

Modern	PHP
New	Features	and	Good	Practices

Josh	Lockhart

Modern	PHP
by	Josh	Lockhart

Copyright	©	2015	Josh	Lockhart.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA
95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.
Online	editions	are	also	available	for	most	titles	(http://safaribooksonline.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editor:	Allyson	MacDonald
Production	Editor:	Nicole	Shelby
Copyeditor:	Phil	Dangler
Proofreader:	Eileen	Cohen
Indexer:	Judy	McConville
Interior	Designer:	David	Futato
Cover	Designer:	Ellie	Volckhausen
Illustrator:	Rebecca	Demarest
February	2015:	First	Edition

http://safaribooksonline.com

Revision	History	for	the	First	Edition
2015-02-09:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491905012	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Modern	PHP,	the
cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly	Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the
author	disclaim	all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the
information	and	instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code
samples	or	other	technology	this	work	contains	or	describes	is	subject	to	open	source
licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-491-90501-2

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491905012

	
For	Laurel

Preface
There	are	a	million	PHP	tutorials	online.	Most	of	these	tutorials	are	outdated	and
demonstrate	obsolete	practices.	Unfortunately,	these	tutorials	are	still	referenced	today
thanks	to	their	Google	immortality.	Outdated	information	is	dangerous	to	unaware	PHP
programmers	who	unknowingly	create	slow	and	insecure	PHP	applications.	I	recognized
this	issue	in	2013,	and	it	is	the	primary	reason	I	began	PHP	The	Right	Way,	a	community
initiative	to	provide	PHP	programmers	easy	access	to	high-quality	and	up-to-date
information	from	authoritative	members	of	the	PHP	community.

Modern	PHP	is	my	next	endeavor	toward	the	same	goal.	This	book	is	not	a	reference
manual.	Nope.	This	book	is	a	friendly	and	fun	conversation	between	you	and	me.	I’ll
introduce	you	to	the	modern	PHP	programming	language.	I’ll	show	you	the	latest	PHP
techniques	that	I	use	every	day	at	work	and	on	my	open	source	projects.	And	I’ll	help	you
use	the	latest	coding	standards	so	you	can	share	your	PHP	components	and	libraries	with
the	PHP	community.

You’ll	hear	me	say	“community”	over	and	over	(and	over).	The	PHP	community	is
friendly	and	helpful	and	welcoming	—	although	not	without	occasional	drama.	If	you
become	curious	about	a	specific	feature	mentioned	in	this	book,	reach	out	to	your	local
PHP	user	group	with	questions.	I	guarantee	you	there	are	nearby	PHP	developers	who
would	love	to	help	you	become	a	better	PHP	programmer.	Your	local	PHP	user	group	is	an
invaluable	resource	as	you	continue	to	improve	your	PHP	skills	long	after	you	finish	this
book.

http://www.phptherightway.com

What	You	Need	to	Know	About	This	Book
Before	we	get	started,	I	want	to	set	a	few	expectations.	First,	it	is	impossible	for	me	to
cover	every	way	to	use	PHP.	There	isn’t	enough	time.	Instead,	I	will	show	you	how	I	use
PHP.	Yes,	this	is	an	opinionated	approach,	but	I	use	the	very	same	practices	and	standards
adopted	by	many	other	PHP	developers.	What	you	take	away	from	our	brief	conversation
will	be	immediately	applicable	in	your	own	projects.

Second,	I	assume	you	are	familiar	with	variables,	conditionals,	loops,	and	so	on;	you	don’t
have	to	know	PHP,	but	you	should	at	least	bring	a	basic	understanding	of	these
fundamental	programming	concepts.	You	can	also	bring	coffee	(I	love	coffee).	I’ll	supply
everything	else.

Third,	I	do	not	assume	you	are	using	a	specific	operating	system.	However,	my	code
examples	are	written	for	Linux.	Bash	commands	are	provided	for	Ubuntu	and	CentOS	and
may	also	work	on	OS	X.	If	you	use	Windows,	I	highly	recommend	you	spin	up	a	Linux
virtual	machine	so	you	can	run	the	example	code	in	this	book.

How	This	Book	Is	Organized
Part	I	demonstrates	new	PHP	features	like	namespaces,	generators,	and	traits.	It	introduces
you	to	the	modern	PHP	language,	and	it	exposes	you	to	features	you	may	not	have	known
about	until	now.

Part	II	explores	good	practices	that	you	should	implement	in	your	PHP	applications.	Have
you	heard	the	term	PSR,	but	you’re	not	entirely	sure	what	it	is	or	how	to	use	it?	Do	you
want	to	learn	how	to	sanitize	user	input	and	use	safe	database	queries?	This	chapter	is	for
you.

Part	III	is	more	technical	than	the	first	two	parts.	It	demonstrates	how	to	deploy,	tune,	test,
and	profile	PHP	applications.	We	dive	into	deployment	strategies	with	Capistrano.	We	talk
about	testing	tools	like	PHPUnit	and	Travis	CI.	And	we	explore	how	to	tune	PHP	so	it
performs	as	well	as	possible	for	your	application.

Appendix	A	provides	step-by-step	instructions	for	installing	and	configuring	PHP-FPM	on
your	machine.

Appendix	B	explains	how	to	build	a	local	development	environment	that	closely	matches
your	production	server.	We	explore	Vagrant,	Puppet,	Chef,	and	alternative	tools	to	help
you	get	started	quickly.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

Tip

This	element	signifies	a	tip	or	suggestion.

Note

This	element	signifies	a	general	note.

Warning

This	element	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download	at
https://github.com/codeguy/modern-php.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered
with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You	do	not	need	to
contact	us	for	permission	unless	you’re	reproducing	a	significant	portion	of	the	code.	For
example,	writing	a	program	that	uses	several	chunks	of	code	from	this	book	does	not
require	permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books
does	require	permission.	Answering	a	question	by	citing	this	book	and	quoting	example
code	does	not	require	permission.	Incorporating	a	significant	amount	of	example	code
from	this	book	into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“Modern	PHP	by	Josh	Lockhart	(O’Reilly).
Copyright	2015	Josh	Lockhart,	978-1-491-90501-2.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.

https://github.com/codeguy/modern-php
mailto:permissions@oreilly.com

Safari®	Books	Online
Note

Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both
book	and	video	form	from	the	world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.
1005	Gravenstein	Highway	North
Sebastopol,	CA	95472
800-998-9938	(in	the	United	States	or	Canada)
707-829-0515	(international	or	local)
707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/modern_php.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/modern_php
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
This	is	my	first	book.	When	O’Reilly	approached	me	about	writing	Modern	PHP,	I	was
equally	excited	and	scared	to	death.	The	first	thing	I	did	was	a	Walter	Huston	dance;	I
mean,	O’Reilly	wanted	me	to	write	a	book.	How	cool	is	that!?	Then	I	asked	myself	can	I
really	write	that	many	pages?	A	book	isn’t	a	quick	or	small	task.

Of	course,	I	immediately	said	“yes.”	I	knew	I	could	write	Modern	PHP	because	I	had
family,	friends,	coworkers,	editors,	and	reviewers	supporting	me	the	entire	way.	I	want	to
acknowledge	and	thank	my	supporters	for	their	invaluable	feedback.	Without	them,	this
book	would	never	have	happened.

First,	I	want	to	thank	my	editor	at	O’Reilly	Media	—	Allyson	MacDonald
(@allyatoreilly).	Ally	was	nice,	critical,	supportive,	and	smart.	She	knew	exactly	how	and
when	to	gently	nudge	me	in	the	right	direction	whenever	I	got	off	track.	I	can’t	imagine
working	with	a	better	editor.

I	also	want	to	thank	my	technical	reviewers	—	Adam	Fairholm	(@adamfairholm)	and	Ed
Finkler	(@funkatron).	Adam	is	a	brilliant	web	developer	at	Newfangled,	and	he	is	perhaps
best	known	for	his	work	on	IMVDb	—	the	popular	music	video	database.	Ed	is	well-
known	throughout	the	PHP	community	for	his	incredible	PHP	skills,	his	personality	on	the
/dev/hell	podcast,	and	his	commendable	Open	Sourcing	Mental	Illness	campaign.	Adam
and	Ed	both	pointed	out	everything	dumb,	illogical,	and	incorrect	in	my	early	drafts.	This
book	is	far	better	than	anything	I	could	write	on	my	own	thanks	to	their	brutally	honest
feedback.	I	am	forever	indebted	to	them	for	their	guidance	and	wisdom.	If	any	faults	or
inaccuracies	wriggled	their	way	into	the	final	manuscript,	those	faults	are	surely	my	own.

My	coworkers	at	New	Media	Campaigns	have	been	a	constant	source	of	encouragement.
Joel,	Clay,	Kris,	Alex,	Patrick,	Ashley,	Lenny,	Claire,	Todd,	Pascale,	Henry,	and	Nathan
—	I	tip	my	hat	to	all	of	you	for	your	kind	words	of	encouragement	from	beginning	to	end.

And	most	important,	I	want	to	thank	my	family	—	Laurel,	Ethan,	Tessa,	Charlie,	Lisa,
Glenn,	and	Liz.	Thank	you	for	your	encouragement,	without	which	I	would	have	never
finished	this	book.	To	my	lovely	wife,	Laurel,	thank	you	for	your	patience.	Thank	you	for
accompanying	me	to	Caribou	Coffee	for	so	many	late-night	writing	sessions.	Thank	you
for	letting	me	abandon	you	on	weekends.	Thank	you	for	keeping	me	motivated	and	on
schedule.	I	love	you	now	and	forever.

https://twitter.com/allyatoreilly
https://twitter.com/adamfairholm
https://twitter.com/funkatron
https://www.newfangled.com
http://imvdb.com
http://devhell.info
http://funkatron.com/osmi
http://www.newmediacampaigns.com

Part	I.	Language	Features

Chapter	1.	The	New	PHP
The	PHP	language	is	experiencing	a	renaissance.	PHP	is	transforming	into	a	modern
scripting	language	with	helpful	features	like	namespaces,	traits,	closures,	and	a	built-in
opcode	cache.	The	modern	PHP	ecosystem	is	evolving,	too.	PHP	developers	rely	less	on
monolithic	frameworks	and	more	on	smaller	specialized	components.	The	Composer
dependency	manager	is	revolutionizing	how	we	build	PHP	applications;	it	emancipates	us
from	a	framework’s	walled	garden	and	lets	us	mix	and	match	interoperable	PHP
components	best	suited	for	our	custom	PHP	applications.	Component	interoperability
would	not	be	possible	without	community	standards	proposed	and	curated	by	the	PHP
Framework	Interop	Group.

Modern	PHP	is	your	guide	to	the	new	PHP,	and	it	will	show	you	how	to	build	and	deploy
amazing	PHP	applications	using	community	standards,	good	practices,	and	interoperable
components.

Past
Before	we	explore	modern	PHP,	it	is	important	to	understand	PHP’s	origin.	PHP	is	an
interpreted	server-side	scripting	language.	This	means	you	write	PHP	code,	upload	it	to	a
web	server,	and	execute	it	with	an	interpreter.	PHP	is	typically	used	with	a	web	server	like
Apache	or	nginx	to	serve	dynamic	content.	However,	PHP	can	also	be	used	to	build
powerful	command-line	applications	(just	like	bash,	Ruby,	Python,	and	so	on).	Many	PHP
developers	don’t	realize	this	and	miss	out	on	a	really	exciting	feature.	Not	you,	though.

You	can	read	the	official	PHP	history	at	http://php.net/manual/history.php.php.	I	won’t
repeat	what	has	already	been	said	so	well	by	Rasmus	Lerdorf	(the	creator	of	PHP).	What	I
will	tell	you	is	that	PHP	has	a	tumultuous	past.	PHP	began	as	a	collection	of	CGI	scripts
written	by	Rasmus	Lerdorf	to	track	visits	to	his	online	resume.	Lerdorf	named	his	set	of
CGI	scripts	“Personal	Home	Page	Tools.”	This	early	incarnation	was	completely	different
from	the	PHP	we	know	today.	Lerdorf’s	early	PHP	Tools	were	not	a	scripting	language;
they	were	tools	that	provided	rudimentary	variables	and	automatic	form	variable
interpretation	using	an	HTML	embedded	syntax.

Between	1994	and	1998,	PHP	underwent	numerous	revisions	and	even	received	a	few
ground-up	rewrites.	Andi	Gutmans	and	Zeev	Suraski,	two	developers	from	Tel	Aviv,
joined	forces	with	Rasmus	Lerdorf	to	transform	PHP	from	a	small	collection	of	CGI	tools
into	a	full-fledged	programming	language	with	a	more	consistent	syntax	and	basic	support
for	object-oriented	programming.	They	named	their	final	product	PHP	3	and	released	it	in
late	1998.	The	new	PHP	moniker	was	a	departure	from	earlier	names,	and	it	is	a	recursive
acronym	for	PHP:	Hypertext	Preprocessor.	PHP	3	was	the	first	version	that	most
resembled	the	PHP	we	know	today.	It	provided	superior	extensibility	to	various	databases,
protocols,	and	APIs.	PHP	3’s	extensibility	attracted	many	new	developers	to	the	project.
By	late	1998,	PHP	3	was	already	installed	on	a	staggering	10%	of	the	world’s	web	servers.

http://php.net/manual/history.php.php

Present
Today,	the	PHP	language	is	quickly	evolving	and	is	supported	by	dozens	of	core	team
developers	from	around	the	world.	Development	practices	have	changed,	too.	In	the	past,
it	was	common	practice	to	write	a	PHP	file,	upload	it	to	a	production	server	with	FTP,	and
hope	it	worked.	This	is	a	terrible	development	strategy,	but	it	was	necessary	due	to	a	lack
of	viable	local	development	environments.

Nowadays,	we	eschew	FTP	and	use	version	control	instead.	Version	control	software	like
Git	helps	maintain	an	auditable	code	history	that	can	be	branched,	forked,	and	merged.
Local	development	environments	are	identical	to	production	servers	thanks	to
virtualization	tools	like	Vagrant	and	provisioning	tools	like	Ansible,	Chef,	and	Puppet.	We
leverage	specialized	PHP	components	with	the	Composer	dependency	manager.	Our	PHP
code	adheres	to	PSRs	—	community	standards	managed	by	the	PHP	Framework	Interop
Group.	We	thoroughly	test	our	code	with	tools	like	PHPUnit.	We	deploy	our	applications
with	PHP’s	FastCGI	process	manager	behind	a	web	server	like	nginx.	And	we	increase
application	performance	with	an	opcode	cache.

Modern	PHP	encompasses	many	new	practices	that	may	be	unfamiliar	to	those	of	you	new
to	PHP,	or	to	those	upgrading	from	older	PHP	versions.	Don’t	feel	overwhelmed.	I’ll	walk
through	each	concept	later	in	this	book.

I’m	also	excited	that	PHP	now	has	an	official	draft	specification	—	something	it	lacked
until	2014.

Note

Most	mature	programming	languages	have	a	specification.	In	layman’s	terms,	a
specification	is	a	canonical	blueprint	that	defines	what	it	means	to	be	PHP.	This	blueprint
is	used	by	developers	who	create	programs	that	parse,	interpret,	and	execute	PHP	code.	It
is	not	for	developers	who	create	applications	and	websites	with	PHP.

Sara	Golemon	and	Facebook	announced	the	first	PHP	specification	draft	at	O’Reilly’s
OSCON	conference	in	2014.	You	can	read	the	official	announcement	on	the	PHP	internals
mailing	list,	and	you	can	read	the	PHP	specification	on	GitHub.

An	official	PHP	language	specification	is	becoming	more	important	given	the	introduction
of	multiple	competing	PHP	engines.	The	original	PHP	engine	is	the	Zend	Engine,	a	PHP
interpreter	written	in	C	and	introduced	in	PHP	4.	The	Zend	Engine	was	created	by	Rasmus
Lerdorf,	Andi	Gutmans,	and	Zeev	Suraski.	Today	the	Zend	Engine	is	the	Zend	company’s
main	contribution	to	the	PHP	community.	However,	there	is	now	a	second	major	PHP
engine	—	the	HipHop	Virtual	Machine	from	Facebook.	A	language	specification	ensures
that	both	engines	maintain	a	baseline	compatibility.

Note

A	PHP	engine	is	a	program	that	parses,	interprets,	and	executes	PHP	code	(e.g.,	the	Zend
Engine	or	Facebook’s	HipHop	Virtual	Machine).	This	is	not	to	be	confused	with	PHP,
which	is	a	generic	reference	to	the	PHP	language.

http://bit.ly/php-internals
http://bit.ly/php-langspec
http://www.zend.com/en/company/community/php/

Future
The	Zend	Engine	is	improving	at	a	rapid	pace	with	new	features	and	improved
performance.	I	attribute	the	Zend	Engine’s	improvements	to	its	new	competition,
specifically	Facebook’s	HipHop	Virtual	Machine	and	Hack	programming	language.

Hack	is	a	new	programming	language	built	on	top	of	PHP.	It	introduces	static	typing,	new
data	structures,	and	additional	interfaces	while	maintaining	backward	compatibility	with
existing	dynamically	typed	PHP	code.	Hack	is	targeted	at	developers	who	appreciate
PHP’s	rapid	development	characteristics	but	need	the	predictability	and	stability	from
static	typing.

Note

We’ll	discuss	dynamic	versus	static	typing	later	in	this	book.	The	difference	between	the
two	is	when	PHP	types	are	checked.	Dynamic	types	are	checked	at	runtime,	whereas	static
types	are	checked	at	compile	time.	Jump	ahead	to	Chapter	12	for	more	information.

The	HipHop	Virtual	Machine	(HHVM)	is	a	PHP	and	Hack	interpreter	that	uses	a	just	in
time	(JIT)	compiler	to	improve	application	performance	and	reduce	memory	usage.

I	don’t	foresee	Hack	and	HHVM	replacing	the	Zend	Engine,	but	Facebook’s	new
contributions	are	creating	a	giant	splash	in	the	PHP	community.	Increasing	competition
has	prompted	the	Zend	Engine	core	team	to	announce	PHP	7,	an	optimized	Zend	Engine
said	to	be	on	par	with	HHVM.	We’ll	discuss	these	developments	further	in	Chapter	12.

It’s	an	exciting	time	to	be	a	PHP	programmer.	The	PHP	community	has	never	been	this
energized,	fun,	and	innovative.	I	hope	this	book	helps	you	firmly	embrace	modern	PHP
practices.	There	are	a	ton	of	new	things	to	learn,	and	many	more	things	on	the	horizon.
Consider	this	your	roadmap.	Now	let’s	get	started.

http://bit.ly/php7-timeline

Chapter	2.	Features
The	modern	PHP	language	has	many	exciting	new	features.	Many	of	these	features	will	be
brand	new	to	PHP	programmers	upgrading	from	earlier	versions,	and	they’ll	be	a	nice
surprise	to	programmers	migrating	to	PHP	from	another	language.	These	new	features
make	the	PHP	language	a	powerful	platform	and	provide	a	pleasant	experience	for
building	web	applications	and	command-line	tools.

Some	of	these	features	aren’t	essential,	but	they	still	make	our	lives	easier.	Some	features,
however,	are	essential.	Namespaces,	for	example,	are	a	cornerstone	of	modern	PHP
standards	and	enable	development	practices	that	modern	PHP	developers	take	for	granted
(e.g.,	autoloading).	I’ll	introduce	each	new	feature,	explain	why	it	is	useful,	and	show	you
how	to	implement	it	in	your	own	projects.

Tip

I	encourage	you	to	follow	along	on	your	own	computer.	You	can	find	all	of	the	text’s	code
examples	in	this	book’s	companion	GitHub	repository.

https://github.com/codeguy/modern-php

Namespaces
If	there	is	one	modern	PHP	feature	I	want	you	to	know,	it	is	namespaces.	Introduced	in
PHP	5.3.0,	namespaces	are	an	important	tool	that	organizes	PHP	code	into	a	virtual
hierarchy,	comparable	to	your	operating	system’s	filesystem	directory	structure.	Each
modern	PHP	component	and	framework	organizes	its	code	beneath	its	own	globally
unique	vendor	namespace	so	that	it	does	not	conflict	with,	or	lay	claim	to,	common	class
names	used	by	other	vendors.

Note

Don’t	you	hate	it	when	you	walk	into	a	coffee	shop	and	this	one	obnoxious	person	has	a
mess	of	books,	cables,	and	whatnot	spread	across	several	tables?	Not	to	mention	he’s
sitting	next	to,	but	not	using,	the	only	available	power	outlet.	He’s	wasting	valuable	space
that	could	otherwise	be	useful	to	you.	Figuratively	speaking,	this	person	is	not	using
namespaces.	Don’t	be	this	person.

Let’s	see	how	a	real-world	PHP	component	uses	namespaces.	The	Symfony	Framework’s
own	symfony/httpfoundation	is	a	popular	PHP	component	that	manages	HTTP	requests
and	responses.	More	important,	the	symfony/httpfoundation	component	uses	common
PHP	class	names	like	Request,	Response,	and	Cookie.	I	guarantee	you	there	are	many
other	PHP	components	that	use	these	same	class	names.	How	can	we	use	the
symfony/httpfoundation	PHP	component	if	other	PHP	code	uses	the	same	class	names?
We	can	safely	use	the	symfony/httpfoundation	component	precisely	because	its	code	is
sandboxed	beneath	the	unique	Symfony	vendor	namespace.	Visit	the
symfony/httpfoundation	component	on	GitHub	and	navigate	to	the	Response.php	file.	It
looks	like	Figure	2-1.

Figure	2-1.	GitHub	symfony/httpfoundation	screenshot

Look	closely	at	line	12.	It	contains	this	code:

https://github.com/symfony/HttpFoundation
https://github.com/symfony/HttpFoundation
http://bit.ly/response-php

namespace	Symfony\Component\HttpFoundation;

This	is	a	PHP	namespace	declaration,	and	it	always	appears	on	a	new	line	immediately
after	the	opening	<?php	tag.	This	particular	namespace	declaration	tells	us	several	things.
First,	we	know	the	Response	class	lives	beneath	the	Symfony	vendor	namespace	(the
vendor	namespace	is	the	topmost	namespace).	We	know	the	Response	class	lives	beneath
the	Component	subnamespace.	We	also	know	the	Response	class	lives	beneath	yet	another
subnamespace	named	HttpFoundation.	You	can	view	other	files	adjacent	to
Response.php,	and	you’ll	see	they	use	the	same	namespace	declaration.	A	namespace	(or
subnamespace)	encapsulates	and	organizes	related	PHP	classes,	just	as	a	filesystem
directory	contains	related	files.

Tip

Subnamespaces	are	separated	with	a	\	character.

Unlike	your	operating	system’s	physical	filesystem,	PHP	namespaces	are	a	virtual	concept
and	do	not	necessarily	map	1:1	with	filesystem	directories.	That	being	said,	most	PHP
components	do,	in	fact,	map	subnamespaces	to	filesystem	directories	for	compatibility
with	the	popular	PSR-4	autoloader	standard	(we’ll	talk	more	about	this	in	Chapter	3).

Note

Technically	speaking,	namespaces	are	merely	a	PHP	language	notation	referenced	by	the
PHP	interpreter	to	apply	a	common	name	prefix	to	a	set	of	classes,	interfaces,	functions,
and	constants.

Why	We	Use	Namespaces
Namespaces	are	important	because	they	let	us	create	sandboxed	code	that	works	alongside
other	developers’	code.	This	is	the	cornerstone	concept	of	the	modern	PHP	component
ecosystem.	Component	and	framework	authors	build	and	distribute	code	for	a	large
number	of	PHP	developers,	and	they	have	no	way	of	knowing	or	controlling	what	classes,
interfaces,	functions,	and	constants	are	used	alongside	their	own	code.	This	problem
applies	to	your	own	in-house	projects,	too.	If	you	write	custom	PHP	components	or
classes	for	a	project,	that	code	must	work	alongside	your	project’s	third-party
dependencies.

As	I	mentioned	earlier	with	the	symfony/httpfoundation	component,	your	code	and
other	developers’	code	might	use	the	same	class,	interface,	function,	or	constant	names.
Without	namespaces,	a	name	collision	causes	PHP	to	fail.	With	namespaces,	your	code
and	other	developers’	code	can	use	the	same	class,	interface,	function,	or	constant	name
assuming	your	code	lives	beneath	a	unique	vendor	namespace.

If	you’re	building	a	tiny	personal	project	with	only	a	few	dependencies,	class	name
collisions	probably	won’t	be	an	issue.	But	when	you’re	working	on	a	team	building	a	large
project	with	numerous	third-party	dependencies,	name	collisions	become	a	very	real
concern.	You	cannot	control	which	classes,	interfaces,	functions,	and	constants	are
introduced	into	the	global	namespace	by	your	project’s	dependencies.	This	is	why
namespacing	your	code	is	important.

Declaration
Every	PHP	class,	interface,	function,	and	constant	lives	beneath	a	namespace	(or
subnamespace).	Namespaces	are	declared	at	the	top	of	a	PHP	file	on	a	new	line
immediately	after	the	opening	<?php	tag.	The	namespace	declaration	begins	with
namespace,	then	a	space	character,	then	the	namespace	name,	and	then	a	closing
semicolon	;	character.

Remember	that	namespaces	are	often	used	to	establish	a	top-level	vendor	name.	This
example	namespace	declaration	establishes	the	Oreilly	vendor	name:

<?php

namespace	Oreilly;

All	PHP	classes,	interfaces,	functions,	or	constants	declared	beneath	this	namespace
declaration	live	in	the	Oreilly	namespace	and	are,	in	some	way,	related	to	O’Reilly
Media.	What	if	we	wanted	to	organize	code	related	to	this	book?	We	use	a	subnamespace.

Subnamespaces	are	declared	exactly	the	same	as	in	the	previous	example.	The	only
difference	is	that	we	separate	namespace	and	subnamespace	names	with	the	\	character.
The	following	example	declares	a	subnamespace	named	ModernPHP	that	lives	beneath	the
topmost	Oreilly	vendor	namespace:

<?php

namespace	Oreilly\ModernPHP;

All	classes,	interfaces,	functions,	and	constants	declared	beneath	this	namespace
declaration	live	in	the	Oreilly\ModernPHP	subnamespace	and	are,	in	some	way,	related	to
this	book.

All	classes	in	the	same	namespace	or	subnamespace	don’t	have	to	be	declared	in	the	same
PHP	file.	You	can	specify	a	namespace	or	subnamespace	at	the	top	of	any	PHP	file,	and
that	file’s	code	becomes	a	part	of	that	namespace	or	subnamespace.	This	makes	it	possible
to	write	multiple	classes	in	separate	files	that	belong	to	a	common	namespace.

Tip

The	most	important	namespace	is	the	vendor	namespace.	This	is	the	topmost	namespace
that	identifies	your	brand	or	organization,	and	it	must	be	globally	unique.	Subnamespaces
are	less	important,	but	they	are	helpful	for	organizing	your	project’s	code.

Import	and	Alias
Before	we	had	namespaces,	PHP	developers	solved	the	name	collision	problem	with
Zend-style	class	names.	This	was	a	class-naming	scheme	popularized	by	the	Zend
Framework	where	PHP	class	names	used	underscores	in	lieu	of	filesystem	directory
separators.	This	convention	accomplished	two	things:	it	ensured	class	names	were	unique,
and	it	enabled	a	naive	autoloader	implementation	that	replaced	underscores	in	PHP	class
names	with	filesystem	directory	separators	to	determine	the	class	file	path.

For	example,	the	PHP	class
Zend_Cloud_DocumentService_Adapter_WindowsAzure_Query	corresponds	to	the	PHP
file	Zend/Cloud/DocumentService/Adapter/WindowsAzure/Query.php.	A	side	effect	of	the
Zend-style	naming	convention,	as	you	can	see,	is	absurdly	long	class	names.	Call	me	lazy,
but	there’s	no	way	I’m	typing	that	class	name	more	than	once.

Modern	PHP	namespaces	present	a	similar	problem.	For	example,	the	full	Response	class
name	in	the	symfony\httpfoundation	component	is
\Symfony\Component\HttpFoundation\Response.	Fortunately,	PHP	lets	us	import	and
alias	namespaced	code.

By	import,	I	mean	that	I	tell	PHP	which	namespaces,	classes,	interfaces,	functions,	and
constants	I	will	use	in	each	PHP	file.	I	can	then	use	these	without	typing	their	full
namespaces.

By	alias,	I	mean	that	I	tell	PHP	that	I	will	reference	an	imported	class,	interface,	function,
or	constant	with	a	shorter	name.

Tip

You	can	import	and	alias	PHP	classes,	interfaces,	and	other	namespaces	as	of	PHP	5.3.
You	can	import	and	alias	PHP	functions	and	constants	as	of	PHP	5.6.

The	code	shown	in	Example	2-1	creates	and	sends	a	400	Bad	Request	HTTP	response
without	importing	and	aliasing.

Example	2-1.	Namespace	without	alias
<?php

$response	=	new	\Symfony\Component\HttpFoundation\Response('Oops',	400);

$response->send();

This	isn’t	terrible,	but	imagine	you	have	to	instantiate	a	Response	instance	several	times	in
a	single	PHP	file.	Your	fingers	will	get	tired	quickly.	Now	look	at	Example	2-2.	It	does	the
same	thing	with	importing.

Example	2-2.	Namespace	with	default	alias
<?php

use	Symfony\Component\HttpFoundation\Response;

$response	=	new	Response('Oops',	400);

$response->send();

We	tell	PHP	we	intend	to	use	the	Symfony\Component\HttpFoundation\Response	class
with	the	use	keyword.	We	type	the	long,	fully	qualified	class	name	once.	Then	we	can
instantiate	the	Response	class	without	using	its	fully	namespaced	class	name.	How	cool	is

that?

Some	days	I	feel	really	lazy.	This	is	a	good	opportunity	to	use	an	alias.	Let’s	extend
Example	2-2.	Instead	of	typing	Response,	maybe	I	just	want	to	type	Res	instead.
Example	2-3	shows	how	I	can	do	that.

Example	2-3.	Namespace	with	custom	alias
<?php

use	Symfony\Component\HttpFoundation\Response	as	Res;

$r	=	new	Res('Oops',	400);

$r->send();

In	this	example,	I	changed	the	import	line	to	import	the	Response	class.	I	also	appended
as	Res	to	the	end	of	the	import	line;	this	tells	PHP	to	consider	Res	an	alias	for	the
Response	class.	If	we	don’t	append	the	as	Res	alias	to	the	import	line,	PHP	assumes	a
default	alias	that	is	the	same	as	the	imported	class	name.

Tip

You	should	import	code	with	the	use	keyword	at	the	top	of	each	PHP	file,	immediately
after	the	opening	<?php	tag	or	namespace	declaration.

You	don’t	need	a	leading	\	character	when	importing	code	with	the	use	keyword	because
PHP	assumes	imported	namespaces	are	fully	qualified.

The	use	keyword	must	exist	in	the	global	scope	(i.e.,	not	inside	of	a	class	or	function)
because	it	is	used	at	compile	time.	It	can,	however,	be	located	beneath	a	namespace
declaration	to	import	code	into	another	namespace.

As	of	PHP	5.6,	it’s	possible	to	import	functions	and	constants.	This	requires	a	tweak	to	the
use	keyword	syntax.	To	import	a	function,	change	use	to	use	func:

<?php

use	func	Namespace\functionName;

functionName();

To	import	a	constant,	change	use	to	use	constant:
<?php

use	constant	Namespace\CONST_NAME;

echo	CONST_NAME;

Function	and	constant	aliases	work	the	same	as	classes.

Helpful	Tips
Multiple	imports
If	you	import	multiple	classes,	interfaces,	functions,	or	constants	into	a	single	PHP	file,
you’ll	end	up	with	multiple	use	statements	at	the	top	of	your	PHP	file.	PHP	accepts	a
shorthand	import	syntax	that	combines	multiple	use	statements	on	a	single	line	like	this:

<?php

use	Symfony\Component\HttpFoundation\Request,

				Symfony\Component\HttpFoundation\Response,

				Symfony\Component\HttpFoundation\Cookie;

Don’t	do	this.	It’s	confusing	and	easy	to	mess	up.	I	recommend	you	keep	each	use
statement	on	its	own	line	like	this:

<?php

use	Symfony\Component\HttpFoundation\Request;

use	Symfony\Component\HttpFoundation\Response;

use	Symfony\Component\HttpFoundation\Cookie;

You’ll	type	a	few	extra	characters,	but	your	code	is	easier	to	read	and	troubleshoot.

Multiple	namespaces	in	one	file
PHP	lets	you	define	multiple	namespaces	in	a	single	PHP	file	like	this:

<?php

namespace	Foo	{

				//	Declare	classes,	interfaces,	functions,	and	constants	here

}

namespace	Bar	{

				//	Declare	classes,	interfaces,	functions,	and	constants	here

}

This	is	confusing	and	violates	the	recommended	one	class	per	file	good	practice.	Use	only
one	namespace	per	file	to	make	your	code	simpler	and	easier	to	troubleshoot.

Global	namespace
If	you	reference	a	class,	interface,	function,	or	constant	without	a	namespace,	PHP
assumes	the	class,	interface,	function,	or	constant	lives	in	the	current	namespace.	If	this
assumption	is	wrong,	PHP	attempts	to	resolve	the	class,	interface,	function,	or	constant.	If
you	need	to	reference	a	namespaced	class,	interface,	function,	or	constant	inside	another
namespace,	you	must	use	the	fully	qualified	PHP	class	name	(namespace	+	class	name).
You	can	type	the	fully	qualified	PHP	class	name,	or	you	can	import	the	code	into	the
current	namespace	with	the	use	keyword.

Some	code	might	not	have	a	namespace	and,	therefore,	lives	in	the	global	namespace.	The
native	Exception	class	is	a	good	example.	You	can	reference	globally	namespaced	code
inside	another	namespace	by	prepending	a	\	character	to	the	class,	interface,	function,	or
constant	name.	For	example,	the	\My\App\Foo::doSomething()	method	in	Example	2-4
fails	because	PHP	searches	for	a	\My\App\Exception	class	that	does	not	exist.

Example	2-4.	Unqualified	class	name	inside	another	namespace
<?php

namespace	My\App;

class	Foo

{

				public	function	doSomething()

				{

								$exception	=	new	Exception();

				}

}

Instead,	add	a	\	prefix	to	the	Exception	class	name,	as	shown	in	Example	2-5.	This	tells
PHP	to	look	for	the	Exception	class	in	the	global	namespace	instead	of	the	current
namespace.

Example	2-5.	Qualified	class	name	inside	another	namespace
<?php

namespace	My\App;

class	Foo

{

				public	function	doSomething()

				{

								throw	new	\Exception();

				}

}

Autoloading
Namespaces	also	provide	the	bedrock	for	the	PSR4	autoloader	standard	created	by	the
PHP	Framework	Interop	Group	(PHP-FIG).	This	autoloader	pattern	is	used	by	most
modern	PHP	components,	and	it	lets	us	autoload	project	dependencies	using	the	Composer
dependency	manager.	We’ll	talk	about	Composer	and	the	PHP-FIG	in	Chapter	4.	For	now,
just	understand	that	the	modern	PHP	ecosystem	and	its	emerging	component-based
architecture	would	be	impossible	without	namespaces.

Code	to	an	Interface
Learning	how	to	code	to	an	interface	changed	my	life	as	a	PHP	programmer,	and	it
profoundly	improved	my	ability	to	integrate	third-party	PHP	components	into	my	own
applications.	Interfaces	are	not	a	new	feature,	but	they	are	an	important	feature	that	you
should	know	about	and	use	on	a	daily	basis.

So	what	is	a	PHP	interface?	An	interface	is	a	contract	between	two	PHP	objects	that	lets
one	object	depend	not	on	what	another	object	is	but,	instead,	on	what	another	object	can
do.	An	interface	decouples	our	code	from	its	dependencies,	and	it	allows	our	code	to
depend	on	any	third-party	code	that	implements	the	expected	interface.	We	don’t	care	how
the	third-party	code	implements	the	interface;	we	care	only	that	the	third-party	code	does
implement	the	interface.	Here’s	a	more	down-to-earth	example.

Let’s	pretend	I	just	arrived	in	Miami,	Florida	for	the	Sunshine	PHP	Developer	Conference.
I	need	a	way	to	get	around	town,	so	I	head	straight	for	the	local	car	rental	place.	They	have
a	tiny	Hyundai	compact,	a	Subaru	wagon,	and	(much	to	my	surprise)	a	Bugatti	Veyron.	I
know	I	need	a	way	to	get	around	town,	and	all	three	vehicles	can	help	me	do	that.	But
each	vehicle	does	so	differently.	The	Hyundai	Accent	is	OK,	but	I’d	like	something	with	a
bit	more	oomph.	I	don’t	have	kids,	so	the	wagon	has	more	seating	than	I	need.	I’ll	take	the
Bugatti,	please.

The	reality	is	that	I	can	drive	any	of	these	three	cars	because	they	all	share	a	common	and
expected	interface.	Each	car	has	a	steering	wheel,	a	gas	pedal,	a	brake	pedal,	and	turn
signals,	and	each	uses	gasoline	for	fuel.	The	Bugatti	is	probably	more	power	than	I	can
handle,	but	the	driving	interface	is	the	same	as	the	Hyundai’s.	Because	all	three	cars	share
the	same	expected	interface,	and	I	have	the	opportunity	to	choose	my	preferred	vehicle
(and	if	we’re	being	honest,	I’d	probably	go	with	the	Hyundai).

This	is	the	exact	same	concept	in	object-oriented	PHP.	If	I	write	code	that	expects	an
object	of	a	specific	class	(and	therefore	a	specific	implementation),	my	code’s	utility	is
inherently	limited	because	it	can	only	use	objects	of	that	one	class,	forever.	However,	if	I
write	code	that	expects	an	interface,	my	code	immediately	knows	how	to	use	any	object
that	implements	that	interface.	My	code	does	not	care	how	the	interface	is	implemented;
my	code	cares	only	that	the	interface	is	implemented.	Let’s	drive	this	home	with	a	demo.

I	have	a	hypothetical	PHP	class	named	DocumentStore	that	collects	text	from	different
sources:	it	fetches	HTML	from	remote	URLs;	it	reads	stream	resources;	and	it	collects
terminal	command	output.	Each	document	stored	in	a	DocumentStore	instance	has	a
unique	ID.	Example	2-6	shows	the	DocumentStore	class.

Example	2-6.	DocumentStore	class	definition
class	DocumentStore

{

				protected	$data	=	[];

				public	function	addDocument(Documentable	$document)

				{

								$key	=	$document->getId();

								$value	=	$document->getContent();

								$this->data[$key]	=	$value;

				}

				public	function	getDocuments()

				{

								return	$this->data;

				}

}

How	exactly	does	this	work	if	the	addDocument()	method	only	accepts	instances	of	the
Documentable	class?	That’s	a	good	observation.	However,	Documentable	is	not	a	class.
It’s	an	interface,	and	it	looks	like	Example	2-7.

Example	2-7.	Documentable	interface	definition
interface	Documentable

{

				public	function	getId();

				public	function	getContent();

}

This	interface	definition	says	that	any	object	implementing	the	Documentable	interface
must	provide	a	public	getId()	method	and	a	public	getContent()	method.

So	how	exactly	is	this	helpful?	It’s	helpful	because	we	can	create	separate	document-
fetching	classes	with	wildly	different	implementations.	Example	2-8	shows	an
implementation	that	can	fetch	HTML	from	a	remote	URL	with	curl.

Example	2-8.	HtmlDocument	class	definition
class	HtmlDocument	implements	Documentable

{

				protected	$url;

				public	function	__construct($url)

				{

								$this->url	=	$url;

				}

				public	function	getId()

				{

								return	$this->url;

				}

				public	function	getContent()

				{

								$ch	=	curl_init();

								curl_setopt($ch,	CURLOPT_URL,	$this->url);

								curl_setopt($ch,	CURLOPT_RETURNTRANSFER,	1);

								curl_setopt($ch,	CURLOPT_CONNECTTIMEOUT,	3);

								curl_setopt($ch,	CURLOPT_FOLLOWLOCATION,	1);

								curl_setopt($ch,	CURLOPT_MAXREDIRS,	3);

								$html	=	curl_exec($ch);

								curl_close($ch);

								return	$html;

				}

}

Another	implementation	(Example	2-9)	can	read	a	stream	resource.

Example	2-9.	StreamDocument	class	definition
class	StreamDocument	implements	Documentable

{

				protected	$resource;

				protected	$buffer;

				public	function	__construct($resource,	$buffer	=	4096)

				{

								$this->resource	=	$resource;

								$this->buffer	=	$buffer;

				}

				public	function	getId()

				{

								return	'resource-'	.	(int)$this->resource;

				}

				public	function	getContent()

				{

								$streamContent	=	'';

								rewind($this->resource);

								while	(feof($this->resource)	===	false)	{

												$streamContent	.=	fread($this->resource,	$this->buffer);

								}

								return	$streamContent;

				}

}

And	another	implementation	(Example	2-10)	can	fetch	the	result	of	a	terminal	command.

Example	2-10.	StreamDocument	class	definition
class	CommandOutputDocument	implements	Documentable

{

				protected	$command;

				public	function	__construct($command)

				{

								$this->command	=	$command;

				}

				public	function	getId()

				{

								return	$this->command;

				}

				public	function	getContent()

				{

								return	shell_exec($this->command);

				}

}

Example	2-11	shows	how	we	can	use	the	DocumentStore	class	with	our	three	document-
collecting	implementations.

Example	2-11.	DocumentStore
<?php

$documentStore	=	new	DocumentStore();

//	Add	HTML	document

$htmlDoc	=	new	HtmlDocument('https://php.net');

$documentStore->addDocument($htmlDoc);

//	Add	stream	document

$streamDoc	=	new	StreamDocument(fopen('stream.txt',	'rb'));

$documentStore->addDocument($streamDoc);

//	Add	terminal	command	document

$cmdDoc	=	new	CommandOutputDocument('cat	/etc/hosts');

$documentStore->addDocument($cmdDoc);

print_r($documentStore->getDocuments());

This	is	really	cool	because	the	HtmlDocument,	StreamDocument,	and
CommandOutputDocument	classes	have	nothing	in	common	other	than	a	common	interface.

At	the	end	of	the	day,	coding	to	an	interface	creates	more-flexible	code	that	delegates
implementation	concerns	to	others.	Many	more	people	(e.g.,	your	office	buddies,	your
open	source	project’s	users,	or	developers	you’ve	never	met)	can	write	code	that	works

seamlessly	with	your	code	by	knowing	nothing	more	than	an	interface.

Traits
Many	of	my	PHP	developer	friends	are	confused	by	traits,	a	new	concept	introduced	in
PHP	5.4.0.	Traits	behave	like	classes	but	look	like	interfaces.	Which	one	are	they?	Neither
and	both.

A	trait	is	a	partial	class	implementation	(i.e.,	constants,	properties,	and	methods)	that	can
be	mixed	into	one	or	more	existing	PHP	classes.	Traits	work	double	duty:	they	say	what	a
class	can	do	(like	an	interface),	and	they	provide	a	modular	implementation	(like	a	class).

Note

You	may	be	familiar	with	traits	in	other	languages.	For	example,	PHP	traits	are	similar	to
Ruby’s	composable	modules,	or	mixins.

Why	We	Use	Traits
The	PHP	language	uses	a	classical	inheritance	model.	This	means	you	start	with	a	single
generalized	root	class	that	provides	a	base	implementation.	You	extend	the	root	class	to
create	more	specialized	classes	that	inherit	their	immediate	parent’s	implementation.	This
is	called	an	inheritance	hierarchy,	and	it	is	a	common	pattern	used	by	many	programming
languages.

Tip

If	it	helps,	picture	yourself	back	in	grade	school	Biology.	Remember	how	you	learned
about	the	biological	classification	system?	There	are	six	kingdoms.	Each	kingdom	is
extended	by	phyla.	Each	phylum	is	extended	by	biological	classes.	Classes	are	extended
by	orders,	orders	by	families,	families	by	genera,	and	genera	by	species.	Each	hierarchy
extension	represents	further	specialization.

The	classical	inheritance	model	works	well	most	of	the	time.	However,	what	do	we	do	if
two	unrelated	PHP	classes	need	to	exhibit	similar	behavior?	For	example,	a	PHP	class
RetailStore	and	another	PHP	class	Car	are	very	different	classes	and	don’t	share	a
common	parent	in	their	inheritance	hierarchies.	However,	both	classes	should	be
geocodable	into	latitude	and	longitude	coordinates	for	display	on	a	map.

Traits	were	created	for	exactly	this	purpose.	They	enable	modular	implementations	that
can	be	injected	into	otherwise	unrelated	classes.	Traits	also	encourage	code	reuse.

My	first	(bad)	reaction	is	to	create	a	common	parent	class	Geocodable	that	both
RetailStore	and	Car	extend.	This	is	a	bad	solution	because	it	forces	two	otherwise
unrelated	classes	to	share	a	common	ancestor	that	does	not	naturally	belong	in	either
inheritance	hierarchy.

My	second	(better)	reaction	is	to	create	a	Geocodable	interface	that	defines	which
methods	are	required	to	implement	the	geocoding	behavior.	The	RetailStore	and	Car
classes	can	both	implement	the	Geocodable	interface.	This	is	a	good	solution	that	allows
each	class	to	retain	its	natural	inheritance	hierarchy,	but	it	requires	us	to	duplicate	the
same	geocoding	behavior	in	both	classes.	This	is	not	a	DRY	solution.

Note

DRY	is	an	acronym	for	Do	not	repeat	yourself.	It’s	considered	a	good	practice	never	to
duplicate	the	same	code	in	multiple	locations.	You	should	not	need	to	change	code	in	one
location	because	you	changed	code	in	another	location.	Read	more	on	Wikipedia.

My	third	(best)	reaction	is	to	create	a	Geocodable	trait	that	defines	and	implements	the
geocodable	methods.	I	can	then	mix	the	Geocodable	trait	into	both	the	RetailStore	and
Car	classes	without	polluting	their	natural	inheritance	hierarchies.

http://bit.ly/no-repeat

How	to	Create	a	Trait
Here’s	how	you	define	a	PHP	trait:

<?php

trait	MyTrait	{

				//	Trait	implementation	goes	here

}

Tip

It	is	considered	a	good	practice	to	define	only	one	trait	per	file,	just	like	class	and	interface
definitions.

Let’s	return	to	our	Geocodable	example	to	better	demonstrate	traits	in	practice.	We	agree
both	RetailStore	and	Car	classes	need	to	provide	geocodable	behavior,	and	we’ve
decided	inheritance	and	interfaces	are	not	the	best	solution.	Instead,	we	create	a
Geocodable	trait	that	returns	latitude	and	longitude	coordinates	that	we	can	plot	on	a	map.
Our	complete	Geocodable	trait	looks	like	Example	2-12.

Example	2-12.	The	Geocodable	trait	definition
<?php

trait	Geocodable	{

				/**	@var	string	*/

				protected	$address;

				/**	@var	\Geocoder\Geocoder	*/

				protected	$geocoder;

				/**	@var	\Geocoder\Result\Geocoded	*/

				protected	$geocoderResult;

				public	function	setGeocoder(\Geocoder\GeocoderInterface	$geocoder)

				{

								$this->geocoder	=	$geocoder;

				}

				public	function	setAddress($address)

				{

								$this->address	=	$address;

				}

				public	function	getLatitude()

				{

								if	(isset($this->geocoderResult)	===	false)	{

												$this->geocodeAddress();

								}

								return	$this->geocoderResult->getLatitude();

				}

				public	function	getLongitude()

				{

								if	(isset($this->geocoderResult)	===	false)	{

												$this->geocodeAddress();

								}

								return	$this->geocoderResult->getLongitude();

				}

				protected	function	geocodeAddress()

				{

								$this->geocoderResult	=	$this->geocoder->geocode($this->address);

								return	true;

				}

}

The	Geocodable	trait	defines	only	the	properties	and	methods	necessary	to	implement	the
geocodable	behavior.	It	does	not	do	anything	else.

Our	Geocodable	trait	defines	three	class	properties:	an	address	(string),	a	geocoder	object
(an	instance	of	\Geocoder\Geocoder	from	the	excellent	willdurand/geocoder	component
by	William	Durand),	and	a	geocoder	result	object	(an	instance	of
\Geocoder\Result\Geocoded).	We	also	define	four	public	methods	and	one	protected
method.	The	setGeocoder()	method	is	used	to	inject	the	Geocoder	object.	The
setAddress()	method	is	used	to	set	an	address.	The	getLatitude()	and	getLongitude()
methods	return	their	respective	coordinates.	And	the	geocodeAddress()	method	passes
the	address	string	into	the	Geocoder	instance	to	retrieve	the	geocoder	result.

http://geocoder-php.org

How	to	Use	a	Trait
Using	a	PHP	trait	is	easy.	Add	the	code	use	MyTrait;	inside	a	PHP	class	definition.
Here’s	an	example.	Obviously,	replace	MyTrait	with	the	appropriate	PHP	trait	name:

<?php

class	MyClass

{

				use	MyTrait;

				//	Class	implementation	goes	here

}

Tip

Both	namespaces	and	traits	are	imported	with	the	use	keyword.	Where	they	are	imported
is	different.	We	import	namespaces,	classes,	interfaces,	functions,	and	constants	outside	of
a	class	definition.	We	import	traits	inside	a	class	definition.	The	difference	is	subtle	but
important.

Let’s	return	to	our	Geocodable	example.	We	defined	the	Geocodable	trait	in	Example	2-
12.	Let’s	update	our	RetailStore	class	so	that	it	uses	the	Geocodable	trait	(Example	2-
13).	For	the	sake	of	brevity,	I	do	not	provide	the	complete	RetailStore	class
implementation.

Example	2-13.	The	RetailStore	class	definition
<?php

class	RetailStore

{

				use	Geocodable;

				//	Class	implementation	goes	here

}

That’s	all	we	have	to	do.	Now	each	RetailStore	instance	can	use	the	properties	and
methods	provided	by	the	Geocodable	trait,	as	shown	in	Example	2-14.

Example	2-14.	Traits
<?php

$geocoderAdapter	=	new	\Geocoder\HttpAdapter\CurlHttpAdapter();

$geocoderProvider	=	new	\Geocoder\Provider\GoogleMapsProvider($geocoderAdapter);

$geocoder	=	new	\Geocoder\Geocoder($geocoderProvider);

$store	=	new	RetailStore();

$store->setAddress('420	9th	Avenue,	New	York,	NY	10001	USA');

$store->setGeocoder($geocoder);

$latitude	=	$store->getLatitude();

$longitude	=	$store->getLongitude();

echo	$latitude,	':',	$longitude;

Warning

The	PHP	interpreter	copies	and	pastes	traits	into	class	definitions	at	compile	time,	and	it
does	not	protect	against	incompatibilities	introduced	by	this	action.	If	your	PHP	trait
assumes	a	class	property	or	method	exists	(that	is	not	defined	in	the	trait	itself),	be	sure
those	properties	and	methods	exist	in	the	appropriate	classes.

Generators
PHP	generators	are	an	underutilized	yet	remarkably	helpful	feature	introduced	in	PHP
5.5.0.	I	think	many	PHP	developers	are	unaware	of	generators	because	their	purpose	is	not
immediately	obvious.	Generators	are	simple	iterators.	That’s	it.

Unlike	your	standard	PHP	iterator,	PHP	generators	don’t	require	you	to	implement	the
Iterator	interface	in	a	heavyweight	class.	Instead,	generators	compute	and	yield	iteration
values	on-demand.	This	has	profound	implications	for	application	performance.	Think
about	it.	A	standard	PHP	iterator	often	iterates	in-memory,	precomputed	data	sets.	This	is
inefficient,	especially	with	large	and	formulaic	data	sets	that	can	be	computed	instead.
This	is	why	we	use	generators	to	compute	and	yield	subsequent	values	on	the	fly	without
commandeering	valuable	memory.

Note

PHP	generators	are	not	a	panacea	for	your	iteration	needs.	Because	generators	never	know
the	next	iteration	value	until	asked,	it’s	impossible	to	rewind	or	fast-forward	a	generator.
You	can	iterate	in	only	one	direction	—	forward.	Generators	are	also	a	once-and-done
deal.	You	can’t	iterate	the	same	generator	more	than	once.	However,	you	are	free	to
rebuild	or	clone	a	generator	if	necessary.

Create	a	Generator
Generators	are	easy	to	create	because	they	are	just	PHP	functions	that	use	the	yield
keyword	one	or	more	times.	Unlike	regular	PHP	functions,	generators	never	return	a
value.	They	only	yield	values.	Example	2-15	shows	a	simple	generator.

Example	2-15.	Simple	generator
<?php

function	myGenerator()	{

				yield	'value1';

				yield	'value2';

				yield	'value3';

}

Pretty	simple,	huh?	When	you	invoke	the	generator	function,	PHP	returns	an	object	that
belongs	to	the	Generator	class.	This	object	can	be	iterated	with	the	foreach()	function.
During	each	iteration,	PHP	asks	the	Generator	instance	to	compute	and	provide	the	next
iteration	value.	What’s	neat	is	that	the	generator	pauses	its	internal	state	whenever	it	yields
a	value.	The	generator	resumes	internal	state	when	it	is	asked	for	the	next	value.	The
generator	continues	pausing	and	resuming	until	it	reaches	the	end	of	its	function	definition
or	an	empty	return;	statement.	We	can	invoke	and	iterate	the	generator	in	Example	2-15
like	this:

<?php

foreach	(myGenerator()	as	$yieldedValue)	{

				echo	$yieldedValue,	PHP_EOL;

}

This	outputs:
value1

value2

value3

Use	a	Generator
I	like	to	demonstrate	how	a	PHP	generator	saves	memory	by	implementing	a	simple
range()	function.	First,	let’s	do	it	the	wrong	way	(Example	2-16).

Example	2-16.	Range	generator	(bad)
<?php

function	makeRange($length)	{

				$dataset	=	[];

				for	($i	=	0;	$i	<	$length;	$i++)	{

								$dataset[]	=	$i;

				}

				return	$dataset;

}

$customRange	=	makeRange(1000000);

foreach	($customRange	as	$i)	{

				echo	$i,	PHP_EOL;

}

Example	2-16	makes	poor	use	of	memory.	The	makeRange()	method	in	Example	2-16
allocates	one	million	integers	into	a	precomputed	array.	A	PHP	generator	can	do	the	same
thing	while	allocating	memory	for	only	one	integer	at	any	given	time,	as	shown	in
Example	2-17.

Example	2-17.	Range	generator	(good)
<?php

function	makeRange($length)	{

				for	($i	=	0;	$i	<	$length;	$i++)	{

								yield	$i;

				}

}

foreach	(makeRange(1000000)	as	$i)	{

				echo	$i,	PHP_EOL;

}

This	is	a	contrived	example.	However,	just	imagine	all	of	the	potential	data	sets	that	you
can	compute.	Number	sequences	(e.g.,	Fibonacci)	are	an	obvious	candidate.	You	can	also
iterate	a	stream	resource.	Imagine	you	need	to	iterate	a	4	GB	comma-separated	value
(CSV)	file	and	your	virtual	private	server	(VPS)	has	only	1	GB	of	memory	available	to
PHP.	There’s	no	way	you	can	pull	the	entire	file	into	memory.	Example	2-18	shows	how
we	can	use	a	generator	instead!

Example	2-18.	CSV	generator
<?php

function	getRows($file)	{

				$handle	=	fopen($file,	'rb');

				if	($handle	===	false)	{

								throw	new	Exception();

				}

				while	(feof($handle)	===	false)	{

								yield	fgetcsv($handle);

				}

				fclose($handle);

}

foreach	(getRows('data.csv')	as	$row)	{

				print_r($row);

}

This	example	allocates	memory	for	only	one	CSV	row	at	a	time	instead	of	reading	the

entire	4	GB	CSV	file	into	memory.	It	also	encapsulates	the	iteration	implementation	into	a
tidy	package;	this	lets	us	quickly	change	how	we	get	data	(e.g.,	CSV,	XML,	JSON)
without	interrupting	our	application	code	that	iterates	the	data.

Generators	are	a	tradeoff	between	versatility	and	simplicity.	Generators	are	forward-only
iterators.	This	means	you	cannot	use	a	generator	to	rewind,	fast-forward,	or	seek	a	data
set.	You	can	only	ask	a	generator	to	compute	and	yield	its	next	value.	Generators	are	most
useful	for	iterating	large	or	numerically	sequenced	data	sets	with	only	a	tiny	amount	of
system	memory.	They	are	also	useful	for	accomplishing	the	same	simple	tasks	as	larger
iterators	with	less	code.

Generators	do	not	add	functionality	to	PHP.	You	can	do	what	generators	do	without	a
generator.	However,	generators	greatly	simply	certain	tasks	while	using	less	memory.	If
you	require	more	versatility	to	rewind,	fast-forward,	or	seek	through	a	data	set,	you’re
better	off	writing	a	custom	class	that	implements	the	Iterator	interface,	or	using	one	of
PHP’s	prebuilt	Standard	PHP	Library	(SPL)	iterators.

Tip

For	more	generator	examples,	read	What	Generators	Can	Do	For	You	by	Anthony	Ferrara
(@ircmaxell	on	Twitter).

http://php.net/manual/class.iterator.php
http://php.net/manual/spl.iterators.php
http://bit.ly/ircmaxwell
https://twitter.com/ircmaxell

Closures
Closures	and	anonymous	functions	were	introduced	in	PHP	5.3.0,	and	they’re	two	of	my
favorite	and	most	used	PHP	features.	They	sound	scary	(at	least	I	thought	so	when	I	first
learned	about	them),	but	they’re	actually	pretty	simple	to	understand.	They’re	extremely
useful	tools	that	every	PHP	developer	should	have	in	the	toolbox.

A	closure	is	a	function	that	encapsulates	its	surrounding	state	at	the	time	it	is	created.	The
encapsulated	state	exists	inside	the	closure	even	when	the	closure	lives	after	its	original
environment	ceases	to	exist.	This	is	a	difficult	concept	to	grasp,	but	once	you	do	it’ll	be	a
life-changing	moment.

An	anonymous	function	is	exactly	that	—	a	function	without	a	name.	Anonymous
functions	can	be	assigned	to	variables	and	passed	around	just	like	any	other	PHP	object.
But	it’s	still	a	function,	so	you	can	invoke	it	and	pass	it	arguments.	Anonymous	functions
are	especially	useful	as	function	or	method	callbacks.

Note

Closures	and	anonymous	functions	are,	in	theory,	separate	things.	However,	PHP
considers	them	to	be	one	and	the	same.	So	when	I	say	closure,	I	also	mean	anonymous
function.	And	vice	versa.

PHP	closures	and	anonymous	functions	use	the	same	syntax	as	a	function,	but	don’t	let
them	fool	you.	They’re	actually	objects	disguised	as	PHP	functions.	If	you	inspect	a	PHP
closure	or	anonymous	function,	you’ll	find	they	are	instances	of	the	Closure	class.
Closures	are	considered	first-class	value	types,	just	like	a	string	or	integer.

Create
So	we	know	PHP	closures	look	like	functions.	You	should	not	be	surprised,	then,	that	you
create	a	PHP	closure	like	Example	2-19.

Example	2-19.	Simple	closure
<?php

$closure	=	function	($name)	{

				return	sprintf('Hello	%s',	$name);

};

echo	$closure("Josh");

//	Outputs	-->	"Hello	Josh"

That’s	it.	Example	2-19	creates	a	closure	object	and	assigns	it	to	the	$closure	variable.	It
looks	like	a	standard	PHP	function:	it	uses	the	same	syntax,	it	accepts	arguments,	and	it
returns	a	value.	However,	it	does	not	have	a	name.

Tip

We	can	invoke	the	$closure	variable	because	the	variable’s	value	is	a	closure,	and	closure
objects	implement	the	__invoke()	magic	method.	PHP	looks	for	and	calls	the
__invoke()	method	whenever	()	follows	a	variable	name.

I	typically	use	PHP	closure	objects	as	function	and	method	callbacks.	Many	PHP	functions
expect	callback	functions,	like	array_map()	and	preg_replace_callback().	This	is	a
perfect	opportunity	to	use	PHP	anonymous	functions!	Remember,	closures	can	be	passed
into	other	PHP	functions	as	arguments,	just	like	any	other	value.	In	Example	2-20,	I	use	a
closure	object	as	a	callback	argument	in	the	array_map()	function.

Example	2-20.	array_map	closure
<?php

$numbersPlusOne	=	array_map(function	($number)	{

				return	$number	+	1;

},	[1,2,3]);

print_r($numbersPlusOne);

//	Outputs	-->	[2,3,4]

OK,	so	that	wasn’t	that	impressive.	But	remember,	before	closures	PHP	developers	had	no
choice	but	to	create	a	separate	named	function	and	refer	to	that	function	by	name.	This
was	slightly	slower	to	execute,	and	it	segregated	a	callback’s	implementation	from	its
usage.	Old-school	PHP	developers	used	code	like	this:

<?php

//	Named	callback	implementation

function	incrementNumber	($number)	{

				return	$number	+	1;

}

//	Named	callback	usage

$numbersPlusOne	=	array_map('incrementNumber',	[1,2,3]);

print_r($numbersPlusOne);

This	code	works,	but	it’s	not	as	succinct	and	tidy	as	Example	2-20.	We	don’t	need	a
separate	incrementNumber()	named	function	if	we	use	the	function	only	once	as	a
callback.	Closures	used	as	callbacks	create	more	concise	and	legible	code.

Attach	State
So	far	I’ve	demonstrated	nameless	(or	anonymous)	functions	used	as	callbacks.	Let’s
explore	how	to	attach	and	enclose	state	with	a	PHP	closure.	JavaScript	developers	might
be	confused	by	PHP	closures	because	they	do	not	automatically	enclose	application	state
like	true	JavaScript	closures.	Instead,	you	must	manually	attach	state	to	a	PHP	closure
with	the	closure	object’s	bindTo()	method	or	the	use	keyword.

It’s	far	more	common	to	attach	closure	state	with	the	use	keyword,	so	let’s	look	at	that
first	(Example	2-21).	When	you	attach	a	variable	to	a	closure	via	the	use	keyword,	the
attached	variable	retains	the	value	assigned	to	it	at	the	time	it	is	attached	to	the	closure.

Example	2-21.	Attaching	closure	state	with	use	keyword
<?php

function	enclosePerson($name)	{

				return	function	($doCommand)	use	($name)	{

								return	sprintf('%s,	%s',	$name,	$doCommand);

				};

}

//	Enclose	"Clay"	string	in	closure

$clay	=	enclosePerson('Clay');

//	Invoke	closure	with	command

echo	$clay('get	me	sweet	tea!');

//	Outputs	-->	"Clay,	get	me	sweet	tea!"

In	Example	2-21,	the	enclosePerson()	named	function	accepts	a	$name	argument,	and	it
returns	a	closure	object	that	encloses	the	$name	argument.	The	returned	closure	object
preserves	the	$name	argument’s	value	even	after	the	closure	exits	the	enclosePerson()
function’s	scope.	The	$name	variable	still	exists	in	the	closure!

Tip

You	can	pass	multiple	arguments	into	a	closure	with	the	use	keyword.	Separate	multiple
arguments	with	a	comma,	just	as	you	do	with	any	PHP	function	or	method	arguments.

Don’t	forget,	PHP	closures	are	objects.	Each	closure	instance	has	its	own	internal	state	that
is	accessible	with	the	$this	keyword	just	like	any	other	PHP	object.	A	closure	object’s
default	state	is	pretty	boring;	it	has	a	magic	__invoke()	method	and	a	bindTo()	method.
That’s	it.

However,	the	bindTo()	method	opens	the	door	to	some	interesting	possibilities.	This
method	lets	us	bind	a	Closure	object’s	internal	state	to	a	different	object.	The	bindTo()
method	accepts	an	important	second	argument	that	specifies	the	PHP	class	of	the	object	to
which	the	closure	is	bound.	This	lets	the	closure	access	protected	and	private	member
variables	of	the	object	to	which	it	is	bound.

You’ll	find	the	bindTo()	method	is	often	used	by	PHP	frameworks	that	map	route	URLs
to	anonymous	callback	functions.	Frameworks	accept	an	anonymous	function	and	bind	it
to	the	application	object.	This	lets	you	reference	the	primary	application	object	inside	the
anonymous	function	with	the	$this	keyword,	as	shown	in	Example	2-22.

Example	2-22.	Attaching	closure	state	with	the	bindTo	method
01.	<?php

02.	class	App

03.	{

04.					protected	$routes	=	array();

05.					protected	$responseStatus	=	'200	OK';

06						protected	$responseContentType	=	'text/html';

07.					protected	$responseBody	=	'Hello	world';

08.

09.					public	function	addRoute($routePath,	$routeCallback)

10.					{

11.									$this->routes[$routePath]	=	$routeCallback->bindTo($this,	__CLASS__);

12.					}

13.

14.					public	function	dispatch($currentPath)

15.					{

16.									foreach	($this->routes	as	$routePath	=>	$callback)	{

17.													if	($routePath	===	$currentPath)	{

18.																	$callback();

19.													}

20.									}

21.

22.									header('HTTP/1.1	'	.	$this->responseStatus);

23.									header('Content-type:	'	.	$this->responseContentType);

24.									header('Content-length:	'	.	mb_strlen($this->responseBody));

25.									echo	$this->responseBody;

26.					}

27.	}

Pay	close	attention	to	the	addRoute()	method.	It	accepts	a	route	path	(e.g.,	/users/josh)
and	a	route	callback.	The	dispatch()	method	accepts	the	current	HTTP	request	path	and
invokes	the	matching	route	callback.	The	magic	happens	on	line	11	when	we	bind	the
route	callback	to	the	current	App	instance.	This	lets	us	create	a	callback	function	that	can
manipulate	the	App	instance	state:

<?php

$app	=	new	App();

$app->addRoute('/users/josh',	function	()	{

				$this->responseContentType	=	'application/json;charset=utf8';

				$this->responseBody	=	'{"name":	"Josh"}';

});

$app->dispatch('/users/josh');

Zend	OPcache
Bytecode	caches	are	not	new	to	PHP.	We’ve	had	optional	standalone	extensions	like
Alternative	PHP	Cache	(APC),	eAccelerator,	ionCube,	and	XCache.	But	none	of	these	was
built	into	the	PHP	core	distribution	until	now.	As	of	PHP	5.5.0,	PHP	has	its	own	built-in
bytecode	cache	called	Zend	OPcache.

First,	let	me	explain	what	a	bytecode	cache	is	and	why	it	is	important.	PHP	is	an
interpreted	language.	When	the	PHP	interpreter	executes	a	PHP	script,	the	interpreter
parses	the	PHP	script	code,	compiles	the	PHP	code	into	a	set	of	existing	Zend	Opcodes
(machine-code	instructions),	and	executes	the	bytecode.	This	happens	for	each	PHP	file
during	every	request.	This	is	a	lot	of	overhead,	especially	if	PHP	must	parse,	compile,	and
execute	PHP	scripts	over	and	over	again	for	every	HTTP	request.	If	only	there	were	a	way
to	cache	precompiled	bytecode	to	reduce	application	response	times	and	reduce	stress	on
our	system	resources.	You’re	in	luck.

A	bytecode	cache	stores	precompiled	PHP	bytecode.	This	means	the	PHP	interpreter	does
not	need	to	read,	parse,	and	compile	PHP	code	on	every	request.	Instead,	the	PHP
interpreter	can	read	the	precompiled	bytecode	from	memory	and	execute	it	immediately.
This	is	a	huge	timesaver	and	can	drastically	improve	application	performance.

http://bit.ly/zend-opcode

Enable	Zend	OPcache
Zend	OPcache	isn’t	enabled	by	default;	you	must	explicitly	enable	Zend	OPcache	when
you	compile	PHP.

Note

If	you	choose	a	shared	web	host,	be	sure	you	choose	a	good	hosting	company	that
provides	PHP	5.5.0	or	newer	with	Zend	OPcache	enabled.

If	you	compile	PHP	yourself	(i.e.,	on	a	VPS	or	dedicated	server),	you	must	include	this
option	in	your	PHP	./configure	command:

--enable-opcache

After	you	compile	PHP,	you	must	also	specify	the	path	to	the	Zend	OPcache	extension	in
your	php.ini	file	with	this	line:

zend_extension=/path/to/opcache.so

The	Zend	OPcache	extension	file	path	is	displayed	immediately	after	PHP	compiles
successfully.	If	you	forget	to	look	for	this	as	I	often	do,	you	can	also	find	the	PHP
extension	directory	with	this	command:

php-config	--extension-dir

Warning

If	you	use	the	popular	Xdebug	profiler	by	the	incomparable	Derick	Rethans,	your	php.ini
file	must	load	the	Zend	OPcache	extension	before	Xdebug.

After	you	update	the	php.ini	file,	restart	the	PHP	process	and	you’re	ready	to	go.	You	can
confirm	Zend	OPcache	is	working	correctly	by	creating	a	PHP	file	with	this	content:

<?php

phpinfo();

View	this	PHP	file	in	a	web	browser	and	scroll	down	until	you	see	the	Zend	OPcache
extension	section	shown	in	Figure	2-2.	If	you	don’t	see	this	section,	Zend	OPcache	is	not
running.

http://xdebug.org

Figure	2-2.	Zend	OPcache	INI	settings

Configure	Zend	OPcache
When	Zend	OPcache	is	enabled,	you	should	configure	the	Zend	OPcache	settings	in	your
php.ini	configuration	file.	Here	are	the	OPcache	settings	I	like	to	use:

opcache.validate_timestamps	=	1	//	"0"	in	production

opcache.revalidate_freq	=	0

opcache.memory_consumption	=	64

opcache.interned_strings_buffer	=	16

opcache.max_accelerated_files	=	4000

opcache.fast_shutdown	=	1

Tip

Learn	more	about	these	Zend	OPcache	settings	in	Chapter	8.	Find	a	complete	list	of	Zend
OPcache	settings	at	PHP.net.

http://bit.ly/php-config

Use	Zend	OPcache
This	part’s	easy	because	the	Zend	OPcache	works	automatically	when	enabled.	Zend
OPcache	automatically	caches	precompiled	PHP	bytecode	in	memory	and	executes	the
bytecode	if	available.

Be	careful	if	the	opcache.validate_timestamps	INI	directive	is	false.	When	this	setting
is	false,	the	Zend	OPcache	does	not	know	about	changes	to	your	PHP	scripts,	and	you
must	manually	clear	Zend	OPcache’s	bytecode	cache	before	it	recognizes	changes	to	your
PHP	files.	This	setting	is	good	for	production	but	inconvenient	for	development.	You	can
enable	automatic	cache	revalidation	with	these	php.ini	configuration	settings:

opcache.validate_timestamps=1

opcache.revalidate_freq=0

Built-in	HTTP	server
Did	you	know	that	PHP	has	a	built-in	web	server	as	of	PHP	5.4.0?	This	is	another	hidden
gem	unknown	to	PHP	developers	who	assume	they	need	Apache	or	nginx	to	preview	PHP
applications.	You	shouldn’t	use	it	for	production,	but	PHP’s	built-in	web	server	is	a	perfect
tool	for	local	development.

I	use	PHP’s	built-in	web	server	every	day,	whether	I’m	writing	PHP	or	not.	I	use	it	to
preview	Laravel	and	Slim	Framework	applications.	I	use	it	while	building	websites	with
the	Drupal	content-management	framework.	I	also	use	it	to	preview	static	HTML	and	CSS
if	I’m	just	building	out	markup.

Tip

Remember,	the	PHP	built-in	server	is	a	web	server.	It	speaks	HTTP,	and	it	can	serve	static
assets	in	addition	to	PHP	files.	It’s	a	great	way	to	write	and	preview	HTML	locally
without	installing	MAMP,	WAMP,	or	a	heavyweight	web	server.

http://laravel.com
http://slimframework.com

Start	the	Server
It’s	easy	to	start	the	PHP	web	server.	Open	your	terminal	application,	navigate	to	your
project’s	document	root	directory,	and	execute	this	command:

php	-S	localhost:4000

This	command	starts	a	new	PHP	web	server	accessible	at	localhost.	It	listens	on	port	4000.
Your	current	working	directory	is	the	web	server’s	document	root.

You	can	now	open	your	web	browser	and	navigate	to	http://localhost:4000	to	preview
your	application.	As	you	browse	your	application	in	your	web	browser,	each	HTTP
request	is	logged	to	standard	out	in	your	terminal	application	so	you	can	see	if	you
application	throws	400	or	500	responses.

Sometimes	it’s	useful	to	access	the	PHP	web	server	from	other	machines	on	your	local
network	(e.g.,	for	previewing	on	your	iPad	or	local	Windows	box).	To	do	this,	tell	the	PHP
web	server	to	listen	on	all	interfaces	by	using	0.0.0.0	instead	of	localhost:

php	-S	0.0.0.0:4000

When	you	are	ready	to	stop	the	PHP	web	server,	close	your	terminal	application	or	press
Ctrl+C.

http://localhost:4000

Configure	the	Server
It’s	not	uncommon	for	an	application	to	require	its	own	PHP	INI	configuration	file,
especially	if	it	has	unique	requirements	for	memory	usage,	file	uploads,	profiling,	or
bytecode	caching.	You	can	tell	the	PHP	built-in	server	to	use	a	specific	INI	file	with	the	-c
option:

php	-S	localhost:8000	-c	app/config/php.ini

Tip

It’s	a	good	idea	to	keep	the	custom	INI	file	beneath	the	application’s	root	directory	and,
optionally,	version-control	the	INI	file	if	it	should	be	shared	with	other	developers	on	your
team.

Router	Scripts
The	PHP	built-in	server	has	one	glaring	omission.	Unlike	Apache	or	nginx,	it	doesn’t
support	.htaccess	files.	This	makes	it	difficult	to	use	front	controllers	that	are	common	in
many	popular	PHP	frameworks.

Note

A	front	controller	is	a	single	PHP	file	to	which	all	HTTP	requests	are	forwarded	(via
.htaccess	files	or	rewrite	rules).	The	front-controller	PHP	file	is	responsible	for	routing	the
request	and	dispatching	the	appropriate	PHP	code.	This	is	a	common	pattern	used	by
Symfony	and	other	popular	frameworks.

The	PHP	built-in	server	mitigates	this	omission	with	router	scripts.	The	router	script	is
executed	before	every	HTTP	request.	If	the	router	script	returns	false,	the	static	asset
referenced	by	the	current	HTTP	request	URI	is	returned.	Otherwise,	the	output	of	the
router	script	is	returned	as	the	HTTP	response	body.	In	other	words,	if	you	use	a	router
script	you’re	effectively	hardcoding	the	same	functionality	as	an	.htaccess	file.

Using	a	router	script	is	easy.	Just	pass	the	PHP	script	file	path	as	a	an	argument	when	you
start	up	the	PHP	built-in	server:

php	-S	localhost:8000	router.php

Detect	the	Built-in	Server
Sometimes	it’s	helpful	to	know	if	your	PHP	script	is	served	by	PHP’s	built-in	web	server
versus	a	traditional	web	server	like	Apache	or	nginx.	Perhaps	you	need	to	set	specific
headers	for	nginx	(e.g.,	Status:)	that	should	not	be	set	for	the	PHP	web	server.	You	can
detect	the	PHP	web	server	with	the	php_sapi_name()	function.	This	function	returns	the
string	cli-server	if	the	current	script	is	served	with	the	PHP	built-in	server:

<?php

if	(php_sapi_name()	===	'cli-server')	{

				//	PHP	web	server

}	else	{

				//	Other	web	server

}

Drawbacks
PHP’s	built-in	web	server	should	not	be	used	for	production.	It	is	for	local	development
only.	If	you	use	the	PHP	built-in	web	server	on	a	production	machine,	be	prepared	for	a	lot
of	disappointed	users	and	a	flood	of	Pingdom	downtime	notifications.

The	built-in	server	performs	suboptimally	because	it	handles	one	request	at	a	time,
and	each	HTTP	request	is	blocking.	Your	web	application	will	stall	if	a	PHP	file	must
wait	on	a	slow	database	query	or	remote	API	response.
The	built-in	server	supports	only	a	limited	number	of	mimetypes.
The	built-in	server	has	limited	URL	rewriting	with	router	scripts.	You’ll	need	Apache
or	nginx	for	more	advanced	URL	rewrite	behavior.

https://www.pingdom.com
http://bit.ly/built-in-ws

What’s	Next
The	modern	PHP	language	has	a	lot	of	powerful	features	that	can	improve	your
applications.	I’ve	talked	about	my	favorite	features	in	this	chapter.	You	can	learn	more
about	PHP’s	latest	features	on	the	PHP	website.

I’m	sure	you’re	excited	to	start	using	these	fun	features	in	your	applications.	However,	it’s
important	that	you	use	these	features	correctly	according	to	PHP	community	standards.
And	that’s	exactly	what	we	talk	about	in	the	next	chapter.

http://php.net/manual/features.php

Part	II.	Good	Practices

Chapter	3.	Standards
There	is	a	mind-boggling	number	of	PHP	components	and	frameworks.	There	are	macro
frameworks	like	Symfony	and	Laravel.	There	are	micro	frameworks	like	Silex	and	Slim.
And	there	are	legacy	frameworks	like	CodeIgniter	that	were	built	long	before	modern	PHP
components	existed.	The	modern	PHP	ecosystem	is	a	veritable	melting	pot	of	code	that
helps	us	developers	build	amazing	applications.

Unfortunately,	older	PHP	frameworks	were	developed	in	isolation	and	do	not	share	code
with	other	PHP	frameworks.	If	your	project	uses	one	of	these	older	PHP	frameworks,
you’re	stuck	with	the	framework	and	must	live	inside	the	framework’s	ecosystem.	This
centralized	environment	is	OK	if	you	are	happy	with	the	framework’s	tools.	However,
what	if	you	use	the	CodeIgniter	framework	but	want	to	cherry-pick	a	helper	library	from
the	Symfony	framework?	You’re	probably	out	of	luck	unless	you	write	a	one-off	adapter
specifically	for	your	project.

What	we’ve	got	here	is	a	failure	to	communicate.

Cool	Hand	Luke

Do	you	see	the	problem?	Frameworks	created	in	isolation	were	not	designed	to
communicate	with	other	frameworks.	This	is	extremely	inefficient,	both	for	developers
(creativity	is	limited	by	framework	choice)	and	for	frameworks	themselves	(they	re-invent
code	that	already	exists	elsewhere).	I	have	good	news,	though.	The	PHP	community	has
evolved	from	a	centralized	framework	model	to	a	distributed	ecosystem	of	efficient,
interoperable,	and	specialized	components.

http://symfony.com
http://laravel.com
http://silex.sensiolabs.org
http://slimframework.com
http://www.codeigniter.com

PHP-FIG	to	the	Rescue
Several	PHP	framework	developers	recognized	this	problem	and	began	a	conversation	at
php|tek	(a	popular	PHP	conference)	in	2009.	They	discussed	how	to	improve
intraframework	communication	and	efficiency.	Instead	of	writing	a	new	and	tightly
coupled	logging	class,	for	example,	what	if	a	PHP	framework	could	share	a	decoupled
logging	class	like	monolog?	Instead	of	writing	its	own	HTTP	request	and	response	classes,
what	if	a	PHP	framework	could	instead	cherry-pick	the	excellent	HTTP	request	and
response	classes	from	the	Symfony	Framework’s	symfony/httpfoundation	component?
For	this	to	work,	PHP	frameworks	must	speak	a	common	language	that	allows	them	to
communicate	and	share	with	other	frameworks.	They	need	standards.

The	PHP	framework	developers	who	serendipitously	met	at	php|tek	eventually	created	the
PHP	Framework	Interop	Group	(PHP-FIG).	The	PHP-FIG	is	a	group	of	PHP	framework
representatives	who,	according	to	the	PHP-FIG	website,	“talk	about	the	commonalities
between	our	projects	and	find	ways	we	can	work	together.”	The	PHP-FIG	creates
recommendations	that	PHP	frameworks	can	voluntarily	implement	to	improve
communication	and	sharing	with	other	frameworks.

The	PHP-FIG	is	a	self-appointed	group	of	framework	representatives.	Its	members	are	not
elected,	and	they	are	not	special	in	any	way	other	than	their	willingness	to	improve	the
PHP	community.	Anyone	can	request	membership.	And	anyone	can	submit	feedback	to
PHP-FIG	recommendations	that	are	in	the	proposal	process.	Final	PHP-FIG
recommendations	are	typically	adopted	and	implemented	by	many	of	the	largest	and	most
popular	PHP	frameworks.	I	highly	encourage	you	to	get	involved	with	the	PHP-FIG,	if
only	to	send	feedback	and	help	shape	the	future	of	your	favorite	PHP	frameworks.

Note

It	is	very	important	to	understand	the	PHP-FIG	provides	recommendations.	These	are	not
rules.	These	are	not	requirements.	These	are	carefully	crafted	suggestions	that	make	our
lives	as	PHP	developers	(and	PHP	framework	authors)	easier.

http://tek.phparch.com
https://github.com/Seldaek/monolog
http://bit.ly/symf-docs
http://www.php-fig.org

Framework	Interoperability
The	PHP-FIG’s	mission	is	framework	interoperability.	And	framework	interoperability
means	working	together	via	interfaces,	autoloading,	and	style.

Interfaces
PHP	frameworks	work	together	via	shared	interfaces.	PHP	interfaces	allow	frameworks	to
assume	what	methods	are	provided	by	third-party	dependencies	without	worrying	about
how	the	dependencies	implement	the	interface.

Note

Refer	to	Chapter	2	for	an	in-depth	explanation	of	PHP	interfaces.

For	example,	a	framework	is	happy	to	share	a	third-party	logger	object	assuming	the
shared	logger	object	implements	the	emergency(),	alert(),	critical(),	error(),
warning(),	notice(),	info(),	and	debug()	methods.	Exactly	how	these	methods	are
implemented	is	irrelevant.	Each	framework	cares	only	that	the	third-party	dependency
does	implement	these	methods.

Interfaces	enable	PHP	developers	to	build,	share,	and	use	specialized	components	instead
of	monolithic	frameworks.

Autoloading
PHP	frameworks	work	together	via	autoloading.	Autoloading	is	the	process	by	which	a
PHP	class	is	automatically	located	and	loaded	on-demand	by	the	PHP	interpreter	during
runtime.

Before	PHP	standards,	PHP	components	and	frameworks	implemented	their	own	unique
autoloaders	using	the	magic	__autoload()	method	or	the	more	recent
spl_autoload_register()	method.	This	required	us	to	learn	and	use	a	unique	autoloader
for	each	component	and	framework.	Nowadays,	most	modern	PHP	components	and
frameworks	are	compatible	with	a	common	autoloader	standard.	This	means	we	can	mix
and	match	multiple	PHP	components	with	only	one	autoloader.

Style
PHP	frameworks	work	together	via	code	style.	Your	code	style	determines	spacing,
capitalization,	and	bracket	placement	(among	other	things).	If	PHP	frameworks	agree	on	a
standard	code	style,	PHP	developers	don’t	need	to	learn	a	new	style	every	time	they	use	a
new	PHP	framework.	Instead,	PHP	framework	code	is	immediately	familiar.	A	standard
code	style	also	lowers	the	barrier	for	new	project	contributors,	who	can	spend	more	time
squashing	bugs	and	less	time	learning	an	unfamiliar	style.

Standard	code	style	also	improves	our	own	projects.	Every	developer	has	a	unique	style
with	more	than	a	few	idiosyncrasies,	and	these	become	a	problem	when	multiple
developers	work	on	the	same	codebase.	A	standard	code	style	helps	all	team	members
immediately	understand	the	same	codebase	regardless	of	its	author.

What	Is	a	PSR?
PSR	is	an	acronym	for	PHP	standards	recommendation.	If	you’ve	recently	read	a	PHP-
related	blog,	you	have	probably	seen	the	terms	PSR-1,	PSR-2,	PSR-3,	and	so	on.	These
are	PHP-FIG	recommendations.	Their	names	begin	with	PSR-	and	end	with	a	number.
Each	PHP-FIG	recommendation	solves	a	specific	problem	that	is	frequently	encountered
by	most	PHP	frameworks.	Instead	of	PHP	frameworks	continually	re-solving	the	same
problems,	frameworks	can	instead	adopt	the	PHP-FIG’s	recommendations	and	build	upon
shared	solutions.

The	PHP-FIG	has	published	five	recommendations	as	of	this	book’s	publication:

PSR-1:	Basic	code	style
PSR-2:	Strict	code	style
PSR-3:	Logger	interface
PSR-4:	Autoloading

Note

If	you	counted	only	four	recommendations,	you	are	correct.	The	PHP-FIG	deprecated	its
first	PSR-0	recommendation.	This	first	recommendation	was	replaced	by	the	newer	PSR-4
recommendation.

Notice	how	the	PHP-FIG	recommendations	coincide	nicely	with	the	three	interoperability
methods	I	mentioned	earlier:	interfaces,	autoloading,	and	code	style.	This	is	not	a
coincidence.

I’m	really	excited	about	the	PHP-FIG	recommendations.	They	are	the	bedrock	beneath	the
modern	PHP	ecosystem.	They	define	the	means	with	which	PHP	components	and
frameworks	interoperate.	I	admit,	PHP	standards	are	not	the	most	scintillating	of	topics,
but	they	are	(in	my	mind)	prerequisite	to	understanding	modern	PHP.

http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-4/

PSR-1:	Basic	Code	Style
If	you	want	to	write	PHP	code	that	is	compatible	with	community	standards,	start	with
PSR-1.	It’s	the	easiest	PHP	standard	to	use.	It’s	so	easy,	you’re	probably	already	using	it
without	even	trying.	PSR-1	provides	simple	guidelines	that	are	easy	to	implement	with
minimal	effort.	The	point	of	PSR-1	is	to	provide	a	baseline	code	style	for	participating
PHP	frameworks.	You	must	satisfy	these	requirements	to	be	compatible	with	PSR-1:

PHP	tags

You	must	surround	your	PHP	code	with	either	the	<?php	?>	or	<?=	?>	tags.	You	must
not	use	any	other	PHP	tag	syntax.

Encoding

All	PHP	files	must	be	encoded	with	the	UTF-8	character	set	without	a	byte	order	mark
(BOM).	This	sounds	complicated,	but	your	text	editor	or	IDE	can	do	this	for	you
automatically.

Objective

A	single	PHP	file	can	either	define	symbols	(a	class,	trait,	function,	constant,	etc.)	or
perform	an	action	that	has	side	effects	(e.g.,	create	output	or	manipulate	data).	A	PHP
file	should	not	do	both.	This	is	a	simple	task	and	requires	only	a	little	foresight	and
planning	on	your	part.

Autoloading

Your	PHP	namespaces	and	classes	must	support	the	PSR-4	autoloader	standard.	All	you
have	to	do	is	choose	appropriate	names	for	your	PHP	symbols	and	make	sure	their
definition	files	are	in	the	expected	location.	We’ll	chat	about	PSR-4	soon.

Class	names

Your	PHP	class	names	must	use	the	common	CamelCase	format.	This	format	is	also
called	TitleCase.	Examples	are	CoffeeGrinder,	CoffeeBean,	and	PourOver.

Constant	names

Your	PHP	constants	must	use	all	uppercase	characters.	They	may	use	underscores	to
separate	words	if	necessary.	Examples	are	WOOT,	LET_OUR_POWERS_COMBINE,	and
GREAT_SCOTT.

Method	names

Your	PHP	method	names	must	use	the	common	camelCase	format.	This	means	the
method	name’s	first	character	is	lowercase,	and	the	first	letter	of	each	subsequent	word
in	the	method	name	is	uppercase.	Examples	are	phpIsAwesome,	iLoveBacon,	and
tennantIsMyFavoriteDoctor.

PSR-2:	Strict	Code	Style
After	you	implement	PSR-1,	the	next	step	is	to	implement	PSR-2.	The	PSR-2	standard
further	defines	PHP	code	style	with	stricter	guidelines.

The	PSR-2	code	style	is	a	godsend	for	PHP	frameworks	that	have	many	contributors	from
around	the	world,	all	of	whom	bring	their	own	unique	style	and	preferences.	A	common
strict	code	style	lets	developers	write	code	that	is	easily	and	quickly	understood	by	other
contributors.

Unlike	PSR-1,	the	PSR-2	recommendation	contains	stricter	guidelines.	Some	of	PSR-2’s
guidelines	may	not	be	what	you	prefer.	However,	PSR-2	is	the	preferred	code	style	of
many	popular	PHP	frameworks.	You	don’t	have	to	use	PSR-2,	but	doing	so	will	drastically
improve	the	ability	for	other	developers	to	read,	use,	and	contribute	to	your	PHP	code.

Tip

You	should	use	the	stricter	PSR-2	code	style.	Even	though	I	call	it	strict,	it’s	easy	enough
to	write.	Eventually	it’ll	become	second	nature.	Also,	there	are	tools	available	to
automatically	format	existing	PHP	code	into	the	PSR-2	style.

Implement	PSR-1

The	PSR-2	code	style	requires	that	you	implement	the	PSR-1	code	style.

Indentation

This	is	a	hot	topic	that	is	typically	divided	into	two	camps.	The	first	camp	prefers	to
indent	code	with	a	single	tab	character.	The	second	(and	much	cooler)	camp	prefers	to
indent	code	with	several	space	characters.	The	PSR-2	recommendation	says	PHP	code
should	be	indented	with	four	space	characters.

Tip

From	personal	experience,	space	characters	are	better	suited	for	indentation	because	a
space	is	a	definitive	measure	that	largely	renders	the	same	in	different	code	editors.	A	tab,
however,	can	vary	in	width	and	renders	differently	in	different	code	editors.	Use	four
space	characters	to	indent	code	to	ensure	the	best	visual	continuity	for	your	code.

Files	and	lines

Your	PHP	files	must	use	Unix	linefeed	(LF)	endings,	must	end	with	a	single	blank	line,
and	must	not	include	a	trailing	?>	PHP	tag.	Each	line	of	code	should	not	exceed	80
characters.	Ultimately,	each	line	of	code	must	not	exceed	120	characters.	Each	line	must
not	have	trailing	white	space.	This	sounds	like	a	lot	of	work,	but	it’s	really	not.	Most
code	editors	can	automatically	wrap	code	to	a	specific	width,	strip	trailing	whitespace,
and	use	Unix	line	endings.	All	of	these	should	happen	automatically	with	little	to	no
thought	on	your	part.

Tip

Omitting	the	trailing	?>	PHP	tag	was	odd	to	me	at	first.	However,	it	is	good	practice	to
omit	the	closing	tag	to	avoid	unexpected	output	errors.	If	you	do	include	the	?>	closing

tag,	and	also	a	blank	line	after	the	closing	tag,	the	blank	line	is	considered	output	and	can
cause	errors	(e.g.,	when	you	set	HTTP	headers).

Keywords

I	know	many	PHP	developers	who	type	TRUE,	FALSE,	and	NULL	in	uppercase	characters.
If	you	do	this,	try	to	unlearn	this	practice	and	instead	use	only	lowercase	characters
from	now	on.	The	PSR-2	recommendation	says	that	you	should	type	all	PHP	keywords
in	lowercase.

Namespaces

Each	namespace	declaration	must	be	followed	by	one	blank	line.	Likewise,	when	you
import	or	alias	namespaces	with	the	use	keyword,	you	must	follow	the	block	of	use
declarations	with	one	blank	line.	Here’s	an	example:
<?php

namespace	My\Component;

use	Symfony\Components\HttpFoundation\Request;

use	Symfony\Components\HttpFoundation\Response;

class	App

{

				//	Class	definition	body

}

Classes

Like	indentation,	class	definition	bracket	placement	is	another	topic	that	attracts	heated
debate.	Some	prefer	the	opening	bracket	to	reside	on	the	same	line	as	the	class	name.
Others	prefer	the	opening	bracket	to	reside	on	a	new	line	after	the	class	name.	The	PSR-
2	recommendation	says	a	class	definition’s	opening	bracket	must	reside	on	a	new	line
immediately	after	the	class	definition	name	as	shown	in	the	following	example.	The
class	definition’s	closing	bracket	must	reside	on	a	new	line	after	the	end	of	the	class
definition	body.	This	is	probably	what	you	have	been	doing	already	so	it’s	not	as	big	a
deal.	If	your	class	extends	another	class	or	implements	an	interface,	the	extends	and
implements	keywords	must	appear	on	the	same	line	as	the	class	name:
<?php

namespace	My\App;

class	Administrator	extends	User

{

				//	Class	definition	body

}

Methods

Method	definition	bracket	placement	is	the	same	as	class	definition	bracket	placement.
The	method	definition’s	opening	bracket	resides	on	a	new	line	immediately	after	the
method	name.	The	method	definition’s	closing	bracket	resides	on	a	new	line
immediately	after	the	method	definition	body.	Pay	close	attention	to	the	method
arguments.	The	first	parenthesis	does	not	have	a	trailing	space,	and	the	last	parenthesis
does	not	have	a	preceding	space.	Each	method	argument	(except	the	last)	is	followed
immediately	by	a	comma	and	one	space	character:
<?php

namespace	Animals;

class	StrawNeckedIbis

{

				public	function	flapWings($numberOfTimes	=	3,	$speed	=	'fast')

				{

								//	Method	definition	body

				}

}

Visibility

You	must	declare	a	visibility	for	each	class	property	and	method.	A	visibility	is	one	of
public,	protected,	or	private;	visibility	determines	how	a	property	or	method	is
accessible	within	and	outside	of	its	class.	Old-school	PHP	developers	may	be
accustomed	to	prefixing	class	properties	with	the	var	keyword	and	prefixing	private
methods	with	the	underscore	_	character.	Do	not	do	this.	Use	one	of	the	visibilities
listed	previously	instead.	If	you	declare	a	class	property	or	method	as	abstract	or
final,	the	abstract	and	final	qualifiers	must	appear	before	the	visibility.	If	you
declare	a	property	or	method	as	static,	the	static	qualifier	must	appear	after	the
visibility:
<?php

namespace	Animals;

class	StrawNeckedIbis

{

				//	Static	property	with	visibility

				public	static	$numberOfBirds	=	0;

				//	Method	with	visibility

				public	function	__construct()

				{

								static::$numberOfBirds++;

				}

}

Control	structures

This	is	probably	the	one	guideline	that	trips	me	up	the	most.	All	control	structure
keywords	must	be	followed	by	a	single	space	character.	A	control	structure	keyword	is
if,	elseif,	else,	switch,	case,	while,	do	while,	for,	foreach,	try,	or	catch.	If	the
control	structure	keyword	requires	a	set	of	parentheses,	make	sure	the	first	parenthesis
is	not	followed	by	a	space	character,	and	make	sure	the	last	parenthesis	is	not	preceded
by	a	space	character.	Unlike	in	class	and	method	definitions,	opening	brackets	that
appear	after	a	control	structure	keyword	must	remain	on	the	same	line	as	the	control
structure	keyword.	The	control	structure	keyword’s	closing	bracket	must	reside	on	a
new	line.	Here’s	a	brief	example	that	demonstrates	these	guidelines:
<?php

$gorilla	=	new	\Animals\Gorilla;

$ibis	=	new	\Animals\StrawNeckedIbis;

if	($gorilla->isAwake()	===	true)	{

				do	{

								$gorilla->beatChest();

				}	while	($ibis->isAsleep()	===	true);

				$ibis->flyAway();

}

Tip

You	can	automate	PSR-1	and	PSR-2	code	style	compatibility.	Many	code	editors
automatically	format	your	code	according	to	PSR-1	and	PSR-2.	There	are	tools	available
to	help	you	audit	and	format	your	code	against	PHP	standards,	too.	One	such	tool	is	the

PHP	Code	Sniffer,	also	called	phpcs.	This	tool	(used	directly	on	the	command	line	or	via
your	IDE)	reports	inconsistencies	between	your	code	and	a	given	PHP	code	standard.	You
can	install	phpcs	with	most	package	managers	(e.g.,	PEAR,	Homebrew,	Aptitude,	or
Yum).

You	can	also	use	Fabien	Potencier’s	PHP-CS-Fixer	to	correct	most	incompatibilities
automatically.	This	tool	is	not	perfect,	but	it’ll	get	you	most	of	the	way	toward	PSR
compatibility	with	little	or	no	effort	on	your	part.

http://bit.ly/phpsniffer
http://cs.sensiolabs.org/

PSR-3:	Logger	Interface
The	third	PHP-FIG	recommendation	is	not	a	set	of	guidelines	like	its	predecessors.	PSR-3
is	an	interface,	and	it	prescribes	methods	that	can	be	implemented	by	PHP	logger
components.

Note

A	logger	is	an	object	that	writes	messages	of	varying	importance	to	a	given	output.
Logged	messages	are	used	to	diagnose,	inspect,	and	troubleshoot	application	operation,
stability,	and	performance.	Examples	include	writing	debug	information	to	a	text	file
during	development,	capturing	website	traffic	statistics	into	a	database,	or	emailing	fatal
error	diagnostics	to	a	website	administrator.	The	most	popular	PHP	logger	component	is
monolog/monolog,	created	by	Jordi	Boggiano.

Many	PHP	frameworks	implement	logging	in	some	capacity.	Before	the	PHP-FIG,	each
framework	solved	logging	differently,	often	with	a	proprietary	implementation.	In	the
spirit	of	interoperability	and	specialization	—	recurring	motifs	in	modern	PHP	—	the
PHP-FIG	established	the	PSR-3	logger	interface.	Frameworks	that	accept	PSR-3
compatible	loggers	accomplish	two	important	things:	logging	concerns	are	delegated	to	a
third	party,	and	end	users	can	provide	their	preferred	logger	component.	It’s	a	win-win	for
everyone.

https://packagist.org/packages/monolog/monolog

Write	a	PSR-3	Logger
A	PHP	logger	component	compatible	with	the	PSR-3	recommendation	must	include	a	PHP
class	that	implements	the	interface	named	Psr\Log\LoggerInterface.	The	PSR-3
interface	replicates	the	RFC	5424	syslog	protocol	and	prescribes	nine	methods:

<?php

namespace	Psr\Log;

interface	LoggerInterface

{

				public	function	emergency($message,	array	$context	=	array());

				public	function	alert($message,	array	$context	=	array());

				public	function	critical($message,	array	$context	=	array());

				public	function	error($message,	array	$context	=	array());

				public	function	warning($message,	array	$context	=	array());

				public	function	notice($message,	array	$context	=	array());

				public	function	info($message,	array	$context	=	array());

				public	function	debug($message,	array	$context	=	array());

				public	function	log($level,	$message,	array	$context	=	array());

}

Each	interface	method	maps	to	a	corresponding	RFC	5424	protocol	level	and	accepts	two
arguments.	The	first	$message	argument	must	be	a	string	or	an	object	with	a
__toString()	method.	The	second	$context	argument	is	optional	and	provides	an	array
of	placeholder	values	that	replace	tokens	in	the	first	argument.

Tip

Use	the	$context	argument	to	construct	complicated	logger	messages.	You	use
placeholders	in	the	message	text.	A	placeholder	looks	like	{placeholder_name};	it
contains	a	{,	the	placeholder	name,	and	a	}.	A	placeholder	does	not	contain	spaces.	The
$context	argument	is	an	associative	array;	its	keys	are	placeholder	names	(without
brackets),	and	its	values	replace	the	related	placeholders	in	the	message	text.

To	write	a	PSR-3	logger,	create	a	new	PHP	class	that	implements	the
Psr\Log\LoggerInterface	interface	and	provide	a	concrete	implementation	for	each
interface	method.

http://tools.ietf.org/html/rfc5424

Use	a	PSR-3	Logger
If	you	are	creating	your	own	PSR-3	logger,	stop	and	reconsider	if	you	are	spending	your
time	wisely.	I	strongly	discourage	you	from	writing	your	own	logger.	Why?	Because	there
are	some	truly	amazing	PHP	logger	components	already	available!

If	you	need	a	PSR-3	logger,	just	use	monolog/monolog.	Don’t	waste	time	looking
elsewhere.	The	Monolog	PHP	component	fully	implements	the	PSR-3	interface,	and	it’s
easily	extended	with	custom	message	formatters	and	handlers.	Monolog’s	message
handlers	let	you	send	log	messages	to	text	files,	syslog,	email,	HipChat,	Slack,	networked
servers,	remote	APIs,	databases,	and	pretty	much	anywhere	else	you	can	imagine.	In	the
very	unlikely	event	Monolog	does	not	provide	a	handler	for	your	desired	output
destination,	it’s	super-easy	to	write	and	integrate	your	own	Monolog	message	handler.
Example	3-1	demonstrates	how	easy	it	is	to	setup	Monolog	and	log	messages	to	a	text	file.

Example	3-1.	Using	Monolog
<?php

use	Monolog\Logger;

use	Monolog\Handler\StreamHandler;

//	Prepare	logger

$log	=	new	Logger('myApp');

$log->pushHandler(new	StreamHandler('logs/development.log',	Logger::DEBUG));

$log->pushHandler(new	StreamHandler('logs/production.log',	Logger::WARNING));

//	Use	logger

$log->debug('This	is	a	debug	message');

$log->warning('This	is	a	warning	message');

https://packagist.org/packages/monolog/monolog

PSR-4:	Autoloaders
The	fourth	PHP-FIG	recommendation	describes	a	standardized	autoloader	strategy.	An
autoloader	is	a	strategy	for	finding	a	PHP	class,	interface,	or	trait	and	loading	it	into	the
PHP	interpreter	on-demand	at	runtime.	PHP	components	and	frameworks	that	support	the
PSR-4	autoloader	standard	can	be	located	by	and	loaded	into	the	PHP	interpreter	with	only
one	autoloader.	This	is	a	big	deal	given	the	modern	PHP	ecosystem’s	affinity	for	many
interoperable	components.

Why	Autoloaders	Are	Important
How	often	have	you	seen	code	like	this	at	the	top	of	your	PHP	files?

<?php

include	'path/to/file1.php';

include	'path/to/file2.php';

include	'path/to/file3.php';

All	too	often,	right?	You’re	probably	familiar	with	the	require(),	require_once(),
include(),	and	include_once()	functions.	These	functions	load	an	external	PHP	file	into
the	current	script,	and	they	work	wonderfully	if	you	have	only	a	few	PHP	scripts.
However,	what	if	you	need	to	include	a	hundred	PHP	scripts?	What	if	you	need	to	include
a	thousand	PHP	scripts?	The	require()	and	include()	functions	do	not	scale	well,	and
this	is	why	PHP	autoloaders	are	important.	An	autoloader	is	a	strategy	for	finding	a	PHP
class,	interface,	or	trait	and	loading	it	into	the	PHP	interpreter	on-demand	at	runtime,
without	explicitly	including	files	as	the	example	does.

Before	the	PHP-FIG	introduced	its	PSR-4	recommendation,	PHP	component	and
framework	authors	used	the	__autoload()	and	spl_autoload_register()	functions	to
register	custom	autoloader	strategies.	Unfortunately,	each	PHP	component	and	framework
used	a	unique	autoloader,	and	every	autoloader	used	different	logic	to	locate	and	load	PHP
classes,	interfaces,	and	traits.	Developers	using	these	components	and	frameworks	were
obliged	to	invoke	each	component’s	autoloader	when	bootstrapping	a	PHP	application.	I
use	Sensio	Labs’	Twig	template	component	all	the	time.	It’s	awesome.	Without	PSR-4,
however,	I	have	to	read	Twig’s	documentation	and	figure	out	how	to	register	its	custom
autoloader	in	my	application’s	bootstrap	file,	like	this:

<?php

require_once	'/path/to/lib/Twig/Autoloader.php';

Twig_Autoloader::register();

Imagine	having	to	research	and	register	unique	autoloaders	for	every	PHP	component	in
your	application.	The	PHP-FIG	recognized	this	problem	and	proposed	the	PSR-4
autoloader	recommendation	to	facilitate	component	interoperability.	Thanks	to	PSR-4,	we
can	autoload	all	of	our	application’s	PHP	components	with	only	one	autoloader.	This	is
amazing.	Most	modern	PHP	components	and	frameworks	are	compatible	with	PSR-4.	If
you	write	and	distribute	your	own	components,	make	sure	they	are	compatible	with	PSR-
4,	too!	Participating	components	include	Symfony,	Doctrine,	Monolog,	Twig,	Guzzle,
SwiftMailer,	PHPUnit,	Carbon,	and	many	others.

http://twig.sensiolabs.org

The	PSR-4	Autoloader	Strategy
Like	any	PHP	autoloader,	PSR-4	describes	a	strategy	to	locate	and	load	PHP	classes,
interfaces,	and	traits	during	runtime.	The	PSR-4	recommendation	does	not	require	you	to
change	your	code’s	implementation.	Instead,	PSR-4	only	suggests	how	your	code	is
organized	into	filesystem	directories	and	PHP	namespaces.	The	PSR-4	autoloader	strategy
relies	on	PHP	namespaces	and	filesystem	directories	to	locate	and	load	PHP	classes,
interfaces,	and	traits.

The	essence	of	PSR-4	is	mapping	a	top-level	namespace	prefix	to	a	specific	filesystem
directory.	For	example,	I	can	tell	PHP	that	classes,	interfaces,	or	traits	beneath	the
\Oreilly\ModernPHP	namespace	live	beneath	the	src/	physical	filesystem	directory.	PHP
now	knows	that	any	classes,	interfaces,	or	traits	that	use	the	\Oreilly\ModernPHP
namespace	prefix	correspond	to	directories	and	files	beneath	the	src/	directory.	For
example,	the	\Oreilly\ModernPHP\Chapter1	namespace	corresponds	to	the	src/Chapter1
directory,	and	the	\Oreilly\ModernPHP\Chapter1\Example	class	corresponds	to	the
src/Chapter1/Example.php	file.

Tip

PSR-4	lets	you	map	a	namespace	prefix	to	a	filesystem	directory.	The	namespace	prefix
can	be	one	top-level	namespace.	The	namespace	prefix	can	also	be	a	top-level	namespace
and	any	number	of	subnamespaces.	It’s	quite	flexible.

Remember	when	we	talked	about	vendor	namespaces	in	Chapter	2?	The	PSR-4	autoloader
strategy	is	most	relevant	to	component	and	framework	authors	who	distribute	code	to
other	developers.	A	PHP	component’s	code	lives	beneath	a	unique	vendor	namespace,	and
the	component’s	author	specifies	which	filesystem	directory	corresponds	to	the
component’s	vendor	namespace	—	exactly	as	I	demonstrated	earlier.	We’ll	explore	this
concept	more	in	Chapter	4.

How	to	Write	a	PSR-4	Autoloader	(and	Why	You	Shouldn’t)
We	know	that	PSR-4	compatible	code	has	a	namespace	prefix	that	maps	to	a	base
filesystem	directory.	We	also	know	that	subnamespaces	beneath	the	namespace	prefix	map
to	subdirectories	beneath	the	base	filesystem	directory.	Example	3-2	shows	an	autoloader
implementation,	borrowed	from	the	PHP-FIG	website,	that	finds	and	loads	classes,
interfaces,	and	traits	based	on	the	PSR-4	autoloader	strategy.

Example	3-2.	PSR-4	autoloader
<?php

/**

	*	An	example	of	a	project-specific	implementation.

	*

	*	After	registering	this	autoload	function	with	SPL,	the	following	line

	*	would	cause	the	function	to	attempt	to	load	the	\Foo\Bar\Baz\Qux	class

	*	from	/path/to/project/src/Baz/Qux.php:

	*

	*						new	\Foo\Bar\Baz\Qux;

	*

	*	@param	string	$class	The	fully	qualified	class	name.

	*	@return	void

	*/

spl_autoload_register(function	($class)	{

				//	project-specific	namespace	prefix

				$prefix	=	'Foo\\Bar\\';

				//	base	directory	for	the	namespace	prefix

				$base_dir	=	__DIR__	.	'/src/';

				//	does	the	class	use	the	namespace	prefix?

				$len	=	strlen($prefix);

				if	(strncmp($prefix,	$class,	$len)	!==	0)	{

								//	no,	move	to	the	next	registered	autoloader

								return;

				}

				//	get	the	relative	class	name

				$relative_class	=	substr($class,	$len);

				//	replace	the	namespace	prefix	with	the	base	directory,	replace	namespace

				//	separators	with	directory	separators	in	the	relative	class	name,	append

				//	with	.php

				$file	=	$base_dir	.	str_replace('\\',	'/',	$relative_class)	.	'.php';

				//	if	the	file	exists,	require	it

				if	(file_exists($file))	{

								require	$file;

				}

});

Copy	and	paste	this	into	your	application,	change	the	$prefix	and	$base_dir	variables,
and	you	have	yourself	a	working	PSR-4	autoloader.	However,	if	you	find	yourself	writing
your	own	PSR-4	autoloader,	stop	and	ask	yourself	if	what	you	are	doing	is	really
necessary.	Why?	Because	we	can	use	PSR-4	autoloaders	that	are	automagically	generated
by	the	Composer	dependency	manager.	Conveniently	enough,	that’s	exactly	what	we’ll
talk	about	next	in	Chapter	4.

http://bit.ly/php-fig

Chapter	4.	Components
Modern	PHP	is	less	about	monolithic	frameworks	and	more	about	composing	solutions
from	specialized	and	interoperable	components.	When	I	build	a	new	PHP	application,
rarely	do	I	reach	straight	for	Laravel	or	Symfony.	Instead,	I	think	about	which	existing
PHP	components	I	can	combine	to	solve	my	problem.

Why	Use	Components?
Modern	PHP	components	are	a	new	concept	to	many	PHP	programmers.	I	had	no	idea
about	PHP	components	until	a	few	years	ago.	Before	I	knew	better,	I	instinctually	started
PHP	applications	with	a	massive	framework	like	Symfony	or	CodeIgniter	without
considering	other	options.	I	invested	in	a	single	framework’s	closed	ecosystem	and	used
the	tools	it	provided.	If	the	framework	did	not	provide	what	I	needed,	I	was	out	of	luck
and	I	built	additional	functionality	on	my	own.	It	was	also	difficult	to	integrate	custom	or
third-party	libraries	into	larger	frameworks	because	they	did	not	share	common	interfaces.
I	am	relieved	to	inform	you	that	times	have	changed,	and	we	are	no	longer	beholden	to
monolithic	frameworks	and	their	walled	gardens.

Today,	we	choose	from	a	vast	and	continually	growing	collection	of	specialized
components	to	create	custom	applications.	Why	waste	time	coding	an	HTTP	request	and
response	library	when	the	guzzle/http	component	already	exists?	Why	create	a	new
router	when	the	aura/router	and	orno/route	components	work	great?	Why	spend	time
coding	an	adapter	to	Amazon’s	S3	online	storage	service	when	the	aws/aws-sdk-php	and
league/flysystem	components	can	be	used	instead?	You	get	my	drift.	Other	developers
have	spent	countless	development	hours	creating,	perfecting,	and	testing	specialized
components	that	do	one	thing	really	well.	It’s	silly	not	to	take	advantage	of	these
components	to	build	better	applications	more	quickly	instead	of	wasting	time	reinventing
the	wheel.

https://packagist.org/packages/guzzle/http
https://packagist.org/packages/aura/router
https://packagist.org/packages/orno/route
https://packagist.org/packages/aws/aws-sdk-php
https://packagist.org/packages/league/flysystem

What	Are	Components?
A	component	is	a	bundle	of	code	that	helps	solve	a	specific	problem	in	your	PHP
application.	For	example,	if	your	PHP	application	sends	and	receives	HTTP	requests,
there’s	a	component	to	do	that.	If	your	PHP	application	parses	comma-delimited	data,
there’s	a	PHP	component	to	do	that.	If	your	PHP	application	needs	a	way	to	log	messages,
there’s	a	component	for	that.	Instead	of	rebuilding	already-solved	functionality,	we	use
PHP	components	and	spend	more	time	solving	our	project’s	larger	objectives.

Note

Technically	speaking,	a	PHP	component	is	a	collection	of	related	classes,	interfaces,	and
traits	that	solve	a	single	problem.	A	component’s	classes,	interfaces,	and	traits	usually	live
beneath	a	common	namespace.

In	any	marketplace,	there	are	good	products	and	there	are	bad	products.	The	same	concept
applies	to	PHP	components.	Just	as	you	inspect	an	apple	at	the	grocery	store,	you	can	use
a	few	tricks	to	spot	a	good	PHP	component.	Here	are	a	few	characteristics	of	good	PHP
components:

Laser-focused

A	PHP	component	is	laser-focused	and	exists	only	to	solve	a	single	problem	very	well.
It	is	not	a	jack-of-all-trades	and	master	of	none;	it	is	a	master	of	one.	It	is	obsessed	with
solving	a	single	problem,	and	it	encapsulates	its	genius	beneath	a	simple	user	interface.

Small

A	PHP	component	is	no	larger	than	it	needs	to	be.	It	contains	the	least	amount	of	PHP
code	necessary	to	solve	one	problem.	The	amount	of	code	varies.	A	PHP	component
can	have	one	PHP	class.	It	can	also	have	several	PHP	classes	organized	into
subnamespaces.	There	is	no	correct	number	of	classes	in	a	PHP	component.	It	uses
however	many	are	necessary	to	solve	its	one	problem.

Cooperative

A	PHP	component	plays	well	with	others.	After	all,	this	is	the	point	of	PHP	components
—	their	existence	depends	on	their	cooperation	with	other	components	to	build	larger
solutions.	A	PHP	component	does	not	pollute	the	global	namespace	with	its	own	code.
Instead,	a	PHP	component	lives	beneath	its	own	namespace	to	avoid	name	collisions
with	other	components.

Well-tested

A	PHP	component	is	well-tested.	This	is	easy	to	accomplish	thanks	to	its	small	size.	If	a
PHP	component	is	small	and	laser-focused,	it	is	very	likely	easily	tested.	Its	concerns
are	few,	and	its	dependencies	can	be	easily	identified	and	mocked.	The	best	PHP
components	provide	their	own	tests	and	have	sufficient	test	coverage.

Well-documented

A	PHP	component	is	well-documented.	It	should	be	easy	for	developers	to	install,
understand,	and	use.	Good	documentation	makes	this	possible.	The	PHP	component
should	have	a	README	file	that	says	what	the	component	does,	how	to	install	it,	and
how	to	use	it.	The	component	may	also	have	its	own	website	with	more	in-depth
information.	And	good	documentation	should	also	extend	into	the	PHP	component’s
source	code.	Its	classes,	methods,	and	properties	should	have	inline	docblocks	that
describe	the	code,	its	parameters,	its	return	values,	and	its	potential	exceptions.

Components	Versus	Frameworks
The	problem	with	frameworks	(particularly	older	frameworks)	is	that	they	are	an
expensive	investment.	When	we	choose	a	framework,	we	invest	in	that	framework’s	tools.
Frameworks	usually	provide	a	smorgasbord	of	tools.	But	sometimes	we	need	a	specific
something	that	the	framework	does	not	provide,	and	it	becomes	our	burden	to	find	and
integrate	a	custom	PHP	library.	Integrating	third-party	code	into	a	framework	is	difficult
because	the	third-party	code	and	the	PHP	framework	probably	don’t	share	common
interfaces.

When	we	choose	a	framework,	we	invest	in	that	framework’s	future.	We	put	our	faith
behind	the	framework’s	core	development	team.	We	assume	the	framework’s	developers
will	continue	investing	their	own	time	into	developing	the	framework	and	ensuring	that	its
code	remains	up-to-date	with	modern	standards.	And	often	this	does	not	happen.
Frameworks	are	very	large,	and	they	require	a	lot	of	time	and	effort	to	maintain.	Project
maintainers	have	their	own	lives,	jobs,	and	interests.	And	lives,	jobs,	and	interests	change.

Note

To	be	fair,	larger	PHP	components	are	also	at	risk	of	abandonment,	especially	if	a
component	only	has	one	core	developer.

Also,	who’s	to	say	that	a	particular	framework	will	remain	the	best	tool	for	the	job?	Large
projects	that	exist	for	many	years	must	perform	well	and	be	well-tuned	now	and	into	the
future.	The	wrong	PHP	framework	may	hinder	this	ability.	Older	PHP	frameworks	that
have	fallen	out	of	fashion	may	become	slower	and	outmoded	as	they	lose	community
support.	Older	frameworks	are	often	written	with	procedural	code	instead	of	modern
object-oriented	code.	Your	newer	team	members	may	be	unfamiliar	with	an	older
framework’s	codebase.	There	is	a	lot	to	consider	when	deciding	whether	or	not	to	use	a
PHP	framework.

Not	All	Frameworks	Are	Bad
So	far	I’ve	spoken	only	about	the	downsides	of	frameworks.	Frameworks	are	not	all	bad.
Symfony	is	an	excellent	example	of	a	modern	PHP	framework.	Fabien	Potencier	and
Sensio	Labs	built	the	Symfony	Framework	as	an	amalgam	of	smaller	and	decoupled
Symfony	components.	These	components	can	be	used	together	as	a	framework	or
piecemeal	in	custom	applications.

Other,	older	frameworks	are	making	a	similar	transition	to	modern	PHP	components.	The
Drupal	content	management	framework	is	another	example.	Drupal	7	is	written	with
procedural	PHP	code	that	lives	in	the	global	PHP	namespace.	It	ignores	modern	PHP
practices	to	support	its	legacy	codebase.	However,	Drupal	8	is	a	ginormous	and
commendable	leap	into	modern	PHP.	Drupal	8	leverages	the	comparative	advantages	of
many	different	PHP	components	to	build	a	modern	content	management	platform.

Laravel	is	also	a	popular	PHP	framework	written	by	Taylor	Otwell.	Like	Symfony,
Laravel	is	built	atop	its	own	Illuminate	component	library.	However	(at	time	of
publishing),	Laravel’s	components	are	not	easily	decoupled	for	use	in	non-Laravel
applications.	Laravel	does	not	use	the	PSR-2	community	standards,	and	Laravel	does	not
adhere	to	the	Semantic	Versioning	scheme.	Don’t	let	this	dissuade	you	though.	Laravel	is
still	an	amazing	framework	that	can	create	very	powerful	applications.

Tip

The	most	popular	modern	PHP	frameworks	include:

Aura
Laravel
Symfony
Yii
Zend

http://symfony.com/
http://sensiolabs.com/
http://symfony.com/components
https://www.drupal.org
http://laravel.com
https://github.com/illuminate
http://semver.org/
http://auraphp.com/framework
http://laravel.com/
http://symfony.com/
http://www.yiiframework.com/
http://framework.zend.com/

Use	the	Right	Tool	for	the	Job
Should	you	use	components	or	a	framework?	Use	the	right	tool	for	the	job.	Most	modern
PHP	frameworks	are	only	a	set	of	conventions	built	atop	smaller	PHP	components.

If	you	are	working	on	a	smaller	project	that	can	be	solved	with	a	precise	collection	of	PHP
components,	then	use	components.	Components	make	it	super-easy	to	shop	for	and	use
existing	tools	so	we	can	focus	less	on	boilerplate	and	more	on	the	larger	task	at	hand.
Components	also	help	our	code	remain	lightweight	and	nimble.	We	use	only	the	code	we
need,	and	it’s	super-easy	to	swap	one	component	with	another	that	may	be	better	suited	for
our	project.

If	you	are	working	on	a	large	project	with	multiple	team	members	and	can	benefit	from
the	conventions,	discipline,	and	structure	provided	by	a	framework,	then	use	a	framework.
However,	frameworks	make	many	decisions	for	us	and	require	us	to	adhere	to	its	set	of
conventions.	Frameworks	are	less	flexible,	but	we	do	get	far	more	out-of-the-box	than	we
do	with	a	collection	of	PHP	components.	If	these	tradeoffs	are	acceptable,	by	all	means
use	a	framework	to	guide	and	expedite	your	project	development.

Find	Components
You	can	find	modern	PHP	components	on	Packagist	(Figure	4-1),	the	de	facto	PHP
component	directory.	This	website	aggregates	PHP	components	and	makes	them
searchable	by	keyword.	The	best	PHP	components	are	listed	on	Packagist.	I	tip	my	hat	to
Jordi	Boggiano	and	Igor	Wiedler	for	creating	such	an	invaluable	community	resource.

Tip

I’m	often	asked	which	components	I	believe	are	the	best	PHP	components.	This	is	a
subjective	question.	However,	I	largely	agree	with	the	PHP	components	listed	at	Awesome
PHP.	This	is	a	list	of	good	PHP	components	curated	by	Jamie	York.

Figure	4-1.	Packagist	website

https://packagist.org
http://seld.be/
https://igor.io/archive.html
https://github.com/ziadoz/awesome-php
https://github.com/ziadoz

Shop
Do	not	waste	your	time	solving	problems	that	are	already	solved.	Do	you	need	to	send	or
receive	HTTP	messages?	Go	to	Packagist	and	search	for	http;	Guzzle	is	the	first	result.
Use	it.	Do	you	need	to	parse	a	CSV	file?	Go	to	Packagist	and	search	for	csv;	pick	a	CSV
component	and	use	it.	Think	of	Packagist	as	a	grocery	store	for	PHP	components	where
you	can	shop	for	the	best	ingredients.	Packagist	probably	has	a	PHP	component	that
solves	your	problem.

Choose
What	if	there	are	multiple	PHP	components	on	Packagist	that	do	what	you	need?	How	do
you	pick	the	best	one?	Packagist	keeps	statistics	about	each	PHP	component.	Packagist
tells	you	how	many	times	each	PHP	component	has	been	downloaded	and	starred
(Figure	4-2).	More	downloads	and	stars	indicate	a	component	may	be	a	good	option	(this
is	not	always	true).	That	being	said,	don’t	discount	newer	packages	with	fewer	downloads.
Many	new	components	are	added	every	day.

It	can	be	difficult	to	find	the	perfect	PHP	component	if	your	Packagist	keyword	search
returns	a	large	number	of	results.	You	can’t	always	rely	on	download	statistics,	because
crowds	are	not	always	right.	This	is	a	problem	that	Packagist	must	address	as	it	becomes
more	popular.	I	recommend	you	rely	on	word	of	mouth	and	peer	recommendations	to
confirm	your	PHP	component	selection.

Figure	4-2.	Packagist	website	search	results

Leave	Feedback
If	you	find	a	PHP	component	that	you	like,	star	the	PHP	component	on	Packagist	and
share	it	with	your	fellow	PHP	developers	on	Twitter,	Facebook,	IRC,	Slack,	and	your
other	communication	channels.	This	helps	the	best	PHP	components	bubble	up	so	they	are
discovered	by	other	developers.

Use	PHP	Components
Packagist	is	where	you	find	PHP	components.	Composer	is	how	you	install	PHP
components.	Composer	is	a	dependency	manager	for	PHP	components	that	runs	on	the
command	line.	You	tell	Composer	which	PHP	components	you	need,	and	Composer
downloads	and	autoloads	the	components	into	your	project.	It’s	as	simple	as	that.	Because
Composer	is	a	dependency	manager,	it	also	resolves	and	downloads	your	components’
dependencies	(and	their	dependencies,	ad	infinitum).

Composer	works	hand-in-hand	with	Packagist,	too.	When	you	tell	Composer	you	want	to
use	the	guzzlehttp/guzzle	component,	Composer	fetches	the	guzzlehttp/guzzle
component	listing	on	Packagist,	finds	the	component’s	repository	URL,	determines	the
appropriate	version	to	use,	and	discovers	the	component’s	dependencies.	Composer	then
downloads	the	guzzlehttp/guzzle	component	and	its	dependencies	into	your	project.

Composer	is	important	because	dependency	management	and	autoloading	are	hard
problems	to	solve.	Autoloading	is	the	process	of	automatically	loading	PHP	classes	on-
demand	without	explicitly	loading	them	with	the	require(),	require_once(),	include(),
or	include_once()	functions.	Older	PHP	versions	let	us	write	custom	autoloaders	with
the	__autoload()	function;	this	function	is	automatically	invoked	by	the	PHP	interpreter
when	we	instantiate	a	class	that	has	not	already	been	loaded.	PHP	later	introduced	the
more	flexible	spl_autoload_register()	function	in	its	SPL	library.	Exactly	how	a	PHP
class	is	autoloaded	is	entirely	up	to	the	developer.	Unfortunately,	the	lack	of	a	common
autoloader	standard	often	necessitates	a	unique	autoloader	implementation	for	every
project.	This	makes	it	difficult	to	use	code	created	and	shared	by	other	developers	if	each
developer	provides	a	unique	autoloader.

The	PHP	Framework	Interop	Group	recognized	this	problem	and	created	the	PSR-0
standard	(superseded	by	the	PSR-4	standard).	The	PSR-0	and	PSR-4	standards	suggest
how	to	organize	code	into	namespaces	and	filesystem	directories	so	it	is	compatible	with
one	standard	autoloader	implementation.	As	I	alluded	to	in	Chapter	3,	we	don’t	have	to
write	a	PSR-4	autoloader	on	our	own.	Instead,	the	Composer	dependency	manager
automatically	generates	a	PSR-compatible	autoloader	for	all	of	our	project’s	PHP
components.	Composer	effectively	abstracts	away	dependency	management	and
autoloading.

Note

I	believe	Composer	is	the	most	important	addition	to	the	PHP	community,	period.	It
changed	the	way	I	create	PHP	applications.	I	use	Composer	for	every	PHP	project	because
it	drastically	simplifies	integrating	and	using	third-party	PHP	components	in	my
applications.	If	you	haven’t	used	Composer	yet,	you	should	start	researching	Composer
today.

https://getcomposer.org/

How	to	Install	Composer
Composer	is	easy	to	install.	Open	a	terminal	and	execute	this	command:

curl	-sS	https://getcomposer.org/installer	|	php

This	command	downloads	the	Composer	installer	script	with	curl,	executes	the	installer
script	with	php,	and	creates	a	composer.phar	file	in	the	current	working	directory.	The
composer.phar	file	is	the	Composer	binary.

Warning

Never	execute	code	that	you	blindly	download	from	a	remote	URL.	Be	sure	you	review
the	remote	code	first	so	you	know	exactly	what	it	will	do.	Also	make	sure	you	download
the	remote	code	over	HTTPS.

I	prefer	to	move	and	rename	the	downloaded	Composer	binary	to	/usr/local/bin/composer
with	this	command:

sudo	mv	composer.phar	/usr/local/bin/composer

Be	sure	you	run	this	command	to	make	the	composer	binary	executable:
sudo	chmod	+x	/usr/local/bin/composer

Finally,	add	the	/usr/local/bin	directory	to	your	environment	PATH	by	appending	this	line
to	your	~/.bash_profile	file:

PATH=/usr/local/bin:$PATH

You	should	now	be	able	to	execute	composer	in	your	terminal	application	to	see	a	list	of
Composer	options	(Figure	4-3).

Figure	4-3.	Composer	command-line	options

How	to	Use	Composer
Now	that	Composer	is	installed,	let’s	download	some	PHP	components.	Composer	is
typically	used	to	download	PHP	components	on	a	per-project	basis.

Component	names
First,	you	should	make	a	list	of	the	components	you	need	for	your	project.	Specifically,
note	each	component’s	vendor	and	package	names.	Each	PHP	component	has	a	vendor
name	and	a	package	name.	For	example,	the	popular	league/flysystem	component’s
vendor	name	is	league	and	its	package	name	is	flysystem.	The	vendor	and	package
names	are	separated	with	a	/	character.	Together,	the	vendor	and	package	names	form	the
full	component	name	league/flysystem.

The	vendor	name	is	globally	unique	and	provides	the	global	identity	to	which	its
encompassed	packages	belong.	The	package	name	uniquely	identifies	a	single	package
beneath	a	given	vendor	name.	Composer	and	Packagist	use	the	vendor/package	naming
convention	to	avoid	name	collisions	among	PHP	components	from	different	vendors.	You
can	find	a	PHP	component’s	vendor	and	package	names	on	the	component’s	Packagist
directory	listing	(Figure	4-4).

Figure	4-4.	Packagist	vendor	and	package	name

Component	installation
Each	PHP	component	can	have	many	available	versions	(e.g.,	1.0.0,	1.5.0,	or	2.15.0).
All	available	versions	are	listed	on	the	component’s	Packagist	directory	listing.

https://packagist.org/packages/league/flysystem

Semantic	Versioning
Modern	PHP	components	use	the	Semantic	Versioning	scheme	and	contain	three	numbers
separated	with	a	period	(.)	character	(e.g.,	1.13.2).	The	first	number	is	the	major	release
number;	the	major	release	number	is	incremented	whenever	the	PHP	component	is
updated	with	changes	that	break	backward	compatibility.	The	second	number	is	the	minor
release	number;	the	minor	release	number	is	incremented	whenever	the	PHP	component	is
updated	with	minor	features	that	do	not	break	backward	compatibility.	The	third	and	final
number	is	the	patch	release	number;	the	patch	release	number	is	incremented	when	the
PHP	component	receives	backward-compatible	bug	fixes.

Fortunately,	we	don’t	have	to	figure	out	each	component’s	most	stable	version	number.
Composer	does	this	for	us.	Navigate	to	your	project’s	topmost	directory	in	your	terminal
application	and	run	this	command	once	for	each	PHP	component:

composer	require	vendor/package

Replace	vendor/package	with	the	component’s	vendor	and	package	names.	To	install	the
Flysystem	component,	for	example,	run	this	command:

composer	require	league/flysystem

This	command	instructs	Composer	to	find	and	install	the	PHP	component’s	most	stable
version.	It	also	instructs	Composer	to	update	the	component	up	to,	but	not	including,	the
component’s	next	major	version.	The	previous	example,	as	of	October	2014,	installs
Flysystem	version	0.5.9,	and	it	will	update	the	Flysystem	component	up	to,	but	not
including,	version	1.*.

You	can	review	the	result	of	this	command	in	the	newly	created	or	updated	composer.json
file	in	your	project’s	topmost	directory.	This	command	also	creates	a	composer.lock	file.
Commit	both	of	these	files	into	your	version	control	system.

http://semver.org/

Example	Project
Let’s	reinforce	our	Composer	skills	by	building	an	example	PHP	application	that	scans
URLs	from	a	CSV	file	and	reports	all	inaccessible	URLs.	Our	project	will	send	an	HTTP
request	to	each	URL.	If	a	URL	returns	an	HTTP	response	with	a	status	code	greater	than
or	equal	to	400,	we’ll	send	the	inaccessible	URL	to	standard	out.	Our	project	will	be	a
command-line	application,	and	the	path	to	the	CSV	file	will	be	the	first	and	only
command-line	argument.	Ultimately,	we’ll	execute	our	script,	pass	it	the	CSV	file	path,
and	see	a	list	of	inaccessible	URLs	on	standard	out:

php	scan.php	/path/to/urls.csv

Our	project	directory	looks	like	Figure	4-5.

Figure	4-5.	Component	directory	structure

The	first	thing	I	do	when	starting	a	new	PHP	project	is	determine	what	tasks	can	be	solved
with	existing	PHP	components.	The	scan.php	script	opens	and	iterates	a	CSV	file,	so	we’ll
need	a	PHP	component	that	can	read	and	iterate	CSV	data.	The	scan.php	script	also	sends
an	HTTP	request	to	each	URL	in	the	CSV	file,	so	we’ll	need	a	PHP	component	that	can
send	HTTP	requests	and	inspect	HTTP	responses.	It	is	certainly	possible	to	write	our	own
code	to	iterate	a	CSV	file	or	send	HTTP	requests,	but	why	should	we	waste	our	time	if
these	problems	are	already	solved?	Remember,	our	goal	is	to	scan	a	list	of	URLs.	Our	job
is	not	to	build	HTTP	and	CSV	parser	libraries.

After	browsing	Packagist,	I	find	the	guzzlehttp/guzzle	and	league/csv	PHP
components.	The	former	handles	HTTP	messages	and	the	latter	parses	and	iterates	CSV
data.	Let’s	install	these	components	with	Composer	using	these	commands	in	the	project’s
topmost	directory:

composer	require	guzzlehttp/guzzle;

composer	require	league/csv;

These	commands	instruct	Composer	to	download	these	two	components	into	a	new
vendor/	directory	in	the	project’s	topmost	directory.	It	also	creates	a	composer.json	file	and
a	composer.lock	file.

The	composer.lock	file
After	you	install	project	dependencies	with	Composer,	you’ll	notice	that	Composer	creates
a	composer.lock	file.	This	file	lists	all	of	the	PHP	components	used	by	our	project	and	the
components’	exact	version	numbers	(including	major,	minor,	and	patch	numbers).	This
effectively	locks	our	project	to	these	specific	PHP	component	versions.

Why	is	this	important?	If	a	composer.lock	file	is	present,	Composer	downloads	the	specific
PHP	component	versions	listed	in	the	composer.lock	file	regardless	of	the	component’s
latest	available	version	on	Packagist.	You	should	version	control	the	composer.lock	file
and	distribute	it	to	your	team	members	so	they	can	use	the	same	PHP	component	versions
as	you.	If	your	team	members,	your	staging	server,	and	your	production	server	all	use	the
same	PHP	component	versions,	you	minimize	the	risk	of	bugs	caused	by	component
version	discrepancies.

The	one	downside	with	the	composer.lock	file	is	that	composer	install	will	not	install
versions	newer	than	those	listed	in	the	composer.lock	file.	If	you	do	need	to	download
newer	component	versions	and	update	your	composer.lock	file,	use	composer	update.	The
composer	update	command	updates	your	components	to	their	latest	stable	versions	and
also	updates	the	composer.lock	file	with	new	PHP	component	version	numbers.

Autoloading	PHP	components
Now	that	our	project’s	PHP	components	are	installed	with	Composer,	how	do	we	use
them?	Luckily	for	us,	when	Composer	downloads	the	PHP	components	it	also	creates	a
single	PSR-compatible	autoloader	for	all	of	our	project	dependencies.	All	we	have	to	do	is
require	Composer’s	autoloader	at	the	top	of	the	scan.php	file:

<?php

require	'vendor/autoload.php';

Composer’s	autoloader	is	just	a	PHP	file	named	autoload.php	located	inside	the	vendor/
directory.	When	Composer	downloads	each	PHP	component,	Composer	inspects	each
component’s	own	composer.json	file	to	determine	how	the	component	prefers	to	be
autoloaded	and,	with	this	information,	creates	a	local	PSR-compatible	autoloader	for	it.
Ultimately,	we	can	instantiate	any	of	our	project’s	PHP	components	and	they	are
autoloaded	on-demand!	Pretty	neat,	huh?

Implement	scan.php
Let’s	finish	the	scan.php	script	using	the	Guzzle	and	CSV	components.	Remember,	the
path	to	the	CSV	file	is	provided	as	the	first	command-line	argument	(accessible	in	the
$argv	array)	when	our	PHP	script	is	executed.	The	scan.php	script	looks	like	Example	4-
1.

Example	4-1.	URL	scanner	app
<?php

//	1.	Use	Composer	autoloader

require	'vendor/autoload.php';

//	2.	Instantiate	Guzzle	HTTP	client

$client	=	new	\GuzzleHttp\Client();

//	3.	Open	and	iterate	CSV

$csv	=	new	\League\Csv\Reader($argv[1]);

foreach	($csv	as	$csvRow)	{

				try	{

								//	4.	Send	HTTP	OPTIONS	request

								$httpResponse	=	$client->options($csvRow[0]);

								//	5.	Inspect	HTTP	response	status	code

								if	($httpResponse->getStatusCode()	>=	400)	{

												throw	new	\Exception();

								}

				}	catch	(\Exception	$e)	{

								//	6.	Send	bad	URLs	to	standard	out

								echo	$csvRow[0]	.	PHP_EOL;

				}

}

Tip

Pay	attention	to	how	we	use	the	\League\Csv	and	\GuzzleHttp	namespaces	when	we
instantiate	the	guzzlehttp/guzzle	and	league/csv	components.	How	do	we	know	to	use
these	particular	namespaces?	I	read	the	guzzlehttp/guzzle	and	league/csv
documentation.	Remember,	good	PHP	components	have	documentation.

Add	a	few	URLs	to	the	urls.csv	file,	one	URL	per	line.	Make	sure	at	least	one	URL	is
invalid.	Next,	open	a	terminal	and	execute	the	scan.php	script:

php	scan.php	urls.csv

We	execute	the	php	binary	and	pass	it	two	arguments.	The	first	argument	is	the	path	to	the
scan.php	script.	The	second	argument	is	the	path	to	the	CSV	file	that	contains	a	list	of
URLs.	If	any	of	the	URLs	return	an	unsuccessful	HTTP	response,	they	are	output	to	the
terminal	screen.

Command-Line	Scripts	with	PHP
Did	you	know	you	can	write	command-line	scripts	with	PHP?	This	is	a	great	way	to
automate	maintenance	tasks	for	your	web	application.	Learn	more	about	writing	PHP
command	line	scripts	here:

http://php.net/manual/wrappers.php.php
https://php.net/manual/reserved.variables.argv.php
https://php.net/manual/reserved.variables.argc.php

http://php.net/manual/wrappers.php.php
https://php.net/manual/reserved.variables.argv.php
https://php.net/manual/reserved.variables.argc.php

Composer	and	Private	Repositories
So	far	I’ve	assumed	you	are	using	open	source	PHP	components	that	are	publicly
available.	As	much	as	I	create	and	use	open	source	software,	I	recognize	that	using	only
open	source	PHP	components	may	not	always	be	possible.	Sometimes	we	have	to	mix
open	source	and	proprietary	components	in	the	same	application.	This	is	especially	true
for	companies	that	use	internally	developed	PHP	components	that	cannot	be	open	sourced
due	to	licensing	or	security	concerns.	Composer	makes	this	a	nonissue.

Composer	can	manage	private	PHP	components	whose	repositories	require	authentication.
When	you	run	composer	install	or	composer	update,	Composer	prompts	you	if	a
component’s	repository	requires	authentication	credentials.	Composer	also	asks	if	you
want	to	save	the	repository	authentication	credentials	in	a	local	auth.json	file	(created
adjacent	to	the	composer.json	file).	An	example	auth.json	file	looks	like	this:

{

				"http-basic":	{

								"example.org":	{

												"username":	"your-username",

												"password":	"your-password"

								}

				}

}

In	most	cases,	you	should	not	version	control	the	auth.json	file.	Instead,	let	project
developers	create	their	own	auth.json	file	with	their	own	authentication	credentials.

If	you’d	rather	not	wait	for	Composer	to	request	authentication	credentials,	you	can
manually	tell	Composer	your	authentication	credentials	for	a	remote	machine	with	this
command:

composer	config	http-basic.example.org	your-username	your-password

In	this	example,	http-basic	lets	Composer	know	we	are	adding	authentication	details	for
a	given	domain.	The	example.org	hostname	identifies	the	remote	machine	that	contains
the	private	component	repository.	The	final	two	arguments	are	the	username	and	password
credentials.	By	default,	this	command	saves	credentials	in	the	current	project’s	auth.json
file.

You	can	also	save	authentication	credentials	system-wide	by	using	the	--global	flag.	This
flag	lets	Composer	use	your	credentials	for	all	projects	on	your	local	machine:

composer	config	--global	http-basic.example.org	your-username	your-password

Global	credentials	are	saved	in	the	~/.composer/auth.json	file.	If	you	are	using	Windows,
global	credentials	are	saved	in	%APPDATA%/Composer.

Tip

Learn	more	about	Composer	and	private	repositories	in	Authentication	management	in
Composer.

http://bit.ly/auth-manage

Create	PHP	Components
By	this	point	you	should	be	able	to	find	and	use	PHP	components.	Let’s	switch	gears	and
talk	about	creating	PHP	components.	Specifically,	we’ll	convert	the	URL	scanner
application	into	a	PHP	component	and	submit	it	to	the	Packagist	component	directory.

Creating	PHP	components	is	a	great	way	to	share	your	work	with	the	greater	PHP
community.	The	PHP	community	is	built	on	a	foundation	of	sharing	and	helping	others.	If
you	use	open	source	components	in	your	applications,	it’s	always	nice	to	return	the	favor
with	a	new	and	innovative	open	source	component.

Tip

Be	careful	that	you	do	not	rewrite	components	that	already	exist.	If	you	improve	upon	an
existing	component,	consider	sending	your	improvements	to	the	original	component	as	a
pull	request.	Otherwise,	you	risk	confusing	and	fragmenting	the	PHP	component
ecosystem	with	duplicate	components.

Vendor	and	Package	Names
Before	I	build	a	PHP	component,	I	choose	the	component’s	vendor	and	package	name.
Remember,	each	PHP	component	uses	a	globally	unique	vendor	and	package	name
combination	to	avoid	name	collisions	with	other	components.	I	recommend	you	use	only
lowercase	letters	for	your	vendor	and	package	names.

A	vendor	name	is	the	brand	or	identity	to	which	a	component	belongs.	Many	of	my	own
PHP	components	use	the	codeguy	vendor	name	because	this	is	my	online	identity.	Choose
a	vendor	name	that	best	represents	you	or	your	component’s	brand.

Tip

Search	Packagist	before	you	choose	a	vendor	name	to	make	sure	it	is	not	already	claimed
by	another	developer.

A	package	name	identifies	a	PHP	component	beneath	a	given	vendor	name.	Many
components	can	live	beneath	a	single	vendor	name.	For	this	example,	I’ll	use	modernphp
as	the	vendor	name	and	scanner	as	the	package	name.

Namespaces
As	we	discussed	in	Chapter	2,	each	component	lives	beneath	its	own	PHP	namespace	so
that	it	does	not	pollute	the	global	namespace	or	collide	with	other	components	that	use	the
same	PHP	class	names.

A	common	misconception	is	that	the	component’s	PHP	namespace	must	match	the
component’s	vendor	and	package	names.	This	is	not	true.	The	component’s	PHP
namespace	is	unrelated	to	the	component’s	vendor	and	package	names.	The	vendor	and
package	names	are	only	used	by	Packagist	and	Composer	to	identify	a	component.	You
use	the	component’s	namespace	when	using	the	component	in	your	PHP	code.

For	this	tutorial,	we’ll	create	our	component	beneath	the	PHP	namespace
Oreilly\ModernPHP.	This	namespace	does	not	exist	yet.	I	just	pulled	this	out	of	thin	air
for	this	particular	component.

Filesystem	Organization
PHP	components	have	largely	standardized	on	this	filesystem	structure:

src/

This	directory	contains	the	component’s	source	code	(e.g.,	PHP	class	files).

tests/

This	directory	contains	the	component’s	tests.	We	will	not	use	this	directory	in	this
example.

composer.json

This	is	the	Composer	configuration	file.	This	file	describes	the	component	and	tells
Composer’s	autoloader	to	map	your	component’s	PSR-4	namespace	to	the	src/
directory.

README.md

This	Markdown	file	provides	helpful	information	about	this	component,	including	its
name,	description,	author,	usage,	contributor	guidelines,	software	license,	and	credits.

CONTRIBUTING.md

This	Markdown	file	describes	how	others	can	contribute	to	this	component.

LICENSE

This	plain-text	file	contains	the	component’s	software	license.

CHANGELOG.md

This	Markdown	file	lists	changes	introduced	in	each	new	component	version.

Tip

If	you’re	having	trouble	starting	your	own	PHP	component,	have	a	look	at	the	PHP
League’s	excellent	PHP	component	boilerplate	repository.

https://github.com/thephpleague/skeleton

The	composer.json	File
The	composer.json	file	is	required	and	must	contain	valid	JSON.	It	includes	information
used	by	Composer	to	find,	install,	and	autoload	the	PHP	component.	It	also	contains
information	for	the	component’s	Packagist	directory	listing.

Example	4-2	shows	a	composer.json	file	for	our	URL	scanner	component.	It	includes	all	of
the	composer.json	properties	that	I	use	most	often	for	my	own	PHP	components.

Example	4-2.	The	URL	Scanner	component	composer.json	file
{

				"name":	"modernphp/scanner",

				"description":	"Scan	URLs	from	a	CSV	file	and	report	inaccessible	URLs",

				"keywords":	["url",	"scanner",	"csv"],

				"homepage":	"http://example.com",

				"license":	"MIT",

				"authors":	[

								{

												"name":	"Josh	Lockhart",

												"homepage":	"https://github.com/codeguy",

												"role":	"Developer"

								}

],

				"support":	{

								"email":	"help@example.com"

				},

				"require":	{

								"php"	:	">=5.4.0",

								"guzzlehttp/guzzle":	"~5.0"

				},

				"require-dev":	{

								"phpunit/phpunit":	"~4.3"

				},

				"suggest":	{

								"league/csv":	"~6.0"

				},

				"autoload":	{

								"psr-4":	{

												"Oreilly\\ModernPHP\\":	"src/"

								}

				}

}

This	is	admittedly	a	lot	to	digest,	so	let’s	step	through	each	composer.json	property	in
detail:
name

This	is	the	component’s	vendor	and	package	name,	separated	with	a	/	character.	This
value	is	displayed	on	Packagist.

description

This	contains	a	few	sentences	that	succinctly	describe	the	component.	This	description
is	displayed	on	Packagist.

keywords

This	contains	an	appropriate	number	of	keywords	that	describe	the	component.	These
keywords	help	others	find	this	component	on	Packagist.

homepage

This	is	the	URL	of	the	component’s	website.

license

This	is	the	software	license	with	which	the	PHP	component	is	released.	I	prefer	to	use
the	MIT	Public	License.	You	can	read	more	about	software	licenses	at
http://choosealicense.com.	Remember	to	always	release	your	code	with	a	license.

authors

This	is	an	array	of	information	for	each	project	author.	You	should	include	at	least	a
name	and	URL	for	each	author.

support

This	is	how	the	component’s	users	find	technical	support.	I	prefer	to	include	an	email
address	and	support	forum	URL.	You	could	also	list	an	IRC	channel,	for	example.

require

This	lists	the	PHP	component’s	own	component	dependencies.	You	should	list	each
dependency’s	vendor/package	name	and	minimum	version	number.	I	also	like	to	list	the
minimum	PHP	version	required	by	this	component.	All	dependencies	listed	beneath	this
property	are	installed	for	both	development	and	production	project	installations.

require-dev

This	acts	like	the	require	property,	but	it	lists	only	the	dependencies	required	to
develop	this	component.	For	example,	I	often	list	phpunit	as	a	dev	dependency	so	that
other	component	contributors	can	write	and	run	tests.	These	dependencies	are	installed
only	during	development.	They	are	not	installed	in	production	projects.

suggest

This	acts	like	the	require	property,	but	it	merely	suggests	other	components	because
they	may	be	useful	when	used	with	our	component.	Unlike	the	require	property,	this
object’s	values	are	free	text	fields	that	describe	each	suggested	component.	Composer
does	not	install	suggested	components.

autoload

This	tells	the	Composer	autoloader	how	to	autoload	this	component.	I	recommend	you
use	the	PSR-4	autoloader,	as	demonstrated	in	Example	4-2.	Beneath	the	psr-4	property,
you	map	the	component’s	namespace	prefix	to	a	filesystem	path	relative	to	the
component’s	root	directory.	This	makes	our	component	compatible	with	a	standard
PSR-4	autoloader.	In	Example	4-2,	I	map	the	Oreilly\ModernPHP	namespace	to	the	src/
directory.	The	mapping’s	namespace	must	end	with	two	back	slash	characters	(\\)	to
avoid	conflicts	with	other	components	that	use	a	namespace	with	a	similar	sequence	of
characters.	Based	on	the	example	mapping,	if	we	instantiate	a	hypothetical
Oreilly\ModernPHP\Url\Scanner	class,	Composer	will	autoload	the	PHP	class	file	at
src/Url/Scanner.php.

Tip

Learn	more	about	the	complete	composer.json	schema	at	getcomposer.org.

http://choosealicense.com
https://getcomposer.org/doc/04-schema.md

The	README	file
The	README	file	is	often	the	component’s	first	introduction	to	its	users.	This	is
especially	true	for	components	hosted	on	GitHub	and	Bitbucket.	Therefore,	it’s	important
that	the	component’s	README	file	provides,	at	a	minimum,	this	information:

Component	name	and	description
Install	instructions
Usage	instructions
Testing	instructions
Contributing	instructions
Support	resources
Author	credits
Software	license

Tip

GitHub	and	Bitbucket	can	render	README	files	in	Markdown	format.	This	means	you
can	write	well-formatted	README	files	with	headers,	lists,	links,	and	images.	Use	this	to
your	advantage!	All	you	have	to	do	is	add	the	.md	or	.markdown	file	extension	to	the
README	file.	The	same	principle	applies	to	the	CONTRIBUTING	and	CHANGELOG
files.	Learn	more	about	the	Markdown	format	at	Daring	Fireball.

http://bit.ly/markdown-doc

Component	Implementation
And	now	we	arrive	at	the	component’s	meat	and	potatoes	—	its	implementation.	This	is
where	you	write	the	PHP	classes,	interfaces,	and	traits	that	form	the	PHP	component.
What	classes	you	write,	and	how	many,	depends	entirely	on	the	PHP	component’s
purpose.	However,	all	component	classes,	interfaces,	and	traits	must	live	in	the	src/
directory	and	exist	beneath	the	component’s	namespace	prefix	listed	in	the	composer.json
file.

For	this	demonstration,	I’ll	create	a	single	PHP	class	named	Scanner	that	exists	beneath
the	Url	subnamespace	beneath	the	Oreilly\ModernPHP	namespace	listed	in	the
composer.json	file.	The	Scanner	class	file	lives	at	src/Url/Scanner.php.	The	Scanner	class
implements	the	same	logic	as	our	earlier	URL	scanner	example	application,	except	it
encapsulates	the	URL	scanning	behavior	in	a	PHP	class	(Example	4-3).

Example	4-3.	The	URL	Scanner	component	class
<?php

namespace	Oreilly\ModernPHP\Url;

class	Scanner

{

				/**

					*	@var	array	An	array	of	URLs

					*/

				protected	$urls;

				/**

					*	@var	\GuzzleHttp\Client

					*/

				protected	$httpClient;

				/**

					*	Constructor

					*	@param	array	$urls	An	array	of	URLs	to	scan

					*/

				public	function	__construct(array	$urls)

				{

								$this->urls	=	$urls;

								$this->httpClient	=	new	\GuzzleHttp\Client();

				}

				/**

					*	Get	invalid	URLs

					*	@return	array

					*/

				public	function	getInvalidUrls()

				{

								$invalidUrls	=	[];

								foreach	($this->urls	as	$url)	{

												try	{

																$statusCode	=	$this->getStatusCodeForUrl($url);

												}	catch	(\Exception	$e)	{

																$statusCode	=	500;

												}

												if	($statusCode	>=	400)	{

																array_push($invalidUrls,	[

																				'url'	=>	$url,

																				'status'	=>	$statusCode

]);

												}

								}

								return	$invalidUrls;

				}

				/**

					*	Get	HTTP	status	code	for	URL

					*	@param	string	$url	The	remote	URL

					*	@return	int	The	HTTP	status	code

					*/

				protected	function	getStatusCodeForUrl($url)

				{

								$httpResponse	=	$this->httpClient->options($url);

								return	$httpResponse->getStatusCode();

				}

}

Instead	of	parsing	and	iterating	a	CSV	file,	we	inject	an	array	of	URLs	into	the	Scanner
class	constructor.	We	want	our	URL	scanner	class	to	be	as	generic	as	possible.	If	we
demand	a	CSV	file,	we	inherently	limit	our	component’s	usefulness.	If	we	accept	an	array
of	URLs,	we	let	the	end	user	decide	how	to	fetch	an	array	of	URLs	(from	a	PHP	array,	a
CSV	file,	an	iterator,	etc).	That	being	said,	we	still	recommend	the	league/csv	component
because	it	can	be	helpful	for	developers	using	our	component.	We	include	the	league/csv
component	in	the	composer.json	manifest’s	suggest	property.

The	Scanner	class	has	a	hard	dependency	on	the	guzzlehttp/guzzle	component.
However,	we	isolate	each	URL’s	HTTP	request	in	the	getStatusCodeForUrl()	method.
This	lets	us	stub	(or	override)	this	method’s	implementation	in	our	component’s	unit	tests
so	that	our	tests	do	not	rely	on	a	working	Internet	connection.

Version	Control
We’re	almost	done.	Before	we	submit	our	component	to	Packagist,	we	must	publish	it	to	a
public	code	repository.	I	prefer	to	publish	my	open	source	PHP	components	to	GitHub.
However,	any	public	Git	repository	is	fine	(I	have	published	this	component	to	GitHub).

It’s	also	a	good	idea	to	tag	each	component	release	using	the	Semantic	Versioning	scheme.
This	lets	component	consumers	request	specific	versions	of	your	component	(e.g.,	~1.2).
I’ll	create	a	1.0.0	tag	for	the	URL	scanner	component.

https://github.com/modern-php/scanner

Packagist	Submission
Now	we’re	ready	to	submit	the	component	to	Packagist.	If	you	don’t	use	GitHub,	go
ahead	and	create	a	Packagist	account.	You	can	also	log	in	to	Packagist	with	your	GitHub
credentials.

Once	logged	in,	click	the	big	green	Submit	Package	button	at	the	top	right	of	the	website.
Enter	the	full	Git	repository	URL	into	the	Repository	URL	text	field	and	click	the	Check
button.	Packagist	verifies	the	repository	URL	and	prompts	you	to	confirm	your
submission.	Click	Submit	to	finalize	your	component	submission.	Packagist	creates	and
redirects	you	to	the	component	listing,	which	looks	Figure	4-6.

Figure	4-6.	Packagist	component	listing

You’ll	notice	it	pulls	the	component	name,	description,	keywords,	dependencies,	and
suggestions	from	the	component’s	composer.json	file.	You’ll	also	notice	that	it	shows	the
repository	branches	and	tags,	too.	Packagist	establishes	a	direct	correlation	between
repository	tags	and	semantic	version	numbers.	This	is	why	I	recommend	your	repository
tags	be	valid	version	numbers	like	1.0.0,	1.1.0,	and	so	on.	However,	we	still	have	that
big	red	alert	message	that	reads:

This	package	is	not	auto-updated.	Please	set	up	the	GitHub	Service	Hook	for

Packagist	so	that	it	gets	updated	whenever	you	push!

We	can	activate	a	GitHub	or	Bitbucket	hook	that	notifies	Packagist	whenever	the
component	repository	is	updated.	Learn	how	to	setup	this	repository	hook	at
https://packagist.org/profile/.

https://packagist.org/register/
https://packagist.org/profile/

Using	the	Component
We’re	done!	Now	anyone	can	install	the	URL	scanner	component	with	Composer	and	use
it	in	their	PHP	applications.	Run	this	command	in	your	terminal	to	install	the	URL	scanner
component	with	Composer:

composer	require	modernphp/scanner

Then	you	can	use	the	URL	scanner	component,	as	shown	in	Example	4-4.

Example	4-4.	URL	Scanner	component	usage
<?php

require	'vendor/autoload.php';

$urls	=	[

				'http://www.apple.com',

				'http://php.net',

				'http://sdfssdwerw.org'

];

$scanner	=	new	\Oreilly\ModernPHP\Url\Scanner($urls);

print_r($scanner->getInvalidUrls());

Chapter	5.	Good	Practices
This	chapter	contains	an	assortment	of	good	practices	that	you	should	apply	when	building
PHP	applications.	Following	good	practices	makes	your	applications	faster,	more	secure,
and	more	stable.	The	PHP	language	is	an	accumulation	of	tools	introduced	piecemeal	over
a	long	period	of	time,	and	we	use	these	tools	to	apply	good	practices.	Tools	change	with
the	passage	of	time	as	newer	and	better	solutions	are	introduced	in	newer	PHP	versions.
Unfortunately,	the	PHP	language	still	contains	outdated	tools	from	its	past,	and	it’s
possible	to	build	slow	and	insecure	applications	with	these	outmoded	tools	if	you’re	not
careful.	The	trick	is	knowing	which	tools	to	use	and	which	to	ignore.	That’s	what	this
chapter	is	all	about.

I’m	not	preaching	“best	practices”	from	atop	an	academic	ivory	tower.	This	chapter
contains	good	and	practical	advice	that	I	use	every	day	in	all	of	my	own	projects.	You	can
immediately	apply	this	knowledge	to	your	own	projects.

Note

Good	practices	demonstrated	in	this	chapter	have	always	been	possible	with	past	and
present	PHP	versions.	However,	how	you	implement	these	practices	changes	as	the	PHP
language	evolves.	Newer	PHP	versions	introduce	tools	that	make	it	easier	to	apply	good
practices.	This	chapter	demonstrates	how	to	apply	good	practices	with	the	latest	tools	in
PHP	5.3+.

Sanitize,	Validate,	and	Escape
Fox	Mulder	is	correct	—	trust	no	one.	Never	trust	any	data	that	originates	from	a	source
not	under	your	direct	control.	A	few	external	sources	are:

$_GET

$_POST

$_REQUEST

$_COOKIE

$argv

php://stdin

php://input

file_get_contents()

Remote	databases
Remote	APIs
Data	from	your	clients

All	of	these	external	data	sources	are	potential	attack	vectors	that	can	inject	malicious	data
into	your	PHP	scripts	(intentionally	or	accidentally).	Writing	a	PHP	script	that	receives
user	input	and	renders	output	is	easy.	Doing	so	safely	requires	a	bit	more	thought.	The
simplest	advice	I	can	give	you	is	this:	sanitize	input,	validate	data,	and	escape	output.

Sanitize	Input
When	you	sanitize	input	(i.e.,	data	from	any	of	the	sources	listed	previously),	you	escape
or	remove	unsafe	characters.	It’s	important	to	sanitize	input	data	before	it	reaches	your
application’s	storage	layer	(e.g.,	Redis	or	MySQL).	This	is	your	first	line	of	defense.	For
example,	assume	your	website	comment	form	accepts	HTML.	By	default,	nothing
prevents	a	visitor	from	adding	a	devious	<script>	tag	to	the	comment	text	like	this:

<p>

				This	was	a	helpful	article!

</p>

<script>window.location.href='http://example.com';</script>

If	you	don’t	sanitize	this	comment,	you’ll	inject	malevolent	code	into	your	database	that
can	be	rendered	into	your	website’s	markup.	When	your	website	visitors	go	to	a	page	with
this	unsanitized	comment,	they’re	redirected	to	a	website	that	does	bad	things.	This	is	one
example	why	you	must	sanitize	input	data	that	you	do	not	control.	In	my	experience,	there
are	several	types	of	input	data	that	you’ll	run	into	most	often:	HTML,	SQL	queries,	and
user	profile	information	(i.e.,	email	addresses	and	phone	numbers).

HTML
You	sanitize	HTML	special	characters	(e.g.,	&,	>,	″)	into	their	HTML	entity
equivalents	with	the	htmlentities()	function	(Example	5-1).	This	function	escapes	all
HTML	characters	in	a	given	string	and	renders	the	string	safe	for	your	application’s
storage	layer.

The	htmlentities()	function	is	dumb,	though.	It	does	not	validate	HTML	input.	It	does
not	escape	single	quotes	by	default.	And	it	cannot	detect	the	input	string’s	character	set.
Here’s	how	to	use	the	htmlentities()	function	correctly.	The	first	argument	is	the	input
string.	The	second	argument	is	the	ENT_QUOTES	constant,	which	prompts	the	function	to
encode	single	quotes.	The	third	argument	specifies	the	input	string’s	character	set.

Example	5-1.	Sanitize	input	with	the	htmlentities()	function
<?php

$input	=	'<p><script>alert("You	won	the	Nigerian	lottery!");</script></p>';

echo	htmlentities($input,	ENT_QUOTES,	'UTF-8');

If	you	require	more	finesse	when	sanitizing	HTML	input,	use	the	HTML	Purifier	library.
HTML	Purifier	is	a	very	robust	and	secure	PHP	library	that	sanitizes	HTML	input
according	to	rules	that	you	provide.	The	HTML	Purifier	library’s	downside	is	that	it	is
slow	and	potentially	difficult	to	configure.

Warning

Do	not	sanitize	HTML	with	regular-expression	functions	such	as	preg_replace(),
preg_replace_all()	and	preg_replace_callback().	Regular	expressions	are
complicated,	the	HTML	input	can	be	invalid,	and	the	risk	of	error	is	high.

SQL	queries
There	are	times	when	you	must	build	a	SQL	query	based	on	input	data.	Sometimes	this
input	data	arrives	in	an	HTTP	request	query	string	(e.g.,	?user=1).	Other	times	this	input

http://php.net/manual/function.htmlentities.php
http://htmlpurifier.org/

data	arrives	as	an	HTTP	request	URI	segment	(e.g.,	/users/1).	If	you’re	not	careful,	bad
people	can	purposefully	malform	your	SQL	queries	and	wreak	havoc	on	your	database.
For	example,	I	see	many	beginner	PHP	programmers	build	SQL	queries	by	concatenating
raw	$_GET	and	$_POST	input	data,	as	in	Example	5-2.

Example	5-2.	Bad	SQL	query
$sql	=	sprintf(

				'UPDATE	users	SET	password	=	"%s"	WHERE	id	=	%s',

				$_POST['password'],

				$_GET['id']

);

This	is	bad!	What	if	someone	sends	this	HTTP	request	to	your	PHP	script?
POST	/user?id=1	HTTP/1.1

Content-Length:	17

Content-Type:	application/x-www-form-urlencoded

password=abc";--

This	HTTP	request	sets	every	user’s	password	to	abc	because	many	SQL	databases
consider	--	to	be	the	beginning	of	a	comment	causing	subsequent	text	to	be	ignored.
Never	use	unsanitized	input	data	in	a	SQL	query.	If	you	need	to	integrate	input	data	in	a
SQL	query,	use	a	PDO	prepared	statement.	PDO	is	a	database	abstraction	layer	built	into
PHP	that	presents	a	single	interface	to	multiple	databases.	PDO	prepared	statements	are	a
PDO	tool	that	sanitizes	and	safely	embeds	external	data	into	a	SQL	query	to	avoid
problems	like	Example	5-2.	I	consider	PDO	and	PDO	statements	extremely	important
tools,	so	I’ve	given	them	their	own	section	later	in	this	chapter.

User	profile	information
If	your	application	has	user	accounts,	you’ll	likely	encounter	email	addresses,	telephone
numbers,	zip	codes,	and	other	profile-related	information.	PHP	anticipates	this	scenario
with	the	filter_var()	and	filter_input()	functions.	These	two	functions	accept	a
variety	of	flags	to	sanitize	different	forms	of	input:	emails,	URL-encoded	strings,	integers,
floats,	HTML	characters,	URLs,	and	specific	ASCII	character	ranges.

Example	5-3	demonstrates	how	to	sanitize	an	email	address	by	removing	all	characters
except	letters,	digits,	and	!#$%&’*+-/=?^_`{|}~@.[].

Example	5-3.	Sanitize	user	profile	email	address
<?php

$email	=	'john@example.com';

$emailSafe	=	filter_var($email,	FILTER_SANITIZE_EMAIL);

Example	5-4	demonstrates	how	to	sanitize	a	user’s	bio	by	removing	characters	below
ASCII	32	and	escaping	characters	above	ASCII	127.

Example	5-4.	Sanitize	user	profile	international	characters
<?php

$string	=	"\nIñtërnâtiônàlizætiøn\t";

$safeString	=	filter_var(

				$string,

				FILTER_SANITIZE_STRING,

				FILTER_FLAG_STRIP_LOW|FILTER_FLAG_ENCODE_HIGH

);

Note

Discover	more	filter_var()	flags	and	options	at	http://php.net/manual/function.filter-
var.php.

http://php.net/manual/function.filter-var.php

Validate	Data
It	is	also	important	to	validate	data.	Unlike	sanitization,	validation	does	not	remove
information	from	input	data.	Validation	only	confirms	that	input	data	meets	your
expectations.	If	you	expect	an	email	address,	make	sure	the	input	data	is	an	email	address.
If	you	expect	a	phone	number,	make	sure	the	input	data	is	a	phone	number.	That’s	all	there
is	to	it.	Validation	ensures	that	you	persist	accurate	and	well-formatted	information	in	your
application’s	storage	layer.	If	you	encounter	invalid	data,	you	can	abort	the	data
persistence	operation	and	surface	an	appropriate	error	message	to	your	application’s	user.
Validation	also	prevents	potential	database	errors.	For	example,	if	MySQL	expects	a
DATETIME	value	but	is	given	the	string	next	year,	MySQL	will	either	error	out	or	use	a
default	(and	incorrect)	value.	Either	way,	your	application’s	data	integrity	is	compromised
by	invalid	data.

You	can	validate	user	input	with	the	filter_var()	function	with	any	of	the
FILTER_VALIDATE_*	flags.	PHP	provides	flags	to	validate	Booleans,	emails,	floats,
integers,	IP	addresses,	regular	expressions,	and	URLs.	Example	5-5	demonstrates	how	to
validate	an	email	address.

Example	5-5.	Validate	email	address
<?php

$input	=	'john@example.com';

$isEmail	=	filter_var($input,	FILTER_VALIDATE_EMAIL);

if	($isEmail	!==	false)	{

				echo	"Success";

}	else	{

				echo	"Fail";

}

Pay	close	attention	to	the	filter_var()	function’s	return	value.	If	the	validation	succeeds,
the	return	value	is	the	original	validated	value.	If	the	validation	fails,	the	return	value	is
false.

Although	the	filter_var()	function	provides	a	number	of	validation	flags,	it	cannot
validate	everything.	I	recommend	these	additional	validation	components,	too:

aura/filter

respect/validation

symfony/validator

Tip

You	should	validate	and	sanitize	input	data	to	make	sure	input	data	is	safe	and	what	you
expect.

https://packagist.org/packages/aura/filter
https://packagist.org/packages/respect/validation
https://packagist.org/packages/symfony/validator

Escape	Output
When	it’s	time	to	render	output	to	a	web	page	or	API	response,	it	is	very	important	that
you	escape	your	output.	This	is	one	more	layer	of	protection	that	prevents	malicious	code
from	being	rendered	and	inadvertently	executed	by	your	application’s	users.

Escape	output	with	the	PHP	htmlentities()	function	that	we	mentioned	earlier.	Be	sure
you	use	ENT_QUOTES	as	the	second	argument	so	that	it	escapes	both	single	and	double
quotes.	Specify	the	appropriate	character	encoding	(usually	UTF-8)	as	the	third	argument.
Example	5-6	demonstrates	how	to	escape	HTML	output	before	it	is	rendered.

Example	5-6.	Escape	output	with	the	htmlentities	function
<?php

$output	=	'<p><script>alert("NSA	backdoor	installed");</script>';

echo	htmlentities($output,	ENT_QUOTES,	'UTF-8');

Some	PHP	template	engines	like	twig/twig	(my	favorite)	or	smarty/smarty	escape
output	automatically.	The	Twig	template	engine	by	Sensio	Labs,	for	example,	escapes	all
output	by	default	unless	you	tell	it	otherwise.	This	is	a	brilliant	default	and	provides	a	nice
safety	net	for	your	PHP	web	applications.

https://packagist.org/packages/twig/twig
https://packagist.org/packages/smarty/smarty

Passwords
Password	security	is	monumentally	important	given	the	growing	number	of	online	attacks.
How	often	have	you	cancelled	a	credit	card	because	a	major	retailer	was	hacked?	Many
retailers	have	(and	will)	fall	victim	to	malicious	hackers	because	they	do	not	protect	their
systems	with	best	security	practices.	Your	PHP	applications	are	no	different,	and	they	are
vulnerable	to	the	same	attacks	unless	you	use	appropriate	precautions.

One	important	precaution	is	password	security.	It	is	your	duty	to	safely	manage,	hash,	and
store	user	passwords.	It	doesn’t	matter	if	your	application	is	a	trivial	game	or	a	vault	for
top-secret	business	documents.	Your	users	entrust	you	with	their	information	and	expect
you	to	guard	their	information	with	the	best	security	practices	available.	I	meet	many	PHP
developers	who	don’t	understand	how	to	safely	manage	passwords.	After	all,	securely
managing	passwords	is	hard.	Fortunately,	PHP	provides	built-in	tools	that	make	password
security	fairly	easy.	This	section	demonstrates	how	to	use	these	tools	with	modern	security
practices.

Never	Know	User	Passwords
You	should	never	know	your	users’	passwords.	You	should	never	be	able	to	know	your
users’	passwords.	If	your	application’s	database	is	hacked,	you	don’t	want	plain-text	or
decryptable	passwords	sitting	in	your	database.	Leaked	passwords	are	a	serious	breach	of
trust,	and	they	dump	a	mountain	of	legal	liability	on	you	or	your	company.	The	less	you
know,	the	safer	you	are.

Never	Restrict	User	Passwords
It	frustrates	me	when	a	website	requires	my	account	password	to	satisfy	a	specific	format.
It	makes	me	even	angrier	when	my	account	password	cannot	be	longer	than	{N}	number
of	characters.	Why!?	I	understand	that	password	formats	may	be	restricted	for
compatibility	with	legacy	applications	or	databases,	but	this	is	not	an	excuse	for	poor
security	practices.

Never	restrict	your	users’	passwords.	If	you	require	passwords	to	fit	a	particular	pattern,
you	are	effectively	providing	a	roadmap	for	bad	guys	to	hack	your	application.	If	you	must
restrict	user	passwords,	I	recommend	you	only	require	a	minimum	length.	It	is	not
unreasonable	to	blacklist	commonly	used	or	dictionary-based	passwords,	too.

Never	Email	User	Passwords
Never	send	passwords	via	email.	If	you	send	my	password	via	email,	I	know	three	things:
you	know	my	password;	you	are	storing	my	password	in	plain	text	or	in	a	decryptable
format;	and	you	have	no	qualms	sending	my	password	over	the	Internet	in	plain	text.

Instead,	send	an	email	with	a	URL	where	I	can	choose	or	change	my	own	password.	Web
applications	often	generate	a	unique	token	that	can	only	be	used	once	to	choose	or	change
a	password.	For	example,	suppose	I	forget	my	account	password	for	your	web	application.
I	click	the	“Forgot	password”	link	on	your	login	form,	and	I	am	directed	to	a	form	where	I
enter	my	email	address	to	request	a	new	password.	Your	application	generates	a	unique
token,	and	it	associates	this	token	with	the	account	identified	by	my	email	address.	Your
application	sends	an	email	to	the	account’s	email	address	with	a	URL	that	includes	the
unique	token	as	a	URL	segment	or	a	query-string	parameter.	When	I	visit	the	URL,	your
application	validates	the	token	and,	if	the	token	is	valid,	allows	me	to	choose	a	new
password	for	my	account.	After	I	choose	a	new	password,	your	application	invalidates	the
token.

Hash	User	Passwords	with	bcrypt
You	should	hash	user	passwords.	Do	not	encrypt	user	passwords.	Encryption	and	hashing
are	not	synonymous.	Encryption	is	a	two-way	algorithm,	meaning	what	is	encrypted	can
later	be	decrypted	by	design.	Hashing	is	a	one-way	algorithm.	Hashed	data	cannot	be
reverted	to	its	original	form,	and	identical	data	always	produces	the	same	hash	values.

When	you	store	a	user	password	in	your	database,	you	hash	the	password	first	and	store
the	password	hash	in	your	database.	If	hackers	break	into	your	database,	they	see	only
meaningless	password	hashes	that	require	a	massive	amount	of	time	and	NSA	resources	to
crack.

Many	hashing	algorithms	are	available	(e.g.,	MD5,	SHA1,	bcrypt,	scrypt).	Some	are	fast
and	designed	to	verify	data	integrity.	Others	are	slow	and	designed	to	be	safe	and	secure.
Slow,	safe,	and	secure	are	what	we	want	when	it	comes	to	password	generation	and
storage.

The	most	secure	peer-reviewed	hashing	algorithm	known	today	is	bcrypt.	Unlike	MD5
and	SHA1,	bcrypt	is	designed	to	be	very	slow.	The	bcrypt	algorithm	automatically	salts
data	to	foil	potential	rainbow	table	attacks.	The	bcrypt	algorithm	also	consumes	a	large
amount	of	time	(measured	in	seconds)	while	iteratively	hashing	data	to	generate	a	super-
secure	final	hash	value.	The	number	of	hash	iterations	is	called	the	work	factor.	A	higher
work	factor	makes	it	exponentially	more	expensive	for	a	bad	guy	to	crack	password
hashes.	The	bcrypt	algorithm	is	future-proof,	too,	because	you	can	simply	increase	its
work	factor	as	computers	become	faster.

The	bcrypt	algorithm	is	extensively	peer-reviewed.	Minds	far	greater	than	my	own	have
reviewed	the	bcrypt	algorithm	for	potential	exploits,	and	so	far	none	has	been	found.	It	is
very	important	that	you	rely	on	peer-reviewed	hashing	algorithms.	Never	create	your	own.
There	is	safety	in	numbers,	and	odds	are	you	are	not	a	cryptography	expert	(unless	you
are,	in	which	case	tell	Bruce	Schneier	I	said	hello).

Password	Hashing	API
As	you	can	see,	there	are	a	lot	of	considerations	to	make	when	working	with	user
passwords.	However,	Anthony	Ferrara	was	kind	enough	to	build	the	native	password
hashing	API	available	in	PHP	5.5.0.	PHP’s	native	password	hashing	API	provides	easy-to-
use	functions	that	drastically	simplify	password	hashing	and	verification.	The	password
hashing	API	also	uses	the	bcrypt	hashing	algorithm	by	default.

Note

Anthony	Ferrara	(also	known	as	@ircmaxell	on	Twitter)	is	a	Developer	Advocate	at
Google,	and	he	is	an	authoritative	source	for	all	things	related	to	PHP	performance	and
security.	Anthony	is	also	the	author	of	the	PHP	password	hashing	API.	I	encourage	you	to
follow	Anthony	on	Twitter	and	read	his	blog.	I	want	to	say	a	big	thank	you	to	Anthony.
His	contributions	to	PHP	have	single-handedly	improved	PHP	application	security	by
making	best	security	practices	more	accessible.

You’ll	encounter	two	scenarios	when	building	web	applications:	user	registration	and	user
login.	Let’s	explore	how	the	PHP	password	hashing	API	simplifies	both	scenarios.

User	registration
A	web	application	can’t	exist	without	users,	and	users	need	a	way	to	sign	up	for	an
account.	Let’s	assume	our	hypothetical	application	has	a	PHP	file	available	at	the	URL
/register.php.	This	PHP	file	receives	a	URL-encoded	HTTP	POST	request	with	an	email
address	and	password.	We	create	a	user	account	if	the	email	address	is	valid	and	the
password	contains	at	least	eight	characters.	This	is	an	example	HTTP	POST	request:

POST	/register.php	HTTP/1.1

Content-Length:	43

Content-Type:	application/x-www-form-urlencoded

email=john@example.com&password=sekritshhh!

Example	5-7	is	the	register.php	file	that	receives	the	HTTP	POST	request.

Example	5-7.	User	registration	script
01	<?php

02	try	{

03					//	Validate	email

04					$email	=	filter_input(INPUT_POST,	'email',	FILTER_VALIDATE_EMAIL);

05					if	(!$email)	{

06									throw	new	Exception('Invalid	email');

07					}

08

09					//	Validate	password

10					$password	=	filter_input(INPUT_POST,	'password');

11					if	(!$password	||	mb_strlen($password)	<	8)	{

12									throw	new	Exception('Password	must	contain	8+	characters');

13					}

14

15					//	Create	password	hash

16					$passwordHash	=	password_hash(

17								$password,

18								PASSWORD_DEFAULT,

19								['cost'	=>	12]

20);

21					if	($passwordHash	===	false)	{

22									throw	new	Exception('Password	hash	failed');

23					}

24

http://blog.ircmaxell.com
http://php.net/manual/book.password.php
https://twitter.com/ircmaxell
https://twitter.com/ircmaxell
http://blog.ircmaxell.com

25					//	Create	user	account	(THIS	IS	PSUEDO-CODE)

26					$user	=	new	User();

27					$user->email	=	$email;

28					$user->password_hash	=	$passwordHash;

29					$user->save();

30

31					//	Redirect	to	login	page

32					header('HTTP/1.1	302	Redirect');

33					header('Location:	/login.php');

34	}	catch	(Exception	$e)	{

35					//	Report	error

36					header('HTTP/1.1	400	Bad	request');

37					echo	$e->getMessage();

38	}

In	Example	5-7:

Lines	4–7	validate	the	user	email	address.	We	toss	an	exception	if	the	email	is
invalid.
Lines	10–13	validate	the	plain-text	user	password	pulled	from	the	HTTP	request
body.	We	toss	an	exception	if	the	plain-text	user	password	contains	fewer	than	eight
characters.
Lines	16–23	create	a	password	hash	with	the	PHP	password	hashing	API’s
password_hash()	function.	The	password_hash()	function’s	first	argument	is	the
plain-text	user	password.	The	second	argument	is	the	PASSWORD_DEFAULT	constant,
which	tells	PHP	to	use	the	bcrypt	hashing	algorithm.	The	final	argument	is	an	array
of	hashing	options.	The	cost	array	key	specifies	the	bcrypt	work	factor.	A	work
factor	of	10	is	used	by	default,	but	you	should	increase	the	cost	factor	for	your
particular	hardware	so	that	password	hashing	requires	0.1	to	0.5	seconds	to	finish.	We
toss	an	exception	if	the	password	hashing	fails.
Lines	26–29	demonstrate	saving	a	hypothetical	user	account.	These	lines	contain
pseudocode;	you	should	replace	these	lines	with	code	appropriate	for	your	own
application.	The	point	is	that	you	persist	the	user	record	with	the	password	hash	—
not	the	plain-text	password	pulled	from	the	HTTP	request	body.	We	also	persist	the
email	address	that	is	used	to	locate	and	log	in	a	user	account.

Tip

Store	password	hashes	in	a	VARCHAR(255)	database	column.	This	gives	you	flexibility	to
continue	storing	future	passwords	that	may	require	more	characters	than	the	current	bcrypt
algorithm.

User	login
Our	hypothetical	application	also	has	a	PHP	file	available	at	URL	/login.php.	This	file
accepts	an	HTTP	POST	request	that	contains	an	email	address	and	password	used	to
identify,	authenticate,	and	log	in	a	user.	This	is	an	example	HTTP	POST	request:

POST	/login.php	HTTP/1.1

Content-Length:	43

Content-Type:	application/x-www-form-urlencoded

email=john@example.com&password=sekritshhh!

The	login.php	file	finds	the	user	account	identified	by	the	email	address,	it	verifies	the
submitted	password	with	the	user	account’s	password	hash,	and	it	logs	in	the	user	account.
Example	5-8	shows	the	login.php	file.

Example	5-8.	User	login	script
01	<?php

02	session_start();

03	try	{

04					//	Get	email	address	from	request	body

05					$email	=	filter_input(INPUT_POST,	'email');

06

07					//	Get	password	from	request	body

08					$password	=	filter_input(INPUT_POST,	'password');

09

10					//	Find	account	with	email	address	(THIS	IS	PSUEDO-CODE)

11					$user	=	User::findByEmail($email);

12

13					//	Verify	password	with	account	password	hash

14					if	(password_verify($password,	$user->password_hash)	===	false)	{

15									throw	new	Exception('Invalid	password');

16					}

17

18					//	Re-hash	password	if	necessary	(see	note	below)

19					$currentHashAlgorithm	=	PASSWORD_DEFAULT;

20					$currentHashOptions	=	array('cost'	=>	15);

21					$passwordNeedsRehash	=	password_needs_rehash(

22									$user->password_hash,

23									$currentHashAlgorithm,

24									$currentHashOptions

25);

26					if	($passwordNeedsRehash	===	true)	{

27									//	Save	new	password	hash	(THIS	IS	PSUEDO-CODE)

28									$user->password_hash	=	password_hash(

29													$password,

30													$currentHashAlgorithm,

31													$currentHashOptions

32);

33									$user->save();

34					}

35

36					//	Save	login	status	to	session

37					$_SESSION['user_logged_in']	=	'yes';

38					$_SESSION['user_email']	=	$email;

39

40					//	Redirect	to	profile	page

41					header('HTTP/1.1	302	Redirect');

42					header('Location:	/user-profile.php');

43	}	catch	(Exception	$e)	{

44					header('HTTP/1.1	401	Unauthorized');

45					echo	$e->getMessage();

46	}

In	Example	5-8:

Line	5	and	8	retrieve	the	email	address	and	password	from	the	HTTP	request	body.
Line	11	locates	the	user	record	associated	with	the	email	address	submitted	in	the
HTTP	request	body.	I	use	pseudocode	in	Example	5-8,	and	you	should	replace	this
line	with	code	specific	to	your	own	application.
Lines	14–16	compare	the	plain-text	password	submitted	in	the	HTTP	request	body
with	the	password	hash	stored	in	the	user	record.	We	compare	the	password	and
password	hash	with	the	password_verify()	function.	If	verification	fails,	we	toss	an
exception.
Lines	19–34	make	sure	the	user	record’s	password	hash	value	is	up-to-date	with	the
most	current	password	algorithm	options	by	invoking	the	password_needs_rehash()
function.	If	the	user	record’s	password	hash	is	out	of	date,	we	create	a	new	hash	value
using	the	most	current	algorithm	options,	and	we	update	the	user	record	with	the	new
hash	value.

Verify	password

The	password_verify()	function	compares	the	plain-text	password	from	the	HTTP
request	body	to	the	password	hash	stored	in	the	user	record.	This	function	accepts	two
arguments.	The	first	argument	is	the	plain-text	password.	The	second	argument	is	the
existing	password	hash	in	the	user	record.	If	the	password_verify()	function	returns
true,	the	plain-text	password	is	valid	and	we	log	in	the	user.	Otherwise,	the	plain-text
password	is	invalid	and	we	abort	the	login	process.

Rehash	password
After	line	17	in	Example	5-8,	authentication	is	successful	and	we	can	log	in	the	user.
Before	we	do,	however,	it	is	important	to	check	if	the	existing	password	hash	in	the	user
record	is	outdated.	If	it	is	outdated,	we	create	a	new	password	hash.

Why	should	we	create	a	new	password	hash?	Pretend	our	application	was	created	two
years	ago	when	we	used	a	bcrypt	work	factor	of	10.	Today	we	use	a	bcrypt	work	factor	of
20	because	hackers	are	smarter	and	computers	are	faster.	Unfortunately,	there	are	some
user	accounts	whose	password	hashes	were	generated	with	a	bcrypt	work	factor	of	10.
After	we	verify	the	login	request’s	authenticity,	we	check	if	the	existing	user	record’s
password	hash	needs	to	be	updated	with	the	password_needs_rehash()	function.	This
function	makes	sure	a	given	password	hash	is	created	with	the	most	current	hashing
algorithm	options.	If	a	password	hash	does	need	to	be	rehashed,	rehash	the	plain-text
password	from	the	HTTP	request	body	using	the	current	algorithm	options	and	update	the
user	record	with	the	new	hash	value.

Tip

It’s	easiest	to	employ	the	password_needs_rehash()	function	in	the	user	login	script
because	I	have	access	to	the	old	password	hash	and	the	plain-text	password	at	the	same
time.

Password	Hashing	API	for	PHP	<	5.5.0
If	you	cannot	use	PHP	5.5.0	or	newer,	fear	not.	You	can	use	Anthony	Ferrara’s
ircmaxell/password-compat	component.	It	implements	all	of	these	PHP	password
hashing	API	functions:

password_hash()

password_get_info()

password_needs_rehash()

password_verify()

Ferrara’s	ircmaxell/password-compat	component	is	a	drop-in	replacement	for	the
modern	PHP	password	hashing	API.	Include	the	component	in	your	application	with
Composer	and	you’re	off	and	running.

https://packagist.org/packages/ircmaxell/password-compat

Dates,	Times,	and	Time	Zones
Working	with	dates	and	times	is	hard.	Pretty	much	every	PHP	developer	has,	at	one	time
or	another,	made	a	mistake	working	with	dates	and	times.	This	is	precisely	why	I
recommend	you	do	not	manage	dates	and	times	on	your	own.	There	are	too	many
considerations	to	juggle,	including	date	formats,	time	zones,	daylight	saving,	leap	years,
leap	seconds,	and	months	with	variable	numbers	of	days.	It’s	too	easy	for	your	own
calculations	to	become	inaccurate.	Instead,	use	the	DateTime,	DateInterval,	and
DateTimeZone	classes	introduced	in	PHP	5.2.0.	These	helpful	classes	provide	a	simple
object-oriented	interface	to	accurately	create	and	manipulate	dates,	times,	and	timezones.

Set	a	Default	Time	Zone
The	first	thing	you	should	do	is	declare	a	default	time	zone	for	PHP’s	date	and	time
functions.	If	you	don’t	set	a	default	time	zone,	PHP	shows	an	E_WARNING	message.	There
are	two	ways	to	set	the	default	time	zone.	You	can	declare	the	default	time	zone	in	the
php.ini	file	like	this:

date.timezone	=	'America/New_York';

You	can	also	declare	the	default	time	zone	during	runtime	with	the
date_default_timezone_set()	function	(Example	5-9).

Example	5-9.	Set	default	timezone
<?php

date_default_timezone_set('America/New_York');

Either	solution	requires	a	valid	time-zone	identifier.	You	can	find	a	complete	list	of	PHP
time-zone	identifiers	at	http://php.net/manual/timezones.php.

http://php.net/manual/timezones.php

The	DateTime	Class
The	DateTime	class	provides	an	object-oriented	interface	to	manage	date	and	time	values.
A	single	DateTime	instance	represents	a	specific	date	and	time.	The	DateTime	class
constructor	(Example	5-10)	is	the	simplest	way	to	create	a	new	DateTime	instance.

Example	5-10.	The	DateTime	class
<?php

$datetime	=	new	DateTime();

Without	arguments,	the	DateTime	class	constructor	creates	an	instance	that	represents	the
current	date	and	time.	You	can	pass	a	string	argument	into	the	DateTime	class	constructor
to	specify	a	custom	date	and	time	(Example	5-11).	The	string	argument	must	use	one	of
the	valid	date	and	time	formats	listed	at	http://php.net/manual/datetime.formats.php.

Example	5-11.	DateTime	class	with	argument
<?php

$datetime	=	new	DateTime('2014-04-27	5:03	AM');

In	an	ideal	world,	you	are	given	date	and	time	data	in	a	format	that	PHP	understands.
Unfortunately,	this	is	not	always	the	case.	Sometimes	you	must	work	with	date	and	time
values	in	different	and	unexpected	formats.	I	experience	this	problem	on	a	daily	basis.
Many	of	my	clients	send	Excel	spreadsheets	with	data	to	import	into	an	application,	and
each	client	provides	date	and	time	values	in	wildly	different	formats.	The	DateTime	class
makes	this	a	nonissue.

Use	the	DateTime::createFromFormat()	static	method	to	create	a	DateTime	instance	with
a	date	and	time	string	that	uses	a	custom	format.	This	method’s	first	argument	is	the	date
and	time	string	format.	The	second	argument	is	the	date	and	time	string	that	uses	said
format	(Example	5-12).

Example	5-12.	DateTime	class	with	static	constructor
<?php

$datetime	=	DateTime::createFromFormat('M	j,	Y	H:i:s',	'Jan	2,	2014	23:04:12');

Note

The	DateTime::createFromFormat()	static	method	accepts	the	same	date	and	time
formats	as	the	date()	function.	Valid	date	and	time	formats	are	available	at
http://php.net/manual/datetime.createfromformat.php.

http://php.net/manual/datetime.formats.php
http://php.net/manual/datetime.createfromformat.php

The	DateInterval	Class
The	DateInterval	class	is	pretty	much	prerequisite	knowledge	for	manipulating
DateTime	instances.	A	DateInterval	instance	represents	a	fixed	length	of	time	(e.g.,	“two
days”)	or	a	relative	length	of	time	(e.g.,	“yesterday”).	You	use	DateInterval	instances	to
modify	DateTime	instances.	For	example,	the	DateTime	class	provides	add()	and	sub()
methods	to	manipulate	a	DateTime	instance’s	value.	Both	methods	accept	a	DateInterval
argument	that	specifies	the	amount	of	time	added	to	or	subtracted	from	a	DateTime
instance.

Instantiate	the	DateInterval	class	with	its	constructor.	The	DateInterval	class
constructor	accepts	a	string	argument	that	provides	an	interval	specification.	Interval
specifications	are	a	little	tricky	at	first,	but	there’s	not	much	to	them.	First,	an	interval
specification	is	a	string	that	begins	with	the	letter	P.	Next,	you	append	an	integer.	And	last,
you	append	a	period	designator	that	qualifies	the	preceding	integer	value.	Valid	period
designators	are:

Y	(years)
M	(months)
D	(days)
W	(weeks)
H	(hours)
M	(minutes)
S	(seconds)

An	interval	specification	can	include	both	date	and	time	values.	If	you	include	a	time
value,	separate	the	date	and	time	parts	with	the	letter	T.	For	example,	the	interval
specification	P2D	means	two	days.	The	interval	specification	P2DT5H2M	means	two	days,
five	hours,	and	two	minutes.

Example	5-13	demonstrates	how	to	modify	a	DateTime	instance	by	a	given	interval	of
time	using	the	add()	method.

Example	5-13.	The	DateInterval	class
<?php

//	Create	DateTime	instance

$datetime	=	new	DateTime('2014-01-01	14:00:00');

//	Create	two	weeks	interval

$interval	=	new	DateInterval('P2W');

//	Modify	DateTime	instance

$datetime->add($interval);

echo	$datetime->format('Y-m-d	H:i:s');

You	can	create	an	inverted	DateInterval,	too	(Example	5-14).	This	lets	you	traverse	a
DatePeriod	instance	in	reverse	chronology!

Example	5-14.	An	inverted	DateInterval	class
$dateStart	=	new	\DateTime();

$dateInterval	=	\DateInterval::createFromDateString('-1	day');

$datePeriod	=	new	\DatePeriod($dateStart,	$dateInterval,	3);

foreach	($datePeriod	as	$date)	{

				echo	$date->format('Y-m-d'),	PHP_EOL;

}

This	outputs:
2014-12-08

2014-12-07

2014-12-06

2014-12-05

The	DateTimeZone	Class
If	your	application	caters	to	an	international	clientele,	you’ve	probably	wrestled	with	time
zones.	Time	zones	are	tricky,	and	they	are	a	constant	source	of	confusion	for	many	PHP
developers.

PHP	represents	time	zones	with	the	DateTimeZone	class.	All	you	have	to	do	is	pass	a	valid
time-zone	identifier	into	the	DateTimeZone	class	constructor:

<?php

$timezone	=	new	DateTimeZone('America/New_York');

Note

Find	a	complete	list	of	valid	time-zone	identifiers	at	http://php.net/manual/timezones.php.

You	often	use	DateTimeZone	instances	when	creating	DateTime	instances.	The	DateTime
class	constructor’s	optional	second	argument	is	a	DateTimeZone	instance.	The	DateTime
instance’s	value,	and	all	modifications	to	its	value,	are	now	relative	to	the	specified	time
zone.	If	you	omit	the	constructor’s	second	argument,	the	time	zone	is	determined	by	your
default	time-zone	setting:

<?php

$timezone	=	new	DateTimeZone('America/New_York');

$datetime	=	new	DateTime('2014-08-20',	$timezone);

You	can	change	a	DateTime	instance’s	time	zone	after	instantiation	with	the
setTimezone()	method	(Example	5-15).

Example	5-15.	DateTimeZone	usage
<?php

$timezone	=	new	DateTimeZone('America/New_York');

$datetime	=	new	\DateTime('2014-08-20',	$timezone);

$datetime->setTimezone(new	DateTimeZone('Asia/Hong_Kong'));

I	find	it	easiest	if	I	always	work	in	the	UTC	time	zone.	My	server’s	time	zone	is	UTC,	and
my	PHP	default	time	zone	is	UTC.	If	I	persist	date	and	time	values	into	a	database,	I	save
them	as	the	UTC	timezone.	I	convert	the	UTC	date	and	time	values	to	the	appropriate	time
zone	when	I	display	the	data	to	application	users.

http://php.net/manual/timezones.php

The	DatePeriod	Class
Sometimes	you	need	to	iterate	a	sequence	of	dates	and	times	that	recur	over	a	specific
interval	of	time.	Repeating	calendar	events	are	a	good	example.	The	DatePeriod	class
solves	this	problem.	The	DatePeriod	class	constructor	accepts	three	required	arguments:

A	DateTime	instance	that	represents	the	date	and	time	from	which	iteration	begins
A	DateInterval	instance	that	represents	the	interval	of	time	between	subsequent
dates	and	times
An	integer	that	represents	the	number	of	total	iterations

A	DatePeriod	instance	is	an	iterator,	and	each	iteration	yields	a	DateTime	instance.
Example	5-16	yields	three	dates	and	times	separated	by	two-week	intervals.

Example	5-16.	DatePeriod	class	usage
<?php

$start	=	new	DateTime();

$interval	=	new	DateInterval('P2W');

$period	=	new	DatePeriod($start,	$interval,	3);

foreach	($period	as	$nextDateTime)	{

				echo	$nextDateTime->format('Y-m-d	H:i:s'),	PHP_EOL;

}

The	DatePeriod	class	constructor	accepts	an	optional	fourth	argument	that	specifies	the
period’s	explicit	end	date	and	time.	If	you	want	to	exclude	the	start	date	from	the	period’s
iteration,	pass	the	DatePeriod::EXCLUDE_START_DATE	constant	as	the	final	constructor
argument	(Example	5-17).

Example	5-17.	DatePeriod	class	usage	with	options
<?php

$start	=	new	DateTime();

$interval	=	new	DateInterval('P2W');

$period	=	new	DatePeriod(

				$start,

				$interval,

				3,

				DatePeriod::EXCLUDE_START_DATE

);

foreach	($period	as	$nextDateTime)	{

				echo	$nextDateTime->format('Y-m-d	H:i:s'),	PHP_EOL;

}

The	nesbot/carbon	Component
If	you	work	with	dates	and	times	more	often	than	not,	you	should	use	Brian	Nesbitt’s
nesbot/carbon	PHP	component.	Carbon	provides	a	simple	user	interface	with	many
useful	methods	for	working	with	date	and	time	values.

https://github.com/briannesbitt/Carbon

Databases
Many	PHP	applications	persist	information	in	a	wide	assortment	of	databases	like
MySQL,	PostgreSQL,	SQLite,	MSSQL,	and	Oracle.	Each	database	provides	its	own	PHP
extension	to	establish	communication	between	PHP	and	the	database.	MySQL,	for
example,	uses	the	mysqli	extension,	which	adds	various	mysqli_*()	functions	to	the	PHP
language.	SQLite3	uses	the	SQLite3	extension,	which	adds	the	SQLite3,	SQLite3Stmt,
and	SQLite3Result	classes	to	the	PHP	language.	If	you	work	with	different	databases	in
one	or	more	projects,	you	have	to	install	and	learn	various	PHP	database	extensions	and
interfaces.	This	increases	your	cognitive	and	technical	overhead.

The	PDO	Extension
This	is	exactly	why	PHP	provides	the	native	PDO	extension.	PDO	(or	PHP	data	objects)
is	a	collection	of	PHP	classes	that	communicate	with	many	different	SQL	databases	via	a
single	user	interface.	Database	implementations	are	abstracted	away.	Instead,	we	can	write
and	execute	database	queries	with	a	single	interface	regardless	of	the	particular	database
system	we	happen	to	be	using	at	the	time.

Warning

Even	though	the	PDO	extension	provides	a	single	interface	to	different	databases,	we	still
must	write	our	own	SQL	statements.	This	is	the	downside	to	PDO.	Each	database	provides
proprietary	features,	and	these	features	often	require	unique	SQL	syntax.	I	recommend
you	write	ANSI/ISO	SQL	when	using	PDO	so	that	your	SQL	doesn’t	break	if/when	you
change	database	systems.	If	you	absolutely	must	use	a	proprietary	database	feature,	keep
in	mind	you	must	update	your	SQL	statements	if	you	change	database	systems.

Database	Connections	and	DSNs
First,	select	the	database	system	most	appropriate	for	your	application.	Install	the
database,	create	the	schema,	and	optionally	load	an	initial	dataset.	Next,	instantiate	the	PDO
class	in	PHP.	The	PDO	instance	establishes	a	connection	between	PHP	and	the	database.

The	PDO	class	constructor	accepts	a	string	argument	called	a	DSN,	or	data	source	name,
that	provides	database	connection	details.	A	DSN	begins	with	the	database	driver	name
(e.g.,	mysql	or	sqlite),	a	:,	and	the	remainder	of	the	connection	string.	The	DSN
connection	string	is	different	for	each	database,	but	it	typically	includes:

Hostname	or	IP	address
Port	number
Database	name
Character	set

Note

Learn	more	about	your	database’s	DSN	format	at	http://php.net/manual/pdo.drivers.php.

The	PDO	class	constructor’s	second	and	third	arguments	are	a	username	and	password	for
your	database.	Provide	these	arguments	if	your	database	requires	authentication.

Example	5-18	establishes	a	PDO	connection	to	a	MySQL	database	named	acme.	The
database	is	available	at	IP	address	127.0.0.1,	and	it	listens	on	the	standard	MySQL	port
3306.	The	database	username	is	josh,	and	the	database	password	is	sekrit.	The
connection	character	set	is	utf8.

Example	5-18.	PDO	constructor
<?php

try	{

				$pdo	=	new	PDO(

								'mysql:host=127.0.0.1;dbname=books;port=3306;charset=utf8',

								'USERNAME',

								'PASSWORD'

);

}	catch	(PDOException	$e)	{

				//	Database	connection	failed

				echo	"Database	connection	failed";

				exit;

}

The	PDO	class	constructor’s	first	argument	is	the	DSN.	The	DSN	begins	with	mysql:.	This
instructs	PDO	to	use	the	PDO	MySQL	driver	to	connect	to	a	MySQL	database.	After	the	:
character,	we	specify	a	semicolon-delimited	list	of	keys	and	values.	Specifically,	we
specify	the	host,	dbname,	port,	and	charset	settings.

Tip

The	PDO	constructor	throws	a	PDOException	instance	if	the	database	connection	fails.	It’s
important	that	you	anticipate	and	catch	this	exception	when	creating	PDO	connections.

Keep	your	database	credentials	secret
Example	5-18	is	fine	for	demonstration	purposes,	but	it	isn’t	safe.	Never	hard-code
database	credentials	into	PHP	files,	especially	PHP	files	served	to	the	public.	If	PHP

http://php.net/manual/pdo.drivers.php

exposes	raw	PHP	code	to	HTTP	clients	due	to	a	bug	or	server	misconfiguration,	your
database	credentials	are	naked	for	the	world	to	see.	Instead,	move	your	database
credentials	into	a	configuration	file	above	the	document	root	and	include	them	into	your
PHP	files	when	necessary.

Tip

Do	not	version	control	your	credentials,	either.	Protect	your	credentials	with	a	.gitignore
file.	Otherwise,	you	will	publish	your	secret	credentials	into	your	code	repository	for
others	to	see.	This	is	especially	bad	if	you	are	using	a	public	repository.

In	this	example,	the	settings.php	file	contains	our	database	connection	credentials.	It	lives
beneath	the	project	root	directory	but	above	the	document	root.	The	index.php	file	lives
beneath	the	document	root	directory,	and	it	is	served	to	the	public	with	a	web	server.	The
index.php	file	uses	the	credentials	in	the	settings.php	file:

[project_root]

				settings.php

				public_html/	<--	document	root

								index.php

This	is	the	settings.php	file:
<?php

$settings	=	[

				'host'	=>	'127.0.0.1',

				'port'	=>	'3306',

				'name'	=>	'acme',

				'username'	=>	'USERNAME',

				'password'	=>	'PASSWORD',

				'charset'	=>	'utf8'

];

Example	5-19	shows	the	index.php	file.	It	includes	the	settings.php	file	and	establishes	a
PDO	database	connection.

Example	5-19.	PDO	constructor	with	external	settings
<?php

include('../settings.php');

$pdo	=	new	PDO(

				sprintf(

								'mysql:host=%s;dbname=%s;port=%s;charset=%s',

								$settings['host'],

								$settings['name'],

								$settings['port'],

								$settings['charset']

),

				$settings['username'],

				$settings['password']

);

This	is	much	safer.	If	the	index.php	code	leaks	to	the	public,	our	database	credentials
remain	secret.

Prepared	Statements
We	now	have	a	PDO	connection	to	a	database,	and	we	can	use	this	connection	to	read
from	and	write	to	the	database	with	SQL	statements.	We’re	not	done	yet.	When	I	build
PHP	applications,	I	often	need	to	customize	SQL	statements	with	dynamic	information
from	the	current	HTTP	request.	For	example,	the	URL	/user?email=john@example.com
shows	profile	information	for	a	specific	user	account.	The	SQL	statement	for	this	URL
might	be:

SELECT	id	FROM	users	WHERE	email	=	"john@example.com";

A	beginner	PHP	developer	might	build	the	SQL	statement	like	this:
$sql	=	sprintf(

				'SELECT	id	FROM	users	WHERE	email	=	"%s"',

				filter_input(INPUT_GET,	'email')

);

This	is	bad	because	the	SQL	string	uses	raw	input	from	the	HTTP	request	query	string.	It
provides	a	welcome	mat	for	hackers	to	do	bad	things	to	your	PHP	application.	Haven’t
you	heard	of	little	Bobby	Tables?	It	is	extremely	important	to	sanitize	user	input	that	is
used	in	a	SQL	statement.	Fortunately,	the	PDO	extension	makes	input	sanitization	super-
easy	with	prepared	statements	and	bound	parameters.

A	prepared	statement	is	a	PDOStatement	instance.	However,	I	rarely	instantiate	the
PDOStatement	class	directly.	Instead,	I	fetch	a	prepared	statement	object	with	the	PDO
instance’s	prepare()	method.	This	method	accepts	a	SQL	statement	string	as	its	first
argument,	and	it	returns	a	PDOStatement	instance:

<?php

$sql	=	'SELECT	id	FROM	users	WHERE	email	=	:email';

$statement	=	$pdo->prepare($sql);

Pay	close	attention	to	the	SQL	statement.	The	:email	is	a	named	placeholder	to	which	I
can	safely	bind	any	value.	In	Example	5-20,	I	bind	the	HTTP	request	query	string	to	the
:email	placeholder	with	the	$statement	instance’s	bindValue()	method.

Example	5-20.	Prepared	statement	with	email	address
<?php

$sql	=	'SELECT	id	FROM	users	WHERE	email	=	:email';

$statement	=	$pdo->prepare($sql);

$email	=	filter_input(INPUT_GET,	'email');

$statement->bindValue(':email',	$email);

The	prepared	statement	automatically	sanitizes	the	$email	value,	and	it	protects	our
database	from	SQL	injection	attacks.	You	can	include	multiple	named	placeholders	in	a
SQL	statement	string	and	invoke	the	prepared	statement’s	bindValue()	method	for	each
placeholder.

In	Example	5-20,	the	:email	named	placeholder	represents	a	string	value.	What	if	we
change	our	SQL	statement	to	find	a	user	by	a	numeric	ID?	In	this	case,	we	must	pass	a
third	argument	to	the	prepared	statement’s	bindValue()	method	to	specify	the	type	of	data
bound	to	the	placeholder.	Without	the	third	argument,	a	prepared	statement	assumes	bound
data	is	a	string.

Example	5-21	shows	a	modification	of	Example	5-20	that	finds	a	user	by	numeric	ID

http://xkcd.com/327/

instead	of	an	email	address.	The	numeric	ID	is	pulled	from	the	HTTP	query	string
parameter	named	id.

Example	5-21.	Prepared	statement	with	ID
<?php

$sql	=	'SELECT	email	FROM	users	WHERE	id	=	:id';

$statement	=	$pdo->prepare($sql);

$userId	=	filter_input(INPUT_GET,	'id');

$statement->bindValue(':id',	$userId,	PDO::PARAM_INT);

We	use	the	PDO::PARAM_INT	constant	as	the	third	argument.	This	tells	PDO	that	the	bound
data	is	an	integer.	There	are	several	PDO	constants	you	can	use	to	specify	various	data
types:

PDO::PARAM_BOOL

PDO::PARAM_NULL

PDO::PARAM_INT

PDO::PARAM_STR	(default)

Note

See	all	PDO	constants	at	http://php.net/manual/pdo.constants.php.

http://php.net/manual/pdo.constants.php

Query	Results
We	now	have	a	prepared	statement,	and	we’re	ready	to	execute	SQL	queries	against	the
database.	The	prepared	statement’s	execute()	method	executes	the	statement’s	SQL
statement	with	any	bound	data.	If	you	are	executing	INSERT,	UPDATE,	or	DELETE
statements,	invoke	the	execute()	method	and	you’re	done.	If	you	execute	a	SELECT
statement,	you	probably	expect	the	database	to	return	matching	records.	You	can	fetch
query	results	with	the	prepared	statement’s	fetch(),	fetchAll(),	fetchColumn(),	and
fetchObject()	methods.

The	PDOStatement	instance’s	fetch()	method	returns	the	next	row	from	the	result	set.	I
use	this	method	to	iterate	large	result	sets,	especially	if	the	entire	result	set	cannot	fit	in
available	memory	(Example	5-22).

Example	5-22.	Prepared	statement	results	as	associative	array
<?php

//	Build	and	execute	SQL	query

$sql	=	'SELECT	id,	email	FROM	users	WHERE	email	=	:email';

$statement	=	$pdo->prepare($sql);

$email	=	filter_input(INPUT_GET,	'email');

$statement->bindValue(':email',	$email,	PDO::PARAM_INT);

$statement->execute();

//	Iterate	results

while	(($result	=	$statement->fetch(PDO::FETCH_ASSOC))	!==	false)	{

				echo	$result['email'];

}

In	this	example,	I	use	the	PDO::FETCH_ASSOC	constant	as	the	first	argument	in	the
statement	instance’s	fetch()	method.	This	argument	determines	how	the	fetch()	and
fetchAll()	methods	return	query	results.	You	can	use	any	of	these	constants:
PDO::FETCH_ASSOC

Prompts	the	fetch()	or	fetchAll()	method	to	return	an	associative	array.	The	array
keys	are	database	column	names.

PDO::FETCH_NUM

Prompts	the	fetch()	or	fetchAll()	method	to	return	a	numeric	array.	The	array	keys
are	the	numeric	index	of	database	columns	in	your	query	result.

PDO::FETCH_BOTH

Prompts	the	fetch()	or	fetchAll()	method	to	return	an	array	that	contains	both
associative	and	numeric	array	keys.	This	is	a	combination	of	PDO::FETCH_ASSOC	and
PDO::FETCH_NUM.

PDO::FETCH_OBJ

Prompts	the	fetch()	or	fetchAll()	method	to	return	an	object	whose	properties	are
database	column	names.

Note

Learn	more	about	fetching	PDO	statement	results	at
http://php.net/manual/pdostatement.fetch.php.

http://php.net/manual/pdostatement.fetch.php

If	you	are	working	with	smaller	result	sets,	you	can	fetch	all	query	results	with	the
prepared	statement’s	fetchAll()	method	(Example	5-23).	I	typically	discourage	this
method	unless	you	are	absolutely	sure	the	complete	query	result	is	small	enough	to	fit	in
available	memory.

Example	5-23.	Prepared	statement	fetch	all	results	as	associative	array
<?php

//	Build	and	execute	SQL	query

$sql	=	'SELECT	id,	email	FROM	users	WHERE	email	=	:email';

$statement	=	$pdo->prepare($sql);

$email	=	filter_input(INPUT_GET,	'email');

$statement->bindValue(':email',	$email,	PDO::PARAM_INT);

$statement->execute();

//	Iterate	results

$results	=	$statement->fetchAll(PDO::FETCH_ASSOC);

foreach	($results	as	$result)	{

				echo	$result['email'];

}

If	you	are	concerned	only	with	a	single	column	in	your	query	result,	you	can	use	the
prepared	statement’s	fetchColumn()	method.	This	method,	similar	to	the	fetch()
method,	returns	the	value	of	a	single	column	from	the	next	row	of	the	query	result
(Example	5-24).	The	fetchColumn()	method’s	one	and	only	argument	is	the	index	of	the
desired	column.

Tip

The	query	result	column	order	matches	the	column	order	specified	in	the	SQL	query.

Example	5-24.	Prepared	statement	fetch	one	column,	one	row	at	a	time	as	associative
array

<?php

//	Build	and	execute	SQL	query

$sql	=	'SELECT	id,	email	FROM	users	WHERE	email	=	:email';

$statement	=	$pdo->prepare($sql);

$email	=	filter_input(INPUT_GET,	'email');

$statement->bindValue(':email',	$email,	PDO::PARAM_INT);

$statement->execute();

//	Iterate	results

while	(($email	=	$statement->fetchColumn(1))	!==	false)	{

				echo	$email;

}

In	Example	5-24,	the	email	column	is	listed	second	in	the	SQL	query.	It	therefore
becomes	the	second	column	in	each	query	result	row,	and	I	pass	the	number	1	into	the
fetchColumn()	method	(columns	are	zero-indexed).

You	can	also	use	the	prepared	statement’s	fetchObject()	method	to	fetch	the	next	query
result	row	as	an	object	whose	property	names	are	the	SQL	query	result	columns
(Example	5-25).

Example	5-25.	Prepared	statement	fetch	row	as	object
<?php

//	Build	and	execute	SQL	query

$sql	=	'SELECT	id,	email	FROM	users	WHERE	email	=	:email';

$statement	=	$pdo->prepare($sql);

$email	=	filter_input(INPUT_GET,	'email');

$statement->bindValue(':email',	$email,	PDO::PARAM_INT);

$statement->execute();

//	Iterate	results

while	(($result	=	$statement->fetchObject())	!==	false)	{

				echo	$result->name;

}

Transactions
The	PDO	extension	also	supports	transactions.	A	transaction	is	a	set	of	database
statements	that	execute	atomically.	In	other	words,	a	transaction	is	a	collection	of	SQL
queries	that	are	either	all	executed	successfully	or	not	executed	at	all.	Transaction
atomicity	encourages	data	consistency,	safety,	and	durability.	A	nice	side	effect	of
transactions	is	improved	performance,	because	you	are	effectively	queuing	multiple
queries	to	be	executed	together	at	one	time.

Note

Not	all	databases	support	transactions.	Check	your	database’s	documentation	and	its
associated	PHP	PDO	driver	for	more	information.

Transactions	are	simple	to	use	with	the	PDO	extension.	You	build	and	execute	SQL
statements	exactly	as	demonstrated	in	Example	5-25.	There	is	only	one	difference.	You
surround	SQL	statement	executions	with	the	PDO	instance’s	beginTransaction()	and
commit()	methods.	The	beginTransaction()	method	causes	PDO	to	queue	subsequent
SQL	query	executions	rather	than	execute	them	immediately.	The	commit()	method
executes	queued	queries	in	an	atomic	transaction.	If	a	single	query	in	the	transaction	fails,
none	of	the	transaction	queries	is	applied.	Remember,	a	transaction	is	all	or	nothing.

Atomicity	is	important	when	data	integrity	is	paramount.	Let’s	explore	example	code	that
handles	bank	account	transactions.	Our	code	can	deposit	funds	into	an	account.	It	can	also
withdraw	funds	from	an	account	assuming	there	are	sufficient	funds.	The	code	in
Example	5-26	transfers	$50	from	one	account	to	another	account.	It	does	not	use	a
database	transaction.

Example	5-26.	Database	query	without	transaction
<?php

require	'settings.php';

//	PDO	connection

try	{

				$pdo	=	new	PDO(

								sprintf(

												'mysql:host=%s;dbname=%s;port=%s;charset=%s',

												$settings['host'],

												$settings['name'],

												$settings['port'],

												$settings['charset']

),

								$settings['username'],

								$settings['password']

);

}	catch	(PDOException	$e)	{

				//	Database	connection	failed

				echo	"Database	connection	failed";

				exit;

}

//	Statements

$stmtSubtract	=	$pdo->prepare('

				UPDATE	accounts

				SET	amount	=	amount	-	:amount

				WHERE	name	=	:name

');

$stmtAdd	=	$pdo->prepare('

				UPDATE	accounts

				SET	amount	=	amount	+	:amount

				WHERE	name	=	:name

');

//	Withdraw	funds	from	account	1

$fromAccount	=	'Checking';

$withdrawal	=	50;

$stmtSubtract->bindParam(':name',	$fromAccount);

$stmtSubtract->bindParam(':amount',	$withDrawal,	PDO::PARAM_INT);

$stmtSubtract->execute();

//	Deposit	funds	into	account	2

$toAccount	=	'Savings';

$deposit	=	50;

$stmtAdd->bindParam(':name',	$toAccount);

$stmtAdd->bindParam(':amount',	$deposit,	PDO::PARAM_INT);

$stmtAdd->execute();

This	seems	fine,	right?	It’s	not.	What	happens	if	our	server	suddenly	shuts	down	after	we
withdraw	$50	from	account	1	and	before	we	deposit	$50	into	account	2?	Perhaps	our
hosting	company	had	a	power	outage	or	a	fire	or	a	flood	or	was	afflicted	by	some	other
calamity.	What	happens	to	the	$50	withdrawn	from	account	1?	The	funds	are	not
deposited	into	account	2.	The	funds	disappear.	We	can	protect	data	integrity	with	a
database	transaction	(Example	5-27).

Example	5-27.	Database	query	with	transaction
<?php

require	'settings.php';

//	PDO	connection

try	{

				$pdo	=	new	PDO(

								sprintf(

												'mysql:host=%s;dbname=%s;port=%s;charset=%s',

												$settings['host'],

												$settings['name'],

												$settings['port'],

												$settings['charset']

),

								$settings['username'],

								$settings['password']

);

}	catch	(PDOException	$e)	{

				//	Database	connection	failed

				echo	"Database	connection	failed";

				exit;

}

//	Statements

$stmtSubtract	=	$pdo->prepare('

				UPDATE	accounts

				SET	amount	=	amount	-	:amount

				WHERE	name	=	:name

');

$stmtAdd	=	$pdo->prepare('

				UPDATE	accounts

				SET	amount	=	amount	+	:amount

				WHERE	name	=	:name

');

//	Start	transaction

$pdo->beginTransaction();

//	Withdraw	funds	from	account	1

$fromAccount	=	'Checking';

$withdrawal	=	50;

$stmtSubtract->bindParam(':name',	$fromAccount);

$stmtSubtract->bindParam(':amount',	$withDrawal,	PDO::PARAM_INT);

$stmtSubtract->execute();

//	Deposit	funds	into	account	2

$toAccount	=	'Savings';

$deposit	=	50;

$stmtAdd->bindParam(':name',	$toAccount);

$stmtAdd->bindParam(':amount',	$deposit,	PDO::PARAM_INT);

$stmtAdd->execute();

//	Commit	transaction

$pdo->commit();

Example	5-27	wraps	the	withdrawal	and	deposit	into	a	single	database	transaction.	This
ensures	that	both	execute	successfully	or	not	at	all.	Our	data	remains	consistent.

Multibyte	Strings
PHP	assumes	each	character	in	a	string	is	an	8-bit	character	that	occupies	a	single	byte	of
memory.	Unfortunately,	this	is	a	naive	assumption	that	breaks	down	as	soon	as	you	work
with	non-English	characters.	You	might	localize	your	PHP	application	for	international
users.	Your	blog	might	receive	comments	written	in	Spanish,	German,	or	Norwegian.	Your
users’	names	might	contain	accented	characters.	My	point	is	that	you’ll	often	encounter
multibyte	characters,	and	you	must	accommodate	them	correctly.

When	I	say	multibyte	character,	I	mean	any	character	that	is	not	one	of	the	128	characters
in	the	traditional	ASCII	character	set.	Some	examples	are	ñ,	ë,	â,	ô,	à,	æ,	and	ø.	There	are
many	others.	PHP’s	default	string-manipulation	functions	assume	all	strings	use	only	8-bit
characters.	If	you	manipulate	a	Unicode	string	that	contains	multibyte	characters	with
PHP’s	native	string	functions,	you	will	get	incorrect	and	unexpected	results.

Note

Unicode	is	an	international	standard	that	assigns	a	number	to	each	unique	character	from
many	different	languages.	It	is	maintained	by	the	Unicode	Consortium.

You	can	avoid	multibyte	string	errors	by	installing	the	mbstring	PHP	extension.	This
extension	introduces	multibyte-aware	string	functions	that	replace	most	of	PHP’s	native
string-manipulation	functions.	For	example,	use	the	multibyte-aware	mb_strlen()
function	instead	of	PHP’s	native	strlen()	function.

To	this	day	I’m	still	training	myself	to	use	the	mbstring	multibyte	string	functions	instead
of	PHP’s	default	string	functions.	It’s	a	tough	habit	to	form,	but	you	must	use	the
multibyte	string	functions	if	you	work	with	Unicode	strings.	Otherwise,	it’s	easy	for
multibyte	Unicode	data	to	become	malformed.

Tip

I	use	the	Iñtërnâtiônàlizætiøn	string	when	testing	my	PHP	applications	for	multibyte
character	support.

http://www.unicode.org
http://php.net/manual/book.mbstring.php

Character	Encoding
Use	UTF-8.	If	you	leave	this	section	with	one	piece	of	advice,	this	is	it.	All	modern	web
browsers	understand	UTF-8	character	encoding.	A	character	encoding	is	a	method	of
packaging	Unicode	data	in	a	format	that	can	be	stored	in	memory	or	sent	over	the	wire
between	a	server	and	client.	The	UTF-8	character	encoding	is	just	one	of	many	available
character	encodings.	UTF-8,	however,	is	the	most	popular	character	encoding	and	is
supported	by	all	modern	web	browsers.

Unicode	and	UTF-8	Explained
Tom	Scott	provides	the	best	explanation	of	Unicode	and	UTF-8	that	I’ve	seen.	Joel
Spolsky	also	writes	a	nice	explanation	of	character	encodings	on	his	website.

Character	encoding	is	complex	and	confuses	a	lot	of	developers.	When	you	work	with
multibyte	strings,	keep	this	advice	in	mind:

1.	 Always	know	the	character	encoding	of	your	data.
2.	 Store	data	with	the	UTF-8	character	encoding.
3.	 Output	data	with	the	UTF-8	character	encoding.

The	mbstring	extension	doesn’t	just	manipulate	Unicode	strings.	It	also	converts
multibyte	strings	between	various	character	encodings.	This	is	useful	when	clients	export
Excel	spreadsheet	data	with	a	Windows-specific	character	encoding	when	what	I	really
want	is	UTF-8	encoded	data.	Use	the	mb_detect_encoding()	and
mb_convert_encoding()	functions	to	convert	Unicode	strings	from	one	character
encoding	to	another.

http://bit.ly/ts-unicode
http://bit.ly/jspolsky

Output	UTF-8	Data
When	you	work	with	multibyte	characters,	it	is	important	that	you	tell	PHP	you	are
working	with	the	UTF-8	character	encoding.	It’s	easiest	to	do	this	in	your	php.ini	file	like
this:

default_charset	=	"UTF-8";

The	default	character	set	is	used	by	many	PHP	functions,	including	htmlentities(),
html_entity_decode(),	htmlspecialchars(),	and	the	mbstring	functions.	This	value	is
also	added	to	the	default	Content-Type	header	returned	by	PHP	unless	explicitly	specified
with	the	header()	function	like	this:

<?php

header('Content-Type:	application/json;charset=utf-8');

Warning

You	cannot	use	the	header()	function	after	any	output	is	returned	from	PHP.

I	also	recommend	you	include	this	meta	tag	in	your	HTML	document	header:
<meta	charset="UTF-8"/>

Streams
Streams	are	probably	the	most	amazing	and	least	used	modern	PHP	feature.	Even	though
streams	were	introduced	in	PHP	4.3.0,	many	developers	still	don’t	know	about	streams
because	they	are	rarely	mentioned,	and	they	are	poorly	documented.

Streams	were	introduced	with	PHP	4.3.0	as	a	way	of	generalizing	file,	network,	data
compression,	and	other	operations	which	share	a	common	set	of	functions	and	uses.	In
its	simplest	definition,	a	stream	is	a	resource	object	which	exhibits	streamable	behavior.
That	is,	it	can	be	read	from	or	written	to	in	a	linear	fashion,	and	may	be	able	to	fseek()	to
an	arbitrary	location	within	the	stream.

PHP	Manual

That’s	a	mouthful,	right?	Let’s	reduce	this	into	something	more	understandable.	A	stream
is	a	transfer	of	data	between	an	origin	and	destination.	That’s	it.	The	origin	and	destination
can	be	a	file,	a	command-line	process,	a	network	connection,	a	ZIP	or	TAR	archive,
temporary	memory,	standard	input	or	output,	or	any	other	resource	available	via	PHP’s
stream	wrappers.

If	you’ve	read	from	or	written	to	a	file,	you’ve	used	streams.	If	you’ve	read	from
php://stdin	or	written	to	php://stdout,	you’ve	used	streams.	Streams	provide	the
underlying	implementation	for	many	of	PHP’s	IO	functions	like	file_get_contents(),
fopen(),	fgets(),	and	fwrite().	PHP’s	stream	functions	help	us	manipulate	different
stream	resources	(origins	and	destinations)	with	a	single	interface.

Tip

I	think	of	streams	as	a	pipe	that	carries	water	from	one	location	to	another.	As	water	flows
through	the	pipe	from	origin	to	destination,	we	can	filter	the	water,	we	can	transform	the
water,	we	can	add	water,	and	we	can	remove	water.	(Hint:	The	water	is	a	metaphor	for
data.)

http://php.net/manual/wrappers.php

Stream	Wrappers
There	are	different	types	of	streamable	data	that	require	unique	protocols	for	reading	and
writing	data.	We	call	these	protocols	stream	wrappers.	For	example,	we	can	read	and	write
data	to	the	filesystem.	We	can	talk	with	remote	web	servers	via	HTTP,	HTTPS,	or	SSH
(secure	shell).	We	can	open,	read,	and	write	ZIP,	RAR,	or	PHAR	archives.	All	of	these
communication	methods	imply	the	same	generic	process:

1.	 Open	communication.
2.	 Read	data.
3.	 Write	data.
4.	 Close	communication.

Although	the	process	is	the	same,	reading	and	writing	a	filesystem	file	is	different	from
sending	or	receiving	HTTP	messages.	Stream	wrappers,	however,	encapsulate	these
differences	behind	a	common	interface.

Every	stream	has	a	scheme	and	a	target.	We	specify	the	scheme	and	target	in	the	stream’s
identifier	using	this	familiar	format:

<scheme>://<target>

The	<scheme>	identifies	the	stream’s	wrapper.	The	<target>	identifies	the	stream	data
source.	Example	5-28	creates	a	PHP	stream	to/from	the	Flickr	API.	It	uses	the	HTTP
stream	wrapper.

Example	5-28.	Flickr	API	with	HTTP	stream	wrapper
<?php

$json	=	file_get_contents(

				'http://api.flickr.com/services/feeds/photos_public.gne?format=json'

);

Don’t	be	fooled	by	what	appears	to	be	a	traditional	website	URL.	The
file_get_contents()	function’s	string	argument	is	actually	a	stream	identifier.	The	http
scheme	prompts	PHP	to	use	the	HTTP	stream	wrapper.	The	argument’s	remainder	is	the
stream	target.	The	stream	target	looks	like	a	traditional	website	URL	only	because	that’s
what	the	HTTP	stream	wrapper	expects.	This	may	not	be	true	for	other	stream	wrappers.

Note

Reread	this	paragraph	several	times	until	it	becomes	ingrained	in	your	memory.	Many
PHP	developers	don’t	understand	that	a	traditional	URL	is	actually	a	PHP	stream	wrapper
identifier	in	disguise.

The	file://	stream	wrapper
We	use	the	file_get_contents(),	fopen(),	fwrite(),	and	fclose()	methods	to	read
from	and	write	to	the	filesystem.	We	rarely	consider	these	functions	as	using	PHP	streams,
because	the	default	PHP	stream	wrapper	is	file://.	We’re	using	PHP	streams	and	we
don’t	even	realize	it!	Example	5-29	creates	a	stream	to/from	the	/etc/hosts	file	using	the
file://	stream	wrapper.

Example	5-29.	Implicit	file://	stream	wrapper

http://php.net/manual/wrappers.php

<?php

$handle	=	fopen('/etc/hosts',	'rb');

while	(feof($handle)	!==	true)	{

				echo	fgets($handle);

}

fclose($handle);

Example	5-30	accomplishes	the	same	task.	This	example,	however,	explicitly	specifies	the
file://	stream	wrapper	in	the	stream	identifier.

Example	5-30.	Explicit	file://	stream	wrapper
<?php

$handle	=	fopen('file:///etc/hosts',	'rb');

while	(feof($handle)	!==	true)	{

				echo	fgets($handle);

}

fclose($handle);

We	usually	omit	the	file://	stream	wrapper	because	PHP	assumes	this	is	the	default
value.

The	php://	stream	wrapper
PHP	developers	who	write	command-line	scripts	will	appreciate	the	php://	stream
wrapper.	This	stream	wrapper	communicates	with	the	PHP	script’s	standard	input,
standard	output,	and	standard	error	file	descriptors.	You	can	open,	read	from,	and	write	to
these	four	streams	with	PHP’s	filesystem	functions:
php://stdin

This	read-only	PHP	stream	exposes	data	provided	via	standard	input.	For	example,	a
PHP	script	can	use	this	stream	to	receive	information	piped	into	the	script	on	the
command	line.

php://stdout

This	PHP	stream	lets	you	write	data	to	the	current	output	buffer.	This	stream	is	write-
only	and	cannot	be	read	or	seeked.

php://memory

This	PHP	stream	lets	you	read	and	write	data	to	system	memory.	The	downside	to	this
PHP	stream	is	that	available	memory	is	finite.	It’s	safer	to	use	the	php://temp	stream
instead.

php://temp

This	PHP	stream	acts	just	like	php://memory,	except	that	when	available	memory	is
gone,	PHP	instead	writes	to	a	temporary	file.

Other	stream	wrappers
PHP	and	PHP	extensions	provide	many	other	stream	wrappers.	For	example,	there	are
stream	wrappers	to	communicate	with	ZIP	and	TAR	archives,	FTP	servers,	data-
compression	libraries,	Amazon	APIs,	and	more.	A	popular	misconception	is	that	the
fopen(),	fgets(),	fputs(),	feof(),	fclose(),	and	other	PHP	filesystem	functions	are	for
filesystem	files	only.	This	is	not	true.	PHP’s	filesystem	functions	work	with	all	stream
wrappers	that	support	them.	For	example,	we	can	use	fopen(),	fgets(),	fputs(),	feof(),
and	fclose()	to	interact	with	a	ZIP	archive,	Amazon	S3	(with	the	custom	S3	wrapper),	or

http://bit.ly/streamwrap

even	Dropbox	(with	the	custom	Dropbox	wrapper).

Note

Learn	more	about	the	php://	stream	wrapper	at	PHP.net.

Custom	stream	wrappers
It’s	also	possible	to	write	your	own	custom	PHP	stream	wrapper.	PHP	provides	an
example	streamWrapper	class	that	demonstrates	how	to	write	a	custom	stream	wrapper
that	supports	some	or	all	of	the	PHP	filesystem	functions.	Learn	more	about	custom	PHP
stream	wrappers	at:

http://php.net/manual/class.streamwrapper.php
http://php.net/manual/stream.streamwrapper.example-1.php

http://www.dropbox-php.com/
http://bit.ly/s-wrapper
http://php.net/manual/class.streamwrapper.php
http://php.net/manual/stream.streamwrapper.example-1.php

Stream	Context
Some	PHP	streams	accept	an	optional	set	of	parameters,	or	a	stream	context,	to	customize
the	stream’s	behavior.	Different	stream	wrappers	expect	different	context	parameters.	You
create	a	stream	context	with	the	stream_context_create()	function.	The	returned
context	object	can	be	passed	into	and	used	by	most	PHP	filesystem	and	stream	functions.

For	example,	did	you	know	that	you	can	send	an	HTTP	POST	request	with	the
file_get_contents()	function?	You	can	with	a	stream	context	object	(Example	5-31).

Example	5-31.	Stream	context
<?php

$requestBody	=	'{"username":"josh"}';

$context	=	stream_context_create(array(

				'http'	=>	array(

								'method'	=>	'POST',

								'header'	=>	"Content-Type:	application/json;charset=utf-8;\r\n"	.

																				"Content-Length:	"	.	mb_strlen($requestBody),

								'content'	=>	$requestBody

)

));

$response	=	file_get_contents('https://my-api.com/users',	false,	$context);

The	stream	context	is	an	associative	array	whose	topmost	array	key	is	the	stream	wrapper
name.	The	stream	context’s	array	values	are	specific	to	each	stream	wrapper.	Consult	the
appropriate	PHP	stream	wrapper’s	documentation	for	a	list	of	valid	settings.

Stream	Filters
So	far	we’ve	talked	about	opening,	reading	from,	and	writing	to	PHP	streams.	However,
the	true	power	of	PHP	streams	is	filtering,	transforming,	adding,	or	removing	stream	data
in	transit.	Imagine	opening	a	stream	to	a	Markdown	file	and	converting	it	into	HTML
automatically	as	you	read	the	file	into	memory.

Note

PHP	provides	several	built-in	stream	filters,	including	string.rot13,	string.toupper,
string.tolower,	and	string.strip_tags.	These	are	not	useful.	Use	custom	stream
filters,	instead.

You	attach	a	filter	to	an	existing	stream	with	the	stream_filter_append()	function.
Example	5-32	uses	the	string.toupper	filter	to	read	data	from	a	text	file	on	the	local
filesystem	and	convert	its	content	to	uppercase	characters.	I	don’t	encourage	using	this
particular	stream	filter.	I’m	only	demonstrating	how	to	attach	a	filter	to	a	stream.

Example	5-32.	Stream	filter	string.toupper	example
<?php

$handle	=	fopen('data.txt',	'rb');

stream_filter_append($handle,	'string.toupper');

while(feof($handle)	!==	true)	{

				echo	fgets($handle);	//	<--	Outputs	all	uppercase	characters

}

fclose($handle);

You	can	also	attach	a	filter	to	a	stream	with	the	php://filter	stream	wrapper.	This	only
works	if	you	attach	the	filter	when	you	first	open	the	PHP	stream.	Example	5-33
accomplishes	the	same	task	as	the	previous	example,	except	it	attaches	the	filter	with
php://filter	strategy.

Example	5-33.	Stream	filter	string.toupper	example	with	php://filter
<?php

$handle	=	fopen('php://filter/read=string.toupper/resource=data.txt',	'rb');

while(feof($handle)	!==	true)	{

				echo	fgets($handle);	//	<--	Outputs	all	uppercase	characters

}

fclose($handle);

Pay	close	attention	to	the	fopen()	function’s	first	argument.	The	argument	is	a	stream
identifier	that	uses	the	php://	stream	wrapper.	This	is	the	stream	identifier	target:

filter/read=<filter_name>/resource=<scheme>://<target>

This	strategy	may	appear	superfluous	compared	to	the	stream_filter_append()	function.
However,	some	PHP	filesystem	functions	like	file()	or	fpassthru()	do	not	give	you	the
opportunity	to	attach	filters	after	the	function	is	called.	The	php://filter	stream	wrapper
is	the	only	way	to	attach	stream	filters	with	these	functions.

Let’s	look	at	a	more	realistic	stream	filter	example.	At	New	Media	Campaigns,	our	in-
house	content	management	system	archives	nginx	access	logs	to	rsync.net.	We	keep	one
log	file	per	day,	and	each	log	file	is	compressed	with	bzip2.	Log	filenames	use	the	format
YYYY-MM-DD.log.bz2.	I	was	asked	to	extract	access	data	for	a	specific	domain	for	the
past	30	days.	This	seems	like	a	lot	of	work,	right?	I	need	to	calculate	a	date	range,
determine	log	filenames,	FTP	into	rsync.net,	download	files,	decompress	files,	iterate	each

http://www.newmediacampaigns.com
http://rsync.net

file	line-by-line,	extract	appropriate	lines,	and	write	access	data	to	an	output	destination.
Believe	it	or	not,	PHP	streams	let	me	do	all	of	this	in	fewer	than	20	lines	of	code
(Example	5-34).

Example	5-34.	Iterate	bzipped	log	files	with	DateTime	and	stream	filters
01	<?php

02	$dateStart	=	new	\DateTime();

03	$dateInterval	=	\DateInterval::createFromDateString('-1	day');

04	$datePeriod	=	new	\DatePeriod($dateStart,	$dateInterval,	30);

05	foreach	($datePeriod	as	$date)	{

06					$file	=	'sftp://USER:PASS@rsync.net/'	.	$date->format('Y-m-d')	.	'.log.bz2';

07					if	(file_exists($file))	{

08									$handle	=	fopen($file,	'rb');

09									stream_filter_append($handle,	'bzip2.decompress');

10									while	(feof($handle)	!==	true)	{

11													$line	=	fgets($handle);

12													if	(strpos($line,	'www.example.com')	!==	false)	{

13																	fwrite(STDOUT,	$line);

14													}

15									}

16									fclose($handle);

17					}

18	}

In	Example	5-34:

Lines	2–4	create	a	DatePeriod	instance	that	spans	the	past	30	days	using	an	inverted,
one-day	interval.
Line	6	creates	a	log	filename	using	the	DateTime	instance	returned	by	each
DatePeriod	iteration.
Lines	8–9	open	a	stream	resource	to	the	log	file	on	rsync.net	with	the	SFTP	stream
wrapper.	We	decompress	the	bzip2	log	file	on	the	fly	by	appending	the
bzip2.decompress	stream	filter	to	the	log	file	stream	resource.
Lines	10–15	iterate	the	decompressed	log	file	contents	using	PHP’s	standard
filesystem	functions.
Lines	12–14	inspect	each	line	for	a	given	domain.	If	the	domain	is	present,	the	line	is
written	to	standard	output.

The	bzip2.decompress	stream	filter	lets	us	automatically	decompress	log	files	as	we	read
them.	The	alternative	solution	is	manually	decompressing	log	files	into	a	temporary
directory	with	shell_exec()	or	bzdecompress(),	iterating	the	decompressed	files,	and
cleaning	up	the	decompressed	files	when	our	PHP	script	completes.	PHP	streams	are	a
simpler,	more	elegant	solution.

Custom	Stream	Filters
It’s	possible	to	write	custom	stream	filters,	too.	In	fact,	custom	stream	filters	are	the
primary	reason	you	use	stream	filters.	Custom	stream	filters	are	PHP	classes	that	extend
the	php_user_filter	built-in	class.	The	custom	stream	class	must	implement	the
filter(),	onCreate(),	and	onClose()	methods.	You	must	register	custom	stream	filters
with	the	stream_filter_register()	function.

http://php.net/manual/en/class.php-user-filter.php

Here	Comes	the	Bucket	Brigade!
A	PHP	stream	subdivides	data	into	sequential	buckets,	and	each	bucket	contains	a	fixed
amount	of	stream	data	(e.g.,	4,096	bytes).	If	we	use	our	pipe	metaphor,	water	is	carried
from	origin	to	destination	in	individual	buckets	that	float	through	the	pipe	and	pass
through	stream	filters.	Each	stream	filter	receives	and	manipulates	one	or	more	buckets	at
a	time.	The	bucket	or	buckets	received	by	a	filter	at	any	given	time	is	called	a	bucket
brigade.

Let’s	create	a	custom	stream	filter	that	censors	dirty	words	from	a	stream	as	its	data	is	read
into	memory	(Example	5-35).	First,	we	must	create	a	PHP	class	that	extends
php_user_filter.	This	class	must	implement	a	filter()	method	that	acts	as	a	sieve
through	which	stream	buckets	pass.	It	receives	a	bucket	brigade	from	upstream,	it
manipulates	each	bucket	object	in	the	brigade,	and	it	sends	each	bucket	into	the
downstream	bucket	brigade	toward	the	stream	destination.	This	is	our	DirtyWordsFilter
custom	stream	class.

Tip

Each	bucket	object	in	a	bucket	brigade	has	two	public	properties:	data	and	datalen.
These	are	the	bucket	content	and	content	length,	respectively.

Example	5-35.	Custom	DirtyWordsFilter	stream	filter
class	DirtyWordsFilter	extends	php_user_filter

{

				/**

					*	@param	resource	$in							Incoming	bucket	brigade

					*	@param	resource	$out						Outgoing	bucket	brigade

					*	@param	int						$consumed	Number	of	bytes	consumed

					*	@param	bool					$closing		Last	bucket	brigade	in	stream?

					*/

				public	function	filter($in,	$out,	&$consumed,	$closing)

				{

								$words	=	array('grime',	'dirt',	'grease');

								$wordData	=	array();

								foreach	($words	as	$word)	{

												$replacement	=	array_fill(0,	mb_strlen($word),	'*');

												$wordData[$word]	=	implode('',	$replacement);

								}

								$bad	=	array_keys($wordData);

								$good	=	array_values($wordData);

								//	Iterate	each	bucket	from	incoming	bucket	brigade

								while	($bucket	=	stream_bucket_make_writeable($in))	{

												//	Censor	dirty	words	in	bucket	data

												$bucket->data	=	str_replace($bad,	$good,	$bucket->data);

												//	Increment	total	data	consumed

												$consumed	+=	$bucket->datalen;

												//	Send	bucket	to	downstream	brigade

												stream_bucket_append($out,	$bucket);

								}

								return	PSFS_PASS_ON;

				}

}

The	filter()	method	receives,	manipulates,	and	forwards	buckets	of	stream	data.	Inside
the	filter()	function,	we	iterate	the	buckets	in	the	$in	bucket	brigade	and	replace	dirty
words	with	their	censored	values.	This	method	returns	the	PSFS_PASS_ON	constant	to

indicate	successful	operation.	This	method	accepts	four	arguments:
$in

A	brigade	of	one	or	more	upstream	buckets	that	contains	stream	data	from	the	stream
origin

$out

A	brigade	of	one	or	more	buckets	that	continue	downstream	toward	the	stream
destination

&$consumed

The	total	number	of	stream	bytes	consumed	by	our	custom	filter
$closing

Is	the	filter()	method	receiving	the	last	available	bucket	brigade?

We	must	register	the	DirtWordsFilter	custom	stream	filter	with	the
stream_filter_register()	function	(Example	5-36).

Example	5-36.	Register	custom	DirtyWordsFilter	stream	filter
<?php

stream_filter_register('dirty_words_filter',	'DirtyWordsFilter');

The	first	argument	is	the	filter	name	that	identifies	our	custom	filter.	The	second	argument
is	our	custom	filter’s	class	name.	We	can	now	use	our	custom	stream	filter	(Example	5-
37).

Example	5-37.	Use	DirtyWordsFilter	stream	filter
<?php

$handle	=	fopen('data.txt',	'rb');

stream_filter_append($handle,	'dirty_words_filter');

while	(feof($handle)	!==	true)	{

				echo	fgets($handle);	//	<--	Outputs	censored	text

}

fclose($handle);

Tip

If	you	want	to	learn	more	about	PHP	streams,	watch	Elizabeth	Smith’s	Nomad	PHP
presentation.	It’s	not	free,	but	it’s	worth	the	admission	price.	You	can	also	read	more	about
PHP	streams	in	the	PHP	documentation.

http://bit.ly/nomad-php
http://php.net/manual/en/book.stream.php

Errors	and	Exceptions
Things	go	wrong.	It’s	a	fact	of	life.	No	matter	how	hard	we	concentrate	or	how	much	time
we	pour	into	a	project,	there	are	always	bugs	and	errors	that	we	overlook.	For	example,
have	you	ever	used	a	PHP	application	that	displays	only	a	blank	white	page?	Have	you
ever	visited	a	PHP	website	that	spits	out	an	indecipherable	stack	trace?	These	unfortunate
situations	indicate	an	application	error	or	uncaught	exception.

Errors	and	exceptions	are	wonderful	tools	that	help	you	anticipate	the	unexpected.	They
help	you	catch	problems	and	fail	gracefully.	Errors	and	exceptions,	however,	are
confusingly	similar.	They	both	announce	when	something	is	wrong,	they	both	provide	an
error	message,	and	they	both	have	an	error	type.	Errors,	however,	are	older	than
exceptions.	They	are	a	procedural	device	that	halts	script	execution	and,	if	possible,
delegates	error	handling	to	a	global	error	handler	function.	Some	errors	are	unrecoverable.
Today	we	largely	rely	on	exceptions	instead	of	errors,	but	we	must	still	maintain	a
defensive	posture;	many	older	PHP	functions	(e.g.,	fopen())	still	trigger	errors	when
things	go	wrong.

Note

It’s	possible	to	circumvent	PHP	errors	with	the	@	prefix	in	front	of	a	PHP	function	that
might	trigger	an	error	(e.g.,	@fopen()).	This	is	an	antipattern.	I	recommend	you	change
your	code	to	avoid	these	situations.

Exceptions	are	an	object-oriented	evolution	of	PHP’s	error	handling	system.	They	are
instantiated,	thrown,	and	caught.	Exceptions	are	a	more	flexible	device	that	anticipates	and
handles	problems	in	situ	without	halting	script	execution.	Exceptions	are	also	an	offensive
and	defensive	device.	We	must	anticipate	exceptions	thrown	by	third-party	vendor	code
with	try	{}	catch	{}	blocks.	We	can	also	act	offensively	by	throwing	an	exception;	this
delegates	exception	handling	to	other	developers	when	we	don’t	know	how	to	handle	a
given	situation	on	our	own.

Exceptions
An	exception	is	an	object	of	class	Exception	that	is	thrown	when	you	encounter	an
irreparable	situation	from	which	you	cannot	recover	(e.g.,	a	remote	API	is	unresponsive,	a
database	query	fails,	or	a	precondition	is	not	satisfied).	I	call	these	exceptional	situations.
Exceptions	are	used	offensively	to	delegate	responsibility	when	a	problem	occurs,	and
they	are	used	defensively	to	anticipate	and	mitigate	potential	problems.

You	instantiate	an	Exception	object	with	the	new	keyword	just	like	any	other	PHP	object.
An	Exception	object	has	two	primary	properties:	a	message	and	a	numeric	code.	The
message	describes	what	went	wrong.	The	numeric	code	is	optional	and	can	be	used	to
provide	context	for	a	given	exception.	You	provide	the	message	and	optional	numeric
code	when	you	instantiate	an	Exception	object	like	this:

<?php

$exception	=	new	Exception('Danger,	Will	Robinson!',	100);

You	can	inspect	an	Exception	object	with	its	getCode()	and	getMessage()	public
instance	methods	like	this:

<?php

$code	=	$exception->getCode();	//	100

$message	=	$exception->getMessage();	//	'Danger…'

Throw	exceptions
You	can	assign	an	exception	to	a	variable	upon	instantiation,	but	exceptions	are	meant	to
be	thrown.	If	you	write	code	for	other	developers,	you	must	act	offensively	in	exceptional
situations,	meaning	you	throw	exceptions	when	your	code	encounters	exceptional
situations	or	cannot	otherwise	operate	under	current	conditions.	PHP	component	and
framework	authors,	in	particular,	cannot	presume	how	to	handle	exceptional	situations;
instead,	they	throw	an	exception	and	delegate	responsibility	to	the	developer	using	their
code.

When	an	exception	is	thrown,	code	execution	is	immediately	halted	and	subsequent	PHP
code	is	not	run.	To	throw	an	exception,	use	the	throw	keyword	followed	by	the	Exception
instance:

<?php

throw	new	Exception('Something	went	wrong.	Time	for	lunch!');

You	can	only	throw	an	instance	of	class	Exception	(or	a	subclass	of	Exception).	PHP
provides	these	built-in	Exception	subclasses:

Exception

ErrorException

The	Standard	PHP	Library	(SPL)	supplements	PHP’s	built-in	exceptions	with	these
additional	Exception	subclasses:

LogicException

BadFunctionCallException

BadMethodCallException

DomainException

http://php.net/manual/class.exception.php
http://php.net/manual/class.errorexception.php
http://php.net/manual/book.spl.php
http://php.net/manual/class.logicexception.php
http://php.net/manual/class.badfunctioncallexception.php
http://php.net/manual/class.badmethodcallexception.php
http://php.net/manual/class.domainexception.php

InvalidArgumentException

LengthException

OutOfRangeException

RuntimeException

OutOfBoundsException

OverflowException

RangeException

UnderflowException

UnexpectedValueException

Each	subclass	exists	for	a	certain	situation	and	provides	context	for	why	an	exception	is
thrown.	For	example,	if	a	PHP	component	method	expects	a	string	argument	with	at	least
five	characters	but	is	given	a	string	with	only	two	characters,	it	can	throw	an
InvalidArgumentException	instance.	Because	PHP	provides	an	exception	class,	you	can
easily	extend	the	Exception	class	to	create	your	own	custom	exception	subclasses	with
their	own	custom	properties	and	methods.	Which	exception	subclass	you	use	is	subjective.
Choose	or	create	the	exception	subclass	that	best	answers	why	am	I	throwing	this
exception?,	and	document	your	choice.

Catch	exceptions
Thrown	exceptions	should	be	caught	and	handled	gracefully.	You	must	act	defensively
when	using	PHP	components	and	frameworks	written	by	other	developers.	Good	PHP
components	and	frameworks	provide	documentation	that	explains	when	and	under	what
circumstances	they	throw	exceptions.	It	is	your	responsibility	to	anticipate,	catch,	and
handle	these	exceptions.	Uncaught	exceptions	terminate	your	PHP	application	with	a	fatal
error	and,	worse,	can	expose	sensitive	debugging	details	to	your	PHP	application’s	users.
We’ve	all	seen	this.	It	is	very	important	that	you	catch	exceptions	and	handle	them
gracefully.

Surround	code	that	might	throw	an	exception	with	a	try/catch	block	to	intercept	and
handle	potential	exceptions.	Example	5-38	demonstrates	a	failed	PDO	database	connection
that	throws	a	PDOException	object.	The	exception	is	caught	by	the	catch	block,	and	we
show	a	friendly	error	message	instead	of	an	ugly	stack	trace.

Example	5-38.	Catch	thrown	exception
<?php

try	{

				$pdo	=	new	PDO('mysql://host=wrong_host;dbname=wrong_name');

}	catch	(PDOException	$e)	{

				//	Inspect	the	exception	for	logging

				$code	=	$e->getCode();

				$message	=	$e->getMessage();

				//	Display	a	nice	message	to	the	user

				echo	'Something	went	wrong.	Check	back	soon,	please.';

				exit;

}

You	can	use	multiple	catch	blocks	to	intercept	multiple	types	of	exceptions.	This	is	useful
if	you	need	to	act	differently	based	on	the	type	of	exception	thrown.	You	can	also	use	a
finally	block	to	always	run	a	block	of	code	after	you	catch	any	exception	(Example	5-
39).

http://php.net/manual/class.invalidargumentexception.php
http://php.net/manual/class.lengthexception.php
http://php.net/manual/class.outofrangeexception.php
http://php.net/manual/class.runtimeexception.php
http://php.net/manual/class.outofboundsexception.php
http://php.net/manual/class.overflowexception.php
http://php.net/manual/class.rangeexception.php
http://php.net/manual/class.underflowexception.php
http://php.net/manual/class.unexpectedvalueexception.php

Example	5-39.	Catch	multiple	thrown	exceptions
<?php

try	{

				throw	new	Exception('Not	a	PDO	exception');

				$pdo	=	new	PDO('mysql://host=wrong_host;dbname=wrong_name');

}	catch	(PDOException	$e)	{

				//	Handle	PDO	exception

				echo	"Caught	PDO	exception";

}	catch	(Exception	$e)	{

				//	Handle	all	other	exceptions

				echo	"Caught	generic	exception";

}	finally	{

				//	Always	do	this

				echo	"Always	do	this";

}

In	Example	5-39,	the	first	catch	block	intercepts	PDOException	exceptions.	All	other
exceptions	are	intercepted	by	the	second	catch	block.	Only	one	catch	block	is	run	for	each
caught	exception.	If	PHP	does	not	find	an	applicable	catch	block,	the	exception	continues
to	bubble	upward	until	the	PHP	script	ultimately	terminates	with	a	fatal	error.

Exception	Handlers
You	may	be	thinking	how	am	I	supposed	to	catch	every	possible	exception?	And	that’s	a
good	question.	PHP	lets	you	register	a	global	exception	handler	to	catch	otherwise
uncaught	exceptions.	You	should	always	set	a	global	exception	handler.	An	exception
handler	is	a	final	safety	net	that	lets	you	show	an	appropriate	error	message	to	your	PHP
application’s	users	if	you	otherwise	fail	to	catch	and	handle	an	exception.	For	my	own
PHP	applications,	I	use	exception	handlers	to	show	debugging	information	during
development	and	a	user-friendly	message	during	production.

An	exception	handler	is	anything	that	is	callable.	I	prefer	to	use	an	anonymous	function,
but	you	can	also	use	a	class	method.	Whatever	you	choose,	it	must	accept	one	argument	of
class	Exception.	You	register	your	exception	handler	with	the	set_exception_handler()
function	like	this:

<?php

set_exception_handler(function	(Exception	$e)	{

				//	Handle	and	log	exception

});

Tip

I	strongly	recommend	you	log	exceptions	inside	your	exception	handler.	Your	logger	can
alert	you	when	things	go	wrong,	and	it	saves	exception	details	for	later	review.

In	some	situations,	you	may	need	to	replace	an	existing	exception	handler	with	your	own
exception	handler.	PHP	etiquette	suggests	you	restore	the	existing	exception	handler	when
your	code	is	finished.	You	can	restore	a	previous	exception	handler	with	the
restore_exception_handler()	function	(Example	5-40).

Example	5-40.	Set	global	exception	handler
<?php

//	Register	your	exception	handler

set_exception_handler(function	(Exception	$e)	{

				//	Handle	and	log	exception

});

//	Your	code	goes	here…

//	Restore	previous	exception	handler

restore_exception_handler();

Errors
PHP	provides	error-reporting	functions	in	addition	to	exceptions.	This	confuses	many	PHP
developers.	PHP	can	trigger	different	types	of	errors,	including	fatal	errors,	runtime	errors,
compile-time	errors,	startup	errors,	and	(more	rarely)	user-triggered	errors.	You’ll	most
often	encounter	PHP	errors	caused	by	syntax	mistakes	or	uncaught	exceptions.

The	difference	between	errors	and	exceptions	is	subtle.	Errors	are	often	triggered	when	a
PHP	script	cannot	fundamentally	run	as	expected	for	whatever	reason	(e.g.,	there	is	a
syntax	mistake).	It	is	also	possible	to	trigger	your	own	errors	with	the	trigger_error()
function	and	handle	them	with	a	custom	error	handler,	but	it	is	better	to	use	exceptions
when	writing	userland	code.	Unlike	errors,	PHP	exceptions	can	be	thrown	and	caught	at
any	level	of	your	PHP	application.	Exceptions	provide	more	contextual	information	than
PHP	errors.	And	you	can	extend	the	topmost	Exception	class	with	your	own	custom
exception	subclasses.	Exceptions	and	a	good	logger	like	Monolog	are	a	far	more	versatile
solution	than	PHP	errors.	However,	modern	PHP	developers	must	anticipate	and	handle
both	PHP	errors	and	PHP	exceptions.

You	can	instruct	PHP	which	errors	to	report,	and	which	to	ignore,	with	the
error_reporting()	function	or	the	error_reporting	directive	in	your	php.ini	file.	Both
accept	named	E_*	constants	that	determine	which	errors	are	reported	and	which	are
ignored.

Note

Learn	more	about	PHP	error	reporting	at	http://php.net/manual/function.error-
reporting.php.

PHP	error	reporting	can	be	as	sensitive	or	stoic	as	you	tell	it	to	be.	In	development,	I
prefer	PHP	to	obnoxiously	display	and	log	all	error	messages.	In	production,	I	instruct
PHP	to	log	most	error	messages	but	not	display	them.	Whatever	you	do,	you	should
always	follow	these	four	rules:

Always	turn	on	error	reporting.
Display	errors	during	development.
Do	not	display	errors	during	production.
Log	errors	during	development	and	production.

Here	are	my	error-reporting	php.ini	settings	for	development:
;	Display	errors

display_startup_errors	=	On

display_errors	=	On

;	Report	all	errors

error_reporting	=	-1

;	Turn	on	error	logging

log_errors	=	On

Here	are	my	error-reporting	php.ini	settings	for	production:
;	DO	NOT	display	errors

display_startup_errors	=	Off

display_errors	=	Off

;	Report	all	errors	EXCEPT	notices

http://php.net/manual/function.error-reporting.php

error_reporting	=	E_ALL	&	~E_NOTICE

;	Turn	on	error	logging

log_errors	=	On

The	main	difference	is	that	I	display	errors	in	my	PHP	script	output	during	development.	I
do	not	display	errors	in	my	PHP	script	output	in	production.	However,	I	log	errors	in	both
environments.	If	I	have	a	bug	in	my	production	PHP	application	(and	this	never
happens…cough),	I	can	review	my	PHP	log	file	for	details.

Error	Handlers
Just	as	you	can	with	exception	handlers,	you	can	set	a	global	error	handler	to	intercept	and
handle	PHP	errors	with	your	own	logic.	The	error	handler	lets	you	fail	gracefully	by
cleaning	up	loose	ends	before	terminating	the	PHP	script.

An	error	handler,	like	an	exception	handler,	is	anything	that	is	callable	(e.g.,	a	function	or
class	method).	It	is	your	responsibility	to	die()	or	exit()	inside	of	your	error	handler.	If
you	don’t	manually	terminate	the	PHP	script	inside	your	error	handler,	the	PHP	script	will
continue	executing	from	where	the	error	occurred.	You	register	your	global	error	handler
with	the	set_error_handler(),	and	you	pass	it	an	argument	that	is	callable:

<?php

set_error_handler(function	($errno,	$errstr,	$errfile,	$errline)	{

				//	Handle	error

});

Your	error-handler	callable	receives	five	arguments:
$errno

The	error	level	(maps	to	a	PHP	E_*	constant).
$errstr

The	error	message.
$errfile

The	filename	in	which	the	error	occurred.
$errline

The	file	line	number	on	which	the	error	occurred.
$errcontext

An	array	that	points	to	the	active	symbol	table	when	the	error	occurred.	This	is	optional
and	is	only	useful	for	advanced	debugging	purposes.	I	usually	ignore	this	argument.

There’s	one	important	caveat	that	you	absolutely	must	know	when	using	a	custom	error
handler.	PHP	will	send	all	errors	to	your	error	handler,	even	those	that	are	excluded	by
your	current	error-reporting	setting.	It	is	your	responsibility	to	inspect	each	error	code	(the
first	argument)	and	act	appropriately.	You	can	instruct	your	error	handler	to	only	respond
to	a	subset	of	error	types	with	a	second	argument	to	the	set_error_handler()	function;
this	argument	is	a	bitwise	mask	of	E_*	constants	(e.g.,	E_ALL	|	E_STRICT).

This	is	as	good	a	time	as	any	to	segue	into	a	common	practice	that	I	and	many	other	PHP
developers	use	in	our	PHP	applications.	I	like	to	convert	PHP	errors	into	ErrorException
objects.	The	ErrorException	class	is	a	subclass	of	Exception,	and	it	comes	built	into
PHP.	This	lets	me	convert	PHP	errors	into	exceptions	and	funnel	them	into	my	existing
exception	handling	workflow.

Note

Not	all	errors	can	be	converted	into	exceptions!	These	errors	include	E_ERROR,	E_PARSE,
E_CORE_ERROR,	E_CORE_WARNING,	E_COMPILE_ERROR,	E_COMPILE_WARNING,	and	most	of
E_STRICT.

Converting	PHP	errors	is	a	bit	tricky,	and	we	must	be	careful	to	convert	only	the	errors
that	satisfy	the	error_reporting	setting	in	our	php.ini	file.	Here’s	an	example	error-
handler	function	that	converts	PHP	errors	into	ErrorException	objects:

<?php

set_error_handler(function	($errno,	$errstr,	$errfile,	$errline)	{

				if	(!(error_reporting()	&	$errno))	{

								//	Error	is	not	specified	in	the	error_reporting

								//	setting,	so	we	ignore	it.

								return;

				}

				throw	new	\ErrorException($errstr,	$errno,	0,	$errfile,	$errline);

});

This	error-handler	function	converts	the	appropriate	PHP	errors	into	ErrorException
objects	and	throws	them	into	our	existing	exception-handling	system.	It	is	considered
good	etiquette	to	restore	the	previous	error	handler	(if	any)	after	your	own	code	is	done.
You	can	restore	the	previous	handler	with	the	restore_error_handler()	function
(Example	5-41).

Example	5-41.	Set	global	error	handler
<?php

//	Register	error	handler

set_error_handler(function	($errno,	$errstr,	$errfile,	$errline)	{

				if	(!(error_reporting()	&	$errno))	{

								//	Error	is	not	specified	in	the	error_reporting

								//	setting,	so	we	ignore	it.

								return;

				}

				throw	new	ErrorException($errstr,	$errno,	0,	$errfile,	$errline);

});

//	Your	code	goes	here…

//	Restore	previous	error	handler

restore_error_handler();

Errors	and	Exceptions	During	Development
We	know	we	should	display	errors	during	development.	But	PHP’s	default	error	messages
are	ugly	and	often	injected	into	the	normal	PHP	script	output,	resulting	in	a	hard-to-read
mess.	Use	Whoops	instead.	Whoops	is	a	modern	PHP	component	that	provides	a	well-
designed,	easy-to-read	diagnostics	page	for	PHP	errors	and	exceptions.	Whoops,	created
and	maintained	by	Filipe	Dobreira	and	Denis	Sokolov,	looks	like	Figure	5-1.

Figure	5-1.	Whoops	screenshot

The	Whoops	diagnostic	screen	is	light	years	better	than	the	default	PHP	error	and
exception	output.

Whoops	is	easy	to	implement,	too.	Update	your	composer.json	file	as	shown	below,	and
run	either	composer	install	or	composer	update:

{

				"require":	{

								"filp/whoops":	"~1.0"

				}

}

Next,	register	the	Whoops	error	and	exception	handlers	in	your	PHP	application’s
bootstrap	file,	as	shown	in	Example	5-42.

Example	5-42.	Register	the	Whoops	handler
<?php

//	Use	composer	autoloader

require	'path/to/vendor/autoload.php';

//	Setup	Whoops	error	and	exception	handlers

$whoops	=	new	\Whoops\Run;

$whoops->pushHandler(new	\Whoops\Handler\PrettyPageHandler);

$whoops->register();

That’s	it.	When	your	script	triggers	a	PHP	error	or	when	your	application	does	not	catch
an	exception,	you’ll	see	the	Whoops	diagnostic	screen.

Example	5-42	uses	the	Whoops	PrettyPageHandler	handler,	which	creates	the	diagnostic
screen	shown	in	Figure	5-1.	There	are	other	Whoops	handlers,	too,	including	a	plain-text
handler,	a	callback	handler,	a	JSON	response	handler,	an	XML	response	handler,	and	(if
your	pointy-haired	boss	likes	to	say	the	word	enterprise	a	lot)	a	SOAP	response	handler.	I

https://github.com/filp/whoops
https://github.com/filp
https://github.com/denis-sokolov

use	Whoops	during	development	for	each	application	I	develop.

Production
We	know	we	should	log	errors	in	production.	PHP	provides	the	error_log()	function	to
write	messages	to	the	filesystem,	to	syslog,	or	into	an	email.	But	there’s	a	better	option,
and	it’s	called	Monolog.	Monolog	is	a	very	good	PHP	component	that	specializes	in	one
thing	—	logging.	It’s	easy	to	integrate	into	your	PHP	applications	with	Composer.

First,	require	the	monolog/monolog	package	in	your	composer.json	file:
{

				"require":	{

								"monolog/monolog":	"~1.11"

				}

}

Next,	install	the	component	with	either	composer	install	or	composer	update,	and	add
the	code	from	Example	5-43	to	the	top	of	your	PHP	application’s	bootstrap	file.

Example	5-43.	Use	Monolog	for	development	logging
<?php

//	Use	Composer	autoloader

require	'path/to/vendor/autoload.php';

//	Import	Monolog	namespaces

use	Monolog\Logger;

use	Monolog\Handler\StreamHandler;

//	Setup	Monolog	logger

$log	=	new	Logger('my-app-name');

$log->pushHandler(new	StreamHandler('path/to/your.log',	Logger::WARNING));

That’s	it.	You	now	have	a	Monolog	logger	that	will	write	all	logged	messages	of	type
Logger::WARNING	or	higher	to	the	path/to/your.log	file.

Monolog	is	very	extensible.	You	can	define	multiple	handlers	that	only	handle	specific	log
levels.	For	example,	we	can	push	a	second	Monolog	handler	that	emails	an	administrator
for	critical,	alert,	or	emergency	errors.	We’ll	need	the	SwiftMailer	PHP	component,	so
let’s	add	that	to	the	composer.json	file	and	run	composer	update:

{

				"require":	{

								"monolog/monolog":	"~1.11",

								"swiftmailer/swiftmailer":	"~5.3"

				}

}

Next,	we’ll	modify	our	code	and	add	a	new	Monolog	handler	that	accepts	a	SwiftMailer
instance	to	send	email	messages	(Example	5-44).

Example	5-44.	Use	Monolog	for	production	logging
<?php

//	Use	Composer	autoloader

require	'vendor/autoload.php';

//	Import	Monolog	namespaces

use	Monolog\Logger;

use	Monolog\Handler\StreamHandler;

use	Monolog\Handler\SwiftMailerHandler;

date_default_timezone_set('America/New_York');

//	Setup	Monolog	and	basic	handler

$log	=	new	Logger('my-app-name');

$log->pushHandler(new	StreamHandler('logs/production.log',	Logger::WARNING));

https://github.com/Seldaek/monolog

//	Add	SwiftMailer	handler	for	critical	errors

$transport	=	\Swift_SmtpTransport::newInstance('smtp.example.com',	587)

													->setUsername('USERNAME')

													->setPassword('PASSWORD');

$mailer	=	\Swift_Mailer::newInstance($transport);

$message	=	\Swift_Message::newInstance()

											->setSubject('Website	error!')

											->setFrom(array('daemon@example.com'	=>	'John	Doe'))

											->setTo(array('admin@example.com'));

$log->pushHandler(new	SwiftMailerHandler($mailer,	$message,	Logger::CRITICAL));

//	Use	logger

$log->critical('The	server	is	on	fire!');

Now	when	a	critical,	alert,	or	emergency	message	is	logged,	Monolog	emails	the	logged
message	using	the	SwiftMailer	$mailer	and	$message	objects.	The	email	body	is	the
logged	message	text.

Part	III.	Deployment,	Testing,	and	Tuning

Chapter	6.	Hosting
So	you	have	a	PHP	application.	Congratulations!	However,	it	doesn’t	do	anyone	any	good
unless	your	users	can,	you	know,	use	it.	You	need	to	host	your	application	on	a	server	and
make	it	accessible	to	its	intended	audience.	Generally	speaking,	there	are	four	ways	to
host	PHP	applications:	shared	servers,	virtual	private	servers,	dedicated	servers,	and
platforms	as	a	service.	Each	has	its	unique	benefits	and	is	suitable	for	different	types	of
applications	and	budgets.

There	are	also	many	web	hosting	companies,	and	it	can	be	overwhelming	if	you	are	brand
new	to	the	web	hosting	landscape.	Some	hosting	companies	provide	only	shared	servers.
Other	companies	provide	a	mix	of	shared	servers,	virtual	private	servers,	and	dedicated
servers.	This	chapter	will	focus	less	on	the	companies	themselves	and	more	on	hosting
options.

Shared	Server
A	shared	server	is	the	most	affordable	hosting	option	and	costs	$1–10/month.	You	should
avoid	shared	hosting	plans.	This	is	not	a	commentary	on	shared	hosting	companies’
quality	of	service	or	customer	support.	There	are	many	good	shared	hosting	companies.
Simply	put,	shared	hosting	options	are	not	developer-friendly.

A	shared	server,	as	its	name	implies,	means	that	you	share	server	resources	with	other
people.	If	you	purchase	a	shared	hosting	plan,	your	hosting	account	lives	on	the	same
physical	machine	as	many	other	customers’.	If	your	particular	machine	has	2	Gb	of
memory,	your	PHP	application	might	receive	only	a	fraction	of	that	memory,	depending
on	how	many	other	customer	accounts	live	on	the	same	machine.	If	another	account	on	the
same	machine	runs	a	poorly	coded	script,	it	can	negatively	affect	your	own	application.
Some	shared	hosting	companies	oversell	shared	servers,	and	your	PHP	application
constantly	battles	for	system	resources	on	a	crowded	machine.

Shared	servers	are	also	very	difficult	to	customize.	For	example,	your	application	may
need	Memcached	or	Redis	for	a	fast,	in-memory	cache.	You	may	want	to	install
Elasticsearch	to	add	search	functionality	to	your	application.	Unfortunately,	shared	server
software	is	difficult	—	if	not	impossible	—	to	customize.	Your	applications	suffer	as	a
result.

Shared	servers	rarely	provide	remote	SSH	access.	Instead,	you’re	often	handicapped	with
(S)FTP	access	only.	This	limitation	severely	restricts	your	ability	to	automate	PHP
application	deployment.

If	your	budget	is	super-small	or	your	needs	extremely	modest,	a	shared	server	may	be
sufficient.	However,	if	you’re	building	a	business	website	or	a	moderately	popular	PHP
application,	you’re	better	off	using	a	virtual	private	server,	a	dedicated	server,	or	a	PaaS.

http://memcached.org
http://redis.io
http://www.elasticsearch.org

Virtual	Private	Server
A	virtual	private	server	(VPS)	looks,	feels,	and	acts	like	a	bare-metal	server.	But	it’s	not	a
bare-metal	server.	A	VPS	is	a	collection	of	system	resources	that	are	distributed	across	one
or	many	physical	machines.	A	VPS	still	has	its	own	filesystem,	root	user,	system
processes,	and	IP	address.	A	VPS	is	allocated	a	specific	amount	of	memory,	CPU,	and
bandwidth	—	and	they’re	all	yours.

VPSs	provide	more	system	resources	than	a	shared	server.	A	VPS	provides	root	SSH
access.	And	a	VPS	does	not	limit	what	software	you	can	install.	Great	power,	though,
comes	with	great	responsibility.	VPSs	give	you	root	access	to	a	virgin	operating	system.	It
is	your	responsibility	to	configure	and	secure	the	operating	system	for	your	PHP
application.	VPSs	are	ideal	for	most	PHP	applications.	They	provide	sufficient	system
resources	(e.g.,	CPU,	memory,	and	disk	space)	that	scale	up	or	down	on	demand.	A	VPS
costs	$10–100/month	based	on	the	amount	of	system	resources	needed	by	your	PHP
application.	If	your	PHP	application	becomes	super-popular	(hundreds	of	thousands	of
visitors	a	month)	and	a	VPS	becomes	too	costly,	you	might	consider	upgrading	to	a
dedicated	server.

Tip

I	almost	always	prefer	VPSs	for	their	balance	of	cost,	features,	and	flexibility.	Linode,	my
favorite	hosting	company,	provides	VPS	and	dedicated	hosting	plans.	Linode	isn’t	the
cheapest	option,	but	my	personal	experience	shows	Linode	is	fast	and	stable,	and	it	comes
with	a	vast	treasure	of	helpful	tutorials.

https://linode.com

Dedicated	Server
A	dedicated	server	is	a	rack-mounted	machine	that	your	hosting	company	installs,	runs,
and	maintains	on	your	behalf.	You	configure	dedicated	servers	to	your	exact
specifications.	Dedicated	servers	are	real	machines	that	must	be	transported,	installed,	and
monitored.	They	cannot	be	set	up	and	configured	as	quickly	as	VPSs.	That	being	said,
dedicated	servers	provide	the	ultimate	performance	for	demanding	PHP	applications.

Dedicated	servers	act	much	like	VPSs.	You	get	root	SSH	access	to	a	virgin	operating
system,	and	you	must	secure	and	configure	the	operating	system	for	your	PHP	application.
The	benefit	of	a	dedicated	server	is	cost-effectiveness.	Eventually	a	VPS	becomes	too
costly	as	you	consume	more	system	resources.	You	save	money	by	investing	in	your	own
infrastructure.

A	dedicated	server	costs	hundreds	of	dollars	per	month	depending	on	the	server
specifications.	It	can	be	unmanaged	(i.e.,	you	manage	the	server	yourself)	or	managed
(i.e.,	you	pay	extra	for	your	hosting	company	to	manage	the	server).

PaaS
Platforms	as	a	service	(PaaS)	are	a	quick	way	to	launch	your	PHP	application,	and	—
unlike	with	a	virtual	private	or	dedicated	server	—	you	don’t	have	to	manage	a	PaaS.	All
you	have	to	do	is	log	into	your	PaaS	provider’s	control	panel	and	click	a	few	buttons.
Some	PaaS	providers	have	a	command-line	or	HTTP	API	with	which	you	can	deploy	and
manage	your	hosted	PHP	applications.	Popular	PHP	PaaS	providers	include:

AppFog
AWS	Elastic	Beanstalk
Engine	Yard
Fortrabbit
Google	App	Engine
Heroku
Microsoft	Azure
Pagoda	Box
Red	Hat	OpenShift
Zend	Developer	Cloud

PaaS	pricing	varies	by	provider	but	is	similar	to	virtual	private	servers:	$10–100/month.
You	pay	for	the	system	resources	allocated	to	your	PHP	application.	System	resources	can
be	scaled	up	or	down	on	demand.	I	recommend	PaaS	hosting	plans	for	developers	who	do
not	want	to	manage	their	own	servers.

https://appfog.com/
http://aws.amazon.com/elasticbeanstalk/
https://www.engineyard.com/products/cloud
http://fortrabbit.com/
http://bit.ly/g-app-engine
https://devcenter.heroku.com/categories/php
http://www.windowsazure.com/
https://pagodabox.com/
http://openshift.com/
http://bit.ly/z-dev-cloud

Choose	a	Hosting	Plan
Choose	only	what	you	need	when	you	need	it.	You	can	always	scale	your	hosting
infrastructure	up	or	down	when	necessary.	For	small	PHP	applications	or	prototypes,	a
PaaS	provider	like	Engine	Yard	or	Heroku	is	the	best	and	quickest	solution.	If	you	prefer
more	control	over	your	server	configuration,	get	a	VPS.	If	your	application	becomes
super-popular	and	your	VPS	is	buckling	beneath	the	weight	of	millions	of	visitors
(congratulations,	by	the	way!),	get	a	dedicated	server.	Whichever	hosting	option	you
choose,	make	sure	it	provides	the	latest	stable	PHP	version	and	extensions	required	by
your	PHP	application.

Chapter	7.	Provisioning
After	you	choose	a	host	for	your	application,	it’s	time	to	configure	and	provision	the
server	for	your	PHP	application.	I’ll	be	honest	—	provisioning	a	server	is	an	art,	not	a
science.	How	you	provision	your	server	depends	entirely	on	your	application’s	needs.

Note

If	you	use	a	PaaS,	your	server	infrastructure	is	managed	by	the	PaaS	provider.	All	you
have	to	do	is	follow	the	provider’s	instructions	to	move	your	PHP	application	onto	their
platform,	and	you’re	ready	to	go.

If	you	don’t	use	a	PaaS,	you	must	provision	either	a	VPS	or	dedicated	server	to	run	your
PHP	application.	Provisioning	a	server	is	not	as	hard	as	it	sounds	(stop	laughing),	but	it
does	require	familiarity	with	the	command	line.	If	the	command	line	is	alien	to	you,
you’re	better	off	with	a	PaaS	like	Engine	Yard	or	Heroku.

I	don’t	consider	myself	a	system	administrator.	However,	basic	system	adminstration	is	an
incredibly	valuable	skill	for	application	developers	that	enables	more	flexible	and	robust
application	development.	In	this	chapter,	I’ll	share	my	system	administration	knowledge
so	you	can	feel	comfortable	opening	a	terminal	to	provision	a	server	for	your	PHP
application.	Afterward,	I’ll	suggest	a	few	additional	resources	for	you	to	continue
improving	your	system	administration	skills.

Note

In	this	chapter,	I	assume	you	know	how	to	edit	a	text	file	using	a	command-line	editor	like
nano	or	vim	(these	are	available	on	most	Linux	distributions).	Otherwise,	you’ll	need	an
alternative	method	of	accessing	and	editing	files	on	your	server.

http://www.nano-editor.org
http://www.vim.org

Our	Goal
First,	we	need	to	acquire	a	virtual	private	or	dedicated	server.	Next,	we	need	to	install	a
web	server	to	receive	HTTP	requests.	Finally,	we	need	to	set	up	and	manage	a	group	of
PHP	processes	to	handle	PHP	requests;	these	processes	must	communicate	with	our	web
server.

Several	years	ago,	it	was	common	practice	to	install	the	Apache	web	server	and	the
Apache	mod_php	module.	The	Apache	web	server	spawns	a	unique	child	process	to	handle
each	HTTP	request.	The	Apache	mod_php	module	embeds	a	unique	PHP	interpreter	inside
each	spawned	child	process	—	even	processes	that	serve	only	static	assets	like	JavaScript,
images,	or	stylesheets.	This	is	a	lot	of	overhead	that	wastes	system	resources.	I	see	fewer
and	fewer	PHP	developers	use	Apache	nowadays	because	there	are	more	efficient
solutions.

Today,	we	use	the	nginx	web	server,	which	sits	in	front	of	(and	forwards	PHP	requests	to)
a	collection	of	PHP-FPM	processes.	That’s	the	solution	I’ll	demonstrate	in	this	chapter.

http://nginx.org/

Server	Setup
First,	let’s	set	up	a	virtual	private	server	(VPS).	I	absolutely	adore	Linode.	It	isn’t	the
cheapest	VPS	provider,	but	it’s	one	of	the	most	reliable.	Head	over	to	Linode’s	website	(or
your	preferred	vendor)	and	purchase	a	new	VPS.	Your	vendor	will	ask	you	to	choose	a
Linux	distribution	and	a	root	password	for	your	new	server.

Tip

Many	VPS	providers,	like	Linode	and	Digital	Ocean,	bill	by	the	hour.	This	means	you	can
fire	up	and	play	with	a	VPS	at	virtually	zero	cost.

http://linode.com/
http://linode.com/
https://www.digitalocean.com

First	Login
The	first	thing	you	should	do	is	log	in	to	your	new	server.	Let’s	do	that	now.	Open	a
terminal	on	your	local	machine	and	ssh	into	your	server.	Be	sure	you	swap	in	your	own
machine’s	IP	address:

ssh	root@123.456.78.90

You	may	be	asked	to	confirm	the	authenticity	of	your	new	server.	Type	yes	and	press
Enter:

The	authenticity	of	host	'123.456.78.90	(123.456.78.90)'	can't	be	established.

RSA	key	fingerprint	is	21:eb:37:f3:a5:d3:c0:77:47:c4:15:3d:3c:dc:3c:d1.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?

Next,	you’ll	be	prompted	for	the	root	user’s	password.	Type	the	password	and	press	Enter:
root@123.456.78.90's	password:

You	are	now	logged	into	your	new	server!

Software	Updates
The	very	next	thing	you	should	do	is	update	your	operating	system’s	software	with	these
commands.

#	Ubuntu

apt-get	update;

apt-get	upgrade;

#	CentOS

yum	update

These	commands	spit	out	a	lot	of	information	as	software	updates	for	your	operating
system	are	downloaded	and	applied.	This	is	an	important	first	step	because	it	ensures	you
have	the	latest	updates	and	security	fixes	for	your	operating	system’s	default	software.

Nonroot	User
Your	new	server	is	not	secure.	Here	are	a	few	good	practices	to	harden	your	new	server’s
security.

Create	a	nonroot	user.	You	should	log	in	to	your	server	as	this	nonroot	user	in	the	future.
The	root	user	has	unlimited	power	on	your	server.	It	is	God.	It	can	run	any	command
without	question.	You	should	make	it	as	difficult	as	possible	to	access	your	server	as	the
root	user.

Ubuntu
Create	a	new	nonroot	user	named	deploy	with	the	command	in	Example	7-1.	Enter	a	user
password	when	prompted,	and	follow	the	remaining	on-screen	instructions.

Example	7-1.	Create	nonroot	user	on	Ubuntu
adduser	deploy

Next,	assign	the	deploy	user	to	the	sudo	group	with	this	command:
usermod	-a	-G	sudo	deploy

This	gives	the	deploy	user	sudo	privileges	(i.e.,	it	can	perform	privileged	tasks	with
password	authentication).

CentOS
Create	a	new	nonroot	user	named	deploy	with	this	command:

adduser	deploy

Give	the	deploy	user	a	password	with	this	command.	Enter	and	confirm	the	new	password
when	prompted:

passwd	deploy

Next,	assign	the	deploy	user	to	the	wheel	group	with	this	command:
usermod	-a	-G	wheel	deploy

This	gives	the	deploy	user	sudo	privileges	(i.e.,	it	can	perform	privileged	tasks	with
password	authentication).

SSH	Key-Pair	Authentication
On	your	local	machine,	you	can	log	into	your	new	server	as	the	nonroot	deploy	user	like
this:

ssh	deploy@123.456.78.90

You’ll	be	prompted	for	the	deploy	user’s	password,	and	then	you’ll	be	logged	in	to	the
server.	We	can	make	the	login	process	more	secure	by	disabling	password	authentication.
Password	authentication	is	vulnerable	to	brute-force	attacks	in	which	bad	guys	try	to	guess
your	password	over	and	over	in	quick	succession.	Instead,	we’ll	use	SSH	key-pair
authentication	when	we	ssh	into	our	server.

Key-pair	authentication	is	a	complex	subject.	In	basic	terms,	you	create	a	pair	of	“keys”
on	your	local	machine.	One	key	is	private	(this	stays	on	your	local	machine),	and	one	key
is	public	(this	goes	on	the	remote	server).	They	are	called	a	key	pair	because	messages
encrypted	with	the	public	key	can	be	decrypted	only	by	the	related	private	key.

When	you	log	in	to	the	remote	machine	using	SSH	key-pair	authentication,	the	remote
machine	creates	a	random	message,	encrypts	it	with	your	public	key,	and	sends	it	to	your
local	machine.	Your	local	machine	decrypts	the	message	with	your	private	key	and	returns
the	decrypted	message	to	the	remote	server.	The	remote	server	then	validates	the
decrypted	message	and	grants	you	access	to	the	server.	This	is	a	dramatic	simplification,
but	you	get	the	point.

If	you	log	in	to	your	remote	server	from	many	different	computers,	you	probably	do	not
want	to	use	SSH	key-pair	authentication.	This	would	require	you	to	generate
public/private	SSH	key	pairs	for	each	local	computer	and	copy	each	key	pair’s	public	key
to	your	remote	server.	In	this	case,	it’s	probably	preferable	to	continue	using	password
authentication	with	a	secure	password.	However,	if	you	are	only	accessing	your	remote
server	from	a	single	local	computer	(as	many	developers	often	do),	SSH	key-pair
authentication	is	the	way	to	go.	You	can	create	an	SSH	key-pair	on	your	local	machine
with	this	command:

ssh-keygen

Follow	the	subsequent	on-screen	instructions	and	enter	the	requested	information	when
prompted.	This	command	creates	two	files	on	your	local	machine:	~/.ssh/id_rsa.pub	(your
public	key)	and	~/.ssh/id_rsa	(your	private	key).	The	private	key	should	stay	on	your	local
computer	and	remain	a	secret.	Your	public	key,	however,	must	be	copied	onto	your	new
server.	We	can	copy	the	public	key	with	the	scp	(secure	copy)	command:

scp	~/.ssh/id_rsa.pub	deploy@123.456.78.90:

Be	sure	you	include	the	trailing	:	character!	This	command	uploads	your	public	key	to	the
deploy	user’s	home	directory	on	your	remote	server.	Next,	log	in	to	your	remote	server	as
the	deploy	user.	After	you	log	in	to	your	remote	server,	make	sure	the	~/.ssh	directory
exists.	If	it	does	not	exist,	create	the	~/.ssh	directory	with	this	command:

mkdir	~/.ssh

Next,	create	the	~/.ssh/authorized_keys	file	with	this	command:
touch	~/.ssh/authorized_keys

This	file	will	contain	a	list	of	public	keys	that	are	allowed	to	log	into	this	remote	server.
Execute	this	command	to	append	your	recently	uploaded	public	key	to	the
~/.ssh/authorized_keys	file:

cat	~/id_rsa.pub	>>	~/.ssh/authorized_keys

Finally,	we	need	to	modify	a	few	directory	and	file	permissions	so	that	only	the	deploy
user	can	access	its	own	~/.ssh	directory	and	read	its	own	~/.ssh/authorized_keys	file.
Assign	these	permissions	with	these	commands:

chown	-R	deploy:deploy	~/.ssh;

chmod	700	~/.ssh;

chmod	600	~/.ssh/authorized_keys;

We’re	done!	On	your	local	machine,	you	should	now	be	able	to	ssh	into	the	remote	server
without	entering	a	password.

Note

You	can	only	ssh	into	your	remote	server	without	a	password	from	the	local	machine	that
has	your	private	key!

Disable	Passwords	and	Root	Login
Let’s	make	the	remote	server	even	more	secure.	We’ll	disable	password	authentication	for
all	users,	and	we’ll	prevent	the	root	user	from	logging	in	—	period.	Remember,	the	root
user	can	do	anything,	so	we	want	to	make	it	as	difficult	as	possible	to	access	our	server	as
the	root	user.

Log	in	to	the	remote	server	as	the	deploy	user	and	open	the	/etc/ssh/sshd_config	file	in
your	preferred	text	editor.	The	is	the	SSH	server	software’s	configuration	file.	Find	the
PasswordAuthentication	setting	and	change	its	value	to	no;	uncomment	this	setting	if
necessary.	Find	the	PermitRootLogin	setting	and	change	its	value	to	no;	uncomment	this
setting	if	necessary.	Save	your	changes	and	restart	the	SSH	server	with	this	command	to
apply	your	changes:

#	Ubuntu

sudo	service	ssh	restart

#	CentOS

sudo	systemctl	restart	sshd.service

You’re	done.	You’ve	secured	your	server,	and	it’s	time	to	install	additional	software	to	run
your	PHP	application.	From	this	point	forward,	all	instructions	should	be	completed	on	the
remote	server	as	the	nonroot	deploy	user.

Note

Server	security	is	an	ongoing	task	that	should	be	constantly	monitored.	I	recommend	you
implement	a	firewall	in	addition	to	my	previous	instructions.	Ubuntu	users	can	use	UFW.
CentOS	users	can	use	iptables.

https://help.ubuntu.com/community/UFW
http://wiki.centos.org/HowTos/Network/IPTables

PHP-FPM
PHP-FPM	(PHP	FastCGI	Process	Manager)	is	software	that	manages	a	pool	of	related
PHP	processes	that	receive	and	handle	requests	from	a	web	server	like	nginx.	The	PHP-
FPM	software	creates	one	master	process	(usually	run	by	the	operating	system’s	root
user)	that	controls	how	and	when	HTTP	requests	are	forwarded	to	one	or	more	child
processes.	The	PHP-FPM	master	process	also	controls	when	child	PHP	processes	are
created	(to	answer	additional	web	application	traffic)	and	destroyed	(if	they	are	too	old	or
no	longer	necessary).	Each	PHP-FPM	pool	process	lives	longer	than	a	single	HTTP
request,	and	it	can	handle	10,	50,	100,	500,	or	more	HTTP	requests.

http://php.net/manual/en/install.fpm.php

Install
The	simplest	way	to	install	PHP-FPM	is	with	your	operating	sytem’s	native	package
manager,	as	demonstrated	by	the	following	commands.

Tip

See	Appendix	A	for	a	detailed	PHP-FPM	installation	guide.
#	Ubuntu

sudo	apt-get	install	python-software-properties;

sudo	add-apt-repository	ppa:ondrej/php5-5.6;

sudo	apt-get	update;

sudo	apt-get	install	php5-fpm	php5-cli	php5-curl	\

					php5-gd	php5-json	php5-mcrypt	php5-mysqlnd;

#	CentOS

sudo	rpm	-Uvh	\

		http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-5.noarch.rpm;

sudo	rpm	-Uvh	\

		http://rpms.famillecollet.com/enterprise/remi-release-7.rpm;

sudo	yum	-y	--enablerepo=epel,remi,remi-php56	install	php-fpm	php-cli	php-gd	\

		php-mbstring	php-mcrypt	php-mysqlnd	php-opcache	php-pdo	php-devel;

Tip

If	the	EPEL	rpm	installation	fails,	open	a	web	browser	and	navigate	to
http://dl.fedoraproject.org/pub/epel/7/x86_64/e/.	Look	for	an	updated	EPEL	release
version	and	use	that.

http://dl.fedoraproject.org/pub/epel/7/x86_64/e/

Global	Configuration
On	Ubuntu,	the	primary	PHP-FPM	cofiguration	file	is	/etc/php5/fpm/php-fpm.conf.	On
CentOS,	the	primary	PHP-FPM	configuration	file	is	/etc/php-fpm.conf.	Open	this	file	in
your	preferred	text	editor.

Note

PHP-FPM	configuration	files	use	the	INI	file	format.	Learn	more	about	the	INI	format	on
Wikipedia.

These	are	the	most	important	global	PHP-FPM	settings	that	I	recommend	you	change
from	their	default	values.	These	two	settings	might	be	commented	out	by	default;
uncomment	them	if	necessary.	These	settings	prompt	the	master	PHP-FPM	process	to
restart	if	a	specific	number	of	its	child	processes	fail	within	a	specific	interval	of	time.
These	settings	are	a	basic	safety	net	for	your	PHP-FPM	processes	that	can	resolve	simple
issues.	They	are	not	a	solution	to	more	fundamental	problems	caused	by	bad	PHP	code.
emergency_restart_threshold	=	10

The	maximum	number	of	PHP-FPM	child	processes	that	can	fail	within	a	given	time
interval	until	the	master	PHP-FPM	process	gracefully	restarts

emergency_restart_interval	=	1m

The	length	of	time	that	governs	the	emergency_restart_threshold	setting

Note

Read	more	about	PHP-FPM	global	configuration	at
http://php.net/manual/en/install.fpm.configuration.php.

https://en.wikipedia.org/wiki/INI_file
http://php.net/manual/en/install.fpm.configuration.php

Pool	Configuration
Elsewhere	in	the	PHP-FPM	configuration	file	is	a	section	named	Pool	Definitions.	This
section	contains	configuration	settings	for	each	PHP-FPM	pool.	A	PHP-FPM	pool	is	a
collection	of	related	PHP	child	processes.	One	PHP	application	typically	has	its	own	PHP-
FPM	pool.

On	Ubuntu,	the	Pool	Definitions	section	contains	this	one	line:
include=/etc/php5/fpm/pool.d/*.conf

CentOS	includes	the	pool	definition	files	at	the	top	of	the	primary	PHP-FPM	configuration
file	with	this	line:

include=/etc/php-fpm.d/*.conf

This	line	prompts	PHP-FPM	to	load	individual	pool	definition	files	located	in	the
/etc/php5/fpm/pool.d/	directory	(for	Ubuntu)	or	the	/etc/php-fpm.d/	directory	(for	CentOS).
Navigate	into	this	directory,	and	you	should	see	one	file	named	www.conf.	This	is	the
configuration	file	for	the	default	PHP-FPM	pool	named	www.	Open	this	file	in	your
preferred	text	editor.

Note

Each	PHP-FPM	pool	configuration	begins	with	a	[character,	the	pool	name,	and	a]
character.	The	default	PHP-FPM	pool	configuration,	for	example,	begins	with	[www].

Each	PHP-FPM	pool	runs	as	the	operating	system	user	and	group	that	you	specify.	I	prefer
to	run	each	PHP-FPM	pool	as	a	unique	nonroot	user	to	help	me	identify	each	PHP
application’s	PHP-FPM	processes	on	the	command	line	with	the	top	or	ps	aux
commands.	This	is	a	good	habit,	too,	because	each	PHP-FPM	pool’s	processes	are
inherently	sandboxed	by	the	permissions	available	to	their	operating	system	user	and
group.

We’ll	configure	the	default	www	PHP-FPM	pool	to	run	as	the	deploy	user	and	group.	If	you
haven’t	already,	open	the	www	PHP-FPM	pool	configuration	file	in	your	preferred	text
editor.	Here	are	the	settings	I	recommend	you	change	from	their	default	values:
user	=	deploy

The	system	user	that	owns	this	PHP-FPM	pool’s	child	processes.	Set	this	to	your	PHP
application’s	nonroot	operating	system	user	name.

group	=	deploy

The	system	group	that	owns	this	PHP-FPM	pool’s	child	processes.	Set	this	to	your	PHP
application’s	nonroot	operating	system	group	name.

listen	=	127.0.0.1:9000

The	IP	address	and	port	number	on	which	this	PHP-FPM	pool	listens	for	and	accepts
inbound	requests	from	nginx.	The	value	127.0.0.1:9000	instructs	this	specific	PHP-
FPM	pool	to	listen	for	incoming	connections	on	local	port	9000.	I	use	port	9000,	but
you	can	use	any	nonprivileged	port	number	(any	port	number	greater	than	1024)	that	is
not	already	in	use	by	another	system	process.	We’ll	revisit	this	setting	when	we
configure	our	nginx	virtual	host.

listen.allowed_clients	=	127.0.0.1

The	IP	address(es)	that	can	send	requests	to	this	PHP-FPM	pool.	For	security	reasons,	I
set	this	to	127.0.0.1.	This	means	that	only	the	current	machine	can	forward	requests	to
this	PHP-FPM	pool.	This	setting	might	be	commented	out	by	default.	Uncomment	this
setting	if	necessary.

pm.max_children	=	51

This	value	sets	the	total	number	of	PHP-FPM	pool	processes	that	can	exist	at	any	given
time.	There	is	no	correct	value	for	this	setting.	You	should	test	your	PHP	application,
determine	how	much	memory	each	individual	PHP	process	uses,	and	set	this	to	the	total
number	of	PHP	processes	that	your	machine’s	available	memory	can	accommodate.
Most	small	to	medium-sized	PHP	applications	often	use	between	5	MB	and	15	MB	of
memory	for	each	individual	PHP	process	(your	mileage	may	vary).	Assuming	we	are	on
a	machine	with	512	MB	of	memory	available	to	this	PHP-FPM	pool,	we	can	set	this
value	to	512MB	total	/	10MB	per	process,	or	51	processes.

pm.start_servers	=	3

The	number	of	PHP-FPM	pool	processes	that	are	available	immediately	when	PHP-
FPM	starts.	Again,	there	is	no	correct	value	for	this	setting.	For	most	small	or	medium-
sized	PHP	applications,	I	recommend	a	value	of	2	or	3.	This	ensures	that	your	PHP
application’s	initial	HTTP	requests	don’t	have	to	wait	for	PHP-FPM	to	initialize	PHP-
FPM	pool	processes.	Two	or	three	processes	are	already	ready	and	waiting.

pm.min_spare_servers	=	2

The	smallest	number	of	PHP-FPM	pool	processes	that	exist	when	your	PHP	application
is	idle.	This	will	typically	be	in	the	same	ballpark	as	your	pm.start_servers	setting,
and	it	ensures	that	new	HTTP	requests	don’t	have	to	wait	for	PHP-FPM	to	initialize
new	pool	processes	to	handle	new	requests.

pm.max_spare_servers	=	4

The	largest	number	of	PHP-FPM	pool	processes	that	exist	when	your	PHP	application
is	idle.	This	will	typically	be	a	bit	more	than	your	pm.start_servers	setting,	and	it
ensures	that	new	HTTP	requests	don’t	have	to	wait	for	PHP-FPM	to	initialize	new	pool
processes	to	handle	new	requests.

pm.max_requests	=	1000

The	maximum	number	of	HTTP	requests	that	each	PHP-FPM	pool	process	handles
before	being	recycled.	This	setting	helps	us	avoid	accumulating	memory	leaks	caused
by	poorly	coded	PHP	extensions	or	libraries.	I	recommend	a	value	of	1000,	but	you
should	tweak	this	based	on	your	own	application’s	needs.

slowlog	=	/path/to/slowlog.log

The	absolute	filesystem	path	to	a	log	file	that	records	information	about	HTTP	requests
that	take	longer	than	{n}	number	of	seconds	to	process.	This	is	helpful	for	identifying
and	debugging	bottlenecks	in	your	PHP	applications.	Bear	in	mind,	this	PHP-FPM
pool’s	user	or	group	must	have	permission	to	write	to	this	file.	The	value
/path/to/slowlog.log	is	an	example;	replace	this	value	with	your	own	file	path.

request_slowlog_timeout	=	5s

The	length	of	time	after	which	the	current	HTTP	request’s	backtrace	is	dumped	to	the
log	file	specified	by	the	slowlog	setting.	The	value	you	choose	depends	on	what	you
consider	to	be	a	slow	request.	A	value	of	5s	is	a	reasonable	value	to	start	with.

After	you	edit	and	save	the	PHP-FPM	configuration	file,	restart	the	PHP-FPM	master
process	with	this	command:

#	Ubuntu

sudo	service	php5-fpm	restart

#	CentOS

sudo	systemctl	restart	php-fpm.service

Note

Read	more	about	PHP-FPM	pool	configuration	at
http://php.net/manual/install.fpm.configuration.php.

http://php.net/manual/install.fpm.configuration.php

nginx
nginx	(pronounced	in	gen	ex)	is	a	web	server	similar	to	Apache,	but	it’s	much	simpler	to
configure	and	often	uses	less	system	memory.	I	don’t	have	time	to	dig	into	nginx	in	detail,
but	I	do	want	to	show	you	how	to	install	nginx	on	your	server	and	forward	appropriate
requests	to	your	PHP-FPM	pool.

Install
The	simplest	way	to	install	nginx	is	with	your	operating	system’s	native	package	manager.

Ubuntu
On	Ubuntu,	install	nginx	with	a	PPA.	This	is	an	Ubuntu-specific	term	for	a	prepackaged
archive	maintained	by	the	nginx	community:

sudo	add-apt-repository	ppa:nginx/stable;

sudo	apt-get	update;

sudo	apt-get	install	nginx;

CentOS
On	CentOS,	install	nginx	using	the	same	EPEL	third-party	software	repository	we	added
earlier.	The	default	CentOS	software	repositories	might	not	have	the	latest	nginx	version:

sudo	yum	install	nginx;

sudo	systemctl	enable	nginx.service;

sudo	systemctl	start	nginx.service;

Virtual	Host
Next,	we’ll	configure	an	nginx	virtual	host	for	our	PHP	application.	A	virtual	host	is	a
group	of	settings	that	tell	nginx	our	application’s	domain	name,	where	the	PHP	application
lives	on	the	filesystem,	and	how	to	forward	HTTP	requests	to	the	PHP-FPM	pool.

First,	we	must	decide	where	our	application	lives	on	the	filesystem.	The	PHP	application
files	must	live	in	a	filesystem	directory	that	is	readable	and	writable	by	the	nonroot	deploy
user.	For	this	example,	I’ll	place	application	files	in	the
/home/deploy/apps/example.com/current	directory.	We’ll	also	need	a	directory	to	store
application	log	files.	I’ll	place	log	files	in	the	/home/deploy/apps/logs	directory.	Use	these
commands	to	create	the	directories	and	assign	correct	permissions:

mkdir	-p	/home/deploy/apps/example.com/current/public;

mkdir	-p	/home/deploy/apps/logs;

chmod	-R	+rx	/home/deploy;

Place	your	PHP	application	in	the	/home/deploy/apps/example.com/current	directory.	The
nginx	virtual	host	configuration	assumes	your	PHP	application	has	a	public/	directory;	this
is	the	virtual	host	document	root.

Each	nginx	virtual	host	has	its	own	configuration	file.	If	you	use	Ubuntu,	create	the
/etc/nginx/sites-available/example.conf	configuration	file.	If	you	use	CentOS,	create	the
/etc/nginx/conf.d/example.conf	configuration	file.	Open	the	example.conf	configuration
file	in	your	preferred	text	editor.

nginx	virtual	host	settings	live	inside	a	server	{}	block.	Here	is	the	complete	virtual	host
configuration	file:

server	{

				listen	80;

				server_name	example.com;

				index	index.php;

				client_max_body_size	50M;

				error_log	/home/deploy/apps/logs/example.error.log;

				access_log	/home/deploy/apps/logs/example.access.log;

				root	/home/deploy/apps/example.com/current/public;

				location	/	{

								try_files	$uri	$uri/	/index.phpis_argsargs;

				}

				location	~	\.php	{

								try_files	$uri	=404;

								fastcgi_split_path_info	^(.+\.php)(/.+)$;

								include	fastcgi_params;

								fastcgi_param	SCRIPT_FILENAME	$document_root$fastcgi_script_name;

								fastcgi_param	SCRIPT_NAME	$fastcgi_script_name;

								fastcgi_index	index.php;

								fastcgi_pass	127.0.0.1:9000;

				}

}

Copy	and	paste	this	code	into	the	example.conf	virtual	host	configuration	file.	Make	sure
you	update	the	server_name	setting	and	swap	the	error_log,	access_log,	and	root	paths
with	appropriate	values.	Here’s	a	quick	explanation	of	each	virtual	host	setting:
listen

The	port	number	on	which	nginx	listens	for	inbound	HTTP	requests.	In	most	cases,	this
is	port	80	for	HTTP	traffic	or	port	443	for	HTTPS	traffic.

server_name

The	domain	name	that	identifies	this	virtual	host.	Change	this	to	your	application’s
domain	name,	and	ensure	the	domain	name	points	at	your	server’s	IP	address.	nginx
sends	an	HTTP	request	to	this	virtual	host	if	the	request’s	Host:	header	matches	the
virtual	host’s	server_name	value.

index

The	default	files	served	if	none	is	specified	in	the	HTTP	request	URI.
client_max_body_size

The	maximum	HTTP	request	body	size	accepted	by	nginx	for	this	virtual	host.	If	the
request	body	size	exceeds	this	value,	nginx	returns	a	HTTP	4xx	response.

error_log

The	filesystem	path	to	this	virtual	host’s	error	log	file.
access_log

The	filesystem	path	to	this	virtual	host’s	access	log	file.
root

The	document	root	directory.

There	are	also	two	location	blocks.	These	tell	nginx	how	to	handle	HTTP	requests	that
match	specific	URL	patterns.	The	first	location	/	{}	block	uses	a	try_files	directive
that	looks	for	real	files	that	match	the	request	URI.	If	a	file	is	not	found,	it	looks	for	a
directory	that	matches	the	request	URI.	If	a	directory	is	not	found,	it	rewrites	the	HTTP
request	URI	to	/index.php	and	appends	the	query	string	if	available.	The	rewritten	URL,	or
any	request	whose	URI	ends	with	.php,	is	managed	by	the	location	~	\.php	{}	block.

The	location	~	\.php	{}	block	forwards	HTTP	requests	to	our	PHP-FPM	pool.
Remember	how	we	set	up	our	PHP-FPM	pool	to	listen	for	requests	on	port	9000?	This
block	forwards	PHP	requests	to	port	9000,	and	the	PHP-FPM	pool	takes	over.

Note

There	are	a	few	extra	lines	in	the	location	~	\.php	{}	block.	These	lines	prevent
potential	remote	code	execution	attacks.

On	Ubuntu,	we	must	symlink	the	virtual	host	configuration	file	into	the	/etc/nginx/sites-
enabled/	directory	with	this	command:

sudo	ln	-s	/etc/nginx/sites-available/example.conf	\

					/etc/nginx/sites-enabled/example.conf;

Finally,	restart	nginx	with	this	command:
#	Ubuntu

sudo	service	nginx	restart

#	CentOS

sudo	systemctl	restart	nginx.service

Your	PHP	application	is	up	and	running!	There	are	many	ways	to	configure	nginx.	I’ve
included	only	the	most	essential	nginx	settings	in	this	chapter	because	this	is	a	PHP	book,
not	an	nginx	book.	You	can	learn	more	about	nginx	configuration	at	any	of	these	helpful

http://bit.ly/remote-ex

resources:

http://nginx.org/
https://github.com/h5bp/server-configs-nginx
https://serversforhackers.com/editions/2014/03/25/nginx/

http://nginx.org/
https://github.com/h5bp/server-configs-nginx
https://serversforhackers.com/editions/2014/03/25/nginx/

Automate	Server	Provisioning
Server	provisioning	is	a	lengthy	process.	It’s	also	not	a	fun	process,	especially	if	you
manually	provision	many	servers.	Fortunately,	there	are	tools	available	that	help	automate
server	provisioning.	Some	popular	server	provisioning	tools	are:

Puppet
Chef
Ansible
SaltStack

Each	tool	is	different,	but	they	all	accomplish	the	same	goal	—	they	automatically
provision	new	servers	based	on	your	exact	specifications.	If	you	are	responsible	for
multiple	servers,	I	strongly	encourage	you	to	explore	provisioning	tools,	because	they	save
a	ton	of	time.

http://puppetlabs.com/
https://www.getchef.com/chef/
http://www.ansible.com/home
http://www.saltstack.com/

Delegate	Server	Provisioning
There	are	online	services,	too,	that	perform	server	provisioning	on	your	behalf.	An
example	service	is	Forge	by	Taylor	Otwell.	I	was	a	Forge	beta	tester,	and	it	really	is	a
helpful	service.	Forge	can	provision	multiple	servers	on	Linode,	Digital	Ocean,	and	other
popular	VPS	providers.

Each	server	provisioned	by	Forge	is	automatically	secured	using	the	same	security
practices	I	demonstrated	earlier.	Forge	automatically	installs	an	nginx	and	PHP-FPM
software	stack.	Forge	also	simplifies	PHP	application	deployment,	SSL	certificate
installation,	CRON	task	creation,	and	other	mundane	or	confusing	system	administration
tasks.	I	highly	recommend	Forge	if	system	administration	isn’t	your	cup	of	tea.

https://forge.laravel.com/

Further	Reading
I	find	system	administration	fascinating.	I	don’t	want	to	do	it	as	a	full-time	job,	but	I	enjoy
tinkering	on	the	command	line.	The	best	system	administration	learning	resource	for
developers,	in	my	opinion,	is	Servers	for	Hackers	by	Chris	Fidao.

https://book.serversforhackers.com/

What’s	Next
In	this	chapter	we	discussed	how	to	provision	a	server	to	run	PHP	applications.	Next	we’ll
talk	about	how	to	tune	your	server	to	eke	out	maximum	performance	for	your	PHP
application.

Chapter	8.	Tuning
By	this	point,	your	PHP	application	should	be	running	alongside	nginx	with	its	own	PHP-
FPM	process	pool.	We’re	not	done	yet,	though.	We	should	tune	PHP’s	configuration	with
settings	appropriate	for	your	application	and	production	server.	Default	PHP	installations
are	like	an	average	suit	you	find	at	your	local	department	store;	they	fit,	but	they	don’t	fit
well.	A	tuned	PHP	installation	is	a	custom	tailored	suit	prepared	with	your	exact
measurements.

Don’t	get	too	excited.	PHP	tuning	is	not	a	universal	cure	for	application	performance.	Bad
code	is	still	bad	code.	For	example,	PHP	tuning	cannot	solve	poorly	written	SQL	queries
or	unresponsive	API	calls.	However,	PHP	tuning	is	a	low-hanging	fruit	that	can	improve
PHP	efficiency	and	application	performance.

The	php.ini	File
The	PHP	interpreter	is	configured	and	tuned	with	a	file	named	php.ini.	This	file	can	live	in
one	of	several	directories	on	your	operating	system.	If	you	run	PHP	with	PHP-FPM,	as	I
demonstrated	earlier,	you	can	find	the	php.ini	configuration	file	at	/etc/php5/fpm/php.ini.
Oddly	enough,	this	php.ini	file	does	not	control	the	PHP	interpreter	used	when	you	invoke
php	on	the	command	line.	PHP	on	the	command	line	uses	its	own	php.ini	file	often	located
at	/etc/php5/cli/php.ini.	If	you	built	PHP	from	source,	the	php.ini	location	is	likely	beneath
the	$PREFIX	directory	specified	when	you	configured	the	PHP	source	files.	I’ll	assume
you’re	running	PHP	with	PHP-FPM	as	described,	but	all	of	these	optimizations	are
applicable	to	any	php.ini	file.

Tip

Scan	your	php.ini	file	for	best	security	practices	with	the	PHP	Iniscan	tool,	written	by
Chris	Cornutt.

The	php.ini	file	uses	the	INI	format.	You	can	learn	about	the	INI	format	on	Wikipedia.

https://github.com/psecio/iniscan
https://en.wikipedia.org/wiki/INI_file

Memory
My	first	concern	when	running	PHP	is	how	much	memory	each	PHP	process	consumes.
The	memory_limit	setting	in	the	php.ini	file	determines	the	maximum	amount	of	system
memory	that	can	be	used	by	a	single	PHP	process.

The	default	value	is	128M,	and	this	is	probably	fine	for	most	small	to	medium-sized	PHP
applications.	However,	if	you	are	running	a	tiny	PHP	application,	you	can	save	system
resouces	by	lowering	this	value	to	something	like	64M.	If	you	are	running	a	memory-
intensive	PHP	application	(e.g.,	a	Drupal	website),	you	may	see	improved	performance
with	a	higher	value	like	512M.	The	value	you	choose	is	dictated	by	the	amount	of	available
system	memory.	Figuring	out	how	much	memory	to	allocate	to	PHP	is	more	an	art	than	a
science.	These	are	the	questions	I	ask	myself	to	determine	my	PHP	memory	limit	and	the
number	of	PHP-FPM	processes	I	can	afford:

What	is	the	total	amount	of	memory	I	can	allocate	for	PHP?

First,	I	determine	how	much	system	memory	I	can	allocate	for	PHP.	For	example,	I	may
be	working	with	a	Linode	virtual	machine	with	2	GB	of	total	memory.	However,	other
processes	(e.g.,	nginx,	MySQL,	or	memcache)	might	run	on	the	same	machine	and
consume	memory	of	their	own.	I	think	I	can	safely	set	aside	512	MB	of	memory	for
PHP.

How	much	memory,	on	average,	is	consumed	by	a	single	PHP	process?

Next,	I	determine	how	much	memory,	on	average,	is	consumed	by	a	single	PHP
process.	This	requires	me	to	monitor	process	memory	usage.	If	you	live	in	the
command	line,	then	you	can	run	top	to	see	realtime	stats	for	running	processes.	You	can
also	invoke	the	memory_get_peak_usage()	PHP	function	at	the	tail	end	of	a	PHP	script
to	output	the	maximum	amount	of	memory	consumed	by	the	current	script.	Either	way,
run	the	same	PHP	script	several	times	(to	warm	caches)	and	take	the	average	memory
consumption.	I	often	find	PHP	processes	consume	between	5–20	MB	of	memory	(your
mileage	may	vary).	If	you	are	working	with	file	uploads,	image	data,	or	a	memory-
intensive	application,	this	value	will	obviously	be	higher.

How	many	PHP-FPM	processes	can	I	afford?

I	have	512	MB	of	total	memory	allocated	for	PHP.	I	determine	that	each	PHP	process,
on	average,	consumes	about	15	MB	of	memory.	I	divide	the	total	memory	by	the
amount	of	memory	consumed	by	each	PHP	process,	and	I	determine	I	can	afford	34
PHP-FPM	processes.	This	value	is	an	estimate	and	should	be	refined	with
experimentation.

Do	I	have	enough	system	resources?

Finally,	I	ask	myself	if	I	believe	I	have	sufficient	system	resources	to	run	my	PHP
application	and	handle	the	expected	web	traffic.	If	yes,	awesome.	If	no,	I	need	to
upgrade	my	server	with	more	memory	and	return	to	the	first	question.

Note

Use	Apache	Bench	or	Seige	to	stress-test	your	PHP	applications	under	production-like
conditions.	If	your	PHP	application	does	not	have	sufficient	resources,	it’s	wise	to	figure
this	out	before	you	take	your	application	into	production.

http://bit.ly/apache-bench
http://www.joedog.org/siege-home/

Zend	OPcache
After	I	figure	out	my	memory	allocation,	I	configure	the	PHP	Zend	OPcache	extension.
This	is	an	opcode	cache.	What’s	an	opcode	cache?	Let’s	first	examine	how	a	typical	PHP
script	is	processed	for	every	HTTP	request.	First,	nginx	forwards	an	HTTP	request	to
PHP-FPM,	and	PHP-FPM	assigns	the	request	to	a	child	PHP	process.	The	PHP	process
finds	the	appropriate	PHP	scripts,	it	reads	the	PHP	scripts,	it	compiles	the	PHP	scripts	into
an	opcode	(or	bytecode)	format,	and	it	executes	the	compiled	PHP	opcode	to	generate	an
HTTP	response.	The	HTTP	response	is	returned	to	nginx,	and	nginx	returns	the	HTTP
response	to	the	HTTP	client.	This	is	a	lot	of	overhead	for	every	HTTP	request.

We	can	speed	this	up	by	caching	the	compiled	opcode	for	each	PHP	script.	Then	we	can
read	and	execute	precompiled	opcode	from	cache	instead	of	finding,	reading,	and
compiling	PHP	scripts	for	each	HTTP	request.	The	Zend	OPcache	extension	is	built	into
PHP	5.5.0+.	Here	are	my	php.ini	settings	to	configure	and	optimize	the	Zend	OPcache
extension:

opcache.memory_consumption	=	64

opcache.interned_strings_buffer	=	16

opcache.max_accelerated_files	=	4000

opcache.validate_timestamps	=	1

opcache.revalidate_freq	=	0

opcache.fast_shutdown	=	1

opcache.memory_consumption	=	64

The	amount	of	memory	(in	megabytes)	allocated	for	the	opcode	cache.	This	should	be
large	enough	to	store	the	compiled	opcode	for	all	of	your	application’s	PHP	scripts.	If
you	have	a	small	PHP	application	with	few	scripts,	this	can	be	a	lower	value	like	16
MB.	If	your	PHP	application	is	large	with	many	scripts,	use	a	larger	value	like	64	MB.

opcache.interned_strings_buffer	=	16

The	amount	of	memory	(in	megabytes)	used	to	store	interned	strings.	What	the	heck	is
an	interned	string?	That	was	my	first	question,	too.	The	PHP	interpreter,	behind	the
scenes,	detects	multiple	instances	of	identical	strings	and	stores	the	string	in	memory
once	and	uses	pointers	whenever	the	string	is	used	again.	This	saves	memory.	By
default,	PHP’s	string	interning	is	isolated	in	each	PHP	process.	This	setting	lets	all	PHP-
FPM	pool	processes	store	their	interned	strings	in	a	shared	buffer	so	that	interned
strings	can	be	referenced	across	multiple	PHP-FPM	pool	processes.	This	saves	even
more	memory.	The	default	value	is	4	MB,	but	I	prefer	to	bump	this	to	16	MB.

opcache.max_accelerated_files	=	4000

The	maximum	number	of	PHP	scripts	that	can	be	stored	in	the	opcode	cache.	You	can
use	any	number	between	200	and	100000.	I	use	4000.	Make	sure	this	number	is	larger
than	the	number	of	files	in	your	PHP	application.

opcache.validate_timestamps	=	1

When	this	setting	is	enabled,	PHP	checks	PHP	scripts	for	changes	on	the	interval	of
time	specified	by	the	opcache.revalidate_freq	setting.	If	this	setting	is	disabled,	PHP
does	not	check	PHP	scripts	for	changes,	and	you	must	clear	the	opcode	cache	manually.
I	recommend	you	enable	this	setting	during	development	and	disable	this	setting	during
production.

opcache.revalidate_freq	=	0

How	often	(in	seconds)	PHP	checks	compiled	PHP	files	for	changes.	The	benefit	of	a
cache	is	to	avoid	recompiling	PHP	scripts	on	each	request.	This	setting	determines	how
long	the	opcode	cache	is	considered	fresh.	After	this	time	interval,	PHP	checks	PHP
scripts	for	changes.	If	PHP	detects	a	change,	PHP	recompiles	and	recaches	the	script.	I
use	a	value	of	0	seconds.	This	value	requires	PHP	to	revalidate	PHP	files	on	every
request	if	and	only	if	you	enable	the	opcache.validate_timestamps	setting.	This
means	PHP	revalidates	files	on	every	request	during	development	(a	good	thing).	This
setting	is	moot	during	production	because	the	opcache.validate_timestamps	setting	is
disabled	anyway.

opcache.fast_shutdown	=	1

This	prompts	the	opcache	to	use	a	faster	shutdown	sequence	by	delegating	object
deconstruction	and	memory	release	to	the	Zend	Engine	memory	manager.
Documentation	is	lacking	for	this	setting.	All	you	need	to	know	is	turn	this	on.

File	Uploads
Does	your	PHP	application	accept	file	uploads?	If	not,	turn	off	file	uploads	to	improve
application	security.	If	your	application	does	accept	file	uploads,	it’s	best	to	set	a
maximum	upload	filesize	that	your	application	accepts.	It’s	also	best	to	set	a	maximum
number	of	uploads	that	your	application	accepts	at	one	time.	These	are	the	php.ini	settings
I	use	for	my	own	applications:

file_uploads	=	1

upload_max_filesize	=	10M

max_file_uploads	=	3

By	default,	PHP	allows	up	to	20	uploads	in	a	single	request.	Each	uploaded	file	can	be	up
to	2	MB	in	size.	You	probably	don’t	need	to	allow	20	uploads	at	once;	I	only	allow	three
uploads	in	a	single	request,	but	change	this	setting	to	a	value	that	makes	sense	for	your
application.

If	my	PHP	applications	accept	file	uploads,	they	often	need	to	accept	files	much	larger
than	2	MB.	I	bump	the	upload_max_filesize	setting	to	10M	or	higher	based	on	each
application’s	requirements.	Don’t	set	this	to	something	too	large,	otherwise	your	web
server	(e.g.,	nginx)	may	complain	about	the	HTTP	request	having	too	large	a	body	or
timing	out.

Note

If	you	accept	very	large	file	uploads,	be	sure	your	web	server	is	configured	accordingly.
You	may	need	to	adjust	the	client_max_body_size	setting	in	your	nginx	virtual	host
configuration	in	addition	to	your	php.ini	file.

http://bit.ly/max-body-size

Max	Execution	Time
The	max_execution_time	setting	in	your	php.ini	file	determines	the	maximum	length	of
time	that	a	single	PHP	process	can	run	before	terminating.	By	default,	this	is	set	to	30
seconds.	You	don’t	want	PHP	processes	running	for	30	seconds.	We	want	our	applications
to	be	super-fast	(measured	in	milliseconds).	I	recommend	you	change	this	to	5	seconds:

max_execution_time	=	5

Note

You	can	override	this	setting	on	a	per-script	basis	with	the	set_time_limit()	PHP
function.

What	if	my	PHP	script	needs	to	run	a	long	time?	you	ask.	It	shouldn’t.	The	longer	PHP
runs,	the	longer	your	web	application	visitors	must	wait	for	a	response.	If	you	have	long-
running	tasks	(e.g.,	resizing	images	or	generating	reports),	offload	those	tasks	to	a	separate
worker	process.

Tip

I	use	the	exec()	PHP	function	to	invoke	the	at	bash	command.	This	lets	me	fork	separate
nonblocking	processes	that	do	not	delay	the	current	PHP	process.	If	you	use	the	exec()
PHP	function,	it	is	your	responsibility	to	escape	shell	arguments	with	the	escapeshellarg
PHP	function.

Assume	we	need	to	run	a	report	and	generate	a	PDF	file	with	the	results.	This	task	may
take	10	minutes	to	complete.	Surely	we	don’t	want	the	PHP	request	to	sit	around	for	10
minutes.	Instead,	we	create	a	separate	PHP	file	called	create-report.php	that	will	chug
along	for	10	minutes	and	eventually	generate	our	report.	However,	our	web	application
will	take	only	milliseconds	to	spin	off	a	separate	background	process	and	return	an	HTTP
response,	like	this:

<?php

exec('echo	"create-report.php"	|	at	now');

echo	'Report	pending…';

The	standalone	create-report.php	script	runs	in	a	separate	background	process;	it	can
update	a	database	or	email	the	report	recipient	upon	completion.	There	is	absolutely	no
reason	why	the	primary	PHP	script	should	hold	up	the	user	experience	for	long-running
tasks.

Tip

If	you	find	yourself	spawning	a	lot	of	background	processes,	you	may	be	better	served
with	a	dedicated	job	queue.	PHP	Resque	is	a	great	job	queue	manager	based	on	the
original	Resque	job	queue	manager	from	GitHub.

http://php.net/manual/function.set-time-limit.php
http://php.net/manual/function.escapeshellarg.php
https://github.com/chrisboulton/php-resque
https://github.com/blog/542-introducing-resque

Session	Handling
PHP’s	default	session	handler	can	slow	down	larger	applications	because	it	stores	session
data	on	disk.	This	creates	unnecessary	file	I/O	that	takes	time.	Instead,	offload	session
handling	to	a	faster	in-memory	data	store	like	Memcached	or	Redis.	This	has	the	added
benefit	of	future	scalability.	If	your	session	data	is	stored	on	disk,	this	prevents	you	from
scaling	PHP	across	additional	servers.	If	your	session	data	is,	instead,	stored	on	a	central
Memcached	or	Redis	data	store,	it	can	be	accessed	from	any	number	of	distributed	PHP-
FPM	servers.

Install	the	the	PECL	Memcached	extension	to	access	a	Memcached	datastore	from	PHP.
You	can	now	change	PHP’s	default	session	store	to	Memcached	by	adding	these	lines	to
your	php.ini	file:

session.save_handler	=	'memcached'

session.save_path	=	'127.0.0.2:11211'

http://memcached.org
http://redis.io
http://pecl.php.net/package/memcached

Output	Buffering
Networks	are	more	efficient	when	sending	more	data	in	fewer	chunks,	rather	than	less	data
in	more	chunks.	In	other	words,	deliver	content	to	your	visitor’s	web	browser	in	fewer
pieces	to	reduce	the	total	number	of	HTTP	requests.

This	is	why	you	enable	PHP	output	buffering.	By	default,	PHP’s	output	buffer	is	enabled
(except	on	the	command	line).	PHP’s	output	buffer	collects	up	to	4,096	bytes	before
flushing	its	contents	back	to	the	web	server.	Here	are	my	recommended	php.ini	settings:

output_buffering	=	4096

implicit_flush	=	false

Tip

If	you	change	the	output	buffer	size,	make	sure	its	value	is	a	multiple	of	4	(for	32-bit
systems)	or	8	(for	64-bit	systems).

Realpath	Cache
PHP	maintains	a	cache	of	file	paths	that	are	used	by	your	PHP	application	so	it	does	not
have	to	continually	search	the	include	path	each	time	it	includes	or	requires	a	file.	This
cache	is	called	the	realpath	cache.	If	you	are	running	a	large	PHP	application	that	uses	a
lot	of	separate	files	(Drupal,	Composer	components,	etc.),	you	can	realize	better
performance	by	increasing	the	size	of	PHP’s	realpath	cache.

The	default	realpath	cache	size	is	16k.	It’s	not	obvious	how	to	figure	out	the	exact	size	you
need,	but	here’s	a	trick	you	can	use.	First,	bump	the	realpath	cache	size	to	something
obnoxiously	large,	like	256k.	Then	output	the	actual	realpath	cache	size	at	the	tail	end	of	a
PHP	script	with	print_r(realpath_cache_size());.	Change	your	realpath	cache	size	to
this	actual	value.	You	can	set	the	realpath	cache	size	in	your	php.ini	file:

realpath_cache_size	=	64k

Up	Next
We’ve	got	a	server	firing	on	all	cylinders,	and	we’re	ready	to	deploy	our	PHP	application
into	production.	In	the	next	chapter	we’ll	discuss	several	strategies	to	automate	PHP
application	deployment.

Chapter	9.	Deployment
We’ve	got	a	provisioned	server	running	nginx	and	PHP-FPM.	Now	we	need	to	deploy	our
PHP	application	to	a	production	server.	There	are	many	ways	to	push	code	into
production.	FTP	was	a	popular	way	to	deploy	PHP	code	back	when	PHP	developers	first
started	banging	rocks	together.	FTP	still	works,	but	today	there	are	safer	and	more
predictable	deployment	strategies.	This	chapter	shows	you	how	to	use	modern	tools	to
automate	deployment	in	a	simple,	predictable,	and	reversible	way.

Version	Control
I	assume	you	are	using	version	control,	right?	If	you	are,	good	job.	If	you	aren’t,	stop	what
you	are	doing	and	version	control	your	code.	I	prefer	to	version	control	my	code	with	Git,
but	other	version	control	software	like	Mercurial	works,	too.	I	use	Git	because	it’s	what	I
know,	and	it	works	seamlessly	with	popular	online	repositories	like	Bitbucket	and	GitHub.

Version	control	is	an	invaluable	tool	for	PHP	application	developers	because	it	lets	us
track	changes	to	our	codebase.	We	can	tag	points	in	time	as	a	release,	we	can	roll	back	to	a
previous	state,	and	we	can	experiment	with	new	features	on	separate	branches	that	do	not
affect	our	production	code.	More	important,	version	control	helps	us	automate	PHP
application	deployment.

http://git-scm.com
http://mercurial.selenic.com
https://bitbucket.org
https://github.com

Automate	Deployment
It	is	important	that	you	automate	application	deployment	so	that	it	becomes	a	simple,
predictable,	and	reversible	process.	The	last	thing	you	want	to	worry	about	is	a
complicated	deployment	process.	Complicated	deployments	are	scary,	and	scary	things	are
used	less	often.

Make	It	Simple
Instead,	make	your	deployment	process	a	simple	one-line	command.	A	simple	deployment
process	is	less	scary,	and	that	means	you’re	more	likely	to	push	code	to	production.

Make	It	Predictable
Make	your	deployment	process	predictable.	A	predictable	process	is	even	less	scary
because	you	know	exactly	what	it	is	going	to	do.	It	should	not	have	unexpected	side
effects.	If	it	runs	into	an	error,	it	aborts	the	deployment	process	and	leaves	the	existing
codebase	in	place.

Make	It	Reversible
Make	your	deployment	process	reversible.	If	you	accidentily	push	bad	code	into
production,	it	should	be	a	simple	one-line	command	to	roll	back	to	the	previous	stable
codebase.	This	is	your	safety	net.	A	reversible	deployment	process	should	make	you
excited	—	not	afraid	—	to	push	code	into	production.	If	you	screw	up,	just	roll	back	to	the
previous	release.

Capistrano
Capistrano	is	software	that	automates	application	deployment	in	a	simple,	predictable,	and
reversible	way.	Capistrano	runs	on	your	local	machine	and	talks	with	remote	servers	via
SSH.	Capistrano	was	originally	written	to	deploy	Ruby	applications,	but	it’s	just	as	useful
for	any	programming	language	—	including	PHP.

http://capistranorb.com/

How	It	Works
You	install	Capistrano	on	your	local	workstation.	Capistrano	deploys	your	PHP
application	to	a	remote	server	by	issuing	SSH	commands	from	your	local	workstation	to
the	remote	server.	Capistrano	organizes	application	deployments	in	their	own	directories
on	the	remote	server.	Capistrano	maintains	five	or	more	application	deployment
directories	in	case	you	must	roll	back	to	an	earlier	release.	Capistrano	also	creates	a
current/	directory	that	is	a	symlink	to	the	current	application	deployment’s	directory.	Your
production	server’s	Capistrano-managed	directory	structure	might	look	like	Example	9-1.

Example	9-1.	Example	directory	structure
/

				home/

								deploy/

												apps/

																my_app/

																				current/

																				releases/

																								release1/

																								release2/

																								release3/

																								release4/

																								release5/

When	you	deploy	a	new	application	release	to	production,	Capistrano	first	retrieves	the
latest	version	of	your	application	code	from	its	Git	repository.	Next,	Capistrano	places	the
application	code	in	a	new	release	directory.	Finally,	Capistrano	symlinks	the	current/
directory	to	the	new	release	directory.	When	you	ask	Capistrano	to	roll	back	to	a	previous
release,	Capistrano	points	the	current/	directory	symlink	to	a	previous	release	directory.
Capistrano	is	an	elegant	and	simple	deployment	solution	that	makes	PHP	application
deployments	simple,	predictable,	and	reversible.

Install
Install	Capistrano	on	your	local	machine.	Do	not	install	Capistrano	on	your	remote
servers.	You’ll	need	ruby	and	gem,	too.	OS	X	users	already	have	these.	Linux	users	can
install	ruby	and	gem	with	their	respective	package	managers.	After	you	install	ruby	and
gem,	install	Capistrano	with	this	command:

gem	install	capistrano

Configure
After	you	install	Capistrano,	you	must	initialize	your	project	for	Capistrano.	Open	a
terminal,	navigate	to	your	project’s	topmost	directory,	and	run	this	command:

cap	install

This	command	creates	a	file	named	Capfile,	a	directory	named	config/,	and	a	directory
named	lib/.	Your	project’s	topmost	directory	should	now	have	these	files	and	directories:

Capfile

config/

				deploy/

								production.rb

								staging.rb

				deploy.rb

lib/

				capistrano/

								tasks/

The	Capfile	file	is	Capistrano’s	central	configuration	file,	and	it	aggregates	the
configuration	files	located	in	the	config/	directory.	The	config/	directory	contains
configuration	files	for	each	remote	server	environment	(e.g.,	testing,	staging,	or
production).

Note

Capsitrano	configuration	files	are	written	in	the	Ruby	language.	However,	they	are	still
easy	to	edit	and	understand.

By	default,	Capistrano	assumes	you	have	multiple	environments	for	your	application.	For
example,	you	might	have	separate	staging	and	production	environments.	Capistrano
provides	a	separate	configuration	file	for	each	environment	in	the	config/deploy/	directory.
Capistrano	also	provides	the	config/deploy.rb	configuration	file,	which	contains	settings
common	to	all	environments.

In	each	environment,	Capistrano	has	the	notion	of	server	roles.	For	example,	your
production	environment	may	have	a	front-facing	web	server	(the	web	role),	an	application
server	(the	app	role),	and	a	database	server	(the	db	role).	Only	the	largest	applications
necessitate	this	architecture.	Smaller	PHP	applications	generally	use	only	one	machine
that	runs	the	web	server	(nginx),	application	server	(PHP-FPM),	and	database	server
(MariaDB).

For	this	demonstration,	I’m	only	going	to	use	Capistrano’s	web	role	and	ignore	its	app	and
db	roles.	Capistrano’s	roles	let	you	organize	tasks	to	be	executed	only	on	servers	that
belong	to	a	given	role.	This	isn’t	something	we’re	going	to	worry	about	here.	However,	I
am	going	to	respect	Capistrano’s	notion	of	server	environments.	This	demonstration	will
use	the	production	environment,	but	the	following	steps	are	equally	applicable	to	other
environments	(e.g.,	staging	or	testing).

The	config/deploy.rb	file
Let’s	look	at	the	config/deploy.rb	file.	This	configuration	file	contains	settings	common	to
all	environments	(e.g.,	staging	and	production).	Most	of	our	Capistrano	configuration
settings	go	in	this	file.	Open	the	config/deploy.rb	file	in	your	preferred	text	editor	and

update	these	settings:
:application

This	is	the	name	of	your	PHP	application.	It	should	contain	only	letters,	numbers,	and
underscores.

:repo_url

This	is	your	Git	repository	URL.	This	URL	must	point	to	a	Git	repository,	and	the
repository	must	be	accessible	from	your	remote	server.

:deploy_to

This	is	the	absolute	directory	path	on	your	remote	server	in	which	your	PHP	application
is	deployed.	This	would	be	/home/deploy/apps/my_app	as	shown	in	Example	9-1.

:keep_releases

This	is	the	number	of	old	releases	that	should	be	retained	in	case	you	want	to	roll	back
your	application	to	an	earlier	version.

The	config/deploy/production.rb	file
This	file	contains	settings	only	for	your	production	environment.	This	file	defines	the
production	environment	roles,	and	it	lists	the	servers	that	belong	to	each	role.	We’re	only
using	the	web	role,	and	we	have	only	one	server	that	belongs	to	this	role.	Let’s	use	the
server	we	provisioned	in	Chapter	7.	Update	the	entire	config/deploy/production.rb	file
with	this	content.	Make	sure	you	replace	the	example	IP	address:

role	:web,	%w{deploy@123.456.78.90}

Authenticate
Before	we	deploy	our	application	with	Capistrano,	we	must	establish	authentication
between	our	local	computer	and	our	remote	servers,	and	between	our	remote	servers	and
the	Git	repository.	We	already	discussed	how	to	set	up	SSH	key-pair	authentication
between	our	local	computer	and	remote	server.	You	should	also	establish	SSH	key-pair
authentication	between	your	remote	servers	and	the	Git	repository.

Use	the	same	instructions	we	discussed	earlier	to	generate	an	SSH	public	and	private
keypair	on	each	remote	server.	The	Git	repository	should	have	access	to	each	remote
server’s	public	key;	both	GitHub	and	Bitbucket	let	you	add	multiple	public	SSH	keys	to
your	user	account.	Ultimately,	you	must	be	able	to	clone	the	Git	repository	to	your	remote
servers	without	a	password.

Prepare	the	Remote	Server
We’re	almost	ready	to	deploy	our	application.	First,	we	need	to	prepare	our	remote	server.
Log	in	to	your	remote	server	with	SSH	and	create	the	directory	in	which	we’ll	deploy	our
PHP	application.	This	directory	must	be	readable	and	writable	by	the	deploy	user.	I	like	to
create	a	directory	for	my	applications	in	the	deploy	user’s	home	directory,	like	this:

/

				home/

								deploy/

												apps/

																my_app/

Virtual	host
Capistrano	symlinks	the	current/	directory	to	the	current	application	release	directory.
Update	your	web	server’s	virtual	host	document	root	directory	so	that	it	points	to
Capistrano’s	current/	directory.	Given	this	filesystem	diagram,	your	virtual	host	document
root	might	become	/home/deploy/apps/my_app/current/public/;	this	assumes	your	PHP
application	contains	a	public/	directory	that	serves	as	the	document	root.	Restart	your	web
server	to	load	your	virtual	host	configuration	changes.

Software	dependencies
Your	remote	server	doesn’t	need	Capistrano,	but	it	does	need	Git.	It	also	needs	any
software	required	to	run	your	PHP	application.	You	can	install	Git	with	these	commands:

#	Ubuntu

sudo	apt-get	install	git;

#	CentOS

sudo	yum	install	git;

Capistrano	Hooks
Capistrano	allows	us	to	run	our	own	commands	at	specific	moments	(or	hooks)	during
application	deployment.	Many	PHP	developers	manage	application	dependencies	with
Composer.	We	can	install	Composer	dependencies	during	each	Capistrano	deployment
with	a	Capistrano	hook.	Open	the	config/deploy.rb	file	in	your	preferred	text	editor	and
append	this	Ruby	code:

namespace	:deploy	do

		desc	"Build"

		after	:updated,	:build	do

						on	roles(:web)	do

										within	release_path		do

												execute	:composer,	"install	--no-dev	--quiet"

										end

						end

		end

end

Tip

If	your	project	uses	the	Composer	dependency	manager,	make	sure	Composer	is	installed
on	your	remote	servers.

Our	application’s	dependencies	are	now	installed	automatically	after	each	production
deployment.	You	can	read	more	about	Capistrano	hooks	on	the	Capistrano	website.

http://bit.ly/cap-flow

Deploy	Your	Application
Now’s	the	fun	part!	Make	sure	you’ve	committed	and	pushed	your	most	recent	application
code	to	your	Git	repository.	Then	open	a	terminal	on	your	local	computer	and	navigate	to
your	application’s	topmost	directory.	If	you’ve	done	everything	correctly,	you	can	deploy
your	PHP	application	with	this	one-line	command:

cap	production	deploy

Roll	Back	Your	Application
In	the	off	chance	you	deploy	bad	code	to	your	production	environment,	you	can	roll	back
to	a	previous	release	with	this	one-line	command:

cap	production	deploy:rollback

Further	Reading
I’ve	only	scratched	the	surface.	Capistrano	has	many	more	features	that	further	streamline
your	deployment	workflow.	Capistrano	is	my	favorite	deployment	tool,	but	there	are	many
other	tools	available,	including:

Deployer
Magallanes
Rocketeer

http://deployer.in/
http://magephp.com/
http://rocketeer.autopergamene.eu/

What’s	Next
We’ve	provisioned	a	server,	and	we’ve	automated	our	PHP	application	deployments	with
Capistrano.	Next	we’ll	discuss	how	to	ensure	our	PHP	applications	run	as	expected.	To	do
this,	we’ll	use	testing	and	profiling.

Chapter	10.	Testing
Testing	is	an	important	part	of	PHP	application	development,	but	it	is	often	neglected.	I
think	many	PHP	developers	don’t	test	because	they	consider	testing	an	unnecessary
burden	that	requires	too	much	time	for	too	few	benefits.	Other	developers	may	not	know
how	to	test,	because	there	are	a	large	number	of	testing	tools	and	an	overwhelming
learning	curve.

In	this	chapter	I	hope	to	dispel	these	misunderstandings.	I	want	you	to	feel	comfortable
and	excited	about	testing	your	PHP	code.	I	want	you	to	consider	testing	an	integral	part	of
your	workflow	that	happens	at	the	beginning,	middle,	and	end	of	the	application
development	process.

Why	Do	We	Test?
We	write	tests	to	ensure	that	our	PHP	applications	work,	and	continue	to	work,	according
to	our	expectations.	It’s	as	simple	as	that.	How	often	have	you	been	afraid	to	deploy	an
application	into	production?	Before	I	started	testing	my	code,	I	was	terrified	to	push	a
release	into	production.	Would	my	code	work?	Would	it	break?	All	I	could	do	was	cross
my	fingers	and	hope	for	the	best.	This	is	no	way	to	code.	It’s	scary	and	stressful,	and	it
usually	ends	in	frustration.	Tests,	however,	mitigate	uncertainty,	and	they	let	us	write	and
deploy	code	with	confidence.

Your	pointy-haired	boss	may	argue	that	there	isn’t	enough	time	to	write	tests.	After	all,
time	is	money.	This	is	shortsighted.	Installing	a	testing	infrastructure	and	writing	tests
takes	time,	but	this	is	a	wise	investment	that	pays	dividends	into	the	future.	Tests	help	us
write	code	that	works	well	the	first	time.	Tests	let	us	continuously	iterate	without	breaking
old	code.	We	may	move	forward	at	a	slower	pace	than	if	we	didn’t	use	tests,	but	we	won’t
waste	countless	development	hours	in	the	future	troubleshooting	and	refactoring	bugs	that
were	overlooked.	In	the	long	term,	tests	save	money,	prevent	downtime,	and	inspire
confidence.

When	Do	We	Test?
I	see	many	PHP	developers	write	tests	as	an	afterthought.	These	developers	know	testing
is	important,	but	they	consider	tests	as	something	they	must	do	instead	of	something	they
want	to	do.	These	developers	often	push	testing	to	the	very	end	of	the	application
development	process.	They	bang	out	a	few	passing	tests	to	satisfy	their	management	team
and	call	it	a	day.	This	is	wrong.	Tests	should	be	a	foreground	concern	before	development,
during	development,	and	after	development.

Before
Install	and	configure	your	testing	tools	before	you	develop	your	application.	It	doesn’t
matter	which	testing	tools	you	choose.	Install	them	as	if	they	are	a	vital	application
dependency.	This	makes	it	physically	and	mentally	easier	to	test	your	application	during
development.	This	is	also	a	good	time	to	meet	with	your	project	manager	to	define	higher-
level	application	behavior.

During
Write	and	run	tests	as	you	build	each	piece	of	your	application.	Did	you	just	add	a	new
PHP	class?	Test	it	now,	because	you	probably	won’t	test	it	later.	Testing	while	you	develop
helps	you	build	confident	and	stable	code,	and	it	also	helps	you	quickly	find	and	refactor
new	code	that	breaks	existing	functionality.

After
You	probably	won’t	anticipate	and	test	all	of	your	application’s	behaviors	during
development.	If	you	find	a	bug	after	your	launch	your	application,	write	a	new	test	to
ensure	that	your	bug	fix	works	correctly.	Tests	are	not	a	once-and-done	thing.	Tests	are
continuously	modified	and	improved,	just	like	the	application	itself.	If	you	update	your
application’s	code,	be	sure	you	also	update	the	affected	tests.

What	Do	We	Test?
We	test	the	smallest	pieces	of	our	application.	A	PHP	application,	on	a	microcosmic	scale,
has	PHP	classes,	methods,	and	functions.	We	should	test	each	public	class,	method,	and
function	to	ensure	it	behaves	as	we	expect	in	isolation.	If	we	know	each	piece	works	well
on	its	own,	we	can	be	confident	it	also	works	well	when	integrated	into	the	whole
application.	These	tests	are	called	unit	tests.

Unfortunately,	testing	each	individual	piece	does	not	guarantee	it	works	correctly	with	the
whole	application.	This	is	why	we	also	test	our	application	at	a	macrocosmic	scale	with
automated	testing	tools	that	verify	our	application’s	higher-level	behaviors.	These	tests	are
called	functional	tests.

How	Do	We	Test?
We	know	why,	when,	and	what	to	test.	More	important,	let’s	chat	about	how	we	test	code.
There	are	several	popular	ways	PHP	developers	approach	testing.	Some	developers	prefer
unit	tests.	Some	developers	prefer	test-driven	development	(TDD).	And	other	developers
prefer	behavior-driven	development	(BDD).	These	are	not	mutually	exclusive.

Unit	Tests
The	most	popular	approach	to	PHP	application	testing	is	unit	testing.	As	I	described
previously,	unit	tests	certify	individual	classes,	methods,	and	functions	in	isolation	from
the	larger	application.	The	de	facto	standard	PHP	unit	testing	framework	is	PHPUnit,
written	by	Sebastian	Bergmann.	Sebastian’s	PHPUnit	framework	adheres	to	the	xUnit	test
architecture.

There	are	alternative	PHP	unit	testing	frameworks,	like	PHPSpec,	available	for	you	to	use,
too.	However,	most	popular	PHP	frameworks	provide	PHPUnit	tests.	It’s	vital	that	you
know	how	to	read,	write,	and	run	PHPUnit	tests	if	you	intend	to	contribute	to	or	release
PHP	components.	I’ll	show	you	how	to	install,	write,	and	run	PHP	unit	tests	at	the	end	of
this	chapter.

https://phpunit.de/
https://sebastian-bergmann.de/

Test-Driven	Development	(TDD)
Test-driven	development	means	you	write	tests	before	you	write	application	code.	These
tests	purposefully	fail	and	describe	how	your	application	should	behave.	As	you	build
application	functionality,	your	tests	will	eventually	run	successfully.	TDD	helps	you	build
with	a	purpose;	you	know	ahead	of	time	what	you	will	build	and	how	it	should	work.

This	does	not	meant	that	you	must	write	all	of	your	application	tests	before	you	write	any
code.	Instead,	write	a	few	tests	and	then	build	the	related	functionality.	Write	tests	and
build.	Write	tests	and	build.	TDD	is	iterative.	Move	forward	in	small	sprints	until	your
application	is	complete.

Behavior-Driven	Development	(BDD)
Behavior-driven	development	means	that	you	write	stories	that	describe	how	your
application	behaves.	There	are	two	types	of	BDD:	SpecBDD	and	StoryBDD.

SpecBDD	is	a	type	of	unit	test	that	uses	a	fluid	and	human-friendly	language	to	describe
your	application’s	implementation.	SpecBDD	accomplishes	the	same	goal	as	alternative
unit	testing	tools	like	PHPUnit.	Unlike	PHPUnit’s	xUnit	architecture,	SpecBDD	tests	use
human-readable	stories	to	describe	behavior.	For	example,	a	PHPUnit	test	might	be
named	testRenderTemplate().	An	equivalent	SpecBDD	test	might	be	named
itRendersTheTemplate().	The	same	SpecBDD	test	might	use	helper	methods	named
$this->shouldReturn(),	$this->shouldBe(),	and	$this->shouldThrow().	SpecBDD
tests	use	a	language	that	is	much	easier	to	read	and	understand	than	alternative	xUnit
tools.	The	most	popular	SpecBDD	testing	tool	is	PHPSpec.

StoryBDD	tools	use	the	same	human-friendly	stories	as	SpecBDD	tests.	StoryBDD	tools,
however,	are	more	concerned	with	higher-level	behavior	than	with	lower-level
implementation.	For	example,	a	StoryBDD	test	confirms	that	your	code	creates	and	emails
a	PDF	report.	A	SpecBDD	test,	on	the	other	hand,	confirms	that	a	specific	PDF	generator
class	method	correctly	renders	a	PDF	file	for	a	given	set	of	input	parameters.	The
difference	is	scope.	StoryBDD	resembles	something	a	project	manager	would	write	(e.g.,
“this	should	generate	and	email	me	a	report”).	A	SpecBDD	test	resembles	something	a
developer	would	write	(e.g.,	“this	class	method	should	receive	an	array	of	data	and	write	it
to	this	PDF	file”).	StoryBDD	and	SpecBDD	testing	tools	are	not	mutually	exclusive.	They
are	often	used	together	to	build	a	more	comprehensive	set	of	tests.	You’ll	often	sit	with
your	project	manager	to	write	generic	StoryBDD	tests	that	define	your	application’s
generic	behavior,	and	then	you’ll	write	SpecBDD	tests	when	you	design	and	build	your
application’s	implementation.	The	most	popular	StoryBDD	testing	tool	is	Behat.

Tip

Write	StoryBDD	tests	that	describe	your	business	logic	and	not	a	specific	implementation.
A	good	StoryBDD	test	confirms	“a	shopping	cart	total	increases	when	I	add	a	product	to
the	cart.”	A	bad	StoryBDD	test	confirms	“a	shopping	cart	total	increases	when	I	send	an
HTTP	PUT	request	to	the	/cart	URL	with	the	body	product_id=1&quantity=2.”	The	first
test	is	generic	and	describes	only	the	high-level	business	logic.	The	second	test	is	too
specific	and	describes	a	particular	implementation.

http://www.phpspec.net/
http://behat.org/

PHPUnit
Let’s	talk	about	how	to	install,	write,	and	run	PHPUnit	tests.	It	takes	a	bit	of	work	to	get
the	infrastructure	in	place,	but	it’s	dead	simple	to	write	and	run	your	PHPUnit	tests
afterward.	Before	we	dig	too	deep	into	PHPUnit,	let’s	quickly	review	some	vocabulary.
Your	PHPUnit	tests	are	grouped	into	test	cases,	and	your	test	cases	are	grouped	into	test
suites.	PHPUnit	runs	your	test	suites	with	a	test	runner.

A	test	case	is	a	single	PHP	class	that	extends	the	PHPUnit_Framework_TestCase	class.
Each	test	case	contains	public	methods	whose	names	begin	with	test;	these	methods	are
individual	tests	that	assert	specific	scenarios	to	be	true.	Each	assertion	can	pass	or	fail.
You	want	all	assertions	to	pass.

Tip

A	test	case	class	name	must	end	with	Test,	and	its	filename	must	end	with	Test.php.	A
hypothetical	test	case	class	name	is	FooTest,	and	that	class	lives	in	a	file	named
FooTest.php.

A	test	suite	is	a	collection	of	related	test	cases.	If	you	are	working	on	a	single	PHP
component,	oftentimes	you’ll	only	ever	have	a	single	test	suite.	If	you	are	testing	a	larger
PHP	application	with	many	different	subsystems	or	components,	you	may	find	it	best	to
organize	tests	into	multiple	test	suites.

A	test	runner	is	exactly	what	it	sounds	like.	It	is	a	way	for	PHPUnit	to	run	your	test	suites
and	output	the	result.	The	default	PHPUnit	test	runner	is	the	command-line	runner	that	is
invoked	with	the	phpunit	command	in	your	terminal	application.

Directory	Structure
Here’s	how	I	prefer	to	organize	my	PHP	projects.	The	topmost	project	directory	has	a	src/
directory	where	I	keep	my	source	code.	It	also	has	a	tests/	directory	where	I	keep	my	tests.
Here’s	an	example	directory	structure:

src/

tests/

				bootstrap.php

composer.json

phpunit.xml

.travis.yml

src/

This	directory	contains	my	PHP	project’s	source	code	(i.e.,	PHP	classes).

tests/

This	directory	contains	my	PHP	project’s	PHPUnit	tests.	This	directory	contains	a
bootstrap.php	file	that	is	included	by	PHPUnit	before	the	unit	tests	are	run.

composer.json

This	file	lists	my	PHP	project’s	dependencies	managed	by	Composer,	including	the
PHPUnit	test	framework.

phpunit.xml

This	file	provides	configuration	details	for	the	PHPUnit	test	runner.

.travis.yml

This	file	provides	configuration	details	for	the	Travis	CI	continuous	testing	web	service.

Note

Look	at	your	favorite	PHP	component	or	framework’s	source	code	on	GitHub	and	you’ll
see	it	uses	a	similar	organization.

Install	PHPUnit
First	we	need	to	install	PHPUnit	and	the	Xdebug	profiler.	PHPUnit	runs	our	tests.	The
Xdebug	profiler	generates	helpful	code	coverage	information.	Composer	is	the	easiest	way
to	install	the	PHPUnit	test	framework.	Open	your	terminal	application,	navigate	to	your
project’s	topmost	directory,	and	run	this	command:

composer	require	--dev	phpunit/phpunit

This	command	downloads	the	PHPUnit	test	framework	into	your	project’s	vendor/
directory,	and	it	updates	your	project’s	composer.json	file	so	that	the	phpunit/phpunit
package	is	listed	as	a	project	dependency.	The	phpunit	binary	is	installed	in	your	project’s
vendor/bin/	directory.	You	can	add	this	directory	to	your	environment	path,	or	you	can
reference	vendor/bin/phpunit	whenever	you	invoke	the	PHPUnit	command	line	test
runner.	The	PHPUnit	framework	classes	are	autoloaded	into	your	PHP	application	with
your	project’s	other	Composer-managed	dependencies.

Install	Xdebug
The	Xdebug	PHP	extension	is	a	bit	trickier	to	install.	If	you	installed	PHP	with	your
package	manager,	you	can	install	Xdebug	the	same	way	(Example	10-1).

Example	10-1.	How	to	install	Xdebug
#	Ubuntu

sudo	apt-get	install	php5-xdebug

#	CentOS

sudo	yum	-y	--enablerepo=epel,remi,remi-php56	install	php-xdebug

If	you	installed	PHP	from	source,	you’ll	need	to	install	the	Xdebug	extension	with	the
pecl	command:

pecl	install	xdebug

Next,	update	your	php.ini	configuration	file	with	the	path	to	the	compiled	Xdebug
extension.

Tip

You	can	find	your	PHP	extensions	directory	with	the	php-config	--extension-dir	or
php	-i	|	grep	extension_dir	commands.

Append	this	line	to	your	php.ini	file	using	your	own	PHP	extension	path:
zend_extension="/PATH/TO/xdebug.so"

Restart	PHP	and	you’re	good	to	go.	We’ll	discuss	the	Xdebug	profiler	in	Chapter	11.

Configure	PHPUnit
Now	let’s	configure	PHPUnit	in	our	project’s	phpunit.xml	file.

<?xml	version="1.0"	encoding="UTF-8"?>

<phpunit	bootstrap="tests/bootstrap.php">

				<testsuites>

								<testsuite	name="whovian">

												<directory	suffix="Test.php">tests</directory>

								</testsuite>

				</testsuites>

				<filter>

								<whitelist>

												<directory>src</directory>

								</whitelist>

				</filter>

</phpunit>

PHPUnit	test	runner	settings	are	attributes	on	the	<phpunit>	XML	root	element.	The	most
important	setting,	in	my	opinion,	is	the	bootstrap	setting;	it	specifies	the	path	(relative	to
the	phpunit.xml	file)	to	a	PHP	file	that	is	included	before	the	PHPUnit	test	runner	executes
our	tests.	We’ll	autoload	our	application’s	Composer	dependencies	in	the	bootstrap.php
file	so	they	are	available	to	our	PHPUnit	tests.	The	bootstrap.php	file	also	specifies	the
path	to	our	test	suite	(i.e.,	a	directory	that	contains	related	test	cases);	PHPUnit	runs	all
PHP	files	in	this	directory	whose	file	names	end	with	Test.php.	Finally,	this	configuration
file	lists	the	directories	included	in	our	code	coverage	analysis	with	the	<filter>	element.
In	the	previous	example	XML,	the	<whitelist>	element	tells	PHPUnit	to	generate	code
coverage	only	for	code	in	the	src/	directory.

The	gist	of	this	configuration	file	is	to	specify	our	PHPUnit	settings	in	one	location.	This
makes	our	lives	easier	locally	because	we	don’t	have	to	specify	these	settings	each	time
we	use	the	phpunit	command-line	runner.	This	configuration	file	also	lets	us	apply	the
same	PHPUnit	settings	on	remote	continuous	testing	servers	like	Travis	CI.	After	you
update	the	phpunit.xml	configuration	file,	update	the	tests/bootstrap.php	file	with	this
code:

<?php

//	Enable	Composer	autoloader

require	dirname(__DIR__)	.	'/vendor/autoload.php';

Tip

Make	sure	you	install	your	Composer	dependencies	before	running	PHPUnit	tests.

The	Whovian	Class
Before	we	write	unit	tests,	we	need	something	to	test.	Here’s	a	hypothetical	PHP	class
named	Whovian	that	has	a	pretty	strong	opinion	about	a	particular	BBC	television	show.
Place	this	class	definition	into	the	src/Whovian.php	file:

<?php

class	Whovian

{

				/**

					*	@var	string

					*/

				protected	$favoriteDoctor;

				/**

					*	Constructor

					*	@param		string	$favoriteDoctor

					*/

				public	function	__construct($favoriteDoctor)

				{

								$this->favoriteDoctor	=	(string)$favoriteDoctor;

				}

				/**

					*	Say

					*	@return	string

					*/

				public	function	say()

				{

								return	'The	best	doctor	is	'	.	$this->favoriteDoctor;

				}

				/**

					*	Respond	to

					*	@param		string	$input

					*	@return	string

					*	@throws	\Exception

					*/

				public	function	respondTo($input)

				{

								$input	=	strtolower($input);

								$myDoctor	=	strtolower($this->favoriteDoctor);

								if	(strpos($input,	$myDoctor)	===	false)	{

												throw	new	Exception(

																sprintf(

																				'No	way!	%s	is	the	best	doctor	ever!',

																				$this->favoriteDoctor

)

);

								}

								return	'I	agree!';

				}

}

The	Whovian	class	constructor	sets	the	instance’s	favorite	doctor.	The	say()	method
returns	a	string	with	the	instance’s	favorite	doctor.	And	its	respondTo()	method	receives	a
statement	from	another	Whovian	instance	and	responds	accordingly.

The	WhovianTest	Test	Case
The	unit	tests	for	our	Whovian	class	live	in	the	test/WhovianTest.php	file.	We	call	a	group
of	related	tests	a	test	suite.	In	our	example,	all	tests	beneath	the	test/	directory	belong	to
the	same	test	suite.	Each	class	file	beneath	the	test/	directory	is	called	a	test	case,	and	its
class	methods	that	begin	with	test	(e.g.,	testThis	or	testThat)	are	individual	tests.	Each
individual	test	uses	assertions	to	verify	a	given	condition.	An	assertion	can	pass	or	fail.

Note

Find	a	list	of	PHPUnit	assertions	on	the	PHPUnit	website.	Some	assertions	are
undocumented;	you	can	find	all	available	assertions	in	the	source	code	on	GitHub.

Each	PHPUnit	test	case	is	a	class	that	extends	the	PHPUnit_Framework_TestCase	class.
Let’s	declare	a	test	case	named	WhovianTest	in	the	test/WhovianTest.php	file:

<?php

require	dirname(__DIR__)	.	'/src/Whovian.php';

class	WhovianTest	extends	PHPUnit_Framework_TestCase

{

				//	Individual	tests	go	here

}

Remember,	unit	tests	verify	a	public	interface’s	expected	behavior.	We’ll	test	the	three
public	methods	in	the	Whovian	class.	We’ll	write	a	unit	test	to	ensure	that	the
__construct()	method	argument	becomes	the	instance’s	preferred	doctor.	Next,	we’ll
write	a	unit	test	to	ensure	that	the	say()	method’s	return	value	mentions	the	instance’s
preferred	doctor.	Finally,	we’ll	write	two	tests	for	the	respondTo()	method.	One	test
ensures	that	the	method’s	return	value	is	the	string	"I	agree!"	if	the	input	matches	its
preferred	doctor.	The	second	test	that	ensures	the	method	throws	an	exception	if	the	input
does	not	match	its	preferred	doctor.

Test	1:	__construct()
Our	first	test	confirms	that	the	constructor	sets	the	Whovian	instance’s	favorite	doctor:

public	function	testSetsDoctorWithConstructor()

{

				$whovian	=	new	Whovian('Peter	Capaldi');

				$this->assertAttributeEquals('Peter	Capaldi',	'favoriteDoctor',	$whovian);

}

This	test	instantiates	a	new	Whovian	instance	with	one	string	argument:	"Peter	Capaldi".
We	use	the	PHPUnit	assertion	method	assertAttributeEquals()	to	assert	the
favoriteDoctor	property	on	the	$whovian	instance	equals	the	string	"Peter	Capaldi".

Note

The	PHPUnit	assertion	assertAttributeEquals()	receives	three	arguments.	The	first
argument	is	the	expected	value;	the	second	argument	is	the	property	name;	and	the	final
argument	is	the	object	to	inspect.	What’s	neat	is	that	the	assertAttributeEquals()
method	can	inspect	and	verify	protected	properties	using	PHP’s	reflection	capabilities.

Why	do	we	inspect	the	favorite	doctor	value	with	the	assertAttributeEquals()	assertion
instead	of	a	getter	method	(e.g.,	getFavoriteDoctor())?	When	we	write	a	test,	we	test
only	one	specific	method	in	isolation.	Ideally,	our	test	does	not	rely	on	other	methods.	In

http://bit.ly/php-unit
http://bit.ly/phpu-gh

this	particular	example,	we	test	the	__construct()	method	and	verify	that	it	assigns	its
argument	value	to	the	object’s	$favoriteDoctor	property.	The
assertAttributeEquals()	assertion	lets	us	inspect	the	object’s	internal	state	without
relying	on	a	separate,	untested	getter	method.

Test	2:	say()
Our	next	test	confirms	that	the	Whovian	instance’s	say()	method	returns	a	string	value	that
contains	its	favorite	doctor’s	name:

public	function	testSaysDoctorName()

{

				$whovian	=	new	Whovian('David	Tennant');

				$this->assertEquals('The	best	doctor	is	David	Tennant',	$whovian->say());

}

We	use	the	PHPUnit	assertion	assertEquals()	to	compare	two	values.	The	assertion’s
first	argument	is	the	expected	value.	Its	second	argument	is	the	value	to	inspect.

Test	3:	respondTo()	in	agreement
Now	let’s	test	how	a	Whovian	instance	responds	in	agreement	with	another	Whovian:

public	function	testRespondToInAgreement()

{

				$whovian	=	new	Whovian('David	Tennant');

				$opinion	=	'David	Tennant	is	the	best	doctor,	period';

				$this->assertEquals('I	agree!',	$whovian->respondTo($opinion));

}

This	test	is	successful	because	the	Whovian	instance’s	respondTo()	method	receives	a
string	argument	that	includes	the	name	of	its	favorite	doctor.

Test	4:	respondTo()	in	disagreement
But	what	if	a	Whovian	disagrees?	Get	out	of	the	area	as	quickly	as	possible,	because	s#!t	is
going	to	hit	the	fan.	Well,	actually,	it’ll	just	throw	an	exception.	Let’s	test	that:

/**

	*	@expectedException	Exception

	*/

public	function	testRespondToInDisagreement()

{

				$whovian	=	new	Whovian('David	Tennant');

				$opinion	=	'No	way.	Matt	Smith	was	awesome!';

				$whovian->respondTo($opinion);

}

If	this	test	throws	an	exception,	the	test	passes.	Otherwise,	the	test	fails.	We	can	test	this
condition	with	the	@expectedException	annotation.

Note

PHPUnit	provides	several	annotations	that	can	control	a	given	test.	Read	more	about
PHPUnit	annotations	in	the	PHPUnit	documentation.

http://bit.ly/phpunit-docs

Run	Tests
After	you	write	each	test,	you	should	run	your	test	suite	to	ensure	that	it	passes.	This	is
really	simple	to	do.	Open	your	terminal	application	and	navigate	to	your	project’s	topmost
directory	(the	same	directory	as	your	phpunit.xml	configuration	file).	We’ll	use	the
PHPUnit	binary	installed	with	Composer.	Use	this	command	to	start	the	PHPUnit	test
runner:

vendor/bin/phpunit	-c	phpunit.xml

The	-c	option	specifies	the	path	to	the	PHPUnit	configuration	file.	The	terminal	shows	the
results	from	the	PHPUnit	command-line	test	runner,	and	they	look	like	Figure	10-1.

Figure	10-1.	PHPUnit	test	results

These	results	tell	us:

1.	 PHPUnit	read	our	configuration	file.
2.	 PHPUnit	took	24	ms	to	complete.
3.	 PHPUnit	used	3.5	MB	of	memory.
4.	 PHPUnit	successfully	ran	five	tests	and	five	assertions.

Code	Coverage
We	know	our	PHPUnit	tests	pass.	However,	are	we	sure	we	tested	as	much	of	our	code	as
possible?	Perhaps	we	forgot	to	test	something.	We	can	see	exactly	which	code	is	tested
(and	untested)	with	PHPUnit’s	code	coverage	report	(Figure	10-2).	We	already	specify	the
path(s)	to	our	source	code	files	in	the	PHPUnit	configuration	file.	All	PHP	files	in	the
whitelisted	directories	are	included	in	PHPUnit’s	code	coverage	report.	We	can	generate
code	coverage	each	time	we	run	the	PHPUnit	test	runner:

vendor/bin/phpunit	-c	phpunit.xml	--coverage-html	coverage

This	is	the	same	command	we	used	earlier,	except	we	append	the	new	--coverage-html
option	whose	value	is	the	path	to	a	the	code	coverage	report	directory.	After	you	run	this
command,	open	the	newly	generated	coverage/index.html	file	in	a	web	browser	to	see	the
code	coverage	results.	Ideally,	you	want	to	see	100%	coverage	across	the	board.	However,
100%	coverage	is	not	realistic	and	definitely	should	not	be	a	requirement.	How	much
coverage	is	good	is	subjective	and	varies	from	project	to	project.

Figure	10-2.	PHPUnit	code	coverage	report

Tip

Use	PHPUnit’s	code	coverage	report	as	a	guideline	to	improve	your	code.	Don’t	use	code
coverage	percentages	as	requirements.

Continuous	Testing	with	Travis	CI
Sometimes	even	the	best	PHP	developers	forget	to	write	tests.	This	is	why	it	is	important
to	automate	your	tests.	The	best	tests	are	like	a	good	backup	strategy	—	out	of	sight	and
out	of	mind.	Tests	should	run	automatically.	My	favorite	continuous	testing	service	is
Travis	CI	because	it	has	native	hooks	into	GitHub	repositories.	I	can	run	my	application
tests	within	Travis	CI	every	time	I	push	code	to	GitHub.	Travis	CI	runs	my	tests	against
multiple	PHP	versions,	too.

https://travis-ci.org/

Setup
If	you	have	not	used	Travis	CI	before,	go	to	https://travis-ci.org	(for	public	repositories)	or
https://travis-ci.com	(for	private	repositories).	Log	in	with	your	GitHub	account.	Follow
the	on-screen	instructions	to	choose	which	repository	to	test	with	Travis	CI.

Next,	create	the	.travis.yml	Travis	CI	configuration	file	in	your	application’s	topmost
directory.	Don’t	forget	the	leading	.	character!	Save,	commit,	and	push	the	Travis	CI
configuration	file	to	your	GitHub	repository.	Here’s	an	example	Travis	CI	configuration:

language:	php

php:

		-	5.4

		-	5.5

		-	5.6

		-	hhvm

install:

		-	composer	install	--no-dev	--quiet

script:	phpunit	-c	phpunit.xml	--coverage-text

The	Travis	CI	configuration	is	written	in	YAML	format	and	includes	these	settings:
language

This	is	the	language	used	for	our	application.	We	set	this	to	php.	This	value	is	case-
sensitive!

php

Travis	CI	runs	our	application	tests	against	these	PHP	versions.	It	is	important	that	you
test	against	all	PHP	versions	supported	by	your	application.

install

This	is	a	bash	command	executed	by	Travis	CI	before	it	runs	application	tests.	This	is
where	you	instruct	Travis	CI	to	install	your	project’s	Composer	dependencies.	It	is
important	that	you	use	the	--no-dev	option	to	avoid	installing	unnecessary	development
dependencies.

script

This	is	the	bash	command	executed	by	Travis	CI	to	run	application	tests.	By	default,
this	is	phpunit.	You	can	override	Travis	CI’s	default	command	with	this	setting.	In	this
example,	we	tell	Travis	CI	to	use	our	custom	PHPUnit	configuration	file	and	generate
plain	text	coverage	results.

https://travis-ci.org
https://travis-ci.com

Run
Travis	CI	automatically	runs	your	application	tests	every	time	you	push	new	commits	to
your	GitHub	repository	and	emails	you	the	test	results.	How	cool	is	that?	There	are,	of
course,	many	more	Travis	CI	settings	to	further	customize	the	Travis	CI	testing
environment	(e.g.,	install	custom	PHP	extensions,	use	custom	ini	settings,	and	so	on).
Read	more	about	Travis	CI	configuration	for	PHP	at	Travis	CI.

http://bit.ly/build-php

Further	Reading
Here	are	a	few	links	to	help	you	learn	more	about	PHP	application	testing:

https://phpunit.de/
http://www.phpspec.net/docs/introduction.html
http://behat.org/
https://leanpub.com/grumpy-phpunit
https://leanpub.com/grumpy-testing
http://www.littlehart.net/atthekeyboard/

https://phpunit.de/
http://www.phpspec.net/docs/introduction.html
http://behat.org/
https://leanpub.com/grumpy-phpunit
https://leanpub.com/grumpy-testing
http://www.littlehart.net/atthekeyboard/

What’s	Next
In	this	chapter	we	learned	why,	when,	and	how	to	write	tests.	Testing	our	applications
builds	confidence	and	creates	more	predictable	code.	However,	tests	do	not	let	us	analyze
application	performance.	This	is	why	we	must	also	profile	our	applications.	That’s	what	I
want	to	talk	about	next.

Chapter	11.	Profiling
Profiling	is	how	we	analyze	application	performance.	It	is	a	great	way	to	debug
performance	issues	and	pinpoint	bottlenecks	in	your	application	code.	In	other	words,	if
your	application	is	slow,	use	a	profiler	to	figure	out	why.	Profilers	let	us	traverse	the	entire
PHP	call	stack,	and	they	tell	us	which	functions	or	methods	are	called,	in	what	order,	how
many	times,	with	what	arguments,	and	for	how	long.	We	can	also	see	how	much	memory
and	CPU	are	used	throughout	the	application	request	lifecycle.

When	to	Use	a	Profiler
You	don’t	need	to	profile	your	PHP	applications	immediately.	You	only	profile	PHP
applications	if	there	is	a	performance	issue	that	is	otherwise	hard	to	diagnose.	How	do	you
know	if	you	have	a	performance	issue?	Some	issues	are	obvious	(e.g.,	a	database	query
takes	too	long).	Other	issues	may	not	be	as	obvious.

You	can	detect	performance	issues	with	benchmarking	tools	like	Apache	Bench	and	Siege.
A	benchmarking	tool	allows	you	to	test	your	application	performance	externally,	much	as
an	application	user	would	with	a	web	browser.	Benchmarking	tools	let	you	set	the	number
of	concurrent	users	and	total	number	of	requests	that	hit	a	specific	application	URL.	When
the	benchmarking	tool	finishes,	it	tells	you	the	number	of	requests	per	second	that	your
application	sustained	(among	other	statistics).	If	you	find	a	particular	URL	sustains	only	a
small	number	of	requests	per	second,	you	may	have	a	performance	issue.	If	the
performance	issue	is	not	immediately	obvious,	you	use	a	profiler.

http://bit.ly/apache-bench
http://www.joedog.org/siege-home/

Types	of	Profilers
There	are	two	types	of	profilers.	There	are	those	that	should	run	only	during	development,
and	there	are	those	that	can	run	during	production.

Xdebug	is	a	popular	PHP	profiling	tool	written	by	Derick	Rethans,	but	it	should	only	be
used	as	a	profiler	during	development	because	it	consumes	a	lot	of	system	resources	to
analyze	your	application.	Xdebug	profiler	results	are	not	human-readable,	so	you’ll	need
an	application	to	parse	and	display	the	results.	KCacheGrind	and	WinCacheGrind	are
good	applications	for	visualizing	Xdebug	profiler	results.

XHProf	is	a	popular	PHP	profiler	written	by	Facebook.	It	is	intended	to	be	run	during
development	and	production.	XHProf’s	profiler	results	are	also	not	human-readable,	but
Facebook	provides	a	companion	web	application	called	XHGUI	to	visualize	and	compare
profiler	results.	I’ll	talk	more	about	XHGUI	later	in	this	chapter.

Note

Both	Xdebug	and	XHProf	are	PHP	extensions,	and	you	can	install	them	with	your
operating	system’s	package	manager.	They	can	also	be	installed	with	pecl.

http://xdebug.org
http://kcachegrind.sourceforge.net/
http://sourceforge.net/projects/wincachegrind/
http://xhprof.io

Xdebug
Xdebug	is	one	of	the	most	popular	PHP	profilers,	and	it	makes	it	easy	to	analyze	your
application’s	call	stack	to	find	bottlenecks	and	performance	issues.	Refer	to	Example	10-1
in	Chapter	10	for	Xdebug	installation	instructions.

Configure
Xdebug	configuration	lives	in	your	php.ini	file.	Here	are	the	Xdebug	profiler
configuration	settings	I	recommend.	Make	sure	you	specify	your	own	profiler	output
directory.	Restart	your	PHP	process	after	saving	these	settings:

xdebug.profiler_enable	=	0

xdebug.profiler_enable_trigger	=	1

xdebug.profiler_output_dir	=	/path/to/profiler/results

xdebug.profiler_enable	=	0

This	instructs	Xdebug	to	not	run	automatically.	We	don’t	want	Xdebug	to	run
automatically	on	each	request,	because	that	would	drastically	decrease	performance	and
impede	development.

xdebug.profiler_enable_trigger	=	1

This	instructs	Xdebug	to	run	on-demand.	We	can	activate	Xdebug	profiling	per-request
by	adding	the	XDEBUG_PROFILE=1	query	parameter	to	any	of	our	PHP	application’s
URLs.	When	Xdebug	detects	this	query	parameter,	it	profiles	the	current	request	and
generates	a	report	in	the	output	directory	specified	by	the
xdebug.profiler_output_dir	setting.

xdebug.profiler_output_dir	=	/path/to/profiler/results

This	is	the	directory	path	that	contains	generated	profiler	results.	Profiler	reports	can	be
massive	(e.g.,	500	MB	or	larger)	for	complex	PHP	applications.	Make	sure	you	change
this	value	to	the	correct	filesystem	path	for	your	application.

Tip

I	recommend	you	keep	profiler	results	beneath	your	PHP	application’s	topmost	directory.
This	makes	it	easy	to	find	and	review	profiler	results	while	developing	your	application.

Trigger
The	Xdebug	profiler	does	not	run	automatically	because	the	xdebug.profiler_enable
setting	is	0.	We	trigger	the	Xdebug	profiler	for	a	single	request	by	adding	the
XDEBUG_PROFILE=1	query	parameter	to	any	PHP	application	URL.	An	example	HTTP
request	URL	might	be	/users/show/1?XDEBUG_PROFILE=1.	When	Xdebug	detects	the
XDEBUG_PROFILE	query	parameter,	it	activates	and	runs	the	profiler	for	the	current	request.
The	profiler	results	are	dumped	into	the	directory	specified	by	the
xdebug.profiler_output_dir	setting.

Analyze
The	Xdebug	profiler	generates	results	in	the	CacheGrind	format.	You’ll	need	a
CacheGrind-compatible	application	to	review	the	profiler	results.	Some	good	applications
for	reviewing	CacheGrind	files	are:

WinCacheGrind	for	Windows
KCacheGrind	for	Linux
WebGrind	for	web	browsers

Mac	OS	X	users	can	install	KCacheGrind	with	Homebrew	using	this	command:
brew	install	qcachegrind

Tip

Homebrew	is	a	package	manager	for	OS	X.	We	discuss	Homebrew	in	Appendix	A.

http://sourceforge.net/projects/wincachegrind/
http://kcachegrind.sourceforge.net/
http://code.google.com/p/webgrind/
http://brew.sh

XHProf
XHProf	is	a	newer	PHP	application	profiler.	It	is	created	by	Facebook	and	is	intended	to
be	run	during	both	development	and	production.	It	does	not	collect	as	much	information	as
Xdebug’s	profiler,	but	it	consumes	fewer	system	resources,	making	it	suitable	for
production	environments.

Install
The	easiest	way	to	install	XHProf	is	with	your	operating	system’s	package	manager
(assuming	you	installed	PHP	the	same	way):

#	Ubuntu

sudo	apt-get	install	build-essential;

sudo	pecl	install	mongo;

sudo	pecl	install	xhprof-beta;

#	CentOS

sudo	yum	groupinstall	'Development	Tools';

sudo	pecl	install	mongo;

sudo	pecl	install	xhprof-beta;

Append	these	lines	to	your	php.ini	file,	and	restart	your	PHP	process	to	load	the	new
extensions:

extension=xhprof.so

extension=mongo.so

XHGUI
XHProf	is	most	useful	when	paired	with	XHGUI,	Facebook’s	companion	web	application
used	to	review	and	compare	XHProf	profiler	output.	XHGUI	is	a	PHP	web	application
and	requires:

Composer
Git
MongoDB
PHP	5.3+
PHP	mongo	extension

I	assume	these	system	requirements	are	installed.	I	also	assume	the	XHGUI	web
application	lives	in	the	/var/sites/xhgui/	directory.	This	directory	path	is	probably	different
on	your	server,	so	keep	that	in	mind:

cd	/var/sites;

git	clone	https://github.com/perftools/xhgui.git;

cd	xhgui;

php	install.php;

The	XHGUI	web	application	has	a	webroot/	directory.	Update	your	web	server	virtual
host’s	document	root	to	this	directory.

Configure
Open	XHGUI’s	config/config.default.php	file	in	a	text	editor.	By	default,	XHProf	collects
data	for	only	1%	of	all	HTTP	requests.	This	is	fine	for	production,	but	you	may	want	to
collect	data	more	frequently	during	development.	You	can	increase	XHProf’s	data
collection	by	editing	these	lines	in	the	config/config.default.php	file:

'profiler.enable'	=>	function()	{

				return	rand(0,	100)	===	42;

},

Change	these	lines	to:
'profiler.enable'	=>	function()	{

				return	true;	//	<--	Run	on	every	request

},

Tip

XHProf	assumes	your	PHP	application	runs	on	a	single	server.	It	also	assumes	your
MongoDB	database	does	not	require	authentication.	If	your	MongoDB	server	does	require
authentication,	update	the	Mongo	database	connection	in	the	config/config.default.php
file.

Trigger
You	must	include	the	XHGUI	web	application’s	external/header.php	file	at	the	very
beginning	of	your	PHP	application.	It’s	easiest	to	use	PHP’s	auto_prepend_file	INI
configuration	setting.	You	can	set	this	in	the	php.ini	configuration	file:

auto_prepend_file	=	/var/sites/xhgui/external/header.php

Or	you	can	set	this	in	your	nginx	virtual	host	configuration:
fastcgi_param	PHP_VALUE	"auto_prepend_file=/var/sites/xhgui/external/header.php";

Or	you	can	set	this	in	your	Apache	virtual	host	configuration:
php_admin_value	auto_prepend_file	"/var/sites/xhgui/external/header.php"

Restart	PHP,	and	XHProf	will	begin	collecting	and	saving	information	into	its	MongoDB
database.	You	can	review	and	compare	XHProf	runs	at	the	XHGUI	virtual	host’s	URL.

New	Relic	Profiler
Another	popular	PHP	profiler	is	New	Relic.	This	is	actually	a	web	service	that	uses	a
custom	operating	system	daemon	and	PHP	extension	to	hook	into	your	PHP	application
and	report	data	back	to	the	web	service.	Unlike	Xdebug	and	XHProf,	New	Relic’s	PHP
profiler	is	not	free.	That	being	said,	I	adore	New	Relic	and	recommend	it	if	your	budget
allows.	Like	XHProf,	New	Relic’s	PHP	profiler	is	meant	to	be	run	during	production,	and
it	gives	you	a	near	real-time	view	of	your	application’s	performance	with	a	really	nice
online	dashboard.	Learn	more	on	New	Relic’s	website.

https://newrelic.com/
http://bit.ly/new-relic-php

Blackfire	Profiler
As	I	am	writing	this	book,	Symfony	is	currently	testing	a	new	PHP	profiler	called
Blackfire.	It	provides	unique	visualization	tools	to	help	discover	application	bottlenecks.	I
hear	it’s	looking	like	a	really	good	alternative	to	Xdebug	and	XHProf.	Keep	an	eye	on	this
one.

https://blackfire.io

Further	Reading
I	hope	I’ve	introduced	you	to	PHP	profiling	in	this	chapter	so	that	you	feel	comfortable
finding,	installing,	and	using	a	PHP	profiler	most	appropriate	for	your	application.	Here
are	a	few	links	to	help	you	learn	more	about	PHP	profiling:

http://www.sitepoint.com/the-need-for-speed-profiling-with-xhprof-and-xhgui/
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-1
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-2
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-3

http://www.sitepoint.com/the-need-for-speed-profiling-with-xhprof-and-xhgui/
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-1
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-2
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-3

What’s	Next
At	this	point	we’ve	talked	a	lot	about	modern	PHP,	including	new	features,	good	practices,
provisioning,	tuning,	deployment,	testing,	and	profiling.	I	hope	you	have	filled	your	brain
with	tons	of	fun	ideas	to	implement	in	your	next	PHP	applications.

Now	I	want	to	take	a	few	minutes	to	chat	about	the	future	of	PHP.	A	lot	is	happening	in
the	PHP	ecosystem.	The	future	of	PHP	is	unfolding	as	we	speak	thanks	to	forward-looking
projects	like	PHP	7,	HHVM,	Hack,	and	the	PHP-FIG.	Let’s	explore	HHVM	and	Hack,
specifically,	and	figure	out	what	they	mean	for	PHP’s	future.

https://wiki.php.net/rfc/php7timeline
http://hhvm.com
http://hacklang.org
http://www.php-fig.org

Chapter	12.	HHVM	and	Hack
Think	what	you	will	about	the	Facebook	application,	but	I	have	nothing	but	praise	for	the
brilliant	folks	working	at	Facebook.	Facebook	Open	Source	has	developed	several
important	projects	in	the	last	few	years,	two	of	which	have	had	significant	impact	in	the
PHP	community.

The	first	initiative	is	HHVM,	or	the	Hip	Hop	Virtual	Machine.	This	alternative	PHP
engine	was	released	in	October	2013.	Its	just-in-time	(JIT)	compiler	provides	performance
many	times	better	than	PHP-FPM.	In	fact,	WP	Engine	recently	migrated	to	HHVM	and
realized	3.9x	faster	custom	Wordpress	installations.	MediaWiki	also	transitioned	to
HHVM,	and	it	has	realized	drastic	improvements	in	both	response	times	and	throughput.

The	second	initiative	is	Hack,	a	new	server-side	language	that	is	a	modification	of	the	PHP
language.	Hack	is	mostly	backward-compatible	with	PHP	code,	although	it	extends	the
PHP	language	with	strict	typing,	new	data	structures,	and	a	real-time	type	checking	server.
That	being	said,	Hack’s	own	developers	prefer	to	call	Hack	a	dialect	of	PHP	and	not	a	new
language.

https://code.facebook.com/projects/
http://hhvm.com
http://bit.ly/engine-box
http://www.mediawiki.org/wiki/HHVM
http://hacklang.org

HHVM
Since	1994,	if	you	said	PHP	interpreter	you	meant	the	Zend	Engine.	The	Zend	Engine
was	PHP.	It	was	the	one	and	only	PHP	interpreter.	Then	Mark	Zuckerberg	came	along	and
created	this	little	thing	called	Thefacebook	on	February	4,	2004.	Mr.	Zuckerberg	and	his
growing	company	wrote	the	Facebook	application	predominantly	with	PHP	because	the
language	is	easy	to	learn	and	simple	to	deploy.	The	PHP	language	lets	Facebook	quickly
onboard	new	developers	to	grow,	innovate,	and	iterate	its	platform.

Fast	forward,	and	Facebook	is	a	veritable	empire.	Its	infrastructure	is	massive.	Facebook
is	so	huge	that	the	traditional	Zend	Engine	became	a	bottleneck	for	its	developers.	The
Facebook	team	had	a	hugely	growing	user	base	(by	2007,	its	user	base	surpassed	1	in	10
people	on	the	planet),	and	it	had	to	figure	out	a	way	to	improve	performance	without
simply	building	more	data	centers	and	buying	more	servers.

http://www.zend.com/en/community/php

PHP	at	Facebook
The	PHP	language	is	traditionally	interpreted,	not	compiled.	This	means	that	your	PHP
code	remains	PHP	code	until	it	is	sent	through	an	interpreter	when	executed	on	the
command	line	or	requested	by	a	web	server.	The	PHP	script	is	read	by	the	PHP	interpreter
and	converted	into	a	set	of	existing	Zend	Opcodes	(machine-code	instructions),	and	the
Zend	Opcodes	are	executed	with	the	Zend	Engine.	Unfortunately,	interpreted	languages
execute	more	slowly	than	compiled	languages	because	they	must	be	converted	to	machine
code	during	every	execution.	This	taxes	system	resources.	Facebook	realized	this
performance	bottleneck	and,	in	2010,	began	working	on	a	PHP-to-C++	compiler	called
HPHPc.

The	HPHPc	compiler	converts	PHP	code	into	C++	code.	It	then	compiles	the	C++	code
into	an	executable	that	is	deployed	to	production	servers.	HPHPc	was	largely	successful;	it
improved	Facebook’s	performance	and	reduced	the	strain	on	its	servers.	However,
HPHPc’s	potential	performance	approached	a	ceiling,	it	was	not	100%	compatible	with
the	complete	PHP	language,	and	it	required	a	time-consuming	compile	process	that
created	a	lengthy	feedback	loop	for	developers.	Facebook	needed	a	hybrid	solution	that
delivered	superior	performance	but	also	allowed	for	faster	development	without	expensive
compile	time.

Facebook	began	working	on	the	next	iteration	of	HPHPc,	called	HHVM.	HHVM	converts
and	caches	PHP	code	into	an	intermediary	bytecode	format,	and	it	uses	a	JIT	compiler	to
translate	and	optimize	its	bytecode	cache	into	x86_64	machine	code.	HHVM’s	JIT
compiler	enables	many	low-level	performance	optimizations	that	are	simply	not	possible
by	compiling	PHP	directly	to	C++	with	HPHPc.	HHVM	also	enables	a	fast	feedback	loop
for	developers	because	it	compiles	bytecode	into	machine	code	only	when	PHP	scripts	are
requested	by	a	web	server	—	just	in	time,	you	might	say	—	much	like	a	traditional
interpreted	language.	What’s	more	amazing	is	that	HHVM’s	performance	eclipsed
HPHPc’s	performance	in	November	2012,	and	it	continues	to	improve	(Figure	12-1).

Figure	12-1.	HHVM	vs.	HPHPc	Performance

http://php.net/manual/internals2.opcodes.php
http://bit.ly/hhvm-evo
http://bit.ly/hhvm-evo

HPHPc	was	deprecated	soon	after	HHVM’s	peformance	exceeded	its	own,	and	HHVM	is
currently	Facebook’s	preferred	PHP	interpreter.

Tip

Don’t	let	HHVM	intimidate	you!	Its	implementation	may	be	complex,	but	at	the	end	of	the
day	HHVM	is	just	a	replacement	for	the	more	familiar	php	and	php-fpm	binaries:

You	execute	PHP	scripts	with	the	hhvm	binary	on	the	command	line,	just	like	the	php
binary.
You	use	the	hhvm	binary	to	create	a	FastCGI	server,	just	like	the	php-fpm	binary.
HHVM	uses	a	php.ini	configuration	file,	just	like	the	traditional	Zend	Engine.	It	even
uses	the	same	INI	directives.
HHVM	has	native	support	for	many	common	PHP	extensions.

HHVM	and	Zend	Engine	Parity
Facebook’s	original	HPHPc	compiler	was	not	compatible	with	the	complete	PHP	language
(i.e.,	the	Zend	Engine).	Complete	parity	is	an	aspiration	for	Facebook	because	it	lets
HHVM	become	a	drop-in	replacement	for	the	Zend	Engine.

Facebook	tested	HHVM	against	the	most	popular	PHP	frameworks	to	ensure
compatibility	with	real-world	PHP	5	code.	Facebook	is	close	to	100%	compatibility.
However,	Facebook	has	shifted	its	focus	to	user-reported	issues	on	the	HHVM	issue
tracker	to	tackle	remaining	edge-case	issues.	HHVM	is	not	yet	100%	compatible	with	the
traditional	Zend	Engine,	but	it’s	getting	closer	every	day.	Facebook,	Baidu,	and	Wikipedia
already	use	HHVM	in	production.	HHVM	can	also	run	Wordpress,	Drupal,	and	many
popular	PHP	frameworks.

http://bit.ly/fb-hhvm

Is	HHVM	Right	for	Me?
HHVM	isn’t	the	right	choice	for	everyone.	There	are	far	easier	ways	to	improve
application	performance.	Reducing	HTTP	requests	and	optimizing	database	queries	are
low-hanging	fruit	that	noticeably	improve	application	performance	and	response	time.	If
you	have	not	made	these	optimizations,	do	them	first	before	you	consider	HHVM.
Facebook’s	HHVM	is	for	developers	who	have	already	made	these	optimizations	and	still
need	faster	applications.	If	you	believe	you	need	HHVM,	here	are	some	resources	to	help
you	make	the	best	decision:

Extensions

View	a	list	of	PHP	extensions	compatible	with	HHVM.

Framework	Parity

Track	HHVM	parity	with	the	most	popular	PHP	frameworks.

Issue	Tracker

Track	open	HHVM	issues.

FAQs

Read	HHVM	frequently	asked	questions.

Blog

Follow	the	latest	HHVM	news.

http://bit.ly/fb-extensns
http://hhvm.com/frameworks/
http://bit.ly/fb-hhvm
https://github.com/facebook/hhvm/wiki/FAQ
http://hhvm.com/blog

Install
HHVM	is	easy	to	install	on	the	most	popular	Linux	distributions.	It	was	originally
developed	for	Ubuntu	(my	preferred	Linux	distibution),	so	I	use	Ubuntu	in	the	following
examples.

Note

Facebook	provides	prebuilt	packages	for	other	Linux	distributions,	including	Debian	and
Fedora.	You	can	build	HHVM	from	source	on	even	more	Linux	distributions.

Per	Facebook’s	instructions,	you	can	install	HHVM	on	the	latest	version	of	Ubuntu	with
the	Aptitude	package	manager	like	this:

wget	-O	-	\

		http://dl.hhvm.com/conf/hhvm.gpg.key	|

		sudo	apt-key	add	-;

echo	deb	\

		http://dl.hhvm.com/ubuntu	trusty	main	|	sudo	tee	/etc/apt/sources.list.d/hhvm.list;

sudo	apt-get	update;

sudo	apt-get	install	hhvm;

If	you’re	feeling	lucky,	swap	the	last	line	with	this	one	to	install	the	latest	nightly	build:
sudo	apt-get	install	hhvm-nightly;

The	preceding	code	adds	HHVM’s	GNU	Privacy	Guard	(GPG)	public	key	for	package
verification.	It	adds	the	HHVM	package	repository	to	our	local	list	of	repositories.	Finally,
it	installs	HHVM	with	Aptitude	like	any	other	software	package.	The	HHVM	binary	is
installed	at	/usr/bin/hhvm.

http://bit.ly/fb-prebuilt

Configure
HHVM	uses	a	php.ini	configuration	file	just	as	the	Zend	Engine	does.	This	file	exists	at
/etc/hhvm/php.ini	by	default,	and	it	contains	many	of	the	same	INI	settings	used	by	the
Zend	Engine.	You	can	find	a	complete	list	of	HHVM	php.ini	directives	at
http://docs.hhvm.com/manual/ini.list.php.

If	you	run	HHVM	as	a	FastCGI	server,	add	server-related	INI	directives	into	the
/etc/hhvm/server.ini	file.	You	can	find	a	complete	list	of	HHVM	server	directives	at
https://github.com/facebook/hhvm/wiki/INI-Settings.	The	HHVM	wiki	page	is	weak	on
details,	so	you	may	want	to	peruse	these	HHVM	support	communities,	too:

StackOverflow
IRC	Channel
Facebook	Page

The	default	/etc/hhvm/server.ini	file	should	be	sufficient	to	get	you	started.	It	looks	like
this:

;	php	options

pid	=	/var/run/hhvm/pid

;	hhvm	specific

hhvm.server.port	=	9000

hhvm.server.type	=	fastcgi

hhvm.server.default_document	=	index.php

hhvm.log.use_log_file	=	true

hhvm.log.file	=	/var/log/hhvm/error.log

hhvm.repo.central.path	=	/var/run/hhvm/hhvm.hhbc

The	most	notable	settings	are	hhvm.server.port	=	9000	and	hhvm.server.type	=
fastcgi;	they	tell	HHVM	to	run	as	a	FastCGI	server	on	local	port	9000.

When	you	execute	the	hhvm	binary,	you	specify	the	path	to	your	configuration	files	with
the	-c	option.	If	you	use	hhvm	to	execute	command-line	scripts,	you	only	need	the
/etc/hhvm/php.ini	configuration	file:

hhvm	-c	/etc/hhvm/php.ini	my-script.php

If	you	use	the	hhvm	binary	to	start	a	FastCGI	server,	you	need	both	the	/etc/hhvm/php.ini
and	/etc/hhvm/server.ini	files:

hhvm	-m	server	-c	/etc/hhvm/php.ini	-c	/etc/hhvm/server.ini

http://docs.hhvm.com/manual/ini.list.php
https://github.com/facebook/hhvm/wiki/INI-Settings
http://stackoverflow.com/questions/tagged/hhvm
http://webchat.freenode.net/?channels=hhvm
https://www.facebook.com/hhvm

Extensions
HHVM	cannot	use	PHP	extensions	that	are	compiled	for	the	Zend	Engine	unless	the
extensions	use	Facebook’s	Zend	Extension	Source	Compatibility	Layer.	Fortunately,	most
of	the	PHP	extensions	we	take	for	granted	are	supported	by	HHVM	out	of	the	box.	Other
third-party	PHP	extensions	(e.g.,	the	GeoIP	extension)	can	be	compiled	separately	and
loaded	into	HHVM	as	a	dynamic	extension.	You	can	find	a	list	of	PHP	extensions
compatible	with	HHVM	on	GitHub.

http://bit.ly/ext-zen-comp
http://bit.ly/int-extension

Monitor	HHVM	with	Supervisord
HHVM	is	just	fine	for	your	production	server,	but	it’s	not	infallible.	I	recommend	you
keep	tabs	on	HHVM’s	master	process	with	Supervisord,	a	process	monitor	that	starts	the
HHVM	process	on	boot	and	automatically	restarts	the	HHVM	process	if	HHVM	fails.

Tip

If	you	are	unfamiliar	with	Supervisord,	Chris	Fidao	has	an	excellent	tutorial.

Install	Supervisord	with	this	command	if	you	haven’t	already:
sudo	apt-get	install	supervisor

Next,	make	sure	the	/etc/supervisor/supervisord.conf	configuration	file	has	these	two
lines:

[include]

files	=	/etc/supervisor/conf.d/*.conf

These	two	lines	let	us	create	a	configuration	file	in	the	/etc/supervisor/conf.d/	directory	for
each	supervised	application.	Next,	create	the	/etc/supervisor/conf.d/hhvm.conf	file	with
this	content:

[program:hhvm]

command=/usr/bin/hhvm	-m	server	-c	/etc/hhvm/php.ini	-c	/etc/hhvm/server.ini

directory=/home/deploy

autostart=true

autorestart=true

startretries=3

stderr_logfile=/home/deploy/logs/hhvm.err.log

stdout_logfile=/home/deploy/logs/hhvm.out.log

user=deploy

The	most	important	settings	are:
command

Supervisord	runs	this	command	to	kick	off	the	HHVM	process.	We	use	the	-m	option	to
run	HHVM	in	server	mode.	We	also	use	the	-c	option	to	provide	the	path	to	HHVM’s
php.ini	and	server.ini	configuration	files.

autostart

This	causes	the	HHVM	process	to	start	when	the	Supervisord	process	starts	(e.g.,	on
system	boot).

autorestart

This	prompts	Supervisord	to	restart	the	HHVM	process	if	it	fails.
startretries

This	is	the	number	of	times	Supervisord	should	try	to	start	the	HHVM	process	before
Supervisord	considers	this	process	a	failure.

user

This	is	the	user	that	owns	the	HHVM	process.	I	recommend	you	use	an	unprivileged
user	for	security	purposes.	In	this	example,	I	use	the	same	unprivileged	deploy	user	we
created	in	Example	7-1.

http://supervisord.org
http://fideloper.com
http://bit.ly/c-fidao

Warning

Make	sure	you	manually	create	the	/home/deploy/logs	directory,	because	Supervisord	does
not	create	it	for	you.

After	you	finish	editing	the	Supervisord	configuration	files,	run	these	two	commands	to
reload	and	apply	your	changes:

sudo	supervisorctl	reread;

sudo	supervisorctl	update;

You	can	review	all	processes	managed	by	Supervisord	with	this	command:
sudo	supervisorctl

You	can	start,	stop,	or	restart	a	single	Supervisord	program	as	shown	in	the	example
below.	In	this	example,	hhvm	is	the	program	name	specified	at	the	top	of	the
/etc/supervisor/conf.d/hhvm.conf	file:

sudo	supervisorctl	start	hhvm;

sudo	supervisorctl	stop	hhvm;

sudo	supervisorctl	restart	hhvm;

So	far	we’ve	installed	HHVM,	and	we	monitor	the	HHVM	process	with	Supervisord.	We
still	need	a	web	server	to	proxy	requests	to	HHVM.	Remember,	HHVM	runs	a	FastCGI
server	exactly	as	we	do	in	Chapter	7	with	PHP-FPM.	We’ll	use	the	HHVM	FastCGI	server
to	handle	PHP	requests	sent	from	nginx.

HHVM,	FastCGI,	and	Nginx
HHVM	communicates	with	a	web	server	(e.g.,	nginx)	with	the	FastCGI	protocol.	We	need
to	create	an	nginx	virtual	host	that	proxies	PHP	requests	to	the	HHVM	FastCGI	server.
Here’s	an	example	nginx	virtual	host	definition	that	does	that:

server	{

				listen	80;

				server_name	example.com;

				index	index.php;

				client_max_body_size	50M;

				error_log	/home/deploy/apps/logs/example.error.log;

				access_log	/home/deploy/apps/logs/example.access.log;

				root	/home/deploy/apps/example.com/current/public;

				location	/	{

								try_files	$uri	$uri/	/index.phpis_argsargs;

				}

				location	~	\.php	{

								include	fastcgi_params;

								fastcgi_index		index.php;

								fastcgi_param		SCRIPT_FILENAME	ument_root$fastcgi_script_name;

								fastcgi_pass	127.0.0.1:9000;

				}

}

Tip

From	this	point	forward,	I	assume	nginx	is	installed	and	running	on	your	server.	Refer	to
Chapter	7	for	nginx	installation	instructions.

Assuming	you	followed	the	nginx	installation	instructions	in	Chapter	7,	create	a	file	at
/home/deploy/apps/example.com/current/public/index.php	with	this	content:

<?php

phpinfo();

Make	sure	the	example.com	domain	points	to	your	server’s	IP	address	and	visit
http://example.com/index.php	in	a	web	browser.	You	should	see	the	word	“HipHop”
appear	in	your	browser	window.

Tip

You	can	force	your	computer	to	point	any	domain	name	to	any	IP	address	by	updating
your	local	/etc/hosts	file.	For	example,	this	line	points	the	domain	name	example.com	to	IP
address	192.168.33.10:

192.168.33.10	example.com

Congratulations!	You’ve	installed	HHVM	as	a	FastCGI	server	that	can	run	your	PHP
application.	But	a	FastCGI	server	isn’t	cool.	You	know	what’s	cool?	Hack.	HHVM	can
run	that,	too.

http://example.com/index.php

The	Hack	Language
Hack	is	a	server-side	language	that	is	similar	to	and	seamless	with	PHP.	Hack’s	developers
even	call	Hack	a	dialect	of	PHP.	Why	did	Facebook	create	something	so	similar	to	PHP?
Facebook	created	the	Hack	language	for	several	reasons.	The	Hack	language	adds	new
time-saving	data	structures	and	interfaces	that	are	unavailable	in	PHP.	More	important,
Hack	introduces	static	typing	to	help	us	write	more	predictable	and	stable	code.	Static
typing	surfaces	errors	earlier	in	the	development	process	using	a	near-realtime	type
checking	server.

Are	new	data	structures,	interfaces,	and	static	typing	worth	the	time	required	to	learn	a
new(ish)	language	and	toolchain?	Maybe.	You	have	to	remember	that	Facebook	is
Facebook.	It	has	thousands	of	developers	all	working	on	a	gargantuan	codebase.	If
Facebook	can	optimize	even	the	smallest	part	of	its	development	process,	it	reaps	a	large
reward	in	both	developer	efficiency	and	a	more	stable,	well-performing	codebase.

I	do	not	recommend	you	drop	what	you’re	doing	and	immediately	port	your	existing
applications	from	PHP	to	Hack.	However,	if	you	are	starting	a	new	project	and	have	time
to	install	and	learn	Hack,	then	—	by	all	means	—	go	wild.	You’ll	certainly	benefit	from
Hack’s	data	structures	and	static	typing.

http://hacklang.org

Convert	PHP	to	Hack
To	convert	code	from	PHP	to	Hack,	change	<?php	to	<?hh.	That’s	it.	This	is	PHP	code:

<?php

echo	"I'm	PHP";

And	this	is	equivalent	Hack	code:
<?hh

echo	"I'm	Hack";

Facebook	makes	it	super-easy	to	go	from	PHP	to	Hack	because	it	understands	that
converting	a	large,	existing	codebase	is	not	a	quick	task.	Start	your	codebase	migration	by
only	changing	<?php	to	<?hh.	Next,	introduce	a	few	static	types.	Later	on,	explore	some
Hack	data	structures.	The	transition	to	Hack	is	gradual	and	painless,	and	it	happens	on
your	schedule;	this	is	by	design.

What	is	a	Type?
Before	we	compare	dynamic	and	static	typing,	it’s	probably	helpful	to	define	type.	Most
PHP	programmers	think	a	type	is	the	form	of	data	assigned	to	a	variable.	For	example,	the
expression	$foo	=	"bar"	implies	the	$foo	variable’s	value	is	a	string.	The	expression
$bar	=	14	implies	the	$bar	variable’s	value	is	an	integer.	These	examples	demonstrate
types,	yes,	but	they	betray	the	full	definition	of	a	type.

A	type	is	a	nebulous	label	that	we	assign	to	properties	of	an	application	to	prove	that
certain	behaviors	exist	and,	to	our	own	expectations,	are	fundamentally	correct.	I’m
paraphrasing	Chris	Smith’s	excellent	explanation	of	programming	types.

We	can	expand	our	definition	of	a	type	to	a	syntactical	annotation	that	clarifies	the	identity
of	program	variables,	arguments,	or	return	values.	Type	annotations	(or	hints)	are	used	in
both	PHP	and	Hack.	You’ve	probably	seen	code	like	this:

<?php

class	WidgetContainer

{

				protected	$widgets;

				public	function	__construct($widgets	=	array())

				{

								$this->widgets	=	array_values($widgets);

				}

				public	function	addWidget(Widget	$widget)

				{

								$this->widgets[]	=	$widget;

								return	this;

				}

				public	function	getWidget($index)

				{

								if	(isset($this->widgets[$index])	===	false)	{

												throw	new	OutOfRangeException();

								}

								return	$this->widgets[$index];

				}

}

This	is	an	arbitrary	example,	but	it	uses	syntax	hints	to	enforce	specific	application
properties.	For	example,	in	the	addWidget()	method	signature	we	use	a	Widget	hint
before	the	$widget	argument	to	tell	PHP	we	expect	the	method	argument	to	be	an	instance
of	class	Widget.	The	PHP	interpreter	enforces	this	expecation.	If	an	argument	is	provided
that	is	not	an	instance	of	class	Widget,	the	code	fails.	In	this	example,	the	type	is	our
annotated	expectation	that	the	addWidget()	method	accepts	arguments	only	of	class
Widget.

Our	earlier	naive	examples	(e.g.,	$foo	=	"bar")	and	this	WidgetContainer	example	both
demonstrate	types.	The	first	example	demonstrates	a	type	that	proves	a	variable	is	a	string,
even	though	we	don’t	explicitly	annotate	the	expectation.	The	PHP	interpreter	is	smart
enough	to	infer	the	string	type	in	this	example	based	on	the	code	syntax.	The	second
example	creates	a	type	with	an	annotation	that	explicitly	defines	the	expected	behavior	of
the	addWidget()	method,	and	the	PHP	interpreter	enforces	this	behavior	based	on	our
explicit	hint	rather	than	making	an	inferrence.

http://bit.ly/prog-types

Tip

Types	are	more	than	inferred	identities	and	annotations.	However,	these	are	the	two
manifestations	you’ll	see	and	use	most	often	when	writing	PHP	and	Hack	code.	You	can
learn	more	about	programming	types	in	Benjamin	C.	Pierce’s	book	“Types	and
Programming	Languages.”

If	you	thought	that	PHP	type	hints	are	static	types,	you’re	probably	scratching	your	head
right	about	now	because	I	just	burst	your	bubble.	Both	static	and	dynamic	typing	help	us
write	code	that	behaves	correctly	according	to	our	expectations,	and	both	employ	their
own	type	systems.	The	main	differences	between	static	and	dynamic	typing	are	when
program	types	are	checked	and	how	a	program	is	tested	for	correctness.

http://bit.ly/tpl-pierce

Static	Typing
The	correct	behavior	of	a	statically	typed	program	is	implied	by	the	code,	via	inferences,
annotations,	or	other	language-specific	types.	If	a	statically	typed	program	compiles
successfully,	we	can	be	confident	the	program	is	proven	to	behave	as	written.	The
program’s	types	become	our	tests,	and	they	ensure	that	the	program	satisfies	our	basic
expectations.

Did	you	notice	I	used	the	word	compiles?	Statically	typed	languages	are	often	compiled.
Type	checking	and	error	reporting	are	delegated	to	the	language	compiler.	This	is	nice,
because	the	compiler	surfaces	type-related	program	errors	at	compile	time	before	the
application	is	deployed	into	production.	Unfortunately,	compiled	languages	imply	a
lengthy	feedback	loop.	A	program	must	be	compiled	to	reveal	errors,	and	complicated
programs	take	a	long	time	to	compile.	This	decelerates	development.

The	upside	to	statically	typed	programs	is	that	they	are	usually	more	stable	because	their
behavior	is	proven	by	the	compiler’s	type	checker.	However,	we	should	still	write	separate
tests	to	verify	that	the	program	behavior	is	correct.	If	a	program	compiles,	that	only	means
the	program	does	what	the	code	says	it	should	do.	That	does	not	mean	the	program	does
what	we	intend	it	to	do.	That	being	said,	static	typing	saves	us	from	writing	type-related
unit	tests	as	we	do	for	dynamically	typed	programs.

Dynamic	Typing
Unlike	static	typing,	dynamic	typing	cannot	enforce	code	behavior	at	compile	time,
because	the	program	types	are	not	checked	until	runtime.	Dynamically	typed	programs	are
often	interpreted,	too.	PHP	is	a	dynamically	typed	and	interpreted	language.	This	means
that	every	time	you	execute	a	PHP	script	—	either	directly	on	the	command	line	or
indirectly	via	a	web	server	—	the	PHP	code	is	read	by	an	interpreter,	converted	into	a	set
of	preexisting	opcodes	codes,	and	executed.

So	how	do	you	find	errors	if	PHP	is	not	compiled?	Errors	are	surfaced	during	runtime.
This	is	both	a	blessing	and	a	curse.	It’s	good	because	we	can	iterate	quickly.	We	write
code	and	run	it.	Feedback	is	near-instantaneous.	Unfortunately,	we	lose	the	inherent
accuracy	and	tests	provided	by	static	type	checking.	Separate	unit	tests	become	far	more
important	to	ensure	both	proper	types	and	intended	behavior.	Our	tests	must	cover	all
possible	behaviors.	This	works	for	the	behavior	we	anticipate,	but	it	fails	miserably	for	the
behavior	we	do	not	anticipate.	Unanticipated	behaviors	gnash	their	teeth	during	runtime	as
PHP	errors,	and	we	must	handle	them	gracefully	with	friendly	messages	and	appropriate
logging.

Hack	Goes	Both	Ways
Static	typing	is	Hack’s	biggest	selling	point.	Even	more	interesting	is	that	Hack	does	static
and	dynamic	typing.	Remember,	Hack	is	mostly	backward-compatible	with	regular	PHP.
This	means	Hack	supports	all	of	PHP’s	dynamic	typing	features	that	you	expect.	This	is
possible	because	Hack	is	run	with	HHVM’s	JIT	compiler.	The	Hack	code	is	type	checked
as	it	is	written	with	a	standalone	type	checker.	The	Hack	code	is	read,	optimized,	and
cached	into	an	intermediary	bytecode	by	HHVM.	A	Hack	file	is	only	converted	into
x86_64	machine	code	and	executed	on	demand.	It’s	really	the	best	of	both	worlds.	We	get
the	accuracy	and	safety	of	static	typing	with	Hack’s	type	checker	(more	on	this	next)	and
the	flexibility	and	quick	iteration	of	dynamic	typing	thanks	to	HHVM’s	JIT	compiler.

Note

There	are	a	few	PHP	features	not	supported	by	Hack.	They	are	listed	at
http://docs.hhvm.com/manual/hack.unsupported.php.	These	features	are	supported	by
HHVM	when	executing	normal	PHP	code.

http://docs.hhvm.com/manual/hack.unsupported.php

Hack	Type	Checking
Hack	comes	with	a	standalone	type-checking	server	that	runs	in	the	background	and	type-
checks	your	code	in	realtime.	This	is	huge.	This	is	also	the	main	reason	why	Facebook
created	the	Hack	language.	Hack’s	instantaneous	type	checking	provides	the	accuracy	and
safety	of	static	typing	without	the	lengthy	feedback	loop.	If	you	are	using	Hack	without	its
type	checker,	you’re	holding	it	wrong.

Here’s	how	to	set	up	Hack’s	type	checker	for	your	application.	First,	I	assume	HHVM	is
installed	and	running.	If	not,	refer	to	the	HHVM	section	for	installation	instructions.	Next,
create	an	empty	file	named	.hhconfig	in	your	project’s	topmost	directory.	This	tells	the
Hack	type	checker	which	directory	to	analyze.	The	type	checker	watches	files	beneath	this
directory	and	type-checks	the	appropriate	files	whenever	it	detects	filesystem	changes.
Start	the	Hack	type	checker	by	executing	the	hh_client	command	in	or	beneath	your
project’s	topmost	directory.

Hack’s	type	checker	does	have	a	few	limitations.	Per	Hack’s	online	documentation:

The	type	checker	assumes	that	there	is	a	global	autoloader	that	can	load	any	class	on
demand.	This	means	that	it	insists	that	all	class	and	function	names	are	unique,	and	has
no	notion	of	checking	imports	or	anything	of	that	nature.	Futhermore,	it	does	not	support
conditional	definitions	of	functions	or	classes	—	it	must	be	able	to	statically	know	what
is	and	what	is	not	defined.	It	is	of	course	perfectly	possible	to	have	a	project	that	meets
these	requirements	without	a	global	autoloader,	and	the	type	checker	will	work	fine	on
such	a	project,	but	a	project	using	an	autoloader	was	the	intended	use	case.

Mixing	HTML	and	Hack	code	are	not	supported	by	the	type	checker.	Following	and
statically	analyzing	these	complicated	mode	switches	is	unsupported,	particularly	since
much	modern	code	doesn’t	make	use	of	this	functionality.	Hack	code	can	output	markup
to	the	browser	in	a	simple	way	via	echo,	or	using	a	templating	engine	or	XHP	for	more
complex	scenarios.

http://bit.ly/hack-hhvm

Hack	Modes
Hack	code	can	be	written	in	three	modes:	strict,	partial,	or	decl.	If	you	are	starting	a
project	with	Hack,	I	recommend	you	use	strict	mode.	If	you	are	migrating	existing	PHP
code	to	Hack,	or	if	your	project	uses	both	PHP	and	Hack	code,	you	may	want	to	use
partial	mode.	The	decl	mode	lets	you	integrate	legacy,	untyped	PHP	code	into	an
otherwise	strict	Hack	codebase.	You	declare	the	mode	at	the	very	top	of	the	file,	after
and	adjacent	to	the	opening	Hack	or	PHP	tag	(see	the	following	examples).	Mode	names
are	case-sensitive:
<?hh	//	strict

Strict	mode	requires	all	code	to	be	appropriately	annotated.	The	Hack	type	checker	will
catch	all	possible	type-related	errors.	This	mode	also	prevents	your	Hack	code	from
using	non-Hack	code	(e.g.,	legacy	PHP	code).	Be	sure	you	read	up	on	Hack	type
annotations	before	you	commit	to	strict	mode.	Among	other	requirements,	all	Hack
arrays	must	be	typed;	you	cannot	use	an	untyped	array	in	Hack.	You	must	also	annotate
return	types	for	functions	and	methods.

<?hh	//	partial

Partial	mode	(the	default)	allows	Hack	code	to	use	PHP	code	that	has	not	been
converted	to	Hack.	Partial	mode	also	does	not	require	you	to	annotate	all	of	a	function
or	method’s	arguments.	You	can	annotate	a	subset	of	the	arguments	without	angering
the	Hack	type	checker.	If	you	are	just	getting	started	with	Hack,	or	if	you	are	converting
an	existing	PHP	codebase,	this	is	probably	the	best	mode	for	you.

<?php	//	decl

decl	mode	lets	strict	Hack	code	call	untyped	code.	This	is	often	the	case	when	newer
Hack	code	depends	on	a	legacy,	untyped	PHP	class.	In	this	scenario,	the	legacy	PHP
code	should	declare	itself	in	decl	mode	before	the	newer	Hack	code	can	use	it.

Hack	Syntax
Hack	supports	type	annotations	for	class	properties,	method	arguments,	and	return	types.
These	annotations	are	checked	with	Hack’s	standalone	type	checker	in	accordance	with
each	file’s	mode.

Tip

Read	a	complete	list	of	available	type	annotations.

Let’s	revisit	our	earlier	WidgetContainer	example	and	introduce	type	annotations.	The
updated	Hack	code	looks	like	this:

01.	<?hh	//	strict

02.	class	WidgetContainer

03.	{

04.					protected	Vector<Widget>	$widgets;

05.

06.					public	function	__construct(array<Widget>	$widgets	=	array())

07.					{

08.									foreach	($widgets	as	$widget)	{

09.													$this->addWidget($widget);

10.									}

11.					}

12.

13.					public	function	addWidget(Widget	$widget)	:	this

14.					{

15.									$this->widgets[]	=	$widget;

16.

17.									return	this;

18.					}

19.

20.					public	function	getWidget(int	$index)	:	Widget

21.					{

22.									if	($this->widgets->containsKey($index)	===	false)	{

23.													throw	new	OutOfRangeException();

24.									}

25.

26.									return	$this->widgets[$index];

27.					}

28.	}

Property	annotations
On	line	4,	we	declare	the	$widgets	class	property	with	the	Vector<Widget>	annotation.
This	annotation	tells	us	two	things:

This	property	is	a	Vector	(similar	to	a	numerically	indexed	array).
This	property	must	contain	only	Widget	instances.

Argument	annotations
This	is	probably	familiar	to	those	of	you	who	already	use	PHP	type	hints.	On	line	6,	we
annotate	the	__construct()	method’s	argument	with	the	array<Widget>	annotation.	This
annotation	tells	us	two	things:

The	argument	must	be	an	array.
The	argument	must	contain	only	Widget	instances.

Unlike	the	property	annotation	on	line	4,	this	argument	can	be	either	a	numeric	or	an
associative	array.	We	iterate	the	array	argument’s	values	and	add	them	to	the	Vector	data
structure.	If	you	did	want	the	argument	to	be	either	a	numeric	or	an	associative	array,	you

http://docs.hhvm.com/manual/hack.annotations.types.php
http://bit.ly/vector-tv

could	use	the	array<int,	Widget>	or	array<string,	Widget>	annotations	respectively.

Return-type	annotations
On	lines	13	and	20,	we	annotate	the	methods’	return	types.	The	addWidget()	method
returns	itself	(more	on	this	soon).	The	getWidget()	method	returns	a	Widget	instance.
Return-type	annotations	are	declared	after	the	method	signature’s	closing	parenthesis	and
before	the	method	body’s	opening	bracket.

Warning

The	exception	to	this	rule	is	the	__construct()	method.	One	might	think	the	constructor’s
return	value	is	void;	it’s	not.	You	should	not	annotate	the	constructor	method’s	return
type.

Some	developers	like	to	enable	method	chaining.	This	means	that	a	class	method	returns
itself	so	that	multiple	method	calls	can	be	chained	together	like	this:

$object->methodOne()->methodTwo();

Hack	lets	you	annotate	this	behavior	with	the	this	return	type.	We	use	the	this	annotation
with	the	addWidget()	method	on	line	13.

Hack	Data	Structures
The	Hack	language’s	headline	feature	is	static	typing.	However,	Hack	also	provides	new
data	structures	and	interfacs	that	are	not	found	in	PHP.	These	can	potentially	save	you
development	time	versus	implementing	similar	workarounds	in	vanilla	PHP.	Some	of
Hack’s	new	data	structures	and	interfaces	are:

Collections	(vectors,	maps,	sets,	and	pairs)
Generics
Enums
Shapes
Tuples

Many	of	these	data	structures	complement,	clarify,	or	supplement	PHP’s	functionality.	For
example,	Hack’s	Collection	interfaces	clarify	PHP’s	array	ambiguity.	Generics	let	you
create	data	structures	to	handle	homogenous	values	of	a	given	type	that	is	inferred	only
when	an	instance	of	the	generic	class	is	created;	this	alleviates	the	need	to	manually
enforce	type	checking	inside	a	class	with	PHP’s	instanceof	method.	Enums	are	helpful
for	creating	a	set	of	named	constants	without	resorting	to	abstract	classes.	Shapes	help	you
type-check	data	structures	that	should	have	a	fixed	set	of	keys.	And	tuples	let	you	use
arrays	of	an	immutable	length.

Please	don’t	feel	like	you	need	to	rush	out	and	implement	all	of	these	data	structures.	I
admit,	some	of	them	are	of	limited	and	niche	utility.	Some	data	structures	duplicate	(and
extend)	functionality	found	in	other	data	structures.	I	suggest	you	read	up	on	which	data
structures	are	available	and	only	use	them	if	and	when	you	need	them.

Tip

I	believe	the	most	useful	Hack	data	structures	are	the	various	Collection	interfaces.	These
provide	more	appropriate	and	predictable	behavior	than	PHP’s	array	data	structure.	It’s
best	to	use	a	Collection	instead	of	a	PHP	array.

http://docs.hhvm.com/manual/en/hack.collections.php
http://docs.hhvm.com/manual/en/hack.generics.php
http://docs.hhvm.com/manual/en/hack.enums.php
http://docs.hhvm.com/manual/en/hack.shapes.php
http://docs.hhvm.com/manual/en/hack.tuples.php

HHVM/Hack	vs.	PHP
If	HHVM	and	Hack	are	so	awesome,	why	should	you	use	PHP?	I’m	asked	this	question	a
lot.	I’m	also	asked	if	and	when	PHP	will	meet	its	demise.	The	answer	is	not	black-and-
white.	It’s	more	a	muddy	neutral	gray.

HHVM	is	the	first	true	competitor	to	the	traditional	Zend	Engine	PHP	runtime.	As	of	PHP
5.x,	HHVM	is	proven	to	perform	better	and	be	more	memory-efficient	than	the	Zend
Engine	on	many	real-world	benchmarks.	I	think	this	caught	the	PHP	core	development
team	by	surprise.	In	fact,	HHVM’s	mere	existence	is	probably	responsible	for	PHP’s
renewed	interest	in	increased	performance	and	reduced	memory	usage.	The	PHP	core
development	team	is	already	working	on	PHP	7,	which	is	scheduled	for	release	in	late
2015.	The	PHP	7	codebase	promises	to	be	competitive	with,	if	not	better	than,	HHVM.
Whether	that	will	be	true	or	not	is	anyone’s	guess.	However,	the	point	is	that	HHVM
creates	competition,	and	competition	helps	everyone.	Both	HHVM	and	the	Zend	Engine
will	improve,	and	PHP	developers	will	reap	the	benefits.	Neither	HHVM	nor	the	Zend
Engine	is	going	to	win	or	lose.	I	believe	they	will	coexist	and	feed	off	of	their	competitive
energies.

The	Hack	language,	in	my	opinion,	is	head-and-shoulders	better	than	PHP.	There	are
several	reasons	for	this.	First,	the	Hack	language	was	built	by	Facebook	to	answer	specific
needs.	It	is	focused.	It	has	purpose.	And	it	is	not	developed	by	committee.	The	PHP
language,	in	contrast,	has	evolved	piecemeal	over	a	longer	period	of	time.	PHP	answers
many	different	needs,	and	it	is	controlled	by	a	committee	that	is	not	known	for	its	cordial
agreements.	As	of	PHP	5.x,	the	Hack	language	is	the	better	option	for	its	strict	type
checking	and	support	for	legacy	PHP	code.	I	believe	a	lot	of	Hack’s	best	features	will
eventually	find	their	way	into	PHP.	And	vice	versa.	In	fact,	the	Hack	language	team	has
said	it	intends	to	maintain	future	compatibility	with	the	Zend	Engine.	Again,	I	believe
competition	will	improve	both	languages	and	they’ll	enjoy	a	symbiotic	relationship.

An	example	of	this	symbiosis	is	the	official	PHP	specification.	Until	recently,	the	PHP
language	was	the	Zend	Engine	for	lack	of	alternative	implementations.	The	introduction	of
HHVM	prompted	several	developers	at	Facebook	to	announce	a	PHP	language
specification.	This	specification	is	an	amazing	development	in	the	PHP	community,	and	it
ensures	that	current	and	future	PHP	implementations	(Zend	Engine,	HHVM,	and	so	on)	all
support	the	same	fundamental	language.

Note

You	can	read	the	official	PHP	implementation	on	GitHub	at	https://github.com/php/php-
langspec.

https://wiki.php.net/rfc/php7timeline
http://bit.ly/fb-spec
https://github.com/php/php-langspec

Further	Reading
We’ve	touched	on	a	lot	of	HHVM	and	the	Hack	language	in	a	very	short	period	of	time.
There	are	simply	not	enough	pages	to	cover	everything	these	two	initiatives	have	to	offer.
Instead,	I’ll	point	you	to	these	helpful	resources:

http://hhvm.com
http://hacklang.org
@ptarjan	on	Twitter
@SaraMG	on	Twitter
@HipHopVM	on	Twitter
@HackLang	on	Twitter

http://hhvm.com
http://hacklang.org
https://twitter.com/ptarjan
https://twitter.com/SaraMG
https://twitter.com/HipHopVM
https://twitter.com/HackLang

Chapter	13.	Community
The	PHP	community	is	your	most	valuable	resource.	It	is	diverse,	vibrant,	and	global.	I
encourage	you	to	participate	in	the	PHP	community	to	learn	from	and	share	with	other
PHP	developers.	There’s	always	more	to	learn,	and	your	PHP	community	is	the	best	way
to	continue	learning.	It’s	also	a	great	way	to	meet	and	help	other	developers.

Local	PUG
My	first	advice	is	to	find	and	join	your	local	PHP	User	Group	(PUG).	Many	cities	have
them.	You	can	find	your	local	PUG	at	http://php.ug.	Your	local	PUG	is	the	best
opportunity	to	meet	and	network	with	fellow	PHP	developers	in	your	local	community.

If	there	isn’t	a	nearby	PUG,	you	have	several	options.	You	can	start	your	own	PUG.
Unless	you	live	in	the	middle	of	a	jungle,	I	bet	there	are	like-minded	nearby	PHP
developers	who	would	love	to	join	a	PUG.	Otherwise,	you	can	join	NomadPHP	—	an
online	user	group	with	monthly	speakers	and	lightning	talks	that	cover	all	sorts	of	PHP
features	and	practices.

http://php.ug
https://nomadphp.com

Conferences
There	are	numerous	PHP	conferences	every	year.	Conferences	are	an	excellent
opportunity	to	meet	and	mingle	with	the	greatest	minds	in	the	PHP	community.	You	can
listen	to	and	talk	with	PHP	speakers	and	thought	leaders.	And	you	can	stay	up-to-date	with
emerging	features	and	modern	practices.	Conferences	are	also	an	excuse	to	take	a
minivacation.	You	can	find	a	list	of	upcoming	PHP	conferences	at
http://php.net/conferences/.

http://php.net/conferences/

Mentoring
If	you	are	a	beginner	PHP	developer	and	need	advice	or	assistance,	you	can	find	a	mentor
at	http://phpmentoring.org.	Many	expert	PHP	developers	donate	their	time	to	help	new
PHP	developers	become	better.	If	you	are	already	an	expert	PHP	developer,	consider
signing	up	as	a	PHP	mentor.	There	are	many	beginner	PHP	developers	who	don’t	know
how	or	where	to	start,	and	your	mentorship	will	be	invaluable.

http://phpmentoring.org

Stay	Up-to-Date
The	PHP	language	changes	frequently.	Here	are	a	few	resources	to	help	you	stay	up-to-
date	with	newer	PHP	features	and	modern	practices.

Websites
http://php.net
http://php.net/docs.php
http://www.php-fig.org
http://www.phptherightway.com

http://php.net
http://php.net/docs.php
http://www.php-fig.org
http://www.phptherightway.com

Mailing	Lists
http://php.net/mailing-lists.php

http://php.net/mailing-lists.php

Twitter
@official_php
@phpc

https://twitter.com/official_php
https://twitter.com/phpc

Podcasts
http://voicesoftheelephpant.com
http://looselycoupled.info
http://elephantintheroom.io
http://phptownhall.com
http://devhell.info
http://www.phpclasses.org/blog/category/podcast/
http://threedevsandamaybe.com/

http://voicesoftheelephpant.com
http://looselycoupled.info
http://elephantintheroom.io
http://phptownhall.com
http://devhell.info
http://www.phpclasses.org/blog/category/podcast/
http://threedevsandamaybe.com/

Humor
@phpbard
@phpdrama

https://twitter.com/phpbard
https://twitter.com/phpdrama

Appendix	A.	Installing	PHP

Linux
Linux	is	my	favorite	development	environment.	I	own	a	Macbook	Pro	with	OS	X,	but	my
development	happens	in	a	Linux	virtual	machine.	PHP	is	easy	to	install	on	Linux	with	a
package	manager	such	as	aptitude	on	Ubuntu	Server	or	yum	on	CentOS.

For	now,	we’re	concerned	only	with	PHP	for	command-line	usage.	We	discuss	how	to
setup	PHP-FPM	and	the	nginx	web	server	in	Chapter	7.

Package	Managers
Most	Linux	distributions	provide	their	own	package	manager.	For	example,	Ubuntu	uses
the	aptitude	package	manager.	CentOS	and	Red	Hat	Enterprise	Linux	(RHEL)	use	the
yum	package	manager.	Package	managers	are	the	simplest	way	to	find,	install,	update,	and
remove	software	on	our	Linux	operating	system.

Warning

Sometimes	Linux	package	managers	install	out-of-date	software.	For	example,	Ubuntu
14.04	LTS	provides	PHP	5.5.9;	this	is	already	behind	the	latest	release	—	PHP	5.6.3	(as	of
December	2014).

Fortunately,	we	can	supplement	our	Linux	package	manager’s	default	software	sources
with	third-party	repositories	that	contain	more	up-to-date,	community-maintained	software
packages.	We’ll	use	a	custom	software	repository	for	both	Ubuntu	and	CentOS	to	install
the	most	recent	PHP	version.	Before	we	go	any	further,	make	sure	you	are	the	system	root
user	or	a	user	with	sudo	power.	This	is	required	to	install	software	with	a	Linux	package
manager.

Ubuntu	14.04	LTS
Ubuntu	does	not	provide	the	latest	PHP	version	in	its	default	software	repositories.	We’ll
need	to	add	a	community-maintained	Personal	Package	Archive	(PPA)	instead.	The	term
PPA	is	unique	to	Ubuntu,	but	the	concept	remains	the	same:	we	are	using	a	third-party
software	repository	to	expand	Ubuntu’s	default	software	selection.	Ondřej	Surý	maintains
an	excellent	PPA	that	provides	nightly	builds	for	the	latest	stable	PHP	release.	This	PPA	is
named	ppa:ondrej/php5-5.6.

1.	Add	software	dependencies
Before	we	add	Ondřej	Surý’s	PPA,	we	must	make	sure	the	add-apt-repository	binary	is
available	on	our	operating	system.	This	binary	is	included	in	the	python-software-
properties	Ubuntu	package.	Type	this	command	into	your	terminal	application	and	press
Enter.	Enter	your	account	password	if	prompted:

sudo	apt-get	install	python-software-properties

This	command	installs	the	Python	Software	Properties	package	that	includes	the	add-apt-
repository	binary.	Now	we	can	add	the	custom	PPA.

2.	Add	ppa:ondrej/php5-5.6	PPA
This	PPA	expands	Ubuntu’s	available	software	selection	beyond	the	default	Ubuntu
software	repositories.	Type	this	command	into	your	terminal	application	and	press	Enter.
Enter	your	account	password	if	prompted:

sudo	add-apt-repository	ppa:ondrej/php5-5.6

This	command	adds	the	Ondřej	Surý	PPA	to	Ubuntu’s	list	of	software	sources.	It	also
downloads	the	PPA’s	GPG	public	key	and	appends	it	to	our	local	GPG	keyring.	The	GPG
public	key	enables	Ubuntu	to	verify	that	the	packages	in	the	PPA	have	not	been	tampered
with	since	they	were	built	and	signed	by	their	original	author.

Ubuntu	caches	the	list	of	all	available	software.	When	we	add	new	software	sources,	we
need	to	refresh	Ubuntu’s	cache.	Type	this	command	in	your	terminal	application	and	press
Enter.	Enter	your	account	password	if	prompted:

sudo	apt-get	update

3.	Install	PHP
We	can	now	use	Ubuntu’s	aptitude	package	manager	to	install	the	latest	PHP	stable
release	from	the	Ondřej	Surý	PPA.	Before	we	do,	it	is	important	to	know	which	PHP
packages	are	available	and	what	they	do.	PHP	is	distributed	in	two	forms.	One	form	is	a
CLI	package	that	enables	you	to	use	PHP	on	the	command	line	(we	will	use	this	one).
There	are	several	other	PHP	packages	that	integrate	PHP	with	the	Apache	or	nginx	web
servers	(we	discuss	these	in	Chapter	7).	For	now,	we’ll	stick	with	the	PHP	CLI	package.

First,	let’s	install	the	PHP	CLI	package.	Type	this	command	in	your	terminal	application
and	press	Enter.	Enter	your	account	password	if	prompted:

sudo	apt-get	install	php5-cli

The	Linux	package	manager	also	contains	packages	for	individual	PHP	extensions	that
can	be	installed	separately.	Let’s	install	a	few	of	those	now.	Type	this	command	in	your
terminal	application	and	press	Enter.	Enter	your	account	password	if	prompted:

sudo	apt-get	install	php5-curl	php5-gd	php5-json	php5-mcrypt	php5-mysqlnd

Verify	PHP	was	installed	successfully	with	this	terminal	command:
php	-v

This	command	should	output	something	similar	to:
PHP	5.5.11-3+deb.sury.org~trusty+1	(cli)	(built:	Apr	23	2014	12:15:16)

Copyright	(c)	1997-2014	The	PHP	Group

Zend	Engine	v2.5.0,	Copyright	(c)	1998-2014	Zend	Technologies

				with	Zend	OPcache	v7.0.4-dev,	Copyright	(c)	1999-2014,	by	Zend	Technologies

CentOS	7
Like	Ubuntu,	CentOS	and	RHEL	do	not	provide	the	latest	stable	version	of	PHP	in	their
default	software	repositories.	RHEL	is	very	particular	about	which	software	packages	are
included	in	its	official	distribution	because	it	prides	itself	on	superior	security	and
stability;	software	updates	are	added	slowly	for	the	sake	of	safety.

We’re	not	a	Fortune	500	company,	so	we	can	afford	to	install	the	latest	PHP	stable	release
in	our	CentOS/RHEL	Linux	distribution.	To	do	so,	we’ll	use	the	EPEL	(Extra	Packages
for	Enterprise	Linux)	repository.	The	EPEL	describes	itself	as:

…a	Fedora	Special	Interest	Group	that	creates,	maintains,	and	manages	a	high	quality
set	of	additional	packages	for	Enterprise	Linux,	including,	but	not	limited	to,	Red	Hat
Enterprise	Linux	(RHEL),	CentOS,	Scientific	Linux	(SL),	and	Oracle	Enterprise
Linux(OEL).

The	EPEL	repository	is	unrelated	to	the	official	CentOS/RHEL	Linux	distributions,	but	it
can	still	supplement	the	default	CentOS/RHEL	software	repositories.	And	that’s	exactly
what	we’re	going	to	do.

1.	Add	the	EPEL	repository
Let’s	tell	our	CentOS/RHEL	system	to	use	the	EPEL	software	repository.	Type	these
commands	into	your	terminal	application	one-by-one,	and	press	Enter	after	each
command.	Enter	your	account	password	if	prompted:

sudo	rpm	-Uvh	\

		http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-5.noarch.rpm;

sudo	rpm	-Uvh	\

		http://rpms.famillecollet.com/enterprise/remi-release-7.rpm;

These	commands	add	the	third-party	EPEL	and	remi	software	repositories	to	our
CentOS/RHEL	system.	You	should	now	see	epel.repo	and	remi.repo	files	in	the
/etc/yum.repos.d	directory.

2.	Install	PHP
Now	we’ll	install	the	latest	PHP	version	from	the	EPEL	and	remi	repositories.	As	I
mentioned	earlier	in	the	Ubuntu	PHP	installation,	PHP	is	distributed	in	two	forms.	One
form	is	a	CLI	package	that	enables	you	to	use	PHP	on	the	command	line.	For	now,	we’ll
stick	with	the	PHP	CLI	package.

First,	let’s	install	the	PHP	CLI	package.	Type	this	command	in	your	terminal	application
and	press	Enter.	Enter	your	account	password	if	prompted.

sudo	yum	-y	--enablerepo=epel,remi,remi-php56	install	php-cli

Next,	let’s	install	a	few	additional	PHP	extensions.	You	can	search	for	a	complete	list	of
PHP	extensions	with	the	yum	package	manager.	Type	this	command	into	your	terminal
application	and	press	Enter:

yum	search	php

Once	you	find	a	list	of	PHP	extensions,	install	them	as	I	do	in	this	example.	Your	package
names	might	be	different:

https://fedoraproject.org/wiki/EPEL

sudo	yum	-y	--enablerepo=epel,remi,remi-php56	\

					install	php-gd	php-mbstring	php-mcrypt	php-mysqlnd	php-opcache	php-pdo

The	important	takeaway	from	this	command	is	the	--enablerepo	option.	This	option	tells
yum	to	install	the	specified	software	packages	from	the	EPEL,	remi,	and	remi-php56
repositories.	Without	this	option,	yum	only	references	its	default	software	sources.

Verify	that	PHP	was	installed	successfully.	Type	this	command	in	your	terminal
application	and	press	Enter:

php	-v

This	command	should	output	something	similar	to:
PHP	5.6.3	(cli)	(built:	Nov	16	2014	08:32:30)

Copyright	(c)	1997-2014	The	PHP	Group

Zend	Engine	v2.6.0,	Copyright	(c)	1998-2014	Zend	Technologies

				with	Zend	OPcache	v7.0.4-dev,	Copyright	(c)	1999-2014,	by	Zend	Technologies

OS	X
OS	X	includes	PHP	out	of	the	box,	but	it’s	probably	not	the	latest	version	and	it	may	not
have	the	PHP	extensions	you	need.	I	recommend	you	ignore	the	PHP	that	comes	with	OS
X	and	use	a	custom	PHP	build	instead.	There	are	many	ways	to	install	PHP	on	OS	X,	but	I
recommend	two	methods:	MAMP	and	Homebrew.

MAMP
MAMP	is	the	best	way	to	install	PHP	on	OS	X	if	you	cringe	at	the	mere	thought	of	the
command-line	terminal.	MAMP	(which	stands	for	Mac,	Apache,	MySQL,	and	PHP)
provides	a	traditional	web-development	software	stack	that	includes	an	Apache	web
server,	a	MySQL	database	server,	and	PHP.	MAMP	is	an	OS	X	application	with	a	GUI.
Many	users	prefer	the	familiar	GUI	interface	because	it	provides	a	nice	point-and-click
interface	for	installing	and	configuring	the	MAMP	software	(Figure	A-1).	MAMP	lives	in
your	/Applications	folder,	and	you	double-click	its	application	icon	to	launch	it.	It	has	a
simple	OS	X	package	(.pkg)	installer	that	makes	it	dead	simple	to	install	and	use.	You	can
even	drag	it	into	your	OS	X	Dock	for	quick	access.

Figure	A-1.	Installing	MAMP

Install
Download	the	MAMP	package	(.pkg)	installer	from	http://www.mamp.info,	and	double-
click	the	MAMP	package	installer.	Follow	the	on-screen	instructions.

When	the	MAMP	installer	finishes,	find	the	MAMP	application	in	your	/Applications
folder	and	launch	it	by	double-clicking	its	application	icon.	After	MAMP	opens,	click	the
Start	Servers	button	to	start	the	Apache	and	MySQL	servers	(Figure	A-2).	It’s	really	that
simple.

http://www.mamp.info

Figure	A-2.	MAMP	interface

What	about	PHP?,	you	ask.	MAMP	embeds	PHP	inside	of	the	Apache	web	server	using
the	mod_php	Apache	module.	Without	getting	into	too	much	detail,	you	can	use	PHP	if	the
Apache	web	server	is	running.	We	discuss	PHP	deployment	strategies	in	Chapter	7.

After	you	start	the	Apache	and	MySQL	servers,	open	your	web	browser	and	go	to
http://localhost:8888.	You	should	see	a	MAMP	welcome	page	if	MAMP	is	successfully
installed.

The	Apache	web	server	typically	listens	for	connections	on	port	80.	MAMP,	however,
runs	Apache	on	port	8888.	Likewise,	MySQL	typically	listens	for	connections	on	port
3306.	MAMP,	however,	runs	MySQL	on	port	8889.	You	can	change	MAMPs	default	ports
in	the	MAMP	application	preferences.	MAMP’s	Apache	web	server	document	root	is
/Applications/MAMP/htdocs.	Any	PHP	files	in	this	directory	can	be	accessed	in	a	web
browser	at	http://localhost:8888.

If	you	will	use	MAMP	a	lot,	go	into	the	MAMP	application	preferences	(Figure	A-3)	and
make	sure	Start	Servers	when	starting	MAMP	is	checked.	Then	add	the	MAMP
application	to	your	OS	X	account’s	Login	Items.	This	will	start	MAMP’s	Apache	and
MySQL	servers	automatically	when	you	log	in	to	OS	X.

http://localhost:8888
http://localhost:8888

Figure	A-3.	MAMP	application	preferences

Extend
It	is	possible	to	download	MAMP	add-ons	that	provide	different	PHP	versions	for	your
local	MAMP	installation.	MAMP	is	updated	frequently	and	most	likely	comes	bundled
with	the	latest	PHP	version.	But	if	for	whatever	reason	it	doesn’t,	or	if	you	need	an	older
PHP	version,	go	to	the	MAMP	website	and	download	the	PHP	version	you	need.

Limitations
The	MAMP	free	version	provides	only	one	Apache	virtual	host,	and	it	does	not	let	you
easily	modify	PHP’s	configuration	or	extensions.	MAMP	is	very	basic	and	provides	only
the	bare	necessities	for	PHP	development	on	OS	X.

MAMP	provides	a	paid	“Pro”	version	that	lets	you	create	multiple	Apache	virtual	hosts,
easily	edit	your	php.ini	configuration	file,	and	fine-tune	PHP	extensions.	MAMP	Pro	is
nice,	don’t	get	me	wrong.	But	instead	of	forking	out	a	good	bit	of	money	for	MAMP	Pro,
you’re	better	off	learning	a	few	command-line	fundamentals	so	you	can	use	the	excellent
Homebrew	package	manager	instead.

http://brew.sh

Homebrew
Homebrew	is	an	OS	X	package	manager	comparable	to	Ubuntu’s	aptitude	and	RHEL’s
yum	package	managers.	Homebrew	lets	you	easily	browse,	find,	install,	update,	and
remove	any	number	of	custom	software	packages	on	OS	X.	However,	Homebrew	is	a
command-line	application.	If	you	are	not	familiar	with	the	OS	X	command	line,	you	will
be	more	comfortable	with	MAMP.

Homebrew	uses	formulae	to	install	software	packages	on	your	computer.	Homebrew
provides	default	formulae	for	lots	of	software	that’s	not	provided	out	of	the	box	with	OS
X.	For	example,	there	are	Homebrew	formulae	for	wget,	phploc,	phpmd,	and	php-code-
sniffer	(to	name	just	a	few).	If	Homebrew’s	default	formulae	are	insufficient,	you	can
tap	into	third-party	formulae	repositories	to	expand	your	available	Homebrew	software
selection.	Homebrew	is,	without	exception,	my	favorite	way	to	install	PHP	on	OS	X.

XCode	command-line	tools
Before	we	can	install	Homebrew,	we	must	first	install	the	XCode	Command-Line	Tools
provided	(for	free)	by	Apple,	Inc.	These	command-line	tools	include	the	gcc	compiler
(among	other	tools)	needed	by	Homebrew	to	build	and	install	software	packages.	If	you
are	running	OS	X	Mavericks	10.9.2	or	newer,	open	the	OS	X	Terminal	application,	type
this	command,	and	press	Enter:

xcode-select	--install

This	command	opens	this	modal	window	shown	in	Figure	A-4.

Figure	A-4.	Installing	XCode	command-line	tools

Click	Install	to	begin	installing	the	XCode	Command-Line	Tools.	Click	Agree	when	the
software	license	agreement	appears.	After	the	XCode	Command-Line	Tools	software	is
installed,	click	Done	and	continue	to	the	next	step.

If	you	are	using	an	older	version	of	OS	X,	you	must	log	into	the	Apple	Developer	Portal	to
download	and	run	a	standalone	XCode	Command-Line	Tools	package	(.pkg)	installer.

http://brew.sh/
https://developer.apple.com/

Install
After	you	install	the	XCode	Command-Line	Tools,	type	this	command	in	the	OS	X
Terminal	application	and	press	Enter:

ruby	-e	"$(curl	-fsSL	https://raw.github.com/Homebrew/homebrew/go/install)"

Warning

This	command	executes	Ruby	code	that	is	downloaded	from	a	remote	URL.	You	should
always	inspect	the	remote	code	before	you	execute	it,	no	matter	how	legitimate	the	source
may	be.

Directory	permissions
Homebrew	downloads	and	ferments	software	in	the	/usr/local/Cellar	directory.	It	symlinks
installed	software	binaries	to	the	/usr/local	directory.	Your	OS	X	user	account	must	be
able	to	access	the	/usr/local	directory	to	use	software	installed	with	the	Homebrew
package	manager.

Let’s	make	sure	your	OS	X	user	account	owns	the	/usr/local	directory.	Type	this	command
into	the	OS	X	Terminal	application	and	press	Enter.	Enter	your	administrator	password	if
prompted:

sudo	chown	-R	`whoami`	/usr/local

The	chown	command	means	“change	the	owner”	of	the	specified	directory,	the	-R
command	flag	means	“make	this	change	recursively	to	all	subdirectories”	of	the	specified
directory,	and	the	whoami	argument	is	dynamically	substituted	with	your	OS	X	user
account	name.	After	you	run	this	command,	your	OS	X	user	account	will	own	(and
therefore	have	access	to)	the	/usr/local	directory.

Environment	PATH
Next,	add	the	/usr/local	directory	to	your	OS	X	environment	PATH.	The	environment	PATH
is	a	list	of	directories	to	be	searched	when	you	execute	software	using	only	the	software’s
name	instead	of	the	software’s	absolute	filesystem	path.	For	example,	if	I	execute	wget,
OS	X	will	search	all	directories	on	my	environment	PATH	for	the	wget	software.
Otherwise,	I’d	have	to	type	/usr/local/wget	every	time	I	want	to	use	wget.	Type	this
command	into	the	OS	X	Terminal	application	and	press	Enter:

echo	'export	PATH="/usr/local/bin:$PATH"'	>>	~/.bash_profile

Tap	formulae	repositories
Before	we	install	PHP	with	Homebrew,	we	must	tap	additional	repositories	that	contain
PHP-related	formulae	that	do	not	exist	in	the	default	Homebrew	repository.

First,	we’ll	tap	the	homebrew/dupes	repository.	This	repository	contains	formulae	for
software	that	already	exists	on	OS	X.	This	repository,	however,	contains	newer	software
versions	than	OS	X.	Type	this	command	in	the	OS	X	Terminal	application	and	press
Enter:

brew	tap	homebrew/dupes

Next,	we’ll	tap	the	homebrew/versions	repository.	This	repository	contains	multiple

versions	of	existing	OS	X	software.	Type	this	command	in	the	OS	X	Terminal	application
and	press	Enter:

brew	tap	homebrew/versions

Finally,	we’ll	tap	the	homebrew/php	repository.	This	repository	contains	PHP-related
formulae	that	might	not	be	included	in	the	default	Homebrew	repositories.	The	default
Homebrew	software	repository	is	not	maintained	by	PHP	developers.	This	repository	is,
and	it	includes	software	appropriate	for	PHP	developers.	Type	this	command	in	the	OS	X
Terminal	application	and	press	Enter:

brew	tap	homebrew/php

Install	PHP
So	far,	we’ve	installed	the	Homebrew	package	manager,	configured	filesystem
permissions,	updated	the	environment	PATH,	and	tapped	into	additional	formulae
repositories.	Now	it’s	time	to	install	PHP.	There	are	Homebrew	formulae	for	each	PHP
version	and	each	PHP	version’s	extensions.	Homebrew	provides	a	very	simple	way	to
search	for	available	formulae.	Type	this	command	in	the	OS	X	Terminal	application	and
press	Enter:

brew	search	php

You	should	see	a	lengthy	list	of	Homebrew	PHP	formulae.	Find	the	latest	stable	PHP
version	in	the	formulae	list	(PHP	5.5.x	will	be	named	php55,	PHP	5.6.x	will	be	named
php56,	and	so	on).	I’ll	pick	php56	since	PHP	5.6.x	is	the	latest	stable	version	(as	of
December	2014).	Type	this	command	in	the	OS	X	Terminal	application	and	press	Enter:

brew	install	php56

Installation	may	take	a	while,	so	feel	free	to	grab	a	coffee	and	check	back	in	a	few
minutes.	After	the	PHP	software	package	is	installed,	you	can	confirm	the	installation	by
executing	php	-v	in	the	OS	X	Terminal	application;	this	command	outputs	the	full	name
and	version	number	of	the	PHP	interpreter	installed	by	Homebrew.

Install	PHP	extensions
Homebrew	lets	you	install	PHP	extensions	separately	from	the	PHP	interpreter.	You	can
search	for	PHP	extensions	just	as	you	searched	for	PHP	previously.	Assuming	you	chose
php56,	type	this	command	in	the	OS	X	Terminal	application	and	press	Enter:

brew	search	php56

You	should	see	a	lengthy	list	of	PHP	5.6	extensions	prefixed	with	php56-.	After	you	find
the	extensions	you	want,	type	this	command	in	the	OS	X	Terminal	application	and	press
Enter.	Swap	the	formulae	in	this	example	with	the	extension	formulae	you	want	to	install:

brew	install	php56-intl	php56-mcrypt	php56-xhprof

The	Homebrew	package	manager	is	much	more	powerful	than	what	I’ve	shown	here.	Type
brew	into	the	OS	X	Terminal	application	and	press	Enter	to	see	a	complete	list	of
Homebrew	commands.	You	can	also	read	the	complete	Homebrew	documentation	online
at	http://brew.sh.

http://brew.sh

Build	from	Source
The	precompiled	PHP	binary	provided	by	your	operating	system’s	package	manager	may
not	always	be	up-to-date	or	exactly	what	you	want.	If	this	is	true,	you’re	better	off
building	PHP	from	source	code.	Yes,	this	sounds	scary.	It	took	me	a	long	time	to	build	up
enough	confidence	before	I	compiled	PHP	for	the	first	time.	I	can	assure	you,	it’s	less
scary	than	it	sounds.

The	build	process	is	simple.	We’ll	download	and	extract	the	PHP	source	code.	We’ll
configure	the	source	code	and	make	sure	all	of	its	software	dependencies	are	installed.
And	then	we’ll	make	the	actual	PHP	binaries.	Download.	Configure.	Make.	Three	simple
steps.

Compiling	PHP	from	source	code	gives	you	the	flexibility	to	tweak	the	PHP	build	to	your
exact	specifications.	Although	there	are	many	ways	to	configure	PHP,	for	the	sake	of	time
I’ll	show	you	how	I	prefer	to	build	PHP	for	my	own	projects.	In	addition	to	PHP’s	default
features,	I	typically	want	PHP	to	support:

OpenSSL
Bytecode	caching
FPM	(FastCGI	process	management)
PDO	database	abstraction
Encryption
Multibyte	strings
Image	manipulation
Network	sockets
Curl

With	this	list	in	mind,	let’s	start	building	PHP.	Try	to	follow	along	on	your	own	computer.
If	this	is	your	first	time	building	PHP	from	source	code,	I	strongly	encourage	you	to	do
this	on	a	virtual	machine.	You	can	set	up	a	local	virtual	machine	with	VMware,	Parallels,
or	VirtualBox.	You	can	also	fire	up	a	dirt-cheap	remote	virtual	machine	with
DigitalOcean,	Linode,	and	other	web	hosts	that	bill	by	the	hour.	If	you	mess	up,	you	can
destroy	the	virtual	machine,	rebuild	it,	and	try	again	without	consequence.

Now	take	a	deep	breath,	open	your	terminal	application,	and	(most	important)	don’t	be
afraid	to	make	mistakes.

Get	the	Source	Code
First,	let’s	download	the	PHP	source	code.	Locate	the	latest	stable	version	of	the	PHP
source	code	at	http://www.php.net/downloads.php.	For	me,	the	latest	stable	release
happens	to	be	version	5.6.3,	but	this	may	be	different	for	you.	Type	the	following
commands	into	your	Terminal	application	and	press	Enter	after	each	command.

The	src/	directory
First,	we	create	a	src/	directory	in	our	home	folder.	This	folder	will	contain	the	source
code	that	we	download	from	PHP.net.	We	cd	into	the	src/	directory	so	that	it	becomes	our
current	working	directory:

mkdir	~/src;

cd	~/src;

Download	the	source	code
Next,	we	use	wget	to	download	the	PHP	source	code	as	a	tar.gz	archive.	The	downloaded
file	will	be	located	at	~/src/php.tar.gz:

wget	-O	php.tar.gz	http://www.php.net/get/php-5.6.3.tar.gz/from/this/mirror

Extract	the	PHP	source	code	archive	with	the	tar	command,	and	cd	into	the	unarchived
source	code	directory:

tar	-xzvf	php.tar.gz;

cd	php-*;

Configure	PHP
We’ve	downloaded	the	PHP	source	code.	Now	we	need	to	configure	it.	Before	we	do,	we
must	install	a	few	software	dependencies.	How	do	I	know	what	dependencies	to	install?	I
run	the	./configure	command	(see	the	next	subsection)	until	it	works.	When	the
./configure	command	fails	due	to	a	missing	software	dependency,	it	indicates	what
software	is	missing.	Install	the	missing	dependency	and	rerun	the	./configure	command.
Rinse	and	repeat	until	it	works.

Luckily	for	you,	I’ve	already	figured	out	what	software	dependencies	are	needed	for	the
PHP	./configure	command	we’ll	be	using.	Let’s	install	these	software	dependencies
now.	I	use	commands	for	both	Ubuntu/Debian	and	CentOS/RHEL	Linux	distributions;	use
the	commands	appropriate	for	your	Linux	distribution.

Note

If	for	whatever	reason	the	./configure	command	reports	additional	missing
dependencies,	you	can	search	for	the	missing	dependency	software	packages	online	at
http://packages.ubuntu.com/	(for	Ubuntu)	or	at	https://fedoraproject.org/wiki/EPEL	(for
CentOS).

Build	essentials

We’ll	need	these	fundamental	software	binaries	to	build	PHP	on	your	operating	system.
These	binaries	include	gcc,	automake,	and	other	fundamental	development	software:
#	Ubuntu

http://www.php.net/downloads.php
http://packages.ubuntu.com/
https://fedoraproject.org/wiki/EPEL

sudo	apt-get	install	build-essential;

#	CentOS

sudo	yum	groupinstall	"Development	Tools";

libxml2

We’ll	need	the	libxml2	library.	This	is	used	by	PHP’s	XML-related	functions:
#	Ubuntu

sudo	apt-get	install	libxml2-dev;

#	CentOS

sudo	yum	install	libxml2-devel;

OpenSSL

We’ll	need	the	openssl	library.	This	is	required	to	enable	HTTPS	stream	wrappers	in
PHP,	which	is	kind	of	important,	right?
#	Ubuntu

sudo	apt-get	install	libssl-dev;

#	CentOS

sudo	yum	install	openssl-devel;

Curl

We’ll	need	the	libcurl	library.	This	is	required	by	PHP’s	Curl	functions:
#	Ubuntu

sudo	apt-get	install	libcurl4-dev;

#	CentOS

sudo	yum	install	libcurl-devel;

Image	manipulation

We’ll	need	the	GD,	JPEG,	PNG,	and	other	image-related	system	libraries.	Fortunately,
all	of	these	are	bundled	into	a	single	package.	These	are	required	to	manipulate	images
with	PHP:
#	Ubuntu

sudo	apt-get	install	libgd-dev;

#	CentOS

sudo	yum	install	gd-devel;

Mcrypt

We’ll	need	the	mcrypt	system	library	to	enable	PHP’s	Mcrypt	encryption	and
decryption	functions.	For	whatever	reason,	there	is	no	default	CentOS	Mcrypt	package.
We’ll	need	to	supplement	the	default	CentOS	packages	with	the	third-party	EPEL
package	repository	to	install	Mcrypt:
#	Ubuntu

sudo	apt-get	install	libmcrypt-dev;

#	CentOS

wget	http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm;

sudo	rpm	-Uvh	epel-release-6*.rpm;

sudo	yum	install	libmcrypt-devel;

The	./configure	command
Now	that	our	software	dependencies	are	installed,	let’s	configure	PHP.	Type	the	following
./configure	command	in	your	Terminal	application	and	press	Enter:

./configure

				--prefix=/usr/local/php5.6.3

				--enable-opcache

				--enable-fpm

				--with-gd

				--with-zlib

				--with-jpeg-dir=/usr

				--with-png-dir=/usr

				--with-pdo-mysql=mysqlnd

				--enable-mbstring

				--enable-sockets

				--with-curl

				--with-mcrypt

				--with-openssl;

This	is	a	lengthy	command	with	a	lot	of	options.	Don’t	be	overwhelmed.	Each	command
option	has	a	specific	purpose.	You	can	find	a	list	of	all	available	options	with	./configure
--help.	We’ll	go	through	this	./configure	command	line	by	line	so	you	know	exactly
what	it	does:
--prefix=/usr/local/php5.6.3

The	--prefix	option	defines	the	path	to	a	filesystem	directory	that	will	contain	the
compiled	PHP	binaries,	includes,	libraries,	and	configuration	files.	I	prefer	to	keep	my
custom	PHP	build	and	related	files	together	in	a	single	parent	directory	for	the	sake	of
organization.	Your	user	account	will	need	permission	to	write	to	this	directory.	If	you
don’t	have	write	permission	to	/usr/local,	you	can	set	the	--prefix	to	a	directory	in
your	user	account’s	home	folder	instead	(e.g.,	~/local/php-5.5.13).	Regardless,	make
sure	the	--prefix	directory	exists	before	you	run	the	./configure	command.

--enable-opcache

The	--enable-opcache	option	enables	PHP’s	built-in	bytecode	caching	system.	You
will	most	always	want	to	enable	this.	The	performance	benefits	are	tremendous.

--enable-fpm

The	--enable-fpm	option	enables	the	built-in	PHP	FastCGI	Process	Manager.	This	lets
you	run	PHP	as	a	FastCGI	process	that	is	accessible	via	a	TCP	port	or	a	local	Unix
socket.	FPM	is	fast	becoming	the	preferred	way	to	run	PHP	(especially	with	the	nginx
web	server).	If	in	doubt,	I	recommend	you	enable	this	option.

--with-gd

The	--with-gd	option	lets	PHP	interface	with	your	operating	system’s	GD	image-
manipulation	library.	You	will	want	to	enable	this	option	if	you	plan	on	using	PHP	to
manipulate	images.

--with-zlib

The	--with-zlib	option	lets	PHP	interface	with	your	operating	system’s	Zlib	library.
Zlib	is	a	data-compression	library	that	is	needed	by	the	GD	image	library	to	create	and
manipulate	PNG	image	data.	This	option	is	required	if	you	use	the	--with-gd	option.

--with-jpeg-dir

The	--with-jpeg-dir	option	specifies	the	path	to	the	filesystem	directory	that	contains
the	JPEG	libraries.	This	option	is	required	if	you	use	the	--with-gd	option.

--with-png-dir

The	--with-png-dir	option	specifies	the	path	to	the	filesystem	directory	that	contains
the	PNG	libraries.	This	option	is	required	if	you	use	the	--with-gd	option.

--with-pdo-mysql=mysqlnd

The	--with-pdo-mysql	option	instructs	PHP	to	enable	the	PDO	database	abstraction
API	for	the	MySQL	database	using	PHP’s	own	native	MySQL	driver.	If	you	use
MySQL,	you’ll	want	to	enable	this	option.

--enable-mbstring

The	--enable-mbstring	option	instructs	PHP	to	enable	multibyte	(read	“Unicode”)
string	support.	You’ll	most	always	want	to	enable	this	option.

--enable-sockets

The	--enable-sockets	option	instructs	PHP	to	enable	network	socket	support	so	that
you	can	talk	with	remote	machines	via	TCP	sockets.	You’ll	most	always	want	to	enable
this	option.

--with-curl

The	--with-curl	option	lets	PHP	interface	with	your	operating	system’s	curl	library.
This	lets	you	use	PHP’s	curl	functions	to	send	and	receive	HTTP	requests.	You’ll	most
always	want	to	enable	this	option.

--with-mcrypt

The	--with-mcrypt	option	lets	PHP	interface	with	your	operating	system’s	mcrypt
library	for	data	encryption	and	decryption.	Although	this	option	is	by	no	means
required,	it	is	used	by	a	growing	number	of	PHP	components.	I	strongly	recommend
you	enable	this	option.

--with-openssl

The	--with-openssl	option	lets	PHP	interface	with	your	operating	system’s	openssl
library.	This	is	required	to	use	PHP’s	HTTPS	stream	wrapper.	Although	this	option	is
technically	optional,	it’s	really	not.	Make	Edward	Snowden	proud.	Enable	this	option.

Make	and	install	PHP
Configuring	PHP	and	installing	its	software	dependencies	was	the	hard	part.	It’s	all
downhill	from	here.	Assuming	the	./configure	command	executed	successfully,	type	this
command	in	your	terminal	application	and	press	Enter:

make	&&	make	install

This	will	compile	PHP	and	may	take	a	while.	Now	is	a	good	time	to	grab	a	coffee	or	two.
Eventually	the	command	will	finish	and	PHP	will	be	installed.	That	wasn’t	too	bad,	right?

The	compiled	PHP	binaries	are	available	in	the	bin/	directory	beneath	your	--prefix
directory.	The	php-fpm	binary	is	available	in	the	sbin/	directory	beneath	your	--prefix
directory.	Be	sure	the	bin/	and	sbin/	directories	are	added	to	your	system’s	environment
PATH	so	you	can	reference	the	php	binary	by	name	instead	of	absolute	path.

Create	the	php.ini	file

Let’s	not	forget	about	our	php.ini	file.	This	may	not	be	created	automatically.	The	PHP
GitHub	repository	has	a	php.ini	preconfigured	for	local	development.	Our	php.ini	file
should	exist	in	the	lib/	directory	beneath	your	--prefix	directory.	Let’s	create	it	now.
Type	the	following	commands	into	your	terminal	application	and	press	Enter	after	each
command.

First,	cd	into	our	PHP	installation’s	lib/	directory.	This	path	may	be	different	if	you	used	a
different	--prefix	path	in	your	./configure	command:

cd	/usr/local/php5.6.3/lib

Next,	download	the	PHP.ini	file	from	PHP’s	GitHub	repository	into	a	file	named	php.ini:
curl	-o	php.ini	\

		https://raw.githubusercontent.com/php/php-src/master/php.ini-development

That’s	it.	We’re	all	set	to	execute	PHP	files	with	the	newly	installed	php	interpreter.	We
talked	more	about	the	php-fpm	binary	when	we	discussed	PHP	deployment	strategies	in
Chapter	7.

Windows
Yes,	you	can	run	PHP	on	Windows.	However,	I	encourage	you	to	use	a	Linux	virtual
machine	instead.	It	is	very	likely	that	your	production	server	will	be	running	a	Linux
distribution,	and	you	should	set	up	your	local	development	environment	to	closely	match
your	production	environment.	But	if	you	must	use	Windows	locally,	here’s	how.

Binaries
The	fine	folks	over	at	PHP.net	provide	prebuilt	PHP	binaries	for	Windows	at
http://php.net/windows.	Download	the	appropriate	PHP	release	(provided	as	a	ZIP	archive)
and	unpack	it	to	a	directory	of	your	choice.	I’ll	unpack	it	to	C:\PHP\.	Copy	the	php.ini-
production	file	to	php.ini	in	the	same	folder.	No	other	changes	are	required	to	use	PHP	on
the	Windows	command	line.	You	can	execute	a	custom	PHP	script	with	optional
arguments	like	this:

C:\PHP\php.exe	-f	"C:\path\to\script.php"—-arg1	-arg2	-arg3

Tip

You	should	add	the	PHP	executable	to	your	Windows	PATH	variable	and	append	the	.php
extension	to	your	Windows	PATHEXT	variable	to	save	your	future	self	from	a	lot	of	extra
typing.

http://php.net/windows
http://bit.ly/addtopath

WAMP
You	can	also	download	and	install	WAMP	to	set	up	a	quick	and	dirty	local	PHP
development	environment.	Like	its	OS	X	counterpart,	MAMP,	WAMP	is	an	all-in-one
software	package	that	provides	a	traditional	web-development	stack	out-of-the-box.	It
includes	an	Apache	web	server,	a	MySQL	database	server,	and	PHP.	It	has	a	Windows
software	installer	that	will	guide	you	through	every	step	of	the	install	process.	WAMP	also
provides	a	configuration	menu	in	the	Windows	Taskbar	notification	area	where	you	can
quickly	and	easily	start,	stop,	or	restart	your	Apache	and	MySQL	servers.	Like	MAMP,
WAMP	embeds	PHP	in	the	Apache	web	server	using	the	mod_php	Apache	module.	If	your
Apache	server	is	running,	you	can	use	PHP.

WAMP	is	your	best	bet	for	quickly	installing	a	local	PHP	development	stack	on	your
Windows	machine.	However,	just	as	with	MAMP,	you	are	limited	to	the	software	and
extensions	provided	with	WAMP.	You	can	download	additional	PHP	versions	separately
on	the	WAMP	website.	Learn	more	at	http://www.wampserver.com/.

http://www.wampserver.com/en/
http://www.wampserver.com/

Zend	Server
Another	all-in-one	solution	is	Zend	Server.	It	is	available	in	both	free	and	paid	versions.
Like	WAMP,	it	provides	an	Apache	web	server,	the	latest	PHP	interpreter	and	popular
PHP	extensions,	a	MySQL	database	server,	and	Zend’s	own	debugging	tools	in	one	easy-
to-install	package.	Just	download	the	installer	(.exe)	file,	run	it,	and	follow	the	on-screen
instructions.	Learn	more	at	http://www.zend.com/en/products/server/.

http://www.zend.com/en/products/server/

Appendix	B.	Local	Development	Environments
We’ve	talked	a	lot	about	production	server	provisioning	and	application	deployment.
However,	we	haven’t	discussed	how	to	develop	applications	on	your	local	computer.
What	tools	do	you	use?	How	do	you	reconcile	your	development	environment	with	your
production	environment?	This	chapter	has	answers.

Many	beginner	PHP	developers	rely	on	their	operating	system’s	default	software	stack	—
typically	older	versions	of	Apache	and	PHP.	I	strongly	encourage	you	not	to	use	your
operating	system’s	default	software.	Many	OS	X	users	(including	me)	have	been
devastated	when	an	OS	X	upgrade	vaporized	our	heavily	customized	Apache
configuration	files.	Steer	clear	of	built-in	software;	it’s	often	out	of	date,	and	it	may	be
overwritten	by	operating	system	upgrades.	Instead,	build	a	local	development	environment
in	a	virtual	machine	that	is	safely	isolated	from	your	local	operating	system.	A	virtual
machine	is	a	software-emulated	operating	system.	For	example,	you	can	create	a	virtual
machine	on	OS	X	that	runs	Ubuntu	or	CentOS.	The	virtual	machine	behaves	exactly	like	a
separate	computer.

Tip

Make	sure	your	virtual	machine	runs	the	same	operating	system	as	your	production	server
(I	prefer	Ubuntu	Server).	It’s	important	that	your	local	development	and	production	server
environments	use	the	same	operating	system	to	prevent	unexpected	deployment	and
runtime	errors	caused	by	operating	system	software	discrepancies.

VirtualBox
There	are	many	software	programs	that	create	and	manage	virtual	machines.	Some	are
commercial	products	(e.g.,	VMWare	Fusion	or	Parallels),	and	others	are	open	source
products	(e.g.,	VirtualBox).	To	be	honest,	VirtualBox	is	a	solid	product.	It	works	as
advertised,	and	it’s	free.	VirtualBox	is	not	pretty	like	its	commercial	alternatives,	but	it
gets	the	job	done.	You	can	download	VirtualBox	for	OS	X	or	Windows	at
https://www.virtualbox.org.	It	uses	a	traditional	GUI	installer	appropriate	for	your
operating	system	(Figure	B-1).

Figure	B-1.	VirtualBox	installer

http://www.vmware.com/products/fusion
http://www.parallels.com/products/desktop/
https://www.virtualbox.org
https://www.virtualbox.org

Vagrant
Although	VirtualBox	lets	us	create	virtual	machines,	it	does	not	provide	a	user-friendly
interface	to	start,	provision,	stop,	and	destroy	virtual	machines.	Instead,	we	use	Vagrant	—
a	virtualization	tool	that	helps	you	create,	start,	stop,	and	destroy	VirtualBox	virtual
machines	with	a	single	command.	It	complements	(and	abstracts)	VirtualBox	with	a	user-
friendly,	command-line	interface.	You	can	download	Vagrant	for	OS	X	and	Windows	at
https://www.vagrantup.com.	It	also	uses	a	traditional	GUI	installer	appropriate	for	your
operating	system.

https://www.vagrantup.com
https://www.vagrantup.com

Commands
After	installation,	you	can	use	the	vagrant	command	in	your	terminal	application	to
create,	provision,	start,	stop,	and	destroy	VirtualBox	virtual	machines.	These	are	the
Vagrant	commands	you’ll	use	most	often:
vagrant	init

This	creates	a	new	Vagrantfile	configurations	script	in	the	current	working	directory.
We	use	this	script	to	configure	a	virtual	machine’s	properties	and	provisioning	details.

vagrant	up

This	creates	and/or	starts	a	virtual	machine.
vagrant	provision

This	provisions	a	virtual	machine	using	the	specified	provisioning	scripts.	We’ll	discuss
provisioning	later	in	this	chapter.

vagrant	ssh

This	logs	you	into	a	virtual	machine	via	SSH.
vagrant	halt

This	stops	a	virtual	machine.
vagrant	destroy

This	destroys	a	virtual	machine.

Tip

I	recommend	you	create	command-line	aliases	for	these	Vagrant	commands	because
you’ll	type	them	a	lot.	Drop	these	into	your	~/.bash_profile	file	and	restart	your
terminal	application:

alias	vi="vagrant	init"

alias	vu="sudo	echo	'Starting	VM'	&&	vagrant	up"

alias	vup="sudo	echo	'Starting	VM'	&&	vagrant	up	--provision"

alias	vp="vagrant	provision"

alias	vh="vagrant	halt"

alias	vs="vagrant	ssh"

Boxes
We	have	VirtualBox	and	Vagrant	installed.	Now	what?	We	need	to	choose	a	Vagrant	box
as	a	starting	point	for	our	virtual	machine.	A	Vagrant	box	is	a	preconfigured	virtual
machine	that	provides	a	foundation	on	which	we	provision	our	server	and	build	our	PHP
application.	Some	boxes	are	spartan	shells	used	as	a	blank	canvas.	Other	boxes	include
complete	software	stacks	that	cater	to	certain	types	of	applications.	You	can	browse
available	boxes	at	https://vagrantcloud.com.

I	usually	choose	the	spartan	ubuntu/trusty64	box,	and	then	I	use	Puppet	to	provision	the
box	with	a	specific	software	stack	required	by	my	application.	If	you	find	another	Vagrant
box	that	already	includes	the	tools	you	need,	by	all	means	use	that	box	to	save	time.

https://vagrantcloud.com
https://vagrantcloud.com/ubuntu/boxes/trusty64

Initialize
After	you	find	a	Vagrant	box,	navigate	into	the	appropriate	working	directory	with	your
terminal	application.	Initialize	a	new	Vagrantfile	with	this	command:

vagrant	init

Open	the	new	Vagrantfile	file	in	your	preferred	text	editor.	This	file	is	written	with
Ruby,	but	it’s	easy	to	read.	Find	the	config.vm.box	setting,	and	change	its	value	to	the
name	of	your	Vagrant	box.	For	example,	if	I	prefer	the	Ubuntu	box	I	change	this	setting	to
ubuntu/trusty64.	The	updated	Vagrantfile	line	should	read:

config.vm.box	=	"ubuntu/trusty64"

Next,	uncomment	this	line	so	we	can	access	our	virtual	machine	in	a	web	browser	on	our
local	network	at	IP	address	192.168.33.10:

config.vm.network	"private_network",	ip:	"192.168.33.10"

Finally,	create	the	virtual	machine	with	this	command:
vagrant	up

This	command	downloads	the	remote	Vagrant	box	(if	necessary),	and	it	creates	a	new
VirtualBox	virtual	machine	based	on	the	Vagrant	box.

Provision
Unless	you	use	a	Vagrant	box	that	provides	a	preconfigured	software	stack,	your	virtual
machine	doesn’t	do	anything.	You	need	to	provision	the	virtual	machine	with	the	software
to	run	your	PHP	application.	At	the	very	least,	you	want	a	web	server,	PHP,	and	possibly	a
database.	Provisioning	a	virtual	machine	is	a	topic	far	too	large	for	this	book.	I	can,
however,	point	you	in	the	right	direction.	You	can	provision	a	virtual	machine	with
Vagrant	and	either	Puppet	or	Chef.	Both	Puppet	and	Chef	can	be	enabled	and	configured
in	the	the	Vagrantfile	configuration	file.

Tip

Erika	Heidi	gave	a	great	NomadPHP	presentation	on	Vagrant	and	provisioning	tools	like
Puppet	and	Chef.	She	also	wrote	the	Vagrant	Cookbook,	now	available	on	LeanPub.

Puppet
If	you	scroll	down	the	Vagrantfile	file,	you’ll	see	a	section	that	looks	like	this.	It	may	be
commented	out	by	default:

config.vm.provision	"puppet"	do	|puppet|

		puppet.manifests_path	=	"manifests"

		puppet.manifest_file		=	"default.pp"

end

If	you	uncomment	this	section,	Vagrant	will	provision	the	virtual	machine	with	Puppet
using	your	Puppet	manifests.	You	can	learn	more	about	Puppet	at	http://puppetlabs.com.

Chef
If	you	prefer	Chef’s	provisioning	tools,	you	can	instead	uncomment	this	section	of	the
Vagrantfile	file:

config.vm.provision	"chef_solo"	do	|chef|

		chef.cookbooks_path	=	"../my-recipes/cookbooks"

		chef.roles_path	=	"../my-recipes/roles"

		chef.data_bags_path	=	"../my-recipes/data_bags"

		chef.add_recipe	"mysql"

		chef.add_role	"web"

		#	You	may	also	specify	custom	JSON	attributes:

		chef.json	=	{	mysql_password:	"foo"	}

end

Provide	your	own	cookbooks,	roles,	and	recipes.	Vagrant	will	provision	your	virtual
machine	accordingly.	You	can	learn	more	about	Chef	at	https://www.chef.io/chef/.

http://erikaheidi.com
http://www.bit.ly/1zUJmqb
https://leanpub.com/vagrantcookbook
http://puppetlabs.com
https://www.chef.io/chef/

Synced	folders
In	either	case,	it’s	often	useful	to	map	your	local	machine’s	project	directory	to	a	directory
in	the	virtual	machine.	For	example,	you	can	map	your	local	project	directory	to	the
virtual	machine’s	/var/www	directory.	If	the	virtual	machine’s	web	server	virtual	host	is
/var/www/public,	your	local	project’s	public/	directory	is	now	served	by	the	virtual
machine’s	web	server.	Any	local	changes	are	reflected	immediately	in	the	virtual	machine.
You	can	uncomment	this	line	in	your	Vagrantfile	file	to	enable	synced	directories
between	your	local	and	virtual	machines:

config.vm.synced_folder	".",	"/vagrant_data"

The	first	argument	(.)	is	your	local	path	relative	to	the	Vagrantfile	configuration	file.
The	second	argument	(/vagrant_data)	is	the	absolute	path	on	the	virtual	machine	to
which	the	local	directory	is	mapped.	The	virtual	machine	directory	largely	depends	on
your	virtual	machine’s	web	server	virtual	host	configuration.	OS	X	users	should	enable
NFS	synced	folders.	Change	the	config.vm.synced_folder	line	to	this:

config.vm.synced_folder	".",	"/vagrant_data",	type:	"nfs"

Then	uncomment	these	lines	and	boost	the	VirtualBox	machine’s	memory	to	1024MB:
config.vm.provider	"virtualbox"	do	|vb|

		#	Don't	boot	with	headless	mode

		#	vb.gui	=	true

		#	Use	VBoxManage	to	customize	the	VM.	For	example	to	change	memory:

		vb.customize	["modifyvm",	:id,	"--memory",	"1024"]

end

Get	started
Puppet	and	Chef	are	not	easy	to	learn,	especially	for	Vagrant	newcomers.	There	are	tools
available	to	help	you	get	started	with	Vagrant	that	don’t	require	you	to	write	your	own
Puppet	and	Chef	manifests.

Laravel	Homestead
Homestead	is	an	abstraction	on	top	of	Vagrant.	It	is	also	a	Vagrant	box	that	is
preconfigured	with	a	complete	software	stack	including:

Ubuntu	14.04
PHP	5.6
HHVM
Nginx
MySQL
Postgres
Node	(With	Bower,	Grunt,	and	Gulp)
Redis
Memcached
Beanstalkd
Laravel	Envoy

Homestead	works	great	for	any	PHP	application,	too.	I	use	Homestead	on	my	local
machine	to	develop	Slim	and	Symfony	applications.	Learn	more	about	Homestead	at
http://laravel.com/docs/4.2/homestead.

PuPHPet
PuPHPet	is	ideal	for	those	who	don’t	know	how	to	write	Puppet	manifests.	This	is	a	point-
and-click	website	that	creates	a	Puppet	configuration	automatically	(Figure	B-2).	You
download	the	resultant	Puppet	configuration	and	run	vagrant	up.	It	really	is	that	simple.

http://laravel.com/docs/4.2/homestead
http://laravel.com/docs/4.2/homestead
https://puphpet.com

Figure	B-2.	PuPHPet

Vaprobash
Vaprobash	is	similar	to	PuPHPet.	It	doesn’t	provide	a	point-and-click	website,	but	it’s
almost	as	easy.	You	download	the	Vaprobash	Vagrantfile,	and	you	uncomment	the	lines
for	the	tools	you	need.	Do	you	want	nginx?	Uncomment	the	nginx	line.	Do	you	want
MySQL?	Uncomment	the	MySQL	line.	Do	you	want	Elasticsearch?	Uncomment	the
Elasticsearch	line.	When	ready,	run	vagrant	up	in	your	terminal	application	and	Vagrant
will	provision	your	virtual	machine.

http://fideloper.github.io/Vaprobash/

Index
Symbols

$context	argument,	Write	a	PSR-3	Logger
.htaccess	files,	Router	Scripts
@	prefix,	Errors	and	Exceptions
_autoload()	method,	Autoloading
_invoke()	magic	method,	Create

A
addDocument()	method,	Code	to	an	Interface
addRoute()	method,	Attach	State
aliases

custom,	Import	and	Alias
default,	Import	and	Alias
definition	of	term,	Import	and	Alias

anonymous	functions,	Closures
Apache	Bench,	Memory,	When	to	Use	a	Profiler
auth.json	files,	Composer	and	Private	Repositories
autoloading

components,	Autoloading	PHP	components
definition	of	term,	Autoloading
importance	of,	Why	Autoloaders	Are	Important
namespaces	and	classes,	PSR-1:	Basic	Code	Style
PSR4	autoloader	standard,	Autoloading,	The	PSR-4	Autoloader	Strategy
purpose	of,	PSR-4:	Autoloaders
writing	a	PSR4	autoloader,	How	to	Write	a	PSR-4	Autoloader	(and	Why	You
Shouldn’t)

B
bcrypt	hashing	algorithm,	Hash	User	Passwords	with	bcrypt
behavior-driven	development	(BDD),	Behavior-Driven	Development	(BDD)
benchmarking	tools,	When	to	Use	a	Profiler
best	practices	(see	good	practices)
bindTo()	method,	Attach	State
Bitbucket,	Version	Control
Blackfire,	Blackfire	Profiler
BOM	(byte-order	marker),	PSR-1:	Basic	Code	Style
bound	parameters,	Prepared	Statements
buffer	size,	tuning	of,	Output	Buffering
bytecode	caches,	Zend	OPcache

(see	also	Zend	OPcache)

C
caching,	tuning	of,	Zend	OPcache
CamelCase	format,	PSR-1:	Basic	Code	Style
Capistrano

application	deployment,	Deploy	Your	Application
application	rollback,	Roll	Back	Your	Application
authentication,	Authenticate
benefits	of,	Capistrano
config/deploy.rb	file,	The	config/deploy.rb	file
configuration	of,	Configure
hooks	in,	Capistrano	Hooks
installation	of,	Install
operation	of,	How	It	Works
remote	server	preparation,	Prepare	the	Remote	Server
software	dependencies	and,	Software	dependencies
virtual	hosts	and,	Virtual	host

case	keyword,	PSR-2:	Strict	Code	Style
catch	keyword,	PSR-2:	Strict	Code	Style
CentOS

nginx	installation,	nginx
non-root	user	creation,	Nonroot	User
PHP	installation,	CentOS	7
PHP-FPM	installation,	Install
software	updates,	Software	Updates

Chef,	Chef
class	definition,	PSR-2:	Strict	Code	Style
class	names,	Import	and	Alias,	PSR-1:	Basic	Code	Style

(see	also	namespaces)
classical	inheritance,	Why	We	Use	Traits
closures

attaching	state	with,	Attach	State
creating,	Create
purpose	of,	Closures
vs.	anonymous	functions,	Closures

code	style
autoloading,	PSR-1:	Basic	Code	Style
automating	compatibility,	PSR-2:	Strict	Code	Style
class	definition,	PSR-2:	Strict	Code	Style
control	structures,	PSR-2:	Strict	Code	Style
files	and	lines,	PSR-2:	Strict	Code	Style
indentation,	PSR-2:	Strict	Code	Style
keywords,	PSR-2:	Strict	Code	Style

method	definition,	PSR-2:	Strict	Code	Style
names,	PSR-1:	Basic	Code	Style
namespaces,	PSR-2:	Strict	Code	Style
PHP	tags,	PSR-1:	Basic	Code	Style
PSR-1:	basic	code	style,	PSR-1:	Basic	Code	Style
PSR-2:	strict	code	style,	PSR-2:	Strict	Code	Style
standardization	of,	Style
UTF-8	character	set,	PSR-1:	Basic	Code	Style
visibilities,	PSR-2:	Strict	Code	Style

command	line	runner,	PHPUnit
command-line	scripts,	Implement	scan.php
components

autoloading,	Autoloading	PHP	components
benefits	of,	Components,	Use	PHP	Components
characteristics	of	good,	What	Are	Components?
Composer	installation,	How	to	Install	Composer
creating,	Create	PHP	Components-Using	the	Component
definition	of	term,	What	Are	Components?
example	project,	Example	Project
filesystem	organization,	Filesystem	Organization
finding/selecting,	Find	Components
importance	of,	Use	PHP	Components
installing,	Component	installation
naming,	Component	names
private	repositories,	Composer	and	Private	Repositories
using,	Use	PHP	Components
vs.	frameworks,	Components	Versus	Frameworks

Composer
benefits	of,	Use	PHP	Components
composer.lock	file,	The	composer.lock	file
example	project,	Example	Project
importance	of,	Use	PHP	Components
installation	of,	How	to	Install	Composer
installing	components	with,	How	to	Use	Composer
private	repositories,	Composer	and	Private	Repositories

composer.json	files,	The	composer.json	File
config/deploy.rb	file,	The	config/deploy.rb	file
config/deploy/production.rb	file,	The	config/deploy/production.rb	file
constant	names,	PSR-1:	Basic	Code	Style
control	structures,	PSR-2:	Strict	Code	Style

D
data

good	practices	for	handling,	Sanitize,	Validate,	and	Escape

sanitizing	HTML	special	characters,	HTML
sanitizing	input,	Sanitize	Input
SQL	queries,	SQL	queries
streaming,	Stream	Wrappers
streams,	Streams-Custom	Stream	Filters
user	profile	information,	User	profile	information
validation	of,	Validate	Data

databases
connections	and	DSNs,	Database	Connections	and	DSNs
ensuring	credentials	security,	Keep	your	database	credentials	secret
PDO	extension,	The	PDO	Extension
PHP	extensions	for,	Databases
prepared	statements,	Prepared	Statements
query	results,	Query	Results
transactions,	Transactions

dates,	times,	and	time	zones
DateInterval	Class,	The	DateInterval	Class
DatePeriod	class,	The	DatePeriod	Class
DateTime	class,	The	DateTime	Class
DateTimeZone	class,	The	DateTimeZone	Class
nesbot/carbon	component,	The	nesbot/carbon	Component
PHP	classes	for,	Dates,	Times,	and	Time	Zones
setting	default	time	zones,	Set	a	Default	Time	Zone

dedicated	servers,	Dedicated	Server
default	aliases,	Import	and	Alias
deployment

approaches	to,	Deployment
automating,	Automate	Deployment
version	control	and,	Version	Control
with	Capistrano,	Capistrano-Roll	Back	Your	Application

dispatch()	method,	Attach	State
do	while	keyword,	PSR-2:	Strict	Code	Style
DRY	(Do	not	repeat	yourself),	Why	We	Use	Traits
DSN	string	argument,	Database	Connections	and	DSNs
dynamic	typing,	definition	of	term,	Future

(see	also	typing)

E
else	keyword,	PSR-2:	Strict	Code	Style
elseif	keyword,	PSR-2:	Strict	Code	Style
email	addresses,	sanitizing,	User	profile	information
encryption,	vs.	hashing,	Hash	User	Passwords	with	bcrypt
EPEL	(Extra	Packages	for	Enterprise	Linux)	repository,	CentOS	7

errors	and	exceptions
catching	exceptions,	Catch	exceptions
differences	between,	Errors	and	Exceptions,	Errors
during	development,	Errors	and	Exceptions	During	Development
error	handlers,	Error	Handlers
error	logging,	Production
error	reporting,	Errors
errors,	Errors
exception	handlers,	Exception	Handlers
exceptions,	Exceptions
logging	exceptions,	Exception	Handlers
throwing	exceptions,	Throw	exceptions

exec()	function,	Max	Execution	Time
extends	keyword,	PSR-2:	Strict	Code	Style
external	data	sources,	Sanitize,	Validate,	and	Escape

F
Facebook	Open	Source	project,	HHVM	and	Hack
FastCGI	protocol,	HHVM,	FastCGI,	and	Nginx
Ferrara,	Anthony,	Password	Hashing	API
file	uploads,	tuning,	File	Uploads
files,	standards	for,	PSR-2:	Strict	Code	Style
filter_input()	function,	User	profile	information
filter_var()	function,	User	profile	information
firewalls,	Disable	Passwords	and	Root	Login
for	keyword,	PSR-2:	Strict	Code	Style
foreach	keyword,	PSR-2:	Strict	Code	Style
Forge,	Delegate	Server	Provisioning
framework	interoperability

autoloading,	Autoloading
code	style,	Style
interfaces,	Interfaces

frameworks
benefits	of,	Not	All	Frameworks	Are	Bad
choosing,	Use	the	Right	Tool	for	the	Job
popular	PHP,	Not	All	Frameworks	Are	Bad
vs.	components,	Components	Versus	Frameworks

front	controllers,	Router	Scripts
functional	tests,	What	Do	We	Test?
functions

anonymous,	Closures
closures,	Closures

G

generators
benefits	and	drawbacks	of,	Use	a	Generator
creating,	Create	a	Generator
purpose	of,	Generators
using,	Use	a	Generator

getContent()	method,	Code	to	an	Interface
getId()	method,	Code	to	an	Interface
Git,	Version	Control
global	namespaces,	Global	namespace
good	practices

benefits	of,	Good	Practices
components,	Components-Using	the	Component
data	handling,	Sanitize,	Validate,	and	Escape
data	validation,	Validate	Data
databases,	Databases-Transactions
dates,	times,	and	time	zones,	Dates,	Times,	and	Time	Zones-The	nesbot/carbon
Component
DRY	(Do	not	repeat	yourself),	Why	We	Use	Traits
errors	and	exceptions,	Errors	and	Exceptions-Production
escaping	output,	Escape	Output
multibyte	strings,	Multibyte	Strings
passwords,	Passwords-Password	Hashing	API	for	PHP	<	5.5.0
sanitizing	input,	Sanitize	Input
standards,	Standards-How	to	Write	a	PSR-4	Autoloader	(and	Why	You
Shouldn’t)
streams,	Streams-Custom	Stream	Filters
trait	definition,	How	to	Create	a	Trait
vs.	best	practices,	Good	Practices

Gutmans,	Andi,	Past

H
Hack	language

backwards	compatibility	of,	HHVM	and	Hack
benefits	of,	The	Hack	Language,	Hack	Goes	Both	Ways,	HHVM/Hack	vs.	PHP
converting	PHP	to,	Convert	PHP	to	Hack
data	structures,	Hack	Data	Structures
dynamic	typing,	Dynamic	Typing
features	of,	Future
modes	in,	Hack	Modes
static	typing,	Static	Typing
syntax	in,	Hack	Syntax
type	checking,	Hack	Type	Checking
vs.	PHP,	HHVM/Hack	vs.	PHP

hashing

algorithms	for,	Hash	User	Passwords	with	bcrypt
vs.	encryption,	Hash	User	Passwords	with	bcrypt

HipHop	Virtual	Machine	(HHVM)
applications	using,	HHVM	and	Hack
benefits	of,	Future,	PHP	at	Facebook
choosing,	Is	HHVM	Right	for	Me?
configuration	of,	Configure
development	of,	HHVM
extensions	for,	Extensions
implementation	of,	PHP	at	Facebook
installation	of,	Install
vs.	PHP,	HHVM/Hack	vs.	PHP
Zend	Engine	parity,	HHVM	and	Zend	Engine	Parity

Homebrew,	Homebrew
Homestead,	Laravel	Homestead
hooks,	Capistrano	Hooks
hosting

approaches	to,	Hosting
choosing	a	plan,	Choose	a	Hosting	Plan
companies	available,	Hosting
on	dedicated	servers,	Dedicated	Server
on	platforms	as	a	service	(PaaS),	PaaS
on	shared	servers,	Shared	Server
on	virtual	private	servers	(VPS),	Virtual	Private	Server

HPHPc	compiler,	PHP	at	Facebook
HTML	Purifier	library,	HTML
HTML,	sanitizing	special	characters,	HTML
htmlentities()	function,	HTML,	Escape	Output
HTTP	server

benefits	of,	Built-in	HTTP	server
configuring,	Configure	the	Server
detecting,	Detect	the	Built-in	Server
drawbacks	of,	Drawbacks
router	scripts,	Router	Scripts
starting,	Start	the	Server

human-readable	stories,	Behavior-Driven	Development	(BDD)

I
identifiers,	Stream	Wrappers
if	keyword,	PSR-2:	Strict	Code	Style
implements	keyword,	PSR-2:	Strict	Code	Style
import,	definition	of	term,	Import	and	Alias
importing

multiple	imports,	Multiple	imports
namespaces	vs.	traits,	How	to	Use	a	Trait

indentation,	PSR-2:	Strict	Code	Style
inheritance,	classical,	Why	We	Use	Traits
input,	sanitizing,	Sanitize	Input,	Prepared	Statements
installation

build	from	source,	Build	from	Source-Create	the	php.ini	file
CentOS	7,	CentOS	7
development	environment,	Linux
Homebrew,	Homebrew
MAMP	(Mac,	Apache,	MySQL	and	PHP),	MAMP
OS	X,	OS	X
package	managers,	Package	Managers
Ubuntu	14.04	LTS,	Ubuntu	14.04	LTS
Windows,	Windows
Xcode	command-line	tools,	XCode	command-line	tools

interfaces
benefits	of,	Interfaces
benefits	of	coding	to,	Code	to	an	Interface
concept	of,	Code	to	an	Interface
importance	of,	Code	to	an	Interface
logger	interface	recommendations,	PSR-3:	Logger	Interface

interoperability	methods
autoloading,	Autoloading
code	style,	Style
interfaces,	Interfaces

interpreted	languages,	Zend	OPcache
interval	specification,	The	DateInterval	Class
iterators,	Generators

(see	also	generators)

J
just	in	time	(JIT)	compilers

benefits	of,	Future
HHVM,	PHP	at	Facebook

K
KCacheGrind,	Types	of	Profilers
key-pair	authentication,	SSH	Key-Pair	Authentication
keywords,	PSR-2:	Strict	Code	Style

L

Laravel	Homestead,	Laravel	Homestead
Lederdorf,	Rasmus,	Past
LF	Unix	linefeed	ending,	PSR-2:	Strict	Code	Style
lines,	standards	for,	PSR-2:	Strict	Code	Style
Linode,	Virtual	Private	Server,	Server	Setup
local	development	environments

benefits	of,	Present
Homestead,	Laravel	Homestead
PuPHPet,	PuPHPet
purpose	of,	Local	Development	Environments
syncing	folders,	Synced	folders
Vagrant,	Vagrant
Vaprobash,	Vaprobash
VirtualBox,	VirtualBox

logger	interface
standards	for,	PSR-3:	Logger	Interface
using	a	PSR-3	logger,	Use	a	PSR-3	Logger
writing	a	PSR-3	logger,	Write	a	PSR-3	Logger

M
magic	methods

_autoload()	method,	Autoloading
_invoke()	method,	Create

makeRange()	method,	Use	a	Generator
MAMP	(Mac,	Apache,	MySQL	and	PHP),	MAMP
maximum	execution	time,	tuning,	Max	Execution	Time
mbstring	extension,	Character	Encoding
memory,	tuning	of,	Memory
Mercurial,	Version	Control
method	definition,	PSR-2:	Strict	Code	Style
method	names,	PSR-1:	Basic	Code	Style
monolog/monolog	logger,	PSR-3:	Logger	Interface,	Production
multibyte	strings,	Multibyte	Strings

N
named	placeholders,	Prepared	Statements
names/naming

components,	Component	names
package	name,	Vendor	and	Package	Names
standards	for,	PSR-1:	Basic	Code	Style
vendor	name,	Vendor	and	Package	Names

namespaces,	Namespaces-Autoloading,	PSR-2:	Strict	Code	Style,	Namespaces
autoloader	standard,	Autoloading

benefits	of,	Why	We	Use	Namespaces
component,	Namespaces
declaring,	Declaration,	PSR-2:	Strict	Code	Style
example	declaration,	Namespaces
global,	Global	namespace
importing	and	aliasing,	Import	and	Alias
multiple	imports,	Multiple	imports
multiple	in	one	file,	Multiple	namespaces	in	one	file
purpose	of,	Namespaces
vendor	namespace,	Declaration
vs.	filesystems,	Namespaces

nesbot/carbon	component,	The	nesbot/carbon	Component
New	Relic,	New	Relic	Profiler
nginx

installation	of,	nginx
virtual	host	configuration,	Virtual	Host

Nginx
HHVM	communication	with,	HHVM,	FastCGI,	and	Nginx

non-root	user,	Nonroot	User

O
object-oriented	programming,	Code	to	an	Interface
opcode	cache,	Zend	OPcache
OS	X,	OS	X
output	buffering,	tuning	of,	Output	Buffering
output,	escaping,	Escape	Output

P
package	managers,	Package	Managers
package	names,	Vendor	and	Package	Names
Packagist,	Find	Components,	Packagist	Submission
passwords

correct	handling	of,	Never	Know	User	Passwords
disabling,	Disable	Passwords	and	Root	Login
ensuring	security	of,	Passwords
hashing	with	bcrypt,	Hash	User	Passwords	with	bcrypt
password	hashing	API,	Password	Hashing	API-Password	Hashing	API	for	PHP
<	5.5.0
storing,	Hash	User	Passwords	with	bcrypt

PDO	(PHP	data	objects)	database	extension,	The	PDO	Extension
PDO	prepared	statements,	SQL	queries
performance	issues,	When	to	Use	a	Profiler

(see	also	profiling)

period	designator,	The	DateInterval	Class
PHP	Code	Sniffer	(phpcs),	PSR-2:	Strict	Code	Style
PHP	community

benefits	of,	Community
conferences,	Conferences
language	updates,	Stay	Up-to-Date
mentoring,	Mentoring
PUGs	(PHP	User	Groups),	Local	PUG
resources,	Stay	Up-to-Date

PHP	Framework	Interop	Group	(PHP-FIG)
autoloader	standard,	Autoloading,	Autoloading
creation	of,	PHP-FIG	to	the	Rescue
mission	of,	Framework	Interoperability
operation	of,	PHP-FIG	to	the	Rescue
recommendations	vs.	rules,	PHP-FIG	to	the	Rescue

PHP	Iniscan	tool,	The	php.ini	File
PHP	keywords,	PSR-2:	Strict	Code	Style
PHP	language

as	interpreted	language,	PHP	at	Facebook
closures,	Closures-Attach	State
converting	to	Hack,	Convert	PHP	to	Hack
engines	for,	Present
essential	vs.	nonessential	features,	Features
evolution	of,	Present
generators,	Generators-Use	a	Generator
history	of,	The	New	PHP
HTTP	server,	Built-in	HTTP	server-Drawbacks
interfaces,	Code	to	an	Interface-Code	to	an	Interface
namespaces,	Namespaces-Autoloading
official	daft	specification,	Present
PHP	7	release,	Future
traits,	Traits-How	to	Use	a	Trait
vs.	Hack/HHVM,	HHVM/Hack	vs.	PHP
Zend	OPcache,	Zend	OPcache-Use	Zend	OPcache

PHP	tags,	PSR-1:	Basic	Code	Style
PHP-CS-Fixer,	PSR-2:	Strict	Code	Style
PHP-FPM	(PHP	FastCGI	Process	Manager)

global	configuration,	Global	Configuration
installation	of,	Install
pool	configuration,	Pool	Configuration
purpose	of,	PHP-FPM

php.ini	file,	The	php.ini	File
PHPUnit,	PHPUnit-Code	Coverage

code	coverage,	Code	Coverage
configuring,	Configure	PHPUnit
directory	structure,	Directory	Structure
hypothetical	test	case,	The	WhovianTest	Test	Case
hypothetical	test	class,	The	Whovian	Class
installing	PHPUnit,	Install	PHPUnit
installing	Xdebug,	Install	Xdebug
running	tests,	Run	Tests
vocabulary	used,	PHPUnit

placeholders,	Write	a	PSR-3	Logger
placeholders,	named,	Prepared	Statements
platforms	as	a	service	(PaaS)

benefits	of	hosting	on,	PaaS
provisioning	via,	Provisioning

Pool	Definitions,	Pool	Configuration
prepared	statements,	Prepared	Statements
private	repositories,	Composer	and	Private	Repositories
profiling

Blackfire,	Blackfire	Profiler
New	Relic,	New	Relic	Profiler
purpose	of,	Profiling
timing	of,	When	to	Use	a	Profiler
types	of	profilers,	Types	of	Profilers
Xdebug,	Xdebug
XHProf,	XHProf

provisioning
approaches	to,	Provisioning
automating,	Automate	Server	Provisioning
delegating,	Delegate	Server	Provisioning
nginx,	nginx
overview	of,	Our	Goal
PHP-FPM,	PHP-FPM-Pool	Configuration
server	setup,	Server	Setup-Disable	Passwords	and	Root	Login
skills	required,	Provisioning
via	Paas,	Provisioning

PSR	(PHP	standards	recommendation)
benefits	of,	What	Is	a	PSR?
importance	of,	What	Is	a	PSR?
PSR-1:	basic	code	style,	PSR-1:	Basic	Code	Style
PSR-2:	strict	code	style,	PSR-2:	Strict	Code	Style
PSR-3:	logger	interface,	PSR-3:	Logger	Interface
published	recommendations,	What	Is	a	PSR?

public	code	repositories,	Version	Control

PUGs	(PHP	User	Groups),	Local	PUG
PuPHPet,	PuPHPet
Puppet,	Puppet

R
README	files,	The	README	file
realpath	cache,	Realpath	Cache
regular	expression	functions,	HTML
releases,	versioning	of,	Component	installation
RFC	5424	syslog	protocol,	Write	a	PSR-3	Logger
rollbacks,	Roll	Back	Your	Application
root	users,	Disable	Passwords	and	Root	Login
router	scripts,	Router	Scripts

S
scan.php	script,	Implement	scan.php
schemes,	Stream	Wrappers
Seige,	Memory
semantic	versioning,	Component	installation
server	setup,	Server	Setup-Disable	Passwords	and	Root	Login

disabling	passwords/root	login,	Disable	Passwords	and	Root	Login
firewalls,	Disable	Passwords	and	Root	Login
first	login,	First	Login
security,	Nonroot	User
software	updates,	Software	Updates
SSH	key-pair	authentication,	SSH	Key-Pair	Authentication

server-side	scripting,	definition	of	term,	Past
session	handling,	tuning	of,	Session	Handling
shared	servers,	Shared	Server
Siege,	When	to	Use	a	Profiler
smarty/smarty	template	engine,	Escape	Output
software	dependencies,	Software	dependencies
SPACE	characters,	PSR-2:	Strict	Code	Style,	PSR-2:	Strict	Code	Style
SpecBDD,	Behavior-Driven	Development	(BDD)
special	characters

multibyte	strings,	Multibyte	Strings
sanitizing	HTML,	HTML

specification,	definition	of	term,	Present
spl_autoload_register()	method,	Autoloading
SQL	queries,	SQL	queries
SSH	key-pair	authentication,	SSH	Key-Pair	Authentication
standards

framework	interoperability,	Framework	Interoperability
importance	of,	Standards

PHP	standards	recommendation,	What	Is	a	PSR?
PHP-FIG,	PHP-FIG	to	the	Rescue
PSR-1:	basic	code	style,	PSR-1:	Basic	Code	Style
PSR-2:	strict	code	style,	PSR-2:	Strict	Code	Style
PSR-3:	logger	interface,	PSR-3:	Logger	Interface
PSR-4:	autoloaders,	PSR-4:	Autoloaders

state,	attaching/enclosing,	Attach	State
static	typing,	definition	of	term,	Future

(see	also	typing)
StoryBDD,	Behavior-Driven	Development	(BDD)
streams

benefits	of,	Streams
custom	stream	filters,	Custom	Stream	Filters
definition	of	term,	Streams
introduction	of,	Streams
stream	context,	Stream	Context
stream	filters,	Stream	Filters
stream	wrappers,	Stream	Wrappers

stress	testing,	Memory
strings,	multibyte,	Multibyte	Strings
Supervisord,	Monitor	HHVM	with	Supervisord
Suraski,	Zeev,	Past
switch	keyword,	PSR-2:	Strict	Code	Style

T
TAB	character,	PSR-2:	Strict	Code	Style
targets,	Stream	Wrappers
template	engines,	Escape	Output
test	case,	PHPUnit
test	runner,	PHPUnit
test	suite,	PHPUnit
test-driven	development	(TDD),	Test-Driven	Development	(TDD)
testing

behavior-driven	development	(BDD),	Behavior-Driven	Development	(BDD)
continuous	testing,	Continuous	Testing	with	Travis	CI
importance	of,	Testing
micro	and	macroscopic	scales,	What	Do	We	Test?
stress	testing,	Memory
test-driven	development	(TDD),	Test-Driven	Development	(TDD)
timing	of,	When	Do	We	Test?
unit	tests,	Unit	Tests
with	PHPUnit,	PHPUnit-Code	Coverage
with	Travis	CI,	Continuous	Testing	with	Travis	CI

TitleCase	format,	PSR-1:	Basic	Code	Style
traits

benefits	of,	Why	We	Use	Traits
compile-time	class	definitions,	How	to	Use	a	Trait
creating,	How	to	Create	a	Trait
definition	of	term,	Traits
purpose	of,	Why	We	Use	Traits
using,	How	to	Use	a	Trait

transactions,	PDO	support	for,	Transactions
Travis	CI,	Continuous	Testing	with	Travis	CI
try	keyword,	PSR-2:	Strict	Code	Style
tuning

benefits	of,	Tuning
file	uploads,	File	Uploads
maximum	execution	time,	Max	Execution	Time
memory,	Memory
output	buffering,	Output	Buffering
php.ini	file,	The	php.ini	File
realpath	cache,	Realpath	Cache
session	handling,	Session	Handling
Zend	OPcache,	Zend	OPcache

Twig	template	engine,	Escape	Output
typing

benefits	of	static,	The	Hack	Language,	Static	Typing
definition	of	term,	What	is	a	Type?
dynamic,	Dynamic	Typing
dynamic	vs.	static,	Future
static,	Static	Typing
type	checking,	Hack	Type	Checking

U
Ubuntu

nginx	installation,	nginx
non-root	user	creation,	Nonroot	User
PHP	installation,	Ubuntu	14.04	LTS
PHP-FPM	installation,	Install
software	updates,	Software	Updates
virtual	host	configuration,	Virtual	Host

Unicode	standards,	Multibyte	Strings
unit	tests

definition	of	term,	What	Do	We	Test?
frameworks	for,	Unit	Tests
purpose	of,	Unit	Tests

use	func	keyword,	Import	and	Alias
use	keyword,	Import	and	Alias,	How	to	Use	a	Trait,	Attach	State
user	profile	information,	User	profile	information
UTC	time	zone,	The	DateTimeZone	Class
UTF-8	character	set,	PSR-1:	Basic	Code	Style,	Character	Encoding

V
Vagrant,	Vagrant
Vaprobash,	Vaprobash
VARCHAR(255)	database	columns,	User	registration
vendor	names,	Vendor	and	Package	Names
vendor	namespace,	Declaration
version	control

importance	of,	Version	Control
public	code	repositories,	Version	Control
semantic	versioning,	Component	installation
software	for,	Present

virtual	hosts,	Virtual	Host,	Virtual	host
virtual	machines,	Local	Development	Environments
virtual	private	servers	(VPS),	Virtual	Private	Server
VirtualBox,	VirtualBox
visibilities,	PSR-2:	Strict	Code	Style

W
WAMP,	WAMP
web	hosting	(see	hosting)
while	keyword,	PSR-2:	Strict	Code	Style
Whoops	component,	Errors	and	Exceptions	During	Development
WinCacheGrind,	Types	of	Profilers
Windows,	Windows
work	factor,	Hash	User	Passwords	with	bcrypt

X
Xcode	command-line	tools,	XCode	command-line	tools
Xdebug	profiler

analysis,	Analyze
configuration	of,	Configure
drawbacks	of,	Types	of	Profilers
installation	of,	Install	Xdebug,	Xdebug
triggering,	Trigger
using	with	Zend	OPcache,	Enable	Zend	OPcache

XHGUI,	XHGUI
XHProf,	Types	of	Profilers,	XHProf

Z
Zend	Engine,	Present,	HHVM,	HHVM	and	Zend	Engine	Parity
Zend	Extension	Source	Compatibility	Layer

monitoring	with	Supervisord,	Monitor	HHVM	with	Supervisord
web	server	communication,	HHVM,	FastCGI,	and	Nginx

Zend	OPcache
benefits	of,	Zend	OPcache
configuring,	Configure	Zend	OPcache
enabling,	Enable	Zend	OPcache
tuning	of,	Zend	OPcache
using,	Use	Zend	OPcache

Zend	Opcodes,	PHP	at	Facebook
Zend	Server,	Zend	Server
Zend-style	class	names,	Import	and	Alias

About	the	Author
Josh	Lockhart	created	the	Slim	Framework,	a	popular	PHP	micro	framework	that	enables
rapid	Web	application	and	API	development.	Josh	also	started	and	currently	curates	PHP
The	Right	Way,	a	popular	initiative	in	the	PHP	community	that	encourages	good	practices
and	disseminates	quality	information	for	PHP	developers	around	the	world.

Josh	is	a	developer	at	New	Media	Campaigns,	a	full-service	web	design,	development,
and	marketing	agency	in	Carrboro,	North	Carolina.	He	enjoys	building	custom
applications	with	HTML,	CSS,	PHP,	JavaScript,	Bash,	and	various	content	management
frameworks.

He	graduated	from	the	Information	and	Library	Science	program	at	the	University	of
North	Carolina	at	Chapel	Hill	in	2008.	He	currently	resides	in	Chapel	Hill,	North	Carolina
with	his	wonderful	wife,	Laurel,	and	their	two	dogs.

You	can	at	follow	Josh	on	Twitter,	read	his	blog	at	https://joshlockhart.com,	and	track	his
open	source	projects	on	GitHub.

http://slimframework.com/
http://www.phptherightway.com/
http://www.newmediacampaigns.com/
http://sils.unc.edu/
https://twitter.com/codeguy
https://joshlockhart.com
https://github.com/codeguy

Colophon
The	animal	on	the	cover	of	Modern	PHP	is	a	straw-necked	ibis	(Threskiornis	spinicollis).
It	can	be	found	throughout	Australia,	New	Guinea,	and	parts	of	Indonesia.

Straw-necked	ibises	are	large	birds,	growing	up	to	30	inches	long.	The	distinctive	stiff
feathers	on	the	neck	from	which	the	bird	gets	its	name	appear	during	adulthood.	They
have	long,	curved	beaks	that	help	them	sift	through	water	for	insects,	mollusks,	and	frogs.
Farmers	welcome	straw-necked	ibises	in	their	fields	because	the	birds	will	eat	insects,
grasshoppers,	crickets	and	locusts	that	would	have	otherwise	destroyed	crops.

These	birds	are	very	nomadic,	and	travel	in	flocks	between	habitats.	They	favor	shallow
freshwater	wetlands,	cultivated	pastures,	swamps,	lagoons,	and	grasslands.	During
breeding	season,	these	ibises	will	build	a	large,	cup-shaped	nest	of	sticks	and	reeds	high
up	in	trees	over	water.	They	are	also	known	to	nest	in	colonies,	often	together	with	the
Australian	white	ibis.	For	this	reason,	they	are	easily	spotted	standing	in	the	high	branches
of	bare	trees,	creating	a	striking	silhouette	against	the	sky.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	Woods	Illustrated	Natural	History.	The	cover	fonts	are	URW
Typewriter	and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is
Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

1.	 Preface
a.	 What	You	Need	to	Know	About	This	Book
b.	 How	This	Book	Is	Organized
c.	 Conventions	Used	in	This	Book
d.	 Using	Code	Examples
e.	 Safari®	Books	Online
f.	 How	to	Contact	Us
g.	 Acknowledgments

2.	 I.	Language	Features
3.	 1.	The	New	PHP

a.	 Past
b.	 Present
c.	 Future

4.	 2.	Features
a.	 Namespaces

i.	 Why	We	Use	Namespaces
ii.	 Declaration
iii.	 Import	and	Alias
iv.	 Helpful	Tips

b.	 Code	to	an	Interface
c.	 Traits

i.	 Why	We	Use	Traits
ii.	 How	to	Create	a	Trait
iii.	 How	to	Use	a	Trait

d.	 Generators
i.	 Create	a	Generator
ii.	 Use	a	Generator

e.	 Closures
i.	 Create
ii.	 Attach	State

f.	 Zend	OPcache
i.	 Enable	Zend	OPcache
ii.	 Configure	Zend	OPcache
iii.	 Use	Zend	OPcache

g.	 Built-in	HTTP	server
i.	 Start	the	Server
ii.	 Configure	the	Server
iii.	 Router	Scripts
iv.	 Detect	the	Built-in	Server
v.	 Drawbacks

h.	 What’s	Next
5.	 II.	Good	Practices
6.	 3.	Standards

a.	 PHP-FIG	to	the	Rescue
b.	 Framework	Interoperability

i.	 Interfaces
ii.	 Autoloading
iii.	 Style

c.	 What	Is	a	PSR?
d.	 PSR-1:	Basic	Code	Style
e.	 PSR-2:	Strict	Code	Style
f.	 PSR-3:	Logger	Interface

i.	 Write	a	PSR-3	Logger
ii.	 Use	a	PSR-3	Logger

g.	 PSR-4:	Autoloaders
i.	 Why	Autoloaders	Are	Important
ii.	 The	PSR-4	Autoloader	Strategy
iii.	 How	to	Write	a	PSR-4	Autoloader	(and	Why	You	Shouldn’t)

7.	 4.	Components
a.	 Why	Use	Components?
b.	 What	Are	Components?
c.	 Components	Versus	Frameworks

i.	 Not	All	Frameworks	Are	Bad
ii.	 Use	the	Right	Tool	for	the	Job

d.	 Find	Components
i.	 Shop
ii.	 Choose
iii.	 Leave	Feedback

e.	 Use	PHP	Components
i.	 How	to	Install	Composer
ii.	 How	to	Use	Composer
iii.	 Example	Project
iv.	 Composer	and	Private	Repositories

f.	 Create	PHP	Components
i.	 Vendor	and	Package	Names
ii.	 Namespaces
iii.	 Filesystem	Organization
iv.	 The	composer.json	File
v.	 The	README	file
vi.	 Component	Implementation
vii.	 Version	Control

viii.	 Packagist	Submission
ix.	 Using	the	Component

8.	 5.	Good	Practices
a.	 Sanitize,	Validate,	and	Escape

i.	 Sanitize	Input
ii.	 Validate	Data
iii.	 Escape	Output

b.	 Passwords
i.	 Never	Know	User	Passwords
ii.	 Never	Restrict	User	Passwords
iii.	 Never	Email	User	Passwords
iv.	 Hash	User	Passwords	with	bcrypt
v.	 Password	Hashing	API
vi.	 Password	Hashing	API	for	PHP	<	5.5.0

c.	 Dates,	Times,	and	Time	Zones
i.	 Set	a	Default	Time	Zone
ii.	 The	DateTime	Class
iii.	 The	DateInterval	Class
iv.	 The	DateTimeZone	Class
v.	 The	DatePeriod	Class
vi.	 The	nesbot/carbon	Component

d.	 Databases
i.	 The	PDO	Extension
ii.	 Database	Connections	and	DSNs
iii.	 Prepared	Statements
iv.	 Query	Results
v.	 Transactions

e.	 Multibyte	Strings
i.	 Character	Encoding
ii.	 Output	UTF-8	Data

f.	 Streams
i.	 Stream	Wrappers
ii.	 Stream	Context
iii.	 Stream	Filters
iv.	 Custom	Stream	Filters

g.	 Errors	and	Exceptions
i.	 Exceptions
ii.	 Exception	Handlers
iii.	 Errors
iv.	 Error	Handlers
v.	 Errors	and	Exceptions	During	Development

vi.	 Production
9.	 III.	Deployment,	Testing,	and	Tuning
10.	 6.	Hosting

a.	 Shared	Server
b.	 Virtual	Private	Server
c.	 Dedicated	Server
d.	 PaaS
e.	 Choose	a	Hosting	Plan

11.	 7.	Provisioning
a.	 Our	Goal
b.	 Server	Setup

i.	 First	Login
ii.	 Software	Updates
iii.	 Nonroot	User
iv.	 SSH	Key-Pair	Authentication
v.	 Disable	Passwords	and	Root	Login

c.	 PHP-FPM
i.	 Install
ii.	 Global	Configuration
iii.	 Pool	Configuration

d.	 nginx
i.	 Install
ii.	 Virtual	Host

e.	 Automate	Server	Provisioning
f.	 Delegate	Server	Provisioning
g.	 Further	Reading
h.	 What’s	Next

12.	 8.	Tuning
a.	 The	php.ini	File
b.	 Memory
c.	 Zend	OPcache
d.	 File	Uploads
e.	 Max	Execution	Time
f.	 Session	Handling
g.	 Output	Buffering
h.	 Realpath	Cache
i.	 Up	Next

13.	 9.	Deployment
a.	 Version	Control
b.	 Automate	Deployment

i.	 Make	It	Simple

ii.	 Make	It	Predictable
iii.	 Make	It	Reversible

c.	 Capistrano
i.	 How	It	Works
ii.	 Install
iii.	 Configure
iv.	 Authenticate
v.	 Prepare	the	Remote	Server
vi.	 Capistrano	Hooks
vii.	 Deploy	Your	Application
viii.	 Roll	Back	Your	Application

d.	 Further	Reading
e.	 What’s	Next

14.	 10.	Testing
a.	 Why	Do	We	Test?
b.	 When	Do	We	Test?

i.	 Before
ii.	 During
iii.	 After

c.	 What	Do	We	Test?
d.	 How	Do	We	Test?

i.	 Unit	Tests
ii.	 Test-Driven	Development	(TDD)
iii.	 Behavior-Driven	Development	(BDD)

e.	 PHPUnit
i.	 Directory	Structure
ii.	 Install	PHPUnit
iii.	 Install	Xdebug
iv.	 Configure	PHPUnit
v.	 The	Whovian	Class
vi.	 The	WhovianTest	Test	Case
vii.	 Run	Tests
viii.	 Code	Coverage

f.	 Continuous	Testing	with	Travis	CI
i.	 Setup
ii.	 Run

g.	 Further	Reading
h.	 What’s	Next

15.	 11.	Profiling
a.	 When	to	Use	a	Profiler
b.	 Types	of	Profilers

c.	 Xdebug
i.	 Configure
ii.	 Trigger
iii.	 Analyze

d.	 XHProf
i.	 Install
ii.	 XHGUI
iii.	 Configure
iv.	 Trigger

e.	 New	Relic	Profiler
f.	 Blackfire	Profiler
g.	 Further	Reading
h.	 What’s	Next

16.	 12.	HHVM	and	Hack
a.	 HHVM

i.	 PHP	at	Facebook
ii.	 HHVM	and	Zend	Engine	Parity
iii.	 Is	HHVM	Right	for	Me?
iv.	 Install
v.	 Configure
vi.	 Extensions
vii.	 Monitor	HHVM	with	Supervisord
viii.	 HHVM,	FastCGI,	and	Nginx

b.	 The	Hack	Language
i.	 Convert	PHP	to	Hack
ii.	 What	is	a	Type?
iii.	 Static	Typing
iv.	 Dynamic	Typing
v.	 Hack	Goes	Both	Ways
vi.	 Hack	Type	Checking
vii.	 Hack	Modes
viii.	 Hack	Syntax
ix.	 Hack	Data	Structures
x.	 HHVM/Hack	vs.	PHP

c.	 Further	Reading
17.	 13.	Community

a.	 Local	PUG
b.	 Conferences
c.	 Mentoring
d.	 Stay	Up-to-Date

i.	 Websites
ii.	 Mailing	Lists

iii.	 Twitter
iv.	 Podcasts
v.	 Humor

18.	 A.	Installing	PHP
a.	 Linux

i.	 Package	Managers
ii.	 Ubuntu	14.04	LTS
iii.	 CentOS	7

b.	 OS	X
i.	 MAMP
ii.	 Homebrew

c.	 Build	from	Source
i.	 Get	the	Source	Code

d.	 Windows
i.	 Binaries
ii.	 WAMP
iii.	 Zend	Server

19.	 B.	Local	Development	Environments
a.	 VirtualBox
b.	 Vagrant

i.	 Commands
ii.	 Boxes
iii.	 Initialize
iv.	 Provision
v.	 Synced	folders
vi.	 Get	started

20.	 Index

	Preface
	What You Need to Know About This Book
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	I. Language Features
	1. The New PHP
	Past
	Present
	Future

	2. Features
	Namespaces
	Why We Use Namespaces
	Declaration
	Import and Alias
	Helpful Tips
	Multiple imports
	Multiple namespaces in one file
	Global namespace
	Autoloading

	Code to an Interface
	Traits
	Why We Use Traits
	How to Create a Trait
	How to Use a Trait

	Generators
	Create a Generator
	Use a Generator

	Closures
	Create
	Attach State

	Zend OPcache
	Enable Zend OPcache
	Configure Zend OPcache
	Use Zend OPcache

	Built-in HTTP server
	Start the Server
	Configure the Server
	Router Scripts
	Detect the Built-in Server
	Drawbacks

	What’s Next

	II. Good Practices
	3. Standards
	PHP-FIG to the Rescue
	Framework Interoperability
	Interfaces
	Autoloading
	Style

	What Is a PSR?
	PSR-1: Basic Code Style
	PSR-2: Strict Code Style
	PSR-3: Logger Interface
	Write a PSR-3 Logger
	Use a PSR-3 Logger

	PSR-4: Autoloaders
	Why Autoloaders Are Important
	The PSR-4 Autoloader Strategy
	How to Write a PSR-4 Autoloader (and Why You Shouldn’t)

	4. Components
	Why Use Components?
	What Are Components?
	Components Versus Frameworks
	Not All Frameworks Are Bad
	Use the Right Tool for the Job

	Find Components
	Shop
	Choose
	Leave Feedback

	Use PHP Components
	How to Install Composer
	How to Use Composer
	Component names
	Component installation

	Example Project
	The composer.lock file
	Autoloading PHP components
	Implement scan.php

	Composer and Private Repositories

	Create PHP Components
	Vendor and Package Names
	Namespaces
	Filesystem Organization
	The composer.json File
	The README file
	Component Implementation
	Version Control
	Packagist Submission
	Using the Component

	5. Good Practices
	Sanitize, Validate, and Escape
	Sanitize Input
	HTML
	SQL queries
	User profile information

	Validate Data
	Escape Output

	Passwords
	Never Know User Passwords
	Never Restrict User Passwords
	Never Email User Passwords
	Hash User Passwords with bcrypt
	Password Hashing API
	User registration
	User login
	Verify password
	Rehash password

	Password Hashing API for PHP < 5.5.0

	Dates, Times, and Time Zones
	Set a Default Time Zone
	The DateTime Class
	The DateInterval Class
	The DateTimeZone Class
	The DatePeriod Class
	The nesbot/carbon Component

	Databases
	The PDO Extension
	Database Connections and DSNs
	Keep your database credentials secret

	Prepared Statements
	Query Results
	Transactions

	Multibyte Strings
	Character Encoding
	Output UTF-8 Data

	Streams
	Stream Wrappers
	The file:// stream wrapper
	The php:// stream wrapper
	Other stream wrappers
	Custom stream wrappers

	Stream Context
	Stream Filters
	Custom Stream Filters

	Errors and Exceptions
	Exceptions
	Throw exceptions
	Catch exceptions

	Exception Handlers
	Errors
	Error Handlers
	Errors and Exceptions During Development
	Production

	III. Deployment, Testing, and Tuning
	6. Hosting
	Shared Server
	Virtual Private Server
	Dedicated Server
	PaaS
	Choose a Hosting Plan

	7. Provisioning
	Our Goal
	Server Setup
	First Login
	Software Updates
	Nonroot User
	Ubuntu
	CentOS

	SSH Key-Pair Authentication
	Disable Passwords and Root Login

	PHP-FPM
	Install
	Global Configuration
	Pool Configuration

	nginx
	Install
	Ubuntu
	CentOS

	Virtual Host

	Automate Server Provisioning
	Delegate Server Provisioning
	Further Reading
	What’s Next

	8. Tuning
	The php.ini File
	Memory
	Zend OPcache
	File Uploads
	Max Execution Time
	Session Handling
	Output Buffering
	Realpath Cache
	Up Next

	9. Deployment
	Version Control
	Automate Deployment
	Make It Simple
	Make It Predictable
	Make It Reversible

	Capistrano
	How It Works
	Install
	Configure
	The config/deploy.rb file
	The config/deploy/production.rb file

	Authenticate
	Prepare the Remote Server
	Virtual host
	Software dependencies

	Capistrano Hooks
	Deploy Your Application
	Roll Back Your Application

	Further Reading
	What’s Next

	10. Testing
	Why Do We Test?
	When Do We Test?
	Before
	During
	After

	What Do We Test?
	How Do We Test?
	Unit Tests
	Test-Driven Development (TDD)
	Behavior-Driven Development (BDD)

	PHPUnit
	Directory Structure
	Install PHPUnit
	Install Xdebug
	Configure PHPUnit
	The Whovian Class
	The WhovianTest Test Case
	Test 1: __construct()
	Test 2: say()
	Test 3: respondTo() in agreement
	Test 4: respondTo() in disagreement

	Run Tests
	Code Coverage

	Continuous Testing with Travis CI
	Setup
	Run

	Further Reading
	What’s Next

	11. Profiling
	When to Use a Profiler
	Types of Profilers
	Xdebug
	Configure
	Trigger
	Analyze

	XHProf
	Install
	XHGUI
	Configure
	Trigger

	New Relic Profiler
	Blackfire Profiler
	Further Reading
	What’s Next

	12. HHVM and Hack
	HHVM
	PHP at Facebook
	HHVM and Zend Engine Parity
	Is HHVM Right for Me?
	Install
	Configure
	Extensions
	Monitor HHVM with Supervisord
	HHVM, FastCGI, and Nginx

	The Hack Language
	Convert PHP to Hack
	What is a Type?
	Static Typing
	Dynamic Typing
	Hack Goes Both Ways
	Hack Type Checking
	Hack Modes
	Hack Syntax
	Property annotations
	Argument annotations
	Return-type annotations

	Hack Data Structures
	HHVM/Hack vs. PHP

	Further Reading

	13. Community
	Local PUG
	Conferences
	Mentoring
	Stay Up-to-Date
	Websites
	Mailing Lists
	Twitter
	Podcasts
	Humor

	A. Installing PHP
	Linux
	Package Managers
	Ubuntu 14.04 LTS
	1. Add software dependencies
	2. Add ppa:ondrej/php5-5.6 PPA
	3. Install PHP

	CentOS 7
	1. Add the EPEL repository
	2. Install PHP

	OS X
	MAMP
	Install
	Extend
	Limitations

	Homebrew
	XCode command-line tools
	Install
	Directory permissions
	Environment PATH
	Tap formulae repositories
	Install PHP
	Install PHP extensions

	Build from Source
	Get the Source Code
	The src/ directory
	Download the source code
	Configure PHP
	The ./configure command
	Make and install PHP
	Create the php.ini file

	Windows
	Binaries
	WAMP
	Zend Server

	B. Local Development Environments
	VirtualBox
	Vagrant
	Commands
	Boxes
	Initialize
	Provision
	Puppet
	Chef

	Synced folders
	Get started
	Laravel Homestead
	PuPHPet
	Vaprobash

	Index

