needs some initial configuration. This

would be a lot of work for a class that just needs to use a TreeBuilder object, especially

if it’s buried deep in your system and has no reason to know about the TreeConf class.

Thanks to the Registry, the client object could simply call the treeBuilder() method,

without bothering itself with the complexities of initialization.

�Consequences

A Registry object makes components globally available. In doing this, it allows any

client in a system to easily acquire the objects and data it needs to do its job. Some

argue that a Service Locator is the exception that allows for the smooth running of the

rule. Others maintain that, by embedding components into the wider system, Registry

undermines their independence. Worse, the critics argue, by hiding dependencies

within the code of methods rather than exposing them in their signatures, the Registry

makes it hard to understand the interdependencies within a system.

Not all criticisms of Registry are entirely fair. It is argued by some that the pattern

makes testing more difficult. In fact, with a small amendment, a Registry class can be

designed so that it can be used to inject mock components into a class under test.

Nevertheless, it is hard to refute the argument that the Registry creates hidden

dependencies that introduce tight coupling between a system and its components.

In previous editions of this book, this chapter leaned quite heavily on Registry. On

the whole, though, I have come round to the belief that Inversion of Control—through

the use of a dependency injection container—is a better way designing systems. At the

cost of some additional up-front configuration, it leads to more independent, clearly

defined components. Luckily we created a DI container in Chapter 9, so we already have

the tool we need at our disposal.

�Inversion of Control
Think back to that createContract() method. It hid an implicit requirement for a

ContractRepository class buried inside the method body. Wouldn’t it be neater if the

requirement were declared in a method signature? Here’s another method that requires

a ContractRepository object:

Chapter 12 Enterprise Patterns

442

class Actions

{

 �public function __construct(private ContractRepository $contractrepo,

private int $somenumber)

 {

 }

 �public function updateContract(Request $request, Response $response):

Response

 {

 $contract = null;

 // do some stuff

 $this->contractrepo->update($contract);

 return $response;

 }

}

Because the Actions constructor demands a ContractRepository object, the

requirement is signaled and enforced. It is made explicit for static analysis tools and

IDEs, and testing is made easier.

Of course, defining the requirement in a method signature is not enough on its own.

We still need to create a mechanism for instantiating the Actions object somewhere in

our system.

For this, we will use a dependency injection container. Typically, such an object

is set up at the initialization phase of a request process. It can be managed using code

or a configuration file. As you saw in Chapter 9, we might also use attributes to hint

at concrete types, or, in some cases, we may be able to fall back on “autowiring”—the

mechanism by which some dependency injection containers can instantiate objects

using reflection alone to examine constructor methods.

Once the configuration phase is complete, we can then use the container in a run

phase to acquire any concrete objects we need. Here’s a mocked-up flow that first sets

up the instantiation of an Actions object and then acquires the instance in a separate

context:

Chapter 12 Enterprise Patterns

443

// dummy request/response objects

$request = new Request();

$response = new Response();

$container = new Container();

// set up phase

$container->customGen(

 Actions::class,

 function ($cont) {

 // do something to get a number

 $num = 3;

 $contractrepo = $cont->get(ContractRepository::class);

 return new Actions($contractrepo, $num);

 }

);

// run phase

$actions = $container->get(Actions::class);

$response = $actions->updateContract($request, $response);

Note I t is not considered good practice to pass a dependency injector around a
system so that classes can acquire objects for themselves—this circumvents the
benefits of dependency injection (that requirements are clearly defined in method
signatures) and turns the container into a glorified service locator. As a rule of
thumb, DI containers should only be used explicitly at the edges of a system.

In fact, thanks to a rudimentary autowiring feature, the Container class you saw in

Chapter 9 (which I’m using here) would be capable of acquiring an Actions object all

on its own if it wasn’t for that pesky requirement for an int argument (a requirement I

added to make the task a little more challenging). That argument forces me to provide

additional initialization in the setup phase.

Chapter 12 Enterprise Patterns

444

Note A lthough it’s fun and informative to create every project component from
scratch, as I do in this book, in a real-world project, of course, you would likely
source robust and fully featured libraries for many lower-level tasks. Dependency
injection is one of those tasks, and I recommend PHP-DI (https://php-di.
org/). This integrates with the excellent Slim microframework (https://www.
slimframework.com/), which I also recommend.

A DI container is not magic. It still needs to be populated. In the example above, I

used comments to point to the phases at which a container might be first configured

and then used. On the whole we will want to keep the bulk of a system ignorant of the

container, thereby keeping the responsibilities of its components narrow and promoting

loose coupling among them.

�The Presentation Layer
When a request hits your system, you must interpret the requirement it carries, invoke

any business logic needed, and finally return a response. For a scratch script, this whole

process often takes place entirely inside the view itself, with only the heavyweight logic

and persistence code split off into libraries.

Note A view is an individual element in the view layer. It can be a PHP page (or a
collection of composed view elements) whose primary responsibility is to display
data and provide the mechanism by which new requests can be generated by the
user. It could also be a template that uses a specialized language such as Twig.

As systems grow in size, this default strategy becomes less tenable with request

processing, business logic invocation, and view dispatch logic necessarily duplicated

from view to view.

In this section, I look at strategies for managing these three key responsibilities of the

presentation layer. Because the boundaries between the view layer and the command

and control layer are often fairly blurred, it makes sense to treat them together under the

common term, “presentation layer.”

Chapter 12 Enterprise Patterns

https://php-di.org/
https://php-di.org/
https://www.slimframework.com/
https://www.slimframework.com/

445

�Front Controller
This pattern is diametrically opposed to the legacy PHP application with its multiple

points of entry. The Front Controller pattern presents a central point of access for all

incoming requests, ultimately delegating to a view the task of presenting results back to

the user. Once controversial, this approach is now pretty ubiquitous. The pattern was not

always universally loved, partly because of the overhead that initialization sometimes

incurs. However, if this becomes an issue, it can usually be addressed with strategies

such as caching.

�The Problem

Where requests are handled at multiple points throughout a system, it is hard to keep

duplication from the code. You may need to authenticate a user, translate terms into

different languages, or simply access common data. When a request requires common

actions from view to view, you may find yourself copying and pasting operations. This

can make alteration difficult, as a simple amendment may need to be deployed across

several points in your system. For this reason, there is a real risk that some parts of your

code will fall out of alignment with others. Of course, a first step might be to centralize

common operations into library code, but you are still left with the calls to the library

functions or methods distributed throughout your system.

Difficulty in managing the progression from view to view is another problem that

can arise in a system where control is distributed among its views. In a complex system,

a submission in one view may lead to any number of result pages, according to the input

and the success of any operations performed at the logic layer. Forwarding from view to

view can get messy, especially if the same view might be used in different flows.

�Implementation

At heart, the Front Controller pattern defines a central point of entry for every request. It

processes the request and uses it to select an operation to perform. Operations are often

defined in specialized Command objects organized according to the Command pattern.

Chapter 12 Enterprise Patterns

446

Figure 12-3 shows an overview of a Front Controller implementation.

Figure 12-3.  A Controller class and a command hierarchy

In fact, as you’ll see, Front Controller does not require that we use an abstract

Command object for our system’s actions. The distinguishing feature of the pattern is

that there is a single point of entry to your system, which then calls upon helpers for

configuration and delegates to more specialized components to perform the business of

the application.

Note T hroughout this chapter I’ll often use the terms Command and controller
action interchangeably. This is because a Command is itself a controller action—
that is, it represents an action taken at the controller level. On the other hand,
a controller action does not necessarily need to be an instance of the Command
pattern, though it typically must fulfil a contractual obligation. A controller action
may be a Command, a nominated method, or even an anonymous function. We will
encounter examples of all three approaches in this chapter.

Here is a simple Controller class:

class Controller

{

 public static function run(): void

 {

 $datapath = __DIR__ . "/data";

Chapter 12 Enterprise Patterns

447

 // init phase

 $request = Request::newInstance();

 $response = Response::newInstance();

 $applicationhelper = new ApplicationHelper($datapath);

 $resolver = $applicationhelper->commandresolver;

 $command = $resolver->getCommand($request);

 �$viewmanager = $applicationhelper->container->

get(ViewManager::class);

 // execution phase

 $response = $command->execute($request, $viewmanager, $response);

 $response->sendOutput();

 }

}

Simplified as this is, and bereft of error handling, there isn’t much more to the

Controller class. A Front Controller sits at the tip of a system, delegating to other

classes. I have used a single static run() method here, though, for a complicated system,

you might define a more complex class with separate methods for the initialization and

request handling stages. Although the Front Controller class heads up a system, it may

not be the very first point of contact for a request. You need to invoke the component

from somewhere after all. I usually do this in a file called index.php that contains only a

few lines of code:

require_once(__DIR__ . "/../../../vendor/autoload.php");

use popp\ch12\batch05\Controller;

Controller::run();

Notice that nasty-looking require_once statement. It is really only there so that the

rest of the system can live in ignorance of the need for requiring files. The autoload.

php script is automatically generated by Composer. It manages the logic for loading class

files, as needed. If that meant nothing to you, don’t worry; we cover autoloading in much

more detail in Volume 2.

Chapter 12 Enterprise Patterns

448

During the initialization phase we acquire objects and configuration. We could do

all that in the Front Controller itself, but, to keep things clean here at the dizzy heights

of our system, we enlist the help of a component to do the dirty work: a class called

ApplicationHelper. As you’ll see the ApplicationHelper initializes services and data

used by the application. In particular, it generates a CommandResolver object, which we’ll

use to translate the client’s request into an action we can call to get the work done.

Note N either CommandResolver nor ApplicationHelper is intrinsic to Front
Controller. However, you will always need to manage some kind of initialization and
decide how to convert an incoming request into a set of actions.

Once we have a CommandResolver object, we use it to acquire a Command object,

which we run by calling Command::execute(). The command performs its work and

lodges output with a Response object. We finish up by sending that output back to

the client.

�ApplicationHelper

The ApplicationHelper class is not essential to Front Controller. Most implementations

must acquire basic configuration data, though, so I should develop a strategy for this.

Here is a simple ApplicationHelper:

class ApplicationHelper

{

 public readonly Container $container;

 public readonly Conf $conf;

 public readonly CommandResolver $commandresolver;

 public function __construct(string $datapath)

 {

 $this->container = new Container("{$datapath}/di.xml");

 $confpath = "{$datapath}/options.xml";

 if (! file_exists($confpath)) {

 throw new AppException("Could not find options file");

 }

Chapter 12 Enterprise Patterns

449

 $options = parse_ini_file($confpath, true);

 $this->conf = new Conf($options['config']);

 �$this->commandresolver = new CommandResolver(new

Conf($options['commands']));

 $viewmanager = new ViewManager($this->conf->get("templatepath"));

 $this->container->add(ViewManager::class, $viewmanager);

 }

}

You might split some of this work off into a separate init() method. However, our

requirements are simple enough here that it makes sense to handle our business in the

class constructor. That said, we get quite a lot done.

The method instantiates an instance of the dependency injection container I created

in Chapter 9. It acquires a Conf object (a simple getter/setter component), which

encapsulates the config section of an ini file. Then it instantiates a CommandResolver

object. CommandResolver expects its own Conf object, which maps request paths to

Command classes. Finally, it instantiates a ViewManager object, which will invoke template

files on behalf of commands and add them to the container.

Here is options.ini with a single sample setting in both its config and commands

sections:

[config]

dsn=sqlite:/var/popp/src/ch12/batch05/data/woo.db

[commands]

/=popp\ch12\batch05\DefaultCommand

Let’s look at some of those components in more detail.

�CommandResolver

A Front Controller needs a way to decide how to interpret an HTTP request so that it can

invoke the right code to fulfill that request. You could easily include this logic within the

Controller class itself, but I prefer to use a specialist class for the purpose. That makes it

easy to refactor for polymorphism, if necessary.

A Front Controller often invokes application logic by running a Command object

(I introduced the Command pattern in Chapter 11). The Command is chosen according to

the request URL. There is more than one way of using a URL to select a command.

Chapter 12 Enterprise Patterns

450

For example, you can test the path against a configuration file or data structure (a logical

strategy). Or you can test it directly against class files on the file system (a physical

strategy).

You saw an example of a command factory that used a physical strategy in the last

chapter. This time, I will take the logical approach, mapping URL fragments to command

classes:

class CommandResolver

{

 private static ?\ReflectionClass $refcmd;

 private Conf $commands;

 public function __construct(Conf $commands)

 {

 // could make this configurable

 self::$refcmd = new \ReflectionClass(Command::class);

 $this->commands = $commands;

 }

 public function getCommand(Request $request): Command

 {

 $path = $request->getPath();

 $class = $this->commands->get($path);

 if (is_null($class)) {

 throw new AppException("path '{$path}' not matched", 500);

 }

 if (! class_exists($class)) {

 throw new AppException("class '{$class}' not found", 500);

 }

 $refclass = new \ReflectionClass($class);

 if (! $refclass->isSubClassOf(self::$refcmd)) {

 �throw new AppException("command '{$refclass}' is not a

Command", 500);

 }

Chapter 12 Enterprise Patterns

451

 return $refclass->newInstance();

 }

}

This simple class requires a Conf object and uses the URL path (provided by the

Request::getPath() method) to attempt to get a class name. If the class name is found,

and if the class both exists and extends the Command base class, then it is instantiated and

returned.

If any of these conditions are not met, the getCommand() method throws an

exception.

A more sophisticated implementation (e.g., like the ones used by the routing logic

in Symfony or Slim) would allow for wildcards in these paths. We’ll implement a simple

version of that functionality later in the chapter.

You may wonder why this code takes it on trust that the Command class it locates does

not require parameters:

return $refclass->newInstance();

The answer to this lies in the signature of the Command class itself:

abstract class Command

{

 final public function __construct()

 {

 }

 �public function execute(Request $request, ViewManager $viewmanager,

Response $response): Response

 {

 return $this->doExecute($request, $viewmanager, $response);

 }

 �abstract protected function doExecute(Request $request, ViewManager

$viewmanager, Response $response): Response;

}

Chapter 12 Enterprise Patterns

452

By declaring the constructor method final, I make it impossible for a child class to

override it. No Command class in this instance of our system, therefore, will ever require

arguments to its constructor.

When creating command classes, you should be careful to keep them as devoid of

application logic as you possibly can. As soon as they begin to do application-type stuff,

you’ll find that they turn into a kind of tangled transaction script and duplication will

soon creep in. Commands are a kind of relay station: they should interpret a request,

call into the domain to juggle some objects, and then lodge data for the presentation

layer. As soon as they begin to do anything more complicated than this, it’s probably

time to refactor. The good news is that refactoring is relatively easy. It’s not hard to spot

when a command is trying to do too much, and the solution is usually clear: move that

functionality down to a helper or domain class.

The Command pattern is neat. It makes it relatively easy to add new actions to a

system. On the other hand, though, this implementation is not especially flexible. In

particular, without recourse to a Registry class, there’s no easy way that we can pass

additional component references to a command.

We could make things a little more flexible by creating and fetching actions with our

DI container and by relaxing the base class’s constructor to allow child classes to accept

component arguments. You can see some of that later on in this chapter. First, though,

let’s look at the components required by the Command::execute() method.

�Request

Requests are magically handled for us by PHP and neatly packaged up in superglobal

arrays. You might have noticed that I still use a class to represent a request. A Request

object is passed to CommandResolver and, later on, to Command.

Why do I not let these classes simply query the $_REQUEST, $_POST, or $_GET arrays

for themselves? I could do that, of course, but, having railed for much of this book

against global variables, that would be an odd decision! Global variables are intrinsically

unsafe in that they can be altered or wiped from anywhere in a system. They bind the

components that use them into a wider system, undermining their independence.

Besides, by using a Request object you open up new options.

You could, for example, apply filters to the incoming request. Or you could gather

request parameters from somewhere other than an HTTP request, allowing the

application to be run from the command line or from a test script.

Chapter 12 Enterprise Patterns

453

Some patterns also use a Request object as a convenient context object for passing

values around a system—in particular between actions and views. While this is indeed

convenient, it violates the rule that a class should maintain a narrow responsibility—in

this case to describe an incoming request—so I refrain from that trick here.

Note I , however, did use Request as a context object in previous editions of
this book.

In Volume 2 I will discuss PHP Standards Recommendations (https://www.
php-fig.org/). Request and response objects are covered by PSR-7 (https://
www.php-fig.org/psr/psr-7/). While the implementations in this chapter
are simplified and therefore not compliant, in a real-world system, you might want
to source standards-compliant classes. The implementation of Request and
Response in the Slim framework is compliant with PSR-7, and the Nyholm/psr7
package (https://github.com/Nyholm/psr7) also provides stand-alone
implementations.

Here is a simple Request superclass:

abstract class Request

{

 protected array $attributes = [];

 protected string $path = "/";

 protected RequestMethod $method;

 public function __construct()

 {

 $this->method = RequestMethod::GET;

 $this->init();

 }

 public static function newInstance(): Request

 {

 if (php_sapi_name() == "cli") {

 $request = new CliRequest();

Chapter 12 Enterprise Patterns

https://www.php-fig.org/
https://www.php-fig.org/
https://www.php-fig.org/psr/psr-7/
https://www.php-fig.org/psr/psr-7/
https://github.com/Nyholm/psr7

454

 } else {

 $request = new HttpRequest();

 }

 return $request;

 }

 abstract public function init(): void;

 public function setMethod(RequestMethod $method): void

 {

 $this->method = $method;

 }

 public function getMethod(): RequestMethod

 {

 return $this->method;

 }

 public function setPath(string $path): void

 {

 $this->path = $path;

 }

 public function getPath(): string

 {

 return $this->path;

 }

 public function getAttribute(string $key): mixed

 {

 return $this->attributes[$key] ?? null;

 }

 public function setAttribute(string $key, mixed $val): void

 {

 $this->attributes[$key] = $val;

 }

}

Chapter 12 Enterprise Patterns

455

As you can see, most of this class is taken up with mechanisms for setting and

acquiring attributes.

The init() method is responsible for populating the private $attributes array,

and it will be handled by child classes. It’s important to note that this implementation

is limited. I am kludging together POST attributes and GET arguments into a single

property—the equivalent of PHP’s $_REQUEST superglobal. It’s good enough for this

example, but for a real project you would either round out the class or use a library

Request class like that provided by the Nyholm/psr7 package.

Request methods (only GET and POST here) are defined in an enumeration named

RequestMethod:

enum RequestMethod: string

{

 case GET = "GET";

 case POST = "POST";

}

I’m using a backed enumeration here so that I can easily convert to and from

string values.

Once you have a Request object, you should be able to access an attribute via the

getAttribute() method, which accepts a key string and returns the corresponding

value (as stored in the $attributes array).

The static newInstance() method is a convenient factory for one of two concrete

children: HttpRequest and CliRequest. Here is HttpRequest:

class HttpRequest extends Request

{

 public function init(): void

 {

 $methodstr = $_SERVER['REQUEST_METHOD'];

 $this->setMethod(RequestMethod::from($methodstr));

Chapter 12 Enterprise Patterns

456

 // we're not properly handling POST v GET parameters here

 // don't do that in the real world!

 $this->attributes = $_REQUEST;

 $uri = $_SERVER['REQUEST_URI'] ?? "/";

 $this->path = parse_url($uri, \PHP_URL_PATH);

 }

}

This class decants the $_REQUEST array into the $attributes property. It also extracts

the path portion of the URL and converts the value of $_SERVER['REQUEST_METHOD'] into

a RequestMethod value.

CliRequest takes argument pairs from the command line in the form key=value

and breaks them out into attributes. It also detects an argument with a path: prefix and

assigns the provided value to the object’s $path property:

class CliRequest extends Request

{

 public function init(): void

 {

 $args = $_SERVER['argv'];

 foreach ($args as $arg) {

 if (preg_match("/^path:(\S+)/", $arg, $matches)) {

 $this->path = $matches[1];

 } else {

 if (strpos($arg, '=')) {

 list($key, $val) = explode("=", $arg);

 $this->setAttribute($key, $val);

 }

 }

 }

 $this->path ??= "/";

 }

}

Chapter 12 Enterprise Patterns

457

�Response

In a simple PHP script you’ll often just print or echo your output. This obscures the fact

that, behind the scenes, in an HTTP context, you’re also sending a response code and a

set of headers. We can create a Response class to encapsulate all this:

class Response

{

 private array $headers = [];

 public string $output = "";

 protected int $code = 200;

 public static function newInstance(): Response

 {

 return new Response();

 }

 public function setResponseCode(int $code = 200): void

 {

 $this->code = $code;

 }

 public function getResponseCode(): int

 {

 return $this->code;

 }

 public function setHeader(string $field, string $value)

 {

 $this->headers[$field] = $value;

 }

 public function sendOutput(): void

 {

 if (php_sapi_name() != "cli") {

 http_response_code($this->code);

Chapter 12 Enterprise Patterns

458

 foreach ($this->headers as $field => $value) {

 header("{$field}: {$value}");

 }

 }

 print $this->output;

 }

}

Again, this is a simplified class, which does not implement the PSR-7 standard. In

order to send content back to the browser, a command can simply set the Response

class’s $output property. If you want to redirect the browser, you can set a Location

header like this:

$response = Response::newInstance();

$response->setHeader("Location", "/somewhere/else");

The headers will be generated (if the script is running in the right mode) along with

the $output property when Response::sendOutput() is invoked.

�ViewManager

The ViewManager class is required by a Command in this example to handle template

invocation. All it does here is to look for a template, and include it, passing along any

data the template might need to do its job.

Here’s ViewManager:

class ViewManager

{

 public function __construct(readonly public string $path)

 {

 }

 public function getContents(string $name, array $templatevars = [])

 {

 ob_start();

 include($this->path . "/{$name}.php");

Chapter 12 Enterprise Patterns

459

 $ret = ob_get_contents();

 ob_end_clean();

 return $ret;

 }

}

The getContents() method accepts a template name and an associative array

of values. Using the $name argument and the $path property that is required by the

constructor (which you saw being invoked in the ApplicationHelper), the method

constructs a file path. It then simply includes the template, using output buffering to

stash the output in a return value. Any values passed to the $templatevars parameter

will become available to the template because it will have been included within the

context of the getContents() method.

We could, of course, have an action simply include its own template. That would involve

a lot of duplicated effort from action to action. By using a component, we make the system

easier to test, and we reserve the option to change our implementation later on (e.g., we

may support Twig in the future)—something an action does not need to know about.

�A Command

You have already seen the Command base class, and Chapter 11 covered the Command

pattern in detail, so there’s no need to go too deep into commands. Let’s round things

off, though, with a simple, concrete Command object:

class DefaultCommand extends Command

{

 �protected function doExecute(Request $request, ViewManager

$viewmanager, Response $response): Response

 {

 �$response->output = $viewmanager->getContents("main", ["msg" =>

"Welcome to WOO"]);

 return $response;

 }

}

This is the Command object that is served up by CommandResolver for our system’s base

URL (/).

Chapter 12 Enterprise Patterns

460

As discussed, the abstract base class implements execute() itself, calling down

to the doExecute() implementation of its child class. This allows us to add setup and

cleanup code to all commands, simply by altering the base class.

The execute() method is passed a Request object that gives access to user

input, which we don’t use here. We do, though, use the provided ViewManager

object’s getContents() method to run the main template. We set this string on

Response::$output and return the Response object.

The file, main.php, contains some HTML and accesses the msg argument element (I’ll

cover views in more detail shortly).

I now have all the components in place to run the system. Here’s what I see:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Woo! It's WOO!</title>

 </head>

 <body>

 <div>

 <div>Welcome to WOO</div>

 </div>

 </body>

</html>

As you can see, the feedback message set by the default command has found its way

into the output.

Note A lthough command classes are useful, it can be more flexible to build a
system around action components (which can include commands). These callable
procedures perform the same job as Command::doExecute() and, like that
method, must conform to a defined signature. However, they do not have to belong
to a Command object (or even be part of an object at all). I will demonstrate such a
system later in the chapter.

Let’s review the full process that leads to this outcome.

Chapter 12 Enterprise Patterns

461

�Overview

It is possible that the detail of the classes covered in this section might disguise the

simplicity of the Front Controller pattern. Figure 12-4 shows a sequence diagram that

illustrates the life cycle of a request.

Figure 12-4.  The Front Controller in operation

As you can see, the Front Controller delegates initialization to the

ApplicationHelper object (which could use caching to short-circuit any expensive

setup). The Controller then acquires a Command object from the CommandResolver

object. Finally, it invokes Command::execute() to kick off the application logic.

In this implementation of the pattern, the Command itself is responsible for delegating

to the view layer (via the ViewManager class). You can see a refinement of this in the next

section.

�Consequences

Building a complete Front Controller implementation is not for the fainthearted. It

does require a lot of up-front development before you begin to see benefits. If you were

to hand-build a system for every project, that would be a major problem. In reality, of

course, you will inevitably use Front Controller as part of a reusable framework—either

one you have built or one you source.

Chapter 12 Enterprise Patterns

462

The requirement that all configuration information be loaded up for every request

is another drawback. All approaches will suffer from this to some extent, but Front

Controller often requires additional information, such as logical maps of commands

and views. If necessary, this overhead can be eased considerably through caching and

implementing configuration in native PHP.

On the plus side, Front Controller centralizes the presentation logic of your system.

This means that you can exert control over the way that requests are processed and views

are selected in one place (well, in one set of classes, anyway). This reduces duplication

and decreases the likelihood of bugs.

Front Controller is also very extensible. Once you have a core up and running, you

can add new Command classes and views very easily.

In this example, commands handled their own view dispatch. If you use the

Front Controller pattern with an object that helps with view (and possibly command)

selection, then the pattern allows for excellent control over navigation, which is harder to

maintain elegantly when presentation control is distributed throughout a system. I cover

such an object in the next section.

�More Flexible Routing
Although the CommandResolver class gets a basic job done, it also has some serious

limitations. As discussed, it demands a Command class implementation, and our Command

superclass declares its constructor final. This and the fact that CommandResolver

handles Command instantiation itself mean that we cannot easily inject values into

Command objects as needed.

We already have a specialist component for object instantiation, however. I can use

my DI container to create system actions. While I’m at it, I might as well take a wider

approach to actions in our system. In many systems it is common to group actions

together in a single class, which can share common data and utility functions—or

even to support anonymous functions for actions. So long as we enforce the signature

of an action, this is a more flexible approach than insisting on a single Command class

per action.

I’d like to throw in another common routing feature too. Routing systems often

accept URL wildcards, which are then made available to actions in the system. This

means supporting URLs that look like /view-company/{companyId} where companyId

varies at request time.

Chapter 12 Enterprise Patterns

463

So let’s break down the requirements for our new routing component. It should

•	 Use a dependency injection container to acquire objects where

classes are specified.

•	 Allow arbitrary method names to be specified for actions (so that we

don’t limit the system to a single execute() method in a class).

•	 Support anonymous functions for actions.

•	 Allow URL wildcard elements.

Let’s build out a skeleton interface:

class Routing

{

 private array $routes = [];

 public function __construct(private Container $container)

 {

 }

 �public function addRoute(RequestMethod $method, string $path,

callable|string $call): void
 {

 // ...

 }

 �public function invoke(Request $request, ViewManager $viewmanager,

Response $response): Response

 {

 // ...

 }

 public function findRoute(Request $request): array

 {

 // ...

 }

}

Chapter 12 Enterprise Patterns

464

So this sums up how this component will be used. A client can add a route using the

addRoute() method, providing a RequestMethod, a path, and a reference to an action. A

path can include wildcards within braces. The $call action argument can be provided

either as a closure or a string. If a string is provided, the addRoute() method will use the

DI container stored in the $container property to acquire the corresponding object. If

the string includes a colon, we will assume the portion after the colon denotes a method

name. Otherwise, we will assume that a method named execute() is present.

Although a controller action in this new model no longer has to be the doExecute()

method of a Command object (though it could be), we will enforce a similar signature.

An action function or method must require a Request, a ViewManager, and a Response.

Because we’re now supporting wildcards, it can optionally accept an array that will

contain any wildcard values extracted from the incoming request path.

Here are some valid invocations of addRoute():

// class \my\Actions::execute()

$routing->addRoute(RequestMethod::GET, "/", "\\my\\Actions");

// \my\Actions::businessHome() (with wildcard)

$routing->addRoute(RequestMethod::GET, "/business/{id}", "\\my\\

Actions:businessHome");

// closure (with wildcard)

$routing->addRoute(

 RequestMethod::GET,

 "/account/{username}",

 �function (Request $request, ViewManager $manager, Response $response,

array $args): Response {

 $response->output = "Hello, {$args['username']}";

 return $response;

 }

);

We set up three routes, two of which are methods in the same class—\my\

Actions::execute() and \my\Actions::businessHome(). The third is an anonymous

function. Note that I define wildcards for the second and third routes. You can see how

this is accessed in the $args argument to the anonymous function.

Chapter 12 Enterprise Patterns

465

The Routing::invoke() method is reasonably self-explanatory. It accepts the

essential arguments for an action: Request, ViewManager, and Response. It uses the

Request path to match a route and then invokes the corresponding action. Here are the

invoke() calls that correspond to the addRoute() examples we’ve already seen:

$response = Response::newInstance();

$request->setPath("/");

$r1 = $routing->invoke($request, $viewmanager, $response);

$response = Response::newInstance();

$request->setPath("/business/999");

$r2 = $routing->invoke($request, $viewmanager, $response);

$response = Response::newInstance();

$request->setPath("/account/bob");

$r3 = $routing->invoke($request, $viewmanager, $response);

Of course, we would not usually explicitly invoke actions in this way. The path will

be set on the Request object based on a request from a browser rather than hard-coded

like this.

So, finally for this overview of our alternative routing plan, here is a version of the

Front Controller component that uses the Routing class:

public static function run(): void

{

 $datapath = __DIR__ . "/data";

 // init phase

 $response = Response::newInstance();

 $request = Request::newInstance();

 $applicationhelper = new ApplicationHelper($datapath);

 $viewmanager = $applicationhelper->container->get(ViewManager::class);

 $routing = $applicationhelper->container->get(Routing::class);

 $routing->addRoute(RequestMethod::GET, "/", DefaultCommand::class);

Chapter 12 Enterprise Patterns

466

 // execution phase

 $response = $routing->invoke($request, $viewmanager, $response);

 $response->sendOutput();

}

There’s very little change here. We work with Routing rather than CommandResolver

and call Routing::invoke() rather than directly invoking Command::execute(). Despite

that change, we’re still using DefaultCommand—an unchanged Command instance since it

remains entirely compliant with the new component.

�Routing Implementation

As always with object-oriented coding, the interface is more important than the

implementation, so feel free to skip this section if you don’t feel the need to see how the

routing sausage has been made for this example project. On the other hand, you might

have felt cheated if I left it out! So here’s how Routing is put together.

Let’s begin with addRoute():

class Routing

{

 // ...

 �public function addRoute(RequestMethod $method, string $path,

callable|string $call): void
 {

 if (is_string($call)) {

 $call = $this->makeCallableFromString($call);

 }

 $this->routes[] = [$method, $path, $call];

 }

 private function makeCallableFromString(string $callstr): callable

 {

 if (preg_match("/^(.*?):(.*)$/", $callstr, $matches)) {

 // method specified

 $key = $matches[1];

 $method = $matches[2];

Chapter 12 Enterprise Patterns

467

 } else {

 // no method specified, we'll assume `execute`

 $key = $callstr;

 $method = "execute";

 }

 $container = $this->container;

 $newcall = function (

 Request $request,

 ViewManager $viewmanager,

 Response $response,

 array $args = []

) use (

 $container,

 $key,

 $method

) {

 $obj = $container->get($key);

 �return call_user_func_array([$obj, $method], [$request,

$viewmanager, $response, $args]);

 };

 return $newcall;

 }

}

The addRoute() method simply stores the method, path argument, and a closure

for later use. The only complication here occurs if the $call argument contains a string.

Then the private makeCallableFromString() method is used to acquire a key that

can be used to query the container along with a method name. This name will have

been specified in the string, or the code will provide a default: execute(). The logic for

querying the container and then invoking the method is wrapped in a closure, which is

returned to addRoute().

Chapter 12 Enterprise Patterns

468

Let’s turn to invoke():

class Routing

{

 // ...

 �public function invoke(Request $request, ViewManager $viewmanager,

Response $response): Response

 {

 [$route, $args] = $this->findRoute($request);

 $response = $route[2]($request, $viewmanager, $response, $args);

 if (! $response instanceof Response) {

 �throw new \Exception("A command/controller/action must return a

Response object");

 }

 return $response;

 }

 public function findRoute(Request $request): array

 {

 foreach ($this->routes as $route) {

 if ($request->getMethod() !== $route[0]) {

 continue;

 }

 $args = [];

 if ($this->match($request->getPath(), $route, $args)) {

 return [$route, $args];

 }

 }

 �throw new \Exception("Could not find route for {$request

->getMethod()->value} path: {$request->getPath()}");

 }

}

Chapter 12 Enterprise Patterns

469

In order to invoke an action, we first need to find it. findRoute() loops through the

routes stored by addRoute() and attempts to match one to the given Request object.

We will return to the private match() method shortly. For now, it’s enough to know that

match() will return a matching route array (remember this will comprise three elements,

the RequestType, the path, and a closure. It will also return an array of any wildcards

defined in the route pattern string.

Assuming that a match was found, invoke() can simply call the located function. It

performs a type check on the return value and then passes it along.

Finally, let’s wrap up with that match() method. Remember this is called by

findRoute() for every stored route subarray:

class Routing

{

 // ...

 private function match(string $path, array $route, array &$args): bool

 {

 $reqels = explode("/", $path);

 $routels = explode("/", $route[1]);

 if (count($reqels) != count($routels)) {

 return false;

 }

 for ($x = 0; $x < count($reqels); $x++) {

 if (preg_match("/^\{(\w+)?\}$/", $routels[$x], $match)) {

 // it's a wildcard match

 $args[$match[1]] = $reqels[$x];

 continue;

 }

 if ($reqels[$x] != $routels[$x]) {

 return false;

 }

 }

 return true;

 }

}

Chapter 12 Enterprise Patterns

470

It’s really the wildcard matching that complicates this little utility. It accepts a $path

string taken from the Request object, the $route array to check it against, and an $args

array reference that will hold any wildcard matches. I can’t simply test for equality

between a Request path and the stored path pattern (the second element in the $routes

array) because /business/999 won’t match /business/{id} for a naive test. Instead, I

break both strings down into path elements, and then I compare them individually. If the

pattern element is a wildcard string (i.e., where it is something like {business} or {id}),

I don’t perform an equality test. Instead, I populate the $args array with the relevant

value (i.e., $args['id']= '999' or $args['business'] = 'watsons'). For any other

elements, I test for equality, failing the match if they do not line up.

The usual caveats apply here. This is a proof of concept component. It does not offer

all the features and error checking you might want. Neither is there any support for

caching—a feature you will likely need for a high-volume environment. Most modern

frameworks will provide all that out of the box. My personal preference is Slim (https://

www.slimframework.com/).

�Application Controller
So far, our controller action methods have chosen to invoke their own views. This works

well, but it does represent a level of coupling we could dispense with.

An Application Controller takes responsibility for mapping requests to commands

and commands to views. This decoupling means that it becomes easier to switch in

alternative sets of views without changing the codebase. It also allows the system owner

to change the flow of the application, again without the need for touching any internals.

By allowing for a logical system of command resolution, the pattern also makes it easier

for the same action to be used in different contexts within a system.

�The Problem

Remember the nature of the example problem. An administrator needs to be able

to add a venue to the system and to associate a space with it. The system might,

therefore, support actions like addVenue() and addSpace() (or AddVenue::execute()

and AddSpace::execute() if we opt to use Command objects). These actions would be

associated with request paths (/addvenue and /addspace) using one of the routing

mechanisms we have defined.

Chapter 12 Enterprise Patterns

https://www.slimframework.com/
https://www.slimframework.com/

471

Broadly speaking, a successful call to the addVenue() action should generate a form.

The submission of this form will resolve to a processVenue() action, which will create

the venue and then redirect to the addSpace() action.

Each action will likely associate itself with one or more view strategies: either

displaying a form or redirecting to a further stage. Each action can itself choose

which view strategy to deploy manipulating its Response object according to internal

conditional logic.

This level of hard-coding is fine, so long as the actions will always be used in the

same way. It could begin to break down, though, if I wanted to vary the relationship

between addVenue() and its views or reuse the component in more than one flow. Then

I would hit the problem that the relationship between action and view is baked in at the

action level.

An Application Controller class can take over this logic, freeing up actions to

concentrate on their job, which is to process input, invoke application logic, and handle

any results.

�Implementation

As always, the key to this pattern is the interface. An Application Controller is a class (or

a set of classes) that the Front Controller can use to acquire commands based on a user

request and to find the right view to present after the command has been run. You can

see the bare bones of this relationship in Figure 12-5.

Figure 12-5.  The Application Controller pattern

Chapter 12 Enterprise Patterns

472

As with all patterns in this chapter, the aim is to make things as simple as possible

for the client code—hence the spartan Front Controller class. Behind the interface,

though, I must deploy an implementation. The approach laid out here is just one way of

doing it. As you work through this section, remember that the essence of the pattern lies

in the way that the participants (the Application Controller, the actions, and the views)

interact—and not with the specifics of this implementation.

Let’s begin with the code that uses the Application Controller.

�The Front Controller

Here is how the FrontController might work with the AppController class (simplified

and stripped of error handling):

// Controller

public static function run(): void

{

 $datapath = __DIR__ . "/data";

 $applicationhelper = new ApplicationHelper($datapath);

 $appcontroller = $applicationhelper->appcontroller;

 $request = Request::newInstance();

 $context = new Context();

 $response = Response::newInstance();

 $cmd = $appcontroller->getCommand($request);

 $context = $cmd($request, $context);

 $view = $appcontroller->getView($context, $request);

 $response = $view->render($request, $context, $response);

 $response->sendOutput();

}

So in this implementation of Front Controller, the ApplicationHelper class provides

access to an AppController instance via a public read-only property. AppController

exposes two methods: getCommand(), which returns a closure of the type you saw in the

Routing example, and getView(), which returns a View object. As you’ll see View simply

encapsulates a particular template or a redirect event.

Chapter 12 Enterprise Patterns

473

So by what logic does the AppController know which view to associate with which

action? For my current implementation, I already have access to both a dependency

injection container and a routing mechanism, so it makes sense to build on those.

�Implementation Overview

A controller action might demand different views according to different stages or states

of operation. The default view for a processSpace() action (which accepts form data

and generates an entity) might be a “thank you” page. If the action receives the wrong

kind of data, then the flow may need to return to an addSpace() action and its view,

which will present a form for amendment. If actions are not directly to manage their

own relationships with views, then we must deploy another mechanism for indicating

success or failure. I’m going to use a Context class for this:

class Context extends Conf

{

 public CommandStatus $status = CommandStatus::DEFAULT;

}

Context extends Conf, which we’ve used elsewhere and which is more or less a

wrapper around an associative array. An action can therefore set values for use by the

view on the Context. It can also set a CommandStatus property to indicate the success or

otherwise of an operation. I’ll set up some basic status flags for this example:

enum CommandStatus: string

{

 case DEFAULT = "DEFAULT";

 case OK = "OK";

 case INSUFFICIENT_DATA = "INSUFFICIENT_DATA";

 case ERROR = "ERROR";

}

The Application Controller finds the correct controller action using the Request

object. The action will be run with Request and Context arguments and will set a status

on the Context object as well as any data the view will need.

Chapter 12 Enterprise Patterns

474

�The Configuration File

The system’s owner can determine the way that commands and views work together by

setting a set of configuration directives. Here is an extract:

<woo-routing>

 <control>

 �<command path="/addvenue" action="\popp\ch12\batch06\

AddVenue:addVenue">

 <view name="addvenue" />

 </command>

 �<command method="POST" path="/processvenue" action="\popp\ch12\

batch06\AddVenue:processVenue">

 <forward path="/addvenue" />

 <status value="OK">

 <forward path="/addspace" />

 </status>

 </command>

 �<command path="/addspace" action="\popp\ch12\batch06\

AddSpace:addSpace">

 <view name="addspace" />

 </command>

 </control>

</woo-routing>

This XML fragment shows one strategy for abstracting the flow of commands and

their relationship to views from the Command classes themselves. The directives are all

contained within a control element.

Each command element defines path and action attributes, which describe basic

command mapping. The path defines a routing pattern, and action should denote an

action resolution string. We encountered both of these in the section above on routing.

The logic for views is a little more complex, however. A view (or, as we shall see, a

forward) element at the top level of a command defines a default view strategy for the

command, which will play out if no more specific condition is matched.

Chapter 12 Enterprise Patterns

475

A set of status elements can define these specific conditions. A status element’s

value attribute should match one of the command statuses you have seen. When a

command’s execution renders a CommandStatus::OK status, for example, if an equivalent

status has been defined in the XML document, a corresponding resolution will be

applied, overriding any default set for the command. This resolution is defined by an

element within the matched status element, which could either be a view or, as shown

for the /processvenue example, a forward.

The Woo system treats a forward as a special kind of view, which, instead of

rendering a template, sets a redirect header on the Response pointing to the new path.

So, to sum up, there is a hierarchy within a matched command. The command may

define a default view or forward element, which will play unless a more specific

condition is matched. Such conditions are defined by status elements, which can define

their own view or forward directives.

Let’s work through some of the XML above in the light of that explanation:

When the system is invoked with the /addvenue path, the AddVenue::addVenue()

method is called with a Request and a Context. Because there’s only a default view

in this element, the addvenue template will always be invoked no matter what the

addVenue() method does to the Context it was passed. Later, a separate request (likely a

form submission) will invoke /processvenue. Thanks to the relevant command element,

this will resolve to AddVenue::processVenue(). By default, this request will result in a

Response that will redirect back to /addvenue (because that forward is the default view

here) unless the processVenue() method has set a CommandStatus::OK status on the

Context. In that case, the relevant view block will be activated, and a redirect will send

the user on to /addspace.

�Compiling the Configuration File

Of course, I still need to convert the XML configuration file into data that my system can

work with. I will create a class named ViewComponentCompiler that does just that.

Thanks to the SimpleXML extension, I don’t have to do any actual parsing—that

is handled for me. All that is left is to traverse the SimpleXML data structure and

build up the data. I have already devised a handy way of managing routes and action

components—the Routing object. This class is therefore really just a bridge that takes the

logic from the XML file and passes it along to Routing::addRoute():

Chapter 12 Enterprise Patterns

476

class ViewComponentCompiler

{

 �public function __construct(private string $templatepath, private

Routing $routing)

 {

 }

 public function parseFile(string $file): Routing

 {

 $options = \simplexml_load_file($file);

 return $this->parse($options);

 }

 public function parse(\SimpleXMLElement $options): Routing

 {

 foreach ($options->control->command as $command) {

 $path = (string)($command['path'] ?? "/");

 $cmdstr = (string) $command['action'];

 $methodstr = (string)($command['method'] ?? "GET");

 $pathobj = new ComponentDescriptor($cmdstr);

 $views = [];

 // default view

 �$views[CommandStatus::DEFAULT->value] = $this-

>getView($command);

 // views for non DEFAULT CommandStatus configurations

 �if (isset($command->status) && isset($command-

>status['value'])) {

 foreach ($command->status as $statusel) {

 $status = (string)$statusel['value'];

 // this will throw an error for an unknown type

 $cmdstatus = CommandStatus::from($status);

 $views[$status] = $this->getView($statusel);

 }

 }

Chapter 12 Enterprise Patterns

477

 �$this->routing->addRoute(RequestMethod::from($methodstr),

$path, $cmdstr, $views);

 }

 return $this->routing;

 }

 private function getView(\SimpleXMLElement $el): ViewComponent

 {

 if (isset($el->view) && isset($el->view['name'])) {

 �return new TemplateViewComponent($this->templatepath,

(string)$el->view['name']);

 }

 if (isset($el->forward) && isset($el->forward['path'])) {

 return new ForwardViewComponent((string)$el->forward['path']);

 }

 throw new AppException("Unable to resolve view element");

 }

}

The real action here takes place in the parse() method, which accepts a

SimpleXMLElement object for traversal. I loop through the command elements in the

XML, and, for each command, I extract the values of the path, action, and method

attributes. This last defaults to “GET” if not explicitly defined.

Then I work through any view or forward elements, starting at the top level and

following up with those wrapped in status elements. For each view or forward element

I call getView(), which generates a ViewComponent—either a TemplateViewComponent

or a ForwardViewComponent. I add each of these ViewComponent elements to a $views

array indexed by its corresponding CommandStatus string. In the case of the top-level

ViewComponent, that string is always DEFAULT.

At the end of a single command parse iteration, I should have a string for an HTTP

method (which I convert into a RequestMethod value), a string for a route path (which

can include wildcards), and a route action identifier. I should also have my array of

ViewComponent objects indexed by CommandStatus strings. I pass all of this along to

Routing::addRoute(), which, as we’ve seen already, provides a way of mapping

Chapter 12 Enterprise Patterns

478

Request objects to route data. The only amendment I’ve made here to the Routing

object is that addRoute() asks for the array of ViewComponent objects as well as the

RequestMethod, the path, and the action.

Once the loop is finished, I return the Routing object.

It may take a little re-reading before you can follow this flow; but in essence, the

process is very simple: ViewComponentCompiler just adds entries to a Routing object.

Each of these elements consists of the information required for retrieval, a callable

controller action, and an array of ViewComponent objects indexed by CommandStatus

strings.

Despite all this busywork, it is important to remember the basic high-level objective.

We are constructing the relationships between potential requests on the one hand and

commands and views on the other. Figure 12-6 shows this initialization process.

Figure 12-6.  Compiling commands and views

�The AppController Class

Because most of the real work is done by helper classes, the Application Controller itself

is relatively thin. Let’s take a look:

class AppController

{

 public function __construct(private Routing $routing)

 {

 }

Chapter 12 Enterprise Patterns

479

 public function getCommand(Request $request): callable

 {

 [$route, $args] = $this->routing->findRoute($request);

 �return function (Request $request, Context $context) use ($route,

$args) {

 return $route[2]($request, $context, $args);

 };

 }

 �public function getView(Context $context, Request $request):

ViewComponent

 {

 �// a $route as returned by Rooting::findRoute() is an array

consisting

 �// of a $method (eg 'GET'), an endpoint path, a callback, and

an array

 // of views

 [$route, $args] = $this->routing->findRoute($request);

 $views = $route[3];

 $view = $views[$context->status->value] ?? null;

 if (is_null($view)) {

 throw new AppException("no view for {$request->getPath()}");

 }

 return $view;

 }

}

There is little actual logic in this class since most of the complexity lives in the

Routing class we have already seen (although, now, each route array also contains an

array of ViewComponent elements indexed by RequestMethod strings). The getCommand()

method accepts a Request and simply delegates to the Routing object to acquire a

callable controller action and an array of wildcard arguments. It wraps the callable in

an outer function to pass along the wildcard arguments, but, other than that, it simply

returns what the Routing object provides.

Chapter 12 Enterprise Patterns

480

The getView() method is only slightly more complicated. It requires a Request and a

Context. It passes the Request object to Routing::findRoute() to get the corresponding

route array and extracts the ViewComponent array. If that array contains a component

that corresponds to the CommandStatus stored in Context::$status, it returns it.

Before we move on, there are a few details to wrap up. Now that Command objects no

longer invoke views, we need a mechanism for rendering templates. This is handled by

TemplateViewComponent objects. These implement an interface, ViewComponent:

interface ViewComponent

{

 �public function render(Request $request, Context $context, Response

$response): Response;

}

Here is TemplateViewComponent:

class TemplateViewComponent implements ViewComponent

{

 �public function __construct(private string $templatepath, private

string $name)

 {

 }

 �public function render(Request $request, Context $context, Response

$response): Response

 {

 $fullpath = "{$this->templatepath}/{$this->name}.php";

 if (! file_exists($fullpath)) {

 throw new AppException("no template at {$fullpath}");

 }

 $templatevars = $context->toArray();

 ob_start();

 include($fullpath);

 $ret = ob_get_contents();

Chapter 12 Enterprise Patterns

481

 ob_end_clean();

 $response->output = $ret;

 return $response;

 }

}

This class is instantiated with a path to a template directory and a name. It combines

these at render time with an extension to create a full file path to a template.

While TemplateViewComponent handles rendering, we also treat redirection as a view

process in this implementation.

Here is ForwardViewComponent:

class ForwardViewComponent implements ViewComponent

{

 public function __construct(private string $redirectpath)

 {

 }

 �public function render(Request $request, Context $context, Response

$response): Response

 {

 $response->setHeader("Location", $this->redirectpath);

 return $response;

 }

}

This class simply sets the Location header on the on the provided Request object.

Neither class is responsible for sending data back to the client. In both cases this will

happen at the Controller level when Response::sendOutput() is called.

And that leads us full circle, an excellent moment for an overview!

The strategies an Application Controller might use to acquire views and commands

can vary considerably; the key is that these are hidden away from the wider system.

Figure 12-7 shows the high-level process by which a Front Controller class uses an

Application Controller to acquire first a Command object and then a view.

Chapter 12 Enterprise Patterns

482

Figure 12-7.  Using an Application Controller to acquire actions and views

Note that the view that is rendered in Figure 12-7 could be one of

ForwardViewComponent (which will start the process over again with a new path) or

TemplateViewComponent (which will include a template file).

Remember that the data needed for the process of acquiring Command

and ViewComponent objects in Figure 12-7 was compiled by our old friend,

ApplicationHelper. As a reminder, here is the high-level code that achieved that:

public function __construct(string $datapath)

{

 // ...

 $this->conf = new Conf($options['config']);

 $vcfile = $this->conf->get('viewcomponentfile');

 $templatepath = $this->conf->get('templatepath');

Chapter 12 Enterprise Patterns

483

 $routing = $this->container->get(Routing::class);

 $cparse = new ViewComponentCompiler($templatepath, $routing);

 $commandandviewdata = $cparse->parseFile($vcfile);

 $this->appcontroller = new AppController($routing);

 $this->container->add("conf", $this->conf);

}

�An Action Class

Now that controller actions are no longer responsible for invoking their templates, it’s

worth looking briefly at a controller action implementation. Although the Routing class

can work with a Command class of the type we’ve seen in this chapter and, previously, in

Chapter 11, we are no longer limited to that. So long as a callable respects the signature

we demand (i.e., it must, in this case, expect a Request and a Context and must return a

Context), it does not matter where it’s defined.

This allows us to group command actions together into a common class and,

optionally, use the dependency injection container to provide access to shared resources

through constructor method injection:

class AddVenue

{

 public function __construct(private VenueRepository $repo)

 {

 }

 public function addVenue(Request $request, Context $context): Context

 {

 return $context;

 }

 �public function processVenue(Request $request, Context

$context): Context

 {

 $args = [];

 $name = $request->getAttribute("venue_name");

Chapter 12 Enterprise Patterns

484

 if (is_null($name)) {

 $context->status = CommandStatus::INSUFFICIENT_DATA;

 $context->set("msg", "no name provided");

 } else {

 // do some stuff

 $context->set("msg", "{$name} added");

 $context->status = CommandStatus::OK;

 }

 return $context;

 }

}

Because we’re using a DI container with our Routing class, the AddVenue object

will be instantiated with the dummy VenueRepository object, which will therefore be

available to both the addVenue() and processVenue() methods.

Because /addvenue does nothing but write a form, the addVenue() method does

not do much work here. In a more complete implementation, we’d probably want to set

up some values for re-presentation when this action is called after a failed submission

attempt and set them on the Context for inclusion in the form.

The processVenue() method is more active. It checks for a value in the Request

object and varies its behavior accordingly. Thanks to the Application Controller pattern,

the action itself does not decide what to do about the different CommandStatus values it

sets. We know, from the configuration file, that CommandStatus::OK will cause a redirect

to /addspace and that anything else will send the browser back to addvenue. The action,

though, sticks to its core responsibilities.

�Consequences

The Application Controller pattern looks very neat in diagram form. It can, however, be

a pain to set up in that it requires a lot of up-front configuration, which must be mapped

onto your components in some way. It requires, also, that you have built in adequate

logic to handle all the corner cases that a system may throw up. You may find yourself

wondering if you have the right CommandStatus values (or whatever other mechanism

you use to determine what view to acquire after an action is run) to cover every

eventuality.

Chapter 12 Enterprise Patterns

485

It can also become awkward, as a system grows, to cross-reference between a

controller action and the configuration that determines the relationship between actions

and views. Since this is not present to the actions themselves, this can represent quite a

lot of mental effort as you code and, especially, as you debug a system.

Furthermore, it could be argued that the purity it seems to offer is a little illusory.

Inevitably, an action is coded with a view in mind. You generate fields for a form and

messages for feedback. You know where your application logic is going to lead you next.

There is, therefore, a conceptual coupling between the configuration of the Application

Controller and your controller actions. This might be less true if you find yourself reusing

a complex action in multiple different contexts (switching between JSON outputs and

template views, perhaps). However, even then, if your actions really are that complex,

then they are probably candidates for refactoring. It may still work out cleaner, in other

words, to maintain tight coupling between actions and views (by allowing actions to

determine their own view strategies and act directly on a Response object) and share

complex logic between thin specialized controllers.

To some extent, this is a matter of taste, and of the affordances provided by the

framework you source or build. Of the approaches I’ve shared so far, my preference

would be to avoid the configuration complexity required by Application Controller. I

love the combination of the dependency injection container and a Routing component,

but I’m also very happy for actions to specify views within reason (although I’ll always

encapsulate the actual inclusion of a template in order to allow for testing and for

variations in implementation). I find myself fighting the Application Controller pattern

rather than using it, and that’s a particular kind of code smell.

�Page Controller
Frameworks are a ubiquitous feature of modern development. Even if you’re not keen

to commit to a big monolithic system for a small project, you can easily get something

working in 20 minutes or so using a microframework like Slim. Frameworks were not

always so common or easy to install, however. Back when many sites were built more or

less from the ground up, the overhead in time and effort of a pattern like Front Controller

often seemed like overkill for smaller projects. That’s where a pattern like Page Controller

could come into its own.

Chapter 12 Enterprise Patterns

486

�The Problem

Once again, the problem lies with the need to manage the relationships between

request, domain logic, and presentation. This is pretty much a constant for enterprise

projects. What differs, though, are the constraints in play. At the cost of flexibility later

on, Page Controller requires relatively little up-front design.

Let’s say that we want to present a page that displays a list of all venues in the

Woo system. The request, controller, and view will all align—a list of venues asked for,

found, and shown. The simplest thing that works here is to associate the view and the

controller—often in the same script file.

�Implementation

Although the practical reality of Page Controller projects can become fiendish, the

pattern is simple. Control is related to a view or to a set of views. In the simplest case,

this means that the control sits in the view itself, although it can be abstracted, especially

when a view is closely linked with others (i.e., when you might need to forward to

different pages in different circumstances).

Here is the simplest flavor of Page Controller:

<?php

namespace popp\ch12\batch07;

try {

 $venuemapper = new VenueMapper();

 $venues = $venuemapper->findAll();

} catch (\Exception) {

 include('error.php');

 exit(0);

}

// default page follows

?>

<!DOCTYPE html>

<html lang="en">

Chapter 12 Enterprise Patterns

487

 <head>

 <meta charset="utf-8">

 <title>Venues</title>

 </head>

 <body>

 <div>

 <h1>Venues</h1>

 <div><?= $msg ?? "" ?></div>

 <?php foreach ($venues as $venue) { ?>

 <?= $venue->getName(); ?>

 <?php } ?>

 </div>

 </body>

</html>

This document has two elements to it. The view element handles display, while the

controller element manages the request and invokes application logic. Even though view

and controller inhabit the same page, they are rigidly separated.

There is very little to this example (aside from the database work going on behind

the scenes, of which you’ll find more in the next chapter). The PHP block at the top of the

page attempts to get a list of Venue objects, which it stores in the $venues global variable.

If an error occurs, the page delegates to a page called error.php by using include(),

followed by exit() to kill any further processing on the current page. I could equally

have used an HTTP redirect. If no include takes place, then the HTML at the bottom of

the page (the view) is shown.

You can see this combination of controllers and views in Figure 12-8.

Figure 12-8.  Page controllers embedded in views

Chapter 12 Enterprise Patterns

488

This will do as a quick test, but a system of any size or complexity will probably need

more support than that.

The Page Controller code was previously implicitly separated from the view. Here, I

make the break, starting with a rudimentary Page Controller base class:

abstract class PageController

{

 protected Request $request;

 abstract public function process(): void;

 public function __construct()

 {

 $this->request = Request::newInstance();

 }

 public function redirect(string $resource): void

 {

 $response = Response::newInstance();

 $response->setHeader("Location", $resource);

 $response->sendOutput();

 }

 �public function render(string $resource, Request $request, array $args

= []): void

 {

 include($resource);

 }

}

This class uses some of the tools that you have already looked at—in particular, the

Request and Response classes. The PageController class’s main roles are to provide

access to a Request object and to manage the inclusion of views. This list of purposes

would quickly grow in a real project as more child classes discover a need for common

functionality.

Chapter 12 Enterprise Patterns

489

A child class could live inside the view and thereby display it by default as before.

Or it could stand separate from the view. The latter approach is cleaner, I think, so that’s

the path that I take. Here is a PageController that attempts to add a new venue to

the system:

class AddVenueController extends PageController

{

 public function process(): void

 {

 $args = [];

 try {

 $name = $this->request->getAttribute('venue_name');

 $submitted = $this->request->getAttribute('submitted');

 if (is_null($submitted)) {

 $args['msg'] = "choose a name for the venue";

 �$this->render(__DIR__ . '/view/add_venue.php', $this

->request, $args);

 } elseif (empty($name)) {

 $args['msg'] = "name is a required field";

 �$this->render(__DIR__ . '/view/add_venue.php', $this

->request, $args);

 return;

 } else {

 // add to database ...

 //

 // then list venues

 $this->redirect('listvenues.php');

 }

 } catch (\Exception) {

 $this->render(__DIR__ . '/view/error.php', $this->request);

 }

 }

}

Chapter 12 Enterprise Patterns

490

The AddVenueController class only implements the process() method. process()

is responsible for checking the user’s submission. If the user has not submitted a form

or has completed the form incorrectly, the default view (add_venue.php) is included,

providing feedback and presenting the form. If I successfully add a new venue, then the

method invokes redirect() to send the user to the ListVenues page controller.

Note the format I used for the view. I tend to differentiate view files from class files by

using all lowercase filenames in the former and camel case (running words together and

using capital letters to show the boundaries) in the latter.

You may have noticed that there is nothing within the AddVenueController class that

causes it to be run. I could place runner code within the same file, but this would make

testing difficult (because the very act of including the class would execute its methods).

For this reason, I create a runner script for each page. Here is addvenue.php:

$addvenue = new AddVenueController();

$addvenue->process();

Here is the view associated with the AddVenueController class:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Add a Venue</title>

 </head>

 <body>

 <div>

 <h1>Add a Venue</h1>

 <div><?= $args['msg'] ?? "" ?></div>

 <form action="/addvenue.php" method="post">

 <input type="hidden" name="submitted" value="yes"/>

 <input type="text" name="venue_name" />

 <input type="submit" value="submit" />

 </form>

 </div>

 </body>

</html>

Chapter 12 Enterprise Patterns

491

As you can see, the view does nothing but display data and provide the mechanism

for generating a new request. The request is made to the PageController (via the /

addvenue.php runner), not back to the view. Remember, it is the PageController class

that is responsible for processing requests.

You can see an overview of this more complicated version of the Page Controller

pattern in Figure 12-9.

Figure 12-9.  A Page Controller class hierarchy and its include relationships

�Consequences

This approach has the great merit that it immediately makes sense to anyone with any

web experience. I make a request for listvenues.php, and that is precisely what I get.

Even an error is within the bounds of expectation, with “server error” and “page not

found” pages an everyday reality.

Things get a little more complicated if you separate the view from the Page Controller

class (so that, for example, a controller invocation in listvenues.php maps to a list_venues.

php view), but the near one-to-one relationship between the participants is clear enough.

A page controller includes its view once it has completed processing. In some

circumstances, though, it hands on to a new endpoint associated with its own page

controller. So, for example, when AddVenue successfully adds a venue, it no longer needs

to display the addition form. Instead, it redirects the browser to a new URL. This new

process invokes ListVenues.

Chapter 12 Enterprise Patterns

492

This handoff is managed within the PageController by the redirect() method,

which, like the ForwardViewComponent we have already seen, simply sets a Location

header on a Response object.

Although a Page Controller class might delegate to Command objects or controller

action methods, the benefit of doing so is not as marked as it is with Front Controller.

Front Controller classes need to work out what the purpose of a request is; Page

Controller classes already know this. The light request checking and logic layer calls that

you would put in a Command sit just as easily in a Page Controller class, and you benefit

from the fact that you do not need a mechanism to select your Command objects.

In reality, though, this pattern quickly becomes inelegant. You soon pay for the initial

ease of setup with duplication and convoluted logic. Although you could start with a

Page Controller and migrate to Front Controller as your logic begins to grow unwieldy,

it makes more sense, these days, to start with a microframework and take advantage of

routing, dependency injection, and templating from the very start.

�Template View and View Helper
Template View is pretty much what you get by default in PHP in that I can commingle

presentation markup (HTML) and system code (native PHP). As I have said before, this

is both a blessing and a curse because the ease with which these can be brought together

represents a temptation to combine application and display logic in the same place—

with potentially disastrous consequences.

In PHP then, programming the view is largely a matter of restraint. If it isn’t strictly a

matter of display, treat any code with the greatest suspicion.

To this end, the View Helper pattern (Alur et al.) provides for a helper class that may

be specific to a view or shared between multiple views to help with any tasks that require

more than the smallest amount of code.

�The Problem

These days it is becoming rarer to find SQL queries and other business logic embedded

directly in display pages, but it still happens. I have covered this particular evil in great

detail in previous chapters, so I’ll keep this brief.

Web pages that contain too much code can be hard for web producers to work with,

as presentation components become tangled up in loops and conditionals.

Chapter 12 Enterprise Patterns

493

Business logic in the presentation forces you to stick with that interface. You can’t

switch in a new view easily without porting across a lot of application code too.

Systems that separate their views from their logic are also easier to test. This is

because tests can be applied to the functionality of the logic layer in isolation of the noisy

distractions of presentation.

Security issues often appear in systems that embed logic in their presentation layer

too. In such systems, because database queries and code to handle user input tend to

be scattered in with tables and forms and lists, it becomes hard to identify potential

hazards.

With many operations recurring from view to view, systems that embed application

code in their templates tend to fall prey to duplication as the same code structures are

pasted from page to page. Where this happens, bugs and maintenance nightmares

surely follow.

To prevent this from happening, you should handle application processing

elsewhere and allow views to manage presentation only. This is often achieved by

making views the passive recipients of data. Where a view does need to interrogate the

system, it is a good idea to provide a View Helper object to do any involved work on the

view’s behalf.

Note  Calls back into a system from within a view should be kept to a
minimum and reviewed for their wider consequences. Such calls can risk hidden
performance costs or unexpected side effects. View Helpers are best used to
perform complex formatting tasks rather than interrogating the system. The latter
should be handled by a controller action.

�Implementation

Once you have created a wider framework, the view layer is not a massive programming

challenge. Of course, it remains a huge design and information architecture issue, but

that’s another book!

Template View was so named by Fowler. It is a staple pattern used by most enterprise

programmers. In a PHP-based project you might use the language itself, since it’s

already designed to allow the combination of code and presentation elements. On the

Chapter 12 Enterprise Patterns

494

other hand, this can open the door to logic creep, since PHP makes it so easy to scatter

application logic throughout your templates. For that reason, therefore, many developers

prefer to use a templating engine like the excellent Twig.

In order for a view to have something to work with, it must be able to acquire data. I

like to define a View Helper that views can use.

Here is a simple View Helper class:

class ViewHelper

{

 public function sponsorList(): string

 {

 // do something complicated to get the sponsor list

 return "Bob's Shoe Emporium";

 }

}

All this class does at present is provide a sponsor list string. Let’s assume that there

is some relatively complex process to acquire or format this data that we should not

embed in the template itself. You can extend it to provide additional functionality as your

application evolves. If you find yourself doing something in a view that takes up more

than a couple of lines, chances are it belongs in the View Helper. In a larger application,

you may provide multiple View Helper objects in an inheritance hierarchy in order to

provide different tools for different parts of your system.

Note that the logic in a View Helper component should be ancillary to application

logic. In other words, it should usually be focused on formatting the view or providing

incidental information rather than, for example, querying the system for data. There may

be exceptions to this rule, of course, but, on the whole, a View Helper that engages too

much with application logic should be regarded as a code smell.

As always we need to think about how a template might gain access to a View

Helper component. A View Helper might legitimately make methods available via static

methods. It might equally be injected into a View object via a dependency injection

container and then passed along to the template.

Chapter 12 Enterprise Patterns

495

Here, I amend the render() method at the abstract PageController class to expose

a helper instance to the included template:

public function render(string $resource, Request $request, array $args =

[]): void

{

 $vh = new ViewHelper();

 �// The code referenced by include() will run within the lexical scope

of this method

 // so now the template will have the $vh variable

 include($resource);

}

Here is a simple view that uses the View Helper:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Venues</title>

 </head>

 <body>

 <div>

 <h1>Venues</h1>

 <div>

 Proudly sponsored by: <?php echo $vh->sponsorList(); ?>

 </div>

 Listing venues

 </div>

 </body>

</html>

The view (list_venues.php) is granted a ViewHelper instance in the $vh variable. It

calls the sponsorList() method and prints the results.

Chapter 12 Enterprise Patterns

496

Clearly, this example doesn’t banish code from the view, but (assuming that

sponsorList() performs some relatively complex work) it simplifies it.

�Consequences

There is something slightly disturbing about the way that data is passed to the view layer

in that a view doesn’t really have a fixed interface that guarantees its environment. I

tend to think of every view as entering into a contract with the system at large. The view

effectively says to the application, “If I am invoked, then I have a right to access object

This, object That, and object TheOther.” It is up to the application to ensure that this is

the case.

While templates are often essentially passive, populated with data resulting from the

last request, there may be times when the view needs to make an ancillary request. The

View Helper is a good place to provide this functionality, keeping any knowledge of the

mechanism by which data is required hidden from the view itself. Even then, the View

Helper should do as little work as possible, delegating to a command or contacting the

domain layer via a facade.

Note  You saw the Facade pattern in Chapter 10. Alur et al. look at one use
of Facades in enterprise programming in the Session Facade pattern (which
is designed to limit fine-grained network transactions). Fowler also describes
a pattern called Service Layer, which provides a simple point of access to the
complexities within a layer.

�The Business Logic Layer
If the control layer orchestrates communication with the outside world and marshals a

system’s response to it, the logic layer gets on with the business of an application. This

layer should be as free as possible of the noise and trauma generated as query strings are

analyzed, HTML tables constructed, and feedback messages composed. Business logic is

about doing the stuff that needs doing—the true purpose of the application. Everything

else exists just to support these tasks.

Chapter 12 Enterprise Patterns

497

In a classic object-oriented application, the business logic layer is often composed of

classes that model the problems that the system aims to address. As you shall see, this is

a flexible design decision. It also requires significant up-front planning.

Let’s begin, then, with the quickest way of getting a system up and running.

�Transaction Script
The Transaction Script pattern (Patterns of Enterprise Application Architecture) describes

the way that many systems evolve of their own accord. It is simple, intuitive, and

effective, although it becomes less so as systems grow. A transaction script handles a

request inline, rather than delegating to specialized objects. It is the quintessential quick

fix. It is also a hard pattern to categorize because it combines elements from other layers

in this chapter. I have chosen to present it as part of the business logic layer because the

pattern’s motivation is to achieve the business aims of the system.

�The Problem

Every request must be handled in some way. As you have seen, many systems provide a

layer that assesses and filters incoming data. Ideally, though, this layer should then call

on classes that are designed to fulfill the request. These classes could be broken down

to represent forces and responsibilities in a system, perhaps with a facade interface.

This approach requires a certain amount of careful design, however. For some projects

(typically small in scope and urgent in nature), such development overhead can be

unacceptable. In this case, you may need to build your business logic into a set of

procedural operations. Each operation will be crafted to handle a particular request.

The problem, then, is the need to provide a fast and effective mechanism for fulfilling

a system’s objectives without a potentially costly investment in complex design.

The great benefit of this pattern is the speed with which you can get results. Each

script takes input and manipulates the database to ensure an outcome. Beyond

organizing related methods within the same class and keeping the Transaction Script

classes in their own tier (i.e., as independent as possible of the command, control, and

view layers), there is little up-front design required.

While business logic layer classes tend to be clearly separated from the presentation

layer, they are often more embedded in the data layer. This is because retrieving and

storing data is key to the tasks that such classes often perform. You will see mechanisms

Chapter 12 Enterprise Patterns

498

for decoupling logic objects from the database later in the chapter. Transaction Script

classes, though, usually know all about the database (although they can use gateway

classes to handle the details of their actual queries).

�Implementation

Let’s return to my event listing example. In this case, the system supports three relational

database tables: venue, space, and event. A venue may have a number of spaces (e.g., a

theater can have more than one stage, and a dance club may have different rooms). Each

space plays host to many events. Here is the schema:

CREATE TABLE 'venue' (

 'id' int(11) NOT NULL auto_increment,

 'name' text,

 PRIMARY KEY ('id')

)

CREATE TABLE 'space' (

 'id' int(11) NOT NULL auto_increment,

 'venue' int(11) default NULL,

 'name' text,

 PRIMARY KEY ('id')

)

CREATE TABLE 'event' (

 'id' int(11) NOT NULL auto_increment,

 'space' int(11) default NULL,

 'start' mediumtext,

 'duration' int(11) default NULL,

 'name' text,

 PRIMARY KEY ('id')

)

Clearly, the system will need mechanisms for adding both venues and events. Each of

these represents a single transaction. I could give each method its own class (and organize

my classes according to the Command pattern that you encountered in Chapter 11). In

this case, though, I am going to place the methods in a single class, albeit as part of an

inheritance hierarchy. You can see the structure in Figure 12-10.

Chapter 12 Enterprise Patterns

499

Figure 12-10.  A Transaction Script class with its superclass

So why does this example include an abstract superclass? In a script of any size, I

would be likely to add more concrete classes to this hierarchy. Since most of these will

share at least some core functionality, it makes sense to lodge this in a common parent.

In fact, this is a pattern in its own right (Fowler has named it Layer Supertype).

Where classes in a layer share characteristics, it is useful to group them into a single type,

locating utility operations in the base class.

In this case, the base class acquires a PDO object, which it stores in a property:

abstract class Base

{

 protected \PDO $pdo;

 private const string config = __DIR__ . "/data/woo_options.ini";

 public function __construct()

 {

 $options = parse_ini_file(self::config, true);

 $conf = new Conf($options['config']);

 $dsn = $conf->get("dsn");

 if (is_null($dsn)) {

 throw new AppException("No DSN");

 }

Chapter 12 Enterprise Patterns

500

 $this->pdo = new \PDO($dsn);

 �$this->pdo->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);

 }

}

I acquire a DSN string from configuration and pass it to the PDO constructor. I make

the PDO object available via a protected property Base::$pdo.

Here is the start of the VenueManager class, which sets up my SQL statements:

class VenueManager extends Base

{

 private const string addvenue = "INSERT INTO venue

 (name)

 VALUES(?)";

 private const string addspace = "INSERT INTO space

 (name, venue)

 VALUES(?, ?)";

 private const string addevent = "INSERT INTO event

 (name, space, start, duration)

 VALUES(?, ?, ?, ?)";

 // ...

Not much new here. These are the SQL statements that the transaction scripts will

use. They are constructed in a format accepted by the PDO class’s prepare() method.

The question marks are placeholders for the values that will be passed to execute().

Now it’s time to define the first method designed to fulfill a specific business need:

// VenueManager

public function addVenue(string $name, array $spaces): array

{

 $ret = [];

 $ret['venue'] = [$name];

 $stmt = $this->pdo->prepare(self::addvenue);

Chapter 12 Enterprise Patterns

501

 $stmt->execute($ret['venue']);

 $vid = $this->pdo->lastInsertId();

 $ret['spaces'] = [];

 $stmt = $this->pdo->prepare(self::addspace);

 foreach ($spaces as $spacename) {

 $values = [$spacename, $vid];

 $stmt->execute($values);

 $sid = $this->pdo->lastInsertId();

 array_unshift($values, $sid);

 $ret['spaces'][] = $values;

 }

 return $ret;

}

As you can see, addVenue() requires a venue name and an array of space names. It

uses these to populate the venue and space tables. It also creates a data structure that

contains this information, along with the newly generated ID values for each row.

If there’s an error with this, remember, an exception is thrown. I don’t catch any

exceptions here, so anything thrown by prepare() will also be thrown by this method.

This is the result I want, although I should include documentation that makes it clear

that this method could throw an exception.

Having created the venue row, I loop through $spaces, adding a row in the space

table for each element. Notice that I include the venue ID as a foreign key in each of the

space rows I create, associating the row with the venue.

The second transaction script is similarly straightforward:

// VenueManager

public function bookEvent(int $spaceid, string $name, int $time, int

$duration): void

{

 $stmt = $this->pdo->prepare(self::addevent);

 $stmt->execute([$name, $spaceid, $time, $duration]);

}

Chapter 12 Enterprise Patterns

502

The purpose of this script is to add an event to the events table, associated with

a space.

�Consequences

The Transaction Script pattern is an effective way of getting good results fast. It is also

one of those patterns many programmers have used for years without imagining it might

need a name. With a few good helper methods like those I added to the base class, you

can concentrate on application logic without getting too bogged down in database

fiddle-faddling.

In most cases, you would choose a Transaction Script approach with a small project

when you are certain it isn’t going to grow into a large one. The approach is not suitable

for larger projects because duplication often begins to creep in as multiple scripts

inevitably cross one another. You can go some way to factoring this out, of course, but

you probably will not be able to excise it completely.

Transaction Script is a classic “spike” technique—the sort of code you might write

fast to generate a disposable proof of concept. Because it does not scale well, you should

be careful that this demonstration code does not evolve, as can happen, to become the

real project—at least, not without some serious refactoring.

In my example, I decide to embed database code in the Transaction Script classes

themselves. As you saw, though, the code wants to separate the database work from the

application logic. I can make that break absolute by pulling it out of the class altogether

and creating a gateway class whose role it is to handle database interactions on the

system’s behalf.

�Domain Model
The Domain Model is the pristine logical engine that many of the other patterns in this

chapter strive to create, nurture, and protect. It is an abstracted representation of the forces

at work in your project. It’s a kind of plane of forms, where your business problems play out

their nature unencumbered by nasty material issues like databases and web pages.

If that seems a little flowery, let’s bring it down to reality. A Domain Model is a

representation of the real-world participants of your system. It is in the Domain Model

that the object-as-thing rule of thumb is truer than elsewhere. Everywhere else, objects

tend to embody responsibilities. In the Domain Model, they often describe a set of

attributes, with added agency. They are things that do stuff.

Chapter 12 Enterprise Patterns

503

�The Problem

If you have been using Transaction Script, you may find that duplication becomes a

problem as different scripts need to perform the same tasks. That can be factored out to

a certain extent, but over time it’s easy to fall into cut-and-paste coding.

You can use a Domain Model to extract and embody the participants and process

of your system. Rather than using a script to add space data to the database, and then

associate event data with it, you can create Space and Event classes. Booking an event in

a space can then become as simple as a call to Space::bookEvent(). A task like checking

for a time clash becomes Event::intersects() and so on.

Clearly, with an example as simple as Woo, a Transaction Script is more than

adequate. But as domain logic gets more complex, the alternative of a Domain Model

becomes increasingly attractive. Complex logic can be handled more easily, and you

need less conditional code when you model the application domain.

�Implementation

Domain Models can be relatively simple to design. Most of the complexity associated

with the subject lies in the patterns that are designed to keep the model pure—that is, to

separate it from the other tiers in the application.

Separating the participants of a Domain Model from the presentation layer is largely

a matter of ensuring that they keep to themselves. Separating the participants from the

data layer is much more problematic. Although the ideal is to consider a Domain Model

only in terms of the problems it represents and resolves, the reality of the database is

hard to escape.

It is common for Domain Model classes to map fairly directly to tables in a relational

database, and this certainly makes life easier. Figure 12-11, for example, shows a class

diagram that sketches some of the participants of the Woo system.

Chapter 12 Enterprise Patterns

504

Figure 12-11.  An extract from a Domain Model

The objects in Figure 12-11 mirror the tables that were set up for the Transaction

Script example. This direct association makes a system easier to manage, but it is not

always possible, especially if you are working with a database schema that precedes

your application. Such an association can itself be the source of problems. If you’re not

careful, you can end up modeling the database rather than the problems and forces you

are attempting to address.

Just because a Domain Model often mirrors the structure of a database does not

mean that its classes should have any knowledge of it. By separating the model from the

database, you make the entire tier easier to test and less likely to be affected by changes

of schema or even changes of storage mechanism. It also focuses the responsibility of

each class on its core tasks.

Let’s take a quick look at an abstract class in Domain Model:

abstract class DomainObject

{

 public function __construct(private int $id)

 {

 }

Chapter 12 Enterprise Patterns

505

 public function getId(): int

 {

 return $this->id;

 }

}

The DomainObject class is a Layer Supertype, which can provide common

functionality for all entity objects. For now, it only manages an ID. We’ll play with other

common functionality in the next chapter!

class Venue extends DomainObject

{

 private SpaceCollection $spaces;

 public function __construct(int $id, private string $name)

 {

 $this->spaces = new SpaceCollection();

 parent::__construct($id);

 }

 public function getSpaces(): SpaceCollection

 {

 return $this->spaces;

 }

 public function addSpace(Space $space): void

 {

 $this->spaces->add($space);

 $space->setVenue($this);

 }

 public function setName(string $name): void

 {

 $this->name = $name;

 }

Chapter 12 Enterprise Patterns

506

 public function getName(): string

 {

 return $this->name;

 }

}

The Venue class demonstrates an aspect of the relationship between venues and

spaces in our system. Venues “contain” spaces. Adding a space to a venue must alter the

space itself, if it is to maintain a relationship to its containing venue.

This is a pretty simple class (it will get a little more complicated in the next chapter as

I explore issues of persistence further). Notice that, instead of an array, I’m using a typed

collection: SpaceCollection. As things stand, PHP does not yet support generics, so we

must either work with standard arrays and rely on documentation to hint at type or we

can create wrapper classes.

Note A generic collection is a list whose members must be of a defined type.

I will return to this system’s collection objects and how to acquire them in the next

chapter.

As required in the parent DomainObject, I expect an $id parameter in the Venue

class’s constructor. It should come as no surprise to learn that the $id parameter

represents the unique ID of a row in the database. This is already quite a compromise to

the purity of the Domain Model, and it begs a number of questions that we shall return

to in the next chapter.

�Consequences

The design of a Domain Model needs to be as simple or complicated as the business

processes you need to emulate. The beauty of this is that you can focus on the forces in

your problem as you design the model, handling issues like persistence and presentation

in other layers—in theory, that is.

This separation between the Domain Model and the edges (data and presentation)

of a system comes at a considerable cost in terms of design and planning. The extent and

nature of this purity is subject to debate (and is discussed in the next chapter).

Chapter 12 Enterprise Patterns

507

�Summary
I have covered an enormous amount of ground here (although I have also left out a

lot). You should not feel daunted by the sheer volume of code in this chapter. Patterns

are meant to be used in the right circumstances and combined when useful. Use those

described in this chapter that you feel meet the needs of your project, and do not feel

that you must build an entire framework before embarking on a project. On the other

hand, there is enough material here to form the basis of a framework or, just as likely, to

provide some insight into the architecture of some of the prebuilt frameworks you might

choose to deploy.

And there’s more! I left you teetering on the edge of persistence, with just a few

tantalizing hints about collections and mappers to tease you. In the next chapter, I will

look at some patterns for working with databases and for insulating your objects from

the details of data storage.

Chapter 12 Enterprise Patterns

509
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3_13

CHAPTER 13

Database Patterns
Most web applications of any complexity handle persistence to a greater or lesser extent.

Shops must manage their products and their customer records. Games must remember

their players and the state of play. Social networking sites must keep track of your 238

friends and your unaccountable liking for boy bands of the 1980s and 1990s. Whatever

the application, the chances are it’s keeping score behind the scenes. In this chapter, I

look at some patterns that can help.

This chapter will cover the following:

•	 The data layer interface: Patterns that define the points of contact

between the storage layer and the rest of the system

•	 Object watching: Keeping track of objects, avoiding duplicates, and

automating save and insert operations

•	 Flexible queries: Allowing your client coders to construct queries

without thinking about the underlying database

•	 Creating lists of found objects: Building iterable collections

•	 Managing your database components: The welcome return of the

Abstract Factory pattern

�The Data Layer
In discussions with clients, it’s usually the presentation layer that dominates. Fonts,

colors, and ease of use are the primary topics of conversation. Among developers, it

is often the database that looms large. It’s not the database itself that concerns us; we

can trust that to do its job unless we’re very unlucky. No, it’s the mechanisms we use to

translate the rows and columns of a database table into system components that cause

the problems. In this chapter, I look at code that can help with this process.

https://doi.org/10.1007/979-8-8688-0482-3_13#DOI

510

Not everything presented here sits in the data layer itself. Rather, I have grouped

some of the patterns that help to solve persistence problems. All of these patterns are

described by one or more of Clifton Nock, Martin Fowler, and Alur et al.

�Data Mapper
If you thought I glossed over the issue of saving and retrieving Venue objects from the

database in the “Domain Model” section of Chapter 12, here is where you might find at

least some answers. The Data Mapper pattern is described as a Data Access Object in a

couple places. First, it’s covered by Alur et al. in Core J2EE Patterns: Best Practices and

Design Strategies (Prentice Hall, 2001). It’s also covered by Martin Fowler in Patterns of

Enterprise Application Architecture (Addison-Wesley Professional, 2002). Note that a

Data Access Object is not an exact match to the Data Mapper pattern, as it generates data

transfer objects; but since such objects are designed to become the real thing if you add

water, the patterns are close enough.

As you might imagine, a Data Mapper is a class that is responsible for handling the

transition from database to object.

�The Problem
Objects are not organized like tables in a relational database. As you know, relational

database tables are grids made up of rows and columns. One row may relate to another

in a different (or even the same) table by means of a foreign key. Objects, on the other

hand, tend to relate to one another more organically. One object may contain another,

and different data structures will organize the same objects in different ways, combining

and recombining objects in new relationships at runtime. Relational databases are

optimized to manage large amounts of tabular data, whereas classes and objects

encapsulate smaller focused chunks of information.

Let’s begin by defining a DomainObject superclass:

abstract class DomainObject

{

 public function __construct(private int $id)

 {

 }

Chapter 13 Database Patterns

511

 public function getId(): int

 {

 return $this->id;

 }

 public function setId(int $id): void

 {

 $this->id = $id;

 }

}

And here’s a stripped down Venue class:

class Venue extends DomainObject

{

 private SpaceCollection $spaces;

 public function __construct(int $id, private string $name)

 {

 parent::__construct($id);

 }

 public function setName($name): void

 {

 $this->name = $name;

 }

 public function getName(): string

 {

 return $this->name;

 }

}

We want Venue to focus on managing business logic and to remain broadly ignorant

of the work involved in persistence. This disconnect between classes and relational

databases is often described as the object-relational impedance mismatch (or simply

impedance mismatch).

Chapter 13 Database Patterns

512

So how do you make that transition? One answer is to give a class (or a set of classes)

responsibility for just that problem, effectively hiding the database from the domain

model and managing the inevitable rough edges of the translation.

�Implementation
Although, with careful programming, it may be possible to create a single Mapper class to

service multiple objects, it is common to see an individual Mapper for a major class in the

Domain Model.

Figure 13-1 shows three concrete Mapper classes and an abstract superclass.

Figure 13-1.  Mapper classes

In fact, because the Space objects are effectively subordinate to Venue objects, it may

be possible to factor the SpaceMapper class into VenueMapper. It really depends upon

whether there’s a need to inflate Space instances independently of Venue objects. For the

sake of these exercises, I’m going to keep them separate.

As you can see, the classes present common operations for saving and loading data.

The base class stores common functionality, delegating responsibility for handling

object-specific operations to its children. Typically, these operations include actual

object generation and constructing queries for database operations.

The base class often performs housekeeping before or after an operation, which

is why the Template Method is used for explicit delegation (e.g., calls from concrete

methods like insert() to abstract ones like doInsert(), etc.). Implementation

determines which of the base class methods are made concrete in this way, as you will

see later in the chapter.

Chapter 13 Database Patterns

513

Here is a simplified version of a Mapper base class:

abstract class Mapper

{

 public function __construct(protected \PDO $pdo)

 {

 }

 public function find(int $id): ?DomainObject

 {

 $this->selectstmt()->execute([$id]);

 $row = $this->selectstmt()->fetch();

 $this->selectstmt()->closeCursor();

 if (! is_array($row)) {

 return null;

 }

 if (! isset($row['id'])) {

 return null;

 }

 $object = $this->createObject($row);

 return $object;

 }

 public function createObject(array $raw): DomainObject

 {

 $obj = $this->doCreateObject($raw);

 return $obj;

 }

 public function insert(DomainObject $obj): void

 {

 $this->doInsert($obj);

 }

Chapter 13 Database Patterns

514

 abstract public function update(DomainObject $obj): void;

 abstract protected function doCreateObject(array $raw): DomainObject;

 abstract protected function doInsert(DomainObject $object): void;

 abstract protected function selectStmt(): \PDOStatement;

 abstract protected function targetClass(): string;

}

The constructor method demands a PDO object. As you saw in the previous chapter,

this can easily be handled by a dependency injection container. The find() method

is responsible for invoking a prepared statement (provided by an implementing

child class) and acquiring row data. It finishes up by calling createObject(). The

details of converting an array to an object will vary from case to case, of course, so the

implementation is handled by the abstract doCreateObject() method. Once again,

createObject() seems to do nothing but delegate to the child implementation; and

once again, I’ll soon add the housekeeping that makes this use of the Template Method

pattern worth the trouble.

The rest of Mapper consists of method definitions for common operations. Child

classes will also implement custom methods for finding data according to specific

criteria (e.g., I will want to locate Space objects that belong to Venue objects).

Note T here is a type-based trade-off implied by the method definitions and
partial implementations of a Mapper superclass. The base class can provide a
useful common framework, but that comes at the cost of requiring or returning
abstract DomainObject instances rather than the more specific implementations
child classes will expect and return. That will require some additional type
checking on the part of child classes.

Let’s build a simple implementation of Mapper:

class VenueMapper extends Mapper

{

 private \PDOStatement $selectStmt;

 private \PDOStatement $updateStmt;

 private \PDOStatement $insertStmt;

Chapter 13 Database Patterns

515

 public function __construct(\PDO $pdo)

 {

 parent::__construct($pdo);

 $this->selectStmt = $this->pdo->prepare(

 "SELECT * FROM venue WHERE id=?"

);

 $this->updateStmt = $this->pdo->prepare(

 "UPDATE venue SET name=?, id=? WHERE id=?"

);

 $this->insertStmt = $this->pdo->prepare(

 "INSERT INTO venue (name) VALUES(?)"

);

 }

 protected function targetClass(): string

 {

 return Venue::class;

 }

 protected function doCreateObject(array $raw): Venue

 {

 $obj = new Venue(

 (int)$raw['id'],

 $raw['name']

);

 return $obj;

 }

 protected function doInsert(DomainObject $obj): void

 {

 $values = [$obj->getName()];

 $this->insertStmt->execute($values);

 $id = $this->pdo->lastInsertId();

 $obj->setId((int)$id);

 }

Chapter 13 Database Patterns

516

 public function update(DomainObject $obj): void

 {

 $values = [

 $obj->getName(),

 $obj->getId(),

 $obj->getId()

];

 $this->updateStmt->execute($values);

 }

 protected function selectStmt(): \PDOStatement

 {

 return $this->selectStmt;

 }

}

So VenueMapper is responsible for turning data in a venue table into fully fledged

Venue objects (and back again). The constructor prepares some SQL statements for use

later on.

Note N otice that, in VenueMapper, doCreateObject() declares its return
type Venue rather than DomainObject as specified in the parent Mapper class.
The same is true of getCollection() which here declares VenueCollection
rather than the more generic return type of Collection specified in the Mapper
class. This is an example of return type covariance, introduced in PHP 7.4, which
allows you to declare more specialized return types in child classes. It’s neat,
but your static analysis tools might complain about it nonetheless. The parent
Mapper class implements find(), which invokes selectStmt() to acquire the
prepared SELECT statement. Assuming all goes well, Mapper invokes VenueMap
per::doCreateObject(). It’s here that I use the associative array returned by
PDOStatement::fetch() to generate a Venue object.

Chapter 13 Database Patterns

517

From the point of view of the client, this process is simplicity itself:

$mapper = new VenueMapper($pdo);

$venue = $mapper->find(2);

print_r($venue);

The call to print_r() is a quick way of confirming that find() was successful. In my

system (where there is a row in the venue table with ID 2), the output from this fragment

is as follows:

popp\ch13\batch01\Venue Object

(

 [id:popp\ch13\batch01\DomainObject:private] => 2

 [spaces:popp\ch13\batch01\Venue:private] =>

 [name:popp\ch13\batch01\Venue:private] => The Likey Lounge

)

The doInsert() and update() methods reverse the process established

by find(). Each accepts a DomainObject, extracts row data from it, and calls

PDOStatement::execute() with the resulting information. Notice that the doInsert()

method sets an ID on the provided object. Remember that objects are passed by

reference in PHP, so the client code will see this change via its own reference.

Another thing to note is that doInsert() and update() are not really type safe.

They will accept any DomainObject subclass without complaint. You should perform an

instanceof test and throw an Exception if the wrong object is passed.

Once again, here is a client perspective on inserting and updating:

$mapper = new VenueMapper($pdo);

$venue = new Venue(-1, "The Likey Lounge");

// add the object to the database

$mapper->insert($venue);

// find the object again – just to prove it works!

$venue = $mapper->find($venue->getId());

print_r($venue);

// alter our object

$venue->setName("The Bibble Beer Likey Lounge");

Chapter 13 Database Patterns

518

// call update to enter the amended data

$mapper->update($venue);

// once again, go back to the database to prove it worked

$venue = $mapper->find($venue->getId());

print_r($venue);

Why have I used a negative value for the ID of the Venue object I wish to add to

the database? As you will see later in the chapter, I use this convention to distinguish

between objects which have already been allocated a database ID and those

which have not. We will also discuss other strategies around identifiers later on.

VenueMapper::doInsert() does not check the ID—it simply uses the name of the venue

to create a new row and then sets the generated database ID on the provided Venue

object. Here’s that doInsert() method again:

protected function doInsert(DomainObject $obj): void

{

 $values = [$obj->getName()];

 $this->insertStmt->execute($values);

 $id = $this->pdo->lastInsertId();

 $obj->setId((int)$id);

}

Note  I’ll be using numeric IDs throughout this chapter. However, there are
well-known security issues with sequential numeric IDs, so you might consider
generating global IDs in UUID format using a utility class and a library such as
ramsey/uuid. This will provide you with the additional benefit of a globally unique
identifier for each object rather than an ID which is unique only to a single table.

�Handling Multiple Rows

The find() method is pretty straightforward because it only needs to return a single

object. What do you do, though, if you need to pull lots of data from the database? Your

first thought may be to return an array of objects. This will work, but there is a major

problem with the approach—arrays are not type safe.

Chapter 13 Database Patterns

519

It would be nice, instead, to return a typed collection. Although it does not support

generics, modern PHP makes it relatively easy to define type-safe collections. Here,

I’m adapting a very neat little implementation of a typed collection by Daniel Opitz

(https://odan.github.io/2022/10/25/collections-php.html).

First, I’ll create a Collection interface:

interface Collection extends IteratorAggregate

{

}

This is empty here, but it may come in useful if I need to define common

functionality for collections in my system. The interface extends IteratorAggregate

which creates a requirement to provide a getIterator() method. This requirement

will be passed on to any implementing classes. Speaking of which, here is a

VenueCollection class:

use ArrayIterator;

use IteratorAggregate;

use Traversable;

class VenueCollection implements Collection

{

 private array $items = [];

 public function add(Venue $venue): void

 {

 $this->items[] = $venue;

 }

 public function getIterator(): Traversable

 {

 return new ArrayIterator($this->items);

 }

}

Chapter 13 Database Patterns

https://odan.github.io/2022/10/25/collections-php.html

520

It’s as simple as that! The VenueCollection class is type safe because there’s no way

to add anything other than Venue objects to its $items array property via add(). From

the getIterator() method required by the IteratorAggregate interface, I return

an ArrayIterator object. ArrayIterator implements Traversable so it fulfills the

method’s declared return type. It wraps the $items property and allows its data to be

traversed, typically, in a foreach statement.

Now I can easily create a VenueCollection, add some Venue objects, and test by

looping through the data:

$collection = new VenueCollection();

$collection->add(new Venue(-1, "Loud and Thumping"));

$collection->add(new Venue(-1, "Eeezy"));

$collection->add(new Venue(-1, "Duck and Badger"));

foreach ($collection as $venue) {

 print $venue->getName() . "\n";

}

Once again, in this example, I have used the convention that I use an ID of –1 for an

object that has not yet been added to the database. The Collection object does not care

whether or not its DomainObject members have yet been inserted.

Now that I can support typed collections, I can enhance the Mapper class to support

them. Here, I add a findAll() method to the Mapper class:

// Mapper

public function findAll(): Collection

{

 $this->selectAllStmt()->execute([]);

 return $this->getCollection(

 $this->selectAllStmt()->fetchAll()

);

}

abstract protected function selectAllStmt(): \PDOStatement;

abstract protected function getCollection(array $raw): Collection;

Chapter 13 Database Patterns

521

This method calls a child method: selectAllStmt(). Like selectStmt(), this

should contain a prepared statement object primed, this time, to acquire all rows in

the table.

Note A lthough it’s good to prepare SQL statements in advance, you must also
be aware of the way that they are used internally within a Mapper class. If, for
example, you’re using Lazy Load to defer the execution of a statement, you won’t
want to use a single property to store it. That’s because, while you’re waiting to run
execute() on a statement, another method may preempt you by working with
it. Make sure that any common prepared statements can only be used atomically
within their class.

Here’s the PDOStatement object as created in the VenueMapper class:

// VenueMapper::__construct()

$this->selectAllStmt = $this->pdo->prepare(

 "SELECT * FROM venue"

);

The findAll() method calls another new method, getCollection(), passing it its

found data. Here is VenueMapper::getCollection():

public function getCollection(array $raw): VenueCollection

{

 $collection = new VenueCollection();

 foreach ($raw as $row) {

 $collection->add($this->createObject($row));

 }

 return $collection;

}

Chapter 13 Database Patterns

522

Note E agerly looping through a database result set and creating every object
for a collection may seem wastefully expensive. As we shall see in the section on
the Lazy Load pattern, you can easily defer both the database query and in the
instantiation of individual objects within a Collection implementation.

Although Mapper::findAll() illustrates the process of acquiring a collection well

enough, it is not a common use case. How often do you grab every row from a table?

Most, if not all, collection queries will be for more limited result sets. Many such queries

will reflect a one-to-many relationship between domain objects. A Venue object will

maintain a list of Space objects, for example. This will require a new Mapper method and

additions to the Venue class.

�Collections and Domain Objects
I have already covered some of the elements I need to manage a limited collection at

the Mapper level. SpaceMapper::getCollection() will mirror the equivalent method

you have already seen defined in VenueMapper. I will need a SELECT statement to acquire

the data:

// SpaceMapper::__construct()

$this->findByVenueStmt = $this->pdo->prepare(

 "SELECT * FROM space WHERE venue=?"

);

Now, here is the SpaceMapper::findByVenue() method, which generates the collection:

public function findByVenue(int $vid): SpaceCollection

{

 $this->findByVenueStmt->execute([$vid]);

 return $this->getCollection(

 $this->findByVenueStmt->fetchAll()

);

}

Chapter 13 Database Patterns

523

The findByVenue() method is identical to findAll(), except for the SQL

statement used.

Now, I must enhance the Venue class to manage the persistence of Space objects:

// Venue

public function getSpaces(): SpaceCollection

{

 $this->spaces ??= new SpaceCollection();

 return $this->spaces;

}

public function setSpaces(SpaceCollection $spaces): void

{

 $this->spaces = $spaces;

}

public function addSpace(Space $space): void

{

 $this->getSpaces()->add($space);

 $space->setVenue($this);

}

Using the addSpace() method, I can add an individual Space to the $spaces

property—an instance of SpaceCollection—or I can switch in an entirely new

SpaceCollection with setSpaces().

The setSpaces() operation currently takes it on trust that all Space objects in the

collection refer to the current Venue. It would be easy enough to add checking to the

method. This version keeps things simple though. Notice that I only instantiate the

$spaces property when getSpaces() is called. Later on, I’ll discuss how you might

extend this lazy instantiation to limit database requests.

Chapter 13 Database Patterns

524

So now, when VenueMapper::doCreateObject() is invoked, it can use

Spacemapper::findByVenue() to get a collection and set it on the newly created Venue

object via Venue::setSpaces():

// VenueMapper

protected function doCreateObject(array $raw): Venue

{

 $obj = new Venue(

 (int)$raw['id'],

 $raw['name']

);

 $spacemapper = new SpaceMapper($this->pdo);

 $spacecollection = $spacemapper->findByVenue($raw['id']);

 $obj->setSpaces($spacecollection);

 return $obj;

}

Note  Directly instantiating SpaceMapper from within VenueMapper is
something of a code smell. We would do better to require a SpaceMapper object
in the VenueMapper class’s constructor. You will encounter various mechanisms
for generating and serving object references throughout this chapter.

So Venue objects now arrive fresh from the database, complete with all their Space

objects in a neat type-safe list. Notice how, so far, the domain objects have remained

entirely independent of the Mapper classes that generate them. Where possible, it’s

good practice to keep the domain ignorant of the details of storage infrastructure. At its

crudest, of course, that means that domain objects should not dabble in SQL querying—

but many argue that it also means that domain objects should not explicitly load or save

either themselves or other objects and should not model either their behavior or fields

on underlying storage implementations.

Chapter 13 Database Patterns

525

Figure 13-2 shows the process by which a client class might use

VenueMapper::find() to acquire a Venue object, delegating the acquisition of a

SpaceCollection object to SpaceMapper.

Figure 13-2.  The VenueMapper object calls SpaceMapper to acquire a collection of
Space objects

�Consequences
The drawback with the approach I took to adding a collection of Space objects to a Venue

is that I had to take two trips to the database. In most instances, I think that is a price

worth paying. Where appropriate, however, you can perform joins or multiple queries

within a Mapper find method. Ultimately, the granularity of your Mapper classes will vary.

If an object type is stored solely by another, then you may consider only having a Mapper

for the container.

Perhaps the biggest drawback with the pattern is the sheer amount of slog involved

in creating concrete Mapper classes. However, there is a large amount of boilerplate code

that can be automatically generated. A neat way of generating the common methods for

Mapper classes is through reflection. You can query a domain object, discover its setter

and getter methods (perhaps in tandem with an argument naming convention), and

generate basic Mapper classes ready for amendment. This is how all the Mapper classes

featured in this chapter were initially produced.

Chapter 13 Database Patterns

526

One issue to be aware of with mappers is the danger of ripple loading—setting

off a cascade of queries simply by accessing a single domain object which maintains

references to other objects. Be aware as you create your mapper that the use of another

one to acquire a property for your object may be the tip of a very large iceberg. This

secondary mapper may itself use yet more in constructing its own object. If you are not

careful, you could find that what looks on the surface like a simple find operation sets off

tens of other similar operations. One answer to this problem is the Lazy Load pattern. We

will look at one implementation of this later in the chapter.

Also, note that the work in VenueMapper::doCreateObject() to acquire a correctly

populated SpaceCollection could be moved to Venue::getSpaces(), so that the

secondary database connection would only occur on demand. This can work well,

although you then have to provide the Venue object with a Mapper instance (or an

object which delegates to Mapper), making the domain objects a little more savvy about

persistence. This kind of coupling to the infrastructure is regarded as an anti-pattern by

some. It may be better to use Lazy Load and keep the Venue nicely ignorant.

You should also be aware of any guidelines your database application lays down for

building efficient queries and be prepared to optimize (on a database-by-database basis

if necessary). SQL statements that apply well to multiple database applications are nice;

fast applications are much nicer. Although introducing conditionals (or strategy classes) to

manage different versions of the same queries is a chore, and potentially ugly in the former

case, don’t forget that all this mucky optimization is neatly hidden away from client code.

The great strength of this pattern is the strong decoupling it effects between the

domain layer and the database. The Mapper objects take the strain behind the scenes and

can adapt to all sorts of relational twistedness.

�Lazy Load
Lazy Load is one of those core patterns most web programmers learn for themselves very

quickly, simply because it’s such an essential mechanism for avoiding massive database

hits, which is something we all want to do.

Note PHP 8.4, which will likely have been released by the time you read this,
will provide native support for lazy objects: https://wiki.php.net/rfc/
lazy-objects.

Chapter 13 Database Patterns

https://wiki.php.net/rfc/lazy-objects
https://wiki.php.net/rfc/lazy-objects

527

�The Problem
In the example that dominates this chapter, I set up a relationship between Venue,

Space, and Event objects. When a Venue object is created, it is automatically given

a SpaceCollection object. If I were to list every Space object in a Venue, this would

automatically kick off a database request to acquire all the Events associated with each

Space. These are stored in an EventCollection object. If I don’t wish to view any events,

I have nonetheless made several journeys to the database for no reason. With many

venues, each with two or three spaces, and with each space managing tens, perhaps

hundreds, of events, this is a costly process.

Clearly, we need to throttle back this automatic inclusion of objects in some

instances. Here is the code in SpaceMapper that acquires Event data:

// SpaceMapper

protected function doCreateObject(array $raw): Space

{

 $obj = new Space((int)$raw['id'], $raw['name']);

 $venmapper = $this->mfact->get(Venue::class);

 $venue = $venmapper->find((int)$raw['venue']);

 $obj->setVenue($venue);

 $eventmapper = $this->mfact->get(Event::class);

 $eventcollection = $eventmapper->findBySpaceId((int)$raw['id']);

 $obj->setEvents($eventcollection);

 return $obj;

}

Note the mfact reference here. This is simply a factory object, passed in to the

constructor, which Mapper instances can use to acquire other Mapper objects—saving the

need for a direct instantiation. Apart from that, there is no real innovation here.

The doCreateObject() method first acquires the Venue object with which the

space is associated. This is not costly because it is almost certainly already stored in a

component, the ObjectWatcher object, that has yet to appear in this chapter (though

there is a massive potential issue which I’ll cover below). Then the method calls the

Chapter 13 Database Patterns

528

EventMapper::findBySpaceId() method. This is where the system will do a lot of up-

front work that might not be needed. The EventMapper will get all rows associated with

the Space object’s ID and turn each of them into an Event object. Of course, if the Event

object contains its own list, then we’ll end up running quite the cascade of queries.

�Implementation
As you may know, a Lazy Load means to defer acquisition of a property until it is actually

requested by a client. In the case of a collection, we already have a convenient place to

site that deferred functionality. We can create a version of an EventCollection which

accepts a database statement and invokes it only when accessed.

I could create a stand-alone class for this—LazyEventCollection perhaps. Here,

though, I use an inline anonymous class:

// EventMapper

private function getDeferredCollection(\PDOStatement $stmt, array $vals):

EventCollection

{

 return new class ($stmt, $vals, $this) extends EventCollection {

 private array $items = [];

 private bool $executed = false;

 �public function __construct(private \PDOStatement $stmt, private

array $vals, private EventMapper $mapper)

 {

 }

 public function getIterator(): Traversable

 {

 return (function () {

 foreach ($this->items as $item) {

 yield $item;

 }

 if (! $this->executed) {

 $this->stmt->execute($this->vals);

 $this->executed = true;

 }

Chapter 13 Database Patterns

529

 while (($row = $this->stmt->fetch()) !== false) {

 $obj = $this->mapper->createObject($row);

 $this->items[] = $obj;

 yield $obj;

 }

 })();

 }

 };

}

This variation on the basic SpaceCollection functionality (you’ve seen the

equivalent VenueCollection) accepts a prepared PDOStatement, a list of parameters,

and a reference to the EventMapper. The getIterator() method returns a generator

function.

Note A generator function provides multiple values on demand (rather than
expensively acquiring all values up front and returning an array). A generator is
characterized by the yield keyword which resolves to a value and, rather than
exiting the function, pauses its business until the next value is required. Behind
the scenes, when a generator function is invoked, PHP will create a Generator
object (which implements Iterator), so that it can be transparently traversed by
mechanisms such as foreach.

The getIterator() method returns a generator function. This first attempts to

acquire cached objects (these will be present only after an initial traversal). For a first

iteration, $items will be empty, so the next order of business will be to perform the

database query. I set a flag so that this happens only once. Thereafter, the method

acquires each row on demand, calls back to the EventMapper to create the Event object,

caches the result in $items for future traversals, and returns it.

The result is a collection which is indistinguishable from a pre-populated equivalent,

but which will not touch the database until necessary.

I would probably end up extracting this inline class into its own type. However,

keeping it inline does provide some advantages. You might, for example, wish to pass a

closure with access to private EventMapper methods into your anonymous class. Either

way, the principle is the same.

Chapter 13 Database Patterns

530

Here is the method in EventMapper that instantiates the lazy collection:

// EventMapper

public function findBySpaceId(int $sid): EventCollection

{

 $stmt = $this->pdo->prepare(

 "SELECT * FROM event WHERE space=?"

);

 return $this->getDeferredCollection($stmt, [$sid]);

}

Notice that I created a local PDOStatement object here. I don’t want a common

statement object to be available to more than one collection!

Of course, it’s not only loading collections that can cause problems. A single domain

object, too, can represent an entire graph of dependencies and expensive processes.

There’s worse though—if two domain objects require references to each other in their

constructors, you can easily find yourself in an infinite recursion, in which object A

attempts to turn an ID for B into a full object. This would be fine if you don’t mind the

second database query. Except that the code for creating object B will itself attempt to

create an instance of, as yet uninstantiated, object A to pass to B::__construct(). At this

point, our code enters a hall of mirrors.

To fix this problem, I can create a virtual proxy class which self-hydrates only when

its public methods are accessed but which still can be treated as a full object in your

system. Once again, I’m going to use an anonymous class for this:

// SpaceMapper

public function getLazyProxy($id): Space

{

 return new class ($id, $this) extends Space {

 private Space $inst;

 �public function __construct(private int $id, private SpaceMapper

$mapper)

 {

 $this->id = $id;

 }

Chapter 13 Database Patterns

531

 public function inst(): Space

 {

 $this->inst ??= $this->mapper->find($this->id);

 return $this->inst;

 }

 public function getName(): string

 {

 return $this->inst()->getName();

 }

 // repeat for all public methods

 // ...

 };

}

This could be split out into a separate class. Either way, the principle is the same.

The proxy Space accepts a reference to the space ID and to the SpaceMapper. The inst()

method generates and stores the full Space implementation. It is only called, however,

when a public method is invoked, so the proxy object remains inert until needed.

�Consequences
Lazy Load requires some up-front work. The virtual proxy implementation, in particular,

is a pain, because you need to create proxy versions of all public methods and keep the

proxy and full fat versions of your domain objects in line with one another.

The benefit of loading only what you need when you need it is enormous, however.

It’s especially neat that these implementations remain entirely transparent to the

wider system.

�Identity Map
Do you remember the nightmare of pass-by-value errors in PHP 4? The sheer confusion

that ensued when two variables that you thought pointed to a single object turned out to

refer to different but cunningly similar ones? Well, the nightmare has returned.

Chapter 13 Database Patterns

532

�The Problem
Here’s a variation on some test code created to try out the Data Mapper example:

$mapper = new VenueMapper($pdo);

$venue = new Venue(-1, "The Likey Lounge");

$mapper->insert($venue);

$venue1 = $mapper->find($venue->getId());

$venue2 = $mapper->find($venue->getId());

$venue1->setName("The Something Else");

$venue2->setName("The Bibble Beer Likey Lounge");

print $venue->getName() . "\n";

print $venue1->getName() . "\n";

print $venue2->getName() . "\n";

The purpose of the original code was to demonstrate that an object that you add to

the database could also be extracted via a Mapper and would be identical. Identical, that

is, in every way except for being the same object. Here, I make the problem obvious by

working with three versions of a Venue row—an original and two instances extracted

from the database. I alter the names of my new instances and output all three names.

Here is my output:

The Likey Lounge

The Something Else

The Bibble Beer Likey Lounge

Remember that I am using the convention that a brand-new DomainObject (i.e., one

that does not yet exist in the database) should be instantiated with a –1 ID value. Thanks

to the VenueMapper::insert() method, my initial Venue object will be updated with the

ID value autogenerated by the database.

I sidestepped this issue earlier by assigning the new Venue object over the old, so I

did not end up with multiple clone-like objects. Unfortunately, you won’t always have

that kind of control over the situation. The same object may be referenced at several

Chapter 13 Database Patterns

533

different times within a single request. If you alter one version of it and save that to the

database, can you be sure that another version of the object (perhaps stored already in a

Collection object) won’t be written over your changes?

Not only are duplicate objects risky in a system, they also represent a considerable

overhead. Some popular objects could be loaded three or four times in a process, with all

but one of these trips to the database entirely redundant.

Fortunately, fixing this problem is relatively straightforward.

�Implementation
An Identity Map is simply an object whose task it is to keep track of all the objects in a

system and thereby help to ensure that nothing that should be one object becomes two:

class ObjectWatcher

{

 private array $all = [];

 private static ObjectWatcher $instance;

 private function __construct()

 {

 }

 public static function instance(): self

 {

 self::$instance ??= new ObjectWatcher();

 return self::$instance;

 }

 public function globalKey(DomainObject $obj): string

 {

 return get_class($obj) . "." . $obj->getId();

 }

Chapter 13 Database Patterns

534

 public static function add(DomainObject $obj): void

 {

 $inst = self::instance();

 $inst->all[$inst->globalKey($obj)] = $obj;

 }

 �public static function exists(string $classname, int $id):

?DomainObject

 {

 $inst = self::instance();

 $key = "{$classname}.{$id}";

 if (isset($inst->all[$key])) {

 return $inst->all[$key];

 }

 return null;

 }

}

For this implementation, I’m going to use a Singleton. However, I could just as easily

pass an instance of ObjectWatcher to key components, so long as I’m careful not to

create multiple versions.

Figure 13-3 shows how an Identity Map object might integrate with other classes you

have seen.

Figure 13-3.  An Identity Map

Chapter 13 Database Patterns

535

The main trick with an Identity Map is, pretty obviously, identifying objects. This

means that you need to tag each object in some way. There are a number of different

strategies you can take here. The database table key that all objects in the system already

use is no good because the ID is not guaranteed to be unique across all tables.

You could also use the database to maintain a global key table. Every time you

created an object, you would iterate the key table’s running total and associate the

global key with the object in its own row. Alternatively, you might use a UUID library to

generate unique IDs.

As you can see, I have gone for an approach which aligns with my use of

autogenerated table IDs. I concatenate the name of the object’s class with its table

ID. There cannot be two objects of type popp\ch13\batch03\Event with an ID of 4, so my

key of popp\ch13\batch03\Event.4 is safe enough for my purposes.

The globalKey() method handles the details of this. The class provides an add()

method for adding new objects. Each object is labeled with its unique key in an array

property, $all.

The exists() method accepts a class name and an $id rather than an object. I

don’t want to have to instantiate an object to see whether or not it already exists! The

method builds a key from this data and checks to see if it indexes an element in the $all

property. If an object is found, a reference is duly returned.

There is only one class where I work with the ObjectWatcher class in its role as an

Identity Map. The Mapper class provides functionality for generating objects, so it makes

sense to add the checking there:

// Mapper

public function find(int $id): ?DomainObject

{

 $old = $this->getFromMap($id);

 if (! is_null($old)) {

 return $old;

 }

 // work with db

 return $object;

}

Chapter 13 Database Patterns

536

abstract protected function targetClass(): string;

private function getFromMap($id): ?DomainObject

{

 return ObjectWatcher::exists(

 $this->targetClass(),

 $id

);

}

private function addToMap(DomainObject $obj): void

{

 ObjectWatcher::add($obj);

}

public function createObject($raw): ?DomainObject

{

 $old = $this->getFromMap((int)$raw['id']);

 if (! is_null($old)) {

 return $old;

 }

 $obj = $this->doCreateObject($raw);

 $this->addToMap($obj);

 return $obj;

}

public function insert(DomainObject $obj): void

{

 $this->doInsert($obj);

 $this->addToMap($obj);

}

The class provides two convenience methods: addToMap() and getFromMap(). These

save me the bother of remembering the full syntax of the static call to ObjectWatcher.

More importantly, they call down to the child implementation (e.g., VenueMapper) to get

the name of the class currently awaiting instantiation.

Chapter 13 Database Patterns

537

This is achieved by calling targetClass(), an abstract method that is implemented

by all concrete Mapper classes. It should return the name of the class that the Mapper is

designed to generate. Here is the SpaceMapper class’s implementation of targetClass():

// SpaceMapper

protected function targetClass(): string

{

 return Space::class;

}

Both find() and createObject() first check for an existing object by passing the

object ID to getFromMap(). If an object is found, it is returned to the client and method

execution ends. If, however, there is no version of this object in existence yet, object

instantiation goes ahead. In createObject(), the new object is passed to addToMap() to

prevent any clashes in the future.

So why am I going through part of this process twice, with calls to getFromMap() in

both find() and createObject()? The answer lies with lazy Collections. When these

generate objects, they do so by calling createObject(). I need to make sure that the

row encapsulated by a Collection object is not stale, as well as to ensure that the latest

version of the object is returned to the user.

�Consequences
As long as you use the Identity Map in all contexts in which objects are generated

from or added to the database, the possibility of duplicate objects in your process is

practically zero.

Of course, this only works within your process. Different processes will inevitably

access versions of the same object at the same time. It is important to think through the

possibilities for data corruption engendered by concurrent access. If there is a serious

issue, you may need to consider a locking strategy. You might also consider storing

objects in shared memory or using an external caching system like Redis. You can learn

about Redis at https://redis.io/ and about Predis, a PHP library which supports it, at

https://github.com/predis/predis.

Chapter 13 Database Patterns

https://redis.io/
https://github.com/predis/predis

538

�Unit of Work
When do you save your objects? Until I discovered the Unit of Work pattern (written up

by David Rice in Martin Fowler’s Patterns of Enterprise Application Architecture), I sent

out save orders from the presentation layer upon completion of a command. This turned

out to be an expensive design decision.

The Unit of Work pattern helps you to save only those objects that need saving.

�The Problem
One day, I echoed my SQL statements to the browser window to track down a problem

and had a shock. I found that I was saving the same data over and over again in the same

request. I had a neat system of composite commands, which meant that one command

might trigger several others, and each one was cleaning up after itself.

Not only was I saving the same object twice, I was saving objects that didn’t

need saving.

This problem, then, is similar in some ways to that addressed by Identity Map. That

problem involved unnecessary object loading; this problem lies at the other end of the

process. Just as these issues are complementary, so are the solutions.

�Implementation
To determine what database operations are required, you need to keep track of various

events that befall your objects. Probably the easiest (if not the best) to do that is in the

objects themselves.

You also need to maintain a list of objects scheduled for each database operation

(i.e., insert, update, delete). I am only going to cover insert and update operations here.

Where might be a good place to store a list of objects? It just so happens that I already

have an ObjectWatcher object, so I can develop that further:

class ObjectWatcher

{

 private array $dirty = [];

 private array $new = [];

 private static ?ObjectWatcher $instance = null;

Chapter 13 Database Patterns

539

 // Identity map methods unchanged

 // ...

 public static function addDirty(DomainObject $obj): void

 {

 $inst = self::instance();

 if (! in_array($obj, $inst->new, true)) {

 $inst->dirty[$inst->globalKey($obj)] = $obj;

 }

 }

 public static function addNew(DomainObject $obj): void

 {

 $inst = self::instance();

 // we don't yet have an id

 $inst->new[] = $obj;

 }

 public static function addClean(DomainObject $obj): void

 {

 $inst = self::instance();

 unset($inst->dirty[$inst->globalKey($obj)]);

 }

 public function performOperations(): void

 {

 foreach ($this->dirty as $key => $obj) {

 $obj->getFinder()->update($obj);

 }

 foreach ($this->new as $key => $obj) {

 $obj->getFinder()->insert($obj);

 }

 $this->dirty = [];

 $this->new = [];

 }

Chapter 13 Database Patterns

540

The ObjectWatcher class remains an Identity Map and continues to serve its

function of tracking all objects in a system via the $all property. This example simply

adds more functionality to the class.

You can see the Unit of Work aspects of the ObjectWatcher class in Figure 13-4.

Figure 13-4.  Unit of Work aspects in the ObjectWatcher class

Objects are described as “dirty” when they have been changed since extraction from

the database. A dirty object is stored in the $dirty array property (via the addDirty()

method) until the time comes to update the database. Client code may decide that a

dirty object should not undergo update for its own reasons. It can ensure this by marking

the dirty object as clean (via the addClean() method). As you might expect, a newly

created object should be added to the $new array (via the addNew() method). Objects in

this array are scheduled for insertion into the database. I am not implementing delete

functionality in these examples, but the principle should be clear enough.

The addDirty() and addNew() methods each add an object to their respective

array properties. addClean(), however, removes the given object from the $dirty array,

marking it as no longer pending update.

When the time finally comes to process all objects stored in these arrays, the

performOperations() method should be invoked (probably from the controller class or

its helper). This method loops through the $dirty and $new arrays, either updating or

adding the objects.

The ObjectWatcher class now provides a mechanism for updating and

inserting objects. The client code is still missing a means of adding objects to the

ObjectWatcher object.

Because it is these objects that are operated upon, they are the easiest (again,

arguably, not the best) place to perform this notification. Here are some utility methods I

can add to the DomainObject class—notice the constructor method in particular:

Chapter 13 Database Patterns

541

abstract class DomainObject

{

 public function __construct(private int $id = -1)

 {

 if ($id < 0) {

 $this->markNew();

 }

 }

 abstract public function getFinder(): Mapper;

 public function getId(): int

 {

 return $this->id;

 }

 public function setId(int $id): void

 {

 $this->id = $id;

 }

 public function markNew(): void

 {

 ObjectWatcher::addNew($this);

 }

 public function markDirty(): void

 {

 ObjectWatcher::addDirty($this);

 }

 public function markClean(): void

 {

 ObjectWatcher::addClean($this);

 }

}

Chapter 13 Database Patterns

542

As you can see, the constructor method marks the current object as new (by calling

markNew()) if no $id property has been passed to it.

Note R emember that our convention for an uninserted database row is an ID
of –1. This allows us to always demand an integer value and then test whether the
value is greater than zero in order to determine whether the row data should be
treated as fresh. Of course, you might opt to use a null value for new data instead
and change the constructor signature in DomainObject to private ?int $id
= null. Alternatively, you may allocate a unique ID (probably a UUID) for all new
objects—in which case you would need to add the object to the ObjectWatcher
as new at that level, since the constructor itself won’t be able to learn anything
from the ID. Later on, we’ll split object creation away from Mapper classes, and
this will provide a good central loction for this.

This qualifies as magic of a sort and should be treated with some caution. As

it stands, this code slates a new object for insertion into the database without any

intervention from the object creator. Imagine a coder new to your team writing a

throwaway script to test some domain behavior. There’s no sign of persistence code

there, so all should be safe enough, shouldn’t it? Now imagine these test objects, perhaps

with interesting throwaway names, making their way into persistent storage. Magic is

nice, but clarity is nicer. The examples in this section represent a creeping dependency

relationship between domain objects and infrastructure which we’ll refactor soon.

The only thing remaining to do is to add markDirty() invocations to methods in the

Domain Model classes. Remember, a dirty object is one that has been changed since it

was retrieved from the database. This is another aspect of this pattern that has a slightly

fishy odor. Clearly, it’s important to ensure that all methods that mess up the state of an

object are marked dirty, but the manual nature of this task means that the possibility of

human error is all too real. It also represents tight coupling between the DomainObject

and the infrastructure.

Here are some methods in the Space object that call markDirty():

// Space

public function setVenue(Venue $venue): void

{

Chapter 13 Database Patterns

543

 $this->venue = $venue;

 $this->markDirty();

}

public function setName(string $name): void

{

 $this->name = $name;

 $this->markDirty();

}

Here is some sample code for adding a new Venue and Space to the database:

// a -1 id value represents a brand new Venue or Space

$venue = new Venue(-1, "The Green Trees");

$venue->addSpace(

 new Space(-1, 'The Space Upstairs')

);

$venue->addSpace(

 new Space(-1, 'The Bar Stage')

);

// this could be called from the controller or a helper class

ObjectWatcher::instance()->performOperations();

I have added some debug code to the ObjectWatcher, so you can see what happens

at the end of the request:

inserting The Green Trees

inserting The Space Upstairs

inserting The Bar Stage

Because my Venue and Space objects were instantiated with IDs of –1, they were

treated as new by DomainObject. Internally, in each case, the domain object constructor

called DomainObject::markNew() which then called ObjectWatcher::addNew(). When O

bjectWatcher::performOperations() was eventually called, these objects were inserted

into the database (rather than updated there), and my debug output was triggered.

Chapter 13 Database Patterns

544

Because a high-level controller object usually calls the performOperations()

method, all you need to do in most cases is create or modify an object, and the Unit of

Work class (ObjectWatcher) will do its job just once at the end of the request.

�Consequences
This pattern is very useful, but there are a few issues to be aware of. You need to be sure

that all modify operations actually do mark the object in question as dirty. Failing to do

this can result in hard-to-spot bugs.

You may have noticed a number of caveats and warnings in this section. There

are some real problems with the implementation of Unit of Work as I’ve developed

it here. First of all, building upon Identity Map, I am using a Singleton instance of

ObjectWatcher. This may be justified, but the global nature of Singleton objects and

their natural tendency to obscure component coupling make them less than ideal. In

order for the ObjectWatcher to update or insert amended or new objects, it assumes that

classes have a mapper instance (or, at least, access to a storage mechanism) available

via getFinder(). In my implementation, I have been using a Registry, to acquire

the Mapper instance. Domain objects also need access to ObjectWatcher and mark

themselves new or dirty. All of these design decisions have rendered domain objects

less independent and more tightly coupled with storage logic. The need to manually

announce changes to state within domain objects is a chore and a likely source of bugs

as the notification is inevitably omitted.

These problems are not intrinsic to either Identity Map or Unit of Work. Rather, they

are shortcuts suggested by the patterns.

In the next section, we’ll take a breath—as one should every now and then during

development—and factor out some of these issues.

�Refactoring Tight Coupling
I identified some issues that crept in to my classes as I implemented Identity Map and

Unit of Work. Now, let’s look at some ways to address them.

First of all, various components need access to Mappers. I have been instantiating

these directly, or, in the case of domain objects, I have been using a Registry class on

the sly:

Chapter 13 Database Patterns

545

// Venue

public function getFinder(): VenueMapper

{

 return Registry::instance()->getVenueMapper();

}

Because my DomainObject classes know about their own Mapper objects, the

ObjectWatcher can simply ask for the Mapper instance by calling getFinder():

// ObjectWatcher

public function performOperations(): void

{

 foreach ($this->dirty as $key => $obj) {

 $obj->getFinder()->update($obj);

 }

 foreach ($this->new as $key => $obj) {

 $obj->getFinder()->insert($obj);

 }

 $this->dirty = [];

 $this->new = [];

}

It looks neat, but asking a DomainObject for its mapper is probably not the right

approach. Here, I take another approach by creating a Mapper factory:

class MapperFactory

{

 public readonly ObjectWatcher $watcher;

 public function __construct(

 public readonly \PDO $pdo

) {

Chapter 13 Database Patterns

546

 $this->watcher = new ObjectWatcher($this);

 }

 public function get(string $class): Mapper

 {

 return match ($class) {

 (Venue::class) => new VenueMapper($this),

 (Space::class) => new SpaceMapper($this),

 (Event::class) => new EventMapper($this)

 };

 }

}

We may want to do something in future about that hard-coded mapping of target

classes to Mapper classes, but, for now, this is an improvement. The MapperFactor

accepts a PDO object which it makes available in a public read-only property. It also

instantiates and stores an ObjectWatcher (which is no longer a singleton). In passing

the current instance of itself to all Mapper classes, it provides access to both the

ObjectWatcher and the PDO as well as all other Mapper classes. We have alredy seen a

sneak preview of this cross-Mapper access in action from within a Mapper. Here’s a fuller

version:

class VenueMapper extends Mapper

{

 // ...

 public function __construct(private MapperFactory $mfact)

 {

 �// Parent is abstract, we can change the constructor params without

impacting client code

 parent::__construct($mfact->pdo, $mfact->watcher);

 // ...

 }

Chapter 13 Database Patterns

547

 // ...

 protected function doCreateObject(array $array): Venue

 {

 $obj = new Venue((int)$array['id'], $array['name']);

 $spacemapper = $this->mfact->get(Space::class);

 $spacecollection = $spacemapper->findByVenue($array['id']);

 $obj->setSpaces($spacecollection);

 return $obj;

 }

 // ...

}

The VenueMapper object gets an instance of the ObjectWatcher from MapperFactory

and passes it on to the Mapper constructor. Thanks to this requirement, Mapper, and all

derived objects, can work with an ObjectWatcher without having to access a singleton.

In doCreateObject(), the VenueMapper is able to access a SpaceMapper in order to get a

collection.

What about the domain objects? We could pass an instance of MapperFactory to

them too, but that would not solve the biggest issue. These classes have increasingly

begun to focus on persistence issues rather than their core responsibilities. Perhaps it is

time to cut the knot entirely.

I restore my DomainObject class to its minimal state:

abstract class DomainObject

{

 public function __construct(private int $id = -1)

 {

 }

 public function getId(): int

 {

 return $this->id;

 }

Chapter 13 Database Patterns

548

 public function setId(int $id): void

 {

 $this->id = $id;

 }

}

But now, I have a new problem. Two problems, in fact. Firstly, how do I detect

changes to stored domain objects? Secondly, what do I do about new objects now that

I don’t have a magic detector in the DomainObject constructor? The second problem is

relatively easy. We already have a createObject() method in every Mapper class. I will

be splitting that off into its own class later on. If we make an object factory the canonical

mechanism for creating a new domain object, we have the perfect site for a call to

ObjectWatcher::addNew().

Detecting change is a little more tricky. Here are some extracts from the new non-

singleton ObjectWatcher:

class ObjectWatcher

{

 // ...

 public function __construct(private MapperFactory $mapperfactory)

 {

 }

 // ...

 public function add(DomainObject $obj): DomainObject

 {

 �$this->all[$this->globalKey($obj)] = [$obj, $this-

>simpleHash($obj)];

 return $obj;

 }

 public function simpleHash(object $obj): string

 {

 $rclass = new \ReflectionClass($obj);

 $encodeme = [];

Chapter 13 Database Patterns

549

 do {

 foreach ($rclass->getProperties() as $property) {

 �$encodeme[$property->getName()] ??= $property-

>getValue($obj);

 }

 } while ($rclass = $rclass->getParentClass());

 return md5(json_encode($encodeme, 0, 2));

 }

 public function performOperations(): void

 {

 foreach ($this->all as $objandhash) {

 [$obj, $hash] = $objandhash;

 $key = $this->globalKey($obj);

 if (isset($this->new[$key])) {

 continue;

 }

 if ($hash != $this->simpleHash($obj)) {

 $finder = $this->mapperfactory->get(get_class($obj));

 $finder->update($obj);

 $this->add($obj);

 }

 }

 foreach ($this->new as $key => $obj) {

 $finder = $this->mapperfactory->get(get_class($obj));

 $finder->insert($obj);

 }

 $this->new = [];

 }

}

Because this class has been given an instance of MapperFactory, it no longer needs

to call DomainObject::getFinder() to acquire a Mapper. The main issue in this example,

though, is change management. I implement a very basic object hashing mechanism

in the simpleHash() method. This uses reflection to build an array of object properties

Chapter 13 Database Patterns

550

which it then passes to json_encode() which I invoke with a third argument, 2. This

instructs the function to limit its descent to two levels only. I pass the result of this to

md5(). This is crude, and we’d want to refine it, but it proves the concept. Now, when we

add an object to $all, we store it alongside a hash generated by this method. Later, when

the time comes to work out what has changed, we can simply compare a recent hash

with the original.

In order to make the change detection more reliable, we may want to amend

the splendid isolation of DomainObject classes a little and have them indicate core

properties that should be tested for change. For now, though, this has won me

what I need.

So here are the results of my interim refactor:

•	 Domain objects know nothing about the persistence layer.

•	 Domain objects no longer have to watch changes in their own state.

•	 I am no longer using a singleton Service Locator (though, admittedly,

I’m passing a factory around).

•	 Mappers are no longer directly instantiating instances of their peers.

•	 ObjectWatcher is no longer a singleton (though, again, that direct

instantiation in MapperFactory might warrant further refactoring).

This is not perfect, but I have course corrected to my current satisfaction. We can

proceed on this basis!

�Domain Object Factory
The Data Mapper pattern is neat, but it does have some drawbacks. In particular,

a Mapper class takes a lot onboard. It composes SQL statements; it converts arrays

to objects; and, of course, it converts objects back to arrays, ready to add data to

the database. This versatility makes a Mapper class convenient and powerful. It can

reduce flexibility to some extent, however. This is especially true when a mapper must

handle many different kinds of queries or when other classes need to share a Mapper’s

functionality. For the remainder of this chapter, I will decompose Data Mapper,

breaking it down into a set of more focused patterns. These finer-grained patterns

combine to duplicate the overall responsibilities managed in Data Mapper, and some

Chapter 13 Database Patterns

551

or all can be used in conjunction with that pattern. They are well defined by Clifton

Nock in Data Access Patterns (Addison-Wesley, 2003), and I have used his names where

overlaps occur.

Let’s start with a core function: the generation of domain objects.

�The Problem
You have already encountered a situation in which the Mapper class displays a natural

fault line. The createObject() method is used internally by Mapper, of course, but

Collection objects also need it to create domain objects on demand. This requires us

to pass along a Mapper reference when creating a Collection object. Although there’s

nothing wrong with allowing callbacks (as you have seen in the Visitor and Observer

patterns), it’s neater to move responsibility for domain object creation into its own type.

This can then be shared by Mapper and Collection classes alike.

The Domain Object Factory is described in Data Access Patterns.

�Implementation
Imagine a set of Mapper classes, broadly organized so that each faces its own domain

object. The Domain Object Factory pattern simply requires that you extract the

createObject() method from each Mapper and place it in its own class in a parallel

hierarchy. Figure 13-5 shows these new classes.

Figure 13-5.  Domain Object Factory classes

Chapter 13 Database Patterns

552

Domain Object Factory classes have a single core responsibility, and as such they

tend to be simple:

abstract class DomainObjectFactory

{

 abstract public function createObject(array $row): DomainObject;

}

Although it can be used to manage other object generation tasks, at the core the

DomainObjectFactory defines a single abstract method: createObject().

Here’s a concrete implementation:

class VenueObjectFactory extends DomainObjectFactory

{

 public function createObject(array $row): Venue

 {

 $obj = new Venue((int)$row['id'], $row['name']);

 return $obj;

 }

}

Of course, you might also want to cache objects to prevent duplication and prevent

unnecessary trips to the database, as I did within the Mapper class. You could move

the addToMap() and getFromMap() methods here, or you could build an observer

relationship between the ObjectWatcher and your createObject() methods. I’ll leave

the details up to you. Just remember, it’s up to you to prevent clones of your domain

objects running amok in your system!

�Consequences
The Domain Object Factory decouples database row data from object field data. You can

perform any number of adjustments within the createObject() method. This process is

transparent to the client, whose responsibility it is to provide the raw data.

Chapter 13 Database Patterns

553

By snapping this functionality away from the Mapper class, it becomes available to

other components. Here’s an altered Collection implementation, for example:

public function getCollection(array $raw): VenueCollection

{

 �return new class ($raw, $this->getDomainObjectFactory()) extends

VenueCollection {

 �public function __construct(private array $raw, private

DomainObjectFactory $dof)

 {

 }

 public function getIterator(): Traversable

 {

 return (function () {

 for ($x = 0; $x < count($this->raw); $x++) {

 $item = $this->raw[$x];

 if (! is_object($this->raw[$x])) {

 �$this->raw[$x] = $this->dof->createObject($this

->raw[$x]);

 }

 yield $this->raw[$x];

 }

 })();

 }

 };

}

This is a somewhat less lazy Lazy Load implementation. It accepts a database result

set at the start, but only creates objects from this data on demand. To do this, it acquires

a VenueObjectFactory instance and calls createObject().

Because Domain Object Factories are decoupled from the database, they

can be used for testing more effectively. I might, for example, create a mock

DomainObjectFactory to test the Collection code. It’s much easier to do this than it

would be to emulate an entire Mapper object (you can read more about mock and stub

objects in Volume 2).

Chapter 13 Database Patterns

554

One general effect of breaking down a monolithic component into composable

parts is an unavoidable proliferation of classes. The potential for confusion should not

be underestimated. Even when every component and its relationship with its peers is

logical and clearly defined, I often find it challenging to chart packages containing tens

of similarly named components.

This is going to get worse before it gets better. Already, in the example above, you

can see another fault line appearing in Data Mapper. The Mapper::getCollection()

method was convenient; but once again, other classes might want to acquire a

Collection object for a domain type, without having to go to a database-facing class. So,

now I have two related abstract components: Collection and DomainObjectFactory.

According to the domain object I am working with, I will require a different set of

concrete implementations: VenueCollection and VenueObjectFactory, for example,

or SpaceCollection and SpaceObjectFactory. This problem leads us directly to the

Abstract Factory pattern, of course.

Figure 13-6 shows the PersistenceFactory class. I’ll be using this to organize the

various components that make up the next few patterns.

Figure 13-6.  Using the Abstract Factory pattern to organize related components

Chapter 13 Database Patterns

555

�The Identity Object
The mapper implementation I have presented here suffers from a certain inflexibility

when it comes to locating domain objects. Finding an individual object is no problem.

Finding all relevant domain objects is just as easy. Anything in between, though, requires

you to add a special method to craft the query (EventMapper::findBySpaceId() is a case

in point).

An Identity Object (also called a Data Transfer Object by Alur et al.) encapsulates

query criteria, thereby decoupling the system from database syntax.

�The Problem
It’s hard to know ahead of time what you or other client coders are going to need to

search for in a database. The more complex a domain object, the greater the number of

filters you might need in your query. You can address this problem to some extent by

adding more methods to your Mapper classes on a case-by-case basis. This is not very

flexible, of course, and can involve duplication as you are required to craft many similar

but differing queries both within a single Mapper class and across the mappers in your

system. You can also support filter and sort arrays—though then you have to put work

into validating these and incorporating them into your queries.

An Identity Object encapsulates the conditional aspect of a database query in such

a way that different combinations can be combined at runtime. Given a domain object

called Person, for example, a client might be able to call methods on an Identity Object

in order to specify a male, aged above 30 and below 40, who is less than 6 feet tall. The

class should be designed so that conditions can be combined flexibly (perhaps you’re

not interested in your target’s height, or maybe you want to remove the lower age limit).

An Identity Object limits a client coder’s options to some extent. If you haven’t written

code to accommodate an income field, then this cannot be factored into a query without

adjustment. The ability to apply different combinations of conditions does provide a step

forward in flexibility, however. Let’s see how this might work.

�Implementation
An Identity Object will typically consist of a set of methods you can call to build query

criteria. Having set the object’s state, you can pass it on to a method responsible for

constructing the SQL statement.

Chapter 13 Database Patterns

556

Figure 13-7 shows a typical set of IdentityObject classes.

Figure 13-7.  Managing query criteria with Identity Objects

You can use a base class to manage common operations and to ensure that your

criteria objects share a type. Here’s an implementation that is simpler even than the

classes shown in Figure 13-7:

abstract class IdentityObject

{

 private ?string $name = null;

 public function setName(string $name): void

 {

 $this->name = $name;

 }

 public function getName(): ?string

 {

 return $this->name;

 }

}

Chapter 13 Database Patterns

557

Nothing’s too taxing here. The classes simply store the data provided and give

it up on request. Here’s some code that might use EventIdentityObject to build a

WHERE clause:

$idobj = new EventIdentityObject();

$idobj->setMinimumStart(time());

$idobj->setName("A Fine Show");

$comps = [];

$name = $idobj->getName();

if (! is_null($name)) {

 $comps[] = "name = '{$name}'";

}

$minstart = $idobj->getMinimumStart();

$comps[] = "start > {$minstart}";

$start = $idobj->getStart();

if (! is_null($start)) {

 $comps[] = "start = '{$start}'";

}

$clause = " WHERE " . implode(" and ", $comps);

print "{$clause}\n";

This model will work well enough, but it does not suit my lazy soul. For a large

domain object, the sheer number of getters and setters you would have to build is

daunting. Then, following this model, you’d have to write code to output each condition

in the WHERE clause. I couldn’t even be bothered to handle all cases in my example code

(no setMaximumStart() method for me), so imagine my joy at building Identity Objects

in the real world.

Luckily, there are various strategies you can deploy to automate both the gathering of

data and the generation of database queries. In the past, for example, I have populated

associative arrays of field names in the base class. These were themselves indexed

by comparison types: greater than, equal, less than, or equal to. The child classes

Chapter 13 Database Patterns

558

provide convenience methods for adding this data to the underlying structure. The

SQL builder can then loop through the structure to build its query dynamically. I’m

sure implementing such a system is just a matter of coloring in, so I’m going to look at a

variation on it here.

I will use a fluent interface. That is a class whose setter methods return an instance

of the object they were called on, allowing your users to chain objects together in fluid,

language-like way. This will satisfy my laziness, but still, I hope, give the client coder a

flexible way of defining criteria.

The easiest way to understand how this will work is to start with some client code

and work backward. Here is an Identity Object in use:

$idobj = new IdentityObject();

$idobj->field("name")

 ->eq("'The Good Show'")

 ->field("start")

 ->gt(time())

 ->lt(time() + (24 * 60 * 60));

Notice the way that the client code is almost sentence-like: field "name" equals "The

Good Show" and field "start" is greater than the current time, but less than a day away.

Let’s dig in to an implementation. I start by creating Field, a class designed to hold

comparison data for each field that will end up in the WHERE clause:

class Field

{

 protected array $comps = [];

 protected bool $incomplete = false;

 // sets up the field name (age, for example)

 public function __construct(protected string $name)

 {

 }

 // add the operator and the value for the test

 // (> 40, for example) and add to the $comps property

Chapter 13 Database Patterns

559

 public function addTest(string $operator, $value): void

 {

 $this->comps[] = [

 'name' => $this->name,

 'operator' => $operator,

 'value' => $value

];

 }

 // comps is an array so that we can test one field in more than one way

 public function getComps(): array

 {

 return $this->comps;

 }

 // if $comps does not contain elements, then we have

 // comparison data and this field is not ready to be used in

 // a query

 public function isIncomplete(): bool

 {

 return empty($this->comps);

 }

}

This simple class accepts and stores a field name. Through the addTest()

method, the class builds an array of operator and value elements. This allows us

to maintain more than one comparison test for a single field. Now, here’s the new

IdentityObject class:

class IdentityObject

{

 protected ?Field $currentfield = null;

 protected array $fields = [];

 private array $enforce = [];

Chapter 13 Database Patterns

560

 // an identity object can start off empty, or with a field

 �public function __construct(?string $field = null, ?array

$enforce = null)

 {

 if (! is_null($enforce)) {

 $this->enforce = $enforce;

 }

 if (! is_null($field)) {

 $this->field($field);

 }

 }

 // field names to which this is constrained

 public function getObjectFields(): array

 {

 return $this->enforce;

 }

 // kick off a new field.

 // will throw an error if a current field is not complete

 // (ie age rather than age > 40)

 // this method returns a reference to the current object

 // allowing for fluent syntax

 public function field(string $fieldname): self

 {

 if (! $this->isVoid() && $this->currentfield->isIncomplete()) {

 throw new \Exception("Incomplete field");

 }

 $this->enforceField($fieldname);

 if (isset($this->fields[$fieldname])) {

 $this->currentfield = $this->fields[$fieldname];

 } else {

 $this->currentfield = new Field($fieldname);

 $this->fields[$fieldname] = $this->currentfield;

 }

Chapter 13 Database Patterns

561

 return $this;

 }

 // does the identity object have any fields yet

 public function isVoid(): bool

 {

 return empty($this->fields);

 }

 // is the given fieldname legal?

 public function enforceField(string $fieldname): void

 {

 �if (! in_array($fieldname, $this->enforce) && ! empty($this-

>enforce)) {

 $forcelist = implode(', ', $this->enforce);

 �throw new \Exception("{$fieldname} not a legal field

($forcelist)");

 }

 }

 // add an equality operator to the current field

 // ie 'age' becomes age=40

 // returns a reference to the current object (via operator())

 public function eq($value): self

 {

 return $this->operator("=", $value);

 }

 // less than

 public function lt($value): self

 {

 return $this->operator("<", $value);

 }

Chapter 13 Database Patterns

562

 // greater than

 public function gt($value): self

 {

 return $this->operator(">", $value);

 }

 // does the work for the operator methods

 // gets the current field and adds the operator and test value

 // to it

 private function operator(string $symbol, $value): self

 {

 if ($this->isVoid()) {

 throw new \Exception("no object field defined");

 }

 $this->currentfield->addTest($symbol, $value);

 return $this;

 }

 // return all comparisons built up so far in an associative array

 public function getComps(): array

 {

 $ret = [];

 foreach ($this->fields as $field) {

 $ret = array_merge($ret, $field->getComps());

 }

 return $ret;

 }

}

Let’s look again at that client code and use it as a way to work through the

implementation above:

$idobj = new IdentityObject();

$idobj->field("name")

 ->eq("'The Good Show'")

Chapter 13 Database Patterns

563

 ->field("start")

 ->gt(time())

 ->lt(time() + (24 * 60 * 60));

I begin by creating the IdentityObject. Calling field() causes a Field object to

be created and assigned as the $currentfield property. Notice that field() returns

a reference to the identity object. This allows us to hang more method calls off the

back of the call to field(). The comparison methods eq(), gt(), and so forth each call

operator(). This checks that there is a current Field object to work with; and if so, it

passes along the operator symbol and the provided value. Once again, eq() returns an

object reference, so that I can add new tests or call add() again to begin work with a

new field.

Of course, by losing those hard-coded methods, I also lose some safety. This is what

the $enforce array is designed for. Subclasses can invoke the base class with a set of

constraints:

class EventIdentityObject extends IdentityObject

{

 public function __construct(string $field = null)

 {

 parent::__construct(

 $field,

 ['name', 'id', 'start', 'duration', 'space']

);

 }

}

The EventIdentityObject class now enforces a set of fields. Here’s what happens if I

try to work with a random field name:

try {

 $idobj = new EventIdentityObject();

 $idobj->field("banana")

 ->eq("The Good Show")

 ->field("start")

Chapter 13 Database Patterns

564

 ->gt(time())

 ->lt(time() + (24 * 60 * 60));

 print $idobj;

} catch (\Exception $e) {

 print $e->getMessage();

}

Here is the output:

banana not a legal field (name, id, start, duration, space)

�Consequences
Identity objects allow client coders to define search criteria without reference to a

database query. They also save you from having to build special query methods for the

various kinds of find operations your user might need.

Part of the point of an Identity Object is to shield users from the details of the

database. It’s important, therefore, that if you build an automated solution like the fluent

interface in the preceding example, the labels you use should refer explicitly to your

domain objects and not to the underlying column names. Where these differ, you should

construct a mechanism for aliasing between them.

Where you use specialized entity objects, one for each domain object, it is useful to

use an Abstract Factory (like PersistenceFactory described in the previous section) to

serve them up along with other related objects.

Now that I can represent search criteria, I can use this to build the query itself.

�The Selection Factory and Update Factory Patterns
I have already pried a few responsibilities from the Mapper classes. With these patterns

in place, a Mapper does not need to create objects or collections. With query criteria

handled by Identity Objects, it must no longer manage multiple variations on the find()

method. The next stage is to remove responsibility for query creation.

Chapter 13 Database Patterns

565

�The Problem
Any system that speaks to a database must generate queries, but the system itself is

organized around domain objects and business rules rather than the database. Many of

the patterns in this chapter can be said to bridge the gap between the tabular database

and the more organic, treelike structures of the domain. There is, however, a moment of

translation—the point at which domain data is transformed into a form that a database

can understand. It is at this point that the true decoupling takes place.

�Implementation
Of course, you have seen some of this functionality before in the Data Mapper pattern. In

this specialization, though, I can benefit from the additional functionality afforded by the

Identity Object pattern. This will tend to make query generation more dynamic, simply

because the potential number of variations is so high.

Figure 13-8 shows my simple selection and update factories.

Chapter 13 Database Patterns

566

Figure 13-8.  Selection and update factories

Selection and update factories are, once again, typically organized so that they

parallel the domain objects in a system (possibly mediated via Identity Objects).

Because of this, they are also candidates for my PersistenceFactory: the Abstract

Factory I maintain as a one-stop shop for domain object persistence tools. Here is an

implementation of a base class for update factories:

Chapter 13 Database Patterns

567

abstract class UpdateFactory

{

 abstract public function newUpdate(DomainObject $obj): array;

 �protected function buildStatement(string $table, array $fields, ?array

$conditions = null): array

 {

 $terms = array();

 if (! is_null($conditions)) {

 $query = "UPDATE {$table} SET ";

 $query .= implode(" = ?,", array_keys($fields)) . " = ?";

 $terms = array_values($fields);

 $cond = [];

 $query .= " WHERE ";

 foreach ($conditions as $key => $val) {

 $cond[] = "$key = ?";

 $terms[] = $val;

 }

 $query .= implode(" AND ", $cond);

 } else {

 $qs = [];

 $query = "INSERT INTO {$table} (";

 $query .= implode(",", array_keys($fields));

 $query .= ") VALUES (";

 foreach ($fields as $name => $value) {

 $terms[] = $value;

 $qs[] = '?';

 }

 $query .= implode(",", $qs);

 $query .= ")";

 }

Chapter 13 Database Patterns

568

 return [$query, $terms];

 }

}

In interface terms, the only thing that this class does is define the newUpdate()

method. When implemented by a child class, this will return an array containing an SQL

query and a list of terms to apply to it. The buildStatement() method does the generic

work involved in building the update query, with the work specific to individual domain

objects handled by child classes. buildStatement() accepts a table name, an associative

array of fields and their values, and a similar associative array of conditions. The method

combines these to create the query. Here’s a concrete UpdateFactory class:

class VenueUpdateFactory extends UpdateFactory

{

 public function newUpdate(DomainObject $obj): array

 {

 // note type checking removed

 $id = $obj->getId();

 $cond = null;

 $values['name'] = $obj->getName();

 if ($id > 0) {

 $cond['id'] = $id;

 }

 return $this->buildStatement("venue", $values, $cond);

 }

}

In this implementation, I work directly with a DomainObject. In systems where one

might operate on many objects at once in an update, I could use an Identity Object to

define the set on which I would like to act. This would form the basis of the $cond array,

which here only holds id data.

newUpdate() distills the data required to generate a query. This is the process by

which object data is transformed to database information. Notice the check on the

value of $id. If the ID is set to –1, then this is a new domain object, and we will not

Chapter 13 Database Patterns

569

provide a conditional value buildStatement(). buildStatement() uses the presence

of conditional statements to determine whether or not to generate an INSERT or

an UPDATE.

Notice that the newUpdate() method will accept any DomainObject. This is so that

all UpdateFactory classes can share an interface. It would be a good idea to add some

further type checking to ensure the wrong object is not passed in.

Here’s some quick code to try out the VenueUpdateFactory class:

$vuf = new VenueUpdateFactory();

print_r($vuf->newUpdate(new Venue(334, "The Happy Hairband")));

Now to generate an INSERT statement:

$vuf = new VenueUpdateFactory();

print_r($vuf->newUpdate(new Venue(-1, "The Lonely Hat Hive")));

Here’s the output:

Array

(

 [0] => INSERT INTO venue (name) VALUES (?)

 [1] => Array

 (

 [0] => The Lonely Hat Hive

)

)

You can see a similar structure for SelectionFactory classes. Here is the base class:

abstract class SelectionFactory

{

 abstract public function newSelection(IdentityObject $obj): array;

 public function buildWhere(IdentityObject $obj): array

 {

 if ($obj->isVoid()) {

Chapter 13 Database Patterns

570

 return ["", []];

 }

 $compstrings = [];

 $values = [];

 foreach ($obj->getComps() as $comp) {

 $compstrings[] = "{$comp['name']} {$comp['operator']} ?";

 $values[] = $comp['value'];

 }

 $where = "WHERE " . implode(" AND ", $compstrings);

 return [$where, $values];

 }

}

Once again, this class defines the public interface in the form of an abstract class.

newSelection() expects an IdentityObject. Also requiring an IdentityObject,

but local to the type, is the utility method, buildWhere(). This uses the

IdentityObject::getComps() method to acquire the information necessary to build a

WHERE clause, as well as to construct a list of values, both of which it returns in a two-

element array.

Here is a concrete SelectionFactory class:

class VenueSelectionFactory extends SelectionFactory

{

 public function newSelection(IdentityObject $obj): array

 {

 $fields = implode(',', $obj->getObjectFields());

 $core = "SELECT $fields FROM venue";

 list($where, $values) = $this->buildWhere($obj);

 return [$core . " " . $where, $values];

 }

}

Chapter 13 Database Patterns

571

This builds the core of the SQL statement and then calls buildWhere() to

add the conditional clause. In fact, the only thing that differs from one concrete

SelectionFactory to another in my test code is the name of the table. If I don’t find that

I require unique specializations soon, I will refactor these subclasses out of existence

and use a single concrete SelectionFactory. This would query the table name from the

PersistenceFactory.

Again, here is some client code:

$vio = new VenueIdentityObject();

$vio->field("name")->eq("The Happy Hairband");

$vsf = new VenueSelectionFactory();

print_r($vsf->newSelection($vio));

�Consequences
The use of a generic Identity Object implementation makes it easier to use a single

parameterized SelectionFactory class. If you opt for hard-coded Identity Objects—that

is, Identity Objects which consist of a list of getter and setter methods—you are more

likely to have to build an individual SelectionFactory per domain object.

One of the great benefits of query factories combined with Identity Objects is the

range of queries you can generate. This can also cause caching headaches. These

methods generate queries on the fly, and it’s difficult to know when you’re duplicating

effort. It may be worth building a means of comparing Identity Objects, so that you can

return a cached string without all that work. A similar kind of database statement pooling

might be considered at a higher level, too.

Another issue with the combination of patterns I have presented in the latter part of

this chapter is the fact that they’re flexible, but they’re not that flexible. By this, I mean

they are designed to be extremely adaptable within limits. There is not much room for

exceptional cases here, though. Mapper classes, while more cumbersome to create and

maintain, are very accommodating of any kind of performance kludge or data juggling

you might need to perform behind their clean APIs. These more elegant patterns suffer

from the problem that, with their focused responsibilities and emphasis on composition,

it can be hard to cut across the cleverness and do something dumb but powerful.

Chapter 13 Database Patterns

572

Luckily, I have not lost my higher-level interface—there’s still a controller level where

I can head cleverness off at the pass if necessary.

�What’s Left of Data Mapper Now?
So, I have stripped object, query, and collection generation from Data Mapper, to say

nothing of the management of conditionals. What could possibly be left of it? Well,

something that is very much like a mapper is needed in vestigial form. I still need an

object that sits above the others I have created and coordinates their activities. It can

help with caching duties and handle database connectivity (although the database-

facing work could be delegated still further). Clifton Nock calls these data layer

controllers domain object assemblers.

Here is an example:

class DomainObjectAssembler

{

 private array $statements = [];

 �public function __construct(private PersistenceFactory $factory,

protected \PDO $pdo)

 {

 }

 public function getStatement(string $str): \PDOStatement

 {

 if (! isset($this->statements[$str])) {

 $this->statements[$str] = $this->pdo->prepare($str);

 }

 return $this->statements[$str];

 }

 public function findOne(IdentityObject $idobj): DomainObject

 {

 $collection = $this->find($idobj);

Chapter 13 Database Patterns

573

 foreach ($collection as $obj) {

 return $obj;

 }

 throw new \Exception("no object found");

 }

 public function find(IdentityObject $idobj): Collection

 {

 $selfact = $this->factory->getSelectionFactory();

 list ($selection, $values) = $selfact->newSelection($idobj);

 $stmt = $this->getStatement($selection);

 $stmt->execute($values);

 $raw = $stmt->fetchAll();

 return $this->factory->getCollection($raw);

 }

 public function insert(DomainObject $obj): void

 {

 $upfact = $this->factory->getUpdateFactory();

 list($update, $values) = $upfact->newUpdate($obj);

 $stmt = $this->getStatement($update);

 $stmt->execute($values);

 if ($obj->getId() < 0) {

 $obj->setId((int)$this->pdo->lastInsertId());

 }

 }

}

As you can see, this is not an abstract class. Instead of itself breaking down into

specializations, it uses the PersistenceFactory to ensure that it gets the correct

components for the current domain object.

Figure 13-9 shows the high-level participants I built up as I factored out Mapper.

Chapter 13 Database Patterns

574

Figure 13-9.  Some of the persistence classes developed in this chapter

Aside from making the database connection and performing queries, the class

manages SelectionFactory and UpdateFactory objects. In the case of selections, it also

works with a Collection class to generate return values.

From a client’s point of view, creating a DomainObjectAssembler is easy. It’s simply

a matter of getting the correct concrete PersistenceFactory object and passing it to the

constructor:

// PersistenceFactoryGenerator maps target classes to PersistenceFactory

instances

$pgen = new PersistenceFactoryGenerator($setup->pdo);

$factory = $pgen->getFactory(Venue::class);

$finder = new DomainObjectAssembler($factory, $setup->pdo);

Of course, “client” here is unlikely to mean the end client. We can insulate higher-

level classes from even this complexity by adding a getFinder() method to the

PersistenceFactoryGenerator utility and removing that last instantiation from the

previous example.

Armed with a PersistenceFactory object, a client coder might then go on to acquire

a collection of Venue objects:

Chapter 13 Database Patterns

575

$idobj = $factory->getIdentityObject()

 ->field('name')

 ->eq('The Eyeball Inn');

$collection = $finder->find($idobj);

foreach ($collection as $venue) {

 print $venue->getName() . "\n";

}

�Summary
As always, the patterns you choose to use will depend on the nature of your problem.

I naturally gravitate toward a Data Mapper working with an Identity Object. I like neat

automated solutions, but I also need to know I can break out of the system and go

manual when I need to, while maintaining a clean interface and a decoupled database

layer. I may need to optimize an SQL query, for example, or use a join to acquire

data across multiple tables. Even if you’re using a complex pattern-based third-party

framework, you may find that the fancy object-relational mapping on offer does not do

quite what you want. One test of a good framework, and of a good homegrown system, is

the ease with which you can plug your own hack into place without degrading the overall

integrity of the system as a whole. I love elegant, beautifully composed solutions, but I’m

also more a pragmatist than a purist!

Once again, I have covered a lot in this chapter. Here’s a quick rundown of the

patterns we looked at and how you use them:

Data Mapper: Create specialist classes for mapping Domain

Model objects to and from relational databases

Identity Map: Keep track of all the objects in your system to

prevent duplicate instantiations and unnecessary trips to the

database

Unit of Work: Automate the process by which objects are saved to

the database, ensuring that only objects that have been changed

are updated and only those that have been newly created are

inserted

Chapter 13 Database Patterns

576

Lazy Load: Defer object creation, and even database queries, until

they are actually needed

Domain Object Factory: Encapsulate object creation functionality

Identity Object: Allow clients to construct query criteria without

reference to the underlying database

Query (selection and update) Factory: Encapsulate the logic for

constructing SQL queries

Domain Object Assembler: Construct a controller that manages the

high-level process of data storage and retrieval

Chapter 13 Database Patterns

577
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3_14

CHAPTER 14

Objects and Patterns
From object basics through design pattern principles, this volume has focused on a

single objective: the design aspects of a successful PHP project.

In this chapter, I recap some of the topics I have covered and points made

throughout the book:

•	 PHP and objects: How PHP continues to increase its support for

object-oriented programming and how to leverage these features

•	 Objects and design: Summarizing some OO design principles

•	 Patterns: What makes them cool

•	 Pattern principles: A recap of the guiding object-oriented principles

that underlie many patterns

�Objects
As you saw in Chapter 2, for a long time, objects were something of an afterthought in

the PHP world. Support was rudimentary, to say the least, in PHP 3, with objects barely

more than associative arrays in fancy dress. Although things improved radically for the

object enthusiast with PHP 4, there were still significant problems. Not the least of these

was that, by default, objects were assigned and passed by reference.

The introduction of PHP 5 finally dragged objects center stage. You could still

program in PHP without ever declaring a class, but the language was finally optimized

for object-oriented design. PHP 7 rounded this out, introducing long-awaited

features such as scalar and return type declarations. Probably for reasons of backward

compatibility, a few popular frameworks remain essentially procedural in nature

(notably WordPress); by and large, however, most new PHP projects today are object

oriented.

https://doi.org/10.1007/979-8-8688-0482-3_14#DOI

578

In Chapters 3, 4, and 5, I looked at PHP’s object-oriented support in detail. Here are

some of the new features PHP has introduced since version 5: reflection, exceptions,

private and protected methods and properties, the __toString() method, the static

modifier, abstract classes and methods, final methods and properties, interfaces,

iterators, interceptor methods, type declarations, the const modifier, passing by

reference, __clone(), the __construct() method, late static binding, namespaces, and

anonymous classes. The extensive length of this incomplete list reveals the degree to

which the future of PHP is bound up with object-oriented programming.

In Chapter 6, I looked at the benefits that objects can bring to the design of your

projects. Because objects and design are one of the central themes of this book, it is

worth recapping some conclusions in detail.

�Choice
There is no law that says you have to develop with classes and objects only. Well-

designed object-oriented code provides a clean interface that can be accessed from

any client code, whether procedural or object oriented. Even if you have no interest in

writing objects (unlikely if you are still reading this book), you will probably find yourself

using them, if only as a client of Composer packages.

�Encapsulation and Delegation
Objects mind their own business and get on with their allotted tasks behind closed

doors. They provide an interface through which requests and results can be passed.

Any data that need not be exposed, and the dirty details of implementation, are hidden

behind this front.

This gives object-oriented and procedural projects different shapes. The controller

in an object-oriented project is often surprisingly sparse, consisting of a handful of

instantiations that acquire objects and invocations that call up data from one set and

pass it on to another.

A procedural project, on the other hand, tends to be much more interventionist. The

controlling logic descends into implementation to a greater extent, referring to variables,

measuring return values, and taking turns along different pathways of operation

according to circumstance.

Chapter 14 Objects and Patterns

579

�Decoupling
To decouple is to remove interdependence between components, so that making a

change to one component does not necessitate changes to others. Well-designed objects

are self-enclosed. That is, they do not need to refer outside of themselves to recall a

detail they learned in a previous invocation.

By maintaining an internal representation of state, objects reduce the need for global

variables—a notorious cause of tight coupling. In using a global variable, you bind one

part of a system to another. If a component (whether a function, a class, or a block of

code) refers to a global variable, there is a risk that another component will accidentally

use the same variable name and substitute its value for the first. There is a chance that a

third component will come to rely on the value in the variable as set by the first. Change

the way that the first component works, and you may cause the third to stop working.

The aim of object-oriented design is to reduce such interdependence, making each

component as self-sufficient as possible.

Another cause of tight coupling is code duplication. When you must repeat an

algorithm in different parts of your project, you will find tight coupling. What happens

when you come to change the algorithm? Clearly, you must remember to change it

everywhere it occurs. Forget to do this, and your system is in trouble.

A common cause of code duplication is the parallel conditional. If your project needs

to do things in one way according to a particular circumstance (e.g., running on Linux)

and another according to an alternative circumstance (e.g., running on Windows), you

will often find the same if/else clauses popping up in different parts of your system. If

you add a new circumstance together with strategies for handling it (MacOS), you must

ensure that all conditionals are updated.

Object-oriented programming provides a technique for handling this problem.

You can replace conditionals with polymorphism. Polymorphism, also known as class

switching, is the transparent use of different subclasses according to circumstance.

Because each subclass supports the same interface as the common superclass, the client

code neither knows nor cares which particular implementation it is using.

Conditional code is not banished from object-oriented systems; it is merely

minimized and centralized. Conditional code of some kind must be used to determine

which particular subtypes are to be served up to clients. This test, though, generally takes

place once, and in one place, thus reducing coupling.

Chapter 14 Objects and Patterns

580

�Reusability
Encapsulation promotes decoupling, which promotes reuse. Components that are self-

sufficient and communicate with wider systems only through their public interface can

often be moved from one system and used in another without change.

In fact, this is rarer than you might think. Even nicely orthogonal code can be project

specific. When creating a set of classes for managing the content of a particular website,

for example, it is worth taking some time in the planning stage to look at those features

that are specific to your client and those that might form the foundation for future

projects with content management at their heart.

Another tip for reuse: Centralize those classes that might be used in multiple

projects. Do not, in other words, copy a nicely reusable class into a new project. This will

cause tight coupling on a macro level, as you will inevitably end up changing the class in

one project and forgetting to do so in another. You would do better to manage common

classes in a central repository that can be shared by your projects.

�Aesthetics
This is not going to convince anyone who is not already convinced, but to me object-

oriented code is aesthetically pleasing. The messiness of implementation is hidden away

behind clean interfaces, making an object a thing of apparent simplicity to its client.

I love the neatness and elegance of polymorphism, so that an API allows you to

manipulate vastly different objects that nonetheless perform interchangeably and

transparently—the way that objects can be stacked up neatly or slotted into one another

like children’s blocks.

Of course, there are those who argue that the converse is true. Object-oriented code

can manifest itself as an explosion of classes all so decoupled from one another that

piecing together their relationships can be a headache. This is a code smell in its own

right. It is often tempting to build factories that produce factories that produce factories,

until your code resembles a hall of mirrors. Sometimes it makes sense to do the simplest

thing that works and then refactor in just enough elegance for testing and flexibility. Let

the problem space determine your solution rather than a list of best practices.

Chapter 14 Objects and Patterns

581

Note T he rigid application of so-called best practice is also often an issue in
project management. Whenever the use of a technique or a process begins to
resemble ritual, applied automatically and inflexibly, it’s worth taking a moment to
investigate the reasoning behind your current approach. It could be you’re drifting
from the realm of tools to that of the cargo cult.

It is also worth mentioning that a beautiful solution is not always the best or most

efficient. It is tempting to use a full-blown object-oriented solution where a quick script

or a few system calls might have gotten the job done.

�Patterns
Recently, a Java programmer applied for a job in a company with which I have some

involvement. In his cover letter, he apologized for only having used patterns for a couple

of years. This assumption that design patterns are a recent discovery—a transformative

advance—is testament to the excitement they have generated. In fact, it is likely that this

experienced coder has been using patterns for a lot longer than he thinks.

Patterns describe common problems and tested solutions. Patterns name, codify,

and organize real-world best practice. They are not components of an invention or

clauses in a doctrine. A pattern would not be valid if it did not describe practices that are

already common at the time of hatching.

Remember that the concept of a pattern language originated in the field of architecture.

People were building courtyards and arches for thousands of years before patterns were

proposed as a means of describing solutions to problems of space and function.

Having said that, it is true that design patterns often provoke the kind of emotions

associated with religious or political disputes. Devotees roam the corridors with an

evangelistic gleam in their eye and a copy of the Gang of Four book under their arm.

They accost the uninitiated and reel off pattern names like articles of faith. It is little

wonder that some critics see design patterns as hype.

In languages such as Perl and PHP, patterns are also controversial because of their

firm association with object-oriented programming. In a context in which objects are a

design decision and not a given, associating oneself with design patterns amounts to a

declaration of preference, not least because patterns beget more patterns, and objects

beget more objects.

Chapter 14 Objects and Patterns

582

�What Patterns Buy Us
I introduced patterns in Chapter 7. Let’s reiterate some of the benefits that patterns

can buy us.

�Tried and Tested

First of all, as I’ve noted, patterns are proven solutions to particular problems. Drawing

an analogy between patterns and recipes is dangerous: recipes can be followed blindly,

whereas patterns are “half-baked” (Martin Fowler) by nature and need more thoughtful

handling. Nevertheless, both recipes and patterns share one important characteristic:

they have been tried out and tested thoroughly before inscription.

�Patterns Suggest Other Patterns

Patterns have grooves and curves that fit one another. Certain patterns slot together with

a satisfying click. Solving a problem using a pattern will inevitably have ramifications.

These consequences can become the conditions that suggest complementary

patterns. It is important, of course, to be careful that you are addressing real needs and

problems when you choose related patterns and not just building elegant but useless

towers of interlocking code. It is tempting to build the programming equivalent of an

architectural folly.

�A Common Vocabulary

Patterns are a means of developing a common vocabulary for describing problems and

solutions. Naming is important—it stands in for describing and therefore lets us cover

lots of ground very quickly. Naming, of course, also obscures meaning for those who

do not yet share the vocabulary, which is one reason why patterns can be so infuriating

at times.

�Patterns Promote Design

As discussed in the next section, patterns can encourage good design when used

properly. There is an important caveat, of course. Patterns are not fairy dust.

Chapter 14 Objects and Patterns

583

�Patterns and Principles of Design
Design patterns are, by their nature, concerned with good design. Used well, they can

help you build loosely coupled and flexible code. Pattern critics have a point, though,

when they say that patterns can be overused by the newly infected. Because pattern

implementations form pretty and elegant structures, it can be tempting to forget that

good design always lies in fitness for purpose. Remember that patterns exist to address

problems.

When I first started working with patterns, I found myself creating Abstract Factories

all over my code. I needed to generate objects, and Abstract Factory certainly helped me

to do that.

In fact, though, I was thinking lazily and making unnecessary work for myself.

The sets of objects I needed to produce were indeed related, but they did not yet have

alternative implementations. The classic Abstract Factory pattern is ideal for situations

in which you have alternative sets of objects to generate according to circumstance. To

make Abstract Factory work, you need to create factory classes for each type of object

and a class to serve up the factory class. It’s exhausting just describing the process.

My code would have been much cleaner had I created a basic factory class, only

refactoring to implement Abstract Factory if I found myself needing to generate a parallel

set of objects.

The fact that you are using patterns does not guarantee good design. When

developing, it is a good idea to bear in mind two expressions of the same principle: KISS

(“Keep it simple, stupid”) and “Do the simplest thing that works.” Extreme programmers

also give us another, related, acronym: YAGNI. “You aren’t going to need it,” meaning

that you should not implement a feature unless it is truly required.

With the warnings out of the way, I can resume my tone of breathless enthusiasm.

As I laid out in Chapter 9, patterns tend to embody a set of principles that can be

generalized and applied to all code.

�Favor Composition over Inheritance

Inheritance relationships are powerful. We use inheritance to support runtime

class switching (polymorphism), which lies at the heart of many of the patterns and

techniques I explored in this book. By relying solely on inheritance in design, though,

you can produce inflexible structures that are prone to duplication.

Chapter 14 Objects and Patterns

584

�Avoid Tight Coupling

I have already talked about this issue in this chapter, but it is worth mentioning here for

the sake of completeness. You can never escape the fact that change in one component

may require changes in other parts of your project. You can, however, minimize this by

avoiding both duplication (typified in our examples by parallel conditionals) and the

overuse of global variables (or Singletons). You should also minimize the use of concrete

subclasses when abstract types can be used to promote polymorphism. This last point

leads us to another principle.

�Code to an Interface, Not an Implementation

Design your software components with clearly defined public interfaces that make the

responsibility of each transparent. If you define your interface in an abstract superclass

and have client classes demand and work with this abstract type, you then decouple

clients from specific implementations.

Having said that, remember the YAGNI principle. If you start out with the need for

only one implementation for a type, there is no immediate reason to create an abstract

superclass. You can just as well define a clear interface in a single concrete class. As

soon as you find that your single implementation is trying to do more than one thing

at the same time, you can redesignate your concrete class as the abstract parent of two

subclasses. Client code will be none the wiser, as it continues to work with a single type.

A classic sign that you may need to split an implementation and hide the resultant

classes behind an abstract parent is the emergence of conditional statements in the

implementation.

�Encapsulate the Concept That Varies

If you find that you are drowning in subclasses, it may be that you should be extracting

the reason for all this subclassing into its own type. This is particularly the case if the

reason is to achieve an end that is incidental to your type’s main purpose.

Given a type UpdatableThing, for example, you may find yourself creating

FtpUpdatableThing, HttpUpdatableThing, and FileSystemUpdatableThing

subtypes. The responsibility of your type, though, is to be a thing that is updatable—

the mechanism for storage and retrieval is incidental to this purpose. Ftp, Http, and

FileSystem are the things that vary here, and they belong in their own type—let’s

call it UpdateMechanism. UpdateMechanism will have subclasses for the different

Chapter 14 Objects and Patterns

585

implementations. You can then add as many update mechanisms as you want without

disturbing the UpdatableThing type, which remains focused on its core responsibility.

Incidentally, note that UpdateMechanism might alternatively be named UpdateStrategy.

I have described an implementation of the Strategy pattern. For more on that, see

Chapter 11.

Notice also that I have replaced a static compile-time structure with a dynamic

runtime arrangement here, bringing us (as if by accident) back to our first principle:

“Favor composition over inheritance.”

�Summary
In this chapter, I wrapped things up, revisiting the core topics that make up the book.

Although I haven’t tackled any concrete issues such as individual patterns or object

functions here, this chapter should serve as a reasonable summary of this book’s

concerns.

There is never enough room or time to cover all the material that one would like.

Nevertheless, I hope that this book has served to make one argument: PHP is all grown

up. It is now one of the most popular programming languages in the world. I hope that

PHP remains the hobbyist’s favorite language and that many new PHP programmers

are delighted to discover how far they can get with just a little code. At the same time,

though, more and more professional teams are building large systems with PHP. Such

projects deserve more than a just-do-it approach. Through its extension layer, PHP has

always been a versatile language, providing a gateway to hundreds of applications and

libraries. Its object-oriented support, on the other hand, gains you access to a different

set of tools. Once you begin to think in objects, you can chart the hard-won experience

of other programmers. You can navigate and deploy pattern languages developed with

reference not just to PHP but to Smalltalk, C++, C#, or Java too. It is our responsibility to

meet this challenge with careful design and good practice. The future is reusable.

In the next volume I will turn to the practice of the PHP project. I will examine some

of the tools and techniques that are essential to the creation and maintenance of a good

PHP system. Volume 2 will be concerned with often omitted nitty-gritty topics such as

testing and standards, version control, utility scripts, and system deployment. In this

volume, I discussed what it takes to build beautiful code. In the next, I’ll consider the

further practical steps needed to help it thrive in the world.

Chapter 14 Objects and Patterns

587
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3

�APPENDIX A

Bibliography
�Books
Alexander, Christopher, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid

Fiksdahl-King, and Shlomo Angel. A Pattern Language: Towns, Buildings, Construction.

Oxford, UK: Oxford University Press, 1977.

Alur, Deepak, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and

Design Strategies. Englewood Cliffs, NJ: Prentice Hall PTR, 2001.

Beck, Kent. Extreme Programming Explained: Embrace Change. Reading, MA:

Addison-Wesley, 1999.

Fowler, Martin, and Kendall Scott. UML Distilled, Second Edition: A Brief Guide to the

Standard Object Modeling Language. Reading, MA: Addison-Wesley Professional, 1999.

Fowler, Martin, Kent Beck, John Brant, William Opdyke, and Don Roberts.

Refactoring: Improving the Design of Existing Code. Reading, MA: Addison-Wesley

Professional, 1999.

Fowler, Martin. Patterns of Enterprise Application Architecture. Reading, MA:

Addison-Wesley Professional, 2002.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley

Professional, 1995.

Hunt, Andrew, and David Thomas. The Pragmatic Programmer: From Journeyman to

Master. Reading, MA: Addison-Wesley Professional, 1999.

Kerievsky, Joshua. Refactoring to Patterns. Reading, MA: Addison-Wesley

Professional, 2004.

Metsker, Steven John. Building Parsers with Java. Reading, MA: Addison-Wesley

Professional, 2001.

Nock, Clifton. Data Access Patterns: Database Interactions in Object-Oriented

Applications. Reading, MA: Addison-Wesley Professional, 2003.

https://doi.org/10.1007/979-8-8688-0482-3#DOI

588

Shalloway, Alan, and James R. Trott. Design Patterns Explained: A New Perspective on

Object-Oriented Design. Reading, MA: Addison-Wesley, 2001.

Stelting, Stephen, and Olav Maassen. Applied Java Patterns. Palo Alto, CA: Sun

Microsystems Press, 2002.

�Articles
Lerdorf, Rasmus. “PHP/FI Brief History.” http://www.php.net//manual/phpfi2.

php#history

Kocsis, Máté. “Resource to object conversion.” https://wiki.php.net/rfc/

resource_to_object_conversion

Opitz, Daniel. “Collections in PHP.” https://odan.github.io/2022/10/25/

collections-php.html

Suraski, Zeev. “The Object-Oriented Evolution of PHP.” https://web.archive.

org/web/20200428225546/http://junit.sourceforge.net:80/doc/testinfected/

testing.htm

Wikipedia. “Law of Triviality.” https://en.wikipedia.org/wiki/Law_of_

triviality

�Sites
Composer: https://getcomposer.org/

Java: https://www.java.com

Magic Methods in PHP: https://www.php.net/manual/en/language.oop5.

magic.php

Martin Fowler: https://www.martinfowler.com/

Nyholm/psr7: https://github.com/Nyholm/psr7

PHP: https://www.php.net

PHP Memcached support: https://www.php.net/memcache

PHP-DI https://php-di.org/

Pimple: https://pimple.sensiolabs.org/

Portland Pattern Repository’s Wiki (Ward Cunningham): https://www.c2.com/

cgi/wiki

Pro Git: https://git-scm.com/book/en/v2

Appendix A Bibliography

http://www.php.net//manual/phpfi2.php#history
http://www.php.net//manual/phpfi2.php#history
https://wiki.php.net/rfc/resource_to_object_conversion
https://wiki.php.net/rfc/resource_to_object_conversion
https://odan.github.io/2022/10/25/collections-php.html
https://odan.github.io/2022/10/25/collections-php.html
https://web.archive.org/web/20200428225546/http://junit.sourceforge.net:80/doc/testinfected/testing.htm
https://web.archive.org/web/20200428225546/http://junit.sourceforge.net:80/doc/testinfected/testing.htm
https://web.archive.org/web/20200428225546/http://junit.sourceforge.net:80/doc/testinfected/testing.htm
https://en.wikipedia.org/wiki/Law_of_triviality
https://en.wikipedia.org/wiki/Law_of_triviality
https://getcomposer.org/
https://www.java.com
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.martinfowler.com/
https://github.com/Nyholm/psr7
https://www.php.net
https://www.php.net/memcache
https://php-di.org/
https://pimple.sensiolabs.org/
http://www.c2.com/cgi/wiki
http://www.c2.com/cgi/wiki
https://git-scm.com/book/en/v2

589

Bash.org Archive: https://bash-org-archive.com/

Refactoring Guru: https://refactoring.guru/design-patterns/php

SPL: https://www.php.net/spl

Slim: https://www.slimframework.com/

Symfony Dependency Injection: https://symfony.com/doc/current/components/

dependency_injection/introduction.html

Zend: https://www.zend.com

Appendix A Bibliography

https://bash-org-archive.com/
https://refactoring.guru/design-patterns/php
https://www.php.net/spl
https://www.slimframework.com/
https://symfony.com/doc/current/components/dependency_injection/introduction.html
https://symfony.com/doc/current/components/dependency_injection/introduction.html
https://www.zend.com

591
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3

�APPENDIX B

A Simple Parser
The Interpreter pattern discussed in Chapter 11 does not cover parsing. An interpreter

without a parser is pretty incomplete, unless you persuade your users to write PHP

code to invoke the interpreter! Third-party parsers are available that could be deployed

to work with the Interpreter pattern, and that would probably be the best choice in a

real-world project. This appendix, however, presents a simple object-oriented parser

designed to work with the MarkLogic interpreter built in Chapter 11. Be aware that these

examples are no more than a proof of concept. They are not designed for use in real-

world situations.

Note  The interface and broad structure of this parser code are based on Steven
Metsker’s Building Parsers with Java (Addison-Wesley Professional, 2001). The
brutally simplified implementation is my fault, however, and any mistakes should
be laid at my door. Steven has given kind permission for the use of his original
concept.

�The Scanner
In order to parse a statement, you must first break it down into a set of words and

characters (known as tokens). The following class uses a number of regular expressions

to define tokens. It also provides a convenient result stack that I will be using later in this

section. Here is the Scanner class:

class Scanner

{

 // token types

 public const WORD = 1;

 public const QUOTE = 2;

https://doi.org/10.1007/979-8-8688-0482-3#DOI

592

 public const APOS = 3;

 public const WHITESPACE = 6;

 public const EOL = 8;

 public const CHAR = 9;

 public const EOF = 0;

 public const SOF = -1;

 protected int $line_no = 1;

 protected int $char_no = 0;

 protected ?string $token = null;

 protected int $token_type = -1;

 // Reader provides access to the raw character data. Context stores

 // result data

 public function __construct(private Reader $r, private Context $context)

 {

 }

 public function getContext(): Context

 {

 return $this->context;

 }

 // read through all whitespace characters

 public function eatWhiteSpace(): int

 {

 $ret = 0;

 if (

 $this->token_type != self::WHITESPACE &&

 $this->token_type != self::EOL

) {

 return $ret;

 }

 while (

 $this->nextToken() == self::WHITESPACE ||
 $this->token_type == self::EOL

) {

Appendix B A Simple Parser

593

 $ret++;

 }

 return $ret;

 }

 // get a string representation of a token

 // either the current token, or that represented

 // by the $int arg

 public function getTypeString(int $int = -1): ?string

 {

 if ($int < 0) {

 $int = $this->tokenType();

 }

 if ($int < 0) {

 return null;

 }

 $resolve = [

 self::WORD => 'WORD',

 self::QUOTE => 'QUOTE',

 self::APOS => 'APOS',

 self::WHITESPACE => 'WHITESPACE',

 self::EOL => 'EOL',

 self::CHAR => 'CHAR',

 self::EOF => 'EOF'

];

 return $resolve[$int];

 }

 // the current token type (represented by an integer)

 public function tokenType(): int

 {

 return $this->token_type;

 }

 // get the contents of the current token

Appendix B A Simple Parser

594

 public function token(): ?string

 {

 return $this->token;

 }

 // return true if the current token is a word

 public function isWord(): bool

 {

 return ($this->token_type == self::WORD);

 }

 // return true if the current token is a quote character

 public function isQuote(): bool

 {

 �return ($this->token_type == self::APOS || $this->token_type ==
self::QUOTE);

 }

 // current line number in source

 public function lineNo(): int

 {

 return $this->line_no;

 }

 // current character number in source

 public function charNo(): int

 {

 return $this->char_no;

 }

 // clone this object

 public function __clone(): void

 {

 $this->r = clone($this->r);

 }

 // move on to the next token in the source. Set the current

Appendix B A Simple Parser

595

 // token and track the line and character numbers

 public function nextToken(): int

 {

 $this->token = null;

 $type = -1;

 while (! is_bool($char = $this->getChar())) {

 if ($this->isEolChar($char)) {

 $this->token = $this->manageEolChars($char);

 $this->line_no++;

 $this->char_no = 0;

 return ($this->token_type = self::EOL);

 } elseif ($this->isWordChar($char)) {

 $this->token = $this->eatWordChars($char);

 $type = self::WORD;

 } elseif ($this->isSpaceChar($char)) {

 $this->token = $char;

 $type = self::WHITESPACE;

 } elseif ($char == "'") {

 $this->token = $char;

 $type = self::APOS;

 } elseif ($char == '"') {

 $this->token = $char;

 $type = self::QUOTE;

 } else {

 $type = self::CHAR;

 $this->token = $char;

 }

 $this->char_no += strlen($this->token());

 return ($this->token_type = $type);

 }

 return ($this->token_type = self::EOF);

 }

Appendix B A Simple Parser

596

 // return an array of token type and token content for the NEXT token

 public function peekToken(): array

 {

 $state = $this->getState();

 $type = $this->nextToken();

 $token = $this->token();

 $this->setState($state);

 return [$type, $token];

 }

 // get a ScannerState object that stores the parser's current

 // position in the source, and data about the current token

 public function getState(): ScannerState

 {

 $state = new ScannerState();

 $state->line_no = $this->line_no;

 $state->char_no = $this->char_no;

 $state->token = $this->token;

 $state->token_type = $this->token_type;

 $state->r = clone($this->r);

 $state->context = clone($this->context);

 return $state;

 }

 // use a ScannerState object to restore the scanner's

 // state

 public function setState(ScannerState $state): void

 {

 $this->line_no = $state->line_no;

 $this->char_no = $state->char_no;

 $this->token = $state->token;

 $this->token_type = $state->token_type;

 $this->r = $state->r;

 $this->context = $state->context;

 }

Appendix B A Simple Parser

597

 // get the next character from source

 // returns boolean when none left

 private function getChar(): string|bool
 {

 return $this->r->getChar();

 }

 // get all characters until they stop being

 // word characters

 private function eatWordChars(string $char): string

 {

 $val = $char;

 while ($this->isWordChar($char = $this->getChar())) {

 $val .= $char;

 }

 if ($char) {

 $this->pushBackChar();

 }

 return $val;

 }

 // move back one character in source

 private function pushBackChar(): void

 {

 $this->r->pushBackChar();

 }

 // argument is a word character

 private function isWordChar($char): bool

 {

 if (is_bool($char)) {

 return false;

 }

 return (preg_match("/[A-Za-z0-9_\-]/", $char) === 1);

 }

Appendix B A Simple Parser

598

 // argument is a space character

 private function isSpaceChar($char): bool

 {

 return (preg_match("/\t| /", $char) === 1);
 }

 // argument is an end of line character

 private function isEolChar($char): bool

 {

 $check = preg_match("/\n|\r/", $char);

 return ($check === 1);

 }

 // swallow either \n, \r or \r\n

 private function manageEolChars(string $char): string

 {

 if ($char == "\r") {

 $next_char = $this->getChar();

 if ($next_char == "\n") {

 return "{$char}{$next_char}";

 } else {

 $this->pushBackChar();

 }

 }

 return $char;

 }

 public function getPos(): int

 {

 return $this->r->getPos();

 }

}

class ScannerState

{

Appendix B A Simple Parser

599

 public int $line_no;

 public int $char_no;

 public ?string $token;

 public int $token_type;

 public Context $context;

 public Reader $r;

}

First, I set up constants for the tokens that interest me. I am going to match characters,

words, whitespace, and quote characters. I test for these types in methods dedicated to each

token: isWordChar(), isSpaceChar(), and so on. The heart of the class is the nextToken()

method. This attempts to match the next token in a given string. The Scanner stores a

Context object. Parser objects use this to share results as they work through the target text.

Note that there is a second class: ScannerState. The Scanner is designed so that

Parser objects can save state, try stuff out, and restore if they’ve gone down a blind alley.

The getState() method populates and returns a ScannerState object. setState() uses

a ScannerState object to revert state if required.

Here is the Context class:

class Context

{

 public array $resultstack = [];

 public function pushResult($mixed): void

 {

 array_push($this->resultstack, $mixed);

 }

 public function popResult(): mixed

 {

 return array_pop($this->resultstack);

 }

 public function resultCount(): int

 {

 return count($this->resultstack);

 }

Appendix B A Simple Parser

600

 public function peekResult(): mixed

 {

 if (empty($this->resultstack)) {

 throw new \Exception("empty resultstack");

 }

 return $this->resultstack[count($this->resultstack) - 1];

 }

}

As you can see, this is just a simple stack, a convenient noticeboard for parsers to

work with. It performs a similar job to that of the context class used in the Interpreter

pattern, but it is not the same class.

Notice that the Scanner does not itself work with a file or string. Instead, it requires a

Reader object. This would allow me to easily swap in different sources of data. Here is the

Reader interface and an implementation, StringReader:

interface Reader

{

 public function getChar(): string|bool;
 public function getPos(): int;

 public function pushBackChar(): void;

}

class StringReader implements Reader

{

 private int $pos;

 private int $len;

 public function __construct(private string $in)

 {

 $this->pos = 0;

 $this->len = strlen($in);

 }

 public function getChar(): string|bool
 {

Appendix B A Simple Parser

601

 if ($this->pos >= $this->len) {

 return false;

 }

 $char = substr($this->in, $this->pos, 1);

 $this->pos++;

 return $char;

 }

 public function getPos(): int

 {

 return $this->pos;

 }

 public function pushBackChar(): void

 {

 $this->pos--;

 }

 public function string(): string

 {

 return $this->in;

 }

}

This simply reads from a string one character at a time. I could easily provide a file-

based version, of course.

Perhaps the best way to see how the Scanner might be used is to use it. Here is some

code to break up the example statement into tokens:

$context = new Context();

$user_in = "\$input equals '4' or \$input equals 'four'";

$reader = new StringReader($user_in);

$scanner = new Scanner($reader, $context);

while ($scanner->nextToken() != Scanner::EOF) {

 print $scanner->token();

Appendix B A Simple Parser

602

 print " {$scanner->charNo()}";

 print " {$scanner->getTypeString()}\n";

}

I initialize a Scanner object and then loop through the tokens in the given string

by repeatedly calling nextToken(). The token() method returns the current portion of

the input matched. char_no() tells me where I am in the string, and getTypeString()

returns a string version of the constant flag representing the current token. This is what

the output should look like:

$ 1 CHAR

input 6 WORD

 7 WHITESPACE

equals 13 WORD

 14 WHITESPACE

' 15 APOS

4 16 WORD

' 17 APOS

 18 WHITESPACE

or 20 WORD

 21 WHITESPACE

$ 22 CHAR

input 27 WORD

 28 WHITESPACE

equals 34 WORD

 35 WHITESPACE

' 36 APOS

four 40 WORD

' 41 APOS

I could, of course, match finer-grained tokens than this, but this is good enough

for my purposes. Breaking up the string is the easy part. How do I build up a grammar

in code?

Appendix B A Simple Parser

603

�The Parser
One approach is to build a tree of Parser objects. Here is the abstract Parser class that I

will be using:

abstract class Parser

{

 public const GIP_RESPECTSPACE = 1;

 private Handler $handler;

 protected bool $respectSpace = false;

 protected static bool $debug = false;

 protected bool $discard = false;

 protected string $name;

 private static int $count = 0;

 public function __construct(string $name = null, array $options = [])

 {

 if (is_null($name)) {

 self::$count++;

 $this->name = get_class($this) . " (" . self::$count . ")";

 } else {

 $this->name = $name;

 }

 if (isset($options[self::GIP_RESPECTSPACE])) {

 $this->respectSpace = true;

 }

 }

 protected function next(Scanner $scanner): void

 {

 $scanner->nextToken();

 if (! $this->respectSpace) {

 $scanner->eatWhiteSpace();

 }

 }

Appendix B A Simple Parser

604

 public function spaceSignificant(bool $bool): bool

 {

 $this->respectSpace = $bool;

 return $bool;

 }

 public static function setDebug(bool $bool): void

 {

 self::$debug = $bool;

 }

 public function setHandler(Handler $handler): void

 {

 $this->handler = $handler;

 }

 final public function scan(Scanner $scanner): bool

 {

 if ($scanner->tokenType() == Scanner::SOF) {

 $scanner->nextToken();

 }

 $ret = $this->doScan($scanner);

 if ($ret && ! $this->discard && $this->term()) {

 $this->push($scanner);

 }

 if ($ret) {

 $this->invokeHandler($scanner);

 }

 if ($this->term() && $ret) {

 $this->next($scanner);

 }

 $this->report("::scan returning $ret");

 return $ret;

 }

Appendix B A Simple Parser

605

 public function discard(): void

 {

 $this->discard = true;

 }

 abstract public function trigger(Scanner $scanner): bool;

 public function term(): bool

 {

 return true;

 }

// private/protected

 protected function invokeHandler(Scanner $scanner): void

 {

 if (! empty($this->handler)) {

 $this->report("calling handler: " . get_class($this->handler));

 $this->handler->handleMatch($this, $scanner);

 }

 }

 protected function report($msg): void

 {

 if (self::$debug) {

 print "<{$this->name}> " . get_class($this) . ": $msg\n";

 }

 }

 protected function push(Scanner $scanner): void

 {

 $context = $scanner->getContext();

 $context->pushResult($scanner->token());

 }

 abstract protected function doScan(Scanner $scanner): bool;

}

Appendix B A Simple Parser

606

The place to start with this class is the scan() method. It is here that most of the logic

resides. scan() is given a Scanner object to work with. The first thing that the Parser

does is defer to a concrete child class, calling the abstract doScan() method. doScan()

returns true or false; you will see a concrete example later in this section.

If doScan() reports success, and a couple of other conditions are fulfilled, then the

results of the parse are pushed to the Context object’s result stack. The Scanner object

holds the Context that is used by Parser objects to communicate results. The actual

pushing of the successful parse takes place in the Parser::push() method:

protected function push(Scanner $scanner): void

{

 $context = $scanner->getContext();

 $context->pushResult($scanner->token());

}

In addition to a parse failure, there are two conditions that might prevent the result

from being pushed to the scanner’s stack. First, client code can ask a parser to discard a

successful match by calling the discard() method. This toggles a property called $discard

to true. Second, only terminal parsers (i.e., parsers that are not composed of other parsers)

should push their result to the stack. Composite parsers (instances of CollectionParser,

often referred to in the following text as collection parsers) will instead let their successful

children push their results. I test whether or not a parser is terminal using the term()

method, which is overridden to return false by collection parsers.

If the concrete parser has been successful in its matching, then I call another

method: invokeHandler(). This is passed the Scanner object. If a Handler (i.e., an

object that implements the Handler interface) has been attached to Parser (using the

setHandler() method), then its handleMatch() method is invoked here. I use handlers

to make a successful grammar actually do something, as you will see shortly.

Back in the scan() method, I call on the Scanner object (via the next() method) to

advance its position by calling its nextToken() and eatWhiteSpace() methods. Finally, I

return the value that was provided by doScan().

In addition to doScan(), notice the abstract trigger() method. This is used to

determine whether a parser should bother to attempt a match. If trigger() returns

false, then the conditions are not right for parsing. Let’s take a look at a concrete

terminal. CharacterParse is designed to match a particular character:

Appendix B A Simple Parser

607

class CharacterParse extends Parser

{

 �public function __construct(private string $char, string $name = null,

array $options = [])

 {

 parent::__construct($name, $options);

 }

 public function trigger(Scanner $scanner): bool

 {

 return ($scanner->token() == $this->char);

 }

 protected function doScan(Scanner $scanner): bool

 {

 return ($this->trigger($scanner));

 }

}

The constructor accepts a character to match and an optional parser name for

debugging purposes. The trigger() method simply checks whether the scanner is

pointing to a character token that matches the sought character. Because no further

scanning than this is required, the doScan() method simply invokes trigger().

Terminal matching is a reasonably simple affair, as you can see. Let’s look now at

a collection parser. First, I’ll define a common superclass and then go on to create a

concrete example:

abstract class CollectionParse extends Parser

{

 protected array $parsers = [];

 public function add(Parser $p): Parser

 {

 $this->parsers[] = $p;

 return $p;

 }

Appendix B A Simple Parser

608

 public function term(): bool

 {

 return false;

 }

}

class SequenceParse extends CollectionParse

{

 public function trigger(Scanner $scanner): bool

 {

 if (empty($this->parsers)) {

 return false;

 }

 return $this->parsers[0]->trigger($scanner);

 }

 protected function doScan(Scanner $scanner): bool

 {

 $start_state = $scanner->getState();

 foreach ($this->parsers as $parser) {

 �if (! ($parser->trigger($scanner) && $parser->scan

($scanner))) {

 $scanner->setState($start_state);

 return false;

 }

 }

 return true;

 }

}

The abstract CollectionParse class simply implements an add() method that

aggregates Parsers and overrides term() to return false.

The SequenceParse::trigger() method tests only the first child Parser

it contains, invoking its trigger() method. The calling Parser will first call

Appendix B A Simple Parser

609

CollectionParse::trigger() to see if it is worth calling CollectionParse::scan().

If CollectionParse::scan() is called, then doScan() is invoked, and the trigger()

and scan() methods of all Parser children are called in turn. A single failure results in

CollectionParse::doScan() reporting failure.

One of the problems with parsing is the need to try stuff out. A SequenceParse

object may contain an entire tree of parsers within each of its aggregated parsers.

These will push the Scanner on by a token or more and cause results to be registered

with the Context object. If the final child in the Parser list returns false, what should

SequenceParse do about the results lodged in Context by the child’s more successful

siblings? A sequence is all or nothing, so I have no choice but to roll back both the

Context object and the Scanner. I do this by saving state at the start of doScan() and

calling setState() just before returning false on failure. Of course, if I return true, then

there’s no need to roll back.

For the sake of completeness, here are all the remaining Parser classes:

class RepetitionParse extends CollectionParse

{

 �public function __construct(private int $min = 0, private int $max = 0,

?string $name = null, array $options = [])

 {

 parent::__construct($name, $options);

 if ($max < $min && $max > 0) {

 throw new \Exception(

 "maximum ($max) larger than minimum ($min)"

);

 }

 }

 public function trigger(Scanner $scanner): bool

 {

 return true;

 }

 protected function doScan(Scanner $scanner): bool

 {

 $start_state = $scanner->getState();

Appendix B A Simple Parser

610

 if (empty($this->parsers)) {

 return true;

 }

 $parser = $this->parsers[0];

 $count = 0;

 while (true) {

 if ($this->max > 0 && $count >= $this->max) {

 return true;

 }

 if (! $parser->trigger($scanner)) {

 if ($this->min == 0 || $count >= $this->min) {
 return true;

 } else {

 $scanner->setState($start_state);

 return false;

 }

 }

 if (! $parser->scan($scanner)) {

 if ($this->min == 0 || $count >= $this->min) {
 return true;

 } else {

 $scanner->setState($start_state);

 return false;

 }

 }

 $count++;

 }

 }

}

// This matches if one or other of two subparsers match

Appendix B A Simple Parser

611

class AlternationParse extends CollectionParse

{

 public function trigger(Scanner $scanner): bool

 {

 foreach ($this->parsers as $parser) {

 if ($parser->trigger($scanner)) {

 return true;

 }

 }

 return false;

 }

 protected function doScan(Scanner $scanner): bool

 {

 $type = $scanner->tokenType();

 $start_state = $scanner->getState();

 foreach ($this->parsers as $parser) {

 �if ($type == $parser->trigger($scanner) && $parser->scan

($scanner)) {

 return true;

 }

 }

 $scanner->setState($start_state);

 return false;

 }

}

// this terminal parser matches a string literal

class StringLiteralParse extends Parser

{

 public function trigger(Scanner $scanner): bool

 {

Appendix B A Simple Parser

612

 return (

 $scanner->tokenType() == Scanner::APOS ||
 $scanner->tokenType() == Scanner::QUOTE

);

 }

 protected function push(Scanner $scanner): void

 {

 }

 protected function doScan(Scanner $scanner): bool

 {

 $quotechar = $scanner->tokenType();

 $ret = false;

 $string = "";

 while ($token = $scanner->nextToken()) {

 if ($token == $quotechar) {

 $ret = true;

 break;

 }

 $string .= $scanner->token();

 }

 if ($string && ! $this->discard) {

 $scanner->getContext()->pushResult($string);

 }

 return $ret;

 }

}

// this terminal parser matches a word token

class WordParse extends Parser

{

Appendix B A Simple Parser

613

 public function __construct(private $word = �null, $name = null,

$options = [])

 {

 parent::__construct($name, $options);

 }

 public function trigger(Scanner $scanner): bool

 {

 if ($scanner->tokenType() != Scanner::WORD) {

 return false;

 }

 if (is_null($this->word)) {

 return true;

 }

 return ($this->word == $scanner->token());

 }

 protected function doScan(Scanner $scanner): bool

 {

 return ($this->trigger($scanner));

 }

}

By combining terminal and nonterminal Parser objects, I can build a reasonably

sophisticated parser. You can see all the Parser classes I use for this example in

Figure B-1.

Appendix B A Simple Parser

614

Figure B-1.  The Parser classes

The idea behind this use of the Composite pattern is that a client can build up a

grammar in code that closely matches EBNF notation. Table B-1 shows the parallels

between these classes and EBNF fragments.

Table B-1.  Composite Parser and EBNF

Class EBNF Example Description

AlternationParse orExpr | andExpr Either one or another

SequenceParse 'and' operand A list (all required in order)

RepetitionParse (eqExpr)* Zero or more required

Now it’s time to build some client code to implement the mini-language. As a

reminder, here is the EBNF fragment I presented in Chapter 11:

Expr = operand { orExpr | andExpr }
Operand = ('(' expr ')' | ? string literal ? | variable) { eqExpr }
orExpr = 'or' operand

andExpr = 'and' operand

Appendix B A Simple Parser

615

eqExpr = 'equals' operand

variable = '$' , ? word ?

This simple class builds up a grammar based on this fragment and runs it:

class MarkParse

{

 private Parser $expression;

 private Parser $operand;

 private Expression $interpreter;

 public function __construct($statement)

 {

 $this->compile($statement);

 }

 public function evaluate($input): mixed

 {

 $icontext = new InterpreterContext();

 $prefab = new VariableExpression('input', $input);

 // add the input variable to Context

 $prefab->interpret($icontext);

 $this->interpreter->interpret($icontext);

 return $icontext->lookup($this->interpreter);

 }

 public function compile($statementStr): void

 {

 // build parse tree

 $context = new Context();

 $scanner = new Scanner(new StringReader($statementStr), $context);

 $statement = $this->expression();

 $scanresult = $statement->scan($scanner);

 if (! $scanresult || $scanner->tokenType() != Scanner::EOF) {
 $msg = "";

 $msg .= " line: {$scanner->lineNo()} ";

 $msg .= " char: {$scanner->charNo()}";

Appendix B A Simple Parser

616

 $msg .= " token: {$scanner->token()}\n";

 throw new \Exception($msg);

 }

 $this->interpreter = $scanner->getContext()->popResult();

 }

 public function expression(): Parser

 {

 if (! isset($this->expression)) {

 $this->expression = new SequenceParse();

 $this->expression->add($this->operand());

 $bools = new RepetitionParse();

 $whichbool = new AlternationParse();

 $whichbool->add($this->orExpr());

 $whichbool->add($this->andExpr());

 $bools->add($whichbool);

 $this->expression->add($bools);

 }

 return $this->expression;

 }

 public function orExpr(): Parser

 {

 $or = new SequenceParse();

 $or->add(new WordParse('or'))->discard();

 $or->add($this->operand());

 $or->setHandler(new BooleanOrHandler());

 return $or;

 }

 public function andExpr(): Parser

 {

 $and = new SequenceParse();

 $and->add(new WordParse('and'))->discard();

 $and->add($this->operand());

Appendix B A Simple Parser

617

 $and->setHandler(new BooleanAndHandler());

 return $and;

 }

 public function operand(): Parser

 {

 if (! isset($this->operand)) {

 $this->operand = new SequenceParse();

 $comp = new AlternationParse();

 $exp = new SequenceParse();

 $exp->add(new CharacterParse('('))->discard();

 $exp->add($this->expression());

 $exp->add(new CharacterParse(')'))->discard();

 $comp->add($exp);

 $comp->add(new StringLiteralParse())

 ->setHandler(new StringLiteralHandler());

 $comp->add($this->variable());

 $this->operand->add($comp);

 $rparse = new RepetitionParse();

 $this->operand->add($rparse);

 $rparse->add($this->eqExpr());

 }

 return $this->operand;

 }

 public function eqExpr(): Parser

 {

 $equals = new SequenceParse();

 $equals->add(new WordParse('equals'))->discard();

 $equals->add($this->operand());

 $equals->setHandler(new EqualsHandler());

 return $equals;

 }

Appendix B A Simple Parser

618

 public function variable(): Parser

 {

 $variable = new SequenceParse();

 $variable->add(new CharacterParse('$'))->discard();

 $variable->add(new WordParse());

 $variable->setHandler(new VariableHandler());

 return $variable;

 }

}

This may seem like a complicated class, but all it is doing is building up the grammar

I have already defined. Most of the methods are analogous to production names (i.e.,

the names that begin each production line in EBNF, such as eqExpr and andExpr). If you

look at the expression() method, you should see that I am building up the same rule as

I defined in EBNF earlier:

// expr = operand { orExpr | andExpr }

public function expression(): Parser

{

 if (! isset($this->expression)) {

 $this->expression = new SequenceParse();

 $this->expression->add($this->operand());

 $bools = new RepetitionParse();

 $whichbool = new AlternationParse();

 $whichbool->add($this->orExpr());

 $whichbool->add($this->andExpr());

 $bools->add($whichbool);

 $this->expression->add($bools);

 }

 return $this->expression;

}

Appendix B A Simple Parser

619

In both the code and the EBNF notation, I define a sequence that consists of a

reference to an operand, followed by zero or more instances of an alternation between

orExpr and andExpr. Notice that I am storing the Parser returned by this method in a

property variable. This is to prevent infinite loops, as methods invoked from expression()

themselves reference expression().

The only methods that are doing more than just building the grammar are compile()

and evaluate(). compile() can be called directly or automatically via the constructor,

which accepts a statement string and uses it to create a Scanner object. It calls the

expression() method, which returns a tree of Parser objects that make up the grammar.

It then calls Parser::scan(), passing it the Scanner object. If the raw code does not

parse, the compile() method throws an exception. Otherwise, it retrieves the result of

compilation as left on the Scanner object’s Context. As you will see shortly, this should

be an Expression object. This result is stored in a property called $interpreter.

The evaluate() method makes a value available to the Expression tree. It does this by

predefining a VariableExpression object named input and registering it with the Context

object that is then passed to the main Expression object. As with variables such as $_

REQUEST in PHP, this $input variable is always available to MarkLogic coders.

Note  See Chapter 11 for more about the VariableExpression class that is
part of the Interpreter pattern example.

The evaluate() method calls the Expression::interpret() method to generate a

final result. Remember, you need to retrieve interpreter results from the Context object.

So far, you have seen how to parse text and how to build a grammar. You also saw

in Chapter 11 how to use the Interpreter pattern to combine Expression objects and

process a query. You have not yet seen, however, how to relate the two processes. How

do you get from a parse tree to the interpreter? The answer lies in the Handler objects

that can be associated with Parser objects using Parser::setHandler(). Let’s take a

look at the way to manage variables. I associate a VariableHandler with the Parser in

the MarkParse::variable() method:

$variable->setHandler(new VariableHandler());

Appendix B A Simple Parser

620

Here is the Handler interface:

interface Handler

{

 public function handleMatch(

 Parser $parser,

 Scanner $scanner

): void;

}

And here is VariableHandler:

class VariableHandler implements Handler

{

 public function handleMatch(Parser $parser, Scanner $scanner): void

 {

 $varname = $scanner->getContext()->popResult();

 �$scanner->getContext()->pushResult(new

VariableExpression($varname));

 }

}

If the Parser with which VariableHandler is associated matches on a scan

operation, then handleMatch() is called. By definition, the last item on the stack will be

the name of the variable. I remove this and replace it with a new VariableExpression

object with the correct name. Similar principles are used to create EqualsExpression

objects, LiteralExpression objects, and so on.

Here are the remaining handlers:

class StringLiteralHandler implements Handler

{

 public function handleMatch(Parser $parser, Scanner $scanner): void

 {

 $value = $scanner->getContext()->popResult();

 $scanner->getContext()->pushResult(new LiteralExpression($value));

Appendix B A Simple Parser

621

 }

}

class EqualsHandler implements Handler

{

 public function handleMatch(Parser $parser, Scanner $scanner): void

 {

 $comp1 = $scanner->getContext()->popResult();

 $comp2 = $scanner->getContext()->popResult();

 �$scanner->getContext()->pushResult(new

BooleanEqualsExpression($comp1, $comp2));

 }

}

class BooleanOrHandler implements Handler

{

 public function handleMatch(Parser $parser, Scanner $scanner): void

 {

 $comp1 = $scanner->getContext()->popResult();

 $comp2 = $scanner->getContext()->popResult();

 �$scanner->getContext()->pushResult(new BooleanOrExpression($comp1,

$comp2));

 }

}

class BooleanAndHandler implements Handler

{

 public function handleMatch(Parser $parser, Scanner $scanner): void

 {

 $comp1 = $scanner->getContext()->popResult();

 $comp2 = $scanner->getContext()->popResult();

 �$scanner->getContext()->pushResult(new BooleanAndExpression($comp1,

$comp2));

 }

}

Appendix B A Simple Parser

622

Bearing in mind that you also need the Interpreter example from Chapter 11 at

hand, you can work with the MarkParse class like this:

$input = 'five';

$statement = "(\$input equals 'five')";

$engine = new MarkParse($statement);

$result = $engine->evaluate($input);

print "input: $input evaluating: $statement\n";

if ($result) {

 print "true!\n";

} else {

 print "false!\n";

}

This should produce the following results:

input: five evaluating: ($input equals 'five')

true!

Appendix B A Simple Parser

623
© Matt Zandstra 2024
M. Zandstra, PHP 8 Objects, Patterns, and Practice: Volume 1, https://doi.org/10.1007/979-8-8688-0482-3

Index

A
Abstract factory pattern, 245, 275, 295,

301, 308, 309, 554, 583
accept() method, 408–410, 413, 415
addChargeableItem() method, 97
addDirty() methods, 540
addNew() methods, 540
addParam() method, 216
addProduct() method, 70
addRoute() method, 464
addSpace() method, 523
addTest() method, 559
addUnit() method, 343, 350, 413
addUnit()/removeUnit() methods, 348
Application controller

decoupling, 470
implementation

action calss, 483, 484
AppController class, 478–482
configuration file, 474
front controller, 472
processSpace() action, 473
ViewComponentCompiler, 475–478

problem, 470
Arguments

return type declaration, 49, 51
types

base, 33–35, 37
DNF, 48
intersection, 48
mixed, 44
nullable, 49

scalar, 41–43
type-checking functions, 38
typedeclaration, 38, 40, 41
union, 45, 47

Army::bombardStrength()
method, 347

attach() method, 399, 400, 405
Autowiring, 326

B
BloggsCal, 287

C
calculateTax() method, 99–104
__call() method, 134, 135
Civilization, 341
Class switching, 579
__clone() method, 141, 142, 307
Closure::fromCallable() method, 152
Cohesion, 219
Command::execute() method, 419
Command pattern

command objects, 417
definition, 373
implementation, 418–422
participant, 424
problem, 417

CommsManager::getApptEncoder()
method, 288

$components array, 315

https://doi.org/10.1007/979-8-8688-0482-3#DOI

624

Composite pattern, 406
consequences, 350–354, 356
definition, 340
implementation, 344, 345, 347–350
inheritance hierarchies, 340
problem, 340, 341, 343

configure() method, 318
__construct() method, 29, 63, 117, 138
Constructor method, 27
Constructor property

promotion, 30
create() method, 110
createContract() method, 441
createObject() method, 551, 552
customGen() method, 331

D
Database patterns

data layer, 509, 510
domain object factory

collection implementation, 553
implementation, 551, 552
problem, 551

identity map, 531–534, 536, 537
identity object

implementation,
555–560, 562, 564

problem, 555
selection factory/update factory

benefits, 571
implementation, 565–570
problem, 565

tight coupling, refactoring, 544–550
unit of work

implementation, 538–543
ObjectWatcher, 544
problem, 538

Data mapper
classes, 512
collections/domain objects, 522–525
data access object, 510
database connectivity, 572
domain object assemblers, 572, 573
drawbacks, 525, 526
handling multiple rows,

implementation, 518, 520–522
implementation, 512–516, 518, 528,

529, 531
Lazy Load, 526
persistence classes, 574
problem, 510, 511, 527

Data Source Name (DSN), 283
Data transfer object, 555
Decorator pattern

concrete components, 357
implementation, 360–365
problem, 357–360
public methods, 366

defensiveStrength(), 344
Delegation, 262
Dependency injection (DI)

attributes, 319–323, 325, 326
autowire support, 326–329
configuration file, 313–316, 318, 319
container, adding object, 331
container class, 332, 333, 335, 336
problem, 310, 311
programmatic configuration, 329, 331
service locator, 310
service locator pattern, 312, 337

Dependency injection pattern, 275
Design patterns

name, 247
pattern structures, 248, 249
PHP, 253

INDEX

625

problem, 247
problems/solutions, 244
solution, 247
structure, 253
tested solutions, 243
use, 249–252

__destruct() method, 138, 139
die() or exit(), 126
$discard property, 606
Disjunctive Normal Form (DNF), 17
doCreateObject() method, 527
DoctrineDBALDriver, 265
doInsert() method, 517
Domain Model, 502
Domain object assemblers, 572, 576
Domain Object Factory, 551, 552, 576
DomainObject::markNew(), 543
Domain-Specific Language (DSL), 374
doScan() method, 607

E
eatWhiteSpace() method, 606
Encapsulation, 224, 225, 265
Enterprise patterns

architecture, 431
application layers, 433–436
inversion of control, 441–443
object discovery, creating/

discovering, 436
patterns, 432
registry, 436–441

business logic layer
domain model, 502–506
transaction script, 497–502

presentation layer
application controller, 470
font controller, 445

page controller, 486–488, 490–492
routing, 462–464, 466, 468–470
template view/view help, 492, 493,

495, 496
view, 444

Enumerations
abstract class, 91–94
backed, 89
interfaces, 94–97
methods, 90, 91
Prodcat argument, 88
single enumeration, 87

Equals, and Boolean logic, 375
Error-handling

anonymous classes, 146, 154–156
anonymous functions, 146,

148, 150–153
callbacks, 146, 148, 150–153
clone(), copying object, 140–143
closures, 146, 148, 150–153
Conf class, 113, 115
destruct, 138, 139
exceptions

public method, 116
subclassing, 119–122
throwing, 117, 118
try/catch blocks,

finally, 123–125
final classes/methods, 126, 127
interceptors, 129, 130, 132–137
internet error class, 128
string values, 144, 145

Evaluate() method, 619
EventMapper::findBySpaceId()

method, 528
execute() method, 328
exists() method, 535
expression() method, 619

INDEX

626

Extended Backus-Naur Form (EBNF), 376
EXtreme Programming (XP), 6

F
Facade pattern

consequences, 371
implementation, 370
problem, 367–369

Factory Method pattern, 275
findAll() method, 520
findByVenue() method, 523
find() method, 514, 518, 564
fire() method, 276
$found array, 426
Front controller

implementation
A command, 459, 460
ApplicationHelper, 448, 449
autoloading, 447
CommandResolver, 450, 451
controller class/command

hierarchy, 446
operation, 461
requests, 452–456
response, 457, 458
ViewManager, 458

problem, 445

G
generateId() method, 101, 102
__get() method, 130
get() method, 115, 315, 318, 330
getApptEncoder() method, 290, 291
getAttribute() method, 455
getConnection(), 265
getContents() method, 459

getFinder() method, 574
getFooterText() method, 291
getGroup() method, 113
getHeaderText() method, 290
getInstance() method, 216, 218, 281, 282,

285, 310
getIterator() method, 519, 520, 529
getKey() method, 377, 379, 381
getNumberOfPages() method, 59
getObjectFromAttribute(), 322
getObjectFromAutowire() method, 328
getPlayLength() method, 59, 95, 96
getPrice() method, 68, 69, 76, 78, 95–97
getProducer() methods, 27, 57, 61
getProducerName() method, 57
getProperty() method, 284
getState() method, 599
getStatus(), 400
getSummaryLine() method, 57, 62, 66, 67
getTaxRate() method, 107
globalKey() method, 535

H
handleLogin() method, 396, 399
handleMatch() method, 606, 620

I, J, K
Identity map, 110, 531, 533, 535, 537,

544, 575
Inheritance

accessor methods, 69, 70
constructors, 63–65
definition, 51
derived classes, 59, 60, 62
overriding method, invoking, 66, 67
problem, 52, 53, 55–58

INDEX

627

public/private/protected classes, 67, 69
readonly classes, 74, 75
readonly properties, 72, 73
shopproduct classes, 75–78
typed properties, 71

init() method, 455
InjectConstructor attribute, 321, 323
$instance property, 285
Intercepting filter, 366
interface keyword, 94
interpret() method, 377, 379, 381–383
$interpreter, 619
Interpreter pattern

definition, 373
implementation, 376, 377,

379, 381–387
interpreter issues, 387
PHP, 373
problem, 374, 375

isNull() method, 429
__isset() method, 131

L
Late static bindings, 111
logObject() method, 48
lookup() method, 379

M
Magic methods, 140
make() method, 300, 301
Mapper::getCollection() method, 554
mark() method, 388, 390, 394
MarkLogic Grammar, 375
MarkLogic interpreter, 591
MegaCal, 288
method_exists(), 131

N
Namespaces, 157
NastyBoss::addEmployee() method,

277, 279
NastyBoss::projectFails() method, 277
$navigability property, 306
newInstance() method, 455
newUpdate() method, 569
nextToken() method, 599, 606
notify() method, 399
Null Object pattern

implementation, 428, 429
problem, 425, 426, 428

O
Object generation

abstract method
consequences, 299–301
implementation, 297–299
problem, 295–297

dependency injection, 310
factory method pattern

consequences, 294
implementation, 291–294
problem, 287, 289–291

problems/solutions, 275–282
prototype

concrete creator, 302
implementation, 303, 305–308
problem, 302

service locator, 308, 310
Object-oriented and procedural

programming
cohesion, 219
commands and function calls, 212
coupling, 219
orthogonality, 220

INDEX

628

readParams(), 214–217
responsibility, 218
writeParams(), 214

Object-oriented programming, 579
Objects

advocacy/agnosticism, 17, 18
choice, 578
decoupling, 579
encapsulation/delegation, 578
object-oriented code, 580
PHP, 577
PHP 3, 12
PHP 4/quick revolution, 12–14
PHP 5, 15, 16
PHP 7, 16
PHP 8, 17
PHP/FI, 11, 12
reusability, 580

Objects and classes
class names, 20
constructor method, 27–29
constructor property

promotion, 30
default arguments/named

arguments, 31, 32
methods, 25–27
operator, 20
setting properties, 21–25
var_dump(), 21

Objects and design
choosing classes, 220
code design, 211, 212
code duplication, 226
conditional statements, 227
global variables, 227

Observer pattern

class, 394
definition, 373
enumeration object, 396
implementation, 398–403, 405
Logger class, 396
Login class, 397
orthogonality, 394

$observers array, 405
outputAddresses() method, 34–36
output() method, 154
$output property, 458
Overriding, 62

P, Q
Packages and namespaces

class names, 158
library code, 158

parse() method, 477
Parser

classes, 603–605, 609–612, 614–616, 618
concrete terminal, 606
discard() method, 606, 607
doScan() reports, 606
interpreter example, 622
terminal matching, 607

Patterns
code interface, implementation, 269
composition, 260, 261, 263, 264
database, 273
decoupling, 273

loosening coupling, 266–268
problems, 264, 265

design, 581
encapsulation, 270
enterprise, 272
generating objects, 272
inheritance hierarchies, 256

Object-oriented and procedural
programming (cont.)

INDEX

629

inheritance, problem, 256–258, 260
language features, 256
patternitis, 271
principles of design, 583–585
problems and solutions, 582
prompt design, 582
revelation, 255
task-oriented, 272

performOperations() method, 540
Person::$name, 133
PHP

design and management
languages, 5–8
objects, 9
patterns, 9, 10
problem, 3–5

PHP Data Object (PDD), 82
PHP 4, 7
poll() method, 51
Polymorphism, 221, 223, 255
Preferences::$instance

property, 285
process() method, 365, 422
processPrice() method, 153
ProcessSale::registerCallback()

method, 148
$props array, 285
Prototype pattern, 275

R
rand() function, 396
read() methods, 218, 223
readParams() function, 214
Reflection API, 157
Registry, 438
render() method, 495
replace() method, 379

Routing::invoke() method, 465
static run() method, 447

S
sale() method, 147, 148
scan() method, 606
Scanner

class, 591–598
example statement, tokens, 601
nextToken(), 602
ScannerState object, 599
StringReader, implementation, 600

SequenceParse::trigger() method, 608
Service layer, 496
Service locator, 432, 436, 438
Service Locator pattern, 275, 312, 336
__set() method, 130, 132, 133
setDiscount() method, 50, 76
setName() method, 133
setProperty(), 284
setSpaces() operation, 523
setState(), 599
setVals() method, 71
simpleHash() method, 549
Singleton pattern, 275, 308

consequences, 286, 287
Global variables, 282
implementation, 283, 285, 286
PHP, 282
problem, 282, 283

Static methods and properties
constant properties, 85, 86
example class, 81–84
static keyword, 80

Strategy pattern
classes, 388
definition, 373

INDEX

630

implementation, 389–394
problem, 388, 389

Stubs/mock objects, 435

T
$tile property, 361
token() method, 602
Tokens, 591
__toString() method, 144, 145, 330
Traits

abstract methods, 107
aliasing overridden, 104
changing access rights, 108, 109
combining instead of, method name

conflicts, 102, 103
combining interfaces, 102
host class properties, 106
multiple, 100
problem, 98
static bindings, 109, 110, 112, 113
static methods, 105

Transaction Script pattern, 497
trigger() method, 607
TroopCarrier::addUnit() method, 355

U
Unified Modeling Language (UML), 228

class diagrams
aggregation/composition, 234, 235
associations, 232, 233
attributes, 230
inheritance/implementation,

231, 232

notes, 236
operations, 231
representing classes, 228–230
sequence diagram, 237–239
use relationship, 235

Unit class, 342
Unit of work, 538, 540, 544, 575
Until PHP 5.3, 111
$units property, 343
update() method, 405

V
$val property, 381
$value method, 45
VenueMapper::insert() method, 532
visit() methods, 411
visitArmy() method, 415
Visitor pattern

definition, 373
implementation, 408–414, 416
issues, visitor, 416
problems, 406–408

W, X
warnAmount() method, 150, 153
workWithProducts() method, 225
write() method, 39–41, 58, 61, 81, 92, 94,

115, 117, 156, 218, 223
writeName(), 136
writeParams() function, 213–215

Y, Z
YAGNI principle, 584

Strategy pattern (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Objects
	Chapter 1: PHP: Design and Management
	The Problem
	PHP and Other Languages
	About These Books
	What’s New in the Seventh Edition

	Volume 1
	Part 1: Objects
	Part 2: Patterns

	Summary

	Chapter 2: PHP and Objects
	The Accidental Success of PHP Objects
	In the Beginning: PHP/FI
	Syntactic Sugar: PHP 3
	PHP 4 and the Quiet Revolution
	Change Embraced: PHP 5
	PHP 7: Closing the Gap
	PHP 8: The Consolidation Continues

	Advocacy and Agnosticism: The Object Debate
	Summary

	Chapter 3: Object Basics
	Classes and Objects
	A First Class
	A First Object (or Two)

	Setting Properties in a Class
	Working with Methods
	Creating a Constructor Method
	Constructor Property Promotion

	Default Arguments and Named Arguments
	Arguments and Types
	Base Types
	Base Types: An Example

	Some Other Type-Checking Functions
	Type Declarations: Class Types
	Type Declarations: Scalar Types
	mixed Types
	Union Types
	Intersection Types
	DNF Types: Combining Union and Intersection Type Declarations
	Nullable Types

	Return Type Declarations
	Inheritance
	The Inheritance Problem
	Working with Inheritance
	Constructors and Inheritance
	Invoking an Overridden Method

	Public, Private, and Protected: Managing Access to Your Classes
	Accessor Methods

	Typed Properties
	readonly Properties
	readonly Classes
	The ShopProduct Classes

	Summary

	Chapter 4: Advanced Features
	Static Methods and Properties
	Constant Properties
	Enumerations
	Backed Enumerations
	Enumerations with Methods

	Abstract Classes
	Interfaces
	Traits
	A Problem for Traits to Solve
	Defining and Using a Trait
	Using More Than One Trait
	Combining Traits and Interfaces
	Managing Method Name Conflicts with insteadof
	Aliasing Overridden Trait Methods
	Using Static Methods in Traits
	Accessing Host Class Properties
	Defining Abstract Methods in Traits
	Changing Access Rights to Trait Methods

	Late Static Bindings: The static Keyword
	Handling Errors
	Exceptions
	Throwing an Exception
	Subclassing Exception
	Cleaning Up After try/catch Blocks with finally

	Final Classes and Methods
	The Internal Error Class
	Working with Interceptors
	Defining Destructor Methods
	Copying Objects with __clone()
	Defining String Values for Your Objects
	Callbacks, Anonymous Functions, and Closures
	Anonymous Classes
	Summary

	Chapter 5: Object Tools
	PHP and Packages
	PHP Packages and Namespaces
	Namespaces to the Rescue
	Using the File System to Simulate Packages
	Emulating Namespaces with Underscores
	Include Paths

	Autoload

	The Class and Object Functions
	Looking for Classes
	Learning About an Object or Class
	Getting a Fully Qualified String Reference to a Class
	Learning About Methods
	Learning About Properties
	Learning About Inheritance
	Method Invocation

	The Reflection API
	Getting Started
	Time to Roll Up Your Sleeves
	Examining a Class
	Examining Methods
	Examining Method Arguments
	Using the Reflection API

	Attributes
	Summary

	Chapter 6: Objects and Design
	Defining Code Design
	Object-Oriented and Procedural Programming
	Responsibility
	Cohesion
	Coupling
	Orthogonality

	Choosing Your Classes
	Polymorphism
	Encapsulation
	Forget How to Do It
	Four Signposts
	Code Duplication
	The Class Who Knew Too Much
	The Jack of All Trades
	Conditional Statements

	The UML
	Class Diagrams
	Representing Classes
	Attributes
	Operations
	Describing Inheritance and Implementation
	Associations
	Aggregation and Composition
	Describing Use
	Using Notes

	Sequence Diagrams

	Summary

	Part II: Patterns
	Chapter 7: What Are Design Patterns? Why Use Them?
	What Are Design Patterns?
	A Design Pattern Overview
	Name
	The Problem
	The Solution
	Consequences

	The Gang of Four Format
	Why Use Design Patterns?
	A Design Pattern Defines a Problem
	A Design Pattern Defines a Solution
	Design Patterns Are Language Independent
	Patterns Define a Vocabulary
	Patterns Are Tried and Tested
	Patterns Are Designed for Collaboration
	Design Patterns Promote Good Design
	Design Patterns Are Used by Popular Frameworks

	PHP and Design Patterns
	Summary

	Chapter 8: Some Pattern Principles
	The Pattern Revelation
	Composition and Inheritance
	The Problem
	Using Composition

	Decoupling
	The Problem
	Loosening Your Coupling

	Code to an Interface, Not to an Implementation
	The Concept That Varies
	Patternitis
	The Patterns
	Patterns for Generating Objects
	Patterns for Organizing Objects and Classes
	Task-Oriented Patterns
	Enterprise Patterns
	Database Patterns

	Summary

	Chapter 9: Generating Objects
	Problems and Solutions in Generating Objects
	The Singleton Pattern
	The Problem
	Implementation
	Consequences

	Factory Method Pattern
	The Problem
	Implementation
	Consequences

	Abstract Factory Pattern
	The Problem
	Implementation
	Consequences

	Prototype
	The Problem
	Implementation

	Pushing to the Edge: Service Locator
	Splendid Isolation: Dependency Injection
	The Problem
	Implementation
	Dependency Injection from a Configuration File
	Dependency Injection with Attributes
	Dependency Injection with Autowire Support
	Dependency Injection with Programmatic Configuration
	Adding an Object to a Container
	The Entire Container Class

	Consequences

	Summary

	Chapter 10: Patterns for Flexible Object Programming
	Structuring Classes to Allow Flexible Objects
	The Composite Pattern
	The Problem
	Implementation
	Consequences
	Composite in Summary

	The Decorator Pattern
	The Problem
	Implementation
	Consequences

	The Facade Pattern
	The Problem
	Implementation
	Consequences

	Summary

	Chapter 11: Performing and Representing Tasks
	The Interpreter Pattern
	The Problem
	Implementation
	Interpreter Issues

	The Strategy Pattern
	The Problem
	Implementation

	The Observer Pattern
	Implementation

	The Visitor Pattern
	The Problem
	Implementation
	Visitor Issues

	The Command Pattern
	The Problem
	Implementation

	The Null Object Pattern
	The Problem
	Implementation

	Summary

	Chapter 12: Enterprise Patterns
	Architecture Overview
	The Patterns
	Applications and Layers
	Creating and Discovering Object Instances
	Registry
	The Problem
	Implementation
	Consequences

	Inversion of Control

	The Presentation Layer
	Front Controller
	The Problem
	Implementation
	ApplicationHelper
	CommandResolver
	Request
	Response
	ViewManager
	A Command

	Overview
	Consequences

	More Flexible Routing
	Routing Implementation

	Application Controller
	The Problem
	Implementation
	The Front Controller
	Implementation Overview
	The Configuration File
	Compiling the Configuration File
	The AppController Class
	An Action Class

	Consequences

	Page Controller
	The Problem
	Implementation
	Consequences

	Template View and View Helper
	The Problem
	Implementation
	Consequences

	The Business Logic Layer
	Transaction Script
	The Problem
	Implementation
	Consequences

	Domain Model
	The Problem
	Implementation
	Consequences

	Summary

	Chapter 13: Database Patterns
	The Data Layer
	Data Mapper
	The Problem
	Implementation
	Handling Multiple Rows

	Collections and Domain Objects
	Consequences
	Lazy Load
	The Problem
	Implementation
	Consequences

	Identity Map
	The Problem
	Implementation
	Consequences

	Unit of Work
	The Problem
	Implementation
	Consequences

	Refactoring Tight Coupling
	Domain Object Factory
	The Problem
	Implementation
	Consequences

	The Identity Object
	The Problem
	Implementation
	Consequences

	The Selection Factory and Update Factory Patterns
	The Problem
	Implementation
	Consequences

	What’s Left of Data Mapper Now?
	Summary

	Chapter 14: Objects and Patterns
	Objects
	Choice
	Encapsulation and Delegation
	Decoupling
	Reusability
	Aesthetics

	Patterns
	What Patterns Buy Us
	Tried and Tested
	Patterns Suggest Other Patterns
	A Common Vocabulary
	Patterns Promote Design

	Patterns and Principles of Design
	Favor Composition over Inheritance
	Avoid Tight Coupling
	Code to an Interface, Not an Implementation
	Encapsulate the Concept That Varies

	Summary

	Appendix A: Bibliography
	Books
	Articles
	Sites

	Appendix B: A Simple Parser
	The Scanner
	The Parser

	Index

