
PHP-GTK2
Demystified

Understand the three Key Concepts
of PHP-GTK2

Another original product from

www.kksou.com

Limits of Liability / Disclaimer of Warranty:

The authors and publisher of this book and the accompanying materials
have used their best efforts in preparing this program. The authors and
publisher make no representation or warranties with respect to the
accuracy, applicability, fitness, or completeness of the contents of this
program. They disclaim any warranties (expressed or implied),
merchantability, or fitness for any particular purpose. The authors and
publisher shall in no event be held liable for any loss or other damages,
including but not limited to special, incidental, consequential, or other
damages. As always, the advice of a competent legal, tax, accounting or
other professional should be sought.

This manual contains material protected under International and Federal
Copyright Laws and Treaties. Any unauthorized reprint or use of this
material is prohibited.

Copyright @ 2007. kksou.com. All Rights Reserved.

http://www.kksou.com/

PHP-GTK2 Demystified

Table of Contents

Table of Contents ... 2

Preface... 4

Chapter 1 Getting Started... 5
1.1 Hello World! ... 5
1.2 Display a button.. 6
1.3 Responding to button click.. 7
1.4 Adding two or more widgets.. 8
1.5 Resize application window ...10

Chapter 2 Size & Positioning .. 13
2.1 Understand the Expand parameter..13
2.2 Understand the Fill parameter ..19
2.3 Display the button in default size..23
2.4 Right align the button ...24
2.5 Center the button horizontally..26
2.6 Center the button horizontally and vertically ..27
2.7 Set the size of button..29
2.8 Have 3 buttons of size 60x36 at top left-hand corner.................................30
2.9 Precise positioning of buttons...31
2.10 Introducing the spacer ..33
2.11 Introducing the expandable spacer..35
2.12 Add a Quit button that always stay at top right-hand corner37
2.13 A simple form with only one entry field ..39
2.14 A form with three fields - Part 1..41
2.15 A form with three fields - Part 2..43
2.16 A form with three fields - Part 3..46
2.17 Summary ..49

Chapter 3 Signal Handling .. 50
3.1 Signal basics ...51
3.2 Handling three buttons with one signal handler...52
3.3 Handling multiple signals with one signal handler – one more example54
3.4 Passing additional data to callback function - Part 155
3.5 Passing additional data to callback function - Part 257
3.6 Passing additional data to callback function - Part 358
3.7 Object-oriented connections...60
3.8 Callback methods in another class ..63
3.9 Manually generating a signal..64
3.10 Clickable label ..66
3.11 Useful event properties from button-press-event.....................................69

Copyright @ 2007. kksou.com. All Rights Reserved. 2

PHP-GTK2 Demystified

3.12 Signal propagation..71
3.13 Handling keypress with key-press-event ..74
3.14 Signal propagation for key-press-event..77
3.15 Summary ..82

Chapter 4 Object-oriented Framework 84
4.1 The object-oriented widgets...84
4.2 Objected-oriented programming - Variation 1...87
4.3 Objected-oriented programming - Variation 2...88
4.4 Objected-oriented programming - Variation 3...90
4.5 Objected-oriented programming - Variation 4...92
4.6 Creating your own widgets ..93
4.7 Summary..96

Chapter 5 Putting It Altogether .. 97
5.1 Layout the widgets ...98
5.2 Set up signal handlers...101
5.3 Add in core business logic..105
5.4 Add validation checks ...110
5.5 Resize of window..116
5.6 Summary..122

Copyright @ 2007. kksou.com. All Rights Reserved. 3

PHP-GTK2 Demystified

Preface

I wrote this book in the hope that it will save you some time picking up PHP-GTK2.

I've been developing applications using PHP for years. When I first encountered PHP-
GTK2, I was thrilled at the thought of being able to develop cross-platform desktop
applications using my knowledge of PHP.

Getting "hello world" to run is easy enough. However, the moment I started to
develop serious applications using PHP-GTK2, I was stuck! I find that I couldn't even
get simple stuff working - such as positioning and setting the size of the widgets.
Due to the lack of documentation on PHP-GTK, I had to spend countless hours of
research on the net, asking friends, and going through numerous trials and errors.

This is why I've written this book, so that you do not need to "grope in the dark" like
what I've been through in picking up PHP-GTK2.

What This Book Covers

This book focuses on the three most important concepts in PHP-GTK2:

• Size and positioning of widgets

• Callback functions, and

• Object-oriented framework.

If you’ve worked with PHP-GTK2, this book will help you gain an in-depth
understanding of these three key concepts. The more you use PHP-GTK, the more
you will find that all PHP-GTK programming boils down to a mastery in these three
areas.

If you are new to PHP-GTK2, this book will be an excellent tutorial for you. You will
start to program in PHP-GTK2 from the very first lesson, as I slowly introduce the
various key concepts in PHP-GTK2 one by one. By the end of the book, you will be
equipped with a solid foundation that enables you start building serious applications
using PHP-GTK2.

Feedback

I have tested and verified the information in this book to the best of my knowledge.
However, no one is perfect, and mistakes do occur. If you find any errors in the book,
such as typos, inaccuracies, bugs, misleading or confusing statements, please help to
improve future editions by sending me your feedback to feedback@kksou.com.

Copyright @ 2007. kksou.com. All Rights Reserved. 4

mailto:feedback@kksou.com

PHP-GTK2 Demystified

Chapter 1 Getting Started

1.1 Hello World!

Objective

Let’s get started learning php-gtk2 with this simple yet complete "hello world!" script.

We will also understand the four key lines that constitute a standard php-gtk2 script.
You will see these four lines in almost all the sample codes in this book.

Overview

• First create a new GtkWindow.

• Then create a new GtkLabel.

• Stuff the label inside the window with GtkContainer::add().

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow(); // note 1
3 $window->connect_simple('destroy',array('Gtk','main_quit')); // note 2
4
5 // add your widgets here
6 $label = new GtkLabel("hello world!");
7 $window->add($label);
8
9 $window->show_all(); // note 3
10 Gtk::main(); // note 4
11 ?>

Listing 1.1.php

Explanation

For almost all php-gtk2 scripts, you will find the following four key lines (highlighted
in blue):

1. Creates a new window.

2. Ensures a clean exit when you close the window. This basically says call
Gtk::main_quit() when the user close the window.

3. Displays all widgets that you have created, in this case, the window and the
label.

Copyright @ 2007. kksou.com. All Rights Reserved.

http://gtk.php.net/manual/en/gtk.gtkwindow.php
http://gtk.php.net/manual/en/gtk.gtklabel.php
http://gtk.php.net/manual/en/gtk.gtkcontainer.method.add.php

PHP-GTK2 Demystified Lesson 1.2

4. Let GTK take over and start waiting for events (e.g. mouse or keyboard input).

Note

• These four lines form the simplest yet complete php-gtk2 script. For this “hello
world” example, we simply stuff two more lines of code between these 4 lines:

$label = new GtkLabel("hello world!");
$window->add($label);

The first to create a new label, and the second to stuff the label inside the
window.

• You can also combine these two lines into one:

$window->add(new GtkLabel("hello world!"));

1.2 Display a button

Objective

Let's use another widget in this example - a button.

Overview

In the previous example, we use GtkLabel to display "Hello World". In this example,
we use GtkButton to display a button. The GtkLabel and GtkButton are called widgets
in php-gtk. There are many other widgets in such as GtkRadioButton, GtkMenu,
GtkTable, including GtkWindow.

• You will see the same 4 key lines (as explained in the previous example).

• Now instead of creating a GtkLabel, we create a GtkButton.

• Then stuff the button inside the window using GtkContainer::add() as before.

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4
5 $button = new GtkButton("click me!"); // note 1
6 $window->add($button); // note 2

Copyright @ 2007. kksou.com. All Rights Reserved. 6

http://gtk.php.net/manual/en/gtk.gtkbutton.php
http://gtk.php.net/manual/en/gtk.gtkcontainer.method.add.php

PHP-GTK2 Demystified Lesson 1.3

7
8 $window->show_all();
9 Gtk::main();
10 ?>

Listing 1.2.php

Explanation

1. Creates a button.

2. Add the button to the window.

Note

Think of widgets as different types of Lego building blocks. Some are plain
rectangular blocks. Some are round blocks. Some have buttons. By creatively
combining these different building blocks, we can build almost anything we have in
mind.

Same for php-gtk2. Writing php-gtk2 scripts is all about knowing what are the
widgets available, and their corresponding properties, methods and signals.

1.3 Responding to button click

Objective

We've displayed a button in the previous example. Now we will respond to button
clicks.

Overview

• When a user presses the button, a signal clicked is generated. Think of signal
as something php-gtk generates to inform you that something has occurred, in
this example, the user has clicked the button.

• By connecting the signal to a callback function, every time there is a 'clicked'
signal, php-gtk will automatically call the callback function that you have
connected.

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4

Copyright @ 2007. kksou.com. All Rights Reserved. 7

http://gtk.php.net/manual/en/gtk.gtkbutton.signal.clicked.php
http://gtk.php.net/manual/en/gobject.method.connect..php

PHP-GTK2 Demystified Lesson 1.4

5 $button = new GtkButton("click me!");
6 $button->connect('clicked', 'on_click'); // note 1
7
8 $window->add($button);
9 $window->show_all();
10 Gtk::main();
11
12 function on_click($button) { // note 2
13 echo "button clicked!\n";
14 }
15 ?>

Listing 1.3.php

Explanation

1. Connects the signal 'clicked' to the callback function on_click().

2. This is the callback function that is called when the user clicks on the button.
Here we simply echo the words "button clicked!" to the command window.

Note

• Different signals are generated by a widget for different types of events. Each
signal has a unique name assigned to it. E.g. for GtkButton:

 the signal clicked is emitted when the user clicks the button.

 the signal pressed is emitted when the button is being pressed.

 the signal released is emitted when the button is being released.

• You will sometimes see people referring callback functions as signal handlers,
since these callback functions are used to handle signals. signal handlers

1.4 Adding two or more widgets

Objective

Up until now, we have only added one widget to GtkWindow - either a label or a
button. Suppose we want to add both the label and the button.

Overview

The GtkWindow widget is called a bin in php-gtk. A bin can contain one and only one
child widget. To stuff more than one widgets in a GtkWindow, we need containers
— widgets that can hold two or more widgets.

In this example, we will use a GtkVBox. As the name suggests, this is a vertical
container that can be used to “pack” widgets vertically.

• Create a GtkVBox.

Copyright @ 2007. kksou.com. All Rights Reserved. 8

http://gtk.php.net/manual/en/gtk.gtkbutton.signal.clicked.php
http://gtk.php.net/manual/en/gtk.gtkbutton.signal.pressed.php
http://gtk.php.net/manual/en/gtk.gtkbutton.signal.released.php
http://gtk.php.net/manual/en/gtk.gtkvbox.php
http://gtk.php.net/manual/en/gtk.gtkvbox.php

PHP-GTK2 Demystified Lesson 1.4

• Use GtkBox::pack_start() to add widgets into vbox. The widgets will be packed
into the vbox starting from the top.

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $vbox = new GtkVBox(); // note 1
5 $window->add($vbox); // note 2
6
7 $vbox->pack_start(new GtkLabel('Please click on the button: ')); // note 3
8
9 $button = new GtkButton("click me!");
10 $button->connect('clicked', 'on_click');
11 $vbox->pack_start($button); // note 4
12
13 $window->show_all();
14 Gtk::main();
15
16 function on_click($button) {
17 echo "button clicked!\n";
18 }
19 ?>

Listing 1.4.php

Explanation

1. Create the vbox.

2. Add the vbox to the GtkWindow.

3. First stuff the label into the vbox.

4. Followed by the button.

Note

• If you wish to pack the widget from the bottom stacking up, use the method
GtkBox::pack_end().

• Commonly used bin: GtkWindow, GtkFrame, GtkEventBox, GtkAlignment,
GtkScrolledwindow.

Copyright @ 2007. kksou.com. All Rights Reserved. 9

http://gtk.php.net/manual/en/gtk.gtkbox.method.pack_start.php
http://gtk.php.net/manual/en/gtk.gtkbox.method.pack_end.php
http://gtk.php.net/manual/en/gtk.gtkwindow.php
http://gtk.php.net/manual/en/gtk.gtkframe.php
http://gtk.php.net/manual/en/gtk.gtkeventbox.php
http://gtk.php.net/manual/en/gtk.gtkalignment.php
http://gtk.php.net/manual/en/gtk.gtkscrolledwindow.php

PHP-GTK2 Demystified Lesson 1.5

• Commonly used containers: GtkVBox, GtkHBox, GtkTable, GtkTreeview,
GtkMenu.

1.5 Resize application window

Objective

We will resize the application window to 400 x 200 in this example.

Overview

Resize widgets (including GtkWindow) is easy with a call to the method
GtkWidget::set_size_request().

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(400, 200); // note 1
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $label = new GtkLabel('Please click on the button: ');
9 //$label->set_size_request(100,50); // note 2
10 $vbox->pack_start($label);
11
12 $button = new GtkButton("click me!");
13 //$button->set_size_request(100,50); // note 2
14 $button->connect('clicked', 'on_click');
15 $vbox->pack_start($button);
16
17 $window->show_all();

Copyright @ 2007. kksou.com. All Rights Reserved. 10

http://gtk.php.net/manual/en/gtk.gtkvbox.php
http://gtk.php.net/manual/en/gtk.gtkhbox.php
http://gtk.php.net/manual/en/gtk.gtktable.php
http://gtk.php.net/manual/en/gtk.gtktreeview.php
http://gtk.php.net/manual/en/gtk.gtkmenu.php
http://gtk.php.net/manual/en/gtk.gtkwidget.method.set_size_request.php

PHP-GTK2 Demystified Lesson 1.5

18 Gtk::main();
19
20 function on_click($button) {
21 echo "button clicked!\n";
22 }
23 ?>

Listing 1.5.php

Explanation

1. Resize the application window to 400x200.

Note that if you specify only the width, e.g. $window->set_size_request(400,-
1) you will get the following.

If you specify only the height, e.g. $window->set_size_request(-1,200), you
will get:

2. Please see notes below.

Note

The method GtkWidget::set_size_request() is supposed to work with all GtkWidgets,
including GtkWindow, GtkLabel and GtkButtons. However, easy as it might seems,
this is one area that frustrates a lot of people new to php-gtk.

• Sometimes you "requested" the size for a widget, but the size remains
unchanged. For example, try uncomment the two lines with "note 2" above.
You will find that the label and the button remain as big!

• Sometimes you changed the size of a container, and the widgets inside the
containers automatically get resized too, messing up the layout and positioning.

Copyright @ 2007. kksou.com. All Rights Reserved. 11

http://gtk.php.net/manual/en/gtk.gtkwidget.method.set_size_request.php

PHP-GTK2 Demystified Lesson 1.5

For example, the button in the previous example looks ok. But as soon as you
resize the application window, the button becomes too huge.

Of course, there are always two sides to a coin. Please take a look at this example. A
user can choose the calculator button size he or she likes by resizing the application
window. Php-gtk2 automatically rearranges and resizes the widgets to fit the new
window - without the need of you to do any programming!

So, how do we set the size of the label and button in php-gtk?

This leads us to the first fundamental building block of php-gtk: Size and
Positioning.

Copyright @ 2007. kksou.com. All Rights Reserved. 12

http://www.kksou.com/php-gtk2/apps/calculator/calculator-step-1-layout-the-widgets.php

PHP-GTK2 Demystified Lesson 2.1

Chapter 2 Size & Positioning

In developing any desktop applications, the first task is usually laying out the
widgets.

It is easy to get a couple of widgets up and running in php-gtk, as we have seen in
the examples in Chapter 1. However, for someone new to php-gtk, he or she will
soon find out that some supposedly simple tasks – such as setting the size and
position of widgets – are not that simple after all.

2.1 Understand the Expand parameter

Objective

Let's first understand the expand parameter.

Overview

• First create two GtkButton.

• This time when packing the buttons into the vbox, use pack_start($button,
false).

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(400, 200);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $vbox->pack_start(new GtkButton('button1'), false); // note 1

Copyright @ 2007. kksou.com. All Rights Reserved. 13

http://gtk.php.net/manual/en/gtk.gtkbutton.php
http://gtk.php.net/manual/en/gtk.gtkbox.method.pack_start.php
http://gtk.php.net/manual/en/gtk.gtkbox.method.pack_start.php

PHP-GTK2 Demystified Lesson 2.1

9 $vbox->pack_start(new GtkButton('button2'), false); // note 2
10
11 $window->show_all();
12 Gtk::main();
13 ?>

Listing 2.1.php

Explanation

1. Pack button1 and button2 into vbox. Note that we set the expand parameter
to false.

Compare the above with that of setting the expand
parameter to true as shown in the figure on the right.

See the difference?

The "Spring Box" Model

The best way to understand the expand parameter is
to think of a button with expand set to true as a
button with a spring inside, as shown in the diagram
on the right.

Because of the spring, a button with expand=true will
fight for any space available to it.

Copyright @ 2007. kksou.com. All Rights Reserved. 14

PHP-GTK2 Demystified Lesson 2.1

One Expandable Button

So for the code below, you will find that button1 will grab
the entire window space because of the "expandable
spring" inside it.

1 <?php
2 $window = new GtkWindow();
3 $window-

>connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $vbox->pack_start(new GtkButton('button1'), true);
9
10 $window->show_all();
11 Gtk::main();
12 ?>

Listing 2.1.1.php

Two Expandable Buttons

If we have two buttons, both set to expand=true, you will
find that button1 and button2 will both fight for the
available space. As the two springs are of equal strength,
the result is that each will grab half the space.

1 <?php
2 $window = new GtkWindow();
3 $window-

>connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $vbox->pack_start(new GtkButton('button1'), true);
9 $vbox->pack_start(new GtkButton('button2'), true);
10
11 $window->show_all();
12 Gtk::main();
13 ?>

Listing 2.1.2.php

Copyright @ 2007. kksou.com. All Rights Reserved. 15

PHP-GTK2 Demystified Lesson 2.1

Three Expandable Buttons

As you have probably guessed, for three buttons all set to
expand=true, the result is as shown on the right:

1 <?php
2 $window = new GtkWindow();
3 $window-

>connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $vbox->pack_start(new GtkButton('button1'), true);
9 $vbox->pack_start(new GtkButton('button2'), true);
10 $vbox->pack_start(new GtkButton('button3'), true);
11
12 $window->show_all();
13 Gtk::main();
14 ?>

Listing 2.1.3.php

One Button – no spring

When you set expand=false, think of this as a button
without any spring inside. Since there are no expandable
spring, the widget will take on its default size:

1 <?php
2 $window = new GtkWindow();
3 $window-

>connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $vbox->pack_start(new GtkButton('button1'), false);
9
10 $window->show_all();
11 Gtk::main();
12 ?>

Listing 2.1.4.php

Copyright @ 2007. kksou.com. All Rights Reserved. 16

PHP-GTK2 Demystified Lesson 2.1

Two Buttons – first no spring, second with spring

Suppose now you have two buttons, the first one with
expand=false and the second with expand=true. Because of
the spring in the second button, it will expand – pushing
the first button all the way up, as shown in the figure on
the right:

1 <?php
2 $window = new GtkWindow();
3 $window-

>connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $vbox->pack_start(new GtkButton('button1'), false);
9 $vbox->pack_start(new GtkButton('button2'), true);
10
11 $window->show_all();
12 Gtk::main();
13 ?>

Listing 2.1.5.php

Three Buttons – on, off, on

Suppose now you have three buttons, the first and third
with expand=false and the second with expand=true.
Because of the spring in the second button, it will expand –
pushing the first button all the way up and the third button
all the way down:

1 <?php
2 $window = new GtkWindow();
3 $window-

>connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $vbox->pack_start(new GtkButton('button1'), false);
9
10 $window->show_all();
11 Gtk::main();
12 ?>

Listing 2.1.6.php

Copyright @ 2007. kksou.com. All Rights Reserved. 17

PHP-GTK2 Demystified Lesson 2.1

Same for GtkLabel

The "spring box" model applies to GtkLabel too. Because a
label has no borders like that of a button, you only see the
text. But the effect is the same.

1 <?php
2 $window = new GtkWindow();
3 $window-

>connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $vbox->pack_start(new GtkLabel('label1'), false);
9 $vbox->pack_start(new GtkLabel('label2'), true);
10 $vbox->pack_start(new GtkLabel('label3'), false);
11
12 $window->show_all();
13 Gtk::main();
14 ?>

Listing 2.1.7.php

Important Note

Understanding the expand parameter is key to understanding layout and positioning
in php-gtk. So it is important that you understand all the examples in this article
before moving on.

Copyright @ 2007. kksou.com. All Rights Reserved. 18

PHP-GTK2 Demystified Lesson 2.2

2.2 Understand the Fill parameter

Objective

Now that we’ve understood the expand parameter. Let's move on to the fill
parameter.

Overview

• First create two GtkButton.

• For the first button, set expand=true and fill=false.

• For the second button, set expand=true and fill=true.

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $vbox->pack_start(new GtkButton('button1'), true, true); // note 1
9 $vbox->pack_start(new GtkButton('button2'), true, false); // note 2
10
11 $window->show_all();
12 Gtk::main();
13 ?>

Listing 2.2.php

Copyright @ 2007. kksou.com. All Rights Reserved. 19

http://gtk.php.net/manual/en/gtk.gtkbutton.php

PHP-GTK2 Demystified Lesson 2.2

Explanation

1. For both buttons, we set expand=true. So as explained in the previous article,
both will get equal share of the available spaces. For button 1, we set
fill=true, meaning the button will fill up the entire space.

2. For button 2, it will also get half the share of the space (because we set
expand=true). However, because we have set fill=false, it will NOT fill up
the entire space, i.e. it will retain its default size.

Compare the above with that of setting expand=true and
fill=true as shown in the figure on the right.

See the difference?

Three Buttons – fill = on, off, on

In the example below, only button2 is expandable, but
with fill=false. So we have button2 getting all the
spaces, but retaining its original size:

1 <?php
2 $window = new GtkWindow();
3 $window-

>connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $vbox->pack_start(new GtkButton('button1'), false, true);
9 $vbox->pack_start(new GtkButton('button2'), true, false);
10 $vbox->pack_start(new GtkButton('button3'), false, true);
11
12 $window->show_all();
13 Gtk::main();
14 ?>

Listing 2.2.1.php

Copyright @ 2007. kksou.com. All Rights Reserved. 20

PHP-GTK2 Demystified Lesson 2.2

Two Buttons – both expand=off

Note that the parameter fill has meaning only when
expand=true. When expand=false and you set fill=true,
you won't be able to see any effect as shown below:

1 <?php
2 $window = new GtkWindow();
3 $window-

>connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $vbox->pack_start(new GtkButton('button1'), false, true);
9 $vbox->pack_start(new GtkButton('button2'), false, true);
10
11 $window->show_all();
12 Gtk::main();
13 ?>

You will get the same result
whether you set fill=true or
fill=false when expand=false.

Listing 2.2.2.php

Two Labels – appears to have no effect for Fill parameter

Setting the fill parameter to true or false does not seem
to have any effect on GtkLabel as shown below:

1 <?php
2 $window = new GtkWindow();
3 $window-

>connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $vbox->pack_start(new GtkLabel('label 1'), false, true);
9 $vbox->pack_start(new GtkLabel('label 2'), true, true);
10
11 $window->show_all();
12 Gtk::main();
13 ?>

Listing 2.2.3.php

Copyright @ 2007. kksou.com. All Rights Reserved. 21

PHP-GTK2 Demystified Lesson 2.2

Two Labels – see the Fill parameter in action

In the example above, the fill parameter does not seem to
have any effect on GtkLabel. This is because a GtkLabel
does not have a border like that of GtkButton. Hence it
appears to have no effect. If we add a background color to
the GtkLabel, we can see that it is working just as
expected like the GtkButton.

1 <?php
2 $window = new GtkWindow();
3 $window-

>connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $eventbox1 = new GtkEventBox();
9 $eventbox1->add(new GtkLabel('label 1'));
10 $eventbox1->modify_bg(Gtk::STATE_NORMAL,

GdkColor::parse("#0000ff"));
11 $vbox->pack_start($eventbox1, false, true);
12
13 $eventbox2 = new GtkEventBox();
14 $eventbox2->add(new GtkLabel('label 2'));
15 $eventbox2->modify_bg(Gtk::STATE_NORMAL,

GdkColor::parse("#0000ff"));
16 $vbox->pack_start($eventbox2, true, false);
17
18 $window->show_all();
19 Gtk::main();
20 ?>

Listing 2.2.4.php

Important Note

Once you have understood the expand and the fill parameters, you will find that we
have now absolute control over the size, layout and positioning of widgets in php-
gtk2!

Copyright @ 2007. kksou.com. All Rights Reserved. 22

PHP-GTK2 Demystified Lesson 2.3

2.3 Display the button in default size

Objective

By right, the default size of a GtkButton corresponds to the size of its label. However,
as you have seen in the previous few examples, it is always displayed extending
across the entire width of the screen as shown below:

In this example, we will see how to display a button in its default size.

Overview

• First create a GtkButton.

• Then create a GtkHBox.

• Pack the button inside the hbox, set expand=false.

• Then pack the hbox inside the vbox, also set expand=false.

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $button = new GtkButton('button label');
9 $hbox = new GtkHBox();
10 $hbox->pack_start($button, false); // note 1
11 $vbox->pack_start($hbox, false); // note 2

Copyright @ 2007. kksou.com. All Rights Reserved. 23

http://gtk.php.net/manual/en/gtk.gtkbutton.php
http://gtk.php.net/manual/en/gtk.gtkhbox.php

PHP-GTK2 Demystified Lesson 2.4

12
13 $window->show_all();
14 Gtk::main();
15 ?>

Listing 2.3.php

Explanation

1. expand=false will ensure that the button does not expand horizontally in the
hbox.

2. expand=false will ensure that the button does not expand vertically in the vbox.

As a result, the button is displayed in its default size – at the top, left corner of the
window.

2.4 Right align the button

Objective

In the previous example, you have displayed the button in its default size as shown
below:

What if we want the button to be right aligned?

Overview

• Create a GtkButton.

• Create a GtkHBox.

• First pack an expandable box into the hbox. Remember to set expand=true.

• Then pack the button inside the hbox, set expand=false.

• Finally pack the hbox inside the vbox, also set expand=false.

Copyright @ 2007. kksou.com. All Rights Reserved. 24

http://gtk.php.net/manual/en/gtk.gtkbutton.php
http://gtk.php.net/manual/en/gtk.gtkhbox.php

PHP-GTK2 Demystified Lesson 2.4

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $button = new GtkButton('button label');
9 $hbox = new GtkHBox();
10 $hbox->pack_start(new GtkLabel(), true); // note 1
11 $hbox->pack_start($button, false); // note 2
12 $vbox->pack_start($hbox, false); // note 3
13
14 $window->show_all();
15 Gtk::main();
16 ?>

Listing 2.4.php

Explanation

1. Here our expandable box is an empty GtkLabel with expand=true. Note that
you may also use an empty GtkHBox or GtkVBox. The effect is the same.

2. expand=false will ensure that the button does not expand horizontally in the
hbox.

3. expand=false will ensure that the button does not expand vertically in the vbox.

The net result is that the empty GtkLabel, because of its expandable spring, will
"push" the button on the way to the right of the window, as the following diagram
illustrates.

Copyright @ 2007. kksou.com. All Rights Reserved. 25

PHP-GTK2 Demystified Lesson 2.5

2.5 Center the button horizontally

Objective

You have right aligned the button in the previous example as shown below:

What if you want the button to be centered horizontally?

Overview

Instead of stuffing one spring box, we stuff two – one on each side as illustrated
below:

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7

Copyright @ 2007. kksou.com. All Rights Reserved. 26

PHP-GTK2 Demystified Lesson 2.6

8 $button = new GtkButton('button label');
9 $hbox = new GtkHBox();
10 $hbox->pack_start(new GtkHBox(), true); // note 1
11 $hbox->pack_start($button, false);
12 $hbox->pack_start(new GtkVBox(), true); // note 2
13
14 $vbox->pack_start($hbox, false);
15 $window->show_all();
16 Gtk::main();
17 ?>

Listing 2.5.php

Explanation

1. This is the spring box on the left. Just for illustration sake, we use a hbox here
to show you that the effect is the same as using an empty GtkLabel.

2. This is the spring box on the right. Just for illustration sake, we use a vbox
here to show you that the effect is the same as using an empty GtkLabel.

2.6 Center the button horizontally and vertically

Objective

You have centered the button horizontally in the previous example as shown below:

What if you want the button to be centered both horizontally and vertically?

Overview

In addition to the two spring boxes left and right, we stuff two more top and below
too as illustrated below:

Copyright @ 2007. kksou.com. All Rights Reserved. 27

PHP-GTK2 Demystified Lesson 2.6

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $button = new GtkButton('button label');
9 $hbox = new GtkHBox();
10 $hbox->pack_start(new GtkLabel(), true); // note 1
11 $hbox->pack_start($button, false);
12 $hbox->pack_start(new GtkLabel(), true); // note 1
13
14 $vbox->pack_start(new GtkLabel(), true); // note 2
15 $vbox->pack_start($hbox, false);
16 $vbox->pack_start(new GtkLabel(), true); // note 2
17 $window->show_all();
18 Gtk::main();
19 ?>

Listing 2.6.php

Explanation

1. The spring boxes left and right.

2. The spring boxes top and bottom.

Copyright @ 2007. kksou.com. All Rights Reserved. 28

PHP-GTK2 Demystified Lesson 2.7

2.7 Set the size of button

Objective

Suppose now you want the button to be exactly of the size 96 x 36.

Overview

• Set up to display the button in default size as described in Lesson 2.3.

• Set the size of the button with GtkWidget::set_size_request().

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $button = new GtkButton('button1');
9 $button->set_size_request(96,36); // note 1
10 $hbox = new GtkHBox();
11 $hbox->pack_start($button, false); // note 2
12 $vbox->pack_start($hbox, false); // note 3
13
14 $window->show_all();
15 Gtk::main();
16 ?>

Listing 2.7.php

Explanation

1. Set the size of the button.

2. Stuff the button in hbox with expand=false.

3. Stuff the hbox in vbox with expand=false.

Copyright @ 2007. kksou.com. All Rights Reserved. 29

http://gtk.php.net/manual/en/gtk.gtkwidget.method.set_size_request.php

PHP-GTK2 Demystified Lesson 2.8

2.8 Have 3 buttons of size 60x36 at top left-hand corner

Objective

Suppose now you want to have three buttons at the top left-hand corner of the
window, all of the size 60 x 36.

Overview

The concept is exactly the same as explained in the previous article. Instead of one
button, we just continuously add three buttons using a for-next loop, each time
packing the button into the hbox with expand set to false.

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(400, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $hbox = new GtkHBox();
9 for ($i=1; $i<=3; ++$i) {
10 $button = new GtkButton('button'.$i);
11 $button->set_size_request(60,32); // note 1
12 $button->connect('clicked', 'on_click'); // note 2
13 $hbox->pack_start($button, false); // note 3
14 $hbox->pack_start(new GtkLabel(), false); // note 4
15 }
16
17 $vbox->pack_start($hbox, false);
18 $window->show_all();
19 Gtk::main();
20
21 function on_click($button) {
22 $button_label = $button->get_label(); // note 5
23 echo "you have clicked the button: $button_label\n";

Copyright @ 2007. kksou.com. All Rights Reserved. 30

PHP-GTK2 Demystified Lesson 2.9

24 }
25 ?>

Listing 2.8.php

Explanation

1. Set the size of the button.

2. Set up the event handler for the button. We will explain in details about this in
the chapter Events Handling.

3. Stuff the button in hbox with expand=false

4. This adds a little gap between the buttons. Try commenting out this line. You
will get the following with all the button 'stacked' together.

5. Get the label of the button and echo it on the command window. We will
explain in details about this in the chapter Events Handling.

2.9 Precise positioning of buttons

Objective

In the previous example, we have arbitrarily left a gap between the buttons.

Suppose now you want to this gap to be exactly of 10 pixels wide between the
buttons.

Overview

You might have read somewhere that it's not possible to do precise positioning in
php-gtk, because everything is relative. The only way is to use GtkFixed but this is
strongly discouraged because there will no longer be automatic layout management
provided by php-gtk. This, is not really true.

If you understand the previous few examples, you already know how to do precise
positioning and sizing in php-gtk! – yes, it is just a matter of stacking a pile of
hboxes and vboxes on top of each other (just like the lego blocks), with the right
setting of the expand parameter during packing.

Copyright @ 2007. kksou.com. All Rights Reserved. 31

http://gtk.php.net/manual/en/gtk.gtkfixed.php

PHP-GTK2 Demystified Lesson 2.9

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(400, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $hbox = new GtkHBox();
9 for ($i=1; $i<=3; ++$i) {
10 $button = new GtkButton('button'.$i);
11 $button->set_size_request(60,32);
12 $button->connect('clicked', 'on_click');
13 $hbox->pack_start($button, false);
14
15 // add precisely a 10-pixel gap
16 $spacer = new GtkHBox(); // note 1
17 $spacer->set_size_request(10, -1); // note 2
18 $hbox->pack_start($spacer, false); // note 3
19 }
20
21 $vbox->pack_start($hbox, false);
22 $window->show_all();
23 Gtk::main();
24
25 function on_click($button) {
26 $button_label = $button->get_label();
27 echo "you have clicked the button: $button_label\n";
28 }
29 ?>

Listing 2.9.php

Copyright @ 2007. kksou.com. All Rights Reserved. 32

PHP-GTK2 Demystified Lesson 2.10

Explanation

We make use of the code in the previous example.

What's new here:

1. Create a new hbox. This hbox is the gap between the buttons.

2. Set the width of the hbox (i.e. the gap) to width=10. Since we are only
concerned about the width here, we set the height to -1.

3. Now pack this gap into the outside hbox with expand=false.

Now try to resize the window. You will see that the gap will always remain precisely
at 10 pixel because we have set expand=false.

2.10 Introducing the spacer

Objective

It's a good time now we introduce the spacer function, which you will find them
useful in all the php-gtk applications that you'll be working on.

Overview

The idea of spacer should be very familiar to those people who have developed
websites. Before CSS became popular, we usually use tables and "spacers" to
achieve the desired layout. We use the spacer, which is just a small transparent
image, set its width and height, to achieve proper layout and positioning.

If you have run through the previous example, you will find the technique to achieve
precise positioning in php-gtk is almost entirely similar.

Since we use spacers so often in php-gtk, let's turn it into a function so that anytime
we need to add a spacer, we just use a one-liner spacer($hbox, 10).

Now that we have the spacer function, let's also conveniently use it to add a gap of 4
pixels so that the buttons are 4 pixels away from the top of the window. Let's also
leave a gap of 3 pixels between the first button and the left side of the window so
that it's aesthetically more pleasing to the eyes.

Sample Output

Copyright @ 2007. kksou.com. All Rights Reserved. 33

PHP-GTK2 Demystified Lesson 2.10

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(400, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $hbox = new GtkHBox();
9 spacer($hbox, 3); // note 2
10 for ($i=1; $i<=3; ++$i) {
11 $button = new GtkButton('button'.$i);
12 $button->set_size_request(60,32);
13 $button->connect('clicked', 'on_click');
14 $hbox->pack_start($button, false);
15 spacer($hbox, 10); // note 3
16 }
17
18 spacer($vbox, 4); // note 1
19 $vbox->pack_start($hbox, false);
20 $window->show_all();
21 Gtk::main();
22
23 function on_click($button) {
24 $button_label = $button->get_label();
25 echo "you have clicked the button: $button_label\n";
26 }
27
28 function spacer($container, $gap) { // note 4
29 if ($container->get_name()=='GtkHBox') {
30 echo "horizontal spacer: $gap\n";
31 $spacer = new GtkHBox();
32 $spacer->set_size_request($gap, -1);
33 $container->pack_start($spacer, false);
34 } else {
35 echo "vertical spacer: $gap\n";
36 $spacer = new GtkVBox();
37 $spacer->set_size_request(-1, $gap);
38 $container->pack_start($spacer, false);
39 }
40 }
41 ?>

Listing 2.10.php

Copyright @ 2007. kksou.com. All Rights Reserved. 34

PHP-GTK2 Demystified Lesson 2.11

Explanation

We make use of the code in previous example.

What's new here:

1. Leave a gap of 4 pixels between top of window and the buttons.

2. Leave a gap of 3 pixels between left of window and 1st button.

3. Leave a gap of 10 pixels between the buttons..

4. This is the spacer function. It just wraps the method as outlined in the
previous example into a function. Note that GtkWidget::get_name() is a useful
function that can be used to find out whether $container is a hbox or a vbox.

For hbox, the gap will be horizontal. Hence we create a new hbox as the
spacer and set its width using $spacer->set_size_request($gap, -1).

For vbox, the gap will be vertical. Hence we create a new vbox as the spacer
and set its height using $spacer->set_size_request(-1, $gap).

2.11 Introducing the expandable spacer

Objective

Now that we have the useful spacer() function, let's also create another very useful
function – the expandable_spacer() function!

As an example on the use of expandable_spacer(), let's assume now you want the
three buttons in the previous example to always stay at the bottom of the window.

Overview

This is the equivalent of the "spring box" which we used to right or center align the
buttons in the earlier examples. The concept is very similar to a spacer, except this
spacer has no fixed width or height. BUT, it has "springs" inside, always trying to
grab whatever space it can get. So we will call this "spring box" an expandable
spacer.

Note that for expandable spacer, you do not need to specify any width or height,
since their width/height is dynamic. They will grab whatever space they can get
when you do any resize of the windows.

Sample Output

Copyright @ 2007. kksou.com. All Rights Reserved. 35

http://gtk.php.net/manual/en/gtk.gtkwidget.method.get_name.php

PHP-GTK2 Demystified Lesson 2.11

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(400, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $hbox = new GtkHBox();
9 spacer($hbox, 3);
10
11 for ($i=1; $i<=3; ++$i) {
12 $button = new GtkButton('button'.$i);
13 $button->set_size_request(60,32);
14 $button->connect('clicked', 'on_click');
15 $hbox->pack_start($button, false);
16 spacer($hbox, 10);
17 }
18
19 expandable_spacer($vbox); // note 1
20 $vbox->pack_start($hbox, false);
21 spacer($vbox, 4); // note 2
22
23 $window->show_all();
24 Gtk::main();
25
26 function on_click($button) {
27 $button_label = $button->get_label();
28 echo "you have clicked the button: $button_label\n";
29 }
30
31 function spacer($container, $gap) {
32 if ($container->get_name()=='GtkHBox') {
33 echo "horizontal spacer: $gap\n";
34 $spacer = new GtkHBox();
35 $spacer->set_size_request($gap, -1);
36 $container->pack_start($spacer, false);
37 } else {
38 echo "vertical spacer: $gap\n";
39 $spacer = new GtkVBox();
40 $spacer->set_size_request(-1, $gap);
41 $container->pack_start($spacer, false);
42 }
43 }
44
45 function expandable_spacer($container) { // note 3
46 $container->pack_start(new GtkHBox(), true);
47 }

Copyright @ 2007. kksou.com. All Rights Reserved. 36

PHP-GTK2 Demystified Lesson 2.12

48
49 ?>

Listing 2.11.php

Explanation

We make use of the code in previous example.

What's new here:

1. Insert an expandable spacer at the top of the vbox so that the buttons will be
pushed to stay at the bottom of the window.

2. As in the previous example, let's leave a gap of 3 pixels between left of
window and first button.

3. This is the expandable spacer function. Note that this is just a one-liner! As
explained in the previous examples, all we need here is a empty rectangular
widget to act as a spring box. We used GtkHBox here. But you could replace
this with a GtkVBox, or an empty GtkLabel.

Try to resize the window. You will see that the expandable_spacecr will automatically
expand such that the three buttons will always be pushed to stay at the bottom of
the window.

2.12 Add a Quit button that always stay at top right-hand corner

Objective

Let's have one more example on the combined use of spacer and expandable_spacer.

Suppose now you want to add a Quit button such that this button will always stay at
the top right-hand corner, no matter how the user resize the window.

Overview

We just need to insert an expandable spacer between the third button and the Quit
button.

Sample Output

Copyright @ 2007. kksou.com. All Rights Reserved. 37

http://gtk.php.net/manual/en/gtk.gtkhbox.php
http://gtk.php.net/manual/en/gtk.gtkvbox.php
http://gtk.php.net/manual/en/gtk.gtklabel.php

PHP-GTK2 Demystified Lesson 2.12

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(400, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $hbox = new GtkHBox();
9 spacer($hbox, 3);
10 for ($i=1; $i<=3; ++$i) {
11 $button = new GtkButton('button'.$i);
12 $button->set_size_request(60,32);
13 $button->connect('clicked', 'on_click');
14 $hbox->pack_start($button, false);
15 spacer($hbox, 10);
16 }
17
18 // Add a quit button
19 $button = new GtkButton('Quit');
20 $button->set_size_request(60,32);
21 $button->connect('clicked', 'on_click', $button);
22 expandable_spacer($hbox); // note 1
23 $hbox->pack_start($button, false);
24 spacer($hbox, 3); // note 2
25
26 spacer($vbox, 4);
27 $vbox->pack_start($hbox, false);
28 $window->show_all();
29 Gtk::main();
30
31 function on_click($button) {
32 $button_label = $button->get_label();
33 echo "you have clicked the button: $button_label\n";
34 if ($button_label=='Quit') Gtk::main_quit(); // note 3
35 }
36
37 function spacer($container, $gap) {
38 if ($container->get_name()=='GtkHBox') {
39 echo "horizontal spacer: $gap\n";
40 $spacer = new GtkHBox();
41 $spacer->set_size_request($gap, -1);
42 $container->pack_start($spacer, false);
43 } else {
44 echo "vertical spacer: $gap\n";
45 $spacer = new GtkVBox();
46 $spacer->set_size_request(-1, $gap);
47 $container->pack_start($spacer, false);
48 }

Copyright @ 2007. kksou.com. All Rights Reserved. 38

PHP-GTK2 Demystified Lesson 2.13

49 }
50
51 function expandable_spacer($container) { // note 3
52 $container->pack_start(new GtkHBox(), true);
53 }
54
55 ?>

Explanation

We make use of the code in previous example.

What's new here:

1. Insert an expandable spacer between the Button3 and the Quit button.

2. Just like the first button, we also leave a 3-pixel gap between the Quit button
and the right margin.

3. Exit the application if user clicks the Quit button.

Try to resize the window. You will see that the Quit button will always
stay at the top right-hand corner of the window.

2.13 A simple form with only one entry field

Objective

A form is very common in php-gtk applications. Each field usually has a label plus an
entry box for user to enter inputs. We will now learn how to display such entry fields.
For this example, we will start with only one field.

Overview

Until now we have only used GtkLabel and GtkButton. In this example, we will use
one more widget, the GtkEntry, for data input.

• Create a GtkLabel.

• Create the GtkEntry.

• Create a GtkButton as the submit button.

Sample Output

Sample Code

Copyright @ 2007. kksou.com. All Rights Reserved. 39

http://gtk.php.net/manual/en/gtk.gtklabel.php
http://gtk.php.net/manual/en/gtk.gtkentry.php
http://gtk.php.net/manual/en/gtk.gtkbutton.php

PHP-GTK2 Demystified Lesson 2.13

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(400, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $hbox = new GtkHBox();
9
10 spacer($hbox, 3); // add a 3-pixel left margin
11
12 // the label
13 $hbox->pack_start(new GtkLabel('Item code: '), false);
14
15 // the entry field
16 $input = new GtkEntry();
17 $input->set_size_request(200, -1);
18 $hbox->pack_start($input, false);
19
20 // the submit button
21 $button = new GtkButton('Submit');
22 $button->set_size_request(60,24);
23 $button->connect('clicked', 'on_submit', $input); // note 3
24 spacer($hbox, 6); // note 1
25 $hbox->pack_start($button, false);
26
27 spacer($vbox, 4); // add a 4-pixel top margin
28 $vbox->pack_start($hbox, false);
29
30 $window->show_all();
31 Gtk::main();
32
33 function on_submit($button, $input) { // note 3
34 $str = $input->get_text(); // note 2
35 echo "you have entered: $str\n";
36 }
37
38 function spacer($container, $gap) {
39 if ($container->get_name()=='GtkHBox') {
40 $spacer = new GtkHBox();
41 $spacer->set_size_request($gap, -1);
42 } else {
43 $spacer = new GtkVBox();
44 $spacer->set_size_request(-1, $gap);
45 }
46 $container->pack_start($spacer, false);
47 }
48
49 function expandable_spacer($container) {

Copyright @ 2007. kksou.com. All Rights Reserved. 40

PHP-GTK2 Demystified Lesson 2.14

50 $container->pack_start(new GtkHBox(), true);
51 }
52
53 ?>

Listing 2.13.php

Explanation

1. Try commenting this line. You will find that without the spacer, the submit
button will stick to the input field as follows:

2. This is how we get the user input from an entry field with the use of the
method GtkEntry::set_text().

3. Note how the pointer to the GtkEntry $input is passed along with the signal
handler. We need this to retrieve the value input by the user. We will explain
this in more detail in the next Chapter on Signal Handling.

2.14 A form with three fields - Part 1

Objective

In this example, we will expand the form to include three fields. Take a look at the
sample output. Yes, I know the layout is not right, and the button is too wide. And
you may say that why not do this with GtkTable?

Well, be patient. I just want to show you that with simple widgets like GtkHBox and
GtkVBox, we can accomplish the same effect as provided by some other widgets
such as GtkTable and GtkIconView – with the added benefit that you have a lot more
control over the positioning and sizing.

Go through these couple of exercises with me. Many of the techniques used here will
be applicable to other widgets such as GtkTable.

Overview

We use exactly the same technique as described in the previous example:

• Each field will occupy one row. So we create a new hbox for each field.

• For each field, we create a GtkLabel and a GtkEntry, set the desired width, and
pack them into the hbox – all with expand=false.

Copyright @ 2007. kksou.com. All Rights Reserved. 41

http://gtk.php.net/manual/en/gtk.gtkentry.method.set_text.php
http://gtk.php.net/manual/en/gtk.gtklabel.php
http://gtk.php.net/manual/en/gtk.gtkentry.php

PHP-GTK2 Demystified Lesson 2.14

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(400, 200);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7 spacer($vbox, 4); // add a 4-pixel top margin
8
9 $input_field_def = array(// note 1
10 'Item Code'=>120,
11 'Item Description'=>240,
12 'Price'=>80);
13
14 foreach($input_field_def as $label=>$field_width) {
15 $hbox = new GtkHBox(); // note 2
16 spacer($hbox, 3); // add a 3-pixel left margin
17
18 // the label
19 $hbox->pack_start(new GtkLabel("$label: "), false);
20
21 // the entry field
22 $input = new GtkEntry();
23 $input->set_size_request($field_width, -1);
24 $hbox->pack_start($input, false);
25
26 $vbox->pack_start($hbox, false);
27 }
28
29 // the submit button
30 $button = new GtkButton('Submit');
31 $button->set_size_request(60,24);

Copyright @ 2007. kksou.com. All Rights Reserved. 42

PHP-GTK2 Demystified Lesson 2.15

32 $button->connect('clicked', 'on_submit', $input);
33 spacer($vbox, 6); //add a 6-pixel gap
34 $vbox->pack_start($button, false); // note 3
35
36 $window->show_all();
37 Gtk::main();
38
39 function on_submit($button, $input) {
40 $str = $input->get_text();
41 echo "you have entered: $str\n";
42 }
43
44 function spacer($container, $gap) {
45 if ($container->get_name()=='GtkHBox') {
46 $spacer = new GtkHBox();
47 $spacer->set_size_request($gap, -1);
48 } else {
49 $spacer = new GtkVBox();
50 $spacer->set_size_request(-1, $gap);
51 }
52 $container->pack_start($spacer, false);
53 }
54
55 function expandable_spacer($container) {
56 $container->pack_start(new GtkHBox(), true);
57 }
58
59 ?>

Listing 2.14.php

Explanation

We make use of the code in the previous example.

What's new here:

1. This array defines the fields. Each associative array comprises "label_of_field"
=> width_of_field.

2. Create a new row for each field.

3. Add a submit button after all the fields are displayed.

2.15 A form with three fields - Part 2

Objective

In the previous example, we have displayed a form with three fields. However, the
layout is not right, and the button is too wide.

We'll fix this in this example.

Copyright @ 2007. kksou.com. All Rights Reserved. 43

PHP-GTK2 Demystified Lesson 2.15

Overview

We use exactly the same technique as described in the previous example:

• To have a better layout, we set the width of all the labels to the same size with
GtkWidget::set_size_request().

• We use the technique as described in Lesson 2.7 Set the size of button to set
the Submit button to the right size.

Sample Output

Notice that we have fixed the layout, and the button size is correct. However, the
label is centered. It should be left or right-justified. We'll fix this in the next article.

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(400, 200);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7 spacer($vbox, 4); // add a 4-pixel top margin
8
9 $input_field_def = array(
10 'Item Code'=>120,
11 'Item Description'=>240,
12 'Price'=>80);
13
14 foreach($input_field_def as $label=>$field_width) {
15 $hbox = new GtkHBox();
16 spacer($hbox, 3); // add a 3-pixel left margin
17
18 // the label
19 $label = new GtkLabel("$label: ");

Copyright @ 2007. kksou.com. All Rights Reserved. 44

http://gtk.php.net/manual/en/gtk.gtkwidget.method.set_size_request.php

PHP-GTK2 Demystified Lesson 2.15

20 $label->set_size_request(100, -1); // note 1
21 $hbox->pack_start($label, false);
22
23 // the entry field
24 $input = new GtkEntry();
25 $input->set_size_request($field_width, -1);
26 $hbox->pack_start($input, false);
27
28 $vbox->pack_start($hbox, false);
29 }
30
31 // the submit button
32 $hbox = new GtkHBox(); // note 2
33 $button = new GtkButton('Submit'); // note 2
34 $button->set_size_request(60,24); // note 2
35 $button->connect('clicked', 'on_submit', $input);
36 spacer($hbox, 3);
37 spacer($hbox, 100); // note 3
38 $hbox->pack_start($button, false);
39
40 spacer($vbox, 6); //add a 6-pixel gap
41 $vbox->pack_start($hbox, false);
42
43 $window->show_all();
44 Gtk::main();
45
46 function on_submit($button, $input) {
47 $str = $input->get_text();
48 echo "you have entered: $str\n";
49 }
50
51 function spacer($container, $gap) {
52 if ($container->get_name()=='GtkHBox') {
53 $spacer = new GtkHBox();
54 $spacer->set_size_request($gap, -1);
55 } else {
56 $spacer = new GtkVBox();
57 $spacer->set_size_request(-1, $gap);
58 }
59 $container->pack_start($spacer, false);
60 }
61
62 function expandable_spacer($container) {
63 $container->pack_start(new GtkHBox(), true);
64 }
65
66 ?>

Listing 2.15.php

Copyright @ 2007. kksou.com. All Rights Reserved. 45

PHP-GTK2 Demystified Lesson 2.16

Explanation

We make use of the code in the previous example.

What's new here:

1. Set the size of label to the same width.

2. Set the Submit button to the right size by packing it inside a hbox with expand
set to false.

3. Note that we add a 100-pixel spacer here so that the Submit button appears
right below the input fields.

Note

Note that all the labels are centered. This is the default setting of a GtkLabel.

2.16 A form with three fields - Part 3

Objective

In the previous example, the field label is centered. We will fix this to make it right-
justified.

Overview

GtkLabel, by default, centers the text. To make it left- or right-justified, just create a
new hbox, pack it inside with expand set to false.

• If you want it left-justified, add an expandable spacer to its right.

• If you want it right-justified, add an expandable spacer to its left.

Sample Output

Copyright @ 2007. kksou.com. All Rights Reserved. 46

PHP-GTK2 Demystified Lesson 2.16

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(400, 200);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7 spacer($vbox, 4); // add a 4-pixel top margin
8
9 $input_field_def = array(
10 'Item Code'=>120,
11 'Item Description'=>240,
12 'Price'=>80);
13
14 foreach($input_field_def as $label=>$field_width) {
15 $hbox = new GtkHBox();
16 spacer($hbox, 3); // add a 3-pixel left margin
17
18 // the label
19 $label = new GtkLabel("$label: ");
20 $label_box = new GtkHBox(); // note 1
21 $label_box->set_size_request(100, -1); // note 2
22 expandable_spacer($label_box); // note 3
23 $label_box->pack_start($label, false); // note 4
24 $hbox->pack_start($label_box, false);
25
26 // the entry field
27 $input = new GtkEntry();
28 $input->set_size_request($field_width, -1);
29 $hbox->pack_start($input, false);
30
31 $vbox->pack_start($hbox, false);
32 }
33
34 // the submit button
35 $hbox = new GtkHBox();
36 $button = new GtkButton('Submit');
37 $button->set_size_request(60,24);
38 $button->connect('clicked', 'on_submit', $input);
39 spacer($hbox, 3);
40 spacer($hbox, 100);
41 $hbox->pack_start($button, false);
42
43 spacer($vbox, 6); //add a 6-pixel gap
44 $vbox->pack_start($hbox, false);
45
46 $window->show_all();
47 Gtk::main();

Copyright @ 2007. kksou.com. All Rights Reserved. 47

PHP-GTK2 Demystified Lesson 2.16

48
49 function on_submit($button, $input) {
50 $str = $input->get_text();
51 echo "you have entered: $str\n";
52 }
53
54 function spacer($container, $gap) {
55 if ($container->get_name()=='GtkHBox') {
56 $spacer = new GtkHBox();
57 $spacer->set_size_request($gap, -1);
58 } else {
59 $spacer = new GtkVBox();
60 $spacer->set_size_request(-1, $gap);
61 }
62 $container->pack_start($spacer, false);
63 }
64
65 function expandable_spacer($container) {
66 $container->pack_start(new GtkHBox(), true);
67 }
68
69 ?>

Listing 2.16.php

Explanation

We make use of the code in the previous example.

What's new here:

1. Create a new hbox to hold the label.

2. Set the hbox size to the desired width.

3. We want the label to be right-justified in this example. So we add an
expandable spacer first.

4. Then we pack the label into the hbox with expand=false.

Note

If you have used GtkTable before, you will realize that by default the contents are
also displayed centered. You can use the same technique as described above to
perform left- or right-justification of the contents.

Copyright @ 2007. kksou.com. All Rights Reserved. 48

PHP-GTK2 Demystified Lesson 2.17

2.17 Summary

Here's a quick summary of what we have learned in this chapter:

• With proper use of GtkHBox, GtkVBox, and a good understanding of the
Expand and Fill parameter, you can achieve precise positioning, layout and
sizing of the widgets in php-gtk2.

• We introduced the spring box model that would allow you to easily "visualize"
the effect of the expand parameter.

• Whenever set_size_request() does not seem to have any effect, pack them
into a GtkHBox, followed by a GtkVBox, with expand set to false.

• We introduced two useful functions: spacer() and expandable_spacer().

• Use spacer() for precise positioning e.g. 4 pixel gap between buttons.

• Use expandable_spacer() when you want to do left/right justification, or you
want a widget to stay on the top or bottom of window.

More Examples

To see how some of these techniques are being used in practice, you may refer to
the following examples in the php-gtk2 Cookbook website:

• How to display a 2D array in table - Part 4?

• How to set valign top in GtkTable?

• How to set align left and valign top in GtkTable - using vbox and hbox?

• How to put a clickable link in GtkLabel - Part 2?

• How to display a popup alert for required fields - Part 1?

• How to display a popup alert for required fields - Part 2 (OK button centered)?

• How to display a popup dialog to prompt for data?

• How to allow only numbers in GtkEntry - Part 2?

• How to run multiple applications in multiple windows - Part 1?

Copyright @ 2007. kksou.com. All Rights Reserved. 49

http://www.kksou.com/php-gtk2/
http://www.kksou.com/php-gtk2/articles/display-a-2D-array-in-table---Part-4.php
http://www.kksou.com/php-gtk2/articles/set-valign-top-in-GtkTable.php
http://www.kksou.com/php-gtk2/articles/set-align-left-and-valign-top-in-GtkTable---using-vbox-and-hbox.php
http://www.kksou.com/php-gtk2/articles/put-a-clickable-link-in-GtkLabel---Part-2.php
http://www.kksou.com/php-gtk2/articles/display-a-popup-alert-for-required-fields---Part-1.php
http://www.kksou.com/php-gtk2/articles/display-a-popup-alert-for-required-fields---Part-2-%28OK-button-centered%29.php
http://www.kksou.com/php-gtk2/articles/display-a-popup-dialog-to-prompt-for-data.php
http://www.kksou.com/php-gtk2/articles/allow-only-numbers-in-GtkEntry---Part-2.php
http://www.kksou.com/php-gtk2/articles/run-multiple-applications-in-multiple-windows---Part-1.php

PHP-GTK2 Demystified

Chapter 3 Signal Handling

What are Signals

Signals are the links between your php-gtk application and the user. Signals allow
you to know when the user do something — clicked a button, pressed a key, inserted
a character, deleted a row, selected an image, etc. Through signals, you are able to
act accordingly based on user's actions.

Connecting Signals

Signals are like the newsletters or news feeds. There are millions of free newsletters
and news feeds currently out there on Internet. You only subscribe to the ones you
are interested, so that you will not be flooded with too much information.

Same for signals. Take a look at the php-gtk manual. There are currently 336 signals
listed there. (Php-gtk2 is still under development, so more signals are continuously
being added.) You probably do not need to be informed about all these signals in
your application. You register with php-gtk which are the ones you're interested in
with the connect() method.

Signal Name

Take a look again at the index of signals in the php-gtk manual. In php-gtk each
signal is identified by a unique name. For example,

• We have seen that the signal that is emitted when the user clicks the button is
called 'clicked'

• The signal that is emitted when the button is being pressed is called 'pressed'.

• The signal that is emitted when the button is being released is called 'pressed'.

When you register a signal with connect(), you need to know the name of this signal
and specify it as the first argument.

Callback Function

When you register a signal with connect(), you also specify the name of your
callback function as the second argument. For example, after you have registered
the 'click' signal with $button->connect('clicked', 'on_click'), every time the user
clicks the button, php-gtk will automatically call your function on_click() where you
can perform your necessary action.

Since the callback function is used to handle a signal, you will sometimes see a
callback function being referred to as a signal handler.

Copyright @ 2007. kksou.com. All Rights Reserved.

http://gtk.php.net/manual/en/gobject.method.connect.php
http://gtk.php.net/manual/en/signalindex.php
http://gtk.php.net/manual/en/gobject.method.connect.php
http://gtk.php.net/manual/en/gobject.method.connect.php

PHP-GTK2 Demystified Lesson 3.1

3.1 Signal basics

Objective

Let's begin our understanding of signal handling with the button click example.

Overview

• We "inform" php-gtk that we want to listen to a particular signal with
connect(signal, callback_fn).

• And we write the function that will be used to handle this signal. This function
is called the callback function or signal handler.

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $button = new GtkButton('button1');
9 $hbox = new GtkHBox();
10 $hbox->pack_start($button, true, false);
11 $vbox->pack_start($hbox, true, false);
12
13 $button->connect('clicked', 'on_click'); // note 1
14
15 $window->show_all();
16 Gtk::main();
17
18 function on_click($button) { // note 2
19 echo "button clicked!\n";
20 }
21 ?>

Listing 3.1.php

Copyright @ 2007. kksou.com. All Rights Reserved. 51

http://gtk.php.net/manual/en/gobject.method.connect.php

PHP-GTK2 Demystified Lesson 3.2

Explanation

1. The first parameter is the signal we want to listen to. In this example, we want
to know when the button is clicked. The name of this signal is called 'clicked'.
The second parameter is the name of your callback function that will be used
to handle the signal. In this example, this is the function 'on_click()'.

2. This is the callback function that is used to handle the signal 'clicked', i.e.
when the user clicks the button, php-gtk will automatically calls this function
that you have written. For this example, we simply echo the string "button
clicked" to the command window.

3.2 Handling three buttons with one signal handler

Objective

In the previous example, we have one button, and one callback function to handle its
button clicks.

Suppose now we have three buttons. Of course, we could connect the button clicks
to three separate callback functions. However, php-gtk also allows us to handle all
the button clicks with just one signal handler.

Overview

• connect the signal 'clicked' for all the three buttons to the same callback
function.

• In the callback function, you will find that the first argument $button gives you
a pointer to the button that is being clicked on.

• To retrieve the label of the button, we use GtkButton::get_label().

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);

Copyright @ 2007. kksou.com. All Rights Reserved. 52

http://gtk.php.net/manual/en/gtk.gtkbutton.signal.clicked.php
http://gtk.php.net/manual/en/gobject.method.connect.php
http://gtk.php.net/manual/en/gtk.gtkbutton.signal.clicked.php
http://gtk.php.net/manual/en/gtk.gtkbutton.method.get_label.php

PHP-GTK2 Demystified Lesson 3.2

7
8 $hbox = new GtkHBox();
9 for ($i=1; $i<=3; ++$i) {
10 $button = new GtkButton('button'.$i);
11 $button->connect('clicked', 'on_click'); // note 1
12 $hbox->pack_start($button, false);
13 $hbox->pack_start(new GtkLabel(' '), false);
14 }
15
16 $vbox->pack_start($hbox, false);
17 $window->show_all();
18 Gtk::main();
19
20 function on_click($button) { // note 2
21 $button_label = $button->get_label(); // note 3
22 echo "you have clicked the button: $button_label\n";
23 }
24 ?>

Listing 3.2.php

Explanation

1. Connect the signal 'clicked' to the function on_click().

2. Note the first argument $button. This is passed along by php-gtk when calling
your signal handler.

3. Get the label of the button that is being clicked on, and echo it in the
command window.

Data Automatically Passed to Callback Functions

When php-gtk invokes your callback function, most of the time it will automatically
pass along some useful data in the arguments. Take a look at some of these signals
in the php-gtk manual:

• signal 'clicked': void callback(GtkButton button)

• signal 'key-press-event': bool callback(GtkWidget widget, GdkEvent event)

• signal 'set_cell_data_func': void callback(GtkCellLayout cell_layout,
GtkCellRenderer cell, GtkTreeModel tree_model, GtkTreeIter iter [,
user_data])

Note that:

• For each signal, different data are passed along by php-gtk.

• The first argument is usually the widget that emitted the signal.

Differentiating the Source of Signals

For the signal 'clicked', the first argument we receive in the callback function is a
pointer to the GtkButton that is being clicked on. With this pointer, we make a call to

Copyright @ 2007. kksou.com. All Rights Reserved. 53

http://gtk.php.net/manual/en/gtk.gtkbutton.signal.clicked.php
http://gtk.php.net/manual/en/gtk.gtkwidget.signal.key-press-event.php
http://gtk.php.net/manual/en/gtk.gtkcelllayout.method.set_cell_data_func.php

PHP-GTK2 Demystified Lesson 3.3

the method GtkButton::get_label() to get the corresponding label of the button.
Therefore, even though we have used just one callback function, we're able to
differentiate exactly which is the button that triggered the signal.

3.3 Handling multiple signals with one signal handler – one
more example

Objective

Let's have one more example of handling multiple signals using only one signal
handler. This time instead of GtkButton, we will use GtkRadioButton.

Overview

• To display radio buttons, use GtkRadiobutton.

• When the user selects one of the radio buttons, the signal emitted is called
'toggled'.

• As in the previous example, we connect this signal for all the three radio
buttons to the same callback function on_toggle().

• To retrieve the label of the button, we use GtkButton::get_label(), where
$radio is the first argument being passed along by php-gtk when the callback
function is activated.

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $radio = null;
9 for ($i=1; $i<=3; ++$i) {
10 $radio = new GtkRadioButton($radio, 'radio button '.$i); // note 1
11 $radio->connect('toggled', 'on_toggle'); // note 2

Copyright @ 2007. kksou.com. All Rights Reserved. 54

http://gtk.php.net/manual/en/gtk.gtkradiobutton.php
http://gtk.php.net/manual/en/gtk.gtktogglebutton.signal.toggled.php
http://gtk.php.net/manual/en/gobject.method.connect.php
http://gtk.php.net/manual/en/gtk.gtkbutton.method.get_label.php

PHP-GTK2 Demystified Lesson 3.4

12 $vbox->pack_start($radio, false);
13 }
14
15 $window->show_all();
16 Gtk::main();
17
18 function on_toggle($radio) { // note 3
19 $label = $radio->get_label(); // note 4
20 $active = $radio->get_active(); // note 5
21 if ($active) echo "radio button pressed: $label\n";
22 }
23 ?>

Listing 3.3.php

Explanation

1. Create the radio buttons using new GtkRadioButton(buttongrp, button_label).
Note that for the first radio button, we pass in NULL as the first argument. For
the second radio buttons, we pass in the pointer of the first radio button as
the first argument. Similarly for the third. PHP-GTK will then group all these
into the same group.

2. Connect the signal 'toggled' to the function on_toggle().

3. Note the first argument $radio. This is passed along by php-gtk when calling
your signal handler.

4. Get the label of the button that is being clicked on.

5. Check if the radio button is selected using the method
GtkTogglebutton::get_active().

3.4 Passing additional data to callback function - Part 1

Objective

In HTML, we can use

 <input type="radio" name="radiogrp1" value="NY">New York

to attach a value to each radio item. When the user select, say New York, the value
returned will be NY.

We will achieve the same effect using php-gtk in this example.

Overview

• Set up the radio buttons as outlined in the previous example.

• Specify any additional data to be passed along with the signal after the second
argument in the connect statement.

• Note that your callback function definition should now contain the
corresponding additional parameters to receive the additional data.

Copyright @ 2007. kksou.com. All Rights Reserved. 55

http://gtk.php.net/manual/en/gtk.gtktogglebutton.signal.toggled.php
http://gtk.php.net/manual/en/gtk.gtktogglebutton.method.get_active.php
http://gtk.php.net/manual/en/gobject.method.connect.php

PHP-GTK2 Demystified Lesson 3.4

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7 $vbox->pack_start(new GtkLabel('Select a State:'), false);
8
9 $radio = null;
10 $radio_button_def = array('New York'=>'NY', 'California'=>'CA', 'Washington'=>'WA');
11 foreach ($radio_button_def as $state_name => $state_code) {
12 $radio = new GtkRadioButton($radio, $state_name);
13 $radio->connect('toggled', 'on_toggle', $state_code); // note 1
14 $vbox->pack_start($radio, false);
15 }
16
17 $window->show_all();
18 Gtk::main();
19
20 function on_toggle($radio, $user_data) { // note 2
21 $label = $radio->get_label();
22 $active = $radio->get_active();
23 if ($active) echo "radio button pressed: $label ($user_data)\n";
24 }
25 ?>

Listing 3.4.php

Explanation

1. By specifying $state_code as the third argument, the 2-letter state code will
also be passed to your callback function by php-gtk.

2. The first parameter is the widget that emitted the signal. This is passed along
automatically by php-gtk. The second parameter $user_data is the additional
data that you have specified in the connect statement.

Copyright @ 2007. kksou.com. All Rights Reserved. 56

PHP-GTK2 Demystified Lesson 3.5

3.5 Passing additional data to callback function - Part 2

Objective

The additional data to be passed to the callback function can be of any valid PHP
data type, e.g. integer, float, string, array, object, etc.

This example achieves the same effect as the previous example except that we pass
along an array instead of a string.

Overview

• Use previous example as the base.

• In the connect statement, specify the array $radio_button_def instead of
$state_code as the third argument.

• Change the second parameter of the callback function definition accordingly.

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7 $vbox->pack_start(new GtkLabel('Select a State:'), false);
8
9 $radio = null;
10 $radio_button_def = array('New York'=>'NY', 'California'=>'CA', 'Washington'=>'WA');
11 foreach ($radio_button_def as $state_name => $state_code) {
12 $radio = new GtkRadioButton($radio, $state_name);
13 $radio->connect('toggled', 'on_toggle', $radio_button_def); // note 1
14 $vbox->pack_start($radio, false);
15 }
16
17 $window->show_all();
18 Gtk::main();
19

Copyright @ 2007. kksou.com. All Rights Reserved. 57

http://gtk.php.net/manual/en/gobject.method.connect.php

PHP-GTK2 Demystified Lesson 3.6

20 function on_toggle($radio, $button_def) { // note 2
21 $label = $radio->get_label();
22 $active = $radio->get_active();
23 $code = $button_def[$label]; // note 3
24 if ($active) echo "radio button pressed: $label ($code)\n";
25 }
26 ?>

Listing 3.5.php

Explanation

1. Pass the array $radio_button_def along with the signal.

2. The first parameter is the widget that emitted the signal. This is passed along
automatically by php-gtk. The second parameter $button_def is the additional
data that you have specified in the connect statement.

3. Get the 2-letter state code from the array, using $label as the index.

3.6 Passing additional data to callback function - Part 3

Objective

You can pass as many additional data as you want to the callback function along with
the signal as illustrated by this example.

Overview

• Attach additional data in the connect statement after the second argument.
Separate each data by commas.

• Change the parameters of the callback function definition accordingly to match
the number of additional data that will be received.

Sample Output

Copyright @ 2007. kksou.com. All Rights Reserved. 58

http://gtk.php.net/manual/en/gobject.method.connect.php

PHP-GTK2 Demystified Lesson 3.6

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 120);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7 $vbox->pack_start(new GtkLabel('Select a State:'), false);
8 $vbox_radio_buttons = new GtkVBox(); // note 1
9 $vbox->pack_start($vbox_radio_buttons, false);
10 $vbox->pack_start(new GtkVBox()); // note 2
11 $status = new GtkLabel(' '); // note 3
12 $vbox->pack_start($status, false);
13
14 $radio = null;
15 $radio_button_def = array('New York'=>'NY', 'California'=>'CA', 'Washington'=>'WA');
16 foreach ($radio_button_def as $state_name => $state_code) {
17 $radio = new GtkRadioButton($radio, $state_name);
18 $radio->connect('toggled', 'on_toggle', $radio_button_def, $status); // note 4
19 $vbox_radio_buttons->pack_start($radio, false);
20 }
21
22 $window->show_all();
23 Gtk::main();
24
25 function on_toggle($radio, $button_def, $status) { // note 5
26 $label = $radio->get_label();
27 $active = $radio->get_active();
28 $code = $button_def[$label];
29 if ($active) $status->set_text("selection: $label ($code)"); // note 6
30 }
31 ?>

Listing 3.6.php

Explanation

1. Create one more vbox to hold the radio buttons.

2. Add an expandable spacer to push the status bar to the bottom.

3. Create a GtkLabel to act as a status line.

4. Note that we pass two pieces of additional data along with the signal this time:
the button definition array, as well as the GtkLabel object (the status line).

5. Note that our callback function now has 3 parameters – one passed
automatically by php-gtk, and the other two by us.

6. With the pointer to the status line $status passed along together with the
signal, we can now echo the user selection using GtkLabel::set_text().

Copyright @ 2007. kksou.com. All Rights Reserved. 59

http://gtk.php.net/manual/en/gtk.gtklabel.method.set_text.php

PHP-GTK2 Demystified Lesson 3.7

3.7 Object-oriented connections

Objective

Suppose you prefer using object-oriented programming, this example shows you
how to connect signals to methods in classes.

Overview

The way to connect signals to methods in classes is as follows:

 connect($signal_name, array($object, $method_name),

 [$user_data1, $user_data2, $user_data3, ...]);

Sample Output

Sample Code

1 <?php
2
3 class App {
4
5 function __construct() {
6 $window = new GtkWindow();
7 $window->connect_simple('destroy',array('Gtk','main_quit'));
8 $window->set_size_request(200, 120);
9 $vbox = new GtkVBox();
10 $window->add($vbox);
11 $vbox->pack_start(new GtkLabel('Select a State:'), false);
12 $vbox_radio_buttons = new GtkVBox();
13 $vbox->pack_start($vbox_radio_buttons, false);
14 $vbox->pack_start(new GtkVBox());
15 $status = new GtkLabel(' ');
16 $vbox->pack_start($status, false);
17
18 $radio = null;
19 $radio_button_def = array('New York'=>'NY', 'California'=>'CA',

'Washington'=>'WA');
20 $i = 0;
21 foreach ($radio_button_def as $state_name => $state_code) {

Copyright @ 2007. kksou.com. All Rights Reserved. 60

PHP-GTK2 Demystified Lesson 3.7

22 $radio = new GtkRadioButton($radio, $state_name);
23 $radio->connect('toggled', array($this, 'on_toggle'),
24 $radio_button_def, $status); // note 1
25 $vbox_radio_buttons->pack_start($radio, false);
26 }
27
28 $window->show_all();
29 Gtk::main();
30 }
31
32 function on_toggle($radio, $button_def, $status) {
33 $label = $radio->get_label();
34 $active = $radio->get_active();
35 $code = $button_def[$label];
36 if ($active) $status->set_text("selection: $label ($code)");
37 }
38 }
39
40 $app = new App;
41
42 ?>

Listing 3.7.php

Explanation

1. $this refers to the class itself. 'on_toggle' is the method used to handle the
signal.

Note

• You should now be able to understand the statement:

 $window->connect_simple('destroy', array('Gtk','main_quit'));

PHP-GTK2 itself is entirely object-oriented based (as we shall see in the next
chapter). So the above simply says, when the signal 'destroy' is detected, call
the function Gtk::main_quit(), which is a method in the Gtk class to exit a php-
gtk program.

• connect_simple() is similar to connect(). The only difference is that you use
connect_simple when you do not need to pass any additional info to your
callback function.

• Trying changing the above statement to:

 $window->connect('destroy', array('Gtk','main_quit'));

Run the program and close the window. You will see a warning message:

PHP Warning: Gtk::main_quit() requires exactly 0 arguments.
1 given in ...

Copyright @ 2007. kksou.com. All Rights Reserved. 61

http://gtk.php.net/manual/en/gtk.method.main_quit.php
http://gtk.php.net/manual/en/gobject.method.connect_simple.php
http://gtk.php.net/manual/en/gobject.method.connect.php

PHP-GTK2 Demystified Lesson 3.7

This is because by default, connect() will pass the widget that triggered the
signal as the first argument to your callback function. Hence the warning "1
argument given". To avoid this warning, we use connect_simple() here.

• Alternatively, if you really want to use connect(), you can change the program
as follows:

1 <?php
2
3 class App {
4
5 function __construct() {
6 $window = new GtkWindow();
7 $window->connect('destroy', array($this, 'on_destroy'));
8 $window->set_size_request(200, 120);
9 $vbox = new GtkVBox();
10 $window->add($vbox);
11 $vbox->pack_start(new GtkLabel('Select a State:'), false);
12 $vbox_radio_buttons = new GtkVBox();
13 $vbox->pack_start($vbox_radio_buttons, false);
14 $vbox->pack_start(new GtkVBox());
15 $status = new GtkLabel(' ');
16 $vbox->pack_start($status, false);
17
18 $radio = null;
19 $radio_button_def = array('New York'=>'NY', 'California'=>'CA',

'Washington'=>'WA');
20 $i = 0;
21 foreach ($radio_button_def as $state_name => $state_code) {
22 $radio = new GtkRadioButton($radio, $state_name);
23 $radio->connect('toggled', array($this, 'on_toggle'),
24 $radio_button_def, $status);
25 $vbox_radio_buttons->pack_start($radio, false);
26 }
27
28 $window->show_all();
29 Gtk::main();
30 }
31
32 function on_toggle($radio, $button_def, $status) {
33 $label = $radio->get_label();
34 $active = $radio->get_active();
35 $code = $button_def[$label];
36 if ($active) $status->set_text("selection: $label ($code)");
37 }
38
39 function on_destroy($widget) {
40 Gtk::main_quit();
41 }
42 }

Copyright @ 2007. kksou.com. All Rights Reserved. 62

PHP-GTK2 Demystified Lesson 3.8

43
44 $app = new App;
45
46 ?>

Listing 3.7.1.php

3.8 Callback methods in another class

Objective

You can connect signals to methods in other classes too, as shown in the example
below.

Overview

Just change $this in the previous example to the object containing the callback
methods.

Sample Output

Sample Code

1 <?php
2
3 class App {
4
5 function __construct($obj_b) {
6 $window = new GtkWindow();
7 $window->connect_simple('destroy',array('Gtk','main_quit'));
8 $window->set_size_request(200, 120);
9 $vbox = new GtkVBox();
10 $window->add($vbox);
11 $vbox->pack_start(new GtkLabel('Select a State:'), false);
12 $vbox_radio_buttons = new GtkVBox();
13 $vbox->pack_start($vbox_radio_buttons, false);
14 $vbox->pack_start(new GtkVBox());
15 $status = new GtkLabel(' ');
16 $vbox->pack_start($status, false);

Copyright @ 2007. kksou.com. All Rights Reserved. 63

PHP-GTK2 Demystified Lesson 3.9

17
18 $radio = null;
19 $radio_button_def = array('New York'=>'NY', 'California'=>'CA',

'Washington'=>'WA');
20 $i = 0;
21 foreach ($radio_button_def as $state_name => $state_code) {
22 $radio = new GtkRadioButton($radio, $state_name);
23 $radio->connect('toggled', array($obj_b, 'on_toggle'),
24 $radio_button_def, $status); // note 1
25 $vbox_radio_buttons->pack_start($radio, false);
26 }
27
28 $window->show_all();
29 Gtk::main();
30 }
31
32 }
33
34 class Class_B {
35 function on_toggle($radio, $button_def, $status) {
36 $label = $radio->get_label();
37 $active = $radio->get_active();
38 $code = $button_def[$label];
39 if ($active) $status->set_text("selection: $label ($code)");
40 }
41 }
42
43 $obj_b = new Class_B();
44 $app = new App($obj_b);
45
46 ?>

Listing 3.8.php

Explanation

1. In this example, the callback method resides in Class_B, hence the construct
array($obj_b, 'on_toggle').

3.9 Manually generating a signal

Objective

Signals are NOT all generated by users. You can manually generate a signal for
some of the widgets too!

You might have noticed that when running example 3.6, the first time you run the
program, the first radio item (New York) is selected, but nothing is displayed in the
status line.

Copyright @ 2007. kksou.com. All Rights Reserved. 64

PHP-GTK2 Demystified Lesson 3.9

To fix this, we can manually write the selection in the status line on initialization of
the program.

Another method is to manually generate a toggle signal, so that the status line is
updated automatically by the callback function.

Overview

• Use the method GtkTogglebutton::toggled() to manually generate a 'toggled'
signal.

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 120);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $vbox->pack_start(new GtkLabel('Select a State:'), false);
9 $vbox_radio_buttons = new GtkVBox();
10 $vbox->pack_start($vbox_radio_buttons, false);
11 $vbox->pack_start(new GtkVBox());
12 $status = new GtkLabel(' ');
13 $vbox->pack_start($status, false);
14
15 $radio_button_def = array('New York'=>'NY', 'California'=>'CA', 'Washington'=>'WA');
16 $i = 0;
17 $radio[0] = null;
18 foreach ($radio_button_def as $state_name => $state_code) {
19 $radio[$i] = new GtkRadioButton($radio[0], $state_name); // note 1
20 $radio[$i]->connect('toggled', 'on_toggle', $radio_button_def, $status);
21 $vbox_radio_buttons->pack_start($radio[$i], false);
22 ++$i;
23 }
24 $radio[0]->toggled(); // note 2
25

Copyright @ 2007. kksou.com. All Rights Reserved. 65

http://gtk.php.net/manual/en/gtk.gtktogglebutton.method.toggled.php

PHP-GTK2 Demystified Lesson 3.10

26 $window->show_all();
27 Gtk::main();
28
29 function on_toggle($radio, $button_def, $status) {
30 $label = $radio->get_label();
31 $active = $radio->get_active();
32 $code = $button_def[$label];
33 if ($active) $status->set_text("selection: $label ($code)");
34 }
35 ?>

Listing 3.9.php

Explanation

1. Note that we changed the program slightly in the setting up of the radio
buttons. This is because we need the pointer to the first radio button in order
to manually generate a toggle.

2. Manually generate a toggle to the first radio button.

Note

Try running the above program. You will see that now the status line gets updated
correctly when the program is first run.

3.10 Clickable label

Objective

In this example, we will show you how to make a GtkLabel clickable.

Overview

• Create the GtkLabel.

• Create a new GtkEventBox.

• Stuff the label inside the eventbox.

• Register the signal 'button-press-event' on the eventbox.

Sample Output

Copyright @ 2007. kksou.com. All Rights Reserved. 66

http://gtk.php.net/manual/en/gtk.gtklabel.php
http://gtk.php.net/manual/en/gtk.gtkeventbox.php
http://gtk.php.net/manual/en/gtk.gtkwidget.signal.button-press-event.php

PHP-GTK2 Demystified Lesson 3.10

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->set_size_request(200, 100);
4 $window->connect_simple('destroy', array('Gtk','main_quit'));
5 $window->add($vbox = new GtkVBox());
6
7 // create a label
8 $hbox = new GtkHBox();
9 $hbox->pack_start(new GtkLabel("This is a label"), false);
10 $vbox->pack_start($hbox, false);
11
12 // create a clickable label
13 $eventbox = new GtkEventBox; // note 1
14 $eventbox->add(new GtkLabel("This is a clickable label")); // note 2
15 $eventbox->connect('button-press-event', 'on_button_press'); // note 3
16 $eventbox->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse("#ffff66")); // note 4
17 $hbox = new GtkHBox();
18 $hbox->pack_start($eventbox, false);
19 $vbox->pack_start($hbox, false);
20
21 $window->show_all();
22 Gtk::main();
23
24 function on_button_press($widget, $event) { // note 5
25 echo "you have clicked the clickable label!\n";
26 }
27
28 ?>

Listing 3.10.php

Explanation

1. Create a new eventbox.

2. Stuff the label inside the eventbox. Note that GtkEventBox is a bin. It can only
hold one widget. So we use GtkContainer::add() to add the widget, and not
pack_start.

3. Connect the signal 'button-press-event' to the callback function
on_button_press(). Note that the event is captured through the eventbox, not
the label.

4. Set the background color of the clickable label.

5. This is the callback function that is called when the user clicks on the clickable
label. Note the two arguments that are being passed to you by php-gtk. The
first is the widget that generated the signal, in this case it's the clickable
widget. The second is GdkEvent object. We will elaborate more about this in
the next example.

Copyright @ 2007. kksou.com. All Rights Reserved. 67

http://gtk.php.net/manual/en/gtk.gtkcontainer.method.add.php
http://gtk.php.net/manual/en/gtk.gtkwidget.signal.button-press-event.php

PHP-GTK2 Demystified Lesson 3.10

Widgets without window

Some widget e.g. GtkLabel, does not have an associated window of its own. It draws
on its parent's window. There are two major implications because of this:

• You cannot set its background color. It takes on the color of its parent's
window.

• It cannot receive events e.g. receiving mouse clicks or keypress

Below are listed some of these widgets without window:

• GtkAlignment

• GtkArrow

• GtkAspectFrame

• GtkBin

• GtkBox

• GtkButton

• GtkCheckButton

• GtkFixed

• GtkFrame

• GtkHBox

• GtkHSeparator

• GtkImage

• GtkItem

• GtkLabel

• GtkMenuItem

• GtkNotebook

• GtkPaned

• GtkPixmap

• GtkRadioButton

• GtkRange

• GtkScrolledWindow

• GtkSeparator

• GtkTable

• GtkToolbar

• GtkVBox

• GtkVSeparator

Copyright @ 2007. kksou.com. All Rights Reserved. 68

PHP-GTK2 Demystified Lesson 3.11

Receiving events for widgets without window

If you want to be able to receive events (or set the background color) for those
widgets without window, you can wrap these widgets inside an GtkEventBox as
shown in the example above. Simply create a new GtkEventBox, and use add() to
stuff the widget inside the eventbox. You can then receive mouse clicks or keypress
through the eventbox.

3.11 Useful event properties from button-press-event

Objective

In the previous example, we have set up a 'button-press-event' to respond to the
clickable label.

In this example, we will show you some of the useful event properties from this
button-press-event.

Overview

In response to the signal 'button-press-event', the second argument passed to your
callback function is a GdkEvent object. Some of the useful properties available from
GdkEvent object are:

• x, y: x- and y-position of the mouse

• button: mouse button pressed 1=left, 2=middle, 3=right

• state: GdkModifierType - modifier key pressed e.g. ctrl, alt, shift, caps lock

• type: GdkEventType - event type e.g. single click, double click, triple click, etc.

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->set_size_request(200, 100);
4 $window->connect_simple('destroy', array('Gtk','main_quit'));
5
6 $vbox = new GtkVBox();
7 $eventbox = new GtkEventBox;

Copyright @ 2007. kksou.com. All Rights Reserved. 69

http://gtk.php.net/manual/en/gtk.gtkeventbox.php
http://gtk.php.net/manual/en/gtk.gtkcontainer.method.add.php
http://gtk.php.net/manual/en/gtk.gtkwidget.signal.button-press-event.php
http://gtk.php.net/manual/en/gtk.gtkwidget.signal.button-press-event.php
http://gtk.php.net/manual/en/gdk.gdkevent.php
http://gtk.php.net/manual/en/gdk.enum.modifiertype.php
http://gtk.php.net/manual/en/gdk.enum.eventtype.php

PHP-GTK2 Demystified Lesson 3.11

8 $eventbox->add($vbox);
9 $window->add($eventbox);
10
11 // create a label
12 $hbox = new GtkHBox();
13 $hbox->pack_start(new GtkLabel("This is a label"), false);
14 $vbox->pack_start($hbox, false);
15
16 // create a clickable label
17 $eventbox = new GtkEventBox;
18 $eventbox->add(new GtkLabel("This is a clickable label"));
19 $eventbox->connect('button-press-event', 'on_button_press');
20 $eventbox->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse("#ffff66"));
21 $hbox = new GtkHBox();
22 $hbox->pack_start($eventbox, false);
23 $vbox->pack_start($hbox, false);
24
25
26 $window->show_all();
27 Gtk::main();
28
29 function on_button_press($widget, $event) {
30 echo "you have clicked the clickable label!\n";
31 echo "x-pos = $event->x\n"; // note 1
32 echo "y-pos = $event->y\n"; // note 1
33
34 switch($event->button) { // note 2
35 case 1: echo "button = left\n"; break;
36 case 2: echo "button = middle\n"; break;
37 case 3: echo "button = right\n"; break;
38 }
39
40 $modifier = '';
41 if ($event->state & Gdk::SHIFT_MASK) $modifier .= '+shift'; // note 3
42 if ($event->state & Gdk::LOCK_MASK) $modifier .= '+lock'; // note 3
43 if($event->state & Gdk::CONTROL_MASK) $modifier .= '+ctrl'; // note 3
44 if ($event->state & Gdk::MOD1_MASK) $modifier .= '+alt'; // note 3
45 if ($modifier!='') echo "modifier: ".substr($modifier, 1)."\n";
46
47 echo "type = $event->type\n";
48 switch($event->type) { // note 4
49 case Gdk::BUTTON_PRESS: echo "mouse single click\n"; break;
50 case Gdk::_2BUTTON_PRESS: echo "mouse double click\n"; break;
51 case Gdk::_3BUTTON_PRESS: echo "mouse triple click\n"; break;
52 }
53 }
54
55 ?>

Listing 3.11.php

Copyright @ 2007. kksou.com. All Rights Reserved. 70

PHP-GTK2 Demystified Lesson 3.12

Explanation

1. Get the x- and y- position of the mouse.

2. Which mouse button was pressed.

3. To test if the control key was pressed, we use $event->state &
Gdk::CONTROL_MASK. The entire list of the modifier key names is here.

4. Test whether it's a single, double or triple mouse click. Take note that for a
double click, a single click is also generated. Same for triple click.

3.12 Signal propagation

Objective

What confuses a lot of people new to php-gtk is how signals propagate across the
different widgets. It's confusing because signals such as 'button-press-event'
propagate differently than that of 'key-press-event'.

In this example, we will look at how 'button-press-event' propagates.

Overview

For most signals, such as the 'button-press-event', the signals are handled as follows:

• The widget where the event occurred will be the first to receive the signal.

• If the signal handler returns a TURE, all processing will stop.

• Otherwise, the signal will propagate to its parent.

• This will continue until it gets to the top-level widget if no one handles the
event.

Sample Output

• Click on the clickable label. You should see two message lines displayed in the
command window:

 you have clicked the clickable label!

 you have clicked the vbox!

• Now click anywhere on the window. You should only see one message output:

you have clicked the vbox!

Copyright @ 2007. kksou.com. All Rights Reserved. 71

http://gtk.php.net/manual/en/gdk.enum.modifiertype.php
http://gtk.php.net/manual/en/gtk.gtkwidget.signal.button-press-event.php

PHP-GTK2 Demystified Lesson 3.12

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->set_size_request(200, 100);
4 $window->connect_simple('destroy', array('Gtk','main_quit'));
5
6 $vbox = new GtkVBox();
7 $eventbox = new GtkEventBox; // note 1
8 $eventbox->add($vbox); // note 1
9 $eventbox->connect('button-press-event', 'on_vbox_button_press'); // note 2
10 $window->add($eventbox);
11
12 // create a label
13 $hbox = new GtkHBox();
14 $hbox->pack_start(new GtkLabel("This is a label"), false);
15 $vbox->pack_start($hbox, false);
16
17 // create a clickable label
18 $eventbox = new GtkEventBox;
19 $eventbox->add(new GtkLabel("This is a clickable label"));
20 $eventbox->connect('button-press-event', 'on_button_press'); // note 3
21 $eventbox->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse("#ffff66"));
22 $hbox = new GtkHBox();
23 $hbox->pack_start($eventbox, false);
24 $vbox->pack_start($hbox, false);
25
26
27 $window->show_all();
28 Gtk::main();
29
30 function on_button_press($widget, $event) { // note 4
31 echo "you have clicked the clickable label!\n";
32 }
33
34 function on_vbox_button_press($widget, $event) { // note 5
35 echo "you have clicked the vbox!\n\n";
36 }
37
38 ?>

Listing 3.12.php

Explanation

In this example, we capture 'button-press-event' at two places: one at the clickable
label, just like the previous example. Another one at the clickable label's parent - the
vbox.

Copyright @ 2007. kksou.com. All Rights Reserved. 72

http://gtk.php.net/manual/en/gtk.gtkwidget.signal.button-press-event.php

PHP-GTK2 Demystified Lesson 3.12

1. As explained in Lesson 3.10, vbox is also a widget with no window. To be able
to respond to button-press-event, we enclose it in an eventbox, just like the
clickable label.

2. Register 'button-press-event' for vbox.

3. Register 'button-press-event' for the clickable label.

4. Signal handler for the clickable label 'button-press-event'.

5. Signal handler for the vbox 'button-press-event'.

Signal Propagate from source upward to its parents

Take a close look at the output. You will see that if you click on the clickable label,
the signal handler for the clickable label first respond, followed by that of the vbox.

As explained the overview above, when a 'button-press-event' occurs at the clickable
label, the label will first get a chance to respond to this event. Since that callback
function did not return TRUE, the signal will continue to propagate upward to its
parent, in this case, the vbox. So the vbox's callback function get a chance to attend
to the signal too. This may or may not be desirable depending on your application.

Stopping signal propagation

To stop a signal from propagating further, we simply return a TRUE at the end of the
callback function.

Take a look at the sample code below. Note the addition of return TRUE at the end of
each callback function.

Run the program again and try clicking on the clickable label. Note that vbox now no
longer receives the 'button-press-event' signal.

1 <?php
2 $window = new GtkWindow();
3 $window->set_size_request(200, 100);
4 $window->connect_simple('destroy', array('Gtk','main_quit'));
5
6 $vbox = new GtkVBox();
7 $eventbox = new GtkEventBox;
8 $eventbox->add($vbox);
9 $eventbox->connect('button-press-event', 'on_vbox_button_press');
10 $window->add($eventbox);
11
12 // create a label
13 $hbox = new GtkHBox();
14 $hbox->pack_start(new GtkLabel("This is a label"), false);
15 $vbox->pack_start($hbox, false);
16
17 // create a clickable label
18 $eventbox = new GtkEventBox;
19 $eventbox->add(new GtkLabel("This is a clickable label"));
20 $eventbox->connect('button-press-event', 'on_button_press');
21 $eventbox->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse("#ffff66"));

Copyright @ 2007. kksou.com. All Rights Reserved. 73

PHP-GTK2 Demystified Lesson 3.13

22 $hbox = new GtkHBox();
23 $hbox->pack_start($eventbox, false);
24 $vbox->pack_start($hbox, false);
25
26
27 $window->show_all();
28 Gtk::main();
29
30 function on_button_press($widget, $event) {
31 echo "you have clicked the clickable label!\n";
32 return true; // stop further propagation of signal
33 }
34
35 function on_vbox_button_press($widget, $event) {
36 echo "you have clicked the vbox!\n";
37 return true; // stop further propagation of signal
38 }
39
40 ?>

Listing 3.12.1.php

3.13 Handling keypress with key-press-event

Objective

We will now look at how to handle keypress in php-gtk application.

Overview

• Keypress is handled by the signal 'key-press-event'. Every keypress, whether
it's a letter, function keys (F1 to F12, PgUp, PgDn, Delete, Return, etc.), or
modifier keys (shift, ctrl, alt, etc.) will generate this signal.

Sample Output

• Press F1 in any of the entry fields and see the output message in the command
window.

• Now press Tab to move the focus to the button. Press F1 and note the output
message.

• Press Ctrl-F12 to exit the application.

Copyright @ 2007. kksou.com. All Rights Reserved. 74

http://gtk.php.net/manual/en/gtk.gtkwidget.signal.key-press-event.php

PHP-GTK2 Demystified Lesson 3.13

Sample Code

Very Important Note: If you have installed php-gtk2 using Gnope Installer on
Windows, and if running the sample code below gives you warning that the Symbolic
names for keys (e.g. Gdk::KEY_F1) is not defined, you might want to update your
php-gtk2 with the latest php-gtk2.dll available at
http://www.gnope.org/p/Gnope_PHPGtk2_dll. Simply download the php-gtk2.dll and
replace the copy in the folder php-gtk2\ext. The latest compilation has added in the
constant definition for the Symbolic names for keys.

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(240, 120);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 /*// setup a simple menu bar
9 $menubar = new GtkMenuBar();
10 $vbox->pack_start($menubar, false);
11 $menubar->append($top_menu = new GtkMenuItem('_File'));
12 $menu = new GtkMenu();
13 $top_menu->set_submenu($menu);
14 foreach(array('_New', '_Open', '_Close', '_Quit') as $submenu) {
15 $menu->append($menu_item = new GtkMenuItem($submenu));
16 }*/
17
18 $i = 0;
19 foreach(array('Item Code', 'Description', 'Unit Price') as $label) {
20 $hbox = new GtkHBox();
21 $hbox->pack_start(new GtkLabel("$label: "), false);
22 $field_label[$i] = $label;
23 $input[$i] = new GtkEntry();
24 $hbox->pack_start($input[$i], false);
25 $vbox->pack_start($hbox, false);
26 ++$i;
27 }
28
29 $hbox = new GtkHBox();
30 $button = new GtkButton('Submit');

Copyright @ 2007. kksou.com. All Rights Reserved. 75

http://www.gnope.org/
http://www.gnope.org/p/Gnope_PHPGtk2_dll
http://gtk.php.net/manual/en/appendix.keysyms.php

PHP-GTK2 Demystified Lesson 3.13

31 $hbox->pack_start($button, false);
32 $vbox->pack_start($hbox, false);
33
34 $window->connect('key-press-event', 'on_key_press'); // note 1
35 $window->show_all();
36 Gtk::main();
37
38 function on_key_press($widget, $event) { // note 2
39 global $input, $field_label;
40
41 if($event->keyval==Gdk::KEY_F12 && $event->state & Gdk::CONTROL_MASK) { //

note 3
42 echo "You pressed Ctrl-F12!\n";
43 Gtk::main_quit(); // note 3
44 }
45
46 if ($event->keyval!=Gdk::KEY_F1) return false; // note 4
47 for ($i=0; $i<count($input); ++$i) {
48 if ($input[$i]->is_focus()) { // note 5
49 echo "User pressed F1 in input[$i]: {$field_label[$i]}\n"; // note 5
50 // provide any context sensitive help messages here
51 return true; // note 6
52 }
53 }
54
55 echo "User pressed F1 elsewhere in window\n"; // note 7
56 // provide a generic help message here
57 return true;
58
59 }
60
61 ?>

Listing 3.13.php

Explanation

The code above uses Lesson 2.14 as base to display three input fields and a submit
button.

What's new here:

1. Register 'key-press-event' on the outermost window.

2. This is the callback function that handles the key-press-event. Note that the
two arguments passed to the callback function is very similar to that of the
button-press-event.

 The first argument is the widget that generated the signal, in this case,
it's the window.

 The second argument is the GdkEvent object as mentioned in Lesson
3.11.

Copyright @ 2007. kksou.com. All Rights Reserved. 76

http://gtk.php.net/manual/en/gtk.gtkwidget.signal.key-press-event.php
http://gtk.php.net/manual/en/gdk.gdkevent.php

PHP-GTK2 Demystified Lesson 3.14

3. Here we test for Ctrl-F12. If it's Ctrl-F12, we exit the application.

 Note that they way we test for control key is exactly the same as that
of button-press-event, i.e. using $event->state & Gdk::CONTROL_MASK.

 Note also that php-gtk has pre-defined the symbolic names for all keys.
You can view the entire list here. If using the symbolic names gives
you warning message, please refer to the note above to update your
php-gtk2.dll.

4. If it's not Ctrl-F12, and it's not an F1, we simply return a FALSE. As mentioned
in the previous example, returning a false will cause the signal to continue to
propagate. In this case, since we do not have any other signal handler, php-
gtk will simply handle the key-press with its default handler.

5. Here we loop through each of the three GtkEntry fields. With the use of the
method GtkWidget::is_focus(), we're able to test if the user is currently at any
of these fields and display context-sensitive help messages if required.

6. We're done handling the signal. So we return a TRUE so that php-gtk will not
propagate the signal further.

7. If the program runs till here, it will mean that the user has pressed F1 outside
the entry fields.

3.14 Signal propagation for key-press-event

Objective

This example shows how the signal 'key-press-event' gets propagated in php-gtk.

Overview

Unlike button-press-event, 'key-press-event' gets handled by the outmost level first,
and travels inward till some widget returns a FALSE.

Sample Output

Sample Code

Very Important Note: If you have installed php-gtk2 using Gnope Installer on
Windows, and if running the sample code below gives you warning that the Symbolic
names for keys (e.g. Gdk::KEY_F1) is not defined, you might want to update your
php-gtk2 with the latest php-gtk2.dll available at

Copyright @ 2007. kksou.com. All Rights Reserved. 77

http://gtk.php.net/manual/en/appendix.keysyms.php
http://gtk.php.net/manual/en/gtk.gtkwidget.method.is_focus.php
http://gtk.php.net/manual/en/gtk.gtkwidget.signal.key-press-event.php
http://gtk.php.net/manual/en/gtk.gtkwidget.signal.key-press-event.php
http://www.gnope.org/

PHP-GTK2 Demystified Lesson 3.14

http://www.gnope.org/p/Gnope_PHPGtk2_dll. Simply download the php-gtk2.dll and
replace the copy in the folder php-gtk2\ext. The latest compilation has added in the
constant definition for the Symbolic names for keys.

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(240, 120);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $i = 0;
9 foreach(array('Item Code', 'Description', 'Unit Price') as $label) {
10 $hbox = new GtkHBox();
11 $hbox->pack_start(new GtkLabel("$label: "), false);
12 $field_label[$i] = $label;
13 $input[$i] = new GtkEntry();
14 $input[$i]->connect('key-press-event', 'on_entry_key_press', $i, $label); // note 1
15 $hbox->pack_start($input[$i], false);
16 $vbox->pack_start($hbox, false);
17 ++$i;
18 }
19
20 $hbox = new GtkHBox();
21 $button = new GtkButton('Submit');
22 $hbox->pack_start($button, false);
23 $vbox->pack_start($hbox, false);
24
25 $window->connect('key-press-event', 'on_key_press'); // note 2
26 $window->show_all();
27 Gtk::main();
28
29 function on_key_press($widget, $event) { // note 3
30 if($event->keyval==Gdk::KEY_F12 && $event->state & Gdk::CONTROL_MASK) {
31 echo "You pressed Ctrl-F12!\n";
32 Gtk::main_quit();
33 }
34
35 if ($event->keyval!=Gdk::KEY_F1) return false;
36
37 echo "User pressed F1 elsewhere in window\n";
38 // provide a generic help message here
39 return false; // note 5
40 }
41
42 function on_entry_key_press($widget, $event, $i, $label) { // note 4
43 if ($event->keyval!=Gdk::KEY_F1) return false;
44 echo "User pressed F1 in input[$i]: $label\n";
45 // provide any context sensitive help messages here
46 }

Copyright @ 2007. kksou.com. All Rights Reserved. 78

http://www.gnope.org/p/Gnope_PHPGtk2_dll
http://gtk.php.net/manual/en/appendix.keysyms.php

PHP-GTK2 Demystified Lesson 3.14

47
48 ?>

Listing 3.14.php

Explanation

In this example, we capture 'key-press-event' at four places: one at the outermost
window, just like the previous example. And one each for the three GtkEntry fields.

1. Register 'key-press-event' on the outermost window.

2. Register 'key-press-event' for each of the three GtkEntry field. Note that we
pass the index $i as well as the label along with the signal.

3. This is the callback function that handles the key-press-event for the
outermost window. As in the previous example, if it's a Ctrl-F12, we exit the
application. If it's not an F1, we return a FALSE and let the default handler
takes care of the keypress.

4. This is the callback function that handles the 'key-press-event' for all the three
GtkEntry fields. Since we have passed along the index $i as well as the label,
we're able to differentiate which is the entry field that generated the signal.

5. We return a FALSE here to show you how the 'key-press-event' propagates. Try
changing this to return TRUE. You will find that the three GtkEntry fields will
never receive the signal because the signal gets stopped here.

Propagation of key-press-event

As you can see from the output in the command window, the 'key-press-event' gets
handled by the outermost widget first, in this case, the window. If the result is a
FALSE, the signal will then propagate to the inner widgets.

So while most signals such as 'button-press-event' travel from source (the widget
that emitted the signal) outward, the 'key-press-event' travels in the other direction
– inward starting from the outermost level.

Fixing this example

Comparing this example and the previous example, you can see that the code looks
much "cleaner" when the GtkEntry field handles its own 'key-press-event'. Imagine
you have 100 over widgets in a complicated layout. If there's only one 'key-press-
event' handler at the outermost window level, there will be too many if-then-else
statements to handle the different keypress demanded by each of the widget.

However for this example, we cannot just put a return TRUE at the line with "note 5".
The signal will get stopped at the outermost window, and the GtkEntry fields will
never get any signal of F1 key press. On the other hand, we cannot return FALSE
either, because the user will then get both the generic help as well as context-
sensitive help.

To fix this, we first test if the user is currently in any of the GtkEntry fields with the
help of the method GtkWidget::is_focus(). If it is, we simply return a FALSE. Php-gtk
will pass it on to the next widget in line, and the signal will be picked up by the
callback function which we have set up for the GtkEntry fields.

Copyright @ 2007. kksou.com. All Rights Reserved. 79

http://gtk.php.net/manual/en/gtk.gtkwidget.signal.key-press-event.php
http://gtk.php.net/manual/en/gtk.gtkwidget.signal.key-press-event.php
http://gtk.php.net/manual/en/gtk.gtkwidget.method.is_focus.php

PHP-GTK2 Demystified Lesson 3.14

If the user is not in any of the entry fields, the application can display a generic help
message and return a TRUE, so that the signal will not be propagated further.

Below is the revised code:

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(240, 120);
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 /*// setup a simple menu bar
9 $menubar = new GtkMenuBar();
10 $vbox->pack_start($menubar, false);
11 $menubar->append($top_menu = new GtkMenuItem('_File'));
12 $menu = new GtkMenu();
13 $top_menu->set_submenu($menu);
14 foreach(array('_New', '_Open', '_Close', '_Quit') as $submenu) {
15 $menu->append($menu_item = new GtkMenuItem($submenu));
16 }*/
17
18 $i = 0;
19 foreach(array('Item Code', 'Description', 'Unit Price') as $label) {
20 $hbox = new GtkHBox();
21 $hbox->pack_start(new GtkLabel("$label: "), false);
22 $field_label[$i] = $label;
23 $input[$i] = new GtkEntry();
24 $input[$i]->connect('key-press-event', 'on_entry_key_press', $i, $label);
25 $hbox->pack_start($input[$i], false);
26 $vbox->pack_start($hbox, false);
27 ++$i;
28 }
29
30 $hbox = new GtkHBox();
31 $button = new GtkButton('Submit');
32 $hbox->pack_start($button, false);
33 $vbox->pack_start($hbox, false);
34
35 $window->connect('key-press-event', 'on_key_press');
36 $window->show_all();
37 Gtk::main();
38
39 function on_key_press($widget, $event) {
40 if($event->keyval==Gdk::KEY_F12 && $event->state & Gdk::CONTROL_MASK) {
41 echo "You pressed Ctrl-F12!\n";
42 Gtk::main_quit();
43 }
44

Copyright @ 2007. kksou.com. All Rights Reserved. 80

PHP-GTK2 Demystified Lesson 3.14

45 if ($event->keyval!=Gdk::KEY_F1) return false;
46
47 global $input;
48 for ($i=0; $i<count($input); ++$i) {
49 if ($input[$i]->is_focus()) {
50 return false;
51 }
52 }
53
54 echo "User pressed F1 elsewhere in window\n";
55 // provide a generic help message here
56 return true;
57 }
58
59 function on_entry_key_press($widget, $event, $i, $label) {
60 if ($event->keyval!=Gdk::KEY_F1) return false;
61 echo "User pressed F1 in input[$i]: $label\n";
62 // provide any context sensitive help messages here
63 }
64
65 ?>

Listing 3.14.1.php

Copyright @ 2007. kksou.com. All Rights Reserved. 81

PHP-GTK2 Demystified Lesson 3.15

3.15 Summary

Here's a quick summary of what we have learned in this chapter:

• Signal handling is what makes a php-gtk application comes to life. It allows
you to respond to user's action and interact with the user.

• There are numerous signals continuously monitored by php-gtk. You register
with php-gtk the ones you are interested with the connect() statement.

• Each signal is identified by a unique name. This is the string that goes into the
first argument of the connect() statement.

• The second argument of the connect() statement is your callback function –
the function that gets called the signal you specified is being detected. This is
also commonly being referred to as a signal handler.

• You can specify any additional data to be passed along with the signal after the
second argument of the connect() statement.

• You can manually generate signals too, e.g., GtkButon::clicked() and
GtkTogglebutton::toggled().

• Some widget e.g. GtkLabel, does not have an associated window of its own.
They cannot receive events. To receive events, you can wrap these widgets in
a GtkEventbox.

• Most signals, e.g. 'button-press-event', propagate from source outward to its
parents until one of the widgets return TRUE.

• However, the signal 'key-press-event' travels from the outermost widget
inward.

More examples

To see how some of these techniques are being used in practice, you may refer to
the following examples in the php-gtk2 Cookbook website:

button-press-event - GtkWidget

• How to put a clickable link in GtkLabel - Part 1?

changed - GtkComboBox

• How to change buttons on the fly based on pulldown menu selections?

• How to display a popup alert for required fields - Part 1?

changed - GtkTreeSelection

• How to display a 2D array in GtkTreeView - Part 5?

clicked - GtkButton

• How to set the background color of GtkButton?

• How to setup and process GtkComboBox?

• How to setup and process GtkComboBoxEntry?

edited - GtkCellRendererText

• How to use GtkCellRendererCombo - Part 2 - process combobox?

Copyright @ 2007. kksou.com. All Rights Reserved. 82

http://www.kksou.com/php-gtk2
http://www.kksou.com/php-gtk2/articles/put-a-clickable-link-in-GtkLabel---Part-1.php
http://www.kksou.com/php-gtk2/articles/change-buttons-on-the-fly-based-on-pulldown-menu-selections.php
http://www.kksou.com/php-gtk2/articles/display-a-popup-alert-for-required-fields---Part-1.php
http://www.kksou.com/php-gtk2/articles/display-a-2D-array-in-GtkTreeView---Part-5.php
http://www.kksou.com/php-gtk2/articles/set-the-background-color-of-GtkButton.php
http://www.kksou.com/php-gtk2/articles/setup-and-process-GtkComboBox.php
http://www.kksou.com/php-gtk2/articles/setup-and-process-GtkComboBoxEntry.php
http://www.kksou.com/php-gtk2/articles/use-GtkCellRendererCombo---Part-2---process-combobox.php

PHP-GTK2 Demystified Lesson 3.15

• How to use GtkCellRendererCombo - Part 3 - process user selection?

enter-notify-event / leave-notify-event - GtkWidget

• How to put a clickable link in GtkLabel - Part 2?

toggled - GtkToggleButton

• How to display and process grouped radio buttons?

Copyright @ 2007. kksou.com. All Rights Reserved. 83

http://www.kksou.com/php-gtk2/articles/use-GtkCellRendererCombo---Part-3---process-user-selection.php
http://www.kksou.com/php-gtk2/articles/put-a-clickable-link-in-GtkLabel---Part-2.php
http://www.kksou.com/php-gtk2/articles/display-and-process-grouped-radio-buttons.php

PHP-GTK2 Demystified

Chapter 4 Object-oriented Framework

PHP5 comes with great object-oriented support and PHP-GTK2 is written entirely
using object-oriented architecture.

If you're used to object-oriented programming, and enjoy writing in object-oriented
style, you will find yourself very comfortable developing applications with php-gtk2.

What if you have not learned objected-oriented programming before? Don’t worry.
As you have seen in the many examples in this book, we can use php-gtk2 with just
plain old non object-oriented php. You do not need to program in object-oriented
style in php in order to use php-gtk2.

You do need, however, to at least understand the object-oriented framework of php-
gtk2 – so that you can locate the methods and signals you need.

Important Note: This chapter does not attempt to teach you object-oriented
programming. You only need to read Lesson 4.1 if you do not intend to use object-
oriented programming with php-gtk2.

However, if you have some background of object-oriented programming, Lesson 4.2
to Lesson 4.6 will show you different ways of using object-oriented programming in
php-gtk2.

4.1 The object-oriented widgets

Objective

Let's begin our understanding of the object-oriented nature of php-gtk by taking a
look again at Example 2.7. The code is reproduced below.

In this example, we want the button to be exactly of the size 96 x 36.

Overview

• Both GtkWindow and GtkButton are descendents of GtkWidget as shown in the
diagram below.

• If you look at the php-gtk manual for GtkWindow and GtkButton, you do not
see any method set_size_request().

Copyright @ 2007. kksou.com. All Rights Reserved.

http://gtk.php.net/manual/en/gtk.gtkwindow.php
http://gtk.php.net/manual/en/gtk.gtkbutton.php
http://gtk.php.net/manual/en/gtk.gtkwidget.php
http://gtk.php.net/manual/en/gtk.gtkwindow.php
http://gtk.php.net/manual/en/gtk.gtkbutton.php

PHP-GTK2 Demystified Lesson 4.1

• You have to go to GtkWidget to find this method:
GtkWidget::set_size_request().

• As GtkWindow and GtkButton are descendents of GtkWidget, they inherit their
parent's and ancestor’s methods. That's why we can call set_size_request()
from GtkWindow and GtkButton.

Sample Output

Sample Code

1 <?php
2 $window = new GtkWindow();
3 $window->connect_simple('destroy',array('Gtk','main_quit'));
4 $window->set_size_request(200, 100); // note 1
5 $vbox = new GtkVBox();
6 $window->add($vbox);
7
8 $button = new GtkButton('button1');
9 $button->set_size_request(96,36); // note 2
10 $hbox = new GtkHBox();
11 $hbox->pack_start($button, false);
12 $vbox->pack_start($hbox, false);
13
14 $window->show_all();
15 Gtk::main();
16 ?>

Listing 4.1.php

Explanation

1. Set the size of window using the ancestor’s method
GtkWidget::set_size_request().

2. 2. Set the size of button also using the ancestor’s method
GtkWidget::set_size_request().

Other Inherited Methods

Take a look at the example again. We mapped out the parent-child relationship of all
the widgets used in this example.

Copyright @ 2007. kksou.com. All Rights Reserved. 85

http://gtk.php.net/manual/en/gtk.gtkwidget.method.set_size_request.php
http://gtk.php.net/manual/en/gtk.gtkwidget.method.set_size_request.php
http://gtk.php.net/manual/en/gtk.gtkwidget.method.set_size_request.php

PHP-GTK2 Demystified Lesson 4.1

As you can see in the list below, all the methods used in this example are inherited
from their ancestors

• $window->connect_simple() is inherited from GObject.

• $window->add() is inherited from GtkContainer.

• $vbox->pack_start() is inherited from GtkBox.

• $window->show_all() is inherited from GtkWidget.

Looking up Inherited Methods, Signals and Properties

This partly explains why learning php-gtk is sometimes frustrating, because a
method that you need might be deeply buried somewhere within its ancestors,
several levels up. Take a look at the widget GtkRadiobutton.

It has eight ancestors! And guess:

• Which ancestor contains the method get_active()?

• Which ancestor contains the method that allows you to retrieve the label of the
radio button, and what is the name of the method?

Copyright @ 2007. kksou.com. All Rights Reserved. 86

http://gtk.php.net/manual/en/gobject.method.connect_simple.php
http://gtk.php.net/manual/en/gtk.gtkcontainer.method.add.php
http://gtk.php.net/manual/en/gtk.gtkbox.method.pack_start.php
http://gtk.php.net/manual/en/gtk.gtkwidget.method.show_all.php
http://gtk.php.net/manual/en/gtk.gtkradiobutton.php
http://gtk.php.net/manual/en/gtk.gtktogglebutton.method.get_active.php

PHP-GTK2 Demystified Lesson 4.2

• Which ancestor can generate the signal that allows you to know when the user
hovers the mouse over the radio button? What is the name of the signal?

Through experience you might know the answer right away. Otherwise, there is no
easy way out but to look into each of the eight ancestors one by one to look for
these methods and signals.

4.2 Objected-oriented programming - Variation 1

Objective

Suppose you enjoy object-oriented programming, and want to develop php-gtk2
applications using object-oriented programming.

There are many ways of doing this. Let's first look at variation one.

We will use the previous example as base, and rewrite it using object-oriented style.

Overview

• We simply encapsulates the setting of a GtkWindow and display of a button
into a class.

• As explained in Lesson 3.7, to connect a signal to a method in a class we use
connect(signal_name, array(class_name, method_name)).

Sample Output

Sample Code

1 <?php
2
3 class App { // note 1
4
5 // the constructor
6 function __construct() {
7 $window = new GtkWindow();
8 $window->connect_simple('destroy',array('Gtk','main_quit'));
9 $window->set_size_request(200, 100);
10 $vbox = new GtkVBox();
11 $window->add($vbox);
12

Copyright @ 2007. kksou.com. All Rights Reserved. 87

PHP-GTK2 Demystified Lesson 4.3

13 $button = new GtkButton('click me!');
14 $button->set_size_request(96,36);
15 $hbox = new GtkHBox();
16 $hbox->pack_start($button, false);
17 $vbox->pack_start($hbox, false);
18
19 $button->connect('clicked', array($this, 'on_click')); // note 2
20
21 $window->show_all();
22 }
23
24 function main() {
25 Gtk::main();
26 }
27
28 function on_click($button) {
29 echo "you have clicked me!\n";
30 }
31 }
32
33 $app = new App(); // note 3
34 $app->main(); // note 4
35
36 ?>

Listing 4.2.php

Explanation

1. Encapsulate the functionalities into class App.

2. Connect the signal 'clicked' to the method on_click() within the class App.

3. Create a new object of class App.

4. And let's run it!

4.3 Objected-oriented programming - Variation 2

Objective

In Variation 1, we use the standard widget sets in php-gtk2. In this variation, we
begin to customize php-gtk widgets to suit our needs.

Overview

• Since php-gtk2 adopts object-oriented architecture, we can customize the Gtk
widgets by extending them.

• In this variation, we extend GtkWindow to form a customized GtkWindow.

Copyright @ 2007. kksou.com. All Rights Reserved. 88

http://gtk.php.net/manual/en/gtk.gtkwindow.php

PHP-GTK2 Demystified Lesson 4.3

Sample Output

Sample Code

1 <?php
2
3 class MyWindow extends GtkWindow { // note 1
4
5 // the constructor
6 function __construct() {
7 parent::__construct(); // note 2
8 $this->connect_simple('destroy',array('Gtk','main_quit'));
9 $this->set_size_request(200, 100);
10 $vbox = new GtkVBox();
11 $this->add($vbox);
12
13 $button = new GtkButton('click me!');
14 $button->set_size_request(96,36);
15 $hbox = new GtkHBox();
16 $hbox->pack_start($button, false);
17 $vbox->pack_start($hbox, false);
18
19 $button->connect('clicked', array($this, 'on_click'));
20
21 $this->show_all();
22 }
23
24 function on_click($button) {
25 echo "you have clicked me!\n";
26 }
27 }
28
29 $window = new MyWindow(); // note 3
30 Gtk::main(); // note 4
31
32 ?>

Listing 4.3.php

Copyright @ 2007. kksou.com. All Rights Reserved. 89

PHP-GTK2 Demystified Lesson 4.4

Explanation

1. Create a customized GtkWindow.

2. When we extend an existing widget, make sure we first give a call to its
parent's constructor: parent::__construct()

3. Create a new instance of the customized GtkWindow.

4. Let's go!

Note

There are no clear advantages or disadvantages between Variation 1 and 2. They are
just different ways of modeling the “real world”.

4.4 Objected-oriented programming - Variation 3

Objective

In Variation 2, we simply “extend” an existing widget to add on additional
functionality.

In this variation, we go one step further to encapsulate related properties, methods
and signal handlers in a class.

Overview

In this variation,

• We extend GtkWindow to form a customized GtkWindow.

• We also extend GtkButton to form a customized Gtkbutton. The signal handler
now resides in this customized button.

Sample Output

Sample Code

1 <?php
2
3 class MyWindow extends GtkWindow {
4 function __construct() {
5 parent::__construct();
6 $this->connect_simple('destroy',array('Gtk','main_quit'));

Copyright @ 2007. kksou.com. All Rights Reserved. 90

http://gtk.php.net/manual/en/gtk.gtkwindow.php
http://gtk.php.net/manual/en/gtk.gtkbutton.php

PHP-GTK2 Demystified Lesson 4.4

7 $this->set_size_request(200, 100);
8 $vbox = new GtkVBox();
9 $this->add($vbox);
10
11 $button = new MyButton('click me!', 96, 36); // note 2
12 $hbox = new GtkHBox();
13 $hbox->pack_start($button, false);
14 $vbox->pack_start($hbox, false);
15
16 $this->show_all();
17 }
18 }
19
20 class MyButton extends GtkButton{ // note 1
21 function __construct($label, $width=-1, $height=-1) { // note 3
22 parent::__construct($label);
23 $this->set_size_request($width,$height); // note 3
24 $this->connect('clicked', array($this, 'on_click')); // note 4
25 }
26 function on_click($button) { // note 5
27 echo "you have clicked me!\n";
28 }
29 }
30
31 $window = new MyWindow();
32 Gtk::main();
33
34 ?>

Explanation

1. Create a customized GtkButton.

2. Create a new instance of the customized button.

3. Set the size of the customized button. If no width and height is specified, it
will use the default size of 96x36.

4. Register the signal 'clicked'.

5. The signal handler for the button is now encapsulated within the class itself.

Note

The highlight of variation 3 is that the signal handler for the button is now
encapsulated within the class “MyButton”. As you develop more complex applications,
you will find that encapsulation allows you to group related properties, methods and
signal handlers neatly in a class. Code will be cleaner, and debugging easier.

Copyright @ 2007. kksou.com. All Rights Reserved. 91

PHP-GTK2 Demystified Lesson 4.5

4.5 Objected-oriented programming - Variation 4

Objective

Variation 1 simply wraps everything in a class.

Variation 2 extends existing widgets.

Variation 3 encapsulates signal handlers in a class.

In this variation, we “create” new widgets by customizing existing widgets.

Overview

In this variation,

• We extend GtkWindow to form a customized GtkWindow.

• The standard GtkButton creates only one button. We form a new widget that
allows us to hold multiple buttons by extending GtkHBox.

Sample Output

Sample Code

1 <?php
2
3 class MyWindow extends GtkWindow {
4
5 function __construct() {
6 parent::__construct();
7 $this->connect_simple('destroy',array('Gtk','main_quit'));
8 $this->set_size_request(200, 100);
9 $vbox = new GtkVBox();
10 $this->add($vbox);
11
12 $buttons = new MyButtons(
13 array('button1', 'button2', 'button3')); // note 2
14 $vbox->pack_start($buttons, false);
15
16 $this->show_all();
17 }
18
19 }

Copyright @ 2007. kksou.com. All Rights Reserved. 92

http://gtk.php.net/manual/en/gtk.gtkwindow.php
http://gtk.php.net/manual/en/gtk.gtkhbox.php

PHP-GTK2 Demystified Lesson 4.6

20
21 class MyButtons extends GtkHBox { // note 1
22
23 var $vbox;
24
25 function __construct($label_array, $width=-1, $height=-1, $spacer_size=4) {
26 parent::__construct();
27 $hbox = new GtkHBox();
28 foreach($label_array as $label) {
29 $button = new GtkButton($label);
30 $button->set_size_request($width,$height);
31 $hbox->pack_start($button, false);
32 $spacer = new GtkHBox();
33 $spacer->set_size_request($spacer_size,-1);
34 $hbox->pack_start($spacer, false);
35 $button->connect('clicked', array($this, 'on_click'), $button);
36 }
37 $this->pack_start($hbox, false);
38 }
39
40 function on_click($button) {
41 $label = $button->get_label();
42 echo "you have clicked $label!\n";
43 }
44 }
45
46 $window = new MyWindow();
47 Gtk::main();
48
49 ?>

Listing 4.5.php

Explanation

1. Class definition for a new class MyButtons.

2. Create an instance of the class MyButtons. The button labels are specified in
the form of array.

4.6 Creating your own widgets

Objective

Let’s have one more example of creating customized widgets.

Suppose you application uses a lot of clickable labels as described in Lesson 3.10.
You can create a new widget called 'ClickableLabel' by extending GtkEventBox.

Copyright @ 2007. kksou.com. All Rights Reserved. 93

PHP-GTK2 Demystified Lesson 4.6

Overview

• First create a GtkEventBox.

• Create a GtkLabel and stuff it inside the eventbox.

Sample Output

Sample Code

1 <?php
2
3 class MyWindow extends GtkWindow {
4
5 function __construct() {
6 parent::__construct();
7 $this->connect_simple('destroy',array('Gtk','main_quit'));
8 $this->set_size_request(200, 100);
9 $vbox = new GtkVBox();
10 $this->add($vbox);
11
12
13 // create a label
14 $hbox = new GtkHBox();
15 $hbox->pack_start(new GtkLabel("This is a label"), false);
16 $vbox->pack_start($hbox, false);
17
18 // create a clickable label
19 $clickable_label = new ClickableLabel('This is a clickable label'); // note 2
20 $clickable_label->connect('button-press-event',
21 array($this, 'on_button_press')); // note 3
22 $hbox = new GtkHBox();
23 $hbox->pack_start($clickable_label, false);
24 $vbox->pack_start($hbox, false);
25
26 $this->show_all();
27 }
28
29 function on_button_press($widget, $event) { // note 3
30 echo "you have clicked the clickable label!\n";
31 }

Copyright @ 2007. kksou.com. All Rights Reserved. 94

http://gtk.php.net/manual/en/gtk.gtkeventbox.php
http://gtk.php.net/manual/en/gtk.gtklabel.php

PHP-GTK2 Demystified Lesson 4.6

32
33 }
34
35 class ClickableLabel extends GtkEventBox {// note 1
36
37 function __construct($label_str, $fg='#0000ff') {
38 parent::__construct();
39 $label = new GtkLabel($label_str);
40 $this->add($label);
41 $label->modify_fg(Gtk::STATE_NORMAL, GdkColor::parse($fg));
42 }
43
44 }
45
46 $window = new MyWindow();
47 Gtk::main();
48
49 ?>

Listing 4.6.php

Explanation

1. Class definition for the new widget ClickableLabel.

2. Create an instance of the class ClickableLabel.

3. Note that this time round the signal handler resides in the class GtkWindow
and not within the ClickableLabel class definition.

Copyright @ 2007. kksou.com. All Rights Reserved. 95

PHP-GTK2 Demystified Lesson 4.7

4.7 Summary

Here's a quick summary of what we have learned in this chapter:

• PHP-GTK2 is written entirely using the object-oriented architecture.

• Child widgets inherit the properties, methods and signals of its ancestors.

• To find a method or signal, sometimes you need to look into each of the
ancestors.

• It's not necessary to use object-oriented programming to use php-gtk2. You
can still write full-fledge php-gtk2 applications using plain old non-object-
oriented php.

• The most important thing is that you understand the object-oriented
framework of php-gtk2 – so that you can locate the methods and signals you
need,

• Of course, you will find php-gtk2 more fun to by taking advantage of the
object-oriented feature. For example, you can extend existing widgets to form
new widgets.

• With objected-oriented programming, you can also encapsulate business logic
and relationships into classes.

• There are many ways of using object-oriented programming in php-gtk2. This
chapter shows four variations to a simple script that displays a GtkButton in a
GtkWindow.

More examples

To see how some of these techniques are being used in practice, you may refer to
the following examples in the php-gtk2 Cookbook website:

• Calculator

• Application Template 01 - multiple modules in multiple window

• Application Template 02 - Multiple Modules in Multiple Windows

Copyright @ 2007. kksou.com. All Rights Reserved. 96

http://www.kksou.com/php-gtk2
http://127.0.0.1/php-gtk2/apps/calculator/calculator.php
http://127.0.0.1/php-gtk2/apps/application-template-01-multiple-modules-in-multiple-windows/application-template-01-multiple-modules-in-multiple-windows.php
http://127.0.0.1/php-gtk2/apps/application-template-02-multiple-modules-in-multiple-windows/application-template-02-multiple-modules-in-multiple-windows.php

PHP-GTK2 Demystified

Chapter 5 Putting It Altogether

In this chapter, we will put together all that we have learned in the previous chapters
to develop a simple calculator, similar to the windows calculator as shown below:

We will develop this in five steps:

1. Layout the widgets

2. Setup signal handlers

3. Add core business logic

4. Add validation checks

5. Resize of window

Note

The php-gtk2 Cookbook website also has a sample application of calculator. The
output looks the same. But the codes are very different.

If you have understood the techniques described so far, you will find that the
approach used in this book is cleaner and more elegant.

Copyright @ 2007. kksou.com. All Rights Reserved.

http://www.kksou.com/php-gtk2
http://www.kksou.com/php-gtk2/apps/calculator/calculator.php

PHP-GTK2 Demystified Lesson 5.1

5.1 Layout the widgets

Objective

In developing a php-gtk2 applications, the first step we usually do is to layout the
widgets first.

Overview

• Extends GtkWindow to form our customized window. Almost all the widget
layout codes will be encapsulated in this class. A lot of the codes are only used
once during the initial setup. So we can hide these codes nicely inside the class.

• Extends GtkButton for the calculator buttons. The setting of button size and its
background color are all encapsulated within this class.

Sample Output

Sample Code

1 <?php
2
3 class Calculator{
4
5 // constructor
6 function __construct() {
7 }
8
9 function main() {
10 $this->window = new CalculatorWindow();
11 $this->window->show_all(); // display the calculator

Copyright @ 2007. kksou.com. All Rights Reserved. 98

PHP-GTK2 Demystified Lesson 5.1

12 Gtk::main(); // and let's go!
13 }
14 }
15
16 class CalculatorWindow extends GtkWindow { // note 1
17 function __construct() {
18 parent::__construct();
19 $this->set_size_request(200, 240);
20 $this->connect_simple('destroy', array('Gtk','main_quit'));
21 $this->connect('key-press-event', array(&$this, "on_keypress"));
22 $this->layout_widgets();
23 }
24
25 function layout_widgets() {
26 // setup a vbox to hold display and buttons
27 $vbox = new GtkVBox();
28 $this->add($vbox);
29
30 // setup display
31 $this->display = new GtkEntry(); // note 2
32 $this->display->set_alignment(1.0); // right-justified
33 $this->display->set_editable(false); // for display only
34 $vbox->pack_start($this->display);
35
36 // the button labels
37 $button_label = array(// note 3
38 array('Backspc', 'CE', 'C'),
39 array('7', '8', '9', '/', 'sqrt'),
40 array('4', '5', '6', '*', '%'),
41 array('1', '2', '3', '-', '1/x'),
42 array('0', '+/-', '.', '+', '=')
43);
44
45 // setup the buttons
46 for ($j=0; $j<5; ++$j) { // note 4
47 $hbox = new GtkHBox();
48 $vbox->pack_start($hbox); // use a hbox to hold each row of buttons
49 for ($i=0; $i<5; ++$i) {
50 if ($j==0 && $i>2) continue; // first row contains only 3 buttons
51 $button = new CalculatorButton($button_label[$j][$i]);
52 $hbox->pack_start($button);
53 }
54 }
55 }
56 }
57
58 class CalculatorButton extends GtkButton { // note 5
59 function __construct($label, $width=-1, $height=-1) {
60 parent::__construct($label);
61 $this->set_size_request(40, 32); // note 6

Copyright @ 2007. kksou.com. All Rights Reserved. 99

PHP-GTK2 Demystified Lesson 5.1

62
63 if (preg_match("/^([0-9]|\.)$/", $label)) // note 7
64 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#FFFF33'));
65 if (preg_match("/^(\+|-|*|\/){1}$/", $label))
66 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#ff99ff'));
67 if ($label=='C' || $label=='CE')
68 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#FF3366'));
69 if ($label=='=')
70 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#0099FF'));
71
72 }
73 }
74
75 $cal = new Calculator(); // cerate a new calculator
76 $cal->main(); // let's run it!
77
78 ?>

Listing 5.1.php

Explanation

1. Extends GtkWindow to form our customized window.

2. Set up the display.

3. The array that stores the calculation buttons definition.

4. Layout the calculator buttons.

5. Extends GtkButton.

6. Set the size of the buttons.

7. Set the background color of the buttons.

Copyright @ 2007. kksou.com. All Rights Reserved. 100

PHP-GTK2 Demystified Lesson 5.2

5.2 Set up signal handlers

Objective

After we have laid out the widgets, the next step is to set up the signal handlers to
respond to user’s inputs.

Overview

• Extends GtkWindow to form our customized window. Almost all the widget
layout codes will be encapsulated in this class. A lot of the codes are only used
once during the initial setup. So we can hide these codes nicely inside the class.

• Extends GtkButton for the calculator buttons. The setting of button size and its
background color are all encapsulated within this class.

Sample Output

Sample Code

1 <?php
2
3 class Calculator{
4
5 private $operator = '';
6 private $stack = array();
7 private $is_entering_number = 0;
8 private $window;
9
10 // constructor
11 function __construct() {

Copyright @ 2007. kksou.com. All Rights Reserved. 101

PHP-GTK2 Demystified Lesson 5.2

12 }
13
14 function main() {
15 $this->window = new CalculatorWindow($this); // create a new calculator
16 $this->window->show_all(); // display the calculator
17 Gtk::main(); // and let's go!
18 }
19 }
20
21 class CalculatorWindow extends GtkWindow {
22 private $calculator;
23 private $display;
24 private $vbox;
25
26 function __construct($calculator) {
27 parent::__construct();
28 $this->calculator = $calculator;
29 $this->set_size_request(200, 240);
30 $this->connect_simple('destroy', array('Gtk','main_quit'));
31 $this->connect('key-press-event', array(&$this, "on_keypress")); // note 1
32 $this->layout_widgets();
33 }
34
35 private function layout_widgets() {
36 // setup a vbox to hold display and buttons
37 $vbox = new GtkVBox();
38 $this->add($vbox);
39
40 // setup display
41 $this->display = new GtkEntry();
42 $this->display->set_alignment(1.0); // right-justified
43 $this->display->set_editable(false); // for display only
44 $vbox->pack_start($this->display);
45
46 // the button labels
47 $button_label = array(
48 array('Backspc', 'CE', 'C'),
49 array('7', '8', '9', '/', 'sqrt'),
50 array('4', '5', '6', '*', '%'),
51 array('1', '2', '3', '-', '1/x'),
52 array('0', '+/-', '.', '+', '=')
53);
54
55 // setup the buttons
56 for ($j=0; $j<5; ++$j) {
57 $hbox = new GtkHBox();
58 $vbox->pack_start($hbox); // use a hbox to hold each row of buttons
59 for ($i=0; $i<5; ++$i) {
60 if ($j==0 && $i>2) continue; // first row contains only 3 buttons
61 $button = new CalculatorButton($button_label[$j][$i]);

Copyright @ 2007. kksou.com. All Rights Reserved. 102

PHP-GTK2 Demystified Lesson 5.2

62 $hbox->pack_start($button);
63 }
64 }
65 }
66
67 public function on_keypress($widget, $event) { // note 2
68 $keyval = $event->keyval;
69 $value = chr($keyval);
70 echo "keypress = $keyval ($value)\n";
71 }
72
73 }
74
75 class CalculatorButton extends GtkButton {
76 function __construct($label, $width=-1, $height=-1) {
77 parent::__construct($label);
78 $this->set_size_request(40, 32);
79 $this->connect('clicked', array($this, 'on_button')); // note 3
80
81 if (preg_match("/^([0-9]|\.)$/", $label))
82 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#FFFF33'));
83 if (preg_match("/^(\+|-|*|\/){1}$/", $label))
84 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#ff99ff'));
85 if ($label=='C' || $label=='CE')
86 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#FF3366'));
87 if ($label=='=')
88 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#0099FF'));
89 }
90
91 function on_button($button) { // note 4
92 $value = $button->child->get_text();
93 echo "button_click: $value\n";
94 }
95 }
96
97 $cal = new Calculator();
98 $cal->main();
99
100 ?>

Listing 5.2.php

Explanation

1. Extends GtkWindow to form our customized window.

2. Set up the display.

3. The array that stores the calculation buttons definition.

4. Layout the calculator buttons.

5. Extends GtkButton.

Copyright @ 2007. kksou.com. All Rights Reserved. 103

PHP-GTK2 Demystified Lesson 5.2

6. Set the size of the buttons.

7. Set the background color of the buttons.

Note

Note that the signal handlers now only echo the user’s keypress or button clicks.
They do not perform any calculations yet. We will put in the business logic in the
next lesson.

Copyright @ 2007. kksou.com. All Rights Reserved. 104

PHP-GTK2 Demystified Lesson 5.3

5.3 Add in core business logic

Objective

In this step, we will put in all the core business logic. At the end of this step, you will
have a fully functional calculator.

By "core", we mean it will function, provided the user don't key in anything funny,
such as "1.2.3 * + 456". We will put in the validation checks in Step 4.

Overview

We usually implement a calculator using a stack. A stack is just like a paper tray.
The first one that goes in stays at the bottom, and you keep piling documents up.
It's a list-in-first-out (LIFO) list. Compare this with a queue – which is a first-in-first-
out (FIFO) list.

Sample Output

Sample Code

1 <?php
2
3 class Calculator{
4
5 private $operator = '';
6 private $stack = array();
7 private $is_entering_number = 0;
8 private $window;
9
10 // constructor

Copyright @ 2007. kksou.com. All Rights Reserved. 105

PHP-GTK2 Demystified Lesson 5.3

11 function __construct() {
12 }
13
14 function main() {
15 $this->window = new CalculatorWindow($this); // create a new calculator
16 $this->window->show_all(); // display the calculator
17 Gtk::main(); // and let's go!
18 }
19
20 // process input
21 function process_input($value) { // note 1
22 if (preg_match("/^([0-9]|\.)$/", $value)) { // note 2
23 $number = array_pop($this->stack);
24 if (preg_match("/^([0-9]|\.)+$/", $number)) {
25 $number .= $value;
26 } else {
27 if ($number!='') array_push($this->stack, $number);
28 $number = $value;
29 }
30 array_push($this->stack, $number);
31 $this->window->set_display($number);
32
33 } elseif (preg_match("/^(\+|-|*|\/|=){1}$/", $value)) { // note 3
34 if (count($this->stack)<3) {
35 array_push($this->stack, $value);
36 } else {
37 $number2 = array_pop($this->stack);
38 $operator = array_pop($this->stack);
39 $number1 = array_pop($this->stack);
40 switch ($operator) {
41 case '+': $result = $number1 + $number2; break;
42 case '-': $result = $number1 - $number2; break;
43 case '*': $result = $number1 * $number2; break;
44 case '/': $result = $number1 / $number2; break;
45 }
46 $this->window->set_display($result);
47 array_push($this->stack, $result);
48 if ($value!='=') array_push($this->stack, $value);
49 }
50
51 } elseif ($value=='1/x' || $value=='sqrt' || $value=='%' || $value=='+/-') { //

note 4
52 if (count($this->stack)>=1) {
53 $number = array_pop($this->stack);
54 switch ($value) {
55 case '1/x': $result = 1/$number; break;
56 case 'sqrt': $result = sqrt($number); break;
57 case '%': $result = $number / 100; break;
58 case '+/-': $result = -$number; break;
59 }

Copyright @ 2007. kksou.com. All Rights Reserved. 106

PHP-GTK2 Demystified Lesson 5.3

60 $this->window->set_display($result);
61 array_push($this->stack, $result);
62 }
63
64 } elseif ($value=='C') { // note 5
65 $this->stack=array();
66 $this->window->set_display('0');
67
68 } elseif ($value=='CE') { // note 6
69 if (preg_match("/^([0-9]|\.)+$/", end($this->stack))) {
70 $number = array_pop($this->stack);
71 $this->window->set_display('0');
72 }
73
74 } elseif ($value=='BackSpc') { // note 7
75 if (preg_match("/^([0-9]|\.)+$/", end($this->stack))) {
76 $number = array_pop($this->stack);
77 $number = substr($number, 0, strlen($number)-1);
78 $this->window->set_display($number);
79 array_push($this->stack, $number);
80 }
81 }
82 $this->show_stack(); // show current stack
83 }
84
85 // prints the current stack content
86 function show_stack() { // note 8
87 echo "current stack content:\n";
88 for ($i=count($this->stack)-1; $i>=0; --$i) {
89 echo "stack[$i] = {$this->stack[$i]}\n";
90 }
91 echo "\n";
92 }
93 }
94
95 class CalculatorWindow extends GtkWindow {
96 private $calculator;
97 private $display;
98 private $vbox;
99
100 function __construct($calculator) {
101 parent::__construct();
102 $this->calculator = $calculator;
103 $this->set_size_request(200, 240);
104 $this->connect_simple('destroy', array('Gtk','main_quit'));
105 $this->connect('key-press-event', array(&$this, "on_keypress"));
106 $this->layout_widgets();
107 }
108
109 private function layout_widgets() {

Copyright @ 2007. kksou.com. All Rights Reserved. 107

PHP-GTK2 Demystified Lesson 5.3

110 // setup a vbox to hold display and buttons
111 $vbox = new GtkVBox();
112 $this->add($vbox);
113
114 // setup display
115 $this->display = new GtkEntry();
116 $this->display->set_alignment(1.0); // right-justified
117 $this->display->set_editable(false); // for display only
118 $vbox->pack_start($this->display);
119
120 // the button labels
121 $button_label = array(
122 array('Backspc', 'CE', 'C'),
123 array('7', '8', '9', '/', 'sqrt'),
124 array('4', '5', '6', '*', '%'),
125 array('1', '2', '3', '-', '1/x'),
126 array('0', '+/-', '.', '+', '=')
127);
128
129 // setup the buttons
130 for ($j=0; $j<5; ++$j) {
131 $hbox = new GtkHBox();
132 $vbox->pack_start($hbox); // use a hbox to hold each row of buttons
133 for ($i=0; $i<5; ++$i) {
134 if ($j==0 && $i>2) continue; // first row contains only 3 buttons
135 $button = new CalculatorButton($button_label[$j][$i], $this->calculator);
136 $hbox->pack_start($button);
137 }
138 }
139 }
140
141 public function on_keypress($widget, $event) {
142 $keyval = $event->keyval;
143 $value = chr($keyval);
144 if (preg_match("/[0-9\+\-*\/\.=]/", $value) || $keyval==Gdk::KEY_Return ||

$keyval==Gdk::KEY_BackSpace) {
145 if ($keyval==Gdk::KEY_Return) $value='=';
146 if ($keyval==Gdk::KEY_BackSpace) $value='BackSpc';
147 $this->calculator->process_input($value);
148 $this->display->set_position(-1); // move the cursor to the end of display
149 }
150 }
151
152 public function set_display($value) {
153 print "value = $value\n";
154 $this->display->set_text($value);
155 }
156 }
157
158 class CalculatorButton extends GtkButton {

Copyright @ 2007. kksou.com. All Rights Reserved. 108

PHP-GTK2 Demystified Lesson 5.3

159
160 private $calculator;
161
162 function __construct($label, $calculator) {
163 parent::__construct($label);
164 $this->calculator = $calculator;
165 $this->set_size_request(40, 32);
166 $this->connect('clicked', array($this, 'on_button'));
167
168 if (preg_match("/^([0-9]|\.)$/", $label))
169 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#FFFF33'));
170 if (preg_match("/^(\+|-|*|\/){1}$/", $label))
171 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#ff99ff'));
172 if ($label=='C' || $label=='CE')
173 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#FF3366'));
174 if ($label=='=')
175 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#0099FF'));
176 }
177
178 function on_button($button) {
179 $value = $button->child->get_text();
180 echo "button_click: $value\n";
181 $this->calculator->process_input($value);
182 }
183 }
184
185 $cal = new Calculator();
186 $cal->main();
187
188 ?>

Listing 5.3.php

Explanation

1. Function to perform calculations.

2. Process digits.

3. Process binary operations.

4. Process unary operators.

5. Process button ‘C’.

6. Process button ‘CE’.

7. Process button ‘BackSpc’.

8. The function show_stack() is just for debugging purpose. It gives a visual
printout of the content of the stack as shown above. Note again that the first
one that goes in (1234) stays at the bottom, and the latest that goes in (56) is
at the top.

Copyright @ 2007. kksou.com. All Rights Reserved. 109

PHP-GTK2 Demystified Lesson 5.4

5.4 Add validation checks

Objective

In this step, we will try to "foolproof" our calculator by putting in some validation
checks .

Overview

Below are some of the validation checks that we have put in:

• Don't allow two decimal points e.g. 1.2.3

• + - * / - will only be added to stack if top of stack is a number

• If there is only one number on stack, and the user press '=', the '=' should be
go to stack.

There are many more other validation checks that need to put in place if you really
want to make this calculator "foolproof". We won't go into all since the focus here is
php-gtk2 as oppose to calculator.

Sample Output

Sample Code

1 <?php
2
3 class Calculator{
4
5 private $operator = '';
6 private $stack = array();

Copyright @ 2007. kksou.com. All Rights Reserved. 110

PHP-GTK2 Demystified Lesson 5.4

7 private $is_entering_number = 0;
8 private $window;
9
10 // constructor
11 function __construct() {
12 }
13
14 function main() {
15 $this->window = new CalculatorWindow($this); // create a new calculator
16 $this->window->show_all(); // display the calculator
17 Gtk::main(); // and let's go!
18 }
19
20 // process input
21 function process_input($value) {
22 if (preg_match("/^([0-9]|\.)$/", $value)) {
23 $number = array_pop($this->stack);
24 if (preg_match("/^([0-9]|\.)+$/", $number)) {
25 if ($value=='.') {
26 if (strpos($number,'.')===false) $number .= $value; // note 1
27 } else {
28 $number .= $value;
29 }
30 } else {
31 if ($number!='') array_push($this->stack, $number);
32 $number = $value;
33 }
34 array_push($this->stack, $number);
35 $this->window->set_display($number);
36
37 } elseif (preg_match("/^(\+|-|*|\/|=){1}$/", $value)) { // perform binary

operations
38
39 if (count($this->stack)<3) {
40
41 if (preg_match("/^([0-9]|\.)+$/", end($this->stack))) // note 2
42 if ($value!='=') // note 3
43 array_push($this->stack, $value);
44
45 } else {
46
47 $number2 = array_pop($this->stack);
48 $operator = array_pop($this->stack);
49 $number1 = array_pop($this->stack);
50 switch ($operator) {
51 case '+': $result = $number1 + $number2; break;
52 case '-': $result = $number1 - $number2; break;
53 case '*': $result = $number1 * $number2; break;
54 case '/': $result = $number1 / $number2; break;
55 }

Copyright @ 2007. kksou.com. All Rights Reserved. 111

PHP-GTK2 Demystified Lesson 5.4

56 $this->window->set_display($result);
57 array_push($this->stack, $result);
58 if ($value!='=') array_push($this->stack, $value);
59 }
60
61 //process unary operators
62 } elseif ($value=='1/x' || $value=='sqrt' || $value=='%' || $value=='+/-') {
63
64 if (count($this->stack)>=1) {
65 $number = array_pop($this->stack);
66 switch ($value) {
67 case '1/x': $result = 1/$number; break;
68 case 'sqrt': $result = sqrt($number); break;
69 case '%': $result = $number / 100; break;
70 case '+/-': $result = -$number; break;
71 }
72 $this->window->set_display($number);
73 array_push($this->stack, $result);
74
75 }
76
77 } elseif ($value=='C') {
78 $this->stack=array();
79 $this->window->set_display('0');
80
81 } elseif ($value=='CE') {
82 if (preg_match("/^([0-9]|\.)+$/", end($this->stack))) {
83 $number = array_pop($this->stack);
84 $this->window->set_display('0');
85 }
86
87 } elseif ($value=='BackSpc') {
88
89 if (preg_match("/^([0-9]|\.)+$/", end($this->stack))) {
90 $number = array_pop($this->stack);
91 $number = substr($number, 0, strlen($number)-1);
92 $this->window->set_display($number);
93 array_push($this->stack, $number);
94 }
95
96 }
97 $this->show_stack(); // show current stack
98 }
99
100 // prints the current stack content
101 function show_stack() {
102 echo "current stack content:\n";
103 for ($i=count($this->stack)-1; $i>=0; --$i) {
104 echo "stack[$i] = {$this->stack[$i]}\n";
105 }

Copyright @ 2007. kksou.com. All Rights Reserved. 112

PHP-GTK2 Demystified Lesson 5.4

106 echo "\n";
107 }
108 }
109
110 class CalculatorWindow extends GtkWindow {
111 private $calculator;
112 private $display;
113 private $vbox;
114
115 function __construct($calculator) {
116 parent::__construct();
117 $this->calculator = $calculator;
118 $this->set_size_request(200, 240);
119 $this->connect_simple('destroy', array('Gtk','main_quit'));
120 $this->connect('key-press-event', array(&$this, "on_keypress"));
121 $this->layout_widgets();
122 }
123
124 private function layout_widgets() {
125 // setup a vbox to hold display and buttons
126 $vbox = new GtkVBox();
127 $this->add($vbox);
128
129 // setup display
130 $this->display = new GtkEntry();
131 $this->display->set_alignment(1.0); // right-justified
132 $this->display->set_editable(false); // for display only
133 $vbox->pack_start($this->display);
134
135 // the button labels
136 $button_label = array(
137 array('Backspc', 'CE', 'C'),
138 array('7', '8', '9', '/', 'sqrt'),
139 array('4', '5', '6', '*', '%'),
140 array('1', '2', '3', '-', '1/x'),
141 array('0', '+/-', '.', '+', '=')
142);
143
144 // setup the buttons
145 for ($j=0; $j<5; ++$j) {
146 $hbox = new GtkHBox();
147 $vbox->pack_start($hbox); // use a hbox to hold each row of buttons
148 for ($i=0; $i<5; ++$i) {
149 if ($j==0 && $i>2) continue; // first row contains only 3 buttons
150 $button = new CalculatorButton($button_label[$j][$i], $this->calculator);
151 $hbox->pack_start($button);
152 }
153 }
154 }
155

Copyright @ 2007. kksou.com. All Rights Reserved. 113

PHP-GTK2 Demystified Lesson 5.4

156 public function on_keypress($widget, $event) {
157
158 $keyval = $event->keyval;
159 $value = chr($keyval); // get the ASCII equivalent
160 if (preg_match("/[0-9\+\-*\/\.=]/", $value) || $keyval==Gdk::KEY_Return ||

$keyval==Gdk::KEY_BackSpace) {
161
162 if ($keyval==Gdk::KEY_Return) $value='=';
163 if ($keyval==Gdk::KEY_BackSpace) $value='BackSpc';
164 $this->calculator->process_input($value);
165 $this->display->set_position(-1); // move the cursor to the end of display
166
167 }
168 }
169
170 public function set_display($value) {
171 print "value = $value\n";
172 $this->display->set_text($value);
173 }
174 }
175
176 class CalculatorButton extends GtkButton {
177
178 private $calculator;
179
180 function __construct($label, $calculator) {
181 parent::__construct($label);
182 $this->calculator = $calculator;
183 $this->set_size_request(40, 32);
184 $this->connect('clicked', array($this, 'on_button'));
185
186 if (preg_match("/^([0-9]|\.)$/", $label))
187 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#FFFF33'));
188 if (preg_match("/^(\+|-|*|\/){1}$/", $label))
189 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#ff99ff'));
190 if ($label=='C' || $label=='CE')
191 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#FF3366'));
192 if ($label=='=')
193 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#0099FF'));
194 }
195
196 function on_button($button) {
197
198 $value = $button->child->get_text();
199 echo "button_click: $value\n";
200 $this->calculator->process_input($value);
201
202 }
203 }
204

Copyright @ 2007. kksou.com. All Rights Reserved. 114

PHP-GTK2 Demystified Lesson 5.4

205 $cal = new Calculator();
206 $cal->main();
207
208 ?>

Listing 5.4.php

Explanation

1. don't allow two decimal points e.g. 1.2.3

2. + - * / - will only be added to stack if top of stack is a number.

3. if there is only one number on stack, and the user press '=', the '=' should be
go to stack.

Copyright @ 2007. kksou.com. All Rights Reserved. 115

PHP-GTK2 Demystified Lesson 5.5

5.5 Resize of window

Objective

If you find the calculator buttons too small, no worries! Just resize the window to get
this:

This is one “cool” feature of php-gtk2 as oppose to tools like Visual Basic. If you have
code it the right way, you will find that php-gtk2 will automatically rearrange and
resize the widgets when you resize the windows – without the need of you to do any
programming.

Of course, we cannot expect php-gtk2 to be perfect every time. For example, you
will observe that when you enlarge the calculator, the buttons get bigger, but not the
display.

In this step, we will adjust the size of the display when the user changes the window
size.

Overview

• First we register the signal ‘event’ on GtkWindow to be notified when the user
changes the window size.

• To change the size of the display, we use GtkWidget::modify_font().

Copyright @ 2007. kksou.com. All Rights Reserved. 116

http://gtk.php.net/manual/en/gtk.gtkwidget.method.modify_font.php

PHP-GTK2 Demystified Lesson 5.5

Sample Output

Sample Code

1 <?php
2
3 class Calculator{
4
5 private $operator = '';
6 private $stack = array();
7 private $is_entering_number = 0;
8 private $window;
9
10 // constructor
11 function __construct() {
12 }
13
14 function main() {
15 $this->window = new CalculatorWindow(); // create a new calculator
16 $this->window->show_all(); // display the calculator
17 Gtk::main(); // and let's go!
18 }
19

Copyright @ 2007. kksou.com. All Rights Reserved. 117

PHP-GTK2 Demystified Lesson 5.5

20 // process input
21 function process_input($value) {
22 if (preg_match("/^([0-9]|\.)$/", $value)) {
23 $number = array_pop($this->stack);
24 if (preg_match("/^([0-9]|\.)+$/", $number)) {
25 if ($value=='.') {
26 if (strpos($number,'.')===false) $number .= $value;
27 } else {
28 $number .= $value;
29 }
30 } else {
31 if ($number!='') array_push($this->stack, $number);
32 $number = $value;
33 }
34 array_push($this->stack, $number);
35 $this->window->set_display($number);
36
37 } elseif (preg_match("/^(\+|-|*|\/|=){1}$/", $value)) { // perform binary

operations
38 if (count($this->stack)<3) {
39 if (preg_match("/^([0-9]|\.)+$/", end($this->stack)))
40 if ($value!='=')
41 array_push($this->stack, $value);
42 } else {
43 $number2 = array_pop($this->stack);
44 $operator = array_pop($this->stack);
45 $number1 = array_pop($this->stack);
46 switch ($operator) {
47 case '+': $result = $number1 + $number2; break;
48 case '-': $result = $number1 - $number2; break;
49 case '*': $result = $number1 * $number2; break;
50 case '/': $result = $number1 / $number2; break;
51 }
52
53 $this->window->set_display($result);
54 array_push($this->stack, $result);
55 if ($value!='=') array_push($this->stack, $value);
56 }
57
58 //process unary operators
59 } elseif ($value=='1/x' || $value=='sqrt' || $value=='%' || $value=='+/-') {
60
61 if (count($this->stack)>=1) {
62 $number = array_pop($this->stack);
63 switch ($value) {
64 case '1/x': $result = 1/$number; break;
65 case 'sqrt': $result = sqrt($number); break;
66 case '%': $result = $number / 100; break;
67 case '+/-': $result = -$number; break;
68 }

Copyright @ 2007. kksou.com. All Rights Reserved. 118

PHP-GTK2 Demystified Lesson 5.5

69 $this->window->set_display($number);
70 array_push($this->stack, $result);
71 }
72 } elseif ($value=='C') {
73 $this->stack=array();
74 $this->window->set_display('0');
75
76 } elseif ($value=='CE') {
77 if (preg_match("/^([0-9]|\.)+$/", end($this->stack))) {
78 $number = array_pop($this->stack);
79 $this->window->set_display('0');
80 }
81 } elseif ($value=='BackSpc') {
82 if (preg_match("/^([0-9]|\.)+$/", end($this->stack))) {
83 $number = array_pop($this->stack);
84 $number = substr($number, 0, strlen($number)-1);
85 $this->window->set_display($number);
86 array_push($this->stack, $number);
87 }
88 }
89 $this->show_stack(); // show current stack
90 }
91
92 // prints the current stack content
93 function show_stack() {
94 echo "current stack content:\n";
95 for ($i=count($this->stack)-1; $i>=0; --$i) {
96 echo "stack[$i] = {$this->stack[$i]}\n";
97 }
98 echo "\n";
99 }
100 }
101
102 class CalculatorWindow extends GtkWindow {
103
104 private $calculator;
105 private $display;
106 private $vbox;
107
108 function __construct($calculator) {
109 parent::__construct();
110 $this->calculator = $calculator;
111 $this->set_size_request(200, 240);
112 $this->connect_simple('destroy', array('Gtk','main_quit'));
113 $this->connect('key-press-event', array(&$this, "on_keypress"));
114 $this->connect('event', array($this, 'on_resize')); // note 1
115 $this->layout_widgets();
116 }
117
118 private function layout_widgets() {

Copyright @ 2007. kksou.com. All Rights Reserved. 119

PHP-GTK2 Demystified Lesson 5.5

119 // setup a vbox to hold display and buttons
120 $vbox = new GtkVBox();
121 $this->add($vbox);
122
123 // setup display
124 $this->display = new GtkEntry();
125 $this->display->set_alignment(1.0); // right-justified
126 $this->display->set_editable(false); // for display only
127 $vbox->pack_start($this->display);
128
129 // the button labels
130 $button_label = array(
131 array('Backspc', 'CE', 'C'),
132 array('7', '8', '9', '/', 'sqrt'),
133 array('4', '5', '6', '*', '%'),
134 array('1', '2', '3', '-', '1/x'),
135 array('0', '+/-', '.', '+', '=')
136);
137
138 // setup the buttons
139 for ($j=0; $j<5; ++$j) {
140 $hbox = new GtkHBox();
141 $vbox->pack_start($hbox); // use a hbox to hold each row of buttons
142 for ($i=0; $i<5; ++$i) {
143 if ($j==0 && $i>2) continue; // first row contains only 3 buttons
144 $button = new CalculatorButton($button_label[$j][$i], $this->calculator);
145 $hbox->pack_start($button);
146 }
147 }
148 }
149
150 public function on_keypress($widget, $event) {
151
152 $keyval = $event->keyval;
153 $value = chr($keyval); // get the ASCII equivalent
154 if (preg_match("/[0-9\+\-*\/\.=]/", $value) || $keyval==Gdk::KEY_Return ||

$keyval==Gdk::KEY_BackSpace) {
155 if ($keyval==Gdk::KEY_Return) $value='=';
156 if ($keyval==Gdk::KEY_BackSpace) $value='BackSpc';
157 $this->calculator->process_input($value);
158 $this->display->set_position(-1); // move the cursor to the end of display
159 }
160 }
161
162 public function set_display($value) {
163 print "value = $value\n";
164 $this->display->set_text($value);
165 }
166
167 public function on_resize($widget, $event) {// note 2

Copyright @ 2007. kksou.com. All Rights Reserved. 120

PHP-GTK2 Demystified Lesson 5.5

168 if ($event->type==2) { // note 3
169 $size = $this->get_size(); // note 4
170 $height = $size[1];
171 $new_font_size = intval(9 / 240 * $height); // note 5
172 $this->display->modify_font(new PangoFontDescription("$new_font_size")); //

note 6
173 }
174 }
175 }
176
177 class CalculatorButton extends GtkButton {
178
179 private $calculator;
180
181 function __construct($label, $calculator) {
182 parent::__construct($label);
183 $this->calculator = $calculator;
184 $this->set_size_request(40, 32);
185 $this->connect('clicked', array($this, 'on_button'));
186
187 if (preg_match("/^([0-9]|\.)$/", $label))
188 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#FFFF33'));
189 if (preg_match("/^(\+|-|*|\/){1}$/", $label))
190 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#ff99ff'));
191 if ($label=='C' || $label=='CE')
192 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#FF3366'));
193 if ($label=='=')
194 $this->modify_bg(Gtk::STATE_NORMAL, GdkColor::parse('#0099FF'));
195 }
196
197 function on_button($button) {
198 $value = $button->child->get_text();
199 echo "button_click: $value\n";
200 $this->calculator->process_input($value);
201 }
202 }
203
204 $cal = new Calculator();
205 $cal->main();
206
207 ?>

Listing 5.5.php

Explanation

1. Register signal ‘event’ on GtkWindow to be notified when user changes the
window size.

2. Signal handler for signal ‘event’.

Copyright @ 2007. kksou.com. All Rights Reserved. 121

PHP-GTK2 Demystified Lesson 5.6

3. There are many events that will generate the signal ‘event’. In this case, we
only want to process the signal ‘event’ generated by the left-mouse button.

4. Get the new window size.

5. Calculate the new display size.

6. Set the new display size by setting the font size.

5.6 Summary

We have reached the end of this book.

I hope the book has helped you unravel many of the “mysteries” you had with
php-gtk2 before reading this book.

You should now have no problem understanding many of the examples in the
php-gtk2 Cookbook website.

Writing php-gtk2 applications is as easy as:

• Laying out the widgets

• Connect the signal of interests

• Write the signal handlers

Along the way, you may want to make use of object-oriented programming to
encapsulate related properties, methods and signal handlers using classes.

You have now a strong foundation to begin developing serious php-gtk2 applications.

I wish you good luck and all the best!

/kksou
January 2007

Copyright @ 2007. kksou.com. All Rights Reserved. 122

http://www.kksou.com/php-gtk2

	 Table of Contents
	 Preface
	Chapter 1 Getting Started
	1.1 Hello World!
	1.2 Display a button
	1.3 Responding to button click
	1.4 Adding two or more widgets
	1.5 Resize application window

	Chapter 2 Size & Positioning
	2.1 Understand the Expand parameter
	2.2 Understand the Fill parameter
	2.3 Display the button in default size
	2.4 Right align the button
	2.5 Center the button horizontally
	2.6 Center the button horizontally and vertically
	2.7 Set the size of button
	2.8 Have 3 buttons of size 60x36 at top left-hand corner
	2.9 Precise positioning of buttons
	2.10 Introducing the spacer
	2.11 Introducing the expandable spacer
	2.12 Add a Quit button that always stay at top right-hand corner
	2.13 A simple form with only one entry field
	2.14 A form with three fields - Part 1
	2.15 A form with three fields - Part 2
	2.16 A form with three fields - Part 3
	2.17 Summary

	Chapter 3 Signal Handling
	3.1 Signal basics
	3.2 Handling three buttons with one signal handler
	3.3 Handling multiple signals with one signal handler – one more example
	3.4 Passing additional data to callback function - Part 1
	3.5 Passing additional data to callback function - Part 2
	3.6 Passing additional data to callback function - Part 3
	3.7 Object-oriented connections
	3.8 Callback methods in another class
	3.9 Manually generating a signal
	3.10 Clickable label
	3.11 Useful event properties from button-press-event
	3.12 Signal propagation
	3.13 Handling keypress with key-press-event
	3.14 Signal propagation for key-press-event
	3.15 Summary

	Chapter 4 Object-oriented Framework
	4.1 The object-oriented widgets
	4.2 Objected-oriented programming - Variation 1
	4.3 Objected-oriented programming - Variation 2
	4.4 Objected-oriented programming - Variation 3
	4.5 Objected-oriented programming - Variation 4
	4.6 Creating your own widgets
	4.7 Summary

	Chapter 5 Putting It Altogether
	5.1 Layout the widgets
	5.2 Set up signal handlers
	5.3 Add in core business logic
	5.4 Add validation checks
	5.5 Resize of window
	5.6 Summary

