O'REILLY —

r'lrl
"J"". 1-.‘,’ " J:..

"l.l- 1 Ei K
|.# Fa
"; """ 1 ...“" A

NEW FEATURES AND GOOD PRACTICES

Josh Lockhart

Modern PHP

New Features and Good Practices
Josh Lockhart

Modern PHP

by Josh Lockhart
Copyright © 2015 Josh Lockhart. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Allyson MacDonald
Production Editor: Nicole Shelby
Copyeditor: Phil Dangler
Proofreader: Eileen Cohen
Indexer: Judy McConville

Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
[lustrator: Rebecca Demarest

February 2015: First Edition

http://safaribooksonline.com

Revision History for the First Edition
= 2015-02-09: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491905012 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Modern PHP, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the
author disclaim all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work. Use of the
information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-491-90501-2
[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491905012

For Laurel

Preface

There are a million PHP tutorials online. Most of these tutorials are outdated and
demonstrate obsolete practices. Unfortunately, these tutorials are still referenced today
thanks to their Google immortality. Outdated information is dangerous to unaware PHP
programmers who unknowingly create slow and insecure PHP applications. I recognized
this issue in 2013, and it is the primary reason I began PHP The Right Way, a community
initiative to provide PHP programmers easy access to high-quality and up-to-date
information from authoritative members of the PHP community.

Modern PHP is my next endeavor toward the same goal. This book is not a reference
manual. Nope. This book is a friendly and fun conversation between you and me. I’ll
introduce you to the modern PHP programming language. I’ll show you the latest PHP
techniques that I use every day at work and on my open source projects. And I’ll help you
use the latest coding standards so you can share your PHP components and libraries with
the PHP community.

You’ll hear me say “community” over and over (and over). The PHP community is
friendly and helpful and welcoming — although not without occasional drama. If you
become curious about a specific feature mentioned in this book, reach out to your local
PHP user group with questions. I guarantee you there are nearby PHP developers who
would love to help you become a better PHP programmer. Your local PHP user group is an
invaluable resource as you continue to improve your PHP skills long after you finish this
book.

http://www.phptherightway.com

What You Need to Know About This Book

Before we get started, I want to set a few expectations. First, it is impossible for me to
cover every way to use PHP. There isn’t enough time. Instead, I will show you how I use
PHP. Yes, this is an opinionated approach, but I use the very same practices and standards
adopted by many other PHP developers. What you take away from our brief conversation
will be immediately applicable in your own projects.

Second, I assume you are familiar with variables, conditionals, loops, and so on; you don’t
have to know PHP, but you should at least bring a basic understanding of these
fundamental programming concepts. You can also bring coffee (I love coffee). I’'ll supply
everything else.

Third, I do not assume you are using a specific operating system. However, my code
examples are written for Linux. Bash commands are provided for Ubuntu and CentOS and
may also work on OS X. If you use Windows, I highly recommend you spin up a Linux
virtual machine so you can run the example code in this book.

How This Book Is Organized

Part I demonstrates new PHP features like namespaces, generators, and traits. It introduces
you to the modern PHP language, and it exposes you to features you may not have known
about until now.

Part IT explores good practices that you should implement in your PHP applications. Have
you heard the term PSR, but you’re not entirely sure what it is or how to use it? Do you
want to learn how to sanitize user input and use safe database queries? This chapter is for
you.

Part III is more technical than the first two parts. It demonstrates how to deploy, tune, test,
and profile PHP applications. We dive into deployment strategies with Capistrano. We talk
about testing tools like PHPUnit and Travis CI. And we explore how to tune PHP so it
performs as well as possible for your application.

Appendix A provides step-by-step instructions for installing and configuring PHP-FPM on
your machine.

Appendix B explains how to build a local development environment that closely matches
your production server. We explore Vagrant, Puppet, Chef, and alternative tools to help
you get started quickly.

Conventions Used in This Book

The following typographical conventions are used in this book:
Italic

Indicates new terms, URLSs, email addresses, filenames, and file extensions.
Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined
by context.

Tip

This element signifies a tip or suggestion.
Note

This element signifies a general note.
Warning

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/codequy/modern-php.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly books
does require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Modern PHP by Josh Lockhart (O’Reilly).
Copyright 2015 Josh Lockhart, 978-1-491-90501-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

https://github.com/codeguy/modern-php
mailto:permissions@oreilly.com

Safari® Books Online

Note

Safari Books Online is an on-demand digital library that delivers expert content in both
book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http.//bit.ly/modern_php.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

http://bit.ly/modern_php
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

This is my first book. When O’Reilly approached me about writing Modern PHP, 1 was
equally excited and scared to death. The first thing I did was a Walter Huston dance; I
mean, O’Reilly wanted me to write a book. How cool is that!? Then I asked myself can I
really write that many pages? A book isn’t a quick or small task.

Of course, I immediately said “yes.” I knew I could write Modern PHP because I had
family, friends, coworkers, editors, and reviewers supporting me the entire way. I want to
acknowledge and thank my supporters for their invaluable feedback. Without them, this
book would never have happened.

First, I want to thank my editor at O’Reilly Media — Allyson MacDonald
(@allyatoreilly). Ally was nice, critical, supportive, and smart. She knew exactly how and
when to gently nudge me in the right direction whenever I got off track. I can’t imagine
working with a better editor.

I also want to thank my technical reviewers — Adam Fairholm (@adamfairholm) and Ed
Finkler (@funkatron). Adam is a brilliant web developer at Newfangled, and he is perhaps
best known for his work on IMVDb — the popular music video database. Ed is well-
known throughout the PHP community for his incredible PHP skills, his personality on the
/dev/hell podcast, and his commendable Open Sourcing Mental Illness campaign. Adam
and Ed both pointed out everything dumb, illogical, and incorrect in my early drafts. This
book is far better than anything I could write on my own thanks to their brutally honest
feedback. I am forever indebted to them for their guidance and wisdom. If any faults or
inaccuracies wriggled their way into the final manuscript, those faults are surely my own.

My coworkers at New Media Campaigns have been a constant source of encouragement.
Joel, Clay, Kris, Alex, Patrick, Ashley, Lenny, Claire, Todd, Pascale, Henry, and Nathan
— I tip my hat to all of you for your kind words of encouragement from beginning to end.

And most important, I want to thank my family — Laurel, Ethan, Tessa, Charlie, Lisa,
Glenn, and Liz. Thank you for your encouragement, without which I would have never
finished this book. To my lovely wife, Laurel, thank you for your patience. Thank you for
accompanying me to Caribou Coffee for so many late-night writing sessions. Thank you
for letting me abandon you on weekends. Thank you for keeping me motivated and on
schedule. I love you now and forever.

https://twitter.com/allyatoreilly
https://twitter.com/adamfairholm
https://twitter.com/funkatron
https://www.newfangled.com
http://imvdb.com
http://devhell.info
http://funkatron.com/osmi
http://www.newmediacampaigns.com

Part I. Language Features

Chapter 1. The New PHP

The PHP language is experiencing a renaissance. PHP is transforming into a modern
scripting language with helpful features like namespaces, traits, closures, and a built-in
opcode cache. The modern PHP ecosystem is evolving, too. PHP developers rely less on
monolithic frameworks and more on smaller specialized components. The Composer
dependency manager is revolutionizing how we build PHP applications; it emancipates us
from a framework’s walled garden and lets us mix and match interoperable PHP
components best suited for our custom PHP applications. Component interoperability
would not be possible without community standards proposed and curated by the PHP
Framework Interop Group.

Modern PHP is your guide to the new PHP, and it will show you how to build and deploy
amazing PHP applications using community standards, good practices, and interoperable
components.

Past

Before we explore modern PHP, it is important to understand PHP’s origin. PHP is an
interpreted server-side scripting language. This means you write PHP code, upload it to a
web server, and execute it with an interpreter. PHP is typically used with a web server like
Apache or nginx to serve dynamic content. However, PHP can also be used to build
powerful command-line applications (just like bash, Ruby, Python, and so on). Many PHP
developers don’t realize this and miss out on a really exciting feature. Not you, though.

You can read the official PHP history at http:/php.net/manual/history.php.php. I won’t
repeat what has already been said so well by Rasmus Lerdorf (the creator of PHP). What I
will tell you is that PHP has a tumultuous past. PHP began as a collection of CGI scripts
written by Rasmus Lerdorf to track visits to his online resume. Lerdorf named his set of
CGI scripts “Personal Home Page Tools.” This early incarnation was completely different
from the PHP we know today. Lerdorf’s early PHP Tools were not a scripting language;
they were tools that provided rudimentary variables and automatic form variable
interpretation using an HTML embedded syntax.

Between 1994 and 1998, PHP underwent numerous revisions and even received a few
ground-up rewrites. Andi Gutmans and Zeev Suraski, two developers from Tel Aviyv,
joined forces with Rasmus Lerdorf to transform PHP from a small collection of CGI tools
into a full-fledged programming language with a more consistent syntax and basic support
for object-oriented programming. They named their final product PHP 3 and released it in
late 1998. The new PHP moniker was a departure from earlier names, and it is a recursive
acronym for PHP: Hypertext Preprocessor. PHP 3 was the first version that most
resembled the PHP we know today. It provided superior extensibility to various databases,
protocols, and APIs. PHP 3’s extensibility attracted many new developers to the project.
By late 1998, PHP 3 was already installed on a staggering 10% of the world’s web servers.

http://php.net/manual/history.php.php

Present

Today, the PHP language is quickly evolving and is supported by dozens of core team
developers from around the world. Development practices have changed, too. In the past,
it was common practice to write a PHP file, upload it to a production server with FTP, and
hope it worked. This is a terrible development strategy, but it was necessary due to a lack
of viable local development environments.

Nowadays, we eschew FTP and use version control instead. Version control software like
Git helps maintain an auditable code history that can be branched, forked, and merged.
Local development environments are identical to production servers thanks to
virtualization tools like Vagrant and provisioning tools like Ansible, Chef, and Puppet. We
leverage specialized PHP components with the Composer dependency manager. Our PHP
code adheres to PSRs — community standards managed by the PHP Framework Interop
Group. We thoroughly test our code with tools like PHPUnit. We deploy our applications
with PHP’s FastCGI process manager behind a web server like nginx. And we increase
application performance with an opcode cache.

Modern PHP encompasses many new practices that may be unfamiliar to those of you new
to PHP, or to those upgrading from older PHP versions. Don’t feel overwhelmed. I’1l walk
through each concept later in this book.

I’m also excited that PHP now has an official draft specification — something it lacked
until 2014.

Note

Most mature programming languages have a specification. In layman’s terms, a
specification is a canonical blueprint that defines what it means to be PHP. This blueprint
is used by developers who create programs that parse, interpret, and execute PHP code. It
is not for developers who create applications and websites with PHP.

Sara Golemon and Facebook announced the first PHP specification draft at O’Reilly’s
OSCON conference in 2014. You can read the official announcement on the PHP internals
mailing list, and you can read the PHP specification on GitHub.

An official PHP language specification is becoming more important given the introduction
of multiple competing PHP engines. The original PHP engine is the Zend Engine, a PHP
interpreter written in C and introduced in PHP 4. The Zend Engine was created by Rasmus
Lerdorf, Andi Gutmans, and Zeev Suraski. Today the Zend Engine is the Zend company’s
main contribution to the PHP community. However, there is now a second major PHP
engine — the HipHop Virtual Machine from Facebook. A language specification ensures
that both engines maintain a baseline compatibility.

Note

A PHP engine is a program that parses, interprets, and executes PHP code (e.g., the Zend
Engine or Facebook’s HipHop Virtual Machine). This is not to be confused with PHP,
which is a generic reference to the PHP language.

http://bit.ly/php-internals
http://bit.ly/php-langspec
http://www.zend.com/en/company/community/php/

Future

The Zend Engine is improving at a rapid pace with new features and improved
performance. I attribute the Zend Engine’s improvements to its new competition,
specifically Facebook’s HipHop Virtual Machine and Hack programming language.

Hack is a new programming language built on top of PHP. It introduces static typing, new
data structures, and additional interfaces while maintaining backward compatibility with
existing dynamically typed PHP code. Hack is targeted at developers who appreciate
PHP’s rapid development characteristics but need the predictability and stability from
static typing.

Note

We’ll discuss dynamic versus static typing later in this book. The difference between the
two is when PHP types are checked. Dynamic types are checked at runtime, whereas static
types are checked at compile time. Jump ahead to Chapter 12 for more information.

The HipHop Virtual Machine (HHVM) is a PHP and Hack interpreter that uses a just in
time (JIT) compiler to improve application performance and reduce memory usage.

I don’t foresee Hack and HHVM replacing the Zend Engine, but Facebook’s new
contributions are creating a giant splash in the PHP community. Increasing competition
has prompted the Zend Engine core team to announce PHP 7, an optimized Zend Engine
said to be on par with HHVM. We’ll discuss these developments further in Chapter 12.

It’s an exciting time to be a PHP programmer. The PHP community has never been this
energized, fun, and innovative. I hope this book helps you firmly embrace modern PHP
practices. There are a ton of new things to learn, and many more things on the horizon.
Consider this your roadmap. Now let’s get started.

http://bit.ly/php7-timeline

Chapter 2. Features

The modern PHP language has many exciting new features. Many of these features will be
brand new to PHP programmers upgrading from earlier versions, and they’ll be a nice
surprise to programmers migrating to PHP from another language. These new features
make the PHP language a powerful platform and provide a pleasant experience for
building web applications and command-line tools.

Some of these features aren’t essential, but they still make our lives easier. Some features,
however, are essential. Namespaces, for example, are a cornerstone of modern PHP
standards and enable development practices that modern PHP developers take for granted
(e.g., autoloading). I’'ll introduce each new feature, explain why it is useful, and show you
how to implement it in your own projects.

Tip
I encourage you to follow along on your own computer. You can find all of the text’s code
examples in this book’s companion GitHub repository.

https://github.com/codeguy/modern-php

Namespaces

If there is one modern PHP feature I want you to know, it is namespaces. Introduced in
PHP 5.3.0, namespaces are an important tool that organizes PHP code into a virtual
hierarchy, comparable to your operating system’s filesystem directory structure. Each
modern PHP component and framework organizes its code beneath its own globally
unique vendor namespace so that it does not conflict with, or lay claim to, common class
names used by other vendors.

Note

Don’t you hate it when you walk into a coffee shop and this one obnoxious person has a
mess of books, cables, and whatnot spread across several tables? Not to mention he’s
sitting next to, but not using, the only available power outlet. He’s wasting valuable space
that could otherwise be useful to you. Figuratively speaking, this person is not using
namespaces. Don’t be this person.

Let’s see how a real-world PHP component uses namespaces. The Symfony Framework’s
own symfony/httpfoundation is a popular PHP component that manages HTTP requests
and responses. More important, the symfony/httpfoundation component uses common
PHP class names like Request, Response, and Cookie. I guarantee you there are many
other PHP components that use these same class names. How can we use the
symfony/httpfoundation PHP component if other PHP code uses the same class names?
We can safely use the symfony/httpfoundation component precisely because its code is
sandboxed beneath the unique Symfony vendor namespace. Visit the
symfony/httpfoundation component on GitHub and navigate to the Response.php file. It
looks like Figure 2-1.

GitHub S | swe

W miwis » HilpFoundition | Resgeass php

b TR PR EAL HRstaRADSIlvE-D

M Bwms ey

Figure 2-1. GitHub symfony/httpfoundation screenshot

Look closely at line 12. It contains this code:

https://github.com/symfony/HttpFoundation
https://github.com/symfony/HttpFoundation
http://bit.ly/response-php

namespace Symfony\Component\HttpFoundation;

This is a PHP namespace declaration, and it always appears on a new line immediately
after the opening <?php tag. This particular namespace declaration tells us several things.
First, we know the Response class lives beneath the Symfony vendor namespace (the
vendor namespace is the topmost namespace). We know the Response class lives beneath
the Component subnamespace. We also know the Response class lives beneath yet another
subnamespace named HttpFoundation. You can view other files adjacent to
Response.php, and you’ll see they use the same namespace declaration. A namespace (or
subnamespace) encapsulates and organizes related PHP classes, just as a filesystem
directory contains related files.

Tip
Subnamespaces are separated with a \ character.

Unlike your operating system’s physical filesystem, PHP namespaces are a virtual concept
and do not necessarily map 1:1 with filesystem directories. That being said, most PHP
components do, in fact, map subnamespaces to filesystem directories for compatibility
with the popular PSR-4 autoloader standard (we’ll talk more about this in Chapter 3).

Note

Technically speaking, namespaces are merely a PHP language notation referenced by the
PHP interpreter to apply a common name prefix to a set of classes, interfaces, functions,
and constants.

Why We Use Namespaces

Namespaces are important because they let us create sandboxed code that works alongside
other developers’ code. This is the cornerstone concept of the modern PHP component
ecosystem. Component and framework authors build and distribute code for a large
number of PHP developers, and they have no way of knowing or controlling what classes,
interfaces, functions, and constants are used alongside their own code. This problem
applies to your own in-house projects, too. If you write custom PHP components or
classes for a project, that code must work alongside your project’s third-party
dependencies.

As I mentioned earlier with the symfony/httpfoundation component, your code and
other developers’ code might use the same class, interface, function, or constant names.
Without namespaces, a name collision causes PHP to fail. With namespaces, your code
and other developers’ code can use the same class, interface, function, or constant name
assuming your code lives beneath a unique vendor namespace.

If you’re building a tiny personal project with only a few dependencies, class name
collisions probably won’t be an issue. But when you’re working on a team building a large
project with numerous third-party dependencies, name collisions become a very real
concern. You cannot control which classes, interfaces, functions, and constants are
introduced into the global namespace by your project’s dependencies. This is why
namespacing your code is important.

Declaration

Every PHP class, interface, function, and constant lives beneath a namespace (or
subnamespace). Namespaces are declared at the top of a PHP file on a new line
immediately after the opening <?php tag. The namespace declaration begins with
namespace, then a space character, then the namespace name, and then a closing
semicolon ; character.

Remember that namespaces are often used to establish a top-level vendor name. This
example namespace declaration establishes the oreilly vendor name:

<?php

namespace Oreilly;
All PHP classes, interfaces, functions, or constants declared beneath this namespace
declaration live in the oreilly namespace and are, in some way, related to O’Reilly
Media. What if we wanted to organize code related to this book? We use a subnamespace.

Subnamespaces are declared exactly the same as in the previous example. The only
difference is that we separate namespace and subnamespace names with the \ character.
The following example declares a subnamespace named ModernPHP that lives beneath the
topmost Oreilly vendor namespace:

<?php

namespace Oreilly\ModernPHP;
All classes, interfaces, functions, and constants declared beneath this namespace
declaration live in the oreilly\ModernPHP subnamespace and are, in some way, related to
this book.

All classes in the same namespace or subnamespace don’t have to be declared in the same
PHP file. You can specify a namespace or subnamespace at the top of any PHP file, and
that file’s code becomes a part of that namespace or subnamespace. This makes it possible
to write multiple classes in separate files that belong to a common namespace.

Tip
The most important namespace is the vendor namespace. This is the topmost namespace

that identifies your brand or organization, and it must be globally unique. Subnamespaces
are less important, but they are helpful for organizing your project’s code.

Import and Alias

Before we had namespaces, PHP developers solved the name collision problem with
Zend-style class names. This was a class-naming scheme popularized by the Zend
Framework where PHP class names used underscores in lieu of filesystem directory
separators. This convention accomplished two things: it ensured class names were unique,
and it enabled a naive autoloader implementation that replaced underscores in PHP class
names with filesystem directory separators to determine the class file path.

For example, the PHP class
Zend_Cloud_DocumentService_Adapter_WindowsAzure_Query corresponds to the PHP
file Zend/Cloud/DocumentService/Adapter/WindowsAzure/Query.php. A side effect of the
Zend-style naming convention, as you can see, is absurdly long class names. Call me lazy,
but there’s no way I’'m typing that class name more than once.

Modern PHP namespaces present a similar problem. For example, the full Response class
name in the symfony\httpfoundation component is
\Symfony\Component\HttpFoundation\Response. Fortunately, PHP lets us import and
alias namespaced code.

By import, I mean that I tell PHP which namespaces, classes, interfaces, functions, and
constants I will use in each PHP file. I can then use these without typing their full
namespaces.

By alias, I mean that I tell PHP that I will reference an imported class, interface, function,
or constant with a shorter name.

Tip
You can import and alias PHP classes, interfaces, and other namespaces as of PHP 5.3.
You can import and alias PHP functions and constants as of PHP 5.6.

The code shown in Example 2-1 creates and sends a 400 Bad Request HTTP response
without importing and aliasing.

Example 2-1. Namespace without alias

<?php

$response = new \Symfony\Component\HttpFoundation\Response('Oops', 400);

$response->send();
This isn’t terrible, but imagine you have to instantiate a Response instance several times in
a single PHP file. Your fingers will get tired quickly. Now look at Example 2-2. It does the

same thing with importing.

Example 2-2. Namespace with default alias

<?php
use Symfony\Component\HttpFoundation\Response;

$response = new Response('Oops', 400);

$response->send();
We tell PHP we intend to use the Symfony\Component\HttpFoundation\Response class
with the use keyword. We type the long, fully qualified class name once. Then we can
instantiate the Response class without using its fully namespaced class name. How cool is

that?

Some days I feel really lazy. This is a good opportunity to use an alias. Let’s extend
Example 2-2. Instead of typing Response, maybe I just want to type Res instead.
Example 2-3 shows how I can do that.

Example 2-3. Namespace with custom alias

<?php
use Symfony\Component\HttpFoundation\Response as Res;

$r = new Res('Oops', 400);
$r->send();

In this example, I changed the import line to import the Response class. I also appended
as Res to the end of the import line; this tells PHP to consider Res an alias for the
Response class. If we don’t append the as Res alias to the import line, PHP assumes a
default alias that is the same as the imported class name.

Tip
You should import code with the use keyword at the top of each PHP file, immediately
after the opening <?php tag or namespace declaration.

You don’t need a leading \ character when importing code with the use keyword because
PHP assumes imported namespaces are fully qualified.

The use keyword must exist in the global scope (i.e., not inside of a class or function)
because it is used at compile time. It can, however, be located beneath a namespace
declaration to import code into another namespace.

As of PHP 5.6, it’s possible to import functions and constants. This requires a tweak to the
use keyword syntax. To import a function, change use to use func:

<?php
use func Namespace\functionName;

functionName();

To import a constant, change use to use constant:

<?php
use constant Namespace\CONST_NAME;

echo CONST_NAME;

Function and constant aliases work the same as classes.

Helpful Tips
Multiple imports

If you import multiple classes, interfaces, functions, or constants into a single PHP file,
you’ll end up with multiple use statements at the top of your PHP file. PHP accepts a
shorthand import syntax that combines multiple use statements on a single line like this:

<?php
use Symfony\Component\HttpFoundation\Request,
Symfony\Component\HttpFoundation\Response,
Symfony\Component\HttpFoundation\Cookie;
Don’t do this. It’s confusing and easy to mess up. I recommend you keep each use

statement on its own line like this:

<?php

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpFoundation\Cookie;

You’ll type a few extra characters, but your code is easier to read and troubleshoot.

Multiple namespaces in one file

PHP lets you define multiple namespaces in a single PHP file like this:

<?php
namespace Foo {
// Declare classes, interfaces, functions, and constants here

}

namespace Bar {
// Declare classes, interfaces, functions, and constants here

}
This is confusing and violates the recommended one class per file good practice. Use only
one namespace per file to make your code simpler and easier to troubleshoot.

Global namespace

If you reference a class, interface, function, or constant without a namespace, PHP
assumes the class, interface, function, or constant lives in the current namespace. If this
assumption is wrong, PHP attempts to resolve the class, interface, function, or constant. If
you need to reference a namespaced class, interface, function, or constant inside another
namespace, you must use the fully qualified PHP class name (namespace + class name).
You can type the fully qualified PHP class name, or you can import the code into the
current namespace with the use keyword.

Some code might not have a namespace and, therefore, lives in the global namespace. The
native Exception class is a good example. You can reference globally namespaced code
inside another namespace by prepending a \ character to the class, interface, function, or
constant name. For example, the \My\App\Foo: : doSomething() method in Example 2-4
fails because PHP searches for a \My\App\Exception class that does not exist.

Example 2-4. Unqualified class name inside another namespace

<?php
namespace My\App;

class Foo

{

public function doSomething()

{
b

$exception = new Exception();

}

Instead, add a \ prefix to the Exception class name, as shown in Example 2-5. This tells
PHP to look for the Exception class in the global namespace instead of the current
namespace.

Example 2-5. Qualified class name inside another namespace

<?php
namespace My\App;

class Foo

{
public function doSomething()

{
3

throw new \Exception();

}
Autoloading

Namespaces also provide the bedrock for the PSR4 autoloader standard created by the
PHP Framework Interop Group (PHP-FIG). This autoloader pattern is used by most
modern PHP components, and it lets us autoload project dependencies using the Composer
dependency manager. We’ll talk about Composer and the PHP-FIG in Chapter 4. For now,
just understand that the modern PHP ecosystem and its emerging component-based
architecture would be impossible without namespaces.

Code to an Interface

Learning how to code to an interface changed my life as a PHP programmer, and it
profoundly improved my ability to integrate third-party PHP components into my own
applications. Interfaces are not a new feature, but they are an important feature that you
should know about and use on a daily basis.

So what is a PHP interface? An interface is a contract between two PHP objects that lets
one object depend not on what another object is but, instead, on what another object can
do. An interface decouples our code from its dependencies, and it allows our code to
depend on any third-party code that implements the expected interface. We don’t care how
the third-party code implements the interface; we care only that the third-party code does
implement the interface. Here’s a more down-to-earth example.

Let’s pretend I just arrived in Miami, Florida for the Sunshine PHP Developer Conference.
I need a way to get around town, so I head straight for the local car rental place. They have
a tiny Hyundai compact, a Subaru wagon, and (much to my surprise) a Bugatti Veyron. I
know I need a way to get around town, and all three vehicles can help me do that. But
each vehicle does so differently. The Hyundai Accent is OK, but I’d like something with a
bit more oomph. I don’t have kids, so the wagon has more seating than I need. I’ll take the
Bugatti, please.

The reality is that I can drive any of these three cars because they all share a common and
expected interface. Each car has a steering wheel, a gas pedal, a brake pedal, and turn
signals, and each uses gasoline for fuel. The Bugatti is probably more power than I can
handle, but the driving interface is the same as the Hyundai’s. Because all three cars share
the same expected interface, and I have the opportunity to choose my preferred vehicle
(and if we’re being honest, I’d probably go with the Hyundai).

This is the exact same concept in object-oriented PHP. If I write code that expects an
object of a specific class (and therefore a specific implementation), my code’s utility is
inherently limited because it can only use objects of that one class, forever. However, if I
write code that expects an interface, my code immediately knows how to use any object
that implements that interface. My code does not care how the interface is implemented;
my code cares only that the interface is implemented. Let’s drive this home with a demo.

I have a hypothetical PHP class named DocumentStore that collects text from different
sources: it fetches HTML from remote URLs; it reads stream resources; and it collects
terminal command output. Each document stored in a DocumentStore instance has a
unique ID. Example 2-6 shows the DocumentStore class.

Example 2-6. DocumentStore class definition

class DocumentStore

{
protected $data = [];

public function addDocument(Documentable $document)
{
$key = $document->getId();
$value = $document->getContent();
$this->data[$key] = $value;
}

public function getDocuments()

{
b

return $this->data;

}

How exactly does this work if the addbocument () method only accepts instances of the
Documentable class? That’s a good observation. However, Documentable is not a class.
It’s an interface, and it looks like Example 2-7.

Example 2-7. Documentable interface definition

interface Documentable

{
public function getId();

public function getContent();
}

This interface definition says that any object implementing the Documentable interface
must provide a public get1d() method and a public getContent () method.

So how exactly is this helpful? It’s helpful because we can create separate document-
fetching classes with wildly different implementations. Example 2-8 shows an
implementation that can fetch HTML from a remote URL with curl.

Example 2-8. HtmlDocument class definition

class HtmlDocument implements Documentable

{

protected $url;

public function _ construct($url)

{
$this->url = $url;

}

public function getId()

{
return $this->url;

}

public function getContent()

{
$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $this->url);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_CONNECTTIMEOUT, 3);
curl_setopt($ch, CURLOPT_FOLLOWLOCATION, 1);
curl_setopt($ch, CURLOPT_MAXREDIRS, 3);
$html = curl_exec($ch);
curl close($ch);
return $html;

}

}

Another implementation (Example 2-9) can read a stream resource.

Example 2-9. StreamDocument class definition

class StreamDocument implements Documentable

{

protected $resource;
protected $buffer;

public function _ construct($resource, $buffer = 4096)

{

$this->resource = $resource;
$this->buffer = $buffer;

}

public function getId()

{
return 'resource-' . (int)$this->resource;
}
public function getContent()
{
$streamContent = '';
rewind($this->resource);
while (feof($this->resource) === false) {
$streamContent .= fread($this->resource, $this->buffer);
}
return $streamContent;
}

3
And another implementation (Example 2-10) can fetch the result of a terminal command.

Example 2-10. StreamDocument class definition

class CommandOutputDocument implements Documentable

{
protected $command;
public function _ construct($command)
{
$this->command = $command;
}
public function getId()
{
return $this->command;
}
public function getContent()
{
return shell exec($this->command);
}
}

Example 2-11 shows how we can use the bocumentStore class with our three document-
collecting implementations.

Example 2-11. DocumentStore

<?php
$documentStore = new DocumentStore();

// Add HTML document
$htmlDoc = new HtmlDocument('https://php.net');
$documentStore->addDocument ($htmlDoc);

// Add stream document
$streamboc = new StreamDocument(fopen('stream.txt', 'rb'));
$documentStore->addDocument ($streambDoc);

// Add terminal command document
$cmdDoc = new CommandOutputDocument('cat /etc/hosts');
$documentStore->addDocument ($cmdDoc) ;

print_r($documentStore->getDocuments());

This is really cool because the Htm1Document, StreamDocument, and
CommandOutputDocument classes have nothing in common other than a common interface.

At the end of the day, coding to an interface creates more-flexible code that delegates
implementation concerns to others. Many more people (e.g., your office buddies, your
open source project’s users, or developers you’ve never met) can write code that works

seamlessly with your code by knowing nothing more than an interface.

Traits

Many of my PHP developer friends are confused by traits, a new concept introduced in
PHP 5.4.0. Traits behave like classes but look like interfaces. Which one are they? Neither
and both.

A trait is a partial class implementation (i.e., constants, properties, and methods) that can
be mixed into one or more existing PHP classes. Traits work double duty: they say what a
class can do (like an interface), and they provide a modular implementation (like a class).

Note

You may be familiar with traits in other languages. For example, PHP traits are similar to
Ruby’s composable modules, or mixins.

Why We Use Traits

The PHP language uses a classical inheritance model. This means you start with a single
generalized root class that provides a base implementation. You extend the root class to
create more specialized classes that inherit their immediate parent’s implementation. This
is called an inheritance hierarchy, and it is a common pattern used by many programming
languages.

Tip

If it helps, picture yourself back in grade school Biology. Remember how you learned
about the biological classification system? There are six kingdoms. Each kingdom is
extended by phyla. Each phylum is extended by biological classes. Classes are extended

by orders, orders by families, families by genera, and genera by species. Each hierarchy
extension represents further specialization.

The classical inheritance model works well most of the time. However, what do we do if
two unrelated PHP classes need to exhibit similar behavior? For example, a PHP class
RetailStore and another PHP class car are very different classes and don’t share a
common parent in their inheritance hierarchies. However, both classes should be
geocodable into latitude and longitude coordinates for display on a map.

Traits were created for exactly this purpose. They enable modular implementations that
can be injected into otherwise unrelated classes. Traits also encourage code reuse.

My first (bad) reaction is to create a common parent class Geocodable that both
RetailStore and car extend. This is a bad solution because it forces two otherwise
unrelated classes to share a common ancestor that does not naturally belong in either
inheritance hierarchy.

My second (better) reaction is to create a Geocodable interface that defines which
methods are required to implement the geocoding behavior. The RetailStore and Car
classes can both implement the Geocodable interface. This is a good solution that allows
each class to retain its natural inheritance hierarchy, but it requires us to duplicate the
same geocoding behavior in both classes. This is not a DRY solution.

Note

DRY is an acronym for Do not repeat yourself. It’s considered a good practice never to
duplicate the same code in multiple locations. You should not need to change code in one
location because you changed code in another location. Read more on Wikipedia.

My third (best) reaction is to create a Geocodable trait that defines and implements the
geocodable methods. I can then mix the Geocodable trait into both the RetailStore and
Ccar classes without polluting their natural inheritance hierarchies.

http://bit.ly/no-repeat

How to Create a Trait

Here’s how you define a PHP trait:

<?php
trait MyTrait {

// Trait implementation goes here
3

Tip
It is considered a good practice to define only one trait per file, just like class and interface
definitions.

Let’s return to our Geocodable example to better demonstrate traits in practice. We agree
both RetailStore and Car classes need to provide geocodable behavior, and we’ve
decided inheritance and interfaces are not the best solution. Instead, we create a
Geocodable trait that returns latitude and longitude coordinates that we can plot on a map.
Our complete Geocodable trait looks like Example 2-12.

Example 2-12. The Geocodable trait definition

<?php

trait Geocodable {
/** @var string */
protected $address;

/** @var \Geocoder\Geocoder */
protected $geocoder;

/** @var \Geocoder\Result\Geocoded */
protected $geocoderResult;

public function setGeocoder (\Geocoder\GeocoderInterface $geocoder)

{
$this->geocoder = $geocoder;
}
public function setAddress($address)
{
$this->address = $address;
}
public function getLatitude()
{
if (isset($this->geocoderResult) === false) {
$this->geocodeAddress();
}
return $this->geocoderResult->getLatitude();
}
public function getLongitude()
{
if (isset($this->geocoderResult) === false) {
$this->geocodeAddress();
}
return $this->geocoderResult->getLongitude();
}
protected function geocodeAddress()
{
$this->geocoderResult = $this->geocoder->geocode($this->address);
return true;
}

The Geocodable trait defines only the properties and methods necessary to implement the
geocodable behavior. It does not do anything else.

Our Geocodable trait defines three class properties: an address (string), a geocoder object
(an instance of \Geocoder\Geocoder from the excellent willdurand/geocoder component
by William Durand), and a geocoder result object (an instance of
\Geocoder\Result\Geocoded). We also define four public methods and one protected
method. The setGeocoder () method is used to inject the Geocoder object. The
setAddress () method is used to set an address. The getLatitude() and getLongitude()
methods return their respective coordinates. And the geocodeAddress () method passes
the address string into the Geocoder instance to retrieve the geocoder result.

http://geocoder-php.org

How to Use a Trait

Using a PHP trait is easy. Add the code use MyTrait; inside a PHP class definition.
Here’s an example. Obviously, replace MyTrait with the appropriate PHP trait name:

<?php
class MyClass

{

use MyTrait;

// Class implementation goes here
}
Tip
Both namespaces and traits are imported with the use keyword. Where they are imported
is different. We import namespaces, classes, interfaces, functions, and constants outside of

a class definition. We import traits inside a class definition. The difference is subtle but
important.

Let’s return to our Geocodable example. We defined the Geocodable trait in Example 2-
12. Let’s update our RetailStore class so that it uses the Geocodable trait (Example 2-
13). For the sake of brevity, I do not provide the complete RetailStore class
implementation.

Example 2-13. The RetailStore class definition

<?php
class RetailStore

{

use Geocodable;

// Class implementation goes here

}

That’s all we have to do. Now each RetailStore instance can use the properties and
methods provided by the Geocodable trait, as shown in Example 2-14.

Example 2-14. Traits

<?php

$geocoderAdapter = new \Geocoder\HttpAdapter\CurlHttpAdapter();
$geocoderProvider = new \Geocoder\Provider\GoogleMapsProvider ($geocoderAdapter);
$geocoder = new \Geocoder\Geocoder ($geocoderProvider);

$store = new RetailStore();
$store->setAddress('420 9th Avenue, New York, NY 10001 USA');
$store->setGeocoder ($geocoder);

$latitude = $store->getLatitude();
$longitude = $store->getLongitude();
echo $latitude, ':', $longitude;

Warning

The PHP interpreter copies and pastes traits into class definitions at compile time, and it
does not protect against incompatibilities introduced by this action. If your PHP trait
assumes a class property or method exists (that is not defined in the trait itself), be sure
those properties and methods exist in the appropriate classes.

Generators

PHP generators are an underutilized yet remarkably helpful feature introduced in PHP
5.5.0. I think many PHP developers are unaware of generators because their purpose is not
immediately obvious. Generators are simple iterators. That’s it.

Unlike your standard PHP iterator, PHP generators don’t require you to implement the
Iterator interface in a heavyweight class. Instead, generators compute and yield iteration
values on-demand. This has profound implications for application performance. Think
about it. A standard PHP iterator often iterates in-memory, precomputed data sets. This is
inefficient, especially with large and formulaic data sets that can be computed instead.
This is why we use generators to compute and yield subsequent values on the fly without
commandeering valuable memory.

Note

PHP generators are not a panacea for your iteration needs. Because generators never know
the next iteration value until asked, it’s impossible to rewind or fast-forward a generator.
You can iterate in only one direction — forward. Generators are also a once-and-done
deal. You can’t iterate the same generator more than once. However, you are free to
rebuild or clone a generator if necessary.

Create a Generator

Generators are easy to create because they are just PHP functions that use the yield
keyword one or more times. Unlike regular PHP functions, generators never return a
value. They only yield values. Example 2-15 shows a simple generator.

Example 2-15. Simple generator
<?php

function myGenerator() {
yield 'valuel';
yield 'value2';
yield 'value3';
}
Pretty simple, huh? When you invoke the generator function, PHP returns an object that
belongs to the Generator class. This object can be iterated with the foreach () function.
During each iteration, PHP asks the Generator instance to compute and provide the next
iteration value. What’s neat is that the generator pauses its internal state whenever it yields
a value. The generator resumes internal state when it is asked for the next value. The
generator continues pausing and resuming until it reaches the end of its function definition
or an empty return; statement. We can invoke and iterate the generator in Example 2-15
like this:

<?php

foreach (myGenerator() as $yieldedvalue) {
echo $yieldedvalue, PHP_EOL;

}

This outputs:

valuel
value2
value3

Use a Generator

I like to demonstrate how a PHP generator saves memory by implementing a simple
range() function. First, let’s do it the wrong way (Example 2-16).

Example 2-16. Range generator (bad)

<?php
function makeRange($length) {
$dataset = [];
for ($1 = 0; $i < $length; $i++) {
$dataset[] = $i;
}

return $dataset;

}

$customRange = makeRange(1000000);

foreach ($customRange as $i) {
echo $i, PHP_EOL;

}

Example 2-16 makes poor use of memory. The makeRange () method in Example 2-16
allocates one million integers into a precomputed array. A PHP generator can do the same
thing while allocating memory for only one integer at any given time, as shown in

Example 2-17.

Example 2-17. Range generator (good)

<?php
function makeRange($length) {
for ($i = 0; $i < $length; $i++) {
yield $i;
}

}

foreach (makeRange(1000000) as $i) {
echo $i, PHP_EOL;
}

This is a contrived example. However, just imagine all of the potential data sets that you
can compute. Number sequences (e.g., Fibonacci) are an obvious candidate. You can also
iterate a stream resource. Imagine you need to iterate a 4 GB comma-separated value
(CSV) file and your virtual private server (VPS) has only 1 GB of memory available to
PHP. There’s no way you can pull the entire file into memory. Example 2-18 shows how
we can use a generator instead!

Example 2-18. CSV generator

<?php
function getRows($file) {
$handle = fopen($file, 'rb');
if ($handle === false) {
throw new Exception();

}
while (feof($handle) === false) {
yield fgetcsv($handle);

}
fclose($handle);
}

foreach (getRows('data.csv') as $row) {
print_r($row);
}

This example allocates memory for only one CSV row at a time instead of reading the

entire 4 GB CSV file into memory. It also encapsulates the iteration implementation into a
tidy package; this lets us quickly change how we get data (e.g., CSV, XML, JSON)
without interrupting our application code that iterates the data.

Generators are a tradeoff between versatility and simplicity. Generators are forward-only
iterators. This means you cannot use a generator to rewind, fast-forward, or seek a data
set. You can only ask a generator to compute and yield its next value. Generators are most
useful for iterating large or numerically sequenced data sets with only a tiny amount of
system memory. They are also useful for accomplishing the same simple tasks as larger
iterators with less code.

Generators do not add functionality to PHP. You can do what generators do without a
generator. However, generators greatly simply certain tasks while using less memory. If
you require more versatility to rewind, fast-forward, or seek through a data set, you’re
better off writing a custom class that implements the Iterator interface, or using one of
PHP’s prebuilt Standard PHP Library (SPL) iterators.

Tip
For more generator examples, read What Generators Can Do For You by Anthony Ferrara

(@ircmaxell on Twitter).

http://php.net/manual/class.iterator.php
http://php.net/manual/spl.iterators.php
http://bit.ly/ircmaxwell
https://twitter.com/ircmaxell

Closures

Closures and anonymous functions were introduced in PHP 5.3.0, and they’re two of my
favorite and most used PHP features. They sound scary (at least I thought so when I first
learned about them), but they’re actually pretty simple to understand. They’re extremely
useful tools that every PHP developer should have in the toolbox.

A closure is a function that encapsulates its surrounding state at the time it is created. The
encapsulated state exists inside the closure even when the closure lives after its original
environment ceases to exist. This is a difficult concept to grasp, but once you do it’ll be a
life-changing moment.

An anonymous function is exactly that — a function without a name. Anonymous
functions can be assigned to variables and passed around just like any other PHP object.
But it’s still a function, so you can invoke it and pass it arguments. Anonymous functions
are especially useful as function or method callbacks.

Note

Closures and anonymous functions are, in theory, separate things. However, PHP
considers them to be one and the same. So when I say closure, I also mean anonymous
function. And vice versa.

PHP closures and anonymous functions use the same syntax as a function, but don’t let
them fool you. They’re actually objects disguised as PHP functions. If you inspect a PHP
closure or anonymous function, you’ll find they are instances of the Closure class.
Closures are considered first-class value types, just like a string or integer.

Create

So we know PHP closures look like functions. You should not be surprised, then, that you
create a PHP closure like Example 2-19.

Example 2-19. Simple closure

<?php
$closure = function ($name) {
return sprintf('Hello %s', $name);

3

echo $closure("Josh");

// Outputs --> "Hello Josh"
That’s it. Example 2-19 creates a closure object and assigns it to the $closure variable. It
looks like a standard PHP function: it uses the same syntax, it accepts arguments, and it
returns a value. However, it does not have a name.

Tip
We can invoke the $closure variable because the variable’s value is a closure, and closure

objects implement the __invoke () magic method. PHP looks for and calls the
__invoke() method whenever () follows a variable name.

I typically use PHP closure objects as function and method callbacks. Many PHP functions
expect callback functions, like array_map() and preg_replace_callback(). Thisis a
perfect opportunity to use PHP anonymous functions! Remember, closures can be passed
into other PHP functions as arguments, just like any other value. In Example 2-20, I use a
closure object as a callback argument in the array_map () function.

Example 2-20. array_map closure

<?php
$numbersPlusOne = array_map(function ($number) {
return $number + 1;

Yoo [1,2,31);

print_r($numbersPlusOne);

// Outputs --> [2,3,4]
OK, so that wasn’t that impressive. But remember, before closures PHP developers had no
choice but to create a separate named function and refer to that function by name. This
was slightly slower to execute, and it segregated a callback’s implementation from its

usage. Old-school PHP developers used code like this:

<?php

// Named callback implementation

function incrementNumber ($number) {
return $number + 1;

}

// Named callback usage
$numbersPlusOne = array_map('incrementNumber', [1,2,3]);
print_r($numbersPlusOne);

This code works, but it’s not as succinct and tidy as Example 2-20. We don’t need a
separate incrementNumber () named function if we use the function only once as a
callback. Closures used as callbacks create more concise and legible code.

Attach State

So far I’ve demonstrated nameless (or anonymous) functions used as callbacks. Let’s
explore how to attach and enclose state with a PHP closure. JavaScript developers might
be confused by PHP closures because they do not automatically enclose application state
like true JavaScript closures. Instead, you must manually attach state to a PHP closure
with the closure object’s bindTo () method or the use keyword.

It’s far more common to attach closure state with the use keyword, so let’s look at that
first (Example 2-21). When you attach a variable to a closure via the use keyword, the
attached variable retains the value assigned to it at the time it is attached to the closure.

Example 2-21. Attaching closure state with use keyword

<?php
function enclosePerson($name) {
return function ($doCommand) use ($name) {
return sprintf('%s, %s', $name, $doCommand);

B
}

// Enclose "Clay" string in closure
$clay = enclosePerson('Clay');

// Invoke closure with command

echo $clay('get me sweet teal!');

// Outputs --> "Clay, get me sweet tea!"
In Example 2-21, the enclosePerson() named function accepts a $name argument, and it
returns a closure object that encloses the $name argument. The returned closure object
preserves the $name argument’s value even after the closure exits the enclosePerson()
function’s scope. The $name variable still exists in the closure!

Tip
You can pass multiple arguments into a closure with the use keyword. Separate multiple
arguments with a comma, just as you do with any PHP function or method arguments.

Don’t forget, PHP closures are objects. Each closure instance has its own internal state that
is accessible with the $this keyword just like any other PHP object. A closure object’s
default state is pretty boring; it has a magic __invoke () method and a bindTo() method.
That’s it.

However, the bindTo() method opens the door to some interesting possibilities. This
method lets us bind a Closure object’s internal state to a different object. The bindTo()
method accepts an important second argument that specifies the PHP class of the object to
which the closure is bound. This lets the closure access protected and private member
variables of the object to which it is bound.

You’ll find the bindTo() method is often used by PHP frameworks that map route URLs
to anonymous callback functions. Frameworks accept an anonymous function and bind it
to the application object. This lets you reference the primary application object inside the
anonymous function with the $this keyword, as shown in Example 2-22.

Example 2-22. Attaching closure state with the bindTo method

01. <?php
02. class App

03.
04.
05.

06

07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22,
23.
24,
25,
26.
27.

3

protected $routes = array();

protected $responseStatus = '200 OK';
protected $responseContentType = 'text/html';
protected $responseBody = 'Hello world';

public function addRoute($routePath, $routeCallback)

{
$this->routes[$routePath] = $routeCallback->bindTo($this, _ CLASS_);
}
public function dispatch($currentPath)
{
foreach ($this->routes as $routePath => $callback) {
if ($routePath === $currentPath) {
$callback();
}
}
header('HTTP/1.1 ' . $this->responseStatus);
header('Content-type: ' . $this->responseContentType);
header('Content-length: ' . mb_strlen($this->responseBody));
echo $this->responseBody;
}

Pay close attention to the addRoute () method. It accepts a route path (e.g., /users/josh)
and a route callback. The dispatch() method accepts the current HTTP request path and
invokes the matching route callback. The magic happens on line 11 when we bind the
route callback to the current App instance. This lets us create a callback function that can
manipulate the App instance state:

<?php
$app = new App();
$app->addRoute('/users/josh', function () {

s

$this->responseContentType = 'application/json;charset=utf8';
$this->responseBody = '{"name": "Josh"}';

$app->dispatch('/users/josh");

Zend OPcache

Bytecode caches are not new to PHP. We’ve had optional standalone extensions like
Alternative PHP Cache (APC), eAccelerator, ionCube, and XCache. But none of these was
built into the PHP core distribution until now. As of PHP 5.5.0, PHP has its own built-in
bytecode cache called Zend OPcache.

First, let me explain what a bytecode cache is and why it is important. PHP is an
interpreted language. When the PHP interpreter executes a PHP script, the interpreter
parses the PHP script code, compiles the PHP code into a set of existing Zend Opcodes
(machine-code instructions), and executes the bytecode. This happens for each PHP file
during every request. This is a lot of overhead, especially if PHP must parse, compile, and
execute PHP scripts over and over again for every HTTP request. If only there were a way
to cache precompiled bytecode to reduce application response times and reduce stress on
our system resources. You’re in luck.

A bytecode cache stores precompiled PHP bytecode. This means the PHP interpreter does
not need to read, parse, and compile PHP code on every request. Instead, the PHP
interpreter can read the precompiled bytecode from memory and execute it immediately.
This is a huge timesaver and can drastically improve application performance.

http://bit.ly/zend-opcode

Enable Zend OPcache

Zend OPcache isn’t enabled by default; you must explicitly enable Zend OPcache when
you compile PHP.

Note

If you choose a shared web host, be sure you choose a good hosting company that
provides PHP 5.5.0 or newer with Zend OPcache enabled.

If you compile PHP yourself (i.e., on a VPS or dedicated server), you must include this
option in your PHP ./configure command:

--enable-opcache

After you compile PHP, you must also specify the path to the Zend OPcache extension in
your php.ini file with this line:

zend_extension=/path/to/opcache.so

The Zend OPcache extension file path is displayed immediately after PHP compiles
successfully. If you forget to look for this as I often do, you can also find the PHP
extension directory with this command:

php-config --extension-dir
Warning

If you use the popular Xdebug profiler by the incomparable Derick Rethans, your php.ini
file must load the Zend OPcache extension before Xdebug.

After you update the php.ini file, restart the PHP process and you’re ready to go. You can
confirm Zend OPcache is working correctly by creating a PHP file with this content:
<?php
phpinfo();
View this PHP file in a web browser and scroll down until you see the Zend OPcache
extension section shown in Figure 2-2. If you don’t see this section, Zend OPcache is not
running.

http://xdebug.org

Figure 2-2. Zend OPcache INI settings

Configure Zend OPcache

When Zend OPcache is enabled, you should configure the Zend OPcache settings in your
php.ini configuration file. Here are the OPcache settings I like to use:

opcache.validate_timestamps = 1 // "0" in production
opcache.revalidate_freq = 0
opcache.memory_consumption = 64
opcache.interned_strings_buffer = 16
opcache.max_accelerated _files = 4000
opcache.fast_shutdown = 1

Tip
Learn more about these Zend OPcache settings in Chapter 8. Find a complete list of Zend
OPcache settings at PHP.net.

http://bit.ly/php-config

Use Zend OPcache

This part’s easy because the Zend OPcache works automatically when enabled. Zend
OPcache automatically caches precompiled PHP bytecode in memory and executes the
bytecode if available.

Be careful if the opcache.validate_ timestamps INI directive is false. When this setting
is false, the Zend OPcache does not know about changes to your PHP scripts, and you
must manually clear Zend OPcache’s bytecode cache before it recognizes changes to your
PHP files. This setting is good for production but inconvenient for development. You can
enable automatic cache revalidation with these php.ini configuration settings:

opcache.validate_timestamps=1
opcache.revalidate_freq=0

Built-in HT'TP server

Did you know that PHP has a built-in web server as of PHP 5.4.0? This is another hidden
gem unknown to PHP developers who assume they need Apache or nginx to preview PHP
applications. You shouldn’t use it for production, but PHP’s built-in web server is a perfect
tool for local development.

I use PHP’s built-in web server every day, whether I’m writing PHP or not. I use it to
preview Laravel and Slim Framework applications. I use it while building websites with
the Drupal content-management framework. I also use it to preview static HTML and CSS
if I’'m just building out markup.

Tip
Remember, the PHP built-in server is a web server. It speaks HTTP, and it can serve static

assets in addition to PHP files. It’s a great way to write and preview HTML locally
without installing MAMP, WAMP, or a heavyweight web server.

http://laravel.com
http://slimframework.com

Start the Server

It’s easy to start the PHP web server. Open your terminal application, navigate to your
project’s document root directory, and execute this command:

php -S localhost:4000

This command starts a new PHP web server accessible at localhost. It listens on port 4000.
Your current working directory is the web server’s document root.

You can now open your web browser and navigate to http://localhost:4000 to preview
your application. As you browse your application in your web browser, each HTTP
request is logged to standard out in your terminal application so you can see if you
application throws 400 or 500 responses.

Sometimes it’s useful to access the PHP web server from other machines on your local
network (e.g., for previewing on your iPad or local Windows box). To do this, tell the PHP
web server to listen on all interfaces by using 0.0.0.0 instead of localhost:

php -S 0.0.0.0:4000

When you are ready to stop the PHP web server, close your terminal application or press
Ctrl+C.

http://localhost:4000

Configure the Server

It’s not uncommon for an application to require its own PHP INI configuration file,
especially if it has unique requirements for memory usage, file uploads, profiling, or
bytecode caching. You can tell the PHP built-in server to use a specific INI file with the -c
option:

php -S localhost:8000 -c app/config/php.ini
Tip
It’s a good idea to keep the custom INI file beneath the application’s root directory and,

optionally, version-control the INI file if it should be shared with other developers on your
team.

Router Scripts

The PHP built-in server has one glaring omission. Unlike Apache or nginx, it doesn’t
support .htaccess files. This makes it difficult to use front controllers that are common in
many popular PHP frameworks.

Note

A front controller is a single PHP file to which all HTTP requests are forwarded (via
.htaccess files or rewrite rules). The front-controller PHP file is responsible for routing the
request and dispatching the appropriate PHP code. This is a common pattern used by
Symfony and other popular frameworks.

The PHP built-in server mitigates this omission with router scripts. The router script is
executed before every HTTP request. If the router script returns false, the static asset
referenced by the current HTTP request URI is returned. Otherwise, the output of the
router script is returned as the HTTP response body. In other words, if you use a router
script you're effectively hardcoding the same functionality as an .htaccess file.

Using a router script is easy. Just pass the PHP script file path as a an argument when you
start up the PHP built-in server:

php -S localhost:8000 router.php

Detect the Built-in Server

Sometimes it’s helpful to know if your PHP script is served by PHP’s built-in web server
versus a traditional web server like Apache or nginx. Perhaps you need to set specific
headers for nginx (e.g., Status:) that should not be set for the PHP web server. You can
detect the PHP web server with the php_sapi_name() function. This function returns the
string cli-server if the current script is served with the PHP built-in server:

<?php

if (php_sapi_name() === 'cli-server') {
// PHP web server

} else {
// Other web server

}

Drawbacks

PHP’s built-in web server should not be used for production. It is for local development
only. If you use the PHP built-in web server on a production machine, be prepared for a lot
of disappointed users and a flood of Pingdom downtime notifications.

m The built-in server performs suboptimally because it handles one request at a time,
and each HTTP request is blocking. Your web application will stall if a PHP file must
wait on a slow database query or remote API response.

m The built-in server supports only a limited number of mimetypes.

m The built-in server has limited URL rewriting with router scripts. You’ll need Apache
or nginx for more advanced URL rewrite behavior.

https://www.pingdom.com
http://bit.ly/built-in-ws

What’s Next

The modern PHP language has a lot of powerful features that can improve your
applications. I've talked about my favorite features in this chapter. You can learn more
about PHP’s latest features on the PHP website.

I’m sure you’re excited to start using these fun features in your applications. However, it’s
important that you use these features correctly according to PHP community standards.
And that’s exactly what we talk about in the next chapter.

http://php.net/manual/features.php

Part I1. Good Practices

Chapter 3. Standards

There is a mind-boggling number of PHP components and frameworks. There are macro
frameworks like Symfony and Laravel. There are micro frameworks like Silex and Slim.
And there are legacy frameworks like Codelgniter that were built long before modern PHP
components existed. The modern PHP ecosystem is a veritable melting pot of code that
helps us developers build amazing applications.

Unfortunately, older PHP frameworks were developed in isolation and do not share code
with other PHP frameworks. If your project uses one of these older PHP frameworks,
you’re stuck with the framework and must live inside the framework’s ecosystem. This
centralized environment is OK if you are happy with the framework’s tools. However,
what if you use the Codelgniter framework but want to cherry-pick a helper library from
the Symfony framework? You’re probably out of luck unless you write a one-off adapter
specifically for your project.

What we’ve got here is a failure to communicate.
Cool Hand Luke

Do you see the problem? Frameworks created in isolation were not designed to
communicate with other frameworks. This is extremely inefficient, both for developers
(creativity is limited by framework choice) and for frameworks themselves (they re-invent
code that already exists elsewhere). I have good news, though. The PHP community has
evolved from a centralized framework model to a distributed ecosystem of efficient,
interoperable, and specialized components.

http://symfony.com
http://laravel.com
http://silex.sensiolabs.org
http://slimframework.com
http://www.codeigniter.com

PHP-FIG to the Rescue

Several PHP framework developers recognized this problem and began a conversation at
php|tek (a popular PHP conference) in 2009. They discussed how to improve
intraframework communication and efficiency. Instead of writing a new and tightly
coupled logging class, for example, what if a PHP framework could share a decoupled
logging class like monolog? Instead of writing its own HTTP request and response classes,
what if a PHP framework could instead cherry-pick the excellent HTTP request and
response classes from the Symfony Framework’s symfony/httpfoundation component?
For this to work, PHP frameworks must speak a common language that allows them to
communicate and share with other frameworks. They need standards.

The PHP framework developers who serendipitously met at php|tek eventually created the
PHP Framework Interop Group (PHP-FIG). The PHP-FIG is a group of PHP framework
representatives who, according to the PHP-FIG website, “talk about the commonalities
between our projects and find ways we can work together.” The PHP-FIG creates
recommendations that PHP frameworks can voluntarily implement to improve
communication and sharing with other frameworks.

The PHP-FIG is a self-appointed group of framework representatives. Its members are not
elected, and they are not special in any way other than their willingness to improve the
PHP community. Anyone can request membership. And anyone can submit feedback to
PHP-FIG recommendations that are in the proposal process. Final PHP-FIG
recommendations are typically adopted and implemented by many of the largest and most
popular PHP frameworks. I highly encourage you to get involved with the PHP-FIG, if
only to send feedback and help shape the future of your favorite PHP frameworks.

Note

It is very important to understand the PHP-FIG provides recommendations. These are not
rules. These are not requirements. These are carefully crafted suggestions that make our
lives as PHP developers (and PHP framework authors) easier.

http://tek.phparch.com
https://github.com/Seldaek/monolog
http://bit.ly/symf-docs
http://www.php-fig.org

Framework Interoperability

The PHP-FIG’s mission is framework interoperability. And framework interoperability
means working together via interfaces, autoloading, and style.

Interfaces

PHP frameworks work together via shared interfaces. PHP interfaces allow frameworks to
assume what methods are provided by third-party dependencies without worrying about
how the dependencies implement the interface.

Note
Refer to Chapter 2 for an in-depth explanation of PHP interfaces.

For example, a framework is happy to share a third-party logger object assuming the
shared logger object implements the emergency(), alert(), critical(), error(),
warning(), notice(), info(), and debug() methods. Exactly how these methods are
implemented is irrelevant. Each framework cares only that the third-party dependency
does implement these methods.

Interfaces enable PHP developers to build, share, and use specialized components instead
of monolithic frameworks.

Autoloading

PHP frameworks work together via autoloading. Autoloading is the process by which a
PHP class is automatically located and loaded on-demand by the PHP interpreter during
runtime.

Before PHP standards, PHP components and frameworks implemented their own unique
autoloaders using the magic __autoload() method or the more recent
spl_autoload_register () method. This required us to learn and use a unique autoloader
for each component and framework. Nowadays, most modern PHP components and
frameworks are compatible with a common autoloader standard. This means we can mix
and match multiple PHP components with only one autoloader.

Style

PHP frameworks work together via code style. Your code style determines spacing,
capitalization, and bracket placement (among other things). If PHP frameworks agree on a
standard code style, PHP developers don’t need to learn a new style every time they use a
new PHP framework. Instead, PHP framework code is immediately familiar. A standard
code style also lowers the barrier for new project contributors, who can spend more time
squashing bugs and less time learning an unfamiliar style.

Standard code style also improves our own projects. Every developer has a unique style
with more than a few idiosyncrasies, and these become a problem when multiple
developers work on the same codebase. A standard code style helps all team members
immediately understand the same codebase regardless of its author.

What Is a PSR?

PSR is an acronym for PHP standards recommendation. If you’ve recently read a PHP-
related blog, you have probably seen the terms PSR-1, PSR-2, PSR-3, and so on. These
are PHP-FIG recommendations. Their names begin with PSR- and end with a number.
Each PHP-FIG recommendation solves a specific problem that is frequently encountered
by most PHP frameworks. Instead of PHP frameworks continually re-solving the same
problems, frameworks can instead adopt the PHP-FIG’s recommendations and build upon
shared solutions.

The PHP-FIG has published five recommendations as of this book’s publication:
PSR-1: Basic code style

PSR-2: Strict code style

PSR-3: Logger interface
PSR-4: Autoloading

Note

If you counted only four recommendations, you are correct. The PHP-FIG deprecated its
first PSR-0 recommendation. This first recommendation was replaced by the newer PSR-4
recommendation.

Notice how the PHP-FIG recommendations coincide nicely with the three interoperability
methods I mentioned earlier: interfaces, autoloading, and code style. This is not a
coincidence.

I’m really excited about the PHP-FIG recommendations. They are the bedrock beneath the
modern PHP ecosystem. They define the means with which PHP components and
frameworks interoperate. I admit, PHP standards are not the most scintillating of topics,
but they are (in my mind) prerequisite to understanding modern PHP.

http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-3/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-4/

PSR-1: Basic Code Style

If you want to write PHP code that is compatible with community standards, start with
PSR-1. It’s the easiest PHP standard to use. It’s so easy, you’re probably already using it
without even trying. PSR-1 provides simple guidelines that are easy to implement with
minimal effort. The point of PSR-1 is to provide a baseline code style for participating
PHP frameworks. You must satisfy these requirements to be compatible with PSR-1:

PHP tags

You must surround your PHP code with either the <?php 2> or <?= ?> tags. You must
not use any other PHP tag syntax.

Encoding

All PHP files must be encoded with the UTF-8 character set without a byte order mark
(BOM). This sounds complicated, but your text editor or IDE can do this for you
automatically.

Objective

A single PHP file can either define symbols (a class, trait, function, constant, etc.) or
perform an action that has side effects (e.g., create output or manipulate data). A PHP
file should not do both. This is a simple task and requires only a little foresight and
planning on your part.

Autoloading

Your PHP namespaces and classes must support the PSR-4 autoloader standard. All you
have to do is choose appropriate names for your PHP symbols and make sure their
definition files are in the expected location. We’ll chat about PSR-4 soon.

Class names

Your PHP class names must use the common CamelCase format. This format is also
called Titlecase. Examples are CoffeeGrinder, CoffeeBean, and PourOver.

Constant names

Your PHP constants must use all uppercase characters. They may use underscores to
separate words if necessary. Examples are WoOT, LET_OUR_POWERS_COMBINE, and
GREAT_SCOTT.

Method names

Your PHP method names must use the common camelCase format. This means the
method name’s first character is lowercase, and the first letter of each subsequent word
in the method name is uppercase. Examples are phpIsAwesome, iLoveBacon, and
tennantIsMyFavoriteDoctor.

PSR-2: Strict Code Style

After you implement PSR-1, the next step is to implement PSR-2. The PSR-2 standard
further defines PHP code style with stricter guidelines.

The PSR-2 code style is a godsend for PHP frameworks that have many contributors from
around the world, all of whom bring their own unique style and preferences. A common
strict code style lets developers write code that is easily and quickly understood by other
contributors.

Unlike PSR-1, the PSR-2 recommendation contains stricter guidelines. Some of PSR-2’s
guidelines may not be what you prefer. However, PSR-2 is the preferred code style of
many popular PHP frameworks. You don’t have to use PSR-2, but doing so will drastically
improve the ability for other developers to read, use, and contribute to your PHP code.

Tip
You should use the stricter PSR-2 code style. Even though I call it strict, it’s easy enough

to write. Eventually it’ll become second nature. Also, there are tools available to
automatically format existing PHP code into the PSR-2 style.

Implement PSR-1
The PSR-2 code style requires that you implement the PSR-1 code style.
Indentation

This is a hot topic that is typically divided into two camps. The first camp prefers to
indent code with a single tab character. The second (and much cooler) camp prefers to
indent code with several space characters. The PSR-2 recommendation says PHP code
should be indented with four space characters.

Tip
From personal experience, space characters are better suited for indentation because a
space is a definitive measure that largely renders the same in different code editors. A tab,

however, can vary in width and renders differently in different code editors. Use four
space characters to indent code to ensure the best visual continuity for your code.

Files and lines

Your PHP files must use Unix linefeed (LF) endings, must end with a single blank line,
and must not include a trailing 2> PHP tag. Each line of code should not exceed 80
characters. Ultimately, each line of code must not exceed 120 characters. Each line must
not have trailing white space. This sounds like a lot of work, but it’s really not. Most
code editors can automatically wrap code to a specific width, strip trailing whitespace,
and use Unix line endings. All of these should happen automatically with little to no
thought on your part.

Tip
Omitting the trailing 7> PHP tag was odd to me at first. However, it is good practice to
omit the closing tag to avoid unexpected output errors. If you do include the ?> closing

tag, and also a blank line after the closing tag, the blank line is considered output and can
cause errors (e.g., when you set HTTP headers).

Keywords

I know many PHP developers who type TRUE, FALSE, and NULL in uppercase characters.
If you do this, try to unlearn this practice and instead use only lowercase characters
from now on. The PSR-2 recommendation says that you should type all PHP keywords
in lowercase.

Namespaces

Each namespace declaration must be followed by one blank line. Likewise, when you
import or alias namespaces with the use keyword, you must follow the block of use
declarations with one blank line. Here’s an example:

<?php
namespace My\Component;

use Symfony\Components\HttpFoundation\Request;
use Symfony\Components\HttpFoundation\Response;

class App

// Class definition body
}

Classes

Like indentation, class definition bracket placement is another topic that attracts heated
debate. Some prefer the opening bracket to reside on the same line as the class name.
Others prefer the opening bracket to reside on a new line after the class name. The PSR-
2 recommendation says a class definition’s opening bracket must reside on a new line
immediately after the class definition name as shown in the following example. The
class definition’s closing bracket must reside on a new line after the end of the class
definition body. This is probably what you have been doing already so it’s not as big a
deal. If your class extends another class or implements an interface, the extends and
implements keywords must appear on the same line as the class name:

<?php
namespace My\App;

class Administrator extends User

// Class definition body
}

Methods

Method definition bracket placement is the same as class definition bracket placement.
The method definition’s opening bracket resides on a new line immediately after the
method name. The method definition’s closing bracket resides on a new line
immediately after the method definition body. Pay close attention to the method
arguments. The first parenthesis does not have a trailing space, and the last parenthesis
does not have a preceding space. Each method argument (except the last) is followed
immediately by a comma and one space character:

<?php
namespace Animals;

class StrawNeckedIbis

public function flapWings($numberOfTimes = 3, $speed = 'fast')

{
// Method definition body
}
}
Visibility

You must declare a visibility for each class property and method. A visibility is one of
public, protected, or private; visibility determines how a property or method is
accessible within and outside of its class. Old-school PHP developers may be
accustomed to prefixing class properties with the var keyword and prefixing private
methods with the underscore _ character. Do not do this. Use one of the visibilities
listed previously instead. If you declare a class property or method as abstract or
final, the abstract and final qualifiers must appear before the visibility. If you
declare a property or method as static, the static qualifier must appear after the
visibility:

<?php

namespace Animals;

class StrawNeckedIbis

{
// Static property with visibility
public static $numberOfBirds = 0;

// Method with visibility
public function _ construct()

{
3

static: :$number0fBirds++;

}

Control structures

This is probably the one guideline that trips me up the most. All control structure
keywords must be followed by a single space character. A control structure keyword is
if, elseif, else, switch, case, while, do while, for, foreach, try, or catch. If the
control structure keyword requires a set of parentheses, make sure the first parenthesis
is not followed by a space character, and make sure the last parenthesis is not preceded
by a space character. Unlike in class and method definitions, opening brackets that
appear after a control structure keyword must remain on the same line as the control
structure keyword. The control structure keyword’s closing bracket must reside on a
new line. Here’s a brief example that demonstrates these guidelines:

<?php
$gorilla = new \Animals\Gorilla;
$ibis = new \Animals\StrawNeckedIbis;

if ($gorilla->isAwake() === true) {
do {
$gorilla->beatChest();
} while ($ibis->isAsleep() === true);
$ibis->flyAway();
}
Tip

You can automate PSR-1 and PSR-2 code style compatibility. Many code editors
automatically format your code according to PSR-1 and PSR-2. There are tools available
to help you audit and format your code against PHP standards, too. One such tool is the

PHP Code Sniffer, also called phpcs. This tool (used directly on the command line or via
your IDE) reports inconsistencies between your code and a given PHP code standard. You
can install phpcs with most package managers (e.g., PEAR, Homebrew, Aptitude, or
Yum).

You can also use Fabien Potencier’s PHP-CS-Fixer to correct most incompatibilities
automatically. This tool is not perfect, but it’ll get you most of the way toward PSR
compatibility with little or no effort on your part.

http://bit.ly/phpsniffer
http://cs.sensiolabs.org/

PSR-3: Logger Interface

The third PHP-FIG recommendation is not a set of guidelines like its predecessors. PSR-3
is an interface, and it prescribes methods that can be implemented by PHP logger
components.

Note

A logger is an object that writes messages of varying importance to a given output.
Logged messages are used to diagnose, inspect, and troubleshoot application operation,
stability, and performance. Examples include writing debug information to a text file
during development, capturing website traffic statistics into a database, or emailing fatal
error diagnostics to a website administrator. The most popular PHP logger component is
monolog/monolog, created by Jordi Boggiano.

Many PHP frameworks implement logging in some capacity. Before the PHP-FIG, each
framework solved logging differently, often with a proprietary implementation. In the
spirit of interoperability and specialization — recurring motifs in modern PHP — the
PHP-FIG established the PSR-3 logger interface. Frameworks that accept PSR-3
compatible loggers accomplish two important things: logging concerns are delegated to a
third party, and end users can provide their preferred logger component. It’s a win-win for
everyone.

https://packagist.org/packages/monolog/monolog

Write a PSR-3 Logger

A PHP logger component compatible with the PSR-3 recommendation must include a PHP
class that implements the interface named Psr\Log\LoggerInterface. The PSR-3
interface replicates the RFC 5424 syslog protocol and prescribes nine methods:

<?php
namespace Psr\Log;

interface LoggerInterface

{

public function emergency($message, array $context = array());
public function alert($message, array $context = array());
public function critical($message, array $context = array());
public function error($message, array $context = array());
public function warning($message, array $context = array());
public function notice($message, array $context = array());
public function info($message, array $context = array());

public function debug($message, array $context = array());
public function log($level, $message, array $context = array());

}
Each interface method maps to a corresponding RFC 5424 protocol level and accepts two
arguments. The first $message argument must be a string or an object with a
__tostring() method. The second $context argument is optional and provides an array
of placeholder values that replace tokens in the first argument.

Tip

Use the $context argument to construct complicated logger messages. You use
placeholders in the message text. A placeholder looks like {placeholder_name}; it
contains a {, the placeholder name, and a }. A placeholder does not contain spaces. The

$context argument is an associative array; its keys are placeholder names (without
brackets), and its values replace the related placeholders in the message text.

To write a PSR-3 logger, create a new PHP class that implements the
Psr\Log\LoggerInterface interface and provide a concrete implementation for each
interface method.

http://tools.ietf.org/html/rfc5424

Use a PSR-3 Logger

If you are creating your own PSR-3 logger, stop and reconsider if you are spending your
time wisely. I strongly discourage you from writing your own logger. Why? Because there
are some truly amazing PHP logger components already available!

If you need a PSR-3 logger, just use monolog/monolog. Don’t waste time looking
elsewhere. The Monolog PHP component fully implements the PSR-3 interface, and it’s
easily extended with custom message formatters and handlers. Monolog’s message
handlers let you send log messages to text files, syslog, email, HipChat, Slack, networked
servers, remote APIs, databases, and pretty much anywhere else you can imagine. In the
very unlikely event Monolog does not provide a handler for your desired output
destination, it’s super-easy to write and integrate your own Monolog message handler.
Example 3-1 demonstrates how easy it is to setup Monolog and log messages to a text file.

Example 3-1. Using Monolog

<?php
use Monolog\Logger;
use Monolog\Handler\StreamHandler;

// Prepare logger

$log = new Logger('myApp');

$log->pushHandler (new StreamHandler('logs/development.log', Logger::DEBUG));
$log->pushHandler (new StreamHandler ('logs/production.log', Logger::WARNING));

// Use logger
$log->debug('This is a debug message');
$log->warning('This is a warning message');

https://packagist.org/packages/monolog/monolog

PSR-4: Autoloaders

The fourth PHP-FIG recommendation describes a standardized autoloader strategy. An
autoloader is a strategy for finding a PHP class, interface, or trait and loading it into the
PHP interpreter on-demand at runtime. PHP components and frameworks that support the
PSR-4 autoloader standard can be located by and loaded into the PHP interpreter with only
one autoloader. This is a big deal given the modern PHP ecosystem’s affinity for many
interoperable components.

Why Autoloaders Are Important

How often have you seen code like this at the top of your PHP files?

<?php

include 'path/to/filel.php';

include 'path/to/file2.php';

include 'path/to/file3.php';
All too often, right? You’re probably familiar with the require(), require_once(),
include(), and include_once() functions. These functions load an external PHP file into
the current script, and they work wonderfully if you have only a few PHP scripts.
However, what if you need to include a hundred PHP scripts? What if you need to include
a thousand PHP scripts? The require() and include() functions do not scale well, and
this is why PHP autoloaders are important. An autoloader is a strategy for finding a PHP
class, interface, or trait and loading it into the PHP interpreter on-demand at runtime,
without explicitly including files as the example does.

Before the PHP-FIG introduced its PSR-4 recommendation, PHP component and
framework authors used the __autoload() and spl_autoload_register() functions to
register custom autoloader strategies. Unfortunately, each PHP component and framework
used a unique autoloader, and every autoloader used different logic to locate and load PHP
classes, interfaces, and traits. Developers using these components and frameworks were
obliged to invoke each component’s autoloader when bootstrapping a PHP application. I
use Sensio Labs’ Twig template component all the time. It’s awesome. Without PSR-4,
however, I have to read Twig’s documentation and figure out how to register its custom
autoloader in my application’s bootstrap file, like this:

:Zzngrefonce '/path/to/1ib/Twig/Autoloader.php';

Twig_Autoloader::register();
Imagine having to research and register unique autoloaders for every PHP component in
your application. The PHP-FIG recognized this problem and proposed the PSR-4
autoloader recommendation to facilitate component interoperability. Thanks to PSR-4, we
can autoload all of our application’s PHP components with only one autoloader. This is
amazing. Most modern PHP components and frameworks are compatible with PSR-4. If
you write and distribute your own components, make sure they are compatible with PSR-
4, too! Participating components include Symfony, Doctrine, Monolog, Twig, Guzzle,
SwiftMailer, PHPUnit, Carbon, and many others.

http://twig.sensiolabs.org

The PSR-4 Autoloader Strategy

Like any PHP autoloader, PSR-4 describes a strategy to locate and load PHP classes,
interfaces, and traits during runtime. The PSR-4 recommendation does not require you to
change your code’s implementation. Instead, PSR-4 only suggests how your code is
organized into filesystem directories and PHP namespaces. The PSR-4 autoloader strategy
relies on PHP namespaces and filesystem directories to locate and load PHP classes,
interfaces, and traits.

The essence of PSR-4 is mapping a top-level namespace prefix to a specific filesystem
directory. For example, I can tell PHP that classes, interfaces, or traits beneath the
\oreilly\ModernPHP namespace live beneath the src/ physical filesystem directory. PHP
now knows that any classes, interfaces, or traits that use the \Oreilly\ModernPHP
namespace prefix correspond to directories and files beneath the src/ directory. For
example, the \Oreilly\ModernPHP\Chapter1 namespace corresponds to the src/Chapterl
directory, and the \0Oreilly\ModernPHP\Chapter1\Example class corresponds to the
src/Chapter1/Example.php file.

Tip
PSR-4 lets you map a namespace prefix to a filesystem directory. The namespace prefix

can be one top-level namespace. The namespace prefix can also be a top-level namespace
and any number of subnamespaces. It’s quite flexible.

Remember when we talked about vendor namespaces in Chapter 2? The PSR-4 autoloader
strategy is most relevant to component and framework authors who distribute code to
other developers. A PHP component’s code lives beneath a unique vendor namespace, and
the component’s author specifies which filesystem directory corresponds to the
component’s vendor namespace — exactly as I demonstrated earlier. We’ll explore this
concept more in Chapter 4.

How to Write a PSR-4 Autoloader (and Why You Shouldn’t)

We know that PSR-4 compatible code has a namespace prefix that maps to a base
filesystem directory. We also know that subnamespaces beneath the namespace prefix map
to subdirectories beneath the base filesystem directory. Example 3-2 shows an autoloader
implementation, borrowed from the PHP-FIG website, that finds and loads classes,
interfaces, and traits based on the PSR-4 autoloader strategy.

Example 3-2. PSR-4 autoloader

<?php
/**

An example of a project-specific implementation.

After registering this autoload function with SPL, the following line
would cause the function to attempt to load the \Foo\Bar\Baz\Qux class
from /path/to/project/src/Baz/Qux.php:

new \Foo\Bar\Baz\Qux;,

@param string $class The fully qualified class name.
@return void

*/
spl_autoload _register(function ($class) {

% % % % R % X X %

// project-specific namespace prefix
$prefix = 'Foo\\Bar\\';

// base directory for the namespace prefix
$base_dir = _ DIR__ . '/src/';

// does the class use the namespace prefix?
$len = strlen($prefix);

if (strncmp($prefix, $class, $len) !== 0) {
// no, move to the next registered autoloader
return;

}

// get the relative class name
$relative_class = substr($class, $len);

// replace the namespace prefix with the base directory, replace namespace
// separators with directory separators in the relative class name, append
// with .php

$file = $base_dir . str_replace('\\', '/', $relative_class) . '.php';

// 1f the file exists, require it
if (file_exists($file)) {

require $file;
}

s

Copy and paste this into your application, change the $prefix and $hase_dir variables,
and you have yourself a working PSR-4 autoloader. However, if you find yourself writing
your own PSR-4 autoloader, stop and ask yourself if what you are doing is really
necessary. Why? Because we can use PSR-4 autoloaders that are automagically generated
by the Composer dependency manager. Conveniently enough, that’s exactly what we’ll
talk about next in Chapter 4.

http://bit.ly/php-fig

Chapter 4. Components

Modern PHP is less about monolithic frameworks and more about composing solutions
from specialized and interoperable components. When I build a new PHP application,
rarely do I reach straight for Laravel or Symfony. Instead, I think about which existing
PHP components I can combine to solve my problem.

Why Use Components?

Modern PHP components are a new concept to many PHP programmers. I had no idea
about PHP components until a few years ago. Before I knew better, I instinctually started
PHP applications with a massive framework like Symfony or Codelgniter without
considering other options. I invested in a single framework’s closed ecosystem and used
the tools it provided. If the framework did not provide what I needed, I was out of luck
and I built additional functionality on my own. It was also difficult to integrate custom or
third-party libraries into larger frameworks because they did not share common interfaces.
I am relieved to inform you that times have changed, and we are no longer beholden to
monolithic frameworks and their walled gardens.

Today, we choose from a vast and continually growing collection of specialized
components to create custom applications. Why waste time coding an HTTP request and
response library when the guzzle/http component already exists? Why create a new
router when the aura/router and orno/route components work great? Why spend time
coding an adapter to Amazon’s S3 online storage service when the aws/aws-sdk-php and
league/flysystem components can be used instead? You get my drift. Other developers
have spent countless development hours creating, perfecting, and testing specialized
components that do one thing really well. It’s silly not to take advantage of these
components to build better applications more quickly instead of wasting time reinventing
the wheel.

https://packagist.org/packages/guzzle/http
https://packagist.org/packages/aura/router
https://packagist.org/packages/orno/route
https://packagist.org/packages/aws/aws-sdk-php
https://packagist.org/packages/league/flysystem

What Are Components?

A component is a bundle of code that helps solve a specific problem in your PHP
application. For example, if your PHP application sends and receives HTTP requests,
there’s a component to do that. If your PHP application parses comma-delimited data,
there’s a PHP component to do that. If your PHP application needs a way to log messages,
there’s a component for that. Instead of rebuilding already-solved functionality, we use
PHP components and spend more time solving our project’s larger objectives.

Note

Technically speaking, a PHP component is a collection of related classes, interfaces, and
traits that solve a single problem. A component’s classes, interfaces, and traits usually live
beneath a common namespace.

In any marketplace, there are good products and there are bad products. The same concept
applies to PHP components. Just as you inspect an apple at the grocery store, you can use
a few tricks to spot a good PHP component. Here are a few characteristics of good PHP
components:

Laser-focused

A PHP component is laser-focused and exists only to solve a single problem very well.
It is not a jack-of-all-trades and master of none; it is a master of one. It is obsessed with
solving a single problem, and it encapsulates its genius beneath a simple user interface.

Small

A PHP component is no larger than it needs to be. It contains the least amount of PHP
code necessary to solve one problem. The amount of code varies. A PHP component
can have one PHP class. It can also have several PHP classes organized into
subnamespaces. There is no correct number of classes in a PHP component. It uses
however many are necessary to solve its one problem.

Cooperative

A PHP component plays well with others. After all, this is the point of PHP components
— their existence depends on their cooperation with other components to build larger
solutions. A PHP component does not pollute the global namespace with its own code.
Instead, a PHP component lives beneath its own namespace to avoid name collisions
with other components.

Well-tested

A PHP component is well-tested. This is easy to accomplish thanks to its small size. If a
PHP component is small and laser-focused, it is very likely easily tested. Its concerns
are few, and its dependencies can be easily identified and mocked. The best PHP
components provide their own tests and have sufficient test coverage.

Well-documented

A PHP component is well-documented. It should be easy for developers to install,
understand, and use. Good documentation makes this possible. The PHP component
should have a README file that says what the component does, how to install it, and
how to use it. The component may also have its own website with more in-depth
information. And good documentation should also extend into the PHP component’s
source code. Its classes, methods, and properties should have inline docblocks that
describe the code, its parameters, its return values, and its potential exceptions.

Components Versus Frameworks

The problem with frameworks (particularly older frameworks) is that they are an
expensive investment. When we choose a framework, we invest in that framework’s tools.
Frameworks usually provide a smorgasbord of tools. But sometimes we need a specific
something that the framework does not provide, and it becomes our burden to find and
integrate a custom PHP library. Integrating third-party code into a framework is difficult
because the third-party code and the PHP framework probably don’t share common
interfaces.

When we choose a framework, we invest in that framework’s future. We put our faith
behind the framework’s core development team. We assume the framework’s developers
will continue investing their own time into developing the framework and ensuring that its
code remains up-to-date with modern standards. And often this does not happen.
Frameworks are very large, and they require a lot of time and effort to maintain. Project
maintainers have their own lives, jobs, and interests. And lives, jobs, and interests change.

Note

To be fair, larger PHP components are also at risk of abandonment, especially if a
component only has one core developer.

Also, who’s to say that a particular framework will remain the best tool for the job? Large
projects that exist for many years must perform well and be well-tuned now and into the
future. The wrong PHP framework may hinder this ability. Older PHP frameworks that
have fallen out of fashion may become slower and outmoded as they lose community
support. Older frameworks are often written with procedural code instead of modern
object-oriented code. Your newer team members may be unfamiliar with an older
framework’s codebase. There is a lot to consider when deciding whether or not to use a
PHP framework.

Not All Frameworks Are Bad

So far I’ve spoken only about the downsides of frameworks. Frameworks are not all bad.
Symfony is an excellent example of a modern PHP framework. Fabien Potencier and
Sensio Labs built the Symfony Framework as an amalgam of smaller and decoupled
Symfony components. These components can be used together as a framework or
piecemeal in custom applications.

Other, older frameworks are making a similar transition to modern PHP components. The
Drupal content management framework is another example. Drupal 7 is written with
procedural PHP code that lives in the global PHP namespace. It ignores modern PHP
practices to support its legacy codebase. However, Drupal 8 is a ginormous and
commendable leap into modern PHP. Drupal 8 leverages the comparative advantages of
many different PHP components to build a modern content management platform.

Laravel is also a popular PHP framework written by Taylor Otwell. Like Symfony,
Laravel is built atop its own Illuminate component library. However (at time of
publishing), Laravel’s components are not easily decoupled for use in non-Laravel
applications. Laravel does not use the PSR-2 community standards, and Laravel does not
adhere to the Semantic Versioning scheme. Don’t let this dissuade you though. Laravel is
still an amazing framework that can create very powerful applications.

Tip
The most popular modern PHP frameworks include:

Aura
Laravel
Symfony
Yii

Zend

http://symfony.com/
http://sensiolabs.com/
http://symfony.com/components
https://www.drupal.org
http://laravel.com
https://github.com/illuminate
http://semver.org/
http://auraphp.com/framework
http://laravel.com/
http://symfony.com/
http://www.yiiframework.com/
http://framework.zend.com/

Use the Right Tool for the Job

Should you use components or a framework? Use the right tool for the job. Most modern
PHP frameworks are only a set of conventions built atop smaller PHP components.

If you are working on a smaller project that can be solved with a precise collection of PHP
components, then use components. Components make it super-easy to shop for and use
existing tools so we can focus less on boilerplate and more on the larger task at hand.
Components also help our code remain lightweight and nimble. We use only the code we
need, and it’s super-easy to swap one component with another that may be better suited for
our project.

If you are working on a large project with multiple team members and can benefit from
the conventions, discipline, and structure provided by a framework, then use a framework.
However, frameworks make many decisions for us and require us to adhere to its set of
conventions. Frameworks are less flexible, but we do get far more out-of-the-box than we
do with a collection of PHP components. If these tradeoffs are acceptable, by all means
use a framework to guide and expedite your project development.

Find Components

You can find modern PHP components on Packagist (Figure 4-1), the de facto PHP
component directory. This website aggregates PHP components and makes them
searchable by keyword. The best PHP components are listed on Packagist. I tip my hat to
Jordi Boggiano and Igor Wiedler for creating such an invaluable community resource.

Tip
I’'m often asked which components I believe are the best PHP components. This is a

subjective question. However, I largely agree with the PHP components listed at Awesome
PHP. This is a list of good PHP components curated by Jamie York.

[st org &R
ﬁ:-j-.lu.;.;;;.; -
The PHP package archivist —
Padoagsr F mar SCARTTy § agpregIEs e s o P [sciages S e iy st Lo
Gatting Started Pubdighing Packages
Define Your Dependencios Dafina Your Package
Pula o riel o e Pt Pul it Bl raitved EeTyaobe i o e PO 0 YUAR IOk
Jarrr -

Insiall Composer In Yoor Project
e Tinin m Fren Aoy FUMITLAY ST YL Pt T e
ywiromgeaer . org/ larisllar s Pt s G

11 B b vind (aivage Sefr. we B =

ik tEra i your prrpect e
Commit The File

Insinll Dependencies
s iy o] s Pl e B

Eominda Ton 0 v Dot o

Pubslish i

Figure 4-1. Packagist website

https://packagist.org
http://seld.be/
https://igor.io/archive.html
https://github.com/ziadoz/awesome-php
https://github.com/ziadoz

Shop

Do not waste your time solving problems that are already solved. Do you need to send or
receive HTTP messages? Go to Packagist and search for http; Guzzle is the first result.
Use it. Do you need to parse a CSV file? Go to Packagist and search for csv; pick a CSV
component and use it. Think of Packagist as a grocery store for PHP components where
you can shop for the best ingredients. Packagist probably has a PHP component that

solves your problem.

Choose

What if there are multiple PHP components on Packagist that do what you need? How do
you pick the best one? Packagist keeps statistics about each PHP component. Packagist
tells you how many times each PHP component has been downloaded and starred

(Figure 4-2). More downloads and stars indicate a component may be a good option (this
is not always true). That being said, don’t discount newer packages with fewer downloads.
Many new components are added every day.

It can be difficult to find the perfect PHP component if your Packagist keyword search
returns a large number of results. You can’t always rely on download statistics, because
crowds are not always right. This is a problem that Packagist must address as it becomes
more popular. I recommend you rely on word of mouth and peer recommendations to
confirm your PHP component selection.

a—
& B s packigareng c IR LA LR e

ﬁ The PHP package archivist I —
a e e wpontory | aggrogas s s of PP [ciages e s reladunie e Somgoe

@ 1% 260 & 3
& 34 190 % 10
2170 & 1

. e

B 1462 & 0

Figure 4-2. Packagist website search results

Leave Feedback

If you find a PHP component that you like, star the PHP component on Packagist and
share it with your fellow PHP developers on Twitter, Facebook, IRC, Slack, and your
other communication channels. This helps the best PHP components bubble up so they are
discovered by other developers.

Use PHP Components

Packagist is where you find PHP components. Composer is how you install PHP
components. Composer is a dependency manager for PHP components that runs on the
command line. You tell Composer which PHP components you need, and Composer
downloads and autoloads the components into your project. It’s as simple as that. Because
Composer is a dependency manager, it also resolves and downloads your components’
dependencies (and their dependencies, ad infinitum).

Composer works hand-in-hand with Packagist, too. When you tell Composer you want to
use the guzzlehttp/guzzle component, Composer fetches the guzzlehttp/guzzle
component listing on Packagist, finds the component’s repository URL, determines the
appropriate version to use, and discovers the component’s dependencies. Composer then
downloads the guzzlehttp/guzzle component and its dependencies into your project.

Composer is important because dependency management and autoloading are hard
problems to solve. Autoloading is the process of automatically loading PHP classes on-
demand without explicitly loading them with the require(), require_once(), include(),
or include_once() functions. Older PHP versions let us write custom autoloaders with
the __autoload() function; this function is automatically invoked by the PHP interpreter
when we instantiate a class that has not already been loaded. PHP later introduced the
more flexible spl_autoload_register () function in its SPL library. Exactly how a PHP
class is autoloaded is entirely up to the developer. Unfortunately, the lack of a common
autoloader standard often necessitates a unique autoloader implementation for every
project. This makes it difficult to use code created and shared by other developers if each
developer provides a unique autoloader.

The PHP Framework Interop Group recognized this problem and created the PSR-0
standard (superseded by the PSR-4 standard). The PSR-0 and PSR-4 standards suggest
how to organize code into namespaces and filesystem directories so it is compatible with
one standard autoloader implementation. As I alluded to in Chapter 3, we don’t have to
write a PSR-4 autoloader on our own. Instead, the Composer dependency manager
automatically generates a PSR-compatible autoloader for all of our project’s PHP
components. Composer effectively abstracts away dependency management and
autoloading.

Note

I believe Composer is the most important addition to the PHP community, period. It
changed the way I create PHP applications. I use Composer for every PHP project because
it drastically simplifies integrating and using third-party PHP components in my
applications. If you haven’t used Composer yet, you should start researching Composer
today.

https://getcomposer.org/

How to Install Composer

Composer is easy to install. Open a terminal and execute this command:

curl -sS https://getcomposer.org/installer | php

This command downloads the Composer installer script with curl, executes the installer
script with php, and creates a composer.phar file in the current working directory. The
composer.phar file is the Composer binary.

Warning

Never execute code that you blindly download from a remote URL. Be sure you review
the remote code first so you know exactly what it will do. Also make sure you download
the remote code over HTTPS.

I prefer to move and rename the downloaded Composer binary to /usr/local/bin/composer
with this command:

sudo mv composer.phar /usr/local/bin/composer

Be sure you run this command to make the composer binary executable:

sudo chmod +x /usr/local/bin/composer

Finally, add the /usr/local/bin directory to your environment PATH by appending this line
to your ~/.bash_profile file:

PATH=/usr/local/bin:$PATH

You should now be able to execute composer in your terminal application to see a list of
Composer options (Figure 4-3).

Figure 4-3. Composer command-line options

How to Use Composer

Now that Composer is installed, let’s download some PHP components. Composer is
typically used to download PHP components on a per-project basis.

Component names

First, you should make a list of the components you need for your project. Specifically,
note each component’s vendor and package names. Each PHP component has a vendor
name and a package name. For example, the popular league/flysystem component’s
vendor name is league and its package name is flysystem. The vendor and package
names are separated with a / character. Together, the vendor and package names form the
full component name league/flysystem.

The vendor name is globally unique and provides the global identity to which its
encompassed packages belong. The package name uniquely identifies a single package
beneath a given vendor name. Composer and Packagist use the vendor/package naming
convention to avoid name collisions among PHP components from different vendors. You
can find a PHP component’s vendor and package names on the component’s Packagist
directory listing (Figure 4-4).

#r league/fflysystem & |

Figure 4-4. Packagist vendor and package name

Component installation

Each PHP component can have many available versions (e.g.,1.0.0,1.5.0, or 2.15.0).
All available versions are listed on the component’s Packagist directory listing.

https://packagist.org/packages/league/flysystem

Semantic Versioning

Modern PHP components use the Semantic Versioning scheme and contain three numbers
separated with a period (.) character (e.g., 1.13.2). The first number is the major release
number; the major release number is incremented whenever the PHP component is
updated with changes that break backward compatibility. The second number is the minor
release number; the minor release number is incremented whenever the PHP component is
updated with minor features that do not break backward compatibility. The third and final
number is the patch release number; the patch release number is incremented when the
PHP component receives backward-compatible bug fixes.

Fortunately, we don’t have to figure out each component’s most stable version number.
Composer does this for us. Navigate to your project’s topmost directory in your terminal
application and run this command once for each PHP component:

composer require vendor/package

Replace vendor/package with the component’s vendor and package names. To install the
Flysystem component, for example, run this command:

composer require league/flysystem

This command instructs Composer to find and install the PHP component’s most stable
version. It also instructs Composer to update the component up to, but not including, the
component’s next major version. The previous example, as of October 2014, installs
Flysystem version 0.5.9, and it will update the Flysystem component up to, but not
including, version 1. *.

You can review the result of this command in the newly created or updated composer.json
file in your project’s topmost directory. This command also creates a composer.lock file.
Commit both of these files into your version control system.

http://semver.org/

Example Project

Let’s reinforce our Composer skills by building an example PHP application that scans
URLs from a CSV file and reports all inaccessible URLs. Our project will send an HTTP
request to each URL. If a URL returns an HTTP response with a status code greater than
or equal to 400, we’ll send the inaccessible URL to standard out. Our project will be a
command-line application, and the path to the CSV file will be the first and only
command-line argument. Ultimately, we’ll execute our script, pass it the CSV file path,
and see a list of inaccessible URLs on standard out:

php scan.php /path/to/urls.csv

Our project directory looks like Figure 4-5.

Joshs-MacBook-Pro:url-scanner-app josh$ 1ls -lah
total @
drwxr-xr-x 4 josh stoff

drwxr-xr-x staff c %
=PW=P==P== staff BB O 181 scan.php
FH=F==p staff

Figure 4-5. Component directory structure

The first thing I do when starting a new PHP project is determine what tasks can be solved
with existing PHP components. The scan.php script opens and iterates a CSV file, so we’ll
need a PHP component that can read and iterate CSV data. The scan.php script also sends
an HTTP request to each URL in the CSV file, so we’ll need a PHP component that can
send HTTP requests and inspect HTTP responses. It is certainly possible to write our own
code to iterate a CSV file or send HTTP requests, but why should we waste our time if
these problems are already solved? Remember, our goal is to scan a list of URLs. Our job
is not to build HTTP and CSV parser libraries.

After browsing Packagist, I find the guzzlehttp/guzzle and league/csv PHP
components. The former handles HTTP messages and the latter parses and iterates CSV
data. Let’s install these components with Composer using these commands in the project’s
topmost directory:

composer require guzzlehttp/guzzle;
composer require league/csv;

These commands instruct Composer to download these two components into a new
vendor/ directory in the project’s topmost directory. It also creates a composer.json file and
a composer.lock file.

The composer.lock file

After you install project dependencies with Composer, you’ll notice that Composer creates
a composer.lock file. This file lists all of the PHP components used by our project and the
components’ exact version numbers (including major, minor, and patch numbers). This
effectively locks our project to these specific PHP component versions.

Why is this important? If a composer.lock file is present, Composer downloads the specific
PHP component versions listed in the composer.lock file regardless of the component’s
latest available version on Packagist. You should version control the composer.lock file
and distribute it to your team members so they can use the same PHP component versions
as you. If your team members, your staging server, and your production server all use the
same PHP component versions, you minimize the risk of bugs caused by component
version discrepancies.

The one downside with the composer.lock file is that composer install will not install
versions newer than those listed in the composer.lock file. If you do need to download
newer component versions and update your composer.lock file, use composer update. The
composer update command updates your components to their latest stable versions and
also updates the composer.lock file with new PHP component version numbers.

Autoloading PHP components

Now that our project’s PHP components are installed with Composer, how do we use
them? Luckily for us, when Composer downloads the PHP components it also creates a
single PSR-compatible autoloader for all of our project dependencies. All we have to do is
require Composer’s autoloader at the top of the scan.php file:

<?php

require 'vendor/autoload.php';
Composer’s autoloader is just a PHP file named autoload.php located inside the vendor/
directory. When Composer downloads each PHP component, Composer inspects each
component’s own composer.json file to determine how the component prefers to be
autoloaded and, with this information, creates a local PSR-compatible autoloader for it.
Ultimately, we can instantiate any of our project’s PHP components and they are
autoloaded on-demand! Pretty neat, huh?

Implement scan.php

Let’s finish the scan.php script using the Guzzle and CSV components. Remember, the
path to the CSV file is provided as the first command-line argument (accessible in the
$argv array) when our PHP script is executed. The scan.php script looks like Example 4-
1.

Example 4-1. URL scanner app

<?php
// 1. Use Composer autoloader
require 'vendor/autoload.php';

// 2. Instantiate Guzzle HTTP client
$client = new \GuzzleHttp\Client();

// 3. Open and iterate CSV
$csv = new \League\Csv\Reader ($argv([1l]);
foreach ($csv as $csvRow) {
try {
// 4. Send HTTP OPTIONS request
$httpResponse = $client->options($csvRow[0]);

// 5. Inspect HTTP response status code
if ($httpResponse->getStatusCode() >= 400) {
throw new \Exception();

}
} catch (\Exception $e) {

// 6. Send bad URLs to standard out
echo $csvRow[0O] . PHP_EOL;

b
3

Tip
Pay attention to how we use the \League\Csv and \GuzzleHttp namespaces when we
instantiate the guzzlehttp/guzzle and league/csv components. How do we know to use

these particular namespaces? I read the guzzlehttp/guzzle and league/csv
documentation. Remember, good PHP components have documentation.

Add a few URLs to the urls.csv file, one URL per line. Make sure at least one URL is
invalid. Next, open a terminal and execute the scan.php script:

php scan.php urls.csv

We execute the php binary and pass it two arguments. The first argument is the path to the
scan.php script. The second argument is the path to the CSV file that contains a list of
URLs. If any of the URLSs return an unsuccessful HTTP response, they are output to the
terminal screen.

Command-Line Scripts with PHP

Did you know you can write command-line scripts with PHP? This is a great way to
automate maintenance tasks for your web application. Learn more about writing PHP
command line scripts here:

m http://php.net/manual/wrappers.php.ph
m https://php.net/manual/reserved.variables.argv.php
m https://php.net/manual/reserved.variables.argc.ph

http://php.net/manual/wrappers.php.php
https://php.net/manual/reserved.variables.argv.php
https://php.net/manual/reserved.variables.argc.php

Composer and Private Repositories

So far I’ve assumed you are using open source PHP components that are publicly
available. As much as I create and use open source software, I recognize that using only
open source PHP components may not always be possible. Sometimes we have to mix
open source and proprietary components in the same application. This is especially true
for companies that use internally developed PHP components that cannot be open sourced
due to licensing or security concerns. Composer makes this a nonissue.

Composer can manage private PHP components whose repositories require authentication.
When you run composer install or composer update, Composer prompts you if a
component’s repository requires authentication credentials. Composer also asks if you
want to save the repository authentication credentials in a local auth.json file (created
adjacent to the composer.json file). An example auth.json file looks like this:

{
"http-basic": {
"example.org": {
"username": "your-username",
"password": "your-password"

}

In most cases, you should not version control the auth.json file. Instead, let project
developers create their own auth.json file with their own authentication credentials.

If you’d rather not wait for Composer to request authentication credentials, you can
manually tell Composer your authentication credentials for a remote machine with this
command:

composer config http-basic.example.org your-username your-password

In this example, http-basic lets Composer know we are adding authentication details for
a given domain. The example.org hostname identifies the remote machine that contains
the private component repository. The final two arguments are the username and password
credentials. By default, this command saves credentials in the current project’s auth.json
file.

You can also save authentication credentials system-wide by using the - -global flag. This
flag lets Composer use your credentials for all projects on your local machine:

composer config --global http-basic.example.org your-username your-password

Global credentials are saved in the ~/.composer/auth.json file. If you are using Windows,
global credentials are saved in %APPDATA%/Composer.

Tip
Learn more about Composer and private repositories in Authentication management in
Composer.

http://bit.ly/auth-manage

Create PHP Components

By this point you should be able to find and use PHP components. Let’s switch gears and
talk about creating PHP components. Specifically, we’ll convert the URL scanner
application into a PHP component and submit it to the Packagist component directory.

Creating PHP components is a great way to share your work with the greater PHP
community. The PHP community is built on a foundation of sharing and helping others. If
you use open source components in your applications, it’s always nice to return the favor
with a new and innovative open source component.

Tip
Be careful that you do not rewrite components that already exist. If you improve upon an
existing component, consider sending your improvements to the original component as a

pull request. Otherwise, you risk confusing and fragmenting the PHP component
ecosystem with duplicate components.

Vendor and Package Names

Before I build a PHP component, I choose the component’s vendor and package name.
Remember, each PHP component uses a globally unique vendor and package name
combination to avoid name collisions with other components. I recommend you use only
lowercase letters for your vendor and package names.

A vendor name is the brand or identity to which a component belongs. Many of my own
PHP components use the codeguy vendor name because this is my online identity. Choose
a vendor name that best represents you or your component’s brand.

Tip
Search Packagist before you choose a vendor name to make sure it is not already claimed
by another developer.

A package name identifies a PHP component beneath a given vendor name. Many
components can live beneath a single vendor name. For this example, I’ll use modernphp
as the vendor name and scanner as the package name.

Namespaces

As we discussed in Chapter 2, each component lives beneath its own PHP namespace so
that it does not pollute the global namespace or collide with other components that use the
same PHP class names.

A common misconception is that the component’s PHP namespace must match the
component’s vendor and package names. This is not true. The component’s PHP
namespace is unrelated to the component’s vendor and package names. The vendor and
package names are only used by Packagist and Composer to identify a component. You
use the component’s namespace when using the component in your PHP code.

For this tutorial, we’ll create our component beneath the PHP namespace
Ooreilly\ModernPHP. This namespace does not exist yet. I just pulled this out of thin air
for this particular component.

Filesystem Organization

PHP components have largely standardized on this filesystem structure:
src/

This directory contains the component’s source code (e.g., PHP class files).
tests/

This directory contains the component’s tests. We will not use this directory in this
example.

COMpOSer.json

This is the Composer configuration file. This file describes the component and tells
Composer’s autoloader to map your component’s PSR-4 namespace to the src/
directory.

README.md

This Markdown file provides helpful information about this component, including its
name, description, author, usage, contributor guidelines, software license, and credits.

CONTRIBUTING.md

This Markdown file describes how others can contribute to this component.
LICENSE

This plain-text file contains the component’s software license.
CHANGELOG.md

This Markdown file lists changes introduced in each new component version.
Tip
If you’re having trouble starting your own PHP component, have a look at the PHP
League’s excellent PHP component boilerplate repository.

https://github.com/thephpleague/skeleton

The composer.json File

The composer.json file is required and must contain valid JSON. It includes information
used by Composer to find, install, and autoload the PHP component. It also contains
information for the component’s Packagist directory listing.

Example 4-2 shows a composer.json file for our URL scanner component. It includes all of
the composer.json properties that I use most often for my own PHP components.

Example 4-2. The URL Scanner component composer.json file
{

"name": "modernphp/scanner",

"description": "Scan URLs from a CSV file and report inaccessible URLs",
"keywords": ["url", "scanner", "csv"],

"homepage": "http://example.com",

"license": "MIT",

"authors": [

{

"name": "Josh Lockhart",
"homepage": "https://github.com/codeguy",
"role": "Developer"

}
1,

"support": {
"email": "help@example.com"
3

"require": {
llphpll : ll>:5.4.0l|,
"guzzlehttp/guzzle": "~5.0"
s

"require-dev": {
"phpunit/phpunit": "~4.3"
Y

"suggest": {
"league/csv": "~6.0"

+

"autoload": {
"psr-4": {

"Oreilly\\ModernPHP\\": "src/"
}
}

This is admittedly a lot to digest, so let’s step through each composer.json property in
detail:

name

This is the component’s vendor and package name, separated with a / character. This
value is displayed on Packagist.

description

This contains a few sentences that succinctly describe the component. This description
is displayed on Packagist.

keywords

This contains an appropriate number of keywords that describe the component. These
keywords help others find this component on Packagist.

homepage

This is the URL of the component’s website.

license

This is the software license with which the PHP component is released. I prefer to use
the MIT Public License. You can read more about software licenses at
http://choosealicense.com. Remember to always release your code with a license.

authors

This is an array of information for each project author. You should include at least a
name and URL for each author.

support

This is how the component’s users find technical support. I prefer to include an email
address and support forum URL. You could also list an IRC channel, for example.

require

This lists the PHP component’s own component dependencies. You should list each
dependency’s vendor/package name and minimum version number. I also like to list the
minimum PHP version required by this component. All dependencies listed beneath this
property are installed for both development and production project installations.

require-dev

This acts like the require property, but it lists only the dependencies required to
develop this component. For example, I often list phpunit as a dev dependency so that
other component contributors can write and run tests. These dependencies are installed
only during development. They are not installed in production projects.

suggest

This acts like the require property, but it merely suggests other components because
they may be useful when used with our component. Unlike the require property, this
object’s values are free text fields that describe each suggested component. Composer
does not install suggested components.

autoload

This tells the Composer autoloader how to autoload this component. I recommend you
use the PSR-4 autoloader, as demonstrated in Example 4-2. Beneath the psr-4 property,
you map the component’s namespace prefix to a filesystem path relative to the
component’s root directory. This makes our component compatible with a standard
PSR-4 autoloader. In Example 4-2, I map the oreilly\ModernPHP namespace to the src/
directory. The mapping’s namespace must end with two back slash characters (\\) to
avoid conflicts with other components that use a namespace with a similar sequence of
characters. Based on the example mapping, if we instantiate a hypothetical
Ooreilly\ModernPHP\Url\Scanner class, Composer will autoload the PHP class file at
src/Url/Scanner.php.

Tip

Learn more about the complete composer.json schema at getcomposer.org.

http://choosealicense.com
https://getcomposer.org/doc/04-schema.md

The README file

The README file is often the component’s first introduction to its users. This is
especially true for components hosted on GitHub and Bitbucket. Therefore, it’s important
that the component’s README file provides, at a minimum, this information:

Component name and description
Install instructions

Usage instructions

Testing instructions

Contributing instructions

Support resources

Author credits

Software license

Tip

GitHub and Bitbucket can render README files in Markdown format. This means you
can write well-formatted README files with headers, lists, links, and images. Use this to
your advantage! All you have to do is add the .md or .markdown file extension to the

README file. The same principle applies to the CONTRIBUTING and CHANGELOG
files. Learn more about the Markdown format at Daring Fireball.

http://bit.ly/markdown-doc

Component Implementation

And now we arrive at the component’s meat and potatoes — its implementation. This is
where you write the PHP classes, interfaces, and traits that form the PHP component.
What classes you write, and how many, depends entirely on the PHP component’s
purpose. However, all component classes, interfaces, and traits must live in the src/
directory and exist beneath the component’s namespace prefix listed in the composer.json
file.

For this demonstration, I’ll create a single PHP class named Scanner that exists beneath
the Url subnamespace beneath the oreilly\ModernPHP namespace listed in the
composer.json file. The Scanner class file lives at src/Url/Scanner.php. The Scanner class
implements the same logic as our earlier URL scanner example application, except it
encapsulates the URL scanning behavior in a PHP class (Example 4-3).

Example 4-3. The URL Scanner component class

<?php
namespace Oreilly\ModernPHP\Url;

class Scanner
{
/**
* @var array An array of URLs
*/
protected $urls;

/**
* @var \GuzzleHttp\Client
*
/

protected $httpClient;

/**
* Constructor
* @param array $urls An array of URLs to scan

*/
public function _ construct(array $urls)
{
$this->urls = $urls;
$this->httpClient = new \GuzzleHttp\Client();
}
/**

* Get invalid URLs
* @return array
*/
public function getInvalidUrls()
{
$invalidurls = [];
foreach ($this->urls as $url) {
try {
$statusCode = $this->getStatusCodeForuUrl($url);
} catch (\Exception $e) {
$statusCode = 500;
}

if ($statusCode >= 400) {
array_push($invalidUrls, [
'url' => $url,
'status' => $statusCode

1);
}

return $invalidUrls;

/**
* Get HTTP status code for URL
* @param string $url The remote URL
* @return int The HTTP status code
*/
protected function getStatusCodeForUrl($url)

{
$httpResponse = $this->httpClient->options($url);

return $httpResponse->getStatusCode();

}

Instead of parsing and iterating a CSV file, we inject an array of URLs into the Scanner
class constructor. We want our URL scanner class to be as generic as possible. If we
demand a CSV file, we inherently limit our component’s usefulness. If we accept an array
of URLs, we let the end user decide how to fetch an array of URLs (from a PHP array, a
CSV file, an iterator, etc). That being said, we still recommend the league/csv component
because it can be helpful for developers using our component. We include the league/csv
component in the composer.json manifest’s suggest property.

The Scanner class has a hard dependency on the guzzlehttp/guzzle component.
However, we isolate each URL’s HTTP request in the getStatusCodeForUrl() method.
This lets us stub (or override) this method’s implementation in our component’s unit tests
so that our tests do not rely on a working Internet connection.

Version Control

We’re almost done. Before we submit our component to Packagist, we must publish it to a
public code repository. I prefer to publish my open source PHP components to GitHub.
However, any public Git repository is fine (I have published this component to GitHub).

It’s also a good idea to tag each component release using the Semantic Versioning scheme.
This lets component consumers request specific versions of your component (e.g., ~1.2).
I’ll create a 1.0.0 tag for the URL scanner component.

https://github.com/modern-php/scanner

Packagist Submission

Now we’re ready to submit the component to Packagist. If you don’t use GitHub, go
ahead and create a Packagist account. You can also log in to Packagist with your GitHub
credentials.

Once logged in, click the big green Submit Package button at the top right of the website.
Enter the full Git repository URL into the Repository URL text field and click the Check
button. Packagist verifies the repository URL and prompts you to confirm your
submission. Click Submit to finalize your component submission. Packagist creates and
redirects you to the component listing, which looks Figure 4-6.

Figure 4-6. Packagist component listing

You’ll notice it pulls the component name, description, keywords, dependencies, and
suggestions from the component’s composer.json file. You’ll also notice that it shows the
repository branches and tags, too. Packagist establishes a direct correlation between
repository tags and semantic version numbers. This is why I recommend your repository
tags be valid version numbers like 1.0.0, 1.1.0, and so on. However, we still have that
big red alert message that reads:

This package is not auto-updated. Please set up the GitHub Service Hook for
Packagist so that it gets updated whenever you push!

We can activate a GitHub or Bitbucket hook that notifies Packagist whenever the
component repository is updated. Learn how to setup this repository hook at
https://packagist.org/profile/.

https://packagist.org/register/
https://packagist.org/profile/

Using the Component

We’re done! Now anyone can install the URL scanner component with Composer and use
it in their PHP applications. Run this command in your terminal to install the URL scanner
component with Composer:

composer require modernphp/scanner
Then you can use the URL scanner component, as shown in Example 4-4.

Example 4-4. URL Scanner component usage

<?php
require 'vendor/autoload.php';

$urls = [
'http://www.apple.com',
'http://php.net’,
'http://sdfssdwerw.org’
1
$scanner = new \Oreilly\ModernPHP\Url\Scanner ($urls);
print_r($scanner->getInvaliduUrls());

Chapter 5. Good Practices

This chapter contains an assortment of good practices that you should apply when building
PHP applications. Following good practices makes your applications faster, more secure,
and more stable. The PHP language is an accumulation of tools introduced piecemeal over
a long period of time, and we use these tools to apply good practices. Tools change with
the passage of time as newer and better solutions are introduced in newer PHP versions.
Unfortunately, the PHP language still contains outdated tools from its past, and it’s
possible to build slow and insecure applications with these outmoded tools if you’re not
careful. The trick is knowing which tools to use and which to ignore. That’s what this
chapter is all about.

I’m not preaching “best practices” from atop an academic ivory tower. This chapter
contains good and practical advice that I use every day in all of my own projects. You can
immediately apply this knowledge to your own projects.

Note

Good practices demonstrated in this chapter have always been possible with past and
present PHP versions. However, how you implement these practices changes as the PHP
language evolves. Newer PHP versions introduce tools that make it easier to apply good
practices. This chapter demonstrates how to apply good practices with the latest tools in
PHP 5.3+.

Sanitize, Validate, and Escape

Fox Mulder is correct — trust no one. Never trust any data that originates from a source
not under your direct control. A few external sources are:

$_GET

$_POST

$_REQUEST

$_COOKIE

$argv

php://stdin
php://input
file_get_contents()
Remote databases
Remote APIs

Data from your clients

All of these external data sources are potential attack vectors that can inject malicious data
into your PHP scripts (intentionally or accidentally). Writing a PHP script that receives
user input and renders output is easy. Doing so safely requires a bit more thought. The
simplest advice I can give you is this: sanitize input, validate data, and escape output.

Sanitize Input

When you sanitize input (i.e., data from any of the sources listed previously), you escape
or remove unsafe characters. It’s important to sanitize input data before it reaches your
application’s storage layer (e.g., Redis or MySQL). This is your first line of defense. For
example, assume your website comment form accepts HTML. By default, nothing
prevents a visitor from adding a devious <script> tag to the comment text like this:

<p>

This was a helpful article!

</p>

<script>window.location.href="http://example.com';</script>
If you don’t sanitize this comment, you’ll inject malevolent code into your database that
can be rendered into your website’s markup. When your website visitors go to a page with
this unsanitized comment, they’re redirected to a website that does bad things. This is one
example why you must sanitize input data that you do not control. In my experience, there
are several types of input data that you’ll run into most often: HTML, SQL queries, and
user profile information (i.e., email addresses and phone numbers).

HTML

You sanitize HTML special characters (e.g., &, >, ″) into their HTML entity
equivalents with the htmlentities() function (Example 5-1). This function escapes all
HTML characters in a given string and renders the string safe for your application’s
storage layer.

The htmlentities() function is dumb, though. It does not validate HTML input. It does
not escape single quotes by default. And it cannot detect the input string’s character set.
Here’s how to use the htmlentities() function correctly. The first argument is the input
string. The second argument is the ENT_QUOTES constant, which prompts the function to
encode single quotes. The third argument specifies the input string’s character set.

Example 5-1. Sanitize input with the htmlentities() function

<?php

$input = '<p><script>alert("You won the Nigerian lottery!");</script></p>';

echo htmlentities($input, ENT_QUOTES, 'UTF-8');
If you require more finesse when sanitizing HTML input, use the HTML Purifier library.
HTML Purifier is a very robust and secure PHP library that sanitizes HTML input
according to rules that you provide. The HTML Purifier library’s downside is that it is
slow and potentially difficult to configure.

Warning

Do not sanitize HTML with regular-expression functions such as preg_replace(),
preg_replace_all() and preg_replace_callback(). Regular expressions are
complicated, the HTML input can be invalid, and the risk of error is high.

SQL queries

There are times when you must build a SQL query based on input data. Sometimes this
input data arrives in an HTTP request query string (e.g., 2user=1). Other times this input

http://php.net/manual/function.htmlentities.php
http://htmlpurifier.org/

data arrives as an HTTP request URI segment (e.g., /users/1). If you’re not careful, bad
people can purposefully malform your SQL queries and wreak havoc on your database.
For example, I see many beginner PHP programmers build SQL queries by concatenating
raw $_GET and $_POST input data, as in Example 5-2.

Example 5-2. Bad SQL query

$sql = sprintf(
'UPDATE users SET password = "%s" WHERE id = %s',
$_POST['password'],
$_GET['id']

)i

This is bad! What if someone sends this HTTP request to your PHP script?

POST /user?id=1 HTTP/1.1
Content-Length: 17
Content-Type: application/x-www-form-urlencoded

password=abc"; - -

This HTTP request sets every user’s password to abc because many SQL databases
consider - - to be the beginning of a comment causing subsequent text to be ignored.
Never use unsanitized input data in a SQL query. If you need to integrate input data in a
SQL query, use a PDO prepared statement. PDO is a database abstraction layer built into
PHP that presents a single interface to multiple databases. PDO prepared statements are a
PDO tool that sanitizes and safely embeds external data into a SQL query to avoid
problems like Example 5-2. I consider PDO and PDO statements extremely important
tools, so I’ve given them their own section later in this chapter.

User profile information

If your application has user accounts, you’ll likely encounter email addresses, telephone
numbers, zip codes, and other profile-related information. PHP anticipates this scenario
with the filter_var() and filter_input() functions. These two functions accept a
variety of flags to sanitize different forms of input: emails, URL-encoded strings, integers,
floats, HTML characters, URLs, and specific ASCII character ranges.

Example 5-3 demonstrates how to sanitize an email address by removing all characters
except letters, digits, and #$%& *+-/=?A_“{|}~@.[].

Example 5-3. Sanitize user profile email address

<?php
$email = 'john@example.com';
$emailSafe = filter_var($email, FILTER_SANITIZE_EMAIL);

Example 5-4 demonstrates how to sanitize a user’s bio by removing characters below
ASCII 32 and escaping characters above ASCII 127.

Example 5-4. Sanitize user profile international characters

<?php
$string = "\nIftérnationalizetion\t";
$safeString = filter_var(

$string,

FILTER_SANITIZE_STRING,
FILTER_FLAG_STRIP_LOW|FILTER_FLAG_ENCODE_HIGH

),
Note

Discover more filter_var () flags and options at http:/php.net/manual/function.filter-
var.php.

http://php.net/manual/function.filter-var.php

Validate Data

It is also important to validate data. Unlike sanitization, validation does not remove
information from input data. Validation only confirms that input data meets your
expectations. If you expect an email address, make sure the input data is an email address.
If you expect a phone number, make sure the input data is a phone number. That’s all there
is to it. Validation ensures that you persist accurate and well-formatted information in your
application’s storage layer. If you encounter invalid data, you can abort the data
persistence operation and surface an appropriate error message to your application’s user.
Validation also prevents potential database errors. For example, if MySQL expects a
DATETIME value but is given the string next year, MySQL will either error out or use a
default (and incorrect) value. Either way, your application’s data integrity is compromised
by invalid data.

You can validate user input with the filter_var () function with any of the
FILTER_VALIDATE_* flags. PHP provides flags to validate Booleans, emails, floats,
integers, IP addresses, regular expressions, and URLs. Example 5-5 demonstrates how to
validate an email address.

Example 5-5. Validate email address

<?php
$input = 'john@example.com';
$isEmail = filter_var($input, FILTER_VALIDATE_EMAIL);
if ($isEmail !'== false) {
echo '"Success";
} else {
echo "Fail";
}

Pay close attention to the filter_var () function’s return value. If the validation succeeds,
the return value is the original validated value. If the validation fails, the return value is
false.

Although the filter_var() function provides a number of validation flags, it cannot
validate everything. I recommend these additional validation components, too:

B gura/filter
B respect/validation
®m symfony/validator

Tip
You should validate and sanitize input data to make sure input data is safe and what you
expect.

https://packagist.org/packages/aura/filter
https://packagist.org/packages/respect/validation
https://packagist.org/packages/symfony/validator

Escape Output

When it’s time to render output to a web page or API response, it is very important that
you escape your output. This is one more layer of protection that prevents malicious code
from being rendered and inadvertently executed by your application’s users.

Escape output with the PHP htmlentities() function that we mentioned earlier. Be sure
you use ENT_QUOTES as the second argument so that it escapes both single and double
quotes. Specify the appropriate character encoding (usually UTF-8) as the third argument.
Example 5-6 demonstrates how to escape HTML output before it is rendered.

Example 5-6. Escape output with the htmlentities function

<?php

$output = '<p><script>alert("NSA backdoor installed");</script>';

echo htmlentities($output, ENT_QUOTES, 'UTF-8'");
Some PHP template engines like twig/twig (my favorite) or smarty/smarty escape
output automatically. The Twig template engine by Sensio Labs, for example, escapes all
output by default unless you tell it otherwise. This is a brilliant default and provides a nice
safety net for your PHP web applications.

https://packagist.org/packages/twig/twig
https://packagist.org/packages/smarty/smarty

Passwords

Password security is monumentally important given the growing number of online attacks.
How often have you cancelled a credit card because a major retailer was hacked? Many
retailers have (and will) fall victim to malicious hackers because they do not protect their
systems with best security practices. Your PHP applications are no different, and they are
vulnerable to the same attacks unless you use appropriate precautions.

One important precaution is password security. It is your duty to safely manage, hash, and
store user passwords. It doesn’t matter if your application is a trivial game or a vault for
top-secret business documents. Your users entrust you with their information and expect
you to guard their information with the best security practices available. I meet many PHP
developers who don’t understand how to safely manage passwords. After all, securely
managing passwords is hard. Fortunately, PHP provides built-in tools that make password
security fairly easy. This section demonstrates how to use these tools with modern security
practices.

Never Know User Passwords

You should never know your users’ passwords. You should never be able to know your
users’ passwords. If your application’s database is hacked, you don’t want plain-text or
decryptable passwords sitting in your database. Leaked passwords are a serious breach of
trust, and they dump a mountain of legal liability on you or your company. The less you
know, the safer you are.

Never Restrict User Passwords

It frustrates me when a website requires my account password to satisfy a specific format.
It makes me even angrier when my account password cannot be longer than {IN} number
of characters. Why!? I understand that password formats may be restricted for
compatibility with legacy applications or databases, but this is not an excuse for poor
security practices.

Never restrict your users’ passwords. If you require passwords to fit a particular pattern,
you are effectively providing a roadmap for bad guys to hack your application. If you must
restrict user passwords, I recommend you only require a minimum length. It is not
unreasonable to blacklist commonly used or dictionary-based passwords, too.

Never Email User Passwords

Never send passwords via email. If you send my password via email, I know three things:
you know my password; you are storing my password in plain text or in a decryptable
format; and you have no qualms sending my password over the Internet in plain text.

Instead, send an email with a URL where I can choose or change my own password. Web
applications often generate a unique token that can only be used once to choose or change
a password. For example, suppose I forget my account password for your web application.
I click the “Forgot password” link on your login form, and I am directed to a form where I
enter my email address to request a new password. Your application generates a unique
token, and it associates this token with the account identified by my email address. Your
application sends an email to the account’s email address with a URL that includes the
unique token as a URL segment or a query-string parameter. When I visit the URL, your
application validates the token and, if the token is valid, allows me to choose a new
password for my account. After I choose a new password, your application invalidates the
token.

Hash User Passwords with bcrypt

You should hash user passwords. Do not encrypt user passwords. Encryption and hashing
are not synonymous. Encryption is a two-way algorithm, meaning what is encrypted can
later be decrypted by design. Hashing is a one-way algorithm. Hashed data cannot be
reverted to its original form, and identical data always produces the same hash values.

When you store a user password in your database, you hash the password first and store
the password hash in your database. If hackers break into your database, they see only
meaningless password hashes that require a massive amount of time and NSA resources to
crack.

Many hashing algorithms are available (e.g., MD5, SHA1, bcrypt, scrypt). Some are fast
and designed to verify data integrity. Others are slow and designed to be safe and secure.
Slow, safe, and secure are what we want when it comes to password generation and
storage.

The most secure peer-reviewed hashing algorithm known today is bcrypt. Unlike MD5
and SHA1, bcrypt is designed to be very slow. The bcrypt algorithm automatically salts
data to foil potential rainbow table attacks. The bcrypt algorithm also consumes a large
amount of time (measured in seconds) while iteratively hashing data to generate a super-
secure final hash value. The number of hash iterations is called the work factor. A higher
work factor makes it exponentially more expensive for a bad guy to crack password
hashes. The bcrypt algorithm is future-proof, too, because you can simply increase its
work factor as computers become faster.

The berypt algorithm is extensively peer-reviewed. Minds far greater than my own have
reviewed the bcrypt algorithm for potential exploits, and so far none has been found. It is
very important that you rely on peer-reviewed hashing algorithms. Never create your own.
There is safety in numbers, and odds are you are not a cryptography expert (unless you
are, in which case tell Bruce Schneier I said hello).

Password Hashing API

As you can see, there are a lot of considerations to make when working with user
passwords. However, Anthony Ferrara was kind enough to build the native password
hashing API available in PHP 5.5.0. PHP’s native password hashing API provides easy-to-
use functions that drastically simplify password hashing and verification. The password
hashing API also uses the bcrypt hashing algorithm by default.

Note

Anthony Ferrara (also known as @ircmaxell on Twitter) is a Developer Advocate at
Google, and he is an authoritative source for all things related to PHP performance and
security. Anthony is also the author of the PHP password hashing API. I encourage you to
follow Anthony on Twitter and read his blog. I want to say a big thank you to Anthony.
His contributions to PHP have single-handedly improved PHP application security by
making best security practices more accessible.

You’ll encounter two scenarios when building web applications: user registration and user
login. Let’s explore how the PHP password hashing API simplifies both scenarios.

User registration

A web application can’t exist without users, and users need a way to sign up for an
account. Let’s assume our hypothetical application has a PHP file available at the URL
/register.php. This PHP file receives a URL-encoded HTTP POST request with an email
address and password. We create a user account if the email address is valid and the
password contains at least eight characters. This is an example HTTP POST request:

POST HTTP/1.1
Content-Length:
Content-Type:

email=john@example.com&password=sekritshhh!

Example 5-7 is the register.php file that receives the HTTP POST request.

Example 5-7. User registration script

01 <?php

02 try {

03 // Validate email

04 $email = filter_input(INPUT_POST, 'email', FILTER_VALIDATE_EMAIL);
05 if (!$email) {

06 throw new Exception('Invalid email');

07 3

08

09 // Validate password

10 $password = filter_input(INPUT_POST, 'password');
11 if (!$password || mb_strlen($password) < 8) {

12 throw new Exception('Password must contain 8+ characters');
13 }

14

15 // Create password hash

16 $passwordHash = password_hash(

17 $password,

18 PASSWORD_DEFAULT,

19 ['cost' => 12]

20)i

21 if ($passwordHash === false) {

22 throw new Exception('Password hash failed');

23 }
24

http://blog.ircmaxell.com
http://php.net/manual/book.password.php
https://twitter.com/ircmaxell
https://twitter.com/ircmaxell
http://blog.ircmaxell.com

25 // Create user account (THIS IS PSUEDO-CODE)

26 $user = new User();

27 $user->email = $email;

28 $user->password_hash = $passwordHash;
29 $user->save();

30

31 // Redirect to login page

32 header ('HTTP/1.1 302 Redirect');

33 header('Location: /login.php');

34 } catch (Exception $e) {

35 // Report error

36 header ('HTTP/1.1 400 Bad request');
37 echo $e->getMessage();

38 }

In Example 5-7:

m Lines 4-7 validate the user email address. We toss an exception if the email is
invalid.

m Lines 10-13 validate the plain-text user password pulled from the HTTP request
body. We toss an exception if the plain-text user password contains fewer than eight
characters.

m Lines 16-23 create a password hash with the PHP password hashing API’s
password_hash() function. The password_hash() function’s first argument is the
plain-text user password. The second argument is the PASSWORD_DEFAULT constant,
which tells PHP to use the bcrypt hashing algorithm. The final argument is an array
of hashing options. The cost array key specifies the bcrypt work factor. A work
factor of 10 is used by default, but you should increase the cost factor for your
particular hardware so that password hashing requires 0.1 to 0.5 seconds to finish. We
toss an exception if the password hashing fails.

= Lines 26-29 demonstrate saving a hypothetical user account. These lines contain
pseudocode; you should replace these lines with code appropriate for your own
application. The point is that you persist the user record with the password hash —
not the plain-text password pulled from the HTTP request body. We also persist the
email address that is used to locate and log in a user account.

Tip
Store password hashes in a VARCHAR(255) database column. This gives you flexibility to

continue storing future passwords that may require more characters than the current berypt
algorithm.

User login

Our hypothetical application also has a PHP file available at URL /login.php. This file
accepts an HTTP PoST request that contains an email address and password used to
identify, authenticate, and log in a user. This is an example HTTP P0ST request:

POST HTTP/1.1
Content-Length:
Content-Type:

email=john@example.com&password=sekritshhh!

The login.php file finds the user account identified by the email address, it verifies the
submitted password with the user account’s password hash, and it logs in the user account.
Example 5-8 shows the login.php file.

Example 5-8. User login script

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
a4
45
46

<?php

session_start();

try {
// Get email address from request body
$email = filter_input(INPUT_POST, 'email');

// Get password from request body
$password = filter_input(INPUT_POST, 'password');

// Find account with email address (THIS IS PSUEDO-CODE)
$user = User::findByEmail($email);

// Verify password with account password hash

if (password_verify($password, $user->password_hash) === false) {
throw new Exception('Invalid password');

3

// Re-hash password if necessary (see note below)
$currentHashAlgorithm = PASSWORD_DEFAULT;
$currentHashOptions = array('cost' => 15);
$passwordNeedsRehash = password_needs_rehash(
$user->password_hash,
$currentHashAlgorithm,
$currentHashOptions
)i
if ($passwordNeedsRehash === true) {
// Save new password hash (THIS IS PSUEDO-CODE)
$user->password_hash = password_hash(
$password,
$currentHashAlgorithm,
$currentHashOptions
)i
$user->save();

}

// Save login status to session
$_SESSION['user_logged_in'] = 'yes';
$_SESSION['user_email'] = $email;

// Redirect to profile page

header ('HTTP/1.1 302 Redirect');

header('Location: /user-profile.php');
} catch (Exception $e) {

header ('HTTP/1.1 401 Unauthorized');

echo $e->getMessage();

}

In Example 5-8:

Line 5 and 8 retrieve the email address and password from the HTTP request body.
Line 11 locates the user record associated with the email address submitted in the
HTTP request body. I use pseudocode in Example 5-8, and you should replace this
line with code specific to your own application.

Lines 14—16 compare the plain-text password submitted in the HTTP request body
with the password hash stored in the user record. We compare the password and
password hash with the password_verify() function. If verification fails, we toss an
exception.

Lines 19-34 make sure the user record’s password hash value is up-to-date with the
most current password algorithm options by invoking the password_needs_rehash()
function. If the user record’s password hash is out of date, we create a new hash value
using the most current algorithm options, and we update the user record with the new
hash value.

Verify password

The password_verify() function compares the plain-text password from the HTTP
request body to the password hash stored in the user record. This function accepts two
arguments. The first argument is the plain-text password. The second argument is the
existing password hash in the user record. If the password_verify() function returns
true, the plain-text password is valid and we log in the user. Otherwise, the plain-text
password is invalid and we abort the login process.

Rehash password

After line 17 in Example 5-8, authentication is successful and we can log in the user.
Before we do, however, it is important to check if the existing password hash in the user
record is outdated. If it is outdated, we create a new password hash.

Why should we create a new password hash? Pretend our application was created two
years ago when we used a berypt work factor of 10. Today we use a berypt work factor of
20 because hackers are smarter and computers are faster. Unfortunately, there are some
user accounts whose password hashes were generated with a bcrypt work factor of 16.
After we verify the login request’s authenticity, we check if the existing user record’s
password hash needs to be updated with the password_needs_rehash() function. This
function makes sure a given password hash is created with the most current hashing
algorithm options. If a password hash does need to be rehashed, rehash the plain-text
password from the HTTP request body using the current algorithm options and update the
user record with the new hash value.

Tip
It’s easiest to employ the password_needs_rehash() function in the user login script

because I have access to the old password hash and the plain-text password at the same
time.

Password Hashing API for PHP < 5.5.0

If you cannot use PHP 5.5.0 or newer, fear not. You can use Anthony Ferrara’s
ircmaxell/password-compat component. It implements all of these PHP password
hashing API functions:

®m password_hash()

®m password_get_info()

®m password_needs_rehash()
®m password_verify()

Ferrara’s ircmaxell/password-compat component is a drop-in replacement for the
modern PHP password hashing API. Include the component in your application with
Composer and you’re off and running.

https://packagist.org/packages/ircmaxell/password-compat

Dates, Times, and Time Zones

Working with dates and times is hard. Pretty much every PHP developer has, at one time
or another, made a mistake working with dates and times. This is precisely why I
recommend you do not manage dates and times on your own. There are too many
considerations to juggle, including date formats, time zones, daylight saving, leap years,
leap seconds, and months with variable numbers of days. It’s too easy for your own
calculations to become inaccurate. Instead, use the DateTime, DateInterval, and
DateTimezZone classes introduced in PHP 5.2.0. These helpful classes provide a simple
object-oriented interface to accurately create and manipulate dates, times, and timezones.

Set a Default Time Zone

The first thing you should do is declare a default time zone for PHP’s date and time
functions. If you don’t set a default time zone, PHP shows an E_WARNING message. There
are two ways to set the default time zone. You can declare the default time zone in the
php.ini file like this:

date.timezone = 'America/New_York';

You can also declare the default time zone during runtime with the
date_default_timezone_set() function (Example 5-9).

Example 5-9. Set default timezone

<?php
date_default_timezone_set('America/New_York');

Either solution requires a valid time-zone identifier. You can find a complete list of PHP
time-zone identifiers at http:/php.net/manual/timezones.php.

http://php.net/manual/timezones.php

The DateTime Class

The DateTime class provides an object-oriented interface to manage date and time values.
A single DateTime instance represents a specific date and time. The DateTime class
constructor (Example 5-10) is the simplest way to create a new DateTime instance.

Example 5-10. The DateTime class

<?php

$datetime = new DateTime();
Without arguments, the DateTime class constructor creates an instance that represents the
current date and time. You can pass a string argument into the bateTime class constructor
to specify a custom date and time (Example 5-11). The string argument must use one of

the valid date and time formats listed at http:/php.net/manual/datetime.formats.php.

Example 5-11. DateTime class with argument

<?php

$datetime = new DateTime('2014-04-27 5:03 AM");
In an ideal world, you are given date and time data in a format that PHP understands.
Unfortunately, this is not always the case. Sometimes you must work with date and time
values in different and unexpected formats. I experience this problem on a daily basis.
Many of my clients send Excel spreadsheets with data to import into an application, and
each client provides date and time values in wildly different formats. The DateTime class
makes this a nonissue.

Use the DateTime: :createFromFormat () static method to create a DateTime instance with
a date and time string that uses a custom format. This method’s first argument is the date
and time string format. The second argument is the date and time string that uses said

format (Example 5-12).

Example 5-12. DateTime class with static constructor

<?php
$datetime = DateTime::createFromFormat('M j, Y H:i:s', 'Jan 2, 2014 23:04:12');

Note

The DateTime: :createFromFormat () static method accepts the same date and time
formats as the date() function. Valid date and time formats are available at
http://php.net/manual/datetime.createfromformat.php.

http://php.net/manual/datetime.formats.php
http://php.net/manual/datetime.createfromformat.php

The Datelnterval Class

The DateInterval class is pretty much prerequisite knowledge for manipulating
DateTime instances. A DateInterval instance represents a fixed length of time (e.g., “two
days”) or a relative length of time (e.g., “yesterday”). You use DateInterval instances to
modify DateTime instances. For example, the DateTime class provides add() and sub()
methods to manipulate a DateTime instance’s value. Both methods accept a DateInterval
argument that specifies the amount of time added to or subtracted from a DateTime
instance.

Instantiate the DateInterval class with its constructor. The DateInterval class
constructor accepts a string argument that provides an interval specification. Interval
specifications are a little tricky at first, but there’s not much to them. First, an interval
specification is a string that begins with the letter P. Next, you append an integer. And last,
you append a period designator that qualifies the preceding integer value. Valid period
designators are:

m Y (years)

M (months)
D (days)

W (weeks)

H (hours)

M (minutes)
S (seconds)

An interval specification can include both date and time values. If you include a time
value, separate the date and time parts with the letter T. For example, the interval
specification P2D means two days. The interval specification P2DT5H2M means two days,
five hours, and two minutes.

Example 5-13 demonstrates how to modify a DateTime instance by a given interval of
time using the add() method.

Example 5-13. The Datelnterval class

<?php
// Create DateTime instance
$datetime = new DateTime('2014-01-01 14:00:00');

// Create two weeks interval
$interval = new DateInterval('P2w');

// Modify DateTime instance
$datetime->add($interval);
echo $datetime->format('Y-m-d H:i:s');

You can create an inverted DateInterval, too (Example 5-14). This lets you traverse a
DatePeriod instance in reverse chronology!

Example 5-14. An inverted DateInterval class

$dateStart = new \DateTime();
$dateInterval = \DateInterval::createFromDateString('-1 day');
$datePeriod = new \DatePeriod($dateStart, $dateInterval, 3);
foreach ($datePeriod as $date) {

echo $date->format('Y-m-d'), PHP_EOL;
}

This outputs:

2014-12-08
2014-12-07
2014-12-06
2014-12-05

The DateTimeZone Class

If your application caters to an international clientele, you’ve probably wrestled with time
zones. Time zones are tricky, and they are a constant source of confusion for many PHP
developers.

PHP represents time zones with the bateTimeZone class. All you have to do is pass a valid
time-zone identifier into the DateTimeZone class constructor:

<?php
$timezone = new DateTimeZone('America/New_York');

Note
Find a complete list of valid time-zone identifiers at http:/php.net/manual/timezones.php.

You often use DateTimeZone instances when creating DateTime instances. The DateTime
class constructor’s optional second argument is a DateTimeZone instance. The bateTime
instance’s value, and all modifications to its value, are now relative to the specified time
zone. If you omit the constructor’s second argument, the time zone is determined by your
default time-zone setting:

<?php
$timezone = new DateTimeZone('America/New_York');
$datetime = new DateTime('2014-08-20', $timezone);

You can change a DateTime instance’s time zone after instantiation with the
setTimezone() method (Example 5-15).

Example 5-15. DateTimeZone usage

<?php

$timezone = new DateTimeZone('America/New_York');

$datetime = new \DateTime('2014-08-20', $timezone);

$datetime->setTimezone(new DateTimeZone('Asia/Hong_Kong'));
I find it easiest if I always work in the UTC time zone. My server’s time zone is UTC, and
my PHP default time zone is UTC. If I persist date and time values into a database, I save
them as the UTC timezone. I convert the UTC date and time values to the appropriate time

zone when I display the data to application users.

http://php.net/manual/timezones.php

The DatePeriod Class

Sometimes you need to iterate a sequence of dates and times that recur over a specific
interval of time. Repeating calendar events are a good example. The DatePeriod class
solves this problem. The DatePeriod class constructor accepts three required arguments:

m A DateTime instance that represents the date and time from which iteration begins

m A DatelInterval instance that represents the interval of time between subsequent
dates and times

= An integer that represents the number of total iterations

A DatePeriod instance is an iterator, and each iteration yields a DateTime instance.
Example 5-16 yields three dates and times separated by two-week intervals.

Example 5-16. DatePeriod class usage

<?php

$start = new DateTime();

$interval = new DateInterval('P2w');

$period = new DatePeriod($start, $interval, 3);

foreach ($period as $nextDateTime) {
echo $nextDateTime->format('Y-m-d H:i:s'), PHP_EOL;
}

The DatePeriod class constructor accepts an optional fourth argument that specifies the
period’s explicit end date and time. If you want to exclude the start date from the period’s
iteration, pass the DatePeriod: : EXCLUDE_START_DATE constant as the final constructor

argument (Example 5-17).

Example 5-17. DatePeriod class usage with options

<?php
$start = new DateTime();
$interval = new DateInterval('P2w');
$period = new DatePeriod(
$start,
$interval,
3,
DatePeriod: :EXCLUDE_START_DATE

);

foreach ($period as $nextDateTime) {
echo $nextDateTime->format('Y-m-d H:i:s'), PHP_EOL;
}

The nesbot/carbon Component

If you work with dates and times more often than not, you should use Brian Nesbitt’s

nesbot/carbon PHP component. Carbon provides a simple user interface with many
useful methods for working with date and time values.

https://github.com/briannesbitt/Carbon

Databases

Many PHP applications persist information in a wide assortment of databases like
MySQL, PostgreSQL, SQLite, MSSQL, and Oracle. Each database provides its own PHP
extension to establish communication between PHP and the database. MySQL, for
example, uses the mysqli extension, which adds various mysqli_*() functions to the PHP
language. SQLite3 uses the SQLite3 extension, which adds the SQLite3, SQLite3Stmt,
and sQLite3Result classes to the PHP language. If you work with different databases in
one or more projects, you have to install and learn various PHP database extensions and
interfaces. This increases your cognitive and technical overhead.

The PDO Extension

This is exactly why PHP provides the native PDO extension. PDO (or PHP data objects)
is a collection of PHP classes that communicate with many different SQL databases via a
single user interface. Database implementations are abstracted away. Instead, we can write
and execute database queries with a single interface regardless of the particular database
system we happen to be using at the time.

Warning

Even though the PDO extension provides a single interface to different databases, we still
must write our own SQL statements. This is the downside to PDO. Each database provides
proprietary features, and these features often require unique SQL syntax. I recommend
you write ANSI/ISO SQL when using PDO so that your SQL doesn’t break if/when you
change database systems. If you absolutely must use a proprietary database feature, keep
in mind you must update your SQL statements if you change database systems.

Database Connections and DSNs

First, select the database system most appropriate for your application. Install the
database, create the schema, and optionally load an initial dataset. Next, instantiate the PDO
class in PHP. The PDO instance establishes a connection between PHP and the database.

The PDO class constructor accepts a string argument called a DSN, or data source name,
that provides database connection details. A DSN begins with the database driver name
(e.g., mysql or sqlite), a :, and the remainder of the connection string. The DSN
connection string is different for each database, but it typically includes:

Hostname or IP address
Port number

Database name
Character set

Note
Learn more about your database’s DSN format at http:/php.net/manual/pdo.drivers.php.

The PDO class constructor’s second and third arguments are a username and password for
your database. Provide these arguments if your database requires authentication.

Example 5-18 establishes a PDO connection to a MySQL database named acme. The
database is available at IP address 127.0.0.1, and it listens on the standard MySQL port
3306. The database username is josh, and the database password is sekrit. The
connection character set is utfs.

Example 5-18. PDO constructor

<?php
try {
$pdo = new PDO(
'mysgl:host=127.0.0.1;dbname=books;port=3306;charset=utf8"',
"USERNAME ',
"PASSWORD'

)i
} catch (PDOException $e) {
// Database connection failed
echo '"Database connection failed";
exit;
}
The PDO class constructor’s first argument is the DSN. The DSN begins with mysql:. This
instructs PDO to use the PDO MySQL driver to connect to a MySQL database. After the :
character, we specify a semicolon-delimited list of keys and values. Specifically, we

specify the host, dbname, port, and charset settings.

Tip

The PDO constructor throws a PDOException instance if the database connection fails. It’s
important that you anticipate and catch this exception when creating PDO connections.

Keep your database credentials secret

Example 5-18 is fine for demonstration purposes, but it isn’t safe. Never hard-code
database credentials into PHP files, especially PHP files served to the public. If PHP

http://php.net/manual/pdo.drivers.php

exposes raw PHP code to HTTP clients due to a bug or server misconfiguration, your
database credentials are naked for the world to see. Instead, move your database
credentials into a configuration file above the document root and include them into your
PHP files when necessary.

Tip
Do not version control your credentials, either. Protect your credentials with a .gitignore

file. Otherwise, you will publish your secret credentials into your code repository for
others to see. This is especially bad if you are using a public repository.

In this example, the settings.php file contains our database connection credentials. It lives
beneath the project root directory but above the document root. The index.php file lives
beneath the document root directory, and it is served to the public with a web server. The
index.php file uses the credentials in the settings.php file:

[project_root]
settings.php
public_html/ <-- document root
index.php

This is the settings.php file:

<?php

$settings = [
'host' => '127.0.0.1"',
'port' => '3306',
'name' => 'acme',
'username' => 'USERNAME',
'password' => 'PASSWORD',
'charset' => 'utf8'

1,

Example 5-19 shows the index.php file. It includes the settings.php file and establishes a
PDO database connection.

Example 5-19. PDO constructor with external settings

<?php
include('../settings.php');

$pdo = new PDO(

sprintf(
"mysqgl:host=%s;dbname=%s;port=%s;charset=%s',
$settings['host'],
$settings['name'],
$settings['port'],
$settings['charset']

)

$settings['username'],

$settings['password']

):

This is much safer. If the index.php code leaks to the public, our database credentials
remain secret.

Prepared Statements

We now have a PDO connection to a database, and we can use this connection to read
from and write to the database with SQL statements. We’re not done yet. When I build
PHP applications, I often need to customize SQL statements with dynamic information
from the current HTTP request. For example, the URL /user?email=john@example.com
shows profile information for a specific user account. The SQL statement for this URL
might be:

SELECT id FROM users WHERE email = "john@example.com";

A beginner PHP developer might build the SQL statement like this:

$sql = sprintf(
'SELECT id FROM users WHERE email = "%s"',
filter_input (INPUT_GET, 'email')
)
This is bad because the SQL string uses raw input from the HTTP request query string. It
provides a welcome mat for hackers to do bad things to your PHP application. Haven’t
you heard of little Bobby Tables? It is extremely important to sanitize user input that is
used in a SQL statement. Fortunately, the PDO extension makes input sanitization super-

easy with prepared statements and bound parameters.

A prepared statement is a PDOStatement instance. However, I rarely instantiate the
PDOStatement class directly. Instead, I fetch a prepared statement object with the PDO
instance’s prepare () method. This method accepts a SQL statement string as its first
argument, and it returns a PDOStatement instance:

<?php

$sql = 'SELECT id FROM users WHERE email = :email';

$statement = $pdo->prepare($sql);
Pay close attention to the SQL statement. The :email is a named placeholder to which I
can safely bind any value. In Example 5-20, I bind the HTTP request query string to the

:email placeholder with the $statement instance’s bindvalue() method.

Example 5-20. Prepared statement with email address

<?php
$sql = 'SELECT id FROM users WHERE email = :email';
$statement = $pdo->prepare($sql);

$email = filter_input(INPUT_GET, 'email');

$statement->bindvalue(':email', $email);
The prepared statement automatically sanitizes the $email value, and it protects our
database from SQL injection attacks. You can include multiple named placeholders in a
SQL statement string and invoke the prepared statement’s bindvalue() method for each
placeholder.

In Example 5-20, the :email named placeholder represents a string value. What if we
change our SQL statement to find a user by a numeric ID? In this case, we must pass a
third argument to the prepared statement’s bindvalue() method to specify the type of data
bound to the placeholder. Without the third argument, a prepared statement assumes bound
data is a string.

Example 5-21 shows a modification of Example 5-20 that finds a user by numeric ID

http://xkcd.com/327/

instead of an email address. The numeric ID is pulled from the HTTP query string
parameter named id.

Example 5-21. Prepared statement with ID
<?php

$sql = 'SELECT email FROM users WHERE id = :id';
$statement = $pdo->prepare($sql);

$userId = filter_input(INPUT_GET, 'id');
$statement->bindVvValue(':id', $userId, PDO::PARAM_INT);

We use the PDO: : PARAM_INT constant as the third argument. This tells PDO that the bound
data is an integer. There are several PDO constants you can use to specify various data
types:

PDO: : PARAM_BOOL

PDO: : PARAM_NULL

PDO: : PARAM_INT

PDO: :PARAM_STR (default)

Note
See all PDO constants at http://php.net/manual/pdo.constants.php.

http://php.net/manual/pdo.constants.php

Query Results

We now have a prepared statement, and we’re ready to execute SQL queries against the
database. The prepared statement’s execute () method executes the statement’s SQL
statement with any bound data. If you are executing INSERT, UPDATE, or DELETE
statements, invoke the execute () method and you’re done. If you execute a SELECT
statement, you probably expect the database to return matching records. You can fetch
query results with the prepared statement’s fetch(), fetchAll(), fetchColumn(), and
fetchobject () methods.

The PboStatement instance’s fetch() method returns the next row from the result set. I
use this method to iterate large result sets, especially if the entire result set cannot fit in
available memory (Example 5-22).

Example 5-22. Prepared statement results as associative array
<?php
// Build and execute SQL query
$sql = 'SELECT id, email FROM users WHERE email = :email';
$statement = $pdo->prepare($sql);
$email = filter_input(INPUT_GET, 'email');
$statement->bindvalue(':email', $email, PDO::PARAM_INT);
$statement->execute();

// Iterate results

while (($result = $statement->fetch(PDO::FETCH_ASSOC)) !== false) {
echo $result['email'];
}

In this example, I use the PDO: : FETCH_ASSOC constant as the first argument in the
statement instance’s fetch() method. This argument determines how the fetch() and
fetchAll() methods return query results. You can use any of these constants:

PDO: :FETCH_ASSOC

Prompts the fetch() or fetchAll() method to return an associative array. The array
keys are database column names.

PDO: : FETCH_NUM

Prompts the fetch() or fetchAll() method to return a numeric array. The array keys
are the numeric index of database columns in your query result.

PDO: :FETCH_BOTH

Prompts the fetch() or fetchAll() method to return an array that contains both
associative and numeric array keys. This is a combination of PDO: : FETCH_ASSOC and
PDO: : FETCH_NUM.

PDO: :FETCH_OBJ

Prompts the fetch() or fetchAll() method to return an object whose properties are
database column names.

Note

Learn more about fetching PDO statement results at
http://php.net/manual/pdostatement.fetch.php.

http://php.net/manual/pdostatement.fetch.php

If you are working with smaller result sets, you can fetch all query results with the
prepared statement’s fetchAll() method (Example 5-23). I typically discourage this
method unless you are absolutely sure the complete query result is small enough to fit in
available memory.

Example 5-23. Prepared statement fetch all results as associative array

<?php

// Build and execute SQL query

$sql = 'SELECT id, email FROM users WHERE email = :email';
$statement = $pdo->prepare($sql);

$email = filter_input(INPUT_GET, 'email');
$statement->bindvalue(':email', $email, PDO::PARAM_INT);
$statement->execute();

// Iterate results
$results = $statement->fetchAll(PDO: :FETCH_ASSOC);
foreach ($results as $result) {
echo $result['email'];
}

If you are concerned only with a single column in your query result, you can use the
prepared statement’s fetchColumn() method. This method, similar to the fetch()
method, returns the value of a single column from the next row of the query result
(Example 5-24). The fetchColumn() method’s one and only argument is the index of the
desired column.

Tip
The query result column order matches the column order specified in the SQL query.

Example 5-24. Prepared statement fetch one column, one row at a time as associative
array

<?php

// Build and execute SQL query

$sql = 'SELECT id, email FROM users WHERE email = :email';
$statement = $pdo->prepare($sql);

$email = filter_input(INPUT_GET, 'email');
$statement->bindVvalue(':email', $email, PDO::PARAM_INT);
$statement->execute();

// Iterate results

while (($email = $statement->fetchColumn(1l)) !== false) {
echo $email;

}

In Example 5-24, the email column is listed second in the SQL query. It therefore
becomes the second column in each query result row, and I pass the number 1 into the
fetchColumn() method (columns are zero-indexed).

You can also use the prepared statement’s fetchobject () method to fetch the next query
result row as an object whose property names are the SQL query result columns
(Example 5-25).

Example 5-25. Prepared statement fetch row as object

<?php

// Build and execute SQL query

$sgql = 'SELECT id, email FROM users WHERE email = :email';
$statement = $pdo->prepare($sql);

$email = filter_input(INPUT_GET, 'email');
$statement->bindvalue(':email', $email, PDO::PARAM_INT);
$statement->execute();

// Iterate results

while (($result = $statement->fetchObject()) !== false) {
echo $result->name;
b

Transactions

The PDO extension also supports transactions. A transaction is a set of database
statements that execute atomically. In other words, a transaction is a collection of SQL
queries that are either all executed successfully or not executed at all. Transaction
atomicity encourages data consistency, safety, and durability. A nice side effect of
transactions is improved performance, because you are effectively queuing multiple
queries to be executed together at one time.

Note

Not all databases support transactions. Check your database’s documentation and its
associated PHP PDO driver for more information.

Transactions are simple to use with the PDO extension. You build and execute SQL
statements exactly as demonstrated in Example 5-25. There is only one difference. You
surround SQL statement executions with the PDO instance’s beginTransaction() and
commit () methods. The beginTransaction() method causes PDO to queue subsequent
SQL query executions rather than execute them immediately. The commit () method
executes queued queries in an atomic transaction. If a single query in the transaction fails,
none of the transaction queries is applied. Remember, a transaction is all or nothing.

Atomicity is important when data integrity is paramount. Let’s explore example code that
handles bank account transactions. Our code can deposit funds into an account. It can also
withdraw funds from an account assuming there are sufficient funds. The code in
Example 5-26 transfers $50 from one account to another account. It does not use a
database transaction.

Example 5-26. Database query without transaction

<?php
require 'settings.php';

// PDO connection
try {
$pdo = new PDO(
sprintfy(
'mysql:host=%s;dbname=%s;port=%s;charset=%s',
$settings['host'],
$settings['name'],
$settings['port'],
$settings['charset']
)
$settings['username'],
$settings['password']
)
} catch (PDOException $e) {
// Database connection failed
echo '"Database connection failed";
exit;

}

// Statements

$stmtSubtract = $pdo->prepare(’
UPDATE accounts
SET amount = amount - :amount
WHERE name = :name

"),

$stmtAdd = $pdo->prepare(’
UPDATE accounts
SET amount = amount + :amount

WHERE name = :name

")

// Withdraw funds from account 1

$fromAccount = 'Checking';

$withdrawal = 50;

$stmtSubtract->bindParam(':name', $fromAccount);
$stmtSubtract->bindParam(':amount', $withDrawal, PDO::PARAM_INT);
$stmtSubtract->execute();

// Deposit funds into account 2

$toAccount = 'Savings';

$deposit = 50;

$stmtAdd->bindParam(':name', $toAccount);
$stmtAdd->bindParam(':amount', $deposit, PDO::PARAM_INT);
$stmtAdd->execute();

This seems fine, right? It’s not. What happens if our server suddenly shuts down after we
withdraw $50 from account 1 and before we deposit $50 into account 2? Perhaps our
hosting company had a power outage or a fire or a flood or was afflicted by some other
calamity. What happens to the $50 withdrawn from account 1? The funds are not
deposited into account 2. The funds disappear. We can protect data integrity with a
database transaction (Example 5-27).

Example 5-27. Database query with transaction

<?php
require 'settings.php';

// PDO connection
try {
$pdo = new PDO(
sprintf(
"mysql:host=%s;dbname=%s;port=%s;charset=%s',
$settings['host'],
$settings['name'],
$settings['port'],
$settings['charset']
)
$settings['username'],
$settings['password']
);
} catch (PDOException $e) {
// Database connection failed
echo "Database connection failed";
exit;

}

// Statements

$stmtSubtract = $pdo->prepare(’
UPDATE accounts
SET amount = amount - :amount
WHERE name = :name

RE

$stmtAdd = $pdo->prepare(’
UPDATE accounts
SET amount = amount + :amount
WHERE name = :name

")

// Start transaction
$pdo->beginTransaction();

// Withdraw funds from account 1

$fromAccount = 'Checking';

$withdrawal = 50;

$stmtSubtract->bindParam(':name', $fromAccount);
$stmtSubtract->bindParam(':amount', $withDrawal, PDO::PARAM_INT);
$stmtSubtract->execute();

// Deposit funds into account 2
$toAccount = 'Savings';

$deposit = 50;

$stmtAdd->bindParam(':name', $toAccount);
$stmtAdd->bindParam(':amount', $deposit, PDO::PARAM_INT);
$stmtAdd->execute();

// Commit transaction
$pdo->commit();

Example 5-27 wraps the withdrawal and deposit into a single database transaction. This
ensures that both execute successfully or not at all. Our data remains consistent.

Multibyte Strings

PHP assumes each character in a string is an 8-bit character that occupies a single byte of
memory. Unfortunately, this is a naive assumption that breaks down as soon as you work
with non-English characters. You might localize your PHP application for international
users. Your blog might receive comments written in Spanish, German, or Norwegian. Your
users’ names might contain accented characters. My point is that you’ll often encounter
multibyte characters, and you must accommodate them correctly.

When I say multibyte character, I mean any character that is not one of the 128 characters
in the traditional ASCII character set. Some examples are A, &, &, 0, a, &, and @. There are
many others. PHP’s default string-manipulation functions assume all strings use only 8-bit
characters. If you manipulate a Unicode string that contains multibyte characters with

PHP’s native string functions, you will get incorrect and unexpected results.
Note

Unicode is an international standard that assigns a number to each unique character from
many different languages. It is maintained by the Unicode Consortium.

You can avoid multibyte string errors by installing the mbstring PHP extension. This
extension introduces multibyte-aware string functions that replace most of PHP’s native
string-manipulation functions. For example, use the multibyte-aware mb_strlen()
function instead of PHP’s native strlen() function.

To this day I’m still training myself to use the mbstring multibyte string functions instead
of PHP’s default string functions. It’s a tough habit to form, but you must use the
multibyte string functions if you work with Unicode strings. Otherwise, it’s easy for
multibyte Unicode data to become malformed.

Tip
I use the IAtérnationalizetien string when testing my PHP applications for multibyte
character support.

http://www.unicode.org
http://php.net/manual/book.mbstring.php

Character Encoding

Use UTF-8. If you leave this section with one piece of advice, this is it. All modern web
browsers understand UTF-8 character encoding. A character encoding is a method of
packaging Unicode data in a format that can be stored in memory or sent over the wire
between a server and client. The UTF-8 character encoding is just one of many available
character encodings. UTF-8, however, is the most popular character encoding and is
supported by all modern web browsers.

Unicode and UTF-8 Explained

Tom Scott provides the best explanation of Unicode and UTF-8 that I've seen. Joel
Spolsky also writes a nice explanation of character encodings on his website.

Character encoding is complex and confuses a lot of developers. When you work with
multibyte strings, keep this advice in mind:

1. Always know the character encoding of your data.
2. Store data with the UTF-8 character encoding.
3. Output data with the UTF-8 character encoding.

The mbstring extension doesn’t just manipulate Unicode strings. It also converts
multibyte strings between various character encodings. This is useful when clients export
Excel spreadsheet data with a Windows-specific character encoding when what I really
want is UTF-8 encoded data. Use the mb_detect_encoding() and
mb_convert_encoding() functions to convert Unicode strings from one character
encoding to another.

http://bit.ly/ts-unicode
http://bit.ly/jspolsky

Output UTF-8 Data

When you work with multibyte characters, it is important that you tell PHP you are
working with the UTF-8 character encoding. It’s easiest to do this in your php.ini file like
this:

default_charset = "UTF-8";
The default character set is used by many PHP functions, including htmlentities(),
html_entity_decode(), htmlspecialchars(), and the mbstring functions. This value is
also added to the default content-Type header returned by PHP unless explicitly specified
with the header () function like this:

<?php
header('Content-Type: application/json;charset=utf-8');

Warning
You cannot use the header () function after any output is returned from PHP.

I also recommend you include this meta tag in your HTML document header:

<meta charset="UTF-8"/>

Streams

Streams are probably the most amazing and least used modern PHP feature. Even though
streams were introduced in PHP 4.3.0, many developers still don’t know about streams
because they are rarely mentioned, and they are poorly documented.

Streams were introduced with PHP 4.3.0 as a way of generalizing file, network, data
compression, and other operations which share a common set of functions and uses. In
its simplest definition, a stream is a resource object which exhibits streamable behavior.
That is, it can be read from or written to in a linear fashion, and may be able to fseek() to
an arbitrary location within the stream.

PHP Manual

That’s a mouthful, right? Let’s reduce this into something more understandable. A stream
is a transfer of data between an origin and destination. That’s it. The origin and destination
can be a file, a command-line process, a network connection, a ZIP or TAR archive,
temporary memory, standard input or output, or any other resource available via PHP’s

stream wrappers.

If you’ve read from or written to a file, you’ve used streams. If you’ve read from
php://stdin or written to php://stdout, you’ve used streams. Streams provide the
underlying implementation for many of PHP’s IO functions like file_get_contents(),
fopen(), fgets(), and fwrite(). PHP’s stream functions help us manipulate different
stream resources (origins and destinations) with a single interface.

Tip
I think of streams as a pipe that carries water from one location to another. As water flows
through the pipe from origin to destination, we can filter the water, we can transform the

water, we can add water, and we can remove water. (Hint: The water is a metaphor for
data.)

http://php.net/manual/wrappers.php

Stream Wrappers

There are different types of streamable data that require unique protocols for reading and
writing data. We call these protocols stream wrappers. For example, we can read and write
data to the filesystem. We can talk with remote web servers via HTTP, HTTPS, or SSH
(secure shell). We can open, read, and write ZIP, RAR, or PHAR archives. All of these
communication methods imply the same generic process:

1. Open communication.
2. Read data.
3. Write data.
4. Close communication.

Although the process is the same, reading and writing a filesystem file is different from
sending or receiving HTTP messages. Stream wrappers, however, encapsulate these
differences behind a common interface.

Every stream has a scheme and a target. We specify the scheme and target in the stream’s
identifier using this familiar format:

<scheme>://<target>

The <scheme> identifies the stream’s wrapper. The <target> identifies the stream data
source. Example 5-28 creates a PHP stream to/from the Flickr API. It uses the HTTP
stream wrapper.

Example 5-28. Flickr API with HTTP stream wrapper

;;22E = file_get_contents(

y 'http://api.flickr.com/services/feeds/photos_public.gne?format=json'
Don’t be fooled by what appears to be a traditional website URL. The
file_get_contents() function’s string argument is actually a stream identifier. The http
scheme prompts PHP to use the HTTP stream wrapper. The argument’s remainder is the
stream target. The stream target looks like a traditional website URL only because that’s

what the HTTP stream wrapper expects. This may not be true for other stream wrappers.
Note

Reread this paragraph several times until it becomes ingrained in your memory. Many
PHP developers don’t understand that a traditional URL is actually a PHP stream wrapper
identifier in disguise.

The file:// stream wrapper

We use the file_get_contents(), fopen(), fwrite(), and fclose() methods to read
from and write to the filesystem. We rarely consider these functions as using PHP streams,
because the default PHP stream wrapper is file://. We’re using PHP streams and we
don’t even realize it! Example 5-29 creates a stream to/from the /etc/hosts file using the
file:// stream wrapper.

Example 5-29. Implicit file:// stream wrapper

http://php.net/manual/wrappers.php

<?php

$handle = fopen('/etc/hosts', 'rb');

while (feof($handle) !== true) {
echo fgets($handle);

3
fclose($handle);

Example 5-30 accomplishes the same task. This example, however, explicitly specifies the
file:// stream wrapper in the stream identifier.

Example 5-30. Explicit file:// stream wrapper

<?php
$handle = fopen('file:///etc/hosts', 'rb'");
while (feof($handle) !== true) {

echo fgets($handle);

3
fclose($handle);

We usually omit the file:// stream wrapper because PHP assumes this is the default
value.

The php:// stream wrapper

PHP developers who write command-line scripts will appreciate the php:// stream
wrapper. This stream wrapper communicates with the PHP script’s standard input,
standard output, and standard error file descriptors. You can open, read from, and write to
these four streams with PHP’s filesystem functions:

php://stdin

This read-only PHP stream exposes data provided via standard input. For example, a
PHP script can use this stream to receive information piped into the script on the
command line.

php://stdout

This PHP stream lets you write data to the current output buffer. This stream is write-
only and cannot be read or seeked.

php://memory

This PHP stream lets you read and write data to system memory. The downside to this
PHP stream is that available memory is finite. It’s safer to use the php://temp stream
instead.

php://temp

This PHP stream acts just like php://memory, except that when available memory is
gone, PHP instead writes to a temporary file.

Other stream wrappers

PHP and PHP extensions provide many other stream wrappers. For example, there are
stream wrappers to communicate with ZIP and TAR archives, FTP servers, data-
compression libraries, Amazon APIs, and more. A popular misconception is that the
fopen(), fgets(), fputs(), feof(), fclose(), and other PHP filesystem functions are for
filesystem files only. This is not true. PHP’s filesystem functions work with all stream
wrappers that support them. For example, we can use fopen(), fgets(), fputs(), feof(),
and fclose() to interact with a ZIP archive, Amazon S3 (with the custom S3 wrapper), or

http://bit.ly/streamwrap

even Dropbox (with the custom Dropbox wrapper).
Note

Learn more about the php:// stream wrapper at PHP.net.

Custom stream wrappers

It’s also possible to write your own custom PHP stream wrapper. PHP provides an
example streamwrapper class that demonstrates how to write a custom stream wrapper
that supports some or all of the PHP filesystem functions. Learn more about custom PHP
stream wrappers at:

m http://php.net/manual/class.streamwrapper.ph
m http://php.net/manual/stream.streamwrapper.example-1.ph

http://www.dropbox-php.com/
http://bit.ly/s-wrapper
http://php.net/manual/class.streamwrapper.php
http://php.net/manual/stream.streamwrapper.example-1.php

Stream Context

Some PHP streams accept an optional set of parameters, or a stream context, to customize
the stream’s behavior. Different stream wrappers expect different context parameters. You
create a stream context with the stream_context_create() function. The returned
context object can be passed into and used by most PHP filesystem and stream functions.

For example, did you know that you can send an HTTP POST request with the
file_get_contents() function? You can with a stream context object (Example 5-31).

Example 5-31. Stream context

<?php
$requestBody = '{"username":"josh"}';
$context = stream_context_create(array(
'http' => array(
'method' => 'POST',
"header' => "Content-Type: application/json;charset=utf-8;\r\n" .
"Content-Length: " . mb_strlen($requestBody),
'content' => $requestBody

)
));

$response = file_get_contents('https://my-api.com/users', false, $context);

The stream context is an associative array whose topmost array key is the stream wrapper
name. The stream context’s array values are specific to each stream wrapper. Consult the
appropriate PHP stream wrapper’s documentation for a list of valid settings.

Stream Filters

So far we’ve talked about opening, reading from, and writing to PHP streams. However,
the true power of PHP streams is filtering, transforming, adding, or removing stream data
in transit. Imagine opening a stream to a Markdown file and converting it into HTML
automatically as you read the file into memory.

Note

PHP provides several built-in stream filters, including string.rot13, string. toupper,
string.tolower, and string.strip_tags. These are not useful. Use custom stream
filters, instead.

You attach a filter to an existing stream with the stream_filter_append() function.
Example 5-32 uses the string. toupper filter to read data from a text file on the local
filesystem and convert its content to uppercase characters. I don’t encourage using this
particular stream filter. I’'m only demonstrating how to attach a filter to a stream.

Example 5-32. Stream filter string.toupper example

<?php
$handle = fopen('data.txt', 'rb');
stream_filter_append($handle, 'string.toupper');
while(feof ($handle) !== true) {
echo fgets($handle); // <-- Outputs all uppercase characters

}
fclose($handle);

You can also attach a filter to a stream with the php://filter stream wrapper. This only
works if you attach the filter when you first open the PHP stream. Example 5-33
accomplishes the same task as the previous example, except it attaches the filter with
php://filter strategy.

Example 5-33. Stream filter string.toupper example with php://filter

<?php
$handle = fopen('php://filter/read=string.toupper/resource=data.txt', 'rb');
while(feof($handle) !== true) {

echo fgets($handle); // <-- Outputs all uppercase characters

}
fclose($handle);

Pay close attention to the fopen() function’s first argument. The argument is a stream
identifier that uses the php:// stream wrapper. This is the stream identifier target:

filter/read=<filter_name>/resource=<scheme>://<target>

This strategy may appear superfluous compared to the stream_filter_append() function.
However, some PHP filesystem functions like file() or fpassthru() do not give you the
opportunity to attach filters after the function is called. The php://filter stream wrapper
is the only way to attach stream filters with these functions.

Let’s look at a more realistic stream filter example. At New Media Campaigns, our in-
house content management system archives nginx access logs to rsync.net. We keep one
log file per day, and each log file is compressed with bzip2. Log filenames use the format
YYYY-MM-DD.log.bz2. T was asked to extract access data for a specific domain for the
past 30 days. This seems like a lot of work, right? I need to calculate a date range,
determine log filenames, FTP into rsync.net, download files, decompress files, iterate each

http://www.newmediacampaigns.com
http://rsync.net

file line-by-line, extract appropriate lines, and write access data to an output destination.
Believe it or not, PHP streams let me do all of this in fewer than 20 lines of code

(Example 5-34).
Example 5-34. Iterate bzipped log files with DateTime and stream filters

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

<?php
$dateStart = new \DateTime();
$dateInterval = \DateInterval::createFromDateString('-1 day');
$datePeriod = new \DatePeriod($dateStart, $datelInterval, 30);
foreach ($datePeriod as $date) {
$file = 'sftp://USER:PASS@rsync.net/' . $date->format('Y-m-d') . '.log.bz2';
if (file_exists($file)) {
$handle = fopen($file, 'rb');
stream_filter_append($handle, 'bzip2.decompress');
while (feof($handle) !== true) {
$line = fgets($handle);
if (strpos($line, 'www.example.com') !== false) {
fwrite(STDOUT, $line);
}

3
fclose($handle);

}

In Example 5-34:

Lines 2—4 create a DatePeriod instance that spans the past 30 days using an inverted,
one-day interval.

Line 6 creates a log filename using the DateTime instance returned by each
DatePeriod iteration.

Lines 8-9 open a stream resource to the log file on rsync.net with the SFTP stream
wrapper. We decompress the bzip2 log file on the fly by appending the
bzip2.decompress stream filter to the log file stream resource.

Lines 10-15 iterate the decompressed log file contents using PHP’s standard
filesystem functions.

Lines 12—14 inspect each line for a given domain. If the domain is present, the line is
written to standard output.

The bzip2.decompress stream filter lets us automatically decompress log files as we read
them. The alternative solution is manually decompressing log files into a temporary
directory with shell _exec() or bzdecompress(), iterating the decompressed files, and
cleaning up the decompressed files when our PHP script completes. PHP streams are a
simpler, more elegant solution.

Custom Stream Filters

It’s possible to write custom stream filters, too. In fact, custom stream filters are the
primary reason you use stream filters. Custom stream filters are PHP classes that extend
the php user filter built-in class. The custom stream class must implement the
filter(), onCreate(), and onClose() methods. You must register custom stream filters

with the stream_filter_register() function.

http://php.net/manual/en/class.php-user-filter.php

Here Comes the Bucket Brigade!

A PHP stream subdivides data into sequential buckets, and each bucket contains a fixed
amount of stream data (e.g., 4,096 bytes). If we use our pipe metaphor, water is carried
from origin to destination in individual buckets that float through the pipe and pass
through stream filters. Each stream filter receives and manipulates one or more buckets at
a time. The bucket or buckets received by a filter at any given time is called a bucket
brigade.

Let’s create a custom stream filter that censors dirty words from a stream as its data is read
into memory (Example 5-35). First, we must create a PHP class that extends
php_user_filter. This class must implement a filter () method that acts as a sieve
through which stream buckets pass. It receives a bucket brigade from upstream, it
manipulates each bucket object in the brigade, and it sends each bucket into the
downstream bucket brigade toward the stream destination. This is our DirtywWordsFilter
custom stream class.

Tip
Each bucket object in a bucket brigade has two public properties: data and datalen.
These are the bucket content and content length, respectively.

Example 5-35. Custom DirtyWordsFilter stream filter

class DirtyWordsFilter extends php_user_filter
{
/**
* @param resource $in Incoming bucket brigade
* @param resource $out Outgoing bucket brigade
* @param int $consumed Number of bytes consumed
* @param bool $closing Last bucket brigade in stream?
*/
public function filter($in, $out, &$consumed, $closing)
{
$words = array('grime', 'dirt', 'grease');
$wordData = array();
foreach ($words as $word) {
$replacement = array fill(0, mb_strlen($word), '*');
$wordData[$word] = implode('', $replacement);
}
$bad = array_keys($wordData);
$good = array_values($wordData);

// Iterate each bucket from incoming bucket brigade
while ($bucket = stream_bucket_make writeable($in)) {
// Censor dirty words in bucket data
$bucket->data = str_replace($bad, $good, $bucket->data);

// Increment total data consumed
$consumed += $bucket->datalen;

// Send bucket to downstream brigade
stream_bucket_append($out, $bucket);

}

return PSFS_PASS_ON,;
}

The filter () method receives, manipulates, and forwards buckets of stream data. Inside
the filter () function, we iterate the buckets in the $in bucket brigade and replace dirty
words with their censored values. This method returns the PSFS_PASS_ON constant to

indicate successful operation. This method accepts four arguments:

$in
A brigade of one or more upstream buckets that contains stream data from the stream
origin

$out
A brigade of one or more buckets that continue downstream toward the stream
destination

&$consumed

The total number of stream bytes consumed by our custom filter

$closing
Is the filter () method receiving the last available bucket brigade?

We must register the DirtWordsFilter custom stream filter with the
stream_filter_register () function (Example 5-36).

Example 5-36. Register custom DirtyWordsFilter stream filter
<?php
stream_filter_register('dirty_words_filter', 'DirtyWordsFilter');
The first argument is the filter name that identifies our custom filter. The second argument

is our custom filter’s class name. We can now use our custom stream filter (Example 5-
37).

Example 5-37. Use DirtyWordsFilter stream filter

<?php
$handle = fopen('data.txt', 'rb'");
stream_filter_append($handle, 'dirty words_filter');
while (feof($handle) !== true) {

echo fgets($handle); // <-- Outputs censored text

iclose($handle);
Tip
If you want to learn more about PHP streams, watch Elizabeth Smith’s Nomad PHP

presentation. It’s not free, but it’s worth the admission price. You can also read more about
PHP streams in the PHP documentation.

http://bit.ly/nomad-php
http://php.net/manual/en/book.stream.php

Errors and Exceptions

Things go wrong. It’s a fact of life. No matter how hard we concentrate or how much time
we pour into a project, there are always bugs and errors that we overlook. For example,
have you ever used a PHP application that displays only a blank white page? Have you
ever visited a PHP website that spits out an indecipherable stack trace? These unfortunate
situations indicate an application error or uncaught exception.

Errors and exceptions are wonderful tools that help you anticipate the unexpected. They
help you catch problems and fail gracefully. Errors and exceptions, however, are
confusingly similar. They both announce when something is wrong, they both provide an
error message, and they both have an error type. Errors, however, are older than
exceptions. They are a procedural device that halts script execution and, if possible,
delegates error handling to a global error handler function. Some errors are unrecoverable.
Today we largely rely on exceptions instead of errors, but we must still maintain a
defensive posture; many older PHP functions (e.g., fopen()) still trigger errors when
things go wrong.

Note

It’s possible to circumvent PHP errors with the @ prefix in front of a PHP function that
might trigger an error (e.g., @fopen()). This is an antipattern. I recommend you change
your code to avoid these situations.

Exceptions are an object-oriented evolution of PHP’s error handling system. They are
instantiated, thrown, and caught. Exceptions are a more flexible device that anticipates and
handles problems in situ without halting script execution. Exceptions are also an offensive
and defensive device. We must anticipate exceptions thrown by third-party vendor code
with try {3} catch {3} blocks. We can also act offensively by throwing an exception; this
delegates exception handling to other developers when we don’t know how to handle a
given situation on our own.

Exceptions

An exception is an object of class Exception that is thrown when you encounter an
irreparable situation from which you cannot recover (e.g., a remote API is unresponsive, a
database query fails, or a precondition is not satisfied). I call these exceptional situations.
Exceptions are used offensively to delegate responsibility when a problem occurs, and
they are used defensively to anticipate and mitigate potential problems.

You instantiate an Exception object with the new keyword just like any other PHP object.
An Exception object has two primary properties: a message and a numeric code. The
message describes what went wrong. The numeric code is optional and can be used to
provide context for a given exception. You provide the message and optional numeric
code when you instantiate an Exception object like this:

<?php

$exception = new Exception('Danger, Will Robinson!', 100);
You can inspect an Exception object with its getCode () and getMessage() public
instance methods like this:

<?php
$code = $exception->getCode(); // 100
$message = $exception->getMessage(); // 'Danger..'

Throw exceptions

You can assign an exception to a variable upon instantiation, but exceptions are meant to
be thrown. If you write code for other developers, you must act offensively in exceptional
situations, meaning you throw exceptions when your code encounters exceptional
situations or cannot otherwise operate under current conditions. PHP component and
framework authors, in particular, cannot presume how to handle exceptional situations;
instead, they throw an exception and delegate responsibility to the developer using their
code.

When an exception is thrown, code execution is immediately halted and subsequent PHP
code is not run. To throw an exception, use the throw keyword followed by the Exception
instance:

<?php
throw new Exception('Something went wrong. Time for lunch!');

You can only throw an instance of class Exception (or a subclass of Exception). PHP
provides these built-in Exception subclasses:

® Exception
B ErrorException

The Standard PHP Library (SPL) supplements PHP’s built-in exceptions with these
additional Exception subclasses:

B | ogicException

BadFunctionCallException

® BadMethodCallException

DomainException

http://php.net/manual/class.exception.php
http://php.net/manual/class.errorexception.php
http://php.net/manual/book.spl.php
http://php.net/manual/class.logicexception.php
http://php.net/manual/class.badfunctioncallexception.php
http://php.net/manual/class.badmethodcallexception.php
http://php.net/manual/class.domainexception.php

InvalidArgumentException
LengthException
OutOfRangeException

B RuntimeException

OutOfBoundsException
OverflowException
RangeException
UnderflowException
UnexpectedValueException

Each subclass exists for a certain situation and provides context for why an exception is
thrown. For example, if a PHP component method expects a string argument with at least
five characters but is given a string with only two characters, it can throw an
InvalidArgumentException instance. Because PHP provides an exception class, you can
easily extend the Exception class to create your own custom exception subclasses with
their own custom properties and methods. Which exception subclass you use is subjective.
Choose or create the exception subclass that best answers why am I throwing this
exception?, and document your choice.

Catch exceptions

Thrown exceptions should be caught and handled gracefully. You must act defensively
when using PHP components and frameworks written by other developers. Good PHP
components and frameworks provide documentation that explains when and under what
circumstances they throw exceptions. It is your responsibility to anticipate, catch, and
handle these exceptions. Uncaught exceptions terminate your PHP application with a fatal
error and, worse, can expose sensitive debugging details to your PHP application’s users.
We’ve all seen this. It is very important that you catch exceptions and handle them
gracefully.

Surround code that might throw an exception with a try/catch block to intercept and
handle potential exceptions. Example 5-38 demonstrates a failed PDO database connection
that throws a PDOException object. The exception is caught by the catch block, and we
show a friendly error message instead of an ugly stack trace.

Example 5-38. Catch thrown exception

<?php
try {

$pdo = new PDO('mysql://host=wrong_host;dbname=wrong_name');
} catch (PDOException $e) {

// Inspect the exception for logging

$code = $e->getCode();

$message = $e->getMessage();

// Display a nice message to the user
echo 'Something went wrong. Check back soon, please.';
exit;
}
You can use multiple catch blocks to intercept multiple types of exceptions. This is useful
if you need to act differently based on the type of exception thrown. You can also use a
finally block to always run a block of code after you catch any exception (Example 5-

39).

http://php.net/manual/class.invalidargumentexception.php
http://php.net/manual/class.lengthexception.php
http://php.net/manual/class.outofrangeexception.php
http://php.net/manual/class.runtimeexception.php
http://php.net/manual/class.outofboundsexception.php
http://php.net/manual/class.overflowexception.php
http://php.net/manual/class.rangeexception.php
http://php.net/manual/class.underflowexception.php
http://php.net/manual/class.unexpectedvalueexception.php

Example 5-39. Catch multiple thrown exceptions

<?php
try {
throw new Exception('Not a PDO exception');
$pdo = new PDO('mysqgl://host=wrong_host;dbname=wrong_name');
} catch (PDOException $e) {
// Handle PDO exception
echo "Caught PDO exception";
} catch (Exception $e) {
// Handle all other exceptions
echo "Caught generic exception";
} finally {
// Always do this
echo "Always do this";

}
In Example 5-39, the first catch block intercepts PDOException exceptions. All other

exceptions are intercepted by the second catch block. Only one catch block is run for each
caught exception. If PHP does not find an applicable catch block, the exception continues

to bubble upward until the PHP script ultimately terminates with a fatal error.

Exception Handlers

You may be thinking how am I supposed to catch every possible exception? And that’s a
good question. PHP lets you register a global exception handler to catch otherwise
uncaught exceptions. You should always set a global exception handler. An exception
handler is a final safety net that lets you show an appropriate error message to your PHP
application’s users if you otherwise fail to catch and handle an exception. For my own
PHP applications, I use exception handlers to show debugging information during
development and a user-friendly message during production.

An exception handler is anything that is callable. I prefer to use an anonymous function,
but you can also use a class method. Whatever you choose, it must accept one argument of
class Exception. You register your exception handler with the set_exception_handler ()
function like this:

<?php
set_exception_handler(function (Exception $e) {
// Handle and log exception

3
Tip
I strongly recommend you log exceptions inside your exception handler. Your logger can
alert you when things go wrong, and it saves exception details for later review.

In some situations, you may need to replace an existing exception handler with your own
exception handler. PHP etiquette suggests you restore the existing exception handler when
your code is finished. You can restore a previous exception handler with the
restore_exception_handler () function (Example 5-40).

Example 5-40. Set global exception handler

<?php

// Register your exception handler

set_exception_handler(function (Exception $e) {
// Handle and log exception

13K

// Your code goes here..

// Restore previous exception handler
restore_exception_handler();

Errors

PHP provides error-reporting functions in addition to exceptions. This confuses many PHP
developers. PHP can trigger different types of errors, including fatal errors, runtime errors,
compile-time errors, startup errors, and (more rarely) user-triggered errors. You’ll most
often encounter PHP errors caused by syntax mistakes or uncaught exceptions.

The difference between errors and exceptions is subtle. Errors are often triggered when a
PHP script cannot fundamentally run as expected for whatever reason (e.g., there is a
syntax mistake). It is also possible to trigger your own errors with the trigger_error()
function and handle them with a custom error handler, but it is better to use exceptions
when writing userland code. Unlike errors, PHP exceptions can be thrown and caught at
any level of your PHP application. Exceptions provide more contextual information than
PHP errors. And you can extend the topmost Exception class with your own custom
exception subclasses. Exceptions and a good logger like Monolog are a far more versatile
solution than PHP errors. However, modern PHP developers must anticipate and handle
both PHP errors and PHP exceptions.

You can instruct PHP which errors to report, and which to ignore, with the
error_reporting() function or the error_reporting directive in your php.ini file. Both
accept named E_* constants that determine which errors are reported and which are
ignored.

Note

Learn more about PHP error reporting at http://php.net/manual/function.error-
reporting.php.

PHP error reporting can be as sensitive or stoic as you tell it to be. In development, I
prefer PHP to obnoxiously display and log all error messages. In production, I instruct
PHP to log most error messages but not display them. Whatever you do, you should
always follow these four rules:

Always turn on error reporting.

Display errors during development.

Do not display errors during production.

Log errors during development and production.

Here are my error-reporting php.ini settings for development:
, Display errors

display_startup_errors = 0On
display_errors = 0On

;, Report all errors
error_reporting = -1

; Turn on error logging
log_errors = On

Here are my error-reporting php.ini settings for production:
; DO NOT display errors
display_startup_errors = Off
display_errors = Off

; Report all errors EXCEPT notices

http://php.net/manual/function.error-reporting.php

error_reporting = E_ALL & ~E_NOTICE

;, Turn on error logging
log_errors = On

The main difference is that I display errors in my PHP script output during development. I
do not display errors in my PHP script output in production. However, I log errors in both

environments. If [have a bug in my production PHP application (and this never
happens...cough), I can review my PHP log file for details.

Error Handlers

Just as you can with exception handlers, you can set a global error handler to intercept and
handle PHP errors with your own logic. The error handler lets you fail gracefully by
cleaning up loose ends before terminating the PHP script.

An error handler, like an exception handler, is anything that is callable (e.g., a function or
class method). It is your responsibility to die() or exit () inside of your error handler. If
you don’t manually terminate the PHP script inside your error handler, the PHP script will
continue executing from where the error occurred. You register your global error handler
with the set_error_handler(), and you pass it an argument that is callable:

<?php
set_error_handler(function ($errno, $errstr, $errfile, $errline) {
// Handle error
3
Your error-handler callable receives five arguments:

$errno

The error level (maps to a PHP E_* constant).

$errstr

The error message.

$errfile

The filename in which the error occurred.

$errline

The file line number on which the error occurred.

$errcontext

An array that points to the active symbol table when the error occurred. This is optional
and is only useful for advanced debugging purposes. I usually ignore this argument.

There’s one important caveat that you absolutely must know when using a custom error
handler. PHP will send all errors to your error handler, even those that are excluded by
your current error-reporting setting. It is your responsibility to inspect each error code (the
first argument) and act appropriately. You can instruct your error handler to only respond
to a subset of error types with a second argument to the set_error_handler () function;
this argument is a bitwise mask of E_* constants (e.g., E_ALL | E_STRICT).

This is as good a time as any to segue into a common practice that I and many other PHP
developers use in our PHP applications. I like to convert PHP errors into ErrorException
objects. The ErrorException class is a subclass of Exception, and it comes built into
PHP. This lets me convert PHP errors into exceptions and funnel them into my existing
exception handling workflow.

Note

Not all errors can be converted into exceptions! These errors include E_ERROR, E_PARSE,
E_CORE_ERROR, E_CORE_WARNING, E_COMPILE_ERROR, E_COMPILE_WARNING, and most of
E_STRICT.

Converting PHP errors is a bit tricky, and we must be careful to convert only the errors
that satisfy the error_reporting setting in our php.ini file. Here’s an example error-
handler function that converts PHP errors into ErrorException objects:

<?php
set_error_handler(function ($errno, $errstr, $errfile, $errline) {
if (!(error_reporting() & $errno)) {
// Error 1s not specified in the error_reporting
// setting, so we ignore 1it.
return;

}
throw new \ErrorException($errstr, $errno, 0, $errfile, $errline);
1)
This error-handler function converts the appropriate PHP errors into ErrorException
objects and throws them into our existing exception-handling system. It is considered
good etiquette to restore the previous error handler (if any) after your own code is done.
You can restore the previous handler with the restore_error_handler () function

(Example 5-41).

Example 5-41. Set global error handler

<?php
// Register error handler
set_error_handler(function ($errno, $errstr, $errfile, $errline) {
if (!(error_reporting() & $errno)) {
// Error is not specified in the error_reporting
// setting, so we ignore it.
return;

}

throw new ErrorException($errstr, $errno, 0, $errfile, $errline);

1)
// Your code goes here..

// Restore previous error handler
restore_error_handler();

Errors and Exceptions During Development

We know we should display errors during development. But PHP’s default error messages
are ugly and often injected into the normal PHP script output, resulting in a hard-to-read
mess. Use Whoops instead. Whoops is a modern PHP component that provides a well-
designed, easy-to-read diagnostics page for PHP errors and exceptions. Whoops, created
and maintained by Filipe Dobreira and Denis Sokolov, looks like Figure 5-1.

Oh no!

B A eree A M, pe] R
VLU b vormshias's sy g (91T bmempr L

St nry et (1 s LV S s |t T

Figure 5-1. Whoops screenshot

The Whoops diagnostic screen is light years better than the default PHP error and
exception output.

Whoops is easy to implement, too. Update your composer.json file as shown below, and
run either composer install or composer update:

{
"require": {
"filp/whoops": "~1.0"
}

}

Next, register the Whoops error and exception handlers in your PHP application’s
bootstrap file, as shown in Example 5-42.

Example 5-42. Register the Whoops handler

<?php
// Use composer autoloader
require 'path/to/vendor/autoload.php';

// Setup Whoops error and exception handlers
$whoops = new \Whoops\Run;
$whoops->pushHandler (new \Whoops\Handler\PrettyPageHandler);
$whoops->register();
That’s it. When your script triggers a PHP error or when your application does not catch

an exception, you’ll see the Whoops diagnostic screen.

Example 5-42 uses the Whoops PrettyPageHandler handler, which creates the diagnostic
screen shown in Figure 5-1. There are other Whoops handlers, too, including a plain-text
handler, a callback handler, a JSON response handler, an XML response handler, and (if
your pointy-haired boss likes to say the word enterprise a lot) a SOAP response handler. I

https://github.com/filp/whoops
https://github.com/filp
https://github.com/denis-sokolov

use Whoops during development for each application I develop.

Production

We know we should log errors in production. PHP provides the error_log() function to
write messages to the filesystem, to syslog, or into an email. But there’s a better option,
and it’s called Monolog. Monolog is a very good PHP component that specializes in one
thing — logging. It’s easy to integrate into your PHP applications with Composer.

First, require the monolog/monolog package in your composer.json file:
{

"require": {
"monolog/monolog": "~1.11"
}

}

Next, install the component with either composer install or composer update, and add
the code from Example 5-43 to the top of your PHP application’s bootstrap file.

Example 5-43. Use Monolog for development logging

<?php
// Use Composer autoloader
require 'path/to/vendor/autoload.php';

// Import Monolog namespaces
use Monolog\Logger;
use Monolog\Handler\StreamHandler;

// Setup Monolog logger
$log = new Logger('my-app-name');
$log->pushHandler (new StreamHandler ('path/to/your.log', Logger::WARNING));
That’s it. You now have a Monolog logger that will write all logged messages of type

Logger: :WARNING or higher to the path/to/your.log file.

Monolog is very extensible. You can define multiple handlers that only handle specific log
levels. For example, we can push a second Monolog handler that emails an administrator
for critical, alert, or emergency errors. We’ll need the SwiftMailer PHP component, so
let’s add that to the composer.json file and run composer update:

{
"require": {
"monolog/monolog": "~1.11",
"swiftmailer/swiftmailer": "~5.3"
}
}

Next, we’ll modify our code and add a new Monolog handler that accepts a SwiftMailer
instance to send email messages (Example 5-44).

Example 5-44. Use Monolog for production logging

<?php
// Use Composer autoloader
require 'vendor/autoload.php';

// Import Monolog namespaces

use Monolog\Logger;

use Monolog\Handler\StreamHandler;

use Monolog\Handler\SwiftMailerHandler;

date_default_timezone_set('America/New_York');
// Setup Monolog and basic handler

$log = new Logger('my-app-name');
$log->pushHandler(new StreamHandler('logs/production.log', Logger::WARNING));

https://github.com/Seldaek/monolog

// Add SwiftMailer handler for critical errors
$transport = \Swift_SmtpTransport::newInstance('smtp.example.com', 587)
->setUsername('USERNAME ")
->setPassword('PASSWORD');
$mailer = \Swift_Mailer::newInstance($transport);
$message = \Swift_Message::newInstance()
->setSubject('Website error!')
->setFrom(array('daemon@example.com' => 'John Doe'))
->setTo(array('admin@example.com'));
$log->pushHandler (new SwiftMailerHandler($mailer, $message, Logger::CRITICAL));

// Use logger

$log->critical('The server is on fire!'");
Now when a critical, alert, or emergency message is logged, Monolog emails the logged
message using the SwiftMailer $mailer and $message objects. The email body is the
logged message text.

Part II1. Deployment, Testing, and Tuning

Chapter 6. Hosting

So you have a PHP application. Congratulations! However, it doesn’t do anyone any good
unless your users can, you know, use it. You need to host your application on a server and
make it accessible to its intended audience. Generally speaking, there are four ways to
host PHP applications: shared servers, virtual private servers, dedicated servers, and
platforms as a service. Each has its unique benefits and is suitable for different types of
applications and budgets.

There are also many web hosting companies, and it can be overwhelming if you are brand
new to the web hosting landscape. Some hosting companies provide only shared servers.
Other companies provide a mix of shared servers, virtual private servers, and dedicated
servers. This chapter will focus less on the companies themselves and more on hosting
options.

Shared Server

A shared server is the most affordable hosting option and costs $1-10/month. You should
avoid shared hosting plans. This is not a commentary on shared hosting companies’
quality of service or customer support. There are many good shared hosting companies.
Simply put, shared hosting options are not developer-friendly.

A shared server, as its name implies, means that you share server resources with other
people. If you purchase a shared hosting plan, your hosting account lives on the same
physical machine as many other customers’. If your particular machine has 2 Gb of
memory, your PHP application might receive only a fraction of that memory, depending
on how many other customer accounts live on the same machine. If another account on the
same machine runs a poorly coded script, it can negatively affect your own application.
Some shared hosting companies oversell shared servers, and your PHP application
constantly battles for system resources on a crowded machine.

Shared servers are also very difficult to customize. For example, your application may
need Memcached or Redis for a fast, in-memory cache. You may want to install
Elasticsearch to add search functionality to your application. Unfortunately, shared server
software is difficult — if not impossible — to customize. Your applications suffer as a
result.

Shared servers rarely provide remote SSH access. Instead, you’re often handicapped with
(S)FTP access only. This limitation severely restricts your ability to automate PHP
application deployment.

If your budget is super-small or your needs extremely modest, a shared server may be
sufficient. However, if you’re building a business website or a moderately popular PHP
application, you’re better off using a virtual private server, a dedicated server, or a PaaS.

http://memcached.org
http://redis.io
http://www.elasticsearch.org

Virtual Private Server

A virtual private server (VPS) looks, feels, and acts like a bare-metal server. But it’s not a
bare-metal server. A VPS is a collection of system resources that are distributed across one
or many physical machines. A VPS still has its own filesystem, root user, system
processes, and IP address. A VPS is allocated a specific amount of memory, CPU, and
bandwidth — and they’re all yours.

VPSs provide more system resources than a shared server. A VPS provides root SSH
access. And a VPS does not limit what software you can install. Great power, though,
comes with great responsibility. VPSs give you root access to a virgin operating system. It
is your responsibility to configure and secure the operating system for your PHP
application. VPSs are ideal for most PHP applications. They provide sufficient system
resources (e.g., CPU, memory, and disk space) that scale up or down on demand. A VPS
costs $10-100/month based on the amount of system resources needed by your PHP
application. If your PHP application becomes super-popular (hundreds of thousands of
visitors a month) and a VPS becomes too costly, you might consider upgrading to a
dedicated server.

Tip
I almost always prefer VPSs for their balance of cost, features, and flexibility. Linode, my
favorite hosting company, provides VPS and dedicated hosting plans. Linode isn’t the

cheapest option, but my personal experience shows Linode is fast and stable, and it comes
with a vast treasure of helpful tutorials.

https://linode.com

Dedicated Server

A dedicated server is a rack-mounted machine that your hosting company installs, runs,
and maintains on your behalf. You configure dedicated servers to your exact
specifications. Dedicated servers are real machines that must be transported, installed, and
monitored. They cannot be set up and configured as quickly as VPSs. That being said,
dedicated servers provide the ultimate performance for demanding PHP applications.

Dedicated servers act much like VPSs. You get root SSH access to a virgin operating
system, and you must secure and configure the operating system for your PHP application.
The benefit of a dedicated server is cost-effectiveness. Eventually a VPS becomes too
costly as you consume more system resources. You save money by investing in your own
infrastructure.

A dedicated server costs hundreds of dollars per month depending on the server
specifications. It can be unmanaged (i.e., you manage the server yourself) or managed
(i.e., you pay extra for your hosting company to manage the server).

PaaS

Platforms as a service (PaaS) are a quick way to launch your PHP application, and —
unlike with a virtual private or dedicated server — you don’t have to manage a PaaS. All
you have to do is log into your PaaS provider’s control panel and click a few buttons.
Some Paa$S providers have a command-line or HTTP API with which you can deploy and
manage your hosted PHP applications. Popular PHP PaaS providers include:

AppFog
AWS Elastic Beanstalk

Engine Yard
Fortrabbit

Google App Engine
Heroku
Microsoft Azure

Pagoda Box
Red Hat OpenShift
Zend Developer Cloud

PaaS pricing varies by provider but is similar to virtual private servers: $10—100/month.
You pay for the system resources allocated to your PHP application. System resources can
be scaled up or down on demand. I recommend PaaS hosting plans for developers who do
not want to manage their own servers.

https://appfog.com/
http://aws.amazon.com/elasticbeanstalk/
https://www.engineyard.com/products/cloud
http://fortrabbit.com/
http://bit.ly/g-app-engine
https://devcenter.heroku.com/categories/php
http://www.windowsazure.com/
https://pagodabox.com/
http://openshift.com/
http://bit.ly/z-dev-cloud

Choose a Hosting Plan

Choose only what you need when you need it. You can always scale your hosting
infrastructure up or down when necessary. For small PHP applications or prototypes, a
Paa$S provider like Engine Yard or Heroku is the best and quickest solution. If you prefer
more control over your server configuration, get a VPS. If your application becomes
super-popular and your VPS is buckling beneath the weight of millions of visitors
(congratulations, by the way!), get a dedicated server. Whichever hosting option you
choose, make sure it provides the latest stable PHP version and extensions required by
your PHP application.

Chapter 7. Provisioning

After you choose a host for your application, it’s time to configure and provision the
server for your PHP application. I’ll be honest — provisioning a server is an art, not a
science. How you provision your server depends entirely on your application’s needs.

Note

If you use a PaaS, your server infrastructure is managed by the PaaS provider. All you
have to do is follow the provider’s instructions to move your PHP application onto their
platform, and you’re ready to go.

If you don’t use a PaaS, you must provision either a VPS or dedicated server to run your
PHP application. Provisioning a server is not as hard as it sounds (stop laughing), but it
does require familiarity with the command line. If the command line is alien to you,
you’re better off with a PaaS like Engine Yard or Heroku.

I don’t consider myself a system administrator. However, basic system adminstration is an
incredibly valuable skill for application developers that enables more flexible and robust
application development. In this chapter, I’ll share my system administration knowledge
so you can feel comfortable opening a terminal to provision a server for your PHP
application. Afterward, I’ll suggest a few additional resources for you to continue
improving your system administration skills.

Note

In this chapter, I assume you know how to edit a text file using a command-line editor like
nano or vim (these are available on most Linux distributions). Otherwise, you’ll need an
alternative method of accessing and editing files on your server.

http://www.nano-editor.org
http://www.vim.org

Our Goal

First, we need to acquire a virtual private or dedicated server. Next, we need to install a
web server to receive HTTP requests. Finally, we need to set up and manage a group of
PHP processes to handle PHP requests; these processes must communicate with our web
server.

Several years ago, it was common practice to install the Apache web server and the
Apache mod_php module. The Apache web server spawns a unique child process to handle
each HTTP request. The Apache mod_php module embeds a unique PHP interpreter inside
each spawned child process — even processes that serve only static assets like JavaScript,
images, or stylesheets. This is a lot of overhead that wastes system resources. I see fewer
and fewer PHP developers use Apache nowadays because there are more efficient
solutions.

Today, we use the nginx web server, which sits in front of (and forwards PHP requests to)
a collection of PHP-FPM processes. That’s the solution I'll demonstrate in this chapter.

http://nginx.org/

Server Setup

First, let’s set up a virtual private server (VPS). I absolutely adore Linode. It isn’t the
cheapest VPS provider, but it’s one of the most reliable. Head over to Linode’s website (or
your preferred vendor) and purchase a new VPS. Your vendor will ask you to choose a
Linux distribution and a root password for your new server.

Tip
Many VPS providers, like Linode and Digital Ocean, bill by the hour. This means you can
fire up and play with a VPS at virtually zero cost.

http://linode.com/
http://linode.com/
https://www.digitalocean.com

First Login

The first thing you should do is log in to your new server. Let’s do that now. Open a
terminal on your local machine and ssh into your server. Be sure you swap in your own
machine’s IP address:

ssh root@123.456.78.90
You may be asked to confirm the authenticity of your new server. Type yes and press
Enter:

The authenticity of host '123.456.78.90 (123.456.78.90)' can't be established.

RSA key fingerprint is 21:eb:37:f3:a5:d3:c0:77:47:c4:15:3d:3c:dc:3c:d1.
Are you sure you want to continue connecting (yes/no)?

Next, you’ll be prompted for the root user’s password. Type the password and press Enter:

root@123.456.78.90's password:

You are now logged into your new server!

Software Updates

The very next thing you should do is update your operating system’s software with these
commands.

Ubuntu
apt-get update;
apt-get upgrade;

Cent0S
yum update

These commands spit out a lot of information as software updates for your operating
system are downloaded and applied. This is an important first step because it ensures you
have the latest updates and security fixes for your operating system’s default software.

Nonroot User

Your new server is not secure. Here are a few good practices to harden your new server’s
security.

Create a nonroot user. You should log in to your server as this nonroot user in the future.
The root user has unlimited power on your server. It is God. It can run any command
without question. You should make it as difficult as possible to access your server as the
root user.

Ubuntu

Create a new nonroot user named deploy with the command in Example 7-1. Enter a user
password when prompted, and follow the remaining on-screen instructions.

Example 7-1. Create nonroot user on Ubuntu
adduser deploy

Next, assign the deploy user to the sudo group with this command:

usermod -a -G sudo deploy

This gives the deploy user sudo privileges (i.e., it can perform privileged tasks with
password authentication).

CentOS

Create a new nonroot user named deploy with this command:
adduser deploy

Give the deploy user a password with this command. Enter and confirm the new password
when prompted:

passwd deploy

Next, assign the deploy user to the wheel group with this command:

usermod -a -G wheel deploy

This gives the deploy user sudo privileges (i.e., it can perform privileged tasks with
password authentication).

SSH Key-Pair Authentication

On your local machine, you can log into your new server as the nonroot deploy user like
this:

ssh deploy@123.456.78.90

You’ll be prompted for the deploy user’s password, and then you’ll be logged in to the
server. We can make the login process more secure by disabling password authentication.
Password authentication is vulnerable to brute-force attacks in which bad guys try to guess
your password over and over in quick succession. Instead, we’ll use SSH key-pair
authentication when we ssh into our server.

Key-pair authentication is a complex subject. In basic terms, you create a pair of “keys”
on your local machine. One key is private (this stays on your local machine), and one key
is public (this goes on the remote server). They are called a key pair because messages
encrypted with the public key can be decrypted only by the related private key.

When you log in to the remote machine using SSH key-pair authentication, the remote
machine creates a random message, encrypts it with your public key, and sends it to your
local machine. Your local machine decrypts the message with your private key and returns
the decrypted message to the remote server. The remote server then validates the
decrypted message and grants you access to the server. This is a dramatic simplification,
but you get the point.

If you log in to your remote server from many different computers, you probably do not
want to use SSH key-pair authentication. This would require you to generate
public/private SSH key pairs for each local computer and copy each key pair’s public key
to your remote server. In this case, it’s probably preferable to continue using password
authentication with a secure password. However, if you are only accessing your remote
server from a single local computer (as many developers often do), SSH key-pair
authentication is the way to go. You can create an SSH key-pair on your local machine
with this command:

ssh-keygen

Follow the subsequent on-screen instructions and enter the requested information when
prompted. This command creates two files on your local machine: ~/.ssh/id_rsa.pub (your
public key) and ~/.ssh/id_rsa (your private key). The private key should stay on your local
computer and remain a secret. Your public key, however, must be copied onto your new
server. We can copy the public key with the scp (secure copy) command:

scp ~/.ssh/id_rsa.pub deploy@123.456.78.90:
Be sure you include the trailing : character! This command uploads your public key to the
deploy user’s home directory on your remote server. Next, log in to your remote server as

the deploy user. After you log in to your remote server, make sure the ~/.ssh directory
exists. If it does not exist, create the ~/.ssh directory with this command:

mkdir ~/.ssh

Next, create the ~/.ssh/authorized_keys file with this command:

touch ~/.ssh/authorized_keys

This file will contain a list of public keys that are allowed to log into this remote server.
Execute this command to append your recently uploaded public key to the
~/.ssh/authorized_keys file:

cat ~/id_rsa.pub >> ~/.ssh/authorized_keys

Finally, we need to modify a few directory and file permissions so that only the deploy
user can access its own ~/.ssh directory and read its own ~/.ssh/authorized_keys file.
Assign these permissions with these commands:

chown -R deploy:deploy ~/.ssh;
chmod 700 ~/.ssh;
chmod 600 ~/.ssh/authorized_keys;

We’re done! On your local machine, you should now be able to ssh into the remote server
without entering a password.

Note

You can only ssh into your remote server without a password from the local machine that
has your private key!

Disable Passwords and Root Login

Let’s make the remote server even more secure. We’ll disable password authentication for
all users, and we’ll prevent the root user from logging in — period. Remember, the root
user can do anything, so we want to make it as difficult as possible to access our server as
the root user.

Log in to the remote server as the deploy user and open the /etc/ssh/sshd_config file in
your preferred text editor. The is the SSH server software’s configuration file. Find the
PasswordAuthentication setting and change its value to no; uncomment this setting if
necessary. Find the PermitRootLogin setting and change its value to no; uncomment this
setting if necessary. Save your changes and restart the SSH server with this command to
apply your changes:

Ubuntu
sudo service ssh restart

CentoS

sudo systemctl restart sshd.service
You’re done. You’ve secured your server, and it’s time to install additional software to run
your PHP application. From this point forward, all instructions should be completed on the
remote server as the nonroot deploy user.

Note

Server security is an ongoing task that should be constantly monitored. I recommend you
implement a firewall in addition to my previous instructions. Ubuntu users can use UFW.
CentOS users can use iptables.

https://help.ubuntu.com/community/UFW
http://wiki.centos.org/HowTos/Network/IPTables

PHP-FPM

PHP-FPM (PHP FastCGI Process Manager) is software that manages a pool of related
PHP processes that receive and handle requests from a web server like nginx. The PHP-
FPM software creates one master process (usually run by the operating system’s root
user) that controls how and when HTTP requests are forwarded to one or more child
processes. The PHP-FPM master process also controls when child PHP processes are
created (to answer additional web application traffic) and destroyed (if they are too old or
no longer necessary). Each PHP-FPM pool process lives longer than a single HTTP
request, and it can handle 10, 50, 100, 500, or more HTTP requests.

http://php.net/manual/en/install.fpm.php

Install

The simplest way to install PHP-FPM is with your operating sytem’s native package

manager, as demonstrated by the following commands.

Tip

See Appendix A for a detailed PHP-FPM installation guide.

Ubuntu

sudo
sudo
sudo
sudo

apt-get install python-software-properties;
add-apt-repository ppa:ondrej/php5-5.6;
apt-get update;

apt-get install php5-fpm php5-cli php5-curl \
php5-gd php5-json php5-mcrypt php5-mysqglnd;

Cento0S

sudo

http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-5.noarch.rpm;

sudo

rpm -Uvh \

rpm -Uvh \

http://rpms.famillecollet.com/enterprise/remi-release-7.rpm;

sudo

Tip

If the EPEL rpm installation fails, open a web browser and navigate to

http://dl.fedoraproject.org/pub/epel/7/x86_64/e/. L.ook for an updated EPEL release

yum -y --enablerepo=epel,remi, remi-php56 install php-fpm php-cli php-gd \
php-mbstring php-mcrypt php-mysglnd php-opcache php-pdo php-devel;

version and use that.

http://dl.fedoraproject.org/pub/epel/7/x86_64/e/

Global Configuration

On Ubuntu, the primary PHP-FPM cofiguration file is /etc/php5/fpm/php-fpm.conf. On
CentOS, the primary PHP-FPM configuration file is /etc/php-fpm.conf. Open this file in
your preferred text editor.

Note

PHP-FPM configuration files use the INI file format. Learn more about the INI format on
Wikipedia.

These are the most important global PHP-FPM settings that I recommend you change
from their default values. These two settings might be commented out by default;
uncomment them if necessary. These settings prompt the master PHP-FPM process to
restart if a specific number of its child processes fail within a specific interval of time.

These settings are a basic safety net for your PHP-FPM processes that can resolve simple
issues. They are not a solution to more fundamental problems caused by bad PHP code.

emergency_restart_threshold = 10

The maximum number of PHP-FPM child processes that can fail within a given time
interval until the master PHP-FPM process gracefully restarts

emergency_restart_interval = 1m
The length of time that governs the emergency_restart_threshold setting
Note

Read more about PHP-FPM global configuration at
http://php.net/manual/en/install.fpm.configuration.php.

https://en.wikipedia.org/wiki/INI_file
http://php.net/manual/en/install.fpm.configuration.php

Pool Configuration

Elsewhere in the PHP-FPM configuration file is a section named Pool Definitions. This
section contains configuration settings for each PHP-FPM pool. A PHP-FPM pool is a
collection of related PHP child processes. One PHP application typically has its own PHP-
FPM pool.

On Ubuntu, the Pool Definitions section contains this one line:
include=/etc/php5/fpm/pool.d/*.conf

CentOS includes the pool definition files at the top of the primary PHP-FPM configuration
file with this line:

include=/etc/php-fpm.d/*.conf

This line prompts PHP-FPM to load individual pool definition files located in the
/etc/php5/fpm/pool.d/ directory (for Ubuntu) or the /etc/php-fpm.d/ directory (for CentOS).
Navigate into this directory, and you should see one file named www.conf. This is the
configuration file for the default PHP-FPM pool named www. Open this file in your
preferred text editor.

Note

Each PHP-FPM pool configuration begins with a [character, the pool name, and a]
character. The default PHP-FPM pool configuration, for example, begins with [www].

Each PHP-FPM pool runs as the operating system user and group that you specify. I prefer
to run each PHP-FPM pool as a unique nonroot user to help me identify each PHP
application’s PHP-FPM processes on the command line with the top or ps aux
commands. This is a good habit, too, because each PHP-FPM pool’s processes are
inherently sandboxed by the permissions available to their operating system user and

group.

We’ll configure the default www PHP-FPM pool to run as the deploy user and group. If you
haven’t already, open the www PHP-FPM pool configuration file in your preferred text
editor. Here are the settings I recommend you change from their default values:

user = deploy
The system user that owns this PHP-FPM pool’s child processes. Set this to your PHP
application’s nonroot operating system user name.

group = deploy
The system group that owns this PHP-FPM pool’s child processes. Set this to your PHP
application’s nonroot operating system group name.

listen = 127.0.0.1:9000

The IP address and port number on which this PHP-FPM pool listens for and accepts
inbound requests from nginx. The value 127.0.0.1:9000 instructs this specific PHP-
FPM pool to listen for incoming connections on local port 9000. I use port 9000, but
you can use any nonprivileged port number (any port number greater than 1024) that is
not already in use by another system process. We’ll revisit this setting when we
configure our nginx virtual host.

listen.allowed_clients = 127.0.0.1

The IP address(es) that can send requests to this PHP-FPM pool. For security reasons, |
set this to 127.0.0.1. This means that only the current machine can forward requests to
this PHP-FPM pool. This setting might be commented out by default. Uncomment this
setting if necessary.

pm.max_children = 51

This value sets the total number of PHP-FPM pool processes that can exist at any given
time. There is no correct value for this setting. You should test your PHP application,
determine how much memory each individual PHP process uses, and set this to the total
number of PHP processes that your machine’s available memory can accommodate.
Most small to medium-sized PHP applications often use between 5 MB and 15 MB of
memory for each individual PHP process (your mileage may vary). Assuming we are on
a machine with 512 MB of memory available to this PHP-FPM pool, we can set this
value to 512MB total / 10MB per process, Or 51 processes.

pm.start_servers = 3

The number of PHP-FPM pool processes that are available immediately when PHP-
FPM starts. Again, there is no correct value for this setting. For most small or medium-
sized PHP applications, I recommend a value of 2 or 3. This ensures that your PHP
application’s initial HTTP requests don’t have to wait for PHP-FPM to initialize PHP-
FPM pool processes. Two or three processes are already ready and waiting.

pm.min_spare_servers = 2

The smallest number of PHP-FPM pool processes that exist when your PHP application
is idle. This will typically be in the same ballpark as your pm.start_servers setting,
and it ensures that new HTTP requests don’t have to wait for PHP-FPM to initialize
new pool processes to handle new requests.

pm.max_spare_servers = 4

The largest number of PHP-FPM pool processes that exist when your PHP application
is idle. This will typically be a bit more than your pm.start_servers setting, and it
ensures that new HTTP requests don’t have to wait for PHP-FPM to initialize new pool
processes to handle new requests.

pm.max_requests = 1000
The maximum number of HTTP requests that each PHP-FPM pool process handles
before being recycled. This setting helps us avoid accumulating memory leaks caused

by poorly coded PHP extensions or libraries. I recommend a value of 1000, but you
should tweak this based on your own application’s needs.

slowlog = /path/to/slowlog.log

The absolute filesystem path to a log file that records information about HTTP requests
that take longer than {n} number of seconds to process. This is helpful for identifying
and debugging bottlenecks in your PHP applications. Bear in mind, this PHP-FPM
pool’s user or group must have permission to write to this file. The value
/path/to/slowlog.log is an example; replace this value with your own file path.

request_slowlog_timeout = 5s
The length of time after which the current HTTP request’s backtrace is dumped to the

log file specified by the slowlog setting. The value you choose depends on what you
consider to be a slow request. A value of 5s is a reasonable value to start with.

After you edit and save the PHP-FPM configuration file, restart the PHP-FPM master
process with this command:

Ubuntu
sudo service php5-fpm restart

CentoS
sudo systemctl restart php-fpm.service

Note
Read more about PHP-FPM pool configuration at

http://php.net/manual/install.fpm.configuration.php.

http://php.net/manual/install.fpm.configuration.php

nginx

nginx (pronounced in gen ex) is a web server similar to Apache, but it’s much simpler to
configure and often uses less system memory. I don’t have time to dig into nginx in detail,
but I do want to show you how to install nginx on your server and forward appropriate
requests to your PHP-FPM pool.

Install

The simplest way to install nginx is with your operating system’s native package manager.

Ubuntu

On Ubuntu, install nginx with a PPA. This is an Ubuntu-specific term for a prepackaged
archive maintained by the nginx community:

sudo add-apt-repository ppa:nginx/stable;
sudo apt-get update;
sudo apt-get install nginx;

CentOS

On CentOS, install nginx using the same EPEL third-party software repository we added
earlier. The default CentOS software repositories might not have the latest nginx version:

sudo yum install nginx;
sudo systemctl enable nginx.service;
sudo systemctl start nginx.service;

Virtual Host

Next, we’ll configure an nginx virtual host for our PHP application. A virtual host is a
group of settings that tell nginx our application’s domain name, where the PHP application
lives on the filesystem, and how to forward HTTP requests to the PHP-FPM pool.

First, we must decide where our application lives on the filesystem. The PHP application
files must live in a filesystem directory that is readable and writable by the nonroot deploy
user. For this example, I’ll place application files in the
/home/deploy/apps/example.com/current directory. We’ll also need a directory to store
application log files. I’ll place log files in the /home/deploy/apps/logs directory. Use these
commands to create the directories and assign correct permissions:

mkdir -p /home/deploy/apps/example.com/current/public;

mkdir -p /home/deploy/apps/logs;

chmod -R +rx /home/deploy;
Place your PHP application in the /home/deploy/apps/example.com/current directory. The
nginx virtual host configuration assumes your PHP application has a public/ directory; this

is the virtual host document root.

Each nginx virtual host has its own configuration file. If you use Ubuntu, create the
/etc/nginx/sites-available/example.conf configuration file. If you use CentOS, create the
/etc/nginx/conf.d/example.conf configuration file. Open the example.conf configuration
file in your preferred text editor.

nginx virtual host settings live inside a server {3} block. Here is the complete virtual host
configuration file:

server {
listen 80;
server_name example.com;
index index.php;
client_max_body_size 50M;
error_log /home/deploy/apps/logs/example.error.log;
access_log /home/deploy/apps/logs/example.access.log;
root /home/deploy/apps/example.com/current/public;

location / {
try_files $uri $uri/ /index.php$is_args$args;
}

location ~ \.php {
try_files $uri =404;
fastcgi_split_path_info A(.+\.php)(/.+)$;
include fastcgi_params;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
fastcgi_param SCRIPT_NAME $fastcgi_script_name;
fastcgi_index index.php;
fastcgi_pass 127.0.0.1:9000;

}

Copy and paste this code into the example.conf virtual host configuration file. Make sure
you update the server_name setting and swap the error_log, access_log, and root paths
with appropriate values. Here’s a quick explanation of each virtual host setting:

listen

The port number on which nginx listens for inbound HTTP requests. In most cases, this
is port 80 for HTTP traffic or port 443 for HTTPS traffic.

server_name

The domain name that identifies this virtual host. Change this to your application’s
domain name, and ensure the domain name points at your server’s IP address. nginx
sends an HTTP request to this virtual host if the request’s Host : header matches the
virtual host’s server_name value.

index

The default files served if none is specified in the HTTP request URI.

client_max_body_size

The maximum HTTP request body size accepted by nginx for this virtual host. If the
request body size exceeds this value, nginx returns a HTTP 4xx response.

error_log

The filesystem path to this virtual host’s error log file.

access_log

The filesystem path to this virtual host’s access log file.

root
The document root directory.

There are also two location blocks. These tell nginx how to handle HTTP requests that
match specific URL patterns. The first location / {3} block uses a try_files directive
that looks for real files that match the request URI. If a file is not found, it looks for a
directory that matches the request URI. If a directory is not found, it rewrites the HTTP
request URI to /index.php and appends the query string if available. The rewritten URL, or
any request whose URI ends with .php, is managed by the location ~ \.php {3} block.

The location ~ \.php {3} block forwards HTTP requests to our PHP-FPM pool.
Remember how we set up our PHP-FPM pool to listen for requests on port 9000? This
block forwards PHP requests to port 9000, and the PHP-FPM pool takes over.

Note

There are a few extra lines in the location ~ \.php {3} block. These lines prevent
potential remote code execution attacks.

On Ubuntu, we must symlink the virtual host configuration file into the /etc/nginx/sites-
enabled/ directory with this command:

sudo 1ln -s /etc/nginx/sites-available/example.conf \
/etc/nginx/sites-enabled/example.conf;

Finally, restart nginx with this command:

Ubuntu
sudo service nginx restart

Cent0S

sudo systemctl restart nginx.service
Your PHP application is up and running! There are many ways to configure nginx. I’ve
included only the most essential nginx settings in this chapter because this is a PHP book,
not an nginx book. You can learn more about nginx configuration at any of these helpful

http://bit.ly/remote-ex

resources:

m http.//nginx.org/
m https://github.com/h5bp/server-configs-nginx

m https://serversforhackers.com/editions/2014/03/25/nginx/

http://nginx.org/
https://github.com/h5bp/server-configs-nginx
https://serversforhackers.com/editions/2014/03/25/nginx/

Automate Server Provisioning

Server provisioning is a lengthy process. It’s also not a fun process, especially if you
manually provision many servers. Fortunately, there are tools available that help automate
server provisioning. Some popular server provisioning tools are:

Puppet
Chef

Ansible
SaltStack

Each tool is different, but they all accomplish the same goal — they automatically
provision new servers based on your exact specifications. If you are responsible for
multiple servers, I strongly encourage you to explore provisioning tools, because they save
a ton of time.

http://puppetlabs.com/
https://www.getchef.com/chef/
http://www.ansible.com/home
http://www.saltstack.com/

Delegate Server Provisioning

There are online services, too, that perform server provisioning on your behalf. An
example service is Forge by Taylor Otwell. I was a Forge beta tester, and it really is a
helpful service. Forge can provision multiple servers on Linode, Digital Ocean, and other
popular VPS providers.

Each server provisioned by Forge is automatically secured using the same security
practices I demonstrated earlier. Forge automatically installs an nginx and PHP-FPM
software stack. Forge also simplifies PHP application deployment, SSL certificate
installation, CRON task creation, and other mundane or confusing system administration
tasks. I highly recommend Forge if system administration isn’t your cup of tea.

https://forge.laravel.com/

Further Reading

I find system administration fascinating. I don’t want to do it as a full-time job, but I enjoy
tinkering on the command line. The best system administration learning resource for
developers, in my opinion, is Servers for Hackers by Chris Fidao.

https://book.serversforhackers.com/

What’s Next

In this chapter we discussed how to provision a server to run PHP applications. Next we’ll
talk about how to tune your server to eke out maximum performance for your PHP
application.

Chapter 8. Tuning

By this point, your PHP application should be running alongside nginx with its own PHP-
FPM process pool. We’re not done yet, though. We should tune PHP’s configuration with
settings appropriate for your application and production server. Default PHP installations
are like an average suit you find at your local department store; they fit, but they don’t fit
well. A tuned PHP installation is a custom tailored suit prepared with your exact
measurements.

Don’t get too excited. PHP tuning is not a universal cure for application performance. Bad
code is still bad code. For example, PHP tuning cannot solve poorly written SQL queries
or unresponsive API calls. However, PHP tuning is a low-hanging fruit that can improve
PHP efficiency and application performance.

The php.ini File

The PHP interpreter is configured and tuned with a file named php.ini. This file can live in
one of several directories on your operating system. If you run PHP with PHP-FPM, as I
demonstrated earlier, you can find the php.ini configuration file at /etc/php5/fpm/php.ini.
Oddly enough, this php.ini file does not control the PHP interpreter used when you invoke
php on the command line. PHP on the command line uses its own php.ini file often located
at /etc/php5/cli/php.ini. If you built PHP from source, the php.ini location is likely beneath
the $PREFIX directory specified when you configured the PHP source files. I’ll assume
you’re running PHP with PHP-FPM as described, but all of these optimizations are
applicable to any php.ini file.

Tip
Scan your php.ini file for best security practices with the PHP Iniscan tool, written by
Chris Cornutt.

The php.ini file uses the INI format. You can learn about the INI format on Wikipedia.

https://github.com/psecio/iniscan
https://en.wikipedia.org/wiki/INI_file

Memory

My first concern when running PHP is how much memory each PHP process consumes.
The memory_limit setting in the php.ini file determines the maximum amount of system
memory that can be used by a single PHP process.

The default value is 128M, and this is probably fine for most small to medium-sized PHP
applications. However, if you are running a tiny PHP application, you can save system
resouces by lowering this value to something like 64M. If you are running a memory-
intensive PHP application (e.g., a Drupal website), you may see improved performance
with a higher value like 512M. The value you choose is dictated by the amount of available
system memory. Figuring out how much memory to allocate to PHP is more an art than a
science. These are the questions I ask myself to determine my PHP memory limit and the
number of PHP-FPM processes I can afford:

What is the total amount of memory I can allocate for PHP?

First, I determine how much system memory I can allocate for PHP. For example, I may
be working with a Linode virtual machine with 2 GB of total memory. However, other
processes (e.g., nginx, MySQL, or memcache) might run on the same machine and
consume memory of their own. I think I can safely set aside 512 MB of memory for
PHP.

How much memory, on average, is consumed by a single PHP process?

Next, I determine how much memory, on average, is consumed by a single PHP
process. This requires me to monitor process memory usage. If you live in the
command line, then you can run top to see realtime stats for running processes. You can
also invoke the memory_get_peak_usage () PHP function at the tail end of a PHP script
to output the maximum amount of memory consumed by the current script. Either way,
run the same PHP script several times (to warm caches) and take the average memory
consumption. I often find PHP processes consume between 5-20 MB of memory (your
mileage may vary). If you are working with file uploads, image data, or a memory-
intensive application, this value will obviously be higher.

How many PHP-FPM processes can I afford?

I have 512 MB of total memory allocated for PHP. I determine that each PHP process,
on average, consumes about 15 MB of memory. I divide the total memory by the
amount of memory consumed by each PHP process, and I determine I can afford 34
PHP-FPM processes. This value is an estimate and should be refined with
experimentation.

Do I have enough system resources?

Finally, I ask myself if I believe I have sufficient system resources to run my PHP
application and handle the expected web traffic. If yes, awesome. If no, I need to
upgrade my server with more memory and return to the first question.

Note

Use Apache Bench or Seige to stress-test your PHP applications under production-like
conditions. If your PHP application does not have sufficient resources, it’s wise to figure
this out before you take your application into production.

http://bit.ly/apache-bench
http://www.joedog.org/siege-home/

Zend OPcache

After I figure out my memory allocation, I configure the PHP Zend OPcache extension.
This is an opcode cache. What’s an opcode cache? Let’s first examine how a typical PHP
script is processed for every HTTP request. First, nginx forwards an HTTP request to
PHP-FPM, and PHP-FPM assigns the request to a child PHP process. The PHP process
finds the appropriate PHP scripts, it reads the PHP scripts, it compiles the PHP scripts into
an opcode (or bytecode) format, and it executes the compiled PHP opcode to generate an
HTTP response. The HTTP response is returned to nginx, and nginx returns the HTTP
response to the HTTP client. This is a lot of overhead for every HTTP request.

We can speed this up by caching the compiled opcode for each PHP script. Then we can
read and execute precompiled opcode from cache instead of finding, reading, and
compiling PHP scripts for each HTTP request. The Zend OPcache extension is built into
PHP 5.5.0+. Here are my php.ini settings to configure and optimize the Zend OPcache
extension:

opcache.memory_consumption = 64
opcache.interned_strings_buffer = 16
opcache.max_accelerated_files = 4000
opcache.validate_timestamps = 1
opcache.revalidate_freq = 0
opcache.fast_shutdown = 1

opcache.memory_consumption = 64

The amount of memory (in megabytes) allocated for the opcode cache. This should be
large enough to store the compiled opcode for all of your application’s PHP scripts. If
you have a small PHP application with few scripts, this can be a lower value like 16

MB. If your PHP application is large with many scripts, use a larger value like 64 MB.

opcache.interned_strings_buffer = 16

The amount of memory (in megabytes) used to store interned strings. What the heck is
an interned string? That was my first question, too. The PHP interpreter, behind the
scenes, detects multiple instances of identical strings and stores the string in memory
once and uses pointers whenever the string is used again. This saves memory. By
default, PHP’s string interning is isolated in each PHP process. This setting lets all PHP-
FPM pool processes store their interned strings in a shared buffer so that interned
strings can be referenced across multiple PHP-FPM pool processes. This saves even
more memory. The default value is 4 MB, but I prefer to bump this to 16 MB.

opcache.max_accelerated_files = 4000

The maximum number of PHP scripts that can be stored in the opcode cache. You can
use any number between 200 and 100000. I use 4000. Make sure this number is larger
than the number of files in your PHP application.

opcache.validate_timestamps = 1

When this setting is enabled, PHP checks PHP scripts for changes on the interval of
time specified by the opcache.revalidate_freq setting. If this setting is disabled, PHP
does not check PHP scripts for changes, and you must clear the opcode cache manually.
I recommend you enable this setting during development and disable this setting during
production.

opcache.revalidate_freq = 0

How often (in seconds) PHP checks compiled PHP files for changes. The benefit of a
cache is to avoid recompiling PHP scripts on each request. This setting determines how
long the opcode cache is considered fresh. After this time interval, PHP checks PHP
scripts for changes. If PHP detects a change, PHP recompiles and recaches the script. I
use a value of @ seconds. This value requires PHP to revalidate PHP files on every
request if and only if you enable the opcache.validate_timestamps setting. This
means PHP revalidates files on every request during development (a good thing). This
setting is moot during production because the opcache.validate_timestamps setting is
disabled anyway.

opcache.fast_shutdown = 1
This prompts the opcache to use a faster shutdown sequence by delegating object

deconstruction and memory release to the Zend Engine memory manager.
Documentation is lacking for this setting. All you need to know is turn this on.

File Uploads

Does your PHP application accept file uploads? If not, turn off file uploads to improve
application security. If your application does accept file uploads, it’s best to set a
maximum upload filesize that your application accepts. It’s also best to set a maximum
number of uploads that your application accepts at one time. These are the php.ini settings
I use for my own applications:

file_uploads = 1

upload_max_filesize = 10M

max_file_uploads = 3
By default, PHP allows up to 20 uploads in a single request. Each uploaded file can be up
to 2 MB in size. You probably don’t need to allow 20 uploads at once; I only allow three
uploads in a single request, but change this setting to a value that makes sense for your

application.

If my PHP applications accept file uploads, they often need to accept files much larger
than 2 MB. I bump the upload_max_filesize setting to 160M or higher based on each
application’s requirements. Don’t set this to something too large, otherwise your web
server (e.g., nginx) may complain about the HTTP request having too large a body or
timing out.

Note

If you accept very large file uploads, be sure your web server is configured accordingly.
You may need to adjust the client max body size setting in your nginx virtual host
configuration in addition to your php.ini file.

http://bit.ly/max-body-size

Max Execution Time

The max_execution_time setting in your php.ini file determines the maximum length of
time that a single PHP process can run before terminating. By default, this is set to 30
seconds. You don’t want PHP processes running for 30 seconds. We want our applications
to be super-fast (measured in milliseconds). I recommend you change this to 5 seconds:

max_execution_time = 5

Note

You can override this setting on a per-script basis with the set time limit() PHP
function.

What if my PHP script needs to run a long time? you ask. It shouldn’t. The longer PHP
runs, the longer your web application visitors must wait for a response. If you have long-
running tasks (e.g., resizing images or generating reports), offload those tasks to a separate
worker process.

Tip
I use the exec () PHP function to invoke the at bash command. This lets me fork separate
nonblocking processes that do not delay the current PHP process. If you use the exec()

PHP function, it is your responsibility to escape shell arguments with the escapeshellarg
PHP function.

Assume we need to run a report and generate a PDF file with the results. This task may
take 10 minutes to complete. Surely we don’t want the PHP request to sit around for 10
minutes. Instead, we create a separate PHP file called create-report.php that will chug
along for 10 minutes and eventually generate our report. However, our web application
will take only milliseconds to spin off a separate background process and return an HTTP
response, like this:

<?php

exec('echo "create-report.php" | at now');

echo 'Report pending..';
The standalone create-report.php script runs in a separate background process; it can
update a database or email the report recipient upon completion. There is absolutely no
reason why the primary PHP script should hold up the user experience for long-running

tasks.
Tip
If you find yourself spawning a lot of background processes, you may be better served

with a dedicated job queue. PHP Resque is a great job queue manager based on the
original Resque job queue manager from GitHub.

http://php.net/manual/function.set-time-limit.php
http://php.net/manual/function.escapeshellarg.php
https://github.com/chrisboulton/php-resque
https://github.com/blog/542-introducing-resque

Session Handling

PHP’s default session handler can slow down larger applications because it stores session
data on disk. This creates unnecessary file I/O that takes time. Instead, offload session
handling to a faster in-memory data store like Memcached or Redis. This has the added
benefit of future scalability. If your session data is stored on disk, this prevents you from
scaling PHP across additional servers. If your session data is, instead, stored on a central
Memcached or Redis data store, it can be accessed from any number of distributed PHP-
FPM servers.

Install the the PECL. Memcached extension to access a Memcached datastore from PHP.
You can now change PHP’s default session store to Memcached by adding these lines to
your php.ini file:

session.save_handler = 'memcached'
session.save_path = '127.0.0.2:11211"

http://memcached.org
http://redis.io
http://pecl.php.net/package/memcached

Output Buffering

Networks are more efficient when sending more data in fewer chunks, rather than less data
in more chunks. In other words, deliver content to your visitor’s web browser in fewer
pieces to reduce the total number of HTTP requests.

This is why you enable PHP output buffering. By default, PHP’s output buffer is enabled
(except on the command line). PHP’s output buffer collects up to 4,096 bytes before
flushing its contents back to the web server. Here are my recommended php.ini settings:
output_buffering = 4096
implicit_flush = false
Tip
If you change the output buffer size, make sure its value is a multiple of 4 (for 32-bit
systems) or 8 (for 64-bit systems).

Realpath Cache

PHP maintains a cache of file paths that are used by your PHP application so it does not
have to continually search the include path each time it includes or requires a file. This
cache is called the realpath cache. If you are running a large PHP application that uses a
lot of separate files (Drupal, Composer components, etc.), you can realize better
performance by increasing the size of PHP’s realpath cache.

The default realpath cache size is 16k. It’s not obvious how to figure out the exact size you
need, but here’s a trick you can use. First, bump the realpath cache size to something
obnoxiously large, like 256k. Then output the actual realpath cache size at the tail end of a
PHP script with print_r(realpath_cache_size());. Change your realpath cache size to
this actual value. You can set the realpath cache size in your php.ini file:

realpath_cache_size = 64k

Up Next

We’ve got a server firing on all cylinders, and we’re ready to deploy our PHP application
into production. In the next chapter we’ll discuss several strategies to automate PHP
application deployment.

Chapter 9. Deployment

We’ve got a provisioned server running nginx and PHP-FPM. Now we need to deploy our
PHP application to a production server. There are many ways to push code into
production. FTP was a popular way to deploy PHP code back when PHP developers first
started banging rocks together. FTP still works, but today there are safer and more
predictable deployment strategies. This chapter shows you how to use modern tools to
automate deployment in a simple, predictable, and reversible way.

Version Control

I assume you are using version control, right? If you are, good job. If you aren’t, stop what
you are doing and version control your code. I prefer to version control my code with Git,
but other version control software like Mercurial works, too. I use Git because it’s what I
know, and it works seamlessly with popular online repositories like Bitbucket and GitHub.

Version control is an invaluable tool for PHP application developers because it lets us
track changes to our codebase. We can tag points in time as a release, we can roll back to a
previous state, and we can experiment with new features on separate branches that do not
affect our production code. More important, version control helps us automate PHP
application deployment.

http://git-scm.com
http://mercurial.selenic.com
https://bitbucket.org
https://github.com

Automate Deployment

It is important that you automate application deployment so that it becomes a simple,
predictable, and reversible process. The last thing you want to worry about is a

complicated deployment process. Complicated deployments are scary, and scary things are
used less often.

Make It Simple

Instead, make your deployment process a simple one-line command. A simple deployment
process is less scary, and that means you’re more likely to push code to production.

Make It Predictable

Make your deployment process predictable. A predictable process is even less scary
because you know exactly what it is going to do. It should not have unexpected side
effects. If it runs into an error, it aborts the deployment process and leaves the existing
codebase in place.

Make It Reversible

Make your deployment process reversible. If you accidentily push bad code into
production, it should be a simple one-line command to roll back to the previous stable
codebase. This is your safety net. A reversible deployment process should make you
excited — not afraid — to push code into production. If you screw up, just roll back to the
previous release.

Capistrano

Capistrano is software that automates application deployment in a simple, predictable, and
reversible way. Capistrano runs on your local machine and talks with remote servers via
SSH. Capistrano was originally written to deploy Ruby applications, but it’s just as useful
for any programming language — including PHP.

http://capistranorb.com/

How It Works

You install Capistrano on your local workstation. Capistrano deploys your PHP
application to a remote server by issuing SSH commands from your local workstation to
the remote server. Capistrano organizes application deployments in their own directories
on the remote server. Capistrano maintains five or more application deployment
directories in case you must roll back to an earlier release. Capistrano also creates a
current/ directory that is a symlink to the current application deployment’s directory. Your
production server’s Capistrano-managed directory structure might look like Example 9-1.

Example 9-1. Example directory structure

/
home/
deploy/
apps/
my_app/

current/

releases/
releasel/
release2/
release3/
release4/
release5/

When you deploy a new application release to production, Capistrano first retrieves the
latest version of your application code from its Git repository. Next, Capistrano places the
application code in a new release directory. Finally, Capistrano symlinks the current/
directory to the new release directory. When you ask Capistrano to roll back to a previous
release, Capistrano points the current/ directory symlink to a previous release directory.

Capistrano is an elegant and simple deployment solution that makes PHP application
deployments simple, predictable, and reversible.

Install

Install Capistrano on your local machine. Do not install Capistrano on your remote
servers. You'll need ruby and gem, too. OS X users already have these. Linux users can
install ruby and gem with their respective package managers. After you install ruby and
genm, install Capistrano with this command:

gem install capistrano

Configure

After you install Capistrano, you must initialize your project for Capistrano. Open a
terminal, navigate to your project’s topmost directory, and run this command:

cap install

This command creates a file named Capfile, a directory named config/, and a directory
named lib/. Your project’s topmost directory should now have these files and directories:

Capfile
config/
deploy/
production.rb
staging.rb
deploy.rb
1lib/
capistrano/
tasks/
The Capfile file is Capistrano’s central configuration file, and it aggregates the
configuration files located in the config/ directory. The config/ directory contains
configuration files for each remote server environment (e.g., testing, staging, or

production).
Note

Capsitrano configuration files are written in the Ruby language. However, they are still
easy to edit and understand.

By default, Capistrano assumes you have multiple environments for your application. For
example, you might have separate staging and production environments. Capistrano
provides a separate configuration file for each environment in the config/deploy/ directory.
Capistrano also provides the config/deploy.rb configuration file, which contains settings
common to all environments.

In each environment, Capistrano has the notion of server roles. For example, your
production environment may have a front-facing web server (the web role), an application
server (the app role), and a database server (the db role). Only the largest applications
necessitate this architecture. Smaller PHP applications generally use only one machine
that runs the web server (nginx), application server (PHP-FPM), and database server
(MariaDB).

For this demonstration, I’'m only going to use Capistrano’s web role and ignore its app and
db roles. Capistrano’s roles let you organize tasks to be executed only on servers that
belong to a given role. This isn’t something we’re going to worry about here. However, |
am going to respect Capistrano’s notion of server environments. This demonstration will
use the production environment, but the following steps are equally applicable to other
environments (e.g., staging or testing).

The config/deploy.rb file

Let’s look at the config/deploy.rb file. This configuration file contains settings common to
all environments (e.g., staging and production). Most of our Capistrano configuration
settings go in this file. Open the config/deploy.rb file in your preferred text editor and

update these settings:

rapplication
This is the name of your PHP application. It should contain only letters, numbers, and
underscores.

rrepo_url

This is your Git repository URL. This URL must point to a Git repository, and the
repository must be accessible from your remote server.

:deploy_to
This is the absolute directory path on your remote server in which your PHP application
is deployed. This would be /home/deploy/apps/my_app as shown in Example 9-1.

:keep_releases

This is the number of old releases that should be retained in case you want to roll back
your application to an earlier version.

The config/deploy/production.rb file

This file contains settings only for your production environment. This file defines the
production environment roles, and it lists the servers that belong to each role. We’re only
using the web role, and we have only one server that belongs to this role. Let’s use the
server we provisioned in Chapter 7. Update the entire config/deploy/production.rb file
with this content. Make sure you replace the example IP address:

role :web, %w{deploy@123.456.78.90}

Authenticate

Before we deploy our application with Capistrano, we must establish authentication
between our local computer and our remote servers, and between our remote servers and
the Git repository. We already discussed how to set up SSH key-pair authentication
between our local computer and remote server. You should also establish SSH key-pair
authentication between your remote servers and the Git repository.

Use the same instructions we discussed earlier to generate an SSH public and private
keypair on each remote server. The Git repository should have access to each remote
server’s public key; both GitHub and Bitbucket let you add multiple public SSH keys to
your user account. Ultimately, you must be able to clone the Git repository to your remote
servers without a password.

Prepare the Remote Server

We’re almost ready to deploy our application. First, we need to prepare our remote server.
Log in to your remote server with SSH and create the directory in which we’ll deploy our

PHP application. This directory must be readable and writable by the deploy user. I like to
create a directory for my applications in the deploy user’s home directory, like this:

/
home/
deploy/
apps/
my_app/

Virtual host

Capistrano symlinks the current/ directory to the current application release directory.
Update your web server’s virtual host document root directory so that it points to
Capistrano’s current/ directory. Given this filesystem diagram, your virtual host document
root might become /home/deploy/apps/my_app/current/public/; this assumes your PHP
application contains a public/ directory that serves as the document root. Restart your web
server to load your virtual host configuration changes.

Software dependencies

Your remote server doesn’t need Capistrano, but it does need Git. It also needs any
software required to run your PHP application. You can install Git with these commands:

Ubuntu
sudo apt-get install git;

CentoS
sudo yum install git;

Capistrano Hooks

Capistrano allows us to run our own commands at specific moments (or hooks) during

application deployment. Many PHP developers manage application dependencies with

Composer. We can install Composer dependencies during each Capistrano deployment
with a Capistrano hook. Open the config/deploy.rb file in your preferred text editor and
append this Ruby code:

namespace :deploy do
desc "Build"
after :updated, :build do
on roles(:web) do
within release_path do
execute :composer, "install --no-dev --quiet"
end
end
end
end

Tip
If your project uses the Composer dependency manager, make sure Composer is installed

on your remote servers.

Our application’s dependencies are now installed automatically after each production
deployment. You can read more about Capistrano hooks on the Capistrano website.

http://bit.ly/cap-flow

Deploy Your Application

Now’s the fun part! Make sure you’ve committed and pushed your most recent application
code to your Git repository. Then open a terminal on your local computer and navigate to
your application’s topmost directory. If you’ve done everything correctly, you can deploy
your PHP application with this one-line command:

cap production deploy

Roll Back Your Application

In the off chance you deploy bad code to your production environment, you can roll back
to a previous release with this one-line command:

cap production deploy:rollback

Further Reading

I’ve only scratched the surface. Capistrano has many more features that further streamline
your deployment workflow. Capistrano is my favorite deployment tool, but there are many
other tools available, including:

= Deployer

m Magallanes
m Rocketeer

http://deployer.in/
http://magephp.com/
http://rocketeer.autopergamene.eu/

What’s Next

We’ve provisioned a server, and we’ve automated our PHP application deployments with
Capistrano. Next we’ll discuss how to ensure our PHP applications run as expected. To do
this, we’ll use testing and profiling.

Chapter 10. Testing

Testing is an important part of PHP application development, but it is often neglected. I
think many PHP developers don’t test because they consider testing an unnecessary
burden that requires too much time for too few benefits. Other developers may not know
how to test, because there are a large number of testing tools and an overwhelming
learning curve.

In this chapter I hope to dispel these misunderstandings. I want you to feel comfortable
and excited about testing your PHP code. I want you to consider testing an integral part of
your workflow that happens at the beginning, middle, and end of the application
development process.

Why Do We Test?

We write tests to ensure that our PHP applications work, and continue to work, according
to our expectations. It’s as simple as that. How often have you been afraid to deploy an
application into production? Before I started testing my code, I was terrified to push a
release into production. Would my code work? Would it break? All I could do was cross
my fingers and hope for the best. This is no way to code. It’s scary and stressful, and it
usually ends in frustration. Tests, however, mitigate uncertainty, and they let us write and
deploy code with confidence.

Your pointy-haired boss may argue that there isn’t enough time to write tests. After all,
time is money. This is shortsighted. Installing a testing infrastructure and writing tests
takes time, but this is a wise investment that pays dividends into the future. Tests help us
write code that works well the first time. Tests let us continuously iterate without breaking
old code. We may move forward at a slower pace than if we didn’t use tests, but we won’t
waste countless development hours in the future troubleshooting and refactoring bugs that
were overlooked. In the long term, tests save money, prevent downtime, and inspire
confidence.

When Do We Test?

I see many PHP developers write tests as an afterthought. These developers know testing
is important, but they consider tests as something they must do instead of something they
want to do. These developers often push testing to the very end of the application
development process. They bang out a few passing tests to satisfy their management team
and call it a day. This is wrong. Tests should be a foreground concern before development,
during development, and after development.

Before

Install and configure your testing tools before you develop your application. It doesn’t
matter which testing tools you choose. Install them as if they are a vital application
dependency. This makes it physically and mentally easier to test your application during
development. This is also a good time to meet with your project manager to define higher-
level application behavior.

During

Write and run tests as you build each piece of your application. Did you just add a new
PHP class? Test it now, because you probably won’t test it later. Testing while you develop
helps you build confident and stable code, and it also helps you quickly find and refactor
new code that breaks existing functionality.

After

You probably won’t anticipate and test all of your application’s behaviors during
development. If you find a bug after your launch your application, write a new test to
ensure that your bug fix works correctly. Tests are not a once-and-done thing. Tests are
continuously modified and improved, just like the application itself. If you update your
application’s code, be sure you also update the affected tests.

What Do We Test?

We test the smallest pieces of our application. A PHP application, on a microcosmic scale,
has PHP classes, methods, and functions. We should test each public class, method, and
function to ensure it behaves as we expect in isolation. If we know each piece works well
on its own, we can be confident it also works well when integrated into the whole
application. These tests are called unit tests.

Unfortunately, testing each individual piece does not guarantee it works correctly with the
whole application. This is why we also test our application at a macrocosmic scale with
automated testing tools that verify our application’s higher-level behaviors. These tests are
called functional tests.

How Do We Test?

We know why, when, and what to test. More important, let’s chat about how we test code.
There are several popular ways PHP developers approach testing. Some developers prefer
unit tests. Some developers prefer test-driven development (TDD). And other developers

prefer behavior-driven development (BDD). These are not mutually exclusive.

Unit Tests

The most popular approach to PHP application testing is unit testing. As I described
previously, unit tests certify individual classes, methods, and functions in isolation from
the larger application. The de facto standard PHP unit testing framework is PHPUnit,
written by Sebastian Bergmann. Sebastian’s PHPUnit framework adheres to the xUnit test
architecture.

There are alternative PHP unit testing frameworks, like PHPSpec, available for you to use,
too. However, most popular PHP frameworks provide PHPUnit tests. It’s vital that you
know how to read, write, and run PHPUnit tests if you intend to contribute to or release
PHP components. I’ll show you how to install, write, and run PHP unit tests at the end of
this chapter.

https://phpunit.de/
https://sebastian-bergmann.de/

Test-Driven Development (TDD)

Test-driven development means you write tests before you write application code. These
tests purposefully fail and describe how your application should behave. As you build
application functionality, your tests will eventually run successfully. TDD helps you build
with a purpose; you know ahead of time what you will build and how it should work.

This does not meant that you must write all of your application tests before you write any
code. Instead, write a few tests and then build the related functionality. Write tests and
build. Write tests and build. TDD is iterative. Move forward in small sprints until your
application is complete.

Behavior-Driven Development (BDD)

Behavior-driven development means that you write stories that describe how your
application behaves. There are two types of BDD: SpecBDD and StoryBDD.

SpecBDD is a type of unit test that uses a fluid and human-friendly language to describe
your application’s implementation. SpecBDD accomplishes the same goal as alternative
unit testing tools like PHPUnit. Unlike PHPUnit’s xUnit architecture, SpecBDD tests use
human-readable stories to describe behavior. For example, a PHPUnit test might be
named testRenderTemplate(). An equivalent SpecBDD test might be named
itRendersTheTemplate(). The same SpecBDD test might use helper methods named
$this->shouldReturn(), $this->shouldBe(), and $this->shouldThrow(). SpecBDD
tests use a language that is much easier to read and understand than alternative xUnit
tools. The most popular SpecBDD testing tool is PHPSpec.

StoryBDD tools use the same human-friendly stories as SpecBDD tests. StoryBDD tools,
however, are more concerned with higher-level behavior than with lower-level
implementation. For example, a StoryBDD test confirms that your code creates and emails
a PDF report. A SpecBDD test, on the other hand, confirms that a specific PDF generator
class method correctly renders a PDF file for a given set of input parameters. The
difference is scope. StoryBDD resembles something a project manager would write (e.g.,
“this should generate and email me a report”). A SpecBDD test resembles something a
developer would write (e.g., “this class method should receive an array of data and write it
to this PDF file”). StoryBDD and SpecBDD testing tools are not mutually exclusive. They
are often used together to build a more comprehensive set of tests. You’ll often sit with
your project manager to write generic StoryBDD tests that define your application’s
generic behavior, and then you’ll write SpecBDD tests when you design and build your
application’s implementation. The most popular StoryBDD testing tool is Behat.

Tip

Write StoryBDD tests that describe your business logic and not a specific implementation.
A good StoryBDD test confirms “a shopping cart total increases when I add a product to
the cart.” A bad StoryBDD test confirms “a shopping cart total increases when I send an
HTTP PUT request to the /cart URL with the body product_id=1&quantity=2.” The first

test is generic and describes only the high-level business logic. The second test is too
specific and describes a particular implementation.

http://www.phpspec.net/
http://behat.org/

PHPUnit

Let’s talk about how to install, write, and run PHPUnit tests. It takes a bit of work to get
the infrastructure in place, but it’s dead simple to write and run your PHPUnit tests
afterward. Before we dig too deep into PHPUnit, let’s quickly review some vocabulary.
Your PHPUnit tests are grouped into test cases, and your test cases are grouped into test
suites. PHPUnit runs your test suites with a test runner.

A test case is a single PHP class that extends the PHPUnit_Framework_TestCase class.
Each test case contains public methods whose names begin with test; these methods are
individual tests that assert specific scenarios to be true. Each assertion can pass or fail.
You want all assertions to pass.

Tip
A test case class name must end with Test, and its filename must end with Test.php. A

hypothetical test case class name is FooTest, and that class lives in a file named
FooTest.php.

A test suite is a collection of related test cases. If you are working on a single PHP
component, oftentimes you’ll only ever have a single test suite. If you are testing a larger
PHP application with many different subsystems or components, you may find it best to
organize tests into multiple test suites.

A test runner is exactly what it sounds like. It is a way for PHPUnit to run your test suites
and output the result. The default PHPUnit test runner is the command-line runner that is
invoked with the phpunit command in your terminal application.

Directory Structure

Here’s how I prefer to organize my PHP projects. The topmost project directory has a src/
directory where I keep my source code. It also has a tests/ directory where I keep my tests.
Here’s an example directory structure:

src/

tests/
bootstrap.php

composer.json

phpunit.xml

.travis.yml

src/
This directory contains my PHP project’s source code (i.e., PHP classes).
tests/

This directory contains my PHP project’s PHPUnit tests. This directory contains a
bootstrap.php file that is included by PHPUnit before the unit tests are run.

composer.json

This file lists my PHP project’s dependencies managed by Composer, including the
PHPUnit test framework.

phpunit.xml

This file provides configuration details for the PHPUnit test runner.
.travis.yml

This file provides configuration details for the Travis CI continuous testing web service.
Note

Look at your favorite PHP component or framework’s source code on GitHub and you’ll
see it uses a similar organization.

Install PHPUnit

First we need to install PHPUnit and the Xdebug profiler. PHPUnit runs our tests. The
Xdebug profiler generates helpful code coverage information. Composer is the easiest way
to install the PHPUnit test framework. Open your terminal application, navigate to your
project’s topmost directory, and run this command:

composer require --dev phpunit/phpunit

This command downloads the PHPUnit test framework into your project’s vendor/
directory, and it updates your project’s composer.json file so that the phpunit/phpunit
package is listed as a project dependency. The phpunit binary is installed in your project’s
vendor/bin/ directory. You can add this directory to your environment path, or you can
reference vendor/bin/phpunit whenever you invoke the PHPUnit command line test
runner. The PHPUnit framework classes are autoloaded into your PHP application with
your project’s other Composer-managed dependencies.

Install Xdebug

The Xdebug PHP extension is a bit trickier to install. If you installed PHP with your
package manager, you can install Xdebug the same way (Example 10-1).

Example 10-1. How to install Xdebug

Ubuntu
sudo apt-get install php5-xdebug

Cent0S
sudo yum -y --enablerepo=epel,remi,remi-php56 install php-xdebug

If you installed PHP from source, you’ll need to install the Xdebug extension with the
pecl command:
pecl install xdebug

Next, update your php.ini configuration file with the path to the compiled Xdebug
extension.

Tip
You can find your PHP extensions directory with the php-config --extension-dir or

php -i | grep extension_dir commands.

Append this line to your php.ini file using your own PHP extension path:

zend_extension="/PATH/T0/xdebug.so"

Restart PHP and you’re good to go. We’ll discuss the Xdebug profiler in Chapter 11.

Configure PHPUnit

Now let’s configure PHPUnit in our project’s phpunit.xml file.

<?xml version="1.0" encoding="UTF-8"7?>
<phpunit bootstrap="tests/bootstrap.php">
<testsuites>
<testsuite name="whovian">
<directory suffix="Test.php">tests</directory>
</testsuite>
</testsuites>

<filter>
<whitelist>
<directory>src</directory>
</whitelist>
</filter>
</phpunit>
PHPUnit test runner settings are attributes on the <phpunit> XML root element. The most
important setting, in my opinion, is the bootstrap setting; it specifies the path (relative to
the phpunit.xml file) to a PHP file that is included before the PHPUnit test runner executes
our tests. We’ll autoload our application’s Composer dependencies in the bootstrap.php
file so they are available to our PHPUnit tests. The bootstrap.php file also specifies the
path to our test suite (i.e., a directory that contains related test cases); PHPUnit runs all
PHP files in this directory whose file names end with Test.php. Finally, this configuration
file lists the directories included in our code coverage analysis with the <filter> element.
In the previous example XML, the <whitelist> element tells PHPUnit to generate code

coverage only for code in the src/ directory.

The gist of this configuration file is to specify our PHPUnit settings in one location. This
makes our lives easier locally because we don’t have to specify these settings each time
we use the phpunit command-line runner. This configuration file also lets us apply the
same PHPUnit settings on remote continuous testing servers like Travis CI. After you
update the phpunit.xml configuration file, update the tests/bootstrap.php file with this
code:

<?php

// Enable Composer autoloader

require dirname(__DIR__) . '/vendor/autoload.php';
Tip

Make sure you install your Composer dependencies before running PHPUnit tests.

The Whovian Class

Before we write unit tests, we need something to test. Here’s a hypothetical PHP class
named Whovian that has a pretty strong opinion about a particular BBC television show.
Place this class definition into the src/Whovian.php file:

<?php
class Whovian
{
/**
* @var string
*/
protected $favoriteDoctor;

/**
* Constructor
* @param string $favoriteDoctor
*/
public function _ construct($favoriteDoctor)

{

}

/**
* Say
* @return string
*/
public function say()

{

}

/**
* Respond to
* @param string $input
* @return string
* @throws \Exception
*
/
public function respondTo($input)

{

$this->favoriteDoctor = (string)$favoriteDoctor;

return 'The best doctor is ' . $this->favoriteDoctor;

$input = strtolower($input);
$myDoctor = strtolower($this->favoriteDoctor);

if (strpos($input, $myDoctor) === false) {
throw new Exception(
sprintfy(
'No way! %s is the best doctor ever!',
$this->favoriteDoctor

)
);
}

return 'I agree!';

}

The whovian class constructor sets the instance’s favorite doctor. The say () method
returns a string with the instance’s favorite doctor. And its respondTo() method receives a
statement from another whovian instance and responds accordingly.

The WhovianTest Test Case

The unit tests for our Whovian class live in the test/WhovianTest.php file. We call a group
of related tests a test suite. In our example, all tests beneath the test/ directory belong to
the same test suite. Each class file beneath the test/ directory is called a test case, and its
class methods that begin with test (e.g., testThis or testThat) are individual tests. Each
individual test uses assertions to verify a given condition. An assertion can pass or fail.

Note

Find a list of PHPUnit assertions on the PHPUnit website. Some assertions are
undocumented; you can find all available assertions in the source code on GitHub.

Each PHPUnit test case is a class that extends the PHPUnit_Framework_TestCase class.
Let’s declare a test case named WhovianTest in the test/WhovianTest.php file:

<?php
require dirname(_DIR__) . '/src/Whovian.php';

class WhovianTest extends PHPUnit_Framework_TestCase

) // Individual tests go here
Remember, unit tests verify a public interface’s expected behavior. We’ll test the three
public methods in the whovian class. We’ll write a unit test to ensure that the
__construct() method argument becomes the instance’s preferred doctor. Next, we’ll
write a unit test to ensure that the say() method’s return value mentions the instance’s
preferred doctor. Finally, we’ll write two tests for the respondTo() method. One test
ensures that the method’s return value is the string "I agree!" if the input matches its
preferred doctor. The second test that ensures the method throws an exception if the input
does not match its preferred doctor.

Test 1: __construct()

Our first test confirms that the constructor sets the whovian instance’s favorite doctor:

public function testSetsDoctorWithConstructor()

{

$whovian = new Whovian('Peter Capaldi');
$this->assertAttributeEquals('Peter Capaldi', 'favoriteDoctor', $whovian);
}
This test instantiates a new Whovian instance with one string argument: "Peter Capaldi".
We use the PHPUnit assertion method assertAttributeEquals() to assert the

favoriteDoctor property on the $whovian instance equals the string "Peter Capaldi".
Note

The PHPUnit assertion assertAttributeEquals() receives three arguments. The first
argument is the expected value; the second argument is the property name; and the final
argument is the object to inspect. What’s neat is that the assertAttributeEquals()
method can inspect and verify protected properties using PHP’s reflection capabilities.

Why do we inspect the favorite doctor value with the assertAttributeEquals() assertion
instead of a getter method (e.g., getFavoriteDoctor())? When we write a test, we test
only one specific method in isolation. Ideally, our test does not rely on other methods. In

http://bit.ly/php-unit
http://bit.ly/phpu-gh

this particular example, we test the __construct () method and verify that it assigns its
argument value to the object’s $favoriteDoctor property. The
assertAttributeEquals() assertion lets us inspect the object’s internal state without
relying on a separate, untested getter method.

Test 2: say()

Our next test confirms that the Wwhovian instance’s say () method returns a string value that
contains its favorite doctor’s name:

public function testSaysDoctorName()

{

$whovian = new Whovian('David Tennant');
$this->assertEquals('The best doctor is David Tennant', $whovian->say());

}

We use the PHPUnit assertion assertEquals() to compare two values. The assertion’s
first argument is the expected value. Its second argument is the value to inspect.

Test 3: respondTo() in agreement

Now let’s test how a Whovian instance responds in agreement with another Whovian:

public function testRespondToInAgreement()

{
$whovian = new Whovian('David Tennant');
$opinion = 'David Tennant is the best doctor, period';
$this->assertEquals('I agree!', $whovian->respondTo($opinion));
}

This test is successful because the whovian instance’s respondTo() method receives a
string argument that includes the name of its favorite doctor.

Test 4: respondTo() in disagreement

But what if a whovian disagrees? Get out of the area as quickly as possible, because s#!t is
going to hit the fan. Well, actually, it’ll just throw an exception. Let’s test that:

/**
* @expectedException Exception
*/
public function testRespondToInDisagreement()

{

$whovian = new Whovian('David Tennant');
$opinion = 'No way. Matt Smith was awesome!';

$whovian->respondTo($opinion);

}

If this test throws an exception, the test passes. Otherwise, the test fails. We can test this
condition with the @expectedException annotation.

Note

PHPUnit provides several annotations that can control a given test. Read more about
PHPUnit annotations in the PHPUnit documentation.

http://bit.ly/phpunit-docs

Run Tests

After you write each test, you should run your test suite to ensure that it passes. This is
really simple to do. Open your terminal application and navigate to your project’s topmost
directory (the same directory as your phpunit.xml configuration file). We’ll use the
PHPUnit binary installed with Composer. Use this command to start the PHPUnit test
runner:

vendor/bin/phpunit -c phpunit.xml
The -c option specifies the path to the PHPUnit configuration file. The terminal shows the
results from the PHPUnit command-line test runner, and they look like Figure 10-1.

le joshi wendor/bin/phpunit -c phpunit.dist.=ml

josh/Repos/modern-phps/test - exomple/phpunit . dist. xml

b

-gxgmple joshd I

Figure 10-1. PHPUnit test results

These results tell us:

f—

. PHPUnit read our configuration file.

2. PHPUnit took 24 ms to complete.

3. PHPUnit used 3.5 MB of memory.

4. PHPUnit successfully ran five tests and five assertions.

Code Coverage

We know our PHPUnit tests pass. However, are we sure we tested as much of our code as
possible? Perhaps we forgot to test something. We can see exactly which code is tested
(and untested) with PHPUnit’s code coverage report (Figure 10-2). We already specify the
path(s) to our source code files in the PHPUnit configuration file. All PHP files in the
whitelisted directories are included in PHPUnit’s code coverage report. We can generate
code coverage each time we run the PHPUnit test runner:

vendor/bin/phpunit -c phpunit.xml --coverage-html coverage

This is the same command we used earlier, except we append the new --coverage-html
option whose value is the path to a the code coverage report directory. After you run this
command, open the newly generated coverage/index.html file in a web browser to see the
code coverage results. Ideally, you want to see 100% coverage across the board. However,
100% coverage is not realistic and definitely should not be a requirement. How much
coverage is good is subjective and varies from project to project.

Cioats Camaruge
Liraa Purctions snd Mahads Clussan ard Tram

Figure 10-2. PHPUnit code coverage report
Tip

Use PHPUnit’s code coverage report as a guideline to improve your code. Don’t use code
coverage percentages as requirements.

Continuous Testing with Travis CI

Sometimes even the best PHP developers forget to write tests. This is why it is important
to automate your tests. The best tests are like a good backup strategy — out of sight and
out of mind. Tests should run automatically. My favorite continuous testing service is
Travis CI because it has native hooks into GitHub repositories. I can run my application
tests within Travis CI every time I push code to GitHub. Travis CI runs my tests against
multiple PHP versions, too.

https://travis-ci.org/

Setup

If you have not used Travis CI before, go to https://travis-ci.org (for public repositories) or
https://travis-ci.com (for private repositories). Log in with your GitHub account. Follow
the on-screen instructions to choose which repository to test with Travis CI.

Next, create the .travis.yml Travis CI configuration file in your application’s topmost
directory. Don’t forget the leading . character! Save, commit, and push the Travis CI
configuration file to your GitHub repository. Here’s an example Travis CI configuration:

language: php
php:

install:
- composer install --no-dev --quiet
script: phpunit -c phpunit.xml --coverage-text

The Travis CI configuration is written in YAML format and includes these settings:
language

This is the language used for our application. We set this to php. This value is case-
sensitive!

php
Travis CI runs our application tests against these PHP versions. It is important that you
test against all PHP versions supported by your application.

install

This is a bash command executed by Travis CI before it runs application tests. This is
where you instruct Travis CI to install your project’s Composer dependencies. It is

important that you use the - -no-dev option to avoid installing unnecessary development
dependencies.

script

This is the bash command executed by Travis CI to run application tests. By default,
this is phpunit. You can override Travis CI’s default command with this setting. In this
example, we tell Travis CI to use our custom PHPUnit configuration file and generate
plain text coverage results.

https://travis-ci.org
https://travis-ci.com

Run

Travis CI automatically runs your application tests every time you push new commits to
your GitHub repository and emails you the test results. How cool is that? There are, of
course, many more Travis CI settings to further customize the Travis CI testing
environment (e.g., install custom PHP extensions, use custom ini settings, and so on).
Read more about Travis CI configuration for PHP at Travis CI.

http://bit.ly/build-php

Further Reading

Here are a few links to help you learn more about PHP application testing:

https://phpunit.de/
http://www.phpspec.net/docs/introduction.html
http://behat.org/
https://leanpub.com/grumpy-phpunit

https://leanpub.com/grumpy-testing
http://www.littlehart.net/atthekeyboard/

https://phpunit.de/
http://www.phpspec.net/docs/introduction.html
http://behat.org/
https://leanpub.com/grumpy-phpunit
https://leanpub.com/grumpy-testing
http://www.littlehart.net/atthekeyboard/

What’s Next

In this chapter we learned why, when, and how to write tests. Testing our applications
builds confidence and creates more predictable code. However, tests do not let us analyze
application performance. This is why we must also profile our applications. That’s what I
want to talk about next.

Chapter 11. Profiling

Profiling is how we analyze application performance. It is a great way to debug
performance issues and pinpoint bottlenecks in your application code. In other words, if
your application is slow, use a profiler to figure out why. Profilers let us traverse the entire
PHP call stack, and they tell us which functions or methods are called, in what order, how
many times, with what arguments, and for how long. We can also see how much memory
and CPU are used throughout the application request lifecycle.

When to Use a Profiler

You don’t need to profile your PHP applications immediately. You only profile PHP
applications if there is a performance issue that is otherwise hard to diagnose. How do you
know if you have a performance issue? Some issues are obvious (e.g., a database query
takes too long). Other issues may not be as obvious.

You can detect performance issues with benchmarking tools like Apache Bench and Siege.
A benchmarking tool allows you to test your application performance externally, much as
an application user would with a web browser. Benchmarking tools let you set the number
of concurrent users and total number of requests that hit a specific application URL. When
the benchmarking tool finishes, it tells you the number of requests per second that your
application sustained (among other statistics). If you find a particular URL sustains only a
small number of requests per second, you may have a performance issue. If the
performance issue is not immediately obvious, you use a profiler.

http://bit.ly/apache-bench
http://www.joedog.org/siege-home/

Types of Profilers

There are two types of profilers. There are those that should run only during development,
and there are those that can run during production.

Xdebug is a popular PHP profiling tool written by Derick Rethans, but it should only be
used as a profiler during development because it consumes a lot of system resources to
analyze your application. Xdebug profiler results are not human-readable, so you’ll need
an application to parse and display the results. KCacheGrind and WinCacheGrind are
good applications for visualizing Xdebug profiler results.

XHProf is a popular PHP profiler written by Facebook. It is intended to be run during
development and production. XHProf’s profiler results are also not human-readable, but
Facebook provides a companion web application called XHGUI to visualize and compare
profiler results. I’ll talk more about XHGUI later in this chapter.

Note

Both Xdebug and XHProf are PHP extensions, and you can install them with your
operating system’s package manager. They can also be installed with pecl.

http://xdebug.org
http://kcachegrind.sourceforge.net/
http://sourceforge.net/projects/wincachegrind/
http://xhprof.io

Xdebug

Xdebug is one of the most popular PHP profilers, and it makes it easy to analyze your
application’s call stack to find bottlenecks and performance issues. Refer to Example 10-1
in Chapter 10 for Xdebug installation instructions.

Configure

Xdebug configuration lives in your php.ini file. Here are the Xdebug profiler
configuration settings I recommend. Make sure you specify your own profiler output
directory. Restart your PHP process after saving these settings:

xdebug.profiler_enable = 0
xdebug.profiler_enable_trigger = 1
xdebug.profiler_output_dir = /path/to/profiler/results

xdebug.profiler_enable = 0

This instructs Xdebug to not run automatically. We don’t want Xdebug to run
automatically on each request, because that would drastically decrease performance and
impede development.

xdebug.profiler_enable_trigger = 1

This instructs Xdebug to run on-demand. We can activate Xdebug profiling per-request
by adding the XDEBUG_PROFILE=1 query parameter to any of our PHP application’s
URLSs. When Xdebug detects this query parameter, it profiles the current request and
generates a report in the output directory specified by the
xdebug.profiler_output_dir setting.

xdebug.profiler_output_dir = /path/to/profiler/results

This is the directory path that contains generated profiler results. Profiler reports can be
massive (e.g., 500 MB or larger) for complex PHP applications. Make sure you change
this value to the correct filesystem path for your application.

Tip

I recommend you keep profiler results beneath your PHP application’s topmost directory.

This makes it easy to find and review profiler results while developing your application.

Trigger

The Xdebug profiler does not run automatically because the xdebug.profiler_enable
setting is 0. We trigger the Xdebug profiler for a single request by adding the
XDEBUG_PROFILE=1 query parameter to any PHP application URL. An example HTTP
request URL might be /users/show/1?XDEBUG_PROFILE=1. When Xdebug detects the
XDEBUG_PROFILE query parameter, it activates and runs the profiler for the current request.
The profiler results are dumped into the directory specified by the
xdebug.profiler_output_dir setting.

Analyze

The Xdebug profiler generates results in the CacheGrind format. You’ll need a
CacheGrind-compatible application to review the profiler results. Some good applications
for reviewing CacheGrind files are:

» WinCacheGrind for Windows
m KCacheGrind for Linux
» WebGrind for web browsers

Mac OS X users can install KCacheGrind with Homebrew using this command:

brew install gcachegrind
Tip
Homebrew is a package manager for OS X. We discuss Homebrew in Appendix A.

http://sourceforge.net/projects/wincachegrind/
http://kcachegrind.sourceforge.net/
http://code.google.com/p/webgrind/
http://brew.sh

XHProf

XHProf is a newer PHP application profiler. It is created by Facebook and is intended to
be run during both development and production. It does not collect as much information as
Xdebug’s profiler, but it consumes fewer system resources, making it suitable for
production environments.

Install

The easiest way to install XHProf is with your operating system’s package manager
(assuming you installed PHP the same way):

Ubuntu

sudo apt-get install build-essential;
sudo pecl install mongo;

sudo pecl install xhprof-beta;

Cent0S

sudo yum groupinstall 'Development Tools';
sudo pecl install mongo;

sudo pecl install xhprof-beta;

Append these lines to your php.ini file, and restart your PHP process to load the new
extensions:

extension=xhprof.so
extension=mongo.so

XHGUI

XHProf is most useful when paired with XHGUI, Facebook’s companion web application
used to review and compare XHProf profiler output. XHGUI is a PHP web application
and requires:

m Composer

m Git

= MongoDB

= PHP 5.3+

= PHP mongo extension

I assume these system requirements are installed. I also assume the XHGUI web
application lives in the /var/sites/xhgui/ directory. This directory path is probably different
on your server, so keep that in mind:

cd /var/sites;

git clone https://github.com/perftools/xhgui.git;
cd xhgui;

php install.php;

The XHGUI web application has a webroot/ directory. Update your web server virtual
host’s document root to this directory.

Configure

Open XHGUT’s config/config.default.php file in a text editor. By default, XHProf collects
data for only 1% of all HTTP requests. This is fine for production, but you may want to
collect data more frequently during development. You can increase XHProf’s data
collection by editing these lines in the config/config.default.php file:

'profiler.enable' => function() {
return rand(0, 100) === 42,
iy

Change these lines to:

'profiler.enable' => function() {
return true; // <-- Run on every request

+
Tip
XHProf assumes your PHP application runs on a single server. It also assumes your
MongoDB database does not require authentication. If your MongoDB server does require

authentication, update the Mongo database connection in the config/config.default.php
file.

Trigger

You must include the XHGUI web application’s external/header.php file at the very
beginning of your PHP application. It’s easiest to use PHP’s auto_prepend_file INI
configuration setting. You can set this in the php.ini configuration file:

auto_prepend_file = /var/sites/xhgui/external/header.php

Or you can set this in your nginx virtual host configuration:

fastcgi_param PHP_VALUE "auto_prepend_file=/var/sites/xhgui/external/header.php";

Or you can set this in your Apache virtual host configuration:

php_admin_value auto_prepend_file "/var/sites/xhgui/external/header.php"

Restart PHP, and XHProf will begin collecting and saving information into its MongoDB
database. You can review and compare XHProf runs at the XHGUI virtual host’s URL.

New Relic Profiler

Another popular PHP profiler is New Relic. This is actually a web service that uses a
custom operating system daemon and PHP extension to hook into your PHP application
and report data back to the web service. Unlike Xdebug and XHProf, New Relic’s PHP
profiler is not free. That being said, I adore New Relic and recommend it if your budget
allows. Like XHProf, New Relic’s PHP profiler is meant to be run during production, and
it gives you a near real-time view of your application’s performance with a really nice
online dashboard. Learn more on New Relic’s website.

https://newrelic.com/
http://bit.ly/new-relic-php

Blackfire Profiler

As I am writing this book, Symfony is currently testing a new PHP profiler called
Blackfire. It provides unique visualization tools to help discover application bottlenecks. I
hear it’s looking like a really good alternative to Xdebug and XHProf. Keep an eye on this
one.

https://blackfire.io

Further Reading

I hope I’ve introduced you to PHP profiling in this chapter so that you feel comfortable
finding, installing, and using a PHP profiler most appropriate for your application. Here
are a few links to help you learn more about PHP profiling;:

http://www. sztepomt com/the-need-for-speed-profiling-with- throf—and xhgui/

http://www.sitepoint.com/the-need-for-speed-profiling-with-xhprof-and-xhgui/
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-1
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-2
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-3

What’s Next

At this point we’ve talked a lot about modern PHP, including new features, good practices,
provisioning, tuning, deployment, testing, and profiling. I hope you have filled your brain
with tons of fun ideas to implement in your next PHP applications.

Now I want to take a few minutes to chat about the future of PHP. A lot is happening in
the PHP ecosystem. The future of PHP is unfolding as we speak thanks to forward-looking
projects like PHP 7, HHVM, Hack, and the PHP-FIG. Let’s explore HHVM and Hack,
specifically, and figure out what they mean for PHP’s future.

https://wiki.php.net/rfc/php7timeline
http://hhvm.com
http://hacklang.org
http://www.php-fig.org

Chapter 12. HHVM and Hack

Think what you will about the Facebook application, but I have nothing but praise for the
brilliant folks working at Facebook. Facebook Open Source has developed several
important projects in the last few years, two of which have had significant impact in the
PHP community.

The first initiative is HHVM, or the Hip Hop Virtual Machine. This alternative PHP
engine was released in October 2013. Its just-in-time (JIT) compiler provides performance
many times better than PHP-FPM. In fact, WP Engine recently migrated to HHVM and
realized 3.9x faster custom Wordpress installations. MediaWiki also transitioned to
HHVM, and it has realized drastic improvements in both response times and throughput.

The second initiative is Hack, a new server-side language that is a modification of the PHP
language. Hack is mostly backward-compatible with PHP code, although it extends the
PHP language with strict typing, new data structures, and a real-time type checking server.
That being said, Hack’s own developers prefer to call Hack a dialect of PHP and not a new
language.

https://code.facebook.com/projects/
http://hhvm.com
http://bit.ly/engine-box
http://www.mediawiki.org/wiki/HHVM
http://hacklang.org

HHVM

Since 1994, if you said PHP interpreter you meant the Zend Engine. The Zend Engine
was PHP. It was the one and only PHP interpreter. Then Mark Zuckerberg came along and
created this little thing called Thefacebook on February 4, 2004. Mr. Zuckerberg and his
growing company wrote the Facebook application predominantly with PHP because the
language is easy to learn and simple to deploy. The PHP language lets Facebook quickly
onboard new developers to grow, innovate, and iterate its platform.

Fast forward, and Facebook is a veritable empire. Its infrastructure is massive. Facebook
is so huge that the traditional Zend Engine became a bottleneck for its developers. The
Facebook team had a hugely growing user base (by 2007, its user base surpassed 1 in 10
people on the planet), and it had to figure out a way to improve performance without
simply building more data centers and buying more servers.

http://www.zend.com/en/community/php

PHP at Facebook

The PHP language is traditionally interpreted, not compiled. This means that your PHP
code remains PHP code until it is sent through an interpreter when executed on the
command line or requested by a web server. The PHP script is read by the PHP interpreter
and converted into a set of existing Zend Opcodes (machine-code instructions), and the
Zend Opcodes are executed with the Zend Engine. Unfortunately, interpreted languages
execute more slowly than compiled languages because they must be converted to machine
code during every execution. This taxes system resources. Facebook realized this
performance bottleneck and, in 2010, began working on a PHP-to-C++ compiler called
HPHPc.

The HPHPc compiler converts PHP code into C++ code. It then compiles the C++ code
into an executable that is deployed to production servers. HPHPc was largely successful; it
improved Facebook’s performance and reduced the strain on its servers. However,
HPHPc’s potential performance approached a ceiling, it was not 100% compatible with
the complete PHP language, and it required a time-consuming compile process that
created a lengthy feedback loop for developers. Facebook needed a hybrid solution that
delivered superior performance but also allowed for faster development without expensive
compile time.

Facebook began working on the next iteration of HPHPc, called HHVM. HHVM converts
and caches PHP code into an intermediary bytecode format, and it uses a JIT compiler to
translate and optimize its bytecode cache into x86_64 machine code. HHVM’s JIT
compiler enables many low-level performance optimizations that are simply not possible
by compiling PHP directly to C++ with HPHPc. HHVM also enables a fast feedback loop
for developers because it compiles bytecode into machine code only when PHP scripts are
requested by a web server — just in time, you might say — much like a traditional
interpreted language. What’s more amazing is that HHVM’s performance eclipsed
HPHPc’s performance in November 2012, and it continues to improve (Figure 12-1).

140

120

100
BO
~—HPHPC
e HHVM
40

0
May-12 Jun-12 Jul-12 Aug-12 Sep-12 Oct-12 Now-12 Dec-12 lan-13 Feb-13

Figure 12-1. HHVM vs. HPHPc Performance

http://php.net/manual/internals2.opcodes.php
http://bit.ly/hhvm-evo
http://bit.ly/hhvm-evo

HPHPc was deprecated soon after HHVM’s peformance exceeded its own, and HHVM is
currently Facebook’s preferred PHP interpreter.

Tip
Don’t let HHVM intimidate you! Its implementation may be complex, but at the end of the
day HHVM is just a replacement for the more familiar php and php-fpm binaries:

= You execute PHP scripts with the hhvm binary on the command line, just like the php
binary.

= You use the hhvm binary to create a FastCGI server, just like the php-fpm binary.

» HHVM uses a php.ini configuration file, just like the traditional Zend Engine. It even
uses the same INI directives.

» HHVM has native support for many common PHP extensions.

HHVM and Zend Engine Parity

Facebook’s original HPHPc compiler was not compatible with the complete PHP language
(i.e., the Zend Engine). Complete parity is an aspiration for Facebook because it lets
HHVM become a drop-in replacement for the Zend Engine.

Facebook tested HHVM against the most popular PHP frameworks to ensure
compatibility with real-world PHP 5 code. Facebook is close to 100% compatibility.
However, Facebook has shifted its focus to user-reported issues on the HHVM issue
tracker to tackle remaining edge-case issues. HHVM is not yet 100% compatible with the
traditional Zend Engine, but it’s getting closer every day. Facebook, Baidu, and Wikipedia
already use HHVM in production. HHVM can also run Wordpress, Drupal, and many
popular PHP frameworks.

http://bit.ly/fb-hhvm

Is HHVM Right for Me?

HHVM isn’t the right choice for everyone. There are far easier ways to improve
application performance. Reducing HTTP requests and optimizing database queries are
low-hanging fruit that noticeably improve application performance and response time. If
you have not made these optimizations, do them first before you consider HHVM.
Facebook’s HHVM is for developers who have already made these optimizations and still
need faster applications. If you believe you need HHVM, here are some resources to help
you make the best decision:

Extensions
View a list of PHP extensions compatible with HHVM.

Framework Parity

Track HHVM parity with the most popular PHP frameworks.
Issue Tracker
Track open HHVM issues.

FAQs
Read HHVM frequently asked questions.

Blog
Follow the latest HHVM news.

http://bit.ly/fb-extensns
http://hhvm.com/frameworks/
http://bit.ly/fb-hhvm
https://github.com/facebook/hhvm/wiki/FAQ
http://hhvm.com/blog

Install

HHVM is easy to install on the most popular Linux distributions. It was originally
developed for Ubuntu (my preferred Linux distibution), so I use Ubuntu in the following
examples.

Note

Facebook provides prebuilt packages for other Linux distributions, including Debian and
Fedora. You can build HHVM from source on even more Linux distributions.

Per Facebook’s instructions, you can install HHVM on the latest version of Ubuntu with
the Aptitude package manager like this:

wget -0 - \
http://dl.hhvm.com/conf/hhvm.gpg.key |
sudo apt-key add -;
echo deb \
http://dl.hhvm.com/ubuntu trusty main | sudo tee /etc/apt/sources.list.d/hhvm.list;
sudo apt-get update;
sudo apt-get install hhvm;

If you’re feeling lucky, swap the last line with this one to install the latest nightly build:
sudo apt-get install hhvm-nightly;

The preceding code adds HHVM’s GNU Privacy Guard (GPG) public key for package
verification. It adds the HHVM package repository to our local list of repositories. Finally,
it installs HHVM with Aptitude like any other software package. The HHVM binary is
installed at /usr/bin/hhvm.

http://bit.ly/fb-prebuilt

Configure

HHVM uses a php.ini configuration file just as the Zend Engine does. This file exists at
/etc/hhvm/php.ini by default, and it contains many of the same INI settings used by the
Zend Engine. You can find a complete list of HHVM php.ini directives at
http://docs.hhvm.com/manual/ini.list.php.

If you run HHVM as a FastCGI server, add server-related INI directives into the
/etc/hhvm/server.ini file. You can find a complete list of HHVM server directives at
https://github.com/facebook/hhvm/wiki/INI-Settings. The HHVM wiki page is weak on
details, so you may want to peruse these HHVM support communities, too:

m StackOverflow
m JRC Channel

m Facebook Page

The default /etc/hhvm/server.ini file should be sufficient to get you started. It looks like
this:

; php options

pid = /var/run/hhvm/pid
; hhvm specific

hhvm.server.port = 9000

hhvm.server.type = fastcgi
hhvm.server.default_document = index.php
hhvm.log.use_log_file = true

hhvm.log.file = /var/log/hhvm/error.log
hhvm.repo.central.path = /var/run/hhvm/hhvm.hhbc

The most notable settings are hhvm.server.port = 9000 and hhvm.server.type =
fastcgi; they tell HHVM to run as a FastCGI server on local port 9000.

When you execute the hhvm binary, you specify the path to your configuration files with
the -c option. If you use hhvm to execute command-line scripts, you only need the
/etc/hhvm/php.ini configuration file:

hhvm -c /etc/hhvm/php.ini my-script.php

If you use the hhvm binary to start a FastCGI server, you need both the /etc/hhvm/php.ini
and /etc/hhvm/server.ini files:

hhvm -m server -c /etc/hhvm/php.ini -c /etc/hhvm/server.ini

http://docs.hhvm.com/manual/ini.list.php
https://github.com/facebook/hhvm/wiki/INI-Settings
http://stackoverflow.com/questions/tagged/hhvm
http://webchat.freenode.net/?channels=hhvm
https://www.facebook.com/hhvm

Extensions

HHVM cannot use PHP extensions that are compiled for the Zend Engine unless the
extensions use Facebook’s Zend Extension Source Compatibility Layer. Fortunately, most
of the PHP extensions we take for granted are supported by HHVM out of the box. Other
third-party PHP extensions (e.g., the GeolP extension) can be compiled separately and
loaded into HHVM as a dynamic extension. You can find a list of PHP extensions
compatible with HHVM on GitHub.

http://bit.ly/ext-zen-comp
http://bit.ly/int-extension

Monitor HHVM with Supervisord

HHVM is just fine for your production server, but it’s not infallible. I recommend you
keep tabs on HHVM’s master process with Supervisord, a process monitor that starts the
HHVM process on boot and automatically restarts the HHVM process if HHVM fails.

Tip
If you are unfamiliar with Supervisord, Chris Fidao has an excellent tutorial.

Install Supervisord with this command if you haven’t already:

sudo apt-get install supervisor

Next, make sure the /etc/supervisor/supervisord.conf configuration file has these two
lines:

[include]

files = /etc/supervisor/conf.d/*.conf
These two lines let us create a configuration file in the /etc/supervisor/conf.d/ directory for
each supervised application. Next, create the /etc/supervisor/conf.d/hhvm.conf file with
this content:

[program:hhvm]

command=/usr/bin/hhvm -m server -c /etc/hhvm/php.ini -c /etc/hhvm/server.ini
directory=/home/deploy

autostart=true

autorestart=true

startretries=3

stderr_logfile=/home/deploy/logs/hhvm.err.log
stdout_logfile=/home/deploy/logs/hhvm.out.log

user=deploy

The most important settings are:

command

Supervisord runs this command to kick off the HHVM process. We use the -m option to
run HHVM in server mode. We also use the -c option to provide the path to HHVM'’s
php.ini and server.ini configuration files.

autostart

This causes the HHVM process to start when the Supervisord process starts (e.g., on
system boot).

autorestart

This prompts Supervisord to restart the HHVM process if it fails.

startretries

This is the number of times Supervisord should try to start the HHVM process before
Supervisord considers this process a failure.

user
This is the user that owns the HHVM process. I recommend you use an unprivileged

user for security purposes. In this example, I use the same unprivileged deploy user we
created in Example 7-1.

http://supervisord.org
http://fideloper.com
http://bit.ly/c-fidao

Warning

Make sure you manually create the /home/deploy/logs directory, because Supervisord does
not create it for you.

After you finish editing the Supervisord configuration files, run these two commands to
reload and apply your changes:

sudo supervisorctl reread;
sudo supervisorctl update;

You can review all processes managed by Supervisord with this command:

sudo supervisorctl

You can start, stop, or restart a single Supervisord program as shown in the example
below. In this example, hhvm is the program name specified at the top of the
/etc/supervisor/conf.d/hhvm.conf file:

sudo supervisorctl start hhvm;
sudo supervisorctl stop hhvm;
sudo supervisorctl restart hhvm;

So far we’ve installed HHVM, and we monitor the HHVM process with Supervisord. We
still need a web server to proxy requests to HHVM. Remember, HHVM runs a FastCGI
server exactly as we do in Chapter 7 with PHP-FPM. We’ll use the HHVM FastCGI server
to handle PHP requests sent from nginx.

HHVM, FastCGI, and Nginx

HHVM communicates with a web server (e.g., nginx) with the FastCGI protocol. We need
to create an nginx virtual host that proxies PHP requests to the HHVM FastCGI server.
Here’s an example nginx virtual host definition that does that:

server {
listen 80;
server_name example.com;
index index.php;
client_max_body_size 50M;
error_log /home/deploy/apps/logs/example.error.log;
access_log /home/deploy/apps/logs/example.access.log;
root /home/deploy/apps/example.com/current/public;

location / {
try_files $uri $uri/ /index.php$is_args$args;
}

location ~ \.php {
include fastcgi_params;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME ument_root$fastcgi_script_name;
fastcgi_pass 127.0.0.1:9000;

}
Tip
From this point forward, I assume nginx is installed and running on your server. Refer to
Chapter 7 for nginx installation instructions.

Assuming you followed the nginx installation instructions in Chapter 7, create a file at
/home/deploy/apps/example.com/current/public/index.php with this content:

<?php

phpinfo();
Make sure the example.com domain points to your server’s IP address and visit
http://example.com/index.php in a web browser. You should see the word “HipHop”
appear in your browser window.

Tip

You can force your computer to point any domain name to any IP address by updating
your local /etc/hosts file. For example, this line points the domain name example.com to IP
address 192.168.33.10:

192.168.33.10 example.com
Congratulations! You’ve installed HHVM as a FastCGI server that can run your PHP

application. But a FastCGI server isn’t cool. You know what’s cool? Hack. HHVM can
run that, too.

http://example.com/index.php

The Hack Language

Hack is a server-side language that is similar to and seamless with PHP. Hack’s developers
even call Hack a dialect of PHP. Why did Facebook create something so similar to PHP?
Facebook created the Hack language for several reasons. The Hack language adds new
time-saving data structures and interfaces that are unavailable in PHP. More important,
Hack introduces static typing to help us write more predictable and stable code. Static
typing surfaces errors earlier in the development process using a near-realtime type
checking server.

Are new data structures, interfaces, and static typing worth the time required to learn a
new(ish) language and toolchain? Maybe. You have to remember that Facebook is
Facebook. It has thousands of developers all working on a gargantuan codebase. If
Facebook can optimize even the smallest part of its development process, it reaps a large
reward in both developer efficiency and a more stable, well-performing codebase.

I do not recommend you drop what you’re doing and immediately port your existing
applications from PHP to Hack. However, if you are starting a new project and have time
to install and learn Hack, then — by all means — go wild. You’ll certainly benefit from
Hack’s data structures and static typing.

http://hacklang.org

Convert PHP to Hack

To convert code from PHP to Hack, change <?php to <?hh. That’s it. This is PHP code:

<?php

echo "I'm PHP";
And this is equivalent Hack code:

<?hh

echo "I'm Hack";
Facebook makes it super-easy to go from PHP to Hack because it understands that
converting a large, existing codebase is not a quick task. Start your codebase migration by
only changing <?php to <?hh. Next, introduce a few static types. Later on, explore some
Hack data structures. The transition to Hack is gradual and painless, and it happens on
your schedule; this is by design.

What is a Type?

Before we compare dynamic and static typing, it’s probably helpful to define type. Most
PHP programmers think a type is the form of data assigned to a variable. For example, the
expression $foo = "bar" implies the $foo variable’s value is a string. The expression
$bar = 14 implies the $bar variable’s value is an integer. These examples demonstrate
types, yes, but they betray the full definition of a type.

A type is a nebulous label that we assign to properties of an application to prove that
certain behaviors exist and, to our own expectations, are fundamentally correct. I’'m

paraphrasing Chris Smith’s excellent explanation of programming types.

We can expand our definition of a type to a syntactical annotation that clarifies the identity
of program variables, arguments, or return values. Type annotations (or hints) are used in
both PHP and Hack. You’ve probably seen code like this:

<?php
class WidgetContainer

{

protected $widgets;

public function _ construct($widgets = array())

{
$this->widgets = array_values($widgets);
}
public function addwidget(Widget $widget)
{
$this->widgets[] = $widget;
return this;
}
public function getwidget($index)
{
if (isset($this->widgets[$index]) === false) {
throw new OutOfRangeException();
}
return $this->widgets[$index];
}

}

This is an arbitrary example, but it uses syntax hints to enforce specific application
properties. For example, in the addwidget () method signature we use a widget hint
before the $widget argument to tell PHP we expect the method argument to be an instance
of class widget. The PHP interpreter enforces this expecation. If an argument is provided
that is not an instance of class Widget, the code fails. In this example, the type is our
annotated expectation that the addwidget () method accepts arguments only of class
widget.

Our earlier naive examples (e.g., $foo = "bar") and this WidgetContainer example both
demonstrate types. The first example demonstrates a type that proves a variable is a string,
even though we don’t explicitly annotate the expectation. The PHP interpreter is smart
enough to infer the string type in this example based on the code syntax. The second
example creates a type with an annotation that explicitly defines the expected behavior of
the addwidget () method, and the PHP interpreter enforces this behavior based on our
explicit hint rather than making an inferrence.

http://bit.ly/prog-types

Tip
Types are more than inferred identities and annotations. However, these are the two

manifestations you’ll see and use most often when writing PHP and Hack code. You can
learn more about programming types in Benjamin C. Pierce’s book “Types and

Programming [.anguages.”

If you thought that PHP type hints are static types, you’re probably scratching your head
right about now because I just burst your bubble. Both static and dynamic typing help us
write code that behaves correctly according to our expectations, and both employ their
own type systems. The main differences between static and dynamic typing are when
program types are checked and how a program is tested for correctness.

http://bit.ly/tpl-pierce

Static Typing

The correct behavior of a statically typed program is implied by the code, via inferences,
annotations, or other language-specific types. If a statically typed program compiles
successfully, we can be confident the program is proven to behave as written. The
program’s types become our tests, and they ensure that the program satisfies our basic
expectations.

Did you notice I used the word compiles? Statically typed languages are often compiled.
Type checking and error reporting are delegated to the language compiler. This is nice,
because the compiler surfaces type-related program errors at compile time before the
application is deployed into production. Unfortunately, compiled languages imply a
lengthy feedback loop. A program must be compiled to reveal errors, and complicated
programs take a long time to compile. This decelerates development.

The upside to statically typed programs is that they are usually more stable because their
behavior is proven by the compiler’s type checker. However, we should still write separate
tests to verify that the program behavior is correct. If a program compiles, that only means
the program does what the code says it should do. That does not mean the program does
what we intend it to do. That being said, static typing saves us from writing type-related
unit tests as we do for dynamically typed programs.

Dynamic Typing

Unlike static typing, dynamic typing cannot enforce code behavior at compile time,
because the program types are not checked until runtime. Dynamically typed programs are
often interpreted, too. PHP is a dynamically typed and interpreted language. This means
that every time you execute a PHP script — either directly on the command line or
indirectly via a web server — the PHP code is read by an interpreter, converted into a set
of preexisting opcodes codes, and executed.

So how do you find errors if PHP is not compiled? Errors are surfaced during runtime.
This is both a blessing and a curse. It’s good because we can iterate quickly. We write
code and run it. Feedback is near-instantaneous. Unfortunately, we lose the inherent
accuracy and tests provided by static type checking. Separate unit tests become far more
important to ensure both proper types and intended behavior. Our tests must cover all
possible behaviors. This works for the behavior we anticipate, but it fails miserably for the
behavior we do not anticipate. Unanticipated behaviors gnash their teeth during runtime as
PHP errors, and we must handle them gracefully with friendly messages and appropriate

logging.

Hack Goes Both Ways

Static typing is Hack’s biggest selling point. Even more interesting is that Hack does static
and dynamic typing. Remember, Hack is mostly backward-compatible with regular PHP.
This means Hack supports all of PHP’s dynamic typing features that you expect. This is
possible because Hack is run with HHVM’s JIT compiler. The Hack code is type checked
as it is written with a standalone type checker. The Hack code is read, optimized, and
cached into an intermediary bytecode by HHVM. A Hack file is only converted into
x86_64 machine code and executed on demand. It’s really the best of both worlds. We get
the accuracy and safety of static typing with Hack’s type checker (more on this next) and
the flexibility and quick iteration of dynamic typing thanks to HHVM’s JIT compiler.

Note

There are a few PHP features not supported by Hack. They are listed at
http://docs.hhvm.com/manual/hack.unsupported.php. These features are supported by
HHVM when executing normal PHP code.

http://docs.hhvm.com/manual/hack.unsupported.php

Hack Type Checking

Hack comes with a standalone type-checking server that runs in the background and type-
checks your code in realtime. This is huge. This is also the main reason why Facebook
created the Hack language. Hack’s instantaneous type checking provides the accuracy and
safety of static typing without the lengthy feedback loop. If you are using Hack without its
type checker, you’re holding it wrong.

Here’s how to set up Hack’s type checker for your application. First, I assume HHVM is
installed and running. If not, refer to the HHVM section for installation instructions. Next,
create an empty file named .hhconfig in your project’s topmost directory. This tells the
Hack type checker which directory to analyze. The type checker watches files beneath this
directory and type-checks the appropriate files whenever it detects filesystem changes.
Start the Hack type checker by executing the hh_client command in or beneath your
project’s topmost directory.

Hack’s type checker does have a few limitations. Per Hack’s online documentation:

The type checker assumes that there is a global autoloader that can load any class on
demand. This means that it insists that all class and function names are unique, and has
no notion of checking imports or anything of that nature. Futhermore, it does not support
conditional definitions of functions or classes — it must be able to statically know what
is and what is not defined. It is of course perfectly possible to have a project that meets
these requirements without a global autoloader, and the type checker will work fine on
such a project, but a project using an autoloader was the intended use case.

Mixing HTML and Hack code are not supported by the type checker. Following and
statically analyzing these complicated mode switches is unsupported, particularly since
much modern code doesn’t make use of this functionality. Hack code can output markup
to the browser in a simple way via echo, or using a templating engine or XHP for more
complex scenarios.

http://bit.ly/hack-hhvm

Hack Modes

Hack code can be written in three modes: strict, partial, or decl. If you are starting a
project with Hack, I recommend you use strict mode. If you are migrating existing PHP
code to Hack, or if your project uses both PHP and Hack code, you may want to use
partial mode. The decl mode lets you integrate legacy, untyped PHP code into an
otherwise strict Hack codebase. You declare the mode at the very top of the file, after
and adjacent to the opening Hack or PHP tag (see the following examples). Mode names
are case-sensitive:

<?hh // strict

Strict mode requires all code to be appropriately annotated. The Hack type checker will
catch all possible type-related errors. This mode also prevents your Hack code from
using non-Hack code (e.g., legacy PHP code). Be sure you read up on Hack type
annotations before you commit to strict mode. Among other requirements, all Hack
arrays must be typed; you cannot use an untyped array in Hack. You must also annotate
return types for functions and methods.

<?hh // partial

Partial mode (the default) allows Hack code to use PHP code that has not been
converted to Hack. Partial mode also does not require you to annotate all of a function
or method’s arguments. You can annotate a subset of the arguments without angering
the Hack type checker. If you are just getting started with Hack, or if you are converting
an existing PHP codebase, this is probably the best mode for you.

<?php // decl
decl mode lets strict Hack code call untyped code. This is often the case when newer

Hack code depends on a legacy, untyped PHP class. In this scenario, the legacy PHP
code should declare itself in dec1 mode before the newer Hack code can use it.

Hack Syntax

Hack supports type annotations for class properties, method arguments, and return types.
These annotations are checked with Hack’s standalone type checker in accordance with
each file’s mode.

Tip
Read a complete list of available type annotations.

Let’s revisit our earlier widgetContainer example and introduce type annotations. The
updated Hack code looks like this:

01. <?hh // strict
02. class WidgetContainer

03. {

04. protected Vector<Widget> $widgets;

05.

06. public function _ construct(array<widget> $widgets = array())
07. {

08. foreach ($widgets as $widget) {

09. $this->addwidget ($widget);

10. }

11. }

12.

13. public function addwidget(Widget $widget) : this
14. {

15. $this->widgets[] = $widget;

16.

17. return this;

18. }

19.

20. public function getwWidget(int $index) : Widget
21.

22. if ($this->widgets->containsKey($index) === false) {
23. throw new OutOfRangeException();

24, }

25.

26. return $this->widgets[$index];

27. }

28. }

Property annotations

On line 4, we declare the $widgets class property with the vector<widget> annotation.
This annotation tells us two things:

m This property is a Vector (similar to a numerically indexed array).
» This property must contain only widget instances.

Argument annotations

This is probably familiar to those of you who already use PHP type hints. On line 6, we
annotate the __construct() method’s argument with the array<widget> annotation. This
annotation tells us two things:

» The argument must be an array.
» The argument must contain only Widget instances.

Unlike the property annotation on line 4, this argument can be either a numeric or an
associative array. We iterate the array argument’s values and add them to the vector data
structure. If you did want the argument to be either a numeric or an associative array, you

http://docs.hhvm.com/manual/hack.annotations.types.php
http://bit.ly/vector-tv

could use the array<int, widget> or array<string, Widget> annotations respectively.

Return-type annotations

On lines 13 and 20, we annotate the methods’ return types. The addwidget () method
returns itself (more on this soon). The getwidget () method returns a Widget instance.
Return-type annotations are declared after the method signature’s closing parenthesis and
before the method body’s opening bracket.

Warning

The exception to this rule is the __construct () method. One might think the constructor’s

return value is void; it’s not. You should not annotate the constructor method’s return

type.

Some developers like to enable method chaining. This means that a class method returns

itself so that multiple method calls can be chained together like this:
$object->methodOne()->methodTwo();

Hack lets you annotate this behavior with the this return type. We use the this annotation
with the addwidget () method on line 13.

Hack Data Structures

The Hack language’s headline feature is static typing. However, Hack also provides new
data structures and interfacs that are not found in PHP. These can potentially save you
development time versus implementing similar workarounds in vanilla PHP. Some of
Hack’s new data structures and interfaces are:

Collections (vectors, maps, sets, and pairs)
Generics
Enums

Shapes
Tuples

Many of these data structures complement, clarify, or supplement PHP’s functionality. For
example, Hack’s Collection interfaces clarify PHP’s array ambiguity. Generics let you
create data structures to handle homogenous values of a given type that is inferred only
when an instance of the generic class is created; this alleviates the need to manually
enforce type checking inside a class with PHP’s instanceof method. Enums are helpful
for creating a set of named constants without resorting to abstract classes. Shapes help you
type-check data structures that should have a fixed set of keys. And tuples let you use
arrays of an immutable length.

Please don’t feel like you need to rush out and implement all of these data structures. I
admit, some of them are of limited and niche utility. Some data structures duplicate (and
extend) functionality found in other data structures. I suggest you read up on which data
structures are available and only use them if and when you need them.

Tip
I believe the most useful Hack data structures are the various Collection interfaces. These

provide more appropriate and predictable behavior than PHP’s array data structure. It’s
best to use a Collection instead of a PHP array.

http://docs.hhvm.com/manual/en/hack.collections.php
http://docs.hhvm.com/manual/en/hack.generics.php
http://docs.hhvm.com/manual/en/hack.enums.php
http://docs.hhvm.com/manual/en/hack.shapes.php
http://docs.hhvm.com/manual/en/hack.tuples.php

HHVM/Hack vs. PHP

If HHVM and Hack are so awesome, why should you use PHP? I’m asked this question a
lot. I’'m also asked if and when PHP will meet its demise. The answer is not black-and-
white. It’s more a muddy neutral gray.

HHVM is the first true competitor to the traditional Zend Engine PHP runtime. As of PHP
5.x, HHVM is proven to perform better and be more memory-efficient than the Zend
Engine on many real-world benchmarks. I think this caught the PHP core development
team by surprise. In fact, HHVM’s mere existence is probably responsible for PHP’s
renewed interest in increased performance and reduced memory usage. The PHP core
development team is already working on PHP 7, which is scheduled for release in late
2015. The PHP 7 codebase promises to be competitive with, if not better than, HHVM.
Whether that will be true or not is anyone’s guess. However, the point is that HHVM
creates competition, and competition helps everyone. Both HHVM and the Zend Engine
will improve, and PHP developers will reap the benefits. Neither HHVM nor the Zend
Engine is going to win or lose. I believe they will coexist and feed off of their competitive
energies.

The Hack language, in my opinion, is head-and-shoulders better than PHP. There are
several reasons for this. First, the Hack language was built by Facebook to answer specific
needs. It is focused. It has purpose. And it is not developed by committee. The PHP
language, in contrast, has evolved piecemeal over a longer period of time. PHP answers
many different needs, and it is controlled by a committee that is not known for its cordial
agreements. As of PHP 5.x, the Hack language is the better option for its strict type
checking and support for legacy PHP code. I believe a lot of Hack’s best features will
eventually find their way into PHP. And vice versa. In fact, the Hack language team has
said it intends to maintain future compatibility with the Zend Engine. Again, I believe
competition will improve both languages and they’ll enjoy a symbiotic relationship.

An example of this symbiosis is the official PHP specification. Until recently, the PHP
language was the Zend Engine for lack of alternative implementations. The introduction of
HHVM prompted several developers at Facebook to announce a PHP language
specification. This specification is an amazing development in the PHP community, and it
ensures that current and future PHP implementations (Zend Engine, HHVM, and so on) all
support the same fundamental language.

Note

You can read the official PHP implementation on GitHub at https://github.com/php/php-
langspec.

https://wiki.php.net/rfc/php7timeline
http://bit.ly/fb-spec
https://github.com/php/php-langspec

Further Reading

We’ve touched on a lot of HHVM and the Hack language in a very short period of time.
There are simply not enough pages to cover everything these two initiatives have to offer.
Instead, I’ll point you to these helpful resources:

http://hhvm.com

http://hacklang.org
(@ptarjan on Twitter
@SaraMG on Twitter
@HipHopVM on Twitter
@Hackl.ang on Twitter

http://hhvm.com
http://hacklang.org
https://twitter.com/ptarjan
https://twitter.com/SaraMG
https://twitter.com/HipHopVM
https://twitter.com/HackLang

Chapter 13. Community

The PHP community is your most valuable resource. It is diverse, vibrant, and global. I
encourage you to participate in the PHP community to learn from and share with other
PHP developers. There’s always more to learn, and your PHP community is the best way
to continue learning. It’s also a great way to meet and help other developers.

Local PUG

My first advice is to find and join your local PHP User Group (PUG). Many cities have
them. You can find your local PUG at http://php.ug. Your local PUG is the best
opportunity to meet and network with fellow PHP developers in your local community.

If there isn’t a nearby PUG, you have several options. You can start your own PUG.
Unless you live in the middle of a jungle, I bet there are like-minded nearby PHP
developers who would love to join a PUG. Otherwise, you can join NomadPHP — an
online user group with monthly speakers and lightning talks that cover all sorts of PHP
features and practices.

http://php.ug
https://nomadphp.com

Conferences

There are numerous PHP conferences every year. Conferences are an excellent
opportunity to meet and mingle with the greatest minds in the PHP community. You can
listen to and talk with PHP speakers and thought leaders. And you can stay up-to-date with
emerging features and modern practices. Conferences are also an excuse to take a
minivacation. You can find a list of upcoming PHP conferences at

http://php.net/conferences/.

http://php.net/conferences/

Mentoring

If you are a beginner PHP developer and need advice or assistance, you can find a mentor
at http://phpmentoring.org. Many expert PHP developers donate their time to help new
PHP developers become better. If you are already an expert PHP developer, consider
signing up as a PHP mentor. There are many beginner PHP developers who don’t know
how or where to start, and your mentorship will be invaluable.

http://phpmentoring.org

Stay Up-to-Date

The PHP language changes frequently. Here are a few resources to help you stay up-to-
date with newer PHP features and modern practices.

Websites

http://php.net
http://php.net/docs.php
http://www.php-fig.org

http://www.phptherightway.com

http://php.net
http://php.net/docs.php
http://www.php-fig.org
http://www.phptherightway.com

Mailing Lists
m http://php.net/mailing-lists.php

http://php.net/mailing-lists.php

Twitter

m (wofficial ph
m @phpc

https://twitter.com/official_php
https://twitter.com/phpc

Podcasts

http://voicesoftheelephpant.com
http://looselycoupled.info
http://elephantintheroom.io
http://phptownhall.com
http://devhell.info

http://www.phpclasses.org/blog/category/podcast/
http://threedevsandamaybe.com/

http://voicesoftheelephpant.com
http://looselycoupled.info
http://elephantintheroom.io
http://phptownhall.com
http://devhell.info
http://www.phpclasses.org/blog/category/podcast/
http://threedevsandamaybe.com/

Humor

» @phpbard
» @phpdrama

https://twitter.com/phpbard
https://twitter.com/phpdrama

Appendix A. Installing PHP

Linux

Linux is my favorite development environment. I own a Macbook Pro with OS X, but my
development happens in a Linux virtual machine. PHP is easy to install on Linux with a
package manager such as aptitude on Ubuntu Server or yum on CentOS.

For now, we’re concerned only with PHP for command-line usage. We discuss how to
setup PHP-FPM and the nginx web server in Chapter 7.

Package Managers

Most Linux distributions provide their own package manager. For example, Ubuntu uses
the aptitude package manager. CentOS and Red Hat Enterprise Linux (RHEL) use the
yum package manager. Package managers are the simplest way to find, install, update, and
remove software on our Linux operating system.

Warning

Sometimes Linux package managers install out-of-date software. For example, Ubuntu
14.04 LTS provides PHP 5.5.9; this is already behind the latest release — PHP 5.6.3 (as of
December 2014).

Fortunately, we can supplement our Linux package manager’s default software sources
with third-party repositories that contain more up-to-date, community-maintained software
packages. We’ll use a custom software repository for both Ubuntu and CentOS to install
the most recent PHP version. Before we go any further, make sure you are the system root
user or a user with sudo power. This is required to install software with a Linux package
manager.

Ubuntu 14.04 LTS

Ubuntu does not provide the latest PHP version in its default software repositories. We’ll
need to add a community-maintained Personal Package Archive (PPA) instead. The term
PPA is unique to Ubuntu, but the concept remains the same: we are using a third-party
software repository to expand Ubuntu’s default software selection. Ondrej Sury maintains
an excellent PPA that provides nightly builds for the latest stable PHP release. This PPA is
named ppa:ondrej/php5-5.6.

1. Add software dependencies

Before we add Ondrej Sury’s PPA, we must make sure the add-apt-repository binary is
available on our operating system. This binary is included in the python-software-
properties Ubuntu package. Type this command into your terminal application and press
Enter. Enter your account password if prompted:

sudo apt-get install python-software-properties

This command installs the Python Software Properties package that includes the add-apt -
repository binary. Now we can add the custom PPA.

2. Add ppa:ondrej/php5-5.6 PPA

This PPA expands Ubuntu’s available software selection beyond the default Ubuntu
software repositories. Type this command into your terminal application and press Enter.
Enter your account password if prompted:

sudo add-apt-repository ppa:ondrej/php5-5.6

This command adds the Ondfej Sury PPA to Ubuntu’s list of software sources. It also
downloads the PPA’s GPG public key and appends it to our local GPG keyring. The GPG
public key enables Ubuntu to verify that the packages in the PPA have not been tampered
with since they were built and signed by their original author.

Ubuntu caches the list of all available software. When we add new software sources, we
need to refresh Ubuntu’s cache. Type this command in your terminal application and press
Enter. Enter your account password if prompted:

sudo apt-get update

3. Install PHP

We can now use Ubuntu’s aptitude package manager to install the latest PHP stable
release from the Ondfej Sury PPA. Before we do, it is important to know which PHP
packages are available and what they do. PHP is distributed in two forms. One form is a
CLI package that enables you to use PHP on the command line (we will use this one).
There are several other PHP packages that integrate PHP with the Apache or nginx web
servers (we discuss these in Chapter 7). For now, we’ll stick with the PHP CLI package.

First, let’s install the PHP CLI package. Type this command in your terminal application
and press Enter. Enter your account password if prompted:

sudo apt-get install php5-cli

The Linux package manager also contains packages for individual PHP extensions that
can be installed separately. Let’s install a few of those now. Type this command in your
terminal application and press Enter. Enter your account password if prompted:

sudo apt-get install php5-curl php5-gd php5-json php5-mcrypt php5-mysqglnd
Verify PHP was installed successfully with this terminal command:
php -v
This command should output something similar to:

PHP 5.5.11-3+deb.sury.org~trusty+1 (cli) (built: Apr 23 2014 12:15:16)
Copyright (c) 1997-2014 The PHP Group
Zend Engine v2.5.0, Copyright (c) 1998-2014 Zend Technologies

with Zend OPcache v7.0.4-dev, Copyright (c) 1999-2014, by Zend Technologies

CentOS 7

Like Ubuntu, CentOS and RHEL do not provide the latest stable version of PHP in their
default software repositories. RHEL is very particular about which software packages are
included in its official distribution because it prides itself on superior security and
stability; software updates are added slowly for the sake of safety.

We’re not a Fortune 500 company, so we can afford to install the latest PHP stable release
in our CentOS/RHEL Linux distribution. To do so, we’ll use the EPEL (Extra Packages
for Enterprise Linux) repository. The EPEL describes itself as:

...a Fedora Special Interest Group that creates, maintains, and manages a high quality
set of additional packages for Enterprise Linux, including, but not limited to, Red Hat
Enterprise Linux (RHEL), CentOS, Scientific Linux (SL), and Oracle Enterprise
Linux(OEL).

The EPEL repository is unrelated to the official CentOS/RHEL Linux distributions, but it
can still supplement the default CentOS/RHEL software repositories. And that’s exactly
what we’re going to do.

1. Add the EPEL repository

Let’s tell our CentOS/RHEL system to use the EPEL software repository. Type these
commands into your terminal application one-by-one, and press Enter after each
command. Enter your account password if prompted:

sudo rpm -Uvh \
http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-5.noarch.rpm;
sudo rpm -Uvh \
http://rpms.famillecollet.com/enterprise/remi-release-7.rpm;
These commands add the third-party EPEL and remi software repositories to our
CentOS/RHEL system. You should now see epel.repo and remi.repo files in the

/etc/yum.repos.d directory.

2. Install PHP

Now we’ll install the latest PHP version from the EPEL and remi repositories. As I
mentioned earlier in the Ubuntu PHP installation, PHP is distributed in two forms. One
form is a CLI package that enables you to use PHP on the command line. For now, we’ll
stick with the PHP CLI package.

First, let’s install the PHP CLI package. Type this command in your terminal application
and press Enter. Enter your account password if prompted.

sudo yum -y --enablerepo=epel,remi,remi-php56 install php-cli
Next, let’s install a few additional PHP extensions. You can search for a complete list of

PHP extensions with the yum package manager. Type this command into your terminal
application and press Enter:

yum search php

Once you find a list of PHP extensions, install them as I do in this example. Your package
names might be different:

https://fedoraproject.org/wiki/EPEL

sudo yum -y --enablerepo=epel,remi, remi-php56 \
install php-gd php-mbstring php-mcrypt php-mysqglnd php-opcache php-pdo
The important takeaway from this command is the - -enablerepo option. This option tells
yum to install the specified software packages from the EPEL, remi, and remi-php56
repositories. Without this option, yum only references its default software sources.

Verify that PHP was installed successfully. Type this command in your terminal
application and press Enter:

php -v
This command should output something similar to:

PHP 5.6.3 (cli) (built: Nov 16 2014 08:32:30)
Copyright (c) 1997-2014 The PHP Group
Zend Engine v2.6.0, Copyright (c) 1998-2014 Zend Technologies
with Zend OPcache v7.0.4-dev, Copyright (c) 1999-2014, by Zend Technologies

OS X

OS X includes PHP out of the box, but it’s probably not the latest version and it may not
have the PHP extensions you need. I recommend you ignore the PHP that comes with OS
X and use a custom PHP build instead. There are many ways to install PHP on OS X, but I
recommend two methods: MAMP and Homebrew.

MAMP

MAMP is the best way to install PHP on OS X if you cringe at the mere thought of the
command-line terminal. MAMP (which stands for Mac, Apache, MySQL, and PHP)
provides a traditional web-development software stack that includes an Apache web
server, a MySQL database server, and PHP. MAMP is an OS X application with a GUI.
Many users prefer the familiar GUI interface because it provides a nice point-and-click
interface for installing and configuring the MAMP software (Figure A-1). MAMP lives in
your /Applications folder, and you double-click its application icon to launch it. It has a
simple OS X package (.pkg) installer that makes it dead simple to install and use. You can
even drag it into your OS X Dock for quick access.

8 N6 s Install MAMP & MAMP PRO 3.0.5 =1

Select a Destination

. How do you want to install this software?
& Introduction

© Read Me = Install for all users of this computer
@ License

& Destination Select
@ Installation Type

@ Installation

@ Summary

Installing this software requires 892.3 ME of space.

You have chosen to install this software for all users of this
computer.

Go Back Continue

Figure A-1. Installing MAMP

Install

Download the MAMP package (.pkg) installer from http://www.mamp.info, and double-
click the MAMP package installer. Follow the on-screen instructions.

When the MAMP installer finishes, find the MAMP application in your /Applications
folder and launch it by double-clicking its application icon. After MAMP opens, click the
Start Servers button to start the Apache and MySQL servers (Figure A-2). It’s really that
simple.

http://www.mamp.info

0600 MAMP

‘e) | MAMP

manage your

Test MAMP PRO

Status

Start Servers
@@ Apache Server
Open start page

@0 MysSQL Server

Preferences...

Quit

Figure A-2. MAMP interface

What about PHP?, you ask. MAMP embeds PHP inside of the Apache web server using
the mod_php Apache module. Without getting into too much detail, you can use PHP if the
Apache web server is running. We discuss PHP deployment strategies in Chapter 7.

After you start the Apache and MySQL servers, open your web browser and go to
http://localhost:8888. You should see a MAMP welcome page if MAMP is successfully
installed.

The Apache web server typically listens for connections on port 80. MAMP, however,
runs Apache on port 8888. Likewise, MySQL typically listens for connections on port
3306. MAMP, however, runs MySQL on port 8889. You can change MAMPs default ports
in the MAMP application preferences. MAMP’s Apache web server document root is
/Applications/MAMP/htdocs. Any PHP files in this directory can be accessed in a web
browser at http://localhost:8888.

If you will use MAMP a lot, go into the MAMP application preferences (Figure A-3) and
make sure Start Servers when starting MAMP is checked. Then add the MAMP
application to your OS X account’s Login Items. This will start MAMP’s Apache and
MySQL servers automatically when you log in to OS X.

http://localhost:8888
http://localhost:8888

a6OL6

PHP Apache

If-' Start Servers when starting MAMP
(IfStup Servers when quitting MAMP
|g'-' Check for MAMP PRO when starting MAMP

" Open start page at startup

Start page url
fMAMP/
Cancel | OK
Preferences... ™
Quit

Figure A-3. MAMP application preferences

Extend

It is possible to download MAMP add-ons that provide different PHP versions for your
local MAMP installation. MAMP is updated frequently and most likely comes bundled
with the latest PHP version. But if for whatever reason it doesn’t, or if you need an older
PHP version, go to the MAMP website and download the PHP version you need.

Limitations

The MAMP free version provides only one Apache virtual host, and it does not let you
easily modify PHP’s configuration or extensions. MAMP is very basic and provides only
the bare necessities for PHP development on OS X.

MAMP provides a paid “Pro” version that lets you create multiple Apache virtual hosts,
easily edit your php.ini configuration file, and fine-tune PHP extensions. MAMP Pro is
nice, don’t get me wrong. But instead of forking out a good bit of money for MAMP Pro,
you’re better off learning a few command-line fundamentals so you can use the excellent
Homebrew package manager instead.

http://brew.sh

Homebrew

Homebrew is an OS X package manager comparable to Ubuntu’s aptitude and RHEL’s
yum package managers. Homebrew lets you easily browse, find, install, update, and
remove any number of custom software packages on OS X. However, Homebrew is a
command-line application. If you are not familiar with the OS X command line, you will
be more comfortable with MAMP.

Homebrew uses formulae to install software packages on your computer. Homebrew
provides default formulae for lots of software that’s not provided out of the box with OS
X. For example, there are Homebrew formulae for wget, phploc, phpmd, and php-code-
sniffer (to name just a few). If Homebrew’s default formulae are insufficient, you can
tap into third-party formulae repositories to expand your available Homebrew software
selection. Homebrew is, without exception, my favorite way to install PHP on OS X.

X Code command-line tools

Before we can install Homebrew, we must first install the XCode Command-Line Tools
provided (for free) by Apple, Inc. These command-line tools include the gcc compiler
(among other tools) needed by Homebrew to build and install software packages. If you
are running OS X Mavericks 10.9.2 or newer, open the OS X Terminal application, type
this command, and press Enter:

xcode-select --install

This command opens this modal window shown in Figure A-4.

. The "xcode-select” command requires the
@ command line developer tools. Would you like to
! install the tools now?

Choose Install to continue. Choose Get Xcode to install Xcode
and the command line developer tools from the App Store.

Get Xcode Not Now " Install

Figure A-4. Installing XCode command-line tools

Click Install to begin installing the XCode Command-Line Tools. Click Agree when the
software license agreement appears. After the XCode Command-Line Tools software is
installed, click Done and continue to the next step.

If you are using an older version of OS X, you must log into the Apple Developer Portal to
download and run a standalone XCode Command-Line Tools package (.pkg) installer.

http://brew.sh/
https://developer.apple.com/

Install

After you install the XCode Command-Line Tools, type this command in the OS X
Terminal application and press Enter:

ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"
Warning

This command executes Ruby code that is downloaded from a remote URL. You should
always inspect the remote code before you execute it, no matter how legitimate the source
may be.

Directory permissions

Homebrew downloads and ferments software in the /usr/local/Cellar directory. It symlinks
installed software binaries to the /usr/local directory. Your OS X user account must be
able to access the /usr/local directory to use software installed with the Homebrew
package manager.

Let’s make sure your OS X user account owns the /usr/local directory. Type this command
into the OS X Terminal application and press Enter. Enter your administrator password if
prompted:

sudo chown -R “whoami” /usr/local

The chown command means “change the owner” of the specified directory, the -R
command flag means “make this change recursively to all subdirectories” of the specified
directory, and the whoami argument is dynamically substituted with your OS X user
account name. After you run this command, your OS X user account will own (and
therefore have access to) the /usr/local directory.

Environment PATH

Next, add the /usr/local directory to your OS X environment PATH. The environment PATH
is a list of directories to be searched when you execute software using only the software’s
name instead of the software’s absolute filesystem path. For example, if I execute wget,
OS X will search all directories on my environment PATH for the wget software.
Otherwise, I’d have to type /usr/local/wget every time I want to use wget. Type this
command into the OS X Terminal application and press Enter:

echo 'export PATH="/usr/local/bin:$PATH"' >> ~/.bash_profile

Tap formulae repositories

Before we install PHP with Homebrew, we must tap additional repositories that contain
PHP-related formulae that do not exist in the default Homebrew repository.

First, we’ll tap the homebrew/dupes repository. This repository contains formulae for
software that already exists on OS X. This repository, however, contains newer software
versions than OS X. Type this command in the OS X Terminal application and press
Enter:

brew tap homebrew/dupes

Next, we’ll tap the homebrew/versions repository. This repository contains multiple

versions of existing OS X software. Type this command in the OS X Terminal application
and press Enter:

brew tap homebrew/versions

Finally, we’ll tap the homebrew/php repository. This repository contains PHP-related
formulae that might not be included in the default Homebrew repositories. The default
Homebrew software repository is not maintained by PHP developers. This repository is,
and it includes software appropriate for PHP developers. Type this command in the OS X
Terminal application and press Enter:

brew tap homebrew/php

Install PHP

So far, we’ve installed the Homebrew package manager, configured filesystem
permissions, updated the environment PATH, and tapped into additional formulae
repositories. Now it’s time to install PHP. There are Homebrew formulae for each PHP
version and each PHP version’s extensions. Homebrew provides a very simple way to
search for available formulae. Type this command in the OS X Terminal application and
press Enter:

brew search php

You should see a lengthy list of Homebrew PHP formulae. Find the latest stable PHP
version in the formulae list (PHP 5.5.x will be named php55, PHP 5.6.x will be named
php56, and so on). I’ll pick php56 since PHP 5.6.x is the latest stable version (as of
December 2014). Type this command in the OS X Terminal application and press Enter:

brew install php56

Installation may take a while, so feel free to grab a coffee and check back in a few
minutes. After the PHP software package is installed, you can confirm the installation by
executing php -v in the OS X Terminal application; this command outputs the full name
and version number of the PHP interpreter installed by Homebrew.

Install PHP extensions

Homebrew lets you install PHP extensions separately from the PHP interpreter. You can
search for PHP extensions just as you searched for PHP previously. Assuming you chose
php56, type this command in the OS X Terminal application and press Enter:

brew search php56

You should see a lengthy list of PHP 5.6 extensions prefixed with php56-. After you find
the extensions you want, type this command in the OS X Terminal application and press
Enter. Swap the formulae in this example with the extension formulae you want to install:

brew install php56-intl php56-mcrypt php56-xhprof

The Homebrew package manager is much more powerful than what I’ve shown here. Type
brew into the OS X Terminal application and press Enter to see a complete list of
Homebrew commands. You can also read the complete Homebrew documentation online
at http://brew.sh.

http://brew.sh

Build from Source

The precompiled PHP binary provided by your operating system’s package manager may
not always be up-to-date or exactly what you want. If this is true, you’re better off
building PHP from source code. Yes, this sounds scary. It took me a long time to build up
enough confidence before I compiled PHP for the first time. I can assure you, it’s less
scary than it sounds.

The build process is simple. We’ll download and extract the PHP source code. We’ll
configure the source code and make sure all of its software dependencies are installed.
And then we’ll make the actual PHP binaries. Download. Configure. Make. Three simple
steps.

Compiling PHP from source code gives you the flexibility to tweak the PHP build to your
exact specifications. Although there are many ways to configure PHP, for the sake of time
I’ll show you how I prefer to build PHP for my own projects. In addition to PHP’s default
features, I typically want PHP to support:

OpenSSL

Bytecode caching

FPM (FastCGI process management)
PDO database abstraction
Encryption

Multibyte strings

Image manipulation

Network sockets

Curl

With this list in mind, let’s start building PHP. Try to follow along on your own computer.
If this is your first time building PHP from source code, I strongly encourage you to do
this on a virtual machine. You can set up a local virtual machine with VMware, Parallels,
or VirtualBox. You can also fire up a dirt-cheap remote virtual machine with
DigitalOcean, Linode, and other web hosts that bill by the hour. If you mess up, you can
destroy the virtual machine, rebuild it, and try again without consequence.

Now take a deep breath, open your terminal application, and (most important) don’t be
afraid to make mistakes.

Get the Source Code

First, let’s download the PHP source code. Locate the latest stable version of the PHP
source code at http://www.php.net/downloads.php. For me, the latest stable release
happens to be version 5.6.3, but this may be different for you. Type the following
commands into your Terminal application and press Enter after each command.

The src/ directory

First, we create a src/ directory in our home folder. This folder will contain the source
code that we download from PHP.net. We cd into the src/ directory so that it becomes our
current working directory:

mkdir ~/src;
cd ~/src;

Download the source code

Next, we use wget to download the PHP source code as a tar.gz archive. The downloaded
file will be located at ~/src/php.tar.gz:

wget -0 php.tar.gz http://www.php.net/get/php-5.6.3.tar.gz/from/this/mirror

Extract the PHP source code archive with the tar command, and cd into the unarchived
source code directory:

tar -xzvf php.tar.gz;
cd php-*;

Configure PHP

We’ve downloaded the PHP source code. Now we need to configure it. Before we do, we
must install a few software dependencies. How do I know what dependencies to install? I
run the ./configure command (see the next subsection) until it works. When the
./configure command fails due to a missing software dependency, it indicates what
software is missing. Install the missing dependency and rerun the ./configure command.
Rinse and repeat until it works.

Luckily for you, I’ve already figured out what software dependencies are needed for the
PHP ./configure command we’ll be using. Let’s install these software dependencies
now. I use commands for both Ubuntu/Debian and CentOS/RHEL Linux distributions; use
the commands appropriate for your Linux distribution.

Note

If for whatever reason the ./configure command reports additional missing
dependencies, you can search for the missing dependency software packages online at
http://packages.ubuntu.com/ (for Ubuntu) or at https://fedoraproject.org/wiki/EPEL (for
CentOS).

Build essentials

We’ll need these fundamental software binaries to build PHP on your operating system.
These binaries include gcc, automake, and other fundamental development software:

Ubuntu

http://www.php.net/downloads.php
http://packages.ubuntu.com/
https://fedoraproject.org/wiki/EPEL

sudo apt-get install build-essential;

Cent0S
sudo yum groupinstall "Development Tools";

libxml2

We’ll need the 1ibxm12 library. This is used by PHP’s XML-related functions:

Ubuntu
sudo apt-get install libxml2-dev;

Cent0S
sudo yum install libxml2-devel;

OpenSSL

We’ll need the openss1 library. This is required to enable HTTPS stream wrappers in
PHP, which is kind of important, right?

Ubuntu
sudo apt-get install libssl-dev;

Cento0S
sudo yum install openssl-devel;

Curl
We’ll need the 1ibcurl library. This is required by PHP’s Curl functions:

Ubuntu
sudo apt-get install libcurl4-dev;

CentoS
sudo yum install libcurl-devel;

Image manipulation

We’ll need the GD, JPEG, PNG, and other image-related system libraries. Fortunately,
all of these are bundled into a single package. These are required to manipulate images
with PHP:

Ubuntu
sudo apt-get install libgd-dev;

Cent0S
sudo yum install gd-devel;

Mcrypt

We’ll need the mcrypt system library to enable PHP’s Mcrypt encryption and
decryption functions. For whatever reason, there is no default CentOS Mcrypt package.
We’ll need to supplement the default CentOS packages with the third-party EPEL
package repository to install Mcrypt:

Ubuntu
sudo apt-get install libmcrypt-dev;

Cent0S

wget http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm;
sudo rpm -Uvh epel-release-6*.rpm;
sudo yum install libmcrypt-devel;

The ./configure command

Now that our software dependencies are installed, let’s configure PHP. Type the following
./configure command in your Terminal application and press Enter:

./configure

--prefix=/usr/local/php5.6.3

--enable-opcache

--enable-fpm

--with-gd

--with-z1lib

--with-jpeg-dir=/usr

--with-png-dir=/usr

--with-pdo-mysql=mysqlnd

--enable-mbstring

--enable-sockets

--with-curl

--with-mcrypt

--with-openssl;
This is a lengthy command with a lot of options. Don’t be overwhelmed. Each command
option has a specific purpose. You can find a list of all available options with ./configure
--help. We’ll go through this ./configure command line by line so you know exactly

what it does:
--prefix=/usr/local/php5.6.3

The - -prefix option defines the path to a filesystem directory that will contain the
compiled PHP binaries, includes, libraries, and configuration files. I prefer to keep my
custom PHP build and related files together in a single parent directory for the sake of
organization. Your user account will need permission to write to this directory. If you
don’t have write permission to /usr/local, you can set the --prefix to a directory in
your user account’s home folder instead (e.g., ~/local/php-5.5.13). Regardless, make
sure the - -prefix directory exists before you run the ./configure command.

--enable-opcache
The - -enable-opcache option enables PHP’s built-in bytecode caching system. You
will most always want to enable this. The performance benefits are tremendous.

--enable-fpm
The - -enable-fpm option enables the built-in PHP FastCGI Process Manager. This lets
you run PHP as a FastCGI process that is accessible via a TCP port or a local Unix

socket. FPM is fast becoming the preferred way to run PHP (especially with the nginx
web server). If in doubt, I recommend you enable this option.

--with-gd
The --with-gd option lets PHP interface with your operating system’s GD image-

manipulation library. You will want to enable this option if you plan on using PHP to
manipulate images.

--with-z1ib
The --with-z1ib option lets PHP interface with your operating system’s Zlib library.

Z1ib is a data-compression library that is needed by the GD image library to create and
manipulate PNG image data. This option is required if you use the - -with-gd option.

--with-jpeg-dir
The --with-jpeg-dir option specifies the path to the filesystem directory that contains
the JPEG libraries. This option is required if you use the - -with-gd option.
--with-png-dir

The --with-png-dir option specifies the path to the filesystem directory that contains
the PNG libraries. This option is required if you use the - -with-gd option.

--with-pdo-mysqgl=mysqlnd

The --with-pdo-mysql option instructs PHP to enable the PDO database abstraction
API for the MySQL database using PHP’s own native MySQL driver. If you use
MySQL, you’ll want to enable this option.

--enable-mbstring

The --enable-mbstring option instructs PHP to enable multibyte (read “Unicode™)
string support. You’ll most always want to enable this option.

--enable-sockets

The --enable-sockets option instructs PHP to enable network socket support so that
you can talk with remote machines via TCP sockets. You’ll most always want to enable
this option.

--with-curl

The --with-curl option lets PHP interface with your operating system’s curl library.
This lets you use PHP’s curl functions to send and receive HTTP requests. You’ll most
always want to enable this option.

--with-mcrypt

The --with-mcrypt option lets PHP interface with your operating system’s mcrypt
library for data encryption and decryption. Although this option is by no means
required, it is used by a growing number of PHP components. I strongly recommend
you enable this option.

--with-openssl

The --with-openssl option lets PHP interface with your operating system’s openssl
library. This is required to use PHP’s HTTPS stream wrapper. Although this option is
technically optional, it’s really not. Make Edward Snowden proud. Enable this option.

Make and install PHP

Configuring PHP and installing its software dependencies was the hard part. It’s all
downhill from here. Assuming the ./configure command executed successfully, type this
command in your terminal application and press Enter:

make && make install

This will compile PHP and may take a while. Now is a good time to grab a coffee or two.
Eventually the command will finish and PHP will be installed. That wasn’t too bad, right?

The compiled PHP binaries are available in the bin/ directory beneath your - -prefix
directory. The php-fpm binary is available in the sbin/ directory beneath your - -prefix
directory. Be sure the bin/ and sbin/ directories are added to your system’s environment
PATH so you can reference the php binary by name instead of absolute path.

Create the php.ini file

Let’s not forget about our php.ini file. This may not be created automatically. The PHP
GitHub repository has a php.ini preconfigured for local development. Our php.ini file
should exist in the lib/ directory beneath your - -prefix directory. Let’s create it now.
Type the following commands into your terminal application and press Enter after each
command.

First, cd into our PHP installation’s lib/ directory. This path may be different if you used a
different - -prefix path in your ./configure command:

cd /usr/local/php5.6.3/1ib

Next, download the PHP.ini file from PHP’s GitHub repository into a file named php.ini:

curl -o php.ini \
https://raw.githubusercontent.com/php/php-src/master/php.ini-development

That’s it. We’re all set to execute PHP files with the newly installed php interpreter. We
talked more about the php-fpm binary when we discussed PHP deployment strategies in

Chapter 7.

Windows

Yes, you can run PHP on Windows. However, I encourage you to use a Linux virtual
machine instead. It is very likely that your production server will be running a Linux
distribution, and you should set up your local development environment to closely match
your production environment. But if you must use Windows locally, here’s how.

Binaries

The fine folks over at PHP.net provide prebuilt PHP binaries for Windows at
http://php.net/windows. Download the appropriate PHP release (provided as a ZIP archive)
and unpack it to a directory of your choice. I’ll unpack it to C:\PHP\. Copy the php.ini-
production file to php.ini in the same folder. No other changes are required to use PHP on
the Windows command line. You can execute a custom PHP script with optional
arguments like this:

C:\PHP\php.exe -f "C:\path\to\script.php"—-argl -arg2 -arg3
Tip
You should add the PHP executable to your Windows PATH variable and append the .php
extension to your Windows PATHEXT variable to save your future self from a lot of extra

typing.

http://php.net/windows
http://bit.ly/addtopath

WAMP

You can also download and install WAMP to set up a quick and dirty local PHP
development environment. Like its OS X counterpart, MAMP, WAMP is an all-in-one
software package that provides a traditional web-development stack out-of-the-box. It
includes an Apache web server, a MySQL database server, and PHP. It has a Windows
software installer that will guide you through every step of the install process. WAMP also
provides a configuration menu in the Windows Taskbar notification area where you can
quickly and easily start, stop, or restart your Apache and MySQL servers. Like MAMP,
WAMP embeds PHP in the Apache web server using the mod_php Apache module. If your
Apache server is running, you can use PHP.

WAMP is your best bet for quickly installing a local PHP development stack on your
Windows machine. However, just as with MAMP, you are limited to the software and
extensions provided with WAMP. You can download additional PHP versions separately
on the WAMP website. Learn more at http://www.wampserver.con/.

http://www.wampserver.com/en/
http://www.wampserver.com/

Z.end Server

Another all-in-one solution is Zend Server. It is available in both free and paid versions.
Like WAMP, it provides an Apache web server, the latest PHP interpreter and popular
PHP extensions, a MySQL database server, and Zend’s own debugging tools in one easy-
to-install package. Just download the installer (.exe) file, run it, and follow the on-screen
instructions. Learn more at http://www.zend.com/en/products/server/.

http://www.zend.com/en/products/server/

Appendix B. Local Development Environments

We’ve talked a lot about production server provisioning and application deployment.
However, we haven’t discussed how to develop applications on your local computer.
What tools do you use? How do you reconcile your development environment with your
production environment? This chapter has answers.

Many beginner PHP developers rely on their operating system’s default software stack —
typically older versions of Apache and PHP. I strongly encourage you not to use your
operating system’s default software. Many OS X users (including me) have been
devastated when an OS X upgrade vaporized our heavily customized Apache
configuration files. Steer clear of built-in software; it’s often out of date, and it may be
overwritten by operating system upgrades. Instead, build a local development environment
in a virtual machine that is safely isolated from your local operating system. A virtual
machine is a software-emulated operating system. For example, you can create a virtual
machine on OS X that runs Ubuntu or CentOS. The virtual machine behaves exactly like a
separate computer.

Tip
Make sure your virtual machine runs the same operating system as your production server
(I prefer Ubuntu Server). It’s important that your local development and production server

environments use the same operating system to prevent unexpected deployment and
runtime errors caused by operating system software discrepancies.

VirtualBox

There are many software programs that create and manage virtual machines. Some are
commercial products (e.g., VMWare Fusion or Parallels), and others are open source
products (e.g., VirtualBox). To be honest, VirtualBox is a solid product. It works as
advertised, and it’s free. VirtualBox is not pretty like its commercial alternatives, but it
gets the job done. You can download VirtualBox for OS X or Windows at
https://www.virtualbox.org. It uses a traditional GUI installer appropriate for your

operating system (Figure B-1).

= w Install Oracle VM VirtualBox ™
Wealcome to the Oracle VM VirtualBox Instatler

Oracle VM VirtualBox for Mac 0S X

‘Welcome to Oracle VM VirlualBox 4.3.20 for Mac 08 X! This installer will
jguida you through the installation process. In a minute from now, you will

¢ Introduction
Destination Select

Instaliation Type 5, be able o execule vilual machings running different operating systers
) on your deskiop, You will find that VirtualBox delhvers a great feature set
and excellent parformance,
W\ p

Continue

Figure B-1. VirtualBox installer

http://www.vmware.com/products/fusion
http://www.parallels.com/products/desktop/
https://www.virtualbox.org
https://www.virtualbox.org

Vagrant

Although VirtualBox lets us create virtual machines, it does not provide a user-friendly
interface to start, provision, stop, and destroy virtual machines. Instead, we use Vagrant —
a virtualization tool that helps you create, start, stop, and destroy VirtualBox virtual
machines with a single command. It complements (and abstracts) VirtualBox with a user-
friendly, command-line interface. You can download Vagrant for OS X and Windows at
https://www.vagrantup.com. It also uses a traditional GUI installer appropriate for your
operating system.

https://www.vagrantup.com
https://www.vagrantup.com

Commands

After installation, you can use the vagrant command in your terminal application to
create, provision, start, stop, and destroy VirtualBox virtual machines. These are the
Vagrant commands you’ll use most often:

vagrant init
This creates a new Vagrantfile configurations script in the current working directory.
We use this script to configure a virtual machine’s properties and provisioning details.

vagrant up

This creates and/or starts a virtual machine.

vagrant provision
This provisions a virtual machine using the specified provisioning scripts. We’ll discuss
provisioning later in this chapter.

vagrant ssh

This logs you into a virtual machine via SSH.

vagrant halt

This stops a virtual machine.
vagrant destroy
This destroys a virtual machine.
Tip
I recommend you create command-line aliases for these Vagrant commands because

you’ll type them a lot. Drop these into your ~/.bash_profile file and restart your
terminal application:

alias vi="vagrant init"

alias vu="sudo echo 'Starting VM' && vagrant up"

alias vup="sudo echo 'Starting VM' && vagrant up --provision"
alias vp="vagrant provision"

alias vh="vagrant halt"

alias vs="vagrant ssh"

Boxes

We have VirtualBox and Vagrant installed. Now what? We need to choose a Vagrant box
as a starting point for our virtual machine. A Vagrant box is a preconfigured virtual
machine that provides a foundation on which we provision our server and build our PHP
application. Some boxes are spartan shells used as a blank canvas. Other boxes include
complete software stacks that cater to certain types of applications. You can browse
available boxes at https://vagrantcloud.com.

I usually choose the spartan ubuntu/trusty64 box, and then I use Puppet to provision the
box with a specific software stack required by my application. If you find another Vagrant
box that already includes the tools you need, by all means use that box to save time.

https://vagrantcloud.com
https://vagrantcloud.com/ubuntu/boxes/trusty64

Initialize
After you find a Vagrant box, navigate into the appropriate working directory with your
terminal application. Initialize a new vagrantfile with this command:

vagrant init
Open the new vagrantfile file in your preferred text editor. This file is written with
Ruby, but it’s easy to read. Find the config.vm.box setting, and change its value to the

name of your Vagrant box. For example, if I prefer the Ubuntu box I change this setting to
ubuntu/trusty64. The updated vagrantfile line should read:

config.vm.box = "ubuntu/trusty64"

Next, uncomment this line so we can access our virtual machine in a web browser on our
local network at IP address 192.168.33.10:

config.vm.network "private_network", ip: "192.168.33.10"

Finally, create the virtual machine with this command:

vagrant up

This command downloads the remote Vagrant box (if necessary), and it creates a new
VirtualBox virtual machine based on the Vagrant box.

Provision

Unless you use a Vagrant box that provides a preconfigured software stack, your virtual
machine doesn’t do anything. You need to provision the virtual machine with the software
to run your PHP application. At the very least, you want a web server, PHP, and possibly a
database. Provisioning a virtual machine is a topic far too large for this book. I can,
however, point you in the right direction. You can provision a virtual machine with
Vagrant and either Puppet or Chef. Both Puppet and Chef can be enabled and configured
in the the vagrantfile configuration file.

Tip
Erika Heidi gave a great NomadPHP presentation on Vagrant and provisioning tools like
Puppet and Chef. She also wrote the Vagrant Cookbook, now available on LeanPub.

Puppet

If you scroll down the vagrantfile file, you’ll see a section that looks like this. It may be
commented out by default:

config.vm.provision "puppet" do |puppet]

puppet.manifests_path = "manifests"
puppet.manifest_file = "default.pp"
end

If you uncomment this section, Vagrant will provision the virtual machine with Puppet
using your Puppet manifests. You can learn more about Puppet at http://puppetlabs.com.

Chef

If you prefer Chef’s provisioning tools, you can instead uncomment this section of the
vagrantfile file:

config.vm.provision "chef_solo" do |chef]

chef.cookbooks_path = "../my-recipes/cookbooks"
chef.roles_path = "../my-recipes/roles"
chef.data_bags_path = "../my-recipes/data_bags"

chef.add_recipe "mysql"
chef.add_role "web"

You may also specify custom JSON attributes:
chef.json = { mysql_password: "foo" }
end
Provide your own cookbooks, roles, and recipes. Vagrant will provision your virtual

machine accordingly. You can learn more about Chef at https://www.chef.io/chef/.

http://erikaheidi.com
http://www.bit.ly/1zUJmqb
https://leanpub.com/vagrantcookbook
http://puppetlabs.com
https://www.chef.io/chef/

Synced folders

In either case, it’s often useful to map your local machine’s project directory to a directory
in the virtual machine. For example, you can map your local project directory to the
virtual machine’s /var/www directory. If the virtual machine’s web server virtual host is
/var/www/public, your local project’s public/ directory is now served by the virtual
machine’s web server. Any local changes are reflected immediately in the virtual machine.
You can uncomment this line in your vagrantfile file to enable synced directories
between your local and virtual machines:

config.vm.synced_folder ".", "/vagrant_data"

The first argument (.) is your local path relative to the vagrantfile configuration file.
The second argument (/vagrant_data) is the absolute path on the virtual machine to
which the local directory is mapped. The virtual machine directory largely depends on
your virtual machine’s web server virtual host configuration. OS X users should enable
NFS synced folders. Change the config.vm.synced_folder line to this:

config.vm.synced_folder ".", "/vagrant_data", type: "nfs"

Then uncomment these lines and boost the VirtualBox machine’s memory to 1024MB:

config.vm.provider "virtualbox" do |vb|
Don't boot with headless mode
vb.gui = true

Use VBoxManage to customize the VM. For example to change memory:
vb.customize ["modifyvm", :id, "--memory'", "1024"]
end

Get started

Puppet and Chef are not easy to learn, especially for Vagrant newcomers. There are tools
available to help you get started with Vagrant that don’t require you to write your own
Puppet and Chef manifests.

Laravel Homestead

Homestead is an abstraction on top of Vagrant. It is also a Vagrant box that is
preconfigured with a complete software stack including:

Ubuntu 14.04
PHP 5.6
HHVM

Nginx
MySQL
Postgres

Node (With Bower, Grunt, and Gulp)
Redis
Memcached
Beanstalkd
Laravel Envoy

Homestead works great for any PHP application, too. I use Homestead on my local
machine to develop Slim and Symfony applications. Learn more about Homestead at
http://laravel.com/docs/4.2/homestead.

PuPHPet

PuPHPet is ideal for those who don’t know how to write Puppet manifests. This is a point-
and-click website that creates a Puppet configuration automatically (Figure B-2). You
download the resultant Puppet configuration and run vagrant up. It really is that simple.

http://laravel.com/docs/4.2/homestead
http://laravel.com/docs/4.2/homestead
https://puphpet.com

€:® PuPHPet

m st =

[————

& Where do you want your virtual machine?

Figure B-2. PuPHPet

Vaprobash

Vaprobash is similar to PuPHPet. It doesn’t provide a point-and-click website, but it’s
almost as easy. You download the Vaprobash vagrantfile, and you uncomment the lines
for the tools you need. Do you want nginx? Uncomment the nginx line. Do you want
MySQL? Uncomment the MySQL line. Do you want Elasticsearch? Uncomment the
Elasticsearch line. When ready, run vagrant up in your terminal application and Vagrant
will provision your virtual machine.

http://fideloper.github.io/Vaprobash/

Index

Symbols

$context argument, Write a PSR-3 Logger
.htaccess files, Router Scripts

@ prefix, Errors and Exceptions
_autoload() method, Autoloading
_invoke() magic method, Create

addDocument() method, Code to an Interface
addRoute() method, Attach State
aliases

custom, Import and Alias

default, Import and Alias
definition of term, Import and Alias

anonymous functions, Closures
Apache Bench, Memory, When to Use a Profiler

auth.json files, Composer and Private Repositories
autoloading

components, Autoloading PHP components
definition of term, Autoloading

importance of, Why Autoloaders Are Important

namespaces and classes, PSR-1: Basic Code Style

PSR4 autoloader standard, Autoloading, The PSR-4 Autoloader Strategy
purpose of, PSR-4: Autoloaders

writing a PSR4 autoloader, How to Write a PSR-4 Autoloader (and Why You

Shouldn’t)

berypt hashing algorithm, Hash User Passwords with berypt
behavior-driven development (BDD), Behavior-Driven Development (BDD)
benchmarking tools, When to Use a Profiler

best practices (see good practices)

bindTo() method, Attach State

Bitbucket, Version Control

Blackfire, Blackfire Profiler

BOM (byte-order marker), PSR-1: Basic Code Style

bound parameters, Prepared Statements

buffer size, tuning of, Output Buffering

bytecode caches, Zend OPcache

(see also Zend OPcache)

C

m caching, tuning of, Zend OPcache
m CamelCase format, PSR-1: Basic Code Style
m (Capistrano

application deployment, Deploy Your Application

application rollback, Roll Back Your Application
authentication, Authenticate

benefits of, Capistrano

config/deploy.rb file, The config/deploy.rb file
configuration of, Configure

hooks in, Capistrano Hooks

installation of, Install

operation of, How It Works

remote server preparation, Prepare the Remote Server
software dependencies and, Software dependencies
virtual hosts and, Virtual host

m case keyword, PSR-2: Strict Code Style
m catch keyword, PSR-2: Strict Code Style
= CentOS

nginx installation, nginx

non-root user creation, Nonroot User
PHP installation, CentOS 7
PHP-FPM installation, Install
software updates, Software Updates

m Chef, Chef
m class definition, PSR-2: Strict Code Style
m class names, Import and Alias, PSR-1: Basic Code Style

(see also namespaces)

m classical inheritance, Why We Use Traits
m closures

attaching state with, Attach State
creating, Create

purpose of, Closures

vs. anonymous functions, Closures

= code style

autoloading, PSR-1: Basic Code Style

automating compatibility, PSR-2: Strict Code Style
class definition, PSR-2: Strict Code Style

control structures, PSR-2: Strict Code Style

files and lines, PSR-2: Strict Code Style
indentation, PSR-2: Strict Code Style

keywords, PSR-2: Strict Code Style

method definition, PSR-2: Strict Code Style
names, PSR-1: Basic Code Style

namespaces, PSR-2: Strict Code Style

PHP tags, PSR-1: Basic Code Style

PSR-1: basic code style, PSR-1: Basic Code Style
PSR-2: strict code style, PSR-2: Strict Code Style
standardization of, Style

UTF-8 character set, PSR-1: Basic Code Style
visibilities, PSR-2: Strict Code Style

s command line runner, PHPUnit
= command-line scripts, Implement scan.php
= components

autoloading, Autoloading PHP components

benefits of, Components, Use PHP Components
characteristics of good, What Are Components?

Composer installation, How to Install Composer
creating, Create PHP Components-Using the Component
definition of term, What Are Components?

example project, Example Project

filesystem organization, Filesystem Organization
finding/selecting, Find Components

importance of, Use PHP Components

installing, Component installation

naming, Component names

private repositories, Composer and Private Repositories

using, Use PHP Components
vs. frameworks, Components Versus Frameworks

m Composer

benefits of, Use PHP Components

composer.lock file, The composer.lock file

example project, Example Project

importance of, Use PHP Components

installation of, How to Install Composer

installing components with, How to Use Composer
private repositories, Composer and Private Repositories

composer.json files, The composer.json File

config/deploy.rb file, The config/deploy.rb file
config/deploy/production.rb file, The config/deploy/production.rb file
constant names, PSR-1: Basic Code Style

control structures, PSR-2: Strict Code Style

m data

good practices for handling, Sanitize, Validate, and Escape

sanitizing HTML special characters, HTML
sanitizing input, Sanitize Input

SQL queries, SQL queries

streaming, Stream Wrappers

streams, Streams-Custom Stream Filters

user profile information, User profile information
validation of, Validate Data

databases

connections and DSNs, Database Connections and DSNs

ensuring credentials security, Keep your database credentials secret
PDO extension, The PDO Extension

PHP extensions for, Databases

prepared statements, Prepared Statements

query results, Query Results

transactions, Transactions

dates, times, and time zones

DateInterval Class, The Datelnterval Class

DatePeriod class, The DatePeriod Class

DateTime class, The DateTime Class

DateTimeZone class, The DateTimeZone Class
nesbot/carbon component, The nesbot/carbon Component
PHP classes for, Dates, Times, and Time Zones

setting default time zones, Set a Default Time Zone

dedicated servers, Dedicated Server
default aliases, Import and Alias
deployment

approaches to, Deployment
automating, Automate Deployment

version control and, Version Control
with Capistrano, Capistrano-Roll Back Your Application

dispatch() method, Attach State

do while keyword, PSR-2: Strict Code Style

DRY (Do not repeat yourself), Why We Use Traits
DSN string argument, Database Connections and DSNs
dynamic typing, definition of term, Future

(see also typing)

else keyword, PSR-2: Strict Code Style

elseif keyword, PSR-2: Strict Code Style

email addresses, sanitizing, User profile information

encryption, vs. hashing, Hash User Passwords with bcrypt

EPEL (Extra Packages for Enterprise Linux) repository, CentOS 7

m errors and exceptions

catching exceptions, Catch exceptions

differences between, Errors and Exceptions, Errors

during development, Errors and Exceptions During Development
error handlers, Error Handlers

error logging, Production

error reporting, Errors

errors, Errors

exception handlers, Exception Handlers

exceptions, Exceptions

logging exceptions, Exception Handlers
throwing exceptions, Throw exceptions

m exec() function, Max Execution Time
m extends keyword, PSR-2: Strict Code Style
m external data sources, Sanitize, Validate, and Escape

Facebook Open Source project, HHVM and Hack
FastCGI protocol, HHVM, FastCGI, and Nginx
Ferrara, Anthony, Password Hashing API

file uploads, tuning, File Uploads

files, standards for, PSR-2: Strict Code Style
filter_input() function, User profile information
filter_var() function, User profile information
firewalls, Disable Passwords and Root L.ogin

for keyword, PSR-2: Strict Code Style
foreach keyword, PSR-2: Strict Code Style

Forge, Delegate Server Provisioning
framework interoperability

autoloading, Autoloading
code style, Style
interfaces, Interfaces

m frameworks

benefits of, Not All Frameworks Are Bad
choosing, Use the Right Tool for the Job

popular PHP, Not All Frameworks Are Bad

vs. components, Components Versus Frameworks

= front controllers, Router Scripts
» functional tests, What Do We Test?
m functions

anonymous, Closures
closures, Closures

generators

benefits and drawbacks of, Use a Generator
creating, Create a Generator

purpose of, Generators

using, Use a Generator

getContent() method, Code to an Interface
getld() method, Code to an Interface

Git, Version Control

global namespaces, Global namespace
good practices

benefits of, Good Practices

components, Components-Using the Component

data handling, Sanitize, Validate, and Escape
data validation, Validate Data

databases, Databases-Transactions

dates, times, and time zones, Dates, Times, and Time Zones-The nesbot/carbon
Component

DRY (Do not repeat yourself), Why We Use Traits

errors and exceptions, Errors and Exceptions-Production

escaping output, Escape Output

multibyte strings, Multibyte Strings

passwords, Passwords-Password Hashing API for PHP < 5.5.0
sanitizing input, Sanitize Input

standards, Standards-How to Write a PSR-4 Autoloader (and Why You
Shouldn’t)

streams, Streams-Custom Stream Filters

trait definition, How to Create a Trait

vs. best practices, Good Practices

» Gutmans, Andi, Past

H

» Hack language

backwards compatibility of, HHVM and Hack
benefits of, The Hack L.anguage, Hack Goes Both Ways, HHVM/Hack vs. PHP
converting PHP to, Convert PHP to Hack

data structures, Hack Data Structures

dynamic typing, Dynamic Typing

features of, Future

modes in, Hack Modes

static typing, Static Typing

syntax in, Hack Syntax

type checking, Hack Type Checking

vs. PHP, HHVM/Hack vs. PHP

» hashing

algorithms for, Hash User Passwords with bcrypt
vs. encryption, Hash User Passwords with bcrypt

HipHop Virtual Machine (HHVM)

applications using, HHVM and Hack
benefits of, Future, PHP at Facebook
choosing, Is HHVM Right for Me?
configuration of, Configure
development of, HHVM

extensions for, Extensions
implementation of, PHP at Facebook
installation of, Install

vs. PHP, HHVM/Hack vs. PHP

Zend Engine parity, HHVM and Zend Engine Parity
Homebrew, Homebrew
Homestead, Laravel Homestead

hooks, Capistrano Hooks
hosting

approaches to, Hosting

choosing a plan, Choose a Hosting Plan

companies available, Hosting

on dedicated servers, Dedicated Server

on platforms as a service (PaaS), PaaS

on shared servers, Shared Server

on virtual private servers (VPS), Virtual Private Server

HPHPc compiler, PHP at Facebook

HTML Purifier library, HTML

HTML, sanitizing special characters, HTML
htmlentities() function, HTML, Escape Output
HTTP server

benefits of, Built-in HTTP server
configuring, Configure the Server
detecting, Detect the Built-in Server
drawbacks of, Drawbacks

router scripts, Router Scripts
starting, Start the Server

human-readable stories, Behavior-Driven Development (BDD)

identifiers, Stream Wrappers

if keyword, PSR-2: Strict Code Style
implements keyword, PSR-2: Strict Code Style
import, definition of term, Import and Alias
importing

multiple imports, Multiple imports

namespaces vs. traits, How to Use a Trait
indentation, PSR-2: Strict Code Style
inheritance, classical, Why We Use Traits

input, sanitizing, Sanitize Input, Prepared Statements
installation

build from source, Build from Source-Create the php.ini file
CentOS 7, CentOS 7

development environment, Linux

Homebrew, Homebrew

MAMP (Mac, Apache, MySQL and PHP), MAMP

0OS X, 0S X

package managers, Package Managers

Ubuntu 14.04 LTS, Ubuntu 14.04 LTS

Windows, Windows

Xcode command-line tools, XCode command-line tools

interfaces

benefits of, Interfaces

benefits of coding to, Code to an Interface

concept of, Code to an Interface

importance of, Code to an Interface

logger interface recommendations, PSR-3: Logger Interface

interoperability methods

autoloading, Autoloading
code style, Style
interfaces, Interfaces

interpreted languages, Zend OPcache
interval specification, The Datelnterval Class
iterators, Generators

(see also generators)

just in time (JIT) compilers

benefits of, Future
HHVM, PHP at Facebook

KCacheGrind, Types of Profilers
key-pair authentication, SSH Key-Pair Authentication
keywords, PSR-2: Strict Code Style

2

Laravel Homestead, Laravel Homestead
Lederdorf, Rasmus, Past

LF Unix linefeed ending, PSR-2: Strict Code Style
lines, standards for, PSR-2: Strict Code Style
Linode, Virtual Private Server, Server Setup

local development environments

benefits of, Present

Homestead, Laravel Homestead

PuPHPet, PuPHPet

purpose of, Local Development Environments
syncing folders, Synced folders

Vagrant, Vagrant

Vaprobash, Vaprobash

VirtualBox, VirtualBox

logger interface

standards for, PSR-3: Logger Interface
using a PSR-3 logger, Use a PSR-3 Logger
writing a PSR-3 logger, Write a PSR-3 [.ogger

magic methods

_autoload() method, Autoloading
_invoke() method, Create

makeRange() method, Use a Generator

MAMP (Mac, Apache, MySQL and PHP), MAMP

maximum execution time, tuning, Max Execution Time
mbstring extension, Character Encoding

memory, tuning of, Memory

Mercurial, Version Control

method definition, PSR-2: Strict Code Style

method names, PSR-1: Basic Code Style

monolog/monolog logger, PSR-3: Logger Interface, Production
multibyte strings, Multibyte Strings

named placeholders, Prepared Statements
names/naming

components, Component names

package name, Vendor and Package Names
standards for, PSR-1: Basic Code Style
vendor name, Vendor and Package Names

namespaces, Namespaces-Autoloading, PSR-2: Strict Code Style, Namespaces

autoloader standard, Autoloading

benefits of, Why We Use Namespaces

component, Namespaces

declaring, Declaration, PSR-2: Strict Code Style
example declaration, Namespaces

global, Global namespace

importing and aliasing, Import and Alias

multiple imports, Multiple imports

multiple in one file, Multiple namespaces in one file

purpose of, Namespaces
vendor namespace, Declaration

vs. filesystems, Namespaces

nesbot/carbon component, The nesbot/carbon Component
New Relic, New Relic Profiler
nginx

installation of, nginx
virtual host configuration, Virtual Host

Nginx
HHVM communication with, HHVM, FastCGI, and Nginx

non-root user, Nonroot User

object-oriented programming, Code to an Interface
opcode cache, Zend OPcache

O0S X, 0S X

output buffering, tuning of, Output Buffering
output, escaping, Escape Output

package managers, Package Managers

package names, Vendor and Package Names
Packagist, Find Components, Packagist Submission
passwords

correct handling of, Never Know User Passwords

disabling, Disable Passwords and Root Login

ensuring security of, Passwords

hashing with bcrypt, Hash User Passwords with bcrypt

password hashing API, Password Hashing API-Password Hashing API for PHP
<5.5.0

storing, Hash User Passwords with berypt

PDO (PHP data objects) database extension, The PDO Extension
PDO prepared statements, SQL queries
performance issues, When to Use a Profiler

(see also profiling)

period designator, The Datelnterval Class
PHP Code Sniffer (phpcs), PSR-2: Strict Code Style
PHP community

benefits of, Community

conferences, Conferences

language updates, Stay Up-to-Date
mentoring, Mentoring

PUGs (PHP User Groups), Local PUG
resources, Stay Up-to-Date

PHP Framework Interop Group (PHP-FIG)

autoloader standard, Autoloading, Autoloading
creation of, PHP-FIG to the Rescue

mission of, Framework Interoperability
operation of, PHP-FIG to the Rescue

recommendations vs. rules, PHP-FIG to the Rescue

PHP Iniscan tool, The php.ini File
PHP keywords, PSR-2: Strict Code Style
PHP language

as interpreted language, PHP at Facebook
closures, Closures-Attach State

converting to Hack, Convert PHP to Hack

engines for, Present

essential vs. nonessential features, Features
evolution of, Present

generators, Generators-Use a Generator

history of, The New PHP

HTTP server, Built-in HTTP server-Drawbacks
interfaces, Code to an Interface-Code to an Interface
namespaces, Namespaces-Autoloading

official daft specification, Present

PHP 7 release, Future

traits, Traits-How to Use a Trait

vs. Hack/HHVM, HHVM/Hack vs. PHP

Zend OPcache, Zend OPcache-Use Zend OPcache

PHP tags, PSR-1: Basic Code Style
PHP-CS-Fixer, PSR-2: Strict Code Style
PHP-FPM (PHP FastCGI Process Manager)

global configuration, Global Configuration
installation of, Install

pool configuration, Pool Configuration
purpose of, PHP-FPM

php.ini file, The php.ini File
PHPUnit, PHPUnit-Code Coverage

code coverage, Code Coverage

configuring, Configure PHPUnit
directory structure, Directory Structure

hypothetical test case, The WhovianTest Test Case
hypothetical test class, The Whovian Class
installing PHPUnit, Install PHPUnit

installing Xdebug, Install Xdebug

running tests, Run Tests

vocabulary used, PHPUnit

m placeholders, Write a PSR-3 L.ogger
= placeholders, named, Prepared Statements

m platforms as a service (PaaS)

benefits of hosting on, PaaS
provisioning via, Provisioning
Pool Definitions, Pool Configuration
prepared statements, Prepared Statements
private repositories, Composer and Private Repositories
profiling
Blackfire, Blackfire Profiler
New Relic, New Relic Profiler

purpose of, Profiling
timing of, When to Use a Profiler

types of profilers, Types of Profilers
Xdebug, Xdebug
XHProf, XHProf

® provisioning

approaches to, Provisioning

automating, Automate Server Provisioning

delegating, Delegate Server Provisioning

nginx, nginx

overview of, Our Goal

PHP-FPM, PHP-FPM-Pool Configuration

server setup, Server Setup-Disable Passwords and Root Login
skills required, Provisioning

via Paas, Provisioning
m PSR (PHP standards recommendation)

benefits of, What Is a PSR?

importance of, What Is a PSR?

PSR-1: basic code style, PSR-1: Basic Code Style
PSR-2: strict code style, PSR-2: Strict Code Style
PSR-3: logger interface, PSR-3: Logger Interface
published recommendations, What Is a PSR?

» public code repositories, Version Control

pe

PUGs (PHP User Groups), Local PUG
PuPHPet, PuPHPet

Puppet, Puppet

README files, The README file

realpath cache, Realpath Cache

regular expression functions, HTML

releases, versioning of, Component installation
RFC 5424 syslog protocol, Write a PSR-3 Logger

rollbacks, Roll Back Your Application

root users, Disable Passwords and Root L.ogin
router scripts, Router Scripts

scan.php script, Implement scan.php
schemes, Stream Wrappers

Seige, Memory

semantic versioning, Component installation

server setup, Server Setup-Disable Passwords and Root [.ogin

disabling passwords/root login, Disable Passwords and Root L.ogin
firewalls, Disable Passwords and Root L.ogin

first login, First L.ogin
security, Nonroot User

software updates, Software Updates
SSH key-pair authentication, SSH Key-Pair Authentication

server-side scripting, definition of term, Past

session handling, tuning of, Session Handling

shared servers, Shared Server

Siege, When to Use a Profiler

smarty/smarty template engine, Escape Output

software dependencies, Software dependencies

SPACE characters, PSR-2: Strict Code Style, PSR-2: Strict Code Style
SpecBDD, Behavior-Driven Development (BDD)

special characters

multibyte strings, Multibyte Strings
sanitizing HTML, HTML

specification, definition of term, Present
spl_autoload_register() method, Autoloading

SQL queries, SQL queries

SSH key-pair authentication, SSH Key-Pair Authentication
standards

framework interoperability, Framework Interoperability
importance of, Standards

PHP standards recommendation, What Is a PSR?

PHP-FIG, PHP-FIG to the Rescue

PSR-1: basic code style, PSR-1: Basic Code Style
PSR-2: strict code style, PSR-2: Strict Code Style
PSR-3: logger interface, PSR-3: L.ogger Interface
PSR-4: autoloaders, PSR-4: Autoloaders

state, attaching/enclosing, Attach State
static typing, definition of term, Future

(see also typing)

StoryBDD, Behavior-Driven Development (BDD)
streams

benefits of, Streams

custom stream filters, Custom Stream Filters
definition of term, Streams

introduction of, Streams

stream context, Stream Context

stream filters, Stream Filters

stream wrappers, Stream Wrappers

stress testing, Memory

strings, multibyte, Multibyte Strings
Supervisord, Monitor HHVM with Supervisord

Suraski, Zeev, Past
switch keyword, PSR-2: Strict Code Style

TAB character, PSR-2: Strict Code Style
targets, Stream Wrappers

template engines, Escape Output

test case, PHPUnit

test runner, PHPUnit

test suite, PHPUnit

test-driven development (TDD), Test-Driven Development (TDD)

testing

behavior-driven development (BDD), Behavior-Driven Development (BDD)

continuous testing, Continuous Testing with Travis CI

importance of, Testing
micro and macroscopic scales, What Do We Test?
stress testing, Memory

test-driven development (TDD), Test-Driven Development (TDD)

timing of, When Do We Test?

unit tests, Unit Tests

with PHPUnit, PHPUnit-Code Coverage

with Travis CI, Continuous Testing with Travis CI

m TitleCase format, PSR-1: Basic Code Style
m traits

benefits of, Why We Use Traits

compile-time class definitions, How to Use a Trait
creating, How to Create a Trait

definition of term, Traits

purpose of, Why We Use Traits

using, How to Use a Trait

transactions, PDO support for, Transactions
Travis CI, Continuous Testing with Travis CI
try keyword, PSR-2: Strict Code Style
tuning

benefits of, Tuning

file uploads, File Uploads

maximum execution time, Max Execution Time
memory, Memory

output buffering, Output Buffering

php.ini file, The php.ini File

realpath cache, Realpath Cache

session handling, Session Handling

Zend OPcache, Zend OPcache

m Twig template engine, Escape Output
= typing

benefits of static, The Hack [L.anguage, Static Typing
definition of term, What is a Type?

dynamic, Dynamic Typing
dynamic vs. static, Future

static, Static Typing
type checking, Hack Type Checking

U

= Ubuntu

nginx installation, nginx

non-root user creation, Nonroot User
PHP installation, Ubuntu 14.04 LTS
PHP-FPM installation, Install

software updates, Software Updates
virtual host configuration, Virtual Host

» Unicode standards, Multibyte Strings
® unit tests

definition of term, What Do We Test?
frameworks for, Unit Tests
purpose of, Unit Tests

use func keyword, Import and Alias
use keyword, Import and Alias, How to Use a Trait, Attach State

user profile information, User profile information
UTC time zone, The DateTimeZone Class
UTF-8 character set, PSR-1: Basic Code Style, Character Encoding

Vagrant, Vagrant

Vaprobash, Vaprobash

VARCHAR(255) database columns, User registration
vendor names, Vendor and Package Names

vendor namespace, Declaration

version control

importance of, Version Control

public code repositories, Version Control
semantic versioning, Component installation
software for, Present

virtual hosts, Virtual Host, Virtual host

virtual machines, Local Development Environments
virtual private servers (VPS), Virtual Private Server
VirtualBox, VirtualBox

visibilities, PSR-2: Strict Code Style

WAMP, WAMP

web hosting (see hosting)

while keyword, PSR-2: Strict Code Style

Whoops component, Errors and Exceptions During Development
WinCacheGrind, Types of Profilers

Windows, Windows

work factor, Hash User Passwords with bcrypt

Xcode command-line tools, XCode command-line tools
Xdebug profiler

analysis, Analyze
configuration of, Configure

drawbacks of, Types of Profilers
installation of, Install Xdebug, Xdebug

triggering, Trigger
using with Zend OPcache, Enable Zend OPcache

XHGUI, XHGUI
XHProf, Types of Profilers, XHProf

Zend Engine, Present, HHVM, HHVM and Zend Engine Parity
Zend Extension Source Compatibility Layer

monitoring with Supervisord, Monitor HHVM with Supervisord
web server communication, HHVM, FastCGI, and Nginx

Zend OPcache

benefits of, Zend OPcache

configuring, Configure Zend OPcache
enabling, Enable Zend OPcache
tuning of, Zend OPcache

using, Use Zend OPcache

Zend Opcodes, PHP at Facebook
Zend Server, Zend Server
Zend-style class names, Import and Alias

About the Author

Josh Lockhart created the Slim Framework, a popular PHP micro framework that enables
rapid Web application and API development. Josh also started and currently curates PHP
The Right Way, a popular initiative in the PHP community that encourages good practices
and disseminates quality information for PHP developers around the world.

Josh is a developer at New Media Campaigns, a full-service web design, development,
and marketing agency in Carrboro, North Carolina. He enjoys building custom
applications with HTML, CSS, PHP, JavaScript, Bash, and various content management
frameworks.

He graduated from the Information and Library Science program at the University of
North Carolina at Chapel Hill in 2008. He currently resides in Chapel Hill, North Carolina
with his wonderful wife, Laurel, and their two dogs.

You can at follow Josh on Twitter, read his blog at https://joshlockhart.com, and track his
open source projects on GitHub.

http://slimframework.com/
http://www.phptherightway.com/
http://www.newmediacampaigns.com/
http://sils.unc.edu/
https://twitter.com/codeguy
https://joshlockhart.com
https://github.com/codeguy

Colophon

The animal on the cover of Modern PHP is a straw-necked ibis (Threskiornis spinicollis).
It can be found throughout Australia, New Guinea, and parts of Indonesia.

Straw-necked ibises are large birds, growing up to 30 inches long. The distinctive stiff
feathers on the neck from which the bird gets its name appear during adulthood. They
have long, curved beaks that help them sift through water for insects, mollusks, and frogs.
Farmers welcome straw-necked ibises in their fields because the birds will eat insects,
grasshoppers, crickets and locusts that would have otherwise destroyed crops.

These birds are very nomadic, and travel in flocks between habitats. They favor shallow
freshwater wetlands, cultivated pastures, swamps, lagoons, and grasslands. During
breeding season, these ibises will build a large, cup-shaped nest of sticks and reeds high
up in trees over water. They are also known to nest in colonies, often together with the
Australian white ibis. For this reason, they are easily spotted standing in the high branches
of bare trees, creating a striking silhouette against the sky.

Many of the animals on O’Reilly covers are endangered; all of them are important to the
world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Woods Illustrated Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

1. Preface

What You Need to Know About This Book

How This Book Is Organized
Conventions Used in This Book

Using Code Examples
Safari® Books Online

How to Contact Us
g. Acknowledgments

2. L. Language Features
3. 1. The New PHP

a. Past
b. Present
c. Future

mPaen O

4. 2. Features

a. Namespaces

i. Why We Use Namespaces
ii. Declaration

iii. Import and Alias
iv. Helpful Tips

b. Code to an Interface
c. Traits

i. Why We Use Traits
ii. How to Create a Trait

iii. How to Use a Trait

d. Generators

i. Create a Generator
ii. Use a Generator

e. Closures

i. Create
ii. Attach State

f. Zend OPcache

i. Enable Zend OPcache
ii. Configure Zend OPcache
iii. Use Zend OPcache

g. Built-in HTTP server

i. Start the Server
ii. Configure the Server
iii. Router Scripts
iv. Detect the Built-in Server
v. Drawbacks

h. What’s Next

5. II. Good Practices
6. 3. Standards
a. PHP-FIG to the Rescue
b. Framework Interoperability
i. Interfaces
ii. Autoloading
iii. Style
What Is a PSR?
PSR-1: Basic Code Style
PSR-2: Strict Code Style

PSR-3: Logger Interface
i. Write a PSR-3 Logger
ii. Use a PSR-3 L.ogger
g. PSR-4: Autoloaders

i. Why Autoloaders Are Important

ii. The PSR-4 Autoloader Strategy
iii. How to Write a PSR-4 Autoloader (and Why You Shouldn’t)

7. 4. Components

a. Why Use Components?
b. What Are Components?
c. Components Versus Frameworks

i. Not All Frameworks Are Bad
ii. Use the Right Tool for the Job

d. Find Components

i. Shop
ii. Choose
iii. Leave Feedback

o an

e. Use PHP Components

i. How to Install Composer
ii. How to Use Composer
iii. Example Project
iv. Composer and Private Repositories

f. Create PHP Components

i. Vendor and Package Names
1i. Namespaces
iii. Filesystem Organization
iv. The composer.json File
v. The README file
vi. Component Implementation
vii. Version Control

viii. Packagist Submission
ix. Using the Component

8. 5. Good Practices
a. Sanitize, Validate, and Escape

i. Sanitize Input
ii. Validate Data

iii. Escape Output
b. Passwords

i. Never Know User Passwords

ii. Never Restrict User Passwords
iii. Never Email User Passwords
iv. Hash User Passwords with bcrypt

v. Password Hashing API
vi. Password Hashing API for PHP < 5.5.0

c. Dates, Times, and Time Zones

i. Set a Default Time Zone
ii. The DateTime Class
iii. The Datelnterval Class
iv. The DateTimeZone Class
v. The DatePeriod Class

vi. The nesbot/carbon Component
d. Databases
i. The PDO Extension
ii. Database Connections and DSNs
iii. Prepared Statements

iv. Query Results
v. Transactions

e. Multibyte Strings

i. Character Encoding
ii. Output UTF-8 Data

f. Streams

1. Stream Wrappers
1. Stream Context
iii. Stream Filters
iv. Custom Stream Filters

g. Errors and Exceptions

1. Exceptions
ii. Exception Handlers

iii. Errors
iv. Error Handlers
v. Errors and Exceptions During Development

vi. Production

9. II. Deployment, Testing, and Tuning
10. 6. Hosting

Shared Server

Virtual Private Server
Dedicated Server
PaaS

Choose a Hosting Plan

11. 7. Provisioning
a. Our Goal
b. Server Setup
i. First Login

ii. Software Updates
iii. Nonroot User

iv. SSH Key-Pair Authentication
v. Disable Passwords and Root L.ogin
c. PHP-FPM

i. Install

ii. Global Configuration

iii. Pool Configuration
d. nginx

i. Install

ii. Virtual Host

PN T

Automate Server Provisioning
Delegate Server Provisioning
Further Reading

What’s Next

12. 8. Tuning

The php.ini File
Memory

Zend OPcache

File Uploads

Max Execution Time
Session Handling
Output Buffering
Realpath Cache

Up Next
13. 9. Deployment

P o

TR s AN O

a. Version Control
b. Automate Deployment

i. Make It Simple

ii. Make It Predictable
iii. Make It Reversible

c. Capistrano

i. How It Works

ii. Install

iii. Configure

iv. Authenticate

v. Prepare the Remote Server

vi. Capistrano Hooks
vii. Deploy Your Application
viii. Roll Back Your Application

d. Further Reading
e. What’s Next

14. 10. Testing

a. Why Do We Test?
b. When Do We Test?

i. Before

ii. During

iii. After
c. What Do We Test?
d. How Do We Test?

i. Unit Tests

ii. Test-Driven Development (TDD)

iii. Behavior-Driven Development (BDD
e. PHPUnit

1. Directory Structure
ii. Install PHPUnit
iii. Install Xdebug
iv. Configure PHPUnit
v. The Whovian Class
vi. The WhovianTest Test Case
vil. Run Tests
viii. Code Coverage

f. Continuous Testing with Travis CI

1. Setup
ii. Run

g. Further Reading
h. What’s Next

15. 11. Profiling

a. When to Use a Profiler
b. Types of Profilers

c. Xdebug
i. Configure
ii. Trigger
iii. Analyze
d. XHProf

i. Install

ii. XHGUI

iii. Configure

iv. Trigger
New Relic Profiler
Blackfire Profiler
Further Reading
What’s Next
16. 12. HHVM and Hack

a. HHVM

i. PHP at Facebook
ii. HHVM and Zend Engine Parity
iii. Is HHVM Right for Me?
iv. Install
v. Configure
vi. Extensions
vii. Monitor HHVM with Supervisord
viii. HHVM, FastCGI, and Nginx

b. The Hack L.anguage
i. Convert PHP to Hack
ii. What is a Type?
iii. Static Typing
iv. Dynamic Typing
v. Hack Goes Both Ways
vi. Hack Type Checking
vii. Hack Modes
viii. Hack Syntax
ix. Hack Data Structures
x. HHVM/Hack vs. PHP

c. Further Reading

17. 13. Community

a. Local PUG
b. Conferences
C
d

=RV e

. Mentoring
. Stay Up-to-Date

i. Websites
ii. Mailing Lists

iii. Twitter
iv. Podcasts
v. Humor
18. A. Installing PHP

a. Linux

i. Package Managers
ii. Ubuntu 14.04 LTS

iii. CentOS 7
b. OS X

i. MAMP
ii. Homebrew

c. Build from Source
i. Get the Source Code
d. Windows

i. Binaries
ii. WAMP
iii. Zend Server

19. B. Local Development Environments

a. VirtualBox
b. Vagrant

i. Commands
1. Boxes

iii. Initialize

1v. Provision

v. Synced folders
vi. Get started

20. Index

	Preface
	What You Need to Know About This Book
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	I. Language Features
	1. The New PHP
	Past
	Present
	Future

	2. Features
	Namespaces
	Why We Use Namespaces
	Declaration
	Import and Alias
	Helpful Tips
	Multiple imports
	Multiple namespaces in one file
	Global namespace
	Autoloading

	Code to an Interface
	Traits
	Why We Use Traits
	How to Create a Trait
	How to Use a Trait

	Generators
	Create a Generator
	Use a Generator

	Closures
	Create
	Attach State

	Zend OPcache
	Enable Zend OPcache
	Configure Zend OPcache
	Use Zend OPcache

	Built-in HTTP server
	Start the Server
	Configure the Server
	Router Scripts
	Detect the Built-in Server
	Drawbacks

	What’s Next

	II. Good Practices
	3. Standards
	PHP-FIG to the Rescue
	Framework Interoperability
	Interfaces
	Autoloading
	Style

	What Is a PSR?
	PSR-1: Basic Code Style
	PSR-2: Strict Code Style
	PSR-3: Logger Interface
	Write a PSR-3 Logger
	Use a PSR-3 Logger

	PSR-4: Autoloaders
	Why Autoloaders Are Important
	The PSR-4 Autoloader Strategy
	How to Write a PSR-4 Autoloader (and Why You Shouldn’t)

	4. Components
	Why Use Components?
	What Are Components?
	Components Versus Frameworks
	Not All Frameworks Are Bad
	Use the Right Tool for the Job

	Find Components
	Shop
	Choose
	Leave Feedback

	Use PHP Components
	How to Install Composer
	How to Use Composer
	Component names
	Component installation

	Example Project
	The composer.lock file
	Autoloading PHP components
	Implement scan.php

	Composer and Private Repositories

	Create PHP Components
	Vendor and Package Names
	Namespaces
	Filesystem Organization
	The composer.json File
	The README file
	Component Implementation
	Version Control
	Packagist Submission
	Using the Component

	5. Good Practices
	Sanitize, Validate, and Escape
	Sanitize Input
	HTML
	SQL queries
	User profile information

	Validate Data
	Escape Output

	Passwords
	Never Know User Passwords
	Never Restrict User Passwords
	Never Email User Passwords
	Hash User Passwords with bcrypt
	Password Hashing API
	User registration
	User login
	Verify password
	Rehash password

	Password Hashing API for PHP < 5.5.0

	Dates, Times, and Time Zones
	Set a Default Time Zone
	The DateTime Class
	The DateInterval Class
	The DateTimeZone Class
	The DatePeriod Class
	The nesbot/carbon Component

	Databases
	The PDO Extension
	Database Connections and DSNs
	Keep your database credentials secret

	Prepared Statements
	Query Results
	Transactions

	Multibyte Strings
	Character Encoding
	Output UTF-8 Data

	Streams
	Stream Wrappers
	The file:// stream wrapper
	The php:// stream wrapper
	Other stream wrappers
	Custom stream wrappers

	Stream Context
	Stream Filters
	Custom Stream Filters

	Errors and Exceptions
	Exceptions
	Throw exceptions
	Catch exceptions

	Exception Handlers
	Errors
	Error Handlers
	Errors and Exceptions During Development
	Production

	III. Deployment, Testing, and Tuning
	6. Hosting
	Shared Server
	Virtual Private Server
	Dedicated Server
	PaaS
	Choose a Hosting Plan

	7. Provisioning
	Our Goal
	Server Setup
	First Login
	Software Updates
	Nonroot User
	Ubuntu
	CentOS

	SSH Key-Pair Authentication
	Disable Passwords and Root Login

	PHP-FPM
	Install
	Global Configuration
	Pool Configuration

	nginx
	Install
	Ubuntu
	CentOS

	Virtual Host

	Automate Server Provisioning
	Delegate Server Provisioning
	Further Reading
	What’s Next

	8. Tuning
	The php.ini File
	Memory
	Zend OPcache
	File Uploads
	Max Execution Time
	Session Handling
	Output Buffering
	Realpath Cache
	Up Next

	9. Deployment
	Version Control
	Automate Deployment
	Make It Simple
	Make It Predictable
	Make It Reversible

	Capistrano
	How It Works
	Install
	Configure
	The config/deploy.rb file
	The config/deploy/production.rb file

	Authenticate
	Prepare the Remote Server
	Virtual host
	Software dependencies

	Capistrano Hooks
	Deploy Your Application
	Roll Back Your Application

	Further Reading
	What’s Next

	10. Testing
	Why Do We Test?
	When Do We Test?
	Before
	During
	After

	What Do We Test?
	How Do We Test?
	Unit Tests
	Test-Driven Development (TDD)
	Behavior-Driven Development (BDD)

	PHPUnit
	Directory Structure
	Install PHPUnit
	Install Xdebug
	Configure PHPUnit
	The Whovian Class
	The WhovianTest Test Case
	Test 1: __construct()
	Test 2: say()
	Test 3: respondTo() in agreement
	Test 4: respondTo() in disagreement

	Run Tests
	Code Coverage

	Continuous Testing with Travis CI
	Setup
	Run

	Further Reading
	What’s Next

	11. Profiling
	When to Use a Profiler
	Types of Profilers
	Xdebug
	Configure
	Trigger
	Analyze

	XHProf
	Install
	XHGUI
	Configure
	Trigger

	New Relic Profiler
	Blackfire Profiler
	Further Reading
	What’s Next

	12. HHVM and Hack
	HHVM
	PHP at Facebook
	HHVM and Zend Engine Parity
	Is HHVM Right for Me?
	Install
	Configure
	Extensions
	Monitor HHVM with Supervisord
	HHVM, FastCGI, and Nginx

	The Hack Language
	Convert PHP to Hack
	What is a Type?
	Static Typing
	Dynamic Typing
	Hack Goes Both Ways
	Hack Type Checking
	Hack Modes
	Hack Syntax
	Property annotations
	Argument annotations
	Return-type annotations

	Hack Data Structures
	HHVM/Hack vs. PHP

	Further Reading

	13. Community
	Local PUG
	Conferences
	Mentoring
	Stay Up-to-Date
	Websites
	Mailing Lists
	Twitter
	Podcasts
	Humor

	A. Installing PHP
	Linux
	Package Managers
	Ubuntu 14.04 LTS
	1. Add software dependencies
	2. Add ppa:ondrej/php5-5.6 PPA
	3. Install PHP

	CentOS 7
	1. Add the EPEL repository
	2. Install PHP

	OS X
	MAMP
	Install
	Extend
	Limitations

	Homebrew
	XCode command-line tools
	Install
	Directory permissions
	Environment PATH
	Tap formulae repositories
	Install PHP
	Install PHP extensions

	Build from Source
	Get the Source Code
	The src/ directory
	Download the source code
	Configure PHP
	The ./configure command
	Make and install PHP
	Create the php.ini file

	Windows
	Binaries
	WAMP
	Zend Server

	B. Local Development Environments
	VirtualBox
	Vagrant
	Commands
	Boxes
	Initialize
	Provision
	Puppet
	Chef

	Synced folders
	Get started
	Laravel Homestead
	PuPHPet
	Vaprobash

	Index

