

Learning PHP Data Objects

A Beginner's Guide to PHP Data Objects, Database
Connection Abstraction Library for PHP 5

Dennis Popel

 BIRMINGHAM - MUMBAI

Learning PHP Data Objects

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2007

Production Reference: 2310807

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-66-0

www.packtpub.com

Cover Image by Derek Heasley (the_matrix@eircom.net)

Credits

Author

Dennis Popel

Reviewers

Dinangkur Kundu

Tahmid Munaz

Acquisition Editors

Nanda Padmanabhan

Viraj Joshi

Development Editor

Rashmi Phadnis

Technical Editor

Swapna.V.Verlekar

Project Manager

Abhijeet Deobhakta

Editorial Manager

Dipali Chittar

Project Coordinator

Zenab Ismail Kapasi

Indexer

Bhushan Pangaonkar

Proofreaders

Martin Brooks

Chris Smith

Production Coordinators

Shantanu Zagade

Manjiri Nadkarni

Cover Designer

Shantanu Zagade

About the Author

Dennis Popel is an experienced PHP/PHP 5 developer currently working for an
Australian web development company, Motive Media (www.motivemedia.com.au).
Serving Sun Microsystems Australia, Luna Park Sydney, Alsco Holdings, and Pine
Solutions, among others, Dennis leads company development of proprietary,
web-based, software solutions. In his spare time, he runs the www.onphp5.com blog
and works on an online RSS aggregator newzmix.com.

Dennis Popel has been developing with PHP for more than 5 years and is
experienced in such fields as object-oriented design and MVC. Previously he has
worked at Rapid Intelligence, another Australian-based web company, publisher of
such popular titles as NationMaster.com, FactBites.com, and Qwika.com. In the past,
Dennis was developing proprietary Java applications.

This book is devoted to all the people who introduced and guided
me in this wonderful world of information technology.

About the Reviewers

Dinangkur Kundu completed his bachelor's degree in Information Technology
from Central Queensland University, Australia. He has been working as a software
engineer and network admin—designing, developing, and configuring. He has
worked with a variety of 2nd, 3rd, and 4th generation languages. He has worked
with flat files, indexed files, hierarchical databases, network databases, and relational
databases, several Sun and HP servers to configure small and medium range office
networks providing Internet service, Mail service, file share service, network-
based printing service, backup service, and implementing several network-based
applications. Currently, he works as Chief Technical Officer at Quantumcloud,
developing and customizing LAMP- and WAMP-based web services. He
enjoys producing high-quality software, web-based solutions, and designing
secure network.

I would like to thank my family for supporting and inspiring
my ongoing passion for software development and the resultant
challenges of life near the bleeding edge. I would also like to thank
Mr. Jamil and Mr. Hasin, my close professional mentors and
who to this day remain close friends. You can contact me at
dkundu@gmail.com.

Tahmid Munaz is currently working in Relisource Technologies
(www.relisource.com) as an SQA Engineer. He is also a volunteer in an association
called SQABD (SQA Bangladesh—www.sqabd.com) as a Community Relations
Manager. He has experience in conducting QA and Testing training and mentoring
freshers for Testing and QA Career paths and Consulting.

He loves to keep in touch with other Technical Communities like—JPGroup,
Dot_net_community, PHPExpert, and PHPResource. He is addicted to reading blogs
and writing when he gets time. You can visit Tahmid's blog at
http://tahmidmunaz.blogspot.com

I would like to thank Hasin, the author of "Wordpress Complete",
who always inspired me. Thanks to my friend Mizan, the author of
"MediaWiki Administrators' Tutorial Guide", who helped me in my
reviewing as it was first time for me. Thanks to the Packt team for
giving me the support for this startup, especially to Viraj, Rashmi,
and Abhijeet. I really enjoyed reviewing and hope to do better in
future. I had heard about the author of this book but had no chance
to work together. It was a chance for me to work with him and
feel proud to help him make a nice book. I would like to thank my
Program Managers who have always helped me to do and learn in
better ways: Sahadatul Hakim (Enosis Solutions).

Table of Contents
Preface	 1
Chapter 1: Introduction	 5

Using PDO	 6
Connecting to the Database	 6
Connection Strings	 7
Issuing SQL Queries, Quoting Parameters, and Handling Result Sets	 8
Error Handling	 11
Prepared Statements	 14
Appropriate Understanding of PDO 	 17

Summary	 17
Chapter 2: Using PHP Data Objects: First Steps	 19

Connection Strings	 20
Creating the Sample Database	 21

The Data Model	 21
Creating the MySQL Database	 22

Designing Our Code	 24
PDO Statements and Result Sets	 31
Retrieving Result Set Metadata	 44
Summary	 46

Chapter 3: Error Handling	 47
Sources of Errors	 48

Server Software Failure or Overload	 48
Improper Configuration of the Application	 49
Improper Validation of User Input	 49
Inserting a Record with a Duplicate Primary Key or Unique Index Value 	 50
Syntax Errors in SQL Statements	 50

Types of Error Handling in PDO	 51
Defining an Error Handling Function	 53

Table of Contents

[ii]

Creating the Edit Book Page	 55
Creating the Edit Author Page	 64
Securing against Uncaught Exceptions	 69
Summary	 70

Chapter 4: Prepared Statements	 71
Prepared Statements	 71

Positional and Named Placeholders	 73
Prepared Statements and Bound Values	 75

Working with BLOBs	 80
Summary	 93

Chapter 5: Handling Rowsets	 95
Retrieving the Number of Rows in a Result Set	 95
Limiting the Number of Rows Returned	 104

Using Database-Specific SQL	 104
Processing the Top N Rows Only	 104
Starting at an Arbitrary Offset	 105

Summary	 107
Chapter 6: Advanced PDO Usage	 109

Setting and Getting Connection Attributes	 109
MySQL Buffered Queries	 114
Connecting Using the Connection Configuration File and
php.ini Setting	 115
Getting the List of Available Drivers	 116
Transactions	 117
Summary	 129

Chapter 7: An Advanced Example	 131
Designing the Model	 131
Modifying the Frontend to Use the Model	 141
Advantages of Separating the Model 	 151
Further Thoughts	 153
Finishing Up	 154

Appendix A: Introduction to OOP in PHP5	 155
What is Object-Oriented Programming?	 155

The Syntax for Declaring Objects	 155
Constructors	 158
Destructors	 160

The Advantages of OOP	 161
Inheritance	 162
Encapsulation	 164

Table of Contents

[iii]

Polymorphism	 165
Static Properties, Methods, and Class Constants	 167
Exceptions	 169
Summary	 172

Index	 173

Preface
This book will introduce you to one of the most important extensions to PHP that are
available, starting with PHP version 5.0—the PHP Data Objects, commonly known
as PDO.

PHP grew in to a very popular web programming language due to its simplicity and
ease of use. One of the key factors of this growing success is the built-in possibility
to access many popular relational database management systems (RDBMS), such
as MySQL, PostgreSQL, and SQLite, to name just a few. Today, most of the existing
and newly created web applications interconnect with these databases to produce
dynamic, data-driven websites.

While most PHP-enabled web servers are still running PHP versions prior to 5.0, the
enhancements and performance improvements introduced with this new version
will lead to wide acceptance of PHP 5 at all levels during coming years. This imposes
the need to start familiarizing ourselves with all the advanced features available in
this version today.

What This Book Covers
Chapter 1 gives an overview of PDO along with a few features likes single interface
for creating a connection, connection strings, uniform statement methods, and use of
exceptions and a singe system of error codes.

Chapter 2 helps to get you started with PDO, by creating a sample database and then
by creating a connection object. It also introduces PDOStatement classes.

Chapter 3 deals with various error-handling processes and their uses.

Chapter 4 introduces prepared statements. It deals with using prepared statements
without binding values, binding a variable, and binding a parameter to a prepared
statement. We also take a look at how to work with BLOBs using streams so that we
do not risk query failures.

Preface

[�]

Chapter 5 helps us determine the number of rows in the returned result set. Also, we
come across a new concept—scrollable cursors, which allow us to fetch subsets of
rows from a result set.

Chapter 6 talks about advanced uses of PDO and includes setting connection
parameters, transactions, and methods of PDO and the PDOStatement class.

Chapter 7 gives an example, where creation of the method part of an MVC
application is discussed.

Appendix A explains the object-oriented features like inheritance, encapsulation,
polymorphism, and exception handling.

Who This Book is For
This book is targeted at PHP programmers, who are considering migrating to PHP 5
and using the new database connection abstraction library, PHP Data Objects. While
PDO is fully object oriented, the familiarity with this programming paradigm is
required. Novice users who are not familiar with PHP 5's object-oriented features
may consider reading Appendix A first so that they can follow the code examples in
this book.

We assume that the reader is familiar with SQL, at the level of creating tables and
making simple SELECT queries as well as updates. Our examples are based on
MySQL and SQLite databases as these are the most used options and the only ones
available at most cheap hosting providers.

At the end of this book we will present a more advanced example which may
be of interest to expert programmers with deeper knowledge of SQL and
programming concepts.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows:
"PostgreSQL users might have already used pg_prepare() and
pg_execute() pair."

Preface

[�]

A block of code will be set as follows:

// Assume we also want to filter by make
$sql = 'SELECT * FROM cars WHERE make=?';
$stmt = $conn->prepare($sql);
$stmt->execute(array($_REQUEST['make']));

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

// Assume we also want to filter by make
$sql = 'SELECT * FROM cars WHERE make=?';
$stmt = $conn->prepare($sql);
$stmt->execute(array($_REQUEST['make']));

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"You can simply click on the Authors link located on the books listing page in
your browser ".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

Preface

[�]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction
PHP Data Objects, (PDO) is a PHP5 extension that defines a lightweight DBMS
connection abstraction library (sometimes called data access abstraction library).
The need for a tool like PDO was dictated by the great number of database systems
supported by PHP. Each of these database systems required a separate extension
that defined its own API for performing the same tasks, starting from establishing a
connection to advanced features such as preparing statements and error handling.

The fact that these APIs were not unified made transition between underlying
databases painful, often resulting in the rewriting of many lines of code, which in
turn, led to new programming errors that required time to track, debug and correct.
On the other hand, the absence of a unified library, like JDBC for Java, was putting
PHP behind the big players in the programming languages world. Now that such
library exists, PHP is regaining its position and is a platform of choice for millions
of programmers.

It should be noted, however, that there exist several libraries written in PHP, that
serve the same purpose as PDO. The most popular are the ADOdb library and the
PEAR DB package. The key difference between them and PDO is speed. PDO is a
PHP extension written in a compiled language (C/C++), while the PHP libraries
are written in an interpreted language. Also, once PDO is enabled, it does not
require you to include source files in your scripts and redistribute them with your
application. This makes installing your applications easier, as the end user does not
need to take care of third-party software.

Here, we are neither comparing these libraries with PDO nor advocating
the use of PDO over such libraries. We are just showing the advantages
and disadvantages of this extension. For example, the PEAR package,
MDB2, has richer functionality of an advanced database abstraction
library, which PDO does not.

Introduction

[�]

PDO being a PECL extension, itself relies on database-specific drivers and on other
PECL extensions. These drivers must also be installed in order to������������������� use PDO (you only
need the drivers for the databases you are using). Since the description of installation
of PDO and database-specific drivers is beyond the scope of this book, you can refer
to PHP manual at www.php.net/pdo for technical information regarding installation
and upgrade issues.

PECL is PHP Extension Community Library, a repository of PHP
extensions written in C. These extensions offer functionality that would
be impossible to implement in PHP, as well as some extensions that exist
for performance reasons as the C code is much faster than PHP. The home
page of PECL is at http://pecl.php.net

Using PDO
As it has been noted in the previous section, PDO is a connection, or data access
abstraction library. This means that PDO defines a unified interface for creating and
maintaining database connections, issuing queries, quoting parameters, traversing
result sets, dealing with prepared statements, and error handling.

We will give a quick overview of these topics here and look at them in greater detail
in the following chapters.

Connecting to the Database
Let's consider the well-known MySQL connection scenario:

mysql_connect($host, $user, $password);
mysql_select_db($db);

Here, we establish a connection and then select the default database for the
connection. (We ignore the issue of possible errors.)

In SQLite, for example, we would write something like the following:

$dbh = sqlite_open($db, 0666);

Here again we ignore errors (we will cover more on this later). For completeness,
let's see how we would connect to a PostgreSQL:

pg_connect("host=$host dbname=$db user=$user password=$password");

Chapter 1

[�]

As you can see, all three databases require quite different ways of opening a
connection. While this is not a problem now, but if you always use the same database
management system in case you need to migrate, you will have to rewrite
your scripts.

Now, let's see what PDO has to offer. As PDO is fully object-oriented, we will be
dealing with connection objects, and further interaction with the database will
involve calling various methods of these objects. The examples above implied the
need for something analogous to these connection objects—calls to mysql_connect
or pg_connect return link identifiers and PHP variables of a special type: resource.
However, we didn't use connection objects then since these two database APIs
don't require us to explicitly use them if we only have one connection in our scripts.
However, SQLite always requires a link identifier.

With PDO, we will always have to explicitly use the connection object, since there
is no other way of calling its methods. (Those unfamiliar with object-oriented
programming should refer to Appendix A).

Each of the three above connections could be established in the following manner:

// For MySQL:
$conn = new PDO("mysql:host=$host;dbname=$db", $user, $pass);
// For SQLite:
$conn = new PDO("sqlite:$db");
// And for PostgreSQL:
$conn = new PDO("pgsql:host=$host dbname=$db", $user, $pass);

As you can see, the only part that is changing here is the first argument passed to the
PDO constructor. For SQLite, which does not utilize username and password, the
second and third arguments can be skipped.

SQLite is not a database server, but it is an embedded SQL database
library that operates on local files. More information about SQLite can be
found at www.sqlite.org and more information about using SQLite
with PHP can be found at www.php.net/sqlite. Information about
using SQLite with PDO can be obtained from www.php.net/manual/
en/ref.pdo-sqlite.php

Connection Strings
As you have seen in previous example, PDO uses the so-called connection strings
(or Data Source Names, abbreviated to DSN) that allow the PDO constructor to select
proper driver and pass subsequent method calls to it. These connection strings or
DSNs are different for every database management system and are the only things
that you will have to change.

Introduction

[�]

If you are designing a big application that will be able to work with different
databases, then this connection string (together with a connection username and
a password) can be defined in a configuration file and later used in the following
manner (assuming your configuration file is similar to php.ini)

$config = parse_ini_file($pathToConfigFile);
$conn = new PDO($config['db.conn'], $config['db.user'],
 $config['db.pass']);

Your configuration file might then look like this:

db.conn="mysql:host=localhost;dbname=test"
db.user="johns"
db.pass="mypassphrase"

We will cover connection strings in more detail in Chapter 2; here we gave a quick
example so that you can see how easy it is to connect to different database systems
with PDO.

Issuing SQL Queries, Quoting Parameters,
and Handling Result Sets
PDO would not be worth a whole book, if it didn't go beyond the single interface
for creating database connections. The PDO object introduced in the previous
example has all the methods needed to uniformly execute queries regardless of the
database used.

Let's consider a simple query that would select all the car make attributes from
an imaginary database employed at a used car lot. The query is as simple as the
following SQL command:

SELECT DISTINCT make FROM cars ORDER BY make;

Previously, we would have had to call different functions, depending on
the database:

// Let's keep our SQL in a single variable
$sql = 'SELECT DISTINCT make FROM cars ORDER BY make';

// Now, assuming MySQL:
mysql_connect('localhost', 'boss', 'password');
mysql_select_db('cars');
$q = mysql_query($sql);

// For SQLite we would do:

Chapter 1

[�]

$dbh = sqlite_open('/path/to/cars.ldb', 0666);
$q = sqlite_query($sql, $dbh);

// And for PostgreSQL:
pg_connect("host=localhost dbname=cars user=boss
 password=password");
$q = pg_query($sql);

Now that we are using PDO, we can do the following:

// assume the $connStr variable holds a valid connection string
// as discussed in previous point
$sql = 'SELECT DISTINCT make FROM cars ORDER BY make';
$conn = new PDO($connStr, 'boss', 'password');
$q = $conn->query($sql);

As you can see, doing things the PDO way is not too different from traditional
methods of issuing queries. Also, here it should be underlined, that a call to
$conn->query() is returning another object of class PDOStatement, unlike the calls
to mysql_query(), sqlite_query(), and pg_query(), which return PHP variables
of the resource type.

Now, let's make our simplistic SQL query a bit more complicated so that it selects the
total value of all Fords on sale in our imaginary car lot. The query would then look
something like this:

SELECT sum(price) FROM cars WHERE make='Ford'

To make our example even more interesting, let's assume that the name of the car
manufacturer is held in a variable ($make) so that we must quote it, before passing it
to the database. Our non-PDO queries would now look like this:

$make = 'Ford';
// MySQL:
$m = mysql_real_escape_string($make);
$q = mysql_query("SELECT sum(price) FROM cars WHERE make='$m'");

// SQLite:
$m = sqlite_escape_string($make);
$q = sqlite_query("SELECT sum(price) FROM cars WHERE make='$m'",
 $dbh);

// and PostgreSQL:
$m = pg_escape_string($make);
$q = pg_query("SELECT sum(price) FROM cars WHERE make='$m'");

Introduction

[10]

The PDO class defines a single method for quoting strings so that they can be used
safely in queries. We will discuss security issues such as SQL injection, in Chapter 3.
This method does a neat thing; it will automatically add quotes around the value
if necessary:

$m = $conn->quote($make);
$q = $conn->query("SELECT sum(price) FROM cars WHERE make=$m");

Again, you can see that PDO allows you to use the same pattern as you would have
used before, but the names of all the methods are unified.

Now that we have issued our query, we will want to see its results. As the query in
the last example will always return just one row, we will want more rows. Again,
the three databases will require us to call different functions on the $q variable that
was returned from one of the three calls to mysql_query(), sqlite_query(), or
pg_query(). So our code for getting all the cars will look similar to this:

// assume the query is in the $sql variable
$sql = "SELECT DISTINCT make FROM cars ORDER BY make";

// For MySQL:
$q = mysql_query($sql);
while($r = mysql_fetch_assoc($q))
{
 echo $r['make'], "\n";
}

// For SQLite:
$q = sqlite_query($dbh, $sql);
while($r = sqlite_fetch_array($q, SQLITE_ASSOC))
{
 echo $r['make'], "\n";
}

// and, finally, PostgreSQL:
$q = pg_query($sql);
while($r = pg_fetch_assoc($q))
{
 echo $r['make'], "\n";
}

Chapter 1

[11]

As you can see, the idea is the same, but we have to use different function names.
Also, note that SQLite requires an extra parameter if we want to get the rows in the
same way as with MySQL and PostgreSQL (of course, this could be omitted, but
then the returned rows would contain both column name indexed and numerically
indexed elements.)

As you may already have guessed, things are pretty straightforward when it comes
to PDO: We don't care what the underlying database is, and the methods for fetching
rows are the same across all databases. So, the above code could be rewritten for
PDO in the following way:

$q = $conn->query("SELECT DISTINCT make FROM cars ORDER BY make");
while($r = $q->fetch(PDO::FETCH_ASSOC))
{
 echo $r['make'], "\n";
}

Nothing is different from what happens before. One thing to note here is that we
explicitly specified the PDO::FETCH_ASSOC fetch style constant here, since PDO's
default behavior is to fetch the result rows as arrays indexed both by column
name and number. (This behavior is similar to mysql_fetch_array(),
sqlite_fetch_array() without the second parameter, or pg_fetch_array().)
We will discuss the fetch styles that PDO has to offer in Chapter 2.

The last example was not intended to be used to render HTML pages as
it used the newline character to separate lines of output. To use it in a real
webpage, you will have to change echo $r['make'], "\n"; to echo
$r['make'], "
\n";

Error Handling
Of course, the above examples didn't provide for any error checking, so they are not
very useful for real-life applications.

When working with a database, we should check for errors when opening the
connection to the database, when selecting the database and after issuing every
query. Most web applications, however, just need to display an error message when
something goes wrong (without going into error detail, which could reveal some
sensitive information). However, when debugging an error, you (as the developer)
would need the most detailed error information possible so that you can debug the
error in the shortest possible time.

Introduction

[12]

One simplistic scenario would be to abort the script and present the error message
(although this is something you probably would not want to do). Depending on the
database, our code might look like this:

// For SQLite:
$dbh = sqlite_open('/path/to/cars.ldb', 0666) or die
 ('Error opening SQLite database: ' .
 sqlite_error_string(sqlite_last_error($dbh)));
$q = sqlite_query("SELECT DISTINCT make FROM cars ORDER BY make",
 $dbh) or die('Could not execute query because: ' .
 sqlite_error_string(sqlite_last_error($dbh)));

// and, finally, for PostgreSQL:
pg_connect("host=localhost dbname=cars user=boss
 password=password") or die('Could not connect to
 PostgreSQL: . pg_last_error());
$q = pg_query("SELECT DISTINCT make FROM cars ORDER BY make")
 or die('Could not execute query because: ' . pg_last_error());

As you can see, error handling is starting to get a bit different for SQLite compared
to MySQL and PostgreSQL. (Note the call to sqlite_error_string
(sqlite_last_error($dbh)).)

Before we take a look at how to implement the same error handling strategy with
PDO, we should note that this will be only one of the three possible error handling
strategies in PDO. We will cover them in detail later in this book. Here we will just
use the simplest one:

// PDO error handling
// Assume the connection string is one of the following:
// $connStr = 'mysql:host=localhost;dbname=cars'
// $connStr = 'sqlite:/path/to/cars.ldb';
// $connStr = 'pgsql:host=localhost dbname=cars';

try
{
 $conn = new PDO($connStr, 'boss', 'password');
}
catch(PDOException $pe)
{
 die('Could not connect to the database because: ' .
 $pe->getMessage();
}

$q = $conn->query("SELECT DISTINCT make FROM cars ORDER BY make");

Chapter 1

[13]

if(!$q)
{
 $ei = $conn->errorInfo();
 die('Could not execute query because: ' . $ei[2]);
}

This example shows that PDO will force us to use a slightly different error handling
scheme from the traditional one. We wrapped the call to the PDO constructor in a
try … catch block. (Those who are new to PHP5's object-oriented features should
refer to Appendix A.) This is because while PDO can be instructed not to use
exceptions, (in fact, it is PDO's default behavior not to use exceptions), however,
you cannot avoid exceptions here. If the call to the constructor fails, an exception
will always be thrown.

It is a very good idea to catch that exception because, by default, PHP will abort the
script execution and will display an error message like this:

Fatal error: Uncaught exception 'PDOException' with message 'SQLSTATE[28000]
[1045] Access denied for user 'bosss'@'localhost' (using password: YES)' in /var/
www/html/pdo.php5:3 Stack trace: #0 c:\www\hosts\localhost\pdo.php5(3):
PDO->__construct('mysql:host=loca...', 'bosss', 'password', Array) #1 {main}
thrown in /var/www/html/pdo.php5 on line 3

We made this exception by supplying the wrong username, bosss, in the call to the
PDO constructor. As you can see from this output, it contains some details that we
would not like others to see: Things like file names and script paths, the type of
database being used, and most importantly, usernames and passwords. Suppose
that this exception had happened when we had supplied the right username and
something had gone wrong with the database server. Then the screen output would
have contained the real username and password.

If we catch the exception properly, the error output might look like this:

SQLSTATE[28000] [1045] Access denied for user 'bosss'@'localhost' (using
password: YES)

This error message contains much less sensitive information. (In fact, this output
is very similar to the error output that would be produced by one of our non-PDO
examples.) But we will again warn you that the best policy is just show some neutral
error message like: "Sorry, the service is temporarily unavailable. Please try again
later." Of course, you should also log all errors so that you can find out later whether
anything bad has happened.

Introduction

[14]

Prepared Statements
This is a rather advanced topic, but you should become familiar with it. If you are a
user of PHP with MySQL or SQLite, then you probably didn't even hear of prepared
statements, since PHP's MySQL and SQLite extensions don't offer this functionality.
PostgreSQL users might have already used pg_prepare() and pg_execute()
in tandem. MySQLi (the improved MySQL extension) also offers the prepared
statements functionality, but in a somewhat awkward way (despite the possible
object-oriented style).

For those who are not familiar with prepared statements, we will now give a
short explanation.

When developing database-driven, interactive dynamic applications, you will sooner
or later need to take user input (which may originate from a form) and pass it as
a part of a query to a database. For example, given our cars' database, you might
design a feature that will output a list of cars made between any two years. If you
allow the user to enter these years in a form, the code will look something like this:

// Suppose the years come in the startYear and endYear
// request variables:
$sy = (int)$_REQUEST['startYear'];
$ey = (int)$_REQUEST['endYear'];

if($ey < $sy)
{
 // ensure $sy is less than $ey
 $tmp = $ey;
 $ey = $sy;
 $sy = $tmp;
}

$sql = "SELECT * FROM cars WHERE year >= $sy AND year <= $ey";
// send the query in $sql…

In this simple example the query depends on two variables, which are part of the
resulting SQL. A corresponding prepared statement in PDO would look something
like this:

$sql = 'SELECT * FROM cars WHERE year >= ? AND year <= ?';

As you can see, we replaced the $sy and $ey variables with placeholders in the
query body. We can now manipulate this query to create the prepared statement and
execute it:

Chapter 1

[15]

// Assuming we have already connected and prepared
// the $sy and $ey variables
$sql = 'SELECT * FROM cars WHERE year >= ? AND year <= ?';
$stmt = $conn->prepare($sql);
$stmt->execute(array($sy, $ey));

These three lines of code tells us that the prepared statements are objects (with class
PDOStatement). They are created using calls to PDO::prepare() method that accepts
an SQL statement with placeholders as its parameters.

The prepared statements then have to be executed in order to obtain the query results
by calling the PDOStatement::execute() method. As the example shows, we call
this method with an array that holds the values for the placeholders. Note how the
order of the variables in that array matches the order of the placeholders in the $sql
variable. Obviously, the number of elements in the array must be the same as the
number of placeholders in the query.

You have probably noticed that we are not saving the result of the call to the
PDOStatement::execute() method in any variable. This is because the statement
object itself is used to access the query results, so that we can complete our example
to look like this:

// Suppose the years come in the startYear and endYear
// request variables:
$sy = (int)$_REQUEST['startYear'];
$ey = (int)$_REQUEST['endYear'];

if($ey < $sy)
{
 // ensure $sy is less than $ey
 $tmp = $ey;
 $ey = $sy;
 $sy = $tmp;
}

$sql = 'SELECT * FROM cars WHERE year >= ? AND year <= ?';
$stmt = $conn->prepare($sql);
$stmt->execute(array($sy, $ey));

// now iterate over the result as if we obtained
// the $stmt in a call to PDO::query()
while($r = $stmt->fetch(PDO::FETCH_ASSOC))
{
 echo "$r[make] $r[model] $r[year]\n";
}

Introduction

[16]

As this complete example shows, we call the PDOStatement::fetch() method until
it returns a false value, at which point the loop quits—just like we did in previous
examples when discussing result sets traversal.

Of course, the replacement of question mark placeholders with actual values is not
the only thing that prepared statements can do. Their power lies in the possibility
of being executed as many times as needed. This means that we can call the
PDOStatement::execute() method as many times as we want, and every time we
can supply different values for the placeholders. For example, we can do this:

$sql = 'SELECT * FROM cars WHERE year >= ? AND year <= ?';
$stmt = $conn->prepare($sql);

// Fetch the 'new' cars:
$stmt->execute(array(2005, 2007));
$newCars = $stmt->fetchAll(PDO::FETCH_ASSOC);
// now, 'older' cars:
$stmt->execute(array(2000, 2004));
$olderCars = $stmt->fetchAll(PDO::FETCH_ASSOC);

// Show them
echo 'We have ', count($newCars), ' cars dated 2005-2007';
print_r($newCars);
echo 'Also we have ', count($olderCars), ' cars dated 2000-2004';
print_r($olderCars);

Prepared statements tend to execute faster than calls to PDO::query() methods,
since the database drivers optimize them only once, in a call to PDO::prepare()
methods. Another advantage of using prepared statements is that you don't have to
quote the parameters passed in a call to PDOStatement::execute().

In our example we used an explicit cast of the request parameters into integer
variables, but we could also have done the following:

// Assume we also want to filter by make
$sql = 'SELECT * FROM cars WHERE make=?';
$stmt = $conn->prepare($sql);
$stmt->execute(array($_REQUEST['make']));

The prepared statement here will take care of the proper quoting made before
executing the query.

Chapter 1

[17]

And just to finish the introduction of the prepared statements here, probably the best
feature about them is that PDO emulates them for every supported database. This
means you can use prepared statements with any databases; even if they don’t know
what they are.

Appropriate Understanding of PDO
Our introduction would not be complete if we didn't mention that. PDO is a database
connection abstraction library, and as such, cannot ensure that your code will work
for each and every database that it supports. This will only happen if your SQL code
is portable. For example, MySQL extends the SQL syntax with this form of insert:

INSERT INTO mytable SET x=1, y='two';

This kind of SQL code is not portable, as other databases do not understand this
way of doing inserts. To ensure that your inserts work across databases, you should
replace the above code with :

INSERT INTO mytable(x, y) VALUES(1, 'two');

This is just one example of incompatibilities that may arise when you use PDO.
It is only by making your database schema and SQL portable that can ensure you
that your code will be compatible with other databases. However, ensuring this
portability is beyond this text.

Summary
This introductory chapter showed you the basics of using PDO when developing
dynamic, database-driven applications with the PHP5 language. Also we looked
at how PDO can be effectively used to eliminate the differences between different
traditional database access APIs and to produce a clearer and more portable code.

In the subsequent chapters, we will be looking at each of the features discussed in this
chapter in a greater detail so that you fully master the PHP Data Objects extension.

Using PHP Data Objects:
First Steps

In the previous chapter, we had a brief overview of what PDO is, how to connect to
your favourite database using PDO, how to issue simple queries and how to handle
errors. Now that you are convinced that PDO is a good thing and are thinking of
using it actively, we will be delving into all the features it has to offer.

In this chapter, we will look more closely at creating connections to a database using
PDO and connection strings (data source names), the PDOStatement class, and how
to traverse result sets. We will also create a small library management application,
which will allow us to manage a collection of books of your home library. The
application will be able to list books and authors as well as add and edit them.

We will start by having a look at connection strings, since without them, we will not
be able to connect to any database. We will then create a sample database, on which
all the examples in this book will be based.

We will depart from the simplistic, imaginary cars' database and create a real
working database with several tables. However, now we will be dealing with the
classical example of books and authors. We chose this example because such entities
are more common. The relational model will be relatively simple, so that you will
be able to follow the examples easily, if you have already come across such a
database elsewhere.

Using PHP Data Objects: First Steps

[20]

Connection Strings
Connection strings, or data source names (abbreviated DSN) as they are called in
the PDO documentation, are PHP strings that carry such information as the name
of the database management system and of the database itself, as well as other
connection parameters.

Their advantage over using traditional methods of creating database connection is
that you don't have to modify your code if you change the database management
system. A connection string can be defined in a configuration file and that file gets
processed by your application. Should your database (data source) change, you just
edit that configuration file and the rest of your code is kept intact.

The connection strings used in PDO differ due to the existence of different database
management systems. However, they always have a common prefix, which denotes
the underlying database driver. Remember the MySQL, SQLite, and PostgreSQL
examples in the Chapter 1. The three connection strings looked like the following:

mysql:host=localhost;dbname=cars
sqlite:/path/to/cars.db
pgsql:host=localhost dbname=cars

As we can see, the prefix (the substring before the first semicolon) always keeps the
name of the PDO driver. Since we don't have to use different functions to create a
connection with PDO, this prefix tells us which internal driver should be used. The
rest of the string is parsed by that driver to further initiate the connection. In these
cases we supplied the database name; for MySQL and PostgreSQL; we also supplied
the host name on which the server runs. (As SQLite is a local database engine, such a
parameter would not make sense.)

If you want to specify additional parameters, you should consult your database
manual (www.php.net/pdo is always a good place to start). For example, the MySQL
PDO driver understands the following parameters:

host - ��������������������������������������� the hostname on which the server runs (localhost in our example)
port - ��� the port number where the database server is listening
 (defaults to 3306)
dbname - �������������������������� the name of the database (cars in our example)
unix_socket - ������������� �� �������������������������������������� the MySQL UNIX socket (instead of ������������������� host��������������� and/or �������port���).

•

•

•

•

Chapter 2

[21]

The SQLite: prefix denotes a connection to a SQLite 3 database.
To connect to SQLite 2 database, you have to use SQLite2: prefix.
Please see http://www.php.net/manual/en/ref.pdo-sqlite.
connection.php for details.

As you might have noticed, different drivers use different character to delimit the
parameters—such as a semicolon in MySQL and space in PostgreSQL.

Creating the Sample Database
Suppose that you have a good library at home and you want your computer to help
you manage it. You decide to create a web-based database using PHP and, of course,
PDO. From now on, the examples will be for MySQL and SQLite databases.

The Data Model
As our database is really simple, we will just have two entities in it: authors and
books. Hence, we will be creating two tables with the same names. Now, let's think
what properties each of these entities will have.

Authors will have their first name, their last name, and a short biography. The table
will need to have a primary key which we will call id. We will use it to refer to an
author from the books table.

Books are written by authors. (Sometimes they are written by more than one author,
but we will consider books written by only one author here.) So we will need a field
for the author’s ID, as well as the book’s title, ISBN number, publisher name, and
year of publication. Also, we will include a short summary of what the book is about.

We need for a separate table for authors, because an author might have written
more than one book. Also, our example would be really simple otherwise! Thus, we
opted for a two-table database structure. If we were to consider books written by
more than one author, we would need three tables, which would make the example
very complicated.

Using PHP Data Objects: First Steps

[22]

Creating the MySQL Database
After you have launched your MySQL command line client, you will see the mysql>
prompt, where you will be able to issue commands to create the database and the
tables in it:

mysql> create database pdo;
Query OK, 1 row affected (0.05 sec)

mysql> use pdo;
Database changed
mysql> create table books(
 -> id int primary key not null auto_increment,
 -> author int not null,
 -> title varchar(70) not null,
 -> isbn varchar(20),
 -> publisher varchar(30) not null,
 -> year int(4) not null,
 -> summary text(2048));
Query OK, 0 rows affected (0.17 sec)

mysql> create table authors(
 -> id int primary key not null auto_increment,
 -> firstName varchar(30) not null,
 -> lastName varchar(40) not null,
 -> bio text(2048));
Query OK, 0 rows affected (0.00 sec)

As you can see, we have created a database and called it pdo. We also created two
tables: books and authors, just as we had planned. Now let's see how we do that in
SQLite. As we cannot create the database inside the SQLite command line client, we
launch it like this:

> sqlite3 pdo.db
sqlite> create table books(
 ...> id integer primary key,
 ...> author integer(11) not null,
 ...> title varchar(70) not null,
 ...> isbn varchar(20),
 ...> publisher varchar(30) not null,
 ...> year integer(4) not null,
 ...> summary text(2048));
sqlite> create table authors(
 ...> id integer(11) primary key,
 ...> firstName varchar(30) not null,
 ...> lastName varchar(40) not null,
 ...> bio text(2048));

Chapter 2

[23]

As you can see, the SQL is slightly different for SQLite—the primary keys are
declared without the NOT NULL and auto_increment options. In SQLite, a column
declared as INTEGER PRIMARY KEY is automatically incremented. Now let's insert
some values into our database. The syntax will be the same for MySQL and SQLite
so here we will just present the MySQL command line client example. We will start
with authors, because we will need their primary key values for inserting into the
books table:

mysql> insert into authors(firstName, lastName, bio) values(
 -> 'Marc', 'Delisle', 'Marc Delisle is a member of the MySQL
Developers Guide');
Query OK, 1 row affected (0.14 sec)

mysql> insert into authors(firstName, lastName, bio) values(
 -> 'Sohail', 'Salehi', 'In recent years, Sohail has contributed
to over 20 books, mainly in programming and computer graphics');
Query OK, 1 row affected (0.00 sec)

mysql> insert into authors(firstName, lastName, bio) values(
 -> 'Cameron', 'Cooper', 'J. Cameron Cooper has been playing
around on the web since there was not much of a web with which to
play around');
Query OK, 1 row affected (0.00 sec)

Now that we have inserted three authors, let's add some books. But before we do, we
should know which author has which id. A simple SELECT query will help us:

mysql> select id, firstName, lastName from authors;
+----+-----------+----------+
| id | firstName | lastName |
+----+-----------+----------+
1	Marc	Delisle
2	Sohail	Salehi
3	Cameron	Cooper
+----+-----------+----------+
3 rows in set (0.03 sec)

Now we can finally use this information to add three books, each written by one of
these authors:

mysql> insert into books(author, title, isbn, publisher, year,
summary) values(
 -> 1, 'Creating your MySQL Database: Practical Design Tips and
Techniques', '1904811302', 'Packt Publishing Ltd', '2006',
 -> 'A short guide for everyone on how to structure your data and
set-up your MySQL database tables efficiently and easily.');

Using PHP Data Objects: First Steps

[24]

Query OK, 1 row affected (0.00 sec)

mysql> insert into books(author, title, isbn, publisher, year,
summary) values(
 -> 2, 'ImageMagick Tricks', '1904811868', 'Packt Publishing
Ltd', '2006',
 -> 'Unleash the power of ImageMagick with this fast, friendly
tutorial, and tips guide');
Query OK, 1 row affected (0.02 sec)

mysql> insert into books(author, title, isbn, publisher, year,
summary) values(
 -> 3, 'Building Websites with Plone', '1904811027', 'Packt
Publishing Ltd', '2004',
 -> 'An in-depth and comprehensive guide to the Plone content
management system');
Query OK, 1 row affected (0.00 sec)

Now that we have filled the authors and books tables, we may begin to create the
first page of our small library management web application.

The data used is based on real books published by Packt Publishing Ltd
(the publisher that brought to you this book you are reading now). To
find out more, visit their site at http://www.packtpub.com

Designing Our Code
Good application architecture is another key factor of an application, besides the
correct data model. As the application that we are going to develop in this chapter, is
relatively small, this task is not very complicated. First, we will create two pages that
will list books and authors. To begin with, we should think about how these pages
would look. To make our simple example small and compact, we will present a
header on all pages that will contain links to the books list and the authors list. Later
we will add two more pages that will allow us to add an author and a book.

Of course, we should create a common include file that will define the common
functions such as the header and footer display and the connection to the database.
Our example is really small, so we will not be using any template system or even
object-oriented syntax. (Indeed, these topics are beyond the scope of this book.) So,
to summarize:

Chapter 2

[25]

All common functions (including code to create the PDO connection object)
will be kept in an include file (called common.inc.php).
Every page will be held in a separate file, which includes the
common.inc.php file.
Every page will process data and display it (so that we have no separation
of data processing and data presentation, as one would expect from an
application designed with the model-view-controller pattern in mind).

Now that we have this small plan, we can begin with our common.inc.php file. As
we have just discussed, for now, it will contain the functions to display the header
and the footer, as well as the code to create the connection object. Let's keep the PDO
object in a global variable called $conn and call our header function showHeader(),
and the footer function showFooter(). Also, we will keep the database connection
string, user name, and password in this include file:

<?php
/**
 * This is a common include file
 * PDO Library Management example application
 * @author Dennis Popel
 */

// DB connection string and username/password
$connStr = 'mysql:host=localhost;dbname=pdo';
$user = 'root';
$pass = 'root';

/**
 * This function will render the header on every page,
 * including the opening html tag,
 * the head section and the opening body tag.
 * It should be called before any output of the
 * page itself.
 * @param string $title the page title
 */
function showHeader($title)
{
 ?>
 <html>
 <head><title><?=htmlspecialchars($title)?></title></head>
 <body>
 <h1><?=htmlspecialchars($title)?></h1>
 Books
 Authors

•

•

•

Using PHP Data Objects: First Steps

[26]

 <hr>
 <?php
}

/**
 * This function will 'close' the body and html
 * tags opened by the showHeader() function
 */
function showFooter()
{
 ?>
 </body>
 </html>
 <?php
}

// Create the connection object
$conn = new PDO($connStr, $user, $pass);

As you can see, the file is really simple, and you will just have to change the values of
the $user and $pass variables (on lines 9 and 10) to match your setup. For a SQLite
database, you would also have to change line 8 so that it contains an appropriate
connection string, for example:

$connStr = 'sqlite:/www/hosts/localhost/pdo.db';

Of course, you should change this to reflect the path to where you created the SQLite
database. Also, the showHeader() function simply renders HTML code and passes
the value of the $title variable via the htmlspecialchars() function so that any
illegal characters (such as a less-than sign) are properly escaped.

Save the file to your web root directory. This again depends on your web server
setup. For example, it could be C:\Apache\htdocs or /var/www/html.

Now, let's create a page that lists the books. We will have to issue the query and then
iterate over the results to present each book in its own row. Later, we will create a
page that will list all the authors from the database that we created earlier. After we
finish this task, we will look at result set traversal.

Let's call our file books.php and create the code:

<?php

/**
 * This page lists all the books we have
 * PDO Library Management example application
 * @author Dennis Popel
 */

Chapter 2

[27]

// Don't forget the include
include('common.inc.php');

// Issue the query
$q = $conn->query("SELECT * FROM books ORDER BY title");

// Display the header
showHeader('Books');

// now create the table
?>
<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>Title</td>
 <td>ISBN</td>
 <td>Publisher</td>
 <td>Year</td>
 <td>Summary</td>
</tr>

<?php
// Now iterate over every row and display it
while($r = $q->fetch(PDO::FETCH_ASSOC))
{
 ?>
 <tr>
 <td><?=htmlspecialchars($r['title'])?></td>
 <td><?=htmlspecialchars($r['isbn'])?></td>
 <td><?=htmlspecialchars($r['publisher'])?></td>
 <td><?=htmlspecialchars($r['year'])?></td>
 <td><?=htmlspecialchars($r['summary'])?></td>
 </tr>
 <?php
}
?>
</table>

<?php
// Display footer
showFooter();

This file should be saved to the directory where the common.inc.php file is located.
As you can see, there are more comments and HTML in the code, but there is
nothing very complicated here. As we decided earlier, the code includes the
common.inc.php file, then renders the page header, issues a query on the line
#10, renders the table header, and finally iterates over every row in the result set to
output every book's details.

Using PHP Data Objects: First Steps

[28]

Just as in the first chapter, we traverse the result set in a while row, using the
fetch() method of the PDOStatement object (held in the $q variable). We instruct
this method to return the rows as arrays indexed by table column names (by
specifying the PDO::FETCH_ASSOC parameter).

Inside the loop, we render the HTML of every row, inserting there the columns from
our table. After the loop quits, we close the table and display the footer.

Now it's time to test our first PDO-powered application. Fire up your browser and
navigate to http://localhost/books.php. If you did everything correctly (so that
your web server and database are properly setup), you should see a table similar to
the following screenshot (although your page might look much wider, we resized the
window before taking a screenshot so that it fits on a printed page):

Chapter 2

[29]

Once we have ensured that our application works with MySQL, let's see how it will
work with SQLite. To do this, we have to edit line 8 in the common.inc.php file so
that it contains the SQLite DSN:

$connStr = 'sqlite:/www/hosts/localhost/pdo.db';

If you did everything correctly, then after refreshing your browser, you should see
the same screen. As we discussed earlier—only one configuration option has to be
changed when you start using another database system.

Now, let's create the code for the page that will list the authors. Create a file named
authors.php and place it in the directory where you saved the previous two files.
The code is practically identical to the books listing page:

<?php

/**
 * This page lists all the authors we have
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// Issue the query
$q = $conn->query("SELECT * FROM authors ORDER BY lastName,
 firstName");

// Display the header
showHeader('Authors');

// now create the table
?>
<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>First Name</td>
 <td>Last Name</td>
 <td>Bio</td>
</tr>

<?php
// Now iterate over every row and display it
while($r = $q->fetch(PDO::FETCH_ASSOC))
{
 ?>
 <tr>
 <td><?=htmlspecialchars($r['firstName'])?></td>
 <td><?=htmlspecialchars($r['lastName'])?></td>

Using PHP Data Objects: First Steps

[30]

 <td><?=htmlspecialchars($r['bio'])?></td>
 </tr>
 <?php
}
?>
</table>

<?php
// Display footer
showFooter();

This file follows the same logic: include the common.inc.php file, and then issue the
query and traverse the result set. If you have done everything correctly, then you
simply click on the Authors link located on the books listing page in your browser to
get the following page:

As you can see, the page correctly presents the three authors that we added at the
beginning of this chapter. If you want to test this with SQLite, change the line #10 to
contain the SQLite connection string. On refreshing your browser, you should see the
same page, but now based on the SQLite database contents.

Chapter 2

[31]

Now that we have created these two pages and seen that using PDO is not
complicated, let's look at some theory before we extend the application.

PDO Statements and Result Sets
Our examples made use of two of the main classes in PHP Data Objects: the PDO
class, which is used to create a connection and issue queries, and the PDOStatement
class, which we use to loop through the result set. We will look at the first of these
classes in later chapters. Here, we will examine the PDOStatement class to see what
other ways of traversing the result set that it has to offer.

As we already know, instances of the PDOStatement class are returned from the call
to PDO::query() method. The main purpose of this class is to provide an interface to
the result set. In fact, we have already used its most important method to iterate over
the result set. We only looked at one fetch style (or mode of the returned row), but
PDO offers several styles. This class can also provide additional information about
a result set, such as the number of rows and columns, and fetch the whole result set
into a two-dimensional array.

Let's begin by looking at some different fetch styles. We already know the PDO::
FETCH_ASSOC mode that returns an array indexed by column name. The default
operation of the PDOStatement object is to return an array indexed by both an
integer index and a column name, that is the PDO::FETCH_BOTH fetch mode. We
can also request only an integer-indexed array by using the PDO::FETCH_NUM fetch
style. PDO also supports fetching rows as objects with the PDO::FETCH_OBJ mode.
In this case the call to PDO::fetch()method will return an instance of the stdClass
internal class with its properties populated with the row's values. This happens in
the following code:

$q = $conn->query('SELECT * FROM authors ORDER BY lastName,
 firstName');
$r = $q->fetch(PDO::FETCH_OBJ);
var_dump($r);

//would print:
object(stdClass)#4 (4)
{
 ["id"]=>
 string(1) "3"
 ["firstName"]=>
 string(7) "Cameron"
 ["lastName"]=>
 string(6) "Cooper"
 ["bio"]=>

Using PHP Data Objects: First Steps

[32]

 string(112) "J. Cameron Cooper has been playing around on the web
 since there was not much of a web with which to play around"
}

The PDOStatement class also allows you to set the fetch mode once for all subsequent
calls to its fetch() method. This is done via the PDOStatement::setFetchMode()
method, which accepts any of the PDO::FETCH_ASSOC, PDO::FETCH_BOTH, PDO::
FETCH_NUM, and PDO::FETCH_OBJ constants. With this in mind, we can rewrite lines
23 and 24 of the authors.php file to look like this:

// Now iterate over every row and display it
$q->setFetchMode(PDO::FETCH_ASSOC);
while($r = $q->fetch())
{

You can try it on your copy of the authors.php file and refresh the browser to see
that this works.

You may have noticed that the SQLite, MySQL, and pgSQL PHP extensions all
offer similar functionality. Indeed, we can use any of the mysql_fetch_row(),
mysql_fetch_assoc(), mysql_fetch_array(), or mysql_fetch_object()
functions to achieve the same effect. That's why PDO goes further and enables
us to use three additional fetch modes. These three modes can be only set via
PDOStatement::setFetchMode() call, and here they are:

PDO::FETCH_COLUMN allows you to instruct the PDOStatement object
to return the specified column of every row. In this case, PDO::fetch()
will return a scalar value. The columns are numbered starting with 0. This
happens in the following code snippet:

	 $q = $conn->query('SELECT * FROM authors ORDER BY lastName,
	 firstName');
	 $q->setFetchMode(PDO::FETCH_COLUMN, 1);
	 while($r = $q->fetch())
	 {
	 var_dump($r);
	 }
	 //would print:
	 string(7) "Cameron"
	 string(4) "Marc"
	 string(6) "Sohail"

•

Chapter 2

[33]

This reveals that the call to $q->fetch() does indeed returns scalar values
(not arrays). Note that the column with the index 1 should be the author's
last name, not their first name, if you are simply looking at the page with
authors list. However, our query looks like SELECT * FROM authors, so it also
retrieves the author ids, which are stored into the 0th column. You should be
aware of this, as you may spend hours looking for the source of such a
logical error.
PDO::FETCH_INTO can be used to modify an instance of an object. Let's
rewrite our above example as follows:

	 $q = $conn->query('SELECT * FROM authors ORDER BY lastName,
 firstName');
	 $r = new stdClass();
	 $q->setFetchMode(PDO::FETCH_INTO, $r);
	 while($q->fetch())
	 {
	 var_dump($r);
	 }
	 //would print something like:
	 object(stdClass)#3 (4)
	 {
	 ["id"]=>
	 string(1) "3"
	 ["firstName"]=>
	 string(7) "Cameron"
	 ["lastName"]=>
	 string(6) "Cooper"
	 ["bio"]=>
	 string(112) "J. Cameron Cooper has been playing around on the
	 web since there was not much of a web with which to play around"
	 }
	 object(stdClass)#3 (4)
	 {
	 ["id"]=>
	 string(1) "1"
	 ["firstName"]=>
	 string(4) "Marc"
	 ["lastName"]=>
	 string(7) "Delisle"
	 ["bio"]=>
	 string(54) "Marc Delisle is a member of the MySQL Developer
 Guide"
	 }
	 object(stdClass)#3 (4)

•

Using PHP Data Objects: First Steps

[34]

	 {
	 ["id"]=>
	 string(1) "2"
	 ["firstName"]=>
	 string(6) "Sohail"
	 ["lastName"]=>
	 string(6) "Salehi"
	 ["bio"]=>
	 string(101) "In recent years, Sohail has contributed to over 20
	 books, mainly in programming and computer graphics"
	 }

Inside the while loop we didn't assign the $r variable, which is the
return value of $q->fetch(). $r has been bound to this method via the
call to $q->setFetchMode() before the loop.

PDO::FETCH_CLASS can be used to return objects of a specified class. For
every row, an instance of this class will be created with the properties named
and assigned the values of the result set columns. Note that the class does not
necessarily have these properties declared since PHP allows runtime creation
of object properties. For example:

	 $q = $conn->query('SELECT * FROM authors ORDER BY lastName,
	 firstName');
	 $q->setFetchMode(PDO::FETCH_CLASS, stdClass);
	 while($r = $q->fetch())
	 {
	 var_dump($r);
	 }

This will print output similar to that for the previous example. Also, this
fetch mode allows you to create instances by passing an array of parameters
to their constructors:

	 $q->setFetchMode(PDO::FETCH_CLASS, SomeClass, array(1, 2, 3));

(This will work only if the SomeClass class has been defined.)
We would recommend using PDOStatement::setFetchMode() as it is more
convenient and easier to maintain (and, of course, has more features).

•

Chapter 2

[35]

Describing all of these fetch modes may seem excessive, but each of them
is useful in certain situations. Indeed, you may have noticed that the list of
books is somewhat incomplete. It does not contain the author's name. We will
add this missing column, and to make our example trickier, we will make the
author's name clickable and link it to the author's profile page (which we will
create). This profile page needs the author's ID so that we can pass it in the
URL. It will display all the information that we have about the author, as well
as the list of all of their books. Let's begin with this author's profile page:

	 <?php
	

	 /**
	 * This page shows an author's profile
	 * PDO Library Management example application
	 * @author Dennis Popel
	 */
	

	 // Don't forget the include
	 include('common.inc.php');
	

	 // Get the author
	 $id = (int)$_REQUEST['id'];
	 $q = $conn->query("SELECT * FROM authors WHERE id=$id");
	 $author = $q->fetch(PDO::FETCH_ASSOC);
	 $q->closeCursor();
	

	 // Now see if the author is valid - if it's not,
	 // we have an invalid ID
	 if(!$author) {
	 showHeader('Error');
	 echo "Invalid Author ID supplied";
	 showFooter();
	 exit;
	 }
	

	 // Display the header - we have no error
	 showHeader("Author: $author[firstName] $author[lastName]");
	

	 // Now fetch all his books
	 $q = $conn->query("SELECT * FROM books WHERE author=$id ORDER
 BY��������� ��������title");
	 $q->setFetchMode(PDO::FETCH_ASSOC);
	 // now display everything
	 ?>
	 <h2>Author</h2>
	 <table width="60%" border="1" cellpadding="3">
	 <tr>
	 <td>First Name</td>

Using PHP Data Objects: First Steps

[36]

	 <td><?=htmlspecialchars($author['firstName'])?></td>
	 </tr>
	 <tr>
	 <td>Last Name</td>
	 <td><?=htmlspecialchars($author['lastName'])?></td>
	 </tr>
	 <tr>
	 <td>Bio</td>
	 <td><?=htmlspecialchars($author['bio'])?></td>
	 </tr>
	 </table>
	

	 <h2>Books</h2>
	 <table width="100%" border="1" cellpadding="3">
	 <tr style="font-weight: bold">
	 <td>Title</td>
	 <td>ISBN</td>
	 <td>Publisher</td>
	 <td>Year</td>
	 <td>Summary</td>
	 </tr>
	 <?php
	 // Now iterate over every book and display it
	 while($r = $q->fetch())
	 {
	 ?>
	 <tr>
	 <td><?=htmlspecialchars($r['title'])?></td>
	 <td><?=htmlspecialchars($r['isbn'])?></td>
	 <td><?=htmlspecialchars($r['publisher'])?></td>
	 <td><?=htmlspecialchars($r['year'])?></td>
	 <td><?=htmlspecialchars($r['summary'])?></td>
	 </tr>
	 <?php
	 }
	 ?>
	 </table>
	

	 <?php
	 // Display footer
	 showFooter();

Name this file author.php and save it to the directory where rest of the files
are located.
Here are a few comments about the code:
We handle the author's ID (line #13) by explicitly casting it to an integer so as
to prevent a possible security hole. We later pass the $id variable to the text
of the query without quoting as it's OK to do so with numeric values.

•

Chapter 2

[37]

We will discuss the call to $q->closeCursor(); $q = null on line #13 in
the following chapters. Here we will just note that it's a good idea to call this
method between queries executed on the same connection object and then set
it to null. Our example would not work without it. Also note that we don't
need this after the last query.
We also do simple error handling here: we check whether the author ID is
invalid. If it is invalid, we display an error message and then exit. (See lines
22 to 27.)
On lines 25 and 27, we use the author's ID to create the query and set the
fetch mode to be PDO::FETCH_ASSOC. Then we proceed to the display of data:
first we render the author's details and then all his books.

Now you can return to your browser and point it to the URL:
http://localhost/author.php?id=1.

The following screen should appear:

•

•

•

Using PHP Data Objects: First Steps

[38]

As you can see, everything is correct on the page: The author's details, which we
filed first (id=1), and the only book by this author. Now let's see how our application
reacts to an invalid ID submitted. We know that we have only three authors, so any
number other than 1, 2, or 3 is invalid. Also, a non-number parameter will evaluate
to 0, which is invalid. If we change the URL in the address bar to
http://localhost/author.php?id=zzz. We will end up with the following:

You should also switch to SQLite in common.inc.php and see that this page also
works with this database.

Now, let's modify our existing books.php file to add an author column with a link
to the author's profile page. We will have to join the two tables where the book's
author field equals the author's ID field, and select the author's ID, first name, and
last name. So our query will look like this:

SELECT authors.id, authors.firstName, authors.lastName, books.* FROM
authors, books WHERE author=authors.id ORDER BY title;

Before we proceed with the changes, let's run this query in the command line client.
We will also modify this query for the client as its window will not fit the whole row:

mysql> SELECT authors.id, firstName, lastName, books.id, title FROM
authors, books WHERE books.author=authors.id;
+----+-----------+----------+----+------------------------------+
| id | firstName | lastName | id | title |
+----+-----------+----------+----+------------------------------+
1	Marc	Delisle	1	Creating your MySQL...
2	Sohail	Salehi	2	ImageMagick Tricks
3	Cameron	Cooper	3	Building Websites with Plone
+----+-----------+----------+----+------------------------------+
3 rows in set (0.00 sec)

Chapter 2

[39]

As you can see, the query is returning two columns called id. This means that we
will not be able to use the PDO::FETCH_ASSOC mode, since there can be only id array
index. Here we have two options: Either use the PDO::FETCH_NUM mode or retrieve
the ID fields using aliases.

Let's see how we would code the page using PDO::FETCH_NUM:

<?php

/**
 * This page lists all the books we have
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// Issue the query
$q = $conn->query("SELECT authors.id, firstName, lastName, books.*
 FROM authors, books WHERE author=authors.id ORDER
 BY title");
$q->setFetchMode(PDO::FETCH_NUM);

// Display the header
showHeader('Books');

// now create the table
?>
<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>Author</td>
 <td>Title</td>
 <td>ISBN</td>
 <td>Publisher</td>
 <td>Year</td>
 <td>Summary</td>
</tr>

<?php
// Now iterate over every row and display it
while($r = $q->fetch())
{
 ?>
 <tr>
 <td><a href="author.php?id=<?=$r[0]?>">
 <?=htmlspecialchars("$r[1] $r[2]")?></td>
 <td><?=htmlspecialchars($r[5])?></td>
 <td><?=htmlspecialchars($r[6])?></td>
 <td><?=htmlspecialchars($r[7])?></td>
 <td><?=htmlspecialchars($r[8])?></td>

Using PHP Data Objects: First Steps

[40]

 <td><?=htmlspecialchars($r[9])?></td>
 </tr>
 <?php
}
?>
</table>

<?php
// Display footer
showFooter();

Note the highlighted lines—they contain the changes; the rest of file is the same. As
you can see, we added the call to $q->setFetchMode() and changed the loop to use
numeric column indexes.

If we navigate back to http://localhost/books.php, we will see a list similar to
the one in this screenshot:

Chapter 2

[41]

We can click on every author to get to their profile page. Of course, changing back to
SQLite in common.inc.php should also work.

Another (and much better) option is to use aliases for column names in the SQL
code. If we do this, we will not have to take care of the numeric indexes and change
the code every time we add or remove columns from our tables. We just change the
SQL to the following:

SELECT authors.id AS authorId, firstName, lastName, books.* FROM
 authors, books WHERE author=authors.id ORDER BY title;

The final version of books.php will look like this:

<?php

/**
 * This page lists all the books we have
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// Issue the query
$q = $conn->query("SELECT authors.id AS authorId, firstName,
 lastName, books.* FROM authors, books WHERE
 author=authors.id
 ORDER BY title");
$q->setFetchMode(PDO::FETCH_ASSOC);

// Display the header
showHeader('Books');

// now create the table
?>
<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>Author</td>
 <td>Title</td>
 <td>ISBN</td>
 <td>Publisher</td>
 <td>Year</td>
 <td>Summary</td>
</tr>

<?php
// Now iterate over every row and display it
while($r = $q->fetch())

Using PHP Data Objects: First Steps

[42]

{
 ?>
 <tr>
 <td><a href="author.php?id=<?=$r['authorId']?>">

 <?=htmlspecialchars("$r[firstName] $r[lastName]")?></td>

 <td><?=htmlspecialchars($r['title'])?></td>

 <td><?=htmlspecialchars($r['isbn'])?></td>

 <td><?=htmlspecialchars($r['publisher'])?></td>

 <td><?=htmlspecialchars($r['year'])?></td>

 <td><?=htmlspecialchars($r['summary'])?></td>

 </tr>
 <?php
}
?>
</table>

<?php
// Display footer
showFooter();

Note that we changed the fetch mode back to PDO::FETCH_ASSOC. Also, we access
the author's ID on line 34 with $r['authorId'], since we aliased that column with
authorId in the query.

PDO also allows us to fetch all the results into an array. We may need this for further
processing or for passing to some function. However, this should be done only for
small result sets. This is highly discouraged for applications like ours, because we
simply display the list of books or authors. Fetching a big result set into an array will
require memory allocated for the whole result, while in our case we display results
row by row, so this requires memory for just one row.

This method is called PDOStatement::fetchAll(). The resulting array is either
a two-dimensional array or a list of objects—this depends on the fetch mode. This
method accepts all the PDO::FETCH_xxxx constants, just like PDOStatement::
fetch(). For example, we could rewrite our books.php file in the following manner
to achieve the same result. Here is the relevant part of books.php lines 9 to 46:

// Issue the query
$q = $conn->query("SELECT authors.id AS authorId, firstName,

 lastName, books.* FROM authors, books WHERE
 author=authors.id ORDER BY title");

$books = $q->fetchAll(PDO::FETCH_ASSOC);

// Display the header

Chapter 2

[43]

showHeader('Books');

// now create the table
?>
<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>Author</td>
 <td>Title</td>
 <td>ISBN</td>
 <td>Publisher</td>
 <td>Year</td>
 <td>Summary</td>
</tr>

<?php
// Now iterate over every row and display it
foreach($books as $r)
{
 ?>
 <tr>
 <td><a href="author.php?id=<?=$r['authorId']?>">
 <?=htmlspecialchars("$r[firstName] $r[lastName]")?></td>
 <td><?=htmlspecialchars($r['title'])?></td>
 <td><?=htmlspecialchars($r['isbn'])?></td>
 <td><?=htmlspecialchars($r['publisher'])?></td>
 <td><?=htmlspecialchars($r['year'])?></td>
 <td><?=htmlspecialchars($r['summary'])?></td>
 </tr>
 <?php
}
?>
</table>

Note the highlighted lines here—we fetch the whole result into the $books array on
line 5 and then iterate over it with a foreach loop on line 21. If you run the modified
page, you will see that we receive the same result. This will also work if we change to
SQLite database in the common.inc.php file.

The PDOStatement::fetchAll() method also allows us to select the values of a
single column with the PDO::FETCH_COLUMN mode. If we want to fetch the entire
book titles using the query from the last example, we can do the following (note the
number and ordering of columns):

$q = $conn->query("SELECT authors.id AS authorId, firstName,
 lastName, books.* FROM authors, books WHERE
 author=authors.id ORDER BY title");
$books = $q->fetchAll(PDO::FETCH_COLUMN, 5);
var_dump($books);

Using PHP Data Objects: First Steps

[44]

This would give the following output:

array(3)
{
 [0]=>
 string(28) "Building Websites with Plone"
 [1]=>
 string(66) "Creating your MySQL Database: Practical Design Tips and
 Techniques"
 [2]=>
 string(18) "ImageMagick Tricks"
}

As you can see, when a single column is requested, this method returns
one-dimensional array.

Retrieving Result Set Metadata
As we have seen in the previous section, the PDOStatement class allows us to retrieve
some information about the data contained in the result set. This information is called
metadata, and you probably have already used some of it one way or another.

The most important metadata about a result set is, of course, the number of rows
it contains. We can use the row count to enhance user experience by, for example,
paginating long result sets. Our example library application is still quite small, with
only three books so far, but as our database grows, we surely will need some tools to
get the total row count for every table displayed and paginate it for easy browsing.

Traditionally, you would use the mysql_num_rows(), sqlite_num_rows()
function or the pg_num_rows() function (depending on your database) to get the
total number of rows returned by the query. In PDO, the method responsible for
retrieving the number of rows is called PDOStatement::rowCount(). However, if
you want to test it with the following code:

$q = $conn->query("SELECT * FROM books ORDER BY title");
$q->setFetchMode(PDO::FETCH_ASSOC);
var_dump($q->rowCount());

you will see that PDO returns 0 both for MySQL and SQLite. This is because PDO
operates differently from the traditional database extensions. The documentation
says, "If the last SQL statement executed by the associated PDOStatement class was a
SELECT statement, some databases may return the number of rows returned by that
statement. However, this behavior is not guaranteed for all databases and should not

Chapter 2

[45]

be relied on for portable applications." Neither MySQL nor SQLite drivers support
this functionality, and that's why the return value of this method is 0. We will see
how to count the number of rows returned with PDO (so that this is a really portable
method) in Chapter 5.

A RDBMS does not know how many rows a query will return till
the last row has been retrieved. This is done because of performance
considerations. In most cases, queries with a WHERE clause, return only
part of the rows stored in a table, and database servers do their best to
ensure that such queries execute as fast as possible. This means that they
start returning rows as soon as they discover those that match the WHERE
clause—this happens much earlier than when the last row is reached.
That is why they really don't know how many rows will be returned
beforehand. The mysql_num_rows(), sqlite_num_rows() function
or the pg_num_rows() function operates on result sets that have been
prefetched into memory (buffered queries). PDO's default behavior is
to use unbuffered queries. We will speak about MySQL buffered queries
later in Chapter 6.

Another method that can be of interest is the PDOStatement::columnCount()
method, which returns the number of columns in the result set. It is handy when
we execute arbitrary queries. (For example, a database management application like
phpMyAdmin could make great use of this method, as it allows a user to type arbitrary
SQL queries.) We can use it in the following way:

$q = $conn->query("SELECT authors.id AS authorId, firstName,
 lastName, books.* FROM authors, books WHERE
 author=authors.id ORDER BY title");
var_dump($q->columnCount());

This will reveal that our query returns a result set containing 10 columns (seven
columns from the books table and three columns from authors table).

Unfortunately, PDO currently does not allow you to retrieve the name of the table
or of a particular column from a result set to which it belongs. This functionality is
useful if your application utilizes queries that join two or more tables. In such case, it
is possible to fetch the table name for every column given its numeric index, starting
with 0. However, proper use of column aliases eliminates the need to use such
functionality. For example, when we modified the books listing page to display the
author's name, we aliased the author's ID column to avoid name conflict. That alias
clearly identifies the column as belonging to the authors table.

Using PHP Data Objects: First Steps

[46]

Summary
In this chapter, we took our first steps with PDO and even created a small working
database-driven, dynamic application that runs on two different databases. Now
you should be able to connect to any supporting database, using the rules for
constructing a connection string. You should then be able to run queries against it,
and to traverse and display the result set.

In the next chapter, we will deal with a very important aspect of any
database-driven application—error handling. We will also extend our example
application by giving it the ability to add and edit books and authors, thus making
it more realistic and useful.

Error Handling
Now that we have built our first application that uses PDO, we will take a closer look
at an important aspect of user-friendly web applications—������������������������� error handling����������� . Not only
does it inform the user about an error condition, it also limits the damage if an error
is not detected when it occurred.

Most web applications have rather simple error handling strategy. When an error
occurs, the script terminates and an error page is presented. The error should
be logged in the error log, and the developers or maintainers should check the
logs periodically. The most common sources of errors in database-driven web
applications are the following:

Server software failure or overload such as the famous "too many
connections" error
Inappropriate configuration of the application, which may happen when
we use an incorrect connection string, a rather common mistake when an
application is moved from one host to another
Improper validation of user input, which may lead to malformed SQL and
subsequent failure of the query
Inserting a record with a duplicate primary key or unique index value, which
either results from an error in the business logic of the application or may
occur in a controlled situation
Syntax errors in SQL statements

In this chapter, we will extend our application so that we can edit existing records as
well as add new records. As we will deal with user input supplied via web forms, we
have to take care of its validation. Also, we may add error handling so that we can
react to non-standard situations and present the user with a friendly message.

•

•

•

•

•

Error Handling

[48]

Before we proceed, let's briefly examine the sources of errors mentioned above and
see what error handling strategy should be applied in each case. Our error handling
strategy will use exceptions, so you should be familiar with them. If you are not,
you can refer to Appendix A, which will introduce you to the new object-oriented
features of PHP5.

We have consciously chosen to use exceptions, even though PDO can be instructed
not to use them, because there is one situation where they cannot be avoided. The
PDO constructors always throw an exception when the database object cannot
be created, so we may as well use exceptions as our main error‑trapping method
throughout the code.

Sources of Errors
To create an error handling strategy, we should first analyze where errors can
happen. Errors can happen on every call to the database, and although this is rather
unlikely, we will look at this scenario. But before doing so, let's check each of the
possible error sources and define a strategy for dealing with them.

Server Software Failure or Overload
This can happen on a really busy server, which cannot handle any more incoming
connections. For example, there may be a lengthy update running in the background.
The outcome is that we are unable to get any data from the database, so we should
do the following.

If the PDO constructor fails, we present a page displaying a message, which says
that the user's request could not be fulfilled at this time and that they should
try again later. Of course, we should also log this error because it may require
immediate attention. (A good idea would be emailing the database administrator
about the error.)

The problem with this error is that, while it usually manifests itself before a
connection is established with the database (in a call to PDO constructor), there is
a small risk that it can happen after the connection has been established (on a call
to a method of the PDO or PDOStatement object when the database server is being
shutdown). In this case, our reaction will be the same—present the user with an error
message asking them to try again later.

Chapter 3

[49]

Improper Configuration of the Application
This error can only occur when we move the application across servers where
database access details differ; this may be when we are uploading from a
development server to production server, where database setups differ. This is not
an error that can happen during normal execution of the application, but care should
be taken while uploading as this may interrupt the site's operation.

If this error occurs, we can display another error message like: "This site is under
maintenance". In this scenario, the site maintainer should react immediately, as
without correcting, the connection string the application cannot normally operate.

Improper Validation of User Input
This is an error which is closely related to SQL injection vulnerability. Every
developer of database-driven applications must undertake proper measures to
validate and filter all user inputs. This error may lead to two major consequences:
Either the query will fail due to malformed SQL (so that nothing particularly
bad happens), or an SQL injection may occur and application security may be
compromised. While their consequences differ, both these problems can be
prevented in the same way.

Let's consider the following scenario. We accept some numeric value from a form
and insert it into the database. To keep our example simple, assume that we want to
update a book's year of publication. To achieve this, we can create a form that has
two fields: A hidden field containing the book's ID, and a text field to enter the year.
We will skip implementation details here, and see how using a poorly designed
script to process this form could lead to errors and put the whole system at risk.

The form processing script will examine two request variables:
$_REQUEST['book'], which holds the book's ID and $_REQUEST['year'], which
holds the year of publication. If there is no validation of these values, the final code
will look similar to this:

$book = $_REQUEST['book'];
$year = $_REQUEST['year'];
$sql = "UPDATE books SET year=$year WHERE id=$book";
$conn->query($sql);

Let's see what happens if the user leaves the book field empty. The final SQL would
then look like:

UPDATE books SET year= WHERE id=1;

Error Handling

[50]

This SQL is malformed and will lead to a syntax error. Therefore, we should ensure
that both variables are holding numeric values. If they don't, we should redisplay the
form with an error message.

Now, let's see how an attacker might exploit this to delete the contents of the entire
table. To achieve this, they could just enter the following into the year field:

2007; DELETE FROM books;

This turns a single query into three queries:

UPDATE books SET year=2007; DELETE FROM books; WHERE book=1;

Of course, the third query is malformed, but the first and second will execute, and
the database server will report an error. To counter this problem, we could use
simple validation to ensure that the year field contains four digits. However, if we
have text fields, which can contain arbitrary characters, the field's values must be
escaped prior to creating the SQL.

Inserting a Record with a Duplicate Primary
Key or Unique Index Value
This problem may happen when the application is inserting a record with duplicate
values for the primary key or a unique index. For example, in our database of
authors and books, we might want to prevent the user from entering the same book
twice by mistake. To do this, we can create a unique index of the ISBN column of the
books table. As every book has a unique ISBN, any attempt to insert the same ISBN
will generate an error. We can trap this error and react accordingly, by displaying an
error message asking the user to correct the ISBN or cancel its addition.

Syntax Errors in SQL Statements
This error may occur if we haven't properly tested the application. A good
application must not contain these errors, and it is the responsibility of the
development team to test every possible situation and check that every SQL
statement performs without syntax errors.

If this type of an error occurs, then we trap it with exceptions and display a fatal
error message. The developers must correct the situation at once.

Now that we have learned a bit about possible sources of errors, let's examine how
PDO handles errors.

Chapter 3

[51]

Types of Error Handling in PDO
By default, PDO uses the silent�������������������� error handling mode. This means that any error
that arises when calling methods of the PDO or PDOStatement classes go unreported.
With this mode, one would have to call PDO::errorInfo(), PDO::errorCode(),
PDOStatement::errorInfo(), or PDOStatement::errorCode(), every time an
error occurred to see if it really did occur. Note that this mode is similar to traditional
database access—usually, the code calls mysql_errno() and mysql_error() (or
equivalent functions for other database systems) after calling functions that could
cause an error, after connecting to a database and after issuing a query.

Another mode is the warning mode. Here, PDO will act identical to the traditional
database access. Any error that happens during communication with the database
would raise an E_WARNING error. Depending on the configuration, an error message
could be displayed or logged into a file.

Finally, PDO introduces a modern way of handling database connection errors—by
using exceptions. Every failed call to any of the PDO or PDOStatement methods will
throw an exception.

As we have previously noted, PDO uses the �� silent���������������������������������� mode, by default. To switch to a
desired error handling mode, we have to specify it by calling PDO::setAttribute()
method. Each of the error handling modes is specified by the following constants,
which are defined in the PDO class:

PDO::ERRMODE_SILENT – the silent strategy.
PDO::ERRMODE_WARNING – the warning strategy.
PDO::ERRMODE_EXCEPTION – use exceptions.

To set the desired error handling mode, we have to set the PDO::ATTR_ERRMODE
attribute in the following way:

$conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

To see how PDO throws an exception, edit the common.inc.php file by adding the
above statement after the line #46. If you want to test what will happen when PDO
throws an exception, change the connection string to specify a nonexistent database.
Now point your browser to the books listing page.

•

•

•

Error Handling

[52]

You should see an output similar to:

This is PHP's default reaction to uncaught exceptions—they are regarded as fatal
errors and program execution stops. The error message reveals the class of the
exception, PDOException, the error description, and some debug information,
including name and line number of the statement that threw the exception. Note
that if you want to test SQLite, specifying a non-existent database may not work as
the database will get created if it does not exist already. To see that it does work for
SQLite, change the $connStr variable on line 10 so that there is an illegal character in
the database name:

$connStr = 'sqlite:/path/to/pdo*.db';

Refresh your browser and you should see something like this:

Chapter 3

[53]

As you can see, a message similar to the previous example is displayed, specifying
the cause and the location of the error in the source code.

Defining an Error Handling Function
If we know that a certain statement or block of code can throw an exception, we
should wrap that code within the try…catch block to prevent the default error
message being displayed and present a user-friendly error page. But before we
proceed, let's create a function that will render an error message and exit the
application. As we will be calling it from different script files, the best place for this
function is, of course, the common.inc.php file.

Our function, called showError(), will do the following:

Render a heading saying "Error".
Render the error message. We will escape the text with the
htmlspecialchars() function and process it with the nl2br() function so
that we can display multi-line messages. (This function will convert all line
break characters to
 tags.)
Call the showFooter() function to close the opening <html> and <body>
tags. The function will assume that the application has already called the
showHeader() function. (Otherwise, we will end up with broken HTML.)

We will also have to modify the block that creates the connection object in common.
inc.php to catch the possible exception. With all these changes, the new version of
common.inc.php will look like this:

<?php

/**
 * This is a common include file
 * PDO Library Management example application
 * @author Dennis Popel
 */

// DB connection string and username/password
$connStr = 'mysql:host=localhost;dbname=pdo';
$user = 'root';
$pass = 'root';

/**
 * This function will render the header on every page,
 * including the opening html tag,
 * the head section and the opening body tag.
 * It should be called before any output of the

•

•

•

Error Handling

[54]

 * page itself.
 * @param string $title the page title
 */
function showHeader($title)
{
 ?>
 <html>
 <head><title><?=htmlspecialchars($title)?></title></head>
 <body>
 <h1><?=htmlspecialchars($title)?></h1>
 Books
 Authors
 <hr>
 <?php
}

/**
 * This function will 'close' the body and html
 * tags opened by the showHeader() function
 */
function showFooter()
{
 ?>
 </body>
 </html>
 <?php
}

/**

 * This function will display an error message, call the

 * showFooter() function and terminate the application

 * @param string $message the error message

 */

function showError($message)

{

 echo "<h2>Error</h2>";

 echo nl2br(htmlspecialchars($message));

 showFooter();

 exit();

}

// Create the connection object

try

{

 $conn = new PDO($connStr, $user, $pass);

Chapter 3

[55]

 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

}

catch(PDOException $e)

{

 showHeader('Error');

 showError("Sorry, an error has occurred. Please try your request

 later\n" . $e->getMessage());

}

As you can see, the newly created function is pretty straightforward. The more
interesting part is the try…catch block that we use to trap the exception. Now with
these modifications we can test how a real exception will get processed. To do that,
make sure your connection string is wrong (so that it specifies wrong database
name for MySQL or contains invalid file name for SQLite). Point your browser to
books.php and you should see the following window:

Creating the Edit Book Page
As we have discussed earlier, we want to extend our application so that we can
add and edit books and authors. Also, our system should be able to protect us from
entering the same book twice—by enforcing the unique index on the ISBN column in
the books table.

Error Handling

[56]

Before we proceed with the code, we will create the index. Fire up your command line
client and enter the following command (which is the same for MySQL and SQLite):

CREATE UNIQUE INDEX idx_isbn ON books(isbn);

We will also make our edit book page serve two purposes at once—adding a new
book and editing an existing one. The script will distinguish which action to take by
the presence of the book ID, either in an URL or in a hidden form field. We will link
to this new page from within books.php, so that we will be able to edit every book
just by clicking on a link on the books listing page.

This page is more complicated than those described in the previous chapter, so I will
provide you with the code first and then discuss it. Let's call this page edit Book.php:

<?php

/**
 * This page allows to add or edit a book
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// See if we have the book ID passed in the request
$id = (int)$_REQUEST['book'];
if($id) {
 // We have the ID, get the book details from the table
 $q = $conn->query("SELECT * FROM books WHERE id=$id");
 $book = $q->fetch(PDO::FETCH_ASSOC);
 $q->closeCursor();
 $q = null;
}
else {
 // We are creating a new book
 $book = array();
}

// Now get the list of all authors' first and last names
// We will need it to create the dropdown box for author
$authors = array();
$q = $conn->query("SELECT id, lastName, firstName FROM authors ORDER
 BY lastName, firstName");
$q->setFetchMode(PDO::FETCH_ASSOC);
while($a = $q->fetch())
{
 $authors[$a['id']] = "$a[lastName], $a[firstName]";
}

Chapter 3

[57]

// Now see if the form was submitted
if($_POST['submit']) {
 // Validate every field
 $warnings = array();
 // Title should be non-empty
 if(!$_POST['title'])
{
 $warnings[] = 'Please enter book title';
}
 // Author should be a key in the $authors array
 if(!array_key_exists($_POST['author'], $authors))
 {
 $warnings[] = 'Please select author for the book';
 }
 // ISBN should be a 10-digit number
 if(!preg_match('~^\d{10}$~', $_POST['isbn'])) {
 $warnings[] = 'ISBN should be 10 digits';
 }
 // Published should be non-empty
 if(!$_POST['publisher']) {
 $warnings[] = 'Please enter publisher';
 }
 // Year should be 4 digits
 if(!preg_match('~^\d{4}$~', $_POST['year'])) {
 $warnings[] = 'Year should be 4 digits';
 }
 // Sumary should be non-empty
 if(!$_POST['summary']) {
 $warnings[] = 'Please enter summary';
 }

 // If there are no errors, we can update the database
 // If there was book ID passed, update that book
 if(count($warnings) == 0) {
 if(@$book['id']) {
 $sql = "UPDATE books SET title=" . $conn>quote($_POST['title']) .
 ', author=' . $conn->quote($_POST['author']) .
 ', isbn=' . $conn->quote($_POST['isbn']) .
 ', publisher=' . $conn->quote($_POST['publisher']) .
 ', year=' . $conn->quote($_POST['year']) .
 ', summary=' . $conn->quote($_POST['summary']) .
 " WHERE id=$book[id]";
 }
 else {
 $sql = "INSERT INTO books(title, author, isbn, publisher,
 year,summary) VALUES(" .
 $conn->quote($_POST['title']) .

Error Handling

[58]

 ', ' . $conn->quote($_POST['author']) .
 ', ' . $conn->quote($_POST['isbn']) .
 ', ' . $conn->quote($_POST['publisher']) .
 ', ' . $conn->quote($_POST['year']) .
 ', ' . $conn->quote($_POST['summary']) .
 ')';
 }

 // Now we are updating the DB.
 // We wrap this into a try/catch block
 // as an exception can get thrown if
 // the ISBN is already in the table
 try
 {
 $conn->query($sql);
 // If we are here that means that no error
 // We can return back to books listing
 header("Location: books.php");
 exit;
 }
 catch(PDOException $e)
 {
 $warnings[] = 'Duplicate ISBN entered. Please correct';
 }
 }
}
else {
 // Form was not submitted.
 // Populate the $_POST array with the book's details
 $_POST = $book;
}

// Display the header
showHeader('Edit Book');
// If we have any warnings, display them now
if(count($warnings)) {
 echo "Please correct these errors:
";
 foreach($warnings as $w)
 {
 echo "- ", htmlspecialchars($w), "
";
 }
}

// Now display the form
?>
<form action="editBook.php" method="post">
 <table border="1" cellpadding="3">

Chapter 3

[59]

 <tr>
 <td>Title</td>
 <td>
 <input type="text" name="title"
 value="<?=htmlspecialchars($_POST['title'])?>">
 </td>
 </tr>
 <tr>
 <td>Author</td>
 <td>
 <select name="author">
 <option value="">Please select...</option>
 <?php foreach($authors as $id=>$author) { ?>
 <option value="<?=$id?>"
 <?= $id == $_POST['author'] ? 'selected' : ''?>>
 <?=htmlspecialchars($author)?>
 </option>
 <?php } ?>
 </select>
 </td>
 </tr>
 <tr>
 <td>ISBN</td>
 <td>
 <input type="text" name="isbn"
 value="<?=htmlspecialchars($_POST['isbn'])?>">
 </td>
 </tr>
 <tr>
 <td>Publisher</td>
 <td>
 <input type="text" name="publisher"
 value="<?=htmlspecialchars($_POST['publisher'])?>">
 </td>
 </tr>
 <tr>
 <td>Year</td>
 <td>
 <input type="text" name="year"
 value="<?=htmlspecialchars($_POST['year'])?>">
 </td>
 </tr>
 <tr>
 <td>Summary</td>
 <td>
 <textarea name="summary"><?=htmlspecialchars(
 $_POST['summary'])?></textarea>

Error Handling

[60]

 </td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <input type="submit" name="submit" value="Save">
 </td>
 </tr>
 </table>

 <?php if(@$book['id']) { ?>
 <input type="hidden" name="book" value="<?=$book['id']?>">
 <?php } ?>
</form>

<?php
// Display footer
showFooter();

The code is rather self-documenting, but let's briefly go through its main parts.
Lines 12 to 23 deal with fetching the book details would be edited if the page was
requested with the book ID. These details are stored in the $book variable. Note how
we explicitly cast the request parameter book to integer so that no SQL injection
can occur (line 13). If no book ID is provided, we set it to an empty array. Note how
we call the closeCursor() function and then assign the $q variable to null. This is
necessary as we are going to reuse the connection object.

Lines 26 to 33 prepare the list of authors. As our system allows exactly one author
per book, we will create a select box field listing all the authors.

Line 35 checks whether there was a submission of the form. If the test is successful,
the script validates every field (lines 37 to 68). Every failed validation is appended
to a list of warnings. (The $warnings variable is initialized with an empty array.)
We will use this list to see whether validations were successful and to store error
messages if they weren't.

Lines 69 to 94 build the actual SQL for update. The final SQL depends on whether we
are updating a book (when the $book array will contain the id key), or adding a new
one. Note how we quote every column value prior to query execution.

Lines 95 to 112 try to execute the query. It may fail if the user has entered a duplicate
ISBN so we wrap the code in a try…catch block. If an exception does get thrown,
the catch block will append the corresponding warning to the $warnings array.
If everything works without an error, the script redirects to the books listing page
where you should see the changes.

Chapter 3

[61]

Lines 113 to 118 get executed if there was no submission of the form. Here the
$_POST array gets populated with the contents of the $books variable. We do this
because we will use the $_POST array to display form fields' values later in the code.

Note how we display error messages (if any) on lines 122 to 129 and the select box on
lines 141 to 154. (We are looking through all authors and if the author's ID matches
this book author's ID then that author is marked as the selected option.) Also, the
other form fields are rendered using the htmlspecialchars() function applied to
the items of the $_POST array. Lines 189 to 191 will add a hidden field to the form
that contains the ID of the currently edited book (if any).

Modern web applications employ client-side validation in addition to server-side
validation of user-supplied data. Though this is not in the scope of this book, you
might consider browser-based validation in your projects to increase responsiveness
and potentially decrease load of your web server.

Now, we should link to the newly created page from the books.php page. We will
provide an Edit this book link for every listed book as well as an Add book link under
the table. I will not reproduce the whole books.php source here, just the lines that
should be changed. So, lines 32 to 48 should be replaced with the following:

<?php
// Now iterate over every row and display it
while($r = $q->fetch())
{
 ?>
 <tr>
 <td><ahref="author.php?id=<?=$r['authorId']?>">
 <?=htmlspecialchars("$r[firstName] $r[lastName]")?></td>
 <td><?=htmlspecialchars($r['title'])?></td>
 <td><?=htmlspecialchars($r['isbn'])?></td>
 <td><?=htmlspecialchars($r['publisher'])?></td>
 <td><?=htmlspecialchars($r['year'])?></td>
 <td><?=htmlspecialchars($r['summary'])?></td>
 <td>
 <a href="editBook.php?book=<?=$r['id']?>">Edit
 </td>
 </tr>
 <?php
}
?>

The following should be added just before the call to the showFooter() function so
that the four lines look like this:

Add book...
<?php
// Display footer
showFooter();

Error Handling

[62]

Now, if you again navigate to the books.php page you should see the
following window:

Chapter 3

[63]

To see how our edit book page looks, click on any Edit link in the last column of the
table. You should see the following form:

Let's see how our form works. It is validating every form field that gets sent to the
database. If there is any validation error, the form will not update the database and
prompt the user to correct his submission. For example, try changing the author
select box to the default option (labeled Please select…) and editing the ISBN to be 5
digits long.

Error Handling

[64]

If you click the Save button, you should see that the form displays following
error messages:

Now correct the errors and try to change the ISBN to 1904811027. This ISBN is
already used in our database by another book, so the form will again display an
error. You can further test the form by adding a book. You might also want to test
how it works with SQLite.

Creating the Edit Author Page
Our application still lacks the add/edit author functionality. This page will be
somewhat simpler than the edit book page because it will not have the select box
for authors and no unique index. (You may want to create a unique index on the
author's first and last name columns to prevent duplicates there too, but we will
leave this up to you.)

Let's call this page editAuthor.php. Here is its source code:

<?php

/**
 * This page allows to add or edit an author
 * PDO Library Management example application

Chapter 3

[65]

 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// See if we have the author ID passed in the request
$id = (int)$_REQUEST['author'];
if($id) {
 // We have the ID, get the author details from the table
 $q = $conn->query("SELECT * FROM authors WHERE id=$id");
 $author = $q->fetch(PDO::FETCH_ASSOC);
 $q->closeCursor();
 $q = null;
}
else {
 // We are creating a new book
 $author = array();
}

// Now see if the form was submitted
if($_POST['submit']) {
 // Validate every field
 $warnings = array();
 // First name should be non-empty
 if(!$_POST['firstName']) {
 $warnings[] = 'Please enter first name';
 }
 // Last name should be non-empty
 if(!$_POST['lastName']) {
 $warnings[] = 'Please enter last name';
 }
 // Bio should be non-empty
 if(!$_POST['bio']) {
 $warnings[] = 'Please enter bio';
 }

 // If there are no errors, we can update the database
 // If there was book ID passed, update that book
 if(count($warnings) == 0) {
 if(@$author['id']) {
 $sql = "UPDATE authors SET firstName=" .
 $co>quote($_POST['firstName']) .
 ', lastName=' . $conn->quote($_POST['lastName']) .
 ', bio=' . $conn->quote($_POST['bio']) .
 " WHERE id=$author[id]";

Error Handling

[66]

 }
 else {
 $sql = "INSERT INTO authors(firstName, lastName, bio) VALUES(" .
 $conn->quote($_POST['firstName']) .
 ', ' . $conn->quote($_POST['lastName']) .
 ', ' . $conn->quote($_POST['bio']) .
 ')';
 }
 $conn->query($sql);
 header("Location: authors.php");
 exit;
 }
}
else {
 // Form was not submitted.
 // Populate the $_POST array with the author's details
 $_POST = $author;
}

// Display the header
showHeader('Edit Author');

// If we have any warnings, display them now
if(count($warnings)) {
 echo "Please correct these errors:
";
 foreach($warnings as $w)
 {
 echo "- ", htmlspecialchars($w), "
";
 }
}

// Now display the form
?>
<form action="editAuthor.php" method="post">
 <table border="1" cellpadding="3">
 <tr>
 <td>First name</td>
 <td>
 <input type="text" name="firstName"
 value="<?=htmlspecialchars($_POST['firstName'])?>">
 </td>
 </tr>
 <tr>
 <td>Last name</td>
 <td>
 <input type="text" name="lastName"
 value="<?=htmlspecialchars($_POST['lastName'])?>">

Chapter 3

[67]

 </td>
 </tr>
 <tr>
 <td>Bio</td>
 <td>
 <textarea name="bio"><?=htmlspecialchars($_POST['bio'])?>
 </textarea>
 </td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <input type="submit" name="submit" value="Save">
 </td>
 </tr>
 </table>
 <?php if(@$author['id']) { ?>
 <input type="hidden" name="author" value="<?=$author['id']?>">
 <?php } ?>
</form>

<?php
// Display footer
showFooter();

This source is built in the same way as the editBook.php page so you should be able
to follow it easily.

We will link to the editAuthors.php page in the same way as we linked to the
editBook.php page from the books.php page. Edit the authors.php file and change
lines 30-41 to the following:

while($r = $q->fetch(PDO::FETCH_ASSOC))
{
 ?>
 <tr>
 <td><?=htmlspecialchars($r['firstName'])?></td>
 <td><?=htmlspecialchars($r['lastName'])?></td>
 <td><?=htmlspecialchars($r['bio'])?></td>
 <td>

 <a href="editAuthor.php?author=<?=$r['id']?>">Edit

 </td>

 </tr>
 <?php
}

Error Handling

[68]

Add the following line just before the last PHP block:

Add Author...

Now, if you refresh the authors.php page you will see the following:

You can click the Edit links in the rightmost column to edit every author's details.
You can try submitting the form with empty values to see that invalid submissions
will be rejected. Also, you can try and add a new author to the system. After you
successfully do this, you may want to go back to books listing and edit some book.
You will see that newly created author is available in the authors select box.

Chapter 3

[69]

Securing against Uncaught Exceptions
As we have seen previously, we place the try...catch blocks around code that can
throw exceptions. However, in very rare cases, there might be some unexpected
exceptions. We can imitate such an exception by modifying one of the queries so
that it contains some malformed SQL. For example, let's edit authors.php, line 16
to the following:

$q = $conn->query("SELECT * FROM authors ORDER BY lastName,
 firstName");

Now try to navigate to authors.php with your browser to see that an uncaught
exception has occurred. To correctly handle this situation, we either should create an
exception handler or wrap every block of code that calls PDO or PDOStatement class
methods in a try…catch block�.

Let's see how we can create the exception handler. This is an easier approach as it
does not require changing lots of code. However, for big applications this may be
bad practice as handling exceptions, where they occur may be more secure and
better recovery logic can be applied.

However, with our simple application we can use the global exception handler. It
will just use the showError() function to say that the site is under maintenance:

/**
 * This is the default exception handler
 * @param Exception $e the uncaught exception
 */
function exceptionHandler($e)
{
 showError("Sorry, the site is under maintenance\n" .
 $e->getMessage());
}

// Set the global excpetion handler
set_exception_handler('exceptionHandler');

Place this into common.inc.php, just before the connection creation code block. If
you refresh the authors.php page now, you will see that the handler gets called.

It is always a good idea to have the default exception handler. As you have
noticed, unhandled exceptions expose too much sensitive information including
database connection details. Also, in real world applications the error pages should
not display any information about the type of the error. (Note that our example
application does.) The default handler should write to the error log and alert site
maintainers about the error.

Error Handling

[70]

Summary
In this chapter, we examined how PDO handles errors and introduced exceptions. Also,
we investigated the sources of errors and saw how to counter them.

Our sample application was extended with some real-world administration
functionality that uses data validation and is secured against SQL injection attacks.
Of course, they should also allow database modifications only to certain users based
on login names and passwords. However, this is beyond the scope of this book.

In the next chapter, we will look at another very important aspect of PDO and
database programming in general—using prepared statements. We will see how
our administration pages can be simplified with their help, leading to less code and
better maintenance.

Prepared Statements
In the previous chapters, we have looked at the basics of PDO, and you may have
noticed that most of its functionality resembles the traditional extensions used to
connect to databases. The only new thing is exceptions, but even that can be similar
to traditional error handling.

In this chapter we will look at a new concept that was not present in PHP before
PDO: prepared statements. We will see how they can further simplify our code
and even lead to better performance. We will also look at how PDO works with
BLOBs—all in a database-independent manner, of course.

Regarding our library management application, we will rewrite the edit/update
functionality added in the previous chapter so as to facilitate prepared statements, as
well as add support for book cover images, which we will keep in the database�.

Prepared Statements
A prepared statement is a template for executing one or more SQL queries against
the database. The idea behind prepared statements is that, with queries that use the
same syntax but different values, it is much faster to pre-process the syntax once and
then execute it several times using different parameters. Consider the following task.
We have to insert the names of several new authors into our database. Of course,
we can use command line client or the add author page we recently created, but we
decide to use a PHP script.

Let's assume that the authors to be added are kept in a PHP array:

$authors = array(
 array(
 'firstName' => 'Alexander',
 'lastName' => 'Dumas',

Prepared Statements

[72]

 'bio' => '��� Alexandre Dumas was a French writer, best known for his
 numerous historical novels of high adventure which have
 made him one of the most widely read French authors in
 the world.'),

 array(
 'firstName' => 'Ivan',
 'lastName' => 'Franko',
 'bio' => 'Ivan Franko was a Ukrainian poet, writer, social and
 literary critic, and journalist. In addition to his own
 literary work, he translated the works of William
 Shakespeare, Lord Byron, Dante, Victor Hugo, Goethe and
 Schiller into the Ukrainian language.'));

This is a two-dimensional array, through which we will iterate using a foreach loop
so as to insert both the authors' details into the database.

foreach($authors as $author)
{
 $conn->query(
 'INSERT INTO authors(firstName, lastName, bio) VALUES(' .
 $conn->quote($author['firstName']) .
 ',' . $conn->quote($author['lastName']) .
 ',' . $conn->quote($author['bio'])')' .
);
}

As you can see, we create an SQL statement on each iteration for every author and
take care of quoting all the parameters.

With prepared statements, we can construct the query just once and execute it any
number of times by just passing different values to it. Our code would then look
like this:

$stmt = $conn->prepare('INSERT INTO authors(firstName, lastName, bio)
 VALUES(?, ?, ?)');

foreach($authors as $author)
{
 $stmt->execute(
 array($author['firstName'], $author['lastName'],
 $author['bio']));
}

Chapter 4

[73]

From the above code snippet, you can see that a prepared statement is first prepared
by calling the PDO::prepare() method. This method accepts a string containing
an SQL command where the values that change are replaced with question mark
characters. The call returns an object of class PDOStatement. Then in the loop we call
the statement's execute() method rather than PDO::query() method.

The PDOStatement::execute() method accepts an array of values, which are
inserted into the SQL query in place of the question marks. The number and order of
elements in that array must be same as the number and match the order of question
marks in the query template passed to PDO::prepare().

You must have noticed that we don't use PDO::quote() in the code—PDO takes care
of proper quoting of the incoming values.

Positional and Named Placeholders
The previous example used question marks to designate the position of values
in the prepared statement. That's why these question marks are called positional
placeholders. When using them you must take care of proper order of the elements
in the array that you are passing to the PDOStatement::execute() method. While
they are quick to write, they may become a source for hard-to-track errors, especially
when you change the query columns. To protect yourself, against this you can use
the so-called named placeholders, which consist of descriptive names preceded by a
colon, instead of question marks.

With named placeholders, we can rewrite the code to insert the two authors in the
following way:

$stmt = $conn->prepare(
 'INSERT INTO authors(firstName, lastName, bio) ' .
 'VALUES(:first, :last, :bio)');

foreach($authors as $author)
{
 $stmt->execute(
 array(
 ':first' => $author['firstName'],
 ':last' => $author['lastName'],
 ':bio' => $author['bio'])
);
}

Prepared Statements

[74]

As you can see, we replaced the three question marks with named placeholders and
then in the call to PDOStatement::execute() we supplied an array of key-value
pairs where keys are the corresponding named placeholders and values are the data
that we want to insert into the database.

With named placeholders, the order of the elements in the array is not significant,
only the association matters. For example, we could rewrite the loop as follows:

foreach($authors as $author)
{
 $stmt->execute(
 array(
 ':bio' => $author['bio'],
 ':last' => $author['lastName'],
 ':first' => $author['firstName'])
);
}

With positional placeholders, however, we can pass the values of the $author array
to the PDOStatement::execute() method as long as we are sure that the order of its
elements matches the order of the placeholders:

$stmt = $conn->prepare(
 'INSERT INTO authors(firstName, lastName, bio) VALUES(?, ?, ?)');

foreach($authors as $author)
{
 $stmt->execute(array_values($author));
}

Note how we used the array_values() function to get rid of the string keys and
convert the associative array to a list.

If we supply an array of values that do not match the number of placeholders
in the query to PDOStatement::execute() or we pass an associative array to a
statement that uses positional placeholders (or a list to a statement, which uses
named placeholders), this will be treated as an error and an exception will be
thrown (provided that exceptions have been enabled previously in a call to PDO::
setAttribute() method).

There is one important thing to note about the usage of placeholders. They cannot
be used as a part of a value that you pass to the database. This is best demonstrated
with an example of invalid usage:

$stmt = $conn->prepare("SELECT * FROM authors WHERE lastName
 LIKE '%?%'");
$stmt->execute(array($_GET['name']));

Chapter 4

[75]

This must be rewritten as follows:

$stmt = $conn->prepare("SELECT * FROM authors WHERE lastName
 LIKE ?");
$stmt->execute(array('%' . $_GET['name'] . '%'));

The idea here is, not to put the placeholder inside a string in the SQL template—this
has to be done in the call to PDOStatement::execute() method.

Prepared Statements and Bound Values
The examples above used the so-called unbound statements. This means that we
were supplying the values for the query in an array passed to the PDOStatement::
execute() method. PDO also supports bound statements where
you can explicitly bind an immediate value or a variable to a named or
positional placeholder.

To bind an immediate value to a statement, the PDOStatement::bindValue()
method is used. This method accepts the placeholder identifier and a value. The
placeholder identifier is the 1-based index of the question mark in the query for
positional placeholders or the name of the named placeholder. For example, we
could rewrite the example with positional placeholders to use bound values in the
following way:

$stmt = $conn->prepare(
 'INSERT INTO authors(firstName, lastName, bio) VALUES(?, ?, ?)');
 foreach($authors as $author)
{
 $stmt->bindValue(1, $author['firstName']);
 $stmt->bindValue(2, $author['lastName']);
 $stmt->bindValue(3, $author['bio']);
 $stmt->execute();
}

If you prefer named placeholders, you can write:

$stmt = $conn->prepare(
 'INSERT INTO authors(firstName, lastName, bio) ' .
 'VALUES(:last, :first, :bio)');
 foreach($authors as $author)
{
 $stmt->bindValue(':first', $author['firstName']);
 $stmt->bindValue(':last', $author['lastName']);
 $stmt->bindValue(':bio', $author['bio']);
 $stmt->execute();
}

Prepared Statements

[76]

As you can see, in both cases we don't supply anything in the call to
PDOStatement::execute(). Again, as with unbound statements, if you don't bind a
value for every placeholder, the call to PDOStatement::execute() will fail, leading
to an exception.

PDO can also bind result set columns to PHP variables for SELECT queries. These
variables will be modified with corresponding column values on every call to
PDOStatement::fetch(). This is an alternative to fetching the result set row as an
array or an object as discussed in Chapter 2. Consider the following example:

$stmt = $conn->prepare('SELECT firstName, lastName FROM authors');
$stmt->execute();
$stmt->bindColumn(1, $first);
$stmt->bindColumn(2, $last);
while($stmt->fetch(PDO::FETCH_BOUND))
{
 echo "$last, $first
";
}

This will render all the authors in the table. The variables are bound in the call to the
PDOStatement::bindColumn() method, which expects the first parameter to be the
1-based index of the column in the result set or the column name as returned from
the database, and the second parameter is the variable to be updated.

Note that when using bound columns, the PDOStatement::fetch() method
should be called with the PDO::FETCH_BOUND mode, or this should be preset
with a PDOStatement::setFetchMode(PDO::FETCH_BOUND) call. Also, the call
to the PDOStatement::bindColumn() method must be made after the call to
PDOStatement::execute() method so that PDO knows how many columns there
are in the result set.

Let's get back to our library application now and enhance it with some prepared
statements. Since the only pages that rely on the values supplied by the user are
add/edit a book and add/edit an author, we will rewrite the two corresponding scripts,
editBook.php and editAuthor.php.

Of course, we will only rewrite those bits of the code that update the database.
For editBook.php these are lines 65 to 102. I will present these lines here for
your convenience:

if(@$book['id']) {
 $sql = "UPDATE books SET title=" . $conn->quote($_POST['title']) .
 ', author=' . $conn->quote($_POST['author']) .
 ', isbn=' . $conn->quote($_POST['isbn']) .
 ', publisher=' . $conn->quote($_POST['publisher']) .

Chapter 4

[77]

 ', year=' . $conn->quote($_POST['year']) .
 ', summary=' . $conn->quote($_POST['summary']) .
 " WHERE id=$book[id]";
}
else {
 $sql = "INSERT INTO books(title, author, isbn, publisher, year,
 summary) VALUES(" . $conn->quote($_POST['title']) .
 ', ' . $conn->quote($_POST['author']) .
 ', ' . $conn->quote($_POST['isbn']) .
 ', ' . $conn->quote($_POST['publisher']) .
 ', ' . $conn->quote($_POST['year']) .
 ', ' . $conn->quote($_POST['summary']) .
 ')';
}

// Now we are updating the DB.
// We wrap this into a try/catch block
// as an exception can get thrown if
// the ISBN is already in the table.
try
{
 $conn->query($sql);
 // If we are here, then there is no error.
 // We can return back to books listing
 header("Location: books.php");
 exit;
}
 catch(PDOException $e)
{
 $warnings[] = 'Duplicate ISBN entered. Please correct';
}

As we can see, the part that constructs the query is very long. With a prepared
statement, this code snippet can be rewritten as follows:

if(@$book['id']) {
 $sql = "UPDATE books SET title=?, author=?, isbn=?, publisher=?
 year=?, summary=? WHERE id=$book[id]";
}
else {
 $sql = "INSERT INTO books(title, author, isbn, publisher, year,
 summary) VALUES(?, ?, ?, ?, ?, ?)";

Prepared Statements

[78]

}

$stmt = $conn->prepare($sql);

// Now we are updating the DB.
// We wrap this into a try/catch block
// as an exception can get thrown if
// the ISBN is already in the table.
try
{
 $stmt->execute(array($_POST['title'], $_POST['author'],
 $_POST['isbn'], $_POST['publisher'], $_POST['year'],
 $_POST['summary']));
 // If we are here, then there is no error.
 // We can return back to books listing.
 header("Location: books.php");
 exit;
}
catch(PDOException $e)
{
 $warnings[] = 'Duplicate ISBN entered. Please correct';
}

We follow the same logic—if we are editing an existing book, we construct an
UPDATE query. If we are adding a new book, then we have to use an INSERT query.
The $sql variable will hold the appropriate statement template. In both cases, the
statement has six positional placeholders, and I intentionally hard-coded the book ID
into the UPDATE query so that we can create and execute the statement regardless of
the required operation.

After we have instantiated the statement, we wrap the call to its execute() method
into a try…catch block as an exception that may get thrown if the ISBN already
existed in the database. Upon successful execution of the statement we redirect the
browser to the books listing page. If the call fails, we alert the user with a note that
the ISBN is incorrect (or that the book already exists in the database).

You can see that our code is now much shorter. Also, we don't need to quote the
values as the prepared statement does this for us. Now you can play with this a bit
and change the databases between MySQL and SQLite in common.inc.php to
see that prepared statements work for both of them. You may also want to
rewrite this code to use named placeholders instead of positional ones. If
you do, remember to supply placeholder names in the array passed to the
PDOStatement::execute() method.

Chapter 4

[79]

Now let's look at the corresponding code block in editAuthor.php (lines 42 to 59):

if(@$author['id']) {
 $sql = "UPDATE authors SET firstName=" .
 $conn->quote($_POST['firstName']) .
 ', lastName=' . $conn->quote($_POST['lastName']) .
 ', bio=' . $conn->quote($_POST['bio']) .
 " WHERE id=$author[id]";
}
else {
 $sql = "INSERT INTO authors(firstName, lastName, bio) VALUES(" .
 $conn->quote($_POST['firstName']) .
 ', ' . $conn->quote($_POST['lastName']) .
 ', ' . $conn->quote($_POST['bio']) .
 ')';
}

$conn->query($sql);
header("Location: authors.php");
exit;

As we don't expect an exception here, the code is shorter. Now let's rewrite it to use a
prepared statement:

if(@$author['id']) {
 $sql = "UPDATE authors SET firstName=?, lastName=?, bio=?
 WHERE id=$author[id]";
}
else {
 $sql = "INSERT INTO authors(firstName, lastName, bio)
 VALUES(?, ?, ?)";
}
$stmt = $conn->prepare($sql);
$stmt->execute(array($_POST['firstName'], $_POST['lastName'],
 $_POST['bio']));
header("Location: authors.php");
exit;

Again, depending on the required operation, we create the SQL template and assign
it to the $sql variable. Then we instantiate the PDOStatement object and call its
execute method with the author's details. As our query should never fail (except for
an unforeseen database failure) we don't expect an exception here and redirect to the
authors listing pages.

Make sure that you test this code with both MySQL and SQLite.

Prepared Statements

[80]

Working with BLOBs
Let's now extend our application so that we can upload the books' cover images and
display them. Just as with traditional database access, we will use a BLOB field in
the books table for this purpose, as well as a varchar field to store the image's MIME
type, which we will need to supply to the browser along with the image data. Also,
we will need another script that will fetch the image data from the table and pass it
to the browser. (We will reference this script from the tag.).

Traditionally, we would not care that we are inserting a BLOB column into the calls
to mysql_query() or sqlite_query()—we would just make sure that they are
properly quoted. With PDO, however, things are different. PDO works with BLOB
columns with the help of streams and prepared statements.

Let's look at the following example:

$blob = fopen('/path/to/file.jpg', 'rb');
$stmt = $conn->prepare("INSERT INTO images(data) VALUES(?)");
$stmt->bindParam(1, $blob, PDO::PARAM_LOB);
$stmt->execute();

As you can see, we open the file to be inserted with the fopen() function for
reading in the binary mode (so that we don't have problems with newline characters
across platforms) and then bind the file handle to the statement in the call to the
PDOStatement::bindParam() method specifying the PDO::PARAM_LOB flag (so that
PDO understands that we have bound a file handle rather than an immediate value).

In the call to the PDOStatement::execute() method, PDO will read the data from
the file and pass it to the database.

If you are wondering why PDO works in such a way, a short explanation
is that, if your BLOB is very large, the query may fail. Normally database
servers have a setting that limits communication packet size. (You can
compare this with post_max_size PHP setting). If you are passing
relatively large string inside an SQL INSERT or UPDATE statement, it
may exceed that packet size and the query will fail. With streams,
PDO ensures that data is sent in smaller packets so that the query
executes successfully.

The BLOBs should also be read with streams. So to retrieve a BLOB column inserted
in the above example, the following code could be used:

$id = (int)$_GET['id'];
$stmt = $db->prepare("SELECT data FROM images WHERE id=$id");
$stmt->execute();

Chapter 4

[81]

$stmt->bindColumn(1, $blob, PDO::PARAM_LOB);
$stmt->fetch(PDO::FETCH_BOUND);
$data = stream_get_contents($blob);

In this case, the $blob variable will be a stream resource that can be read with
stream-handling functions. Here we used the stream_get_contents() function to
read all the data into the $data variable. If we want to directly return the data to the
browser (as we will in our application), we could employ the fpassthru() function.

As of this writing (PHP version 5.2.3), the returned blob column is not a stream but
the actual data contained in the column (string). Please refer to PHP bug #40913 at
http://bugs.php.net/bug.php?id=40913 for details. Hence the last line in the
above code snippet is not required, the $blob variable will hold the actual data. The
source of showCover.php file below treats the returned data as a string rather than a
blob, so that the code works in current PHP version.

So, let's begin with altering our database and adding the new columns to it:

mysql> alter table books add column coverMime varchar(20);
Query OK, 3 rows affected (0.02 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> alter table books add column coverImage blob(24000);
Query OK, 3 rows affected (0.02 sec)
Records: 3 Duplicates: 0 Warnings: 0

You can also execute these queries in the SQLite command line client without
modifications. Now, let's modify the editBook.php file. We will add another field
to the existing form. This line will allow the user to upload the cover image and
enhance the form validation to check whether the user has really uploaded an image
(by examining the MIME type of the uploaded file).

We will also allow the user to modify the book's details without resubmitting the
cover image file. To achieve this, we will update the cover columns only when there
has been a successful file upload. So our script logic will use two queries. The first
one will update or create the book record, and the second will update the coverMime
and coverImage columns.

With this in mind, the editBook.php file will look like the following:

<?php

/**
 * This page allows adding or editing a book
 * PDO Library Management example application
 * @author Dennis Popel
 */

Prepared Statements

[82]

// Don't forget the include
include('common.inc.php');

// See if we have the book ID passed in the request
$id = (int)$_REQUEST['book'];
if($id) {
 // we have the ID, get the book details from the table
 $q = $conn->query("SELECT * FROM books WHERE id=$id");
 $book = $q->fetch(PDO::FETCH_ASSOC);
 $q->closeCursor();
 $q = null;
}
else {
 // we are creating a new book
 $book = array();
}

// Now get the list of all authors' first and last names
// we will need it to create the dropdown box for author
$authors = array();
$q = $conn->query("SELECT id, lastName, firstName FROM authors ORDER
 BY lastName, firstName");
$q->setFetchMode(PDO::FETCH_ASSOC);
while($a = $q->fetch())
{
 $authors[$a['id']] = "$a[lastName], $a[firstName]";
}

// Now see if the form was submitted
if($_POST['submit']) {
 // Validate every field
 $warnings = array();
 // Title should be non-empty
 if(!$_POST['title']) {
 $warnings[] = 'Please enter book title';
 }
 // Author should be a key in the $authors array
 if(!array_key_exists($_POST['author'], $authors)) {
 $warnings[] = 'Please select author for the book';
 }
 // ISBN should be a 10-digit number
 if(!preg_match('~^\d{10}$~', $_POST['isbn'])) {
 $warnings[] = 'ISBN should be 10 digits';
 }
 // Published should be non-empty
 if(!$_POST['publisher']) {

Chapter 4

[83]

 $warnings[] = 'Please enter publisher';
 }
 // Year should be 4 digits
 if(!preg_match('~^\d{4}$~', $_POST['year'])) {
 $warnings[] = 'Year should be 4 digits';
 }
 // Summary should be non-empty
 if(!$_POST['summary']) {
 $warnings[] = 'Please enter summary';
 }

 // Now validate the file upload

 $uploadSuccess = false;

 if(is_uploaded_file($_FILES['cover']['tmp_name'])) {

 // See if the file is an image

 if(!preg_match('~image/.+~', $_FILES['cover']['type'])

 || filesize($_FILES['cover']['tmp_name']) > 24000) {

 $warnings[] = 'Please upload an image file less than 24K

 in size';

 }

 else {

 // Set a flag that upload is successful

 $uploadSuccess = true;

 }

 }

 // If there are no errors, we can update the database
 // If there was book ID passed, update that book
 if(count($warnings) == 0) {
 if(@$book['id']) {
 $sql = "UPDATE books SET title=?, author=?, isbn=?,
 publisher=?, year=?, summary=? WHERE
 id=$book[id]";
 }
 else {
 $sql = "INSERT INTO books(title, author, isbn, publisher,
 year, summary) VALUES(?, ?, ?, ?, ?, ?)";
 }
 $stmt = $conn->prepare($sql);

 // Now we are updating the DB.
 // we wrap this into a try/catch block
 // as an exception can get thrown if
 // the ISBN is already in the table
 try

Prepared Statements

[84]

 {
 $stmt->execute(array($_POST['title'], $_POST['author'],
 $_POST['isbn'], $_POST['publisher'], $_POST['year'],
 $_POST['summary']));
 // If we are here that means that no error
 // Now we can update the cover columns

 // But first we have to get the ID of the newly inserted book

 if(!@$book['id']) {

 $book['id'] = $conn->lastInsertId();

 }

 // Now see if there was an successful upload and

 // update cover image

 if($uploadSuccess) {

 $stmt = $conn->prepare("UPDATE books SET coverMime=?,

 coverImage=? WHERE id=$book[id]");

 $cover = fopen($_FILES['cover']['tmp_name'], 'rb');

 $stmt->bindValue(1, $_FILES['cover']['type']);

 $stmt->bindParam(2, $cover, PDO::PARAM_LOB);

 $stmt->execute();

 }

 // We can return back to books listing
 header("Location: books.php");
 exit;
 }
 catch(PDOException $e)
 {
 $warnings[] = 'Duplicate ISBN entered. Please correct';
 }
 }
}
else {
 // Form was not submitted.
 // populate the $_POST array with the book's details
 $_POST = $book;
}
// Display the header
showHeader('Edit Book');
// If we have any warnings, display them now
if(count($warnings)) {
 echo "Please correct these errors:
";
 foreach($warnings as $w)
 {
 echo "- ", htmlspecialchars($w), "
";

Chapter 4

[85]

 }
}
// Now display the form
?>
<form action="editBook.php" method="post"

 enctype="multipart/form-data">

 <table border="1" cellpadding="3">
 <tr>
 <td>Title</td>
 <td>
 <input type="text" name="title"
 value="<?=htmlspecialchars($_POST['title'])?>">
 </td>
 </tr>
 <tr>
 <td>Author</td>
 <td>
 <select name="author">
 <option value="">Please select...</option>
 <?php foreach($authors as $id=>$author)
 { ?>
 <option value="<?=$id?>"
 <?= $id == $_POST['author'] ? 'selected' : ''?>>
 <?=htmlspecialchars($author)?>
 </option>
 <?php } ?>
 </select>
 </td>
 </tr>
 <tr>
 <td>ISBN</td>
 <td>
 <input type="text" name="isbn"
 value="<?=htmlspecialchars($_POST['isbn'])?>">
 </td>
 </tr>
 <tr>
 <td>Publisher</td>
 <td>
 <input type="text" name="publisher"
 value="<?=htmlspecialchars($_POST['publisher'])?>">
 </td>
 </tr>
 <tr>

Prepared Statements

[86]

 <td>Year</td>
 <td>
 <input type="text" name="year"
 value="<?=htmlspecialchars($_POST['year'])?>">
 </td>
 </tr>
 <tr>
 <td>Summary</td>
 <td>
 <textareaname="summary"><?=htmlspecialchars($_POST['summary'])?>
 </textarea>
 </td>
 </tr>
 <tr>

 <td>Cover Image</td>

 <td><input type="file" name="cover"></td>

 </tr>

 <?php if(@$book['coverMime'])

 { ?>

 <tr>

 <td>Current Cover</td>

 <td><img src="showCover.php?book=<?=$book['id']?>"></td>

 </tr>

 <? } ?>

 <tr>
 <td colspan="2" align="center">
 <input type="submit" name="submit" value="Save">
 </td>
 </tr>
 </table>
 <?php if(@$book['id']) { ?>
 <input type="hidden" name="book" value="<?=$book['id']?>">
 <?php } ?>
</form>
 <?php
// Display footer
showFooter();

Chapter 4

[87]

The highlighted parts are the bits that we have added or changed. Now, we need
to validate our form and the uploaded file (on lines 60 to 73). If there is a successful
upload, the $uploadSuccess boolean variable will be set to true, and we will use
this value later to see whether we need to update the cover columns. Since we allow
the upload to happen for new books too, we use the PDO::lastInsertId() method
value (on line 100) to get the ID of the newly created books (otherwise we just use
the $books['id'] value). If the upload fails, we add a corresponding warning to the
$warnings array and let the existing error logic do its job.

The actual cover image update happens on lines 105 to 110, using the prepared
statement and the stream. On our form, see how we add the multipart/form-data
attribute to the form tag on line 140. It is needed for the file uploads to work. Also,
the form now has a new input field (lines #182-185) allowing us to select and upload
a file. The next lines will display the current cover image (if any). Note that the
tag references a new file, showCover.php, which we will have to create now:

<?php
 /**
 * This script will render a book's cover image
 * PDO Library Management example application
 * @author Dennis Popel
 */
 // Don't forget the include
include('common.inc.php');
 // See if we have the book ID passed in the request
$id = (int)$_REQUEST['book'];
$stmt = $conn->prepare("SELECT coverMime, coverImage FROM books
 WHERE id=$id");
$stmt->execute();
$stmt->bindColumn(1, $mime);
$stmt->bindColumn(2, $image, PDO::PARAM_LOB);
$stmt->fetch(PDO::FETCH_BOUND);
header("Content-Type: $mime");
echo $image;

Prepared Statements

[88]

Now for a new book, the form looks like this:

As you can see, there is a new field allowing us to upload the cover image. Since a
newly created book does not have any cover image, there is no current cover image.
For a book with a cover image the page will look like the following:

Chapter 4

[89]

You can now play with the application to see how the form works without
uploading the image. (It should preserve the old image if any.) You can also see how
it processes files that are too large or non-image files. (It should display a warning
above the form.) Make sure that you switch between databases so that we are
database-independent.

Prepared Statements

[90]

As the final touch to the cover images, we can reformat the books listing page,
books.php, so that the cover images are displayed there too. I will present the new
code here with the changed part highlighted:

<?php

/**
 * This page lists all the books we have
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// Display the header
showHeader('Books');

// Issue the query
$q = $conn->query("SELECT authors.id AS authorId, firstName,
 lastName, books.* FROM authors, books WHERE
 author=authors.id ORDER BY title");
$q->setFetchMode(PDO::FETCH_ASSOC);

// now create the table
?>
<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>Cover</td>
 <td>Author and Title</td>
 <td>ISBN</td>
 <td>Publisher</td>
 <td>Year</td>
 <td>Summary</td>
 <td>Edit</td>
</tr>

<?php
// Now iterate over every row and display it
while($r = $q->fetch())
{
 ?>
 <tr>

 <td>

 <?php if($r['coverMime']) { ?>

 <img src="showCover.php?book=<?=$r['id']?>">

 <?php }

Chapter 4

[91]

 else

 { ?>

 n/a

 <? } ?>

 </td>

 <td>

 <a href="author.php?id=<?=$r['authorId']?>">

 <?=htmlspecialchars("$r[firstName] $r[lastName]")?>

 <?=htmlspecialchars($r['title'])?>

 </td>

 <td><?=htmlspecialchars($r['isbn'])?></td>
 <td><?=htmlspecialchars($r['publisher'])?></td>
 <td><?=htmlspecialchars($r['year'])?></td>
 <td><?=htmlspecialchars($r['summary'])?></td>
 <td>
 <a href="editBook.php?book=<?=$r['id']?>">Edit
 </td>
 </tr>
 <?php
}
?>
</table>

Add book...
<?php
// Display footer
showFooter();

Prepared Statements

[92]

The first cell will contain the image (if any). The author and title are now rendered
in the same cell to save table width. Now the Books listing should look something
like this:

Chapter 4

[93]

Summary
This chapter introduced us to a new concept: Prepared Statements. We have seen
how they simplify our queries and further protect us from SQL syntax errors and
code vulnerabilities. We also took a look at how to work with BLOBs using streams
so that we don't run the risk of query failures. Our application can now be used to
upload and show cover images for the books in the database.

In the next chapter, we shall see how to determine the number of rows in a result
set, which is necessary to paginate long lists of items. (The most common example
is a search engine that breaks the result list into 10 results per page.) Also, we will
familiarize ourselves with a new concept: scrollable cursors that will allow us to fetch
a subset of rows from a result set starting at a specified position.

Handling Rowsets
Real life dynamic, data-driven web applications are very different from each other,
as their complexity is dictated by the purposes that they serve. However, almost all
of them have some common characteristics. One of these characteristics is the ability
to paginate long result lists for ease of use and faster page loading times.

Correct pagination requires the calculation of the number of total rows returned
from the database, the page size (which is a configurable option), and the number
of current page. Based on this data, it is easy to calculate the starting offset into the
result set to display only a subset of rows.

In this chapter, we will examine:

How to retrieve the number of rows in the result sets returned by PDO
How to fetch results starting at a specified row number

Retrieving the Number of Rows in a
Result Set
As we have already discussed in Chapter 2, the PDOStatement::rowCount()
method does not return the correct number of rows in a query. (It returns zero
for both MySQL and SQLite.) The reason for such behavior is that the database
management systems do not actually know this number until the last row of the
query has been returned. The reason for the mysql_num_rows() function (and
similar functions for other databases) returns the row count is that it preloads the
whole result set into memory when you issue the query.

While it may seem convenient, this behavior is not recommended. If the query
returns 20 rows, then the script can afford the memory usage. But what if the query
returns several hundred thousands rows? They will all be kept in memory so that, on
high traffic sites, the server may run out of resources.

•

•

Handling Rowsets

[96]

The only logical measure (and the only option available with PDO) is to instruct the
database to count the number of rows itself. No matter how complicated the query is,
it can be rewritten to use the SQL COUNT() function to return just the number of rows
that will satisfy the main query.

Let's take a look at the queries used in our application. (We will only examine the
queries that return multiple rows.)

In books.php we have a query that joins two tables to present the list of
books along with their authors :
SELECT authors.id AS authorId, firstName, lastName, books.*
FROM authors, books WHERE author=authors.id ORDER BY title;

To get the number of rows that this query returns we should rewrite it to
look like the following:
SELECT COUNT�� (*) FROM authors, books WHERE author=authors.id;

Note that we don't need the ORDER BY clause here as the order does not really
matter for the count of rows.
In authors.php we simply select all the authors ordered by their last name
and����������������������� then their first name:
SELECT *��� FROM authors ORDER BY lastName, firstName;

This simply rewrites to the following:
SELECT COUNT������������������ (*) FROM authors;

Another query that returns multiple rows is in author.php—it retrieves all
the books written by a particular author:
SELECT * FROM books WHERE author�������������������� =$id ORDER BY title;

This translates to the following:
SELECT COUNT(*) FROM������������������������� books WHERE author=$id;

As you can see, we rewrote all these queries in a similar way—by replacing the list
of columns with COUNT(*) and trimming the ORDER BY clause. With this in mind,
we can create a function that will accept a string containing the SQL to be executed
and return the number of rows that the query will return. This function will have to
perform these simple transformations:

Replace everything between SELECT and FROM with COUNT(*) in the
passed string.
Remove ORDER BY and all the text after it.

•

•

•

•

•

Chapter 5

[97]

The best way to achieve this transformation is to use regular expressions. As in
previous chapters, we will use the PCRE extension. We will put the function into
common.inc.php as we will call it from various places:

/**
 * This function will return the number of rows a query will return
 * @param string $sql the SQL query
 * @return int the number of rows the query specified will return
 * @throws PDOException if the query cannot be executed
 */
function getRowCount($sql)
{
 global $conn;

 $sql = trim($sql);
 $sql = preg_replace('~^SELECT\s.*\sFROM~s', 'SELECT COUNT(*) FROM',

 $sql);
 $sql = preg_replace('~ORDER\s+BY.*?$~sD', '', $sql);
 $stmt = $conn->query($sql);
 $r = $stmt->fetchColumn(0);
 $stmt->closeCursor();
 return $r;
}

Let's run over the function to see what it does:

1.	 It imports the PDO connection object ($conn) into the local function scope.
2.	 It trims the possible spaces from the beginning and the end of the SQL query.
3.	 Two calls to preg_replace() do the main task of transforming

the query.

Note how we use the pattern modifiers—the s modifier instructs PCRE to match
newline characters with the dot, and the D modifier forces the $ to match the end of
the whole string (not just before the first newline). We use these modifiers��������� to make
sure that the function will work properly with multiline queries.

We will now modify the three scripts to display the number of rows in each table
that they return. Let's start with books.php:

<?php

/**
 * This page lists all the books we have
 * PDO Library Management example application

Handling Rowsets

[98]

 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// Display the header
showHeader('Books');

// Get the count of books and issue the query
$sql = "SELECT authors.id AS authorId, firstName, lastName, books.*
 FROM authors, books WHERE author=authors.id ORDER BY title";
$totalBooks = getRowCount($sql);
$q = $conn->query($sql);
$q->setFetchMode(PDO::FETCH_ASSOC);

// now create the table
?>
Total books: <?=$totalBooks?>
<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>Cover</td>
 <td>Author and Title</td>
 <td>ISBN</td>
 <td>Publisher</td>
 <td>Year</td>
 <td>Summary</td>
 <td>Edit</td>
</tr>

<?php
// Now iterate over every row and display it
while($r = $q->fetch())
{
 ?>
 <tr>
 <td>
 <?php if($r['coverMime']) { ?>
 <img src="showCover.php?book=<?=$r['id']?>">
 <?php } else { ?>
 n/a
 <? } ?>
 </td>
 <td>
 <a href="author.php?id=<?=$r['authorId']?>"><?=htmlspecialchars
 ("$r[firstName] $r[lastName]")?>

 <?=htmlspecialchars($r['title'])?>

Chapter 5

[99]

 </td>
 <td><?=htmlspecialchars($r['isbn'])?></td>
 <td><?=htmlspecialchars($r['publisher'])?></td>
 <td><?=htmlspecialchars($r['year'])?></td>
 <td><?=htmlspecialchars($r['summary'])?></td>
 <td>
 <a href="editBook.php?book=<?=$r['id']?>">Edit
 </td>
 </tr>
 <?php
}
?>
</table>

Add book...
<?php
// Display footer
showFooter();

As you can see, the modifications are pretty straightforward—we use the $sql
variable to hold the query and pass it to both the getRowCount() function and the
$conn->query() method. We also display a message above the table, which tells us
how many books there are in the database.

Now if you refresh the books.php page, you will see the following:

Handling Rowsets

[100]

The changes to authors.php are similar:

<?php

/**
 * This page lists all the authors we have
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// Display the header
showHeader('Authors');

// Get the number of authors and issue the query
$sql = "SELECT * FROM authors ORDER BY lastName, firstName";
$totalAuthors = getRowCount($sql);
$q = $conn->query($sql);

// now create the table
?>
Total authors: <?=$totalAuthors?>
<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>First Name</td>
 <td>Last Name</td>
 <td>Bio</td>
 <td>Edit</td>
</tr>

<?php
// Now iterate over every row and display it
while($r = $q->fetch(PDO::FETCH_ASSOC))
{
 ?>
 <tr>
 <td><?=htmlspecialchars($r['firstName'])?></td>
 <td><?=htmlspecialchars($r['lastName'])?></td>
 <td><?=htmlspecialchars($r['bio'])?></td>
 <td>
 <a href="editAuthor.php?author=<?=$r['id']?>">Edit
 </td>
 </tr>
 <?php
}
?>

Chapter 5

[101]

</table>

Add Author...
<?php
// Display footer
showFooter();

The authors.php now should display the following:

Finally, author.php will look like this�:

<?php

/**
 * This page shows an author's profile
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// Get the author
$id = (int)$_REQUEST['id'];
$q = $conn->query("SELECT * FROM authors WHERE id=$id");
$author = $q->fetch(PDO::FETCH_ASSOC);
$q->closeCursor();
$q = null;

// Now see if the author is valid - if it's not,
// we have an invalid ID
if(!$author) {

Handling Rowsets

[102]

 showHeader('Error');
 echo "Invalid Author ID supplied";
 showFooter();
 exit;
}

// Display the header - we have no error
showHeader("Author: $author[firstName] $author[lastName]");

// Now get the number and fetch all the books
$sql = "SELECT * FROM books WHERE author=$id ORDER BY title";
$totalBooks = getRowCount($sql);
$q = $conn->query($sql);
$q->setFetchMode(PDO::FETCH_ASSOC);

// now display everything
?>
<h2>Author</h2>
<table width="60%" border="1" cellpadding="3">
<tr>
 <td>First Name</td>
 <td><?=htmlspecialchars($author['firstName'])?></td>
</tr>
<tr>
 <td>Last Name</td>
 <td><?=htmlspecialchars($author['lastName'])?></td>
</tr>
<tr>
 <td>Bio</td>
 <td><?=htmlspecialchars($author['bio'])?></td>
</tr>
<tr>
 <td>Total books</td>
 <td><?=$totalBooks?></td>
</tr>
</table>
<a href="editAuthor.php?author=<?=$author['id']?>">Edit author...

<h2>Books</h2>
<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>Title</td>
 <td>ISBN</td>
 <td>Publisher</td>
 <td>Year</td>
 <td>Summary</td>

Chapter 5

[103]

</tr>
<?php
// Now iterate over every book and display it
while($r = $q->fetch()) {
 ?>
 <tr>
 <td><?=htmlspecialchars($r['title'])?></td>
 <td><?=htmlspecialchars($r['isbn'])?></td>
 <td><?=htmlspecialchars($r['publisher'])?></td>
 <td><?=htmlspecialchars($r['year'])?></td>
 <td><?=htmlspecialchars($r['summary'])?></td>
 </tr>
 <?php
}
?>
</table>

<?php
// Display footer
showFooter();

The output should look like this. (I scrolled the page down a bit to save space):

You should switch between MySQL and SQLite in common.inc.php to make sure
both databases work.

Handling Rowsets

[104]

This approach may work for many cases, but is not suitable for all
queries. One such example is a query that uses a GROUP BY clause. If
you rewrite such query with the getRowCount() function you will get
incorrect results as the grouping will be applied and the query will return
several rows. (The number of rows will be equal to the number of distinct
values in the column you are grouping by.)

Limiting the Number of Rows Returned
Now, when we know how to count the rows in the results set, let's see how we can
fetch first N rows only. Here we have two options:

We can use database-specific features in the SQL query itself.
We can process the result set ourselves and stop after the required number of
rows has been fetched.

Using Database-Specific SQL
If you have been working mainly with MySQL, then you will be familiar with the
LIMIT x,y clause. For example, if we want to fetch the first five authors sorted by
last name, the following query could be issued:

SELECT * FROM authors ORDER BY lastName LIMIT 0, 5;

The same thing could be done with the following query:
SELECT * FROM authors ORDER BY lastName LIMIT 5 OFFSET 0;

The first query will work for MySQL and SQLite, while the second will work for
PostgreSQL as well. However, databases like Oracle or MS SQL Server don't use
such syntax, so these queries will fail for them.

Processing the Top N Rows Only
As you can see, database-specific SQL does not allow us to solve the task of
performing pagination in the database-independent way. However, we can issue the
query as we would for all the rows, without the LIMIT....OFFSET clause. After each
row has been fetched, we can increase the counter variable, so that we break the loop
when we have processed the required amount of rows. The following code snippet
could serve this purpose:

$q = $conn->query("SELECT * FROM authors ORDER BY lastName,
 firstName");
$q->setFetchMode(PDO::FETCH_ASSOC);

•
•

Chapter 5

[105]

$count = 1;
while(($r = $q->fetch()) && $count <= 5)
{
 echo $r['lastName'], '
';
 $count++;
}
$q->closeCursor();
$q = null;

Note the loop condition—it checks whether the counter variable is less than or equal
to 5. (Of course, you can put any number there), as well as it verifies that there
still are rows to fetch, as it is important that we break the loop if there are no more
rows. (For example, if the table has only 3 rows and we want to show 5 of them we
should break after the last row, not after the counter reaches 5.) Note that using
database-specific SQL would take care of such a situation for us.

Another important thing is the call to PDOStatement::closeCursor() (as on the
second last line in the previous code snippet). It is necessary to tell the database
that we don't want more rows. If we don't do this, the subsequent queries issued on
the same PDO object will cause exceptions, because database management systems
cannot process a new query while they are still sending the rows from the previous
query. This is why we had to call this method in author.php.

At present (for PHP version 5.2.1), it may be necessary to unset the
statement object by assigning it to null (as in author.php, line 17).
On the other hand, at least one CVS snapshot released around April
1, 2007 didn't require closing the cursor at all. However, it is still good
practice to call PDOStatement::closeCursor() after you have
finished with the cursor.

Starting at an Arbitrary Offset
Now that we know how to process a specified number of rows, we can use the same
technique to skip a certain number of rows. Suppose that we want to show authors
from 6th to 10th (as though we are showing page 2 when the page size allows for 5
authors per page):

$q = $conn->query("SELECT * FROM authors ORDER BY lastName,
 firstName");
$q->setFetchMode(PDO::FETCH_ASSOC);
$count = 1;
while(($r = $q->fetch()) && $count <= 5)
{
 $count++;

Handling Rowsets

[106]

}
$count = 1;
while(($r = $q->fetch()) && $count <= 5)
{
 echo $r['lastName'], '
';
 $count++;
}
$q->closeCursor();
$q = null;

Here, the first loop is used to skip the necessary starting row and the second loop
displays the requested subset of rows.

This approach may work well for small tables, but its performance is not
good. You should always use database-specific SQL to return the subset
of the resulting rows. If you need database independence, you should
examine the underlying database software and issue a query specific to
the database. The reason for this is that the database can perform certain
optimizations on the query, use less memory so that less data will be
exchanged between the server and the client.
Unfortunately, PDO does not provide database-independent ways to
effectively fetch subsets of the resulting rows as PDO is a connection
abstraction, not a database abstraction, tool. If you need to write portable
code, you should explore tools such as MDB2.

This approach may seem more complicated than using the
PDOStatement::fetchAll() method. Indeed, we could rewrite the previous code
as follows:

$stmt = $conn->query("SELECT * FROM authors ORDER BY lastName,
 firstName");
$page = $stmt->fetchAll(PDO::FETCH_ASSOC);
$page = array_slice($page, 5, 5);
foreach($page as $r)
{
 echo $r['lastName'], '
';
}

Although this code is much shorter, it has a major drawback: It instructs PDO to
return all rows from the table and then take a portion of them. With our approach,
the unnecessary rows are discarded and the loop instructs the database to stop
sending rows as soon as enough rows have been returned. However, the database
has to send us the rows preceding the current page in both cases.

Chapter 5

[107]

Summary
In this chapter, we have seen how to work with unbuffered queries and to get
the row count for a result set. We have also looked at an application where
database-specific SQL could not be avoided, as this would require a workaround that
might be unsuitable. However, this chapter should be helpful for someone who is
developing a complex web application that uses databases.

In the next chapter, we will discuss the advanced features of PDO, including
persistent connections and other driver-specific options. We will also discuss
transactions and examine some more methods of the PDO and PDOStatement classes.

Advanced PDO Usage
Now that we have familiarized ourselves with the basic features of PDO and used
them to build a data-driven web applications, let’s see some advanced functionality.
In this chapter, we will look at getting and setting connection attributes (such as
column names, case conversion, and the name of the underlying PDO driver) as well
as connecting to a database by specifying a connection configuration filename or an
option in the php.ini file. We will also discuss transactions.

We will modify our library application to display the name of the database driver
in the footer of every page. In addition to this simple change, we will extend the
application to keep track of how many copies of a single book we have and to
keep track of those people who have borrowed a book. We will use transactions for
this functionality.

Setting and Getting Connection
Attributes
We have briefly covered setting connection attributes in Chapter 3 when we saw
how to use exceptions as a means of error reporting. Connection attributes allow
us to control certain aspects of the connection as well as to query such things as the
driver name and version.

One way is to specify an array of attribute name/value pairs in the
PDO constructor.
Another way is to call the PDO::setAttribute() method, which accepts
two parameters:

The attribute's name
The attribute's value

•

•

°

°

Advanced PDO Usage

[110]

In PDO, attributes and their values are defined as constants in the PDO class as in the
following call in the common.inc.php file:

$conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

It includes two such constants—PDO::ATTR_ERRMODE and PDO::ERRMODE_EXCEPTION.

To get the value of an attribute, there is the PDO::getAttribute() method. It
accepts a single parameter, the attribute name, and returns the value of the attribute.
For example, the following code would print Exception:

if($conn->getAttribute(PDO::ATTR_ERRMODE) == PDO::ERRMODE_EXCEPTION) {
 echo 'Exception';
}

Now, let's see what connection attributes there are in PDO.

PDO::ATTR_CASE. This attribute controls the case of column names that
are returned by the PDOStatement::fetch() method. It is useful if the
fetch mode is PDO::FETCH_ASSOC or PDO::FETCH_BOTH (as when the row
is returned as an array that contains columns indexed by their name). This
attribute can have one of the following three values: PDO::CASE_LOWER,
PDO::CASE_NATURAL, and PDO::CASE_UPPER. Depending on this value,
the column names will be lowercase, left without changes, or uppercase,
respectively as in the following code snippet:

	 $conn->setAttribute(PDO::ATTR_CASE, PDO::CASE_UPPER);
	 $stmt = $conn->query("SELECT * FROM authors LIMIT 1");
	 $r = $stmt->fetch(PDO::FETCH_ASSOC);
	 $stmt->closeCursor();
	 var_dump($r);

	 would print:

	 array(4)
	 {
	 ["ID"]=>
	 string(1) "1"
	 ["FIRSTNAME"]=>
	 string(4) "Marc"
	 ["LASTNAME"]=>
	 string(7) "Delisle"
	 ["BIO"]=>
	 string(54) "Marc Delisle is a member of the MySQL Developers
	 Guild"
	 }

The default behavior is not to change the column name case, that is
PDO::CASE_NATURAL.

•

Chapter 6

[111]

PDO::ATTR_ORACLE_NULLS: This attribute, despite its name, works for all
databases, not just Oracle. It controls how the NULL values and empty strings
are passed in PHP. The possible values are PDO::NULL_NATURAL (for no
transformation to happen), PDO::NULL_EMPTY_STRING (for empty strings to
be replaced by PHP's null value), and PDO::NULL_TO_STRING (for the SQL
NULL value is converted to an empty string in PHP).
You can see how this attribute works in the following code:

	 $conn->setAttribute(PDO::ATTR_ORACLE_NULLS, PDO::NULL_TO_STRING);
	 $stmt = $conn->query("SELECT * FROM books WHERE coverImage IS
	 NULL LIMIT 1");
	 $r = $stmt->fetch(PDO::FETCH_ASSOC);
	 $stmt->closeCursor();
	 var_dump($r);

	 Would result with:
	 array(9)
	 {
	 ["id"]=>
	 string(1) "2"
	 ["author"]=>
	 string(1) "2"
	 ["title"]=>
	 string(18) "ImageMagick Tricks"
	 ["isbn"]=>
	 string(10) "1904811868"
	 ["publisher"]=>
	 string(20) "Packt Publishing Ltd"
	 ["year"]=>
	 string(4) "2006"
	 ["summary"]=>
	 string(81) "Unleash the power of ImageMagick
	 with this fast,friendly tutorial and tips guide"
	 ["coverMime"]=>
	 string(0) ""
	 ["coverImage"]=>
	 string(0) ""
	 }

As you can see, the highlighted fields are reported as strings, not
NULLs (which would be the case if we didn't set the
PDO::ATTR_ORACLE_NULLS attribute).
PDO::ATTR_ERRMODE. This attribute sets the error reporting mode for the
connection. It accepts three values:

PDO::ERRMODE_SILENT: No action is taken, and the error codes
are available via PDO::errorCode() and PDO::errorInfo()
methods (or their equivalents in the PDOStatement class). This
is the default value.

•

•

°

Advanced PDO Usage

[112]

PDO::ERRMODE_WARNING: As before, no action is taken, but an
error will be raised with E_WARNING level.
PDO::ERRMODE_EXCEPTION will set the error codes (as
with PDO::ERRMODE_SILENT), and an exception of class
PDOException will be thrown.

There are also driver-specific attributes, which we will not cover here. Refer
to http://www.php.net/pdo for more information. However, there is one
driver-specific attribute worth our attention: PDO::ATTR_PERSISTENT. You can
use it to specify that the MySQL driver should use persistent
connections, which gives better performance (You can think of this as a
counterpart for mysql_pconnect() function.) This attribute should be set in
the PDO constructor rather than via a PDO::setAttribute() call:

	 $conn = new PDO($connStr, $user, $pass,
	 array(PDO::ATTR_PERSISTENT => true);

The above three attributes are read/write attributes, which means that they
can be read and written. There are also read-only attributes, available only
via the PDO::getAttribute() method. These attributes may return string
values (rather than constants defined in the PDO class).
PDO::ATTR_DRIVER_NAME: This returns the name of the underlying
database driver:

	 echo $conn->getAttribute(PDO::ATTR_DRIVER_NAME);

This will print either MySQL or SQLite depending on the driver you use.
PDO::ATTR_CLIENT_VERSION: This returns the name of the underlying
database client library version. For example, for MySQL this may be
something like 5.0.37.
PDO::ATTR_SERVER_VERSION: This returns the version of the database server
you are connecting to. For MySQL, this can be a string such as "4.1.8-nt".

Let's now get back to our application and modify it to show the database driver in
the footer of every page. To achieve this, we will modify the showFooter() function
in common.inc.php:

	 function showFooter()
	 {
	 global $conn;
	
	 if($conn instanceof PDO) {
	 $driverName = $conn->getAttribute(PDO::ATTR_DRIVER_NAME);
	 echo "

";

°

°

•

•

•

Chapter 6

[113]

	 echo "<small>Connecting using $driverName driver</small>";
	 }
	 ?>
	 </body>
	 </html>
	 <?php
	 }

In this function, we are importing the $conn variable from the global namespace.
If this variable is an object of the PDO class, then we will call the getAttribute()
method as discussed above. We have to do this check because in some situations the
$conn variable may not be set. For example, if the PDO constructor fails and throws
an exception, we will not be able to call any methods on the $conn variable (this will
lead to a fatal error—calling member functions on non-objects are fatal errors.)

Since all pages in our application call the showFooter() method function, this change
will be visible everywhere:

Advanced PDO Usage

[114]

MySQL Buffered Queries
If you are working with a MySQL database only, then you may want to employ
MySQL's PDO driver buffered query mode. When the connection is set to the
buffered query mode, the whole result set for every SELECT query is pre-fetched
into memory before it is returned to the application. This gives us one benefit—we
can use the PDOStatement::rowCount() method to inspect how many rows the
result set contains. In Chapter 2, we discussed this method and showed that it
returns 0 for MySQL and SQLite databases. Now, when PDO is instructed to use
buffered queries, this method will return meaningful values.

To force PDO into MySQL buffered query mode, you have to specify the
PDO::MYSQL_ATTR_USE_BUFFERED_QUERY connection attribute. Consider the
following example:

$conn = new PDO($connStr, $user, $pass);
$conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

Chapter 6

[115]

$conn->setAttribute(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, 1);

$q = $conn->query("SELECT * FROM books”);
echo $q->rowCount();

This will print the number of rows returned.

Please note that this attribute works for MySQL only and is not portable across
databases. You should use it if your application will be working with MySQL only.
Also, remember that buffered queries that return large result sets are very expensive
with respect to resource and should be avoided. If you are going to use buffered
queries, make sure you disable them before issuing such expensive queries. This can
be done by turning this attribute off:

$conn->setAttribute(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, 0);

You can query whether MySQL buffered queries are currently enabled by calling

$conn->getAttribute(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY);

I have switched databases for every screenshot (and in the first screenshot the page is
scrolled down to the bottom to save space).

Connecting Using the Connection
Configuration File and php.ini Setting
When we discussed the connection strings (or the data source names for PDO), we
saw that the connection string starts with the driver name followed by a semicolon.
PDO also supports configuration files—a file that contains the connection string. For
example, we can create a file called pdo.dsn in the directory where we can keep the
application files and put the connection string there:

mysql:host=localhost;dbname=pdo
or
sqlite:/www/hosts/localhost/pdo.db

Alternatively, we can create two files, mysql.dsn and sqlite.dsn, containing the
first and the second connection strings respectively.

Then in the PDO constructor, we can specify the configuration file path or URL, not
just the connection string:

uri:./pdo.dsn

Advanced PDO Usage

[116]

PDO will read the file and use the connection string specified there. The advantage
of using this method is that you can specify not just a local file, but any URL so that
a remote file can be included (provided a suitable stream handler is registered in
the system for a protocol such as HTTP or FTP). On the other hand, if the file is not
properly protected from web access by all users, then it can potentially leak secure
information to a third party, so care should be taken when this method is being used
to specify the connection string.

There is also another way of specifying the connection string: in the php.ini file. For
example, you can define the following directives in the php.ini file:

pdo.dsn.mysql=�������������������������������� �������������������������������mysql:host=localhost;dbname=pdo
pdo.dsn.sqlite=sqlite:/www/hosts/localhost/pdo.db

then it is possible to pass 'mysql' or 'sqlite' strings to the PDO constructor instead of
the whole connection strings for mysql and sqlite, respectively:

$conn = new PDO('mysql', $user, $pass);
$conn = new PDO('sqlite', $user, $pass);

As you can see, the connection string in this case should match the corresponding
option in the php.ini file with the 'pdo.dsn' prefix.

Getting the List of Available Drivers
PDO allows you to programmatically get the list of all installed drivers. The PDO::
getAvailableDrivers() method��� can be called to return an array containing the
names of the database drivers that can be used. For example, this ���������������� code will print
something similar to��������������� the following:

var_dump(PDO::getAvailableDrivers());
array(3)
{
 [0]=>
 string(5) "mysql"
 [1]=>
 string(6) "sqlite"
 [2]=>
 string(7) "sqlite2"
}

Chapter 6

[117]

The names of drivers, contained in this array, are the prefixes for
the connection strings. Also, the same name is returned as the value of the
PDO::ATTR_DRIVER_NAME attribute.

The PDO::getAvailableDrivers() method returns the names of
drivers that are registered with the PDO system in the php.ini file.
You may not be able to use all of these drivers on the local machine—for
example, if the MySQL server is not running then the presence of a
MySQL item in the returned array does not mean that you can connect to
the local MySQL server, and if a certain database server is running on the
local machine but its driver is not registered with PDO, then you will not
be able to connect to that database server.

Transactions
PDO API also standardises the transaction handling methods. By default, after the
successful creation of the PDO connection, it is set to autocommit mode. This means
that for every database that supports transactions, every query is wrapped in an
implicit transaction. For those database that do not support transactions, every query
is executed as is.

Typically, the transaction handling strategy is this:

1.	 Begin the transaction.
2.	 Wrap the database-related code in a try...catch block.
3.	 The database-related code (within the try block) should commit the changes

after all the updates have been done.
4.	 The catch block should ������������������������� rollback the transaction.

Of course, only the code that updates the database and the code that can break data
integrity should be handled in a transaction. A classic example of a transaction is a
money transfer:

1.	 Begin the transaction.
2.	 If there is enough money on the payer's account:

Subtract the amount from the payer's account.
Add the amount to the beneficiary's account.

3.	 Commit the transaction.

°

°

Advanced PDO Usage

[118]

If anything bad happens in the middle of a transaction, the database does not get
updated and the data integrity is preserved. Also, by wrapping the account balance
check into the transaction, we ensure that a concurrent update does not corrupt
data integrity.

PDO offers just three methods for transactions handling: PDO::beginTransaction()
which initiates the transaction, PDO::commit() which commits the changes made
since the call to PDO::beginTransaction(), and PDO::rollBack(), which rolls
back any changes since the transaction has been initiated.

The PDO::beginTransaction() method does not accept any parameters and
returns a Boolean value depending on the success of the transaction initiation. If the
call to this method fails, then PDO will throw an exception (for example, if you are
already in the middle of a transaction, PDO will tell you so). Likewise, the PDO::
rollBack() method will throw an exception if there is no active transaction, and
the same will happen if you call the PDO::commit() method before calling PDO::
beginTransaction(). (Of course, your error handling mode must be set to PDO::
ERRMODE_EXCEPTION for the exceptions to be thrown.)

You should also be noted that you should not use direct queries to control
transactions if you are using PDO for that task. By this, we mean that you should
not issue queries such as BEGIN TRANSATION, COMMIT, or ROLLBACK with the
PDO::query() method. Otherwise, the behaviour of these three methods will be
inconsistent. Also, PDO does not currently support savepoints.

Let’s now get back to our library application. To see how transactions work in
practice, we will modify it by allowing it to track how many copies of a certain book
we have, and we will implement a function to keep track of people to whom we have
lent books.

This modification will encompass the following changes:

We will have to alter the books table by adding a new column to keep the
number of copies of every book. The editBook.php page will need to be
modified in order to change this value
We will create a table to keep track of all borrowers, but to keep the example
simple, we will not create a table of borrowers (as we for a real-life library
application). We will just associate a borrower’s name with the book ID of the
book that we have lent them.
We will create a page that will be used when we lend a book. This page, will
ask for the borrower’s name and then insert a record into the borrowers table
and decrease the number of copies in the books table.

•

•

•

Chapter 6

[119]

We will also need a page, which will list all borrowers and another script,
which will allow them to return a book. This script will delete a record from
the borrowers table and increase the number of copies in the books table.

We will use transactions only when we update two tables at once (as in the last two
points in the above list).

Before we do the coding, we will alter the books table:

mysql> alter table books add column copies tinyint not null default 1;
Query OK, 3 rows affected (0.50 sec)
Records: 3 Duplicates: 0 Warnings: 0

The same command should be executed for SQLite.

Now, let's modify books.php a bit to show how many copies of each book we
have and to provide a link. Here are the line of code that will need to be changed
(lines 20 to 58):

<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>Cover</td>
 <td>Author and Title</td>
 <td>ISBN</td>
 <td>Publisher</td>
 <td>Year</td>
 <td>Summary</td>
 <td>Copies</td>
 <td>Lend</td>
 <td>Edit</td>
</tr>

<?php
// Now iterate over every row and display it
while($r = $q->fetch())
{
 ?>
 <tr>
 <td>
 <?php if($r['coverMime']) { ?>
 <img src="showCover.php?book=<?=$r['id']?>">
 <?php } else { ?>
 n/a
 <? } ?>
 </td>
 <td>
 <a href="author.php?id=<?=$r['authorId']?>"><?=htmlspecialchars
 ("$r[firstName] $r[lastName]")?>

 <?=htmlspecialchars($r['title'])?>
 </td>

•

Advanced PDO Usage

[120]

 <td><?=htmlspecialchars($r['isbn'])?></td>
 <td><?=htmlspecialchars($r['publisher'])?></td>
 <td><?=htmlspecialchars($r['year'])?></td>
 <td><?=htmlspecialchars($r['summary'])?></td>
 <td><?=$r['copies']?></td>
 <td>
 <a href="lendBook.php?book=<?=$r['id']?>">Lend
 </td>
 <td>
 <a href="editBook.php?book=<?=$r['id']?>">Edit
 </td>
 </tr>
 <?php
}
?>

Now, for both MySQL and SQLite you should see a page like the following
screenshot (where we have scrolled downwards and to the right so that it will fit
onto the page):

Chapter 6

[121]

Now, let's create the borrowers table. As we have previously discussed, the table will
contain an ID field, the book's ID field, borrower's name, and a timestamp column.
We will need an ID (primary key) on this table to prevent possible data corruption;
for example, if the same borrower takes the same book twice. If we were tracking
borrowers by name and book ID only, then we could have duplicate records in that
table and the return of a single book could delete several rows in this table, which
would lead to data corruption:

mysql> create table borrowers(
 -> id int primary key not null auto_increment,
 -> book int not null,
 -> name varchar(40),
 -> dt int);
Query OK, 0 rows affected (0.13 sec)

For SQLite, the syntax will be a bit different:

sqlite> create table borrowers(
 ...> id integer primary key,
 ...> book int not null,
 ...> name varchar(40),
 ...> dt int);

The page to lend the book (lendBook.php) is probably the most difficult part.
This page will consist of a form where you can enter the borrower's name. Upon
successful submission, the script will initiate the transaction, check that there is at
least one copy of the book available, insert a record into the borrowers table and
decrease the copies column in the books table, commit the transaction, and redirect
to the books.php page.

<?php

/**
 * This page allows lending a book
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// First see if the request contains the book ID
// Return back to books.php if not
$id = (int)$_REQUEST['book'];
if(!$id) {
 header("Location: books.php");

Advanced PDO Usage

[122]

 exit;
}

// Now see if the form was submitted
$warnings = array();
if($_POST['submit']) {
 // Require that the borrower's name is entered
 if(!$_POST['name']) {
 $warnings[] = 'Please enter borrower\'s name';
 }
 else {
 // Form is OK, "lend" the book
 $conn->beginTransaction();
 try
 {
 $stmt = $conn->query("SELECT copies FROM books WHERE id=$id");
 $copies = $stmt->fetchColumn();
 $stmt->closeCursor();
 if($copies > 0) {
 // If we can lend it
 $conn->query("UPDATE books SET copies=copies-1
 WHEREid=$id");
 $stmt = $conn->prepare("INSERT INTO borrowers(book, name, dt)
 VALUES(?, ?, ?)");
 $stmt->execute(array($id, $_POST['name'], time()));
 }
 else {
 // Else show warning
 $warnings[] = 'There are no more copies of this book
 available';
 }
 $conn->commit();
 }
 catch(PDOException $e)
 {
 // Something bad happened
 // Roll back and rethrow the exception
 $conn->rollBack();
 throw $e;
 }
 }

 // Now, if we don't have errors,
 // redirect back to books.php
 if(count($warnings) == 0) {

Chapter 6

[123]

 header("Location: books.php");
 exit;
 }
 // otherwise, the warnings will be displayed
}

// Display the header
showHeader('Lend Book');

// If we have any warnings, display them now
if(count($warnings)) {
 echo "Please correct these errors:
";
 foreach($warnings as $w)
 {
 echo "- ", htmlspecialchars($w), "
";
 }
}

// Now display the form
?>
<form action="lendBook.php" method="post">
 <input type="hidden" name="book" value="<?=$id?>">
 Please enter borrower's name:

 <input type="text" name="name"value="<?=htmlspecialchars
 ($_POST['name'])?>">
 <input type="submit" name="submit" value=" Lend book ">
</form>

<?php
// Display footer
showFooter();

Let's run through the code now. We begin by checking that the book's ID has been
passed to the script either via the URL or via the form. (We keep the ID in the
hidden field of the form.) Then, if there is a form submission (with the submit button
pressed), we check that the name field was correctly filled. If the test succeeds, we
proceed to the transaction, where we count how many copies are left and check that
this number is greater than zero, we decrease the copies column and use a prepared
statement to insert a record into the borrowers table. If there is less than one copy,
we add a message to the $warnings array so that a warning is displayed on the page.

If there is some failure within the transaction, the catch block will be executed. The
transaction will be rolled back and the exception will be thrown again. We do this in
order to let our default error handler do its job.

Advanced PDO Usage

[124]

Now, if you save the above code listing in lendBook.php and click on one of the
Lend links on the books listing page, you should arrive at the following page:

Of course, you should switch between databases to see that the code works with
MySQL and SQLite.

To enhance the page, we should also show the title and the author of
the book, but we will leave that to you. Also, if you are wondering why
we are alerting users that there are no more copies only after the form
submission, this is because we can decide on that within the transaction
only. If we detect that there are copies available within the transaction,
only then we may be assured that no concurrent update will change
that. Of course, from the user's perspective, another addition might be a
warning displayed along with the book's details. However, a check within
the transaction is required too.

Chapter 6

[125]

Now, if you lend a book you will see that the Copies column on the books listing
page has decreased. Let's now create the page where all the borrowers and the books
lent to them will be listed. Let's call it borrowers.php. While this page does not
process any user input, it contains a query that joins three tables (borrowers, books,
and authors):

<?php

/**
 * This page lists all borrowed books
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// Display the header
showHeader('Lended Books');

// Get all lended books count and list
$sql = "SELECT borrowers.*, books.title, authors.firstName,
 authors.lastName
 FROM borrowers, books, authors
 WHERE borrowers.book=books.id AND books.author=authors.id
 ORDER BY borrowers.dt";
$totalBooks = getRowCount($sql);
$q = $conn->query($sql);
$q->setFetchMode(PDO::FETCH_ASSOC);

// now create the table
?>
Total borrowed books: <?=$totalBooks?>
<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>Title</td>
 <td>Author</td>
 <td>Borrowed by</td>
 <td>Borrowed on</td>
 <td>Return</td>
</tr>

<?php
// Now iterate over every row and display it
while($r = $q->fetch())
{
 ?>
 <tr>

Advanced PDO Usage

[126]

 <td><?=htmlspecialchars($r['title'])?></td>
 <td><?=htmlspecialchars("$r[firstName] $r[lastName]")?></td>
 <td><?=htmlspecialchars($r['name'])?></td>
 <td><?=date('d M Y', $r['dt'])?></td>
 <td>
 <a href="returnBook.php?borrower=<?=$r['id']?>">Return
 </td>
 </tr>
 <?php
}
?>
</table>

<?php
// Display footer
showFooter();

The code is easy to follow; it follows the same logic as books.php or authors.php.
However, since this page isn't linked from anywhere, we should add a link to it in
the site header (the showHeader() function in common.inc.php):

function showHeader($title)
{
 ?>
 <html>
 <head><title><?=htmlspecialchars($title)?></title></head>
 <body>
 <h1><?=htmlspecialchars($title)?></h1>
 Books
 Authors
 Borrowers

 <hr>
 <?php
}

Chapter 6

[127]

Now, if you navigate to borrowers.php, you should see something like
this screenshot:

As we can see, this page contains links to the returnBook.php page, which does not
exist as yet. This script will delete the relevant record from the borrowers table and
increment the copies column in the books table. This operation will be wrapped in
a transaction, too. Also, returnBook.php accepts the borrower's table ID field, (as
opposed to lendBook.php, which accepted the book's ID). So we should also get the
book's ID from the borrowers table:

<?php

/**
 * This page "returns" a book back to the library
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// First see if the request contains the borrowers ID

Advanced PDO Usage

[128]

// Return back to books.php if not
$id = (int)$_REQUEST['borrower'];
if(!$id) {
 header("Location: books.php");
 exit;
}

// Now start the transaction
$conn->beginTransaction();
try
{
 $q = $conn->query("SELECT book FROM borrowers WHERE id=$id");
 $book = (int)$q->fetchColumn();
 $q->closeCursor();
 $conn->query("DELETE FROM borrowers WHERE id=$id");
 $conn->query("UPDATE books SET copies=copies+1 WHERE id=$book");
 $conn->commit();
 header("Location: books.php");
}
catch(PDOException $e)
{
 $conn->rollBack();
 throw $e;
}

The code should be fairly self-descriptive. In the first place we check that the request
contains the borrower's ID and then update both tables. Upon successful completion
we get redirected to the books listing page, otherwise, the error handler will display
a relevant message.

Now, the final touch: the editBook.php page, which can be used to edit how
many copies of the book we have. We will leave this to you, but here are some
considerations. The suggested way of keeping track of books that have been lent
is not very good for a real life library application. Instead of keeping the number
of copies available, we should keep the total number of copies in the library in one
column and the number of copies that have been lent in another column. This should
be done, because editing the number of books available may lead to data corruption.
Returning a book will increment the copies column in the books table. If someone
else is editing the number of copies available at the same time, they may not know
that a borrower is returning a book and hence may enter an incorrect number.

Chapter 6

[129]

On the other hand, if there were two separate columns, then updating the total
number of copies would be completely independent from the updates caused by
the books being lent and returned. In this scenario, however, the script that lends a
book should check that the number of copies that have been lent is less than the total
number of copies. The transaction should continue only if this condition is satisfied.

Summary
In this chapter, we have taken a look at some of the extended functionality offered
by PDO, especially transactions. Our application example was modified to
provide additional functionality that relies on transactions. We also looked at the
organization of the transaction-aware code.

However, as you might have noticed, we were mixing code that updates databases,
processes user input, and renders pages in one file. While we tried to keep the input
processing and presentation in different parts of one file (first data processing, then
page rendering), we could not separate data processing.

In the next chapter, we will see how to separate the data model and the application
logic so that the data can be accessed and manipulated from elsewhere, not just
from our application. We will develop a data model class that will encapsulate
our library application data handling methods. This class can then be used from
other applications.

An Advanced Example
By now, you should be able to develop web applications with PDO. However, our
example application is manageable when it has been kept rather small with limited
functionality. Soon you will realize that mixing all the data access, user input, and
display logic in one file can become a hassle to manage.

To write a more manageable code and to allow more than one developer to work
on a project, the data access user input processing, and page rendering should be
separated. You have probably heard of the Model-View-Controller programming
paradigm (MVC), which is widely used for big web applications. The idea is to
keep the data access and modification modules, which is the Model, separate from
data presentation, which is the View. The view can be very complex, so a template
engine is usually used. Finally, the controller is a PHP script that receives user input,
accesses the model, and prepares the view.

In addition to making the code base more manageable, such division allows us to
access the functionality of the model from other applications (using maintenance
scripts running on either the application’s own server or on other servers, which are
accessed via RPC or SOAP calls).

As PDO is object-oriented and can return instances of classes from calls to the
PDOStatement::fetch() method, we will use object-oriented programming to
model our data entities (books, authors, and borrowed book records).

Designing the Model
Model is usually comprised of a static class (methods of which are called statically),
and several classes that emulate data entities. Calls to the methods of this Model
class either return instances of other model classes, or PDOStatement instances that
return instances of model classes in calls to the fetch() method.

An Advanced Example

[132]

For our application, the classes will be Model, Book, Author, and Borrower. These
classes reflect the tables in our example database and allow us to perform simple
operations on the underlying data. (The main idea is to isolate SQL from the
controller scripts into relevant model classes.) For example, the Book class may have
a method to return an Author class instance that would represent the author for that
book. On the other hand, the Author class might have a method to return a list of
Book class instances representing each book written by that author�.

In this chapter, we will develop our own static Model class along with the Book,
Author, and Borrower classes. Before we begin, we should clearly define what
methods (functionality) every class will have. Let's define the functionality of
the model.

Model class should contain static methods that will act as entry points to the data
stored in the database. Such methods should do the following:

Get all the books.
Get all the authors.
Get all the book borrowers.
Get the number of books.
Get the number of authors.
Get the number of book borrowers.
Get a book by ID.
Get an author by ID.
Get a borrower by ID.

On the other hand, the Model class will not contain methods that are performed on a
book or on an author. To lend a book, we will use a method defined in the Book class,
and to return a book, we will use a method in the Borrower class.

Let's now plan the methods for the Book class:

Get the author.
Get a list of the book's borrowers.
Lend a book.

The Author class is even simpler for our example application:

Get all the books.
Get the number of books by this author.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 7

[133]

Finally, there is the Borrower class that represents a record in the borrowers table:

Get the book.
Return the book.

The properties of every data entity will be accessible as instance variables of the
relevant class. Also, the methods in these classes will contain PDO calls that we have
already written in books.php and other files. We will move these methods to the
relevant classes, and these files will just act as controllers that process user input.
Form validation will still be the task of the controller scripts. However, we are not
going to separate the display logic from the business logic, since our application is
very simple, and there is no need to use any template engine or even to move the
page rendering code into a separate include file.

In addition to that, we will not be using the global $conn variable any more. The
Model class will have a private static variable of the same name and a method
to retrieve the connection object. This method will follow the singleton pattern
and create the object on demand if it's not yet created or simply return it if it's
already intitialized (For more information on the singleton pattern and an example
implementation in PHP5 you can visit http://en.wikipedia.org/wiki/
Singleton_pattern.

We will keep all the classes in a separate file, classes.inc.php, which will then be
included from common.inc.php.

Let's begin with the central Model class:

/**
 * This is the central Model class. Use its static methods
 * To retrieve a book, author, borrower by ID
 * Or all the books, authors and borrowers
 */
class Model
{
 /**
 * This is the connection object returned by
 * Model::getConn()
 * @var PDO
 */
 private static $conn = null;

 /**
 * This method returns the connection object.
 * If it has not been yet created, this method
 * instantiates it based on the $connStr, $user and $pass

•

•

An Advanced Example

[134]

 * global variables defined in common.inc.php
 * @return PDO the connection object
 */
 static function getConn()
 {
 if(!self::$conn) {
 global $connStr, $user, $pass;
 try
 {
 self::$conn = new PDO($connStr, $user, $pass);
 self::$conn->setAttribute(PDO::ATTR_ERRMODE,
 PDO::ERRMODE_EXCEPTION);
 }
 catch(PDOException $e)
 {
 showHeader('Error');
 showError("Sorry, an error has occurred. Please
 try your request later\n" . $e->getMessage());
 }
 }
 return self::$conn;
 }

 /**
 * This method returns the list of all books
 * @return PDOStatement
 */
 static function getBooks()
 {
 $sql = "SELECT * FROM books ORDER BY title";
 $q = self::getConn()->query($sql);
 $q->setFetchMode(PDO::FETCH_CLASS, 'Book', array());
 return $q;
 }

 /**
 * This method returns the number of books in the database
 * @return int
 */
 static function getBookCount()
 {
 $sql = "SELECT COUNT(*) FROM books";
 $q = self::getConn()->query($sql);
 $rv = $q->fetchColumn();

Chapter 7

[135]

 $q->closeCursor();
 return $rv;
 }

 /**
 *This method returns a book with given ID
 * @param int $id
 * @return Book
 */
 static function getBook($id)
 {
 $id = (int)$id;
 $sql = "SELECT * FROM books WHERE id=$id";
 $q = self::getConn()->query($sql);
 $rv = $q->fetchObject('Book');
 $q->closeCursor();
 return $rv;
 }

 /**
 * This method returns the list of all authors
 * @return PDOStatement
 */
 static function getAuthors()
 {
 $sql = "SELECT * FROM authors ORDER BY lastName, firstName";
 $q = self::getConn()->query($sql);
 $q->setFetchMode(PDO::FETCH_CLASS, 'Author', array());
 return $q;
 }

 /**
 * This method returns the number of authors in the database
 * @return int
 */
 static function getAuthorCount()
 {
 $sql = "SELECT COUNT(*) FROM authors";
 $q = self::getConn()->query($sql);
 $rv = $q->fetchColumn();
 $q->closeCursor();
 return $rv;
 }

 /**
 *This method returns an author with given ID

An Advanced Example

[136]

 * @param int $id
 * @return Author
 */
 static function getAuthor($id)
 {
 $id = (int)$id;
 $sql = "SELECT * FROM authors WHERE id=$id";
 $q = Model::getConn()->query($sql);
 $rv = $q->fetchObject('Author');
 $q->closeCursor();
 return $rv;
 }

 /**
 * This method returns the list of all borrowers
 * @return PDOStatement
 */
 static function getBorrowers()
 {
 $sql = "SELECT * FROM borrowers ORDER BY dt";
 $q = self::getConn()->query($sql);
 $q->setFetchMode(PDO::FETCH_CLASS, 'Borrower', array());
 return $q;
 }

 /**
 * This method returns the number of borrowers in the database
 * @return int
 */
 static function getBorrowerCount()
 {
 $sql = "SELECT COUNT(*) FROM borrowers";
 $q = self::getConn()->query($sql);
 $rv = $q->fetchColumn();
 $q->closeCursor();
 return $rv;
 }

 /**
 *This method returns a borrower with given ID
 * @param int $id
 * @return BorrowedBook
 */
 static function getBorrower($id)
 {
 $id = (int)$id;

Chapter 7

[137]

 $sql = "SELECT * FROM borrowers WHERE id=$id";
 $q = Model::getConn()->query($sql);
 $rv = $q->fetchObject('Borrower');
 $q->closeCursor();
 return $rv;
 }
}

As you can see, this class defines the getConn() method that is used to retrieve the
PDO connection object, as well as nine more methods—three methods for every
data entity (book, author, and borrower). The methods to get all the data entities
(getBooks(), getAuthors(), and getBorrowers()) return a PDOStatement
pre-configured to fetch instances of relevant classes. The methods to return the
number of every data entity, fetch an integer, while the method to return a single
data entity, fetch an instance of the data entity model class. Note how we close
cursors in these methods—this functionality has been transferred from the
controller files.

Let's now look at the three model classes.

/**
 * This class represents a single book
 */
class Book
{
 /**
 * Return the author object for this book
 * @return Author
 */
 function getAuthor()
 {
 return Model::getAuthor($this->author);
 }

 /**
 * This method is used to lend this book to the person
 * specified by $name. It returns the Borrower class
 * instance in case of success, or null in case when we cannot
 * lend this book due to insufficient copies left
 * @param string $name
 * @return Borrower
 */
 function lend($name)
 {
 $conn = Model::getConn();

An Advanced Example

[138]

 $conn->beginTransaction();
 try
 {
 $stmt = $conn->query("SELECT copies FROM books
 WHERE id=$this->id");
 $copies = $stmt->fetchColumn();
 $stmt->closeCursor();
 if($copies > 0) {
 // If we can lend it
 $conn->query("UPDATE books SET copies=copies-1
 WHERE id=$this->id");
 $stmt = $conn->prepare("INSERT INTO borrowers(book, name, dt)
 VALUES(?, ?, ?)");
 $stmt->execute(array($this->id, $name, time()));
 // Success, get the newly created
 // borrower ID
 $bid = $conn->lastInsertId();
 $rv = Model::getBorrower($bid);
 }
 else {
 $rv = null;
 }
 $conn->commit();
 }
 catch(PDOException $e)
 {
 // Something bad happened
 // Roll back and rethrow the exception
 $conn->rollBack();
 throw $e;
 }
 return $rv;
 }
}

Here we have just two methods. One is used to get the book's author. (Note how we
reuse the Model::getAuthor() method here.) Another method provides the lend
book functionality. Note how we reread the copies column from the database rather
than rely on the $this->copies variable. As we have seen in the previous chapter,
this is done to ensure data integrity. The $this->copies variable gets assigned long
before the transaction begins, and by the time that the Book::lend() method is
called, the actual count of copies in the database might have changed.

Chapter 7

[139]

That's why we reread that value inside the transaction again. Also, this method
returns null if the operation fails or an instance of Borrower class if the operation
is successful. If an error occurs, an exception gets thrown that is handled by the
exception handler defined in common.inc.php (just as it did previously).

Another model class is Author. It's very simple:

/**
 * This class represents a single author
 */
class Author
{
 /**
 * This method returns the list of books
 * written by this author
 * @return PDOStatement
 */
 function getBooks()
 {
 $sql = "SELECT * FROM books WHERE author=$this->id
 ORDER BY title";
 $q = Model::getConn()->query($sql);
 $q->setFetchMode(PDO::FETCH_CLASS, 'Book', array());
 return $q;
 }

 /**
 * This method returns the number of books
 * written by this author
 * @return int
 */
 function getBookCount()
 {
 $sql = "SELECT COUNT(*) FROM books WHERE author=$this->id";
 $q = Model::getConn()->query($sql);
 $rv = $q->fetchColumn();
 $q->closeCursor();
 return $rv;
 }
}

These two methods just return the list of books written by this author and the
number of books in this list.

An Advanced Example

[140]

Finally, the Borrower class represents a record in the ����������������� borrower's������� table:

/**
 * This class represents a single borrower
 * (i.e., a record in the borrowers table)
 */
class Borrower
{
 /**
 * Return the book associated with this borrower
 * @return Book
 */
 function getBook()
 {
 return Model::getBook($this->book);
 }

 /**
 * This method "returns" a book.
 * After this method call, this object
 * is unusable as it does not represent
 * a data entity any more
 */
 function returnBook()
 {
 $conn = Model::getConn();
 $conn->beginTransaction();
 try
 {
 $book = $this->getBook();
 $conn->query("DELETE FROM borrowers WHERE id=$this->id");
 $conn->query("UPDATE books SET copies=copies+1
 WHERE id=$book->id");
 $conn->commit();
 }
 catch(PDOException $e)
 {
 $conn->rollBack();
 throw $e;
 }
 }
}

Chapter 7

[141]

Essentially, the body of the returnBook() method is transferred from the
returnBook.php file (just as the Book::lend() method was transferred with a slight
modification from the lendBook.php file).

Modifying the Frontend to Use the Model
Now that we have removed the data access logic from the files that generate frontend
pages, let's see how we should modify them. Let's start with the books.php file:

<?php

/**
 * This page lists all the books we have
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// Display the header
showHeader('Books');

// Get the books list
 $books = Model::getBooks();

// now create the table
?>
Total books: <?=Model::getBookCount()?>
<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>Cover</td>
 <td>Author and Title</td>
 <td>ISBN</td>
 <td>Publisher</td>
 <td>Year</td>
 <td>Summary</td>
 <td>Copies</td>
 <td>Lend</td>
 <td>Edit</td>
</tr>

<?php
// Now iterate over every row and display it
while($b = $books->fetch())
{
 $a = $b->getAuthor();

An Advanced Example

[142]

 ?>
 <tr>
 <td>
 <?php if($b->coverMime) { ?>
 <img src="showCover.php?book=<?=$b->id?>">
 <?php } else { ?>
 n/a
 <? } ?>
 </td>
 <td>
 <a href="author.php?id=<?=$a->id?>"><?=htmlspecialchars("$a
 >firstName $a->lastName")?>

 <?=htmlspecialchars($b->title)?>
 </td>
 <td><?=htmlspecialchars($b->isbn)?></td>
 <td><?=htmlspecialchars($b->publisher)?></td>
 <td><?=htmlspecialchars($b->year)?></td>
 <td><?=htmlspecialchars($b->summary)?></td>
 <td><?=$b->copies?></td>
 <td>
 <a href="lendBook.php?book=<?=$b->id?>">Lend
 </td>
 <td>
 <a href="editBook.php?book=<?=$b->id?>">Edit
 </td>
 </tr>
 <?php
}
?>
</table>

Add book...
<?php
// Display footer
showFooter();

As you can see, we have removed the SQL commands and the calls to the PDO class
instance methods, and replaced them with corresponding calls to the methods of the
Model class. (Note the highlighted lines.)

Chapter 7

[143]

Another important change is that the instances of the Book class returned in the
while loop (starting on line 30) don't have the variables for the author's first or last
names. To get these variables, we call the Book::getAuthor() method for every
book that we display. Then, later in the loop, we reference either the $b variable to
access the book's properties or the $a variable to access the author's details. Note
how we access these details as the object variables rather than array elements here.

This happened because the Model::getBooks() method does not employ table joins
any more, so the instances of the Book class won't contain author details. Instead,
the Book class defines a method to get the Author object for that book. This means
that, for every book that we display, we will execute an extra SQL query to get the
author's details.

On the first sight this may seem too expensive, performance-wise. But on the other
hand, in real life application, we would show just one page (say, 20 books) from a
table of several thousand records. In this case, a SELECT statement without JOIN on
the books table selecting the rows to be displayed in the current page and followed by
some simple queries for every row to be displayed may be more performance-effective.

However, if this approach is inappropriate, then the Model class can be extended
with another method, for example, Model::getBooksWithAuthors(), that would
return instances of the Book class where the lastName and firstName variables
would be present. This method might look like the following:

 /**
 * This method returns the list of all books with
 * author's first and last names
 * @return PDOStatement
 */
 static function getBooksWithAuthors()
 {
 $sql = "SELECT books.*, authors.lastName, authors.firstName
 FROM books, authors
 WHERE books.author=authors.id
 ORDER BY title";
 $q = self::getConn()->query($sql);
 $q->setFetchMode(PDO::FETCH_CLASS, 'Book', array());
 return $q;
 }

Developing the model part may constrain us in terms of flexibility, but this is
the price to pay for code manageability. However, this can be overcome with
additional methods in the model classes or, if this is really necessary, with direct
communication with PDO. The above method is possible because PDO does not care
what variables were defined in the class; it just dynamically creates variables for
every column returned by the query.

An Advanced Example

[144]

This is a very powerful feature when used responsibly. If not used with care, you
may end up with hard-to-track logical errors. For example, if in the above method
you selected the ID column from the �� authors��������������������������������������� table, then its value would overwrite
the ID column value selected from the ���������������������������������� books����������������������������� table. Other methods in the Book class
rely on the value in the id field being correct and may lead to severe data corruption
if this value is incorrect.

Another file that we should now modify is authors.php:

<?php

/**
 * This page lists all the authors we have
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// Display the header
showHeader('Authors');

// Get number of authors and issue the query
$authors = Model::getAuthors();

// now create the table
?>
Total authors: <?=Model::getAuthorCount()?>
<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>First Name</td>
 <td>Last Name</td>
 <td>Bio</td>
 <td>Edit</td>
</tr>

<?php
// Now iterate over every row and display it
while($a = $authors->fetch())
{
 ?>
 <tr>
 <td><?=htmlspecialchars($a->firstName)?></td>
 <td><?=htmlspecialchars($a->lastName)?></td>
 <td><?=htmlspecialchars($a->bio)?></td>
 <td>

Chapter 7

[145]

 <a href="editAuthor.php?author=<?=$a->id?>">Edit
 </td>
 </tr>
 <?php
}
?>
</table>

Add Author...
<?php
// Display footer
showFooter();

Here, we just replaced the direct communication with PDO with the call to the Model
class as well as rewrote the loop to use object variables rather than array elements.

The changes made to the application also allow us to remove SQL-related code bits
from author.php:

<?php

/**
 * This page shows an author's profile
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// Get the author
$id = (int)$_REQUEST['id'];
$author = Model::getAuthor($id);

// Now see if the author is valid - if it's not,
// we have an invalid ID
if(!$author) {
 showHeader('Error');
 echo "Invalid Author ID supplied";
 showFooter();
 exit;
}

// Display the header - we have no error
showHeader("Author: $author->firstName $author->lastName");

// Now get the number and fetch all his books
$books = $author->getBooks();

An Advanced Example

[146]

$totalBooks = $author->getBookCount();

// now display everything
?>
<h2>Author</h2>
<table width="60%" border="1" cellpadding="3">
<tr>
 <td>First Name</td>
 <td><?=htmlspecialchars($author->firstName)?></td>
</tr>
<tr>
 <td>Last Name</td>
 <td><?=htmlspecialchars($author->lastName)?></td>
</tr>
<tr>
 <td>Bio</td>
 <td><?=htmlspecialchars($author->bio)?></td>
</tr>
<tr>
 <td>Total books</td>
 <td><?=$totalBooks?></td>
</tr>
</table>
<a href="editAuthor.php?author=<?=$author->id?>">Edit author...

<h2>Books</h2>
<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>Title</td>
 <td>ISBN</td>
 <td>Publisher</td>
 <td>Year</td>
 <td>Summary</td>
</tr>
<?php
// Now iterate over every book and display it
while($b = $books->fetch())
{
 ?>
 <tr>
 <td><?=htmlspecialchars($b->title)?></td>
 <td><?=htmlspecialchars($b->isbn)?></td>
 <td><?=htmlspecialchars($b->publisher)?></td>
 <td><?=htmlspecialchars($b->year)?></td>

Chapter 7

[147]

 <td><?=htmlspecialchars($b->summary)?></td>
 </tr>
 <?php
}
?>
</table>

<?php
// Display footer
showFooter();

The changes here are rather cosmetic, as it just removes the direct communication
with PDO and changes to the object syntax from the array syntax on highlighted lines.

Finally, the last page that shows a list from borrowers.php:

<?php

/**
 * This page lists all borrowed books
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// Display the header
showHeader('Lended Books');

// Get all lended books list
$brs = Model::getBorrowers();
$totalBooks = Model::getBorrowerCount();

// now create the table
?>
Total borrowed books: <?=$totalBooks?>
<table width="100%" border="1" cellpadding="3">
<tr style="font-weight: bold">
 <td>Title</td>
 <td>Author</td>
 <td>Borrowed by</td>
 <td>Borrowed on</td>
 <td>Return</td>
</tr>

<?php
// Now iterate over every row and display it
while($br = $brs->fetch())

An Advanced Example

[148]

{
 $b = $br->getBook();
 $a = $b->getAuthor();
 ?>
 <tr>
 <td><?=htmlspecialchars($b->title)?></td>
 <td><?=htmlspecialchars("$a->firstName $a->lastName")?></td>
 <td><?=htmlspecialchars($br->name)?></td>
 <td><?=date('d M Y', $br->dt)?></td>
 <td>
 <a href="returnBook.php?borrower=<?=$br->id?>">Return
 </td>
 </tr>
 <?php
}
?>
</table>

<?php
// Display footer
showFooter();

In this file, we have the same problem as we had with books.php page—the Model
class returns instances of the Borrower class without the book title and the author
name, which we want to display on this page. Because of that, we get the Book class
instance for each Borrower class instance on every iteration, and then use that object
to get author details.

Finally, we will modify two more pages to make use of our newly created data
model. These two are lendBook.php and returnBook.php. They probably
contained the longest bit of code that interfaced with PDO. From lendBook.php we
remove all the code wrapped within the transaction:

<?php

/**
 * This page allows you to lend a book
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// First see if the request contains the book ID
// Return to books.php if the ID invalid

Chapter 7

[149]

$id = (int)$_REQUEST['book'];
$book = Model::getBook($id);
if(!$book) {
 header("Location: books.php");
 exit;
}

// Now see if the form was submitted
$warnings = array();
if($_POST['submit']) {
 // Require that the borrower's name is entered
 if(!$_POST['name']) {
 $warnings[] = 'Please enter borrower\'s name';
 }
else {
 // Form is OK, "lend" the book
 if(!$book->lend($_POST['name'])) {
 // Failure, show error message
 $warnings[] = 'There are no more copies of
 this book available';
 }
 }

 // Now, if we don't have errors,
 // redirect back to books.php
 if(count($warnings) == 0) {
 header("Location: books.php");
 exit;
 }
 // Otherwise, the warnings will be displayed
}

// Display the header
showHeader('Lend Book');

// If we have any warnings, display them now
if(count($warnings)) {
 echo "Please correct these errors:
";
 foreach($warnings as $w)
 {
 echo "- ", htmlspecialchars($w), "
";
 }
}

// Now display the form
?>
<form action="lendBook.php" method="post">

An Advanced Example

[150]

 <input type="hidden" name="book" value="<?=$id?>">
 Please enter borrower's name:

 <input type="text" name="name" value="<?=htmlspecialchars($_
 POST['name'])?>">
 <input type="submit" name="submit" value=" Lend book ">
</form>

<?php
// Display footer
showFooter();

Note how we changed the part that lends the book—the Bool::lend() method
returns null in case of failure, so we will display a message that there are no more
books left to lend. If the operation is successful, then Book::lend() method returns
the Borrower class instance (which evaluates to true in the if statement) and the
page redirects to books.php.

Similarly, we remove the PDO-related code from returnBook.php and replace it
with the corresponding call to the Borrower::returnBook() method:

<?php

/**
 * This page "returns" a book back to the library
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');

// First see if the request contains the borrowers ID
// Return to books.php if not
$id = (int)$_REQUEST['borrower'];
$borrower = Model::getBorrower($id);
if(!$borrower) {
 header("Location: books.php");
 exit;
}

// Return the book and redirect to books.php
// If anything happens, the exception will be
// handled automatically
$borrower->returnBook();
header("Location: books.php");

Chapter 7

[151]

Advantages of Separating the Model
So far, almost all of the files that generate front-end pages don't contain data
access logic and are easier to manage. On the other hand, the model classes can be
used from outside our application, and additional pages can be quickly created to
represent the information in the database in other formats such as XML.

For example, consider the following page (which we will call books.xml.php):

<?php

/**
 * This page lists all the books we have as an XML data structure
 * PDO Library Management example application
 * @author Dennis Popel
 */

// Don't forget the include
include('common.inc.php');
// Set the content type to be XML
header('Content-Type: application/xml');
// Get the books list
$books = Model::getBooksWithAuthors();

// Echo XML declaration and open root element
echo '<?xml version="1.0"?>', "\n";
echo "<books>\n";

// Now iterate over every book and display it
while($b = $books->fetch())
{
 ?>
 <book id="<?=$b->id?>">
 <isbn><?=$b->isbn?></isbn>
 <title><?=htmlspecialchars($b->title)?></title>
 <publisher><?=htmlspecialchars($b->publisher)?></publisher>
 <summary><?=htmlspecialchars($b->summary)?></summary>
 <author>
 <id><?=$b->author?></id>
 <lastName><?=$b->lastName?></lastName>
 <firstName><?=$b->firstName?></firstName>
 </author>
 </book>
 <?
}
echo '</books>';

An Advanced Example

[152]

This file allows us to export the list of books in XML format for another application.
As you can see, the changes to the original books.php file are only in the display
logic. If you now navigate to the page, you should see the following:

With a slight modification, we were able to create new representation of our
data (The second and third books have been collapsed to fit everything on
the screenshot).

Another advantage of defining model classes is that these classes become the central
point for data access and manipulation. For example, if you change the SQL for
representing data from several tables (using joins) or find a way to optimize a
query, you just have to update the relevant model class, and the scripts (controllers)
that were using that query don't have to get updated. This is a major
manageability advantage.

Chapter 7

[153]

You may extend abstract model classes to imitate extended functionality for real
subclasses in a common data model. For example, in a content management system
you can create an abstract base class called Item, which will have common properties
for all the subclasses (item types) such as author, keywords, and creation date. Then
the model can perform some operations for all possible subclasses without further
coding so that the existing code is extensively reused.

There are tools called object-relational mappers (ORMs) that make use of the
ideas described in this chapter. ORMs are used to create powerful object-oriented
applications where you have virtually no SQL code in you model. (In fact, these
tools after some configuring play the role of the model in your application.) You can
read more about ORMs at http://en.wikipedia.org/wiki/Object-relational_
mapping. Propel (http://propel.phpdb.org/) is a popular ORM tool for PHP5.

Further Thoughts
The model developed in this chapter, needs some improvements in at least two
areas, if you want to use it in a real-life application. We didn't create methods
in the model that would provide the functionality of the editBook.php and
editAuthor.php files. However, you should now be ready to add this functionality
by yourself. We will provide you with some tips:

Create the Book::update() and Author::update() methods. These methods
should accept parameters that reflect the properties of each object (for the
Author class, this should be first name, last name, and biography).
These methods should use prepared statements to update the corresponding
records in the database (based on the $this->id value).
The Model class should be extended with two more methods, Model::
createBook() and Model::createAuthor(). These methods should accept
the same list of parameters as Book::update() and Author::update().
Both should insert a row based on the passed parameters, into the relevant
table. This can be done with the following code:

	 $conn = self::getConn();
	 $conn->beginTransaction();
	 try
	 {
	 $conn->query("INSERT INTO authors(bio) VALUES('')");
	 $aid = $conn->lastInsertId();
	 $author = self::getAuthor($aid);
	 $author->update($firstName, $lastName, $bio);
	 $conn->commit();
	 }

•

•

•

An Advanced Example

[154]

	 catch(Exception $e)
	 {
	 $�����������������conn->rollBack();
	 }

The idea here is to concentrate entity updating in a single place, namely
Author::update(). We employ a transaction here to ensure that, if anything
happens, the empty row is not stored in the database.
The form processing code should detect whether it's editing an existing entity
or creating a new one and call Model::createAuthor() or
Author::update() on an already existing instance appropriately.

Another problem is that, the methods of the model classes do not validate accepted
parameters. They should provide validation of every parameter passed to the
database if you are going to expose your data model to third-party applications. If
accessed via web browser, our data model is protected by the form validation code.
However, direct access to the model classes is not as secure.

It is advisable to throw an exception from the model methods that accept
user-supplied parameters in case the validation fails. Also, web form validation and
method parameter validation should use common code. (For example, you might
develop a Validation class that could be used to validate values regardless of where
they come from.) This code should be used from within the form validation code and
model methods. By doing this, so you will assure code reuse and a single place for
the validation rules.

Finishing Up
PHP Data Objects is a great and easy-to-use technology. However, it's still in its
infancy and many improvements and other changes are yet to come. Be sure to keep
yourself updated with the latest news from PHP developers and from the large
community of PHP fans and users.

Effective use of PDO and PHP in general, is possible only with a sound
understanding of security threats and how to protect against them. Using PDO's
prepared statements diminishes the risk of SQL injection attacks, but you, the
developer, are still responsible for securing your application. Make sure that you
keep track of the latest developments in the security field.

Happy PHP-ing!

•

Introduction to OOP in PHP5
Throughout this book, we were mainly using procedural code to build the example
application. However, the PDO API is fully object-oriented, and in the last chapter
we imitated real-life entities in the database by using classes. This appendix is for
those programmers who are not familiar with PHP5's object-oriented extensions. We
will introduce you to the basics of OOP, as many developers coming from earlier
versions of PHP have no experience of this type of programming. However, this is
only a short introduction; if you want to master OOP, you should refer to some of
the books devoted to this topic.

What is Object-Oriented Programming?
Object-oriented programming (OOP) is a relatively new concept, although its
roots date back to 1960s. In OOP, the software works with objects that model
real-life entities (such as books and authors in the Chapter 7). Whereas procedural
programming involves a series of instructions, an application in OOP involves a set
of objects that interact with each other.

The Syntax for Declaring Objects
An object can be viewed as a container for several variables, called properties, and
for functions that act on these variables. These functions are called methods. Every
object belongs to a class. In PHP, every object can belong to only one class (although
some other OOP languages allow multiple inheritance), but there can be many
objects, or instances, belonging to a single class. A class is a syntactic construct that
allows you to describe what properties and methods the objects belonging to this
class will have.

Introduction to OOP in PHP5

[156]

There is an analogy with species and living organisms—for example, a Dog (a
species, or a class) is a generalization of all living dogs. A generalized dog has such
properties as weight and age, and a method such as bark, and a real-life dog, say
Lessie, which belongs to the dog species, could be described as an instance of the
Dog class.

Let's see how we would model this in PHP5:

class Dog
{
 public $weight;
 public $age;

 function bark()
 {
 print "woof!";
 }
}

$lessie = new Dog();
$lessie->weight = 15;
$lessie->age = 3;
$lessie->bark();

In this small snippet of code, we defined a class called Dog. In PHP5, a class
definition starts with the reserved word class followed by the class's name (A class's
name can contain the same characters as a function's name.) All the class's properties
and methods, collectively called members, are defined inside the {…} block.

As you can see, we are using the keyword, public, when we declare properties and
methods. In PHP4 we would have used the var keyword instead, but this keyword
is deprecated in PHP5. Besides the public keyword, we could have used the
protected keyword or the private keyword, but more on this later.

As you can see in the second part of the code, we create the object with the
new keyword:

$lessie = new Dog();

This line creates a new object belonging to the Dog class and assigns it to the $lessie
variable. This is a very important step, since this is the only way to create objects.
After the PHP processes it, the $lessie variable becomes initialized and we can
access the properties and methods declared in the Dog class so that we act on the
object called Lessie. We would now like to have two dogs in our application, and
the second one will be called K9. To achieve that, we would have to write something
like this:

Appendix A

[157]

$k9 = new Dog();
$k9->age = 5;
$k9->weight = 18;

Now, we can access both the $k9 and $lessie variables, if we would like to interface
with each of our dogs.

In other words, before we can communicate with an instance, it first has to be created
with the new keyword.

After the variable has been initialized, we can access its properties and methods. As
you can see in the code, this is achieved with the -> construct, which is used with
both properties and methods. Note that when accessing a class’s properties, we don’t
have to write the dollar sign after the -> (but we have to use it when declaring the
properties inside the class definition).

The methods are declared with the function keyword followed by the method’s
name and a list of parameters. In fact, a class’s methods are declared in a similar
way to that for an ordinary function, but there is one major difference. Inside
the declaration of a method, there always exists implicit variable, called $this,
which allows you to access the object’s properties. Let’s see how we could create a
getInfo() method to return some additional information about our dogs:

<?php

class Dog
{
 public $weight;
 public $age;

 function bark()
 {
 print "woof!";
 }

 function getInfo()

 {

 return 'Weight: ' . $this->weight . ' kg, age: ' . $this->age .

 ' years';

 }

}

$lessie = new Dog();
$lessie->weight = 15;
$lessie->age = 3;

Introduction to OOP in PHP5

[158]

$k9 = new Dog();
$k9->age = 5;
$k9->weight = 18;
echo 'Lessie: ', $lessie->getInfo(), "\n";
echo 'K9: ', $k9->getInfo(), "\n";

This code would display the following output:

Lessie: Weight: 15 kg, age: 3 years
K9: Weight: 18 kg, age: 5 years

Constructors
Every class also has a special function (which may be implicit or explicitly declared)
called a constructor. The constructor is always called when PHP encounters the new
keyword, and its purpose is to perform some initialization tasks. Let's extend the Dog
class so that it has a $name property. We will also change the code so as to initialize
the name, weight, and age properties inside the constructor rather than in the
main application:

<?php

class Dog
{
 public $weight;
 public $age;
 public $name;

 function __construct($name, $age, $weight)
 {
 $this->name = $name;
 $this->weight = $weight;
 $this->age = $age;
 }

 function bark()
 {
 print "woof!";
 }

 function getInfo()
 {
 return
 'Name: ' . $this->name .
 ', weight: ' . $this->weight .
 ' kg, age: ' . $this->age .
 ' years';

Appendix A

[159]

 }

}

$lessie = new Dog('Lessie', 3, 15);

$k9 = new Dog('K9', 5, 18);

echo $lessie->getInfo(), "\n";

echo $k9->getInfo(), "\n";

This application would display the following:

Name: Lessie, weight: 15 kg, age: 3 years
Name: K9, weight: 18 kg, age: 5 years

Here's a brief summary of what we did. We first declared the $name property and
then the constructor for our Dog class. The constructors are declared as function
with the special name of __construct (the word constructor prepended with two
underscores('_'). Our constructor accepts three parameters—name, age, and weight,
whose values are assigned to the object's properties. The order in which we assign
values to the properties does not matter. Note that we always have to use the $this
variable to denote the properties of the object. By doing this, we can differentiate the
local variables $name, $age, and $weight (passed as parameters) from the object's
own properties, which have the same names, inside the constructor.

We also changed the getInfo() method so that it returns the name of the dog as
well. We can now instantiate objects by passing the name, the age, and the weight to
the constructor. Since these properties get assigned in the constructor, we don't have
to do this in the main part of the code.

It should be also noted that you can assign default values to properties in the class
definition. This will ensure that every object of that class will have the default values
automatically assigned. For example, we can do the following:

class Dog
{
 public $weight;
 public $age;
 public $name;
 public $hasCollar = true;

 function __construct($name, $age, $weight)
 {
 $this->name = $name;
 $this->weight = $weight;
 $this->age = $age;

Introduction to OOP in PHP5

[160]

 }

 function bark()
 {
 print "woof!";
 }

 function getInfo()

 {

 return

 'Name: ' . $this->name .

 ', weight: ' . $this->weight .

 ' kg, age: ' . $this->age .

 ' years, has collar: ' . ($this->hasCollar ? 'yes' : 'no');

 }

}

If you run the application with this Dog class definition, then you will see the
following output:

Name: Lessie, weight: 15 kg, age: 3 years, has collar: yes
Name: K9, weight: 18 kg, age: 5 years, has collar: yes

As you can now see, the default property value for hasCollar has propagated to
every newly created instance (of course, it can be later changed for each object).

Destructors
There is an opposite concept to constructors, called destructors. As its name suggests,
destructors are used to perform cleanup tasks (classic examples of such tasks are
deleting temporary files, closing database connections, etc). In PHP5, destructor on
an object is called, when there are no more references to that object (for example,
by setting the variable that holds the reference to the object to null or when the
application terminates), then the destructor will be called.

Destructor is a method: __destruct(). If you add that method to the class, then it
will be called when the object is freed. Let’s add the destructor to the Dog class:

class Dog {
 public $weight;
 public $age;
 public $name;
 public $hasCollar = true;

 function __construct($name, $age, $weight) {

Appendix A

[161]

 $this->name = $name;
 $this->weight = $weight;
 $this->age = $age;
 }

 function bark() {
 print "woof!";
 }

 function getInfo() {
 return
 'Name: ' . $this->name .
 ', weight: ' . $this->weight .
 ' kg, age: ' . $this->age .
 ' years, has collar: ’ . ($this->hasCollar ? 'yes’ : 'no’);
 }

 function __destruct() {
 print "Freeing $this->name\n";
 }
}

Now, if you run the code again, it will give the following output:

Name: Lessie, weight: 15 kg, age: 3 years, has collar: yes
Name: K9, weight: 18 kg, age: 5 years, has collar: yes
Freeing K9
Freeing Lessie

Note that the order in which PHP5 calls the destructors is not defined. Also, in
a destructor, the code may not access other objects unless they are referenced by
the object being freed. In other words, the destructor should only cleanup those
resources that were created by that object.

The Advantages of OOP
The power of OOP lies in its three main characteristics: inheritance, encapsulation,
and polymorphism.

Introduction to OOP in PHP5

[162]

Inheritance
Inheritance in OOP allows you to create new classes that inherit an existing class's
behaviour (methods) and attributes (properties). Let's consider the following
example. Assume that we have a class called Fruit. It is a generalized type of class
for different fruits, and its common attributes are color and weight. In OOP, we can
subclass Fruit to create new classes Apple and Banana. Both these classes (being
subclasses of Fruit) will have the same properties: weight and color. (Note we
are speaking about properties as such, not about their values). An apple can have
a green color, while a Banana can have a yellow color. But any code that interacts
with Apple or Banana class instances does not need to know what kind of fruit it is
communicating with.

Let's put this example into code:

class Fruit
{
 public $color;
 public $weight;
}

class Apple extends Fruit
{
 function __construct()
 {
 $this->color = 'green';
 $this->weight = 200;
 }
}

class Banana extends Fruit
{
 function __construct()
 {
 $this->color = 'yellow';
 $this->weight = 250;
 }
}

$a[] = new Apple();
$a[] = new Banana();
foreach($a as $f)
{
 echo $f->color, "\t", $f->weight, "\n";
}

Appendix A

[163]

As you can see, in this small application we have one Apple object and one Banana
object. We iterate over them in a loop, but access their properties regardless of their
type, since both classes use the same property names. But these properties carry
different values for each fruit.

Inheritance also allows to extend or completely override the behavior of the parent
classes. Let's assume that our Fruit class has one more characteristic—price per
kg. It also has a new method—getPrice() that just multiplies the weight (which we
have in grams) by the price:

class Fruit
{
 public $color;
 public $weight;
 public $price;

 function getPrice()
 {
 return $this->weight / 1000 * $this->price;
 }
}

Now we can use this method in the subclasses:

class Apple extends Fruit
{
 function __construct()
 {
 $this->color = 'green';
 $this->weight = 200;
 $this->price = 2;
 }
}

class Banana extends Fruit
{
 function __construct()
 {
 $this->color = 'yellow';
 $this->weight = 250;
 $this->price = 3;
 }
}

$a[] = new Apple();
$a[] = new Banana();
foreach($a as $f)

Introduction to OOP in PHP5

[164]

{
 echo $f->getPrice(), "\n";
}

Next, we will assume that the Banana class has another method for calculating price
so that a discount is applied:

class Banana extends Fruit
{
 function __construct()
 {
 $this->color = 'yellow';
 $this->weight = 250;
 $this->price = 3;
 }

 function getPrice()
 {
 return $this->weight / 1000 * $this->price * 0.9;
 }
}

As you can see, we changed the method in the Banana class so that the code calling
the Banana class's implementation of the getPrice() method will get discounted
price, while the Apple class's getPrice() method returns full price.

On the other hand, we could reuse the Fruit class's implementation of the
getPrice() method in the Banana class (so that we don't have to duplicate the code
contained in the base class):

 function getPrice()
 {
 return parent::getPrice() * 0.9;
 }

Encapsulation
Encapsulation (sometimes called information hiding) is a more theoretical concept. It
involves defining methods in a class in such a way that we hide the implementation
details from the client code. We have already seen this when we redefined the
price calculation in the Banana class. From the application's point of view, nothing
changed: we still call the getPrice() method, but we don't know how this
calculation is performed.

Appendix A

[165]

In other words, classes are accessible through their methods, which have the same
names so that, even if the code behind these names changes, the names themselves
do not change. This ensures that existing code does not need to be changed to work
with new versions of methods.

We can do more to hide implementation details from client code, PHP5, like other
object-oriented languages, supports visibility modifiers for methods and properties.
For example, we could add a private property, which will be hidden from the rest of
the application, to the Banana class:

class Banana extends Fruit
{
 private $mySecretProperty;

 function __construct()
 {
 $this->color = 'yellow';
 $this->weight = 250;
 $this->price = 3;
 }

 function getPrice()
 {
 return parent::getPrice() * 0.9;
 }
}

The $mySecretProperty property is only accessible (or visible) in the Banana class;
an attempt to access it from outside the Banana class's methods would trigger a
run-time error. (In a compiled language, this would lead to a compilation error.)

In PHP5, there exist two more modifiers: public (which we have already used), and
protected. Public method or property is accessible from all the application, while
protected is accessible inside the class and its subclasses only.

Polymorphism
Polymorphism is a feature of OOP that allows us to write code that will work with
objects belonging to different classes provided that these classes have the same base
class. We have already seen polymorphism in action in the above example when we
were accessing properties and methods of different objects using their names but
returning different values and taking different actions.

The subclasses implement all the properties and methods belonging to the base
class, and all future subclasses of the base class are guaranteed to implement these
properties and methods so that the existing code can work even with subclasses
which do not yet exist.

Introduction to OOP in PHP5

[166]

PHP5 supports interfaces. An interface is a construct that describes certain behaviour
in different classes and class hierarchies. For example, let’s consider a Tradeable
interface that has a single method, isImported():

interface Tradeable
{
 public isImported();
}

Now, we can declare in the definition of the Fruit class that it implements the
Tradeable interface:

class Fruit implements Tradeable
{
 public $color;
 public $weight;
 public $price;

 function getPrice()
 {
 return $this->weight / 1000 * $this->price;
 }

 function isImported()
 {
 return false;
 }
}

We have made Fruit objects and all objects belonging to its subclasses (Apple
and Banans) non-imported by default. Now we can make bananas imported while
leaving apples domestic:

class Banana extends Fruit
{
 function __construct()
 {
 $this->color = 'yellow';
 $this->weight = 250;
 $this->price = 3;
 }

 function getPrice()
 {
 return parent::getPrice() * 0.9;
 }

 function isImported()
 {
 return true;
 }
}

Appendix A

[167]

Next we will create an imaginary Car class that implements the Tradeable interface:

class Car implements Tradeable
{
 public $year;
 public $make;
 public $model;

 function isImported()
 {
 return true;
 }
}

Note that Car does not extend Fruit, but it still has the isImported() method. Now
we can call this method from the application:

$a[] = new Apple();
$a[] = new Banana();
$a[] = new Car();
foreach($a as $item)
{
 echo $item->isImported();
}

This small example shows how objects from different class hierarchies can be treated
in the same way by giving them a common interface. By doing this, objects that
normally have quite different meanings can be manipulated in the same way, and
this makes them polymorphic.

Static Properties, Methods, and Class
Constants
In all the examples in this appendix, we are using instances (objects) of classes, which
modeled real-life entities. However, in PHP5 it is possible to use static properties and
methods. Static properties are variables that are common to all the instances of the
given class so that, if a static property is changed, it will get changed for all objects
belonging to the class.

A static property is declared just like a regular one, but with a special static keyword:

class DataModel
{
 public static $conn = null;

}

Introduction to OOP in PHP5

[168]

The static properties can be accessed without even creating an instance of the class:

if(!DataModel::$conn) {
 echo 'Connection not established!';
}

The syntax for accessing a static property is as follows: the class name, then double
semicolon, and then the property's name. Note that with static properties (unlike
with regular properties), the dollar sign, $, sign must be present.

Static methods, just like static properties, can be accessed without instantiating an
object. They are declared and accessed in the following way:

class DataModel
{
 public static $conn = null;

 static function getConn()

 {

 if(!DataModel::$conn) {
 DataModel::$conn = new PDO('sqlite:./my.db', 'user', 'pass');
 }
 return DataModel::$conn;
 }
}

$conn = DataModel::getConn();

The declaration of a static method has the static keyword followed by a regular
method declaration. The method is accessed by the class name followed by a double
semicolon and then the method name.

The static properties and methods can be accessed inside the class declaration using
the shortcut keyword self:

class DataModel
{
 public static $conn = null;

 static function getConn()
 {
 if(!self::$conn) {
 self::$conn = new PDO('sqlite:./my.db', 'user', 'pass');
 }
 return self::$conn;
 }
}

$conn = DataModel::getConn();

Appendix A

[169]

There is also a major difference with the definition of static methods. You cannot use
the $this variable (as there is no object to which the $this variable can refer).

Another 'static' feature of classes is class constants. A class constant acts like a static
property, but its value cannot be changed. Class constants always must have their
values assigned in the class declaration section, and they don't have the dollar sign
before them (so they are named just like regular PHP constants). Class constants are
mostly used for keeping the global namespace cleaner (which is also one of the uses
for static methods):

class DataModel
{
 public static $conn = null;
 const ORDER_AZ = 1;

 const ORDER_ZA = 2;

 static function getConn()
 {
 if(!self::$conn) {
 self::$conn = new PDO('sqlite:./my.db', 'user', 'pass');
 }
 return self::$conn;
 }

 static function getItems($sortMode)
 {
 if($sortMode == self::ORDER_AZ) {
 $sql = // SQL for ascending
 }
 else {
 $sql = // SQL for descending
 }
 }
}

$items = DataModel::getItems(DataModel::ORDER_ZA);

An attempt to assign a value to a class constant in the code will lead to a parse error.

Exceptions
As we have seen, exceptions are a very important addition to PHP5. Exceptions
are special kind of object that, when instantiated and thrown, break the normal
execution flow and jump to a so called catch block.

Introduction to OOP in PHP5

[170]

Exceptions are used to report error conditions. Traditionally, functions return error
codes if they fail. The application has to check every function call before proceeding
to the next function call. Remember the piece of code that you use to connect to a
MySQL database:

$dbh = mysql_connect($host, $user, $pass);
if(!$dbh) {
 die('Could not connect to the DB!');
}

if(!mysql_select_db('mydb')) {
 die('Could not select the DB');
}

$q = mysql_query('SELECT * FROM test');
if(!$q) {
 die('Could not execute query');
}

while($r = mysql_fetch_row($q))
{
 ...
}

If the mysql_xxx functions could throw exceptions, this code could be simplified
to this:

try
{
 mysql_connect($host, $user, $pass);
 mysql_select_db('mydb');
 $q = mysql_query('SELECT * FROM test');

 while($r = mysql_fetch_row($q))
 {
 ���...
 }
}
catch(Exception $e)
{
 die(e->getMessage());
}

Of course, this code would not work, as these functions are not designed to throw
exceptions. You will have to use PDO, and in Chapter 3 we saw how to work with
PDO exceptions.

Appendix A

[171]

Exceptions allow you to postpone error checking and maintain cleaner code. A
function (or method) that causes an exception to be thrown is terminated, and the
code in the block specified by the catch keyword is executed. Any code that might
throw an exception is wrapped into the try block:

try
{
 // do something exceptional
}
catch(Exception $e)
{
 // display warnings etc
 // $e->getMessage() contains error message
}

The real power of exceptions is the ability to escalate them up the call stack. This
means that, if you design a function or class method that can throw an exception,
that function or method does not have to catch that exception. In fact, many
application libraries are designed in such a way so that they don't process exceptions
themselves, but instead let them pass to the calling code.

For example, many of the methods of the PDO and PDOStatement classes that we
have encountered in this book can throw exceptions, and it is your responsibility to
catch them and act appropriately.

Take a closer look at the catch block in the above code snippet. It is followed by
the word Exception (which is the name of the base class for all exceptions in PHP)
and the variable identifier $e. We can use the $e variable inside the catch block to
inspect the error message and other debug information. The Exception class defines
the following methods:

getMessage() returns the error message.
getCode() returns the error code.
getFile() returns the name of the file where the exception occurred.
getLine() returns the number of the line where the exception occurred.
getTrace() and getTraceAsString() return the backtrace (call stack),
useful for debugging.

Of course, the error messages and error codes vary depending on where the
exception occurred, so that they depend on which application library (such as PDO)
you use.

•

•

•

•

•

We specified the Exception class name after the catch keyword, because this class,
like other classes, can be extended to create subclasses. For example, all exceptions
that are thrown from PDO methods are instances of the PDOException class.

The exception handling mechanism allows us to create different handling routines
for different classes of exception. For example, we can do the following:

try
{
 $conn = new PDO('sqlite:./mydb', '', '');
 $q = $conn->query('SELECT * FROM test');

 while($r = $q->fetch())
 {
 ...
 }
}

catch(PDOException $pdoe)

{

 die('Database error: ' . $pdoe->getMessage());
}

catch(Exception $e)

{

 die('Unexpected error: ' . $e->getMessage());
}

This code defines two error handling routines for all PDO errors: one class for a
database error and another class for all other errors, which we identify as unexpected
errors. Of course, in real life applications, the error handling strategies would be
more complicated, but this example shows how exceptions can be classified.

Summary
In this appendix, we saw that PHP5 has some new OOP extensions that are
comparable with those of modern programming languages. They allow us
to write very big applications while maintaining code reuse and cleanliness.
Object-oriented programming is a natural solution for big projects such as content
management systems or database libraries involving PDO. Libraries for PHP5 are
now being written with object-oriented programming in mind.

However, this appendix just gives a short introduction to the main concepts behind
OOP so that you can follow the code examples in this book. If you want to fully
master object-oriented programming, you should refer to books that will introduce
you to and guide you through this challenging topic.

Index
A
application

edit author page, creating 64-67
edit book page, creating 55-60
edit book page, linking 61-64

application architecture 24

B
BLOB

columns, adding 81
edit book page. altering 81-86
upload facility, making available 87-89
working with 80

bound values 75
buffered queries 114

C
code, designing 24
configuration file 115
connection attributes

about 109
PDO::ATTR_CASE 110
PDO::ATTR_CLIENT_VERSION 112
PDO::ATTR_DRIVER_NAME 112
PDO::ATTR_ERRMODE 111
PDO::ATTR_SERVER_VERSION 112
setting 109

connection strings
about 20
advantages 20
data model 21
MySQL database, creating 22, 23
parameters 20
sample database, creating 21-24

constructors 158

D
Data Source Names. See connection strings
destructors 160
driver list

getting, getAvailableDrivers() method used
116, 117

DSN. See connection strings

E
encapsulation 164
error handling

about 47
error sources 48
error types 47
exceptions 51
exceptions, switching to 51
function, defining 53, 54
improper configuration 49
improper validation 49
modes, switching 51
record, inserting 50
server software failure or overload 48
silent error handling 51
silent error handling, switching to 51
syntax errors 50
types 51
warning mode 51
warning mode, switching to 51

exception handling
about 51
exception, throwing 170
exceptions 169
exception throwing 51, 52
switching to 51
try block 171
uncaught exceptions, securing against 69

[174]

I
inheritance 162

M
metadata

about 44
retrieving 44

model
about 131
designing 131-140
frontend, modifying 141-150
model class 133
separating, advantages of 151-153

MVC 131
MySQL buffered queries 114

N
named placeholders 73

O
OOP

about 155
advantages 161
class 156
constructors 158-160
destructors 160, 161
encapsulation 164
exceptions 169
features 161
inheritance 162
members 156
objects declaring sysntax 155-159
polymorphism 165

P
PDO

about 5
application, navigating 28
connection strings 7, 8, 20
database, connecting 6, 7
error handling 11-13
prepared statements 14-16, 71
quoting parameters 8

result sets, handling 8
SQL queries 8

PDOStatement class
about 31
rows, fault in retrieving 95

PHP Data Objects. See PDO
polymorphism 165
positional placeholders 73
prepared statements

about 71
bound values 75
INSERT query uses 78
named placeholders 73
positional placeholders 73
UPDATE query uses 78

R
result sets

about 31
metadata, retrieving 44, 45
rows, retrieving 95

returned rows, limiting
arbitrary offset 105, 106
database-specific SQL, using 104
top rows, processing 104, 105

rows
function, for retrieving 97-103
multiple rows retrieving queries 96

S
silent error handling 51

T
transactions

handling strategy 117
library application 118, 119
methods 118
PDO::beginTransaction() method 118
PDO::rollBack() method 118
working 117-128

W
warning mode error handling 51

	Learning PHP Data Objects
	Table of Contents
	Preface
	Chapter 1: Introduction
	Using PDO
	Connecting to the Database
	Connection Strings
	Issuing SQL Queries, Quoting Parameters, and Handling Result Sets
	Error Handling
	Prepared Statements
	Appropriate Understanding of PDO

	Summary

	Chapter 2: Using PHP Data Objects: First Steps
	Connection Strings
	Creating the Sample Database
	The Data Model
	Creating the MySQL Database

	Designing Our Code
	PDO Statements and Result Sets
	Retrieving Result Set Metadata
	Summary

	Chapter 3: Error Handling
	Sources of Errors
	Server Software Failure or Overload
	Improper Configuration of the Application
	Improper Validation of User Input
	Inserting a Record with a Duplicate Primary Key or Unique Index Value
	Syntax Errors in SQL Statements

	Types of Error Handling in PDO
	Defining an Error Handling Function
	Creating the Edit Book Page
	Creating the Edit Author Page
	Securing against Uncaught Exceptions
	Summary

	Chapter 4: Prepared Statements
	Prepared Statements
	Positional and Named Placeholders
	Prepared Statements and Bound Values

	Working with BLOBs
	Summary

	Chapter 5: Handling Rowsets
	Retrieving the Number of Rows in a Result Set
	Limiting the Number of Rows Returned
	Using Database-Specific SQL
	Processing the Top N Rows Only
	Starting at an Arbitrary Offset

	Summary

	Chapter 6: Advanced PDO Usage
	Setting and Getting Connection Attributes
	MySQL Buffered Queries
	Connecting Using the Connection Configuration File and php.ini Setting
	Getting the List of Available Drivers
	Transactions
	Summary

	Chapter 7: An Advanced Example
	Designing the Model
	Modifying the Frontend to Use the Model
	Advantages of Separating the Model
	Further Thoughts
	Finishing Up

	Appendix A: Introduction to OOP in PHP5
	What is Object-Oriented Programming?
	The Syntax for Declaring Objects
	Constructors

	The Advantages of OOP
	Inheritance
	Encapsulation
	Polymorphism

	Static Properties, Methods, and Class Constants
	Exceptions
	Summary

	Index

