PHP #cxa

20 Lessons to Successful Web Development

Robin Nixon P ‘- -

Graw

Features online video tutorials for each lesson!

About the Author

Robin Nixon is a prolific author on programming and web development (as well as
psychology and motivation), with his books having been translated into numerous
foreign languages and frequently topping both the U.S. and international computer
book charts. He has worked with computers and technology all his life, and began
writing about the subject about 35 years ago.

He has authored hundreds of articles, and over two dozen books, and is a popular
video and online instructor, with thousands of students taking his courses. Robin
is also an accomplished programmer, developer, and entrepreneur, with several
successful Internet startups to his name, from which he has learned a wealth of
programming hints and tips, which he enjoys passing on in his expanding range of
web development books, including the following titles:

e HTMLS: 20 Lessons to Successful Web Development (McGraw-Hill Education, 2015)
e JavaScript: 20 Lessons to Successful Web Development (McGraw-Hill Education, 2015)
e (CSS & CSS83: 20 Lessons to Successful Web Development (McGraw-Hill Education,
2015)
e Learning PHE MySQL, JavaScript, CSS & HTMLS (O'Reilly, 2014)
Web Developer’s Cookbook (McGraw-Hill Education, 2012)
e HTMLS for iOS and Android (McGraw-Hill Education, 2010)

About the Technical Editor

Albert Wiersch has been writing software since the Commodore VIC-20 and
Commodore 64 days in the early 1980s. He holds a Bachelor of Science degree in
computer science engineering and an MBA from the University of Texas at Arlington.
Albert currently develops and sells software that helps web developers, educators,
students, businesses, and government agencies check their HTML and CSS documents
and their websites for quality problems, including many SEO (search engine
optimization), mobility, and accessibility issues, with discounts made available to
students. His website is HTMLValidator.com.

http://HTMLValidator.com

/4

PHP P08\ &

20 Lessons to Successtul Web Development
=" 2/

L8

Robin Nixon

Education

New York Chicago San Francisco
Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

Copyright © 2015 by McGraw-Hill Education. All rights reserved. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

ISBN: 978-0-07-184986-9
MHID: 0-07-184986-6

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-184987-6,
MHID: 0-07-184987-4.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate
training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education does not guarantee the accuracy,
adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of
such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject
to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may
not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate,
sell, publish or sublicense the work or any part of it without McGraw-Hill Education’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail
to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK
OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and
its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the
content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable
for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever
whether such claim or cause arises in contract, tort or otherwise.

http://www.mhprofessional.com

To Julie

This page intentionally left blank

Contents at a Glance

PART I PHP Basics

1 Introduction to PHP 3
2 Incorporating PHP intoa Web Page 1
3 Learning PHP Language Syntax 0. . 17
4 Using Constants and Superglobals 25
5 Working with Arithmetic Operators 33
6 Applying Comparison and Logical Operators 41
7 Creating ATTayYS . . o oot 51
8 Managing Multidimensional Arrays 59
9 Calling Array FUNctions i, 71
10 Advanced Array Manipulation 83
11 Controlling Program Flow 93
12 Looping Sectionsof Code 105
PARTII Advanced PHP

13 Writing Functions 119
14 Manipulating Objects 131
15 Handling Errors and EXpressionso..iiiii.... 145
16 Building Web FOrms 157
17 Maintaining Security 169
18 Accessing Cookiesand Files 177
19 Advanced File Handling 189
20 Authentication, Sessions, and Ajax 207
A Answers to the Self-Test Questions 223

INAEX . . oo 241

This page intentionally left blank

Contents

Acknowledgments xvii
IntrodUuction Xix

PARTI PHP Basics

LESSON 1 Introductionto PHPcciiiiiiiiiiiiiennnnnns 3
A Little HiStOTY . ..o 3

Info for Programmerst 4

Why Is PHP so Popular? 5
Downloading and Installing Web Browsers 5
Choosing a Program Editor 6
Installing a PHP SETVETottt e e e 7
SUMMATY . .o 9
Self-Test QUESHIONS . . . vttt e e 9
LESSON 2 Incorporating PHPintoaWebPagecc0c0veeee.. 11
Where to Place the PHP Code e 1

In the Document Head i 12

In the Document Body 12

Including PHP Files 12

Using COMIMETIES . .« o ottt et et e e e e e e 15
Using Semicolons 15
SUIMIMATY . . o e 16
Self-Test QUESHIONS ottt e e 16

LESSON 3 Learning PHP Language Syntaxc.civieeeeeeeees. 17

Case Sensitivity 17
WHhitespace 18
Variables 18

Variable Naming 19
String Variables 19
Using Quotation Marks in Strings 20

Using Heredoc Strings 21

x Contents

Escaping Characterst 22
Embedding Variables withina String 22
Variable Typing and Castingttt 23
SUMIMATY . .o 24
Self-Test QUESHIONS . . . vttt e e e 24

LESSON 4 Using Constants and Superglobalsc0ceee.. 25

Using CONStants 25
Predefined Constants 26
The echo and print Commands iiieeoo. ... 27
Superglobal Variables 27
Superglobals and Security 28
Other PHP Variables 29
SUIMIMATY . . o e 30
Self-Test QUESHIONSottt e 30

LESSON 5 Working with Arithmetic Operators 33

Arithmetic OPeratorst 33
Modulus 35
Exponentiation 35
Incrementing and Decrementing Variables 35
Pre-INCrementingttt 36
Post-Incrementing 36
Pre- and Post-Decrementingt 37

Arithmetic Functions 38

Assignment OPeratorst 39

SUMMATY . . o 40

Self-Test QUESHIONS o ot 40

LESSON 6 Applying Comparison and Logical Operators 41

Comparison OPETAtOTS . . . o vttt e e e e 41

Logical Operatorst 43
Exclusive Or 45
Boolean Negation 45

The Ternary OPeratorttt 46

Bitwise OPETatorsSottt 46

Operator PreCedencet 46

Operator ASSOCIAtIVILY 48

SUMIMATY . .o 49

Self-Test QUESHIONS . . . vttt e e 49

LESSON 7 Creating Arraysceceeeececesoscecsssosesossnsess 5l

ATTay NAIMES . oo 52
Creating an ATTAY . .. oottt e 52
Assigning Values to an Array Element 52

USING INAEXES .« . vt e et e e e e 53

Contents xi

Retrieving Values 53
Using Array Elements as Indexes 54
Other Ways of Creating ATrays it . 55
Using ASSOCIAtIVE ATTAYS . . . oo v ettt et e e e e e e 55
Keys, Values, and Hash Tables 56
Other Ways of Creating an Associative Array 56
SUMIMATY . . o 57
Self-Test QUESHIONS . . . vttt e e e 58

LESSON 8 Managing Multidimensional Arrayscccveeeeeeeses. 59

Creating a Two-Dimensional Array 60
Accessing a Two-Dimensional Array, 62
A More Practical Example 64
Multidimensional Associative ATrays 66
Creating the Multidimensional Array 67
Accessing the ATTays 69
SUMIMATY . . o e 69
Self-Test QUESHIONS . .. ottt e e 70
LESSON 9 Calling Array Functionscciiiveeeieecncnnnesess 71
Using foreach () .. 71
USing array Merge ()ttt 73
Using implode () .o 74
The array walk () Function 75
Using array push() 76
USING array POP () oot e e e 77
Using array push() and array pop () Together 78
USINg array reverSe () 80
The array flip() Function 81
SUMMATY . . o 82
Self-Test QUESHIONS o ot 82
LESSON 10 Advanced Array Manipulation ittt ennnns 83
Using FILO and FIFO ATTAYS . . .ot v ittt et e e 83
Buffering Using an ATTayttt 84
Using array unshift () and array shift () 85
USING SOTE () oottt 85
REVETSING @ SOTt 86
Using array splice () 87
Removing Elements from an Array 87
Inserting Elements into an Array, 88
Advanced Array Splicing 89
SUMIMATY . . o 90

Self-Test QUESHIONS . . . v ot e e e 91

xii Contents

LESSON 11 Controlling Program Flow O ° K
The 1£ () CONStIUC 93
Omitting the Braces 94
Positioning of Braces 95

The else Statement 95
The elseif () CONSIIUCt e 97
The switch () Statement 98
Using the break Keyword 100
Using the default Keyword 100
Allowing Fall-Through 101
SUMIMATY . .o 102
Self-Test QUESHIONS oottt e e 102

LESSON 12 Looping Sectionsof Codecccceveeceeeeeess. 105

Using while () LOOPS .. .ot 105
The Example in Detail 106
Using do ... while () LOOPSo 107
The Example in Detail 108
Using for () LOoOPS . ..o 109
The Example in Detail 109
Breaking Out of a LoOp oo 111
Breaking Out of Multiple LOOPSo 112
The continue Statement 112
Continuing within Multiple Loops 113
SUMMATY . . 114
Self-Test QUESHIONS oot et e e 115

PART II Advanced PHP

LESSON 13 WritingFunctionscitiititiirireeneensese. 119

Using FUNCHIONS e e e 119
The return Statement 120
Passing ATGUMENESottt 120
ACCESSING ATZUIMENIES . . o o e e e e e e e e e 121
Handling Unknown Numbers of Arguments 122

Global and Local Variable Scope 124
Using Local Variables 124

The $GLOBALS [] Superglobal Array 127

Global Naming Conventiont 129

SUMMATY . . o 129

Self-Test QUESHIONSot 129

LESSON 14 Manipulating Objects B i |

OOP Terminology 132

Declaring a Class 132

Creating an ObJECtt 133

Accessing Properties and Objects i 133

Using a CONStIUCOT e e e e e 134
DeStruCtorso o 135
Object CIOMING o 135
Static Methods and Properties 136
Predefined Properties 137
OOP Constants 137
Property and Method Scope 137
Applying Inheritance 139
Using the parent Keyword 140
Writing Subclass CoOnstructorsttt 141
Using the £inal Keyword 142
SUMIMATY . . o 142
Self-Test QUESHIONS oot e e e e 143

LESSON 15 Handling Errors and Expressionscccoeeeeeeeese. 145

Error Trappingo oot 145
Regular EXPressionsot 147
Using preg match() 147
Using preg match all () ... 149
Using preg _replace ()t 150
Fuzzy Matching 152
Matching Any Character 152

Not Matching a Character 153
SUMIMATY . . o e 155
Self-Test QUESHIONS oottt e 155
LESSON 16 BuildingWebFormscciiiieiieeneeneene.. 157
Creating a FOorm 157
The Difference Between Post and Get Requests 159
Security Issues with Get Requests 159
Accessing Form Data from PHP 160
About register globalsttt 161
Redisplaying a FOrm 162
The checkbox and select multiple Input Types 163
Using Hidden Fields 166
SUMMATY . . o 166
Self-Test QUESHIONS oo ot 166
LESSON 17 MaintainingSecuritycciietiiieeerencesonnnnes 169
Sanitizing INPput 169
Uploading Files to @ SETVert 171
The $_FILES[] ATTAY .« ottt ittt e e e e e 172

File SECUTItYo 173
Other Potential Insecurities 174
SUMIMATY . .o 175

Self-Test QUESHIONS v ot e e e e 175

xiv Contents

LESSON 18 Accessing Cookiesand Filesccivveeennnns eee. 177
Using COOKIES 177
Setting a Cookie 178
Reading a Cookie 179
Deleting a CooKie 179
Combining These Three Functions 180
Browser Identification 181
The GetBrowser () Function 182

File Handling 183
Testing for a File Existing i 184
Creating or Opening a File 185
Writingtoa File 185
Closinga File 186
Reading froma File 186
SUIMIMATY . o oottt e e e e e e e 187
Self-Test QUESLIONS 188
LESSON 19 Advanced FileHandlingcccieeeeeeeees.. 189
Combining File Functions 189
Saving Any Form Data 191
Reading from the Data File 192
Prepopulating the Shopping List 193

The HTML SECtOn e 193
Even Simpler File ACCeSSING 194
File COPYING . . o oo 197
File Deleting 197
File MOVING . .. 197
RaNdOm ACCESS . . . o oottt e 198
Writing to a Random Access File 199
Managing DirecCtOTies 199
File LoCKING 200
A Practical Example 201
SUMMATY . . o oo e e e e e e e 205
Self-Test QUESHIONS . . . oot e et e e e 205
LESSON 20 Authentication, Sessions, and Ajaxcc00e... 207
Authentication 207
USING SESSIONS . . o ottt e e 210
Retrieving Session Variables 210
Combining Authentication with Sessions 211
Picking Up Session Details 211
Closing a SesSiON 213
Session Security 213
USING AJAX . oo ot ettt 214
Creating an Ajax ODbJect 215

The PostAjaxRequest () Function 217

Contents xv

The GetAjaxRequest () Function 218
The callback () Function 219
The ajax.php Program 219
SUMIMATY . .o 221
Self-Test QUESHIONS oot e e e 222
APPENDIX Answers to the Self-Test Questionscc0ceeeeee.. 223
LESSON 1 ANISWETS . . ottt e e e e e e 223
LESSON 2 ANISWETS . . ottt e e e e e 224
LESSON 3 ATISWETS . . ottt e e e e e 225
LESSON 4 ATISWETS . . ottt e e e e e e 226
LESSON 5 ANISWETS . . oottt e e e 226
LESSON 6 ATNISWETS . . ottt e e e e e e 227
LESSON 7 ANISWETS . . ottt e e e e e e 228
LESSON 8 ANISWETS . . oot e e 229
LESSON 9 ANISWETS . . oottt e 230
LesSon 10 ANSWETSottt e e e 231
LeSSON 11 ANISWETS . . .ottt e e e e e e 231
LESSON 12 ANSWETS . . ottt e e e e 232
LESSON 13 ANISWETS . . o ottt e e e e e e 233
LESSON 14 ANISWETS . . ottt e e e e e e e e 234
LESSON 15 ANSWETS . . o ottt e e e 235
LESSON 16 ANISWETS . . o ottt e e e e e e e e 236
LESSON 17 ANSWETS . . o ottt e e e e e e e 237
LeSSON 18 ANSWETS . . . ottt e e e 238
LeSSON 19 ANSWETS . . . ot e e 239
LesSOn 20 ANISWETS . . .ottt e e e 240

T = |

This page intentionally left blank

Acknowledgments

Once again I would like to thank the amazing team at McGraw-Hill Education, with
whom it is always a real pleasure to work on new book projects. In particular, I would
like to thank my Sponsoring Editor Brandi Shailer, Amanda Russell for overseeing

the project’s development, Editorial Supervisor Patty Mon, Production Supervisor
Jean Bodeaux, Copy Editor Bart Reed, and Jeff Weeks for the excellent cover design.
Thanks also goes again to Albert Wiersch (whom I have had the pleasure of working
with on a number of occasions) for his meticulous eye for detail during technical review.

This page intentionally left blank

Introduction

Why This Book?

The concept for this book grew out of Robin’s extremely popular online courses, in
which thousands of students are enrolled. From their feedback, it became evident that
the reason for this popularity was that students love the way the material is broken up
into easy-to-digest lessons, each of which can be completed in an hour or less. They
also like the no-nonsense, jargon-free, and friendly writing style.

Now, working together, Robin and McGraw-Hill Education have further revised,
updated, and developed his PHP course into this book, which not only will teach
you everything you need to learn in 20 lessons (of less than an hour each), but also
includes a detailed video walkthrough for each lesson, comprising over 5.5 hours of
footage in total.

Watch the video after reading the lesson to reinforce key concepts, or use the
video as a primer to working through each print lesson. Together, these course
materials make learning PHP easier than it has ever been, and are the ideal way for
you to add these essential skills to your web development toolkit.

@ Access the videos by going to mhprofessional.com/nixonphp/.

Who Should Read This Book

Each lesson is laid out in a straightforward and logical manner, with plenty of examples
written using simple and clear PHP. Before moving onto each subsequent lesson, you
have the opportunity to test your new knowledge with a set of 10 questions about the
material you have just learned. You can also work along with every lesson by watching
its accompanying video tutorial.

Even if you've never programmed before, you will still learn everything you
need from this book, because the principles behind how programming works are

Xix

http://www.mhprofessional.com/nixonphp

xx Introduction

fully explained, and no prior knowledge is ever assumed. Between the lessons, the
self-test questions, and the videos, this course will ensure that you learn the language
thoroughly and quickly.

To save you typing them in, all the example files from the book are saved in a freely
downloadable zip file available at the companion website: 20lessons.com.

What This Book Covers

This book covers every aspect of PHP, starting with basic syntax and language rules,
such as where and how you include PHP in your web documents. You will also learn
about numeric and string variables, arrays and objects, and how to assign, manipulate,
and read values. More advanced techniques, such as using hashes to index into
associative arrays and accessing multidimensional arrays, are also made easy.

How to loop code and control program flow with conditional statements is explained
in plain English, as well as how to create and use functions and methods, in either a
procedural or object-oriented manner. Important techniques such as managing cookies
and local storage as well as controlling background Ajax communications are all revealed
in simple, short examples.

By the time you finish the book’s 20 lessons, you'll have a thorough grounding in
PHP, and will be able to use it to dynamically enhance your web pages.

How to Use This Book

This book has been written in a logical order so that each lesson builds on information
learned in the previous ones. You should begin at Lesson 1 and then work sequentially
through the book, proceeding to the next lesson only when you can correctly answer
the self-test questions in the previous one.

Lessons should take you less than an hour to finish, including viewing the
accompanying video walkthrough provided with each one. With over 5.5 hours of
video in total, that's an average of 16 minutes dedicated to each lesson.

How Is This Book Organized?

This book takes you right from the basics through to advanced techniques, and includes
the following lessons.

In Part I, Introduction to PHP; Incorporating PHP Into a Web Page; Learning
PHP Language Syntax; Using Constants and Superglobals; Working with Arithmetic
Operators; Applying Comparison and Logical Operators; Creating Arrays; Managing
Multidimensional Arrays; Calling Array Functions; Advanced Array Manipulation;
Controlling Program Flow; and Looping Sections of Code.

In Part II, the lessons include: Writing Functions; Manipulating objects; Handling
Errors and Expressions; Building Web Forms; Maintaining Security; Accessing Cookies
and Files; Advanced File Handling; and Authentication, Sessions and Ajax.

20lessons.com

This page intentionally left blank

1)

Introduction to PHP

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

HP is a free scripting language that is provided on most Linux, Unix, and BSD

systems, or it can easily be installed on them. It is also freely available on both
Microsoft Windows PCs and Apple Mac OS X computers. Therefore, no matter what
platform you develop with, there is a version of PHP available for you.

The lessons in this book are aimed squarely at people who have learned basic
HTML (and perhaps a little CSS) but are interested in doing more. For example, you
may wish to create more dynamic systems, provide form processing of user-supplied
data, support Ajax functionality, and more. During the course of these lessons, you'll
be shown how to do all these things and much more using PHP.

As you progress, it is never assumed that you know anything about a solution,
and you are taken through each example, step by step, with the explanations included,
so there is minimal need to look up anything elsewhere. All the examples’ files from
the lessons are in a free ZIP archive, which you can download at the 20lessons.com
website.

A Little History

The PHP programming language was written by Rasmus Lerdorf, and it was originally
crafted from a set of Perl scripts he combined into what he called his “Personal Home
Page” tools, hence the name PHP. He used these scripts to display data such as his
résumé as well as store and report analytics such as his web page activity, among
other things. Having started his project in 1994, Lerdorf refined it by rewriting all the
scripts in C, compiling them, and then releasing the result to a Usenet group in 1995.
The syntax of PHP was similar to Perl because it was loosely based on that used in

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp
20lessons.com

4 Part I PHP Basics

the C programming language, and it had much of the same functionality that PHP
provides today, with access to variables, form handling, and embedded HTML.

The Usenet upload was received with enthusiasm, and soon a team of developers
had assembled who spent the next couple of years extending, improving, and testing
PHP until they felt it was ready for wider publication in 1997, particularly once Zeev
Suraski and Andi Gutmans (a pair of Israeli developers) had rewritten the main parser,
making it significantly faster and more powerful. They also changed the full name of
the program to PHP: Hypertext Processor.

Soon after, the Israeli developers started work on rewriting the core engine
of PHP, which was called Zend (presumably a contraction of Zeev and Andji), the
same name as a company they founded in Israel. For a while Zend offered a superb
introductory solution for beginning programs in the form of their free Community
Edition server. However, this is no longer available. Therefore, until you know whether
you'll need all the extra features of a premium product, I generally recommend you
begin with installing the free XAMPP suite (see “Installing a PHP Server,” later in
the lesson).

Info for Programmers

If you can already program in another language such as C or Java, for example, you'll
find yourself at home with PHP, and here are a few things you should know about
the language that will make your learning process even quicker. If you are not a
programmer, you may skip to the next section because these terms will be explained
in later lessons.

To begin with, PHP supports much of the structured programming syntax used in
C,such as if () statements, while () and for () loops, switch () statements, and
so on. Also, like in C, each statement must be terminated with a semicolon.

PHP is a scripting language, so it's not compiled until runtime. Also, as with other
scripting languages, it uses dynamic typing, in which types (integer, string, array,
and so on) are associated with values rather than variables. Values are interpreted as
integers, floating point, strings, or other types according to the way in which they are
used within an expression. This makes PHP easy to use because you don't have to
declare the type of a variable. However, it can result in unexpected errors in certain
instances, unless you force the variable type in a process known as casting.

Being scripted, PHP code can be placed within HTML tags to add functionality to
basic HTML web pages. In fact, you can have as many segments of PHP as you like in
a web document, or simply include PHP program files. Unlike in C and Java, though,
all variables in PHP must be prefaced with a $ symbol, and omitting this symbol is the
cause of most syntax errors encountered by beginners to PHP—so make sure you use it.

PHP supports object-oriented programming (OOP) and offers private and protected
member variables and methods, along with abstract classes, final classes, abstract
methods, and final methods. It also uses a standard way of declaring constructors and
destructors, similar to that of other object-oriented languages such as C+ +, and it has
a standard exception handling model.

Lesson 1 Introduction to PHP 5

Why Is PHP so Popular?

There are three main reasons for PHP's popularity. First of all, PHP integrates seamlessly
with HTML. Even if you know next to no programming, it's very easy to rename your
.html files to .php, and they will automatically become PHP programs, albeit ones that
display themselves as an HTML page.

But then, whenever you need a little dynamic functionality, you can drop in a quick
line of PHP code, such as the following snippet, for example, which will display the
day of the week (like “Wednesday”):

<?php echo date("1"); ?>

Second, it's easy to learn. With a few simple PHP functions under your belt,
almost without knowing it, you're already a PHP programmer. Add in for () loops
and a couple of other constructs, and you can very quickly start making your own
dynamic websites.

Third, there's excellent support from the PHP programming community; just type
help PHP into Google, and you'll be presented with a staggering 1.4 billion search results.

Downloading and Installing Web Browsers

If you are going to test your PHP programs thoroughly, you will need to see how they
run on all the different browsers currently in use. Following is a list of the five major
web browsers and their Internet download locations. The web pages at these URLS
are smart and offer up the correct version to download according to your operating
system, if available:

Apple Safari apple.com/safari

Google Chrome google.com/chrome
Microsoft Internet Explorer microsoft.com/ie
Mozilla Firefox mozilla.com/firefox

Opera opera.com/download

Even though Safari and Chrome (and now Opera) are built on the same Webkit
rendering engine, to ensure your programs work as intended, you should install as
many of these browsers on your computer as you can, because they all have their
own particular quirks and differences.

Unfortunately, not all browsers are available on all hardware configurations,
because development of Internet Explorer for the Mac was halted many years ago
(when it reached version 5), but you can install all other main browsers on OS X. Also,
if you're running any version of Windows from XP onward, you will be able to install
all the latest browsers, except for the latest version of Safari, because Apple stopped
updating Safari for Windows (also at version 5) in about 2012 (seems like a bit of
tit-for-tat going on here between Apple and Microsoft).

http://apple.com/safari
http://microsoft.com/ie
http://mozilla.com/firefox
http://opera.com/download

6 Part I PHP Basics

Your best option on a Mac is to either perform a dual install of Windows alongside
OS X or ensure you have access to a Windows PC. After all, unless you intend to only
develop for Mac computers, people using a Windows operating system will represent
two-thirds of your users. And developers using Windows systems really need to obtain
access to a Mac for testing purposes.

As for Linux, not only does it not have access to Internet Explorer, there is no
version of Safari either, although all the other browsers do come in Linux flavors.
And, as with OS X, although various solutions exist that incorporate Wine for running
Internet Explorer, they only seem to work with some distributions and not others.
Therefore, it can be a bit of a minefield trying to find a bulletproof way for you to run
Windows browsers on Linux.

What it all comes down to is that, as a developer, you need access to as wide a
range of platforms on which to test your web pages as you can get your hands on—
and not just from the point of view of different browsers and hardware, because
you also must take into consideration differing graphics cards and processor speeds
(which can be critical where performance is demanded) as well as, depending on the
application, various alternative types of input.

Don't forget that nowadays you also need to check your projects on i0S and
w Android phones and tablets, as well as Windows Phone devices. And be prepared
(- <= for some extra coding, because phones and tablets work quite differently from
desktops and laptops, mainly due to the emphasis on touch for input.

Choosing a Program Editor

Long gone are the days of relying on a simple text editor for coding, because software
for writing program code has progressed by leaps and bounds in recent years, with
text editors having been replaced by powerful program editors that highlight your
syntax using different colors and can quickly locate things for you such as matching
(and missing) brackets and braces, and so on.

Following is a list of free program editors (including the platforms they run
on and their download URLs). These will all do a great job of helping you to write
code quickly and efficiently. Which one you choose is largely down to personal
preference—in my case, I have settled on Notepad + +, which is shown in Figure 1-1.

Free Program Editor Platform URL

Bluefish Linux/Mac bluefish.openoffice.nl
Cream Linux/Windows cream.sourceforge.net
Editra Linux/Mac/Windows editra.org

Free HTML Editor Windows coffeecup.com/free-editor
jEdit Linux/Mac/Window Jjedit.org

Notepad++ Windows notepad-plus.sourceforge.net

http://coffeecup.com/free-editor
http://editra.org
http://jedit.org
http://bluefish.openoffice.nl
http://cream.sourceforge.net
http://notepad-plus.sourceforge.net

Lesson 1 Introduction to PHP 7

File Edit S5earch View Enceding Language Settings Macre Run TedtFX Plugins Window T X
DOHERLE b e ny 2% BEEEH1IEEEN IENRE & v
|=] varizbles php EI|

1 <!DOCTYFE html> -~

2 <html>

3 E <head>

4 <titlexVariables</title>

& - </head>

& =] <body style='font-family:Conrier New':>

T g{?php

8 $a = 1; =

9 §a = $a + 1; -

10 echo 'a is ' . "Sa
":

11

12 $a = $a * 5;

13 _ 'a iz ' . "Sa
":

14 2>

15 - </body>

16 “</html>

17 hd
PHP Hyperted length: 254 lines: 17 Ln:13 Col:3 Sel:4|0 Dos\Windows UTF-8 w/o BOM INS J

FIGURE 1-1 Editing a PHP file in Notepad++

When using a program editor, you will usually find that by moving the cursor
to different parts of a program, you can highlight sections of the code. For example,
placing the cursor next to any bracket in Notepad + + automatically highlights the
matching one.

Program editors also commonly support multiple tabs, folding away sections of
code that aren’t being worked on, multiple views into the same document, search and
replace across multiple documents, and so on—all features that you will miss once
you grow used to using them.

Installing a PHP Server

If you wish to test your code on a local development computer before uploading it to
a web server elsewhere, you'll need to install a web server and PHP processor. This
means you can instantly try out any code changes you make without having to upload
them to a server first, thus speeding up the development process.

Installing a PHP web server is relatively simple because there’s a great suite of
server software called XAMPP that includes a PHP processor, Apache Web Server,
MySQL database, and even a Perl processor (should you need access to one). You can
download an installer for all of Windows, OS X, and Linux from apachefriends.org, as
shown in Figure 1-2.

http://apachefriends.org

8 Part I

PHP Basics

XAMPP Installers and Dov. %

€« = C fi B https//www.apachefriends.org/indexhtml

Download Add-ons

Apache Friends

Community About

What is XAMPP?
XAMPP is the most popular PHP development environment

XAMPP is a completely free, easy to install Apache distribution containing MySQL, PHP,
and Perl. The XAMPP open source package has been set up to be incredibly easy to install
and to use.

Download

Click here for other versions

R XAMPP for Windows
v1.8.3 (PHP 5.5.11)

A XAMPP for Linux
v1.8.3 (PHP 5.5.11)

Search Search ==

(=] XAMPP Apache + MySQL + PHP + Perl

Why use XAMPP?

The most popular PHP dev package

* For Windows, Mac OS X & Linux
« Easy installation and configuration
+ Completely free of charge

& XAMPP for Apple
v1.8.3 (PHP 5.5.11)

FIGURE 1-2 You can download XAMPP right from the website's main page.

Installation is quite straightforward. Simply follow the various prompts and

(unless you have a good reason to choose otherwise) accept the default options given

to you during setup.

On a Linux computer the chances are that you already may have all of PHP, Apache
and MySQL already installed, and you might well be able to do without XAMPP. But
P o

The place where you will store all your PHP files (and from where they will

if not, or if you're unsure, go ahead and install XAMPP.

run) is known as the server’s document root, and you will need to know where this

is. Following is a list of default locations for document root that XAMPP creates on
different operating systems. If you keep your various HTML, JavaScript, and PHP files
in that folder (and subfolders), they can all be served up by the Apache Web Server:

e Windows C:/xampp/htdocs
e Mac OS X /Applications/XAMPP/htdocs
e Linux /opt/lampp/htdocs/

Lesson 1 Introduction to PHP 9

For further assistance on setting up XAMPP on your computer, visit one of the
following FAQ pages:

e Windows apachefriends.org/faq_windows.html
e Mac OS X apachefriends.org/faq_osx.html
e Linux apachefriends.org/faq_linux.html

Summary

With all that preamble and introduction out of the way, you should be ready to start out
on the lessons, beginning with the following one, which explains how to incorporate
PHP code in your web pages.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don't know
an answet, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

What are the three major platforms on which PHP is available?

Is PHP a compiled or scripted language?

How many sections of PHP can you include in an HTML document?

Which character must be placed in front of all PHP variables?

Does PHP support object-oriented programming (OOP)?

What file extension should you give to PHP documents?

What are the five main browsers with which you should test your PHP programs?

With which software can you write and edit PHP programs?

O 00 N o U1 A W N =
.

How can you install a PHP server on your computer?

-
e

From where are PHP programs stored and run on your computer?

http://apachefriends.org/faq_windows.html
http://apachefriends.org/faq_osx.html
http://apachefriends.org/faq_linux.html

This page intentionally left blank

“l2)

Incorporating PHP
into a Web Page

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

he whole point of PHP is that it is designed to offer dynamic functionality to what

previously were static web pages. Therefore, PHP code is generally embedded
within the web page to which it applies. This can be in the form of the direct code
itself or by means of a statement that tells the browser the location of a file containing
some PHP to load in and execute. This external file may be on the same or a different
web server.

Additionally, the location within a web page at which you insert the PHP (or link
to a PHP file) becomes the location where any output from the PHP will be inserted.
Therefore, for this and other reasons, where you place your PHP can be important.

So I'll begin this course by looking at how and where you should include PHP in your
web pages.

Where to Place the PHP Code

It can make a difference where you place your PHP code. For example, if you wish
default output to go straight into the current document’s body, you may choose to
place your PHP somewhere directly within the <body> and </body> tags. On the
other hand, if you wish to be able to output HTML within the head of a document,
you might choose to place your PHP code within the <head> and </head> tags. Or
you might place all your HTML output within a PHP script, outputting it from built-in
functions.

11

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

12

Part I PHP Basics

In the Document Head

To insert your PHP within the head of a document, you must place <?php and ? > tags
where the script is to go, like this (highlighted in bold):

<html>
<head>
<title>Page Title</title>
<?php
// Your PHP goes here
?2>
</heads>
<body>
The document body goes here
</body>
</html>

In the Document Body

To insert your PHP within the body of a document, you must place <?php and ? > tags
where the script is to go, as shown here (highlighted in bold text) and in Figure 2-1,
where some PHP commands are placed within a document’s body in code being viewed
in a program editor:

<html>
<head>
<title>Page Title</title>
</head>
<body>
The document body goes here
<?php
// Your PHP goes here
?2>
</body>
</html>

Including PHP Files

If you wish to keep your PHP code separate from your document contents (something
you are likely to want to do once your PHP starts to become any length other than
small), you can place it in its own file (usually with the file extension .php) and,

Lesson 2 Incorporating PHP into a Web Page 13

File Edit Search View Encoding Language Settings Macro Run TextFX Plugins Window I
CEOBHERLE Rk 2 el my @ B8 _ﬂ.m@m@mmllmﬁw
[= cookies php E:i|

1 <!DOCTYPE html>

2 [Fl<htmls

3 g <head>

q . <title>Using Cookies</title>

5 | </head>

& [<body>

7 E <h3>Press Reload to allow the coockie to be set and erased</h3>

8 Hl<?php

g S$username = isset($_COCKIE['username']) ?

10 . §$_COCOKIE['username'] : FALSE:

11 :

12 écho "The username is: $username”;

13

14 if (!$username)

is H ¢

16 | Susername = 'admin';

17 setcookie('username', $username, time() + 6042800);

18 |)

19 else setcookie('username', $username, time() - 360):

20 2

21 - </body>

22 L</html>

23
PHP Hypertex length: 456 lines: 23 Ln:2 Col:7 Sel:0|0 UNIX UTF-8 w/o BOM INS

FIGURE 2-1 PHP embedded in an HTML document

instead of inserting lines of code between <?php and ? > tags, you would simply place
an include statement, like this (highlighted in bold):

<html>
<head>
<titles>Page Title</title>
<?php
include 'myscript.php';
?2>
</head>
<body>
The document body goes here
</body>
</html>

If the script file is not in the current directory, you must include the path along
with the filename, like this:

<?php include 'pathtofolder/myscript.php'; ?>

14 Part I PHP Basics

See how the code has been compressed into a single line here? This is purely a
matter of personal choice, but probably a good idea for something as simple as an
UWT <= include statement.

If the code is on another server, include the correct http:// (or https://)
prefix, domain and path, like this:

<?php include 'http://server.com/folder/myscript.php'; ?>

When including a script, rather than embedding it in the head of a document, you
may choose to place it into the body instead, like this:

<html>
<head>
<title>Page Title</title>
</head>
<body>
<?php include 'myscript.php'; ?>
The document body goes here
</body>
</html>

Using require

When you issue an include statement, if the file to include is not found, no error
will be displayed. However, because the file is not included, your page may not
display correctly. To cater to this possibility, you can use the alternative require
statement, which will issue an error if the file is not found, like this:

<?php require 'myscript.php'; ?>

Using include once and require once

Sometimes you wish to have a script included only once in a web page, and you can
do this by adding the suffix once to either the include or require statement,
like this:

<?php include once 'myscript.php'; ?>
<?php require once 'myscript.php'; ?>

In either case, if the file has already been included into the current document,
the statement will be ignored so that the file is not included again. Otherwise, the file
will be included if it exists. If the file doesn’t exist, no error will be given if you use
include_once, but you will receive an error when using require once.

Lesson 2 Incorporating PHP into a Web Page 15

Using Comments

Before looking at the PHP language and its syntax in the following lesson, I want to
first introduce the commenting feature. Using comments, you can add text to a PHP
program that explains what it does. This will help you later when you are debugging,
and is especially helpful when other people have to maintain code that you write.

There are two ways to create a comment in PHP, the first of which is to preface it
with two slashes, as follows:

// This is a comment

You can also place a comment after a PHP statement, like the following, which
assigns a value to a variable (remember that PHP variables begin with a $ symbol):

Sanumber = 42; // Assigns 42 to $anumber

Alternatively, if you wish to temporarily prevent a line of code from executing,
you can insert a comment marker before it, and the statement will be completely
ignored, like this:

// $anumber = 42;

Sometimes you need to be able to comment out more than a single line of text.
In this case, you can use the multiline form of commenting, where you start the
comment with /* and end it with */, like this:

/* This is a multiline
set of comments, which
can appear over any
number of lines */

As well as supporting extensive documentation, this form of commenting lets you
temporarily comment out complete blocks of code by simply placing the start and

—«=== end comment tags as required—something that can be extremely helpful when
debugging.

157

Using Semicolons

You must add a semicolon after every PHP statement, and you can place more than one
statement on a single line, as long as you separate the statements with a semicolon.
For example, the three following lines of code are all valid syntax:

$a = 1;
$b = 2;
$a = 1; $b = 2;

16 Part I PHP Basics

However, none of the following are valid because PHP will not know how to make
sense of anything due to the omission of semicolons:

Sa =1
Sb = 2
Sa =1 S8b =2
Think of the semicolon as acting like a command that tells PHP it has reached the
end of a statement and can now process it. You do not, however, have to place
B 2= semicolons at the end of lines that are commented out.
Summary

Now you know how and where to put PHP in your web pages and have a basic
understanding of how to create a PHP statement or comment. In the following lesson,
I'll begin to explain the syntax of the language.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don't
know an answer, go back and reread the relevant section until your knowledge is
complete. You can find the answers in the appendix.

1. Where in a document can you place sections of PHP code?

2. How can you include a file of PHP instructions into a document?

3. How can you prevent an external PHP file from being included multiple times?
4.

How can you ensure that an external PHP file is included (issuing an error if
this is not possible)?

5. How can you ensure that a PHP file is included and that it doesn't get included
more than once?

6. How can you create a single-line comment in PHP?
7. How can you create a multiline comment in PHP?
8. What must you place after each PHP instruction to indicate it is complete?
9. Is this line of code legal PHP?
Sitems = 120; S$selection = 7;
10. Will this line of PHP code work?

Sitems = 120 S$selection = 7;

o’

Learning PHP Language Syntax

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

I’ve already discussed some of the syntax used by the PHP language, such as how
to comment out sections of code and how semicolons must be used after each
statement. But what is meant by syntax?> Well, it's a set of rules that define how to
correctly structure a PHP program.

In this lesson, I'll outline the major syntax issues so that when you start programming,
you'll introduce the minimum of errors, so please forgive me if there’s a little overlap with
earlier lessons.

Case Sensitivity

PHP is what is known as a case-sensitive language, which means that it distinguishes
between the use of the uppercase and lowercase letters (that is, a-z and A-Z). For example,
the variable $MyVariable is quite different from $myvariable (variables being
special names used to stand in for values such as numbers or strings of characters,
which is explained a little further on).

PHP will treat these as two totally different variables, so you need to be careful
when choosing your variable names. Generally, I observe the following guidelines so that
I can more easily go back and understand code I have written some time in the past:

e All global variables that are accessible anywhere in a program are set to all uppercase,
such as $HIGHSCORE.

e Temporary variables used in loops are single lowercase letters, such as $7j.

This is the formatting that I use, but you may choose to apply different upper- and
lowercase rules here, or you can simply stick to all lowercase—it's entirely up to you.

17

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

18 Part I PHP Basics

Whitespace

Any spaces and tabs are known as whitespace, and any combination of these is usually
treated by PHP as if it were a single space. The exception is when they are placed inside
quotation marks, in which case they form part of a string, and all the characters are used.
Newline and carriage return characters are also treated as whitespace by PHP
(unless within quotes). For example, the statement $a = $b + $c; is valid on a single
line, but you may also format it in the following manner, which illustrates one reason for
PHP requiring semicolons (to allow you to split long statements across multiple lines):

Sa = $b
+ Sc;

Variables

A variable in any programming language is simply a container for a value. For
example, imagine that you have a few empty plastic pots into which you can place
items (see Figure 3-1). Think of these as a metaphor for variables, in that you can take
a small piece of paper and write the number 42 (for example) on it and insert it into
one of the pots. If you then take a marker pen and write SMyVariable on the pot, it
is just like a PHP variable being set using this line of code:

SMyVariable = 42;

T/

FIGURE 3-1 An empty pot and blank piece of paper

Figure 3-2 shows the pot now labeled and the paper written on. You can now

manipulate this variable in a variety of ways. For example, you can add another value
to it, like this:

SMyVariable = $MyVariable + 13;
$MyVariable
UL

42

FIGURE 3-2 The pot has been labeled and the paper written on.

Lesson 3 Learning PHP Language Syntax 19

This has the effect of adding 13 to the value of 42 already stored in the variable so
that the result is 55, the new value held in the variable. This is analogous to taking the
piece of paper with the number 42 written on it out of the pot labeled $MyVariable,
noting the value, adding 13 to it, and then replacing that piece of paper with another
on which you have written the number 55 (see Figure 3-3), which you then place
back into the pot.

S5

FIGURE 3-3 A new slip of paper with the number 55 on it

Likewise, you might issue the following command, which will multiply the current
value in the variable (55) by 3:

SMyVariable = $MyVariable * 3;

Again, this is equivalent to taking the paper from the pot, performing the
multiplication, and placing a new piece of paper with the result of 165 (see Figure 3-4)
back into the pot. This way, any time that value needs to be referenced (looked up),
the pot can simply be opened and the slip of paper inside then read.

165

FIGURE 3-4 Another piece of paper, this time with the number 165 on it

Variable Naming

A number of rules govern how you use the PHP programming language. For instance,
variables must begin with a $ symbol, which should be followed by either an
uppercase or lowercase letter (a-z or A-Z) or an underscore (the character).

After the first letter or underscore, variables can contain uppercase or lowercase
letters, digits (0-9), or underscores. Variables may not contain any mathematical
operators (such as + or *), punctuation (such as ! or &), or spaces.

String Variables

When a variable is used to store a number (as in the preceding examples), it's known
as a numeric variable. However, it's also possible to store text in a variable, in which
case the variable is called a string variable (because sequences of characters are called
strings in programming languages).

Examples of strings include the name "Bill Smith", the sequence of characters
"A23bQ%j", and even the characters "123", which in this case comprise a string of
digits (because "123" is in quotes), not the number 123.

20 Part I PHP Basics

In the same way you can store a number in a variable, you can store a string, and
you use the same method of assignment, like this:

SName = "Mary Jones";

Notice the use of double quotation marks around this string. These are what tell
PHP that the value is a string, and this is how you can assign the string "123" to a
variable, as opposed to the number 123, for example. In terms of the pot and paper
metaphor, the preceding statement is equivalent to labeling a new pot as $Name
and writing "Mary Jones" on a piece of paper that you place in it, as shown in
Figure 3-5.

$Name

"Mary Jones"

FIGURE 3-5 This pot is labeled $Name and contains a string value.

Obviously, you can't perform arithmetic on strings (without first converting them
to numbers—and only if possible), but there are other actions you can take, such as
shortening them, adding more characters to the front, middle, or end, extracting a
portion of a string, and more. For example, you can concatenate two strings together
(attach one to the other) using the . (dot) operator, like this:

$Singer = "Elvis";

$Singer = $Singer . " Presley";

The result of these two statements is to concatenate the string "E1vis" (first
assigned to and then read from the variable $Singer) with the string " Presley"
and place the resulting string back into the variable $Singer.

Using Quotation Marks in Strings

You have seen the use of the double quote character to indicate the start and end of a
string, but you may also use the single quote if you prefer, like this:

$Dinner = 'Fish and Chips';

The end result is almost identical, whichever type of quotation marks you use,
but there is a subtle difference explained a little further on, in the section “Embedding
Variables within a String.”

There is a good reason why you may choose one type of quote instead of the
other, and that’s when you need to include a particular quotation mark within a string.

I

I

Lesson 3 Learning PHP Language Syntax 21

For example, suppose you needed to store the string "Isn't the weather fine?".
As it stands, using double quotation marks works just fine, but what would happen if
you surrounded the string with single quotation marks instead, like this: 'Isn't the
weather fine?'?

In this case, you would get a syntax error because PHP would see only the string
'Isn' and then some gibberish following it, like this: t the weather fine?'. Then
again, what about the string 'Jane said, "Hello"'? This time, using single quotes
around the string works. However, because of the double quotes within it, if you were
to surround the string with double quotes, like this, "Jane said, "Hello"", PHP
would see one string ("Jane said, "), what appears as some gibberish (Hello), and
another string with nothing in it (" "). It would give up at all this and generate an error.

Placing a pair of quotes together with nothing between them (like "" or ' ")
results in what is called the empty string. It is commonly used for erasing or
~= === initializing the value of a string variable.

Using Heredoc Strings

There’s another way you can create a string in PHP that removes the need to surround
it in quotation marks of any kind, and that’s to use the heredoc syntax, like this:

Stobeornottobe = <<< EOT
To be, or not to be, that is the question:
Whether 'tis Nobler in the mind to suffer
The Slings and Arrows of outrageous Fortune,
Or to take Arms against a Sea of troubles,
And by opposing end them: to die, to sleep
EOT;

Heredoc text behaves just like a double-quoted string, but without needing the
double quotes. This means that no quotes of either type in a heredoc need to be
escaped (but the escape codes listed in the following section can still be used).

The value EOT is an identifier that marks the start and end of a heredoc string,
and it follows the same naming rules for any PHP label. However, a convention for
heredocs is to preface them with an underscore and to use only capital letters, so I
generally use EOT (for End Of Text) so I can always find all my heredoc strings with
a quick search.

You must be careful when using a heredoc because the exact token following the <<<
must appear at the start of the line following the heredoc text. It must also end with

~< === 3 semicolon, and there must not be any spaces or tabs before or after the semicolon.
If there is no semicolon, or if the heredoc identifier is indented, or if spaces or tabs
appear before or after the semicolon, then the heredoc will fall through to the end of
the script (and therefore be unterminated), thus resulting in nasty errors.

22 Part I PHP Basics

Escaping Characters

Escape characters help you overcome other potential pitfalls. For example, consider
occasions when you might require both types of quotes to be included within a string,
like this: "Mark said, "I can't wait""? As it stands, this string will cause a
syntax error, but you can easily fix it using the escape character, which is simply a
backslash, like this: "Mark said, \"I can't wait\"".

What the escape character does is tell PHP to ignore the \ character and to use
the character following it as a string element (character), and not a string container
(better known as a delimiter).

You may escape either of the quotation marks inside a string to ensure they are
used only as string elements, and you can also use escape characters to insert other
characters that you cannot easily type in, such as tabs and newlines, as follows:

\' single quote
\" double quote
\\ backslash

\b backspace

\f form feed

\n newline

\r carriage return
\t tab

Embedding Variables Within a String

One of PHP’s more powerful features is the ability to embed a variable name inside
a string, which will then be replaced with the variable’s value. For example, the
following code creates two variables and then embeds them in a string variable:

Sprofession = "writer";
Sname = "Robin";
Sstring = "My name 1s S$name and I am a Sprofession";

The result is that $string will now contain the value "My name is Robin and
I ama writer". To embed variables within strings, the strings must be surrounded
with double quotes. If you use single quotes, the exact contents of the string will be
used and no variable values will be substituted.

For example, the following results in $string only containing the value 'My
name is $name and I am Sage', without any variable substitution:

Sage = "969";
Sname = "Methuselah";
$string = 'My name is Sname and I am Sage';

You may also place variables within heredoc strings, because they behave like
double-quoted strings.

Lesson 3 Learning PHP Language Syntax 23

Now you see another reason for PHP requiring that variables begin with a $
symbol—it supports the ability to embed them in strings.

Variable Typing and Casting

In PHP, unlike some other programming languages, a variable can change its type
automatically. For example, a string can become a number, and vice versa, according
to the way in which the variable is referenced. For example, take the following
assignment in which the variable $MyVar is given the string value of "12345":

$MyVar = "12345";

Although the string is created from a group of all digits, it is a string. However, PHP
is smart enough to understand that sometimes a string can be a number. For example,
in the following assignment, it converts the string value in $MyVar to a number prior
to applying the subtraction, and then the resulting value (which is now the number
12000) is stored back in $MyVar, which has now become a numeric variable:

SMyVar = SMyVar - 345;

Likewise, a number can be automatically converted to a string, as in the following
two lines. Here, the numeric variable $Time is set to the value 6 and then the
string " O'clock" is appended to the number, which is first turned into a string
(using the . symbol, which is the string concatenation operator) to make this string
concatenation possible:

STime = 6;
STime = S$Time . " O'clock";

The result is that STime is now a string variable with the value "6 O'clock™".

Because of this changing of variables from one type to another (known as
automatic type casting), it is not actually correct to think of PHP variables in terms of
type, so I will no longer do so. Instead, you should consider only their contents and
how PHP will interpret them.

However, sometimes it is necessary for you to force the type of a variable, and
you can do this with PHP's cast operators, as follows:

(int) or (integer) Cast to an integer

(bool) or (boolean) Cast to a Boolean value

(float) or (double) or (real) Cast to a floating point number
(string) Cast to a string

(array) Castto an array

(object) Cast to an object

(unset) Cast to NULL (since PHP 5)

For example, consider the following statement and ask yourself what you think
PHP should do with it:

SMyVar = (int) "12345";

24

Part I PHP Basics

The answer is that the string value is turned into an integer before being assigned to
the variable. Likewise, you can use a cast like the following to turn a number into a string:

SMyVar = (string) 12345;

Alternatively, you can use the facility to embed a variable within a double-quoted
string (or heredoc) to turn it into a string, like this:

SMyNum = 12345;
SMyVar = "$MyNum";

Generally, the occasions on which you will find it beneficial to use casting are
when you're dealing with values over which you have less control, such as user
<= == input that you are processing.

Summary

You will now have a good grounding in how variables work, so in the following lesson
I'll show you some other types of variables known as constants as well as some handy
system variables called superglobals.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know
an answert, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

1. Is PHP case sensitive or case insensitive?

2. What are spaces, tabs, linefeeds, and some other nonalphanumeric/punctuation
characters collectively known as?

. What does PHP do with whitespace?

3
4. What is a numeric variable?
5. What is a string variable?

6

. How can you include quotation marks in a string that are of the same type that
enclose the string (and also include special characters in a string)?

7. What is a heredoc string?
8. Do PHP variables permanently retain the type they are initially assigned?
9. How can you force PHP to store a certain type of value in a variable?

10. How can you easily use a variable’s value within a string without first breaking
the string up into smaller parts?

T4)

Using Constants and Superglobals

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

When developing with PHPF, you often need to work with values that never
change. When doing so, the convention is to create constants to make this
absolutely clear to other people who may maintain your code. It also assists you
because constants cannot have their values changed, so some potential bugs can be
avoided through using them.

Indeed, PHP itself comes with a wide range of constants, ready-assigned useful
values, as well as a number of what are known as superglobals. In this lesson, I
show you some of these superglobals and how to use them, and also offer a quick
peek “under the hood” of the PHP engine to give you an insight into the rich set of
information on tap for your programs.

Using Constants

Constants are similar to variables in that they store values to be accessed later.
However, these values remain constant once defined (as you might expect) and
cannot be changed. You define a constant like this:

define ('SITE _NAME', 'ACME Products Web Store');

Then, to read the contents of the variable, you just refer to it like a regular
variable (without preceding it with a dollar symbol):

echo SITE_NAME;

Another use for constants could be to support moving your code between different
platforms. For example, when you use the XAMPP server on Linux, the document root
will generally be in a different place for OS X compared to Windows. Therefore, if you

25

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

26

Part I PHP Basics

need your program to be aware of this location, you could perhaps write some code
such as the following, to set the constant DOC_ROOT to the correct value:

switch($platform) // Must be one of 'win', 'mac', or 'lin'

{
case 'win': define('DOC_ROOT', 'C:/xampp/htdocs'); break;
case 'mac': define('DOC_ROOT', '/Applications/XAMPP/htdocs'); break;
case 'lin': define('DOC_ROOT', '/opt/lampp/htdocs'); break;

You will learn about using the switch () and case statements in Lesson 11,
but you should already be able to get the idea of how this works.

You can then use the constant later on as if it were a variable (but without the $
symbol in front of it), like this:

echo 'Document root is: ' . DOC_ROOT;

Predefined Constants

As well as supporting user-defined constants, PHP predefines a number of its own,
some of which are exposed by the main engine for external use by PHP programs,
such as the following magic constants, which start and end with two underscore
characters:

e LINE The current line number within the file.

__FILE _ The path and filename of the current file. If this is used inside an

include, the name of the included file is returned. FILE always contains

an absolute path with symbolic links resolved.

e DIR __ The directory of the current file. If this is used inside an include,
the directory of the included file is returned. This is equivalent to dirname
(__FILE). The directory name does not have a trailing slash unless it is the
root directory.

e FUNCTION Returns the function name as it was declared in a case-sensitive
string.
__CLASS Returns the class name as it was declared.

e METHOD Returnsthe method name as it was declared.

e NAMESPACE The name of the current namespace as defined at compile time.

One way you can use some of these variables is to help with your debugging by
displaying information in strategic parts of a program, such as this:

echo "This is line " . LINE . " of file " . _ FILE ;

In this case, the current program line in the current file (including the path) being
executed is output to the web browser.

Lesson 4 Using Constants and Superglobals 27

The echo and print Commands

Having just used the echo command in the previous example, I should now explain
it. The echo command can be used in a number of different ways to output text from
the server to your browser. Simply place a variable or literal value (such as a string or
number) after the echo command, and the contents of the variable or the literal value
will be output to the browser.

You can also use the print command, which is quite similar to echo, except
that print always returns the value 1, which means it can be used in expressions,
whereas echo returns void and fails if placed in an expression. Also, the echo
command is usually the faster of the two, and it can take multiple values separated by
commas, whereas print accepts only a single value.

Here'’s an example to output whether the value of a variable is TRUE or FALSE
using print, something you could not perform in the same manner with echo
(because print is being used within an expression):

($var == TRUE) ? print "true" : print "false";

As you will learn in a Lesson 5, the question mark is being used here as the
ternary operator, to test the expression that precedes it. Whichever command is on the
left of the following colon is executed if Svar == TRUE evaluates to TRUE, whereas
the command on the right is executed if $var == TRUE evaluates to FALSE.

Superglobal Variables

Starting with PHP 4.1.0, several predefined variables are available. These are known
as superglobal variables, which means they are accessible absolutely everywhere

in a PHP program. These superglobals contain lots of useful information about the
currently running program and its environment, as follows:

e $GLOBALS[] An associative array containing references to all variables that are
currently defined in the global scope of the script. The variable names are the
keys of the array. See Lesson 7 for more details on array keys, and see Lesson 13
for how to use the $GLOBALS [] array.

e $§ SERVER[] An array containing information such as headers, paths, and script
locations. The entries in this array are created by the web server, and there is no
guarantee that every web server will provide any or all of these. See Lesson 18 for
details.

e $ GETI[] An associative array of variables passed to the current script via the
HTTP Get method. See Lesson 16 for details.

e $ POST[] An associative array of variables passed to the current script via the
HTTP Post method. See Lesson 16 for details.

e $ FILES[] An associative array of items uploaded to the current script via the
HTTP Post method. See Lesson 17 for details.

e $ COOKIE[] An associative array of variables passed to the current script via
HTTP Cookies. See Lesson 18 for details.

28

Part I PHP Basics

e $ SESSION[] An associative array containing session variables available to the
current script. See Lesson 20 for details.

e $ REQUEST[] An associative array that by default contains the contents of
$ GET[], $ POST[],and ¢ COOKIEI].

e $ ENVI[] An associative array of variables passed to the current script via the
environment method.

Among the various pieces of information supplied by superglobal variables is the
URL of the page that referred the user to the current web page. To illustrate how you
use the superglobals, this referring page information can be accessed like this:

$came from = $ SERVER['HTTP_REFERER'];

If the user came from another (referring) page, and the user’s browser supplies
the referring page (some browsers may not provide this information), then the URL
will be saved in $came_from. Otherwise, if the user came straight to your web page
(for example, by typing its URL directly into the browser), or if the user’s browser does
not supply the referring URL, then Scame from will simply be set to an empty string.

As another example, the $ GET[] and $_POST [] arrays contain any data sent to
the script from a web form as key/value pairs (explained in Lesson 16). Therefore, if
a key with the name username was posted, you could retrieve and display its value
from the superglobal array like this:

echo $ POST['username'];

Superglobals and Security

A word of caution is in order before you start using superglobal variables, because
they are often used by hackers trying to find exploits to break into your website. What
they do is load up $_POST[], $ GET [], or other superglobals with malicious code
they hope you will not predefine, such as Unix or MySQL commands.
Therefore, you should always sanitize these variables before using them.
As you will learn more about in Lesson 17, one way to do this is via the PHP
htmlentities () function. What it does is convert certain characters into HTML
entities. For example, the less-than and greater-than characters (< and >) are
transformed into the strings &1t ; and > ; so that they are rendered harmless.
Therefore, the following is a much better way to access an array such as $_GET []
(and other superglobals):

Smessage = htmlentities($ GET['message']) ;

Although sanitizing input at the earliest possible opportunity is the safest means
of handling user data, you must remember that the data has been sanitized in

=== all the code that processes it. For example, remember that there will be no <
characters, only $1t; entities. Should you wish to convert the string back at some
point, you can do so with the html entity decode () function.

Lesson 4 Using Constants and Superglobals 29

Other PHP Variables

Figure 4-1 shows the result of using the phpinfo () function to display an incredibly
in-depth amount of information about a PHP installation. In this instance, a value

of 32 was passed to the function to list only the PHP variables in use, but without a
number passed, you will be presented with everything—meaning page after page of

information.
) N = -
f .The phpinfol) Function _
&« C & [localhost/lesson04/phpinfo.php e =
PHP Variables
Variable
_COOKIE["PHPSESSID"] v35hleout1cGjddc3elardool3
_ SERVER["MIBDIRS"] C:ampp/phplextras/mibs
_SERVER["MYSQL_HOME"] wamppimysghbin
_SERVER["OPENSSL_CONF"] C:ampp/apache/binfopenssl.cnf
_SERVER["PHP_PEAR_SYSCONF_DIR"] ‘wampp\php
_SERVER["PHPRC"] ‘wampp\php
_ SERVER["TMP"] wamppitmp
_SERVER["HTTP_HOST"] localhost
_SERVER["HTTP_CONNECTION"] keep-alive
_SERVER["HTTP_CACHE_CONTROL"] max-age=0
_ SERVER["HTTP_ACCEPT"] textihtml, applicationfhtmi+xml applicationfxml;g=0.9,image/webp,*F
_SERVER["HTTP_USER_AGENT"] Mazilla/5.0 (Windows NT 6.3; WOWE4) AppleWebKit/537.36 (KHTML
_SERVER["HTTP_REFERER"] http:iflocalhostlesson04/
_SERVER["HTTP_ACCEPT_ENCODING"] gzip,deflate,sdch
_SERVER["HTTP_ACCEPT_LANGUAGE"] |en-US.en;g=0.8
_SERVER["HTTP_COOKIE"] PHPSESSID=v35hleout1cjddc3etardoof3 -
3

FIGURE 4-1 Using phpinfo () to display information about a PHP installation

This is a great way to see what’s going on “under the hood,” but should never
be left open for public viewing on a production server, due to its potential to reveal
weaknesses a hacker could exploit. I recommend a rummage through the output of
phpinfo () whenever you think something strange seems to be going on; it could
reveal something unusual about the server setup.

30

Part I PHP Basics

The values supported by phpinfo () follow; simply add the numbers together for

the items you wish displayed, or don’t supply an argument to see them all:

Basic system information

PHP credits

Current local and master values for PHP directives
Loaded modules and their respective settings

16 Environment variable information

32 All predefined variables

64 PHP license information

[==JSN SR)

For example, to see only the basic system information and credits, add 1 and 2

together to get 3, and pass that value to the function:

phpinfo (3) ;

Summary

Don’t worry if you are not clear about some of the subjects covered here, such as arrays
(which are like collections of variables grouped together) and functions (sections of
code you can call and that may return a value), because they will be explained as you
progress through the lessons.

However, we actually covered quite a lot of ground in this lesson, which explained

some of the simpler PHP syntax and data-handling capabilities. In the following lesson,
we'll start to see how these items come together with arithmetic operators to enable
you to start creating simple PHP expressions.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know
an answert, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

What is a PHP constant?
How do you define a constant in PHP?

What are predefined constants?

Is this a valid PHP statement? (Svar == TRUE) ? echo "true" : echo "false";

1.
2.
3.
4. What is the difference between the print and echo commands?
5.
6.

Which superglobal arrays handle information sent to a PHP program via forms
sent using Get and Post methods?

10.

Lesson 4 Using Constants and Superglobals 31

Which superglobal array contains cookie data?

With what PHP statement would you display the URL of a page from which a
user was referred to the current one?

How can you sanitize input and other data by replacing characters in HTML tags
with entities so that the browser displays tag names as text (rather than acting
on them)?

With which command can you get PHP to display its configuration information
as well as the current environment and script?

This page intentionally left blank

“15)

Working with Arithmetic
Operators

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

In the previous lesson, you saw a few examples of operators in action, such as the +
operator used for addition, the . operator for concatenating strings together, the -
operator used for subtraction, and the = operator used for assigning values.

But PHP supports many more operators than that, such as *, /, and more. It also
includes functions you can draw on for more advanced expression evaluation, such
as sin (), sqgrt (), and many others. In this lesson, I'll explain all of these, how they
work, and how to use them.

This is an important lesson because it covers much of the foundation of how PHP
works, so even if you have programmed before using another language, I recommend
you read this lesson thoroughly, because there are a number of things PHP handles in
a unique manner.

Arithmetic Operators

The arithmetic operators in PHP are the ones that allow you to create numeric
expressions, and there are more than simply addition, subtraction, multiplication,
and division, as shown in Table 5-1.

You can try these operators out for yourself by loading the file math_operators.php
from the companion archive into a browser, which should look like Figure 5-1. Try
changing the various values and operators applied, and check the results you get.

33

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

34 Part I PHP Basics

TABLE 5-1 The Arithmetic Operators

Operator Description Example Result

+ Addition 3 + 11 14

- Subtraction 9 - 4 5

- Negation (subtraction from 0) -17 -17

* Multiplication 3 *x 4 12

** Exponentiation (PHP 5.6+ like pow()) 8 ** 2 64

/ Division 21 / 7 3

5 Modulus (remainder after division) 21 % 8 5

++ Increment Sa = 5; ++Sa ($a equals) 6
-- Decrement $a = 5; --%a ($a equals) 4

Because they perform arithmetic operations, I have included the ++ and - -
operators as honorary members of Table 5-1, even though, technically, they are not
—= === arithmetic operators (because they can only be used to modify variable values).

Normally, they are just known as the increment and decrement operators (see the
following section).

The first four of these operators should be very clear to you, so I'll only explain
the last three, starting with the modulus operator, %.

. Math Operators x

€& - C A [localhost/lesson05/math_operators.php ¢/ 17| =

3 + 11 results in 14
% - 4 results in 5
3 * 4 results in 12

21 / 7 results in 3
21 % § results in 5
Sa = 5; ++%a results in S%a equal to 6
$a = 5; ——S$a results in %a egqual to 5

FIGURE 5-1 The arithmetic operators in use

Lesson 5 Working with Arithmetic Operators 35

Modulus

What the modulus operator returns is simply the remainder after calculating a division.
For example, the modulus of 12 and 4, calculated using the expression 12 % 4, is 0,
because 4 goes into 12 an exact number of times, so there is no remainder.

On the other hand, the modulus of 24 and 5 (calculated as 24 % 5) is 4, because
5 goes into 24 four times (5 x 4 is 20), leaving a remainder of 4, the modulus of the
expression.

Exponentiation

In PHP 5.6 the ** operator was introduced, which raises a value to the power given.
For example: 8 ** 2 is 8 to the power 2, or 8 squared (which is 64).

As you will learn in Lesson 13, this is equivalent to using the pow () function,
like this:

echo pow (8, 2);

Incrementing and Decrementing Variables

Now let's look at the increment and decrement operators. These come in tremendously
handy because without them, you would have to write expressions like this:

Sa = Sa + 1;

This is cumbersome when you only want to increment (or decrement) a value by 1.
Therefore, the creators of PHP allow you to use the following syntax instead:

++Sa;

I'm sure you will agree this is much shorter and sweeter. It also comes with fringe
benefits too, because the increment and decrement operators can be used within flow
control commands such as 1 f () statements (which I explain in full detail in Lesson 11,
but will give you a taste of here).

Consider the following code, which assumes that $Time contains a 24-hour time
value between 0 and 23, and which is set up to trigger once an hour, on the hour
(using code not shown here, but which is assumed to be in place):

STime = $Time + 1;
echo "The time is $Time";

if ($Time < 12) echo('AM') ;
else echo('PM') ;

This code first increments the value in $Time by 1, because this code has been
called on the hour. Because it's now one hour since the last time it was called, $Time
must be updated. Then the next line displays the time in the browser, prefaced by
the string ' The time is '.

36

Part I PHP Basics

After that, an 1 f () statement is reached that tests the variable $Time to see
whether it currently has a value of less than 12. If so, it must still be the morning;
therefore, the string 'AM' is output. Otherwise, it's the afternoon, so 'PM' is
displayed—fairly straightforward stuff.

This is a simple version of the if () statement in that it has only a single
statement after the if (), and there is also only a single one after else.
| —

Therefore, no curly braces are used to enclose the action statements. See Lesson 11
for more details on using if () and else with multistatement actions.

However, good programmers always like to write the tightest and cleanest code
possible in order to minimize the potential for bugs (although over-optimization can
also introduce bugs!). Therefore, the following code is considered better programming
practice because it removes an entire line of code, like this (with the incremented
variable and operator highlighted):

echo 'The time is ' . ++$Time;

if ($Time < 12) echo 'AM';
else echo 'PM';

To be even more succinct, we can use the ternary operator:

echo 'The time is ' . ++$Time;

echo ($Time < 12) ? 'AM' : 'PM';

Of course, once $Time reaches the value of 23, when incremented the next time
it needs to be reset to a value of 0. Here’s where the modulus assignment operator
| N ——

(see “Assignment Operators,” a little later on) can come in handy. By adding
the statement $Time %= 24; after ++$Time;, we ensure it always has a value
between 0 and 23.

Pre-incrementing

What has occurred in the previous example is an instance of pre-incrementing the
variable $Time. In other words, before the value in $Time is used, it is incremented.
Only after this incrementing is the current value in $Time used for displaying in the
echo statement.

In Figure 5-2, these lines of code have been called three times, with an original
starting value for $Time of 9 (using the file inc_and_dec.php from the companion archive).

Post-incrementing

You may also place the ++ increment operator after a variable name, in which case
it is known as post-incrementing. When you do this, the value in the variable being

Lesson 5 Working with Arithmetic Operators 37

. Increment & Decrement X

€ - C A [localhost/lesson05/inc_and_dec.php P d i —

The time is 10AM
The time is 11AM
The time is 12DM

Sa is 10 and is now 11
$a is 11 and is now 12
$a is 12 and is now 13

Sb is 10 and is now 9
Sbh is 9 and is now B

FIGURE 5-2 Using the increment operator

incremented is looked up before the increment, and that value is used by the code
accessing it. Only after this value has been looked up and used in the expression is
the variable incremented.

The following code illustrates this type of incrementing by displaying both
the before and after values in the variable $a (with instances of the variable and
increment operator highlighted):

echo 'Sa was ' . $a++ . ' and is now ' . Sa;

Working through this statement from left to right, we see that first the string ' $Sa
was ' is output and then $a++ is displayed. This results in the current value of $a
being displayed, and only then is $a incremented. After this, the string ' and is now ' is
output, followed by the new value in $a, which now contains the incremented value
from the earlier increment operation. Therefore, if $a has an initial value of 10, the
following is displayed:

$a was 10 and is now 11

Pre- and Post-decrementing

You can use the decrement operator in exactly the same way as the increment operator,
and it can either be placed before a variable for pre-incrementing or after for post-
decrementing. Following are two examples that both display the same result but achieve
it using pre-decrementing for the first and post-decrementing for the second (with
instances of the variable and decrement operator highlighted):

echo '$Sb was ' . $b . ' and is now ' . --8b . '
';
echo 'Sb was ' . $b-- . ' and is now ' . Sb;

38 Part I PHP Basics

(S B

Here, if $b has an initial value of 10, the following is displayed:
$b was 10 and is now 9

$b was 9 and is now 8

If it's still not entirely clear which type of increment or decrement operator to use
out of pre- and post-methods, don't worry; just use the pre-methods (with the

“w== operator before the variable) for now, because it will become obvious to you when

the time comes that you actually have a need to use the post-method (with the
operator after the variable).

Arithmetic Functions

To accompany the arithmetic operators, PHP comes with a math library of functions
you can call on, among which are the following:

abs($a) Returns $a as zero or a positive number

acos ($a) Returns the arc cosine of $a

asin($a) Returns the arc sine of $a

atan($a) Returns the arc tangent of $a

atan2 ($a, $b) Returns the arc tangent of $Sa / $b in radians
ceil ($a) Rounds up to return the integer closest to Sa

cos ($a) Returns the cosine of Sa

exp($a) Returns the exponent of $a (E to the power $a)
floor ($a) Rounds down to return the integer closest to $a
log($a) Returns the log of $a base E

max ($a, $b) Returns the maximum of $a and $b
min ($a, $b) Returns the minimum of $a and $b

pow ($a,$b) Returns $a to the power $b

rand ($a, $b) Returns a random number between $a and $b, inclusive
round ($a) Rounds up or down to return the integer closest to $a
sin($a) Returns the sine of $a

sgrt($a) Returns the square root of Sa

tan($a) Returns the tangent of $a

You should be familiar with most of these; for example, to return the square root

of 64, you would use the following:

sqrt (64); // Returns 8

However, a couple need a little more explaining, such as abs () . This takes any value

(negative, zero, or positive), and if it is negative, turns it into a positive value, like this:

abs (27); // Returns 27
)

abs (

// Returns 0

0);
abs(-5); // Returns 5

Lesson 5 Working with Arithmetic Operators 39

The other function possibly needing extra explanation is rand () . This returns a
statistically random number (although not truly random) between (and including) the
two values supplied. For example, if you wish to emulate a 12-sided dice, you might
call it this way:

rand (1, 12); // Returns a number between 1 and 12

Many other math functions are available in PHF, and you can see the whole list at
php.net/manual/en/ref.math.php.

Assignment Operators

Like many other languages, PHP tries to help you out by offering more efficient
ways to achieve results. One of these ways is by letting you combine assignment and
arithmetic operators together into six different types of assignment operator. This
typically saves lines of code and makes your programs easier for you to write—and for
others to understand.

Table 5-2 lists the assignment operators available, provides examples of them in use,
and shows the result of doing so when the variable $Sa already contains the value 21.

TABLE 5-2 The Assignment Operators ($a Is Assumed to Have the Initial Value 21)

Operator Description Example Result in $a
= Simple assignment Sa = 42 42

+= With addition Sa += 5 26

-= With subtraction Sa -= 2 19

*= With multiplication Sa *= 3 63

/= With division $a /= 10 2.1

5= With modulus Sa %= 4 1

You can see the result of using the expressions in this table in Figure 5-3, created
with the sample file assignment_operators.php from the accompanying archive.

For example, instead of using $Sa = $a + 5, you can use the more compact
$a += 5. And you can use assignment operators in conjunction with other expressions
and variables, as with the following example, which results in $a having a value of
15 (10 + (25 / 5)):

Sa = 10;
Sb = 25;
Sa += (8b / 5);

40 Part I PHP Basics

. Assignment Operators x

€ = C A [localhost/lesson05/assignment_operatorsphp &7 17| =

$a = 21; a = 42 results in a egual to 42
Sa = 21; a2 4= 5 results in a equal to 26
$a = 21; a -= 2 results in a egual to 1%
Sa = 21; a *= 3 results in a egqual to &3
$a2 = 21; a /= 10 results in a egual to 2.1
Sa = 21; 2 %= 4 results in a equal to 2.1

FIGURE 5-3

Using the various assignment operators

Summary

In this lesson, you have learned how to use arithmetic operators and functions, how

to pre- and post- increment and decrement variables by values of 1 or more, and how to
combine assignment and arithmetic operators to create more condensed code. In the next
lesson, we'll continue our exploration of operators with comparison and logical operators.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don't know
an answert, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

1.
2.
3.
4,
5.

6.

What are the four basic arithmetic operators and the symbols used for them in PHP?
Which operators are used for incrementing and decrementing variables?

What is the difference between pre- and post-incrementing and decrementing?
What is the modulus operator symbol, and what does it do?

With which function can you return a number as a non-negative value, regardless
of whether it is positive or negative?

Given a numeric variable called $v that may have a negative, zero, or positive
value, which math function out of min () or max () can be used (and how) to
replace any negative value with 0, but leave a positive value untouched?

How can you obtain a pseudo-random number between 1 and 100, inclusive?

How can you combine the mathematical addition operator with the assignment
operator to create a shorter expression than, for example, $a = $a + 23;?

If $a has the value 58, what will the expression $a /= 2; evaluate to?

How can you set the variable $n to contain the remainder after dividing it by 11?

~16)

Applying Comparison
and Logical Operators

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

Continuing our exploration of operators, this lesson covers how to use comparison
operators, creating statements using logic operators, and the precedence and
associativity of operators. Don't worry, though, these are just fancy terms for some
very simple operations.

For example, as you will soon learn, comparison is where you test whether a value
is or isn't equal to another (or is greater than or less than), the precedence of operators
refers to which operators get to be applied before which others, and associativity
states the direction in which parts of a statement are evaluated (either right to left or
left to right).

Comparison Operators

One of the most important processes that happens in a program is comparison. For
example, possibly the most frequent type of construct used goes along the lines of if
this, then do that. The job of comparison operators is to figure out the this part, and
there are eight of them, as listed in Table 6-1.

Figure 6-1 shows several different comparison operators used on different values
and the results obtained. This example uses the file comparison_operators.php, which
is available in the companion archive.

If you haven't programmed before, some of these operators may seem a little
confusing, especially seeing as we are taught as children that = is the equal-to
operator. However, in programming languages such as PHP, = is used as an
assignment operator.

41

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

42 Part I PHP Basics

TABLE 6-1 The Comparison Operators

Operator Description

= Equal to

Equal in value and type
I= Not equal to

l== Not equal in value and type

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

Example

1 ==1

1 === '1"
1 !'= 2

1 == '1"
1 > 2

1 < 2

1 >=1

2 <=1

Result
TRUE
FALSE
TRUE
TRUE
FALSE
TRUE
TRUE

FALSE

Code would become harder to read (and the writers of programming languages
would have a much harder time figuring out its meaning) if the = symbol were
also used to make comparisons. Therefore, the == operator is used for comparisons

instead, like this:

if (Sa == 12) // Do something

. Comparisen Operators ®

€« = C A [localhost/lesson06/comparison_operators.php {/:"i':? =

The result of 1 = 1
The result of 1 == "1"
The result of 1 === "1"
The result of 1 I= 2
The result of 1 !I== "1"
The result of 1 > 2
The result of 1 < 2
The result of 1 >= 1
The result of 2 <= 1

is
is
is
is
is
is
is
is
is

TRUE
TRUE
FALSE
TRUE
TRUE
FALSE
TRUE
TRUE
FALSE

FIGURE 6-1 A selection of comparison operators in use

Lesson 6 Applying Comparison and Logical Operators 43

In PHP, however, the types of variables are loosely defined, and it’s quite normal,
for example, to ask whether 1 is the same as '1', because the string '1' can be used
either as a string or as a number, depending on the context. Therefore, the following
expression will return the value TRUE:

if (1 == '1') // Results in the value TRUE

PHP uses the internal values of TRUE and FALSE to represent the result of making
comparisons such as the preceding, and you can use the keywords TRUE and
U7 <= FALSE in your programming to check for these values.

Let’s continue through the list of comparison operators. When you wish to
determine whether two values are the same value and also of the same type, you can
use the === operator, like this:

if (1 === '1') // Results in the value FALSE

Similarly, you can test whether values are not equal (but not comparing the type)
using the ! = operator, like this:

if (1 !'= 2) // Results in the value TRUE
if (1 != '1') // Results in the value FALSE

And if you wish to check whether two values are not equal in both value and type,
you use the ! == operator, like this:

if (1 !== '1') // Results in the value TRUE

The remaining comparison operators test whether one value is greater than, less
than, greater than or equal to, or less than or equal to another, like this:

if (1 > 2) // Results in the value FALSE
if (1 < 2) // Results in the value TRUE
if (1 >= 1) // Results in the value TRUE
if (2 <= 1) // Results in the value FALSE

Logical Operators

PHP supports three logical operators with which you can extend your if this parts of
code even further, as listed in Table 6-2.

Figure 6-2, created using the file logical_operators.php from the companion
archive, shows these operators being used in expressions.

The && operator (known as the And operator) allows you to test for multiple
conditions being TRUE, saving you from having to write multiple lines of code by
combining them into a single expression. You can also use the and operator in the
same way, like this:

if ($a == 4 && $b == 7) // Do this
if ($a == 5 and $b == 8) // Do that

44

Part I PHP Basics

TABLE 6-2 The Logical Operators

Operator Description Example Result
&& And 1 ==1 && 2 == 2 TRUE
and And 1 ==1 and 2 == 2 TRUE
|| Or 1 ==1 || 2 ==23 TRUE
or Or 1l == 1 or 2 == 3 TRUE
Xor Exclusive Or 1 ==1 xor 2 == 2 FALSE
! Not 1(1 == 1) FALSE

In this example, the statement following the first 1 £ () (just a comment in this
instance) will be executed only if $a has a value of 4 and also $b has a value of
7. Next, we test whether at least one value is TRUE using either the | | or the or
operator, like this:

if ($a == 4 || $b ==
if ($a == 5 or $b ==

7) // Do this
8) // Do that

Here, if either $a has the value 4 or $b has the value 7, then the statement after
the first i £ () will be executed, so only one of the expressions on either side of | |
needs to evaluate to TRUE.

The and and or operators have a different precedence compared to && and | |.
Along with the xor operator (detailed next), they have the lowest precedence,
a——

excluding the comma operator. So be careful because, for example, $a && $b | |
$c is equivalent to ($a && $b) || $c, but $a and 3b | | $c is equivalent to
$a and ($b || $c). Note the different positions of the implied parentheses here
(see “Operator Precedence,” later in this lesson).

. Logical Operators x

€ - C A [localhost/lesson06/logical_operators.php ¢/ 17| =

The result of 1 =1 aa 2 == is TRUE
The result of 1 =11 2 == is TRUE
The result of 1 == 1 xor 2 == 2 is FALSE
The result of ! (1 == 1) is FALSE

FIGURE 6-2 Using logical operators

I

Lesson 6 Applying Comparison and Logical Operators 45

Exclusive Or

Then there is the Exclusive Or operator, xor, which is TRUE if either part (but not both)
of the two halves of an expression is TRUE, or FALSE if they both are TRUE or both are
FALSE. To better understand this, imagine you need to clean the kitchen floor and you
have two containers of cleaning chemicals. One contains ammonia and one contains
bleach. Now, as you know, it’'s dangerous to mix both these chemicals together because
they produce a toxic gas, so we definitely don't want to use them both on the floor.

We can create an analogue of this using PHP code, like so:

$a = TRUE; // Use Ammonia
$b = FALSE; // Don't use Bleach

if ($a xor $b) // If TRUE clean the floor

This code states that if only $a is TRUE or only $b is TRUE, then go ahead and
clean the floor. But if both are FALSE the floor is not to be cleaned because no
chemical has been selected. And if both are TRUE the floor also is not to be cleaned
because it is dangerous to use both chemicals at once.

Boolean Negation

Lastly, you can negate (or invert) any expression’s result using the ! symbol (known
as the Not operator) by placing it in front of the expression (generally placing the
expression within parentheses too, so that the ! doesn’t apply only to a part of the
expression), like this:

if (! (++$Lives > $MaxLives)) // Carry on playing

In this example, if the variable $Lives is incremented and its new value is not
greater than the number of lives allowed (as stored in the value in $MaxLives), the
result of the expression is FALSE. Then the ! operator negates this to turn that value
into TRUE. Therefore, the statement after the 1 £ () will be executed because the
player still has at least one life remaining.

On the other hand, if $Lives increments to a value greater than $MaxLives,
the expression evaluates to TRUE, which is negated to FALSE, and so the code after the
if () is not executed. Thus, the expression equates to the semi-English sentence,
“Use up a life; then, if all lives have not yet been used, execute the code supplied.”

When an expression can only return either a TRUE or FALSE value, it is known
as a Boolean expression. When combined with and, or, &&, ||, and !, such

<= expressions are said to use Boolean logic. Boolean negation is different from
when you place a subtraction operator in front of an expression to invert it from a
positive to a negative value, or vice versa, because the ! operator turns a FALSE
result into a TRUE one, and a TRUE result into a FALSE one.

46

Part I PHP Basics

The Ternary Operator

Ever on the lookout for ways to make program code simpler and more compact,
program language developers also came up with a thing called the ternary operator,
which allows you to combine “If this, then do that thing; otherwise, do another thing”
logic into a single expression, like this:

echo $Lives > $MaxLives ? 'Game over' : 'Keep playing';

The way the ternary operator works is that you provide an expression that can
return either TRUE or FALSE (a Boolean expression). Following this you put a ?
character, after which you place the two options, separated with a : character, as follows:

expression ? do this : do that;

For example, another ternary expression might go like the following, which sets
the string variable $AmPm to either AM or PM, according to the numeric value in the
variable SHour:

$AmMPm = $Hour < 12 ? 'AM' : 'PM';

Bitwise Operators

There is a type of operator supported by PHP that (as a beginner to programming)
you are most unlikely to use, due to it being quite advanced, and that’s the bitwise
operator. This type of operator acts on the individual 0 and 1 bits that make up binary
numbers, and it can be quite tricky to use.

The bitwise operators are &, |, *, ~, <<, and >>. In order, they support Bitwise
And, Or, Exclusive Or, Not, left-shift, and right-shift on binary numbers. The bitwise
operators can also be combined with the = assignment operator to make a whole new
collection of bitwise assignment operators.

However, this isn't an advanced tutorial, so I won't go into how you use these
operators—you already have enough new stuff to learn as it is. But if you're curious,
you can check out the following web page, which covers them in some detail:
php.net/manual/en/language.operators.bitwise.php.

Operator Precedence

In PHP, some operators are given a higher precedence than others. For example,
multiplication has a higher precedence than addition, so in the following expression
the multiplication will occur before the addition, even though the addition appears first:

SMyVar = 3 + 4 * 5;

The result of this expression is 23 (4 * 51is 20, and 3 + 20 is 23). But if there
were no operator precedence (with the expression executed simply from left to right),
it would evaluate to 35 (3 + 4 is 7, and 7 * 5 is 35).

Lesson 6 Applying Comparison and Logical Operators 47

Providing precedence to operators obviates the need for parentheses in many
circumstances, because the only way to make the preceding expression come out to 23
without operator precedence would be to insert parentheses as follows:

SMyVar = 3 + (4 * 5);

With this concept in mind, the creators of PHP have divided all the operators
up into varying levels of precedence according to how “important” they are (in that
multiplication and division are considered more “important” than addition and subtraction,
due to their greater ability to handle large numbers).

Therefore, unless you intend to use parentheses in all your expressions to ensure
the correct precedence (which would make your code much harder to write, and for
others to understand, due to multiple levels of parentheses), you need to know these
precedencies, which are listed in Table 6-3.

TABLE 6-3 Operator Precedence (1 Is Highest)

Precedence Operators Precedence Operators

1 clone new 12 &

2 O 1 13 -

3 ++ -- 14

4 ~ - (int) (float) (string) 15 &&

(array) (object) (bool) @

5 instanceof 16 ||

6 ! 17 ?

7 * /% 18 = 4= -= *= /= .=
$= &= |= "= <<=
>>= =>

8 + - . 19 and

9 << >> 20 XOor

10 < <= > >= 21 or

11 == l= === l== <> 22 ’

All you need to learn from this table, though, is which operators have higher
precedence than others, where 1 is the highest and 22 is the lowest precedence.
So where an operator has lower precedence but you need to elevate it, all you need
to do is apply parentheses in the right places for the operators within them to have
raised precedence.

48 Part I PHP Basics

Operator Associativity

PHP operators also have an attribute known as associativity, which is the direction in
which they should be evaluated. For example, the assignment operators all have right-
to-left associativity because you are assigning the value on the right to the variable on
the left, like this:

SMyVar = 0;

Because of this right-to-left associativity, you can string assignments together,
setting more than one variable at a time to a given value, like this:

SMyVar = SThatVar = $OtherVar = 0;

This works because associativity of assignments starts at the right and continues
in a leftward direction. In this instance, $OtherVar is first assigned the value 0. Then
S$SThatVar is assigned the value in $OtherVar, and finally $MyVar is assigned the
value in $ThatVar.

On the other hand, some operators have left-to-right associativity, such as the | |
(or) operator, for example. You see, because of left-to-right associativity, the process of
executing PHP can be speeded up, as demonstrated in the following example:

if ($ThisVar == || $ThatVar == 1) // Do this

When PHP encounters the | | operator, it knows to check the left side first. So,
if $SThisVar has a value of 1, there is no need to look up the value of $ThatVar,
because as long as one or the other expression on either side of the | | operator
evaluates to TRUE, the entire | | expression evaluates to TRUE, and if the left half has
evaluated to TRUE, then so has the whole | | expression. In cases such as this, the
PHP interpreter will eagerly skip the evaluation of the second half of the expression,
knowing it is running in an optimized fashion.

Knowing whether operators have right-to-left or left-to-right associativity can
really help your programming. For example, if you are using a left-to-right associative
operator such as | |, you can line up all your expressions left to right from the
most likely to be TRUE to the least likely. Therefore, it's worth taking a moment
to familiarize yourself with the contents of Table 6-4 so that you will know which
operators have what associativity.

TABLE 6-4 Operator Associativity

Associativity Operators

Non-associative clone new ++ -- instanceof < <= > >= <> == |= === |l==
Right-to-left ~ - (int) (float) (string) (array) (object) (bool) @
associativity I = 4= -= *= /= .= %= &= |= "= <<= >>= =>

Left-to-right O *~/7%+-.<< 5> &7 | & || ?: and xor or ,

associativity

Lesson 6 Applying Comparison and Logical Operators 49

Summary

This lesson has brought you up to scratch with all you need to know about using
operators, so now you're ready to start looking at some of PHP’s more complex and
interesting objects in the following lessons on using arrays—a slightly more complex
(or perhaps I should say, more organized) form of data storage than variables.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know
an answet, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

With which operator can you test whether two values evaluate to the same result?

How can you test whether two values evaluate to the same result and are both of
the same type?

What are the results of these expressions: a) TRUE xor TRUE, b) TRUE xor
FALSE, ¢) FALSE xor TRUE, and d) FALSE xor FALSE?

What is the result of ! (23 === '23")?

What single expression might you use to set the variable $Sbulb to the value 1
when the variable $daypart has the value 'night', and 0 when it doesn’t?

To what value will PHP evaluate the expression 5 * 4 + 3 / 2 + 17

How can you force PHP to evaluate the expression 1 + 2 / 3 * 4 — 5 from left
to right?

Do the math operators (+, -, *, and /) have right-to-left or left-to-right associativity?
Do the assignment operators have right-to-left or left-to-right associativity?

When using the | | operator, why is it a good idea to place the most likely to be
TRUE expression on the left?

This page intentionally left blank

o’

Creating Arrays

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

HP is capable of managing data in a more powerful manner than simply

via variables. One example of this is PHP arrays, which you can think of as
collections of variables grouped together. For example, a good metaphor for an array
might be a filing cabinet, with each drawer representing a different variable, as shown
in Figure 7-1.

With the filing cabinet, as with the small pot metaphor in Lesson 3, to assign
a value you should imagine writing it down on a piece of paper, placing it in the
relevant drawer, and then closing the drawer. To read back a value, you open
the drawer, take out the paper, read its value, return the paper, and close the drawer.
The only difference between the cabinet and the pots is that the drawers of the filing
cabinet (representing an array) are all in sequential order, whereas a collection of
pots (representing variables) are stored in no particular order.

Although PHP arrays can be any size (up to the available memory in your
computer), for the sake of simplicity I have only shown 10 elements in the figure.
You can access each of the elements in an array numerically, starting with element 0
(the top drawer of the cabinet). This index number is important, because you might
think that logically the number 1 would be the best starting point, but that isn’t
how PHP arrays are accessed—you should always remember that the first element
is the zeroth.

51

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

52 Part I PHP Basics

1) o

FIGURE 7-1 A filing cabinet representing a 10-element array

Array Names

The rules for naming arrays are exactly the same as those for naming variables.
Array names must begin with a $ symbol, followed by either an uppercase or
lowercase letter (a-z or A-Z) or the _ symbol. No other character may begin an
array name.

Array names may not contain any mathematical operators (such as + or *),
punctuation (such as ! or &), or spaces, but after the first character they may include
the digits 0-9, any upper- or lowercase letters (a-z or A-Z), and the _ symbol.

Creating an Array

To create an array, you can declare it in advance (although you don’t have to) to
initialize it, like this:

SMyArray = array () ;

This array object contains no data but is ready for data to be assigned to its
elements.

Assigning Values to an Array Element

You can populate arrays with data (in a similar manner to assigning values to variables),
like this:

SMyArray [0] = 23;
SMyArray [1] 67.35;

Lesson 7 Creating Arrays 53

Here, the integer 23 is assigned to element 0 (the top drawer of the cabinet),
whereas the floating point number 67 .35 is assigned to the element at index 1
(the second drawer down, because they begin at 0). In fact, you can assign any legal
value to an array element, including strings, objects, and even other arrays (which is
discussed in the following lesson), like this:

SMyArray [3] = "Hello world";
SMyArray [4] = $OtherArray;

You are not restricted to assigning values in order, so you can go right in and
assign values to any elements, like this:

SMyArray [9] = "Good morning";
SMyArray [7] = 3.1415927;

If you don’t need your data stored in any particular array elements, you can instead
insert values at the end of an array by omitting the element number. Therefore, the
previous six assignments could be made like this (which would automatically use
the indexes 0 through 5):

SMyArray[] = 23;

SMyArray[] = 67.35;
SMyArray[] = "Hello world";
SMyArray[] = $OtherArray;
SMyArray[] = "Good morning";
SMyArray[] = 3.1415927;

Using Indexes

The element number we have been using for storing a particular value is known
as the array index, and you can use integer (as shown so far) or variable values as
indexes. For example, the following first creates a variable and assigns it a numeric
value, which is then used to assign another value to the array:

$MyIndex = 123;
SMyArray [$MyIndex] = "Good evening";

This has the effect of assigning the string value "Good evening" to the
element with an index of 123 in $MyArray[].

Retrieving Values

Once an array has been created and it has been populated with data, to retrieve a
value from an array you simply refer to it, like this:

echo $MyArray[0] ;

54 Part I PHP Basics

This will fetch the value stored in the zeroth element of $MyArray [] (or the
top drawer of the filing cabinet metaphor) and then pass it to echo to display it in
the browser. You can, likewise, return a value using a variable, like this:

SMyIndex = 713;
echo $MyArray [$MyIndex] ;

Whatever value is stored in element 713 of the array will then be displayed in
the browser.

The preceding two examples (and many of the following ones) assume you have
already created an array.

There are other ways you can use array values, such as assigning them to other
variables or other array elements, or using them in expressions. For example, the
following code assigns the value 23 to an array element, which is then looked up
and used in an expression, in which 50 is added to it and the result (73) is displayed
in the browser:

SMyArray [7] = 23;
echo $MyArray[7] + 50;

Or, for example, you may wish to display a value in a JavaScript alert window
using code such as the following, which results in your browser looking like Figure 7-2
(although the style of the window varies by browser):

SMyArray [7] = 23;
echo '<scriptsalert (' . ($MyArray[7] + 50) . ')</script>';

Message from webp... ﬂ

J‘_\‘?B

FIGURE 7-2 Displaying a value in an alert window

Using Array Elements as Indexes

You can even go a step further and use the value stored in an array element as an
index into another (or the same) array, like this:

$OtherArray [0] = 77;
SMyArray [$OtherArray[0]] = "I love the movie Inception";

Lesson 7 Creating Arrays 55

Here, the zeroth element of $OtherArray [] is assigned the integer value of 77.
Once assigned, this element is used as the index into $MyArray [] (rather like
the movie Inception, with arrays within arrays). However, this is quite complex
programming, and you are unlikely to use these types of indexes as a beginner to PHP.

The fact that you can use any valid integer value (including values in variables,
array elements, and those returned by functions) means that you can use
mathematical equations to iterate through arrays. For example, as you will discover
in Lesson 9, it is easy to create code that runs in a loop to process each element
of an array in turn.

L e

Other Ways of Creating Arrays
You have already seen the following type of declaration for creating a PHP array:
$MyArray = array();

However, there are also a couple of other methods you can use, which also have
the effect of simplifying your code, by allowing you to populate the array with some
data at the same time. The first method is as follows:

SMyArray = array (123, "Hello there", 3.21);

Here, the array $MyArray [] is created and its first three elements immediately
populated with three different values: an integer, a string, and a floating point number.
This is equivalent to the following (much longer) code:

SMyArray = array () ;
SMyArray [0] = 123;
SMyArray[1] = "Hello there";
SMyArray [2] = 3.21;

Once you have created an array, if you need to apply any more values to elements
within it, you must use the standard form of assigning values. If you reuse the

W8T <= short form of combined array creation and value assignment, it will simply reset
the array to the values in the assignment.

Using Associative Arrays

Using numeric indexes is all well and good when you only have a few elements in an
array to cope with. But once an array starts to hold meaningful amounts of data, using
numbers to access its elements can be highly confusing. Thankfully, PHP provides a
great solution to this by supporting the use of names to associate with array elements,
in much the same way that variables have names.

56

Part I PHP Basics

Let’s use PHP’s associative arrays to store the ages of the players in a mixed,
under 11, five-a-side soccer team. Here, the array is initialized and then the age of
each player is assigned to an element in the array using the players’ names:

$SoccerTeam = array () ;

$SoccerTeam|['Andy'] = 10;
$SoccerTeam|['Brian'] = 8;
$SoccerTeam|['Cathy'] = 9;
$SoccerTeam|['David'] = 10;
$SoccerTeam['Ellen'] = 9;

Having been assigned, these values can now easily be looked up by name, like
this, which displays Cathy’s age in the browser:

echo $SoccerTeam|['Cathy'];

Keys, Values, and Hash Tables

When you use associative arrays, you are actually creating a collection of key and
value pairs. The name you assign to an array element is known as the key, whereas
the value you provide to the element is the value.

In other languages (such as JavaScript), this type of data structure is known as a
hash table. When an object (such as a string) is used as a key for a value, this is called
a hash value, and the data structure is the hash table.

Other Ways of Creating an Associative Array

If you wish, you can use a short form of creating and populating an associative array,
like this:

$SoccerTeam = array (
'Andy"' => 10,
'Brian' => 8,
'Cathy' => 9,
'David' => 10,
'Ellen' => 9

)i

I'm sure you'll agree this is much simpler and easier to use, once you know that
this type of code structure causes the creation of an array. But you may prefer to stick
with the longer form until you are completely happy with using arrays. Also, T have
chosen to be liberal with newlines here for reasons of clarity, but if you wish, you can
run all these five sub-statements into a single line, like this:

$SoccerTeam = array('Andy' => 10, 'Brian' => 8, 'Cathy' => 9,
'David' => 0, 'Ellen' => 9);

Lesson 7 Creating Arrays 57

As with standard variables and arrays, you are not restricted to only storing
numbers in associative arrays, because you can assign any valid value, including
integers, floating point numbers, strings, and even other arrays and objects. The
following illustrates a couple of these:

SMyInfo = array(

'Name' => 'Bill Gates',
'DOB'! => 1955,

'Occupation' => 'Philanthropist',
'Children' => 3,

'Worth' => 79000000000

)i

In the preceding example, both strings and numbers have been assigned to the
array elements. You can read back any value simply by referring to it, like this, which
displays the value in Occupation (namely Philanthropist) in the browser:

echo sMyInfol['Occupation'];

Summary

By now, you should be very comfortable with PHP arrays and will be beginning to see
how they can make excellent structures for handling your data. If you are still a little
hesitant, though, load the file arrays.htm (from the matching folder in the accompanying
archive for this lesson) and play with the examples in it until you are sure you've got the
hang of things. It’s short and sweet and looks like Figure 7-3 when run.

. Array BExamples x

€ - C A |[localhost/lesson07/arrays.php Je| E

cat, dog, fish

water, milk, soda
pasta, cheese, tomato
10, &, %, 10, S

Bill Gates, 1955, Philanthropist, 3, 75000000000

FIGURE 7-3 A number of different array creation and accessing examples

In the following lesson, I'll show you how there’s actually a lot more to arrays than
you've so far seen, and we'll begin to make some reasonably complex data objects.

58 Part I PHP Basics

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know
an answert, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

Which characters are allowed in PHP array names?
What types of values can be stored in an array element?
How can you create an unpopulated array?

1.
2.
3.
4. How can you assign a value to specific elements in a numeric array.
5. How can you create and populate an array with a single instruction?
6.

How can you add elements to a numeric array without specifying an index
location?

7. How can you retrieve a value from a numeric array?
8. How can you reference a numeric array element using a variable?

9. How would you create and populate a new associative array to hold the names
and phone numbers of three contacts?

10. How can you retrieve a value from an associative array?

18

Managing Multidimensional Arrays

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

Let me start by totally contradicting the title of this lesson and stating that there’s
actually no such thing as multidimensional arrays in PHP. But before you start
scratching your head and wondering whether I've drunk too many cups of tea, let me
say that you can simulate multidimensional arrays in PHP by assigning new arrays as
the values for elements of an existing array.

But what exactly do T mean by multidimensional in the first place? Well, in the
same way that a string of characters is a collection of individual letters, numbers,
and other characters—which you can imagine being like a string of pearls, with each
pearl occupying its right location, and the correct pearls on either side, all in the right
order—an array is like a collection of variables all stored in their right locations.

In the previous lesson I used the metaphor of a filing cabinet for an array of
10 elements. If you imagine for a moment that each drawer in this filing cabinet is
like Doctor Who's Tardis (his time and space machine) in that it is much bigger on the
inside than it is on the outside, then you should be able to also imagine being able
to place another 10-drawer filing cabinet in each of the drawers of the original one!
Figure 8-1 should help make this clearer.

Remember that these particular filing cabinets are not bound by the normal rules
of space and time, so the small cabinets can contain just as much as the large one.

In fact, the cabinets are capable of holding an infinite amount of data, limited
only by the restraints of the computer or server running PHP. T have simply drawn
the secondary filing cabinets much smaller so that they fit into the figure.

59

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

60 Part I PHP Basics

[

i

e

Ol N|oo|oa| | W|IN|—=|O

FIGURE 8-1 Representing a two-dimensional array with filing cabinets

Creating a Two-Dimensional Array

Let’s see how we can use the ability of an array element being able to store another
entire array to our advantage by considering a 10 times multiplication table, just like
those often found on the classroom walls of school children (see Figure 8-2).

1 5 6 7 8 9 10
5|16 |7 |8]|9]10
10|12 |14 |16 | 18 | 20
12 (15|18 | 21 | 24 | 27 | 30
8 (12|16 (20|24 |28 32|36 |40
10 [15| 20| 25|30 |35 (40|45 |50
12|18 |24 |30 | 36 | 42 | 48 | 54 | 60
14 21|28 |35|42 (49|56 |63 |70
16 |24 |32 (40 |48 | 56 | 64 | 72 | 80
18 27|36 |45 |54 |63 |72 |81|9

20|30 (40| 50|60 |70 | 80 | 90 | 100

_
=

V| o | W w

2
2
4
6

O 00 N O U M W N
VW o|N[aoaofu|bd|]w|N

—
o
_
o

FIGURE 8-2 A 10 times multiplication table

Each of the columns (or each of the rows) can be considered a one-dimensional
array. For example, the first row could be created using the following code:

SMyTable0 = array () ;
SMyTableO[0] = 1;
SMyTableO[1] = 2;

$MyTableO [2] =
$MyTableO [3] =
$MyTableO [4] =
$MyTableO [5] =
$MyTableO [6] =
$MyTableO [7] =
$MyTableO [8] =
$MyTableO [9] =

H WO 0 J o0 U W

o~

7

Lesson 8 Managing Multidimensional Arrays

Or, more succinctly:

SMyTable0 = array(

1, 2, 3, 4,

5,

6,

7,

8,

9,

10);

Similarly, the second row could be created like this:

SMyTablel = array(

2, 4, 6, 8,

10,

12,

14,

16,

18,

20) ;

61

You can then continue like this for the remaining rows, so that you end up with
the following set of statements:

SMyTable0 = array
SMyTablel = array
SMyTable2 = array
SMyTable3 = array
SMyTable4 = array
SMyTable5 = array
SMyTable6 = array
SMyTable7 = array
SMyTable8 = array
SMyTable9 = array

At this point we now have one array for each row in the times table. With these

1, 2, ,
2, 4, ,
3, 6, 9,
4, 8, 12,
5, 10, 15,
6, 12, 18,
7, 14, 21,
8, 16, 24,
9, 18, 27,
10, 20, 30,

4,
12,
16,
20,
24,
28,
32,
36,
40,

5,
10,
15,
20,
25,
30,
35,
40,
45,
50,

6,
12,
18,
24,
30,
36,
42,
48,
54,
60,

7,
14,
21,
28,
35,
42,
49,
56,
63,
70,

8,
16,
24,
32,
40,
48,
56,
64,
72,
80,

9, 10
18, 20
27, 30
36, 40
45, 50
54, 60
63, 70
72, 80
81, 90
90,100

now created, it is now possible to build a two-dimensional table by creating just one
more table, a master table, like this:

SMasterTable =
SMasterTable[0] =
SMasterTable[1] =
SMasterTable[2] =
SMasterTable[3] =
SMasterTable[4] =
SMasterTable [5] =
SMasterTable[6] =
SMasterTable[7] =
SMasterTable[8] =
SMasterTable[9] =

array () ;

SMyTableO;
SMyTablel;
SMyTable2;
SMyTable3;
SMyTable4;
SMyTables;
SMyTableé6;
SMyTable7;
SMyTables;
SMyTable9;

62 Part I PHP Basics

Alternatively, we can use the shorter form:

SMasterTable = array

(
$MyTableO,
$MyTablel,
$MyTable2,
$MyTable3,
$MyTable4,
$MyTable5,
$MyTableé6,
$MyTable7,
$MyTables,
$SMyTable9

I have chosen to split this up into multiple lines for clarity, but you can equally
include all the preceding in a single statement on one line, as follows:

SMasterTable = array ($MyTableO, $MyTablel, $MyTable2, $MyTable3,
SMyTable4, $MyTable5, s$MyTable6, S$MyTable7, S$MyTable8, $MyTable9) ;

Accessing a Two-Dimensional Array

Let’s now look at how this relates to the filing cabinets in Figure 8-1 in terms of code.
To recap, there's a main array called $SMasterTable [], with each of its elements
containing another array, named sequentially $SMyTable0 [] through $MyTable9[].

As you will recall from the previous lesson, accessing an array is as simple as the
following, which outputs the value in the array held at a numeric index of 23 (which
will be element 24 because arrays start from 0):

echo $SomeArray[23];

But what should you do when the value stored in an array element is another
array? The answer is simple and elegant—you just add another pair of square brackets
following the first pair and then place another index value into that new array between
them, like this:

echo SMasterTable[0] [0];

This statement displays the contents of the first element of the array that is stored
in the first element of SMasterTable []. Notice that there is no need to reference the
sub-array by name (sub-array being the term I use for referring to arrays within arrays).

Likewise, if you wish to display the value held in the seventh element of the array
stored in the third element of SMasterTable []1, you would use code such as this

Lesson 8 Managing Multidimensional Arrays 63

(remembering that array indexes start at 0 not 1, so the seventh and third elements
will be 6 and 2, respectively):

echo SMasterTable[2] [6];

In terms of the times table in Figure 8-2, this is equivalent to first moving to the
third row down and then seventh column across, at which point you can see that the
value shown is 21, as you will quickly see if you look at the source of timestable.htm
(available in the companion archive):

<!DOCTYPE html>
<html>
<head>
<title>Two-Dimensional Array Example</titles>
</heads>
<body>

<?php

SMyTable0 = array , 3, 4, 5, 6, 7, 8, 9,

2

4, 6, 8, 10, 12, 14, 16, 18,
, 6, 9, 12, 15, 18, 21, 24, 27,

8

0

SMyTablel = array ;

7

7

SMyTable2 = array

SMyTable3 = array , 12, 16, 20, 24, 28, 32, 36, ;

10
20
30
40
, 15, 20, 25, 30, 35, 40, 45, 50
60
70
80
90

7

SMyTable4 = array

SMyTable5 = array , 12, 18, 24, 30, 36, 42, 48, 54, ;
, 14, 21, 28, 35, 42, 49, 56, 63,
, 16, 24, 32, 40, 48, 56, 64, 72,
, 18, 27, 36, 45, 54, 63, 72, 81,

, 20, 30, 40, 50, 60, 70, 80, 90,100

7

SMyTable6 = array

7

SMyTable7 = array

7

SMyTable8 = array

7

)
)
)
)
)
)
)
)
)
)

SMyTable9 = array

SMasterTable = array(
SMyTable0O, $MyTablel, $MyTable2, $MyTable3, $MyTable4,
$SMyTable5, $MyTableé6, $MyTable7, $MyTable8, $SMyTable9) ;

echo 'The value at location 2,6 is ' . S$MasterTable[2] [6];
?>
</body>
</html>

This code is equivalent to the filing cabinets in Figure 8-1, in that the
$MasterTable [] array represents the large cabinet, while the $MyTable0 []
array is the top small cabinet, and $MyTable9 [] is the bottom small cabinet, as
shown in Figure 8-3.

If you now take all the small filing cabinets and stack them up alongside each
other, you will see how they represent the $MasterTable [] array, as shown in
Figure 8-4. For all intents and purposes, we can forget about the main array (other
than for using its name to index into the sub-arrays) and think only in terms of the
10 sub-arrays, and how to access each drawer using pairs of indexes.

64 Part I PHP Basics

= $MyTable5 []

= $MyTabIe6 i

= T sMyTable7]
= B

Ol N|oo|la|h~|W|IN|—=|]O

$MasterTable []

FIGURE 8-3 The relationship between the cabinets and arrays

= = = = = 0 [= =
=i =i =" = =" = =" =
= = 2 [= 2 [= 2 [=
= = = 3 = 3 = 3 = 3 = 3 =
= = = = 4 [= = =
= = 5 = 5 = 5 = 5 = 5 = 5 =
=l =l 6 = =] =] =] 6 = =]
= = 7 = 7 = 7 = 7 = 7 = 7 =
=l =l s = LI =] s = =] =] L =]
= = s = s = s =1 s = s = s =

FIGURE 8-4 The small filing cabinets are now lined up alongside each other.

The first index goes down the drawers of the main cabinet, and the second one
goes along the cabinets. Therefore, array index [3] [7] points to the fourth drawer
down, and the eighth cabinet along.

If it helps to better visualize the rows and columns of such a two-dimensional
array, imagine rotating the sub-cabinets counterclockwise by 90 degrees, so that
SW" 2= they are laying flat, and then stacked on top of each other. It’s starting to stretch

the metaphor, but it may help to match up the drawers and array coordinates in
your mind.

A More Practical Example

Obviously, a multiplication table is a trivial thing to re-create on a computer because
it can be achieved with a couple of simple loops. So let’s look instead at a more
interesting example: that of a board for a game of Othello (also known as Reversi).

Lesson 8 Managing Multidimensional Arrays 65

As you may know, there are 64 squares on an Othello board, laid out in an 8x 8
grid, and two players take turns laying a counter of their color in such a way that one
(or more) of their opponent’s counters becomes sandwiched. These sandwiched
counters are then turned over to reveal the opposite color underneath, and thus become
the property of the current player.

Using a computer to represent an Othello board is simple using nested arrays,
as in the following example, where a set game position is being assigned, with 'W'
representing white counters and 'B' representing black counters:

SRow0 = array('-', '-"', "'-', ‘t-r v r_n o),
SRowl = array('-', '-"', "'-', ‘'-1 v r_n o).
SRow2 = array('-', '-', 'W', '-=', 'B', ‘'-r', t-tv _1),
$Row3 = array('-', '-', 'B', 'W', 'B', ‘'-=', ‘'-t', 1-1),
$Row4 = array('-', '-', 'B', 'B', 'B', 'W', '-=', '-1');
SRow5 = array('-', '-', 'B', '-=', '"W', ‘'-=-°', ‘'-tv, 1-1),
SRow6 = array('-', '-', '-=', W', ‘'-', t-rv, or_r 1),
SRow7 = array('-"', '-', ‘'-="', ‘"=t - r_n o o),

The board can now be created by assigning these sub-arrays to a master array,
like this:

SBoard = array (SRow0, SRowl, SRow2, SRow3, SRow4, SRow5, SRowé6, SRow7) ;

It's now white's turn to play, and there are a few possible locations next to black
counters that can be sandwiched, but let’s assume that white elects to place the
next counter at the location six down and four across.

Remembering that numeric arrays start at an index of 0, we can see that the possible
index locations are [0] [0] through [7] [7], with [0] [0] being the top-left corner
and [7] [7] the bottom-right corner. Therefore, to play at six positions down and
four across, the array element to access is $Board [5] [3].

When this white counter is placed, it will sandwich the black one immediately
above it (at location [4] [3]), and so we must make two changes to the array,
as follows:

$Board[5] [3] = 'W';
$Board[4] [3] = 'W';

Figure 8-5 shows the othello.php example file (available in the companion archive),
in which the before and after board positions are shown, as created by the preceding code.

If you wish, you may continue adding arrays within other arrays until you run out
of computer memory. All you do is place new arrays inside existing ones to add an

<= extra dimension. For example, if you were to create additional sub-sub-arrays for
each of the sub-array elements (a total of 64 new arrays), you could form eight
complete Othello boards in a three-dimensional array, representing an 8x8x8
cube—now that would be an interesting game!

66 Part I PHP Basics

. Othello Example x

€& = C A [localhost/lesson08/athellophp 7 52| =

FIGURE 8-5 Modifying a two-dimensional game board array

Multidimensional Associative Arrays

As you might expect, just as with numeric arrays, you can create multidimensional
associative arrays. Let me explain why you might want to do this by considering a
small online store that sells toys for six different age ranges of children, as follows:

Babies
Toddlers
Age 3-5
Age 5-8
Age 8-12
Teenagers

These categories can be easily mapped into an associative array (as I'll show you
in a minute), but let’s first create some subcategories for each of the main ones, such
as these:

e Babies
e Rattle
e Bear
e Pacifier

Lesson 8 Managing Multidimensional Arrays 67

e Toddlers
e Wooden Bricks
e Xylophone
e Play Dough
e Age 3-5
e Slide
e Tricycle
e (Crayons
o Age 5-8
e Dolly
e Bicycle
e Guitar
e Age 8-12
e Tablet Computer
e Remote Control Car
e Frisbee
e Teenagers
e MP3 Player
e Game Console
e TV/DVD Combo

Clearly these subcategories can also be mapped to associative arrays, but before
we do that we have to go even deeper (yet more undertones of Inception) because a
web store needs things such as pricing information and product availability, like this:

e DPrice
e Stock Level

Creating the Multidimensional Array

Armed with these details, we're now ready to start building the arrays needed
by assigning values to the price and stock level of each product being sold to an
associative array for each product, as follows:

SRattle array ('Price' => 4.99, 'Stock' => 3);
SBear array ('Price' => 6.99, 'Stock' => 2);
SPacifier array ('Price' => 1.99, 'Stock' => 9);
SBricks array ('Price' => 5.99, 'Stock' => 1);
$Xylophone array ('Price' => 12.99, 'Stock' => 2);
$PlayDough array ('Price' => 8.49, 'Stock' => 7);
sSlide array ('Price' => 99.99, 'Stock' => 1);
STricycle array ('Price' => 79.99, 'Stock' => 1);
SCrayons array ('Price' => 3.79, 'Stock' => 5);
SDolly array ('Price' => 14.99, 'Stock' => 3);

68 Part I PHP Basics
S$SBicycle = array('Price' => 89.99, 'Stock' => 2);
SGuitar = array('Price' => 49.00, 'Stock' => 1);
$TabletPC = array('Price' => 149.99, 'Stock' => 1);
SRemoteCar = array('Price' => 39.99, 'Stock' => 2);
SFrisbee = array('Price' => 7.99, 'Stock' => 6);
SMP3Player = array('Price' => 179.99, 'Stock' => 1);
SConsole = array('Price' => 199.99, 'Stock' => 2);
STVAndDVD = array('Price' => 99.99, 'Stock' => 1);

Now that these basic data structures are complete, it's possible to group the products
into the age range arrays, like this (note that the words in quotes are the keys and those
after the => operators are the values, which are the names of the associative arrays

previously created):

SBabies

SToddlers

$Age3 5

$Age5 8

$Age8 12

STeenagers

array ('Rattle’ =>
'Bear' =>
'Pacifier! =>
array ('Wooden Bricks' =>
'Xylophone' =>
'Play Dough' =>
array('slide’ =>
'Tricycle! =>
'Crayons' =>
array ('Dolly’ =>
'Bicycle' =>
'Guitar’ =>
array ('Tablet PC!' =>
'Remote Control Car' =>
'Frisbee' =>
array ('MP3 Player' =>
'Game Console' =>
'"TV/DVD Combo' =>

SRattle,
$Bear,
SPacifier) ;
$Bricks,
$Xylophone,
$PlayDough) ;
$Slide,
STricycle,
$Crayons) ;
$Dholly,
S$SBicycle,
$Guitar) ;
S$TabletPC,
SRemoteCar,
SFrisbee) ;
SMP3Player,
$Console,
$TVANndDVD) ;

I used an underscore character between the digits in these age range arrays
because the dash is a disallowed character in variable and array names (because
it can be confused with the minus symbol). The dash is acceptable, however,

when used as part of a quoted string for a key name.

Finally, the top array can be populated, like this (where the strings in quotes are
the keys, and the values after the => operators are the names of the arrays just defined):

$Categories= array('Babies'
'Toddlers'
'Ages 3-5'
'Ages 5-8'
'Ages 8-12'
'Teenagers'

=>

=>

=>

=>

=>

=>

$Babies,
$Toddlers,
SAge3 5,
SAge5 8,
SAge8 12,
STeenagers) ;

Lesson 8 Managing Multidimensional Arrays 69

What has now been created is actually a three-dimensional array. The first
dimension is the $SCategories [] array, the second is each of the age range arrays,
and the third is each of the product arrays containing the price and stock level.

Remember that in each of these assignments the string on the left is the key

and the item on the right is the value. In all but the innermost (or lowest) case,
W8T <= the value is the name of another array that has already been created. For the

innermost case, the values are numeric values: the price and stock level.

Accessing the Arrays

You can now read and write to these stored values in the following manner, which
returns the price of the slide, which is 99.99 (no currency type is specified in these
examples, just values):

echo $Categories['Ages 3-5']['Slide'] ['Price'];

Alternatively, if you need to change a price on an item of inventory for any reason,
such as the crayons, for example (currently 3.79), you can alter it in the following
manner, which reduces the price by 0.20:

$Categories['Ages 3-5'] ['Crayons'] ['Price'] = 3.59;

Likewise, when you sell an item of stock, you can reduce the inventory level
(the stock level) in a similar manner. The following decreases the stock level of game
consoles by 1, using the pre-decrement operator:

--$Categories|['Teenagers'] ['Game Console'] ['Stock'];

Obviously, the inventory for even the smallest online store is sure to be far
greater than what’s used in this example, and there are going to be many additional
attributes for some toys, such as different sizes and colors, as well as images,
descriptions, technical specifications, and other details about the product, all of which
could easily be built into this multidimensional structure of arrays.

The file toystore.php in the companion archive contains all the preceding
prepopulated arrays and the example statements that access them. You may wish
to try experimenting with it to read from and write to other items of data within the
array structure.

Summary

You may not realize it, but we've now covered a huge amount of territory in just
eight lessons. With less than half the book completed, you are already becoming an
accomplished PHP programmer. Hopefully, it’s all making sense to you, and arrays
are beginning to feel like second nature. Therefore, in the next lesson, we'll look at
some fun we can have using the array-accessing functions provided with PHP.

70 Part I PHP Basics

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know
an answert, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

1.

10.

PHP doesn’t support multidimensional arrays natively, so what is the process of
emulating such a structure?

What kind of array structure would you create to hold the contents of a 3x 3
Tic-Tac-Toe board?

Given the array $oxo, containing a 3 x 3 Tic-Tac-Toe board, how might you
reference the element in the top-left corner? How about the bottom-right corner?

How can you pre-increment a numeric value stored in an associative array at
S$PageClicks['homepage']?

How can you post-decrement a numeric value stored in an associative array at
SPageClicks['homepage'] ['menu']?

How might you populate an associative array called $Smarbles with three sizes
of marbles (small, medium, and large), of which you have (in order) 17, 23, and
21 bags?

How might you create a similar array to the Smarbles array in Question 6, but
with each array element containing a sub-array (rather than a numeric value),
suitable for storing additional information?

What is one way you could access the second-level array elements for the
$marbles array in Question 7 to also store information for the marble colors
(red, green, and blue), along with their matching stock quantities?

Assuming all the elements for the array in Question 8 have been assigned values
for the three sizes, three colors, and stock quantities, how could you determine
the stock level of medium-sized bags of blue marbles?

Given a value stored in an associative, two-dimensional array, at
Smarbles['large'] ['red'], how can you increment this value by 10
with a single statement?

“109)

Calling Array Functions

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

o make arrays even more powerful, PHP comes readymade with a selection of

handy functions for accessing and manipulating them. For example, you can join
arrays together, push new items onto an array (and pop them off again later), reverse
the data in an array, sort it alphabetically or numerically, and more.

In this lesson, we'll look at a small selection of these functions and how to use
them. If you would like to see the complete set of array functions, you can view the
documentation page at php.net/manual/en/ref.array.php.

Using foreach ()

The first feature I'd like to introduce is foreach (), because with it you can iterate
through an array one element at a time, which we will need to do in the following
examples in order to see the results. To show how this iteration works, let’s start with
a simple array:

$Cats = array('Long Hair', 'Short Hair', 'Dwarf',

'Farm', 'Tabby', 'Tortoiseshell');

Now, let’s use foreach to display all its elements, as follows (resulting in
Figure 9-1):

foreach($Cats as S$cat)

{

echo "Scat
";

}

71

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

72 Part I PHP Basics

. foreach() Example ®

€ = C A [localhost/lesson09/foreachphp &/ 12| =

Long Hair
Short Hair
Dwarf

Farm

Tabby
Tortoiseshell

FIGURE 9-1 The contents of $Cats [] are displayed.

What'’s happening here is the as keyword creates a new variable called $cat,
which takes on the value in each element of $Cats [] in turn, as the loop iterates
through the array. Then the contents of the curly braces are executed once for each
element in $Cats [] until there are no more elements left in the array to process.

Here you see one of my programming styles, which is to often use the plural of
w a word for an array name and the singular for a single element in that array (as
—« == extracted by foreach (), for example). I also tend to make the singular variable
all lowercase to further indicate that it is only a member of a larger object.

For reasons I will explain in Lesson 12, the curly braces can be omitted when
there is only a single statement to be executed by such a loop. Therefore, for the sake
of simplicity in the following examples, I will reduce this type of code to the much
shorter following example:

foreach(sCats as S$cat) echo "S$Scat
";

In an associative array, you can also use foreach () to extract both the key and the
value for each element. For example, consider the soccer team array from Lesson 7:

$SoccerTeam = array (
'Andy' => 10,
'Brian' => 8,
'Cathy' => 9,
'David' => 10,
'Ellen' => 9

)i

Using foreach (), you can extract all this data as follows:

foreach ($SoccerTeam as $player => S$Sage)
echo "$player is $age years old
";

In this example, each time around the loop, $player is given the key for the current
element, and $age is set to the value for that element. Now that there’s an easy way to

Lesson 9 Calling Array Functions 73

display the contents of an array, we can start to look at the array functions provided by
PHP and see how to use them. You can try both of these examples for yourself by loading
the foreach.php example from the companion archive into your browser.

Using array merge ()

Using the array merge () function, you can return a new array created by joining
two other arrays together. The two original arrays are not changed in any way by this
function; only the result of joining them together is returned.

To see how this works, let's create a second array to go with the $Cats[] array
created a little earlier, as follows:

$Dogs = array('Pit Bull', 'Spaniel’, 'Terrier',
'Beagle', 'Shepherd', 'Bulldog') ;

With both arrays now created, we can run the array merge () function on them,
like this:

$Pets = array merge ($Cats, $Dogs) ;
And now to see the result of this operation, we can issue the following statement:
foreach ($Pets as S$pet) echo "$pet<brs>";

The code to create these two arrays and the preceding pair of statements can
be found in the array_merge.php file in the companion archive. As you can see in
Figure 9-2, the result is that the new array $Pets [] now contains all elements from
both the $Cats[] and $Dogs [] arrays, in order.

. Using array_merge() Bxarn x

€& - C A [localhost/lesson09/array_merge.php ¢/ v¢| =

Long Hair
Short Hair
Dwarf

Farm
Tabby
Tortoiseshell
Pit Bull
Spaniel
Terrier
Beagle
Shepherd
Bulldog

FIGURE 9-2 The two arrays have been merged.

74 Part I PHP Basics

For a similar result, but with the contents of the $Dogs []1 array before the
$Cats [], you could equally have issued this statement:

$Pets = array merge ($Dogs, $Cats);

In fact, you could omit the creation of the $Pets [] array altogether and simply
iterate through the result of the array merge () call, like this:

foreach (array merge ($Cats, $Dogs) as S$pet)
echo "Spet
";

Using implode ()

Sometimes you may wish to turn all the elements in an array into a string, and this
is easy to do using the implode () function. For example, let’s take the case of the
$Cats [] array, as follows:

echo implode(' and ', s$Cats);

This statement calls the implode () function, passing it the string ' and ',
which is used as a separator, to be inserted between each element, as shown in
Figure 9-3. You may use any string as the element separator, or none at all, as in the
following three examples:

echo implode ($Cats) ;
echo implode('', SCats) ;
echo implode(',', $Cats);

. Using implode() Bxaample x

€ > C A [localhost/lesson09/implodephp /v =

Long Hair and Short Hair and Dwarf and Farm
and Tabby and Tortoiseshell

FIGURE 9-3 The result of imploding array elements into a string

When nothing or an empty string (' ') is passed to implode () as its first
argument, no separator is inserted between element values, whereas a comma or
any other value passed to it is used as the separator. So, in turn, the three previous
statements display in the following ways:

Long HairShort HairDwarfFarmTabbyTortoiseshell
Long HairShort HairDwarfFarmTabbyTortoiseshell
Long Hair,Short Hair, Dwarf,Farm, Tabby, Tortoiseshell

Lesson 9 Calling Array Functions 75

PHP also supports the alias (a different name for the same function) of join (),
which works in an identical manner to implode () and is included for greater
P o

compatibility with other languages such as JavaScript.

The array walk() Function

One very quick and easy way to process all the elements in an array is to pass the array
to another function, via PHP's array walk () function. For example, the following
code creates an array populated with numbers and then applies the new CalcRoot ()
function to each element, all via a single call to the array walk () function:

SNums = array (99, 16, 11, 66.5, 54, 23);
array walk ($Nums, 'CalcRoot') ;

function CalcRoot (Sitem)
{
echo "Root S$item is " . sqgrt($item) . '
';

}

What happens is that every item in the array is looked up and then passed as
an argument to the function given to array walk (). This process repeats until all
items have been passed in turn to the supplied function. You can see the result of
running this code (array_walk.php in the companion archive) in Figure 9-4.

You will have noticed that the function CalcRoot () is not called in the normal
W fashion (for example, echo CalcRoot (64) ;). Rather, just the name of the
—= === function is passed as a quoted string. This is because we don’t want to call the
function at this particular point; we only want to tell array walk () which

function it should call, and array walk () is smart enough to understand that
the string value it is passed is the name of a function to be called.

. Using array_walk() »®

€ - C A [localhost/lesson09/array_walkphp 7 3¢

Eoot 99 1s 5.9458743710662
Eoot 16 is 4

Eoot 11 is 3.3166247503554
Root 66.5 is B8.15475321515%
Eoot 54 is 7.34846%2283455
REoot 23 i1s 4.7%58315233127

FIGURE 9-4 Iterating through an array with array walk ()

76 Part I PHP Basics

Functions are so central to PHP programming that some of these examples need

to use them before I get a chance to explain how they work. Still, I'm sure you
U7 < get the gist for now, and everything you need to know about using and creating

functions (such as CalcRoot () in this example) is explained in Lesson 13.

Using array push()

There are a couple of good reasons for using the array push () function. First,
you can add a new element to the end of an array without knowing how many items
already exist in that array. For example, normally you would need to know the
current array length and then use that value to add extra values, like this (using the
$Cats [] array once more):

SCats = array('Long Hair',6 'Short Hair',6 'Dwarf',
'"Farm', 'Tabby', 'Tortoiseshell');
Slen = gizeof (sCats) ;

SCats[$Slen]

'Siamese’';

The new variable $len is used to hold the length of the array (the number of
elements it contains). In this instance, the value will be 6, for elements 0 through 5.
Therefore, the value in $len, being 6, is suitable to use as an index into the next
available element, and so that is what it is used for—the value 6 points to the seventh
element because element indexes start at 0. In fact, if the variable $1en is not to be
used anywhere else, it's actually superfluous, so you could replace the final two lines
of the preceding example with this single statement:

SCats[sizeof (SCats)] = 'Siamese';

However, it is much simpler to let PHP keep track of array lengths and simply tell
it to add a new element to the $Cats [] array, like this:

array push($Cats, 'Siamese');

You can verify that the element has been added with the following foreach ()
loop (which results in Figure 9-5, the code for which is available as array_push.php in
the companion archive):

foreach($Cats as S$cat) echo "Scat
";

The second reason you might want to use array push () is because it’s a quick
way of storing values in a sequence that then have to be recalled in the reverse order.
For example, using array push () you can keep adding elements to an array, like this:

array push ($MyArray, 'A');
array push ($MyArray, 'B');
array push ($MyArray, 'C');

Then, as you will see in the following description of array pop (), you can also
remove these elements from last to first, such that the value C will be taken off first,
then B, then A, and so on.

Lesson 9 Calling Array Functions 77

. Using array_push() Examp

€ = C A [localhost/lesson09/array_push.php 757 =

Long Hair
Short Hair
Dwarf

Farm

Tabby
Tortoiseshell
Siamese

FIGURE 9-5 Pushing a new element onto an array

Using array pop ()

At its simplest, array pop () enables you to remove the last element from an array
(and in this instance discard the returned value), using code such as this:

array pop (SMyArray) ;

To remove the last element from an array and store it in a variable (for example),
you use code such as this:

$MyVariable = array pop ($MyArray) ;

You can apply array pop () to an existing array with values in it, which can
have been assigned when the array was created, via a call to array push () orin
any other way. The array pop () function then pulls the last item off the array
(removing it from the array) and then returns that value. Looking again at the
$Cats [] array, we can create a working example like this:

$Cats = array('Long Hair', 'Short Hair', 'Dwarf',
'Farm', 'Tabby', 'Tortoiseshell');
echo 'Popping off the value ' . array pop($Cats) . '

';

echo 'Remaining elements:

';

foreach($SCats as S$cat) echo "Scat
";

The result of running this code (available as array_pop.php in the companion
archive) is shown in Figure 9-6, where you can see that the value Tortoiseshell
was popped off the array, and underneath all the remaining elements are displayed,
confirming that the previous final element has now been removed.

78 Part I PHP Basics

. Using array_pop() Exampl: %

€ = C A |[)localhost/lesson09/array_pop.php 7 5¢| =

Popping off the value Tortoliseshell
Remaining elements:

Long Hair
Short Hair
Dwarf
Farm
Tabby

FIGURE 9-6 Popping an element off an array

Using array push() and array pop () Together

The array pop () function is most commonly used with array push() when
writing code that uses recursion. Recursion is any section of code that calls itself and
can then call itself again, and keep on doing so until the task of the code is complete
(it's like Inception yet again!).

If this sounds complicated, consider a search algorithm for exploring a maze such
as the one in Figure 9-7, in which the objective is to find your way from the starting
point at a to the finish at y.

u v w X y
p q r s t
k m n o
f g h i J
a b c d e

FIGURE 9-7 A simple 5x5 maze

Lesson 9 Calling Array Functions 79

You can clearly see the path to follow, but a computer is not so smart and will
need to investigate the maze as if it were a rat, with walls higher than it can see over.
A program to do this will easily find its way along the path a-b-c-h, but then it will
encounter a choice of going either left to location (or cell) g or right to 1.

Let’s assume it chooses the latter after selecting a direction at random. The
program will then follow the path i-d-e-7j, only to encounter a dead end, requiring
the program to return. Let’s look at tracking this entire path so far using the array
push () function:

$Maze = array();

array push($Maze, '
array push($Maze, '
array push($Maze, '

array push($Maze, '

a
b
c

array push($Maze, 'h'
i
d

array push($Maze, 'e

J

(
(
(
array push($Maze, 'i
(
(
(

array push($SMaze, 'j

If you assume that there’s also some extra code (not documented here) that
knows which cells have and haven'’t been visited, the program can then use the
simple method of popping each cell off the array until it reaches one where it can get
to a cell not yet visited. Pseudo-code (the actions to take expressed in plain English) to
do this might look like this:

While no unvisited cell is accessible...

...pop a location off the array

And the sequence of actions that would happen within the loop section of this
code would be like this:

$Location = array pop($Maze); // Returns 'j'

Because no unvisited cell can be reached from j (as determined by the code that
we assume is there but not documented), the loop will go round again, and again,
until an unvisited cell can be accessed, resulting in four additional calls to array
pop (), as follows:

; // Returns 'e'
; // Returns 'd‘’
; // Returns 'i'
; // Returns 'h'

SLocation = array pop ($SMaze
SMaze
SMaze
$Location = array pop (SMaze

()
S$Location = array pop ()
S$Location = array pop ()
()

Now, when the program finds it has popped the location h off the stack, it
discovers there'’s a new cell it can go to, namely g, and so the process continues
along the path g-f-k-p-u-v-g-1-m, at which point another choice of directions is
encountered: either r or n.

To track this path, the program will push all the cells between g and m onto the
array, and then (if direction n is chosen) also push the path n-o-t-s, at which point
another dead end will be encountered.

80 Part I PHP Basics

Then, as before, the code will pop off all the cells in a loop until it reaches m, at
which point the unvisited cell r is accessible and the final path out of the maze is
discovered: r-w-x-vy.

Recursion is quite complex programming, especially for beginners, which is why I

w have not documented the ancillary code you would use to take care of tracking the
=== visited and unvisited cells. I simply wanted to offer a visual example of recursion
that would explain what’s going on, and show how to use array push() and

array pop () together. But don’t worry if you find any of it confusing, because

you can safely move on with the lessons and come back here another time, when you
find an actual need for these functions.

Using array reverse ()

When you want to reverse the order of elements in an array, you can call the
array reverse () function. To use the function, you call it like this:

SMyArray = array reverse ($MyArray) ;

Figure 9-8 shows this function being used to reverse the $Cats [] array from
previous examples, the code for which is available as array_reverse.php in the
companion archive.

. Using array_reverse() Exan x

€& - C A [localhost/lesson09/array_reversephp &/ 9¢| =

Normal:

Long Hair
Short Hair
Dwarf

Farm

Tabby
Tortoiseshell

Reversed:

Tortoiseshell
Tabby

Farm

Dwarf

Short Hair
Long Hair

FIGURE 9-8 Array elements before and after reversing

Lesson 9 Calling Array Functions 81

Some languages (such as JavaScript) actually reverse the array when their version
W of the array reverse () function is called, rather than simply returning a
—= === new, reversed array. This technique can save time in some circumstances, but it
also requires additional code to store temporary arrays when you dont want that

behavior. Fortunately, PHP doesn’t alter the original array, so you don't have to
concern yourself with saving a copy first should you need it.

The array £lip() Function

Lastly, in this lesson I'd like to show you the array flip () function, which is quite
interesting in that it returns a new array where all the key/value pairs are reversed,
so that the keys become the values, and vice versa.

A good use of this could be, for example, to switch first and last names in a contact
list to enable sorting by either name. Here's an example that creates a three-element
array, displays its contents, and then displays a flipped version:

SActors = array('Jdack' => 'Nicholson',
'Marlon' => 'Brando',
'Julia' => 'Roberts');

echo 'Normal:

';
foreach (SActors as Skey => S$Svalue) echo "$key Svalue<brs>";

$Actors = array flip($Actors);

echo '
Flipped:

';
foreach (SActors as Skey => S$Svalue) echo "$key Svalue<brs>";

The result of running this code (saved in the companion archive as array_flip.php)
is shown in Figure 9-9.

. Using array_flip() x

€« - C A |[localhost/lesson09/array_flipphp &/ v¢| =

HNormal:

Jack Nicholson
Marlon Brando
Julia Roberts

Flipped:
Nicholson Jack

Brando Marlon
Eoberts Julia

FIGURE 9-9 Flipping key and index values in an array

82 Part I PHP Basics

Even if any of the values in an array are numeric, they will still switch and become
keys (and vice versa), because it is perfectly acceptable for both keys and values

W8T <= to be either numeric or string values. However, only integer or string values are
accepted by the function; therefore, any other values encountered will not get
flipped, but will cause a warning to be issued.

Summary

Arrays are a mainstay of any PHP programming that involves data processing,
because they are so much easier to work with than individual and separate variables—
so I hope you found this lesson easy going. With your newly acquired knowledge of
PHP array functions (and how to use them), you are now ready to learn about more
advanced array manipulation in the following lesson.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know
an answert, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

1. With which function can you iterate through a numeric array to extract its values,
and how?

2. With which function can you iterate through an associative array to extract the
key/value pairs, and how?

3. With what statement could you merge together the arrays $Cars and $Trucks
into a new array called $vVehicles?

4. With which statement can you combine all the elements of the array $Itinerary
into a string using a separator string of ', '?

5. With what statement could you call the function process () on all elements of
the array $info[]?

6. With which function can you add a new value to the end of an array?
7. How can you read and remove the last item in an array with a single statement?

8. When calling the array push () function, does the value supplied get added
to the start or to the end of the array?

9. When calling the array pop () function, is the value removed from the start
or from the end of the supplied array?

10. How can you switch all the keys in an array with their associated values?

1

o’

Advanced Array Manipulation

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

nce you get the hang of using PHP arrays, you'll wonder how you managed

without them. With arrays, you can group types of data together into logical
collections, such as lists of inventory, members of organizations, contact details, and
so on. You can then manipulate the data in useful ways, such as by sorting (in forward
or reverse order) and by appending or inserting new items, removing entries, and
even combining these operations.

In this lesson, you'll learn everything you need to know in order to process all
types of data best handled collectively by numeric indexing, or keys and values.

Using FILO and FIFO Arrays

As you will recall from the array push () discussion in the previous lesson, pushed
values are added to the end of an array, such that when you come to pop them off
again they are returned in reverse order. This is often referred to as a FILO (First In,
Last Out) array. When an array is used this way, it is also sometimes called a stack.

There is also a FIFO (First In, First Out) stack, more commonly known as a buffer,
which is typically used for handling events such as keyboard input, where the key-
presses should be stored (buffered) until needed and must be returned in the order
they were pressed.

First In, Last Out (FILO) stacks are sometimes also known as Last In, First Out
(LIFO) stacks or arrays, and First In, First Out (FIFO) buffers are also sometimes

—«=== called Last In, Last Out (LILO) buffers, too. These alternative terms mean the same
things and work in the same ways.

e

83

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

84

Part I PHP Basics

Buffering Using an Array

If you were to use the array push () function to try and store keyboard input in a
buffer, the letters of the word Fred (for example) would be inserted like this, with
the start of the array at the left of the string shown in the comments, and the end of the
array (onto which values are pushed and popped) at the right of the string:

array push($Buffer, 'F'); // 'F'

array push($Buffer, 'r'); // 'Fr'

array push($Buffer, 'e'); // 'Fre'
(

array push (sBuffer, 'd'); // 'Fred'

However, when you then came to pop the values back out again, they would be
returned in the inverse order from that in which they were entered (going from right
to left), like this:

$char = array pop ($Buffer); // 'd'
$char = array pop ($Buffer); // 'e!
$char = array pop ($Buffer); // 'r!'
$char = array pop ($Buffer); // 'F!'

Unfortunately, this isn't the way a buffer needs to operate (because this example
is operating as FILO instead of FIFO), but you can correct this by reversing the array
contents when storing new elements, as with the following code (which assumes
the buffer has already been populated with the first three letters of the word, in the
correct order for calls to array pop () to retrieve them):

// The buffer currently contains 'erF'

$Buffer = array reverse($Buffer); // 'Fre'
array push ($Buffer, 'd'); // 'Fred'
S$Buffer = array reverse($Buffer); // 'derF'

How this works is that when a new letter is to be added to the buffer, the array is
first reversed, so that when the array push () function is called (even though the
letter is pushed to the end of the array), it will be in the correct place (with the d next
to the e).

Then, having pushed the new letter into the buffer, a second call to array
reverse () puts the array back into the correct order, such that the array pop ()
function can be called to retrieve the contents (from right to left) in the right order,
like this:

$char = array pop ($Buffer); // 'F!'
$char = array pop ($Buffer); // 'r!'
$char = array pop ($Buffer); // 'e!'
$char = array pop ($Buffer); // 'd'

Lesson 10 Advanced Array Manipulation 85

In summary, to make this trick work, you reverse an array before pushing to it,
and then reverse it again afterward, which has the effect of pushing to the start
CWT < (rather than the end) of an array—cumbersome and potentially slow, but workable.

Using array unshift () and array shift()

Although the previous (somewhat long-winded) code shows how to create and manage
a buffer using the array push () and array pop () functions in conjunction with
array reverse (), you will be pleased to learn that you can create buffers much
more easily by pushing values directly to the start of an array with the (curiously
named) array unshift () function, like this:

array unshift ($sBuffer, 'F'); // 'F'
array unshift ($sBuffer, 'r'); // 'rF'
array unshift (sBuffer, 'e'); // 'erF!'
array unshift ($Buffer, 'd'); // 'derF'

The buffer now contains the letters in the inverse order to that in which they
were added, and they are therefore arranged such that if you now call the array
pop () function, all the letters will be retrieved (from right to left) in the order in
which they were added, like this:

$char = array pop ($Buffer); // 'F!'
$char = array pop ($Buffer); // 'r!'
$char = array pop ($Buffer); // 'e!'
$char = array pop ($Buffer); // 'd'

You can also pop from the start of an array using the matching array shift ()
function.

Ie”

Using sort ()

PHP comes with a handy sort () function to sort arrays alphabetically (and case-
sensitively) in ascending order. This function is a little unusual in that it changes
the actual array to which it is applied, unlike most other PHP array functions, which
simply return a new array, leaving the original untouched.

To sort an array, simply call the sort () function, passing it the array to be
sorted, as with this example, which uses the $Cats[] array:

$Cats = array('Long Hair', 'Short Hair', 'Dwarf',
'Farm', 'Tabby', 'Tortoiseshell');
sort ($SCats) ;

86 Part I PHP Basics

The result of issuing this sort () call (the code for which is available as sort.php
in the companion archive) is shown in Figure 10-1.

. Using sort() x

€ - C A [localhost/lesson10/sortphp ¢/ 17 =

Before:

Long Hair
Short Hair
Dwarf

Farm

Tabby
Tortoiseshell

Sorted Alphabetically:

Dwarf

Farm

Long Hair
Short Hair
Tabby
Tortoiseshell

FIGURE 10-1 Sorting an array alphabetically

If all you require is an alphabetical sort in ascending order, then sort () is just the
function for you. However, should you need to sort an array numerically, you need to
pass the specifier SORT NUMERIC to the sort () function, like this:

sort ($NumericArray, SORT NUMERIC) ;

Reversing a Sort

To obtain a reversed sort of any kind (alphabetic, numeric, and so on), all you need to
do is pass the sorted array to the array reverse () function, like this (as shown in
Figure 10-2):

sort (SCats) ;
$Cats = array reverse($Cats);

Lesson 10 Advanced Array Manipulation 87

. Using array_reverse() x

€& = C A [localhost/lesson10/array_reversephp /17| =

Before:

Long Hair
Short Hair
Dwarf

Farm

Tabby
Tortoiseshell

REeverse Sorted Alphabetically:

Tortoiseshell
Tabby

Short Hair
Long Hair
Farm

Dwarf

FIGURE 10-2 Sorting in reverse alphabetical order

Using array splice()

The array splice () function is tremendously powerful and can be used in a variety
of different ways. It's the Swiss Army Knife of PHP array functions, because with it
you can remove one or more elements from an array, or insert one or more into an
array, and you can do either at any position within the array. What’s more, you can
remove and insert at the same time, providing a replace facility that can swap one or
more elements with more, the same, or fewer elements.

Removing Elements from an Array

Let's look first at how to remove one or more elements from an array, starting
with the $Cats [] array we've been using. In the following example, the array
splice () function is called with three arguments. The first is the array to splice,
the second is the element index at which to perform the splice (starting from 0),
and the third argument is the number of elements to be removed:

$Cats = array('Long Hair', 'Short Hair', 'Dwarf',
'Farm', 'Tabby', 'Tortoiseshell!');
array splice(sCats, 2, 3);

88

Part I PHP Basics

Therefore, with arguments of 2 and 3, the splice starts at the element index 2,
which is the third one, and the third argument of 3 states that three elements are to
be removed from the array.

If you need to know which elements have been removed, you can access the
result of calling the function, which is an array containing the removed elements,
like this:

SRemoved = array splice(sCats, 2, 3);

Figure 10-3 shows this code brought together, displaying the array before splicing,
the elements removed by the splice, and the elements remaining afterward.

. Using array_splice() ®

€ = C A [localhost/lesson10/array_splicephp /72| =

Before:

Long Hair
Short Hair
Dwarf

Farm

Tabby
Tortoiseshell

Elements removed:
Dwarf

Farm

Tabby

Elements remaining:
Long Hair

Short Hair
Tortoiseshell

FIGURE 10-3 Removing elements from an array

Inserting Elements into an Array

Using a similar call to array splice (), you can insert new values into the array,
as in the following example, which adds two more breeds of cat starting at the third
element:

array splice(sCats, 2, 0, array('Siamese', 'Persian'));

Lesson 10 Advanced Array Manipulation 89

Here, the first argument following the argument $Cats is the third element in the
array, and the following argument of 0 tells array splice () there are no elements
to be removed.

After this there is an array containing two new elements, which tells array
splice () to insert these elements into the $Cats [] array, starting at the element
at location 2 (the third one). You may place as many values as you like here to insert as
many new elements as you need. The result of making this call is shown in Figure 10-4.

. Using insert with array_sp| *

€ - C A [localhost/lesson10/insert_array_splicephp (/' ¥¢| =

Before:

Long Hair
Short Hair
Dwarf

Farm

Tabby
Tortoiseshell

After:

Long Hair
Short Hair
Siamese
Persian
Dwarf

Farm

Tabby
Tortoiseshell

FIGURE 10-4 Inserting values into an array

If there is only a single item to insert into an array with array splice (), you
do not need to embed it within an array () function, so the following statements are
equivalent:

array splice($Birds, 8, 0, array('Penguin')) ;
array splice($Birds, 8, 0, 'Penguin');

Advanced Array Splicing

Finally, you can remove and insert elements at the same time using a call such as the
following:

$Results = array splice($Cats, 2, 3, array('Siamese', 'Persian'));

90 Part I PHP Basics

This statement tells array splice () to use a splice index of 2 (the third
element), at which location it must remove three elements, and then insert the new
values supplied. The result of issuing this call is shown in Figure 10-5.

. Using insert with array_sp|

€ 2> C A [localhost/lesson10/advanced_array_splicephp &7 57| =

Before:

Long Hair
Short Hair
Dwarf

Farm

Tabby
Tortoiseshell

Elements remowved:

Dwarf
Farm
Tabby

Elements remaining:

Long Hair
Short Hair
Siamese
Persian
Tortoiseshell

FIGURE 10-5 Removing items from and inserting them into an array

Example files are available in the companion archive demonstrating all three
types of splicing. They are array_splice.php, insert_array_splice.php and advanced_
array_splice.php.

Summary

You now know how to use all types of PHP arrays, whether single- or multidimensional,
numeric, string, associative, or otherwise. Coupled with your earlier knowledge of
variables and operators, you are now ready to really get down to power programming,
beginning with the following lesson on controlling program flow.

Lesson 10 Advanced Array Manipulation 91

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know
an answert, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

~ S U P w
B

10.

. What does the term FILO stand for with arrays, and what is this type of array

more commonly known as?

. What does the term FIFO stand for with arrays, and what is this type of array

more commonly known as?

With which function can you push a value to the start of an array?
With which function can you pop a value from the start of an array?
How can you sort the array $SRecipes [] alphabetically?

How can you numerically sort the array $Temps []?

What should you do if you need to have access to the original order of an array
after it has been sorted?

. With what statement could you remove the elements at indexes 4 and 5 from the

array SURLs [] (remember that array elements start at 0)?
y y

With what statement could you insert the string google . com into the array
$URLs [], starting at index 6?

With what statement could you store the string google.com in the array
$URLs [], starting at index 3, overwriting the existing value?

This page intentionally left blank

T11)

Controlling Program Flow

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

Having reached this second half of the course, you've actually already learned
a lot of PHP. You should understand how to incorporate PHP into a web page,
the syntax to use, how to handle numeric variables, strings, and arrays, and how to
use operators in expressions according to their associativity—and you've even learned
the basics of handling program flow control using the 1f () and else keywords.

In this lesson, you'll consolidate your knowledge of the latter so that you can
precisely control the flow of program execution.

The if () Construct

You've already seen the if () construct (more commonly referred to as a statement)
in use a few times, but only with single-line statements, so here’s the full syntax of
an if () statement:

if (expression)

// Execute this code, which can be one...
// ...or more statements

In this example, expression can be any expression at all created using numbers,
strings, variables, objects, and operators. The result of the expression must be a Boolean
value that can be either TRUE or FALSE, such as $SMyVar > 7, and so on.

The curly braces encapsulate the code that must be executed upon the expression
evaluating to TRUE, and there can be none, one, or many statements.

93

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

94

Part I PHP Basics

Omitting the Braces

To enable you to create short and simple if () statements without having to use braces,
they are optional if only one statement is to be executed upon the expression being
TRUE, like this:

if ($Time < 12) echo 'Good morning';

If the code to execute is quite long (so that it might wrap to the following line),
you may wish to start it on the following line. However, if you do so, because no curly
braces are being used to encapsulate the statement, it’s best to indent the statement
by a couple of spaces or a tab so that it's clear that it belongs to the if () statement,
like this:

if ($Time < 12)
echo 'Good morning. How are you today?';

Indeed, if you have a really long statement to execute, it can also be a good idea
to split it over several lines at suitable points, like this:

if ($STime < 12)
echo 'Good morning. Following is the list '
'of all your appointments for today. The '
'important ones are highlighted in bold';

Here, I have split the output into three parts by breaking it into strings, which are
displayed one after the other using . operators. I also further indented the follow-on
lines to clearly indicate that they belong to the echo command.

However, in my view, this has become a borderline case where you might be better
advised to encapsulate the statement within curly braces, because this will ensure
there is no ambiguity, and you won'’t have to worry about the wrapping of long lines
diminishing the code readability, like this:

if ($STime < 12)
{

echo 'Good morning. Following is the list of all your
appointments for today. The important ones are highlighted
in bold';

}

Some program editors will automatically indent wrapped around lines for you
(based on the indent at the start of the line), thus making the code even more readable,
and looking like this:

if ($Time < 12)

{
echo 'Good morning. Following is the list of all your
appointments for today. The important ones are highlighted
in bold';

Lesson 11 Controlling Program Flow 95

In this latter case, the program editor will treat all three lines of the statement as
a single line, which they are. Don't try to format your code like this using newlines,

EW7 === though, because this will split it into multiple lines and cause errors—unless you
also break the statement into parts, as detailed earlier.

Positioning of Braces

The reason you can lay out your code in a variety of ways is that PHP supports the use of
tabs, spaces, and newlines as whitespace (which is ignored). Because of this, programmers
can choose to place the curly braces wherever they like. As you have seen, when I use
them, I generally place the opening and closing brace directly under the 1 f () statement’s
first character, and then indent the encapsulated statements, like this:

if (expression)

// Execute this code, which can be one...
// ...or more statements

}

Other programmers, however, choose to place the opening curly brace immediately
after the 1 f (), like this:

if (expression)
// Execute this code, which can be one...
// ...or more statements

}

Both of these (and other) types of layout (such as leaving the closing curly brace
at the end of the final statement) are also perfectly acceptable.

There are also some less-used layouts preferred by other programmers, but the
preceding tend to be the main two. I advocate the first type because (even

U7 === though it requires an extra line feed for each opening brace) it makes the opening
braces indent to the level of the closing ones, so that if you have several nested
statements, you can more clearly determine that you have the right number of
opening and closing braces, and that they are all in the right places. It also places
more vertical whitespace between the expression and the statements that follow,
which I find helpful. However, which system you use is entirely up to you (but it’s
a good idea to stay consistent and use only one system).

The else Statement

To accompany the if () statement there's the else keyword, which follows the same
rules as 1f (), except the code following an else is executed only if the expression
following the if () evaluates to FALSE. If the code comprises a single statement, it
doesn’t require encapsulating in curly braces, but if it has two or more statements,
then braces are required.

96

Part I PHP Basics

You use the else keyword in conjunction with i £ (), like this:

if (SAge < 18)

{

echo 'You are not an adult.';

}

else

{

echo 'You are an adult.';

Because both of these keywords only include a single statement, you can safely
omit the braces if you wish, like this:

if (SAge < 18)
echo 'You are not an adult.';
else

echo 'You are an adult.';

If there's room, you can even move the statements up to directly follow the
keywords, like this:

if (SAge < 18) echo 'You are not an adult.');

else echo 'You are an adult.';
In this instance I opted to indent the second statement until it lined up underneath
the first one. This helps make it clear what’s going on at a glance if I were to come
= ——

back to this code some months later. However, how you lay out your whitespace is
entirely up to you.

Another convention regarding braces I recommend you consider using is that if
one of the statements in an 1f () .. else construct uses braces, then so should the
other, even if the other one only has a single statement. You can see the difference
in the following (all valid) examples, and I think you'll find that Example 3 (with both
sets of statements in braces) is the easiest to follow:

if (SAge < 18) // Example 1
{
echo 'You are not an adult. ';
echo 'Sorry, you cannot vote yet.';
}
else
echo 'You are an adult.';

if (SAge < 18) // Example 2
echo 'You are not an adult. ';
else

The

IS

L -

Lesson 11 Controlling Program Flow 97

echo 'You are an adult. ';

echo 'You can vote.';

if (SAge < 18) // Example 3
echo 'You are not an adult. ';
echo 'Sorry, you cannot vote yet.';

}

else

{

echo 'You are an adult.';

You don't have to follow this advice, but it will certainly make your debugging a
lot easier if you do, and other programmers who may have to maintain your code will

thank you for it.

elseif () Construct

You can extend the power of if () ... else even further by also incorporating
elseif () constructs (better known as statements). They provide a third option to
the original if () statement, and you place them before the final else statement
(if there is one). The following example illustrates how you might use this keyword:

if ($Value < 0) echo 'Negative';
elseif ($Value > 0) echo 'Positive';

else echo 'Zero';

As with other examples, I have used whitespace liberally in the preceding code to
line the statements up and make them easier to follow.

o

The elseif () statement follows the same rules as the 1f () and else
statements with regard to using curly braces to encapsulate multiple statements (but
not requiring them for single statements). However, I give the same recommendation
as I did earlier that if even one of the parts of an i1 £ () .. elseif () .. else construct
uses braces, then I advise you to use braces for all parts.

Of course, if you don’t have any further test conditions to act upon, you don’t
have to use a concluding else after an if () .. elseif () construct (such as if you
don’t need to deal with the case of a zero value in the preceding example).

The purpose of the else keyword is as a catch-all, to trap all possible values
that remain and execute the statement(s) attached to it if none of the preceding
<= statements in the clause are TRUE.

98 Part I PHP Basics

The switch () Statement

The if (), elseif (), and else statements are very powerful, and comprise much of
PHP programming. But they are not the most efficient method of controlling program
flow when there are more than three options to consider. For example, imagine there's
an input field on a web page with the following string values from which the user
must select their age range:

=N O

-1
-3
-6
7-12

13-17
18+

Now, here'’s some code you might use to process the value returned by the input,
as shown in Figure 11-1, in which a value of 13-17 has been preselected for the string
variable $Age (using the if_else.php file from the companion archive):

SAge = '13-17';
if (SAge == '0-1")
{
echo 'You are a baby. ';
echo 'How can you read this?';
else 1f (SAge == '2-3")
echo 'You are a toddler.';

else 1f (SAge == '4-6")

echo 'You are an infant. ';
echo 'You go to nursery or school.';

else 1f (SAge == '7-12")
echo 'You are a child.';
else 1f (SAge == '13-17")

echo 'You are a teenager. ';
echo 'You are old enough to use Facebook.';

else echo 'You are an adult.';

Lesson 11 Controlling Program Flow 99

. Using ifi), elseif() and else %

€« = C A [localhost/lesson11/if_elsephp /' 17 =

You are a teenager. You are old enough to
use Facebook.

FIGURE 11-1 Using multiple else if () statements

In the UK, where I live, an infant is a child under the age of 6 or so, and generally
will attend an “infant” school, so that’s the term I use. North Americans, however,
=== would probably refer to kindergartners.

Don't you think all those repeated elseif () statements are rather cumbersome,
and the code feels somewhat heavier than it could be? Well, the answer is to
restructure code such as this using a switch () statement in conjunction with the
case and break keywords, like this (and as shown in Figure 11-2):

SAge = '4-6"';

switch (SAge)

{

case '0-1"': echo 'You are a baby. ';
echo 'How can you read this?';
break;

case '2-3': echo 'You are a toddler.';
break;

case '4-6"': echo 'You are an infant. ';

echo 'You go to nursery or school.';
break;
case '7-12': echo 'You are a child.';
break;
case '13-17': echo 'You are a teenager. ';
echo 'You can use Facebook.';
break;
default: echo 'You are an adult.';

This was created using the switch.php file from the companion archive in which
the string $Age is preassigned the value 4-6.
_at—

100 PartI PHP Basics

- | O -
/. Using switch() ® \‘_1"\

&« C A | [localhost/lesson11/switchphp 7 1| =

You are an infant. You go to nursery or
school.

FIGURE 11-2 Using a switch () statement

I'm sure you'll agree that switch () statements are a lot clearer than sets of
sprawling elseif ()s. To use one, simply place the expression or variable to be tested
in the parentheses following the switch keyword, and then within a pair of curly
braces (which are required) provide a number of case statements and an optional
default case.

Following each case keyword, place one possible value that the switch variable
or expression might have. In this example, $Age can only have string values, but you
can equally test for digits or floating point numbers, too. After the possible value,
place a colon followed by the statements to execute if the value matches the switch
variable or expression. In this example, it's one or more echo statements.

Note how no curly braces are required to contain multiple statements. This is

because once the code following the colon starts executing, it will keep on going,
<= executing statement after statement (ignoring any following case tests), until

the closing curly brace at the end of the switch () statement is encountered.

Ie”

Using the break Keyword

Because program flow will continue to the end of a switch () statement (executing all
the remaining statements regardless of any case keywords encountered), you must
mark the end of a sequence of statements to be executed with a break keyword. This
causes program flow to jump to just after the closing brace of the switch () statement.

You will also encounter the break keyword in Lesson 12, where it is used to break
to the end of looping structures of code.

Is”

Using the default Keyword

In the same way that the else keyword is a catch-all device for dealing with any
other values not caught by 1f () or elseif () statements, you can use the default
keyword within a switch () statement to catch any values not matched by the case
statements.

Lesson 11 Controlling Program Flow 101

In the previous example, because all possible values for $Age are tested for except
18+, then if none of the case statements match, $Age must contain the value 18+.
Therefore, the default case is triggered and the statement following it writes the
string You are an adult. to the browser.

There is no break keyword after the default option in the preceding example
because it is the final statement in the switch () statement. A break keyword
<= = is superfluous in this position, because it would only add extra, unnecessary code.
There is, however, nothing stopping you from placing the default statement
anywhere within a switch () statement (even at the start), but if you do so
you must add a break keyword after the statements it executes. Otherwise,
program flow will fall through to the following cases, rather than to the end of the
switch () statement.

Allowing Fall-Through

Sometimes you may not want to use the break keyword because you wish to allow
cases to “fall through” to other cases. For example, consider the case of wanting to
choose the correct language to display on a multinational website. Using a simple
input field (or even a geolocation program if you want to be really smart), you could
return a string containing the user’s country name, for example, perhaps out of the
following:

Australia
Brazil
France
Germany
Portugal
Spain

UK

USA

Then, the code to process the country name in the variable $Country to a
language to use in the variable $Language might look like this:

switch ($Country)

{

case 'Australia':

case 'UK':

case 'USA':

default: $Language = 'English';
break;

case 'Brazil':

case 'Portugal': SLanguage = 'Portuguese';

break;

102

Part I PHP Basics

case 'France': S$Language = 'French';
break;

case 'Germany': SLanguage = 'German';
break;

case 'Spain': S$Language = 'Spanish';

Only after the variable sLanguage has been assigned its value is the break
keyword used. So if any of the countries Australia, UK, or USA are selected, then
$Language is set to English, which is also selected for any other value not tested
for by the cases in the switch () statement (because the default keyword is
included within the fall-through group of cases).

A fall-through also occurs for Brazil and Portugal, both of which countries speak
Portuguese, but the remaining countries have different languages and don't use any
case fall-throughs. Note that there is no break keyword after the final statement as
it is not needed, because the end of the switch () has already been reached.

Because many people in the USA speak Spanish, if you wanted to cater for them,
you could change the USA option to USA English, and then add USA Spanish as a

=== fall-through to Spain—and while at it, you could also add Canada English as a fall-
through to English, and Canada French as a fall-through to France, depending on
your target locations.

Summary

This lesson concludes everything you need to know to write basic PHP programs.
You can now handle data in various ways, including variables and arrays; you are able
to use complex operators and expressions; and you can now direct the flow of your
programs. In the next lesson, we'll start to look at more advanced aspects of PHP,
beginning with putting together various types of looping constructs.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don't know
an answer, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

1. What is the basic PHP construct for testing whether an expression evaluates
to TRUE?

2. Within which pair of characters must you enclose if () statements when there
is more than one?

3. What statement can you use to take action if the result of an if () condition
is FALSE?

10.

Lesson 11 Controlling Program Flow 103

When an if () expression evaluates to FALSE, how can you then test another
expression?

How many 1if (), elseif (), and else statements can you use in a sequence
of conditions?

Inanif () ... elseif () ... else construct, what is a good rule of thumb to
apply to how statements should be encapsulated with curly braces?

When there is more than one elseif () statement in a sequence of conditions,
what can be a better construct to use instead of 1£ () ... elseif () ... else?

Which keyword is used to test each individual condition in a switch ()
statement?

What keyword is used to signify the end of a sequence of statements following a
case keyword?

In a switch () statement, which keyword is the equivalent of the else section,
as used with an if () construct?

This page intentionally left blank

T 12)

Looping Sections of Code

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

In the previous lesson, you learned all about program flow control, branching, and
using if (), else, and switch () statements. These are perfect for altering the
program flow according to values and expressions, but not so good when you need to
repetitively execute a process, such as processing a document a word at a time to find
typographical errors.

This is the type of situation where PHP’s looping statements come into their own.
With them, you form a loop around a core group of statements and then keep the loop
circulating until (or unless) one or more conditions are met, such as when the end of
the document is reached (in the case of a spelling checker).

More than that, the different loop types supported also enable you to preassign
values to variables used in the loop, or only enter into a loop if a certain expression is
satisfied.

Using while () Loops

The while () loop provides the simplest type of PHP loop. In English what it does
is something like this: “While such-and-such is true, keep doing so-and-so, until
such-and-such is no longer true, or forever if such-and-such is always true.” Here's
an example that will display the 10 times table (as shown in Figure 12-1):

$J = 0;

while ($j++ < 10)

{

echo "$j times 10 is " . $j * 10 . '
';

}
105

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

106 PartI PHP Basics

[l using whileQ x

€ = C A [localhost/lesson12/whilephp &7 17| =

1 times 10 is 10
2 times 10 is 20
3 times 10 is 30
4 times 10 is 40
5 times 10 is 50
6 times 10 is &0
7 times 10 is 70
8 times 10 is 80
S times 10 is 90
10 times 10 is 100

FIGURE 12-1 Using while () to calculate the 10 times table

The code used for this and the other examples in this lesson is available in the
files while.php, do_while.php. for.php, break.php, and continue.php in the companion
archive, freely downloadable from 20lessons.com.

The Example in Detail

This code starts by initializing the variable $j to 0. This variable is used to decide
when to loop (and when to stop looping) and also for calculating the times table.
Then, the while () statement tests for $j having a value of less than 10. The first
time around its value is 0, so the expression evaluates to TRUE. Note also that $7

is post-incremented after making the test by using the ++ increment operator. This
means that the second time around the loop, $3 will represent a value of 1 in the
expression and then be incremented to 2:

while ($j++ < 10)

Inside the braces is a single statement that prints the value in $j, some text, and
then the result of multiplying $j by 10. Because $j was post-incremented after the
test at the start of the loop, it now has a value of 1, so the sentence 1 times 10 is 10
is output to the browser:

echo "$j times 10 is " . $j * 10 . '
';

After the echo statement is executed, the end of the loop is reached and program
flow returns to the start of the loop once more, where $7j is once again tested for
having a value less than 10.

This time around it now has a value of 1, so that satisfies the test, and then $7 is
post-incremented, giving it a value of 2. Because $j now has a value of 2, the sentence
2 times 10 is 20 is output to the browser, and the loop goes round another time.

20lessons.com

Lesson 12 Looping Sections of Code 107

This process continues until $j has a value of 10, and the test at the start of the
loop therefore no longer results in TRUE, so program execution jumps to just after the
closing brace of the while () statement.

Because there is only a single statement inside this loop, just as with for ()
statements, you can omit the curly braces if you wish, as follows:
W s while ($Sj++ < 10)
echo "$j times 10 is " . $j * 10 . '
';

Using do ... while () Loops

With a while () loop, if the test at the start is not satisfied, program execution will not
flow into the loop. Sometimes, however, you want program flow to go around a loop at
least once, in which case it's necessary to perform the loop test after each iteration.

For example, suppose you wish to calculate the factorial of the number 10
(sometimes displayed mathematically as 10!). This involves multiplying all the
numbers from 1 to 10 together, like this: 10 x 9 x 8 x 7 x 6 X 5 x 4 X 3 x 2 x 1.

Using a loop to do this is an efficient method of calculating this value, particularly
because once the loop has been built, it can be used to calculate the factorial of any
number. And one thing we know for sure about this loop is that it will execute at least
once. Therefore, a do ... while () structure may be best suited, and one way you can
achieve that is like this:

$j = 10;
SE = 1;
do
{
SE *= $3--;

} while ($j > 0);

echo '10! is ' . sf;

One of the neat things about this loop is that $f always contains the running
total of all previous multiplications, so all that's necessary to do in each iteration
is multiply $£f by the current value in $7, save that value back into $f, and then
decrement $7j, which is performed by this statement:

ST *= $3--;

The *= assignment operator is ideal in this situation because it performs both
the multiplication and the assignment of the result back to $f using a single operator.
Also, the post-decrement operator applied to $j makes for more efficient coding, too.

108

Part I PHP Basics

The Example in Detail

In detail, what occurs in the preceding example is that $j is a loop counter that is
initialized to the value 10 (because there are 10 numbers to multiply) and $f is the
factorial, which is initialized to 1 because the loop will start with the expression

$f *= $3j--;, which the first time around the loop will be the equivalent of

$F = 1%10;.

The post-decrement operator after the $j ensures that each time around the
loop, the multiplier is decremented by 1 (but only after the value in $j is used in the
expression). The second time around the loop, $£ will have a value of 10, and $7j will
be 9, so the expression will be equivalentto S£ = 10 * 9;.

Then, on the next iteration, $£ will have a value of 90 as it enters the loop, and $7
will be 8, so these two values will be multiplied together and placed back into $£. The
expressions evaluated in the loop are therefore as follows:

Sf = 1 * 10; // Results in 10
Sf = 10 * ; // Results in 90
Sf = 90 * ; // Results in 720
Sf = 720 * ; // Results in 5040
Sf = 5040 * ; // Results in 30240

S 151200 * 4; // Results in 604800
S 604800 * 3; // Results in 1814400
$f = 1814400 * 2; // Results in 3628800
$f ; // Results in 3628800

9
8
7
6
$f = 30240 * 5; // Results in 151200
4
3
2
1

3628800 *

When the expression at the end of the loop (in the while () part) evaluates to
FALSE, this means that $3 is no longer greater than 0. Therefore, the loop is not
re-entered, and program flow continues at the first instruction following the loop.

When this example is loaded into a browser (as shown in Figure 12-2), the result
shown in the final line is displayed, by the echo instruction that follows the loop.

[l vsing do ... while) *®

€& = C A |[3localhost/lesson12/do_whilephp 7 5¢| =

10! is 3628800

FIGURE 12-2 Using do .. while () to calculate the factorial of a number

Lesson 12 Looping Sections of Code 109

As with many other PHP constructs, if there is only one statement inside the loop,

you can omit the curly braces if you like. Therefore, the loop could also be written
O e as follows:

do Sf *= $3j--;

while (37 > 0);

Using for () Loops

Although the preceding two types of loop structure may seem sufficient for most
requirements, they can actually be improved on, especially because you must first
initialize variables outside of these loops before they are even entered, and then you
generally have to increment or decrement at least one variable inside the loop, too.
For these reasons, a third type of loop structure is supported, the for () loop—and
it is one of the most compact and most-used forms of loop structure for these reasons:

e [t allows you to initialize all the variables you need, within the creation of the loop.

e [t allows you to specify the test condition within the creation of the loop.

e [t allows you to specify variables to change after each loop iteration within the
creation of the loop.

Let’s look at how you can do this by rewriting the previous example, as follows:

for ($j = 10, $f =1 ; $j > 0 ; --$3)
{
SE *= $3;

}

echo "10! is Sf";

Doesn'’t that look much simpler than the do ... while () version? As before, there’s
still a single statement inside the loop, but it no longer uses the post-decrement operator,
because $j is decremented within the setup section of the loop. Also, no variables are
preassigned outside of the loop because that is also handled within the loop setup.

The Example in Detail

Here's what's going on: a for () loop’s setup section (the part within parentheses) is
divided into three parts, separated with semicolons. Each part performs the following
tasks, in order:

1. Initialize any variables used within the loop.
2. Perform a test to see whether the loop should be entered.

3. Change any variables required after each loop iteration.

110

I

I

Part I PHP Basics

The first and third sections may include more than one statement, as long as you
separate them using commas. Therefore, in the first section of the preceding example,
$7 is initialized to a value of 10, and $f to a value of 1, like this:

$j = 10, $f = 1
Next comes the loop test:
$j > 0

And finally $7j is pre-decremented (or in this situation it could also be post-
decremented):

--%3
The three sets of arguments inside the parentheses look like this:
$j = 10, sf =1 ; $j >0 ; --%]

And that’s really all there is to it. When the loop is first entered, the variables are
initialized—this will not happen in any other iterations. Then the test in part two of
the loop setup is made, and if the expression evaluates to TRUE, the loop is entered.

Next, the statements in the loop are executed (in this case there’s only one), and
then the third section of the loop setup is executed, which in this case decrements $7.
Then, the second time and all subsequent times around the loop, section one of the
setup is skipped and program flow goes straight to the test in section two.

If this is TRUE, the loop is again entered, the statements in it are executed, and
then the statements in the third part of the setup section are executed and the loop
goes around again. However, if the test doesn't evaluate to TRUE, program flow goes
to the code following the loop, which in this case is the echo statement, to print the
calculated factorial value.

Because there is only a single statement within the loop of the preceding example,
the braces may be omitted from the code, as follows (or you can make the code
<= even more compact by placing the statement directly after the loop section):
for ($j = 10, Sf = 1; $J > 0 ; --%$3)
SE *= $3;

Because for () loops are so powerful, their usage has become widespread, and
you will find that you rarely need to use a while () or do ... while () loop because
for () loops can compactly and neatly accomplish almost every type of looping
structure you could want in PHP.

Have you spotted a simple optimization that could be made to this (and the
preceding do ... while ()) example? Well, there’s actually a wasteful iteration of the

—= === |oop as these examples stand. The expression 10 x 9 x 8 x 7 x 6 x 5 x4 x3 x 2 x 1
is being calculated, but the final x 1 is unnecessary because multiplying by 1 doesn’t
change the result. Therefore, instead of making the loop conditions test for whether
$7 is greater than 0, you can change the expression to test for $j > 1, and you'll get
the same result, in a shorter amount of time.

Lesson 12 Looping Sections of Code 111

Breaking Out of a Loop

Amazingly I still haven't yet finished introducing you to everything that PHP loops
can do for you, because there’s still the matter of a couple of keywords you can employ
to further enhance their use.

The first of these is the break keyword, which I already showed being used with
the switch () statement in Lesson 11 to stop fall-through of program flow between
cases. However, the break keyword is not exclusive to switch () statements, because
it can also be used inside loops too.

But why would you want to use a break within a loop? Surely you have all the
tests for conditions you could want already? Well, not quite, as it turns out. Sometimes
you may want to terminate a loop early, as with the following example, which searches
an array for a particular value:

SHayStack = array(l, 23, 16.3, 88.23, 11, 24.46, 30, 99);
SNeedle 11;

echo "Searching for $Needle: ";

for ($j = 0 ; $j < sizeof ($SHayStack) ; ++$3)

{

if ($SHayStack[$j] == S$Needle) break;

}

if ($j < sizeof ($HayStack)) echo "Found at index $3j";
else echo 'Not found';

If the value being searched for is found, it would be a waste of time to continue
searching the array (unless multiple occurrences are being looked for), and so
terminating the loop early makes sense. This is done with a break statement,
as shown in Figure 12-3 (in which an additional search for the value 17.3 is also made).

. Using break x

€ - C A [localhost/lesson12/breakphp (/7% =

Searching for 1l: Found at index 4
Searching for 17.3: Not found

FIGURE 12-3 Using break to exit from a loop if a condition is met

112 PartI PHP Basics

As with other PHP structures, because this example has only a single statement in
the loop, the braces can be omitted for simplicity, like this:

for ($j = 0 ; $j < sizeof ($HayStack) ; ++$3)
if ($HayStack[$j] == $Needle) break;

Breaking Out of Multiple Loops

When you use the break keyword within a loop that is itself inside one or more other
loops, only the current loop will be broken out from, because the break keyword
applies only to the scope of the current object in which it exists.

However, if you wish to break out of further levels of loop nesting, you can do so
by supplying an extra argument with the break keyword, indicating the number of
nested enclosing structures to break out of in total, like this:

if (Scondition == $met) break 2;

The continue Statement

The break statement diverts flow to the statement immediately following the loop
in which it exists, but sometimes this is too drastic a measure, because you may only
want to skip the current iteration of a loop, and not all remaining iterations.

When this is the case, you can use the continue statement, which forces
program flow to skip over any remaining statements in a loop and to start again at the
next iteration of the loop. One reason for wanting to do this might be (for example) to
avoid encountering a division-by-zero error, which could generate invalid results.

For example, consider the case of some code that must calculate the reciprocal of
all numbers between -5 and 5 (the reciprocal of a number is found by dividing 1 by
that number).

When calculating a reciprocal, though, if the number happens to be zero, an
attempt would be made to divide 1 by 0, which in PHP results in the value infinity,
which is not a useful number in this context. Therefore, we need to check for it and
remove the possibility, like this:

for ($j = -5 ; $j < 6 ; ++$7)
{
if ($j == 0) continue;
echo "1/3j is " . 1 / $j . '
';

}

Figure 12-4 shows this code being run in a browser. As you can see, when the
value 0 is reached for $7j, nothing is displayed, because the cont inue keyword has
forced the loop to skip to its next iteration.

Lesson 12 Looping Sections of Code 113

.Using continue ®

&« = C A |[localhost/lesson12/continuephp ¢/ 17| =

1/-5 is -0.2

1/-4 is -0.25

1/-3 is -0.33333333333333
1/-2 is -0.5

1/-1 is -1

1/1 is 1

1/2 is 0.5

1/3 is 0.33333333333333
1/4 is 0.25

1/5 is 0.2

FIGURE 12-4 Avoiding division by 0 with a cont inue

Continuing Within Multiple Loops

If you follow the continue keyword with a number, the level of nesting indicated by
that number becomes the place in the code that will be skipped from, and the PHP
code pointer will be moved from there onto the next iteration of that loop, not the
current loop and iteration.

For example, take the case of calculating the prime numbers between 1 and 100.
One way to do this is to create an outer loop that counts from 1 to 100, and an inner
loop to test each of these values to see whether it is prime, as follows (saved as
continue2.php in the accompanying archive):

for ($1 =1 ; $1 <= 100 ; ++S$1i)

{

for ($J = 2 ; 8] <= sgrt($i) ; ++353)
if (1 ($1 % $j)) continue 2;
echo "$i ";

}

Here, the outer loop iterates the variable $i from a value of 1 up to 100:
for ($1i =1 ; $i <= 100 ; ++S1i)

Then the inner loop iterates the variable $3j from the value of 2 up to the square
root of $i. The square root is chosen because it is the pivot point for all pairs of
factors, as indicated by the fact that the square root of a number’s pivot factor is the
same number. For example, 8 x 8 is 64. Therefore, only values up to (and including)
the square root of a number require testing—a great optimization, and programmers
love optimizations! Here’s what this looks like:

for (83 = 2 ; $J <= sqrt($i) ; ++53)

114 PartI PHP Basics

Then the test for primality is made, in which the modulus of $1 and $7j is calculated.
Remember that the modulus is the value remaining after a division, so the ! operator
makes the expression say, “if there is not any remainder, then do this....”

Therefore, if there’s no remainder, the number cannot be prime (because $1 is
exactly divisible by $j with no remainder), and the statement continue 2; is issued,
like this:
if (! (si % $j)) continue 2;

Here, the value 2 following the keyword says, “Go back two levels of nesting and
then continue.” So what happens is that the code drops back to the $i for () loop,
from where the current iteration is skipped (so as not to execute echo "$1i ";),
moving the PHP statement pointer onto the next value of $1, and then loop iteration
continues.

Therefore, in this context, the continue 2; statement has acted like a break
statement for the $3 loop, returning execution to the containing structure, and then
it has the effect of acting as a normal continue statement at that point, forcing the
outer loop to move onto its next iteration.

Meanwhile, if the value in $1 is found to be prime (by process of elimination,
in that the continue 2; statement has never been accessed), its value is output to
the browser:
echo "si ";

The output of this code displays as follows:

12357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
Summary

Now that you know how to use the wide variety of looping structures provided by
PHP, you'll begin to develop your own programming style, because you can write
most types of code that rely on loops in a number of different ways, and before long
you'll begin to settle on the structures that fit your way of thinking the best.

For example, most programmers tend to generally use for () loops, but then they
may need to occasionally use the break keyword for special instances. On the other
hand, those who prefer while () and do ... while () loops rarely need to use break.
It's a matter of personal style.

Anyway, regardless of which type of loop structure you find yourself migrating
toward, in the next lesson you'll discover even more powerful things you can do with
PHP, including writing functions and using global and local variables.

Lesson 12 Looping Sections of Code 115

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know
an answert, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

Which type of PHP loop is not entered unless an expression evaluates to TRUE,
and then continues looping until the expression is FALSE?

Are curly braces required around loop statements?
With which type of loop is at least one iteration guaranteed to occur?

With which type of loop can you initialize variables, test for conditions, and
modify variables after each iteration, all in a single statement?

Which character separates the three sections of a for () loop?

How can you include additional variable initializations and post-iteration
assignments in a for () loop?

With which keyword can you cease execution of a loop, and move program flow
to the following statement after the loop?

How can you break out of the current loop as well as another loop that contains it?

With which keyword can you skip the current iteration of a loop, and move onto
the next iteration?

While in a loop, how can you drop out of the loop and skip an iteration in the
enclosing loop structure?

This page intentionally left blank

This page intentionally left blank

T113)

Writing Functions

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

In addition to using conditional constructs and statements such as if () and
switch () as well as loops such as while () and for (), there’s another way you
can control program flow—by using functions. Functions are sections of code you call
from any other part of code (or even the function itself, which is known as recursion),
which then perform one or more actions and then return.

When functions return, they may also return a value back to the calling code, or
they can simply return without doing so, in which case the returned value will be
undefined. Interestingly, since PHP 5.3, functions can also be anonymous (not given
a name) and can even be passed as values or stored in arrays.

Using Functions

PHP comes with many in-built functions. For example, to obtain the square root of the
number 49, you can call the sqrt () function, like this, which will return the value 7:

echo sqgrt (49) ;

The optional value you pass to a function is called an argument, and you can have
any number of these arguments, or even none. In the case of sqrt (), a single value
is required. The square root of that number is then calculated, and the value derived
is returned. That’s how the echo command in the preceding example can display the
square root value, because that value is returned directly to the calling code, which is
the echo statement.

You create functions using the keyword function, followed by the name to give
to the function, and then a pair of parentheses, within which you list the arguments
being passed to the function, separated with commas. The code of the function must
be enclosed within curly braces.

119

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

120

Part II Advanced PHP

Following is what the code to emulate the built-in sgrt () function might look
like, based on the fact that the square root of a number can be calculated by raising that
number to the power of 0.5, with the pow () function serving to calculate the power:

function SquareRoot ($n)

{

return pow($n, 0.5);

}

In this example, the function created is SquareRoot (), and it accepts one
argument (the value passed in the variable $n).

The function code comprises a single statement that simply calls the built-in pow ()
function, which accepts two values: a number and a value by which power the number
should be raised. Therefore, the two values passed to pow () are Snand 0.5.

The return Statement

The function then calculates the square root and returns it, at which point the
return statement causes that value to be returned. It is then a simple matter of
calling the function in the following manner to display a square root in the browser:

echo SquareRoot (49) ;

Alternatively, the value returned can be used in an expression, assigned to a
variable, or used in numerous other ways.

Of course, this code slightly cheats because it calls another built-in function called
pow () (in which case we might as well simply call the built-in sgrt () function

—<=== in the first place), but it serves to illustrate how to write a simple function that
takes one value and returns another after processing it.

Passing Arguments

In the preceding example, you saw how to pass a single argument to a function, but
you can pass as many as you need (or none), as shown with the following function,
which shows how you might re-create the built-in PHP str_repeat () function:

function StrRepeat (s, Sr)

{

return implode($s, array £ill(0, $r + 1, ''));

}

This function uses the sneaky trick of creating a new array using the array
£111 () function, which has the number of elements in the value Sr, plus 1. So, if Sr
has the value 3, the new array is given four elements by pre-incrementing the value
in sr. Each element is given the value ' ' (the empty string).

Lesson 13 Writing Functions 121

With the array now created, the implode () function is called in the outside
expression. As you will recall from Lesson 9, implode () concatenates all the elements in
an array into a string, placing the separator string in the value passed to implode ()
between each element value.

Therefore, if $r has the value 3, a four-element array is created (with each element
being empty). Then the implode () function concatenates these four elements together,
placing the string in the variable $s between each occurrence. Therefore, because the
array elements are empty, this entire statement will simply create three copies of
the string in $s concatenated together, and that is the string that is returned from the
function using the return keyword. Neat, huh?

Accessing Arguments

Arguments received by a function are given the names you supply between the
parentheses. These do not need to be (and probably will mostly not be) the same as
the variables or values passed to the function.

Variables are assigned to the values received by a function in the order in which
they are listed, and there can be as many or as few arguments as you like. Generally
the number of arguments supplied to a function should be the same as the number
the function expects to receive, but not always.

If a function receives fewer arguments than it is expecting, the remaining values
will be undefined, and PHP may well issue one or more warnings, as shown in the
following example (see Figure 13-1) in which the third argument has not been passed:

Example (1, 2);
function Example ($a, $b, $c)

{
echo "[$a - $b - $cl";

}
m

€ - C & [localhost/lesson13/argumentsi.php T2 =

Warning: Missing argument 3 for Example (), called in
C:\xzampp\htdocs\lessonl3\argumentsl.php on line § and
defined in C:\xampp\htdocs\lessonl3\argumentsl.php on
line 10

Notice: Undefined variable: c in
C:\xampp\htdocs\lessonl3\argumentsl .php on line 12
1 -2 -]

FIGURE 13-1 No third argument has been passed to the function.

122

Part II Advanced PHP

One way to improve on this is to provide default values for arguments that will be
assigned if no value is passed, like this (highlighted in bold):

function Example($a, $b, $c = 0)

{ ...}

Now PHP will not generate an error, and if no third argument is passed, a value
(in this instance) of 0 will be assigned to $c (or you could choose any other default
value, even including NULL).

Let's see how to make good use of this feature by considering the built-in PHP
function implode (), which joins the elements of an array together into a string,
separating them (optionally) with a string separator value. By default, though,
implode () concatenates without any separator (the same as an empty string
separator), running all the array elements together.

However, if that’s not the behavior you require, you can write a new version of
implode () to work in the same way as the JavaScript join () function, such that
when no separator is specified, a comma will be assumed as the separator, like this:

function NewImplode ($argl, $arg2 = ',')
{

return implode ($argl, $arg2);

}

Here, if only one value is passed, it will be an array to be imploded, and will
arrive in Sargl, whereas $arg2 will not receive a value (and will therefore
be assigned the default string value of ', ') . But if two values are passed to
NewImplode (), then no default value is assigned to $arg2.

In either case, once inside the function, the two values (either both received, or
one received and one assigned as a default) are then passed onto implode (), which
conveniently allows arguments passed to it to be in any order (for historical reasons),
so it processes them correctly regardless of their order.

This means that NewImplode () will also accept its arguments in any order;
therefore, all the following are legal statements:

echo NewImplode('|', array('cow', 'horse', 'duck')) . '
';
echo NewImplode (array('cow', 'horse', 'duck'), ' and ') . '
';
echo NewImplode (array('cow', 'horse', 'duck')) . '
';

These will result in the following strings being displayed (without any error
messages):

cow |horse|duck
cow and horse and duck
cow,horse,duck

Handling Unknown Numbers of Arguments

Rather than passing and accepting a known number of arguments, you can also access an
unknown number of arguments by calling the func_num_args () function. This returns

Ie”

Lesson 13 Writing Functions 123

the number of arguments that have been passed to a function. Using this value and the
func_get arg() function, which retrieves a single argument, you can access all the
arguments passed to a function as if it were an array using an index (from 0 to the number
of arguments minus 1).

To illustrate this, let’s emulate the array () function, which itself supports any
number of arguments passed to it, and then places them in an array to be returned,
like this:

function NewArray ()

{
$n = func num args() ;
$a = array();

for($j = 0 ; $J < $n ; ++33)
array push($a, func get _arg($j));

return Sa;

This function first looks up the number of arguments that have been passed to it,
and it saves that value in $n. Then it creates a new array called $a. After that, it iterates
through all the arguments passed to the function, using $3j as an index into the list.
Each time around the loop, the argument indicated is pushed onto the $a array.
When the loop has completed the array, $a is returned.

It is now possible to call this new function in place of array (), like this, for
example:

SFlowers = NewArray('Daisy', 'Lilly', 'Crocus');

Here, the array $Flowers is created and populated with three elements. To verify
that this is the case, the following loop displays all these elements:

foreach ($Flowers as S$flower) echo "$flower<brs>";

The archive of example files at the companion website includes argumentsi
.php, arguments2.php, and arguments3.php, which illustrate all the preceding
~==== discussions of argument passing and handling.

Passing by Reference

In earlier versions of PHP you used to be able to pass arguments to functions by
reference, by prefacing them with the & symbol. This would tell the parser to supply
a reference to the variable, not the value, which would grant the function full access to
the variable being passed, rather than a copy of its value. But as of PHP 5.4.0, passing
by reference was removed.

124 Part II Advanced PHP

However, you may choose for a PHP function to receive the reference of a variable
by prefacing its name with & in the function declaration, like this example, which will
swap the values of the two variables passed to the function:

function swap (&Sv1l, &$v2)

{

St = $Svl; // Create temporary copy of S$vl
$vl = $v2; // Move value from $v2 to $vil
$v2 = $t; // Assign $v2 previous value of $vl

Even though the procedure is called passing by reference, in PHP it is now probably
better thought of as receiving by reference.

Global and Local Variable Scope

Up to this point I have left out a very important keyword, which you will certainly
have seen if you have viewed the source of any PHP code—and that’s the global
keyword. I left out its inclusion until now because I didn’t want to get you bogged
down by the difference between local and global variables. But you are ready for it now!
So far I have treated all the variables created in the lessons as having local scope

(except when we are passing a value to a function, which chooses to receive it by
reference). This means that once they are defined, you can access their values and
modify them from the current part of the program, which is either of the following:

e [f'it is created outside of a function, the scope covers all code that resides outside
of function calls, as well as those in included files.
e [f'it is created within a function, the scope covers that function only.

Using Local Variables

So far in this book, I have used only local variables in functions. Let me illustrate this
to you with some code:

SMyVar = 1;
echo 'Outside: $MyVar == ' . "$MyVar
";
Example () ;

function Example ()

{

echo 'Inside: $MyVar == ' . "S$MyVar
";

}

Lesson 13 Writing Functions 125

In this example, the variable $MyVar is created in the main part of the program
(outside of any functions) and is assigned the value 1. Then the variable’s value is
displayed, and if you run the code you will see the value 1 is output.

But then the function Example () is called, which also displays the value in
$MyVar, and when this code is run nothing is output. The reason for this is that
$MyVar has only global scope when it is defined outside of a function, and therefore
it can be read from and written to only outside of any functions (and also in any
included code that is also outside of any functions). In order to give the Example ()
function access to the global variable, we must define it as being global using the
following statement:

global $MyVar;

Therefore, the following updated version of the previous example will now display
the value of 1 both outside and inside the function:

SMyVar = 1;
echo 'Outside: $MyVar == ' . "$MyVar
";
Example () ;

function Example ()

{

global $MyVar;

echo 'Inside: $MyVar == ' . "$MyVar
";
}
Even though you can do so, there is no point using the global keyword outside
of a function because it will not make that variable available to any functions.
S 2= 0Only by using the global keyword from inside a function will access be granted to

the variable.
You can make more than one variable have global scope within a function by
separating their names with commas, like this:
global $MyVar, S$ThisVar, $ThatVar;

You may not, however, try to assign a value to a variable from a global
statement, as in the following example, which is invalid syntax and will not work
because you may only provide variable names (not expressions) after the global
keyword:

global $MyVar = 2; // This is not a valid statement
The correct alternative is to use two statements, like this:

global $MyVar;
SMyVar = 2;

126 Part II Advanced PHP

The following code illustrates more clearly the difference between local and
global scope:

SMyVarl 1;
SMyVar?2 2;

echo 'Outside of any functions
<brs>';
echo '$MyVarl == ' . "SMyVarl
";
echo '$MyVar2 ' . "$SMyVar2<brs>
";

Example () ;

function Example ()

{

global $MyVar2;

echo 'Inside a function<brs<brs>';
echo '$MyVarl == ' . "SMyVarl
";
echo 'SMyVar2 == ' . $MyVar2;

}

Here, SMyVarl is given a value of 1 and $MyVar2 a value of 2. Both these
assignments occur outside of any functions, and the echo statements verify
these assignments have been successfully made.

Then Example () is called and the code in this function only gives SMyVar2
global scope, so when the value of $MyVar1l is displayed nothing is output because
(as far as the function is concerned) that variable doesn't exist. However, because it
has global scope, the value in $MyVar?2 is displayed.

Figure 13-2 shows the result of running this code (available as local. php in the
companion archive) in a browser.

. Local Scope ®

€ - C f [localhost/lesson13/local.php Fiel E

Outside of any functions

SMyVarl == 1
SMyVar2 == 2

Inside a function

Notice: Undefined wvariable: MyVarl in
C:\xampp\htdocs\lessonl3\local .php on line 22
SMyVarl ==

SMyVar2 == 2

FIGURE 13-2 Only $MyVar2 is global, so accessing $MyVar1 causes an error.

Lesson 13 Writing Functions 127

Notice how there is an error message in Figure 13-2 because SMyVarl was created
outside of the Example () function, and because there is no global keyword making
it accessible to the function, an error is thrown. There are a couple of possible fixes
for this. One is to make $MyVar1 global, like this:

global $MyVarl;

Alternatively, you can simply give SMyVarl a value before accessing it, to create
a local variable of that name, perhaps like this:

SMyVarl = 23;

What this means is that all variable names are free for reuse inside all functions
so that, for example, you could reuse the variable $count to keep count of something
many times over in different functions, without any use conflicting with any other use.

This is possible because when a function returns, it also forgets all the local variables
that have been used in it. However, any changes the function makes to any variables
it has given global scope to remain in place when the function returns.

The use of the global keyword in PHP is not the same as in some other
programming languages, because what the keyword really means in PHP is “Give
access to that variable, which was created outside of this function.” It does not make
a variable fully global to all code in a program. Therefore, even though the global
keyword may be applied to a variable within one function, that same variable will not
have global scope in any other functions unless they too use the global keyword to
gain access to it.

The $cLOBALS [1 Superglobal Array

Normally in PHP you can manage almost every programming task using local variables,
with occasional use of giving a function global access to the odd variable. It also makes
for clear and more bug-free code to avoid extensive use of global variables.

However, there are occasions when you find no simpler way to manage a particular
task, and for these times PHP provides you with a special “superglobal” SGLOBALS []
array. This is a predefined array that has full global scope both outside and inside
functions.

To access a global variable, you place its name in the SGLOBALS [] array, like this:

echo $GLOBALS['MyVar'];

Therefore, even though no global keyword has been used, as long as SMyVar
was created outside of any functions, you can access it in the SGLOBALS [] array.
Think of using SGLOBALS [] as a quick way to access a global variable, without
actually specifying it as global to a function by using the global keyword.

You can also create a global variable within a function by first creating it using the
global keyword and then assigning it a value. This value will then be accessible

U7 <= from all parts of a program, outside and within any functions, and also via the
SGLOBALS [] array.

128

Part IT Advanced PHP

Let’s look at a slightly modified version of the Example () function in the previous
section, which will now display all values, with the difference highlighted in bold:

function Example ()

{

global $MyVar2;

echo 'Inside a function<brs<brs>';
echo '$MyVarl == ' . $GLOBALS["MyVarl"] . '
';
echo 'SMyVar2 == ' . $MyVar2;

}

Now, the value in $MyVar1 is correctly output (as shown in Figure 13-3) because
it has been looked up using the SGLOBALS [] array. The file globals.php in the
companion archive contains this updated code.

[l vsing SGLOBALS]] x

€& - C A [localhost/lesson13/globals.php ¢/ 12| =

outside of any functions

SMyVarl == 1
SMyVarZ == 2

Inside a function

SMyVarl == 1
SMyVar2 == 2

FIGURE 13-3 Using $SGLOBALS [], it is now possible to access SMyVarl.

You can also write a value back to a global variable using $GLOBALS [], like this:
$GLOBALS ["MyVarl"] = 3;

The main benefit of using the $GLOBALS [] array is that it is immediately obvious
to you (or any other programmer who updates your code) that a global variable is
being accessed, whereas when you use the global keyword, it is not always apparent
that a variable has global scope.

Remember that when accessing a global variable via the $GLOBALS [] array, you
must omit the preceding $ and place the remainder of the variable name inside
e

quotes.

Lesson 13 Writing Functions 129

Global Naming Convention

I write a lot of PHP code, and I used to find that for each variable I used, I would still
have to keep referring back to see whether it had a global keyword applied at any
point in a function (making it global). If no global keyword was used, it would then
be local. So, to save having to keep rechecking, I came up with the following simple
convention.

Whenever a variable is created that requires global scope, I use all uppercase letters,
and when a local variable is created, I use lowercase, or a combination of uppercase and
lowercase (sometimes called CamelCase), like this:

SHIGHSCORE = O0; // Creates a global variable
$HighScore += 100; // Increments a local variable

Therefore, for any variables I use that have any lowercase letters, I can be sure that
they are being used in local context. I also tend to make array index and temporary
variables all lowercase (not even CamelCase), to emphasize their transience in my
code. Also, the more important a variable, the longer a name I generally give it, and
the less important, the shorter a name it gets.

For example, SMASTER INVENTORY could be the name of a global array containing
the inventory of an online shopping site, SBasket, might be the name of a local shopping
basket on that site, and $i might be the name of an index variable used to iterate through
either of these.

Of course, you can use any other conventions you like (such as prefacing global
variables with G_, floating points with F_, integers with I, strings with S_, and so on),
or no convention at all (but be prepared for longer debugging sessions).

Summary

Congratulations. With the handling of functions under your belt, you can now call
yourself a PHP programmer. However, there are still a few more steps to take before
you can call yourself a master of the language—starting with the next lesson on PHP
objects, which will teach you how to write using object-oriented programming (OOP).

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know
an answet, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

1. What is a function, and what does it do?
2. Are curly braces required around the statements in a function?

3. How do you call a function?

130 Part II Advanced PHP

How does a function receive the values upon which to work?
How can you assign default values to arguments that are passed to a function?

With which two functions can you handle variable numbers of arguments to a
function?

How does a function return to the calling code?
In PHP, what is the difference between local and global scope?
With which keyword can you access a global variable from a PHP function?

With which array can you access global variables from a function?

T 14)

Manipulating Objects

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

HP is so much more than simply a scripting language because it also offers the
power and flexibility of object-oriented programming (OOP). This is a style of
programming in which the data used by a program, and the code to manipulate it, are

all provided together in bundles called objects.

For example, a standard (or procedural) programming language will treat data and
code as two separate entities, although some steps toward using objects are made in
terms of providing access to functions. Indeed, enabling the use of local variables in
functions also takes a further step toward modularity. But that’s about as far as a non-
OOP language generally goes.

On the other hand, a language that embraces OOP encourages you to place data
where it is not directly accessible by the rest of the program. Instead, the data is
accessed by calling specially written functions (commonly called methods) that are
either bundled in with the data or inherited from class objects.

An object-oriented program will usually contain different types of objects, with
each type corresponding to a particular kind of complex data to be managed, or a real-
world object or concept such as a car, football team, or dental practice. For example,
in the case of providing social networking capability to a website, there may be a
number of objects to program, such as one for signing up new users, another for users
to manage their accounts, another to enable messaging between accounts, and so on.

131

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

132 Part II Advanced PHP

OOP Terminology

You need to get used to a number of terms when you first start to program using OOP.
To start with, the combination of code and the data it manipulates is called a class. Each
new object created that is based on a class is called an instance of that class (also known
as an occurrence).

Within a class, the data associated with it are called its properties, while the functions
it uses to access that data are called its methods (other programming languages may
call them member functions). Whenever you see the term “method” used in relation
to programming, it's simply another word for “function,” but it implies that OOP
programming is being discussed.

The objective of OOP is to write methods in such a way that only they can access
their associated properties. This is known as encapsulation, and the idea is to prevent
tainting of data by preventing any functions other than the methods of a class from
manipulating its properties. The methods you build into a class are known as the
interface. Classes may contain a special method used to initialize an instance of the
class, and this type of method is called a constructor.

The reason OOP can be much safer than procedural programming is that, due to
encapsulation, only the methods in a certain class can access its properties. Therefore,
there is only one place to go when you need to debug your code—the methods of a
class. You will not need to look anywhere else in your code to solve a bug relating to
how the properties of a class are manipulated.

Other benefits are that once you have created and debugged a class, you may
find you later need another one that is similar. Whenever that happens, you can
save yourself a tremendous amount of development time by simply defining a new
class based on the existing one. This is called inheritance, with the original class then
becoming a superclass (also known as a base or parent class), while the new one is
a subclass (also known as a derived class). This new subclass can then add its own
properties and methods, as required.

Declaring a Class

The first step in object-oriented programming is declaring a class, which defines a
new type of object but doesn’t actually create an instance of the object. Classes group
together a combination of data and the program code required to manipulate the data
into a single object. To declare a class you use the class keyword, like this:

class UserClass

{

public $firstname, $lastname;

Lesson 14 Manipulating Objects 133

function GetName ()

return Sthis->firstname . ' ' . Sthis->lastname;

This creates the new class UserClass and gives it two items of data it can hold:
$firstname and $lastname. It also sets up a method (another name for a function)
called GetName () that can be applied to the class and returns a string with $firstname
and $lastname concatenated together, separated with a space character.

The $this keyword refers to the current object (instance), and the - > operator
refers to a property of that object. It can also refer to a method of an object as well.

Notice how the example refers to Sthis->firstname and $this->lastname,
and not $this->3$firstname and $this->3$lastname, because when you're

=== accessing a property of a class using the - > operator, the property names should
not include a $ symbol.

o

Creating an Object

You can now create a new object (known as an instance) based on this class, as follows
(in which the new object $User is created):

$User = new UserClass;

This creates the new object $User, which has all the properties and methods
defined in the class. The object doesn't (yet) have any data in it, though.

Accessing Properties and Objects

Once an instance of a class has been created using the new keyword, you can supply
or modify the object data like this:

S$User->firstname = 'Julie';
$User->lastname = 'Jones';

And you can view these values by calling the GetName () method, like this:
echo "The user's first and last names are: " . $User->GetName () ;

In this instance, the result will look like Figure 14-1.

134 Part II Advanced PHP

. Using Classes x

€ - C A |[)localhost/lesson14/classphp <7 12| =

The user's first and last names are:
Julie Jones

FIGURE 14-1 Assigning data to an object and reading it back with a method of the object

Using a Constructor

To be able to create a new object and populate it with data all at the same time, you
can create a constructor method in one of two ways. The first is to repeat the class
name as a class method, like this (with the new constructor method shown in bold):

class UserClass

{

public $firstname, $lastname;

function UserClass($firstname, $lastname)

{

$this->firstname = $firstname;

$this->lastname = $lastname;
}
function GetName ()
{
return Sthis->firstname . ' ' . Sthis->lastname;

}
}

Now you can prepopulate the object (in the same manner as prepopulating a new
array) when you create an instance of the class (rather than creating the object and
adding the data values afterwards), like this:

SUser = new UserClass('Julie', 'Jones');

But now you must beware—if you create a new object from this revised class
without supplying values for $firstname and $lastname (for example: SUser
et —

= new UserClass ()), you will get a PHP warning or error.

Lesson 14 Manipulating Objects 135

These days there’s a better way that is recommended instead of using the
preceding constructor, which is to use a method called construct () as your
constructor (two underscores followed by the word construct), like this:

function _ construct ($firstname, $lastname)
Sthis->firstname = $firstname;
Sthis->lastname = $lastname;

It is always recommended to use a constructor method to ensure encapsulation.

Without one, data properties must be separately assigned, and it may be tempting

- < to do so by directly manipulating the property values of an object (for example,
by the statement $User->lastname = 'Jones' ;). However, you can avoid
this if you require the initial values to be assigned to an object’s properties when
the object is first created. To maintain full encapsulation, you should also write
methods for the object’s class to update the properties in the future, rather than
directly updating them. In other words, it’s best to only use an object’s methods
to read, change, or update the object’s properties, and to avoid directly accessing
or manipulating an object’s properties.

Destructors

You can also provide a destructor method to be called when the code has no more
references to an object, or when a script reaches the end. To create a destructor method,
use code such as this (where the method name is two underscores followed by the
word destruct):

function _ destruct ()

{

// Place your destructor code here

}

Object Cloning

After you create an object, it will be passed by reference when passed as a parameter.
This means that when assigning a new object based on an existing one, you don'’t
actually copy the old object to the new one—you simply create a reference to the
existing object. Therefore, the following code does not create a copy of $SO01dObject:

$SNewObject = $0ldObject; // Creates a reference to $0ldObject

136

Part II Advanced PHP

All that has happened here is that both $NewObject and $01d0Object now refer
to the same object. This is important to remember because it can result in unexpected
bugs for beginners to OOP.

If you actually do want to create a new (and totally independent object) from an
existing one, you must use the clone operator, like this:

$NewObject = clone $0l1dObject; // Creates a copy of $0ldObject

This creates a brand-new instance of the object with its own methods and properties
that is completely unconnected to the original object. It creates a new instance of the
class used by the original object, then it copies all the properties from the old object to
the new one.

Static Methods and Properties

Sometimes you want to be able to supply a method that is called on a class and not on
an instance of the class (an object). This type of method is suitable where you wish to
perform an action that relates to the class and not to any particular instance of that class.

For example, you might need a method to ask users for their first and last names
so that you can create a new object. This method will apply to the class but not to the
objects, so you would write it like this (placing it inside the class definition):

static function EnterName ()

{

// Display a form with input fields etc

}

Static methods are called differently from regular ones, in that you don'’t use the
-> operator. Instead, you use a double colon operator (known as the scope resolution
operator), like this (assuming that EnterName () is a static method of the class
UserClass):

UserClass: :EnterName () ;

Alternatively, from within another method of the class, you can refer to the static
method like this:

self::EnterName () ;

Likewise, you can create static properties that relate only to the class and not to
any specific instances. For example, you may wish to track the number of users you
have, and the place to store that figure would be in a static property, like this:

static S$UserCount;

From within a method of a class, you could then refer to this property with the
self keyword and the scope resolution operator, like this:

self::$UserCount = 47362;

Lesson 14 Manipulating Objects 137

From outside the class, you could access it like this (assuming the class it is
attached to is UserClass):

echo UserClass: :$UserCount;

Predetined Properties

In the same way as providing default values to regular functions, when declaring
properties in a class you may supply default values that will be used if none are supplied,
like this:

function construct ($firstname = 'anonymous', $lastname = 'user')

If values are supplied to the constructor, these default values will be ignored and
the supplied ones will be applied. This is the recommended way to ensure that errors
are not displayed when arguments are not supplied to methods that expect them.

OOP Constants

PHP supports the creation of constants in classes but you must use a different syntax
from the standard define () function, as required for regular constants. Instead, you
use the const keyword, like this:

class UserClass

{

const VERSION = 1.21;

function DispVer ()

{

echo self::VERSION;

}
}

For a method within a class, the constant’s value is returned by applying the self
keyword, followed by the scope resolution operator (: :) and the constant’s name. You
can also access it directly, like this:

echo UserClass: :VERSION;

Like regular constants, they cannot be changed once they are defined. Also like
regular constants, the '$' character is not used.

Property and Method Scope

So far, all the properties and methods in this lecture have been public so that they have
been fully accessible, even to the point of directly assigning values to object properties.
However, this is not considered good OOP practice because it breaks the encapsulation.

138 Part II Advanced PHP

Therefore, PHP provides a means for you to restrict access to properties and methods

by controlling what is known as their visibility, using three keywords:

e public Public visibility is the default when declaring a variable using the

public (or deprecated var) keyword, or when one is implicitly declared on first
use. Don't confuse the var keyword in PHP, which is retained only to support
legacy code, with var in JavaScript, which actually creates a local variable. In
fact, because var is deprecated, you should always use the public keyword
instead. PHP methods are assumed to be public by default.

e protected A property or method with protected visibility can be referenced

only by the object’s class methods, and those of any subclasses.

e private Members with private visibility can be referenced only by methods

within the same class—and not by subclasses.

Here’s how to decide which you need to use:

e Use public when outside code should be able to access this member, and

extending classes should also inherit it.

e Use protected when outside code should not be able to access this member, but

extending classes should inherit it.

e Use private when outside code should not be able to access this member, and

extending classes also should not inherit it.

The following example illustrates these keywords in use:

class User

{

}

var $firstname; // As public but deprecated
public $lastname; // A public property
protected $age; // A protected property

private function Admin() // A private method

{

// Code for administration goes here

}

In most cases, for proper encapsulation, you should set your properties to

protected or private. Methods that should only be used internally in the class
should also be set to protected or private. Use public visibility only when
absolutely required. That way, you'll keep your objects as self-contained as possible.

Lesson 14 Manipulating Objects 139

Applying Inheritance

When you've written a good general-purpose class that you'd like to use elsewhere,
you can use the extends keyword when building a new class to incorporate all the
features of the existing one. For example, assume you have the following class:

class UserClass

{

public $firstname, $lastname;

function UserClass ($Sfirstname, S$lastname)

{

Sthis->firstname = S$firstname;
Sthis->lastname = $lastname;

function GetName ()

{

return Sthis->firstname . ' ' . Sthis->lastname;

Now, let’s say you want to create a new class that will deal with a first name and
last name and that also handles usernames and passwords. To do so, all you need to
add is the following, for example:

class Subscriber extends UserClass

{

public S$username, S$password;

function ShowDetails ()

{

echo "Firstname: " . S$this->firstname . '
';
echo "Lastname : " . S$this->lastname . '
';
echo "Username : " . S$this->username . '
';
echo "Password : " . Sthis-spassword . '
';

The new class, Subscriber, now embodies all the properties and methods of
both classes, as can be verified by issuing the following statements, which results in

Figure 14-2:

SUser = new Subscriber('Julie', 'Smith'");
S$User->username = 'jsmithOl';

SUser->password = 'letmein';

echo $User->ShowDetails() ;

140 Part II Advanced PHP

. Inheritance Example x

€ = C A [localhost/lessoni4/inheritance.php 757 =

Firstname: Julie

Lastname : Smith
Username : JsmithOl
Password : letmesin

FIGURE 14-2 Extending a class with additional properties and methods

Using the parent Keyword

If you write a method in a subclass with the same name as a method in its parent
class, its statements will override those of the parent class. Sometimes this is not the
behavior you want, because you need to access the parent’s method. To do this, you
can use the parent keyword, as demonstrated by the following example:

Sobject = new Child;
$object->outputl () ;
$object->output2 () ;

class Father

{ function outputl ()
{
echo "This is the parent object (class Father) responding<brs";
}
}

class Child extends Father

{

function outputl ()

{

echo "This is the child object (class Child) responding<brs>";

}

function output2 ()

{
parent: :outputl() ;
}
}

This code creates a base class called Father and then a subclass called Child that
inherits its properties and methods, then overrides the method output1 (). Therefore,
when line 2 calls the method output1l (), the new method is executed. The only way

Lesson 14 Manipulating Objects 141

to execute the overridden outputl () method in the Father class is to use parent,
as shown in function output2 () of class Child. The code results in Figure 14-3.

. Using parent Example x

€ - C A [localhost/lesson14/parent.php Izl E

This is the child object (class Child) responding
This is the parent object (class Father) responding

FIGURE 14-3 Calling a parent class method from a child class

If you wish to ensure that your code calls a method from the current class, you
can use the self keyword, like this:

self::method () ;

Writing Subclass Constructors

When you extend a class and declare your own constructor, PHP will not automatically
call the constructor method of the parent class. Therefore, to be certain that all
initialization code is executed, subclasses should almost always call the parent
constructors, like this:

$object = new ChocChip() ;

echo 'Choc Chip Cookies have these properties...
';
echo 'Chewy : ' . Sobject->chewy . '
';
echo 'Chocolate : ' . Sobject->chocolate;

class Cookie

{

public S$chewy; // Cookies are chewy

function _ construct()

{

Sthis->chewy = 'TRUE';

class ChocChip extends Cookie

{

public S$chocolate; // Choc Chip cookies have chocolate

142 Part II Advanced PHP

function _ construct ()

{

parent:: construct(); // Call parent constructor first
Sthis->chocolate = 'TRUE';

In this example, the Cookie class has created the property $chewy, which is
reused in the ChocChip subclass that inherits it. Additionally, the ChocChip class
creates another property, $chocolate, as shown in Figure 14-4.

Note how the ChocChip subclass constructor calls its parent class constructor
using the parent keyword and the scope resolution operator (: :).
P o

. Subclass Constructor exarn %

€& = C A | [3localhost/lesson14/subclassconstructorphp ¢/ 12| =

Choc Chip Cookies have these properties...
Chewy : TRUE
Chocolate : TRUE

FIGURE 14-4 Using subclass constructors

Using the final Keyword

Sometimes you may wish to prevent a method from being overridden by a subclass,
and you can do this using the final keyword, like this:

final public function Author ()

{

echo 'Written by Fred Bloggs';

}

When you use code such as this, the function will be inherited by all subclasses
and cannot be overridden by a method of the same name. You cannot, however, use
the final keyword on properties. Instead, you should probably think about using
a constant. The £inal keyword can also be used on a class to prevent it from being
extended.

Summary

You are now becoming a power PHP programmer, capable of bending the will of the
language itself to your whims. Before you can move onto using PHP in meaningful
ways in your web pages, though, a few things still remain outstanding in your training.

Lesson 14 Manipulating Objects 143

For example, in the following lesson you'll further flesh out your knowledge by
looking at how to handle errors gracefully in your code, and also how to use regular
expressions for powerful pattern matching.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know
an answert, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

1. In object-oriented programming (OOP), what is the combination of code and the
data it manipulates called?

How do you declare a class in PHP?

How can you create an object from a class?

With which operator can you modify properties of an object?

What is the recommended way to create a constructor method for a class?
Why is it a good idea to include a __destruct () method in your classes?
How can you copy an object?

How can you access a method in the parent of a class?

S L

How can you create a new class that inherits the properties and methods of an
existing one?

-
o

. What are the three types of visibility you can apply to properties and methods?

This page intentionally left blank

=3

Handling Errors and Expressions

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

here’s no getting away from it. Even the most careful programmers build

unexpected errors (or bugs) into their code, and so will you—it’s perfectly normal.
And even after you think you've fully debugged your code, the likelihood remains that
there may still be obscure bugs lurking somewhere.

The last thing you want on a published website is for users to encounter errors,
or sometimes even worse, just find your code doesn’t work for them—making them
leave to never return. But PHP comes with ways you can minimize the problem by
attaching your own function to the standard error-trapping routines.

In this lesson I'll show you how you can manipulate PHP’s built-in error trapping
for dealing with bugs, and also how you can use regular expressions to perform
powerful and complex pattern matching in simple statements, thus cutting back on
lots of lines of code with potential for bugs to lurk in.

Error Trapping

Although you can't catch fatal errors (such as typing echho instead of echo) in PHP,
it is possible to trap runtime errors in your code by adding the following statement
and function to the start of any PHP program:

set_error handler ("ErrorHandler") ;

function ErrorHandler (Sno, Sstr, S$file, $line)

{

145

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

146

Part IT Advanced PHP

echo
"<div style='border:2px dotted;padding:5px 10px;background:tan'>"
"Line $line: S$str "
"in $file</div>";

Then, whenever a runtime error occurs, such as from the following typographical
error, a message similar to that shown in Figure 15-1 will be displayed:

Sfred = 1;
echo $fredd;

. Error Handling ®

« > C # [D localhost/lesson15/errorhandling.php O"i‘z] =

FIGURE 15-1 Trapping PHP errors

If you plan on working with HTML in your variables, you may also want to process
the value of $str in the preceding code through the htmlentities () function,

in order to see the HTML tags in a variable rather than how the HTML displays.

The four values passed to the function you provide (in this case, received in the
variables $no, $str, $file, and $1ine) are the error number, the error message,
the file containing the error, and the line number within the file. If you prefer, to
reduce the size of code, you can also use an anonymous (unnamed) function instead,
like this:

set_error handler (function($no, $str, $file, $line)
{
echo
"<div style='border:2px dotted;padding:5px 10px;background:tan's>"
"Line $line: S$str "
"in $file</div>";

3

Here, the error-handling function is not given a name, but is simply supplied
directly as an argument to the set _error handler () function. Now you only need
to copy the single, combined statement and function into pages that you'll be using it
on. Alternatively, you could place the code in its own file, which you can then include
where required using one of the include or require statements.

Lesson 15 Handling Errors and Expressions 147

This makes it far quicker to catch and correct obscure errors you may introduce
into your code and is achieved simply by pointing PHP’s standard error-trapping code
to a new function that replaces it. If you want to revert to the previous error handler
at some point in your code, just add the following statement:

restore_error handler () ;

You can copy and paste this code from the file errorhandling. php in the archive of
examples on the companion website. Just remember to remove the error-trapping code
when you move your files to a production website (once all bugs have been corrected).

Regular Expressions

Regular expressions were invented as a means of matching an enormous variety of
different types of patterns with just a single expression. Using them, you can replace
several lines of code with a simple expression, and can even use regular expressions
search and replace operations.

To properly learn everything there is to know about regular expressions could
take a whole book (and, indeed, many books have been written on the subject), so
I'm just going to introduce you to the basics in this lesson. If you need to know more,
I recommend you check out wikipedia.org/wiki/Regular_expression as a good starting
point:

In PHP, you will use regular expressions mostly in two functions: preg match ()
and preg_replace (). The preg match () function tells you whether its argument
matches the regular expression, whereas preg_replace () takes a second parameter:
the string to replace the text that matches.

Using preg_match ()

Let’s say you want to find out whether one string occurs within another. For example,
if you wish to know if the string whether occurs in Hamlet's famous soliloquy, you
might use code such as the following:

$s = "To be, or not to be, that is the question: "
"Whether 'tis Nobler in the mind to suffer"
"The Slings and Arrows of outrageous Fortune, "
"Or to take Arms against a Sea of troubles, "
"And by opposing end them.";

Sr = '/whether/';
$n = preg match($r, s, Smatch);
echo "$s

$r matches: $match[0]";

http://wikipedia.org/wiki/Regular_expression

148

Part IT Advanced PHP

In this example, the variable $r is a string that is given the value /whether/.
This is how you denote a regular expression using the / character as a delimiter
(in much the same way that quotation marks delimit strings).

First, you place a / character, then the text to match, followed by a closing /
character. In this example, however, a match is not made because (by default) regular
expressions are case-sensitive, and only the word Whether (with an upper case W)
exists in the string.

If you wish to make a case-insensitive search, you can tell PHP by placing the
letter i (a pattern modifier) after the closing / character, like this (in this case, a match
will be made):

$r = '/whether/i';

You don't have to first place a regular expression in a variable if you don’t want to,
so two lines can be replaced with the following single statement:

$n = preg match('/whether/i', s, Smatch);

The result of executing these statements results in Smatch [0] containing the
match (if there was one). The variable $match [] is an array, so it is able to store more
than a single value, even though this particular statement only looks for a single match.

When it completes running, preg match () returns a value of 1 if there was
a match, 0 if none was found, or FALSE if an error occurred. Figure 15-2 shows the
result of loading the previous program into a browser.

. Using preg_match() ®

€ - C A [localhost/lesson15/preg_matchphp ¢/ v¢| =

To be, or not to be, that is the question: Whether 'tis Nobler in the mind to suffer
The Slings and Arrows of outrageous Fortune, Or to take Arms against a Sea of
troubles, And by opposing end them_

/whether/i matches: Whether

FIGURE 15-2 Testing for a match with preg_match ()

If all you are doing is testing whether one string appears in another, you may
prefer to use strpos () or strstr () instead because they will be much quicker
_at—

than using regular expressions. For more details on preg match (), see the page
php.net/manual/en/function.preg-match.php.

Lesson 15 Handling Errors and Expressions 149

Using preg match_all()

The preceding code is great for when you need to see whether there’s at least a single
instance of a search word in a target string. However, when you want to find out how
many matches there are, you need to use the preg match_all () function, like this:

$s = "To be, or not to be, that is the question: "
"Whether 'tis Nobler in the mind to suffer"
"The Slings and Arrows of outrageous Fortune, "
"Or to take Arms against a Sea of troubles, "

"And by opposing end them.";

Sr = '/to/i';

$n = preg match all(sr, $s, $match);

echo "$s

$r matches " . sizeof ($match[0]) . ' times: ';
echo join(', ', smatch[0]);

In this example, the word to is being searched for in a case-insensitive manner.
The matches are returned into the array $match[0], so the sizeof () function is
used to display how many matches there were. Then the join () function (an alias of
implode ()) displays all occurrences, separated with commas. The array $match []
now contains a sub-array in Smatch [0] containing all the matches found, resulting
in Figure 15-3.

. Using preg_match_all(} b4

€ - C A [localhost/lesson15/preg_match_allphp &7/ 92| =

To be, or not to be, that is the question: Whether 'tis Nobler in the mind to suffer
The Slings and Arrows of outrageous Fortune, Or to take Arms against a Sea of
troubles, And by opposing end them.

[to/i matches 4 times: To, to, to, to

FIGURE 15-3 Four occurrences of the word to have been located.

The contents of $Smatch [1] and other elements will contain text that matched
the first captured parenthesized subpattern (if any). If all you require is the number
of matches found (returned in this instance into $n), you can omit the $match
argument because it is optional.

150 Part II Advanced PHP

When pattern matching, you may place subpatterns within parentheses, and
when they are matched they will appear in these elements of Smatch [], like this:

$s = "To be, or not to be, that is the question: "
"Whether 'tis Nobler in the mind to suffer"
"The Slings and Arrows of outrageous Fortune, "
"Or to take Arms against a Sea of troubles, "
"And by opposing end them.";

$r = '/out(rage)ous/i';

$n = preg match all(sr, $s, $match);

echo "$s

$r matches " . sizeof ($match[0]) . ' times: ';
echo join(', ', Smatch[0]);

echo '
Sub-pattern found: ' . Smatch([1] [0];

Here, the word rage is placed in parentheses within the search pattern in $r.
When this code is run, the rage subpattern is found, and it's placed in the first
element of a sub-array of Smatch[1], as shown in Figure 15-4.

. Using preg_match_all(} 2 =

€& - C A [localhost/lesson15/preg_match_all2php &/ 9¢| =

To be, or not to be, that is the question: Whether 'tis Nobler in the mind to suffer
The Slings and Arrows of outrageous Forfune, Or to take Arms against a Sea of
troubles, And by opposing end them.

/out(rage)ous/i matches 1 times: outrageous
Sub-pattern found: rage

FIGURE 15-4 The main pattern and subpattern have been found.

Using preg_replace()

You can also replace matched text using the preg replace () function. The source
string is not modified by this because preg_replace () returns a new string with all
the changes made.

For example, to replace the string 'tis in the soliloquy with the word it's
(although Shakespeare would surely object), you could use a regular expression and
the preg_replace () function like this:

preg replace("/'tis/", "it's", S$r);

Lesson 15 Handling Errors and Expressions 151

Figure 15-5 shows the result of executing this statement (using the file preg_
replace.php in the accompanying archive). In it, you can see that the word after
Whether is now it's. For the screen grab, the replaced word has been underlined to
make it stand out better.

. Using preg_replace() ®x

€ - C A [localhost/lesson15/preg_replacephp /' 1¢ =

Original: To be, or not to be, that is the question: Whether 'tis Nobler in the
mind to suffer The Slings and Arrows of outrageous Fortune, Or to take Arms
against a Sea of troubles, And bv opposing end them.

Replaced: To be, or not to be, that is the question: Whether it's Nobler in the
mind to suffer The Slings and Arrows of outrageous Fortune, Or to take Arms
against a Sea of troubles. And by opposing end them.

FIGURE 15-5 Searching and replacing content with preg_replace ()

As with preg_match (), you can specify a case-insensitive replace with preg
replace () by placing an i character at the end of the regular expression, as in the
following example :

preg replace("/'tis/i", "it's", $r);

Unlike preg match (), though, the preg replace () function will
automatically replace all matches it discovers. It's also more powerful, in that the
subject of the replace operation can be an array, in which case the replacement will
occur on all matches in the array.

To limit the number of replacements, you can supply an optional fourth
argument, specifying the maximum number to allow. By default, this value is -1,
which means there is no limit.

You may also provide an optional fifth argument to the function (which means
you'll also have to give a value for the limit argument) into which the number of
replacements made will be saved, like this:

preg replace("/'tis/i", "it's", $r, -1, $count);

Upon return, $count will contain the number of replacements made.

152 Part II Advanced PHP

Fuzzy Matching

Regular expressions are a lot more powerful than simply searching for and replacing
words and phrases, because they also support complex fuzzy logic features through
the use of metacharacters. There are several types of metacharacter, but let’s look

at just one for now (the * character) to see how they work. When you place * in a
regular expression, it is not treated as an asterisk character, but as a metacharacter
with a special meaning—that is, when you are performing a match, the character
immediately preceding the * may appear in the searched string any number of times
(or not at all).

This type of metacharacter is particularly useful for sweeping up lots of blank
space so that you can, for example, search for any of the strings 'back pack'’,
'backpack', 'back pack' (with two spaces between the words), 'Back Pack'
(with mixed case), and many other combinations, like this:

$s = "Have you seen my BackPack anywhere?";
preg match('/back *pack/i', s, Smatch);

Because the i character is also used after the regular expression, the matching
is case-insensitive; therefore, the word BackPack is found by the regular expression,
and the echo command displays the result in the browser. You can try this for yourself
using the file fuzzy.php in the archive file available at the companion website, as shown
in Figure 15-6.

- | O -
/. Fuzzy Matching ® \§ k

&« C A | [localhost/lesson15/fuzzy.php 7 1| =

Have you seen my BackPack anywhere?

/back *pack/i matches: BackPack

FIGURE 15-6 Matching variations of search patterns

If you want to use any of the characters that are metacharacters as regular
characters in your regular expressions, you must escape them by preceding the

" S characters with a \ character. For example, \ * will turn the * from a metacharacter
into a simple asterisk.

Matching Any Character

You can get even fuzzier than that, though, with the period (the dot or full stop) character,
which can stand in for any character at all (except a newline). For example, to find all

I

Lesson 15 Handling Errors and Expressions 153

HTML tags (which start with < and end with >), you could use the following regular
expression (in any preg match (), preg match all() or preg replace () calls):

Sexpression = "/<.*>/";

The left and right angle brackets on either side serve as the start and end points
for each match. Within them, this expression will match any character due to the
dot metacharacter, whereas the * after the period says there can be zero, one, or any
number of these characters. Therefore, any size of HTML tag, from the meaningless
<> upwards, will be matched.

Other metacharacters include the + symbol, which works like *, except that it will
match one or more characters, so you could avoid matching <> by ensuring there is
always at least one character between the angle brackets, like this:

Sexpression = "/<.+>/";

Unfortunately, because the * and + characters will match all the way up to the last
> on a line, as well as catching entire elements such as <hl>Heading</hl>,
~aw== they will also catch any nested HTML such as <hl><i>Heading</i></hl>.

Not Matching a Character

A solution to the multitag matching problem is to use the * character, whose meaning
is “anything but,” but it must be placed within square brackets, like this:

$expression = "[*>]+";

This regular expression is like . + except there is one character it refuses
to match, which is the > symbol. Therefore, when presented with a string such
as <hl><i>Heading</i></hl>, the expression will now stop at the first >
encountered, so the initial <hl> tag will be properly matched. Table 15-1 summarizes
the basic metacharacters and their actions.

Some of the characters in Table 15-1 have already been explained, and some
should be self-explanatory. Others, however, you may find confusing, so I would
recommend only using those you understand until you have learned more about
regular expressions, perhaps from the Wikipedia article listed a little earlier, or from
the comprehensive, multipage tutorial at tinyurl.com/phpregex.

Table 15-2 lists a selection of escape metacharacters and numeric ranges you can
also include.

To help you better understand how these various metacharacters can work
together, in Table 15-3 T have detailed a selection of regular expression examples as
well as the matches they will make.

Remember that you can place the character i after the closing / of a regular
expression to make it case-insensitive and can also place the character m after the
final / to put the expression into multiline mode, so that the * and $ characters will
match at the start and end of any newlines in the string, rather than the default of the
string’s start and end.

http://tinyurl.com/phpregex

154 Part II Advanced PHP

TABLE 15-1 The Basic Metacharacters

Metacharacters Action
/ Begins and ends a regular expression.

Match any character other than newline.

* Match the previous element zero or more times.

+ Match the previous element one or more times.

? Match the previous element zero or one time.

[chars] Match any single character contained within the brackets.
[“chars] Matches any single character not contained within the brackets.
(regexp) Treats regexp as a group for counting, or following *, +, or 2.
left|right Match either left or right.

l-r (In square brackets) Match a range of characters between 1 and r.

A

(Not in square brackets) Match at the search string’s start.

S (Not in square brackets) Match at the search string’s end.

TABLE 15-2 Escape and Numeric Range Metacharacters

Other Action

\b Matches a word boundary

\B Matches where there isn’t a word boundary

\d Matches a decimal digit

\D Matches a nondecimal digit

\n Matches a newline character

\s Matches a whitespace character

\S Matches a nonwhitespace character

\t Matches a tab character

\w Matches a word character (one of a-z, A-Z, 0-9, or)

\W Matches a nonword character (anything but a-z, A-z, 0-9, or)
\x Means treat x as normal character (where x is a metacharacter)
{n} Matches exactly n times

{n,} Matches n times or more

{min, max} Matches at least min and at most max times

Lesson 15 Handling Errors and Expressions

TABLE 15-3 Some Example Regular Expressions and Their Matches

155

Example Matches

\. The first . in Hello there. Nice to see you.
h The first h in My hovercraft is full of eels
lemon The word 1emon in I like oranges and lemons

orange | lemon
bel[eil] [ei]ve
bel[eil {2}ve

bel ((ei) | (ie))ve

Either orange or lemon in I 1ike oranges and lemons
Either believe or beleive (also beleeve or beliive)
Either believe or beleive (also beleeve or beliive)

Either believe or beleive (but not beleeve or beliive)

2\.0* 2.,2.0,2.00, and so on
[J-m] Any of the characters j, k, 1, orm
houses Only the final house in This house is my house
“can Only the first can in can you open this can?
\d{1,2} Any one- or two-digit number from 0 to 9 and 00 to 99
[\wl+ Any word of at least one character
[\w] {3} The first three consecutive word characters
Summary

This lesson has covered some fairly advanced topics, including error handling and
sophisticated pattern matching, and it tops off the last items of basic knowledge you

need about the PHP language. Therefore, starting with the following lesson, I will
concentrate on how to use PHP to interact dynamically with users.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don't
know an answer, go back and reread the relevant section until your knowledge is
complete. You can find the answers in the appendix.

1. How can you add your own error handler to PHP, and which four values will it
be passed?

2. How can you disable (or turn off) your own error handler to restore PHP's
default error handling?

156 Part II Advanced PHP

10.

With which function can you search for occurrences of a search string in
another string?

How must you format a search string?
How can you set a regular expression to match regardless of case?
With which function can you match all occurrences of a search string?

How many arguments must be passed to the preg _match () and preg
match all () functions, and what are they?

How can you replace any matches with a replacement string as well as find out
how many replacements were made?

What regular expression might you use to search for any occurrences of either
car or automobile?

With what statement could you case-insensitively find all six-letter words (not
merely sequences of six letters) in a string (hint: think about word boundaries)?

o’

Building Web Forms

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

ven modern websites with hyper-interactivity and self-updating pages, using

behind-the-scenes communication with web servers via Ajax (detailed in Lesson
20), still rely on trusty old HTML forms for requesting input from users. HTML forms
are simple, easily implemented, and have passed the test of time. What's more, they
can be simply constructed in HTML or output from a scripting language such as PHP.

There is a downside, though: even on a securely encrypted connection there’s
no guarantee that the data being sent from the user isn’t going to be potentially
malicious. And especially on unencrypted links it's possible for hackers to construct
copies of web forms either in HTML or created from software to send badly formed
data to a web server, hoping to somehow gain entry to it or otherwise compromise or
harm the server.

Therefore, this lesson focuses on how you can create effective forms that are easily
processed via PHP. It also points out potential security hazards and pitfalls, and shows
you how you can avoid them.

Creating a Form

Whether created in a simple HTML page or assembled via output from a program
such as PHP, all web forms must have the following:

Opening and closing <form> and </form> tags

e A submission method of either Post or Get

e One or more input fields (although you can omit them, but you won't be able to
send any data if you do)

e A destination URL of a program or script to receive the form data

157

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

158 Part II Advanced PHP

The following example illustrates how to build a very simple form to ask someone
for their username and password, using straightforward HTML:

<!DOCTYPE html>
<html>
<head>
<title>A Simple Form</title>
</head>
<body style='font-family:monospace;white-space:pre's>
<form method='post' action='simpleform.php's>
Enter Username: <input type='text' name='username' >
Enter Password: <input type='password' name='password'>
<input type='submit's></forms>
</body>
</html>

I have used some CSS in the <body> element to keep the output tidy, by using a
monospaced font, and ensuring that all whitespace and linefeeds are displayed.
P o

This HTML starts off by specifying the standard HTML5 ! DOCTYPE and then
outputs a <form> element, two text-based <input> elements, and a submit <input>
element. The type of data expected for the Username field is text, and for the
Password field it is password, which has the effect of displaying only * characters
when data is entered into this field, thus keeping it secure from any prying eyes.
When loaded in a browser, the result of displaying this unsubmitted form looks like

Figure 16-1.

. A Simple Form x

€ - C A [localhost/lesson16/simpleformphp /7% =

Enter Username: I

Enter Password: I

FIGURE 16-1 A simple form created with PHP

Lesson 16 Building Web Forms 159

The Difference Between Post and Get Requests

In this example, the data is being sent using a Post request, which sends the
information using headers (which are transmitted separately to HTML) so that they
are not visible to the user. It could equally have used a Get method instead, but this
would require the receiving program to retrieve the data slightly differently.

The reason is that Get request data is attached to the end of the URL receiving the
form data, in the form of a query string. This is a tail containing various information
that you often see following regular URLs. For example, when you search Google
for the term PHP, the results page may display a URL similar to the following in the
address field (where I have highlighted the query string in bold):

http://www.google.com/search?q=PHP&ie=utf-8&oce=utf-8

In fact, the URL will likely be longer than that, because I'm showing only the first
three items of data in the query string, as follows:

e g has the value PHP.
e ie has the value utf-8.
e oe has the value utf-8.

The query string starts with the characters following a ? character (which is the
character that separates a query string from a URL), and is then followed by one or
more pairs of field names and values (data on the Internet is often handled in key/
value pairs). Each pair is separated by a & character, and the field names and values
themselves are separated with an = character.

Some programmers refer to Post and Get as POST and GET, but just like the
term AJAX started fully capitalized, but now generally only has the first letter

—« == capitalized (Ajax), I prefer not to fully capitalize terms when avoidable, especially
because these particular names are based only on the words post and get, and are
not acronyms. It's up to you, however, how you choose to write these terms.

Security Issues with Get Requests

Because Post requests are sent using headers, they are not revealed to the user. But
with the way that Get requests are appended to the URL being posted to, it is easy for
the user (or any anyone else with access to that computer) to see the query data by
referring to the address field.

Therefore, if the data contains sensitive information such as a password, even
though it has been displayed using * characters in the input field, it is out in plain
view in the address field. More than that, if a page that was arrived at from a Get
request is bookmarked, then all that query data will be stored in the bookmark URL,
which can be easily located by even the most casual of snoopers.

160

I

Part II Advanced PHP

There'’s an additional security risk with Get requests in that most web servers
save the full URLs of all pages called up in their log files, and many web pages also
use third-party analytics services that may also store this data. This means there’s a
chance that these logs could get into the wrong hands, and any sensitive data might be
compromised.

I always recommend that you avoid using Get requests for posting form data,
unless you have a compelling reason for doing so, and the data being transmitted
<= is not of a sensitive nature.

Accessing Form Data from PHP

It is possible for a PHP program to extract Get data from the query string directly, but
it takes some fiddly code to separate out all the fields and values. However, whichever
method is used to send form data to a PHP program, there’s an easy way of accessing
it, via either the $_GET[] or $_POST [] superglobal array, which is prepopulated
with data by PHP.

For example, the following code can be added into the previous example to place
the data posted into a pair of variables:

Susername = $ POST['username'];
Spassword = $ POST['password'];

Or you can also retrieve data sent with a Get request like this:

Susername = $ GET['username'];
Spassword = $ GET|['password'];

In fact, it's possible to make your PHP programs accept either type of input with
code such as this:

Susername = '';
Spassword = '';
if (isset($_POST['username'])) Susername = $ POST['username'];
if (isset($_GET['username'])) S$Susername = $ GET['username'];
if (isset ($_POST['password'])) S$password = $_POST['password'l];
if (isset($_GET['password'])) S$password = $_GET['password'l];

Here, the two variables are first assigned the empty string, to ensure they have a
value when PHP later comes to read them (variables should be assigned values at the
earliest possible opportunity after creating them to avoid the potential for a warning
being given or an error being thrown).

Then the two arrays $_POST[] and $_ GET [] are tested for the keys username
and password, with any matches then stored in $Susername and $Spassword,
overwriting the empty string values. This approach ensures that at all times PHP
is dealing with sensible and processable values, and will not display any error or
warning messages.

Lesson 16 Building Web Forms 161

About register globals

In the early days of PHP there was a register globals setting that was enabled
by default, and it caused all form data sent to a PHP program to automatically be
saved into variables of the same names as the fields.

In the preceding example, therefore, there would have been no need to access
the s POST[] and $_GET [] arrays, because Susername and $password would be
automatically assigned values from these arrays (if present). At first this seemed like
a great idea (and plenty of programmers thought it was a wonderful timesaver), until
enterprising hackers discovered that they could use this feature to hijack uninitialized
variables using simple form injection.

For example, assume a programmer has created a variable called Sadminaccess,
which is to be used to prevent unauthorized access to certain code, like this:

if ($adminaccess == 1)
{

// Access to sensitive functions

}

Only if the variable has a value of 1 will that section of code be entered. And in
the early days of PHP, if Sadminaccess didn't have a value, this 1f () statement
would simply be passed over (it would be ignored).

Then, elsewhere in the code, there would be a statement for setting this variable,
which might look like this:

if (Susername == 'Admin' && Spassword == 'secret')
Sadminaccess = 1;

Normally all this would mean that only once $username and $password had
been correctly verified by this statement would Sadminaccess be set to 1. And if
they were not verified, then $adminaccess would have no value (having not been
set) and so it would prevent unauthorized access—or would it?

Well, nowadays a warning would be issued by this code because an unassigned
variable would be encountered. But in earlier versions of PHP, because $adminaccess
has never been initialized to a non-1 value, a malicious hacker would only need to
create an edited version of the form on their own computer, in which the field name
adminaccess is given a default value of 1. If this form were then posted, the variable
$adminaccess would be automatically created by PHP and assigned the value 1—
and, bingo, they would be in!

Of course, a hacker would have to know the precise names of specific variables
in your code. But in popular programs where the source code was generally available,
it was easy to find omissions like this and create hacks to take advantage of them.

This is why register globals was set to off by default in version 4.2 of PHF,
was deprecated in version 5.3, and was finally removed altogether in version 5.4.

162 Part II Advanced PHP

You should always assign a value to any variable you use before you read
or access it. You never know, the server your code runs on may have an old

W8T <= version of PHP and your code could therefore be vulnerable to this hack. More
importantly these days, though, predefining all your variables is good practice
because it helps you (and other people) better maintain your code, because you
can see at a glance all the variables being used—especially if you document
them at each assignment too.

Redisplaying a Form
Having both the form HTML and the code to process submitted data in the same PHP
file makes it easy for your code to process the data received and resubmit the form (or
parts of it) if any data is missing or invalid. It can also prepopulate any valid data to
save users from having to type it in again.
The following revision of the earlier example shows how to do this by allowing

you to keep posting the form back to the PHP program, which then prepopulates the
fields with the data previously posted to it:

<!DOCTYPE htmls>

<html>
<head>
<title>A Simple Form (2)</title>
</head>
<body style='font-family:monospace;white-space:pre's>
<?php
Susername = '';
Spassword = '';
if (isset ($_POST['username'])) Susername = $_ POST['username'];
if (isset($_GET['username'])) Susername = $ GET['username'];
if (isset($_POST['password'])) S$password = $ POST|['password'];
if (isset($_GET['password'])) S$password = $ GET['password'];

echo <<< _EOT
<form method='post' action='simpleform2.php's>
Enter Username: <input type='text' name='username'
value="'$username’' >
Enter Password: <input type='password' name='password'
value="'$password’'>
<input type='submit'></form>
EOT;
2>
</body>
</html>

Lesson 16 Building Web Forms 163

The PHP section of the example first assigns any posted values sent (whether via
a Get or Post request) to the variables Susername and $password. Then it outputs
the HTML to create a form, specifies a method of post for sending the data, and
sets a destination of simpleform2.php. If this example file is saved using that filename,
it will post to itself.

The main differences between this combined HTML/PHP example and the
previous HTML-only example are highlighted in bold. They are the addition of values
passed to the value attributes of the <input > elements, in the form of the two
variables that have had their values extracted from the $ GET [] and $_POST [] arrays.

This keeps the form populated with user data ready for reposting. Figure 16-2
shows what this page looks like when displayed in a browser, after the form is filled
in and submitted.

[2 simple Form (2) ®

€ = C A |[1localhost/lesson16/simpleform2.php 7 57| =

Enter Username: IRohin

Enter Password: I -------

FIGURE 16-2 The posted form data is redisplayed.

You can also use the value attribute of an <input> element to offer default
values to your users. For example, if you're creating a loan repayment calculator,
—= === most mortgages tend to be offered over 25 years, so you might choose to make

that a default value, to save users from typing it in. However, being in a user-
editable field, it can easily be changed if users require.

The checkbox and select multiple Input Types

Other types of <input > tags you will need to be able to process in PHP are checkbox
and select with multiple enabled. It is fully legal HTML to create multiple
checkboxes or select lists using the same name, and these types of input arrive at a

164 Part II Advanced PHP

PHP server in an array, with the different values in each element. For example, you
might ask a user for their favorite foods out of a selection, like this:

Hamburger <input type='checkbox' name='foods[]' value='burger' >
Pizza <input type='checkbox' name='foods[]' value='pizza' >
Burrito <input type='checkbox' name='foods[]' value='burrito's>

The values supplied to the name properties end with [] (square brackets). This
W indicates to the receiving program that the data being posted is an array, and that
—«=== it should be processed as such. Without the [] characters, only the most recent
value would be posted, and it would be just a single string.

You can extract this array data from either the $ GET[] or $ POST[] array in the
same manner as before, with the exception that instead of initializing a variable,
this time it's an array:

$foods = array();
if (isset ($_POST['foods']l)) $foods = $ POST['foods'l];
if (isset($ _GET['foods']l)) $foods = $ GET['foods'l];

Once you have extracted the array data into the new array $foods [], you can
process it in any way you choose, such as like this (as shown in Figure 16-3):

foreach($foods as $food) echo "You like $food
";

. Form Array Data ®

€ - C A [localhost/lesson16/formarraydataphp ¢/ v¢| =

¥You like burger
You like pizza
You like burrito

Hamburger]
Pizza LJ
Burrito LJ

FIGURE 16-3 Processing form array data

Alternatively, instead of simply displaying these values, you can do whatever else
you need to do with them, such as processing items individually, like this:

$firstfood = $food[0];

Lesson 16 Building Web Forms 165

Similarly to multiple checkboxes, when a type of select is used with the option
multiple enabled, an array will also be posted to PHP, as with this HTML (note the
use of veggies [] with square brackets):

Vegetables <select name="veggies[]" size="5" multiple="multiple">
<option value="Peas">Peas</options>
<option value="Beans">Beans</options>
<option value="Carrots"s>Carrots</options
<option value="Cabbage">Cabbage</options>
<option value="Broccoli">Broccoli</options>

</select>

And, after extracting the array data (remember that the name you provide in the
form must end with [], otherwise only one item will be stored), you can iterate through
the resulting array in a similar manner to the previous example, like this (as shown in
Figure 16-4):

foreach (sveggies as $veg) echo "You like S$veg
";

. Form 5Select Data x

€& - C A [localhost/lessoni16/formselectdataphp /vp =

You like Peas
You like Carrots
¥You like Cabbage

Peas -
Beans
Carrots
Cabbage
Vegetables |Broccoli =

FIGURE 16-4 Processing data from a form using select multiple

Radio button values do not get passed in an array (and can be treated as reqular
w form input) because only one can be selected in any group. Also, for brevity,
~==== remember that instead of using the attribute multiple="multiple', you
can simply add the attribute multiple to a <select> element without

assigning it a value (as long as you're not using XHTML), like this: <select
name="'options[] ' multiples.

166

Part II Advanced PHP

Using Hidden Fields

A great way of helping a user navigate through more than one page of input (perhaps
as part of an online shopping website) is to track the user by placing one or more
hidden fields in a form. This lets you keep track of items already in their basket and/
or any other data they may have entered, and you don’t want to confuse the user by
continually displaying them.

To do this, simply prepopulate a field with a value of your choice and give it
a type of hidden, like this:

<input type='hidden' name='purchases' value='11324,6463,921'>

In this instance, the value attribute has three numbers in it, which could represent
inventory ID numbers of goods ordered so far by the user. When the form that this
input is part of is later posted back to the server with any additional item(s) to be
purchased, the info about the existing items will also be posted to keep track of the
order, without (yet) having to save any data to disk or a database.

Summary

Forms are as important to the Internet as they have ever been, but now you know
not only how to create all the forms you need, but also how to process the data posted
via them, whether it arrives via a Get or Post request, and whether it comes in single
items or in arrays. In the following lesson, we'll look at some advanced uses for forms
and gain further insights into how to protect the security of web transactions.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don't know
an answert, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

1. What is the difference between a Post and a Get request?

2. In a Get request, which character indicates the start of a query string, which
character separates keys and values, and which character separates pairs of keys
and values?

3. How can you access form data sent to PHP via a Post request?
4. How can you access form data sent to PHP via a Get request?

5. How can you ensure that your PHP program doesn’t throw an error if no
submitted data can be retrieved?

Lesson 16 Building Web Forms 167

How can you let users resubmit a form with a problem in one of its inputs,
without requiring them to reenter all the data?

How can you submit a collection of checkbox inputs to PHP?

How can you submit a collection of options from a <select> element that uses
the multiple attribute?

How can you access array data submitted from a web page using PHP?

How can you store data your program needs in a form, without showing it to
the user?

This page intentionally left blank

Maintaining Security

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

here is one overriding consideration to take into account when you work on

anything more than a simple product or personal web page. As soon as you begin
to work with data, accept input from users, process it, and return information based
on that input, opportunities for compromise can occur.

It doesn’t matter what the website is; if it has a vulnerability, it will be discovered
and exploited. And this won't necessarily be by human beings. More and more
recently when I process my log files, I see bots of all kinds rummaging through my
websites. They used to be very rare, but now can be upwards of 25 percent of traffic
in some instances. And you can be sure that although some are beneficial, such as
search engine spiders, a few of these have malign intent—you can often tell them
because they make unusual requests, often for pages that don't exist.

So get used to the fact of life that not only will your websites be subject to hacking
attempts by being explored for vulnerabilities, this will happen continuously on a
daily basis—forever. And one of your biggest jobs as a developer is to ensure that the
bad guys never find a way in.

Sanitizing Input
Looking back at the form-processing examples in the previous lesson, in the code that
extracts form data from the $ GET[] and $_POST [] arrays, it is always a good idea
to insert some extra security to prevent malicious hacking attempts. For example,
suppose you have created a bulletin board program in PHP and use it to accept input
from your users, which you then display on the board.

169

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

170

Part II Advanced PHP

Although this may seem quite a simple thing to do—just accept the input and then
echo it to the browser—what if the user has entered some HTML of their own, which
totally messes up the display? Or, worse still, what if they entered some JavaScript that
hijacks the page and redirects the user to a different website, for example?

Obviously, you can't allow that, so your best safety measure is to run all user
input through the htmlentities () function. This takes the string that is passed to
it and replaces all characters that could be interpreted by HTML with simple entities.
For example, the < and > characters (which could be used to enter HTML tags) are
replaced with &1t ; and > ;. This renders them harmless, but still allows < and >
to be displayed in the browser.

In the same way, all & characters are replaced with & and all double quotes
are replaced with " ;, along with any other characters that have HTML character
entity equivalents.

The end result is that a string such as <hl1>"Hello"</hl> will be changed to
&1lt;hle> "Hello" < /hl> ;. This will display in the browser
as typed in by the user, and not as an actual <h1> heading.

Therefore, I recommend that as soon as you have some user data ready for
processing, you immediately sanitize it, as with these two lines:

Susername = htmlentities (Susername) ;
Spassword = htmlentities ($Spassword) ;

However, because the default setting of this function is to convert only double
quotes, it is advisable to also supply a second argument to the function with the value
ENT QUOTES, to deal with this case. Therefore, the following is the recommended
final version of these statements, which should ideally be added to the examples in
Lesson 16:

Susername = htmlentities ($username, ENT QUOTES) ;
Spassword = htmlentities ($password, ENT QUOTES) ;

Should you ever need to convert sanitized input back, you can always call the
inverse function html entity decode ().

There is also a less sweeping function called htmlspecialchars () with which
you can assert greater control over which characters are to be converted. See the
following URL for more details (it has quite a number of options): php.net/manual/
en/function.htmlspecialchars.php.

It will also probably require supplying the ENT QUOTES argument to ensure that
single quotes are also converted.

Sometimes you may wish to first process raw user data in one way or another, and
only later sanitize it. But this can be dangerous if something in the process causes

=== it to skip the sanitization; therefore, you must fully test any code where you do so,
each time you modify it. This is the reason I always recommend sanitizing input
as soon as it arrives, even if the data is going to be stored in a file or database
(because you know it is sanitized, your code can always account for this). This
way, you never again have to worry about it being tainted.

Lesson 17 Maintaining Security 171

Uploading Files to a Server

Uploading files to PHP is almost as simple as sending plain data. The trick is to use a
special type of encoding that works with binary data (as opposed to textual form data,
for example) called multipart/form-data; your browser will then know what to
do with it, and so will PHP. It is, however, a procedure ripe for exploitation if you don't
take the correct security measures.

The following example supports the uploading of an image to PHP:

<!DOCTYPE htmls>
<html>
<head>
<title>File Upload</title>
</head>
<body>
<form method='post' action='fileupload.php'
enctype='multipart/form-data's>
Choose File: <input type='file' name='filename' size='27'>
<input type='submit' value='Upload'>
</form>
<?php
if ($_FILES)
{
Sname = $ FILES['filename'] ['name'];
move uploaded file($ FILES['filename'] ['tmp name'], S$name) ;
echo "Uploaded image 'Sname'

<img src='Sname's";
}
?>
</body>
</html>

There are two parts to this example. The first contains all the HTML for setting up
a web page, along with a form for selecting and uploading an image. The second part
of the example is the PHP that processes the uploaded image, and you can see the
result of running the code in a web browser in Figure 17-1.

The way the example works is that a form-encoding type of multipart/form-
data is specified, along with an <input> type of £ile, so that a Browse button (or
a Choose File button, depending on the browser) is displayed alongside, with which a
file can be located on the local file system. When the form is submitted, the form data
is posted to the script fileupload.php.

In the PHP section, an array called $_FILES[] is tested in the first line. If it has
no value, then no file was posted to the program; otherwise, $ FILES['filename']
['name'] contains the name that was used when the file was selected by the user.

At this point, though, the file is held in a temporary storage area, so next it is moved
to a permanent location, using the filename just obtained:

move uploaded file($ FILES['filename'] ['tmp name'], S$name) ;

172 Part II Advanced PHP

Il File Upload x

€ = C A [localhost/lesson17 ffileuploadphp /59| =

Choose File: | Choose File | Mo file chosen Upload

Uploaded image 'smiley png'

FIGURE 17-1 Uploading a file to a web server

The value tmp_name is a temporary name that uploaded files are first given by
PHP, and the move uploaded file () function copies this file to the current folder
(or a subfolder or other location), as specified in the final parameter, which in this
case is simply the filename in $name.

To move the file to /usr/home/robin (for example) on a Linux computer, you
might use the following statement instead (assuming that directory exists, and PHP
has permission to write to it):

move uploaded file($ FILES['filename'] ['tmp name'],

"/usr/home/robin/$name") ;

However, in this example, I have simply copied the file into the current folder so
that it can be quickly displayed by the final line of code:

echo "Uploaded image 'Sname'

";
Ensure that the correct write permissions for the destination folder have been
enabled when using this function, or you may find that the file cannot be copied.
gL

The $ FILESI[] Array

The $ FILES [] superglobal array can contain five different items after a file upload,
as follows:

e $§ FILES['file'] ['name'] The name of the uploaded file
e $ FILES['file']l ['type']l The content type (such as image/png)

Lesson 17 Maintaining Security 173

e $ FILES['file'l ['size']l The file size in bytes
e $ FILES['file']l ['tmp name'] The name of the temporary file
e $§ FILES['file'] ['error'] Any error code resulting from the upload

Using these values, you will know what the file was called when selected by the
user, the type the file is (image, video, and so on), how big it is, its temporary name
on the server, and any error that may have occurred.

Some of the file types (also known as MIME types) you may encounter include
the following:

Applications application/pdf, application/zip

Audio audio/mpeg, audio/x-wav

Images image/gif, image/jpeg, image/png, image/tiff
Text text/html, text/plain, text/xml

Video video/mpeg, video/mp4, video/quicktime

The s _FILES[] array is cleared when PHP exits, so if you do not copy an uploaded
file to a permanent location, it will be lost on exit.

File Security

There is potential for a hacker to seriously mess up your server using file uploading,
unless you are careful. They could do this by entering a special filename for the
uploaded file, such as C:/Windows/System32/calc.exe (for just one example), which on
a Windows computer could replace your calculator with a malicious program (if the
write permissions are not set securely)!

Therefore, the example is unsafe as I have written it, because it needs any characters
other than alphanumeric characters (and the period) stripped out before being used,
which can be done by replacing the line of code

$name = $ FILES['filename'] ['name'];
with the following:

$name = strtolower (preg replace('/[™\w.-1/', '',
$_FILES['filename'] ['name']));

This uses the preg replace () function (as described in Lesson 15), along
with a regular expression that allows through only word characters, and the . and -
characters, and then uses a replacement value of the null (empty) string to remove
any unwanted characters, thus rendering the filename safe to use. The / character,
quotation marks, and any operating system control characters will be unable to get
through this conversion.

Finally, enclosing the name conversion code is a call to strtolower (), which
sets the resulting filename to all lowercase so that it will work on all file systems—
whether case-sensitive or not.

174 Part II Advanced PHP

There’s a lot more to dealing with files than this, so I cover file handling in much
greater depth in Lesson 18.

Other Potential Insecurities

In the following lesson, we'll look at file handling and discuss maintaining security
when doing so. But even before you get to that lesson, you should be thinking about
how to help your websites and your users be more secure. For example, if you intend
to support logging in with usernames and passwords, will you evaluate the passwords
and either inform a user if a chosen password is weak, or perhaps insist on certain
minimum lengths and/or required types of characters (such as combinations of
uppercase, lowercase, digits, and punctuation)?

You see, even without finding a vulnerability in your website, an intruder may
find a way in to the accounts with short and/or simple passwords, by using simple
brute-force, repeated login attempts. Speaking of which, any account that receives
more than a set number of failed login attempts should probably be flagged for the
system admin to investigate. And it may also pay to use a CAPTCHA service (many
free services are available, such as captcha.net, which is shown in Figure 17-2) to try
and ensure that only humans can create accounts on your websites. If you don't, you
may find your sites overwhelmed with bot-created logins.

overlgOks inglany 1
Type the two words: (=]
T LY weCAPTCHA

]

FIGURE 17-2 Restricting access to websites with a CAPTCHA

Also, PHP is often used in conjunction with database programs such as MySQL.
Although T don't cover these programs in this course, if you choose to learn how to use
MySQL (or another database) in conjunction with PHP, be sure to keep security in mind
from the very first examples you try. Many of the cases you hear about in the news
where passwords and other details have been hacked on major websites have resulted
from some form of database injection (similar to the form injection discussed here).

There are ways to further sanitize user input for databases, such as PHP functions
you can call to strip out potentially malicious characters, but let me advise you right
now that the one absolutely failsafe method to use with MySQL is prepared statements.
So make sure that any book or course you purchase on MySQL (or any other database)
comprehensively works with prepared statements, rather than sending user input
directly to the database.

I would also advise you to be aware of the term salting, in which (very roughly) you
add your own strings of characters to user passwords before encoding or hashing them
(and then remove them upon retrieval), so that even if your database is hacked, if the
salt string you have applied is not found by the intruder, that database will be useless to
them. So make sure any database book or course you buy fully discusses salting.

Lesson 17 Maintaining Security 175

Summary

You will now be able to effectively sanitize user input to make it safe to work with,
and know how to upload any type of file to PHP without creating a security risk. In
the following lesson, we'll move onto processing such submitted data by setting and
reading cookies and using file handling.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know
an answert, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

10.

. With which function can you sanitize user input, converting HTML special

characters into safe entities?

. What encoding type should an HTML form use in order to be able to upload files

to a web server?

. What input type should an <input > element use in order to allow a file to be

selected for uploading via a form?

. When a form has uploaded a file to a web server, which PHP superglobal array

will contain all the details about the file?

. What are the five pieces of information you can retrieve from PHP after a file

upload, and how?

. Assuming the uploaded file is an image, what are the three main types that it

could be?

. How can you ensure that an uploaded file will not compromise your web

server?

Once you have received a file and sanitized its filename, what must you do to
place it on your system?

. What can you do to lessen the possibility that “bots” are accessing your websites

instead of humans?

When processing filenames, what function is it a good idea to call if your
program may have to run on different platforms?

This page intentionally left blank

o’

Accessing Cookies and Files

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

Your journey to become a master PHP programmer is almost complete, but there
are just a few odd bits and pieces I still have to tell you about in these final
lessons—sort of the icing on the cake of PHP.

In this lesson these items include how to save cookies on your users’ computers
to personalize their browsing experience on your web pages, how to get useful
information from the browser’s environment, and how to work with files and the
file system.

Using Cookies

Cookies are those little snippets of data that get saved on your computer and that
everyone makes such a fuss about because some companies use them to track

your surfing and buying habits. However, cookies are extremely useful and, in fact,
invaluable for making your users’ visits to your web pages as smooth and enjoyable as
possible.

You see, cookies are the means used by sites such as Facebook and Twitter to keep
you logged in so that you can keep going back without having to continually reenter
your username and login details. And I'll now show you how easy it is for you to set
and read cookies using PHP, so that you can provide the same functionality.

Cookies are sent to (and retrieved from) a web browser in header messages
that get sent before the body of a page is sent to the browser. Therefore, you must
always ensure that your cookie setting takes place before any part of a web page is
sent. Otherwise, if even one character of a web page body has already been sent to a
browser by your PHP script, then setting a cookie will fail.

177

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

178

Part II Advanced PHP

Setting a Cookie

To create a cookie, you simply assign it a value that contains the various details it needs
to store on the user’'s computer. These include the cookie name, its contents, its expiry
date, the domain to which it applies, the path to the server issuing it, and whether or
not it is secure, as follows:

e name The name of the cookie as used by your PHP code to access the cookie on
subsequent browser requests.

e value The value of the cookie (the cookie’s contents). It can hold up to 4KB of
alphanumeric text (but is not suitable for the storing of sensitive data).

e expire The Unix timestamp of the expiration date. Most easily set in an expression
using time () plus a number of seconds. (This setting is optional; the default is
that the cookie expires when the browser closes.)

e path The path of the cookie on the server. If this is a /, the cookie is available
over the entire domain. If it is a directory, the cookie is available only within that
directory and its subdirectories. (This setting is optional; the default is the current
directory that the cookie is being set in.)

e domain The Internet domain of the cookie. If this is myserver.com, the cookie is
available to all of that web domain and its subdomains, such as www.myserver.com
and sport.myserver.com. If it’s a subdomain, such as sport.myserver.com, the cookie
is available only to that subdomain and its sub-subdomains such as tennis.sport
.myserver.com, but not to any other main subdomains such as news.myserver.com.
(This setting is optional; the default is all domains and subdomains of the current
SEerver.)

e secure Ifthisis setto TRUE, the cookie must be sent over an https:// secure
connection or it is not sent at all. (This setting is optional—the default is FALSE.)

e httponly Ifthis is set to TRUE, the cookie will be made accessible only
through the HTTP protocol; therefore, cookies set in PHP will not be retrievable
from scripting languages such as JavaScript. Additionally, this setting may not
be supported in all browsers, so I recommend you probably shouldn’t rely on
it unless you have a very good reason. (This setting is optional; the default is
FALSE.)

The name, value, and expire arguments should now be quite clear, but let me
expand on the optional path argument. Don't supply an argument (or just pass ' ') if
you want cookies to apply in the current directory or deeper. Alternatively, you can
give a value of / for the cookie to apply across all directories on the server, or you can
supply the location of another subdirectory, such as /login/, and cookies will apply
only in that directory or deeper.

The same goes for the optional domain argument. Don't supply an argument (or
just pass ' ') for the cookie to apply to the entire domain of the website. Otherwise,
specify a subdomain such as subdomain.mysite.com to restrict access to the cookie to
that domain only.

http://www.myserver.com
http://myserver.com
http://sport.myserver.com
http://sport.myserver.com
http://tennis.sport.myserver.com
http://tennis.sport.myserver.com
http://news.myserver.com
http://subdomain.mysite.com

Lesson 18 Accessing Cookies and Files 179

Finally, if you have a secure web server running and wish to restrict cookie
exchanges to using only a secure HTTPS connection, then set the optional secure
argument to TRUE. Otherwise, don’t pass an argument.

Therefore, to simply set a cookie’s value and expiry, and have it apply only in the
current folder (or deeper) of the current website, you might issue a simple statement
such as this:

setcookie ('username', 'FJones', time() + 60 * 60 * 24 * 7);

The cookie set by this assignment will have the name username and the value
FJones. It will stay on the user’s computer (unless manually removed) for a week,
as calculated by multiplying 60 (seconds) by 60 (minutes) by 24 (hours) by 7 (days).
Alternatively, a precalculated numeric value (in this case, 604800) can be supplied
(but time () must still be added to it).

Reading a Cookie

Reading back a cookie’s value is simply a matter of accessing the $ COOKIE []
superglobal array, like this:

Susername = isset ($_COOKIE['username']) ? $ COOKIE['username'] : FALSE;

The variable $Susername will now either have the value FALSE if the cookie was
not found, or it will contain the cookie’s value. You could also use the value NULL, the
empty string (' '), or other similar values to indicate that no value was retrieved into
the variable.

However, as previously cautioned, remember that you cannot read back a cookie’s
value immediately after setting it, because you can only read cookies from a web
browser after they are sent to PHP as part of the header exchange prior to sending a
web page to the browser. Therefore, you can only check that the value was correctly
assigned on the subsequent page load.

Deleting a Cookie

To delete a cookie, you simply need to use the setcookie () function in the same
way you did to set the cookie in the first place, but with an expiry time set in the past,
like this:

setcookie ('username', '', time() - 3600) ;

This function simply saves a cookie of the name username with no value
(actually an empty string), and sets its expiry to time () - 3600 seconds (one hour
in the past), the result of which is that the cookie expires. You could even use a value
of just time () - 1, but it makes sense to go further back than that to account for any
timing delays caused by slow or interrupted data transfer.

180 Part II Advanced PHP

Once you've set a cookie for a user, upon their next return to your website, just
W check for the existence of that cookie, and if it has a value, you can use it to look
=== up their details and personalize your content for them. You can also store other
values in cookies, too (although you should avoid storing a password, and instead
save a unique token your server has created for identifying the user). The generous

4KB size limit per domain means you can probably store all the cookies you could
want for most purposes.

Combining These Three Functions

Following is an example that combines all three of these functions (cookie creation,
reading, and deletion) in a single web document, as shown in Figure 18-1:

<!DOCTYPE htmls>
<html>
<head>
<title>Using Cookies</title>
</head>
<body>
<h3>Press Reload to allow the cookie to be set and erased</h3>
<?php
Susername = isset ($_COOKIE['username']) ? $ COOKIE['username'] : FALSE;

echo "The username is: Susername';

if (!Susername)
Susername = 'admin';
setcookie ('username', Susername, time() + 604800) ;
else setcookie('username', Susername, time() - 3600) ;
?>
</body>
</html>

. Using Cookies x

€ - C A |[localhost/lesson18/cookiesphp ¢/ 9¢| =

Press Reload to allow the cookKie to be set and erased

The username is: admin

FIGURE 18-1 Creating, reading, and deleting a cookie

Lesson 18 Accessing Cookies and Files 181

The beginning part of this example simply outputs some HTML, before entering
a section of PHP code where the first thing that happens is the variable Susername
is assigned the value in the cookie with the name of username. If there is no such
cookie, Susername is given the value FALSE.

If an attempt was made to simply read the cookie directly, there is potential for an
error to be thrown if the cookie doesn’t have a value. Therefore, instead a call to the
isset () function is first made, and only if it returns TRUE (indicating that there is a
retrievable value) is the value then read by extracting it from the $ COOKIE [] array:

Susername = isset ($_COOKIE['username']) ? $ COOKIE['username'] : FALSE;

Next, the value in Susername is output. This will either be a string, the value
FALSE (which will cause the variable’s value to be displayed), or nothing:

echo "The username is: $Susername";

After this, Susername is then tested using an 1f () statement. If it doesn’t have a
value, it is assigned the string admin:

Susername = 'admin';

Then a cookie is set with the name of username and given the value in
$username. The cookie is set to expire in one week:

setcookie ('username', Susername, time() + 60 * 60 * 24 * 7);

The matching else part of the i f () statement is selected only if Susername
does have a value, in which case it erases the cookie username:

else setcookie('username', Susername, time() - 3600) ;

The result of this is to toggle the variable Susername between having the value
FALSE and the value admin each time the page is reloaded. Although not particularly
useful in a production website, this is a good example of the three main things you
can do with cookies. Try the program for yourself by loading cookies.php from the
companion archive into a browser and clicking the Reload button a few times.

Browser Identification

Even in the current times of greater browser compatibility, there still remain
differences between all the major browsers, and sometimes you'll find you need to
determine the user’s browser in order to tailor your PHP output to provide the best
possible experience. For example, it can be helpful to know if a user is browsing on a
mobile device such as a phone or tablet.

To do this, you can process the user agent string that the browser passes to PHP.
Every web page request supplies a user agent string passed to it by well-behaved
browsers, and you can usually rely on this string to determine information about the
user’s computer and web browser. However, some browsers allow the user to modify
the user agent string, and some web spiders and other “bots” use misleading user
agents, or even don't provide any user agent string.

182 Part II Advanced PHP

Nevertheless, on the whole it is a very handy item of data to make use of, and
takes a form such as the following formidable-looking user agent string. (Note that
each string can be different from any other due to the way the browser is configured,
its brand and version, the add-ons in it, the operating system used, and so on.)

Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; MALNJS; rv:11.0) like
Gecko

This string states that the browser is Internet Explorer 11 (because of the
layout engine Trident /7.0 and version string rv:11.0). The browser is broadly
compatible with version 5 of Mozilla-based browsers such as Firefox (both the terms
Mozilla/5.0 and like Gecko supply this information). The operating system is
Windows 8.1 (because of the string Windows NT 6. 3), and the browser is a Windows-
On-Windows program (a 32-bit application running on a 64-bit operating system),
as indicated by the string WOW64. The string MALNJS is a manufacturer code, which
indicates that the current device is a Lenovo PC.

Many of these you can normally ignore, but the most useful piece of information
is the browser type, because sometimes you need to tailor code to specific browsers
(most frequently with Internet Explorer, due to a history of incorporating nonstandard
features).

The GetBrowser () Function

To extract this information from the user agent string, you can use a function such as
the following (the result of which is shown in Figure 18-2):

function GetBrowser ()

{

SUA = $ SERVER['HTTP_USER AGENT'];

if (strstr(sUAn, 'MSIE')) return 'IE';
elseif (strstr(SUA, 'Trident')) return 'IE';
elseif (strstr($SUA, 'Opera')) return 'Opera';
elseif (strstr(SUA, 'OPR')) return 'Opera';
elseif (strstr(SUA, 'Chrome')) return 'Chrome';
elseif (strstr(SUA, 'iPod')) return 'iPod';
elseif (strstr(SUA, 'iPhone')) return 'iPhone';
elseif (strstr($SUA, 'iPad')) return 'iPad';
elseif (strstr(SUA, 'Android')) return 'Android';
elseif (strstr(SUA, 'Safari')) return 'Safari';
elseif (strstr(SUA, 'Firefox')) return 'Firefox';
elseif (strstr(SUA, 'Gecko')) return 'Firefox';
else return 'Unknown';

In this code, the user agent string is retrieved from the $ SERVER [] superglobal
array and then tested for all major browsers such as Internet Explorer, Opera,

Lesson 18 Accessing Cookies and Files 183

. Browser Detecting x

€ = C A [localhost/lesson18/getbrowserphp &7'v¢ =

Your browser is: Chrome

Your user agent string: Mozilla'5 0 (Windows NT 6.3; WOW64)
AppleWebKit/537 36 (KHTML, like Gecko) Chrome/36.0.1985.125
Safari’5$37.36

FIGURE 18-2 Reporting the browser type and user agent string

Google Chrome, Apple Safari, Mozilla Firefox, Google Android, and various Apple
i0S devices. The function uses the strstr () function to interrogate the user
agent string, and the result is saved in the variable SUA. It returns the browser found
(or the string Unknown if no browser is recognized).

There is more than one test for some browsers due to differing user agent strings
for older versions, so all browsers of the last few years should return the correct
string. You can test the code for yourself using the file gethrowser.php in the archive
downloadable from the companion website at 20lessons.com.

Another PHP function, called get browser (), will return information about the
W features the current browser is capable of handling, including frames, JavaScript,
=== cookies, and more. See the URL php.net/manual/en/function.get-browser.php for
more details.

File Handling

One of the best ways to store and retrieve large amounts of data in PHP is using
the MySQL database. However, just teaching MySQL involves enough material that
it would take up a separate book—in fact, several books have been written on the
subject.

Because this is a course on PHP, not PHP/MySQL, I won't digress into how you
use it here. Anyway, as a beginner there’s no need to quite yet, because you can
perform an amazing amount of data storage and retrieval using simple flat files and
the built-in PHP file-handling commands.

They are fast and even support file locking (explained in the following lesson)
to allow multiple accesses to the same file at the same time (taking turns, though, of
course). In fact, to gain maximum speed where complex database functions are not
required, I sometimes use flat files for basic data storage, because it removes all the
overhead that running MySQL requires, enabling many more users to interact with
the data at a time.

20lessons.com

184

Part II Advanced PHP

However, once you need to start searching through data or need to perform more
complicated data operations such as merging data files and so on, the MySQL overhead
starts to become less significant in comparison to the complications of convoluted
file-handling functions. But for a beginner to PHP, I'm sure that the following file-handling
functions will serve all your initial needs.

If you are writing code that may be used on a variety of PHP installations, there

is no way of knowing in advance whether these systems are case-sensitive. For
—=w== example, Windows and OS X filenames are not case-sensitive, but Linux and Unix

ones are. Therefore, I recommend that you always assume the system your program

is running on is case-sensitive, and therefore stick to a convention such as only

allowing all lowercase filenames.

Testing for a File Existing

One of the first things you may need to do is test whether a file already exists before
writing to it. Often this will be because you are going to keep updating the file, but
it hasn't yet been created. To determine whether a file exists, simply call the file
exists () function with the filename of the file to examine, like this:

if (file exists('myfile.info')) echo 'File exists';

The file exists () function returns TRUE if a file already exists; otherwise, it
returns FALSE. If you don't specify a path along with the filename, the file is looked
for in the current folder (the one the PHP code has been called up from). To access a
different location, preface the filename with a suitable path.

If your code will be distributed, and therefore might be running on any of a
number of platforms, you will not be able to specify an absolute path, so I recommend
using relative paths, like this (not just for testing for a file’s existence, but for all file
operations):

if (file exists('../myfiles/myfile.info')) echo 'File exists';

If you are writing code for a particular server, though, you can use absolute
paths, but I still caution you that you could well find you have to port your code at
some future time. Therefore, I recommend you keep these paths in global variables
specified at the head of your code, like this:

$SGLOBALS ['mypath'] = '/usr/home/peter/';
Then, whenever you access files, you can attach the path, like this:

if (file exists($GLOBALS['mypath'] . 'myfile.info'))
echo 'File exists';

Now, should you ever have to modify your code, all you need to do is change this
and any other global path variables you have defined, and your code should be set to
run on a new server and/or from a new location.

Lesson 18 Accessing Cookies and Files 185

Of course, another method you might employ to save such a global value is to
create a constant, like this: define ('MYPATH', '/usr/home/peter/"') ;.
~<=== (This was discussed in Lesson 4.) You can then refer to the constant’s value using
simply the word MYPATH (without a $ symbol). For the sake of brevity, though,
the following examples use only local filenames, so if you intend to modify any of
the code to your own purposes, it’s up to you to add in any paths.

Creating or Opening a File

To open files for reading or writing, you use the fopen () function and pass the filename
(and optional path), along with a second argument that tells PHP in what mode to open
the file. So, to open one for writing, you would use a statement such as this:

$filehandle = fopen('myfile.info', 'w');

This opens the file myfile.info for writing because of the w argument. A handle
with which the file can be accessed while it is opened is returned by fopen (), and
here it is saved in the variable $filehandle.

You can supply several different values to fopen () for specifying the way to
open a file:

e r Opens a file for reading only, and places the file pointer at the start of the file.
If the file doesn’t exist, FALSE is returned.

e r+ Opens a file for reading and writing, and places the file pointer at the start of
the file. If the file doesn’t exist, FALSE is returned.

e w Opens a file for writing only, and places the file pointer at the start of the file.
If the file exists, the file's length is truncated to 0. If it doesn't exist, the file is
created. On error, FALSE is returned.

e w+ Opens a file for writing and reading, and places the file pointer at the start
of the file. If the file exists, the file’s length is truncated to 0. If it doesn't exist, the
file is created. On error, FALSE is returned.

e a Opens the file for writing only, and places the file pointer at the end of the
file. If it doesn't exist, the file is created. On error, FALSE is returned.

e a+ Opens the file for reading and writing, and places the file pointer at the end
of the file. If it doesn't exist, the file is created. On error, FALSE is returned.

e b On systems such as Windows that differentiate between text and binary
files, when writing binary data you will need to include a b alongside whichever
preceding specifier you also apply (for example, fopen ('file', 'wb'); or
fopen('file', 'rb+') ;).

Writing to a File

To write to a file that is open, you use the fwrite () function, to which you pass the
file handle that was returned by calling fopen (), and the data to be written, like this:

fwrite($filehandle, 'Hello, this is a test');

186

Part II Advanced PHP

You can write a small string (as in the preceding statement), or a very large one,
up to the single file length capacity of the current file system. The data written is
saved in the file starting at the current file pointer location. In addition to strings, you
can also write binary data (such as an image file).

If the file has only just been opened using an argument of r+, w, or w+, the
writing will begin at the start of the file. But if it was opened using a or a+, the writing
will take place at the file’s end (the data will be appended).

If fwrite () cannot write to the file, it will return a value of FALSE (otherwise,
on success, it returns the number of bytes written), so it's always a good idea to
access fwrite () in a manner such as the following:

Sflag = fwrite($filehandle, 'Hello, this is a test!');
if (!s$flag == FALSE) die('Fatal error: could not write to file.');

The die () function outputs the string passed to it and then exits from PHP, so it's
equivalent to the following two statements, but is simpler and more compact:

echo 'Fatal error: could not write to file.';

exit;

You would probably use more user-friendly error handling than this, by the way,
but you get the picture.

Closing a File

To close a file when you have finished accessing it, you issue a call to fclose (),
passing it the file handle, like this:

fclose($filehandle) ;

This will flush any as yet unwritten data to the file and then close it. After that
point, sfilehandle will be invalid, unless that variable is used again when opening
another file.

Reading from a File

A file that has been opened in one of the modes that supports reading can be read from
in different ways. First, you can read in a single character using fgetc (), like this:

Schar = fgetc($filehandle) ;

This will advance the file pointer by 1 and store the character retrieved in $char.
But this is an unwieldy way to read from a file, so there’s also the £fgets () function,
which will read in a line from the file up to the next newline character (\n) that it
encounters, or the end of file, whichever comes first, like this:

$line = fgets($filehandle) ;

Lesson 18 Accessing Cookies and Files 187

If a newline is encountered, it will be returned as part of the line. You can also
specify a maximum number of characters to read in a second argument, like this
(ensuring, in this case, that no more than 249 characters will be read in):

$line = fgets($filehandle, 250);

As you can see, you must supply a value plus 1, so if you want to read up to 250
characters, you should provide an argument value of 251. If fgets () encounters an
error or if there is no more data to read, it will return FALSE, so it's also a good idea to
check the returned value before using it, like this:

$line = fgets($filehandle, 250);
if ($line == FALSE) die('Fatal error: could not read from file.');

Or you can use the following shorthand equivalent:

$line = fgets($filehandle, 250) or die('Fatal error: could not read from
file.'");

The preceding functions are handy for reading text files, but if you are reading
from a binary file, you will probably want to use the fread () function, which reads
in an exact number of bytes, unless the end of file is reached, like this:

sdata = fread(sfilehandle, 512);

This statement will read in 512 bytes from the file (or less if the end of file is
reached first). Should you want to read in an entire file at once, you can issue a
statement such as this:

Sdata = fread(sfilehandle, filesize($filename)) ;

By using filesize () to return the length of the file (remembering to also enter
a path, if necessary), you can quickly pull in the entire file in one go. As with the
other similar functions, if an error is encountered, fread () will return FALSE.

Summary

You now know how to tailor code to individual browsers whenever it (unfortunately)
is necessary. You can also save and read cookies from a user’s device and know how
to create, read from, write to, and test for the existence of files. In the following
lesson, we'll look at some more advanced file-handling techniques as well as ways of
maintaining sessions to help keep your users logged in or their shopping carts active
across multiple pages on a site.

188 Part II Advanced PHP

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don't
know an answer, go back and reread the relevant section until your knowledge is
complete. You can find the answers in the appendix.

10.

How can you set a cookie with the name cookie and value choc-chip, with
an expiry date of 30 day’s time?

How can you read the value (if there is one) of a cookie named cookie?
How can you delete a cookie (give an example)?

What is a good way to determine the make of browser and the platform it is
running on?

How can you test for the preexistence of a file on your web server?

How can you open a file for writing to, and how do you retain access to that file
for later write operations?

With what command can you write the string ' This is a sentence' to a file
opened in write mode?

How can you open a file for reading?

With a file opened in read mode, which command can you use to read in a
string of up to a maximum of 100 characters, or the next newline or file end
(whichever comes first)?

With a file opened in read mode, how can you read in exactly 1,000 bytes (or up
to the file end, if sooner)?

o’

Advanced File Handling

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

n this lesson, we'll clear up the remaining aspects of file handling by introducing

functions with even greater power to make the manipulation of on-server data even
easier (even across servers in different locations). We'll also look at reading from or
writing to just parts of files using random access techniques, where you seek to the
part of the file you need and just read or write at that location, as well as how to lock
files when accessing them to prevent concurrent users corrupting data.

Combining File Functions

Let’s start by looking at an example that brings many of the file functions from the
previous lesson together in the form of a very simple shopping list app (or it could
serve as a reminder or to-do list app) that allows you to add and delete entries from
the list, keeping track of the current contents in a text file, as shown in Figure 19-1:

<?php
Smessage = '';

if (isset($_POST['list']))

{

$mylist = htmlentities($ POST['list']);

Shandle = @fopen('shopping.txt', 'w')

or S$message = 'Could not open file for writing';
@fwrite (shandle, S$mylist) != FALSE

or $message = 'Could not save file';

@fclose (Shandle) ;

189

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

190 Part II Advanced PHP

}

elseif (file exists('shopping.txt'))
{
Shandle = @fopen('shopping.txt', 'r')
or Smessage = 'Could not open file for reading';
Slength = filesize('shopping.txt');
Smylist = @fread($Shandle, S$Slength)
or Smessage = 'Could not read file';
@fclose ($handle) ;

}

else Smylist = "Bread\nCheese\nMilk\nEggs\nButter\nChips\n";
Sself = $_SERVER['PHP_SELF'];

echo <<<_ EOT
<!DOCTYPE html>
<html>
<head>
<titles>File Handling 1l</title>
<style>
textarea {
width :150px;
height:150px;
resize:none;
}
</style>
</head>
<body>
<h3>Your Shopping List</h3>
<form method='post' action='Sself'>
<textarea name='list'>$mylist</textarea>

<input type='submit' value='Save list's>
Reload
</form>

Smessage
</body>
</html>
_EOT;

?>

There are two separate parts to this program. In the first, all the file-handling
operations take place. In the second part, rather than dropping out of PHP back to
HTML, PHP is used to output all the HTML for the web page, so that PHP variables
can be placed right into the HTML at the relevant places. This is managed using a
heredoc structure, located within the <<<_ EOT and EOT; tags.

Lesson 19 Advanced File Handling 191

[l File Handling 1 x

€ = C A |[1localhost/lesson19/filehandlingl.php &7 52| =

Your Shopping List

Bread
Cheese
Milk
Eggs
Butter
Chips

Reload

FIGURE 19-1 Maintaining a shopping list on the server

Saving Any Form Data

Looking at the first section, you can see that it is divided into three subsections. The
first of which uses the isset () function to test whether any form data has been posted
using the name (or key) 1ist:

if (isset ($_POST['list']))

If it has, the user has updated the information and it therefore needs processing,
beginning with sanitizing the input to make it safe for use with the htmlentities ()
function:

$mylist = htmlentities($ POST['list']);

With the sanitized form data now safely in the variable $mylist, a handle called
$handle is then created to access a file in the current folder named shopping.txt,
using write mode:

Shandle = @fopen('shopping.txt', 'w') != FALSE

If an error occurs during this process, a result of -1 will be returned, which is
tested with the trailing ! = FALSE statement. If so, the following or statement sets the
variable $message (initialized to ' ' at the start of the program, so that by default no
error will be displayed) to a string explaining the problem:

or $message = 'Could not open file for writing';

192

Part II Advanced PHP

Next, the data that was posted to the program is then written to the disk with a
call to fwrite (), passing the file handle in Shandle and the data in $Smylist:

@fwrite (shandle, S$mylist) != FALSE

Once again, the result is tested with the statement ! = FALSE, and if there was an
error, the or statement is employed to assign an error string to Smessage should the
file operation fail:

or $message = 'Could not save file';
Finally, the file is closed with a call to fclose (), like this:

@fclose (Shandle) ;

Although PHP will automatically close any open files for you on program exit, it’s
still a good idea to deliberately close all files as soon as you finish accessing them.

=== This way, you'll have adopted a good habit already when it comes to multiple file
opening and closing in a single web page, where forgetting to close a file could
cause very nasty mangling of data.

I'm sure you'll have noticed something strange in this code, in that @fopen (),
@fwrite (), and @fclose () all have an @ symbol prefacing them. The reason for
this is that you can suppress PHP error messages by placing that symbol in front of
the functions you call.

Although this is usually not a good idea on its own (because you'll be oblivious to
important information you may need to know), if you have written your own error-
handling (as we have here), it does makes sense to disable the system messages in
favor of your own more user-friendly ones. It also means users aren’t confronted with
two different types of messages for each error.

Reading from the Data File

In the next section (which is entered only if no data was posted), an elseif ()
statement calls the file exists () function to determine whether the file shopping.
txt exists:

elseif (file exists('shopping.txt'))

If it does, a handle to the file in read mode is created in $handle, and if an error
is encountered, an or statement ensures a message will be placed in Smessage:

Shandle = @fopen('shopping.txt', 'r')
or Smessage = 'Could not open file for reading';

Then, we assign the length of the file to $1ength by looking it up with the
filesize () function:

Slength = filesize('shopping.txt!');

Lesson 19 Advanced File Handling 193

Using the variables just assigned, we read in the contents of the file, with an or
statement setting Smessage to a relevant value if there is any problem with the
operation, and then the file is closed:

Smylist = @fread($handle, $length)
or Smessage = 'Could not read file';
@fclose (Shandle) ;

Prepopulating the Shopping List
In the third section (which is only reached if no data was posted, and the file shopping
.txt was not found), the variable $mylist is populated with six items, each followed

by a \n escape character to place a new line after it when displayed in the HTML
<textareas element later on:

else Smylist = "Bread\nCheese\nMilk\nEggs\nButter\nChips\n";

There is one further instruction before the HTML is output, which simply sets the
variable $self to refer to the current web document. This will enable the page to link
to itself no matter where on a server it is located or what name it is given:

$self = $ SERVER['PHP_SELF'];

In a larger program it might be a good idea to create a constant to hold a value
such as this (which cannot change throughout the life of the script). See Lesson 4
| N ——

for more details on constants.

The HTML Section
The HTML begins at the start of a heredoc section, like this:
echo <<<_ EOT

It uses a little CSS to style the <textareas> element and then displays it within
a <form> element, alongside an <input > element to submit edited data for saving
to disk.

The variable $self is used to refer to the document itself in two places: once
where the form action is set, and again where a link is made to enable the page to
be reloaded without submitting the current contents of the form.

The variable $mylist is placed inside the <textareas> element to display the
shopping list data, and, finally, Smessage is placed just before the <body> closes.
If no errors have been encountered, it will contain the empty string; otherwise, the
error string assigned to it will be displayed. The heredoc is then closed and the page
is complete:

EOT;

194 Part II Advanced PHP

When you load this document into a web browser, you can update the shopping
list and click the Save List button to save it to the server’s hard disk. You can verify that
this has correctly occurred by clicking the Reload link at any time, which forces the
program to start from scratch without posting the current data. You need to use the link,
because if you use a browser’s Reload button, it will prompt you to resubmit the form
data, which you don’t want to happen.

Anyway, when you click the Reload link, if there is any data saved on the web
server, it will be read in and displayed. Therefore, if you have updated the list and
saved it, you will see your changes have been recorded—that is, if all is working as
it should (and you have set appropriate file permissions).

Even Simpler File Accessing

For very quickly grabbing the contents of a file, you can use the file get contents ()
function. Simply call it with the filename to read, and the entire contents of that file

will be returned. For example, the second section of PHP code can be replaced with the
following, much more concise equivalent:

elseif (file exists('shopping.txt'))
{
Smylist = @file get contents('shopping.txt') != FALSE
or $message = 'Could not retrieve file';

As you can see, this function opens, reads, and closes the requested file for you,
so it's very powerful, and generally the better option when you want to read in an
entire file.

And you can also replace the first i £ statement with the following shorter
replacement, which uses the partner file put contents () function, as shown in
Figure 19-2:

if (isset ($_POST['list']))
{
Smylist = htmlentities($ _POST['list']);
@file put contents('shopping.txt', S$mylist) != FALSE
or $message = 'Could not save file';

In fact, the function is so powerful that you can even supply a URL to it, and
the document (or even binary data) at that URL will be returned. Now this is handy
because in the old days of the Net, programmers used to have to play with opening
web sockets and other arcane features in order to access documents from across the
Web, but now it’s as easy as the following short example (as shown in Figure 19-3):

<?php
Surl = 'http://upload.wikimedia.org/wikipedia/commons/thumb/"'
'8/85/Smiley.svg/600px-Smiley.svg.png' ;

Lesson 19 Advanced File Handling 195

[l File Handling 2 x

« =>0C K [D localhost/lesson19/filehandling2.php </$f1?] =

Your Shopping List

Bread o
Cheese

Milk

Eggs

Butter

Chips

Potatoes

Tomatoes

Carrots

Reload

FIGURE 19-2 The shorter and simpler code works just as well.

Sname = 'smiley.png';

if (!file exists($name))

{
$image = file get contents($url);
file put contents($name, S$image) ;

echo <<<_EOT
<!DOCTYPE html>
<html>
<head>
<title>Cross-Web File Handling</title>
</head>
<body>
<h3>Here's a smiley from Wikimedia</h3>
The image was fetched from <i>$url</i> and saved locally<brs>
(Examine the page source to confirm)

</body>
</html>
_EOT;

?>

196 Part II Advanced PHP

[l Cross-Web File Handling %

= C A | [1 localhost/lesson19/cross-web.php Il =

Here's a smiley from Wikimedia

The image was fetched from http://upload. wikimedia. orgiwikipedia/commons/thumb/8/85/Smiley.svg/600px-Smiley.svg.png and
saved locally

(Examine the page source to confirn)

FIGURE 19-3 Copying an image from a remote server to serve up locally

This code fetches an image from the Wikimedia servers and stores it in $smiley,
before saving a copy to the local disk using file put contents (), and then
displaying it later on in the HTML section. It's also very web friendly in that the cross-
web access is made only once, because after the image has been fetched for the first
request, the file exists () function call in future requests will report that the local
copy exists, and so no further attempt will be made to get that file.

Using file put contents (), you can also write to other servers to which you
have access, but this is too complex a procedure for this lesson. However, if you
L o are interested in doing this, you can check out the following URL for details: php.

net/manual/en/function.file-put-contents.php. Also, you should always ensure
that you have sufficient rights to access third-party servers in these ways.

Lesson 19 Advanced File Handling 197

File Copying

To copy a file, you don't need to open one, read it in, and then write out another;
instead, there’s a PHP function to do it for you, called simply copy () . Just supply the
source and destination filenames (including paths as necessary), like this:

copy ('original.file', 'copied.file') != FALSE
or die("Could not copy file");

The ! = FALSE statement tests the returned value, whereas the or keyword saves
you from having to use an 1f () statement for evaluating the test, and thus is simpler
than (for example) the following:

$flag = copy('original.file', 'copied.file');
if ($flag == FALSE) die("Could not copy file");

File Deleting

To delete a file, you use the unlink () function, like this:

if (unlink('original.file') == FALSE)
die ("Could not delete file");

This statement also shows another way of catching and dealing with an error. In
this case, the returned value is directly tested. It's not quite as elegant as using or
after the function, but it’s another method you can choose to use.

Beware that if you are calling unlink () based on user input, you must make sure
to first sanitize the input sufficiently that you won’t be deleting something on
U7 === your server that you shouldn’t be.

File Moving

If you no longer need it, you can always delete the original file after making a copy,
but it’s probably quicker and simpler to simply move the original file using the
rename () function, like this:

rename ('original.file', 'copied.file') != FALSE

or die("Cannot rename.") ;

Like with the other functions, if the file cannot be renamed, FALSE is returned.

198 Part II Advanced PHP

Random Access

Using the file pointer that every open file has, you can move about within files. This
gives you what is called random access to the file, in which you can move the file
pointer wherever you like, to read in and (if the file was opened in the right way)
write out data.

To move a file's pointer, you use the £seek () function, to which you pass the file
handle, an offset value, and (optionally) an argument that specifies where the seek
should be from. For example, to seek all the way back to the start of a file, you would
issue this call:

fseek (sfilehandle, 0);
This is directly equivalent to using the rewind () function, like this:
rewind ($filehandle)

You can supply three optional values as a third argument to £seek (), as follows:

SEEK_SET Seceks from the file's start
SEEK CUR Seeks from the current file pointer
e SEEK_END Secks from the file's end

Of these, SEEK SET is the default, so the following are equivalent to each other:

fseek ($filehandle, 0);
fseek ($filehandle, 0, SEEK SET);

To move the file pointer to the end of a file, you would use this statement:
fseek ($filehandle, 0, SEEK END) ;

When using the default or SEEK SET, you must use positive seek values to seek
forward into the file. Likewise, when using SEEK END, you must use negative values
to seek backward from the end (because positive values always advance the file
pointer further away from the file’s start, but with SEEK_END the pointer is already at
the file's end).

When you use SEEK _CUR, you can supply either negative values to seek
backward from or positive values to seek forward from the current file pointer
location. And to determine where the file pointer is in a file, you can call the
ftell () function, like this:

Sfilepointer = ftell($filehandle) ;

If you have opened the file in append (a or a+) mode, any data you write to
the file will always be appended, regardless of the file position, and the result of
—«=== calling £seek () will therefore be undefined.

157

Lesson 19 Advanced File Handling 199

Writing to a Random Access File

To write to a file, you use the fwrite () function, which takes a file handle, the data
to write, and (optionally) the length of data to write, like this:

fwrite ($filehandle, $string);

If a length argument is given, writing will stop after the number of bytes specitied
have been written, or the end of string is reached, whichever comes first. Therefore,
the following will write a maximum of 64 bytes:

fwrite ($filehandle, $string, 64);

The writing always takes place at the current file pointer position, which then gets
updated after the write (to the next location following the data that was just written).

If fwrite () fails, it returns FALSE; otherwise, it returns the number of bytes
that were written. The second argument doesn't necessarily have to be a string,
because you can also supply binary data.

Managing Directories

To create a new directory (assuming PHP has the correct permissions in the file
system to do so), you call the mkdir () function, like this:

mkdir ('newfolder') ;

This will create a new directory called newfolder in the current directory. Include
a path with the filename if you need a directory created elsewhere. Upon error, this
function returns FALSE.

On a Unix/Linux system, the default file mode for the directory will be 0777,
which means full access for all users. This is not very secure, so you can restrict the
mode with a second argument, like this (which allows full access by the file’s owner,
but limits write access by other users):

mkdir ('newfolder', 0755) ;

To remove (delete) a directory (which must be empty), use the rmdir ()
function, like this (along with any path, as necessary):

rmdir ('newfolder') ;
The complete list of PHP file-handling functions (of which there are dozens) can

be found at php.net/manual/en/ref filesystem.php.

Again, always be careful if you are creating and/or deleting folders based on user
input.

Ie”

200 Part II Advanced PHP

File Locking

PHP has a built-in locking mechanism you can call on so that multiple users can
access the same file at the same time, but via a queuing system so that each user
gets access to the file in turn. One reason you might do this would be, for example, to
update a guestbook with comments from your users (or perhaps to allow concurrent
access to the shopping list example data file for additional family members).

Without locking, if two users were to submit an entry at precisely the same time,
it'’s quite likely that only one comment would get posted. But worse than that, if two
PHP scripts had the file open at the same time, it could even become corrupted and
result in data loss.

Therefore, file locking is an absolutely must-have feature on multiuser websites,
and to implement it you use the £1lock () function, in conjunction with the other file
system function, like this:

Shandle = @fopen ("guestbook.txt", 'a+') != FALSE
or die("Cannot open file");

if (@flock(shandle, LOCK EX)) // Request lock
{
$flag = @fwrite(Shandle, $comment) ; // Write to file
@flock ($handle, LOCK UN) ; // Release lock
if (!$flag) die("Cannot write to file"); // Must be after unlocking

@fclose (shandle) ;

In this example, the file guestbook.txt is opened for appending to, which places the
file pointer at the file's end ready for writing. If the opening didn’t fail, the £lock ()
function is called. It is passed the file handle of the newly opened file, along with a
value of LOCK_EX, which locks the file exclusively.

This places a request to PHP saying, “Please give me exclusive access to this file,”
and then flock () waits patiently in any queue of similar requests until its turn
comes up, and only then will it release access to the file.

Upon returning from £lock (), the PHP code knows it now has exclusive access
to the file, and so it writes out the contents of $comment to the file (or quits with an
error message if that fails).

Once the file has been written to, the code calls flock () once more, but this time
with a value of LOCK_UN, which tells PHP that it has finished with its exclusive access to
the file and that PHP can now assign it to the next script (if any) waiting in the queue.

The initial £1ock () call is placed within an if () statement, because some file
systems (such as FAT—particularly Windows 98) do not support file locking, and so
it's a good idea to see whether or not you actually achieved a secure lock before trying
to write to a file. In this case, if the attempted locking fails, program flow will fall
through to the fclose () statement and nothing will be written to the file. This is
better than possibly having corrupted files.

Lesson 19 Advanced File Handling 201

If you plan to use code such as this, you should probably consider placing a

matching set of else statements after the 1 £ () to try another means of safely saving
the file (or at least offering an error message to the user).

A Practical Example

Here's a very simple example of a working guestbook that you could incorporate on a
website with a few tweaks:

<?php

Smessage = '';
Sself $_SERVER [PHP_ SELF' 1;
$guestbook = '';

if (isset ($_POST['comment']))

{

S$comment = '' . htmlentities($ POST['comment']) . "\n";
Shandle = @fopen("guestbook.txt", 'a+')
or S$message = 'Cannot open file';

if ($handle)

if (@flock(shandle, LOCK EX))

{

$flag = @fwrite(shandle, $comment) ;
@flock ($handle, LOCK UN) ;
if ($flag == FALSE) S$message = 'Cannot write to file';

@fclose (Shandle) ;

$handle = @fopen("guestbook.txt", 'r') != FALSE

or $message = 'Cannot open file';

if (Shandle)

{

$flag = TRUE;

if (@flock(shandle, LOCK EX))

{
$length = @filesize('guestbook.txt') ;
$guestbook = @fread(shandle, $length) or $flag = FALSE;
@flock (shandle, LOCK UN) ;

202 Part II Advanced PHP

if ($flag == FALSE) Smessage = 'Cannot read file';

@fclose (shandle) ;

echo <<<_ EOT
<!DOCTYPE html>
<html>
<head>
<title>Guestbook</title>
<style>
textarea {
width :300px;
height:100px;
resize:none;
}
</style>
</head>
<body>
<h3>Guestbook</h3>
Sguestbook</0l>
<form method='post' action='Sself'>
<textarea name='comment's></textareas

<input type='submit' value='Add Comment'>
</form>

Smessage
</body>
</html>
_EOT;

?>

This code is similar to the previous couple of examples, and looks like Figure 19-4
when in use. It is split into the two parts—file handling and HTML output—and starts
by assigning three variables:

Smessage = '';
Sself $_SERVER['PHP_ SELF'];
Sguestbook = '';

The $message variable will be used to display any errors, $self ensures the
program will always post to itself, and $guestbook will contain any previously posted
comments.

Next, a test is made to see whether a comment has been posted. If one has,
it will be in $§_POST ['comment '], from where it is extracted, sanitized with the
htmlentities () function, and placed within <1i> and </11i> tags for later display.

Lesson 19 Advanced File Handling 203

. Guestbook *x

& = C A [localhost/lesson19/filelockingphp 7 v¢| =

Guestbook

1. Hey, great site.
2. Keep up the good work.

This guestbook works well.

Add Comment

FIGURE 19-4 A simple guestbook with file locking

A \n escape character is also appended to enable the data file to be loaded into a text
editor for manual viewing and editing:

if (isset($_POST['comment']))

$comment = '' . htmlentities($ POST['comment']) . "\n";

Next, the file guestbook.txt is opened in append mode, and a handle to it is saved
in shandle. If the file could not be opened, Smessage is assigned an error message

string:
Shandle = @fopen ("guestbook.txt", 'a+') != FALSE
or Smessage = 'Cannot open file';

Next, $handle is tested; if it has a value, the code to append to the file is entered
and an exclusive file lock is obtained on it:

if (shandle)

if (@flock(shandle, LOCK EX))

As soon as the program obtains the lock, it writes the contents of Scomment to
the file using fwrite (), assigning the value returned to $flag, and then the file
lock is immediately released:

Sflag = @fwrite(shandle, $comment) ;
@flock ($handle, LOCK UN) ;

204

Part II Advanced PHP

With the lock released, the program can then determine whether the file append
was successful by testing the variable $flag. If FALSE is returned, there was a problem,
and so an error string is assigned to Smessage: and the file is closed:

if ($flag == FALSE) S$message = 'Cannot write to file'

}

@fclose (Shandle) ;

Lastly, in the PHP section, regardless of whether or not any comment was just
appended, the file guestbook.txt is read in using the same locking technique:

Shandle = @fopen("guestbook.txt", 'r') != FALSE

or Smessage = 'Cannot open file';

if ($handle)

{

if (@flock(shandle, LOCK EX))
{
$length = @filesize ('guestbook.txt') ;
Sguestbook = @fread(shandle, $length) or $flag = FALSE;
@flock ($handle, LOCK UN) ;
if (!sflag) Smessage = 'Cannot read file';

@fclose (Shandle) ;
}

Finally, any comments in the guest book are displayed within and </0l1>
tags, and then a form is displayed for adding new comments, underneath which
$message displays any errors that are encountered.

For maximum response time (and minimum disruption to other waiting scripts),
you should only lock a file exclusively immediately before you intend to access it. You
should then release the lock as soon as possible after that. Any unnecessary delays
between locking a file and releasing it will mount up on a busy system, and make it
quite sluggish.

As it stands, until the first comment is posted, this example will display an error
due to no guestbook file currently existing. To avoid this, you could create an empty
guestbook.txt file in the current folder, or simply post a first welcome message yourself.

Because reading a file doesn’t change it, you might think you wouldn't need file

locking for file reading because there’s no danger of corrupting a file. But on
<= busy web servers it's possible that a read request could occur halfway through an

update by another user, and so only a partial file might get read back. Therefore,

you also need to lock files subject to updates by other users when reading from

them. Also, never forget to close a file lock when you have finished with it,

or you'll very quickly grind a server to a halt as all the requests back up.

Lesson 19 Advanced File Handling 205

Summary

This completes your introduction to all aspects of PHP file handling, and you're now able
to manipulate files in multiple ways, across servers or locally, and with the necessary
locking if required for concurrent users.

In the final lesson, we'll use these skills for maintaining a user’s presence throughout
the pages of a website with authentication and session handling, and even conduct
background Ajax communications with the web server, to allow partial updates to web
pages without requiring them to be reposted or reloaded.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know
an answet, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

1. How can you prevent PHP from displaying its own messages when you call a
function?

How can you determine the length of a file?

When writing text to a file, how can you insert newline characters?

With which single function can you open, read, and then close an entire file?

With which single function can you open, save, and then close an entire file?

How can you read in a web document or object from a URL?

With which command can you create a copy of a file?

With which command can you delete a file?

kOW\I.O\U'I-wa

With which command can you move the pointer into an open file?

10. How can you prevent file accesses by one user conflicting with those by another,
potentially causing file corruption?

This page intentionally left blank

120

Authentication, Sessions, and Ajax

To view the accompanying video for this lesson, please visit mhprofessional.com/
nixonphp/.

n this final lesson, we'll look at ways to keep track of the state of a user’s interaction
with a website (perhaps the contents of a shopping cart, or just their username and
password) and maintain it across all pages on that site, by first authenticating users
and then managing their access to your server with sessions.
Then we'll finish off by conducting background Ajax communications between a
browser and web server. Ensuring that your server and your user’s data remain secure
is always a priority, and is also fully encompassed throughout this lesson.

Authentication

Using HTTP authentication, you can prevent access to certain areas of a website to
unauthorized users. To do this, you maintain a list of valid usernames and passwords
that are accepted by the server, and then add some code to your PHP that requests
identification before granting access.

Let’s start using an example where only one person, the administrator, is granted
access, like this (see Figure 20-1):

<?php
Susername = 'admin';
Spassword = 'password';

if (!isset($_SERVER['PHP_ AUTH USER']) ||
!isset ($_SERVER['PHP_AUTH PW']))

207

http://www.mhprofessional.com/nixonphp
http://www.mhprofessional.com/nixonphp

208 Part II Advanced PHP

header ('WWW-Authenticate: Basic realm="Restricted Section"') ;
header ('HTTP/1.0 401 Unauthorized') ;
die ("Please enter your username and password") ;

}

else
{
if ($_SERVER['PHP AUTH USER'] != $Susername ||
$_SERVER['PHP_AUTH PW'] I= $password)
die("Invalid username/password combination") ;
L
<!DOCTYPE html>
<html>
<head>
<title>HTTP Authentication</title>
</heads>
<body>
<h2>Welcome. You are now logged in</h2>
</body>
</html>

o Index of /lesson20 b 4

& 2 X & | localhost/lesson20/ T =

x

Authentication Required
Ind¢ 4

The server http://localhost:80 requires a username and
password. The server says: Restricted Section.

ah User Mame: admin

Q—g Password: | ¥ |
ajax
[P aiax

% ‘ Log In H Cancel |
r.F-f. -

Apache/2.4.9 (Win32) OpenSSL/1.0.1g PHP/3.3.11 Server at localhost
Port 80

FIGURE 20-1 Authenticating a user by requiring a username and password

Lesson 20 Authentication, Sessions, and Ajax 209

Here, the variables $Susername and Spassword are given values, and then the
global array $_SERVER/[] is tested to see whether both PHP_ AUTH USER and PHP__
AUTH_PW have been entered by the user.

if (!isset ($_SERVER['PHP_AUTH USER']) ||
lisset ($_SERVER['PHP_AUTH PW']))

If they haven'’t, the following statements are executed. These send headers to the
browser that will cause the browser to request a username and password (the die ()
function being an easy way to display some text to the user and quit from PHP at the
same time):

header ('WWW-Authenticate: Basic realm="Restricted Section"') ;
header ('HTTP/1.0 401 Unauthorized') ;
die ("Please enter your username and password") ;

Otherwise, if a username and password have been submitted, the ones received
are checked against those stored in Susername and $password. If they are not the
same, the program exits with a suitable error message.

if ($_SERVER['PHP AUTH USER'] != $username ||
$ SERVER['PHP AUTH PW'] 1= $password)
die("Invalid username/password combination") ;

Howeyver, if they do match, program flow drops through to the HTML below to
take over (or you could have more PHP code after the 1f () ... else and it would fall
through to that).

Once a user has been authenticated, they can revisit the same page and, as
long as they have not restarted their browser, they should be able to access the page
without reauthenticating. A successful authentication is shown in Figure 20-2.

. HTTP Authenticaticn x

€ - C M [localhost/lesson20/auth.php v E

*

T Do you want Googl... l Save password l l Never for this sitel

Welcome. You are now logged in as admin

FIGURE 20-2 The user has been successfully authenticated.

Using the file-handling functions, you could easily extend this code to support
W additional username/password pairs, which you could check against those input
=== over HTTP authentication. I leave that as an exercise for you to practice your new
PHP skills on.

210 Part II Advanced PHP

Using Sessions

Sessions allow you to maintain a set of variables across multiple page loads for a user.
Sessions are stored by default in special cookies in the user’s browser, but if cookies
are disabled, they will be saved in the query string, attached to the URL of subsequent
web pages.

Because cookies are the most likely means of maintaining a session, you must
start your session before any part of a web page has yet been output to the web
browser, like this:

session_start () != FALSE
or die('Could not start session');

Then you can store and retrieve session values using the superglobal $
SESSION] array, like this:

$ SESSION|['username'] = $username;
$ SESSION|['password'] = $password;

It is very rare for session start () to return FALSE, and will probably
only happen when you specify that cookies should be used for all session

U <= communication, but the user has disabled cookies in the browser. In such cases,
you may have no alternative other than to ask the user to reenable cookies for
the current website (or you could switch to allowing less secure Get requests for
sessions). If, after this, you still encounter a return value of FALSE, you may need
to ask the user to reload their browser, reboot their computer, or use a different
browser.

Retrieving Session Variables

Once you have set these session variables, they will maintain their values throughout
the user’s current session on your site, and you can access these values from other
web pages as long as you call session start () before doing so (and before any
part of the web page has been output), like this:

session_start () != FALSE

or die('Could not start session') ;
Susername = $ SESSION['username'];
$password = $ SESSION|['password'];

You can also store other pieces of information in a session, such as any other user
details (like their email address), products they have in a shopping cart, and so on.

Lesson 20 Authentication, Sessions, and Ajax 211

Combining Authentication with Sessions

Once authenticated for a given folder on a server, a user has access to all the files in
that folder (and subfolders), but you don’t necessarily know anything else about that
person. However, using sessions you can store all the data you need about a user so
that, in conjunction with authentication, you not only have a secure web server that
only users with the correct credentials can access, you can also track them throughout
the website, keeping details such as preferences and items in shopping carts fully up
to date.

So let’s add session handling to the authentication example so that after successful
authentication, a session is started in which (for this example) the username and
password are saved. To do this, all that needs to be added to the previous example
(before any HTML is output) is the following:

session_start () ;
$ SESSION['username'] = $username;
$ SESSION|['password'] = $password;

Then let’s test the session by adding a link to the HTML section, like this:
Check out this page

Now, as Figure 20-3 shows, when you log in, there is a link you can click.

. HTTP Authentication x

€& = C AN |[)localhost/lesson20/auth.php &le| =

b4

T Do you want Googl... l Save password l l Never for this sitel

Welcome. You are now logged in as admin

Check out this page

FIGURE 20-3 A link has been added to the authentication page.

Picking Up Session Details

Following is what the sessions.php program just referred to might look like. It's a simple
program that displays some HTML, and within it the username and password of the
user, as retrieved from the current session, are displayed:

<?php
Susername U

Spassword = '';

212 Part II Advanced PHP

session_ start () != FALSE
or die('Could not start session');

if (isset($_SESSION['username'])) Susername = $ SESSION['username'];
if (isset($_SESSION['password'])) S$password = $ SESSION|['password'l];

echo <<<_ EOT
<!DOCTYPE html>
<html>
<head>
<title>Using Sessions</title>
</head>
<body>
<h2>You are currently logged in as 'Susername'</h2>
(And your password is: 'S$password')
</body>
</html>
_EOT;

?>

First, Susername and $password are initialized to empty strings, and then
there's a call to session start () to begin a session:

Susername = '';
Spassword = '';

session_start () != FALSE
or die('Could not start session') ;

Then, if the $ SESSION[] array contains username or password keys, their
associated values are extracted into Susername and Spassword:

if (isset($_SESSION['username'])) S$Susername = $ SESSION|['username'];
if (isset($_SESSION['password']l)) S$password = $ SESSION|['password'];

The remainder of the program simply consists of outputting some HTML using a
heredoc construct, in which the values in $username and $Spassword are included.
As shown in Figure 20-4, it's extremely easy to provide sessional support to your web
users and customize your websites to their needs.

You can now reload the page as often as you like and, without you pasting any
data from a form, or otherwise sending the username or password details, they are
still available to the document because they have been saved in the session that is
being managed by PHP. Through the use of cookies (or sometimes the query string),
PHP knows the same user is accessing the page and can therefore provide the correct
session variables when requested.

Lesson 20 Authentication, Sessions, and Ajax 213

. Using Sessions ®

€& = C A [localhost/lesson20/sessionsphp 7 v¢| =

You are currently logged in as 'admin'

(And vour password is: '‘password’)

FIGURE 20-4 The session variables are easily accessed.

Closing a Session

To close a session, you need to reset the $ SESSION [] array so that it is empty and
then remove any cookies. The following function will do all that’s needed for you:

function CloseSession()
{
$ SESSION = array();
if (session id() != "" || isset($_COOKIE [session name()]))
setcookie (session name(), '', time() - 3600, '/');

session destroy () ;

}

The first line empties the $ SESSION[] array; then the second line uses the
session name () function to find the name of the current session (if there is one),
which is then removed from the user’s computer by saving a new cookie of the
same name, but with an expiry date and time of one hour in the past. Finally, the
session_destroy () function is called to clean everything up.

Between all these things, you can be sure that a session is completely closed.
However, you must ensure you call the function prior to outputting any part of the
HTML page.

Session Security

There is a hack whereby a malicious user will log in to a website so that a session gets
started, and they make sure they have cookies disabled so that the session ID gets
displayed in the address bar where they can see it. Then they may pass this URL on
via spam or social networking sites in the hope that someone will click it.

If someone does click it, they could find themselves inheriting the malicious
person’s session, and might even enter sensitive details about themselves that also
get stored in the session. And if the hacker then comes back and also enters that URL
(with the same session ID), they might be able to retrieve those details.

214 Part II Advanced PHP

To prevent this possibility, when you first create a session for a user, I recommend
you also save a copy of that user’s IP address and their User Agent string, saving them
as session variables. Having done that, on each new page load, you can check the
user’s IP and User Agent against those in the session. If they match, then all's well
and good. If not, then something funny’s going on, and you can close the session
immediately.

Here's how to add those items of data to a session:

$_SESSION['ip'] = $_SERVER['REMOTE_ADDR'];
$ SESSION['ua'] = $ SERVER['HTTP USER AGENT'];

Now, each time you load in session variables, you can perform a quick security
check at the same time, like this:

session_start () ;

if (($_SESSION['ip'l != $_SERVER['REMOTE_ADDR']) ||
($_SESSION['ua']l != $_SERVER['HTTP_USER AGENT'])
{
CloseSession() ;

// Code here to open a new session

}

In this code, a session is started (before outputting any part of the web page to
the browser), and then the first thing after that is a test to see whether the saved
User Agent string and IP numbers match those for the current browser. If not, the
CloseSession () function (in the previous section) is called, and then you need
to place code of your own to open a brand-new session for this user—perhaps with
a message saying, “Sorry, you were logged out; please sign in again,” or something
similar.

A simpler alternative is to require your users to always allow cookies from your site
(not an unreasonable request on a shopping or similar site) and force sessions to

—<=== only use cookies by issuing the statement: ini set ('session.use_only
cookies', 1) ;. Now you won't need to keep checking for session hacking, and
life will be a lot easier for everyone.

I

Using Ajax
Ajax is the power behind what came to be known as Web 2.0. It transformed the
Internet, because it replaced static pages that had to be posted using forms to make
changes, with much simpler behind-the-scenes communication with a web server—
you merely had to type on a web page for that data to get sent to the server. Likewise,
Ajax-enabled sites offer assistance whenever you need it (for example, by instantly

telling you whether a username you desire is available, before you submit your signup
details).

Lesson 20 Authentication, Sessions, and Ajax 215

The term Ajax actually stands for Asynchronous JavaScript and XML. However,
nowadays it almost never uses XML, because Ajax can communicate so much more
than just that particular markup language. For example, it can transfer images and
videos as well as other files.

Initially, writing Ajax code was considered a black art that only the most
advanced programmers knew how to implement, but that’s not actually the case. Ajax
is relatively straightforward. However, it does require you to use JavaScript—but even
if you are not familiar with the language, you should still be able to make use of the
following examples in your own web pages.

Creating an Ajax Object

The first thing you need to do in order to communicate with a web server
via Ajax is to create a new JavaScript object, as performed by the following
CreateAjaxObject () function:

function CreateAjaxObject (callback)

{

try

{

var ajax = new XMLHttpRequest ()

}

catch(el)

{

try

{

ajax = new ActiveXObject ("Msxml2.XMLHTTP")

}

catch (e2)

{

try

{

ajax = new ActiveXObject ("Microsoft .XMLHTTP")

}

catch (e3)

{
ajax = false
}
}

1
if (ajax) ajax.onreadystatechange = function()
{
if (this.readyState == 4 &&
this.status == 200 &&

216 Part II Advanced PHP

this.responseText != null)
callback.call (this.responseText)

}

else return false

return ajax

}

Let's break this down, because it's quite long (although easy to understand). To
start with, the CreateAjaxObject () function accepts the argument callback,
which I'll explain shortly. Then, a sequence of try and catch () keywords attempt to
use three different methods to create a new Ajax object in ajax.

The reason for this is that various older versions of Microsoft’s Internet Explorer
browser use different methods for this, while all other browsers use yet another
method. The upshot of the code is that if the browser supports Ajax (which all major
modern browsers do), then a new object called ajax is created.

In the second part of the function is a pair of nested if () statements. The outer
one is entered only if the ajax object was created; otherwise, false is returned
to signal failure. On success, an anonymous (unnamed) function is attached to the
onreadystatechange event of the ajax object:

ajax.onreadystatechange = function()

This event is triggered whenever anything new happens in the Ajax exchange
with the server. So, by attaching to it, the code can listen in and be ready to receive
any data sent to the browser by the server:

if (this.readyState == 4 &&
this.status == 200 &&
this.responseText != null)

callback.call (this.responseText)

Here, the attached function checks the readyState property of the this object
(which represents the ajax object), and if it has a value of 4, the server has sent some
data. If that’s the case, if this.status has a value of 200, the data sent by the server
was meaningful and not an error. Finally, if this.responseText doesn't have a
value of null, the data was not just an empty string, so the callback.call ()
method is called:

callback.call (this.responseText)

I mentioned callback at the start of this explanation. It is the name of a function
passed to the CreateAjaxObject () function, so that CreateAjaxObject () can
call callback () when new Ajax data is received. The callback () function takes
the value received in this.responseText, which is the data returned by the web
server. I'll explain what goes into the callback () function a little later.

Lesson 20 Authentication, Sessions, and Ajax 217

The PostajaxRequest () Function

You will never have to call CreateAjaxObject () yourself, because there are
two more functions to complete the Ajax process (which will do the calling of
CreateAjaxObject () for you): one for communicating with the server by Post
requests, and the other for using Get requests.

The PostAjaxRequest () function takes three arguments: the name of your
callback function to receive data from the server, a URL with which to communicate
with the server, and a string containing arguments to post to the server. It looks like
this:

function PostAjaxRequest (callback, url, args)

{

var contenttype = 'application/x-www-form-urlencoded'
var ajax = new CreateAjaxObject (callback)
if (!ajax) return false

ajax.open('POST', url, true)
ajax.setRequestHeader ('Content-type', contenttype)
ajax.setRequestHeader ('Content-length', args.length)
ajax.setRequestHeader ('Connection', 'close!')
ajax.send (args)

return true

This function first sets contenttype to a string value that enables encoded form
data to be transmitted:

var contenttype = 'application/x-www-form-urlencoded'

Then, either the new ajax object is created or false is returned to indicate an
error was encountered:

var ajax = new CreateAjaxObject (callback)
if (lajax) return false

Now that an ajax object has been created, the following lines open the Ajax
request with a call to the open () method of the ajax object as well as send headers
to the server via a Post request, including the contenttype string, the length of the
args argument, and a header to close the connection when done (instead of keeping
the connection alive):

ajax.open('POST', url, true)
ajax.setRequestHeader ('Content-type', contenttype)
ajax.setRequestHeader ('Content-length', args.length)

(

ajax.setRequestHeader ('Connection', 'close!')

218 Part II Advanced PHP

The data is then sent, the connection is closed, and a value of true is returned to

indicate success:

ajax.send (args)

return true

The GetajaxRequest () Function

The PostAjaxRequest () function comes with a sister function that performs
exactly the same process, but it sends the data using a Get request. You need to have
both functions in your toolkit because some servers you may interact with require
Post requests, and some will need Get requests for their Ajax calls.

Here's what the partner GetAjaxRequest () function looks like:

function GetAjaxRequest (callback, url, args)

{

var nocache = '&nocache=' + Math.random() * 1000000
var ajax = new CreateAjaxObject (callback)
if (lajax) return false

ajax.open('GET', url + '?' + args + nocache, true)

ajax.send(null)
return true

One of the main differences between this and the PostAjaxRequest () function

is that a variable called nocache is created from a random number so that a unique
value can be added to the query string sent by each Get request, which will prevent
any caching the server might perform, by ensuring that every request sent is unique:

var nocache = '&nocache=' + Math.random() * 1000000

The next couple of lines are the same as the PostAjaxRequest () function.

They create a new ajax object, or return false if that fails:

var ajax = new CreateAjaxObject (callback)

if

(lajax) return false

Finally, the Get request is made with a call to the open () method of the ajax

object, the request is sent, and then true is returned to indicate success:

ajax.open('GET', url + '?' + args + nocache, true)

ajax.send(null)

return true

Lesson 20 Authentication, Sessions, and Ajax 219

The callback () Function

Now we are ready to create our callback () function that will receive the data sent
back to PHP via Ajax, as follows:

function callback()

{

document .getElementById ('mydiv') .innerHTML = this

}

This code supplies the value passed to the function in this to the innerHTML
property of a <divs> with the id of mydiv. All that remains to do is create the <div>,
like this:

<div id='mydiv's></div>

And now we are ready to call either the PostAjaxRequest () or the
GetAjaxRequest () function, like this:

PostAjaxRequest (callback, 'ajax.php',
'url=http://wikipedia.org/wiki/AJAX")

Or, like this:

GetAjaxRequest (callback, 'ajax.php',
'url=http://wikipedia.org/wiki/AJAX")

In either instance, a program in the same folder as the calling code, called ajax.php,
is chosen for the communication, and the URL is sent to the program as the value of
the key url.

The ajax.php Program
The last part of the Ajax puzzle is to write the ajax.php program that will reside on the

web server and communicate with the web browser, and that'’s this short snippet of PHP:

echo isset ($ _POST['url']) ?
file get contents($ POST['url'])
file get contents($ GET['url']);

This code assumes that either a Post or a Get request has been made to it, with
the value of the key url being the URL of a web document to fetch. If this is not
U7 2= the case, it will fail and generate an error.

What it does is test whether the key url has been sent to it, either in a Post
request (as $_POST['url']) orin a Get request (as $_GET ['url']). In either case,

220 Part II Advanced PHP

the PHP file get contents () function is called on the value passed to it (in this
case, a Wikipedia page). This fetches the web page referred to, which is then returned
to the calling Ajax function using the PHP echo keyword.

Figure 20-5 shows the result of running the Ajax example at the end of this lesson
(saved as ajax.htm in the accompanying archive), which then communicates with
ajax.php (also in the archive) on the web server, to insert the contents of a Wikipedia
page into a <div> element.

. Using Ajax
€« - C A [localhost/lesson20/ajaxhtm Tz E
A Wiki;;,.edi@n a0e will appear in the div below: Create account & Log in i
)
‘ o
Q' G Article Talk Read Edit View history ﬁSearch Q |'
Rog i
WIKIPEDIA
The Free Encyclopedia

Mavigation
Main page . .
Contents Ajax (programming)
Featured content
Current events From Wikipedia, the free encyclopedia
Random article (Redirected from AJAX)
Donate to Wikipedia . . _)
Wikimedia Shop AJAX" redirects here. For other uses, see Afax.

Interaction Ajax (also AJAX: / e1dza=ks/; an acronym for
Help asynchronous JavaScript and XML)!"! is a group of
About Wikipedia interrelated Web development technigues used on the
Community portal client-side to create asynchronous Web applications.
Recent changes With Ajax, Web applications can send data to, and
Contact page retrieve data from, a server asynchronously (in the -

4 3

FIGURE 20-5 The Wikipedia page on Ajax has been pulled in via Ajax.

Loading an entire web page and all its sub-elements from a third-party web server
W and then inserting it into a <div> element is not a great way to embed such
=== pages—for that there are <iframe> elements. However, this example illustrates
how to fetch any data from the web server and then use it (in this case, by
displaying it in a <div>)—and grabbing a Wikipedia page is as easy as anything
else.

Lesson 20 Authentication, Sessions, and Ajax 221

For your convenience, I have saved the three Ajax functions in the file
ajaxfunctions.js in the accompanying archive so that you can include them in the
<head> of any web page you create that will employ Ajax communication, like this:

<html>
<head>
<script src='ajaxfunctions.js's></script>

<l-- etc... -->

Using this method to pull in the JavaScript functions from an external file, here’s
the short and simple code with which Figure 20-5 was created:

<!DOCTYPE html>
<html>
<head>
<title>Using Ajax</title>
<script src='ajaxfunctions.js's></script>
<scripts>
PostAjaxRequest (function () {
document .getElementById ('mydiv') .innerHTML = this
}, 'ajax.php', 'url=http://wikipedia.org/wiki/AJAX")
</scripts>
</head>
<body>
<p>A Wikipedia page will appear in the div below:</p>

<div id='mydiv' style='border:5px solid'sLoading...</div>
</body>
</html>

As you can see, all you need at the bare minimum is a single call to
PostAjaxRequest () (or GetAjaxRequest ()) containing an anonymous
(unnamed) function, where you do something with the value in this, which is the
result returned by the Ajax call. In this instance, the returned value is inserted into
the innerHTML property of the <div> element with the ID of mydiv. This is all
simply and easily achieved with a single function call—even if you've never used
JavaScript before!

Summary

And that, as they say, is that! You've reached the end of the lessons, and I hope you
found them as easy to follow as I promised at the start. You now have all the skills you
need to be a proficient PHP programmer (and have even picked up a little JavaScript,
if you didn't already know it), and are well on your way to creating popular and
dynamic websites.

222 Part II Advanced PHP

As ever, all comments and suggestions are very welcome via the website at
20lessons.com. Also, if you feel so motivated, I will be especially grateful if you have
a moment to leave a quick review for this book at your preferred online book retailer.

Thanks again, and good luck with your web development!

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know
an answert, go back and reread the relevant section until your knowledge is complete.
You can find the answers in the appendix.

\IG\LHPWNI—\

How can you initiate HTTP authentication?

How can you verify a user’s authentication credentials?
How can you initiate a PHP session?

How can you save values into a session?

How can you read a value from a session?

How do you close a PHP session?

Without enforcing the use of cookies, how can you prevent sessions from being
hijacked maliciously?

How can you force a session to only use cookies, and to never show session IDs
in the address bar in the query string?

How can you conduct Ajax background communications with a web server?

What is a simple PHP statement to receive an Ajax Post request with a key named
ajax, whose value is the name of a file in the local folder, and then return the
contents of the file to the calling web page?

20lessons.com

)
o’

Answers to the Self-Test
Questions

his appendix contains the answers to all the questions posed at the end of the
lessons in this book. To ensure you have understood everything, try to refrain

from checking these answers until you have attempted to answer all the questions in
a lesson.

If you don't know an answer, try to find it in the book before you look here if you

can, because this will help you to remember it next time.

Lesson 1 Answers

S U» NHW N =
. . . . B B

PHP is available for Windows, Mac OS X, and Linux/Unix computers.

PHP is compiled only at runtime, effectively making it a scripted language.
You can include as many sections of PHP as you like in an HTML document.
You must place a $ character in front of all PHP variables.

PHP supports both procedural and object-oriented programming (OOP).

You should give PHP documents the file extension .php (although servers can be
configured to use PHP with any file extension).

The five main browsers with which you should test your PHP programs are
Microsoft Internet Explorer, Apple Safari, Google Chrome, Mozilla Firefox, and
Opera. You should also test your programs on tablets and mobile devices, too,
if your target market uses them.

223

224 Part II Advanced PHP

8.

9.

10.

You can write and edit PHP programs using a plain text editor, but for better
control and handy development tools you may prefer to use a program editor,
or an integrated development environment (IDE).

There are several PHP server suites (also known as stacks) on the Internet.
I recommend XAMPP, which is easy to download, install, and use right away.

After installing a web server such as Apache (included with XAMPP), your PHP files
should be placed in its document root folder, whose location will vary according to
operating system.

Lesson 2 Answers

1.

10.

You can place sections of PHP code anywhere in a document, but generally will
do so in either the body or head (or you can make an entire document PHP,
which then uses commands to output HTML).

To include a file of PHP instructions into a document, you can use an include,
require, include_once, or require once statement (for example:
include 'header.php';).

To prevent an external PHP file from being included multiple times, you can
use the include once or require once statement (for example, include
once 'header.php';). Any additional attempts to load the file will be ignored.

To ensure that a PHP file gets included in a document, you can use the require
statement (for example: require 'header.php' ;). If the file cannot be loaded,
an error will be thrown.

To ensure that a PHP file is included and that it doesn’t get included more than
once, you can use the require once statement (for example: require once
'heading.php' ;). If the file cannot be loaded, an error will be thrown, and
any additional attempts to load the file will be ignored.

To create a single-line comment in PHP, start it with the // comment marker
(for example, // This is a comment). All text after the comment marker to the
end of the line is ignored.

To create a multiline comment in PHP, you start it with /* and end it with
* / (for example, /* The contents between and including these two
comment markers is completely ignored by PHP */).

To indicate that a PHP instruction is complete, you must place a semicolon
character (;) after it (for example, echo "Hello world" ;). Failure to do this is
one of the most common causes of errors for beginners.

The code $items = 120; $selection = 7; islegal PHP because multiple
statements are allowed on a line, due to requiring semicolons after each instruction.

The code $items = 120 Sselection = 7; will cause PHP to throw a parse
error because there is no semicolon after the number 120 to separate the statements.

Appendix A Answers to the Self-Test Questions 225

Lesson 3 Answers

1.

10.

PHP is case-sensitive. This means that the combination of uppercase and
lowercase characters used in variables, objects, and function names is important
(for example, stodaysdate is a different variable to STodaysDate).

Any combination of spaces, tabs, linefeeds, and some other non-alphanumeric
or punctuation characters is known as whitespace.

PHP generally ignores whitespace characters that appear outside of strings—
whitespace within strings is stored and acted upon, though.

A numeric variable is a container for a number, which allows you to address the
value using a name (for example, Sage = 32;).

A string variable is a container for a sequence of characters, which can be
addressed using a name (for example: Sname = 'Albert Einstein' ;).

You can include quotation marks within a string (regardless of whether or not
the same type is used to contain the string) by escaping them with the \ escape
character, which can also be used to insert special characters (for example,
Smystring = "He said, \"Hello\"\n";—which also includes a linefeed
at the end).

A heredoc string is one that is not enclosed in any type of quotation mark.
Instead, a token is used to denote the string’s start and end, and it is commonly
used in conjunction with an echo statement or string assignment. The tokens are
generally given a preceding underline character to help them stand out (although
not required), and the closing token must appear at the very start of a new line
(with no indentation and no spaces or tabs before or after the semicolon).

PHP variables do not necessarily retain the type they are initially assigned,
because if an operation is performed on them that makes better sense if the
content were of a different type, then PHP will change the type. Therefore, a
string containing all digits is turned into a number by PHP if a mathematical
operation is performed on it—for example, the following will output the number
1235, even though $n is initially a string: $n = '1234'; $Sn=$n+ 1; echo $n;.

To force PHP to store a certain type of value in a variable, you can use a casting
keyword such as (int) or (string). An example would be $n = (int)
'1234"'; or $s = (string) (12 * 34) ;.

In PHP, to display the values of variables within a string, you do not need to break
the string into smaller parts and then use the concatenation operator to splice

the parts and variables together (as you must in some languages). Instead, just
enclose the string in double quotation marks (not single quotes) and then drop
the variable names right in where they are needed (for example, echo "Hello
Sname, you have previously visited on $times occasions.";).

226 Part II Advanced PHP

Lesson 4 Answers

1.

10.

A constant is similar to a variable in that it stores a value that becomes
accessible by name (but without the preceding $ character that is used to access
variables). However, unlike a variable, once a value is assigned to a constant, it
can never be changed.

You define constants using the define () function, passing it a name and a
value (for example, define ('MAX USERS', 128) ;).

Predefined constants are those that PHP has already defined for you to provide
information you can access such as the path and filename of the current file (for
example, echo _ FILE ;).

The print and echo commands are very similar to each other in that they
both display values provided to them. The differences are that print accepts
only a single argument but has a return value of 1, so it can be used in some
places where echo cannot, but echo is a little faster and also supports multiple
arguments separated by commas (which print does not).

The statement ($var == TRUE) ? echo "true" : echo "false"; is not valid
PHP because echo doesn’t return a value and therefore cannot be used within
expressions. In such instances, print can be used instead (for example, ($var
== TRUE) ? print "true" : print "false";).

The superglobal arrays that handle information sent to a PHP program via forms
sent using Get and Post methods are $_ GET [] and $ POST[].
The $ COOKIE [] superglobal array contains cookie data.

You can display the URL of a page from which a user was referred to the current one
(if available) with a statement such as echo $_SERVER(['HTTP_REFERER'] ;.

To sanitize input and other data by replacing any HTML tags with entities that
only display the tag names, you can run them through the htmlentities ()
function (for example, echo htmlentities ($_POST['bio']l) ;).

You can get PHP to display its configuration information and the current
environment and script with the phpinfo () function—for example,
phpinfo (32) ; will display the PHP predefined variables.

Lesson 5 Answers

1.

2.

The four main mathematical operators (and their symbols in PHP) are plus (+),
minus (-), multiply (*), and divide (/).

To increment or decrement a variable, you use the increment (++) or decrement
(- -) operator, respectively.

3.

Appendix A Answers to the Self-Test Questions 227

The difference between pre- and post-incrementing and pre- and post-
decrementing is the position in which you place the operator. To pre-increment
a variable, you place the increment operator in front of it (for example, ++$a).
To post-increment, you place it afterwards (for example, $Sa++). Pre- and post-
decrementing are similar (for example, - -$a and $a--). Pre-incremented and
pre-decremented variables have their value changed before it is accessed for use
in an expression, whereas post-incremented and post-decremented variables
first have their value used in an expression, and only after that is it changed.

The modulus operator symbol is %, and it returns the integer remainder after a
division.
To return a number as a non-negative value, regardless of whether it is positive

or negative, pass it through the abs () function (for example, Sabsvalue =
abs ($myvalue) ;).

In this question, the task is to not allow $v to be negative; therefore, you should
use the max () function (even though at first sight it appears that min () should
be the answer, because we want a minimum value), like this: $v = max (0,

$v) ;. If $v is less than 0, then the 0 argument will pull it up to 0, because 0 is
the maximum of the two values. But if $v is greater than 0, then the argument
of sv itself will be the maximum value, and so the same positive value will be
assigned back to the variable.

To obtain a pseudo-random number between 1 and 100, inclusive, you call the
rand () function, passing the minimum and maximum values (for example,
$randnum = rand (1, 100) ;).

Using the assignment += operator, you can shorten expressions such as $a = Sa
+23; to Sa +=23;.

If $a has the value 58, the expression $a /= 2; will evaluate to 29.

To set the variable $n to contain the remainder after dividing it by 11, you can
use the expression $n %= 11;.

Lesson 6 Answers

1.

You can compare two values for equality with the == comparison operator (for
example, 1f ($a ==23) ...).

To test whether two values are the same and of the same type, you use the ===
identity operator (for example, if (Sb === '23") ...).

The results of the expressions are a) FALSE, b) TRUE, c) TRUE, and d) FALSE.

The result of | (23 === '23"') is TRUE, because 23 is not identical to '23"'
(they have the same numeric value, but one is a number and one is a string),
so the inner part evaluates to FALSE, and the ! (not) operator negates this,
turning the final value into TRUE.

228 Part II Advanced PHP

5.

10.

To set the variable $bulb to the value 1 when the variable $daypart has the
value 'night', and 0 when it doesn’t, you can use the ternary expression:
Sbulb = ($daypart == 'night') 2 1:0;.

PHP will evaluate the expression 5 * 4 + 3 / 2 + 1 using precedence, with *
and / having greater precedence than +. The result will be 5 * 4 (which is 20) plus
3 / 2 (which is 1.5) plus 1, making 22.5, the same as (5 * 4) + (3 /2) + 1.

To force PHP to evaluate the expression 1 + 2 / 3 * 4 — 5 from left to right, you
need to place parentheses in appropriate places. There are different ways to do
this, including (1 + 2) / 3 * (4 - 5), which increases the precedence of the +
and - operators to that of / and *, but requires a human to determine where to
place the parentheses. Alternatively, you can systematically parenthesize each
pair of operands and their operator in turn, like this (with the final pair not
requiring any parentheses): (((1+2) /3) *4) - 5.

The math operators have left-to-right associativity because the value on the left
is being applied to the value on the right, by the operator.

The assignment operators have right-to-left associativity because the value on
the right is being assigned to the item on the left.

It is a good idea to place the most likely to be TRUE expression on the left of
the | | operator because it has left-to-right associativity. This means that the
left-hand expression is tested first, and if it evaluates to TRUE, the right-hand
expression will not be tested (thus saving processor cycles). The right-hand
expression will only be tested if the left-hand one evaluates to FALSE.

Lesson 7 Answers

1.

PHP array names must begin with a $ character and then be followed by any
upper- or lowercase letter or the underline character, followed by any sequence
of upper- or lowercase letters, digits, or the underline character.

Array elements can store strings, numbers, and even other arrays.

To create an unpopulated array, use the array () function (for example,
$ThisArray = array () ;).

To assign a value to a specific element in a numeric array, reference the array
with an index value, starting from 0 (for example, $Food [7] = 'Doughnuts' ;).

To create and populate an array with a single instruction, pass the initial
element values as arguments to the array () function (for example, $Tools =
array ('Hammer', 'Screwdriver', 'Pliers') ;).

To add elements to a numeric array without specifying an index location, use an
empty index—for example, use $Shopping[] = 'Bread'; to insert the value
at the end of the array.

7.

10.

Appendix A Answers to the Self-Test Questions 229

To retrieve a value from a numeric array, supply an index value between the
square brackets (for example, echo $Tools [2] ;).

To reference a numeric array element using a variable, use the variable in place
of a numeric value—for example, use echo $Shopping [$index] ; to display
the contents of the element referenced by whatever numeric value is stored in
Sindex.

A new associative array to hold the names and phone numbers of three
contacts could be created in this way: $Contacts = array ('Albert' =>
'123-456-7890', 'Becky' => '111-222-3333"', 'Charles' => '098-
765-4321") ;.

To retrieve a value from an associative array, supply the key of the key/value
pair between the square brackets—for example, this displays Becky’s number
from the preceding question: echo $Contacts['Becky'] ;.

Lesson 8 Answers

1.

Although PHP doesn'’t natively support arrays of more than one dimension, it
allows entire arrays to be assigned to array elements, resulting in a structure
that can be addressed like a multidimensional array.

To hold the contents of a 3 x 3 Tic-Tac-Toe board, you can create an array of three
elements, and assign each element another three-element array. For example,
you could do this: $oxo = array (array (' ', ' ', ' '), array(' ',

1 lyl l),array(l l,l |’l l));‘

To reference the top-left element in a 3 x 3 array called $oxo, you could use a
statement such as echo $oxo [0] [0] ;, or for the bottom-right corner you could
use echo soxo[2] [2] ;.

To pre-increment a numeric value stored in an associative array at
SPageClicks ['homepage'], you could use a statement such as the
following: ++$PageClicks ['homepage'] ;.

You can post-decrement a numeric value stored in an associative array at
SPageClicks['homepage'] ['menu'] with a statement such as this:
SPageClicks['homepage'] ['menu']--;.

To populate an associative array called Smarbles with three sizes of marbles
in 17, 23, and 21 bags, you could use a statement such as Smarbles =
array('small' =>17, 'medium' =>23, 'large' =>21) ;.

You could create an array called Smarbles with the three sizes of marbles,
and a sub-array in each element, like this: Smarbles = array ('small' =>
array (), 'medium' =>array (), 'large' =>array()) ;.

230 Part II Advanced PHP

8.

9.

10.

You could assign colors and quantities to the second level of the array in
Question 7, like this: Smarbles['small'] ['red'] =11;.

Assuming all the elements for the array in Question 7 have been assigned
values for the three sizes, three colors, and stock quantities, you could
determine the stock level of medium bags of blue marbles like this: echo
Smarbles['medium'] ['blue'];.

You can increment the value in Smarbles['large'] ['red'] by 10 with a
single statement, such as $marbles['large'] ['red'] +=10;.

Lesson 9 Answers

1.

10.

You can use the foreach () function to iterate through a numeric array
and extract the values, like this: foreach ($Array as $Value) { /* do
something with $Value */ }.

You can use the foreach () function to iterate through an associative array and
extract the key/value pairs, like this: foreach ($Array as $Key => $Value)
{ /* do something with $Key and $Value */ }.

You can merge together the arrays $Cars and $Trucks into a new array called
$Vehicles using a statement such as $Vehicles = array merge ($SCars,
STrucks) ;.

You can combine all the elements of the array SItinerary into a string with
the separator string ', ', using a statement such as $ToDo = implode (', ',
SItinerary) ;.

You can call the function process () on all elements of the array $info[] like
this: array walk ($info, 'process') ;.

You can add a new value to the end of an array using the array push ()
function. For example, you could use array push ($Chores, 'Sweep the
yard') ;, which is equivalent to $Chores [sizeof ($SChores)] = 'Sweep
the yard';.

You can read and remove the last item in an array using the array pop ()
function (for example, $Chore = array pop ($Chores) ;).

When you call the array push () function, the supplied value is placed at the
end of the array.

When you call the array pop () function, the value at the end of the supplied
array is removed and returned.

To switch all the keys in an array with their associated values, you can call the
array flip () function in the following manner: SPresidents = array
flip($Presidents) ;.

Appendix A Answers to the Self-Test Questions 231

Lesson 10 Answers

1.

10.

The term FILO stands for First In, Last Out. It is the kind of storage and retrieval
that happens when array push () and array pop () are used together. This
kind of array is more commonly known as a stack.

The term FIFO stands for First In, First Out. It is the kind of storage and retrieval
that happens when array unshift () and array pop () are used together.
This kind of array is more commonly known as a buffer.

You can “push” a value to the start of an array using the array unshift ()
function.

You can “pop” a value from the start of an array using the array shift ()
function.

To sort the array SRecipes [] alphabetically, you can issue the command
sort (SRecipes) ;.

To numerically sort the array $Temps [], add the argument SORT NUMERIC to
the sort () function (for example, sort ($Temps, SORT NUMERIC) ;).

If you need to have access to the original order of an array after it has been
sorted, you must make a copy of the array before sorting (for example,
$CopyOfRecipes = $Recipes; sort ($SRecipes) ;).

To remove the elements at indexes 4 and 5 from the array SURLs [], you could
use the statement array splice (SURLs, 4, 2) ;.

You can insert the string google . com into the array $URLs [] at index 6, with
the statement array splice($URLs, 6, 0, 'google.com') ;.

To overwrite the existing value at index 3 in the array SURLs [] with the string
google.com, you can use the statement array splice ($URLs, 3, 1,
'google.com') ;.

Lesson 11 Answers

1.

2.

The basic PHP construct for testing whether an expression evaluates to TRUE
is the if () construct. Here's an example: 1f (SNewScore > $SHighScore)
SHighScore = $NewScore;.

When more than one statement is to be executed following an if () condition,
you must enclose them all in curly braces; otherwise, only the first will be executed
as a result of the condition, and the remaining ones will always be executed.

232 Part II Advanced PHP

3.

10.

If you wish to execute one or more statements when an if () condition is
FALSE, you can follow the 1f () section with an else section. Here's an
example: 1f ($Today == $Birthday) echo 'Happy Birthday!'; else
echo 'Welcome back';.

When an if () expression evaluates to FALSE, you can continue testing further
expressions using elseif (). Here's an example: 1f ($Today == $Birthday)
echo 'Happy Birthday!'; elseif ($Yesterday == $Birthday) echo
'How is your head?';.

In a sequence of conditions using 1f (), elseif (), and else statements,
there should be only one 1if () statement, followed by one else statement (or
none), and there can be as many elseif () statements as you like (or none) in
between.

Because editing complex condition structures without the braces in place is a
common source of program flow errors, if any part ofan if () ... elseif ()
... else construct contains more than one statement (and thus requires
encapsulating in curly braces), then it is a good idea to also enclose all
accompanying sets of statements in curly braces too, even if they are single
statements.

When there is more than one elseif () statement in a sequence of conditions,
it can make sense to convert the code to using a switch () statement.

To test each individual condition in a switch () statement, you use the case
keyword (for example, case 'Rebecca': echo 'Hi Becky';).

To signify the end of a sequence of statements following a case keyword, you
use a break keyword (for example, case 'Andrew': echo 'Hi Andy"';
break;).

In a switch () statement, the default case is equivalent to an else section
inan if () construct, supplying a default set of statements for all unmatched
cases (for example, default: echo 'Hi Guest'; $DoLogin() ; break;).

Lesson 12 Answers

1.

3.

The type of PHP loop that is not entered unless an expression evaluates to
TRUE, and then continues looping until the expression is FALSE, is a while ()
loop. Here’s an example: while ($count < 10) { ++$count; }.

Curly braces are required around loop statements if there is more than one
statement. Where there is a single statement, the braces are optional. Here’s an
example: while (Scount < 10) ++Scount;.

A do...while () loop will always execute at least once, because the condition
test occurs after the body of statements. Here’s an example: do $Scount -= 2;
while (Scount > 0) ;.

10.

Appendix A Answers to the Self-Test Questions 233

With a for () loop, you can initialize variables, test for conditions, and modify
variables after each iteration, all in a single statement.

You separate the three sections of a for () loop with a semicolon character.
Here's an example: for ($count = 0 ; Scount < 10 ; ++$Scount) echo
Scount;.

You can include additional variable initializations and post-iteration assignments
in a for () loop by placing them in the relevant sections, separated with
commas. Here’s an example: for ($count = 0, $c2 =20 ; Scount < 10 ;
++Scount, $c2 -=2) echo Scount, $c2;.

To cease execution of a loop, and move program flow to the following statement
after the loop, you can issue a break statement.

You can break out of the current loop, as well as another loop that contains it, by
adding an extra argument along with the break keyword, indicating the number
of levels to break out from, like this: break 2;.

You can skip the current iteration of a loop, and move onto the next iteration, by
issuing a continue statement.

To drop out of a loop and skip an iteration in the enclosing loop structure, you
can supply an additional parameter along with the continue keyword, like
this: continue 2;.

Lesson 13 Answers

1.

Functions are sections of code that you call from any other part of the code, and
which perform one or more actions before returning, with an optional value.

Curly braces are required around the statements in a function, even if there
is only one. Here'’s an example: function SquareRoot ($n) { return
pow ($n, 0.5); }.

To call a function, you use its name, followed by parentheses, within which you
place the arguments to the function (for example, echo SquareRoot (81) ;).

A function receives the values on which it will work via the arguments passed to
it within parentheses.

To assign default values to the arguments passed to a function, assign the default
value to the variable within the function parentheses. Here's an example:
function MyFunc ($a = 1) { /* Code goes here */ }.

You can handle variable numbers of arguments for a function by calling
func num args () to determine how many arguments have been passed and
func _get arg(n), where n is the index of the argument to access (starting
from 0). Here'’s an example: for ($j =0 ; $j < func num args() ; ++$3)
echo func _get arg(s$j) ;.

234 Part II Advanced PHP

7.

10.

A function returns to the calling code, either when the closing curly brace is
reached or when a return statement is encountered.

The difference between local and global scope in PHP is that by default all
variables in functions have a value local only to that function, unless the
global keyword has been used to indicate that the variable is global.

To access a global variable from a PHP function, use the global keyword (for
example, global $contents;).

You can access global variables in a function with the superglobal SGLOBALS []
array (for example, echo $GLOBALS ['contents'] ;).

Lesson 14 Answers

1.

2.

10.

In OOP (Object-Oriented Programming), the combination of code and the data it
manipulates is called a class.

To declare a class in PHP, use the class keyword (for example, class
MyClass { ... }).

To create an object from a class, use the new keyword (for example, $MyObject
= new MyClass;).

You can modity properties of an object with the - > operator (for example,
SMyObject->property = 'Property Value' ;).

The recommended way to create a constructor method for a class is to define
a__ construct () function, like this: function construct ($argl,
sarg2) { ... }.

It is a good idea to include a __destruct () method in your classes to enable
PHP to release its resources back to the system in the manner you specify.

To copy an object, use the clone operator (for example, $ThisObj = clone
$ThatObj ;).

To access a method in the parent of a subclass, you will need to use both the
parent keyword and the scope resolution operator (: :). Here’s an example:
parent: :ParentMethod () ;.

To create a new class that inherits the properties and methods of an existing
one, use the extends keyword. Here'’s an example: class NewClass extends
Oldclass { ... }.

The three types of visibility you can apply to properties and methods are
public (the default), protected (accessible only by an object’s class and
subclass methods), and private (accessible only in the same class).

Appendix A Answers to the Self-Test Questions 235

Lesson 15 Answers

1.

10.

You can add your own error handler to PHP with the set_error handler ()
function, to which you pass the name of a function (or the function itself) for
processing the error. The function you supply will be passed four values: the
error number, the error message, the file containing the error, and the line
number within the file.

To disable your own error handler, call the restore_error_handler ()
function to revert to the previous error handler.

You can search for occurrences of a string using the preg match () function.
For example, Sresult = preg match('/search/', shaystack,
Smatch) ; will return the result in the array Smatch[].

Search strings must be formatted as regular expressions, starting and ending
with a / character (for example, $search = ' /LookForMe/ ' ;).

To set a regular expression to match regardless of case, add the pattern modifier
i (for insensitive) at the end of the expression (for example, $search =
'/find/1' ;).

To match all occurrences of a search string, you use the preg match all ()
function. Here’s an example: $result = preg match all('/search/',
Shaystack, S$Smatches) ;.

You must pass two arguments to the preg match () and preg match all ()
functions: a regular expression string and a string to search in. The third
argument is optional and is an array in which results will be saved.

To replace any matches with a replacement string, call the preg_replace ()
function, which requires the following: a regular expression, a replacement
string, and a string to be searched and replaced in. To count the number of
replacements, you can add an optional fifth argument. Here's an example:
preg _replace('/pin/i', 'needle', Shaystack, -1, Scount) ;.

To search for any occurrences of either car or automobile, you could use
either of the following regular expressions: ' /car|automobile/"' or '/
(car) | (automobile) /'.

Here is one way you can case-insensitively find all six-letter words in a string:
preg match all('/\b[\w]{6}\b/', $string, $Smatches) ;. The \b
metacharacters require a word boundary both before and after each word, and
[\w] {6} will return only those words within those word boundaries that are
six letters long. The i pattern modifier is not required to make this search
insensitive, because the \w metacharacter matches both lower- and uppercase
characters (as well as digits and the underline character). The file sixletters.php
in the accompanying archive illustrates this in action.

236 Part II Advanced PHP

Lesson 16 Answers

1.

A Post request sends form data to a program in the form of headers, which are
transmitted separately from the HTML, whereas a Get request sends this data in
the form of a query string, which is attached to the tail of the requested URL.

In a Get request, the ? character indicates the start of a query string. The =
character is used to separate keys and values, and the & character separates key/
value pairs, like this: http://site.com?keyl=one&key2=two.

To access form data sent to PHP via a Post request, look for expected keys in the
$ POST[] array and, if they exist, load the values from that array, like this: i f
(isset ($_POST['mykey'])) smykey =$ POST['mykey'];.

To access form data sent to PHP via a Get request, look for expected keys in the
$ GET[] array and, if they exist, load the values from that array, like this: 1 £
(isset ($_GET['mykey']l)) Smykey =$ GET['mykey'];.

To ensure that your PHP program doesn’t throw an error if no submitted data
can be retrieved, you should initialize all variables that are to be used for retrieving
submitted data with default values such as the empty string. Then, if no data is
retrieved, they will still have an initialized value that can be tested without error.

To enable users to resubmit a form with a problem in one of its inputs,

without requiring them to reenter all the data, you assign values to the value
attributes of the <input > elements, based on the data posted to PHP. Here's an
example (assuming there is a string already in Susername): echo "<input
type='text' name='username' value='S$username's>";.

To submit a collection of checkbox inputs, the name attribute of each <input
type="'checkbox' ...> element should be given the same name, which
must end with [] (square brackets, which indicate that array data is desired).
Here's an example: <input type='checkbox' name='choices[]'
value='iteml'>.

To submit a collection of options from a <select> element that uses the
multiple attribute, the name attribute of the <select> element must end
with [] (square brackets, which indicate that array data is desired). Here’s an
example: <select name="'options[] ' multiples> ... </selects>.

To access array data submitted from a web page using PHP, you read it from
either the $_GET[] or $_POST [] array (according to how it was sent to the
program), in the normal way. The only difference is that the retrieved data will
be an array, which you can iterate through or retrieve individual elements from,
just like any other array.

http://site.com?key1=one&key2=two

10.

Appendix A Answers to the Self-Test Questions 237

You can store data in a form without showing it to the user by placing it in an
<input> element that uses the type of hidden. Here’s an example: <input
name='secret' type='hidden' value="'terceSpoT'>.

Lesson 17 Answers

1.

2.

You can sanitize user input so that no HTML tags get through by passing it
through the htmlentities () function.

In order to be able to upload files to a web server, a <form> element should
use the encoding type of multipart/form-data. Here's an example: <form
method="'post' action='form.php' enctype="multipart/form-
data's>.

In order to allow a file to be selected for uploading via a form, <input>
elements must use a type of £ile (for example, <input type='file"
name='file'>).

After a form has uploaded a file to a web server, all the details about the file will
be in the superglobal $_ FILES [] array, using the value supplied to the name
attribute of the <input> element as a key. If the value in name is file (for
example), the array to process willbe $ FILES['file'] [].

After a file upload, you can retrieve the following pieces of information from
the $ FILES[] array using these keys for the second level of the array:
name, type, size, tmp name, and error. For example (if the value given
to the name attribute of the <input> elementis file), $_FILES['file']
['size'] returns the size of the uploaded file.

The three main image MIME types you are likely to encounter are image/gif,
image/jpeg, and image/png, but there are several other image types, too.

To ensure that an uploaded file will not compromise your web server, you can
strip out all / characters and other file system control characters from the
filename using a regular expression such as '/ [*\w.-1/". You can also ensure
that the file is never allowed to be executed as a program by ensuring that (if

it is an image, for example) only the file extensions .gif, .jpg, and .png in the
filename supplied are allowed, and by refusing to handle any others. Some web
servers also virus-check files as soon as they are uploaded, and may also scan
them for other malicious intent.

Once you have received a file and sanitized its filename, you are ready to move
the file from temporary storage to its permanent location, which you do with the
move uploaded file () function. For example (assuming the value given to
the name attribute of the <input> element is £ile, and $Sname contains the
sanitized filename), you can use the following: move uploaded file

(s FILES['file'] ['tmp name'], "/usr/home/robin/$name") ;.

238 Part II Advanced PHP

9.

10.

To lessen the possibility that “bots” are accessing your websites instead of
humans, you can add a CAPTCHA procedure to your web forms, and only allow
processing of the form if the test for a human succeeds.

If your program might have to run on different platforms, there may be
differences between the case-sensitivity or otherwise of filenames. Therefore,
it’s best to remove any doubt and filter all filenames to all upper- or lowercase
before you save them, like this: $file = strtolower ($file) ;.

Lesson 18 Answers

1.

N

To set a cookie with the name cookie, a value of choc-chip, and

an expiry date of 30 days time, you could use a statement such as

setcookie ('cookie', 'choc-chip', time() + 60 * 60 * 24 * 30) ; (or
you could replace the calculation of 60 * 60 * 24 * 30 with the predetermined
value 2592000). The setcookie () statement must be executed before any
body data is sent to the browser; otherwise, the cookie header cannot be sent.

To read the value (if there is one) of a cookie named cookie, you can use an
expression such as 1f (isset ($_COOKIE['cookie'])) Scookie =
$_COOKIE['cookie'l];.

To delete a cookie, you assign it an expiry date in the past—for example,
setcookie ('cookie', '', time () - 500) ; —and you can leave the cookie
value blank when doing so, because the cookie is going to be erased anyway.
The setcookie () statement must be executed before any body data is sent to
the browser; otherwise, the cookie header cannot be sent.

You can generally determine the make of browser and the platform it is
running on by interrogating the browser’s User Agent string, referring to

$ SERVER['HTTP USER AGENT']. You can then look for words or phrases
that indicate particular browsers and platforms.

To test for the preexistence of a file on your web server, you can call the file
exists () function, passing the filename (including path if required). Here's an
example: 1f (file exists('log.txt')) echo 'The file exists';.

To open a file for writing to, you can call the fopen () function, passing the
name of the file and a string specifying the file mode of w, also making a note of
the file handle that the call returns for using with later write operations. Here's
an example: shandle = fopen ('log.txt', 'w') ;.

You can write the string 'This is a sentence' to a file opened in write mode
with the following statement: fwrite ($handle, 'This is a sentence') ;.

8.

9.

10.

Appendix A Answers to the Self-Test Questions 239

To open a file for reading, use a statement such as $handle = fopen ('log
.txt', 'r') ;.

With a file opened in read mode, you can read in a string of up to a maximum
of 100 characters, or the next newline or file end (whatever comes first), with a
statement such as $string = fgets (Shandle, 101) ;.

With a file opened in read mode, you can read in exactly 1,000 bytes (or up to
the file end if sooner) using a statement such as $data = fread ($handle,
1000) ;.

Lesson 19 Answers

1.

10.

When calling a function, you can prevent PHP from displaying its own error
messages by prefacing the function name with an @ symbol—for example:
@fwrite ($handle, $string) ;.

To determine the length of a file, you can call the filesize () function (for
example, $length = filesize ('myfile.txt') ;).

You can insert newline characters when writing to a file using the \n escape
sequence (for example, fwrite (Shandle, "Linel\n Line2\n") ;).

You can read in an entire file using the file get contents () function.
Here’s an example: Scontents = file get contents ('document.txt') ;.

You can save an entire file using the file put contents () function. Here'’s
an example: file put contents ('document.txt', Scontents) ;.

To read in a web document or object from a URL, you can call the file get
contents () function, passing it the URL to retrieve. Here's an example:
S$Simage = file get contents('http://webserver.com/ pic.gif') ;.

You can create a copy of a file using the copy () function (for example,
copy ('this.file', 'that.file') ;).
You can delete a file using the unlink () function (for example,

unlink ('unwanted.file') ;).

You can move the pointer into an open file using the £seek () function (for
example, £seek (shandle, 123) ;).

You can prevent file accesses by one user conflicting with those by another by
using the flock () function. Here’s an example: 1f (flock ($Shandle, LOCK
EX)) { fwrite (Shandle, Scontents) ; flock ($handle, LOCK UN) ; }.

240 Part II Advanced PHP

Lesson 20 Answers

1.

N

.

10.

To initiate HTTP authentication, you must send a pair of headers to the browser
requesting the authentication, like this: header (' WWW-Authenticate:
Basic realm="Restricted Section"') ; header ('HTTP/1.0 401
Unauthorized') ;. Once these headers have been sent, you can optionally
output some text telling the user what is expected of them in order to log in.
Here's an example: echo 'Please enter your username and password' ;.

To verity the credentials (username and password) that a user enters in response
to an authentication request, you must test the PHP_AUTH_USER and PHP_
AUTH_PW elements in the superglobal array $ SERVER[] to determine whether
they match any of the allowed username/password pairs. Here’s an example:

if ($_SERVER['PHP AUTH USER'] != $username || $ SERVER['PHP
AUTH PW'] !=$password) die("Sorry, Invaliddetails");.

To initiate a PHP session, before any HTML has been sent to the browser you
must call the session start () function.

To save values into a session, assign them to the $ SESSION [] superglobal
array (for example, S SESSION['username'] = Susername;).

To read a value from a session, fetch it from the $ SESSION[] superglobal
array (for example, Spassword = $ SESSION['password'] ;).

To close a PHP session, you can quickly clear the $ SESSION[] array by
assigning it the value array (), and you should also delete the session cookie
if there is one (you can look up its name with the session name () function).
Finally, you should call the session destroy () function to close the session.

Without enforcing the use of cookies, you can prevent sessions from being
hijacked maliciously by saving each user’s IP address and User Agent string in
the $ SESSION[] array when the session is first initiated, and then comparing
it with the current IP address and User Agent on each subsequent page load. If
they don't match, terminate the session and ask the user to login again.

To force a session to only use cookies, you can issue this statement at the

start of your PHP script: ini set ('session.use only cookies', 1) ;.
Remember that you may have to comply with laws such as the cookie opt-out
requirement in European Community countries, for this and any other cookie use.

To conduct Ajax background communications with a web server, you first need

to create an Ajax object in JavaScript, and then make a Get or Post request to a

PHP program (or other URL), requesting some data. The accompanying archive
of examples includes the file ajaxfunctions.js to handle this for you.

A simple PHP statement that receives an Ajax Post request with a key named ajax,
whose value is the name of a file in the local folder, and then returns the contents
of the file to the calling web page, could look like the following: 1f (isset ($_
POST['ajax'])) echo file get contents($ POST['ajax']l) ;.

Index

A

a option for fopen(), 185
a+ option for fopen(), 185
abs() function, 38
accessing
arguments, 121-122
arrays, 62-64, 69
files, 194-196, 198-199
form data, 160-162
objects, 133-134
acos() function, 38
addition
arithmetic operator, 34
assignment operators, 39-40
Ajax, 214-215
ajax.php, 219-221
callback(), 219
GetAjaxRequest(), 218
objects, 215-216
PostAjaxRequest(), 217-218
ajax.php program, 219-221
& character, 170
ampersands (&)
bitwise operator, 46
logical operator, 43-44
query strings, 159
references, 124
and operator, 44
angle brackets (< >) for regular
expressions, 153
Apple Safari browser, downloading, 5-6
applications file type, 173

arguments, 119-120

accessing, 121-122

passing, 120-121

unknown number of, 122-124
arithmetic functions, 38-39
arithmetic operators, 33-34

exponentiation, 35

incrementing and decrementing, 35-38

modulus, 35
array_fill() function, 120
array_flip() function, 81-82
array_merge() function, 73-74
array_pop() function, 77-80, 84-85
array_push() function, 76-80, 84-85
array_reverse() function, 80-81, 84, 86-87
array_shift() function, 85
array_splice() function, 87-90
array_unshift() function, 85
array_walk() function, 75-76
arrays

assigning values to elements, 52-53

associative, 55-57

buffers, 84-85

$_COOKIE[], 179

creating, 52-55

description, 51

$_FILES[], 171-173

FILO and FIFO, 83-85

functions, 71-82

$_GET[] and $_POST][], 160-161

$GLOBALS[], 127-128

indexes, 53-55

241

242 Index

arrays (cont.)
inserting elements into, 88-89
joining, 73-74
multidimensional, 59-69
names, 52
removing elements from, 87-88

retrieving values from elements, 53-54

$_SESSION[], 212-213
sorting, 85-87
as keyword, 72
asin() function, 38
assignment operators, 39-40
associative arrays
multidimensional, 66-67
working with, 55-57
associativity of operators, 48
asterisks (*)
assignment operators, 39-40
comments, 15
exponentiation, 34-35
fuzzy matching, 152-155
multiplication, 34
web forms, 158-159
at symbol @ for functions, 192
atan() function, 38
atan2() function, 38
audio file type, 173
authentication
overview, 207-209
sessions, 211
automatic type casting, 23

\b escape character, 22
\B metacharacter, 154
\b metacharacter, 154
b option for fopen(), 185
backslashes (\)
escaping characters, 22
regular expressions, 152
base classes, 132
bitwise operators, 46
Bluefish program editor, 6
body, placing code in, 11-12

Boolean expressions, 45
braces ({})
arguments, 119
if(), 94-95
metacharacters, 154
regular expressions, 154
brackets ([])
regular expressions, 153-154
web form input, 164
break keyword
loops, 111-112
switch() statements, 100-101
browser identification, 181-183
buffers, 83-85
bugs, 145-147

C

callback() function, 216, 219
CamelCase naming, 129
CAPTCHA service, 174
carets (M)

bitwise operator, 46

regular expressions, 153-154
carriage return characters

escaping, 22

whitespace, 18
case sensitivity

description, 17

regular expressions, 148-149, 152
case statements, 100
casting, 4, 23-24
ceil() function, 38
characters

escaping, 22

matching in regular expressions,

152-153

checkboxes in web forms, 163-165
Chrome browser, downloading, 5
__CLASS__ constant, 26
classes. See also objects

declaring, 132-133

extending, 139-140
cloning objects, 135-136
CloseSession() function, 214

closing

files, 186

sessions, 213-214
code, placing, 11-14
colons (:)

scope resolution operator, 136-137

switch() statements, 100

ternary operator, 27, 46
commas ()

arguments, 119

global variables, 125
comments, 15
comparison operators, 41-43
concatenation of strings, 20
const keyword, 137
constants

objects, 137

predefined, 26

working with, 25-26
__comnstruct() function, 135, 137
constructors

objects, 132, 134-135

subclasses, 141-142
continue statement, 112-114
$_COOKIE[] superglobal array, 27, 179
cookies, 177

deleting, 179

reading, 179

sessions, 210

setting, 178-179

working with, 180-181
copy() function, 197
copying files, 197
cos() function, 38
Cream program editor, 6
CreateAjaxObject() function, 215-216
CSS for heredoc section, 193-194
curly braces ({})

arguments, 119

if(), 94-95

metacharacters, 154

regular expressions, 154

Index 243

D

\D metacharacter, 154
\d metacharacter, 154
data files, reading from, 192-193
declaring classes, 132-133
decrement operator, 34-36
default keyword in switch() statements,
100-101

default values for arguments, 122
defining constants, 25
deleting

cookies, 179

directories, 199

files, 197
derived classes, 132

__destruct() function, 135

destructors for objects, 135
details for sessions, 211-212

__DIR__ constant, 26

directories for files, 199
displaying web forms, 162-166
division

arithmetic operator, 34

assignment operators, 39-40
do while() loops, 107-109
document roots, 8
dollar signs ($)

regular expressions, 153-154

variables, 4, 15
domain setting for cookies, 178
dots (.)

regular expressions, 152-154

string concatenation, 20
double quotes (")

escaping, 22

strings, 20-21

ternary operator, 27

whitespace in, 18
downloading web browsers, 5-6
dynamic typing, 4

E

echo command, 27
editor, choosing, 6-7
Editra program editor, 6

244 Index

else statement, 95-97 handling overview, 183-184
elseif() construct, 97 locking, 200-204
embedding variables within strings, 22-23 moving, 197
empty strings, 21 random access, 198-199
encapsulation of objects, 132, 135 reading from, 186-187, 192-193
ENT_QUOTES value, 170 saving form data, 191-194
$_ENV]] superglobal array, 28 security, 171-174
_EOT identifier, 21 writing to, 185-186, 199
equal signs (=) $_FILES[] superglobal array, 27, 171-173
assignment operators, 39-40 filesize() function, 187, 192
comparison operators, 42-43 FILO (First In, Last Out) arrays, 83-85
logical operator, 43-44 final methods, 142
error trapping, 145-147 Firefox browser, downloading, 5
escaping characters, 22 flock() function, 200
exclamation points (1) floor() function, 38
comparison operators, 42-43 fopen() function, 185
logical operator, 44-45 tor() loops, 109-110
Exclusive Or operator, 44-45 foreach() function, 71-73
existence of files, 184-185 form feeds, 22
exp() function, 38 forms. See web forms
expire setting for cookies, 178 fread() function, 187
exponentiation, 34-35 Free HTML Editor program editor, 6
extending classes, 139-140 fseek() function, 198
func_get_arg() function, 123
F func_num_args() function, 122-123
\f character, 22 _ FUNCTION constant, 26
fall-through in switch() statements, 101-102 function keyword, 119
FALSE value, 43-45 functions
fclose() function, 186 accessing arguments, 121-122
fgetc() function, 186 arithmetic, 38-39
fgets() function, 186-187 arrays, 71-82
fields, hidden, 166 global naming convention, 129
FIFO (First In, First Out) arrays, 83-85 passing arguments, 120-121
__FILE__ constant, 26 return keyword, 120
file_exists() function, 184-185, 196 unknown number of arguments, 122-124
file_get_contents() function, 194, 220 variable scope, 124-127
file_put_contents() function, 194-196 working with, 119-120
files fuzzy matching, 152-155
accessing, 194-196, 198-199 fwrite() function, 185-186, 192, 199
closing, 186
combining functions, 189-191 G
copying, 197 Get requests
creating and opening, 185 vs. Post, 159
deleting, 197 security, 159-160
directories, 199 $_GET][] superglobal array, 27-28, 160-161

existence, 184-185 GetAjaxRequest() function, 218

GetBrowser() function, 182-183
global variables
naming convention, 129
working with, 124-127
$GLOBALS[] superglobal array, 27, 127-128
Google Chrome web browser, downloading, 5
greater than signs (>)
bitwise operator, 46
comparison operators, 42-43
> character, 170
Gutmans, Andi, 4

H

hash tables for associative arrays, 56
head, placing code in, 11-12

help, 5

heredoc syntax, 21, 193-194

hidden fields in web forms, 166

history, 3-4

html_entity_decode() function, 28
HTML section, 193-194

htmlentities() function, 28, 146, 170, 191
httponly setting, 178

I

identification, browser, 181-183
if() construct, 93

braces, 94-95

else, 95-97

elseif(), 97
images file type, 173
implode() function, 74-75, 121-122
include statement, 13-14
include_once statement, 14
including PHP files, 12-14
increment operator, 34-38
indexes

arguments object, 123

arrays, 53-55
inheritance for objects, 132, 139-140
input, sanitizing, 169-170
<input> tags, 163-165
inserting array elements, 88-89
installing

PHP servers, 7-9

web browsers, 5-6

Index 245
instances for objects, 132-133

interfaces for objects, 132

Internet Explorer browser, downloading, 5
isset() function, 181, 191

jEdit program editor, 6
join() function, 149
joining arrays, 73-74

K

keys for associative arrays, 56

L

Last In, First Out (LIFO) arrays, 83
left-to-right associativity, 48
Lerdorf, Rasmus, 3
less than signs (<)
bitwise operator, 46
comparison operators, 42-43
heredoc syntax, 21
LIFO (Last In, First Out) arrays, 83
__LINE__ constant, 26
Linux browsers, downloading, 6
Linux operating system
PHP file location, 8
XAMPP setup help, 9
literals, printing, 27
local variables, 124-127
locking files, 200-204
log() function, 38
logical operators, 43-45
loops, 105
breaking out of, 111-112
continue statement, 112-114
do while(), 107-109
for(), 109-110
toreach(), 71-73
while(), 105-107
&1t character, 170

M

Mac browsers, downloading, 6
Mac operating system
PHP file location, 8
XAMPP setup help, 9

246 Index

magic constants, 26
max() function, 38
member functions, 132
metacharacters in fuzzy matching, 152-155
__METHOD__ constant, 26
methods
final, 142
objects, 131-132
scope, 137-138
static, 136-137
Microsoft Internet Explorer browser,
downloading, 5
min() function, 38
minus signs (-)
assignment operators, 39-40
decrement operators, 34-38
negation, 34
regular expressions, 154
subtraction, 34
mkdir() function, 199
modulus operator
assignment operators, 39-40
description, 34-35
move_uploaded_file() function, 172
moving files, 197
Mozilla Firefox browser, downloading, 5
multidimensional arrays, 59-60
accessing, 69
creating, 67-69
example, 64-66
two-dimensional, 60-64
multipart/form-data data, 171
multiple input types for web forms, 163-165
multiplication
arithmetic operator, 34
assignment operators, 39-40
MySQL program, 174

N

\n escape character, 22
\n metacharacter, 154
names

arguments, 121

arrays, 52

cookies, 178

global variables, 129

variables, 19
__NAMESPACE__ constant, 26
negation operator, 34, 44-45
new keyword for objects, 133
newline characters

escaping, 22

whitespace, 18
not operator, 44-45
Notepad + + program editor, 6-7
numeric variables, 19

0

object-oriented programming (OOP)
overview, 131-132
objects, 131
accessing, 133-134
Ajax, 215-216
cloning, 135-136
constants, 137
constructors, 134-135
creating, 133-134
destructors, 135
final keyword, 142
inheritance, 139-140
parents, 140-141
predefined properties, 137
scope, 137-138
static methods and properties, 136-137
subclass constructors, 141-142
occurrences for objects, 132
open() method for Ajax objects, 217-218
opening files, 185
Opera web browser, downloading, 5
operators
arithmetic, 33-38
assignment, 39-40
associativity, 48
bitwise, 46
comparison, 41-43
logical, 43-45
precedence, 46-47
ternary, 46
or operator, 44

P

parent classes, 132, 140-141
parentheses ()

arguments, 119

operator precedence, 47

regular expressions, 150, 154
passing arguments, 120-121
passwords

authentication, 207-209

security, 174

web forms, 158-159
path setting for cookies, 178
percent signs (%)

assignment operators, 39-40

modulus operator, 34-35
periods (.)

regular expressions, 152-154

string concatenation, 20
.php extension, 5
PHP server installation, 7-9
phpinfo() function, 29-30
placing code, 11-14
plus signs (+)

addition, 34

assignment operators, 39-40

increment operators, 34-38

regular expressions, 153-154
popping array elements, 77-80
popularity of PHP, 5
post-incrementing, 36-37
Post requests vs. Get, 159
$_POST][] superglobal array, 27-28, 160-161
PostAjaxRequest() function, 217-218
pow() function, 35, 38, 120
pre-incrementing, 36
precedence of operators, 46-47
predefined constants, 26
predefined properties, 137
preg_match() function, 147-148
preg_match_all() function, 149-150
preg_replace() function, 150-151
prepared statements, 174

Index 247

prepopulating data files, 193
print command, 27
private visibility for objects, 138
program editor, choosing, 6-7
program flow, 93

if() constructs, 93-97

loops, 105-114

switch() statement, 98-102
properties

objects, 132-133

predefined, 137

scope, 137-138

static, 136-137
protected visibility for objects, 138
public visibility for objects, 138
pushing array elements, 76-80

Q

query strings for web forms, 159
question marks (?)
query strings, 159
regular expressions, 154
ternary operator, 46
" character, 170
quotation marks (")
escaping, 22
strings, 20-21
ternary operator, 27
whitespace in, 18

R

\r escape character, 22
r option for fopen(), 185
r+ option for fopen(), 185
rand() function, 38-39
random access to files, 198-199
reading

cookies, 179

files, 186-187, 192-193
recursion, 78-80, 119
redisplaying web forms, 162-166
reference, passing arguments by, 123-124
register_globals setting, 161

248 Index

regular expressions, 147 SEEK_END value, 198
character matching, 152-153 SEEK_SET value, 198
fuzzy matching, 152-155 select keyword for web forms, 163-165
preg_match(), 147-148 self keyword, 141
preg_match_all(), 149-150 $self variable, 193
preg_replace(), 150-151 semicolons (;)
remainder operator, 34-35, 39-40 for() loops, 109
removing array elements, 87-88 heredoc syntax, 21
rename() function, 197 statements, 4, 15-16
$_REQUEST]] superglobal array, 28 $_SERVER[] superglobal array, 27
require statement, 14 servers
require_once statement, 14 installing, 7-9
restore_error_handler() function, 147 uploading files to, 171-174
retrieving session variables, 210 session_destroy() function, 213
return keyword for functions, 120 session_name() function, 213
reversing session_start() function, 210, 212
array elements, 80-81 $_SESSION(] superglobal array, 28, 212-213
sorts, 86-87 sessions, 210
rewind() function, 198 authentication, 211
right-to-left associativity, 48 closing, 213
rmdir() function, 199 details, 211-212
round() function, 38 security, 213-214
variables, 210
S set_error_handler() function, 145-146
\S metacharacter, 154 setcookie() function, 179
\s metacharacter, 154 shift operator, 46
Safari browser, downloading, 5-6 sin() function, 38
sanitizing input, 169-170 single quotes ('), escaping, 22
saving form data, 191-194 sizeof() function, 149
scope slashes (/)
objects, 137-138 assignment operators, 39-40
variables, 124-127 comments, 15
scope resolution operator (::), 136-137 division, 34
scripting languages, 4 regular expressions, 148, 152-154
secure setting for cookies, 178 sort() function, 85-86
security, 169 sorting arrays, 85-87
authentication, 207-209 sqrt() function, 38, 119-120
Get requests, 159-160 square brackets ([])
input, 169-170 regular expressions, 153-154
potential insecurities, 174 web form input, 164
sessions, 213-214 stacks, 83-85
superglobals, 28 statements, semicolons for, 4, 15-16
uploading files, 171-174 static methods and properties, 136-137

SEEK_CUR value, 198 str_repeat() function, 120

strings
from arrays, 74-75
concatenating, 20
quotation marks, 20-21
variables for, 19-20
variables in, 22-23
strpos() function, 148
strstr() function, 148, 183
strtolower() function, 173
subclasses
constructors for, 141-142
description, 132
subtraction
arithmetic operator, 34
assignment operators, 39-40
superclasses, 132
superglobal arrays
$_COOKIE[], 179
$_FILES[], 171-173
$_GET[] and $_POSTJ[], 160-161
$GLOBALS[], 127-128
overview, 27-28
$_SESSION][], 212-213
support for PHP, 5
Suraski, Zeev, 4
switch() statements, 98-100
break keyword, 100-101
default keyword, 100-101
fall-through, 101-102
syntax
case sensitivity, 17
escaping characters, 22
strings, 19-21
variables, 18-19
whitespace, 18

T

\t escape character, 22

\t metacharacter, 154

tab characters, 22

tan() function, 38

ternary operator, 27, 46
testing file existence, 184-185
text file type, 173

$this keyword, 133

Index 249

tildes (~) for bitwise operator, 46
trapping errors, 145-147
TRUE value, 43-45
two-dimensional arrays
accessing, 62-64, 69
creating, 60-62
example, 64-66
typing variables, 23-24

U

undefined value, 121
underscores (_) in magic constants, 26
unlink() function, 197
uploading files, security in, 171-174
URLs
query strings, 210
superglobal variables, 28
web forms, 159-160
usernames
authentication, 207-209
security, 174

v

values
associative arrays, 56
cookies, 178
var keyword, 129
variables, 4
case sensitivity, 17
installation, 29-30
names, 19
overview, 18-19
printing, 27
scope, 124-127
sessions, 210
for strings, 19-20
in strings, 22-23
superglobal, 27-28
typing and casting, 23-24
vertical bars (|)
bitwise operator, 46
logical operator, 43-44
regular expressions, 154
video file type, 173
visibility of objects, 138

250 Index

w while() loops, 105-107
\W metacharacter, 154 Whltespace, 18, 95
Windows

\w metacharacter, 154

w option for fopen(), 185

w + option for fopen(), 185

web browsers, downloading and installing, 5-6

web forms, 157 X
accessing data from, 160-162
creating, 157-158 \x metacharacter, 154
Get requests security, 159-160 XAMPP software, 7-8
hidden fields, 166 XOT operator, 44-45
<input> tags, 163-165 Z
Post and Get requests, 159
redisplaying, 162-166
saving data from, 191-194

PHP file location, 8
XAMPP setup help, 9
writing to files, 185-186, 199

Zend core engine, 4

Master the latest web development skills

with step-by-step lessons and online videos

Based on the author Robin Nixon’s successful online courses, these complete,
integrated learning tools each provide 20 easy-to-follow lessons that

feature clear explanations, sample code and exercises,

€ 5 C i (3 fley//C/Programs20Files320086)/Zend/Apache2/htdocs/|

plus online video tutorials. Each lesson is designed to
take you less than an hour to complete. Together, the books

and video training make learning today’s essential web

programming skills easier than ever!

JavaScript: 20 Lessons to
Successful Web Development
0-07-184158-X

HTML5: 20 Lessons to
Successful Web Development
0-07-184155-5

PHP: 20 Lessons to Successful
Web Development
0-07-184987-4

(CSS & (SS3: 20 Lessons to
Successful Web Development
0-07-184996-3

Mc
Graw
Hill

Education

N @MHComputing | mhprofessional.com Available in print and as an ebook

http://mhprofessional.com

	Cover
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	Introduction
	Part I PHP Basics
	Lesson 1 Introduction to PHP
	A Little History
	Info for Programmers
	Why Is PHP so Popular?
	Downloading and Installing Web Browsers
	Choosing a Program Editor
	Installing a PHP Server
	Summary
	Self-Test Questions

	Lesson 2 Incorporating PHP into a Web Page
	Where to Place the PHP Code
	Using Comments
	Using Semicolons
	Summary
	Self-Test Questions

	Lesson 3 Learning PHP Language Syntax
	Case Sensitivity
	Whitespace
	Variables
	String Variables
	Using Quotation Marks in Strings
	Escaping Characters
	Embedding Variables within a String
	Variable Typing and Casting
	Summary
	Self-Test Questions

	Lesson 4 Using Constants and Superglobals
	Using Constants
	Superglobal Variables
	Other PHP Variables
	Summary
	Self-Test Questions

	Lesson 5 Working with Arithmetic Operators
	Arithmetic Operators
	Arithmetic Functions
	Assignment Operators
	Summary
	Self-Test Questions

	Lesson 6 Applying Comparison and Logical Operators
	Comparison Operators
	Logical Operators
	The Ternary Operator
	Bitwise Operators
	Operator Precedence
	Operator Associativity
	Summary
	Self-Test Questions

	Lesson 7 Creating Arrays
	Array Names
	Creating an Array
	Using Associative Arrays
	Summary
	Self-Test Questions

	Lesson 8 Managing Multidimensional Arrays
	Creating a Two-Dimensional Array
	Accessing a Two-Dimensional Array
	Multidimensional Associative Arrays
	Creating the Multidimensional Array
	Accessing the Arrays
	Summary
	Self-Test Questions

	Lesson 9 Calling Array Functions
	Using foreach()
	Using array_merge()
	Using implode()
	The array_walk() Function
	Using array_push()
	Using array_pop()
	Using array_reverse()
	The array_flip() Function
	Summary
	Self-Test Questions

	Lesson 10 Advanced Array Manipulation
	Using FILO and FIFO Arrays
	Using sort()
	Using array_splice()
	Summary
	Self-Test Questions

	Lesson 11 Controlling Program Flow
	The if() Construct
	The else Statement
	The elseif() Construct
	The switch() Statement
	Using the break Keyword
	Using the default Keyword
	Summary
	Self-Test Questions

	Lesson 12 Looping Sections of Code
	Using while() Loops
	Using do … while() Loops
	Using for() Loops
	Breaking Out of a Loop
	The continue Statement
	Summary
	Self-Test Questions

	Part II Advanced PHP
	Lesson 13 Writing Functions
	Using Functions
	Global and Local Variable Scope
	The $GLOBALS[] Superglobal Array
	Global Naming Convention
	Summary
	Self-Test Questions

	Lesson 14 Manipulating Objects
	OOP Terminology
	Declaring a Class
	Creating an Object
	Using a Constructor
	Destructors
	Object Cloning
	Static Methods and Properties
	Predefined Properties
	OOP Constants
	Property and Method Scope
	Applying Inheritance
	Using the parent Keyword
	Writing Subclass Constructors
	Using the final Keyword
	Summary
	Self-Test Questions

	Lesson 15 Handling Errors and Expressions
	Error Trapping
	Regular Expressions
	Fuzzy Matching
	Summary
	Self-Test Questions

	Lesson 16 Building Web Forms
	Creating a Form
	Redisplaying a Form
	Summary
	Self-Test Questions

	Lesson 17 Maintaining Security
	Sanitizing Input
	Uploading Files to a Server
	Other Potential Insecurities
	Summary
	Self-Test Questions

	Lesson 18 Accessing Cookies and Files
	Using Cookies
	Browser Identification
	File Handling
	Summary
	Self-Test Questions

	Lesson 19 Advanced File Handling
	Combining File Functions
	Saving Any Form Data
	Even Simpler File Accessing
	File Copying
	File Deleting
	File Moving
	Random Access
	Managing Directories
	File Locking
	Summary
	Self-Test Questions

	Lesson 20 Authentication, Sessions, and Ajax
	Authentication
	Using Sessions
	Using Ajax
	Creating an Ajax Object
	The PostAjaxRequest() Function
	The GetAjaxRequest() Function
	The callback() Function
	The ajax.php Program
	Summary
	Self-Test Questions

	Appendix Answers to the Self-Test Questions
	Lesson 1 Answers
	Lesson 2 Answers
	Lesson 3 Answers
	Lesson 4 Answers
	Lesson 5 Answers
	Lesson 6 Answers
	Lesson 7 Answers
	Lesson 8 Answers
	Lesson 9 Answers
	Lesson 10 Answers
	Lesson 11 Answers
	Lesson 12 Answers
	Lesson 13 Answers
	Lesson 14 Answers
	Lesson 15 Answers
	Lesson 16 Answers
	Lesson 17 Answers
	Lesson 18 Answers
	Lesson 19 Answers
	Lesson 20 Answers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

