
SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your web site

 Make learning easy and fun

Detailed installation instructions

Easy-to-understand diagrams

Practical code examples

WHAT’S INSIDE?

PA
N

TO
N

E
 2955 C

PA
N

TO
N

E
 O

range 021 C

C
M

Y
K

 100, 45, 0, 37
C

M
Y

K
 O

, 53, 100, 0

B
lack 100%

B
lack 50%

C
M

Y
K

:

Pan
to

n
e:

G
rey scale

PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

CMYK:

Pantone:

Grey scale

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

ISBN: 978-0-9805768-1-8

ALL SOURCE CODE AVAILABLE FOR DOWNLOAD

LEARNING PHP & MYSQL HAS NEVER BEEN SO EASY!

Kevin Yank is a world-renowned leader in web development. When not

writing best sellers, Kevin is the Technical Director of sitepoint.com and editor

of the popular SitePoint Tech Times newsletter. Kevin has also co-authored

Simply JavaScript and Everything You Know About CSS Is Wrong!

ABOUT KEVIN YANK

BUILD YOUR OWN

DATABASE
DRIVEN WEB SITE

USING PHP & MYSQL

TEACH YOURSELF PHP & MYSQL
THE EASY WAY ...

Build Your Own Database Driven Web Site Using PHP & MySQL
is a practical hands-on guide to learning all the tools, principles,
and techniques needed to build a fully functional database driven
web site using PHP & MySQL. This book covers everything from
installing PHP and MySQL on Windows, Linux, and Mac computers
through to building a live, web-based content management system.

You’ll learn how to:
�� Install PHP 5 & MySQL 5 on Windows, Linux, or Mac OS X
�� Gain a thorough understanding of PHP syntax
�� Master database design principles and SQL
�� Build a working content management system
�� Add, edit, and delete web content without using HTML
�� Build an ecommerce shopping cart
�� Utilize sessions and cookies to track site visitors
�� Craft SEO-friendly and memorable URLs

And a whole lot more ...

BY KEVIN YANK
4TH EDITION

P
H

P
 &

 M
Y

S
Q

L

YANK

B
U

ILD
 YO

U
R

 O
W

N
DATABASE DRIVEN W

EB SITE
U

SIN
G

 PH
P &

 M
YSQ

LUSD $39.95

WEB PROGRAMMING

CAD $49.95

phpmysql4.indd 1 5/28/2009 5:51:24 PM

Licensed to botuongxulang@yahoo.com

Summary of Contents

Preface . xix

1. Installation . 1

2. Introducing MySQL . 53

3. Introducing PHP . 73

4. Publishing MySQL Data on the Web . 115

5. Relational Database Design . 151

6. Structured PHP Programming . 171

7. A Content Management System . 197

8. Content Formatting with Regular Expressions . 241

9. Cookies, Sessions, and Access Control . 261

10. MySQL Administration . 313

11. Advanced SQL Queries . 337

12. Binary Data . 357

A. MySQL Syntax Reference . 389

B. MySQL Functions . 415

C. MySQL Column Types . 435

D. PHP Functions for Working with MySQL . 449

Index . 463

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

BUILD YOUR OWN
DATABASE DRIVEN WEB
SITEUSINGPHP&MYSQL

BY KEVIN YANK
4TH EDITION

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Build Your Own Database Driven Web Site Using PHP & MySQL
by Kevin Yank

Copyright © 2009 SitePoint Pty. Ltd.

Editor: Kelly SteeleManaging Editor: Chris Wyness

Cover Design: Alex WalkerTechnical Editor: Andrew Tetlaw

Indexer: Russell Brooks

Latest Update: July 2009Printing History:

1st Ed. Aug. 2001, 2nd Ed. Feb. 2003,

3rd Ed. Oct. 2004

Fourth Edition: July 2009

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066.

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9805768-1-8

Printed and bound in the United States of America

iv

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

About the Author

As Technical Director for SitePoint, Kevin Yank keeps abreast of all that is new and exciting

in web technology. Best known for the book you are reading right now, he also co-authored

Simply JavaScript (http://www.sitepoint.com/books/javascript1/) with Cameron Adams and

Everything You Know About CSS Is Wrong! (http://www.sitepoint.com/books/csswrong1/)

with Rachel Andrew. In addition, Kevin hosts the SitePoint Podcast

(http://www.sitepoint.com/podcast/) and writes the SitePoint Tech Times, a free email

newsletter that goes out to over 240,000 subscribers worldwide.

Kevin lives in Melbourne, Australia and enjoys speaking at conferences, as well as visiting

friends and family in Canada. He’s also passionate about performing improvised comedy

theater with Impro Melbourne (http://www.impromelbourne.com.au/) and flying light aircraft.

Kevin’s personal blog is Yes, I’m Canadian (http://yesimcanadian.com/).

About the Technical Editor

Andrew Tetlaw has been tinkering with web sites as a web developer since 1997. At SitePoint

he is dedicated to making the world a better place through the technical editing of SitePoint

books, kits, articles, and newsletters. He is also a busy father of five, enjoys coffee, and often

neglects his blog at http://tetlaw.id.au/.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for Web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums.

v

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

To my parents, Cheryl and

Richard, for making all this

possible.

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Table of Contents

Preface . xix

Who Should Read This Book . xx

What’s in This Book . xxi

Where to Find Help . xxiv

The SitePoint Forums . xxiv

The Book’s Web Site . xxiv

The SitePoint Newsletters . xxv

Your Feedback . xxv

Conventions Used in This Book . xxvi

Code Samples . xxvi

Tips, Notes, and Warnings . xxvii

Chapter 1 Installation . 1

Your Own Web Server . 2

Windows Installation . 3

All-in-one Installation . 3

Installing Individual Packages . 9

Mac OS X Installation . 20

All-in-one Installation . 20

Installing Individual Packages . 24

Linux Installation . 32

Installing MySQL . 33

Installing PHP . 37

Post-Installation Set-up Tasks . 44

What to Ask Your Web Host . 47

Your First PHP Script . 48

Full Toolbox, Dirty Hands . 52

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Chapter 2 Introducing MySQL . 53

An Introduction to Databases . 53

Logging On to MySQL . 55

Structured Query Language . 60

Creating a Database . 61

Creating a Table . 61

Inserting Data into a Table . 64

Viewing Stored Data . 66

Modifying Stored Data . 69

Deleting Stored Data . 70

Let PHP Do the Typing . 70

Chapter 3 Introducing PHP . 73

Basic Syntax and Statements . 75

Variables, Operators, and Comments . 78

Arrays . 79

User Interaction and Forms . 81

Control Structures . 94

Hiding the Seams . 104

Avoid Advertising Your Technology Choices 104

Use PHP Templates . 106

Many Templates, One Controller . 109

Bring On the Database . 113

Chapter 4 Publishing MySQL Data on the
Web . 115

The Big Picture . 115

Connecting to MySQL with PHP . 117

Sending SQL Queries with PHP . 123

x

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Handling SELECT Result Sets . 126

Inserting Data into the Database . 132

Deleting Data from the Database . 142

Mission Accomplished . 149

Chapter 5 Relational Database Design 151

Giving Credit Where Credit is Due . 152

Rule of Thumb: Keep Entities Separate . 153

SELECT with Multiple Tables . 158

Simple Relationships . 163

Many-to-Many Relationships . 166

One for Many, and Many for One . 169

Chapter 6 Structured PHP Programming 171

Include Files . 172

Including HTML Content . 172

Including PHP Code . 174

Types of Includes . 180

Shared Include Files . 181

Custom Functions and Function Libraries . 184

Variable Scope and Global Access . 187

Structure in Practice: Template Helpers . 191

The Best Way . 195

Chapter 7 A Content Management System 197

The Front Page . 198

Managing Authors . 202

Deleting Authors . 204

Adding and Editing Authors . 207

xi

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Managing Categories . 212

Managing Jokes . 218

Searching for Jokes . 218

Adding and Editing Jokes . 225

Deleting Jokes . 237

Summary . 238

Chapter 8 Content Formatting with Regular
Expressions . 241

Regular Expressions . 242

String Replacement with Regular Expressions . 247

Boldface and Italic Text . 248

Paragraphs . 249

Hyperlinks . 252

Matching Tags . 255

Putting It All Together . 257

Real World Content Submission . 260

Chapter 9 Cookies, Sessions, and Access
Control . 261

Cookies . 261

PHP Sessions . 267

A Simple Shopping Cart . 269

Access Control . 279

Database Design . 279

Controller Code . 283

Function Library . 290

Managing Passwords and Roles . 300

A Challenge: Joke Moderation . 309

xii

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The Sky’s the Limit . 311

Chapter 10 MySQL Administration 313

phpMyAdmin . 314

Backing Up MySQL Databases . 319

Database Backups Using mysqldump . 319

Incremental Backups Using Binary Logs . 321

MySQL Access Control . 324

Granting Privileges . 324

Revoking Privileges . 328

Access Control Tips . 329

Locked Out? . 331

Checking and Repairing MySQL Data Files . 332

Better Safe than Sorry . 336

Chapter 11 Advanced SQL Queries 337

Sorting SELECT Query Results . 337

Setting LIMITs . 340

LOCKing TABLES . 341

Column and Table Name Aliases . 344

GROUPing SELECT Results . 347

LEFT JOINs . 349

Limiting Results with HAVING . 353

Further Reading . 354

Chapter 12 Binary Data . 357

Semi-dynamic Pages . 358

Handling File Uploads . 364

Assigning Unique Filenames . 367

xiii

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Recording Uploaded Files in the Database . 369

Binary Column Types . 370

Storing Files . 372

Viewing Stored Files . 374

Putting It All Together . 379

Large File Considerations . 386

MySQL Packet Size . 386

PHP Script Timeout . 386

The End . 387

Appendix A MySQL Syntax Reference 389

SQL Statements Implemented in MySQL . 389

ALTER TABLE . 389

ANALYZE TABLE . 392

CREATE DATABASE . 393

CREATE INDEX . 393

CREATE TABLE . 393

DELETE . 395

DESCRIBE/DESC . 396

DROP DATABASE . 397

DROP INDEX . 397

DROP TABLE . 397

EXPLAIN . 397

GRANT . 398

INSERT . 398

LOAD DATA INFILE . 400

LOCK/UNLOCK TABLES . 400

OPTIMIZE TABLE . 401

RENAME TABLE . 402

REPLACE . 402

xiv

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

REVOKE . 403

SELECT . 403

SET . 410

SHOW . 411

TRUNCATE . 412

UNLOCK TABLES . 412

UPDATE . 413

USE . 414

Appendix B MySQL Functions . 415

Control Flow Functions . 415

Mathematical Functions . 416

String Functions . 419

Date and Time Functions . 423

Miscellaneous Functions . 430

Functions for Use with GROUP BY Clauses . 433

Appendix C MySQL Column Types 435

Numerical Types . 436

Character Types . 440

Date/Time Types . 445

Appendix D PHP Functions for Working with
MySQL . 449

Common PHP mysqli_* Functions . 449

mysqli_affected_rows . 449

mysqli_character_set_name . 449

mysqli_close . 450

mysqli_connect . 450

xv

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysqli_connect_errno . 451

mysqli_connect_error . 451

mysqli_data_seek . 451

mysqli_errno . 452

mysqli_error . 452

mysqli_fetch_all . 452

mysqli_fetch_array . 453

mysqli_fetch_assoc . 453

mysqli_fetch_field . 453

mysqli_fetch_field_direct . 454

mysqli_fetch_fields . 454

mysqli_fetch_lengths . 455

mysqli_fetch_object . 455

mysqli_fetch_row . 455

mysqli_field_count . 455

mysqli_field_seek . 456

mysqli_field_tell . 456

mysqli_free_result . 456

mysqli_get_client_info . 456

mysqli_get_client_version . 456

mysqli_get_host_info . 457

mysqli_get_proto_info . 457

mysqli_get_server_info . 457

mysqli_get_server_version . 457

mysqli_info . 457

mysqli_insert_id . 458

mysqli_num_fields . 458

mysqli_num_rows . 458

mysqli_ping . 458

mysqli_query . 458

xvi

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysqli_real_escape_string . 459

mysqli_real_query . 459

mysqli_select_db . 460

mysqli_set_charset . 460

mysqli_stat . 460

mysqli_store_result . 460

mysqli_thread_id . 461

mysqli_use_result . 461

Index . 463

xvii

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Preface
PHP and MySQL have changed.

Back in 2001, when I wrote the first edition of this book, readers were astonished

to discover that you could create a site full of web pages without having to write a

separate HTML file for each page. PHP stood out from the crowd of programming

languages, mainly because it was easy enough for almost anyone to learn and free

to download and install. The MySQL database, likewise, provided a simple and

free solution to a problem that, up until that point, had been solvable only by expert

programmers with corporate budgets.

Back then, PHP and MySQL were special—heck, they were downright miraculous!

But over the years, they have gained plenty of fast-moving competition. In an age

when anyone with a free WordPress1 account can set up a full-featured blog in 30

seconds flat, it’s no longer enough for a programming language like PHP to be easy

to learn; nor is it enough for a database like MySQL to be free.

Indeed, as you sit down to read this book, you probably have ambitions that extend

beyond what you can throw together using the free point-and-click tools of the Web.

You might even be thinking of building an exciting, new point-and-click tool of

your own. WordPress, after all, is built using PHP and MySQL, so why limit your

vision to anything less?

To keep up with the competition, and with the needs of more demanding projects,

PHP and MySQL have had to evolve. PHP is now a far more intricate and powerful

language than it was back in 2001, and MySQL is a vastly more complex and capable

database. Learning PHP and MySQL today opens up a lot of doors that would have

remained closed to the PHP and MySQL experts of 2001.

That’s the good news. The bad news is that, in the same way that a butter knife is

easier to figure out than a Swiss Army knife (and less likely to cause self-injury!),

all these dazzling new features and improvements have indisputably made PHP

and MySQL more difficult for beginners to learn.

1 http://wordpress.com/

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://wordpress.com/

Worse yet, PHP has completely abandoned several of the beginner-friendly features

that gave it a competitive advantage in 2001, because they turned out to be oversim-

plifications, or could lead inexperienced programmers into building web sites with

gaping security holes. This is a problem if you’re the author of a beginner’s book

about PHP and MySQL.

PHP and MySQL have changed, and those changes have made writing this book a

lot more difficult. But they have also made this book a lot more important. The more

twisty the path, the more valuable the map, right?

In this book, I’ll provide you with a hands-on look at what’s involved in building

a database driven web site using PHP and MySQL. If your web host provides PHP

and MySQL support, you’re in great shape. If not, I’ll show you how to install them

on Windows, Mac OS X, and Linux computers, so don’t sweat it.

This book is your map to the twisty path that every beginner must navigate to learn

PHP and MySQL today. Grab your favorite walking stick; let’s go hiking!

Who Should Read This Book
This book is aimed at intermediate and advanced web designers looking to make

the leap into server-side programming. You’ll be expected to be comfortable with

simple HTML, as I’ll make use of it without much in the way of explanation. No

knowledge of Cascading Style Sheets (CSS) or JavaScript is assumed or required,

but if you do know JavaScript, you’ll find it will make learning PHP a breeze, since

these languages are quite similar.

By the end of this book, you can expect to have a grasp of what’s involved in

building a database driven web site. If you follow the examples, you’ll also learn

the basics of PHP (a server-side scripting language that gives you easy access to a

database, and a lot more) and Structured Query Language (SQL—the standard

language for interacting with relational databases) as supported by MySQL, the most

popular free database engine available today. Most importantly, you’ll come away

with everything you need to start on your very own database driven site!

xx

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

What’s in This Book
This book comprises the following 12 chapters. Read them in order from beginning

to end to gain a complete understanding of the subject, or skip around if you only

need a refresher on a particular topic.

Chapter 1: Installation

Before you can start building your database driven web site, you must first ensure

that you have the right tools for the job. In this first chapter, I’ll tell you where

to obtain the two essential components you’ll need: the PHP scripting language

and the MySQL database management system. I’ll step you through the setup

procedures on Windows, Linux, and Mac OS X, and show you how to test that

PHP is operational on your web server.

Chapter 2: Introducing MySQL

Although I’m sure you’ll be anxious to start building dynamic web pages, I’ll

begin with an introduction to databases in general, and the MySQL relational

database management system in particular. If you have never worked with a

relational database before, this should definitely be an enlightening chapter that

will whet your appetite for what’s to come! In the process, you’ll build up a

simple database to be used in later chapters.

Chapter 3: Introducing PHP

Here’s where the fun really starts. In this chapter, I’ll introduce you to the PHP

scripting language, which you can use to build dynamic web pages that present

up-to-the-moment information to your visitors. Readers with previous program-

ming experience will probably only need a quick skim of this chapter, as I ex-

plain the essentials of the language from the ground up. This is a must-read

chapter for beginners, however, as the rest of this book relies heavily on the

basic concepts presented here.

Chapter 4: Publishing MySQL Data on the Web

In this chapter you’ll bring together PHP and MySQL, which you’ll have seen

separately in the previous chapters, to create some of your first database driven

web pages. You’ll explore the basic techniques of using PHP to retrieve inform-

ation from a database and display it on the Web in real time. I’ll also show you

how to use PHP to create web-based forms for adding new entries to, and

modifying existing information in, a MySQL database on the fly.

xxi

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Chapter 5: Relational Database Design

Although you’ll have worked with a very simple sample database in the previous

chapters, most database driven web sites require the storage of more complex

forms of data than you’ll have dealt with to this point. Far too many database

driven web site designs are abandoned midstream or are forced to start again

from the beginning, because of mistakes made early on during the design of the

database structure. In this critical chapter you’ll learn the essential principles

of good database design, emphasizing the importance of data normalization. If

you’re unsure what that means, then this is definitely an important chapter for

you to read!

Chapter 6: Structured PHP Programming

Techniques to better structure your code are useful in all but the simplest of

PHP projects. The PHP language offers many facilities to help you do this, and

in this chapter, I’ll cover some of the simple techniques that exist to keep your

code manageable and maintainable. You’ll learn to use include files to avoid

having to write the same code more than once when it’s needed by many pages

of your site, and I’ll show you how to write your own functions to extend the

built-in capabilities of PHP and to streamline the code that appears within your

scripts.

Chapter 7: A Content Management System

In many ways the climax of the book, this chapter is the big payoff for all you

frustrated site builders who are tired of updating hundreds of pages whenever

you need to make a change to a site’s design. I’ll walk you through the code for

a basic content management system that allows you to manage a database of

jokes, their categories, and their authors. A system like this can be used to

manage simple content on your web site; just a few modifications, and you’ll

have a site administration system that will have your content providers submit-

ting content for publication on your site in no time—all without having to know

a shred of HTML!

Chapter 8: Content Formatting with Regular Expressions

Just because you’re implementing a nice, easy tool to allow site administrators

to add content to your site without their knowing HTML, that content can still

be jazzed up, instead of settling for just plain, unformatted text. In this chapter,

I’ll show you some neat tweaks you can make to the page that displays the

xxii

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

contents of your database—tweaks that allow it to incorporate simple formatting

such as bold or italicized text, among other options.

Chapter 9: Cookies, Sessions, and Access Control

What are sessions, and how are they related to cookies, a long-suffering techno-

logy for preserving stored data on the Web? What makes persistent data so im-

portant in current ecommerce systems and other web applications? This chapter

answers all those questions by explaining how PHP supports both cookies and

sessions, and explores the link between the two. You’ll then put these pieces

together to build a simple shopping cart system, as well as an access control

system for your web site.

Chapter 10: MySQL Administration

While MySQL is a good, simple database solution for those without the need

for many frills, it does have some complexities of its own that you’ll need to

understand if you’re going to rely on a MySQL database to store your content.

In this section, I’ll teach you how to perform backups of, and manage access to,

your MySQL database. In addition to a couple of inside tricks (like what to do

if you forget your MySQL password), I’ll explain how to repair a MySQL database

that has become damaged in a server crash.

Chapter 11: Advanced SQL Queries

In Chapter 5 we saw what was involved in modeling complex relationships

between pieces of information in a relational database like MySQL. Although

the theory was quite sound, putting these concepts into practice requires that

you learn a few more tricks of Structured Query Language. In this chapter, I’ll

cover some of the more advanced features of this language to help you juggle

complex data like a pro.

Chapter 12: Binary Data

Some of the most interesting applications of database driven web design include

some juggling of binary files. Online file storage services are prime examples,

but even a system as simple as a personal photo gallery can benefit from storing

binary files (that is, pictures) in a database for retrieval and management on the

fly. In this chapter, I’ll demonstrate how to speed up your web site by creating

static copies of dynamic pages at regular intervals—using PHP, of course! With

these basic file-juggling skills in hand, you’ll go on to develop a simple online

xxiii

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

file storage and viewing system, and learn the ins and outs of working with

binary data in MySQL.

Where to Find Help
PHP and MySQL are moving targets, so chances are good that, by the time you read

this, some minor detail or other of these technologies has changed from what’s de-

scribed in this book. Thankfully, SitePoint has a thriving community of PHP de-

velopers ready and waiting to help you out if you run into trouble, and we also

maintain a list of known errata for this book you can consult for the latest updates.

The SitePoint Forums
The SitePoint Forums2 are discussion forums where you can ask questions about

anything related to web development. You may, of course, answer questions, too.

That’s how a discussion forum site works—some people ask, some people answer

and most people do a bit of both. Sharing your knowledge benefits others and

strengthens the community. A lot of fun and experienced web designers and de-

velopers hang out there. It’s a good way to learn new stuff, have questions answered

in a hurry, and just have fun.

The SitePoint Forums include separate forums for PHP and MySQL, as well as a

separate forum covering advanced PHP Application Design:

■ PHP: http://www.sitepoint.com/forums/forumdisplay.php?f=34
■ PHP Application Design:

http://www.sitepoint.com/forums/forumdisplay.php?f=147
■ MySQL: http://www.sitepoint.com/forums/forumdisplay.php?f=182

The Book’s Web Site
Located at http://www.sitepoint.com/books/phpmysql1/, the web site that supports

this book will give you access to the following facilities:

The Code Archive
As you progress through this book, you’ll note a number of references to the code

archive. This is a downloadable ZIP archive that contains each and every line of

2 http://www.sitepoint.com/forums/

xxiv

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/forums/

example source code that’s printed in this book. If you want to cheat (or save

yourself from carpal tunnel syndrome), go ahead and download the archive.3

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at least

one or two mistakes before the end of this one. The Errata page on the book’s web

site will always have the latest information about known typographical and code

errors.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters, such

as SitePoint Tech Times, SitePoint Tribune, and SitePoint Design View, to name a

few. In them, you’ll read about the latest news, product releases, trends, tips, and

techniques for all aspects of web development. Sign up to one or more SitePoint

newsletters at http://www.sitepoint.com/newsletter/.

Your Feedback
If you’re unable to find an answer through the forums, or if you wish to contact us

for any other reason, the best place to write is books@sitepoint.com. We have a

well-staffed email support system set up to track your inquiries, and if our support

team members are unable to answer your question, they’ll send it straight to us.

Suggestions for improvements, as well as notices of any mistakes you may find, are

especially welcome.

3 http://www.sitepoint.com/books/phpmysql1/code.php

xxv

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/books/phpmysql1/code.php

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park. The birds

were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {

 background-color: #CCC;

 border-top: 1px solid #333;

}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {

new_variable = "Hello";

}

xxvi

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Also, where existing code is required for context, rather than repeat all the code, a

vertical ellipsis will be displayed:

function animate() {

 ⋮
 return new_variable;

}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she

➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

xxvii

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Chapter1
Installation
In this book, I’ll guide you as you take your first steps beyond the static world of

building web pages with pure HTML. Together, we’ll explore the world of database

driven web sites and discover the dizzying array of dynamic tools, concepts, and

possibilities that they open up. Whatever you do, don’t look down!

Okay, maybe you should look down. After all, that’s where the rest of this book is.

But remember, you were warned!

Before you build your first dynamic web site, you must gather together the tools

you’ll need for the job. In this chapter, I’ll show you how to download and set up

the two software packages you’ll need. Can you guess what they are? I’ll give you

a hint: their names feature prominently on the cover of this book! They are, of course,

PHP and MySQL.

If you’re used to building web sites with HTML, CSS, and perhaps even a smattering

of JavaScript, you’re probably used to uploading to another location the files that

make up your site. Maybe this is a web hosting service that you’ve paid for; maybe

it’s a free service provided by your Internet Service Provider (ISP); or maybe it’s a

web server set up by the IT department of the company that you work for. In any

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

case, once you copy your files to their destination, a software program called a web

server is able to find and serve up copies of those files whenever they are requested

by a web browser like Internet Explorer or Firefox. Common web server software

programs you may have heard of include Apache and Internet Information Services

(IIS).

PHP is a server-side scripting language. You can think of it as a plugin for your

web server that enables it to do more than just send exact copies of the files that

web browsers ask for. With PHP installed, your web server will be able to run little

programs (called PHP scripts) that can do tasks like retrieve up-to-the-minute in-

formation from a database and use it to generate a web page on the fly before sending

it to the browser that requested it. Much of this book will focus on writing PHP

scripts to do exactly that. PHP is completely free to download and use.

For your PHP scripts to retrieve information from a database, you must first have a

database. That’s where MySQL comes in. MySQL is a relational database manage-

ment system, or RDBMS. We’ll discuss the exact role it plays and how it works

later, but briefly it’s a software program that’s able to organize and manage many

pieces of information efficiently while keeping track of how all of those pieces of

information are related to each other. MySQL also makes that information really

easy to access with server-side scripting languages like PHP. MySQL, like PHP, is

completely free for most uses.

The goal of this first chapter is to set you up with a web server equipped with PHP

and MySQL. I’ll provide step-by-step instructions that work on recent Windows,

Mac OS X, and Linux computers, so no matter what flavor of computer you’re using,

the instructions you need should be right here.

Your Own Web Server
If you’re lucky, your current web host’s web server already has PHP and MySQL

installed. Most do—that’s one of the reasons why PHP and MySQL are so popular.

If your web host is so equipped, the good news is that you’ll be able to publish your

first database driven web site without having to shop for a web host that supports

the right technologies.

Build Your Own Database Driven Web Site Using PHP & MySQL2

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The bad news is that you’re still going to need to install PHP and MySQL yourself.

That’s because you need your own PHP-and-MySQL-equipped web server to test

your database driven web site on before you publish it for all the world to see.

When developing static web sites, you can often load your HTML files directly from

your hard disk into your browser to see how they look. There’s no web server soft-

ware involved when you do this, which is fine, because web browsers can understand

HTML code all by themselves.

When it comes to dynamic web sites built using PHP and MySQL, however, your

web browser needs some help! Web browsers are unable to understand PHP scripts;

rather, PHP scripts contain instructions for a PHP-savvy web server to execute in

order to generate the HTML code that browsers can understand. So in addition to

the web server that will host your site publicly, you also need your own private

web server to use in the development of your site.

If you work for a company that has an especially helpful IT department, you may

find that there’s already a development web server provided for you. The typical

setup is that you must work on your site’s files on a network drive that’s hosted by

an internal web server that can be safely used for development. When you’re ready

to deploy the site to the public, your files are copied from that network drive to the

public web server.

If you’re lucky enough to work in this kind of environment, you can skip most of

this chapter. However, you’ll want to ask the IT boffins responsible for the develop-

ment server the same questions I’ve covered in the section called “What to Ask Your

Web Host”. That’s because you’ll need to have that critical information handy when

you start using the PHP and MySQL support they’ve so helpfully provided.

Windows Installation
In this section, I’ll show you how to start running a PHP-and-MySQL-equipped web

server on a Windows XP, Windows Vista, or Windows 7 computer. If you’re using

an operating system other than Windows, you can safely skip this section.

All-in-one Installation
I normally recommend that you install and set up your web server, PHP, and MySQL

individually, using the official installation packages for each. This is especially

3Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

useful for beginners, because it gives you a strong sense of how these pieces all fit

together. If you’re in a rush, however, or if you need to set up a temporary develop-

ment environment to use just for a day or two, the following quick-and-dirty solution

may be preferable.

You can skip ahead to the section called “Installing Individual Packages” if you

want to take the time to install each piece of the puzzle separately.

WampServer (where Wamp stands for Windows, Apache, MySQL, and PHP) is a

free, all-in-one program that includes built-in copies of recent versions of the Apache

web server, PHP, and MySQL. Let me take you through the process of installing it:

1. Download the latest version from the WampServer web site.1 After downloading

the file (as of this writing, WampServer 2.0g is about 16MB in size), double-

click it to launch the installer, as shown in Figure 1.1.

Figure 1.1. The WampServer installer

2. The installer will prompt you for a location to install WampServer. The default

of c:\wamp shown in Figure 1.2 is an ideal choice for most purposes, but if you

have strong feelings about where it’s installed, feel free to specify your preferred

location.

1 http://www.wampserver.com/en/

Build Your Own Database Driven Web Site Using PHP & MySQL4

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.wampserver.com/en/

Figure 1.2. The default installation directory is a good choice

3. At the end of the installation, WampServer will ask you to choose your default

browser. This is the web browser it will launch when you use the included

system tray icon tool to launch your browser. If you have Firefox installed it

will ask if you’d like to use it as your default browser. If you answer No, or have

a different browser installed, it will ask you to select the executable file for the

browser you want to use. As shown in Figure 1.3, it selects Internet Explorer

(explorer.exe) for you, which is fine. If you’re using an alternative browser such

as Safari or Opera, you can browse to find the .exe file for your browser if you

want to.

Figure 1.3. The default choice of Internet Explorer is fine

4. As WampServer is installed, it fires up its built-in copy of the Apache HTTP

Server, a popular web server for PHP development. Windows will likely display

5Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

a security alert at this point, like the one in Figure 1.4, since the web server

attempts to start listening for browser requests from the outside world.

Figure 1.4. This security alert tells you Apache is doing its job

If you want to make absolutely sure that Apache rejects connections from the

outside world, and that only a web browser running on your own computer

can view web pages hosted on your development server, feel free to click Keep

blocking. WampServer has its own built-in option to block connections from

the outside world when you want to, however, so I recommend clicking Unblock

in order to have the flexibility to grant access to your development server if

and when you need to.

5. Next, as shown in Figure 1.5, the WampServer installer will prompt you for

your SMTP server and email address. A PHP script can send an email message,

and these settings tell it the outgoing email server, and the default “from” ad-

dress to use. Type in your email address, and if you can remember your Internet

Service Provider’s SMTP server address, type it in too. You can always leave

the default value for the time being, though, and set it manually if and when

you need to send email using a PHP script.

Build Your Own Database Driven Web Site Using PHP & MySQL6

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 1.5. Fill in your Internet Service Provider’s SMTP server address if you know it

Once the installation is complete, you can fire up WampServer. An icon will appear

in your Windows System Tray. Click on it to see the WampServer menu shown in

Figure 1.6.

Figure 1.6. The WampServer menu

By default, your server can only be accessed by web browsers running on your own

computer. If you click the Put Online menu item, your server will become accessible

to the outside world.

7Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

To test that WampServer is working properly, click the Localhost menu item at the

top of the WampServer menu. Your web browser will open to display your server’s

home page, shown in Figure 1.7.

Figure 1.7. The home page provided by WampServer confirms Apache, PHP, and MySQL are installed

When you’re done working with WampServer, you can shut it down (along with

its built-in servers) by right-clicking the System Tray icon and choosing Exit. When

you’re next ready to do some work on a database driven web site, just fire it up

again!

Later in this book, you’ll need to use some of the programs that come with the

MySQL server built into WampServer. To work properly, these programs must be

added to your Windows system path.

To add the MySQL command prompt programs that come with WampServer to

your Windows system path, follow these instructions:

1. Open the Windows Control Panel. Locate and double-click the System icon.

Build Your Own Database Driven Web Site Using PHP & MySQL8

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

2. Take the appropriate step for your version of Windows:

• In Windows XP, switch to the Advanced tab of the System Properties window.

• In Windows Vista or Windows 7, click the Advanced system settings link in

the sidebar.

3. Click the Environment Variables… button.

4. In the list labeled User variables for user, look for a variable named PATH.

• If it exists, select it and click the Edit… button.

• If there’s no variable, click the New… button and fill in the Variable name

by typing PATH.

5. Add the path to WampServer’s MySQL bin directory2 as the Variable value:

• If the Variable value is empty, just type in the path.

• If there is already text in the Variable value field, add a semicolon (;) to the

end of the value, then type the path after that.

6. Click the OK button in each of the open windows to apply your changes.

Installing Individual Packages
Installing each individual package separately is really the way to go if you can afford

to take the time. That way you learn how all the pieces fit together, but have the

freedom to update each of the packages independently of the others. Ultimately,

it’s always worthwhile becoming familiar with the inner workings of any software

with which you’ll be spending a lot of time.

Installing MySQL
As I mentioned above, you can download MySQL free of charge. Simply proceed

to the MySQL Downloads page3 and click the Download link for the free MySQL

2 The exact path will depend on where you’ve installed WampServer and which version of MySQL it

contains. On my system, the path is C:\wamp\bin\mysql\mysql5.1.34\bin. Use Explorer to take a look

inside your WampServer installation’s files to figure out the exact path on your system.
3 http://dev.mysql.com/downloads/

9Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/downloads/

Community Server. This will take you to a page with a long list of download links

for the current recommended version of MySQL (as of this writing, it’s MySQL 5.1).

At the top of the list you’ll see links for Windows and Windows x64. If you’re pos-

itive you’re running a 64-bit version of Windows, go ahead and follow the Windows

x64 link to download the Windows Essentials (AMD64 / Intel EM64T) package (about

28MB in size). If you know you’re running a 32-bit version of Windows, or if you’re

at all unsure, follow the Windows link and download the Windows Essentials (x86)

package (about 35MB)—it’ll work even if it turns out you’re running a 64-bit version

of Windows. Although a little obscure, the Pick a mirror link shown in Figure 1.8 is

the one you need to click to download the file.

Figure 1.8. Finding the right link can be tricky—here it is!

Once you’ve downloaded the file, double-click it and go through the installation as

you would for any other program. Choose the Typical option when prompted for the

setup type, unless you have a particular preference for the directory in which MySQL

is installed. When you reach the end, you’ll be prompted to choose whether you

want to Configure the MySQL Server now. Select this to launch the configuration

wizard,4 and choose Detailed Configuration, which we’ll use to specify a number of

options that are vital to ensuring compatibility with PHP. For each step in the wizard,

select the options indicated here:

1. Server Type

Assuming you’re setting up MySQL for development purposes on your desktop

computer, choose Developer Machine.

4 In my testing, I found that the configuration wizard failed to actually launch automatically, even with

this option checked. If you run into the same problem, just launch the MySQL Server Instance Config

Wizard from the Start Menu after the installation has completed.

Build Your Own Database Driven Web Site Using PHP & MySQL10

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

2. Database Usage

Unless you know for a fact that you will need support for transactions (as such

support is usually superfluous for most PHP applications), choose Non-Transac-

tional Database Only.

3. Connection Limit

Select Decision Support (DSS)/OLAP to optimize MySQL for a relatively modest

number of connections.

4. Networking Options

Uncheck the Enable Strict Mode option to ensure MySQL’s compatibility with

older PHP code that you might need to use in your own work.

5. Default Character Set

Select Best Support For Multilingualism to tell MySQL to assume you want to use

UTF-8 encoded text, which supports the full range of characters that are in use

on the Web today.

6. Windows Options

Allow MySQL to be installed as a Windows Service that's launched automatic-

ally; also select Include Bin Directory in Windows PATH to make it easier to run

MySQL’s administration tools from the command prompt.

7. Security Options

Uncheck the Modify Security Settings option. It’s best to learn how to set the root

password mentioned at this juncture without the assistance of the wizard, so

I’ll show you how to do this yourself in the section called “Post-Installation

Set-up Tasks”.

Once the wizard has completed, your system should now be fully equipped with a

running MySQL server!

To verify that the MySQL server is running properly, type Ctrl+Alt+Del and choose

the option to open the Task Manager. Click the Show processes from all users button

unless it’s already selected. If all is well, the server program (mysqld.exe) should be

11Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

listed on the Processes tab. It will also start up automatically whenever you restart

your system.

Installing PHP
The next step is to install PHP. Head over to the PHP Downloads page5 and choose

the PHP 5.2.x zip package under Windows Binaries; avoid the installer version, which

is easier to install, but lacks the same flexibility attained by installing PHP manually.

What about PHP 4?

At the time of writing, PHP 5 is firmly entrenched as the preferred version of PHP.

For several years after PHP 5’s initial release, many developers chose to stick with

PHP 4 due to its track record of stability and performance, and indeed today many

bargain-basement web hosts have yet to upgrade to PHP 5. There’s no longer any

excuse for this, however; PHP 5 is by far the better choice, and development of

PHP 4 has been completely discontinued. If your web host is still living in the

PHP 4 past, you’re better off finding a new web host!

PHP was designed to run as a plugin for existing web server software such as Apache

or Internet Information Services, so before you can install PHP, you must first set

up a web server.

Many versions of Windows come with Microsoft’s powerful Internet Information

Services (IIS) web server, but not all do. Windows XP Home, Windows Vista Home,

and Windows 7 Home Basic (among others) are without IIS, so you need to install

your own web server on these versions of Windows if you want to develop database

driven web sites. On top of that, assorted versions of Windows come with different

versions of IIS, some of which vary dramatically in how you configure them to work

with PHP.

With that in mind, if you’re still considering IIS, you should know it’s also relatively

uncommon to host web sites built using PHP with IIS in the real world. It’s generally

less expensive and more reliable to host PHP-powered sites on servers running some

flavor of the Linux operating system, with the free Apache web server installed.

About the only reason for hosting a PHP site on IIS is if your company has already

invested in Windows servers to run applications built using ASP.NET (a Microsoft

5 http://www.php.net/downloads.php

Build Your Own Database Driven Web Site Using PHP & MySQL12

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.php.net/downloads.php

technology built into IIS), and you want to reuse that existing infrastructure to host

a PHP application as well.

Although it’s by no means a requirement, it’s generally easiest to set up your devel-

opment server to match the environment in which your web site will be deployed

publicly as closely as possible. For this reason, I recommend using the Apache web

server—even for development on a Windows computer. If you insist (or your boss

insists) on hosting your PHP-based site using IIS, you will find the necessary install-

ation instructions in the install.txt file contained in the PHP zip package you

downloaded from the PHP web site.

If you need to install Apache on your computer, surf on over to The Apache HTTP

Server Project6 and look for the version of Apache described as the best available

(as of writing it’s version 2.2.11, as shown in Figure 1.9).

Figure 1.9. The best available version—accept no substitutes!

Once you get to the Download page, scroll down to find the links to the various

versions available. The one you’ll want is Win32 Binary without crypto, shown in

Figure 1.10.

Figure 1.10. This is the one you need

6 http://httpd.apache.org/

13Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://httpd.apache.org/
http://httpd.apache.org/

Once the file has downloaded, double-click on it as usual to start the installation

wizard. After a few steps, you’ll arrive at the Server Information screen.

If you were setting up a web server to be accessed publicly on the Web, the options

on this screen would be important. For the purposes of setting up a development

server, you can type whatever you like. If you know your computer’s network name,

type that in for the Server Name. Feel free to put in your correct email address if,

like me, you’re a stickler for the details. If you already have a web server running

on your computer (for example, if you have also set up IIS to do some ASP.NET

development on the same computer), you may need to select the only for the Current

User, on Port 8080, when started Manually option on this screen, so as to avoid a conflict

with the existing web server running on port 80.

On the next screen, choose the Typical option for the Setup Type, and follow the

wizard from there to complete the installation. When it’s done, you should see a

new icon for the Apache Service Monitor running in your System Tray. If you chose

the default option to have Apache start up automatically, the status indicator should

be green, as shown in Figure 1.11; otherwise, you’ll need to start Apache manually

as shown in Figure 1.12 before you can use it.

Figure 1.11. The green light means Apache is up and running

Figure 1.12. Choose Start to fire up Apache manually

You can also use the Apache Service Monitor icon to stop Apache running, once

you’ve finished your web development work for the day.

When you have Apache up and running, open your web browser of choice and type

http://localhost into the location bar. If you chose the option to run Apache on port

Build Your Own Database Driven Web Site Using PHP & MySQL14

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

8080, you will need to type http://localhost:8080 instead. Hit Enter, and you should

see a page like that shown in Figure 1.13 that confirms Apache is working correctly.

Figure 1.13. You can take my word for it!

With Apache standing on its own two feet, you can now install PHP. Follow these

steps:

1. Unzip the file you downloaded from the PHP web site into a directory of your

choice. I recommend C:\PHP and will refer to this directory from this point

forward, but feel free to choose another directory if you like.

2. Find the file called php.ini-dist in the PHP folder and make a duplicate copy of

it. The easiest way to do it is to right-click and drag the file’s icon a short dis-

tance, drop it in the same Explorer window, and choose Copy Here from the

pop-up menu. This will leave you with a new file named along the lines of php

- Copy.ini-dist (depending on the version of Windows you’re using). Find this

new file and rename it to php.ini. Windows will ask if you’re sure about changing

the filename extension (from .ini-dist to .ini); click Yes.

15Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Windows Hides Known Filename Extensions by Default

When you rename the file to php.ini, you might notice that the new filename

that appears next to the icon is actually just php. If this happens, it’s because

your copy of Windows is set up to hide the filename extension if it recognizes

it. Since Windows knows that .ini files are Configuration Settings files, it

hides this filename extension.

As you can imagine, this feature can cause a certain amount of confusion.

When you return to edit the php.ini file in the future, it would help to be able

to see its full filename so you could tell it apart from the php.gif and php.exe

files in the same folder.

To switch off filename extension hiding, open the Windows Control Panel

and search for Folder Options. Open the Folder Options window and switch

to the View tab. Under Files and Folders, uncheck the Hide extensions for known

file types checkbox, as shown in Figure 1.14.

Figure 1.14. Make filename extensions visible for all files

Build Your Own Database Driven Web Site Using PHP & MySQL16

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

3. Open the php.ini file in your favorite text editor. If you have no particular pref-

erence, just double-click the file to open it in Notepad. It’s a large file with a

lot of confusing options, but look for the line that begins with doc_root (Note-

pad’s Edit > Find… feature will help). Out of the box, this line looks like this:

doc_root =

To the end of this line, add the path to your web server’s document root direct-

ory. For the Apache server, this is the htdocs folder in the main Apache web

server directory. If you installed Apache in the default location, the path should

be "C:\Program Files\Apache Software Foundation\Apache2.2\htdocs". If you in-

stalled it elsewhere, find the htdocs folder and type its path:

doc_root = "C:\Program Files\Apache Software Foundation\Apache2.

➥2\htdocs"

Just a little further down in the file, look for the line that begins with exten-

sion_dir, and set it so that it points to the ext subfolder of your PHP folder:

extension_dir = "C:\PHP\ext"

Scroll further down in the file, and you’ll see a bunch of lines beginning with

;extension=. These are optional extensions to PHP, disabled by default. We

want to enable the MySQL extension so that PHP can communicate with MySQL.

To do this, remove the semicolon from the start of the php_mysqli.dll line:

extension=php_mysqli.dll

php_mysqli, not php_mysql

Just above the line for php_mysqli.dll there is a line for php_mysql.dll.

The i in php_mysqli stands for improved. You want to enable the new im-

proved MySQL extension. The one without the i is obsolete, and some of its

features are incompatible with current versions of MySQL.

17Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Keep scrolling even further down in the file, and look for a line that starts with

;session.save_path. Once again, remove the semicolon to enable this line,

and set it to your Windows Temp folder:

session.save_path = "C:\Windows\Temp"

Save the changes you made and close your text editor.

That takes care of setting up PHP. Now you can set up your Apache server to use

it as a plugin:

1. Run Notepad as Administrator. This is necessary because the Apache configur-

ation file, by default, can only be edited by an administrator. To do this, find

the Notepad icon in your Start Menu (under All Programs > Accessories) and right-

click on it. Click the Run as administrator menu item.

2. Choose File > Open… in Notepad. Browse to the conf subfolder in your Apache

installation folder (by default, C:\Program Files\Apache Software

Foundation\Apache2.2\conf), and select the httpd.conf file located there. In order

to make this file visible for selection, you’ll need to select All Files (*.*) from the

file type drop-down menu at the bottom of the Open window.

3. Look for the existing line in this file that begins with DirectoryIndex, shown

here:

<IfModule dir_module>

DirectoryIndex index.html

</IfModule>

This line tells Apache which filenames to use when it looks for the default page

for a given directory. Add index.php to the end of this line:

<IfModule dir_module>

 DirectoryIndex index.html index.php

</IfModule>

4. All of the remaining options in this long and intimidating configuration file

should have been set up correctly by the Apache install program. All you need

to do is add the following lines to the very end of the file:

Build Your Own Database Driven Web Site Using PHP & MySQL18

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

LoadModule php5_module "C:/PHP/php5apache2_2.dll"

AddType application/x-httpd-php .php

PHPIniDir "C:/PHP"

Make sure the LoadModule and PHPIniDir lines point to your PHP installation

directory, and note the use of forward slashes (/) instead of backslashes (\) in

the paths.

PHP and Future Apache Versions

Historically, major new versions of the Apache server have required new

versions of the .dll file you see referenced in the LoadModule line above. If

you take another look in your PHP installation directory, for example, you’ll

see there are also php5apache.dll and php5apache2.dll files there. These files

were provided for use with Apache 1.3 and Apache 2.0, respectively.

By the time you read this, it’s possible that Apache has undergone another

major release (for instance, Apache 2.3), which might need yet another new

.dll file. For example, Apache 2.3 might require you to use a new file named

php5apache2_3.dll.

If you are using a subsequent version of Apache, and if you do see a .dll file

that looks like it might correspond to your Apache version, try adjusting the

LoadModule line accordingly. You can always return and edit this file again

later if Apache fails to load PHP correctly.

5. Save your changes and close Notepad.

6. Restart Apache using the Apache Service Monitor system tray icon. If all is

well, Apache will start up again without complaint.

7. Double-click the Apache Service Monitor icon to open the Apache Service

Monitor window. If PHP is installed correctly, the status bar of this window

should indicate the version of PHP you have installed, as shown in Figure 1.15.

8. Click OK to close the Apache Service Monitor window.

19Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 1.15. The PHP version number indicates Apache is configured to support PHP

With MySQL, Apache, and PHP installed, you’re ready to proceed to the section

called “Post-Installation Set-up Tasks”.

Mac OS X Installation
Mac OS X distinguishes itself by being the only consumer OS to install both Apache

and PHP as components of every standard installation. That said, these take a few

tweaks to switch on, and you’ll need to install the MySQL database as well.

In this section, I’ll show you how to start running a PHP-and-MySQL-equipped web

server on a Mac computer running Mac OS X version 10.5 (Leopard). If you’re using

an alternative to a Mac, you can safely skip this section.

All-in-one Installation
I normally recommend that you install and set up your web server, PHP, and MySQL

individually, using the official installation packages for each. This process is espe-

cially useful for beginners, because it gives you a strong sense of how these pieces

all fit together. If you’re in a rush, however, or if you need to set up a temporary

development environment to use just for a day or two, a quick-and-dirty solution

may be preferable.

Build Your Own Database Driven Web Site Using PHP & MySQL20

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

You can skip ahead to the section called “Installing Individual Packages” if you

want to take the time to install each piece of the puzzle separately.

MAMP (which stands for Mac, Apache, MySQL, and PHP) is a free, all-in-one pro-

gram that includes built-in copies of recent versions of the Apache web server, PHP,

and MySQL. Let me take you through the process of installing it:

1. Download the latest version from the MAMP web site.7 After downloading the

file (as of this writing, MAMP 1.7.2 is about 130MB in size), double-click it to

unzip the disk image (MAMP_1.7.2.dmg), then double-click the disk image to

mount it, as shown in Figure 1.16.

Figure 1.16. The MAMP package

2. As instructed in the disk image window, drag the MAMP folder icon over to the

Applications folder icon to install MAMP on your system. After the copy operation

has completed, you can drag the MAMP icon on your desktop to the Trash icon

on your dock to eject it (it will turn into an Eject icon), then delete the disk

image, as well as the original .zip file you downloaded.

7 http://www.mamp.info

21Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.mamp.info

Browse to your Applications folder and find the new MAMP folder there. Open it,

and double-click the MAMP icon inside to launch MAMP. As MAMP starts up, the

following will happen. First, the MAMP window shown in Figure 1.17 will appear.

The two status indicators will switch from red to green as the built-in Apache and

MySQL servers start up. Next, MAMP will open your default web browser and load

the MAMP welcome page, shown in Figure 1.18.

Figure 1.17. The MAMP window

Figure 1.18. The MAMP welcome page confirms Apache, PHP, and MySQL are up and running

When you’re done working with MAMP, you can shut it down (along with its built-

in servers) by clicking the Quit button in the MAMP window. When you’re next

ready to do some work on a database driven web site, just fire it up again!

Later in this book, you’ll need to use some of the programs that come with the

MySQL server built into MAMP. To work properly, these programs must be added

to your Mac OS X system path.

Build Your Own Database Driven Web Site Using PHP & MySQL22

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

To add the MySQL command prompt programs that come with MAMP to your Mac

OS X system path, follow these instructions:

1. Open a Terminal window.8

• If you’re running Mac OS X 10.5 (Leopard) or later, type these commands:

Machine:~ user$ sudo su

Password: (type your password)

sh-3.2# echo '/Applications/MAMP/Library/bin' >> /etc/paths.d

➥/MAMP

sh-3.2# exit

What to Type

The Machine:~ user$ portion (where Machine is your computer’s

name) represents the prompt that’s already displayed. You only need

to type the command, which is shown in bold.

• If you’re running Mac OS X 10.4 (Tiger) or earlier, type these commands:

Machine:~ user$ touch .profile

Machine:~ user$ open .profile

This should open the hidden .profile file in TextEdit. This file contains a

list of Terminal commands that are executed automatically whenever you

open a new Terminal window. If you’ve never installed command prompt

programs on your system before, this file will be completely empty. In any

case, add this line to the end of the file:

export PATH=$PATH:/Applications/MAMP/Library/bin

Save your changes, and quit TextEdit.

2. Close the Terminal window to allow this change to take effect.

8 To open a Terminal window, launch the Terminal application, which you can find in the Utilities folder

in the Applications folder.

23Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Installing Individual Packages
Installing each individual package separately is really the way to go if you can afford

to take the time. You gain the opportunity to learn how all the pieces fit together,

and you have the freedom to update each of the packages independently of the

others. Besides, it’s always worthwhile being familiar with the inner workings of

any software with which you’ll be spending a lot of time.

The following instructions assume you’re running Mac OS X 10.5 (Leopard) or later.

If you’re running an earlier version of Mac OS OX, you should stick with the all-in-

one option.

Installing MySQL
Apple maintains a fairly comprehensive guide to installing MySQL on Mac OS X

on its Mac OS X Internet Developer site9 if you want to compile MySQL yourself.

It’s much easier, however, to obtain the precompiled binary version directly from

the MySQL web site.

Start by visiting the The MySQL Downloads page.10 Click the Download link for the

free MySQL Community Server. This will take you to a page with a long list of

download links for the current recommended version of MySQL (as of this writing,

it’s MySQL 5.1).

Click the Mac OS X (package format) link. You will be presented with the list of

downloads shown in Figure 1.19. Which one you need to choose depends on your

operating system version and platform architecture. If your system is running Mac

OS X version 10.5 (Leopard), you can ignore the Mac OS X 10.4 links. If you know

your Mac has a 64-bit processor, you can safely pick the Mac OS X 10.5 (x86_64)

version. If you’re at all unsure, your best bet is the Mac OS X 10.5 (x86) version—all

it requires is that you have an Intel-based Mac (to be sure, check the processor in-

formation in the About This Mac window, which you can access from the Apple

menu). If you have an older, PowerPC-based Mac, you’ll need one of the PowerPC

versions. The 32-bit version is the safe bet, since it will run on 64-bit systems too.

9 http://developer.apple.com/internet/macosx/osdb.html
10 http://dev.mysql.com/downloads/

Build Your Own Database Driven Web Site Using PHP & MySQL24

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://developer.apple.com/internet/macosx/osdb.html
http://dev.mysql.com/downloads/

Figure 1.19. The 32-bit version of MySQL for Intel processors will work on most current Macs

Once you’ve downloaded the mysql-version-osxversion-platform.dmg file, double-click

it to mount the disk image. As shown in Figure 1.20, it contains the installer in .pkg

format, as well as a MySQLStartupItem.pkg file. Double-click the installer, which will

guide you through the installation of MySQL.

Figure 1.20. The MySQL Mac OS X package contains lots of goodies

25Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Once MySQL is installed, you can launch the MySQL server. Open a Terminal

window11 and type this command:

Machine:~ user$ sudo /usr/local/mysql/bin/mysqld_safe

What to Type

The Machine:~ user$ portion (where Machine is your computer’s name) rep-

resents the prompt that’s already displayed. You only need to type the command,

which is shown in bold.

Once you have typed the command, hit Enter.

This command runs the mysqld_safe script with administrator privileges. You’ll be

prompted to input your password to do this, then a status message will confirm

that MySQL is running.

Once MySQL is running, you can switch it to background execution by typing Ctrl+Z

to stop the process, and then typing this command to let it continue running in the

background:

Machine:~ user$ bg

You can then quit the Terminal application and MySQL will continue to run as a

server on your system. When you want to shut down the MySQL server, open a new

Terminal window and type this command:

Machine:~ user$ sudo /usr/local/mysql/bin/mysqladmin shutdown

Though you’ll gain plenty of geek cred for memorizing these commands, there’s a

much less tedious way to control your MySQL server. Back in the installation disk

image shown in Figure 1.20, you’ll notice a file named MySQL.prefPane. Double-click

this to install a new pane in Mac OS X’s System Preferences, and the window shown

in Figure 1.21 will open.

11 To open a Terminal window, launch the Terminal application, which you can find in the Utilities folder

in the Applications folder.

Build Your Own Database Driven Web Site Using PHP & MySQL26

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 1.21. The MySQL System Preferences pane

This window will tell you if your MySQL server is running or not, and lets you start

it up and shut it down with the click of a button!

Presumably, you’ll want your system to launch the MySQL server at startup auto-

matically so that you can avoid having to repeat the above process whenever you

restart your system. The system preferences pane has a checkbox that does this, but

for this checkbox to do anything you must first install the MySQLStartupItem.pkg

from the installation disk image.

When you have everything set up the way you want it, you can safely drag the

MySQL installation disk icon on your desktop to the trash, then delete the .dmg file

you downloaded.

One last task you’ll want to do is add the /usr/local/mysql/bin directory to your system

path. Doing this enables you to run programs like mysqladmin and mysql (for which

we’ll have plenty of use later in this book) in the Terminal without typing out their

full paths. Pop open a new Terminal window and type these commands:

Machine:~ user$ sudo su

Password: (type your password)

sh-3.2# echo '/usr/local/mysql/bin' >> /etc/paths.d/mysql

sh-3.2# exit

27Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Close the Terminal window and open a new one to allow this change to take effect.

Then, with your MySQL server running, try running the mysqladmin program from

your home directory:

Machine:~ user$ mysqladmin status

If everything worked the way it’s supposed to, you should see a brief list of statistics

about your MySQL server.

Installing PHP
Mac OS X 10.5 (Leopard) comes with Apache 2.2 and PHP 5 built right in! All you

need to do to use them for development is switch them on:

1. Open System Preferences (System Preferences… on the Apple menu).

2. In the main System Preferences menu, click Sharing under Internet & Network.

3. Make sure that Web Sharing is checked, as shown in Figure 1.22.

Figure 1.22. Enable Web Sharing in Mac OS X

4. Quit System Preferences.

5. Open your browser, type http://localhost into the address bar, and hit Enter.

Your browser should display the standard Apache welcome message shown in

Figure 1.23.

Build Your Own Database Driven Web Site Using PHP & MySQL28

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 1.23. The standard Apache welcome page

With this procedure complete, Apache will be run at startup automatically on your

system. You’re now ready to enhance this server by enabling PHP support:

1. In the Finder menu bar, choose Go > Go to folder (⇧+⌘+G), and type

/private/etc/apache2/ before clicking Go.

2. In the Finder window that opens, there should be a file named httpd.conf. This

is the Apache configuration file. By default, it’s read-only. Right-click the file

and choose Get Info (⌘+I) to open the file’s properties. Scroll down to the bottom

of the httpd.conf Info window to find the Sharing & Permissions setting.

By default, the settings in this section are disabled. Click the little lock icon

shown in Figure 1.24 to enable them. Enter your password when prompted.

29Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 1.24. Click the lock to make changes to these settings

To make this file editable, change the value in the Privilege column for everyone

to Read & Write, as shown in Figure 1.25.

Figure 1.25. Set the permissions for everyone to Read & Write

3. Back in the Finder window for the apache2 folder, right-click in the background

of the folder window and choose Get Info to open the folder’s properties. As in

the previous step, set the Sharing & Permissions settings from everyone to Read

& Write.

4. Finally, double-click the httpd.conf file to open it in TextEdit.

5. In the httpd.conf file, search for this line:

#LoadModule php5_module libexec/apache2/libphp5.so

Enable this command by deleting the hash (#) character at the start of the line.

Build Your Own Database Driven Web Site Using PHP & MySQL30

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

6. Save your changes, and quit TextEdit.

7. If you like to tidy up after yourself, you can go back and reset the privileges on

the httpd.conf file and the apache2 folder. This will keep other users of your

computer from making changes to the Apache configuration.

8. Open a Terminal window and type this command to restart Apache:

Machine:~ user$ sudo /usr/sbin/apachectl restart

Type your password when prompted.

9. Load http://localhost in your browser again to make sure that Apache is still

running.

Your computer is now equipped with an Apache web server with PHP support. If

you need to make changes to Apache’s configuration, you know how to edit its

httpd.conf file using the instructions above. The PHP plugin, however, has its own

configuration file, named php.ini, and you need to edit that file to tell PHP how to

connect to your MySQL server.

With the version of PHP built into Mac OS X, there is no php.ini file by default—PHP

just runs with the default settings. In order to modify those settings, you’ll need to

open Terminal and copy the /private/etc/php.ini.default file to /private/etc/php.ini:

Machine:~ user$ cd /private/etc

Machine:etc user$ sudo cp php.ini.default php.ini

Password: (type your password)

To make this new php.ini file editable by users like yourself, use the same procedure

described above for editing httpd.conf: in Finder use Go > Go to folder to open

/private/etc, modify the permissions of both the php.ini file and the folder that con-

tains it, then open the file with TextEdit.

Scroll down through the file or use Edit > Find > Find… (⌘+F) to locate the

mysql.default_socket option. Edit this line of the php.ini file so that it looks like

this:

mysql.default_socket = /tmp/mysql.sock

31Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

You should only have to add the portion in bold.

Scroll down further to locate the mysqli.default_socket option (mysqli, not

mysql), and make the same change:

mysqli.default_socket = /tmp/mysql.sock

Save your changes, quit TextEdit, and restore the file and directory permissions if

you want to. Finally, open a Terminal window and type this command to restart

Apache once more:

Machine:~ user$ sudo /usr/sbin/apachectl restart

Type your password when prompted. Once Apache is up and running again, load

http://localhost in your browser once more to make sure that all is well.

That’s it! With MySQL, Apache, and PHP installed, you’re ready to proceed to the

section called “Post-Installation Set-up Tasks”.

Linux Installation
This section will show you the procedure for manually installing Apache, PHP, and

MySQL under most current distributions of Linux. These instructions were tested

under Ubuntu 8.10;12 however, they should work on other distributions such as

Fedora,13 Debian,14 openSUSE,15 and Gentoo16 without much trouble. The steps

involved will be very similar, almost identical.

Most Linux distributions come with a package manager of one kind or another.

Ubuntu’s Synaptic Package Manager17 is a graphical front end to APT,18 the Debian

package manager. Other distributions use the older RPM package manager. Regardless

of which distribution you use, prepackaged versions of Apache, PHP, and MySQL

should be readily available. These prepackaged versions of software are really easy

12 http://www.ubuntu.com
13 http://fedoraproject.org
14 http://www.debian.org
15 http://www.opensuse.org
16 http://www.gentoo.org
17 https://help.ubuntu.com/community/SynapticHowto
18 http://www.debian.org/doc/user-manuals#apt-howto

Build Your Own Database Driven Web Site Using PHP & MySQL32

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.ubuntu.com
http://fedoraproject.org
http://www.debian.org
http://www.opensuse.org
http://www.gentoo.org
https://help.ubuntu.com/community/SynapticHowto
http://www.debian.org/doc/user-manuals#apt-howto

to install; unfortunately, they also limit the software configuration options available

to you. For this reason—and because any attempt to document the procedures for

installing the packaged versions across all popular Linux distributions would be

doomed to failure—I will instead show you how to install them manually.

If you already have Apache, PHP, and MySQL installed in packaged form, feel free

to use those versions, and skip forward to the section called “Post-Installation Set-

up Tasks”. If you encounter any problems, you can always uninstall the packaged

versions and return here to install them by by hand.

Installing MySQL
Start by downloading MySQL. Simply proceed to the MySQL Downloads page19

and click the Download link for the free MySQL Community Server. This will take

you to a page with a long list of download links for the current recommended version

of MySQL (as of this writing, it’s MySQL 5.1).

Click the link near the top of the list to go to the Linux (non RPM packages). Now you

need to choose the package that corresponds to your system architecture. If you’re

positive you’re running a 64-bit version of Linux, go ahead and download the Linux

(AMD64/Intel EM64T) package (about 120MB in size). If you’re running a 32-bit version

of Linux, download the Linux (x86) package (about 115MB)—it’ll work even if it

turns out you’re running a 64-bit version of Linux. It may be a little unclear, but the

Pick a mirror link shown in Figure 1.26 is the one you need to click to download the

file.

Figure 1.26. Finding the right link can be tricky—here it is!

Once you’ve downloaded the file, open a Terminal and log in as the root user:

user@machine:~$ sudo su

19 http://dev.mysql.com/downloads/

33Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/downloads/

You will, of course, be prompted for your password.

Change directories to /usr/local and unpack the downloaded file:

root@machine:/home/user# cd /usr/local

root@machine:/usr/local# tar xfz ~user/Desktop/mysql-version-linux-

➥platform.tar.gz

The second command assumes you left the downloaded file on your desktop, which

is the Desktop directory in your home directory. You’ll need to replace user with

your username, version with the MySQL version you downloaded, and platform

with the architecture and compiler version of the release you downloaded; this is

so that the command exactly matches the path and filename of the file you down-

loaded. On my computer, for example, the exact command looks like this:

root@mythril:/usr/local# tar xfz ~kyank/Desktop/mysql-5.1.34-linux-x

➥86_64-glibc23.tar.gz

After a minute or two, you’ll be returned to the command prompt. A quick ls will

confirm that you now have a directory named mysql-version-linux-platform. This is

what it looks like on my computer:

root@mythril:/usr/local# ls

bin games lib mysql-5.1.34-linux-x86_64-glibc23 share

etc include man sbin src

Next, create a symbolic link to the new directory with the name mysql to make ac-

cessing the directory easier. Then enter the directory:

root@machine:/usr/local# ln -s mysql-version-linux-platform mysql

root@machine:/usr/local# cd mysql

While you can run the server as the root user, or even as yourself (if, for example,

you were to install the server in your home directory), you should normally set up

on the system a special user whose sole purpose is to run the MySQL server. This

will remove any possibility of an attacker using the MySQL server as a way to break

into the rest of your system. To create a special MySQL user, type the following

commands (still logged in as root):

Build Your Own Database Driven Web Site Using PHP & MySQL34

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

root@machine:/usr/local/mysql# groupadd mysql

root@machine:/usr/local/mysql# useradd -g mysql mysql

Now give ownership of your MySQL directory to this new user:

root@machine:/usr/local/mysql# chown -R mysql .

root@machine:/usr/local/mysql# chgrp -R mysql .

MySQL is now installed, but before it can do anything useful, its database files need

to be installed, too. Still in the new mysql directory, type the following command:

root@machine:/usr/local/mysql# scripts/mysql_install_db --user=mysql

Now everything’s prepared for you to launch the MySQL server for the first time.

From the same directory, type the following command:

root@machine:/usr/local/mysql# bin/mysqld_safe --user=mysql &

If you see the message mysql daemon ended, then the MySQL server was prevented

from starting. The error message should have been written to a file called hostname.err

(where hostname is your machine’s host name) in MySQL’s data directory. You’ll

usually find that this happens because another MySQL server is already running

on your computer.

If the MySQL server was launched without complaint, the server will run (just like

your web or FTP server) until your computer is shut down. To test that the server

is running properly, type the following command:

root@machine:/usr/local/mysql# bin/mysqladmin -u root status

A little blurb with some statistics about the MySQL server should be displayed. If

you receive an error message, check the hostname.err file to see if the fault lies with

the MySQL server upon starting up. If you retrace your steps to make sure you fol-

lowed the process described above, and this fails to solve the problem, a post to the

SitePoint Forums20 will help you pin it down in little time.

20 http://www.sitepoint.com/forums/

35Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/forums/

If you want your MySQL server to run automatically whenever the system is running,

you’ll have to set it up to do so. In the support-files subdirectory of the mysql directory,

you’ll find a script called mysql.server that can be added to your system startup

routines to do this. For most versions of Linux, you can do this by creating a link

to the mysql.server script in the /etc/init.d directory, then create two links to that:

/etc/rc2.d/S99mysql and /etc/rc0.d/K01mysql. Here are the commands to type:

root@machine:/usr/local/mysql# cd /etc

root@machine:/etc# ln -s /usr/local/mysql/support-files/mysql.server

➥ init.d/

root@machine:/etc# ln -s /etc/init.d/mysql.server rc2.d/S99mysql

root@machine:/etc# ln -s /etc/init.d/mysql.server rc0.d/K01mysql

That’s it! To test that this works, reboot your system, and request the status of the

server with mysqladmin as you did above.

One final thing you might like to do for the sake of convenience is to place the

MySQL client programs—which you’ll use to administer your MySQL server later

on—in the system path. To this end, you can place symbolic links to mysql,

mysqladmin, and mysqldump in your /usr/local/bin directory:

root@machine:/etc# cd /usr/local/bin

root@machine:/usr/local/bin# ln -s /usr/local/mysql/bin/mysql .

root@machine:/usr/local/bin# ln -s /usr/local/mysql/bin/mysqladmin .

root@machine:/usr/local/bin# ln -s /usr/local/mysql/bin/mysqldump .

Once you’ve done this, you can log out of the root account. From this point on, you

can administer MySQL from any directory on your system:

root@machine:/usr/local/bin# exit

user@machine:~$ mysqladmin -u root status

Build Your Own Database Driven Web Site Using PHP & MySQL36

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Installing PHP
As mentioned above, PHP is more a web server plugin module than a program.

There are actually three ways to install the PHP plugin for Apache:

■ as a CGI program that Apache runs every time it needs to process a PHP-enhanced

web page
■ as an Apache module compiled right into the Apache program
■ as an Apache module loaded by Apache each time it starts up

The first option is the easiest to install and set up, but it requires Apache to launch

PHP as a program on your computer every time a PHP page is requested. This

activity can really slow down the response time of your web server, especially if

more than one request needs to be processed at a time.

The second and third options are almost identical in terms of performance, but the

third option is the most flexible, since you can add and remove Apache modules

without having to recompile it each time. For this reason, we’ll use the third option.

Assuming you don’t already have Apache running on your computer, surf on over

to the Apache HTTP Server Project21 and look for the version of Apache described

as “the best available version” (as of this writing it’s version 2.2.11, as shown in

Figure 1.27).

Figure 1.27. The best available version—accept no substitutes!

21 http://httpd.apache.org/

37Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://httpd.apache.org/

Once you get to the Download page, scroll down to find the links to the various

versions available. The one you want is Unix Source, shown in Figure 1.28. Both the

.tar.gz or the .tar.bz2 are the same; just grab whichever archive format you’re used

to extracting.

Figure 1.28. This is the one you need

What you’ve just downloaded is actually the source code for the Apache server.

The first step, then, is to compile it into an executable binary installation. Pop open

a Terminal, navigate to the directory where the downloaded file is located, then

extract it, and navigate into the resulting directory:

user@machine:~$ cd Desktop

user@machine:~/Desktop$ tar xfz httpd-version.tar.gz

user@machine:~/Desktop$ cd httpd-version

The first step in compiling Apache is to configure it to your requirements. Most of

the defaults will be fine for your purposes, but you’ll need to enable dynamic

loading of Apache modules (like PHP), which is off by default. Additionally, you

should probably enable the URL rewriting feature, upon which many PHP applica-

tions rely (although it’s unnecessary for the examples in this book). To make these

configuration changes, type this command:

user@machine:~/Desktop/httpd-version$./configure --enable-so --enab

➥le-rewrite

A long stream of status messages will parade up your screen. If the process stops

with an error message, your system may be missing some critical piece of software

that’s required to compile Apache. Some Linux distributions lack the essential de-

velopment libraries or even a C compiler installed by default. Installing these should

enable you to return and run this command successfully. Current versions of Ubuntu,

however, should come with everything that’s needed.

Build Your Own Database Driven Web Site Using PHP & MySQL38

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

After several minutes, the stream of messages should come to an end:

⋮
config.status: creating build/rules.mk

config.status: creating build/pkg/pkginfo

config.status: creating build/config_vars.sh

config.status: creating include/ap_config_auto.h

config.status: executing default commands

user@machine:~/Desktop/httpd-version$

You’re now ready to compile Apache. The one-word command make is all it takes:

user@machine:~/Desktop/httpd-version$ make

Again, this process will take several minutes to complete, and should end with the

following message:

⋮
make[1]: Leaving directory `/home/user/Desktop/httpd-version'

user@machine:~/Desktop/httpd-version$

To install your newly-compiled copy of Apache, type sudo make install(the sudo

is required, since you need root access to write to the installation directory).

user@machine:~/Desktop/httpd-version$ sudo make install

Enter your password when prompted.

As soon as this command has finished copying files, your installation of Apache is

complete. Navigate to the installation directory and launch Apache using the

apachectl script:

user@machine:~/Desktop/httpd-version$ cd /usr/local/apache2

user@machine:/usr/local/apache2$ sudo bin/apachectl -k start

You’ll likely see a warning message from Apache complaining that it was unable

to determine the server’s fully qualified domain name. That’s because most personal

computers are without one. Don’t sweat it.

39Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Fire up your browser and type http://localhost into the address bar. If Apache is up

and running, you should see a welcome message like the one in Figure 1.29.

Figure 1.29. You can take my word for it!

As with your MySQL server, you’ll probably want to configure Apache to start

automatically when your system boots. The procedure to do this is similar; just

copy and link the apachectl script from your Apache installation:

user@machine:/usr/local/apache2$ sudo su

root@machine:/usr/local/apache2# cd /etc

root@machine:/etc# ln -s /usr/local/apache2/bin/apachectl init.d/

root@machine:/etc# ln -s /etc/init.d/apachectl rc2.d/S99httpd

root@machine:/etc# ln -s /etc/init.d/apachectl rc0.d/K01httpd

To test that this works, restart your computer and then hit the http://localhost page

in your browser again.

With a shiny new Apache installation up and running, you’re now ready to add

PHP support to it. To start, download the PHP Complete Source Code package from

the PHP Downloads page.22 Again, the .tar.gz and .tar.bz2 versions are identical;

just download whichever you’re used to extracting.

The file you downloaded should be called php-version.tar.gz (or .bz2). Pop open a

new Terminal window, navigate to the directory containing the downloaded file,

extract it, and move into the resulting directory:

22 http://www.php.net/downloads.php

Build Your Own Database Driven Web Site Using PHP & MySQL40

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.php.net/downloads.php

user@machine:~$ cd Desktop

user@machine:~/Desktop$ tar xfz php-version.tar.gz

user@machine:~/Desktop$ cd php-version

To install PHP as an Apache module, you’ll need to use the Apache apxs program.

This will have been installed along with the Apache server if you followed the in-

structions above to compile it yourself; but if you’re using the copy that was installed

with your distribution of Linux, you may need to install the Apache development

package to access Apache apxs. You should be able to install this package by using

the package manager included with your Linux distribution. For example, on

Debian Linux, you can use apt-get to install it as follows:

user@machine:~$ sudo apt-get install apache-dev

Now, to install PHP, you must be logged in as root:

user@machine:~/Desktop/php-version$ sudo su

[sudo] password for user: (type your password)

root@machine:/home/user/Desktop/php-version#

The first step is to configure the PHP installation program by telling it which options

you want to enable, and where it should find the programs it needs to know about

(such as Apache apxs and MySQL). The command should look like this (all on one

line):

root@machine:/home/user/Desktop/php-version# ./configure

➥ --prefix=/usr/local/php --with-apxs2=/usr/local/apache2/bin/apxs

➥ --with-mysqli=/usr/local/mysql/bin/mysql_config

The --prefix option tells the installer where you want PHP to be installed

(/usr/local/php is a good choice).

The --with-apxs2 option tells the installer where to find the Apache apxs program

mentioned above. When installed using your Linux distribution’s package manager,

the program is usually found at /usr/sbin/apxs. If you compiled and installed Apache

yourself as described above, however, it will be in the Apache binary directory, at

/usr/local/apache2/bin/apxs.

41Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The --with-mysqli option tells the installer where to find your MySQL installation.

More specifically, it must point to the mysql_config program in your MySQL install-

ation’s bin directory (/usr/local/mysql/bin/mysql_config).

Again, a parade of status messages will appear on your screen. When it stops, check

for any error messages and install any files it identifies as missing. On a default

Ubuntu 8.10 installation, for example, you’re likely to see an error complaining

about an incomplete libxml2 installation. To correct this particular error, open

Synaptic Package Manager, then locate and install the libxml2-dev package (libxml2

should already be installed). Once it’s installed, try the configure command again.

After you watch several screens of tests scroll by, you’ll be returned to the command

prompt with the comforting message “Thank you for using PHP.” The following

two commands will compile and then install PHP:

root@machine:/home/user/Desktop/php-version# make

root@machine:/home/user/Desktop/php-version# make install

Take a coffee break: this will take some time.

Upon completion of the make install command, PHP will be installed in

/usr/local/php (unless you specified a different directory with the --prefix option

of the configure script above). Now you just need to configure it!

The PHP configuration file is called php.ini. PHP comes with two sample php.ini

files called php.ini-dist and php.ini-recommended. Copy these files from your install-

ation work directory to the /usr/local/php/lib directory, then make a copy of the

php.ini-dist file and call it php.ini:

root@machine:/home/user/Desktop/php-version# cp php.ini* /usr/local/

➥php/lib/

root@machine:/home/user/Desktop/php-version# cd /usr/local/php/lib

root@machine:/usr/local/php/lib# cp php.ini-dist php.ini

You may now delete the directory from which you compiled PHP—it’s no longer

needed.

We’ll worry about fine-tuning php.ini shortly. For now, we need to tweak Apache’s

configuration to make it more PHP-friendly. Locate your Apache httpd.conf config-

Build Your Own Database Driven Web Site Using PHP & MySQL42

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

uration file. This file can usually be found in the conf subdirectory of your Apache

installation (/usr/local/apache2/conf/httpd.conf).

To edit this file you must be logged in as root, so launch your text editor from the

Terminal window where you’re still logged in as root:

root@machine:/usr/local/php/lib# cd /usr/local/apache2/conf

root@machine:/usr/local/apache2/conf# gedit httpd.conf

In this file, look for the line that begins with DirectoryIndex. This line tells Apache

which filenames to use when it looks for the default page for a given directory.

You’ll see the usual index.html, but you need to add index.php to the list:

<IfModule dir_module>

 DirectoryIndex index.html index.php

</IfModule>

Finally, go right to the bottom of the file and add these lines to tell Apache that files

with names ending in .php should be treated as PHP scripts:

<FilesMatch \.php$>

 SetHandler application/x-httpd-php

</FilesMatch>

That should do it! Save your changes and restart your Apache server with this

command:

root@machine:/usr/local/apache2/conf# /usr/local/apache2/bin/

➥apachectl -k restart

If it all goes according to plan, Apache should start up without any error messages.

If you run into any trouble, the helpful individuals in the SitePoint Forums23 (myself

included) will be happy to help.

23 http://www.sitepoint.com/forums/

43Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/forums/

Post-Installation Set-up Tasks
Regardless of which operating system you’re running, or how you set up your web

server—once PHP is installed and the MySQL server is functioning, the very first

action you need to perform is assign a root password for MySQL.

MySQL only allows authorized users to view and manipulate the information stored

in its databases, so you’ll need to tell MySQL who’s authorized and who’s unauthor-

ized. When MySQL is first installed, it’s configured with a user named root that

has access to do most tasks without even entering a password. Your first task should

be to assign a password to the root user so that unauthorized users are prohibited

from tampering with your databases.

Why Bother?

It’s important to realize that MySQL, just like a web server, can be accessed from

any computer on the same network. If you’re working on a computer connected

to the Internet, then, depending on the security measures you’ve taken, anyone

in the world could connect to your MySQL server. The need to pick a difficult-

to-guess password should be immediately obvious!

To set a root password for MySQL, you can use the mysqladmin program that comes

with MySQL. If you followed the instructions to install MySQL separately (as ex-

plained earlier in this chapter), the mysqladmin program should be on your system

path. This means you can pop open a Terminal window (or in Windows, a Command

Prompt) and type the name of the program without having to remember where it’s

installed on your computer.

Go ahead and try this now, if you’ve yet to already. Open a Terminal or Command

Prompt and type this command:24

mysqladmin -u root status

When you hit Enter you should see a line or two of basic statistics about your MySQL

server, like this:

24 If you’re using Windows and are unfamiliar with the Command Prompt, check out my article Kev’s

Command Prompt Cheat Sheet [http://www.sitepoint.com/article/command-prompt-cheat-sheet/] for

a quick crash course.

Build Your Own Database Driven Web Site Using PHP & MySQL44

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/article/command-prompt-cheat-sheet/
http://www.sitepoint.com/article/command-prompt-cheat-sheet/

Uptime: 102261 Threads: 1 Questions: 1 Slow queries: 0 Opens: 15

 Flush tables: 1 Open tables: 0 Queries per second avg: 0.0

If you’re seeing a different message entirely, it’s probably one of two options. First,

you might see an error message telling you that the mysqladmin program was unable

to connect to your MySQL server:

mysqladmin: connect to server at 'localhost' failed

error: 'Can't connect to MySQL server on 'localhost' (10061)'

Check that mysqld is running on localhost and that the port is 3306.

You can check this by doing 'telnet localhost 3306'

This message normally means that your MySQL server simply isn’t running. If you

have it set up to run automatically when your system boots, double-check that the

setup is working. If you normally launch your MySQL server manually, go ahead

and do that before trying the command again.

Second, if you’re using MAMP on the Mac, you’ll probably see this error message

instead:

mysqladmin: connect to server at 'localhost' failed

error: 'Access denied for user 'root'@'localhost' (using password: N

➥O)'

This error message means that the root user on your MySQL server already has a

password set. It turns out that, with your security in mind, MAMP comes with a

root password already set on its built-in MySQL server. That password, however,

is root—so you’re probably still going to want to change it using the instructions

below.

One way or the other, you should now be able to run the mysqladmin program. Now

you can use it to set the root password for your MySQL server:

mysqladmin -u root -p password "newpassword"

Replace newpassword with whatever password you’d like to use for your MySQL

server. Make sure it’s one you can remember, because if you forget your MySQL

root password, you might need to erase your entire MySQL installation and start

45Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

over from scratch! As we’ll see in Chapter 10, it’s usually possible to recover from

such a mishap, but it’s definitely a pain in the neck.

Here’s a spot for you to record your MySQL root password in case you need to:

My MySQL Root Password

root user password: _________________________

When you hit Enter, you’ll be prompted to enter the current password for the root

MySQL user. Just hit Enter again, since the root user has no password at this point,

unless you’ve used MAMP to set up MySQL on your Mac; in this case you should

type root, the default root MySQL password on MAMP.

Let me break this command down for you, so you can understand what each part

means:

mysqladmin

This, of course, is the name of the program you wish to run.

-u root

This specifies the MySQL user account you wish to use to connect to your

MySQL server. On a brand new server, there is only one user account: root.

-p

This tells the program to prompt you for the current password of the user ac-

count. On a brand new MySQL server, the root account has no password, so

you can just hit Enter when prompted. It’s a good idea, however, to make a habit

of including this option, since most of the time you will need to provide a

password to connect to your MySQL server.

password "newpassword"

This instructs the mysqladmin program to change the password of the user ac-

count to newpassword. In this example, whatever password you specify will

become the new password for the root MySQL user.

Now, to try out your new password, request once again that the MySQL server tell

you its current status at the system command prompt, but this time include the -p

option:

Build Your Own Database Driven Web Site Using PHP & MySQL46

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysqladmin -u root -p status

Enter your new password when prompted. As before, you should see a line or two

of statistics about your MySQL server.

Since the root account is now password-protected, attempting to run this command

without the -p switch will give you an “Access Denied” error.

You’re done! With everything set up and running, you’re ready to write your first

PHP script. Before we do that, however, you might want to write a short email to

your web host.

What to Ask Your Web Host
While you tinker with PHP and MySQL on your own computer, it might be good

to start collecting the information you’ll need when it comes time to deploy your

first database driven web site to the public. Here’s a rundown of the details you

should be asking your web host for.

First, you’ll need to know how to transfer files to your web host. You’ll upload PHP

scripts to your host the same way you normally send the HTML files, CSS files, and

images that make up a static web site, so if you already know how to do that, it’s

unnecessary to bother your host. If you’re just starting with a new host, however,

you’ll need to be aware of what file transfer protocol it supports (FTP or SFTP), as

well as knowing what username and password to use when connecting with your

(S)FTP program. You also have to know what directory to put files into so they’re

accessible to web browsers.

In addition to these, you’ll also need to find out a few details about the MySQL

server your host has set up for you. It’s important to know the host name to use to

connect to it (possibly localhost), and your MySQL username and password, which

may or may not be the same as your (S)FTP credentials. Your web host will probably

also have provided an empty database for you to use, which prevents you from in-

terfering with other users’ databases who may share the same MySQL server with

you. If they have provided this, you should establish the name of that database.

Have you taken in all that? Here’s a spot to record the information you’ll need about

your web host:

47Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

My Hosting Details

File transfer protocol: FTP■

■ SFTP

(S)FTP host name: _________________________

(S)FTP username: _________________________

(S)FTP password: _________________________

MySQL host name: _________________________

MySQL username: _________________________

MySQL password: _________________________

MySQL database name: _________________________

Your First PHP Script
It would be unfair of me to help you install everything—but stop short of giving

you a taste of what a PHP script looks like until Chapter 3. So here’s a little morsel

to whet your appetite.

Open your favorite text or HTML editor and create a new file called today.php. Type

this into the file:

Build Your Own Database Driven Web Site Using PHP & MySQL48

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter1/today.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Today’s Date</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p>Today’s date (according to this web server) is

 <?php

 echo date('l, F dS Y.');

 ?>

 </p>

 </body>

</html>

Editing PHP Scripts in Windows with Notepad

Windows users should note that, to save a file with a .php extension in Notepad,

you’ll need to either select All Files as the file type, or surround the filename with

quotes in the Save As dialog box; otherwise, Notepad will unhelpfully save the file

as today.php.txt, which will fail to work.

Editing PHP Scripts in Mac OS X with TextEdit

Mac OS X users are advised to be careful when using TextEdit to edit .php files,

as it saves them in Rich Text Format, with an invisible .rtf filename extension by

default. To save a new .php file, you must first remember to convert the file to

plain text by selecting Format > Make Plain Text (⇧+⌘+T) from the TextEdit menu.

TextEdit also has a nasty habit of mistaking existing .php files for HTML documents

when opening them, and attempting to display them as formatted text. To avoid

this, you must select the Ignore rich text commands checkbox in the Open dialog

box.

49Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Try a Free IDE!

As you can tell from the preceding warnings, the text editors provided with current

operating systems are a little unsuitable for editing PHP scripts. There are a

number of solid text editors and Integrated Development Environments (IDEs)

with rich support for editing PHP scripts that you can download for free. Here are

a few that work on Windows, Mac OS X, and Linux:

NetBeans http://www.netbeans.org/features/php/

Aptana http://www.aptana.com/php

Komodo Edit http://www.activestate.com/komodo_edit/

If you’d prefer to avoid typing out all the code, you can download this file—along

with the rest of the code in this book—from the code archive. See the Preface for

details on how to download the code archive.

Save the file, and move it to the web root directory of your local web server.

Where’s My Server’s Web Root Directory?

If you’re using an Apache server you installed manually, the web root directory

is the htdocs directory within your Apache installation (that is, C:\Program

Files\Apache Software Foundation\Apache2.2\htdocs on Windows,

/usr/local/apache2/htdocs on Linux).

For Apache servers built into WampServer, the web root directory is the www

directory within your WampServer directory. You can reach it quickly by selecting

the www directory menu item from the WampServer menu in your Windows System

Tray.

If the Apache server you’re using is built into Mac OS X, the web root directory

is /Library/WebServer/Documents.

The Apache server built into MAMP has a web root directory in the htdocs folder

inside the MAMP folder (/Applications/MAMP/htdocs). If you prefer using a different

folder as your web root, you can change it on the Apache tab of the MAMP applic-

ation’s Preferences.

Build Your Own Database Driven Web Site Using PHP & MySQL50

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Open your web browser of choice, and type http://localhost/today.php (or

http://localhost:port/today.php if Apache is configured to run on a port other than

the default of 80) into the address bar to view the file you just created.25

You Must Type the URL

You might be used to previewing your web pages by double-clicking on them, or

by using the File > Open… feature of your browser. These methods tell your browser

to load the file directly from your computer’s hard drive, and so they’ll fail to

work with PHP files.

As previously mentioned, PHP scripts require your web server to read and execute

the PHP code they contain before sending the HTML code that’s generated to the

browser. Only if you type the URL (http://localhost/today.php) will your browser

request the file from your web server so that this can happen.

Figure 1.30 shows what the web page generated by your first PHP script should

look like.

Figure 1.30. See your first PHP script in action!

Neat, huh? If you use the View Source feature in your browser, all you’ll see is a

regular HTML file with the date in it. The PHP code (everything between <?php and

?> in the code above) was interpreted by the web server and converted to normal

text before it was sent to your browser. The beauty of PHP, and other server-side

25 If you installed Apache on Windows, you may have selected the option to run it on port 8080. If you’re

using MAMP, it’s configured by default to run Apache on port 8888.

51Installation

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

scripting languages, is that the web browser can remain ignorant—the web server

does all the work!

Be reassured also that before too long you’ll know code (like this example) as well

as the back of your hand.

If the date is missing, or if your browser prompts you to download the PHP file in-

stead of displaying it, then something is wrong with your web server’s PHP support.

If you can, use View Source in your browser to look at the code of the page. You’ll

probably see the PHP code right there in the page. Since the browser fails to under-

stand PHP, it just sees <?php … ?> as one long, invalid HTML tag, which it ignores.

Double-check that you have requested the file from your web server rather than

your hard disk (that is, make sure the location bar in your browser shows a URL

beginning with http://localhost), and make sure that PHP support has been properly

installed on your web server using the instructions provided earlier in this chapter.

Full Toolbox, Dirty Hands
You should now be fully equipped with a web server that supports PHP scripts, a

MySQL database server, and a basic understanding of how to use each of these. You

should even have dirtied your hands by writing and successfully testing your first

PHP script!

If the today.php script was unsuccessful for you, drop by the SitePoint Forums26

and we’ll be glad to help you figure out the problem.

In Chapter 2, you’ll learn the basics of relational databases and start working with

MySQL. I’ll also introduce you to the language of database: Structured Query Lan-

guage. If you’ve never worked with a database before, it’ll be a real eye-opener!

26 http://www.sitepoint.com/forums/

Build Your Own Database Driven Web Site Using PHP & MySQL52

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/forums/

Chapter2
Introducing MySQL
In Chapter 1, we installed and set up two software programs: the Apache web

server with PHP, and the MySQL database server.

As I explained in that chapter, PHP is a server-side scripting language that lets you

insert into your web pages instructions that your web server software (in most cases,

Apache) will execute before it sends those pages to browsers that request them. In

a brief example, I showed how it was possible to insert the current date into a web

page every time it was requested.

Now, that’s all well and good, but things really become interesting when a database

is added to the mix. In this chapter, we’ll learn what a database is, and how to work

with your own MySQL databases using Structured Query Language.

An Introduction to Databases
A database server (in our case, MySQL) is a program that can store large amounts

of information in an organized format that’s easily accessible through programming

languages like PHP. For example, you could tell PHP to look in the database for a

list of jokes that you’d like to appear on your web site.

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

In this example, the jokes would be stored entirely in the database. The advantages

of this approach would be twofold: First, instead of having to write an HTML page

for each of your jokes, you could write a single PHP script that was designed to

fetch any joke from the database and display it by generating an HTML page for it

on the fly. Second, adding a joke to your web site would be a simple matter of in-

serting the joke into the database. The PHP code would take care of the rest, auto-

matically displaying the new joke along with the others when it fetched the list

from the database.

Let’s run with this example as we look at how data is stored in a database. A database

is composed of one or more tables, each of which contains a list of items, or things.

For our joke database, we’d probably start with a table called joke that would contain

a list of jokes. Each table in a database has one or more columns, or fields. Each

column holds a certain piece of information about each item in the table. In our

example, our joke table might have one column for the text of the jokes, and another

for the dates on which the jokes were added to the database. Each joke stored in

this way would then be said to be a row or entry in the table. These rows and

columns form a table that looks like Figure 2.1.

Figure 2.1. A typical database table containing a list of jokes

Notice that, in addition to columns for the joke text (joketext) and the date of the

joke (jokedate), I’ve included a column named id. As a matter of good design, a

database table should always provide a means by which we can identify each of its

rows uniquely. Since it’s possible that a single joke could be entered more than

once on the same date, the joketext and jokedate columns can’t be relied upon

to tell all the jokes apart. The function of the id column, therefore, is to assign a

unique number to each joke so that we have an easy way to refer to them and to

keep track of which joke is which. We’ll take a closer look at database design issues

like this in Chapter 5.

Build Your Own Database Driven Web Site Using PHP & MySQL54

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

So, to review, the table in Figure 2.1 is a three-column table with two rows, or

entries. Each row in the table contains three fields, one for each column in the table:

the joke’s ID, its text, and the date of the joke. With this basic terminology under

your belt, you’re ready to dive into using MySQL.

Logging On to MySQL
Just as a web server is designed to respond to requests from a client (a web browser),

the MySQL database server responds to requests from client programs. Later in this

book, we’ll write our own MySQL client programs in the form of PHP scripts, but

for now we can use some of the client programs that come included with the MySQL

server.

mysqladmin is an example of a MySQL client program. If you followed the instruc-

tions in Chapter 1, after setting up a MySQL server of your own, you used the

mysqladmin client program to connect to the server, establish a password for the

root user, and view basic statistics about the running server.

Another client program that comes with the MySQL server is called mysql. This

program provides the most basic interface for working with a MySQL server, by

establishing a connection to the server and then typing commands one at a time.

The mysql program can be found in the same place as mysqladmin, so if you followed

the instructions in Chapter 1 to add this location to your system path, you should

be able to open a Terminal window (or Command Prompt if you’re using a Windows

system) and type this command to run the mysql client program:

mysql --version

If everything is set up right, this command should output a one-line description of

the version of the mysql client program that you’ve installed. Here’s what this looks

like on my Mac:

mysql Ver 14.14 Distrib 5.1.31, for apple-darwin9.5.0 (i386) using

➥readline 5.1

If instead you receive an error message complaining that your computer is unable

to recognize the mysql command, you should probably revisit the installation in-

structions provided in Chapter 1. Once you’re able to run the mysqladmin commands

55Introducing MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

in that chapter, the mysql command should work too. If you’re still stuck, drop by

the SitePoint Forums1 and ask for some help.

Assuming the mysql program is running for you, you can now use it to connect to

your MySQL server. First, make sure that server is running, then type this command

and hit Enter:

mysql -u root -p

The -u root and -p parameters perform the same function for this program as they

did for mysqladmin in Chapter 1. -u root tells the program you wish to connect to

the server using the root user account, and -p tells it you’re going to provide a

password.

What you should see next is an Enter password: prompt. Enter the root password

you chose for yourself in Chapter 1, and hit Enter.

If you typed everything correctly, the MySQL client program will introduce itself

and dump you on the MySQL command prompt:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 7

Server version: 5.1.31 MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Let’s use a few simple commands to take a look around your MySQL server.

The MySQL server can actually keep track of more than one database. This allows

a web host to set up a single MySQL server for use by several of its subscribers, for

example. So, your first step after connecting to the server should be to choose a

database with which to work. First, let’s retrieve a list of databases on the current

server.

1 http://www.sitepoint.com/forums/

Build Your Own Database Driven Web Site Using PHP & MySQL56

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/forums/

Connecting to a Remote MySQL Server

The instructions in this chapter assume you’re working with a MySQL server

running on your own computer. Of course, when it comes time to publish your

first PHP-and-MySQL-powered web site, you will need to know how to work with

the MySQL server provided by your web host, or by your company’s IT department.

Technically, the mysql program we’re using in this chapter can connect to remote

MySQL servers too. You just have to add an additional parameter when running

it:

mysql -h hostname -u username -p

The -h hostname parameter (where hostname is the host name of the MySQL

server to which you want to connect) tells the program to connect to a remote

MySQL server instead of one running on the same computer. If you do this, you’ll

probably also need to specify a username other than root, since the administrator

responsible for the MySQL server will probably want to keep the root password

secret for security reasons.

In practice, most remote MySQL servers will block connections from client pro-

grams running on untrusted computers like yours. Disallowing this type of con-

nection is a common security measure for MySQL servers used in production.

To work with a remote MySQL server, you might be able to connect to a trusted

computer and run the mysql program from there, but a far more common approach

is to use a program called phpMyAdmin to manage your remote databases.

phpMyAdmin is a sophisticated PHP script that lets you work with your MySQL

databases using a web-based interface in your browser. phpMyAdmin connects

to the remote MySQL server in the same way as the PHP scripts we’ll be writing

later in this book.

I’ll show you how to install and use phpMyAdmin in Chapter 10. For now, let’s

focus on learning to work with the MySQL server you’ve installed on your com-

puter.

57Introducing MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Type this command (including the semicolon!) and press Enter:2

mysql> SHOW DATABASES;

MySQL will show you a list of the databases on the server. If you’re working on a

brand new server, the list should look like this:

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| test |

+--------------------+

3 rows in set (0.00 sec)

The MySQL server uses the first database, named information_schema, to keep

track of all the other databases on the server. Unless you’re doing some very advanced

stuff, you’ll probably leave this database alone.

The second database, mysql, is special too. MySQL uses it to keep track of users,

their passwords, and what they’re allowed to do. We’ll steer clear of this for now,

though we’ll revisit it in Chapter 10, when we discuss MySQL administration.

The third database, named test, is a sample database. You can actually delete this

database because I’ll show you how to create your own database in a moment.

No test on WampServer

As of this writing, WampServer’s initial MySQL database has no test database

in it. No need to be alarmed though; the developers of WampServer just thought

it was as useless as I do, I guess!

Deleting stuff in MySQL is called “dropping” it, and the command for doing so is

appropriately named:

mysql> DROP DATABASE test;

2 As in Chapter 1, the mysql> prompt should already be visible on your screen; just type the command

that comes after it.

Build Your Own Database Driven Web Site Using PHP & MySQL58

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

If you type this command and press Enter, MySQL will obediently delete the data-

base, displaying “Query OK” in confirmation. Notice that there’s no confirmation

prompt like “Are you sure?”. You have to be very careful to type your commands

correctly in the mysql client program because, as this example shows, you can ob-

literate your entire database—along with all the information it contains—with a

single command!

Before we go any further, let’s learn a couple of fundamentals about the MySQL

command prompt. As you may have noticed, all commands in MySQL are terminated

by a semicolon (;). If you forget the semicolon, MySQL will think you’re still typing

your command, and will let you continue on another line:

mysql> SHOW

 -> DATABASES;

MySQL shows that it’s waiting for you to type more of your command by changing

the prompt from mysql> to ->. This handy feature allows you to spread long com-

mands over several lines.

Case Sensitivity in SQL Queries

Most MySQL commands are not case-sensitive, which means you can type SHOW

DATABASES, show databases, or ShOw DaTaBaSeS, and it will know what you

mean. Database names and table names, however, are case-sensitive when the

MySQL server is running on an operating system with a case-sensitive file system

(like Linux or Mac OS X, depending on your system configuration).

Also, table, column, and other names must be spelled exactly the same when

they’re used more than once in the same command.

For consistency, this book will respect the accepted convention of typing database

commands in all capitals, and database entities (databases, tables, columns, and

so on) in all lowercase.

If you’re halfway through a command and realize that you made a mistake early on,

you may want to cancel the current command entirely and start over from scratch.

To do this, type \c and press Enter:

59Introducing MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysql> DROP DATABASE\c

mysql>

MySQL will ignore the command you had begun to type and will return to the

mysql> prompt to await another command.

Finally, if at any time you want to exit the MySQL client program, just type quit

or exit (either will work). This is the only command where the semicolon is unne-

cessary, but you can use one if you want to.

mysql> quit

Bye

Structured Query Language
The set of commands we’ll use to direct MySQL throughout the rest of this book is

part of a standard called Structured Query Language, or SQL (pronounced as either

“sequel” or “ess-cue-ell”—take your pick). Commands in SQL are also referred to

as queries; I’ll use these two terms interchangeably.

SQL is the standard language for interacting with most databases, so, even if you

move from MySQL to a database like Microsoft SQL Server in the future, you’ll find

that most of the commands are identical. It’s important that you understand the

distinction between SQL and MySQL. MySQL is the database server software that

you’re using. SQL is the language that you use to interact with that database.

Learn SQL in Depth

In this book, I’ll teach you the essentials of SQL that every PHP developer needs

to know.

If you decide to make a career out of building database driven web sites, you’ll

find that it pays to know some of the more advanced details of SQL, especially

when it comes to making your sites run as quickly and smoothly as possible.

If you’d like to dive deeper into SQL, I highly recommend the book Simply SQL3

by Rudy Limeback (Melbourne: SitePoint, 2008).

3 http://www.sitepoint.com/books/sql1/

Build Your Own Database Driven Web Site Using PHP & MySQL60

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/books/sql1/

Creating a Database
When the time comes to deploy your first database driven web site on the Web,

you’ll likely find that your web host or IT department has already created a MySQL

database for you to use. Since you’re in charge of your own MySQL server, however,

you’ll need to create your own database to use in developing your site.

It’s just as easy to create a database as it is to delete one:

mysql> CREATE DATABASE ijdb;

I chose to name the database ijdb, for Internet Joke Database,4 because that fits with

the example I gave at the beginning of this chapter—a web site that displays a

database of jokes. Feel free to give the database any name you like, though.

Now that you have a database, you need to tell MySQL that you want to use it.

Again, the command is easy to remember:

mysql> USE ijdb;

You’re now ready to use your database. Since a database is empty until you add

some tables to it, our first order of business will be to create a table that will hold

your jokes (now might be a good time to think of some!).

Creating a Table
The SQL commands we’ve encountered so far have been reasonably simple, but as

tables are so flexible, it takes a more complicated command to create them. The

basic form of the command is as follows:

mysql> CREATE TABLE table_name (

 -> column1Name column1Type column1Details,

 -> column2Name column2Type column2Details,

 -> ⋮
 ->) DEFAULT CHARACTER SET charset;

4 With a tip of the hat to the Internet Movie Database. [http://www.imdb.com]

61Introducing MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.imdb.com

Let’s continue with the joke table I showed you in Figure 2.1. You’ll recall that it

had three columns: id (a number), joketext (the text of the joke), and jokedate

(the date on which the joke was entered). This is the command to create that table:

mysql> CREATE TABLE joke (

 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 -> joketext TEXT,

 -> jokedate DATE NOT NULL

 ->) DEFAULT CHARACTER SET utf8;

Looks scary, huh? Let’s break it down:

CREATE TABLE joke (

This first line is fairly simple; it says that we want to create a new table named

joke. The opening parenthesis (() marks the beginning of the list of columns

in the table.

id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

This second line says that we want a column called id that will contain an in-

teger (INT), that is, a whole number. The rest of this line deals with special details

for the column:

1. First, when creating a row in this table, this column is not allowed to be left

blank (NOT NULL).

2. Next, if we omit specifying a particular value for this column when we add

a new entry to the table, we want MySQL to automatically pick a value that

is one more than the highest value in the table so far (AUTO_INCREMENT).

3. Finally, this column is to act as a unique identifier for the entries in the table,

so all values in this column must be unique (PRIMARY KEY).

joketext TEXT,

This third line is super simple; it says that we want a column called joketext,

which will contain text (TEXT).

jokedate DATA NOT NULL

This fourth line defines our last column, called jokedate; this will contain a

date (DATE), which cannot be left blank (NOT NULL).

Build Your Own Database Driven Web Site Using PHP & MySQL62

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

) DEFAULT CHARACTER SET utf8;

The closing parenthesis ()) marks the end of the list of columns in the table.

DEFAULT CHARACTER SET utf8 tells MySQL that you will be storing UTF-8 en-

coded text in this table. UTF-8 is the most common encoding used for web

content, so you should use it in all your database tables that you intend to use

on the Web.

Finally, the semicolon tells the mysql client program that you’ve finished typing

your query.

Note that we assigned a specific data type to each column we created. id will contain

integers, joketext will contain text, and jokedate will contain dates. MySQL re-

quires you to specify in advance a data type for each column. This helps to keep

your data organized, and allows you to compare the values within a column in

powerful ways, as we’ll see later. For a complete list of supported MySQL data

types, see Appendix C.

Now, if you typed the above command correctly, MySQL will respond with “Query

OK”, and your first table will be created. If you made a typing mistake, MySQL will

tell you there was a problem with the query you typed, and will try to indicate

where it had trouble understanding what you meant.

For such a complicated command, “Query OK” is a fairly underwhelming response.

Let’s have a look at your new table to make sure it was created properly. Type the

following command:

mysql> SHOW TABLES;

The response should look like this:

+----------------+

| Tables_in_ijdb |

+----------------+

| joke |

+----------------+

1 row in set (0.02 sec)

63Introducing MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

This is a list of all the tables in your database (which we named ijdb above). The

list contains only one table: the joke table you just created. So far, everything seems

fine. Let’s take a closer look at the joke table itself using a DESCRIBE query:

mysql> DESCRIBE joke;

+----------+---------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------+---------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| joketext | text | YES | | NULL | |

| jokedate | date | NO | | NULL | |

+----------+---------+------+-----+---------+----------------+

3 rows in set (0.10 sec)

As you can see, there are three columns (or fields) in this table, which appear as

the three rows in this table of results. The details are a little cryptic, but if you look

at them closely, you should be able to figure out what they mean. It’s nothing to be

too worried about, though. You have better things to do, like adding some jokes to

your table!

We need to look at just one more task before you get to that, though: deleting a table.

This task is as frighteningly easy as deleting a database. In fact, the command is al-

most identical. Don’t run this command with your joke table, unless you actually

do want to be rid of it!

mysql> DROP TABLE tableName;

Inserting Data into a Table
Your database is created and your table is built; all that’s left is to put some actual

jokes into the database. The command that inserts data into a database is called,

appropriately enough, INSERT. This command can take two basic forms:

mysql> INSERT INTO tableName SET

 -> column1Name = column1Value,

 -> column2Name = column2Value,

 -> ⋮
 -> ;

Build Your Own Database Driven Web Site Using PHP & MySQL64

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysql> INSERT INTO tableName

 -> (column1Name, column2Name, …)

 -> VALUES (column1Value, column2Value, …);

So, to add a joke to our table, we can use either of these commands:

mysql> INSERT INTO joke SET

 -> joketext = "Why did the chicken cross the road? To get to

 "> the other side!",

 -> jokedate = "2009-04-01";

mysql> INSERT INTO joke

 -> (joketext, jokedate) VALUES (

 -> "Why did the chicken cross the road? To get to the other

 "> side!",

 -> "2009-04-01"

 ->);

Note that in both forms of the INSERT command, the order in which you list the

columns must match the order in which you list the values. Otherwise, the order

of the columns is unimportant.

As you typed this query, you’ll have noticed that we used double quotes (") to mark

where the text of the joke started and ended. A piece of text enclosed in quotes this

way is called a text string, and this is how you represent most data values in SQL.

You’ll notice, for instance, that the dates are typed as text strings as well, in the

form "YYYY-MM-DD".

If you prefer, you can type text strings surrounded with single quotes (') instead of

double quotes:

mysql> INSERT INTO joke SET

 -> joketext = 'Why did the chicken cross the road? To get to

 '> the other side!',

 -> jokedate = '2009-04-01';

You might be wondering what happens when the text of a joke itself contains quotes.

Well, if the text contains single quotes, the easiest thing to do is surround it with

double quotes. Conversely, if the text contains double quotes, surround it with

single quotes.

65Introducing MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

If the text you want to include in your query contains both single and double quotes,

you’ll have to escape the conflicting characters within your text string. You escape

a character in SQL by adding a backslash (\) immediately before it. This tells MySQL

to ignore any “special meaning” this character might have. In the case of single or

double quotes, it tells MySQL not to interpret the character as the end of the text

string.

To make this as clear as possible, here’s an INSERT command for a joke containing

both single and double quotes:

mysql> INSERT INTO joke

 -> (joketext, jokedate) VALUES (

 -> 'Knock-knock! Who\'s there? Boo! "Boo" who?

 '> Don\'t cry; it\'s only a joke!',

 -> "2009-04-01");

As you can see, I’ve marked the start and end of the text string for the joke text using

single quotes. I’ve therefore had to escape the three single quotes within the string

by putting backslashes before them. MySQL sees these backslashes and knows to

treat the single quotes as characters within the string, rather than end-of-string

markers.

If you’re especially clever, you might now be wondering how to include actual

backslashes in SQL text strings. The answer is to type a double-backslash (\\), which

MySQL will see and treat as a single backslash in the string of text.

Now that you know how to add entries to a table, let’s see how we can view those

entries.

Viewing Stored Data
The command we use to view data stored in database tables, SELECT, is the most

complicated command in the SQL language. The reason for this complexity is that

the chief strength of a database is its flexibility in data retrieval. At this early point

in our experience with databases we need only fairly simple lists of results, so we’ll

just consider the simpler forms of the SELECT command here.

This command will list everything that’s stored in the joke table:

Build Your Own Database Driven Web Site Using PHP & MySQL66

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysql> SELECT * FROM joke;

Read aloud, this command says “select everything from joke.” If you try this com-

mand, your results will resemble the following:

+----+--

-+------------+

| id | joketext

 | jokedate |

+----+--

-+------------+

| 1 | Why did the chicken cross the road? To get to the other side!

 | 2009-04-01 |

+----+--

-+------------+

1 row in set (0.00 sec)

The results look a little disorganized because the text in the joketext column is so

long that the table is too wide to fit on the screen properly. For this reason, you

might want to tell MySQL to leave out the joketext column. The command for

doing this is as follows:

mysql> SELECT id, jokedate FROM joke;

This time, instead of telling it to “select everything,” we told it precisely which

columns we wanted to see. The results look like this:

+----+------------+

| id | jokedate |

+----+------------+

| 1 | 2009-04-01 |

+----+------------+

1 row in set (0.00 sec)

That’s okay, but we’d like to see at least some of the joke text? As well as being able

to name specific columns that we want the SELECT command to show us, we can

use functions to modify each column’s display. One function, called LEFT, lets us

tell MySQL to display a column’s contents up to a specified maximum number of

characters. For example, let’s say we wanted to see only the first 20 characters of

the joketext column. Here’s the command we’d use:

67Introducing MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysql> SELECT id, LEFT(joketext, 20), jokedate FROM joke;

+----+----------------------+------------+

| id | LEFT(joketext, 20) | jokedate |

+----+----------------------+------------+

| 1 | Why did the chicken | 2009-04-01 |

+----+----------------------+------------+

1 row in set (0.00 sec)

See how that worked? Another useful function is COUNT, which lets us count the

number of results returned. If, for example, you wanted to find out how many jokes

were stored in your table, you could use the following command:

mysql> SELECT COUNT(*) FROM joke;

+----------+

| COUNT(*) |

+----------+

| 1 |

+----------+

1 row in set (0.02 sec)

As you can see, you have just one joke in your table.

So far, all the examples have fetched all the entries in the table; however, you can

limit your results to include only those database entries that have the specific attrib-

utes you want. You set these restrictions by adding what’s called a WHERE clause to

the SELECT command. Consider this example:

mysql> SELECT COUNT(*) FROM joke WHERE jokedate >= "2009-01-01";

This query will count the number of jokes that have dates greater than or equal to

January 1, 2009. In the case of dates, “greater than or equal to” means “on or after.”

Another variation on this theme lets you search for entries that contain a certain

piece of text. Check out this query:

mysql> SELECT joketext FROM joke WHERE joketext LIKE "%chicken%";

This query displays the full text of all jokes that contain the text “chicken” in their

joketext column. The LIKE keyword tells MySQL that the named column must

match the given pattern. In this case, the pattern we’ve used is "%chicken%". The

Build Your Own Database Driven Web Site Using PHP & MySQL68

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

% signs indicate that the text “chicken” may be preceded and/or followed by any

string of text.

Additional conditions may also be combined in the WHERE clause to further restrict

results. For example, to display knock-knock jokes from April 2009 only, you could

use the following query:

mysql> SELECT joketext FROM joke WHERE

 -> joketext LIKE "%knock%" AND

 -> jokedate >= "2009-04-01" AND

 -> jokedate < "2009-05-01";

Enter a few more jokes into the table and experiment with SELECT queries. A good

familiarity with the SELECT command will come in handy later in this book.

You can do a lot with the SELECT command. We’ll look at some of its more advanced

features later, when we need them.

Modifying Stored Data
Having entered your data into a database table, you might like to change it.

Whether you want to correct a spelling mistake, or change the date attached to a

joke, such alterations are made using the UPDATE command. This command contains

elements of the SELECT and INSERT commands, since the command both picks out

entries for modification and sets column values. The general form of the UPDATE

command is as follows:

mysql> UPDATE tableName SET

 -> colName = newValue, …

 -> WHERE conditions;

So, for example, if we wanted to change the date on the joke we entered above, we’d

use the following command:

mysql> UPDATE joke SET jokedate = "2010-04-01" WHERE id = "1";

Here’s where that id column comes in handy: it enables you to single out a joke for

changes easily. The WHERE clause used here works just as it did in the SELECT com-

69Introducing MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mand. This next command, for example, changes the date of all entries that contain

the word “chicken”:

mysql> UPDATE joke SET jokedate = "2010-04-01"

 -> WHERE joketext LIKE "%chicken%";

Deleting Stored Data
Deleting entries in SQL is dangerously easy, which, if you’ve yet to notice, is a re-

curring theme. Here’s the command syntax:

mysql> DELETE FROM tableName WHERE conditions;

To delete all chicken jokes from your table, you’d use the following query:

mysql> DELETE FROM joke WHERE joketext LIKE "%chicken%";

Careful With That Enter Key!

Believe it or not, the WHERE clause in the DELETE command is actually optional.

Consequently, you should be very careful when typing this command! If you leave

the WHERE clause out, the DELETE command will then apply to all entries in the

table.

This command will empty the joke table in one fell swoop:

mysql> DELETE FROM joke;

Scary, huh?

Let PHP Do the Typing
There’s a lot more to the MySQL database server software and SQL than the handful

of basic commands I’ve presented here, but these commands are by far the most

commonly used.

At this stage, you might be thinking that databases seem a little cumbersome. SQL

can be fairly tricky to type—its commands tend to be rather long and verbose com-

Build Your Own Database Driven Web Site Using PHP & MySQL70

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

pared to other computer languages. You’re probably already dreading the thought

of typing in a complete library of jokes in the form of INSERT commands.

Don’t sweat it! As we proceed through this book, you’ll be surprised at how few

SQL queries you actually type by hand. Generally, you’ll be writing PHP scripts

that type your SQL for you. If you want to be able to insert a bunch of jokes into

your database, for example, you’ll typically create a PHP script for adding jokes that

includes the necessary INSERT query, with a placeholder for the joke text. You can

then run that PHP script whenever you have jokes to add. The PHP script prompts

you to enter your joke, then issues the appropriate INSERT query to your MySQL

server.

For now, however, it’s important for you to gain a good feel for typing SQL by hand.

It will give you a strong sense of the inner workings of MySQL databases, and will

make you appreciate the work that PHP will save you all the more!

To date, we’ve only worked with a single table, but to realize the true power of a

relational database, you’ll also need to learn how to use multiple tables together to

represent potentially complex relationships between the items stored in your data-

base. I’ll cover all this and more in Chapter 5, in which I’ll discuss database design

principles and show off some more advanced examples.

For now, though, we’ve accomplished our objective, and you can comfortably interact

with MySQL using the mysql client program. In Chapter 3, the fun continues as we

delve into the PHP language, and use it to create several dynamically-generated

web pages.

If you like, you can practice with MySQL a little before you move on by creating a

decent-sized joke table. This knowledge will come in handy in Chapter 4.

71Introducing MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Chapter3
Introducing PHP
PHP is a server-side language. This concept may be a little difficult to grasp, espe-

cially if you’re used to designing pages using only client-side languages like HTML,

CSS, and JavaScript.

A server-side language is similar to JavaScript in that it allows you to embed little

programs (scripts) into the HTML code of a web page. When executed, these programs

give you greater control over what appears in the browser window than HTML alone

can provide. The key difference between JavaScript and PHP is the stage of loading

the web page at which these embedded programs are executed.

Client-side languages like JavaScript are read and executed by the web browser,

after downloading the web page (embedded programs and all) from the web server.

In contrast, server-side languages like PHP are run by the web server, before sending

the web page to the browser. Whereas client-side languages give you control over

how a page behaves once it’s displayed by the browser, server-side languages let

you generate customized pages on the fly before they’re even sent to the browser.

Once the web server has executed the PHP code embedded in a web page, the results

of that code’s execution take the place of the PHP code in the page. When the browser

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

receives the page, all it sees is standard HTML code, hence the name: server-side

language. Let’s look back at the today.php example presented in Chapter 1:

chapter3/today.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Today’s Date</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p>Today’s date (according to this web server) is

<?php

 echo date('l, F dS Y.');

 ?>

 </p>

 </body>

</html>

Most of this is plain HTML; however, the line between <?php and ?> is PHP code.

<?php marks the start of an embedded PHP script and ?> marks the end of such a

script. The web server is asked to interpret everything between these two delimiters,

and to convert it to regular HTML code before it sends the web page to the requesting

browser. The browser is presented with the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Today’s Date</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p>Today’s Date (according to this web server) is

Wednesday, April 1st 2009. </p>

 </body>

</html>

Build Your Own Database Driven Web Site Using PHP & MySQL74

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Notice that all signs of the PHP code have disappeared. In its place, the output of

the script has appeared, and it looks just like standard HTML. This example

demonstrates several advantages of server-side scripting:

No browser compatibility issues

PHP scripts are interpreted by the web server alone, so there’s no need to worry

about whether the language you’re using is supported by the visitor’s browser.

Access to server-side resources

In the above example, we placed the date, according to the web server, into the

web page. If we had inserted the date using JavaScript, we’d only be able to

display the date according to the computer on which the web browser was

running. Granted, there are more impressive examples of the exploitation of

server-side resources; a better example might be inserting content pulled out of

a MySQL database (hint, hint …).

Reduced load on the client

JavaScript can delay the display of a web page on slower computers significantly,

as the browser must run the script before it can display the web page. With

server-side code, this burden is passed to the web server machine, which you

can make as beefy as your application requires.

Basic Syntax and Statements
PHP syntax will be very familiar to anyone with an understanding of C, C++, C#,

Java, JavaScript, Perl, or any other C-derived language. If you’re unfamiliar with

any of these languages, or if you’re new to programming in general, there’s no need

to worry about it!

A PHP script consists of a series of commands, or statements. Each statement is an

instruction that must be followed by the web server before it can proceed to the

next. PHP statements, like those in the above-mentioned languages, are always ter-

minated by a semicolon (;).

This is a typical PHP statement:

echo 'This is a test!';

75Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

This is an echo statement, which is used to generate content (usually HTML code)

to be sent to the browser. An echo statement simply takes the text it’s given, and

inserts it into the page’s HTML code at the position of the PHP script that contains

it.

In this case, we have supplied a string of text to be output: 'This is a

test!'. Notice that the string of text contains HTML tags

(and), which is perfectly acceptable. So, if we take this state-

ment and put it into a complete web page, here’s the resulting code:

chapter3/echo.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Simple PHP Example</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p><?php echo 'This is a test!'; ?></p>

 </body>

</html>

If you place this file on your web server, a browser that requests the page will receive

this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Simple PHP Example</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p>This is a test!</p>

 </body>

</html>

Build Your Own Database Driven Web Site Using PHP & MySQL76

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The today.php example we looked at earlier contained a slightly more complex echo

statement:

chapter3/today.php (excerpt)

echo date('l, F dS Y.');

Instead of giving echo a simple string of text to output, this statement invokes a

built-in function called date and passes it a string of text: 'l, F dS Y.'. You can

think of built-in functions as tasks that PHP knows how to do without your needing

to spell out the details. PHP has many built-in functions that let you do everything

from sending email to working with information stored in various types of databases.

When you invoke a function in PHP, you’re said to be calling that function. Most

functions return a value when they’re called; PHP then replaces the function call

with that value when it executes the statement. In this case, our echo statement

contains a call to the date function, which returns the current date as a string of

text (the format of which is specified by the text string in the function call). The

echo statement therefore outputs the value returned by the function call.

You may wonder why we need to surround the string of text with both parentheses

(()) and single quotes (''). As in SQL, quotes are used in PHP to mark the beginning

and end of strings of text, so it makes sense for them to be there. The parentheses

serve two purposes. First, they indicate that date is a function that you want to call.

Second, they mark the beginning and end of a list of parameters (or arguments)

that you wish to provide, in order to tell the function what to do. In the case of the

date function, you need to provide a string of text that describes the format in which

you want the date to appear.1 Later on, we’ll look at functions that take more than

one parameter, and we’ll separate those parameters with commas. We’ll also consider

functions that take no parameters at all. These functions will still need the paren-

theses, though it’s unnecessary to type anything between them.

1 A full reference is available in the online documentation for the date function

[http://www.php.net/date/].

77Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.php.net/date/

Variables, Operators, and Comments
Variables in PHP are identical to variables in most other programming languages.

For the uninitiated, a variable can be thought of as a name that’s given to an imag-

inary box into which any literal value may be placed. The following statement

creates a variable called $testvariable (all variable names in PHP begin with a

dollar sign) and assigns it a literal value of 3:

$testvariable = 3;

PHP is a loosely typed language. This means that a single variable may contain any

type of data, be it a number, a string of text, or some other kind of value, and may

change types over its lifetime. So the following statement, if you were to type it

after the statement above, assigns a new value to the existing $testvariable. In

the process, the variable changes type: where it used to contain a number, it now

contains a string of text:

$testvariable = 'Three';

The equals sign we used in the last two statements is called the assignment operator,

as it’s used to assign values to variables. Other operators may be used to perform

various mathematical operations on values:

$testvariable = 1 + 1; // Assigns a value of 2

$testvariable = 1 - 1; // Assigns a value of 0

$testvariable = 2 * 2; // Assigns a value of 4

$testvariable = 2 / 2; // Assigns a value of 1

From the above examples, you can probably tell that + is the addition operator, -

is the subtraction operator, * is the multiplication operator, and / is the division

operator. These are all called arithmetic operators, because they perform arithmetic

on numbers.

Each of the lines above ends with a comment. Comments are a way to describe what

your code is doing. They insert explanatory text into your code—text that the PHP

interpreter will ignore. Comments begin with // and they finish at the end of the

same line. If you need a comment to span several lines, you can instead start your

comment with /*, and end it with */. The PHP interpreter will ignore everything

Build Your Own Database Driven Web Site Using PHP & MySQL78

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

between these two delimiters. I’ll use comments throughout the rest of this book to

help explain some of the code I present.

Returning to the operators, there’s another one that sticks strings of text together,

called the string concatenation operator:

$testvariable = 'Hi ' . 'there!'; // Assigns a value of 'Hi there!'

Variables may be used almost anywhere that you use a literal value. Consider this

series of statements:

$var1 = 'PHP'; // Assigns a value of 'PHP' to $var1

$var2 = 5; // Assigns a value of 5 to $var2

$var3 = $var2 + 1; // Assigns a value of 6 to $var3

$var2 = $var1; // Assigns a value of 'PHP' to $var2

echo $var1; // Outputs 'PHP'

echo $var2; // Outputs 'PHP'

echo $var3; // Outputs '6'

echo $var1 . ' rules!'; // Outputs 'PHP rules!'

echo "$var1 rules!"; // Outputs 'PHP rules!'

echo '$var1 rules!'; // Outputs '$var1 rules!'

Notice the last two lines in particular. You can include the name of a variable right

inside a text string, and have the value inserted in its place if you surround the

string with double quotes instead of single quotes. This process of converting variable

names to their values is known as variable interpolation. However, as the last line

demonstrates, a string surrounded with single quotes will not interpolate the variable

names it contains.

Arrays
An array is a special kind of variable that contains multiple values. If you think of

a variable as a box that contains a value, then an array can be thought of as a box

with compartments, where each compartment is able to store an individual value.

The simplest way to create an array in PHP is to use the built-in array function:

$myarray = array('one', 2, '3');

79Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

This code creates an array called $myarray that contains three values: 'one', 2, and

'3'. Just like an ordinary variable, each space in an array can contain any type of

value. In this case, the first and third spaces contain strings, while the second con-

tains a number.

To access a value stored in an array, you need to know its index. Typically, arrays

use numbers, starting with zero, as indices to point to the values they contain. That

is, the first value (or element) of an array has index 0, the second has index 1, the

third has index 2, and so on. In general, therefore, the index of the nth element of

an array is n–1. Once you know the index of the value you’re interested in, you can

retrieve that value by placing that index in square brackets after the array variable

name:

echo $myarray[0]; // Outputs 'one'

echo $myarray[1]; // Outputs '2'

echo $myarray[2]; // Outputs '3'

Each value stored in an array is called an element of that array. You can use an index

in square brackets to add new elements, or assign new values to existing array ele-

ments:

$myarray[1] = 'two'; // Assign a new value

$myarray[3] = 'four'; // Create a new element

You can add elements to the end of an array using the assignment operator as usual,

but leaving empty the square brackets that follow the variable name:

$myarray[] = 'the fifth element';

echo $myarray[4]; // Outputs 'the fifth element'

However, numbers are only the most common choice for array indices; there’s an-

other possibility. You can also use strings as indices to create what’s called an asso-

ciative array. This type of array is called associative because it associates values

with meaningful indices. In this example, we associate a date (in the form of a string)

with each of three names:

$birthdays['Kevin'] = '1978-04-12';

$birthdays['Stephanie'] = '1980-05-16';

$birthdays['David'] = '1983-09-09';

Build Your Own Database Driven Web Site Using PHP & MySQL80

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The array function also lets you create associative arrays, if you prefer that method.

Here’s how we’d use it to create the $birthdays array:

$birthdays = array('Kevin' => '1978-04-12',

 'Stephanie' => '1980-05-16', 'David' => '1983-09-09');

Now, if we want to know Kevin’s birthday, we look it up using the name as the index:

echo 'My birthday is: ' . $birthdays['Kevin'];

This type of array is especially important when it comes to user interaction in PHP,

as we’ll see in the next section. I’ll demonstrate other uses of arrays throughout this

book.

User Interaction and Forms
For most database driven web sites these days, you need to do more that just dynam-

ically generate pages based on database data; you must also provide some degree

of interactivity, even if it’s just a search box.

Veterans of JavaScript tend to think of interactivity in terms of event handlers,

which let you react directly to the actions of the user—for example, the movement

of the cursor over a link on the page. Server-side scripting languages such as PHP

have a more limited scope when it comes to support for user interaction. As PHP

code is only activated when a request is made to the server, user interaction can

occur only in a back-and-forth fashion: the user sends requests to the server, and

the server replies with dynamically generated pages.2

The key to creating interactivity with PHP is to understand the techniques we can

use to send information about a user’s interaction along with a request for a new

web page. As it turns out, PHP makes this fairly easy.

2 To some extent, the rise of Ajax techniques in the JavaScript world over the past few years has changed

this. It’s now possible for JavaScript code, responding to a user action such as mouse movement, to send

a request to the web server, invoking a PHP script. For the purposes of this book, however, we’ll stick

to non-Ajax applications. If you’d like to learn how to use PHP with Ajax, check out Build Your Own

AJAX Web Applications [http://www.sitepoint.com/books/ajax1/] by Matthew Eernisse (Melbourne:

SitePoint, 2006).

81Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/books/ajax1/
http://www.sitepoint.com/books/ajax1/

The simplest method we can use to send information along with a page request is

to use the URL query string. If you’ve ever seen a URL in which a question mark

followed the file name, you’ve witnessed this technique in use. For example, if you

search for “SitePoint” on Google, it will take you to the following URL to see the

search results:

http://www.google.com/search?hl=en&q=SitePoint&btnG=Google+Search&

➥meta=

See the question mark in the URL? See how the text that follows the question mark

contains things like your search query (SitePoint) and the name of the button you

clicked (Google+Search)? That information is being sent along with the request for

http://www.google.com/search.

Let’s code up an easy example of our own. Create a regular HTML file called

welcome1.html (no .php file name extension is required, since there will be no PHP

code in this file) and insert this link:

chapter3/welcome1.html (excerpt)

Hi, I’m Kevin!

This is a link to a file called welcome1.php, but as well as linking to the file, you’re

also passing a variable along with the page request. The variable is passed as part

of the query string, which is the portion of the URL that follows the question mark.

The variable is called name and its value is Kevin. To restate, you have created a

link that loads welcome1.php, and informs the PHP code contained in that file that

name equals Kevin.

To really understand the effect of this link, we need to look at welcome1.php. Create

it as a new HTML file, but, this time, note the .php file name extension—this tells

the web server that it can expect to interpret some PHP code in the file. In the <body>

of this new web page, type the following:

chapter3/welcome1.php (excerpt)

<?php

$name = $_GET['name'];

echo 'Welcome to our web site, ' . $name . '!';

?>

Build Your Own Database Driven Web Site Using PHP & MySQL82

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Now, put these two files (welcome1.html and welcome1.php) onto your web server,

and load the first file in your browser (the URL should be similar to

http://localhost/welcome1.html, or http://localhost:8080/welcome1.html if your

web server is running on a port other than 80). Click the link in that first page to

request the PHP script. You should see that the resulting page says “Welcome to

our web site, Kevin!”, as shown in Figure 3.1.

Figure 3.1. Greet users with a personalized welcome message

Let’s take a closer look at the code that made this possible. The most important line

is this one:

chapter3/welcome1.php (excerpt)

$name = $_GET['name'];

If you were paying close attention in the section called “Arrays”, you’ll recognize

what this line does. It assigns to a new variable called $name the value stored in the

'name' element of the array called $_GET. But where does the $_GET array come

from?

It turns out that $_GET is one of a number of variables that PHP automatically creates

when it receives a request from a browser. PHP creates $_GET as an array variable

that contains any values passed in the query string. $_GET is an associative array,

so the value of the name variable passed in the query string can be accessed as

$_GET['name']. Your welcome1.php script assigns this value to an ordinary PHP

variable ($name), then displays it as part of a text string using an echo statement:

83Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter3/welcome1.php (excerpt)

echo 'Welcome to our web site, ' . $name . '!';

The value of the $name variable is inserted into the output string using the string

concatenation operator (.) that we looked at in the section called “Variables, Oper-

ators, and Comments”.

But look out! There is a security hole lurking in this code! Although PHP is an easy

programming language to learn, it turns out it’s also especially easy to introduce

security issues into web sites using PHP if you’re unaware of what precautions to

take. Before we go any further with the language, I want to make sure you’re able

to spot and fix this particular security issue, since it’s probably the most common

kind of security issue on the Web today.

The security issue here stems from the fact that the welcome1.php script is generating

a page containing content that is under the control of the user—in this case, the

$name variable. Although the $name variable will normally receive its value from

the URL query string in the link on the welcome1.html page, a malicious user could

edit the URL to send a different value for the name variable.

To see how this would work, click the link in welcome1.html again. When you see

the resulting page (with the welcome message containing the name “Kevin”), take

a look at the URL in the address bar of your browser. It should look similar to this:

http://localhost/welcome1.php?name=Kevin

Edit the URL to insert a tag before the name, and a tag following the name,

like this:

http://localhost/welcome1.php?name=Kevin

Hit Enter to load this new URL, and notice that the name in the page is now bold,

as shown in Figure 3.2.

Build Your Own Database Driven Web Site Using PHP & MySQL84

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 3.2. Easy exploitation will only embolden attackers!

See what’s happening here? The user can type any HTML code into the URL, and

your PHP script includes it in the code of the generated page without question. If

the code is as innocuous as a tag there’s no problem, but a malicious user could

include sophisticated JavaScript code that performed malicious actions like steal

the user’s password. All the attacker would have to do, then, would be to publish

the modified link on some other site under the attacker’s control, and then entice

one of your users to click it. The attacker could even embed the link in an email

and send it to your users. If one of your users clicked the link, the attacker’s code

would be included in your page and the trap would be sprung!

I hate to scare you with this talk of malicious hackers attacking your users by turning

your own PHP code against you, particularly when you’e only just learning the

language. The fact is, however, that PHP’s biggest weakness as a language is how

easy it is to introduce security issues like this. Some might say that most of the energy

you spend learning to write PHP to a professional standard is spent on avoiding

security issues. The sooner you’re exposed to these issues, however, the sooner you

become accustomed to avoiding them, and the less of a stumbling block they’ll be

for you going forward.

So, how can we generate a page containing the user’s name without opening it up

to abuse by attackers? The solution is to treat the value supplied for the $name

variable as plain text to be displayed on your page, rather than as HTML to be in-

cluded in the page’s code. This is a subtle distinction, so let me show you what I

mean.

Copy your welcome1.html file and rename it to welcome2.html. Edit the link it contains

so that it points to welcome2.php instead of welcome1.php:

85Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter3/welcome2.html (excerpt)

Hi, I’m Kevin!

Copy your welcome1.php file and rename it to welcome2.php. Edit the PHP code it

contains so that it looks like this:

chapter3/welcome2.php (excerpt)

<?php

$name = $_GET['name'];

echo 'Welcome to our web site, ' .

htmlspecialchars($name, ENT_QUOTES, 'UTF-8') . '!';

?>

There’s a lot going on in this code, so let me break it down for you. The first line is

the same as it was previously, assigning to $name the value of the 'name' element

from the $_GET array. The echo statement that follows it is drastically different,

though. Whereas previously, we simply dumped the $name variable, naked, into

the echo statement, this version of the code uses the built-in PHP function

htmlspecialchars to perform a critical conversion.

Remember, the security hole comes from the fact that, in welcome1.php, HTML code

in the $name variable is dumped directly into the code of the generated page, and

can therefore do anything that HTML code can do. What htmlspecialchars does

is convert “special HTML characters” like “<” and “>” into HTML character entities

like < and >, which prevents them from being interpreted as HTML code by

the browser. I’ll demonstrate this for you in a moment.

First, let’s take a closer look at this new code. The call to the htmlspecialchars

function is the first example in this book of a PHP function that takes more than

one parameter. Here’s the function call all by itself:

htmlspecialchars($name, ENT_QUOTES, 'UTF-8')

Build Your Own Database Driven Web Site Using PHP & MySQL86

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The first parameter is the $name variable (the text to be converted). The second

parameter is the PHP constant3 ENT_QUOTES, which tells htmlspecialchars to

convert single and double quotes in addition to other special characters. The third

parameter is the string 'UTF-8', which tells PHP what character encoding to use to

interpret the text you give it.

The Perks and Pitfalls of UTF-8 with PHP

You may have noticed that all of the example HTML pages in this book contain

the following <meta> tag near the top:

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

This tag tells the browser that receives this page that the HTML code of the page

is encoded as UTF-8 text.4

In a few pages, we’ll reach the section on building HTML forms. By encoding your

pages as UTF-8, your users can submit text containing thousands of foreign char-

acters that your site would otherwise be unable to handle.

Unfortunately, many of PHP’s built-in functions, such as htmlspecialchars,

assume you’re using the much simpler ISO-8859-1 character encoding by default.

Therefore, you need to let them know you’re using UTF-8 when you use these

functions.

If you can, you should also tell your text editor to save your HTML and PHP files

as UTF-8 encoded text, but this is only required if you want to type advanced

characters (like curly quotes or dashes) or foreign characters (like “é”) into your

HTML or PHP code. The code in this book plays it safe and uses HTML character

entities (for example, ’ for a curly right quote), which will work regardless.

3 A PHP constant is like a variable whose value you’re unable to change. Unlike variables, constants

don’t start with a dollar sign. PHP comes with a number of built-in constants like ENT_QUOTES that

are used to control built-in functions like htmlspecialchars.
4 UTF-8 is one of many standards for representing text as a series of ones and zeros in computer

memory, called character encodings. If you’re curious to learn all about character encodings, check

out The Definitive Guide to Web Character Encoding

[http://www.sitepoint.com/article/guide-web-character-encoding/].

87Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/article/guide-web-character-encoding/

Open up welcome2.html in your browser and click the link that now points to

welcome2.php. Once again, you’ll see the welcome message “Welcome to our web

site, Kevin!”. As you did before, modify the URL to include and tags sur-

rounding the name:

http://localhost/welcome2.php?name=Kevin

This time, when you hit Enter, instead of the name turning bold in the page, you

should see the actual text that you typed, as shown in Figure 3.3.

Figure 3.3. It sure is ugly, but it’s secure!

If you view the source of the page, you can confirm that the htmlspecialchars

function did its job and converted the “<” and “>” characters present in the provided

name into the < and > HTML character entities, respectively. This prevents

malicious users from injecting unwanted code into your site. If they try anything

like that, the code is harmlessly displayed as plain text on the page.

We’ll make extensive use of the htmlspecialchars function throughout this book

to guard against this sort of security hole. No need to worry too much if you’re

having trouble grasping the details of how to use it for now. Before long, you’ll find

its use becomes second nature. For now, let’s look at some more advanced ways of

passing values to PHP scripts when we request them.

Passing a single variable in the query string was nice, but it turns out you can pass

more than one value if you want to! Let’s look at a slightly more complex version

of the previous example. Save a copy of your welcome2.html file as welcome3.html,

and change the link to point to welcome3.php with a query string as follows:

Build Your Own Database Driven Web Site Using PHP & MySQL88

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter3/welcome3.html (excerpt)

Hi,

 I’m Kevin Yank!

This time, our link passes two variables: firstname and lastname. The variables

are separated in the query string by an ampersand (&, which must be written as

& in HTML). You can pass even more variables by separating each name=value

pair from the next with an ampersand.

As before, we can use the two variable values in our welcome3.php file:

chapter3/welcome3.php (excerpt)

<?php

$firstname = $_GET['firstname'];

$lastname = $_GET['lastname'];

echo 'Welcome to our web site, ' .

 htmlspecialchars($firstname, ENT_QUOTES, 'UTF-8') . ' ' .

 htmlspecialchars($lastname, ENT_QUOTES, 'UTF-8') . '!';

?>

The echo statement is becoming quite sizable now, but it should still make sense

to you. Using a series of string concatenations (.), it outputs “Welcome to our web

site, ” followed by the value of $firstname (made safe for display using

htmlspecialchars), a space, the value of $lastname (again, treated with

htmlspecialchars), and finally an exclamation mark.

The result is shown in Figure 3.4.

Figure 3.4. Create an even more personalized welcome message

89Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

This is all well and good, but we still have yet to achieve our goal of true user inter-

action, where the user can enter arbitrary information and have it processed by PHP.

To continue with our example of a personalized welcome message, we’d like to

invite the user to type his or her name and have it appear in the resulting page. To

enable the user to type in a value, we’ll need to use a HTML form.

Create a new HTML file named welcome4.html and type in this HTML code to create

the form:

chapter3/welcome4.html (excerpt)

<form action="welcome4.php" method="get">

 <div><label for="firstname">First name:

 <input type="text" name="firstname" id="firstname"/></label>

 </div>

 <div><label for="lastname">Last name:

 <input type="text" name="lastname" id="lastname"/></label></div>

 <div><input type="submit" value="GO"/></div>

</form>

Self-closing Tags

The slashes that appear in some of these tags (such as <input …/>) are no cause

for alarm. The XHTML standard for coding web pages calls for slashes to be used

in any tag without a closing tag, which includes <input/> and <meta/> tags,

among others.

Many developers prefer to code to the HTML standard instead of adopting XHTML

and, in fact, this is a matter of some debate within web development circles. The

upcoming HTML 5 standard leaves the choice up to the developer, so neither

approach is strictly “more correct” than the other.

If you’re curious about the factors to consider when making this decision for

yourself, check out the relevant page of the SitePoint HTML Reference.5

The form this code produces is shown in Figure 3.5.6

5 http://reference.sitepoint.com/html/html-vs-xhtml
6 This form is quite plain-looking, I’ll grant you. Some judicious application of CSS would make this—and

all the other pages in this book—look more attractive. Since this is a book about PHP and MySQL,

however, I’ve stuck with the plain look. Check out SitePoint books like The Art & Science of CSS

Build Your Own Database Driven Web Site Using PHP & MySQL90

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://reference.sitepoint.com/html/html-vs-xhtml
http://www.sitepoint.com/books/cssdesign1/

Figure 3.5. Make your own welcome message

Also make a copy of welcome3.php named welcome4.php. There’s nothing that needs

changing in this file.

This form has the exact same effect as the second link we looked at (with first-

name=Kevin&lastname=Yank in the query string), except that you can now enter

whatever names you like. When you click the submit button (which is labeled GO),

the browser will load welcome4.php and add the variables and their values to the

query string for you automatically. It retrieves the names of the variables from the

name attributes of the <input type="text"/> tags, and obtains the values from the

text the user types into the text fields.

Apostrophes in Form Fields

If you are burdened with the swollen ego of most programmers (myself included),

you probably took this opportunity to type your own name into this form. Who

can blame you?

If your last name happens to include an apostrophe (for example, Molly O’Reilly),

the welcome message you saw may have included a stray backslash before the

apostrophe (that is, “Welcome to our web site, Molly O\'Reilly!”).

This bothersome backslash is due to a PHP security feature called magic quotes,

which we’ll learn about in Chapter 4. Until then, please bear with me.

[http://www.sitepoint.com/books/cssdesign1/] (Melbourne: SitePoint, 2007) for advice on styling your

forms with CSS.

91Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The method attribute of the <form> tag is used to tell the browser how to send the

variables and their values along with the request. A value of get (as used in

welcome4.html above) causes them to be passed in the query string (and appear in

PHP’s $_GET array), but there is an alternative. It can be undesirable—or even

technically unfeasible—to have the values appear in the query string. What if we

included a <textarea> tag in the form, to let the user enter a large amount of text?

A URL whose query string contained several paragraphs of text would be ridiculously

long, and would possibly exceed the maximum length for a URL in today’s browsers.

The alternative is for the browser to pass the information invisibly, behind the

scenes.

Make a copy of welcome4.html and name it welcome5.html. The code for the form in

this new page is exactly the same, but where we set the form method to get in the

last example, here we set it to post. Of course, we’ve also set the action attribute

to point at welcome5.php:

chapter3/welcome5.html (excerpt)

<form action="welcome5.php" method="post">

 <div><label for="firstname">First name:

 <input type="text" name="firstname" id="firstname"/></label>

 </div>

 <div><label for="lastname">Last name:

 <input type="text" name="lastname" id="lastname"/></label></div>

 <div><input type="submit" value="GO"/></div>

</form>

This new value for the method attribute instructs the browser to send the form

variables invisibly, as part of the page request, rather than embedding them in the

query string of the URL.

Again, make a copy of welcome4.php and name it welcome5.php.

As we’re no longer sending the variables as part of the query string, they stop ap-

pearing in PHP’s $_GET array. Instead, they’re placed in another array reserved es-

pecially for “posted” form variables: $_POST. We must therefore modify welcome5.php

to retrieve the values from this new array:

Build Your Own Database Driven Web Site Using PHP & MySQL92

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter3/welcome5.php (excerpt)

<?php

$firstname = $_POST['firstname'];

$lastname = $_POST['lastname'];

echo 'Welcome to our web site, ' .

 htmlspecialchars($firstname, ENT_QUOTES, 'UTF-8') . ' ' .

 htmlspecialchars($lastname, ENT_QUOTES, 'UTF-8') . '!';

?>

Figure 3.6 shows what the resulting page looks like once this new form is submitted.

Figure 3.6. This personalized welcome is achieved without a query string

The form is functionally identical to the previous one; the only difference is that

the URL of the page that’s loaded when the user clicks the GO button will be without

a query string. On the one hand, this lets you include large values, or sensitive

values (like passwords), in the data that’s submitted by the form, without their ap-

pearing in the query string. On the other hand, if the user bookmarks the page that

results from the form’s submission, that bookmark will be useless, as it lacks the

submitted values. This, incidentally, is the main reason why search engines use the

query string to submit search terms. If you bookmark a search results page on Google,

you can use that bookmark to perform the same search again later, because the

search terms are contained in the URL.

Sometimes, you want access to a variable without having to worry about whether

it was sent as part of the query string or a form post. In cases like these, the special

$_REQUEST array comes in handy. It contains all the variables that appear in both

$_GET and $_POST. With this variable, we can modify our form processing script

93Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

one more time so that it can receive the first and last names of the user from either

source:

chapter3/welcome6.php (excerpt)

<?php

$firstname = $_REQUEST['firstname'];

$lastname = $_REQUEST['lastname'];

echo 'Welcome to our web site, ' .

 htmlspecialchars($firstname, ENT_QUOTES, 'UTF-8') . ' ' .

 htmlspecialchars($lastname, ENT_QUOTES, 'UTF-8') . '!';

?>

That covers the basics of using forms to produce rudimentary user interaction with

PHP. We’ll look at more advanced issues and techniques in later examples.

Control Structures
All the examples of PHP code we’ve seen so far have been either one-statement

scripts that output a string of text to the web page, or series of statements that were

to be executed one after the other in order. If you’ve ever written programs in other

languages (JavaScript, C, or BASIC) you already know that practical programs are

rarely so simple.

PHP, just like any other programming language, provides facilities that enable you

to affect the flow of control. That is, the language contains special statements that

you can use to deviate from the one-after-another execution order that has dominated

our examples so far. Such statements are called control structures. Don’t understand?

Don’t worry! A few examples will illustrate perfectly.

The most basic, and most often used, control structure is the if statement. The flow

of a program through an if statement can be visualized as in Figure 3.7.

Build Your Own Database Driven Web Site Using PHP & MySQL94

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 3.7. The logical flow of an if statement7

Here’s what an if statement looks like in PHP code:

if (condition)

{

// conditional code to be executed if condition is true

}

This control structure lets us tell PHP to execute a set of statements only if some

condition is met.

If you’ll indulge my vanity for a moment, here’s an example that shows a twist on

the personalized welcome page example we created earlier. Start by making a copy

of welcome6.html called welcome7.html. For simplicity, let’s alter the form it contains

so that it submits a single name variable to welcome7.php:

7 This diagram and several similar ones in this book were originally designed by Cameron Adams for

the book, Simply JavaScript (Melbourne: SitePoint, 2006), which we wrote together. I have reused them

here with his permission, and my thanks.

95Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter3/welcome7.html (excerpt)

<form action="welcome7.php" method="post">

 <div><label for="name">Name:

 <input type="text" name="name" id="name"/></label></div>

 <div><input type="submit" value="GO"/></div>

</form>

Now make a copy of welcome6.php called welcome7.php. Replace the PHP code it

contains with the following:

chapter3/welcome7.php (excerpt)

$name = $_REQUEST['name'];

if ($name == 'Kevin')

{

 echo 'Welcome, oh glorious leader!';

}

Now, if the name variable passed to the page has a value of 'Kevin', a special message

will be displayed, as shown in Figure 3.8.

Figure 3.8. It’s good to be the king

If a name other than Kevin is entered, this example becomes inhospitable—the

conditional code within the if statement fails to execute, and the resulting page

will be blank!

To offer an alternative to a blank page to all the plebs who have a different name to

Kevin, we can use an if-else statement instead. The structure of an if-else state-

ment is shown in Figure 3.9.

Build Your Own Database Driven Web Site Using PHP & MySQL96

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 3.9. The logical flow of an if-else statement

The else portion of an if-else statement is tacked onto the end of the if portion,

like this:

chapter3/welcome7.php (excerpt)

$name = $_REQUEST['name'];

if ($name == 'Kevin')

{

 echo 'Welcome, oh glorious leader!';

}

else

{

 echo 'Welcome to our web site, ' .

 htmlspecialchars($name, ENT_QUOTES, 'UTF-8') . '!';

}

Now if you submit a name other than Kevin, you should see the usual welcome

message shown in Figure 3.10.

97Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 3.10. You gotta remember your peeps

The == used in the condition above is the equal operator that’s used to compare

two values to see whether they’re equal.

Double Trouble

Remember to type the double-equals (==). A common mistake among beginning

PHP programmers is to type a condition like this with a single equals sign:

if ($name = 'Kevin') // Missing equals sign!

This condition is using the assignment operator (=) that I introduced back in the

section called “Variables, Operators, and Comments”, instead of the equal operator

(==). Consequently, instead of comparing the value of $name to the string 'Kevin',

it will actually set the value of $name to 'Kevin'. Oops!

To make matters worse, the if statement will use this assignment operation as a

condition, which it will consider to be true, so the conditional code within the

if statement will always be executed, regardless of what the original value of

$name happened to be.

Conditions can be more complex than a single check for equality. Recall that our

form examples above would receive a first and last name. If we wanted to display

a special message only for a particular person, we’d have to check the values of both

names.

To do this, first make a copy of welcome6.html (which contains the two-field version

of the form) called welcome8.html. Change the action attribute of the <form> tag to

point to welcome8.php. Next, make a copy of welcome7.php called welcome8.php,

Build Your Own Database Driven Web Site Using PHP & MySQL98

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

and update the PHP code to match the following (I’ve highlighted the changes in

bold):

chapter3/welcome8.php (excerpt)

$firstname = $_REQUEST['firstname'];

$lastname = $_REQUEST['lastname'];

if ($firstname == 'Kevin' and $lastname == 'Yank')

{

 echo 'Welcome, oh glorious leader!';

}

else

{

 echo 'Welcome to our web site, ' .

htmlspecialchars($firstname, ENT_QUOTES, 'UTF-8') . ' ' .

 htmlspecialchars($lastname, ENT_QUOTES, 'UTF-8') . '!';

}

This updated condition will be true if and only if $firstname has a value of 'Kevin'

and $lastname has a value of 'Yank'. The and operator in the condition makes the

whole condition true only if both of the comparisons are true. A similar operator

is the or operator, which makes the whole condition true if one or both of two

simple conditions are true. If you’re more familiar with the JavaScript or C forms

of these operators (&& and || for and and or respectively), that’s fine—they work in

PHP as well.

Figure 3.11 shows that having only one of the names right in this example fails to

cut the mustard.

Figure 3.11. Frankly, my dear …

99Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

We’ll look at more complicated conditions as the need arises. For the time being, a

general familiarity with if-else statements is sufficient.

Another often-used PHP control structure is the while loop. Where the if-else

statement allowed us to choose whether or not to execute a set of statements depend-

ing on some condition, the while loop allows us to use a condition to determine

how many times we’ll execute a set of statements repeatedly.

Figure 3.12 shows how a while loop operates.

Here’s what a while loop looks like in code:

while (condition)

{

// statement(s) to execute repeatedly as long as condition is true

}

The while loop works very similarly to an if statement. The difference arises when

the condition is true and the statement(s) are executed. Instead of continuing the

execution with the statement that follows the closing brace (}), the condition is

checked again. If the condition is still true, then the statement(s) are executed a

second time, and a third, and will continue to be executed as long as the condition

remains true. The first time the condition evaluates false (whether it’s the first time

it’s checked, or the 101st), the execution jumps immediately to the statement that

follows the while loop, after the closing brace.

Loops like these come in handy whenever you’re working with long lists of items

(such as jokes stored in a database … hint, hint), but for now I’ll illustrate with a

trivial example, counting to ten:

chapter3/count10.php (excerpt)

$count = 1;

while ($count <= 10)

{

 echo "$count ";

 ++$count;

}

This code may look a bit frightening, I know, but let me talk you through it line by

line:

Build Your Own Database Driven Web Site Using PHP & MySQL100

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 3.12. The logical flow of a while loop

$count = 1;

The first line creates a variable called $count and assigns it a value of 1.

while ($count <= 10)

The second line is the start of a while loop, the condition for which is that the

value of $count is less than or equal (<=) to 10.

{

The opening brace marks the beginning of the block of conditional code for the

while loop. This conditional code is often called the body of the loop, and is

executed over and over again, as long as the condition holds true.

echo "$count ";

This line simply outputs the value of $count, followed by a space. To make the

code as readable as possible, I’ve used a double-quoted string to take advantage

of variable interpolation (as explained in the section called “Variables, Operators,

and Comments”), rather than use the string concatenation operator.

101Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

++$count;

The fourth line adds one to the value of $count (++$count is a shortcut for

$count = $count + 1—either one would work).

}

The closing brace marks the end of the while loop’s body.

So here’s what happens when this piece of code is executed. The first time the

condition is checked, the value of $count is 1, so the condition is definitely true.

The value of $count (1) is output, and $count is given a new value of 2. The condi-

tion is still true the second time it’s checked, so the value (2) is output and a new

value (3) is assigned. This process continues, outputting the values 3, 4, 5, 6, 7, 8,

9, and 10. Finally, $count is given a value of 11, and the condition is found to be

false, which ends the loop.

The net result of the code is shown in Figure 3.13.

Figure 3.13. PHP demonstrates kindergarten-level math skills

The condition in this example used a new operator: <= (less than or equal). Other

numerical comparison operators of this type include >= (greater than or equal), <

(less than), > (greater than), and != (not equal). That last one also works when

comparing text strings, by the way.

Another type of loop that’s designed specifically to handle examples like that above,

in which we’re counting through a series of values until some condition is met, is

called a for loop. Figure 3.14 shows the structure of a for loop.

Here’s what it looks like in code:

Build Your Own Database Driven Web Site Using PHP & MySQL102

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 3.14. The logical flow of a for loop

for (declare counter; condition; increment counter)

{

// statement(s) to execute repeatedly as long as condition is true

}

The declare counter statement is executed once at the start of the loop; the condition

statement is checked each time through the loop, before the statements in the body

are executed; the increment counter statement is executed each time through the

loop, after the statements in the body.

103Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Here’s what the “counting to 10” example looks like when implemented with a for

loop:

count10–for.php (excerpt)

for ($count = 1; $count <= 10; ++$count)

{

 echo "$count ";

}

As you can see, the statements that initialize and increment the $count variable

join the condition on the first line of the for loop. Although, at first glance, the

code seems a little more difficult to read, putting all the code that deals with con-

trolling the loop in the same place actually makes it easier to understand once you’re

used to the syntax. Many of the examples in this book will use for loops, so you’ll

have plenty of opportunity to practice reading them.

Hiding the Seams
You’re now armed with a working knowledge of the basic syntax of the PHP pro-

gramming language. You understand that you can take any HTML web page, rename

it with a .php file name extension, and inject PHP code into it to make it generate

some or all of the page content on the fly. Not bad for a day’s work!

Before we go any further, however, I want to stop and cast a critical eye over the

examples we’ve discussed so far. Assuming your objective is to create database

driven web sites that hold up to professional standards, there are a few unsightly

blemishes we need to clean up.

The techniques in the rest of this chapter will add a coat of professional polish that

can set your work apart from the crowd of amateur PHP developers out there. I’ll

rely on these techniques throughout the rest of this book to make sure that, no

matter how simple the example, you can feel confident in the quality of the product

you’re delivering.

Avoid Advertising Your Technology Choices
The examples we’ve seen so far have contained a mixture of plain HTML files (with

names ending in .html), and files that contain a mixture of HTML and PHP (with

names ending in .php). Although this distinction between file types may be useful

Build Your Own Database Driven Web Site Using PHP & MySQL104

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

to you, the developer, there is no reason your users need to be aware of which pages

of your site rely on PHP code to generate them.

Furthermore, although PHP is a very strong choice of technology to build almost

any database driven web site, the day may come when you want to switch from

PHP to some new technology. When that day comes, do you really want all the

URLs for dynamic pages on your site to become invalid as you change the file names

to reflect your new language of choice?

These days, professional developers place a lot of importance on the URLs they put

out into the world. In general, URLs should be as permanent as possible, so it makes

no sense to embrittle them with little “advertisements” for the programming language

you used to build each individual page.

An easy way to do away with the file name extensions in your URLs is to take ad-

vantage of directory indexes. When a URL points at a directory on your web server,

instead of a particular file, the web server will look for a file named index.html or

index.php inside that directory, and display that file in response to the request.

For example, take the today.php page that I introduced at the end of Chapter 1. Re-

name it from today.php to index.php. Then, instead of dropping it in the root of your

web server, create a subdirectory name today, and drop the index.php file in there.

Now, load http://localhost/today/ in your browser (or http://localhost:8080/today/,

or similar if you need to specify a port number for your server).

Figure 3.15 shows the example with its new URL. This URL omits the unnecessary

.php extension, and is shorter and more memorable—both desirable qualities when

it comes to URLs today.

105Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 3.15. A more fashionable URL

Use PHP Templates
In the simple examples we’ve seen so far, inserting PHP code directly into your

HTML pages has been a reasonable approach. As the amount of PHP code that goes

into generating your average page grows, however, maintaining this mixture of

HTML and PHP code can become unmanageable.

Particularly if you work in a team where the web designers are unsavvy, PHP-wise,

having large blocks of cryptic PHP code intermingled with the HTML is a recipe

for disaster. It’s far too easy for designers to accidentally modify the PHP code,

causing errors they’ll be unable to fix.

A much more robust approach is to separate out the bulk of your PHP code, so that

it resides in its own file, leaving the HTML largely unpolluted by PHP code.

The key to doing this is the PHP include statement. With an include statement,

you can insert the contents of another file into your PHP code at the point of the

statement. To show you how this works, let’s rebuild the “count to ten” for loop

example we looked at earlier.

Start by creating a new directory called count10, and create a file named index.php

in this directory. Open the file for editing and type in this code:

Build Your Own Database Driven Web Site Using PHP & MySQL106

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter3/count10/index.php

<?php

$output = '';

for ($count = 1; $count <= 10; ++$count)

{

 $output .= "$count ";

}

include 'count.html.php';

?>

Yes, that’s the complete code for this file. It contains no HTML code whatsoever.

The for loop should be familiar to you by now, but let me point out the interesting

parts of this code:

Instead of echoing out the numbers 1 to 10, this script will add these numbers

to a variable named $output. At the start of this script, therefore, we set this

variable to contain an empty string.

This line adds each number (followed by a space) to the end of the $output

variable. The .= operator you see here is a shorthand way to add a value to the

end of an existing string variable, by combining the assignment and string

concatenation operators into one. The longhand version of this line is $output

= $output . "$count ";, but the .= operator saves you some typing.

This is an include statement, which instructs PHP to execute the contents of

the count.html.php file at this location.8

8 Outside of this book, you will often see includes coded with parentheses surrounding the filename,

as if include were a function like date or htmlspecialchars, which is far from the case. These

parentheses, when used, only serve to complicate the filename expression, and are therefore avoided in

this book. The same goes for echo, another popular one-liner.

107Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Since the final line of this file includes the count.html.php file, you should create

this next:

chapter3/count10/count.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Counting to Ten</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p>

 <?php echo $output; ?>

 </p>

 </body>

</html>

This file is almost entirely plain HTML, except for the one line that outputs the

value of the $output variable. This is the same $output variable that was created

by the index.php file.

What we’ve created here is a PHP template—an HTML page with only very small

snippets of PHP code that insert dynamically-generated values into an otherwise

static HTML page. Rather than embedding the complex PHP code that generates

those values in the page, we put the code to generate the values in a separate PHP

script—index.php in this case.

Using PHP templates like this enables you to hand your templates over to HTML-

savvy designers without worrying about what they might do to your PHP code. It

also lets you focus on your PHP code without being distracted by the surrounding

HTML code.

I like to name my PHP templates so that they end with .html.php. Although, as far

as your web server is concerned, these are still .php files, the .html.php suffix serves

as a useful reminder that these files contain both HTML and PHP code.

Build Your Own Database Driven Web Site Using PHP & MySQL108

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Many Templates, One Controller
What’s nice about using include statements to load your PHP template files is that

you can have multiple include statements in a single PHP script, and have it display

different templates under different circumstances!

A PHP script that responds to a browser request by selecting one of several PHP

templates to fill in and send back is commonly called a controller. A controller

contains the logic that controls which template is sent to the browser.

Let’s revisit one more example from earlier in this chapter: the welcome form that

prompts a visitor for a first and last name.

We’ll start with the PHP template for the form. For this, we can just reuse the

welcome8.html file we created earlier. Create a directory named welcome and save a

copy of welcome8.html called form.html.php into this directory. The only code you

need to change in this file is the action attribute of the <form> tag:

chapter3/welcome/form.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Form Example</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <form action="" method="post">

 <div><label for="firstname">First name:

 <input type="text" name="firstname" id="firstname"/></label>

 </div>

 <div><label for="lastname">Last name:

 <input type="text" name="lastname" id="lastname"/></label>

 </div>

 <div><input type="submit" value="GO"/></div>

 </form>

 </body>

</html>

109Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

As you can see, we’re leaving the action attribute blank. This tells the browser to

submit the form back to the same URL from which it received the form—in this

case, the URL of the controller that included this template file.

Let’s take a look at the controller for this example. Create an index.php script in the

welcome directory alongside your form template. Type the following code into this

file:

chapter3/welcome/index.php

<?php

if (!isset($_REQUEST['firstname']))

{

include 'form.html.php';

}

else

{

 $firstname = $_REQUEST['firstname'];

 $lastname = $_REQUEST['lastname'];

 if ($firstname == 'Kevin' and $lastname == 'Yank')

 {

$output = 'Welcome, oh glorious leader!';

 }

 else

 {

$output = 'Welcome to our web site, ' .

 htmlspecialchars($firstname, ENT_QUOTES, 'UTF-8') . ' ' .

 htmlspecialchars($lastname, ENT_QUOTES, 'UTF-8') . '!';

 }

include 'welcome.html.php';

}

?>

This code should look fairly familiar at first glance; it’s a lot like the welcome8.php

script we wrote earlier. Let me explain the differences:

The first thing the controller needs to do is decide whether the current request

is a submission of the form in form.html.php or not. You can do this by checking

if the request contains a firstname variable. If it does, PHP will have stored

the value in $_REQUEST['firstname'].

Build Your Own Database Driven Web Site Using PHP & MySQL110

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

isset is a built-in PHP function that will tell you if a particular variable (or

array element) has been assigned a value or not. If $_REQUEST['firstname']

has a value, isset($_REQUEST['firstname']) will be true. If

$_REQUEST['firstname'] lacks a value, isset($_REQUEST['firstname'])

will be false.

For the sake of readability, I like to put the code that sends the form first in my

controller. What we need this if statement to check, therefore, is if

$_REQUEST['firstname'] is not set. To do this, we use the not operator (!).

By putting this operator before the name of a function, you reverse the value

that function returns from true to false, or from false to true.

Thus, if the request does not contain a firstname variable, then

!isset($_REQUEST['firstname']) will return true, and the body of the if

statement will be executed.

If the request is not a form submission, the controller includes the form.html.php

file to display the form.

If the request is a form submission, the body of the else statement is executed

instead.

This code pulls the firstname and lastname variables out of the $_REQUEST

array, and then generates the appropriate welcome message for the name sub-

mitted.

Instead of echoing the welcome message, the controller stores the welcome

message in a variable named $output.

After generating the appropriate welcome message, the controller includes the

welcome.html.php template, which will display that welcome message.

111Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

All that’s left is to write the welcome.html.php template. Here it is:

chapter3/welcome/welcome.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Form Example</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p>

<?php echo $output; ?>

 </p>

 </body>

</html>

That’s it! Fire up your browser and point it at http://localhost/welcome/ (or

http://localhost:8080/welcome/ or similar if you need to specify a port number for

your web server). You’ll be prompted for your name, and when you submit the

form, you’ll see the appropriate welcome message. The URL should stay the same

throughout this process.

One of the benefits of maintaining the same URL throughout the process of

prompting the user for a name and displaying the welcome message is that the user

can bookmark the page at any time during this process and gain a sensible result:

when the user next returns, whether the form page or the welcome message was

bookmarked, the form will be present itself once again. In the previous version of

this example, where the welcome message had its own URL, returning to that URL

without submitting the form would have generated a broken welcome message

(“Welcome to our web site, !”).

Why So Forgetful?

In Chapter 9 I’ll show you how to remember the user’s name between visits.

Build Your Own Database Driven Web Site Using PHP & MySQL112

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Bring On the Database
In this chapter, we’ve seen the PHP server-side scripting language in action as we’ve

explored all the basic language features: statements, variables, operators, comments,

and control structures. The sample applications we’ve seen have been reasonably

simple, but despite this we’ve taken the time to ensure they have attractive URLs,

and that the HTML templates for the pages they generate are uncluttered by the

PHP code that controls them.

As you may have begun to suspect, the real power of PHP is in its hundreds (even

thousands) of built-in functions that let you access data in a MySQL database, send

email, dynamically generate images, and even create Adobe Acrobat PDF files on

the fly.

In Chapter 4, we’ll delve into the MySQL functions built into PHP, and see how to

publish the joke database we created in Chapter 2 to the Web. This chapter will set

the scene for the ultimate goal of this book—creating a complete content management

system for your web site in PHP and MySQL.

113Introducing PHP

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Chapter4
Publishing MySQL Data on the Web
This is it—the stuff you signed up for! In this chapter, you’ll learn how to take in-

formation stored in a MySQL database and display it on a web page for all to see.

So far, you’ve installed and learned the basics of MySQL, a relational database en-

gine, and PHP, a server-side scripting language. Now you’re ready to learn how to

use these new tools together to create a true database driven web site!

The Big Picture
Before we leap forward, it’s worth taking a step back for a clear picture of our ulti-

mate goal. We have two powerful tools at our disposal: the PHP scripting language

and the MySQL database engine. It’s important to understand how these will fit

together.

The whole idea of a database driven web site is to allow the content of the site to

reside in a database, and for that content to be pulled from the database dynamically

to create web pages for people to view with a regular web browser. So, at one end

of the system you have a visitor to your site who uses a web browser to request a

page, and expects to receive a standard HTML document in return. At the other end

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

you have the content of your site, which sits in one or more tables in a MySQL

database that understands only how to respond to SQL queries (commands).

Figure 4.1. PHP retrieves MySQL data to produce web pages

As shown in Figure 4.1, the PHP scripting language is the go-between that speaks

both languages. It processes the page request and fetches the data from the MySQL

database (using SQL queries just like those you used to create a table of jokes in

Chapter 2), then spits it out dynamically as the nicely formatted HTML page that

the browser expects.

Just so it’s clear and fresh in your mind, this is what will happen when a person

visits a page on your database driven web site:

1. The visitor’s web browser requests the web page using a standard URL.

2. The web server software (typically Apache) recognizes that the requested file

is a PHP script, so the server fires up the PHP interpreter to execute the code

contained in the file.

3. Certain PHP commands (which will be the focus of this chapter) connect to the

MySQL database and request the content that belongs in the web page.

4. The MySQL database responds by sending the requested content to the PHP

script.

5. The PHP script stores the content into one or more PHP variables, then uses

echo statements to output the content as part of the web page.

Build Your Own Database Driven Web Site Using PHP & MySQL116

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

6. The PHP interpreter finishes up by handing a copy of the HTML it has created

to the web server.

7. The web server sends the HTML to the web browser as it would a plain HTML

file, except that instead of coming directly from an HTML file, the page is the

output provided by the PHP interpreter.

Connecting to MySQL with PHP
Before you can retrieve content out of your MySQL database for inclusion in a web

page, you must know how to establish a connection to MySQL from inside a PHP

script. Back in Chapter 2, you used a program called mysql that allowed you to

make such a connection from the command prompt. Just as that program could

connect directly to a running MySQL server, so too can the PHP interpreter; support

for connecting to MySQL is built right into the language in the form of a library of

built-in functions.

The built-in function mysqli_connect establishes a connection to a MySQL server:

mysqli_connect(hostname, username, password)

You may remember from Chapter 3 that PHP functions usually return a value when

they’re called. The mysqli_connect function, for example, returns a link identifier

that identifies the connection that has been established. Since we intend to make

use of the connection, we should hold onto this value. Here’s an example of how

we might connect to our MySQL server:

chapter4/connect/index.php (excerpt)

$link = mysqli_connect('localhost', 'root', 'password');

As described above, the values of the three function parameters may differ for your

MySQL server; at the very least, you’ll need to substitute in the root password you

established for your MySQL server. What’s important to see here is that the value

returned by mysqli_connect is stored in a variable named $link.

As the MySQL server is a completely separate piece of software from the web server,

we must consider the possibility that the server may be unavailable or inaccessible

due to a network outage, or because the username/password combination you

117Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

provided is rejected by the server. In such cases, the mysqli_connect function returns

FALSE, instead of a connection identifier, as no connection is established. This allows

us to react to such failures using an if statement:

chapter4/connect/index.php (excerpt)

$link = mysqli_connect('localhost', 'root', 'password');

if (!$link)

{

 $output = 'Unable to connect to the database server.';

 include 'output.html.php';

 exit();

}

The condition in this if statement uses the not operator (!) to make the condition

true when $link has a value of false (that is, when the connection attempt has

failed). If the connection succeeds, $link will have a value that’s considered true,

which will make !$link false. In short, the body of the if statement is executed

only if the connection fails.

Within the body of the if statement, we set the variable $output to contain a message

about what went wrong. We then include the template output.html.php. This is a

generic template that simply outputs the value of the $output variable:

chapter4/connect/output.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>PHP Output</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p>

<?php echo $output; ?>

 </p>

 </body>

</html>

Build Your Own Database Driven Web Site Using PHP & MySQL118

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Finally, after outputting the message, the body of the if statement calls the built-

in exit function.

exit is the first example in this book of a function that can be called with no para-

meters. When called this way, all this function does is cause PHP to stop executing

the script at this point. This ensures that the rest of the code in our controller (which

in most cases will depend on a successful database connection) will not be executed

if the connection has failed.

Assuming the connection succeeds, however, you need to configure it before use.

As I mentioned briefly in Chapter 3, you should use UTF-8 encoded text in your

web sites to maximize the range of characters that your users will have at their

disposal when filling in forms on your site. By default, when PHP connects to

MySQL, it once again uses the simpler ISO-8859-1 encoding instead of UTF-8. You

must therefore follow up your mysqli_connect code with a call to

mysqli_set_charset—another built-in PHP function:

mysqli_set_charset($link, 'utf8')

Notice we use the $link variable that contains the MySQL link identifier to tell the

function which database connection to use. This function returns true when it’s

successful and false if an error occurs. Once again, it’s prudent to use an if state-

ment to handle errors:

chapter4/connect/index.php (excerpt)

if (!mysqli_set_charset($link, 'utf8'))

{

 $output = 'Unable to set database connection encoding.';

 include 'output.html.php';

 exit();

}

Note that this time, instead of assigning the result of the function to a variable and

then checking if the variable is true or false, I have simply used the function call

itself as the condition. This may look a little strange, but it’s a very commonly used

shortcut. To check whether the condition is true or false, PHP executes the function

and then checks its return value—exactly what we need to happen.

119Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

As in Chapter 2 when you connected to the MySQL server using the mysql program,

once you’ve established a connection the usual next step is to select the database

with which you want to work. Let’s say you want to work with the joke database

you created in Chapter 2. This database was called ijdb. Selecting that database in

PHP is just a matter of another function call:

mysqli_select_db($link, 'ijdb');

mysqli_select_db simply sets the selected database ('ijdb') for the specified

database connection ($link). Yet again, it’s best to guard against errors with an if

statement:

chapter4/connect/index.php (excerpt)

if (!mysqli_select_db($link, 'ijdb'))

{

 $output = 'Unable to locate the joke database.';

 include 'output.html.php';

 exit();

}

To polish off this example, let’s display a status message that indicates when

everything has gone right. Here’s the complete code of our controller:

chapter4/connect/index.php

<?php

$link = mysqli_connect('localhost', 'root', 'password');

if (!$link)

{

 $output = 'Unable to connect to the database server.';

 include 'output.html.php';

 exit();

}

if (!mysqli_set_charset($link, 'utf8'))

{

 $output = 'Unable to set database connection encoding.';

 include 'output.html.php';

 exit();

}

Build Your Own Database Driven Web Site Using PHP & MySQL120

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

if (!mysqli_select_db($link, 'ijdb'))

{

 $output = 'Unable to locate the joke database.';

 include 'output.html.php';

 exit();

}

$output = 'Database connection established.';

include 'output.html.php';

?>

Fire up this example in your browser (if you put the index.php and output.html.php

files in a directory named connect on your web server, the URL will be like

http://localhost/connect/). If your MySQL server is up and running and everything

works the way it should, you should see the message indicating success in Figure 4.2.

Figure 4.2. A successful connection

If PHP is unable to connect to your MySQL server, or if the username and password

you provided are incorrect, you’ll instead see a similar screen to that in Figure 4.3.

To make sure your error handling code is working properly, you might want to

misspell your password intentionally to test it out.

121Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 4.3. A connection failure

What PHP Error?

Depending on your web server’s PHP configuration, you may or may not see the

first paragraph shown in Figure 4.3. This warning message is automatically gen-

erated by PHP if it’s configured to display errors. These detailed errors can be in-

valuable tools for diagnosing problems with your code during development. Since

you’d probably prefer to keep this kind of technical information hidden once your

site is live on the Web, it’s common to switch off these errors on production

servers.

If you installed Apache yourself, chances are this message will be displayed. If

you’re using a bundled Apache solution (like WampServer or MAMP), PHP error

display may be switched off by default. To display these errors (they’re especially

helpful in development when you’re trying to determine the cause of a problem),

you need to open your server’s php.ini file and set the display_errors option

to On. You can access WampServer’s php.ini file from the system tray menu.

MAMP’s php.ini file is in the /Applications/MAMP/conf/php5 folder on your system.

If PHP connects to your MySQL server and then fails to find the ijdb database,

you’ll see a similar message to Figure 4.4. Once again, you should probably test

your error handling code by intentionally misspelling your database name.

Build Your Own Database Driven Web Site Using PHP & MySQL122

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 4.4. A connection failure

With a connection established and a database selected, you’re ready to begin using

the data stored in the database.

PHP Automatically Disconnects

You might be wondering what happens to the connection with the MySQL server

after the script has finished executing. While PHP does have a function for discon-

necting from the server (mysqli_close), PHP will automatically close any open

database connections when they’re no longer needed, so you can usually just let

PHP clean up after you.

Sending SQL Queries with PHP
In Chapter 2, we connected to the MySQL database server using a program called

mysql that allowed us to type SQL queries (commands) and view the results of those

queries immediately. In PHP, a similar mechanism exists: the mysqli_query function.

mysqli_query(link, query)

Here query is a string that contains the SQL query you want to execute. As with

mysqli_select_db, you must also provide the MySQL link identifier returned by

mysqli_connect.

What this function returns will depend on the type of query being sent. For most

SQL queries, mysqli_query returns either true or false to indicate success or

failure respectively. Consider the following example, which attempts to create the

joke table we created in Chapter 2:

123Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter4/createtable/index.php (excerpt)

$sql = 'CREATE TABLE joke (

 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 joketext TEXT,

 jokedate DATE NOT NULL

) DEFAULT CHARACTER SET utf8';

if (!mysqli_query($link, $sql))

{

 $output = 'Error creating joke table: ' . mysqli_error($link);

 include 'output.html.php';

 exit();

}

$output = 'Joke table successfully created.';

include 'output.html.php';

Note once again we use the same if statement technique to handle possible errors

produced by the query. This example also uses the mysqli_error function to retrieve

a detailed error message from the MySQL server. Figure 4.5 shows the error that’s

displayed when the joke table already exists, for example.

Figure 4.5. The CREATE TABLE query fails because the table already exists

For DELETE, INSERT, and UPDATE queries (which serve to modify stored data), MySQL

also keeps track of the number of table rows (entries) that were affected by the query.

Consider the SQL command below, which we used in Chapter 2 to set the dates of

all jokes that contained the word “chicken”:

Build Your Own Database Driven Web Site Using PHP & MySQL124

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter4/updatechicken/index.php (excerpt)

$sql = 'UPDATE joke SET jokedate="2010-04-01"

 WHERE joketext LIKE "%chicken%"';

if (!mysqli_query($link, $sql))

{

 $output = 'Error performing update: ' . mysqli_error($link);

 include 'output.html.php';

 exit();

}

When we execute this query, we can use the mysql_affected_rows function to view

the number of rows that were affected by this update:

chapter4/updatechicken/index.php (excerpt)

$output = 'Updated ' . mysqli_affected_rows($link) . ' rows.';

include 'output.html.php';

Figure 4.6 shows the output of this example, assuming you only have one “chicken”

joke in your database.

Figure 4.6. The number of database records updated is displayed

If you refresh the page to run the same query again, you should see the message

change as shown in Figure 4.7 to indicate that no rows were updated, since the new

date being applied to the jokes is the same as the existing date.

125Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 4.7. MySQL lets you know you’re wasting its time

SELECT queries are treated a little differently as they can retrieve a lot of data, and

PHP provides ways to handle that information.

Handling SELECT Result Sets
For most SQL queries, the mysqli_query function returns either true (success) or

false (failure). For SELECT queries, more information is needed. You’ll recall that

SELECT queries are used to view stored data in the database. In addition to indicating

whether the query succeeded or failed, PHP must also receive the results of the

query. Thus, when it processes a SELECT query, mysqli_query returns a result set,

which contains a list of all the rows (entries) returned from the query. false is still

returned if the query fails for any reason:

chapter4/listjokes/index.php (excerpt)

$result = mysqli_query($link, 'SELECT joketext FROM joke');

if (!$result)

{

 $error = 'Error fetching jokes: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

}

As before, errors are displayed using a very simple PHP template:

chapter4/listjokes/error.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>PHP Error</title>

Build Your Own Database Driven Web Site Using PHP & MySQL126

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p>

 <?php echo $error; ?>

 </p>

 </body>

</html>

Provided that no error was encountered in processing the query, the above code

will store a result set into the variable $result. This result set contains the text of

all the jokes stored in the joke table. As there’s no practical limit on the number of

jokes in the database, that result set can be quite big.

I mentioned back in Chapter 3 that the while loop is a useful control structure for

dealing with large amounts of data. Here’s an outline of the code that will process

the rows in a result set one at a time:

while ($row = mysqli_fetch_array($result))

{

// process the row…

}

The condition for the while loop is probably different to the conditions you’re used

to, so let me explain how it works. Consider the condition as a statement all by itself:

$row = mysqli_fetch_array($result);

The mysqli_fetch_array function accepts a result set as a parameter (stored in the

$result variable in this case), and returns the next row in the result set as an array

(we discussed arrays in Chapter 3). When there are no more rows in the result set,

mysqli_fetch_array instead returns false.

Now, the above statement assigns a value to the $row variable, but, at the same time,

the statement as a whole takes on that same value. This is what lets you use the

statement as a condition in the while loop. Since a while loop will keep looping

until its condition evaluates to false, this loop will occur as many times as there

are rows in the result set, with $row taking on the value of the next row each time

127Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

the loop executes. All that’s left to figure out is how to retrieve the values out of the

$row variable each time the loop runs.

Rows of a result set returned by mysqli_fetch_array are represented as associative

arrays. The indices are named after the table columns in the result set. If $row is a

row in our result set, then $row['joketext'] is the value in the joketext column

of that row.

Our goal in this code is to store away the text of all the jokes so we can display them

in a PHP template. The best way to do this is to store each joke as a new item in an

array, $jokes:

chapter4/listjokes/index.php (excerpt)

while ($row = mysqli_fetch_array($result))

{

 $jokes[] = $row['joketext'];

}

With the jokes pulled out of the database, we can now pass them along to a PHP

template (jokes.html.php) for display.

To summarize, here’s the complete code of the controller for this example:

chapter4/listjokes/index.php

<?php

$link = mysqli_connect('localhost', 'root', 'password');

if (!$link)

{

 $error = 'Unable to connect to the database server.';

 include 'error.html.php';

 exit();

}

if (!mysqli_set_charset($link, 'utf8'))

{

 $output = 'Unable to set database connection encoding.';

 include 'output.html.php';

 exit();

}

if (!mysqli_select_db($link, 'ijdb'))

Build Your Own Database Driven Web Site Using PHP & MySQL128

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

{

 $error = 'Unable to locate the joke database.';

 include 'error.html.php';

 exit();

}

$result = mysqli_query($link, 'SELECT joketext FROM joke');

if (!$result)

{

 $error = 'Error fetching jokes: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

}

while ($row = mysqli_fetch_array($result))

{

 $jokes[] = $row['joketext'];

}

include 'jokes.html.php';

?>

All that’s left to complete this example is to write the jokes.html.php template.

In this template, for the first time we need to display the contents of an array, rather

than just a simple variable. The most common way to process an array in PHP is to

use a loop. We have already seen while loops and for loops; another type of loop,

which is particularly helpful for processing arrays, is the foreach loop:

foreach (array as $item)

{

// process each $item

}

Instead of a condition, the parentheses at the top of a foreach loop contain an array,

followed by the keyword as, and then the name of a new variable that will be used

to store each item of the array in turn. The body of the loop is then executed once

for each item in the array; each time, that item is stored in the specified variable so

that the code can access it directly.

It’s common to use a foreach loop in a PHP template to display each item of an

array in turn. Here’s how this might look for our $jokes array:

129Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

<?php

foreach ($jokes as $joke)

{

?>

<!-- Code to output each $joke -->

<?php

}

?>

With this blend of PHP code to describe the loop and HTML code to display it, this

code looks rather untidy. Because of this, it’s common to use an alternative way of

writing the foreach loop when it’s used in a template:

foreach (array as $item):

// process each $item

endforeach;

Here’s how this form of the code looks in a template:

<?php foreach ($jokes as $joke): ?>

<!-- Code to output each $joke -->

<?php endforeach; ?>

With this new tool in hand, we can write our template to display the list of jokes:

chapter4/listjokes/jokes.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>List of Jokes</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p>Here are all the jokes in the database:</p>

<?php foreach ($jokes as $joke): ?>

 <blockquote><p>

 <?php echo htmlspecialchars($joke, ENT_QUOTES, 'UTF-8'); ?>

 </p></blockquote>

Build Your Own Database Driven Web Site Using PHP & MySQL130

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

<?php endforeach; ?>

 </body>

</html>

Each joke is displayed in a paragraph (<p>) contained within a block quote

(<blockquote>), since we’re effectively quoting the author of each joke in this page.

Because jokes might conceivably contain characters that could be interpreted as

HTML code (for example, <, >, or &), we must use htmlspecialchars to ensure that

these are translated into HTML character entities (that is, <, >, and &)

so that they’re displayed correctly.

Figure 4.8 shows what this page looks like once you’ve added a couple of jokes to

the database.

Figure 4.8. All my best material—in one place!

131Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Inserting Data into the Database
In this section, I’ll demonstrate how to use the tools at your disposal to enable site

visitors to add their own jokes to the database.

If you want to let visitors to your site type in new jokes, you’ll obviously need a

form. Here’s a template for a form that will fit the bill:

chapter4/addjoke/form.html.php (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Add Joke</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 <style type="text/css">

 textarea {

 display: block;

 width: 100%;

 }

 </style>

 </head>

 <body>

 <form action="?" method="post">

 <div>

 <label for="joketext">Type your joke here:</label>

 <textarea id="joketext" name="joketext" rows="3" cols="40">

➥</textarea>

 </div>

 <div><input type="submit" value="Add"/></div>

 </form>

 </body>

</html>

As we’ve seen before, when submitted this form will request the same PHP script

that generated the form—the controller script (index.php). You’ll notice, however,

that instead of leaving the action attribute empty (""), we set its value to ?. As we’ll

see in a moment, the URL used to display the form in this example will feature a

query string, and setting the action to ? strips that query string off the URL when

submitting the form.

Build Your Own Database Driven Web Site Using PHP & MySQL132

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 4.9 shows what this form looks like in a browser.

Figure 4.9. Another nugget of comic genius is added to the database

When this form is submitted, the request will include a variable, joketext, that

contains the text of the joke as typed into the text area. This variable will then appear

in the $_POST and $_REQUEST arrays created by PHP.

Let’s tie this form into the preceding example, which displayed the list of jokes in

the database. Add a link to the top of the list that invites the user to add a joke:

chapter4/addjoke/jokes.html.php (excerpt)

<body>

<p>Add your own joke</p>

 <p>Here are all the jokes in the database:</p>

Like the form, this link points back to the very same PHP script used to generate

this page, but this time it adds a query string (?addjoke), indicating the user’s inten-

tion to add a new joke. Our controller can detect this query string and use it as a

signal to display the “Add Joke” form instead of the list of jokes.

Let’s make the necessary changes to the controller now:

chapter4/addjoke/index.php (excerpt)

if (isset($_GET['addjoke']))

{

 include 'form.html.php';

 exit();

}

133Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

This opening if statement checks if the query string contains a variable named

addjoke. This is how we detect that the user clicked the new link. Even though

there is no value specified by the query string (?addjoke) for the addjoke variable,

it does create it, which we can detect with isset($_GET['addjoke']).

When we detect this variable, we display the form by including form.html.php, and

then exit.

Once the user fills out the form and submits it, that form submission results in an-

other request to this controller. This we detect by checking if $_POST['joketext']

is set:

chapter4/addjoke/index.php (excerpt)

if (isset($_POST['joketext']))

{

To insert the submitted joke into the database, we must run an INSERT query using

the value stored in $_POST['joketext'] to fill in the joketext column of the joke

table. This might lead you to write some code like this:

$sql = 'INSERT INTO joke SET

 joketext="' . $_POST['joketext'] . '",

 jokedate="today’s date"';

There is a serious problem with this code, however: the contents of

$_POST['joketext'] are entirely under the control of the user who submitted the

form. If a malicious user were to type just the right sort of SQL code into the form,

this script would feed it to your MySQL server without question. This type of attack

is called an SQL injection attack, and in the early days of PHP it was one of the

most common security holes that hackers found and exploited in PHP-based web

sites.

These attacks were so feared, in fact, that the team behind PHP added some built-

in protection against SQL injections to the language that remains enabled by default

in many PHP installations today. Called magic quotes, this protective feature of

PHP automatically analyzes all values submitted by the browser and inserts back-

slashes (\) in front of any dangerous characters, like apostrophes—which can cause

problems if they’re included in an SQL query inadvertently.

Build Your Own Database Driven Web Site Using PHP & MySQL134

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The problem with the magic quotes feature is that it causes as many problems as it

prevents. Firstly, the characters that it detects and the method it uses to sanitize

them (prefixing them with a backslash) are only valid in some circumstances. De-

pending on the character encoding of your site, and the database server you’re using,

these measures may be completely ineffective.

Secondly, when a submitted value is used for some purpose other than creating an

SQL query, those backslashes can be really bothersome. I mentioned this briefly in

Chapter 2 when, in the welcome message example, the magic quotes feature would

insert a spurious backslash into the user’s last name if it contained an apostrophe.

In short, magic quotes was a bad idea, so much so that it’s scheduled to be removed

from PHP in version 6. In the meantime, however, you have to deal with the problems

it creates in your code. The easiest way to do this is to detect if magic quotes is en-

abled on your web server and, if it is, to undo the modifications it has made to the

submitted values.1 Thankfully, the PHP Manual2 provides a snippet of code that

will do exactly this:

chapter4/addjoke/index.php (excerpt)

if (get_magic_quotes_gpc())

{

 function stripslashes_deep($value)

 {

 $value = is_array($value) ?

 array_map('stripslashes_deep', $value) :

 stripslashes($value);

 return $value;

 }

 $_POST = array_map('stripslashes_deep', $_POST);

 $_GET = array_map('stripslashes_deep', $_GET);

 $_COOKIE = array_map('stripslashes_deep', $_COOKIE);

 $_REQUEST = array_map('stripslashes_deep', $_REQUEST);

}

1 You can disable magic quotes—and save your web server a lot of work—by setting the ma-

gic_quotes_gpc option in your php.ini file to Off. To make sure your code still functions if this

setting is changed, however, you should still deal with magic quotes in your code when it’s enabled.
2 http://www.php.net/manual/en/security.magicquotes.disabling.php

135Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.php.net/manual/en/security.magicquotes.disabling.php

Avoid wasting time trying to understand the inner workings of this code; to keep

the code short, it uses several advanced PHP features that we’ve yet to see—and

one or two others that are beyond the scope of this book. Rather, just drop this code

into the top of your controller—and indeed any other PHP script that will receive

user input in the form of query variables or a form submission (or, as we’ll learn in

Chapter 9, browser cookies). And be assured; from this point forward, I’ll remind

you whenever this code is required by an example.3

With the damage done by magic quotes reversed, you must now prepare those values

that you do intend to use in your SQL query. Just as it provides htmlspecialchars

for outputting user-submitted values into HTML code, PHP provides a function that

prepares a user-submitted value so that you can use it safely in your SQL query:

mysqli_real_escape_string. Not the most elegant name, but it does the trick.

Here’s how you use it:

$joketext = mysqli_real_escape_string($link, $_POST['joketext']);

$sql = 'INSERT INTO joke SET

 joketext="' . $joketext . '",

 jokedate="today's date"';

This code first uses mysqli_real_escape_string to store a “query safe” version of

the contents of $_POST['joketext'] in the new variable $joketext. It then uses

this variable to insert the submitted value into the INSERT query as the value of the

joketext column.

The lingering question in this code is how to assign today’s date to the jokedate

field. We could write some fancy PHP code to generate today’s date in the

YYYY-MM-DD form that MySQL requires, but it turns out MySQL itself has a function

to do this: CURDATE:

$joketext = mysqli_real_escape_string($link, $_POST['joketext']);

$sql = 'INSERT INTO joke SET

 joketext="' . $joketext . '",

 jokedate=CURDATE()';

3 In Chapter 6 I’ll show you how to manage the burden of repeatedly including this code snippet in your

controller code.

Build Your Own Database Driven Web Site Using PHP & MySQL136

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The MySQL function CURDATE is used here to assign the current date as the value

of the jokedate column. MySQL actually has dozens of these functions, but we’ll

introduce them only as required. Appendix B provides a reference that describes

all commonly used MySQL functions.

Now that we have our query, we can complete the if statement we started above

to handle submissions of the “Add Joke” form. We can execute our INSERT query

by using the mysqli_query function:

chapter4/addjoke/index.php (excerpt)

if (isset($_POST['joketext']))

{

 $joketext = mysqli_real_escape_string($link, $_POST['joketext']);

 $sql = 'INSERT INTO joke SET

 joketext="' . $joketext . '",

 jokedate=CURDATE()';

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error adding submitted joke: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

 }

header('Location: .');

 exit();

}

But wait! This if statement has one more new trick up its sleeve. Once we’ve added

the new joke to the database, instead of displaying the PHP template as previously,

we want to redirect the user’s browser back to the list of jokes. That way they are

able to see the newly added joke among them. That’s what the two lines highlighted

in bold at the end of the if statement above do.

Your first instinct in order to achieve the desired result might be to allow the con-

troller, after adding the new joke to the database, simply to fetch the list of jokes

from the database and display the list using the jokes.html.php template as usual.

The problem with doing this is that the resulting page, from the browser’s perspect-

ive, would be the effect of having submitted the “Add Joke” form. If the user were

then to refresh the page, the browser would resubmit that form, causing another

copy of the new joke to be added to the database! This is rarely the desired behaviour.

137Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Instead, we want the browser to treat the updated list of jokes as a normal web page,

able to be reloaded without resubmitting the form. The way to do this is to answer

the browser’s form submission with an HTTP redirect4—a special response that

tells the browser “the page you’re looking for is over here.”

The PHP header function provides the means of sending special server responses

like this one, by letting you insert special headers into the response sent to the

server. In order to signal a redirect, you must send a Location header with the URL

of the page to which you wish to direct the browser:

header('Location: URL');

In this case, we want to send the browser back to the very same page—our controller.

We’re asking the browser to submit another request—this time, without a form

submission attached to it—rather than sending the browser to another location.

Since we want to point the browser at our controller (index.php) using the URL of

the parent directory, we can simply tell the browser to reload the current directory,

which is expressed as a period (.).

Thus, the two lines that redirect the browser back to our controller after adding the

new joke to the database:

chapter4/addjoke/index.php (excerpt)

 header('Location: .');

 exit();

}

4 HTTP stands for HyperText Transfer Protocol, and is the language that describes the request/response

communications that are exchanged between the visitor’s web browser and your web server.

Build Your Own Database Driven Web Site Using PHP & MySQL138

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

$_SERVER['PHP_SELF'] is the URL of the current page

Another common means of obtaining the URL of the current page in PHP is with

$_SERVER['PHP_SELF'].

Like $_GET, $_POST, and $_REQUEST, $_SERVER is an array variable that is

automatically created by PHP. $_SERVER contains a whole bunch of information

supplied by your web server. In particular, $_SERVER['PHP_SELF']will always

be set to the URL of the PHP script that your web server used to generate the current

page.

Unfortunately, because the web server automatically translates a request for

http://localhost/addjoke/ to a request for http://localhost/addjoke/index.php,

$_SERVER['PHP_SELF'] will contain the latter URL. Redirecting the browser to

. lets us preserve the shorter, more memorable form of the URL.

For this reason, I have avoided using $_SERVER['PHP_SELF'] in this book. Since

it’s so commonly used in basic PHP examples around the Web, however, I thought

you might like to know what it does.

The rest of the controller is responsible for displaying the list of jokes as before.

Here’s the complete code of the controller:

chapter4/addjoke/index.php

<?php

if (get_magic_quotes_gpc())

{

 function stripslashes_deep($value)

 {

 $value = is_array($value) ?

 array_map('stripslashes_deep', $value) :

 stripslashes($value);

 return $value;

 }

 $_POST = array_map('stripslashes_deep', $_POST);

 $_GET = array_map('stripslashes_deep', $_GET);

 $_COOKIE = array_map('stripslashes_deep', $_COOKIE);

 $_REQUEST = array_map('stripslashes_deep', $_REQUEST);

}

139Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

if (isset($_GET['addjoke']))

{

 include 'form.html.php';

 exit();

}

$link = mysqli_connect('localhost', 'root', 'password');

if (!$link)

{

 $error = 'Unable to connect to the database server.';

 include 'error.html.php';

 exit();

}

if (!mysqli_set_charset($link, 'utf8'))

{

 $output = 'Unable to set database connection encoding.';

 include 'output.html.php';

 exit();

}

if (!mysqli_select_db($link, 'ijdb'))

{

 $error = 'Unable to locate the joke database.';

 include 'error.html.php';

 exit();

}

if (isset($_POST['joketext']))

{

 $joketext = mysqli_real_escape_string($link, $_POST['joketext']);

 $sql = 'INSERT INTO joke SET

 joketext="' . $joketext . '",

 jokedate=CURDATE()';

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error adding submitted joke: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

Build Your Own Database Driven Web Site Using PHP & MySQL140

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

$result = mysqli_query($link, 'SELECT joketext FROM joke');

if (!$result)

{

 $error = 'Error fetching jokes: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

}

while ($row = mysqli_fetch_array($result))

{

 $jokes[] = $row['joketext'];

}

include 'jokes.html.php';

?>

As you review this code to make sure it all makes sense to you, note that the calls

to mysqli_connect and mysqli_select_db must come before any of the code that

runs database queries. A database connection is unnecessary to display the “Add

Joke” form, however, so that code can come at the very top of the controller script.

Load this up and add a new joke or two to the database via your browser. The res-

ulting page should look like Figure 4.10.

Figure 4.10. Look, Ma! No SQL!

There you have it! With a single controller (index.php) pulling the strings, you’re

able to view existing jokes in, and add new jokes to, your MySQL database.

141Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Deleting Data from the Database
In this section, we’ll make one final enhancement to our joke database site. We’ll

place next to each joke on the page a button labeled Delete that, when clicked, will

remove that joke from the database and display the updated joke list.

If you like a challenge, you might want to take a stab at writing this feature yourself

before you read on to see my solution. Although we’re implementing a brand new

feature, we’ll mainly be using the same tools that we have for the previous examples

in this chapter. Here are a few hints to start you off:

■ You’ll still be able to do it all with a single controller script (index.php).

■ You’ll need to use the SQL DELETE command, which I introduced in Chapter 2.

■ To delete a particular joke in your controller, you’ll need to identify it uniquely.

The id column in the joke table was created to serve this purpose. You’re going

to have to pass the ID of the joke to be deleted with the request to delete a joke.

The easiest way to do this is to use a hidden form field.

At the very least, take a few moments to think about how you would approach this.

When you’re ready to see the solution, read on!

To begin with, we need to modify the SELECT query that fetches the list of jokes

from the database. In addition to the joketext column, we must also fetch the id

column, so we can identify each joke uniquely:

chapter4/deletejoke/index.php (excerpt)

$result = mysqli_query($link, 'SELECT id, joketext FROM joke');

if (!$result)

{

 $error = 'Error fetching jokes: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

}

We must also modify the while loop that stores the database results in the $jokes

array. Instead of simply storing the text of each joke as an item in the array, we must

store both the ID and text of each joke. One way to do this is to make each item in

the $jokes array an array in its own right:

Build Your Own Database Driven Web Site Using PHP & MySQL142

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter4/deletejoke/index.php (excerpt)

while ($row = mysqli_fetch_array($result))

{

 $jokes[] = array('id' => $row['id'], 'text' => $row['joketext']);

}

Once this while loop runs its course, we’ll have the $jokes array, each item of

which is an associative array with two items: the ID of the joke and its text. For each

joke ($jokes[n]), we can therefore retrieve its ID ($jokes[n]['id']) and its text

($jokes[n]['text']).

Our next step, then, should be to update the jokes.html.php template to retrieve each

joke’s text from this new array structure, and also to provide a Delete button for each

joke:

chapter4/deletejoke/jokes.html.php (excerpt)

<?php foreach ($jokes as $joke): ?>

<form action="?deletejoke" method="post">

 <blockquote>

 <p>

 <?php echo htmlspecialchars($joke['text'], ENT_QUOTES,

 'UTF-8'); ?>

<input type="hidden" name="id" value="<?php

 echo $joke['id']; ?>"/>

<input type="submit" value="Delete"/>

 </p>

 </blockquote>

</form>

<?php endforeach; ?>

Here are the highlights of this updated code:

Each joke will be displayed in a form, which, if submitted, will delete that

joke. We signal this to our controller using the ?deletejoke query string in

the action attribute.

Since each joke in the $jokes array is now represented by a two-item array

instead of a simple string, we must update this line to retrieve the text of the

joke. We do this using $joke['text'] instead of just $joke.

143Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

When we submit the form to delete this joke, we wish to send along the ID of

the joke to be deleted. To do this, we need a form field containing the joke’s

ID, but this is a field we’d prefer to keep hidden from the user. We therefore

using a hidden form field (<input type="hidden"/>). The name of this field

is id, and its value is the ID of the joke to be deleted ($joke['id']).

Unlike the text of the joke, the ID is not a user-submitted value, so there’s no

need to worry about making it HTML-safe with htmlspecialchars. We can

rest assured it will be a number, since it’s automatically generated by MySQL

for the id column when the joke is added to the database.

This submit button (<input type="submit"/>) submits the form when clicked.

Its value attribute gives it a label of Delete.

Finally, we close the form for this joke.

This Markup Could Be Better

If you know your HTML, you’re probably thinking those <input/> tags belong

outside of the blockquote element, since they aren’t a part of the quoted text

(the joke).

Strictly speaking, that’s true: the form and its inputs should really be either before

or after the blockquote. Unfortunately, to make that tag structure display clearly

requires a little Cascading Style Sheets (CSS) code that’s really beyond the scope

of this book.

Rather than attempt to teach you CSS layout techniques in a book about PHP and

MySQL, I’ve decided to go with this imperfect markup. If you plan to use this

code in the real world, you should invest some time into learning CSS (or securing

the services of a person who does) so that you can take complete control of your

HTML markup without worrying about the CSS code required to make it look

nice.

Figure 4.11 shows what the joke list looks like with the Delete buttons added.

Build Your Own Database Driven Web Site Using PHP & MySQL144

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 4.11. Each button will delete its respective joke

All that remains to make this new feature work is to update the controller so that

it can process the form submission that results from clicking one of our new Delete

buttons:

chapter4/deletejoke/index.php (excerpt)

if (isset($_GET['deletejoke']))

{

 $id = mysqli_real_escape_string($link, $_POST['id']);

 $sql = "DELETE FROM joke WHERE id='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error deleting joke: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

This chunk of code works exactly like the one we added to process the “Add Joke”

code earlier in this chapter. We start by using mysqli_real_escape_string to

sanitize the submitted value of $_POST['id'] before using it in a database

query5—this time, a DELETE query. Once that query is executed, we use the PHP

5 You might think it’s unnecessary to sanitize this value, since it’s produced by a hidden form field that

the user is unable to see. In fact, however, all form fields—even hidden ones—are ultimately under the

145Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

header function to ask the browser to send a new request to view the updated list

of jokes.

Why Not a Link?

If you tackled this example yourself, your first instinct might have been to provide

a Delete hyperlink for each joke, instead of going to the trouble of writing an entire

HTML form containing a Delete button for each joke on the page. Indeed, the code

for such a link would be much simpler:

<?php foreach ($jokes as $joke): ?>

 <blockquote>

 <p>

 <?php echo htmlspecialchars($joke['text'], ENT_QUOTES,

 'UTF-8'); ?>

<a href="?deletejoke&id=<?php echo $joke['id'];

 ?>">Delete

 </p>

 </blockquote>

<?php endforeach; ?>

In short, hyperlinks should never be used to perform actions (like deleting a joke);

hyperlinks should only be used to provide a link to some related content. The

same goes for forms with method="get", which should only be used to perform

queries of existing data. Actions should only ever be performed as a result of a

form with method="post" being submitted.

The reason is that forms with method="post" are treated differently by browsers

and related software. If you submit a form with method="post" and then click

the Refresh button in your browser, for example, the browser will ask if you’re

certain you wish to resubmit the form. Browsers have no similar protection against

resubmission when it comes to links and forms with method="get".

Similarly, web accelerator software (and some modern browsers) will automatically

follow hyperlinks present on a page in the background, so that the target pages

will be available for immediate display if the user clicks one of those links. If your

site deleted a joke as a result of a hyperlink being followed, you could find your

jokes getting deleted automatically by your users’ browsers!

user’s control. There are widely distributed browser add-ons, for example, that will make hidden form

fields visible and available for editing by the user. Remember: any value submitted by the browser is

ultimately suspect when it comes to protecting your site’s security.

Build Your Own Database Driven Web Site Using PHP & MySQL146

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Here’s the complete code of the finished controller. If you have any questions, make

sure to post them in the SitePoint Forums!6

chapter4/deletejoke/index.php

<?php

if (get_magic_quotes_gpc())

{

 function stripslashes_deep($value)

 {

 $value = is_array($value) ?

 array_map('stripslashes_deep', $value) :

 stripslashes($value);

 return $value;

 }

 $_POST = array_map('stripslashes_deep', $_POST);

 $_GET = array_map('stripslashes_deep', $_GET);

 $_COOKIE = array_map('stripslashes_deep', $_COOKIE);

 $_REQUEST = array_map('stripslashes_deep', $_REQUEST);

}

if (isset($_GET['addjoke']))

{

 include 'form.html.php';

 exit();

}

$link = mysqli_connect('localhost', 'root', 'password');

if (!$link)

{

 $error = 'Unable to connect to the database server.';

 include 'error.html.php';

 exit();

}

if (!mysqli_set_charset($link, 'utf8'))

{

 $output = 'Unable to set database connection encoding.';

 include 'output.html.php';

 exit();

}

6 http://www.sitepoint.com/forums/

147Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/forums/

if (!mysqli_select_db($link, 'ijdb'))

{

 $error = 'Unable to locate the joke database.';

 include 'error.html.php';

 exit();

}

if (isset($_POST['joketext']))

{

 $joketext = mysqli_real_escape_string($link, $_POST['joketext']);

 $sql = 'INSERT INTO joke SET

 joketext="' . $joketext . '",

 jokedate=CURDATE()';

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error adding submitted joke: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

if (isset($_GET['deletejoke']))

{

 $id = mysqli_real_escape_string($link, $_POST['id']);

 $sql = "DELETE FROM joke WHERE id='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error deleting joke: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

$result = mysqli_query($link, 'SELECT id, joketext FROM joke');

if (!$result)

{

 $error = 'Error fetching jokes: ' . mysqli_error($link);

 include 'error.html.php';

Build Your Own Database Driven Web Site Using PHP & MySQL148

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 exit();

}

while ($row = mysqli_fetch_array($result))

{

 $jokes[] = array('id' => $row['id'], 'text' => $row['joketext']);

}

include 'jokes.html.php';

?>

Mission Accomplished
In this chapter, you learned some new PHP functions that allow you to interface

with a MySQL database server. Using these functions, you built your first database

driven web site, which published the ijdb database online, and allowed visitors to

add jokes to it and delete jokes from it.

In a way, you could say this chapter achieved the stated mission of this book, to

teach you how to build a database driven web site. Of course, the example in this

chapter contains only the bare essentials. In the rest of this book, I’ll show you how

to flesh out the skeleton you learned to build in this chapter.

In Chapter 5, we go back to the MySQL command line. We’ll learn how to use rela-

tional database principles and advanced SQL queries to represent more complex

types of information, and give our visitors credit for the jokes they add!

149Publishing MySQL Data on the Web

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Chapter5
Relational Database Design
Since Chapter 2, we’ve worked with a very simple database of jokes, which is

composed of a single table named, appropriately enough, joke. While this database

has served us well as an introduction to MySQL databases, there’s more to relational

database design than can be understood from this simple example. In this chapter,

we’ll expand on this database, and learn a few new features of MySQL, in an effort

to realize and appreciate the real power that relational databases have to offer.

Be forewarned that I will cover several topics only in an informal, non-rigorous sort

of way. As any computer science major will tell you, database design is a serious

area of research, with tested and mathematically provable principles that, while

useful, are beyond the scope of this text.

For more complete coverage of database design concepts, and SQL in general, pick

up a copy of Simply SQL1 (Melbourne: SitePoint, 2008). If you’re really into learning

the hard principles behind relational databases, Database In Depth2 (Sebastopol:

O’Reilly, 2005) is a worthwhile read. And if you want even more information, stop

by http://www.datamodel.org/ for a list of good books, as well as several useful re-

1 http://www.sitepoint.com/books/sql1/
2 http://oreilly.com/catalog/9780596100124/

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/books/sql1/
http://oreilly.com/catalog/9780596100124/
http://www.datamodel.org/

sources on the subject. In particular, check out Rules of Data Normalization in the

Data Modelling section of the site.

Giving Credit Where Credit is Due
To start off, let’s recall the structure of our joke table. It contains three columns:

id, joketext, and jokedate. Together, these columns allow us to identify jokes

(id), and keep track of their text (joketext) and the date they were entered (joked-

ate). For your reference, here’s the SQL code that creates this table and inserts a

couple of entries:

chapter5/sql/jokes1.sql

Code to create a simple joke table

CREATE TABLE joke (

 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 joketext TEXT,

 jokedate DATE NOT NULL

) DEFAULT CHARACTER SET utf8;

Adding jokes to the table

INSERT INTO joke SET

joketext = 'Why did the chicken cross the road? To get to the other

➥ side!',

jokedate = '2009-04-01';

INSERT INTO joke

(joketext, jokedate) VALUES (

'Knock-knock! Who\'s there? Boo! "Boo" who? Don\'t cry; it\'s only a

➥ joke!',

"2009-04-01"

);

Now, let’s say we wanted to track another piece of information about our jokes: the

names of the people who submitted them. It would seem natural to want to add a

new column to our joke table for this. The SQL ALTER TABLE command (which

we’ve yet to see) lets us do exactly that. Log into your MySQL server using the mysql

command-line program as in Chapter 2, select your database (ijdb if you used the

name suggested in that chapter), then type this command:

Build Your Own Database Driven Web Site Using PHP & MySQL152

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysql> ALTER TABLE joke ADD COLUMN

 -> authorname VARCHAR(255);

This code adds a column called authorname to your table. The type declared is a

variable-length character string of up to 255 characters (VARCHAR(255))—plenty

of space for even very esoteric names. Let’s also add a column for the authors’ email

addresses:

mysql> ALTER TABLE joke ADD COLUMN

 -> authoremail VARCHAR(255);

For more information about the ALTER TABLE command, see Appendix A. Just to

make sure the two columns were added properly, we should ask MySQL to describe

the table to us:

mysql> DESCRIBE joke;

+-------------+--------------+------+-----+------------+------------

| Field | Type | Null | Key | Default | Extra

+-------------+--------------+------+-----+------------+------------

| id | int(11) | NO | PRI | NULL | auto_increm

| joketext | text | YES | | NULL |

| jokedate | date | NO | | |

| authorname | varchar(255) | YES | | NULL |

| authoremail | varchar(255) | YES | | NULL |

+-------------+--------------+------+-----+------------+------------

5 rows in set (0.00 sec)

Looks good, right? Obviously, we would need to make changes to the HTML and

PHP form code we wrote in Chapter 4 that allowed us to add new jokes to the

database. Using UPDATE queries, we could now add author details to all the jokes

in the table. But before we’re carried away with these changes, we need to stop and

consider whether this new table design was the right choice here. In this case, it

turns out to be a poor choice.

Rule of Thumb: Keep Entities Separate
As your knowledge of database driven web sites continues to grow, you may decide

that a personal joke list is too limited. In fact, you might begin to receive more

submitted jokes than you have original jokes of your own. Let’s say you decide to

launch a web site where people from all over the world can share jokes with each

153Relational Database Design

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

other. To add the author’s name and email address to each joke certainly makes a

lot of sense, but the method we used above leads to several potential problems:

■ What if a frequent contributor to your site named Joan Smith changed her email

address? She might begin to submit new jokes using the new address, but her

old address would still be attached to all the jokes she’d submitted in the past.

Looking at your database, you might simply think there were two different people

named Joan Smith who had submitted jokes. If she were especially thoughtful,

she might inform you of the change of address, and you might try to update all

the old jokes with the new address, but if you missed just one joke, your database

would still contain incorrect information. Database design experts refer to this

sort of problem as an update anomaly.

■ It would be natural for you to rely on your database to provide a list of all the

people who’ve ever submitted jokes to your site. In fact, you could easily obtain

a mailing list using the following query:

mysql> SELECT DISTINCT authorname, authoremail

 -> FROM joke;

The word DISTINCT in the above query stops MySQL from outputting duplicate

result rows. For example, if Joan Smith submitted twenty jokes to your site, using

the DISTINCT option would cause her name to only appear once in the list instead

of twenty times.

Then, if for some reason, you decided to remove all the jokes that a particular

author had submitted to your site, you’d remove any record of this person from

the database in the process, and you’d no longer be able to email him or her with

information about your site! As your mailing list might be a major source of in-

come for your site, it’s unwise to go throwing away an author’s email address

just because you disliked the jokes that person had submitted to your site.

Database design experts call this a delete anomaly.

■ You have no guarantee that Joan Smith will enter her name the same way each

time—consider the variations: Joan Smith; J. Smith; Smith, Joan—you catch my

drift. This would make keeping track of a particular author exceedingly difficult,

especially if Joan Smith also had several email addresses she liked to use.

Build Your Own Database Driven Web Site Using PHP & MySQL154

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

These problems—and more—can be dealt with very easily using established database

design principles. Instead of storing the information for the authors in the joke

table, let’s create an entirely new table for our list of authors. Since we used a column

called id in the joke table to identify each of our jokes with a unique number, we’ll

use an identically-named column in our new table to identify our authors. We can

then use those author IDs in our joke table to associate authors with their jokes.

The complete database layout is shown in Figure 5.1.

Figure 5.1. The authorid field associates each row in joke with a row in author

What these two tables show are three jokes and two authors. The authorid column

of the joke table establishes a relationship between the two tables, indicating that

Kevin Yank submitted jokes 1 and 2 and Joan Smith submitted joke 3. Notice also

that, since each author now only appears once in the database, and appears inde-

pendently of the jokes submitted, we’ve avoided all the problems outlined above.

The most important characteristic of this database design, however, is that, since

we’re storing information about two types of things (jokes and authors), it’s most

appropriate to have two tables. This is a rule of thumb that you should always keep

in mind when designing a database: each type of entity (or “thing”) about which

you want to be able to store information should be given its own table.

155Relational Database Design

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

To set up the above database from scratch is fairly simple (involving just two CREATE

TABLE queries), but since we’d like to make these changes in a nondestructive

manner (i.e. without losing any of our precious knock-knock jokes), we’ll use the

ALTER TABLE command again. First, we remove the author-related columns in the

joke table:

mysql> ALTER TABLE joke DROP COLUMN authorname;

Query OK, 0 rows affected (0.00 sec)

Records: 2 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE joke DROP COLUMN authoremail;

Query OK, 0 rows affected (0.00 sec)

Records: 2 Duplicates: 0 Warnings: 0

Now, we create our new table:

mysql> CREATE TABLE author (

 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 -> name VARCHAR(255),

 -> email VARCHAR(255)

 ->) DEFAULT CHARACTER SET utf8;

Finally, we add the authorid column to our joke table:

mysql> ALTER TABLE joke ADD COLUMN authorid INT;

If you prefer, here are the CREATE TABLE commands that will create the two tables

from scratch:

chapter5/sql/2tables.sql (excerpt)

Code to create a simple joke table that stores an author ID

CREATE TABLE joke (

 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 joketext TEXT,

 jokedate DATE NOT NULL,

 authorid INT

) DEFAULT CHARACTER SET utf8;

Code to create a simple author table

Build Your Own Database Driven Web Site Using PHP & MySQL156

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

CREATE TABLE author (

 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 name VARCHAR(255),

 email VARCHAR(255)

) DEFAULT CHARACTER SET utf8;

All that’s left is to add some authors to the new table, and assign authors to all the

existing jokes in the database by filling in the authorid column.3 Go ahead and do

this now if you like—it should give you some practice with INSERT and UPDATE

queries. If you’re rebuilding the database from scratch, however, here’s a series of

INSERT queries that will do the trick:

chapter5/sql/2tables.sql (excerpt)

Adding authors to the database

We specify the IDs so they are known when we add the jokes below.

INSERT INTO author SET

 id = 1,

 name = 'Kevin Yank',

 email = 'kevin@sitepoint.com';

INSERT INTO author (id, name, email)

VALUES (2, 'Joan Smith', 'joan@example.com');

Adding jokes to the database

INSERT INTO joke SET

 joketext = 'Why did the chicken cross the road? To get to the othe

➥r side!',

 jokedate = '2009-04-01',

 authorid = 1;

INSERT INTO joke (joketext, jokedate, authorid)

VALUES (

 'Knock-knock! Who\'s there? Boo! "Boo" who? Don\'t cry; it\'s only

➥ a joke!',

 '2009-04-01',

 1

);

3 For now, you’ll have to do this manually. But rest assured, in Chapter 7 we’ll see how PHP can insert

entries with the correct IDs automatically, reflecting the relationships between them.

157Relational Database Design

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

INSERT INTO joke (joketext, jokedate, authorid)

VALUES (

 'A man walks into a bar. "Ouch."',

 '2009-04-01',

 2

);

SELECT with Multiple Tables
With your data now separated into two tables, it may seem that you’re complicating

the process of data retrieval. Consider, for example, our original goal: to display a

list of jokes with the name and email address of the author next to each joke. In the

single-table solution, you could gain all the information you needed to produce

such a list using a single SELECT query in your PHP code:

$result = mysqli_query($link,

 'SELECT id, joketext, authorname, authoremail FROM joke');

if (!$result)

{

 $error = 'Error fetching jokes: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

}

while ($row = mysqli_fetch_array($result))

{

 $jokes[] = array('id' => $row['id'], 'text' => $row['joketext'],

 'name' => $row['authorname'], 'email' => $row['authoremail']);

}

In the new system, this would, at first, no longer seem possible. As the details about

the author of each joke are no longer stored in the joke table, you might think that

you’d have to fetch those details separately for each joke you wanted to display.

The code to perform this task would involve a call to mysqli_query for each and

every joke to be displayed. This would be messy and slow. As your database of

jokes increased in size, the overhead of all those queries would drag down the per-

formance of your site in a big way.

With all this taken into account, it would seem that the “old way” was actually the

better solution, despite its weaknesses. Fortunately, relational databases like MySQL

Build Your Own Database Driven Web Site Using PHP & MySQL158

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

are designed to make it easy to work with data stored in multiple tables! Using a

new form of the SELECT statement, called a join, you can have the best of both worlds.

Joins allow you to treat related data in multiple tables as if they were stored in a

single table. Here’s what the syntax of a simple join looks like:

mysql> SELECT columns

 -> FROM table1 INNER JOIN table2

 -> ON condition(s) for data to be related;

In your case, the columns you’re interested in are id and joketext in the joke table,

and name and email in the author table. The condition for an entry in the joke table

to be related to an entry in the author table is that the value of the authorid column

in the joke table is equal to the value of the id column in the author table.

Here’s an example of a join (the first two queries simply show you what’s contained

in the two tables—they’re unnecessary):

mysql> SELECT id, LEFT(joketext, 20), authorid FROM joke;

+----+----------------------+----------+

| id | LEFT(joketext, 20) | authorid |

+----+----------------------+----------+

| 1 | Why did the chicken | 1 |

| 2 | Knock knock. Who's t | 1 |

| 3 | A man walks into a b | 2 |

+----+----------------------+----------+

3 rows in set (0.00 sec)

mysql> SELECT * FROM author;

+----+------------+---------------------+

| id | name | email |

+----+------------+---------------------+

| 1 | Kevin Yank | kevin@sitepoint.com |

| 2 | Joan Smith | joan@example.com |

+----+------------+---------------------+

2 rows in set (0.00 sec)

159Relational Database Design

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysql> SELECT joke.id, LEFT(joketext, 20), name, email

 -> FROM joke INNER JOIN author

 -> ON authorid = author.id;

+----+----------------------+------------+---------------------+

| id | LEFT(joketext, 20) | name | email |

+----+----------------------+------------+---------------------+

| 1 | Why did the chicken | Kevin Yank | kevin@sitepoint.com |

| 2 | Knock-knock! Who's t | Kevin Yank | kevin@sitepoint.com |

| 3 | A man walks into a b | Joan Smith | joan@example.com |

+----+----------------------+------------+---------------------+

3 rows in set (0.00 sec)

See? The results of the third SELECT, which is a join, group the values stored in the

two tables into a single table of results, with related data correctly appearing together.

Even though the data is stored in two tables, you can still access all the information

you need to produce the joke list on your web page with a single database query.

Note in the query that, since there are columns named id in both tables, you must

specify the name of the table when you refer to either id column. The joke table’s

id is referred to as joke.id, while the author table’s id column is author.id. If

the table name is unspecified, MySQL won’t know which id you’re referring to,

and will produce this error:

mysql> SELECT id, LEFT(joketext, 20), name, email

 -> FROM joke INNER JOIN author

 -> ON authorid = id;

ERROR 1052 (23000): Column: 'id' in field list is ambiguous

Now that you know how to access the data stored in your two tables efficiently, you

can rewrite the code for your joke list to take advantage of joins:

Build Your Own Database Driven Web Site Using PHP & MySQL160

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter5/jokes/index.php (excerpt)

$result = mysqli_query($link,

'SELECT joke.id, joketext, name, email

 FROM joke INNER JOIN author

 ON authorid = author.id');

if (!$result)

{

 $error = 'Error fetching jokes: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

}

while ($row = mysqli_fetch_array($result))

{

 $jokes[] = array('id' => $row['id'], 'text' => $row['joketext'],

 'name' => $row['name'], 'email' => $row['email']);

}

include 'jokes.html.php';

?>

You can then update your template to display the author information for each joke:

chapter5/jokes/jokes.html.php (excerpt)

<?php foreach ($jokes as $joke): ?>

 <form action="?deletejoke" method="post">

 <blockquote>

 <p>

 <?php echo htmlspecialchars($joke['text'], ENT_QUOTES,

 'UTF-8'); ?>

 <input type="hidden" name="id" value="<?php

 echo $joke['id']; ?>"/>

 <input type="submit" value="Delete"/>

(by <a href="mailto:<?php

 echo htmlspecialchars($joke['email'], ENT_QUOTES,

 'UTF-8'); ?>"><?php

 echo htmlspecialchars($joke['name'], ENT_QUOTES,

 'UTF-8'); ?>)

 </p>

 </blockquote>

 </form>

<?php endforeach; ?>

161Relational Database Design

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The resulting display is shown in Figure 5.2.

Figure 5.2. I wrote all the best ones myself

The more you work with databases, the more you’ll come to realize the power of

combining data contained in separate tables into a single table of results. Consider,

for example, the following query, which displays a list of all jokes written by Joan

Smith:

mysql> SELECT joketext

 -> FROM joke INNER JOIN author

 -> ON authorid = author.id

 -> WHERE name = "Joan Smith";

+---------------------------------+

| joketext |

+---------------------------------+

| A man walks into a bar. "Ouch." |

+---------------------------------+

1 row in set (0.00 sec)

The results that are output from the above query come only from the joke table, but

the query uses a join to let it search for jokes based on a value stored in the author

table. There will be plenty more examples of clever queries like this throughout the

book, but this example alone illustrates that the practical applications of joins are

many and varied and, in almost all cases, can save you a lot of work!

Build Your Own Database Driven Web Site Using PHP & MySQL162

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Simple Relationships
The best type of database layout for a given situation is usually dictated by the type

of relationship that exists between the data that it needs to store. In this section, I’ll

examine the typical relationship types, and explain how best to represent them in

a relational database.

In the case of a simple one-to-one relationship, a single table is all you’ll need. An

example of a one-to-one relationship that you’ve seen so far is the email address of

each author in our joke database. Since there will be one email address for each

author, and one author for each email address, there’s no reason to split the addresses

into a separate table.4

A many-to-one relationship is a little more complicated, but you’ve already seen

one of these as well. Each joke in our database is associated with just one author,

but many jokes may have been written by that one author. This joke–author relation-

ship is many-to-one. I’ve already covered the problems that result from storing the

information associated with a joke’s author in the same table as the joke itself. In

brief, it can result in many copies of the same data, which are difficult to keep

synchronized, and waste space. If we split the data into two tables, and use an ID

column to link the two together (which will make joins possible as shown above),

all these problems disappear.

A one-to-many relationship is simply a many-to-one relationship seen from the

opposite direction. Since the joke–author relationship is many-to-one, the au-

thor–joke relationship is one-to-many (there is one author for, potentially, many

jokes). This is easy to see in theory, but when you’re coming at a problem from the

opposite direction, it’s less obvious. In the case of jokes and authors, we started

with a library of jokes (the many) and then wanted to assign an author to each of

them (the one). Let’s now look at a hypothetical design problem where we start with

the one and want to add the many.

Say we wanted to allow each of the authors in our database (the one) to have multiple

email addresses (the many). When an inexperienced person in database design ap-

4 There are exceptions to this rule. For example, if a single table grows very large with lots of columns,

some of which are rarely used in SELECT queries, it can make sense to split those columns out into

their own table. This can improve the performance of queries on the now smaller table.

163Relational Database Design

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

proaches a one-to-many relationship like this one, the first thought is often to try

to store multiple values in a single database field, as shown in Figure 5.3.

Figure 5.3. Never overload a table field to store multiple values, as is done here

While this would work, to retrieve a single email address from the database, we’d

need to break up the string by searching for commas (or whatever special character

you chose to use as a separator)—a not-so-simple and potentially time-consuming

operation. Try to imagine the PHP code necessary to remove one particular email

address from one particular author! In addition, you’d need to allow for much longer

values in the email column, which could result in wasted disk space, because the

majority of authors would have just one email address.

Now take a step back, and realize this one-to-many relationship is just the same as

the many-to-one relationship we faced between jokes and authors. The solution,

therefore, is also the same: split the entities (in this case, email addresses) into their

own table. The resulting database structure is shown in Figure 5.4.

Build Your Own Database Driven Web Site Using PHP & MySQL164

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 5.4. The authorid field associates each row of email with one row of author

Using a join with this structure, we can easily list the email addresses associated

with a particular author:

mysql> SELECT email

 -> FROM author INNER JOIN email

 -> ON authorid = author.id

 -> WHERE name = "Kevin Yank";

+-----------------------+

| email |

+-----------------------+

| kevin@sitepoint.com |

| kyank@example.com |

+-----------------------+

2 rows in set (0.00 sec)

165Relational Database Design

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Many-to-Many Relationships
Okay, you now have a steadily-growing database of jokes published on your web

site. It’s growing so quickly, in fact, that the number of jokes has become unmanage-

able! People who visit your site are faced with a mammoth page that contains

hundreds of jokes listed without any structure whatsoever. We need to make a

change.

You decide to place your jokes into categories such as Knock-Knock Jokes, Crossing

the Road Jokes, Lawyer Jokes, and Political Jokes. Remembering our rule of thumb

from earlier, you identify joke categories as a different type of entity, and create a

new table for them:

mysql> CREATE TABLE category (

 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 -> name VARCHAR(255)

 ->) DEFAULT CHARACTER SET utf8;

Query OK, 0 rows affected (0.00 sec)

Now you come to the daunting task of assigning categories to your jokes. It occurs

to you that a “political” joke might also be a “crossing the road” joke, and a “knock-

knock” joke might also be a “lawyer” joke. A single joke might belong to many cat-

egories, and each category will contain many jokes. This is a many-to-many rela-

tionship.

Once again, many inexperienced developers begin to think of ways to store several

values in a single column—because the obvious solution is to add a category column

to the joke table and use it to list the IDs of those categories to which each joke

belongs. A second rule of thumb would be useful here: if you need to store multiple

values in a single field, your design is probably flawed.

The correct way to represent a many-to-many relationship is to use a lookup table.

This is a table that contains no actual data, but which lists pairs of entries that are

related. Figure 5.5 shows what the database design would look like for our joke

categories.

Build Your Own Database Driven Web Site Using PHP & MySQL166

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 5.5. The jokecategory table associates pairs of rows from the joke and category tables

The jokecategory table associates joke IDs (jokeid) with category IDs (categoryid).

In this example, we can see that the joke that starts with “How many lawyers …”

belongs to both the Lawyers and Light bulb categories.

A lookup table is created in much the same way as is any other table. The difference

lies in the choice of the primary key. Every table we’ve created so far has had a

column named id that was designated to be the PRIMARY KEY when the table was

created. Designating a column as a primary key tells MySQL to disallow two entries

in that column to have the same value. It also speeds up join operations based on

that column.

In the case of a lookup table, there is no single column that we want to force to have

unique values. Each joke ID may appear more than once, as a joke may belong to

more than one category, and each category ID may appear more than once, as a

category may contain many jokes. What we want to prevent is the same pair of

values to appear in the table twice. And, since the sole purpose of this table is to

facilitate joins, the speed benefits offered by a primary key would come in very

handy. For this reason, we usually create lookup tables with a multi-column primary

key as follows:

167Relational Database Design

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysql> CREATE TABLE jokecategory (

 -> jokeid INT NOT NULL,

 -> categoryid INT NOT NULL,

 -> PRIMARY KEY (jokeid, categoryid)

 ->) DEFAULT CHARACTER SET utf8;

This creates a table in which the jokeid and categoryid columns together form

the primary key. This enforces the uniqueness that’s appropriate to a lookup table,

preventing a particular joke from being assigned to a specific category more than

once, and speeds up joins that make use of this table.

Now that your lookup table is in place and contains category assignments, you can

use joins to create several interesting and very practical queries. This query lists all

jokes in the Knock-knock category:

mysql> SELECT joketext

 -> FROM joke INNER JOIN jokecategory

 -> ON joke.id = jokeid

 -> INNER JOIN category

 -> ON categoryid = category.id

 -> WHERE name = "Knock-knock";

As you can see, this query uses two joins. First, it takes the joke table and joins it

to the jokecategory table; then it takes that joined data and joins it to the category

table. As your database structure becomes more complex, multi-join queries like

this one become common.

The following query lists the categories that contain jokes beginning with “How

many lawyers …”:

mysql> SELECT name

 -> FROM joke INNER JOIN jokecategory

 -> ON joke.id = jokeid

 -> INNER JOIN category

 -> ON categoryid = category.id

 -> WHERE joketext LIKE "How many lawyers%";

And this query, which also makes use of our author table to join together the con-

tents of four tables, lists the names of all authors who have written knock-knock

jokes:

Build Your Own Database Driven Web Site Using PHP & MySQL168

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysql> SELECT author.name

 -> FROM joke INNER JOIN author

 -> ON authorid = author.id

 -> INNER JOIN jokecategory

 -> ON joke.id = jokeid

 -> INNER JOIN category

 -> ON categoryid = category.id

 -> WHERE category.name = "Knock-knock";

One for Many, and Many for One
In this chapter, I explained the fundamentals of good database design, and we

learned how MySQL and, for that matter, all relational database management systems

provide support for the representation of different types of relationships between

entities. From your initial understanding of one-to-one relationships, you should

now have expanded your knowledge to include many-to-one, one-to-many, and

many-to-many relationships.

In the process, you learned a few new features of common SQL commands. In par-

ticular, you learned how to use a SELECT query to join data spread across multiple

tables into a single set of results.

With the increased expressiveness that multiple database tables bring, you’re now

equipped to extend the simple “joke list” site you assembled in Chapter 4 to include

authors and categories, and that’s exactly what Chapter 7 will be all about. Before

you tackle this project, however, you should take some time to add to your PHP

skills. Just as you spent this chapter learning some of the finer points of MySQL

database design, Chapter 6 will teach you some of the subtleties of PHP program-

ming—which will make the job of building a more complete joke database site much

more fun.

169Relational Database Design

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Chapter6
Structured PHP Programming
Before we plow headlong into the next enhancements of our joke database, let’s

spend a little time honing your “PHP-fu.” Specifically, I want to show you a few

techniques to better structure your code.

Structured coding techniques are useful in all but the simplest of PHP projects.

Already in Chapter 3, you’ve learned how to split up your PHP code into multiple

files: a controller and a set of associated templates. This lets you keep the server-

side logic of your site separate from the HTML code used to display the dynamic

content generated by that logic. In order to do this, you learned how to use the PHP

include command.

The PHP language offers many such facilities to help you add structure to your

code. The most powerful of these is undoubtedly its support for object-oriented

programming (OOP), which is explored in depth in The PHP Anthology: 101 Essential

Tips, Tricks & Hacks, 2nd Edition1 (Melbourne: SitePoint, 2007). OOP is a big topic,

and requires you to drastically change the way you think about solving problems

1 http://www.sitepoint.com/books/phpant2/

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/books/phpant2/
http://www.sitepoint.com/books/phpant2/

in PHP. Thankfully, the more basic features of PHP already offer many opportunities

for structuring your code.

In this chapter, I’ll explore some simple ways to keep your code manageable and

maintainable without requiring you to become a total programming wizard (though

you might like to be that anyway!).

Include Files
Often, even very simple PHP-based web sites need the same piece of code in several

places. You already learned to use the PHP include command to load a PHP template

from inside your controller; it turns out you can use the same feature to save yourself

from having to write the same code again and again.

Include files (also known as just includes) contain snippets of PHP code that you

can then load into your other PHP scripts instead of having to retype them.

Including HTML Content
The concept of include files came long before PHP. If you’re an old codger like me

(which, in the web world, means you’re over 25), you may have experimented with

Server-Side Includes (SSIs). A feature of just about every web server out there, SSIs

let you put commonly used snippets of HTML (and JavaScript, and CSS) into include

files that you can then use in multiple pages.

In PHP, include files most commonly contain either pure PHP code or, in the case

of PHP templates, a mixture of HTML and PHP code. But you don’t have to put PHP

code in your include files. If you like, an include file can contain strictly static

HTML. This is most useful for sharing common design elements across your site,

such as a copyright notice to appear at the bottom of every page:

chapter6/static-footer/footer.inc.html.php

<div id="footer">

 The contents of this webpage are copyright © 1998 - 2009

 Example Pty. Ltd. All Rights Reserved.

</div>

Build Your Own Database Driven Web Site Using PHP & MySQL172

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

This file is a template fragment—an include file to be used by PHP templates. To

distinguish this type of file from the other files in your project, I recommend giving

it a name ending with .inc.html.php.

You can then use this fragment in any of your PHP templates:

chapter6/static-footer/samplepage.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>A Sample Page</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p id="main">

 This page uses a static include to display a standard

 copyright notice below.

 </p>

<?php include 'footer.inc.html.php'; ?>

 </body>

</html>

Finally, here’s the controller that loads this template:

chapter6/static-footer/index.php

<?php

include 'samplepage.html.php';

?>

173Structured PHP Programming

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 6.1 shows what the page looks like in the browser.

Figure 6.1. A static include displays the site’s copyright notice

Now, each year all you need to do to update your copyright notice is to edit

footer.inc.html.php. No more time-consuming and error-prone find-and-replace op-

erations!

Of course, if you really want to make your life easy, you can just let PHP do the

work for you:

chapter6/dynamic-footer/footer.inc.html.php

<p id="footer">

 The contents of this webpage are copyright © 1998 -

<?php echo date('Y'); ?> Example Pty. Ltd. All Rights

 Reserved.

</p>

Including PHP Code
On database driven web sites, almost every controller script must establish a database

connection as its first order of business. As we’ve already seen, the code for doing

this is fairly substantial:

Build Your Own Database Driven Web Site Using PHP & MySQL174

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

$link = mysqli_connect('localhost', 'root', 'password');

if (!$link)

{

 $error = 'Unable to connect to the database server.';

 include 'error.html.php';

 exit();

}

if (!mysqli_set_charset($link, 'utf8'))

{

 $output = 'Unable to set database connection encoding.';

 include 'output.html.php';

 exit();

}

if (!mysqli_select_db($link, 'ijdb'))

{

 $error = 'Unable to locate the joke database.';

 include 'error.html.php';

 exit();

}

At some twenty-one lines long, it’s only a slightly cumbersome chunk of code, but

having to type it at the top of every controller script can become annoying in a hurry.

Many new PHP developers will often omit essential error checking (for example,

by leaving out the three if statements in the above) to save typing, which can result

in a lot of lost time looking for the cause when an error does occur. Others will

make heavy use of the clipboard to copy pieces of code like this from existing scripts

for use in new ones. Some even use features of their text editor software to store

useful pieces of code like this as snippets for frequent use.

But what happens when the database password, or some other detail of the code

changes? Suddenly you’re on a treasure hunt to find every occurrence of the code

in your site to make the necessary change—a task that can be especially frustrating

if you’ve used several variations of the code that you need to track down and update.

Figure 6.2 illustrates how include files can help in this situation. Instead of repeating

the code fragment in every file that needs it, write it just once in a separate file,

known as an include file. That file can then be included in any other PHP files that

need to use it!

175Structured PHP Programming

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 6.2. Include files allow several scripts to share common code

Let’s apply this technique to create the database connection in our joke list example

to see how this works in detail. First, create a file called db.inc.php2 and place the

database connection code inside it.

2 The current convention is to name include files with a .inc.php extension. This allows you easily to

identify them among ordinary PHP scripts, while at the same time ensuring that they’re identified and

processed as PHP scripts by the web server and the development tools you use. In practice, you can

name include files however you like. Previously, it was common to simply give include files an .inc ex-

tension; but unless the web server was specifically configured to process such files as PHP scripts or to

protect them from being downloaded, users who guessed the names of your include files could download

them as plain text and gain access to sensitive information (such as database passwords) that appeared

in the source code.

Build Your Own Database Driven Web Site Using PHP & MySQL176

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter6/jokes/db.inc.php

<?php

$link = mysqli_connect('localhost', 'root', 'password');

if (!$link)

{

 $error = 'Unable to connect to the database server.';

 include 'error.html.php';

 exit();

}

if (!mysqli_set_charset($link, 'utf8'))

{

 $output = 'Unable to set database connection encoding.';

 include 'output.html.php';

 exit();

}

if (!mysqli_select_db($link, 'ijdb'))

{

 $error = 'Unable to locate the joke database.';

 include 'error.html.php';

 exit();

}

?>

As you can see, include files are just like normal PHP files, but typically they contain

snippets of code that are only useful within the context of a larger script. Now you

can put this db.inc.php file to use in your controller:

chapter6/jokes/index.php

<?php

if (get_magic_quotes_gpc())

{

 function stripslashes_deep($value)

 {

 $value = is_array($value) ?

 array_map('stripslashes_deep', $value) :

 stripslashes($value);

 return $value;

 }

177Structured PHP Programming

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 $_POST = array_map('stripslashes_deep', $_POST);

 $_GET = array_map('stripslashes_deep', $_GET);

 $_COOKIE = array_map('stripslashes_deep', $_COOKIE);

 $_REQUEST = array_map('stripslashes_deep', $_REQUEST);

}

if (isset($_GET['addjoke']))

{

 include 'form.html.php';

 exit();

}

if (isset($_POST['joketext']))

{

include 'db.inc.php';

 $joketext = mysqli_real_escape_string($link, $_POST['joketext']);

 $sql = 'INSERT INTO joke SET

 joketext="' . $joketext . '",

 jokedate=CURDATE()';

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error adding submitted joke: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

if (isset($_GET['deletejoke']))

{

include 'db.inc.php';

 $id = mysqli_real_escape_string($link, $_POST['id']);

 $sql = "DELETE FROM joke WHERE id='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error deleting joke: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

 }

 header('Location: .');

Build Your Own Database Driven Web Site Using PHP & MySQL178

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 exit();

}

include 'db.inc.php';

$result = mysqli_query($link, 'SELECT id, joketext FROM joke');

if (!$result)

{

 $error = 'Error fetching jokes: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

}

while ($row = mysqli_fetch_array($result))

{

 $jokes[] = array('id' => $row['id'], 'text' => $row['joketext']);

}

include 'jokes.html.php';

?>

As you can see, wherever our controller needs a database connection, we can obtain

it simply by including the db.inc.php file with an include statement. And because

the code to do this is a simple one-liner, we can make our code more readable by

using a separate include statement just before each mysqli_query in our controller.

Previously, we established a database connection at the top of the controller,

whether the code that followed would end up needing one or not.

When PHP encounters an include statement, it puts the current script on hold and

runs the specified PHP script. When it’s finished, it returns to the original script

and picks up where it left off.

Include files are the simplest way to structure PHP code. Because of their simplicity,

they’re also the most widely used method. Even very simple web applications can

benefit greatly from the use of include files.

179Structured PHP Programming

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Types of Includes
The include statement we’ve used so far is actually only one of four statements

that you can use to include another PHP file in a currently running script:

■ include

■ require

■ include_once

■ require_once

include and require are almost identical. The only difference between them is

what happens when the specified file is unable to be included (that is, if it does not

exist, or if the web server doesn’t have permission to read it). With include, a

warning is displayed3 and the script continues to run. With require, an error is

displayed and the script stops.

In general, therefore, you should use require whenever the main script is unable

to work without the script to be included. I do recommend using include

whenever possible, however. Even if the db.inc.php file for your site is unable to be

loaded, for example, you might still want to let the script for your front page continue

to load. None of the content from the database will display, but the user might be

able to use the Contact Us link at the bottom of the page to let you know about the

problem!

include_once and require_once work just like include and require, respect-

ively—but if the specified file has already been included (using any of the four

statements described here) at least once for the current page request, the statement

will be ignored. This is handy for include files that perform a task that only needs

to be done once, like connecting to the database.

Figure 6.3 shows include_once in action. In the figure, index.php includes two files:

categories.inc.php and top10.inc.php. Both of these files use include_once to include

db.inc.php, as they both need a database connection in order to do their job. As

3 In production environments, warnings and errors are usually disabled in php.ini. In such environments,

a failed include has no visible effect (aside from the lack of whatever content would normally have

been generated by the include file), while a failed require causes the page to stop at the point of failure.

When a failed require occurs before any content is sent to the browser, the unlucky user will see

nothing but a blank page!

Build Your Own Database Driven Web Site Using PHP & MySQL180

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

shown, PHP will ignore the attempt to include db.inc.php in top10.inc.php because

the file was already included in categories.inc.php. As a result, only one database

connection is created.

Figure 6.3. Use include_once to avoid opening a second database connection

include_once and require_once are also useful for loading function libraries, as

we’ll see in the section called “Custom Functions and Function Libraries”.

Shared Include Files
In all of the examples I’ve shown you so far, I’ve assumed that the include file is

located in the same directory on your web server as the file(s) that use it. Often, this

is an invalid assumption! On many sites, you’ll want to share include files among

scripts that span potentially complex directory structures. A solid candidate for a

shared include file would be the database connection include, db.inc.php.

So the question is, when the include file is in a different directory, how does a PHP

script find it? The most obvious method is to specify the location of the include file

as an absolute path. Here’s how this would look on a Windows server:4

4 I recommend always using forward slashes in your paths, even when you’re working with a Windows

server. PHP is smart enough to do the conversion for you, and using forward slashes saves you from

having to type double-backslashes (\\) to represent single backslashes in PHP strings.

181Structured PHP Programming

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

<?php include 'C:/Program Files/Apache Software Foundation/Apache2.2

➥/htdocs/includes/db.inc.php'; ?>

And here’s the code on a Linux server:

<?php include '/usr/local/apache2/htdocs/includes/db.inc.php'; ?>

While this method will work, it’s undesirable because it ties your site’s code to your

web server configuration. Ideally, you should be able to drop your PHP-based web

site onto any PHP-enabled web server and just watch it run. This is particularly

important because many developers will build a site on one server, then deploy it

publicly on a different server. This is impractical if your code refers to drives and

directories that are specific to one particular server. And, even if you do have the

luxury of working on a single server, you’ll be kicking yourself if you ever need to

move your web site to another drive/directory on that server.

A better method is to let PHP keep track of the document root5 of your web server,

then specify the path from that location. In any PHP script, you can get the document

root of your web server using $_SERVER['DOCUMENT_ROOT']. As I briefly explained

in Chapter 4, $_SERVER is an array variable that’s automatically created by PHP, just

like $_GET, $_POST, and $_REQUEST. $_SERVER contains a whole bunch of information

supplied by your web server, including $_SERVER['DOCUMENT_ROOT'].

Here’s an example:

<?php include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php'; ?>

This will work on Windows, Mac, and Linux servers based on Apache and Internet

Information Services (IIS).6

5 The document root is the directory on your server that corresponds to the root directory of your web

site. For example, to make index.php available at http://www.example.com/index.php, you would have to

place it in the document root directory on the www.example.com web server.
6 The one place where you can’t count on $_SERVER['DOCUMENT_ROOT'] is on a server running

the Common Gateway Interface (CGI) version of PHP. The CGI specification does not require the web

server to inform PHP of the document root directory for the site, so this value will usually be absent on

such configurations. Thankfully, CGI installations of PHP are increasingly rare, and should certainly be

avoided in production environments. If you followed the installation instructions for PHP in this book,

you can rest assured that $_SERVER['DOCUMENT_ROOT'] will work.

Build Your Own Database Driven Web Site Using PHP & MySQL182

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Another excellent candidate for a shared include file is the snippet of code that

we’ve used to reverse the changes to submitted values made by PHP’s misguided

magic quotes feature, which we looked at in Chapter 4. Simply drop this code into

its own file:

chapter6/includes/magicquotes.inc.php

<?php

if (get_magic_quotes_gpc())

{

 function stripslashes_deep($value)

 {

 $value = is_array($value) ?

 array_map('stripslashes_deep', $value) :

 stripslashes($value);

 return $value;

 }

 $_POST = array_map('stripslashes_deep', $_POST);

 $_GET = array_map('stripslashes_deep', $_GET);

 $_COOKIE = array_map('stripslashes_deep', $_COOKIE);

 $_REQUEST = array_map('stripslashes_deep', $_REQUEST);

}

?>

From this point on, you can use this include file to remove the effects of magic

quotes with a single line at the top of your controller scripts:

<?php

include $_SERVER['DOCUMENT_ROOT'] . '/includes/magicquotes.inc.php';

I’ll use the two shared include files discussed in this section—the database connec-

tion script and the magic quotes removal script—in many of the examples from this

point forward in the book.

183Structured PHP Programming

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Custom Functions and Function Libraries
By this point, you’re probably quite comfortable with the idea of functions. A

function is a feature of PHP that you can invoke at will, usually providing one or

more parameters (or arguments) for it to use, and often receiving a return value

back as a result. You can use PHP’s vast library of functions to do just about anything

a PHP script could ever be asked to do, from connecting to a database

(mysqli_connect) to generating graphics on the fly (imagecreatetruecolor7).

But what you may be unaware of is that you can create functions of your own!

Custom functions, once defined, work just like PHP’s built-in functions, and they

can do anything a normal PHP script can do.

Let’s start with a really simple example. Say you had a PHP script that needed to

calculate the area of a rectangle given its width (3) and height (5). Thinking back to

your basic geometry classes in school, you should recall that the area of a rectangle

is its width multiplied by its height:

$area = 3 * 5;

But it’d be nicer to have a function called area that simply calculated the area of a

rectangle given its dimensions:

chapter6/calculate-area/index.php (excerpt)

$area = area(3, 5);

As it happens, PHP is without a built-in area function, but clever PHP programmers

like you and me can just roll up our sleeves and write the function ourselves:

chapter6/calculate-area/area-function.inc.php

<?php

function area($width, $height)

{

 return $width * $height;

}

?>

7 http://www.php.net/imagecreatetruecolor

Build Your Own Database Driven Web Site Using PHP & MySQL184

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.php.net/imagecreatetruecolor

This include file defines a single custom function: area. The <?php and ?> markers

are probably the only lines that look familiar to you in this code. What we have

here is a function declaration; let me break it down for you a line at a time:

function area($width, $height)

The keyword function tells PHP that we wish to declare a new function for

use in the current script. Then, we supply the function with a name (in this

case, area). Function names operate under the same rules as variable

names—they’re case-sensitive, must start with a letter or an underscore (_), and

may contain letters, numbers, and underscores—except of course that there is

no dollar sign prefix. Instead, function names are always followed by a set of

parentheses ((…)), which may or may not be empty.

The parentheses that follow a function name enclose the list of parameters that

the function will accept. You should already be familiar with this from your

experience with PHP’s built-in functions. For example, when you use

mysqli_connect to connect to your database, you provide the host name, user

name, and password for the connection as parameters within the parentheses.

When declaring a custom function, instead of giving a list of values for the

parameters, you give a list of variable names. In this example, we list two vari-

ables: $width and $height. When the function is called, it will therefore expect

to be given two parameters. The value of the first parameter will be assigned to

$width, while the value of the second will be assigned to $height. Those vari-

ables can then be used to perform the calculation within the function.

{

Speaking of calculations, the rest of the function declaration is the code that

performs the calculation—or does whatever else the function is supposed to

do. That code must be enclosed in a set of braces ({…}).

return $width * $height;

You can think of the code within those braces as a miniature PHP script. This

function is a simple one, because it contains just a single statement: a return

statement.

A return statement can be used in the code of a function to jump back into the

main script immediately. When the PHP interpreter hits a return statement, it

185Structured PHP Programming

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

immediately stops running the code of this function and goes back to where the

function was called. It’s sort of an ejection seat for functions!

In addition to breaking out of the function, the return statement lets you specify

a value for the function to return to the code that called it. In this case, the value

we’re returning is $x * $y—the result of multiplying the first parameter by the

second.

}

The closing brace marks the end of the function declaration.

In order to use this function, we must first include the file containing this function

declaration:

chapter6/calculate-area/index.php

<?php

include_once 'area-function.inc.php';

$area = area(3, 5);

include 'output.html.php';

?>

Technically, you could write the function declaration within the controller script

itself, but by putting it in an include file you can reuse the function in other scripts

much more easily. It’s tidier, too. To use the function in the include file, a PHP

script need only include it with include_once (or require_once if the function is

critical to the script).

Avoid using include or require to load include files that contain functions; as ex-

plained in the section called “Types of Includes”, that would risk defining the

functions in the library more than once and covering the user’s screen with PHP

warnings.

It’s standard practice (but not required!) to include your function libraries at the

top of the script, so you can quickly see which include files containing functions

are used by any particular script.

What we have here is the beginnings of a function library—an include file that

contains declarations for a group of related functions. If you wanted to, you could

Build Your Own Database Driven Web Site Using PHP & MySQL186

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

add a whole bunch of functions to this include file to perform all sorts of geometrical

calculations.

Variable Scope and Global Access
One big difference between custom functions and include files is the concept of

variable scope. Any variable that exists in the main script will also be available,

and can be changed in the include file. While this is useful sometimes, more often

it’s a pain in the neck. Unintentionally overwriting one of the main script’s variables

in an include file is a common cause of error—and one that can take a long time to

track down and fix! To avoid such problems, you need to remember the variable

names in the script you’re working on and any that exist in the include files your

script uses.

Functions protect you from such problems. Variables created inside a function (in-

cluding any argument variables) exist only within that function, and disappear

when the function is complete. In programmer-speak, the scope of these variables

is the function—they’re said to have function scope. In contrast, variables created

in the main script outside of any function, are unavailable inside of functions. The

scope of these variables is the main script, and they’re said to have global scope.

Okay, but beyond the fancy names, what does this really mean for us? It means that

you can have a variable called, say, $width in your main script, and another variable

called $width in your function, and PHP will treat them as two entirely separate

variables! Perhaps more usefully, you can have two different functions, each using

the same variable names, and they'll have no effect on each other because their

variables are kept separate by their scope!

On some occasions you may actually want to use a global-scope variable (global

variable for short) inside one of your functions. For example, the db.inc.php file

creates a database connection for use by your script and stores it in the global variable

$link. You might then want to use this variable in a function that needed to access

the database.

187Structured PHP Programming

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Disregarding variable scope, here’s how you may write such a function:

chapter6/totaljokes-error/totaljokes-function.inc.php

<?php

include_once $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

function totaljokes()

{

 $result = mysqli_query($link, 'SELECT COUNT(*) FROM joke');

 if (!$result)

 {

 $error = 'Database error counting jokes!';

 include 'error.html.php';

 exit();

 }

 $row = mysqli_fetch_array($result);

 return $row[0];

}

?>

Shared Database Include in Use!

Note the first line of this controller script uses a shared copy of the db.inc.php file

in the includes directory as discussed above in the section called “Shared Include

Files”. Make sure you’ve placed a copy of this file (and the associated error.html.php

file that it uses to display errors) in the includes directory in your server’s document

root; otherwise, PHP will complain that it’s unable to find the db.inc.php file.

The problem here is that the global variable $link, shown in bold, is unavailable

within the scope of the function. If you attempt to call this function as it is, you’ll

receive the errors shown in Figure 6.4.

Build Your Own Database Driven Web Site Using PHP & MySQL188

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 6.4. The totaljokes function is unable to access $link

Now, of course, you could just add a parameter to the totaljokes function and

send it the connection identifier that way, but having to pass the identifier to every

function that needs database access would become quite tedious.

Instead, let’s use the global variable directly within our function. There are two

ways to do this. The first is to import the global variable into the function’s scope:

chapter6/totaljokes-global1/totaljokes-function.inc.php

<?php

include_once $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

function totaljokes()

{

global $link;

 $result = mysqli_query($link, 'SELECT COUNT(*) FROM joke');

 if (!$result)

 {

 $error = 'Database error counting jokes!';

 include 'error.html.php';

 exit();

 }

 $row = mysqli_fetch_array($result);

 return $row[0];

}

?>

189Structured PHP Programming

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The global statement, shown here in bold, lets you give a list of global variables

(separated by commas, if you want to import more than one) that you want to make

available within the function. Programmers call this importing a variable. This is

different from passing the variable as a parameter, because if you modify an imported

variable inside the function, the value of the variable changes outside the function,

too.

The alternative to importing the variable is to use the $GLOBALS array:

chapter6/totaljokes-global2/totaljokes-function.inc.php

<?php

include_once $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

function totaljokes()

{

 $result = mysqli_query($GLOBALS['link'],

 'SELECT COUNT(*) FROM joke');

 if (!$result)

 {

 $error = 'Database error counting jokes!';

 include 'error.html.php';

 exit();

 }

 $row = mysqli_fetch_array($result);

 return $row[0];

}

?>

As you can see, all we’ve done here is replace $link with $GLOBALS['link']. The

special PHP array $GLOBALS is available across all scopes (for this reason, it’s known

as a super-global), and contains an entry for every variable in the global scope. You

can therefore access any global variable within a function as $GLOBALS['name'],

where name is the name of the global variable (without a dollar sign). The advantage

of using $GLOBALS is that you can still create a function-scope variable called $link

if you want.

Build Your Own Database Driven Web Site Using PHP & MySQL190

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Other special PHP arrays that are super-global, and are therefore accessible inside

functions, include $_SERVER, $_GET, $_POST, $_COOKIE, $_FILES, $_ENV, $_REQUEST,

and $_SESSION. See the PHP Manual8 for full details.

Structure in Practice: Template Helpers
To cap this chapter off, let’s make a start on a function library you can actually use.

There are few functions more tedious to call in the PHP language than

htmlspecialchars. As I explained in Chapter 3, every time you wish to output

some piece of text that was submitted by a user, you need to use htmlspecialchars

to prevent hackers from inserting malicious code into your page.

For example, this is the code we’ve used to output user-submitted jokes in our joke

list examples so far:

chapter6/jokes/jokes.html.php (excerpt)

<?php echo htmlspecialchars($joke['text'], ENT_QUOTES, 'UTF-8'); ?>

As well as htmlspecialchars being an uncommonly long function name, it takes

three arguments—two of which are always the same on any given site!

Because outputting text as HTML is such a common task in PHP template code,

let’s write a much shorter function that does this for us:

chapter6/includes/helpers.inc.php (excerpt)

<?php

function html($text)

{

 return htmlspecialchars($text, ENT_QUOTES, 'UTF-8');

}

With this custom html function, we can call htmlspecialcharswith a lot less typing!

<?php echo html($joke['text']); ?>

8 http://www.php.net/manual/en/language.variables.predefined.php

191Structured PHP Programming

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.php.net/manual/en/language.variables.predefined.php

We can take this even further by writing a second custom function, htmlout, that

takes the value generated by the first and outputs it:

chapter6/includes/helpers.inc.php (excerpt)

<?php

function html($text)

{

 return htmlspecialchars($text, ENT_QUOTES, 'UTF-8');

}

function htmlout($text)

{

 echo html($text);

}

?>

I like to call these little convenience functions that make writing templates easier

template helpers. Here’s what our joke listing template looks like when we use

these helpers:

chapter6/jokes-helpers/jokes.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>List of Jokes</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p>Add your own joke</p>

 <p>Here are all the jokes in the database:</p>

 <?php foreach ($jokes as $joke): ?>

 <form action="?deletejoke" method="post">

 <blockquote>

 <p>

 <?php htmlout($joke['text']); ?>

 <input type="hidden" name="id" value="<?php

 echo $joke['id']; ?>"/>

 <input type="submit" value="Delete"/>

Build Your Own Database Driven Web Site Using PHP & MySQL192

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 </p>

 </blockquote>

 </form>

 <?php endforeach; ?>

 </body>

</html>

Helpers Belong in the Shared includes Directory

Like db.inc.php and magicquotes.inc.php, the helpers.inc.php file belongs in the

shared includes directory under your server’s document root, as described in the

section called “Shared Include Files”.

As you write templates with more and more user-submitted content in them, these

little gems will come in very handy indeed!

While you’re at it, update the controller script to use the shared includes db.inc.php

and magicquotes.inc.php:

chapter6/jokes-helpers/index.php

<?php

include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/magicquotes.inc.php';

if (isset($_GET['addjoke']))

{

 include 'form.html.php';

 exit();

}

if (isset($_POST['joketext']))

{

include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $joketext = mysqli_real_escape_string($link, $_POST['joketext']);

 $sql = 'INSERT INTO joke SET

 joketext="' . $joketext . '",

 jokedate=CURDATE()';

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error adding submitted joke: ' . mysqli_error($link);

 include 'error.html.php';

193Structured PHP Programming

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 exit();

 }

 header('Location: .');

 exit();

}

if (isset($_GET['deletejoke']))

{

include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $id = mysqli_real_escape_string($link, $_POST['id']);

 $sql = "DELETE FROM joke WHERE id='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error deleting joke: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

$result = mysqli_query($link, 'SELECT id, joketext FROM joke');

if (!$result)

{

 $error = 'Error fetching jokes: ' . mysqli_error($link);

 include 'error.html.php';

 exit();

}

while ($row = mysqli_fetch_array($result))

{

 $jokes[] = array('id' => $row['id'], 'text' => $row['joketext']);

}

include 'jokes.html.php';

?>

Build Your Own Database Driven Web Site Using PHP & MySQL194

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The Best Way
In this chapter, I’ve helped you to rise above the basic questions of what PHP can

do for you, and begin to look for the best way to code a solution. Sure, you can ap-

proach many simple scripts as lists of actions you want PHP to do for you, but when

you tackle site-wide issues such as database connections, shared navigation elements,

visitor statistics, and access control systems, it really pays off to structure your code

carefully.

We’ve now explored a couple of simple but effective devices for writing structured

PHP code. Include files let you reuse a single piece of code across multiple pages

of your site, greatly reducing the burden when you need to make changes. Writing

your own functions to put in these include files lets you build powerful libraries

of functions that can perform tasks as needed and return values to the scripts that

call them. These new techniques will pay off in a big way in the rest of this book.

If you want to take the next step into structuring your PHP code, you’ll want to ex-

plore PHP’s object-oriented programming (OOP) features. The PHP Manual9 has

some useful information on the subject, but for a more complete guide you’ll want

to check out The PHP Anthology: 101 Essential Tips, Tricks & Hacks, 2nd Edition10

(Melbourne: SitePoint, 2007).

In Chapter 7, you’ll use all the knowledge you have gained so far, plus a few new

tricks, to build a content management system in PHP. The aim of such a system is

to provide a customized, secure, web-based interface that enables you to manage

the contents of your site’s database, instead of requiring you to type everything by

hand on the MySQL command line.

9 http://www.php.net/oop5
10 http://www.sitepoint.com/books/phpant2/

195Structured PHP Programming

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.php.net/oop5
http://www.sitepoint.com/books/phpant2/

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Chapter7
A Content Management System
To make the leap from a web page that displays information stored in a database to

a completely database driven web site, we need to add a content management system

(CMS). Such a system usually takes the form of a series of web pages, access to

which is restricted to users who are authorized to make changes to the site. These

pages provide a database administration interface that allows a user to view and

change the information that’s stored in the database without bothering with the

mundane details of SQL queries.

We built the beginnings of a CMS at the end of Chapter 4, where we allowed site

visitors to add jokes to—and delete jokes from—the database using a web-based

form and a Delete button, respectively. While impressive, these are features that

you’d normally exclude from the interface presented to casual site visitors. For ex-

ample, you’d want to prevent visitors from adding offensive material to your web

site without your knowledge. And you definitely don’t want just anyone to be able

to delete jokes from your site.

By relegating those dangerous features to the restricted-access site administration

pages, you avoid the risk of exposing your data to the average user, and you maintain

the power to manage the contents of your database without having to memorize

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

SQL queries. In this chapter, we’ll expand on the capabilities of our joke management

system to take advantage of the enhancements we made to our database in Chapter 5.

Specifically, we’ll allow a site administrator to manage authors and categories, and

assign these to appropriate jokes.

As we’ve seen, these administration pages must be protected by an appropriate access

restriction scheme. One way to do this would be to configure your web server to

protect the relevant PHP files by prompting users for valid usernames and passwords.

On Apache servers, you can do this with an .htaccess file that lists authorized users.

Another method protects the administration pages with PHP itself. This option is

generally more flexible and produces a much slicker result, but it takes a bit more

work to set up. I’ll show you how it’s done in Chapter 9.

For now, let’s focus on building the pages that will make up your CMS.

The Front Page
At the end of Chapter 5, your database contained tables for three types of entities:

jokes, authors, and joke categories. This database layout is represented in Figure 7.1.

Note that we’re sticking with our original assumption that we’ll have one email

address per author.

Build Your Own Database Driven Web Site Using PHP & MySQL198

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 7.1. The structure of the finished ijdb database contains three entities

If you need to recreate this table structure from scratch, here are the SQL queries

to do so, along with some sample data:

chapter7/sql/ijdb.sql

CREATE TABLE joke (

 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 joketext TEXT,

 jokedate DATE NOT NULL,

 authorid INT

) DEFAULT CHARACTER SET utf8;

199A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

CREATE TABLE author (

 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 name VARCHAR(255),

 email VARCHAR(255)

) DEFAULT CHARACTER SET utf8;

CREATE TABLE category (

 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 name VARCHAR(255)

) DEFAULT CHARACTER SET utf8;

CREATE TABLE jokecategory (

 jokeid INT NOT NULL,

 categoryid INT NOT NULL,

 PRIMARY KEY (jokeid, categoryid)

) DEFAULT CHARACTER SET utf8;

Sample data

We specify the IDs so they are known when we add related entries

INSERT INTO author (id, name, email) VALUES

(1, 'Kevin Yank', 'kevin@sitepoint.com'),

(2, 'Joan Smith', 'joan@example.com');

INSERT INTO joke (id, joketext, jokedate, authorid) VALUES

(1, 'Why did the chicken cross the road? To get to the other side!',

➥ '2009-04-01', 1),

(2, 'Knock-knock! Who\'s there? Boo! "Boo" who? Don\'t cry; it\'s on

➥ly a joke!', '2009-04-01', 1),

(3, 'A man walks into a bar. "Ouch."', '2009-04-01', 2),

(4, 'How many lawyers does it take to screw in a lightbulb? I can\'t

➥ say for fear of being sued.', '2009-04-01', 2);

INSERT INTO category (id, name) VALUES

(1, 'Knock-knock'),

(2, 'Cross the road'),

(3, 'Lawyers'),

(4, 'Walk the bar');

INSERT INTO jokecategory (jokeid, categoryid) VALUES

(1, 2),

(2, 1),

(3, 4),

(4, 3);

Build Your Own Database Driven Web Site Using PHP & MySQL200

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The front page of the content management system, therefore, will contain links to

pages that manage these three entities. The following simple HTML code produces

the index page shown in Figure 7.2:

chapter7/admin/index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Joke CMS</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <h1>Joke Management System</h1>

 Manage Jokes

 Manage Authors

 Manage Joke Categories

 </body>

</html>

Figure 7.2. The Joke CMS index page offers three links

Each of these links points to a different subdirectory in our code: jokes, authors, and

categories. Each of these directories will contain the controller (index.php) and asso-

ciated templates needed to manage the corresponding entities in our database.

201A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Managing Authors
Let’s begin with the code that will handle adding new authors, and deleting and

editing existing ones. All of this code will go in the authors subdirectory.

The first information we’ll present to an administrator who needs to manage authors

is a list of all authors currently stored in the database. Code-wise, this is the same

as listing the jokes in the database. As we’ll want to allow administrators to delete

and edit existing authors, we’ll include buttons for these actions next to each author’s

name. Just like the Delete buttons we added at the end of Chapter 4, these buttons

will send the ID of the associated author, so that the controller knows which author

the administrator wishes to edit or delete. Finally, we’ll provide an Add new author

link that leads to a form similar in operation to the Add your own joke link we created

in Chapter 4.

Here’s the controller code to do this:

chapter7/admin/authors/index.php (excerpt)

// Display author list

include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

$result = mysqli_query($link, 'SELECT id, name FROM author');

if (!$result)

{

 $error = 'Error fetching authors from database!';

 include 'error.html.php';

 exit();

}

while ($row = mysqli_fetch_array($result))

{

 $authors[] = array('id' => $row['id'], 'name' => $row['name']);

}

include 'authors.html.php';

?>

There should be no surprises for you in this code, but do note that the database

connection is created using the shared include file (db.inc.php) stored in the includes

directory under the document root.

Here’s the template that this code uses to display the list of authors:

Build Your Own Database Driven Web Site Using PHP & MySQL202

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter7/admin/authors/authors.html.php (excerpt)

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Manage Authors</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <h1>Manage Authors</h1>

 <p>Add new author</p>

 <?php foreach ($authors as $author): ?>

 <form action="" method="post">

 <div>

 <?php htmlout($author['name']); ?>

 <input type="hidden" name="id" value="<?php

 echo $author['id']; ?>"/>

 <input type="submit" name="action" value="Edit"/>

 <input type="submit" name="action" value="Delete"/>

 </div>

 </form>

 <?php endforeach; ?>

 <p>Return to JMS home</p>

 </body>

</html>

Again, this code should be fairly familiar to you by now. A few points of interest:

This template will use the same shared include file we developed in Chapter 6

to make outputting values safely with htmlspecialchars less tedious.

This link sends a query string (?add) to our controller so that it can tell when

the user wants to add a new author.

Notice the empty action attribute. When submitted, this form will be asking

our controller either to edit the author or to delete the author. In Chapter 4, we

203A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

used a query string (?deletejoke) in the action attribute to signal the action

to be performed to our controller. Since the action to be performed will be up

to the user in this example, we’ll use a different method of communicating it

to the controller.

Here we use our custom htmlout function to output each author’s name safely.

This form contains two submit buttons: one to edit the author and another to

delete the author. We’ll give each button the same name attribute value (action)

so that our controller will be able to tell which button was clicked just by

checking the submitted value for that name ($_POST['action']).

Figure 7.3 shows the list of authors produced by this template.

Figure 7.3. The maintenance of author details begins with the Manage Authors interface

Deleting Authors
When the user clicks one of the Delete buttons, our controller should remove the

corresponding author from the database, using the author’s ID that’s submitted with

the form.

As we’ve seen before, this is frighteningly easy to do, but there’s added complexity

here. Remember that our joke table has an authorid column that indicates the author

responsible for any given joke. When we remove an author from the database, we

must also remove any references to that author in other tables. Otherwise, our

database might contain jokes associated with nonexistent authors.

Build Your Own Database Driven Web Site Using PHP & MySQL204

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

We have three possible ways to handle this situation:

■ Prohibit users from deleting authors that are associated with jokes in the database.

■ When we delete an author, also delete any jokes attributed to the author.

■ When we delete an author, set the authorid of any jokes attributed to the author

to NULL, to indicate that they have no author.

When we take measures like these to preserve the relationships in our database, we

are said to be protecting the database’s referential integrity. MySQL, like most

database servers, supports a feature called foreign key constraints that can do this

automatically. By setting up these constraints, you can instruct MySQL to take any

of the steps listed above, in order to keep your data properly related.

To take advantage of this feature, however, you must create your database using the

more advanced InnoDB table format, rather than the simple MyISAM table format

that MySQL creates by default. While more feature-rich, InnoDB tables can be slower

because of the added overhead of those features. In simple applications like this

one, the best result is usually achieved by letting the application code (in this case,

the PHP script) take care of maintaining referential integrity. For more information

on foreign key constraints, there’s a useful explanation in the book Simply SQL1 by

Rudy Limeback (Melbourne: SitePoint, 2008). Otherwise, see the MySQL Reference

Manual.2

Since most authors would prefer us to give credit when using their jokes, we’ll

choose the second option above. This also saves us from having to handle jokes

with NULL values in their authorid column when we display our library of jokes.

Since we’ll be deleting jokes, there’s yet another layer of complexity to consider.

Jokes may be assigned to categories by means of entries in the jokecategory table.

When we delete jokes, we must also make sure that such entries are removed from

the database. In summary, our controller will delete an author, any jokes belonging

to that author, and any category assignments that pertain to those jokes.

The code to do all this is rather lengthy, as you might imagine. Take your time to

read through it and make sure you understand how it works:

1 http://www.sitepoint.com/books/sql1/
2 http://dev.mysql.com/doc/mysql/en/ANSI_diff_Foreign_Keys.html

205A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/books/sql1/
http://dev.mysql.com/doc/mysql/en/ANSI_diff_Foreign_Keys.html
http://dev.mysql.com/doc/mysql/en/ANSI_diff_Foreign_Keys.html

chapter7/admin/authors/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action'] == 'Delete')

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $id = mysqli_real_escape_string($link, $_POST['id']);

 // Get jokes belonging to author

 $sql = "SELECT id FROM joke WHERE authorid='$id'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error getting list of jokes to delete.';

 include 'error.html.php';

 exit();

 }

 // For each joke

 while ($row = mysqli_fetch_array($result))

 {

 $jokeId = $row[0];

 // Delete joke category entries

 $sql = "DELETE FROM jokecategory WHERE jokeid='$jokeid'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error deleting category entries for joke.';

 include 'error.html.php';

 exit();

 }

 }

 // Delete jokes belonging to author

 $sql = "DELETE FROM joke WHERE authorid='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error deleting jokes for author.';

 include 'error.html.php';

 exit();

 }

 // Delete the author

 $sql = "DELETE FROM author WHERE id='$id'";

 if (!mysqli_query($link, $sql))

 {

Build Your Own Database Driven Web Site Using PHP & MySQL206

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 $error = 'Error deleting author.';

 include 'error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

The one element of the above code that may seem unfamiliar is the if statement

that triggers it all:

chapter7/admin/authors/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action'] == 'Delete')

As we saw in the previous section, the user asks for an author to be deleted by

clicking the Delete button next to the author name. Since the button’s name attribute

is set to action, we can detect this button click by checking if $_POST['action']

is set, and if so, check if its value is 'Delete'.

If you’re coding along, go ahead and try deleting one of the authors from your

database. Verify that any associated jokes and category entries are also deleted.

As a challenge, try adding a confirmation prompt to this process. If you have yet to

dive in and try some coding, use the code in the code archive for this chapter as a

starting point. Modify your controller to respond to the Delete button by simply

displaying another template, this one prompting the user to confirm the action.

When the user submits the form in this page, it should trigger the code in the con-

troller that actually deletes the data. This second form will also have to submit in

a hidden field the ID of the author to be deleted.

Adding and Editing Authors
You could implement the Add new author link at the top of the author list page the

same way you did the Add your own joke link in Chapter 4. Instead of prompting the

user for the text of the joke, you would instead prompt for the author’s name and

email address.

207A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

But our author management page includes a new, related feature: the ability to edit

existing authors. Since both features will require the user to fill in a similar form,

let’s tackle both at once and kill two birds with one stone. Here’s the code for the

form template that will be used for both adding and editing authors:

chapter7/admin/authors/form.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title><?php htmlout($pagetitle); ?></title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <h1><?php htmlout($pagetitle); ?></h1>

 <form action="?<?php htmlout($action); ?>" method="post">

 <div>

 <label for="name">Name: <input type="text" name="name"

 id="name" value="<?php htmlout($name); ?>"/></label>

 </div>

 <div>

 <label for="email">Email: <input type="text" name="email"

 id="email" value="<?php htmlout($email); ?>"/></label>

 </div>

 <div>

 <input type="hidden" name="id" value="<?php

 htmlout($id); ?>"/>

 <input type="submit" value="<?php htmlout($button); ?>"/>

 </div>

 </form>

 </body>

</html>

Note the six PHP variables that are inserted into the content of this page:

$pagetitle Sets the title and top-level heading (<h1>) for this page.

$action Sets the value passed in the query string when the form is submitted.

$name Sets the initial value of the form field for the author’s name.

Build Your Own Database Driven Web Site Using PHP & MySQL208

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

$email Sets the initial value of the form field for the author’s email address.

$id Sets the value of the hidden form field for the author’s database ID.

$button Sets the label of the form’s submit button.

These variables enable us to use the form for two different purposes: for creating

new authors and for editing existing ones. Table 7.1 shows the values we’d like to

assign to each of these variables in each instance.

Table 7.1. Variable values for dual-mode author form

Existing author valueNew author valueTemplate variable

'Edit Author''New Author'$pagetitle

editformaddform$action

existing name'' (empty string)$name

existing email address'' (empty string)$email

existing author ID'' (empty string)$id

'Update author''Add author'$button

So, here’s the controller code that loads the form in “new author mode” when the

Add new author link is clicked:

chapter7/admin/authors/index.php (excerpt)

<?php

include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/magicquotes.inc.php';

if (isset($_GET['add']))

{

 $pagetitle = 'New Author';

 $action = 'addform';

 $name = '';

 $email = '';

 $id = '';

 $button = 'Add author';

 include 'form.html.php';

 exit();

}

209A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

When the user submits the form in this mode, you can detect it by watching for

$_GET['addform']:

chapter7/admin/authors/index.php (excerpt)

if (isset($_GET['addform']))

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $name = mysqli_real_escape_string($link, $_POST['name']);

 $email = mysqli_real_escape_string($link, $_POST['email']);

 $sql = "INSERT INTO author SET

 name='$name',

 email='$email'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error adding submitted author.';

 include 'error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

When the user clicks one of the Edit buttons in the author list you can use the same

form, but this time you need to load the author’s existing details from the database:

chapter7/admin/authors/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action'] == 'Edit')

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $id = mysqli_real_escape_string($link, $_POST['id']);

 $sql = "SELECT id, name, email FROM author WHERE id='$id'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error fetching author details.';

 include 'error.html.php';

 exit();

 }

 $row = mysqli_fetch_array($result);

Build Your Own Database Driven Web Site Using PHP & MySQL210

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 $pagetitle = 'Edit Author';

 $action = 'editform';

 $name = $row['name'];

 $email = $row['email'];

 $id = $row['id'];

 $button = 'Update author';

 include 'form.html.php';

 exit();

}

You can detect the form submitted in this mode by watching for $_GET['editform'].

The code for processing this form submission is very similar to how you add a new

author, but instead of issuing an INSERT query, it issues an UPDATE query:

chapter7/admin/authors/index.php (excerpt)

if (isset($_GET['editform']))

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $id = mysqli_real_escape_string($link, $_POST['id']);

 $name = mysqli_real_escape_string($link, $_POST['name']);

 $email = mysqli_real_escape_string($link, $_POST['email']);

 $sql = "UPDATE author SET

 name='$name',

 email='$email'

 WHERE id='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error updating submitted author.';

 include 'error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

That’ll do the trick! Go ahead and try the completed author management system,

which includes our new dual-mode form template shown in Figure 7.4. Make sure

you can add, edit, and delete authors smoothly. If you see any error messages, go

211A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

back and make sure you typed the code exactly as it appears here. If you become

stuck, try using the completed code from the code archive and then compare it with

your own.

Figure 7.4. I’ll bet she’s funny …

Managing Categories
The roles of the authors and joke categories in the database really are very similar.

They both reside in tables of their own, and they both serve to group jokes together

in some way. As a result, categories can be handled with code very similar to what

we just developed for authors, but with one important exception.

When we delete a category, we must avoid simultaneously deleting any jokes that

belong to that category, because those jokes may also belong to other categories. We

could check each joke to see if it belonged to any other categories, and only delete

those that did not, but rather than engage in such a time-consuming process, let’s

allow for the possibility of including jokes in our database that don’t belong to any

category at all. These jokes would be invisible to our site visitors, but would remain

in the database in case we wanted to assign them to a category later on.

Thus, to delete a category, we also need to delete any entries in the jokecategory

table that refer to that category:

chapter7/admin/categories/index.php (excerpt)

 // Delete joke associations with this category

 $sql = "DELETE FROM jokecategory WHERE categoryid='$id'";

 if (!mysqli_query($link, $sql))

 {

Build Your Own Database Driven Web Site Using PHP & MySQL212

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 $error = 'Error removing jokes from category.';

 include 'error.html.php';

 exit();

 }

 // Delete the category

 $sql = "DELETE FROM category WHERE id='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error deleting category.';

 include 'error.html.php';

 exit();

 }

Other than this one detail, category management is functionally identical to author

management. The complete code for the four files involved follows. This code also

relies on the shared include files db.inc.php, magicquotes.inc.php, and helpers.inc.php

introduced in Chapter 6:

chapter7/admin/categories/index.php

<?php

include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/magicquotes.inc.php';

if (isset($_GET['add']))

{

 $pagetitle = 'New Category';

 $action = 'addform';

 $name = '';

 $id = '';

 $button = 'Add category';

 include 'form.html.php';

 exit();

}

if (isset($_GET['addform']))

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $name = mysqli_real_escape_string($link, $_POST['name']);

 $sql = "INSERT INTO category SET

 name='$name'";

213A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error adding submitted category.';

 include 'error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

if (isset($_POST['action']) and $_POST['action'] == 'Edit')

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $id = mysqli_real_escape_string($link, $_POST['id']);

 $sql = "SELECT id, name FROM category WHERE id='$id'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error fetching category details.';

 include 'error.html.php';

 exit();

 }

 $row = mysqli_fetch_array($result);

 $pagetitle = 'Edit Category';

 $action = 'editform';

 $name = $row['name'];

 $id = $row['id'];

 $button = 'Update category';

 include 'form.html.php';

 exit();

}

if (isset($_GET['editform']))

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $id = mysqli_real_escape_string($link, $_POST['id']);

 $name = mysqli_real_escape_string($link, $_POST['name']);

 $sql = "UPDATE category SET

 name='$name'

 WHERE id='$id'";

Build Your Own Database Driven Web Site Using PHP & MySQL214

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error updating submitted category.' .

 mysqli_error($link);

 include 'error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

if (isset($_POST['action']) and $_POST['action'] == 'Delete')

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $id = mysqli_real_escape_string($link, $_POST['id']);

 // Delete joke associations with this category

 $sql = "DELETE FROM jokecategory WHERE categoryid='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error removing jokes from category.';

 include 'error.html.php';

 exit();

 }

 // Delete the category

 $sql = "DELETE FROM category WHERE id='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error deleting category.';

 include 'error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

// Display category list

include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

$result = mysqli_query($link, 'SELECT id, name FROM category');

if (!$result)

{

 $error = 'Error fetching categories from database!';

215A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 include 'error.html.php';

 exit();

}

while ($row = mysqli_fetch_array($result))

{

 $categories[] = array('id' => $row['id'], 'name' => $row['name']);

}

include 'categories.html.php';

?>

chapter7/admin/categories/categories.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Manage Categories</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <h1>Manage Categories</h1>

 <p>Add new category</p>

 <?php foreach ($categories as $category): ?>

 <form action="" method="post">

 <div>

 <?php htmlout($category['name']); ?>

 <input type="hidden" name="id" value="<?php

 echo $category['id']; ?>"/>

 <input type="submit" name="action" value="Edit"/>

 <input type="submit" name="action" value="Delete"/>

 </div>

 </form>

 <?php endforeach; ?>

 <p>Return to JMS home</p>

 </body>

</html>

Build Your Own Database Driven Web Site Using PHP & MySQL216

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter7/admin/categories/form.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title><?php htmlout($pagetitle); ?></title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <h1><?php htmlout($pagetitle); ?></h1>

 <form action="?<?php htmlout($action); ?>" method="post">

 <div>

 <label for="name">Name: <input type="text" name="name"

 id="name" value="<?php htmlout($name); ?>"/></label>

 </div>

 <div>

 <input type="hidden" name="id" value="<?php

 htmlout($id); ?>"/>

 <input type="submit" value="<?php htmlout($button); ?>"/>

 </div>

 </form>

 </body>

</html>

chapter7/admin/categories/error.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>PHP Error</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p>

 <?php echo $error; ?>

 </p>

 </body>

</html>

217A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Managing Jokes
Along with adding, deleting, and modifying jokes in our database, we also need to

be able to assign categories and authors to our jokes. Furthermore, we’re likely to

have many more jokes than authors or categories. To try to display a complete list

of jokes, as we did for the authors and categories, could result in an unmanageably

long list with no easy way to spot the joke we’re after. We need to create a more

intelligent method of browsing our library of jokes.

Searching for Jokes
Sometimes, we may know the category, author, or some of the text in a joke with

which we want to work, so let’s support all of these methods for finding jokes in

our database. When we’re done, it should work like a simple search engine.

The form that prompts the administrator for information about the desired joke

must present lists of categories and authors. Let’s start with the controller code that

fetches these details from the database:

chapter7/admin/jokes/index.php (excerpt)

// Display search form

include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

$result = mysqli_query($link, 'SELECT id, name FROM author');

if (!$result)

{

 $error = 'Error fetching authors from database!';

 include 'error.html.php';

 exit();

}

while ($row = mysqli_fetch_array($result))

{

 $authors[] = array('id' => $row['id'], 'name' => $row['name']);

}

$result = mysqli_query($link, 'SELECT id, name FROM category');

if (!$result)

{

 $error = 'Error fetching categories from database!';

 include 'error.html.php';

 exit();

Build Your Own Database Driven Web Site Using PHP & MySQL218

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

}

while ($row = mysqli_fetch_array($result))

{

 $categories[] = array('id' => $row['id'], 'name' => $row['name']);

}

include 'searchform.html.php';

?>

This code builds two arrays for use by the searchform.html.php template: $authors

and $categories. We’ll use each of these arrays to build a drop-down list in our

search form:

chapter7/admin/jokes/searchform.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Manage Jokes</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <h1>Manage Jokes</h1>

 <p>Add new joke</p>

 <form action="" method="get">

 <p>View jokes satisfying the following criteria:</p>

 <div>

 <label for="author">By author:</label>

<select name="author" id="author">

 <option value="">Any author</option>

 <?php foreach ($authors as $author): ?>

 <option value="<?php htmlout($author['id']); ?>"><?php

 htmlout($author['name']); ?></option>

 <?php endforeach; ?>

 </select>

 </div>

 <div>

 <label for="category">By category:</label>

<select name="category" id="category">

219A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 <option value="">Any category</option>

 <?php foreach ($categories as $category): ?>

 <option value="<?php htmlout($category['id']); ?>"><?php

 htmlout($category['name']); ?></option>

 <?php endforeach; ?>

 </select>

 </div>

 <div>

 <label for="text">Containing text:</label>

 <input type="text" name="text" id="text"/>

 </div>

 <div>

 <input type="hidden" name="action" value="search"/>

 <input type="submit" value="Search"/>

 </div>

 </form>

 <p>Return to JMS home</p>

 </body>

</html>

As you can see, in each select list, we generate a series of option items using a

PHP foreach loop. The value of each option is the author’s or category’s ID, and

the text label of each option is the author’s or category’s name. Each of the drop-

downs begins with an option with no value, which can be left alone to leave the

corresponding field out of the search criteria.

Also note that the form’s method attribute is set to get, so that it’s possible to

bookmark the results of a search, since the form values will be submitted in the

URL query string. You should generally apply this technique to any search form

you write.

The finished form appears in Figure 7.5.

It’s up to the controller to use the values submitted by this form to build a list of

jokes that satisfies the criteria specified. Obviously, this will be done with a SELECT

query, but the exact nature of that query will depend on the search criteria specified.

Because the building of this SELECT statement is a fairly complicated process, let’s

work through the controller code responsible a little at a time.

Build Your Own Database Driven Web Site Using PHP & MySQL220

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 7.5. Search for a classic

To start, we define a few strings that, when strung together, form the SELECT query

we’d need if no search criteria whatsoever had been selected in the form:

chapter7/admin/jokes/index.php (excerpt)

if (isset($_GET['action']) and $_GET['action'] == 'search')

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 // The basic SELECT statement

 $select = 'SELECT id, joketext';

 $from = ' FROM joke';

 $where = ' WHERE TRUE';

You might find the WHERE clause in the above code a little confusing. The idea here

is for us to be able to build on this basic SELECT statement, depending on the criteria

selected in the form. These criteria will require us to add to the FROM and WHERE

clauses (portions) of the SELECT query. But, if no criteria were specified (that is, the

administrator wanted a list of all jokes in the database), there would be no need for

a WHERE clause at all! Because it’s difficult to add to a WHERE clause that’s nonexistent,

we needed to come up with a “do nothing” WHERE clause that will have no effect on

221A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

the results unless added to. Since TRUE is always true, WHERE TRUE fits the bill

nicely.3

Our next task is to check each of the possible constraints (author, category, and

search text) that may have been submitted with the form, and adjust the three

components of our SQL query accordingly. First, we deal with the possibility that

an author was specified. The blank option in the form was given a value of "" , so,

if the value of that form field (stored in $_GET['author']) is not equal to '' (the

empty string), then an author has been specified, and we must adjust our query:

chapter7/admin/jokes/index.php (excerpt)

 $authorid = mysqli_real_escape_string($link, $_GET['author']);

 if ($authorid != '') // An author is selected

 {

 $where .= " AND authorid='$authorid'";

 }

As we’ve seen before, .= (the append operator) is used to tack a new string onto

the end of an existing one. In this case, we add to the WHERE clause the condition

that the authorid in the joke table must match the author ID selected in the form

($authorid).

Next, we handle the specification of a joke category:

chapter7/admin/jokes/index.php (excerpt)

 $categoryid = mysqli_real_escape_string($link,$_GET['category']);

 if ($categoryid != '') // A category is selected

 {

 $from .= ' INNER JOIN jokecategory ON id = jokeid';

 $where .= " AND categoryid='$categoryid'";

 }

As the categories associated with a particular joke are stored in the jokecategory

table, we need to add this table to the query to create a join. To do this, we simply

tack INNER JOIN jokecategory ON id = jokeidonto the end of the $from variable.

3 In fact, the “do nothing” WHERE clause could just be WHERE 1, since MySQL considers any positive

number true. Feel free to change it if you think that’s easier.

Build Your Own Database Driven Web Site Using PHP & MySQL222

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

This joins the two tables on the condition that the id column (in the joke table)

matches the jokeid column (in jokecategory).

With the join in place, we can then apply the criterion specified in the form submis-

sion—that the joke belongs to the specified category. By adding to the $where vari-

able, we can require the categoryid column (in jokecategory) to match the category

ID selected in the form ($categoryid).

Handling search text is fairly simple thanks to the LIKE SQL operator that we learned

way back in Chapter 2:

chapter7/admin/jokes/index.php (excerpt)

 $text = mysqli_real_escape_string($link, $_GET['text']);

 if ($text != '') // Some search text was specified

 {

 $where .= " AND joketext LIKE '%$text%'";

 }

Now that we’ve built our SQL query, we can use it to retrieve and display our jokes:

chapter7/admin/jokes/index.php (excerpt)

 $result = mysqli_query($link, $select . $from . $where);

 if (!$result)

 {

 $error = 'Error fetching jokes.';

 include 'error.html.php';

 exit();

 }

 while ($row = mysqli_fetch_array($result))

 {

 $jokes[] = array('id' => $row['id'], 'text' => $row['joketext']);

 }

 include 'jokes.html.php';

 exit();

}

The template to display these jokes will include Edit and Delete buttons for each

joke. To keep the page as organized as possible, it will structure the results using

an HTML table:

223A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter7/admin/jokes/jokes.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Manage Jokes: Search Results</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <h1>Search Results</h1>

 <?php if (isset($jokes)): ?>

 <table>

 <tr><th>Joke Text</th><th>Options</th></tr>

<?php foreach ($jokes as $joke): ?>

 <tr valign="top">

 <td><?php htmlout($joke['text']); ?></td>

 <td>

 <form action="?" method="post">

 <div>

 <input type="hidden" name="id" value="<?php

 htmlout($joke['id']); ?>"/>

 <input type="submit" name="action" value="Edit"/>

 <input type="submit" name="action" value="Delete"/>

 </div>

 </form>

 </td>

 </tr>

<?php endforeach; ?>

 </table>

 <?php endif; ?>

 <p>New search</p>

 <p>Return to JMS home</p>

 </body>

</html>

The search results will display as shown in Figure 7.6.

Build Your Own Database Driven Web Site Using PHP & MySQL224

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 7.6. A classic is found

If you’re up for a challenge, try adding a little code to this template to handle

gracefully the case where no jokes satisfy the criteria specified in the search form.

Right now, the template simply outputs nothing where the search results table

should be.

Adding and Editing Jokes
At the top of the joke search form, we had our usual link to create a new joke:

chapter7/admin/jokes/searchform.html.php (excerpt)

 <p>Add new joke</p>

Let’s implement this feature now. The code will be very similar to that we used to

create new authors and categories; however, in addition to specifying the joke text,

the page must allow an administrator to assign an author and categories to a joke.

As with authors and categories, we can use the same form template both for creating

new jokes and for editing existing jokes. Let’s take a look at each of the important

elements of this form. We begin with a standard text area into which we can type

the text of the joke. If we’re editing an existing joke, we’ll populate this field with

the existing joke text ($text):

225A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter7/admin/jokes/form.html.php (excerpt)

 <div>

 <label for="text">Type your joke here:</label>

 <textarea id="text" name="text" rows="3" cols="40"><?php

 htmlout($text); ?></textarea>

 </div>

Next, we’ll prompt the administrator to select the author who wrote the joke:

chapter7/admin/jokes/form.html.php (excerpt)

 <div>

 <label for="author">Author:</label>

 <select name="author" id="author">

 <option value="">Select one</option>

 <?php foreach ($authors as $author): ?>

 <option value="<?php htmlout($author['id']); ?>"<?php

 if ($author['id'] == $authorid)

 echo ' selected="selected"';

 ?>><?php htmlout($author['name']); ?></option>

 <?php endforeach; ?>

 </select>

 </div>

Again, we’ve seen this kind of drop-down before (for example, in the joke search

form), but the important difference is that we want to control the initial selection

in the drop-down menu when we’re editing an existing joke. The code in bold inserts

into the <option> tag the attribute selected="selected" if the ID of the correspond-

ing author ($author['id']) matches the author ID of the existing joke ($authorid).

Next, we need to prompt the administrator to select the categories to which the joke

should belong. A drop-down list is unsuitable for this, because we want the admin-

istrator to be able to select multiple categories. Thus, we’ll use a series of checkboxes

(<input type="checkbox"/>)—one for each category. Since we have no way to

know in advance the number of checkboxes we’ll need, the matter of setting their

name attribute becomes an interesting challenge.

What we’ll do is use a single variable for all the checkboxes; thus, all the checkboxes

will have the same name. To be able to receive multiple values from a single variable

name, we must make that variable an array. Recall from Chapter 3 that an array is

a single variable with compartments, each of which can hold a value. To submit a

Build Your Own Database Driven Web Site Using PHP & MySQL226

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

form element as part of an array variable, we simply add a pair of square brackets

to the end of the name attribute (making it categories[] in this case).4

With all of our checkboxes named the same, we’ll need a way to identify which

particular checkboxes have been selected. To this end, we assign a different value

to each checkbox—the ID of the corresponding category in the database. Thus, the

form submits an array that contains the IDs of all the categories to which the new

joke should be added.

Again, since we need to handle editing an existing joke, we’ll include some code

to output selected="selected" if the joke already belongs to the corresponding

category. This we’ll indicate in our controller by setting $category['selected']

to TRUE:

chapter7/admin/jokes/form.html.php (excerpt)

 <fieldset>

 <legend>Categories:</legend>

 <?php foreach ($categories as $category): ?>

 <div><label for="category<?php htmlout($category['id']);

 ?>"><input type="checkbox" name="categories[]"

 id="category<?php htmlout($category['id']); ?>"

value="<?php htmlout($category['id']); ?>"<?php

 if ($category['selected'])

 {

 echo ' checked="checked"';

 }

 ?>/><?php htmlout($category['name']); ?></label></div>

 <?php endforeach; ?>

 </fieldset>

Other than these details, the form will work just like the other add/edit forms we

have built. Here’s the complete code:

4 Another way to submit an array is with a <select multiple="multiple"> tag. Again, you’d

set the name attribute to end with square brackets. What will be submitted is an array of all the option

values selected from the list by the user. Feel free to experiment with this approach by modifying this

form to present the categories as a list of option elements.

227A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter7/admin/jokes/form.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title><?php htmlout($pagetitle); ?></title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 <style type="text/css">

 textarea {

 display: block;

 width: 100%;

 }

 </style>

 </head>

 <body>

 <h1><?php htmlout($pagetitle); ?></h1>

 <form action="?<?php htmlout($action); ?>" method="post">

 <div>

 <label for="text">Type your joke here:</label>

 <textarea id="text" name="text" rows="3" cols="40"><?php

 htmlout($text); ?></textarea>

 </div>

 <div>

 <label for="author">Author:</label>

 <select name="author" id="author">

 <option value="">Select one</option>

 <?php foreach ($authors as $author): ?>

 <option value="<?php htmlout($author['id']); ?>"<?php

 if ($author['id'] == $authorid)

 echo ' selected="selected"';

 ?>><?php htmlout($author['name']); ?></option>

 <?php endforeach; ?>

 </select>

 </div>

 <fieldset>

 <legend>Categories:</legend>

 <?php foreach ($categories as $category): ?>

 <div><label for="category<?php htmlout($category['id']);

 ?>"><input type="checkbox" name="categories[]"

 id="category<?php htmlout($category['id']); ?>"

 value="<?php htmlout($category['id']); ?>"<?php

Build Your Own Database Driven Web Site Using PHP & MySQL228

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 if ($category['selected'])

 {

 echo ' checked="checked"';

 }

 ?>/><?php htmlout($category['name']); ?></label></div>

 <?php endforeach; ?>

 </fieldset>

 <div>

 <input type="hidden" name="id" value="<?php

 htmlout($id); ?>"/>

 <input type="submit" value="<?php htmlout($button); ?>"/>

 </div>

 </form>

 </body>

</html>

Figure 7.7 shows what this form will look like.

Figure 7.7. The hits just keep on coming

Let’s now turn our attention back to the controller, which will display and then

handle the submission of this form in both of its modes.

229A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

When the user clicks the Add new joke link, we need to display the form with all of

its fields blank. None of this code should be unfamiliar. Take your time, look over

it, and make sure it all makes sense to you. If you’re unsure what a particular variable

is for, go find it in the form template and identify its purpose:

chapter7/admin/jokes/index.php (excerpt)

<?php

include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/magicquotes.inc.php';

if (isset($_GET['add']))

{

 $pagetitle = 'New Joke';

 $action = 'addform';

 $text = '';

 $authorid = '';

 $id = '';

 $button = 'Add joke';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 // Build the list of authors

 $sql = "SELECT id, name FROM author";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error fetching list of authors.';

 include 'error.html.php';

 exit();

 }

 while ($row = mysqli_fetch_array($result))

 {

 $authors[] = array('id' => $row['id'], 'name' => $row['name']);

 }

 // Build the list of categories

 $sql = "SELECT id, name FROM category";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error fetching list of categories.';

 include 'error.html.php';

 exit();

Build Your Own Database Driven Web Site Using PHP & MySQL230

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 }

 while ($row = mysqli_fetch_array($result))

 {

 $categories[] = array(

 'id' => $row['id'],

 'name' => $row['name'],

'selected' => FALSE);

 }

 include 'form.html.php';

 exit();

}

Note especially that we’re setting the 'selected' item in each of the arrays stored

in the $categories array to FALSE. As a result, none of the category checkboxes in

the form will be selected by default.

When the user clicks the Edit button next to an existing joke, the controller must

instead load the form with its fields populated with the existing values. This code

is similar in structure to the code we used to generate the empty form:

chapter7/admin/jokes/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action'] == 'Edit')

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $id = mysqli_real_escape_string($link, $_POST['id']);

 $sql = "SELECT id, joketext, authorid FROM joke WHERE id='$id'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error fetching joke details.';

 include 'error.html.php';

 exit();

 }

 $row = mysqli_fetch_array($result);

 $pagetitle = 'Edit Joke';

 $action = 'editform';

 $text = $row['joketext'];

 $authorid = $row['authorid'];

231A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 $id = $row['id'];

 $button = 'Update joke';

 // Build the list of authors

 $sql = "SELECT id, name FROM author";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error fetching list of authors.';

 include 'error.html.php';

 exit();

 }

 while ($row = mysqli_fetch_array($result))

 {

 $authors[] = array('id' => $row['id'], 'name' => $row['name']);

 }

 // Get list of categories containing this joke

 $sql = "SELECT categoryid FROM jokecategory WHERE jokeid='$id'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error fetching list of selected categories.';

 include 'error.html.php';

 exit();

 }

 while ($row = mysqli_fetch_array($result))

 {

 $selectedCategories[] = $row['categoryid'];

 }

 // Build the list of all categories

 $sql = "SELECT id, name FROM category";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error fetching list of categories.';

 include 'error.html.php';

 exit();

 }

 while ($row = mysqli_fetch_array($result))

 {

Build Your Own Database Driven Web Site Using PHP & MySQL232

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 $categories[] = array(

 'id' => $row['id'],

 'name' => $row['name'],

 'selected' => in_array($row['id'], $selectedCategories));

 }

 include 'form.html.php';

 exit();

}

In addition to fetching the details of the joke (ID, text, and author ID), this code

fetches a list of categories to which the joke in question belongs:

The SELECT query is straightforward, since it’s simply fetching records from

the jokecategory lookup table. It grabs all of the category IDs associated with

the joke ID for the joke that the user wishes to edit.

This while loop stores all of the selected category IDs into an array variable,

$selectedCategories.

And here’s the big trick: while building the list of all categories for the form

to display as checkboxes, we check each category’s ID to see if it’s listed in our

$selectedCategories array. The built-in function in_array does this for us

automatically. We store the return value (either TRUE or FALSE) in the 'selec-

ted' item of the array that represents each category. This value will then be

used by the form template (as we’ve already seen) to select the appropriate

checkboxes.

That takes care of generating the form in each of its two modes; now let’s look at

the controller code that processes the form submissions.

Since we’re submitting an array for the first time (the list of selected category

checkboxes), the code that processes this form will feature a couple of new tricks

as well. It starts off fairly simply as we add the joke to the joke table. As an author

is required, we make sure that $_POST['author'] contains a value. This prevents

the administrator from choosing the Select One option in the author select list (that

choice has a value of "", the empty string):

233A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter7/admin/jokes/index.php (excerpt)

if (isset($_GET['addform']))

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $text = mysqli_real_escape_string($link, $_POST['text']);

 $author = mysqli_real_escape_string($link, $_POST['author']);

 if ($author == '')

 {

 $error = 'You must choose an author for this joke.

 Click ‘back’ and try again.';

 include 'error.html.php';

 exit();

 }

 $sql = "INSERT INTO joke SET

 joketext='$text',

 jokedate=CURDATE(),

 authorid='$author'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error adding submitted joke.';

 include 'error.html.php';

 exit();

 }

$jokeid = mysqli_insert_id($link);

The last line in the above code uses a function that we’ve yet to see:

mysqli_insert_id. This function returns the number assigned to the last inserted

entry by the AUTO_INCREMENT feature in MySQL. In other words, it retrieves the ID

of the newly inserted joke, which we’ll need momentarily.

The code that adds the entries to jokecategory based on which checkboxes were

checked is probably unclear to you. First of all, we’ve never seen how a checkbox

passes its value to a PHP variable before. Also, we need to deal with the fact that

these particular checkboxes will submit into an array variable.

A typical checkbox will pass its value to a PHP variable if it’s checked, and will do

nothing when it’s unchecked. Checkboxes without assigned values pass 'on' as the

Build Your Own Database Driven Web Site Using PHP & MySQL234

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

value of their corresponding variables when they’re checked. However, we’ve as-

signed values to our checkboxes (the category IDs), so this is not an issue.

The fact that these checkboxes submit into an array actually adds quite a measure

of convenience to our code. In essence, what we’ll receive from the submitted form

is either:

■ an array of category IDs to which we’ll add the joke
■ nothing at all (if none of the checkboxes were checked)

In the latter case, we have nothing to do—no categories were selected, so we have

nothing to add to the jokecategory table. If we do have an array of category IDs to

process, however, we’ll use a foreach loop to issue an INSERT query for each ID:

chapter7/admin/jokes/index.php (excerpt)

 if (isset($_POST['categories']))

 {

 foreach ($_POST['categories'] as $category)

 {

 $categoryid = mysqli_real_escape_string($link, $category);

 $sql = "INSERT INTO jokecategory SET

 jokeid='$jokeid',

 categoryid='$categoryid'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error inserting joke into selected category.';

 include 'error.html.php';

 exit();

 }

 }

 }

 header('Location: .');

 exit();

}

Note the use of the $jokeid variable, which we obtained from mysqli_insert_id

above.

That takes care of adding new jokes. The form processing code for editing existing

jokes is predictably similar, with two important differences:

235A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

■ It uses an UPDATE query instead of an INSERT query to store the joke’s details in

the joke table.

■ It removes all existing entries for the joke from the jokecategory table before

INSERTing entries for the selected checkboxes in the form.

Here’s the code. Take the time to read through it and make sure it all makes sense

to you:

chapter7/admin/jokes/index.php (excerpt)

if (isset($_GET['editform']))

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $text = mysqli_real_escape_string($link, $_POST['text']);

 $author = mysqli_real_escape_string($link, $_POST['author']);

 $id = mysqli_real_escape_string($link, $_POST['id']);

 if ($author == '')

 {

 $error = 'You must choose an author for this joke.

 Click ‘back’ and try again.';

 include 'error.html.php';

 exit();

 }

 $sql = "UPDATE joke SET

 joketext='$text',

 authorid='$author'

 WHERE id='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error updating submitted joke.';

 include 'error.html.php';

 exit();

 }

 $sql = "DELETE FROM jokecategory WHERE jokeid='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error removing obsolete joke category entries.';

 include 'error.html.php';

 exit();

Build Your Own Database Driven Web Site Using PHP & MySQL236

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 }

 if (isset($_POST['categories']))

 {

 foreach ($_POST['categories'] as $category)

 {

 $categoryid = mysqli_real_escape_string($link, $category);

 $sql = "INSERT INTO jokecategory SET

 jokeid='$id',

 categoryid='$categoryid'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error inserting joke into selected category.';

 include 'error.html.php';

 exit();

 }

 }

 }

 header('Location: .');

 exit();

}

Deleting Jokes
The last feature we need to implement is the Delete button displayed next to each

joke. The controller code responsible for this feature mirrors the code we wrote for

the author and category Delete buttons, with only minor adjustments. For example,

besides deleting the selected joke from the joke table, it must also remove any

entries in the jokecategory table for that joke.

Here’s the code. There’s nothing new here, but take some time to browse through

it and make sure you’re comfortable with everything that’s going on:

chapter7/admin/jokes/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action'] == 'Delete')

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $id = mysqli_real_escape_string($link, $_POST['id']);

 // Delete category assignments for this joke

 $sql = "DELETE FROM jokecategory WHERE jokeid='$id'";

237A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error removing joke from categories.';

 include 'error.html.php';

 exit();

 }

 // Delete the joke

 $sql = "DELETE FROM joke WHERE id='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error deleting joke.';

 include 'error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

Summary
There are a few minor tasks of which our content management system is still incap-

able. For example, it’s unable to provide a listing of just the jokes that don’t belong

to any category—which could be very handy as the number of jokes in the database

grows. You might also like to sort the joke lists by various criteria. These particular

capabilities require a few more advanced SQL tricks that we’ll see in Chapter 11.

If we ignore these little details for the moment, you’ll see that you now have a system

that allows a person without SQL or database knowledge to administer your database

of jokes with ease! Together with a set of PHP-powered pages through which regular

site visitors can view the jokes, this content management system allows us to set

up a complete database driven web site that can be maintained by a user with abso-

lutely no database knowledge. And if you think that sounds like a valuable commod-

ity to businesses looking to be on the Web today, you’re right!

In fact, only one aspect of our site requires users to have special knowledge (beyond

the use of a web browser): content formatting. If we wanted to enable administrators

to include rich text formatting in the jokes they entered, we could invite them to

type the necessary HTML code directly into the New Joke form. To preserve that

Build Your Own Database Driven Web Site Using PHP & MySQL238

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

formatting, we would then echo out the content of our jokes “raw” instead of using

our htmlout function.

This is unacceptable for two reasons: first, we’d have to stop accepting joke submis-

sions from the general public, otherwise we’d be opening the door to attackers

submitting harmful code in their jokes; our site would then display these unfiltered,

since we’d no longer be passing our content through htmlspecialchars.

Second, as we stated way back in the introduction to this book, one of the most

desirable features of a database driven web site is that people can be responsible

for adding content despite being unfamiliar with technical mumbo jumbo like

HTML. If we require knowledge of HTML for a task as simple as dividing a joke

into paragraphs, or applying italics to a word or two, we’ll have failed to achieve

our goal.

In Chapter 8, I’ll show you how to use some of the features of PHP that make it

simpler for your users to format content without knowing the ins and outs of HTML.

We’ll also revisit the Submit your own joke form, and discover how we can safely

accept content submissions from casual site visitors.

239A Content Management System

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Chapter8
Content Formatting with
Regular Expressions
We’re almost there! We’ve designed a database to store jokes, organized them into

categories, and tracked their authors. We’ve learned how to create a web page that

displays this library of jokes to site visitors. We’ve even developed a set of web

pages that a site administrator can use to manage the joke library without having

to know anything about databases.

In so doing, we’ve built a site that frees the resident webmaster from continually

having to plug new content into tired HTML page templates, and from maintaining

an unmanageable mass of HTML files. The HTML is now kept completely separate

from the data it displays. If you want to redesign the site, you simply have to make

the changes to the HTML contained in the PHP templates that you’ve constructed.

A change to one file (for example, modifying the footer) is immediately reflected in

the page layouts of all pages in the site. Only one task still requires the knowledge

of HTML: content formatting.

On any but the simplest of web sites, it will be necessary to allow content (in our

case study, jokes) to include some sort of formatting. In a simple case, this might

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

merely be the ability to break text into paragraphs. Often, however, content providers

will expect facilities such as bold or italic text, hyperlinks, and so on.

Supporting these requirements with our current code is deceptively easy. In the

past couple of chapters, we’ve used htmlout to output user-submitted content:

chapter6/jokes-helpers/jokes.html.php (excerpt)

<?php htmlout($joke['text']); ?>

If, instead, we just echo out the raw content pulled from the database, we can enable

administrators to include formatting in the form of HTML code in the joke text:

<?php echo $joke['text']; ?>

Following this simple change, a site administrator could include HTML tags that

would have their usual effect on the joke text when inserted into a page.

But is this really what we want? Left unchecked, content providers can do a lot of

damage by including HTML code in the content they add to your site’s database.

Particularly if your system will be enabling non-technical users to submit content,

you’ll find that invalid, obsolete, and otherwise inappropriate code will gradually

infest the pristine web site you set out to build. With one stray tag, a well-meaning

user could tear apart the layout of your site.

In this chapter, you’ll learn about several new PHP functions that specialize in

finding and replacing patterns of text in your site’s content. I’ll show you how to

use these capabilities to provide for your users a simpler markup language that’s

better suited to content formatting. By the time we’ve finished, we’ll have completed

a content management system that anyone with a web browser can use—no know-

ledge of HTML required.

Regular Expressions
To implement our own markup language, we’ll have to write some PHP code to

spot our custom tags in the text of jokes and replace them with their HTML equival-

ents. For tackling this sort of task, PHP includes extensive support for regular ex-

pressions. A regular expression is a string of text that describes a pattern that may

occur in text content like our jokes.

Build Your Own Database Driven Web Site Using PHP & MySQL242

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The language of regular expression is cryptic enough that, once you master it, you

may feel as if you’re able to weave magical incantations with the code that you

write. To begin with, however, let’s start with some very simple regular expressions.

This is a regular expression that searches for the text “PHP” (without the quotes):

/PHP/

Fairly simple, you would say? It’s the text for which you want to search surrounded

by a pair of matching delimiters. Traditionally, slashes (/) are used as regular ex-

pression delimiters, but another common choice is the hash character (#). You can

actually use any character as a delimiter except letters, numbers, or backslashes (\).

I’ll use slashes for all the regular expressions in this chapter.

To use a regular expression, you must be familiar with the regular expression

functions available in PHP. preg_match is the most basic, and can be used to determ-

ine whether a regular expression is matched by a particular text string.

Consider this code:

chapter8/preg_match1/index.php

<?php

$text = 'PHP rules!';

if (preg_match('/PHP/', $text))

{

 $output = '$text contains the string “PHP”.';

}

else

{

 $output = '$text does not contain the string “PHP”.';

}

include 'output.html.php';

?>

In this example, the regular expression finds a match because the string stored in

the variable $text contains “PHP.” This example will therefore output the message

shown in Figure 8.1 (note that the single quotes around the strings in the code pre-

vent PHP from filling in the value of the variable $text).

243Content Formatting with Regular Expressions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 8.1. The regular expression finds a match

By default, regular expressions are case sensitive; that is, lowercase characters in

the expression only match lowercase characters in the string, and uppercase char-

acters only match uppercase characters. If you want to perform a case-insensitive

search instead, you can use a pattern modifier to make the regular expression ignore

case.

Pattern modifiers are single-character flags following the ending delimiter of the

expression. The modifier for performing a case-insensitive match is i. So while

/PHP/ will only match strings that contain “PHP”, /PHP/i will match strings that

contain “PHP”, “php”, or even “pHp”.

Here’s an example to illustrate this:

chapter8/preg_match2/index.php

<?php

$text = 'What is Php?';

if (preg_match('/PHP/i', $text))

{

 $output = '$text contains the string “PHP”.';

}

else

{

 $output = '$text does not contain the string “PHP”.';

}

include 'output.html.php';

?>

Again, as shown in Figure 8.2 this outputs the same message, despite the string ac-

tually containing “Php”.

Build Your Own Database Driven Web Site Using PHP & MySQL244

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 8.2. No need to be picky …

Regular expressions are almost a programming language unto themselves. A dazzling

variety of characters have a special significance when they appear in a regular ex-

pression. Using these special characters, you can describe in great detail the pattern

of characters for which a PHP function like preg_match will search.

When you first encounter it, regular expression syntax can be downright confusing

and difficult to remember, so if you intend to make extensive use of it, a good refer-

ence might come in handy. The PHP Manual includes a very decent regular expres-

sion reference.1

Let’s work our way through a few examples to learn the basic regular expression

syntax.

First of all, a caret (^) may be used to indicate the start of the string, while a dollar

sign ($) is used to indicate its end:

/PHP/ Matches “PHP rules!” and “What is PHP?”

/^PHP/ Matches “PHP rules!” but not “What is PHP?”

/PHP$/ Matches “I love PHP” but not “What is PHP?”

/^PHP$/ Matches “PHP” but nothing else.

Obviously, you may sometimes want to use ^, $, or other special characters to rep-

resent the corresponding character in the search string, rather than the special

meaning ascribed to these characters in regular expression syntax. To remove the

special meaning of a character, prefix it with a backslash:

/\$\$\$/ Matches “Show me the $$$!” but not “$10”.

1 http://php.net/manual/en/regexp.reference.php

245Content Formatting with Regular Expressions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://php.net/manual/en/regexp.reference.php
http://php.net/manual/en/regexp.reference.php

Square brackets can be used to define a set of characters that may match. For ex-

ample, the following regular expression will match any string that contains any

digit from 1 to 5 inclusive:

/[12345]/ Matches “1a” and “39”, but not “a” or “76”.

If the character list within the square brackets is preceded with a caret (^), the set

will match anything but the characters listed:

/[^12345]/ Matches “1a” and “39”, but not “1”, or “54”.

Ranges of numbers and letters may also be specified:

/[1-5]/ Equivalent to /[12345]/ .

/^[a-z]$/ Matches any single lowercase letter.

/^[^a-z]$/ Matches any single character except a lowercase letter.

/[0-9a-zA-Z]/ Matches any string with a letter or number.

The characters ?, +, and * also have special meanings. Specifically, ? means “the

preceding character is optional, ” + means “one or more of the previous character,”

and * means “zero or more of the previous character.”

/bana?na/ Matches “banana” and “banna”,

but not “banaana”.

/bana+na/ Matches “banana” and “banaana”,

but not “banna”.

/bana*na/ Matches “banna”, “banana”, and “banaaana”,

but not “bnana”.

/^[a-zA-Z]+$/ Matches any string of one or more

letters and nothing else.

Parentheses may be used to group strings together to apply ?, +, or * to them as a

whole:

/ba(na)+na/ Matches “banana” and “banananana”,

but not “bana” or “banaana”.

You can provide a number of alternatives within parentheses, separated by pipes

(|):

Build Your Own Database Driven Web Site Using PHP & MySQL246

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

/ba(na|ni)+/ Matches “bana” and “banina”,

but not “naniba”.

And finally, a period (.) matches any character except a new line:

/^.+$/ Matches any string of one or more characters with no line breaks.

There are more special codes and syntax tricks for regular expressions, all of which

should be covered in any reference, such as that mentioned above. For now, we

have more than enough for our purposes.

String Replacement with
Regular Expressions
We can detect the presence of our custom tags in a joke’s text using preg_match

with the regular expression syntax we’ve just learned. However, what we need to

do is pinpoint those tags and replace them with appropriate HTML tags. To achieve

this, we need to look at another regular expression function offered by PHP:

preg_replace.

preg_replace, like preg_match, accepts a regular expression and a string of text,

and attempts to match the regular expression in the string. In addition, preg_replace

takes a second string of text, and replaces every match of the regular expression

with that string.

The syntax for preg_replace is as follows:

$newString = preg_replace(regExp, replaceWith, oldString);

Here, regExp is the regular expression, and replaceWith is the string that will replace

matches to regExp in oldString. The function returns the new string with all the

replacements made. In the above, this newly generated string is stored in $newString.

We’re now ready to build our custom markup language.

247Content Formatting with Regular Expressions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Boldface and Italic Text
In Chapter 6, we wrote a helper function, htmlout for outputting arbitrary text as

HTML. This function is housed in a shared include file, helpers.inc.php. Since we’ll

now want to output text containing our custom tags as HTML, let’s add a new

helper function to this file for this purpose:

chapter8/includes/helpers.inc.php (excerpt)

function bbcode2html($text)

{

 $text = html($text);

 ⋮ Convert custom tags to HTML

 return $text;

}

The markup language we’ll support is commonly called BBCode (short for Bulletin

Board Code), and is used in many web-based discussion forums. Since this helper

function will convert BBCode to HTML, it’s named bbcode2html.

The first action this function performs is to use the html helper function to convert

any HTML code present in the text into HTML text. We want to avoid any HTML

code appearing in the output except that which is generated by our own custom

tags. Let’s now look at the code that will do just that.

Let’s start by implementing tags that create bold and italic text. Let’s say we want

[B] to mark the start of bold text and [/B] to mark the end of bold text. Obviously,

you must replace [B] with and [/B] with .2 To achieve this,

simply apply preg_replace:3

2 You may be more accustomed to using and <i> tags for bold and italic text; however, I’ve chosen

to respect the most recent HTML standards, which recommend using the more meaningful

and tags, respectively. If bold text doesn’t necessarily indicate strong emphasis in your content,

and italic text doesn’t necessarily indicate emphasis, you should use and <i> instead.
3 Experienced PHP developers may object to this use of regular expressions. Yes, regular expressions

are probably overkill for this simple example, and yes, a single regular expression for both tags would

be more appropriate than two separate expressions. I’ll address both of these issues later in this chapter.

Build Your Own Database Driven Web Site Using PHP & MySQL248

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 $text = preg_replace('/\[B]/i', '', $text);

 $text = preg_replace('/\[\/B]/i', '', $text);

Notice that, because [normally indicates the start of a set of acceptable characters

in a regular expression, we put a backslash before it in order to remove its special

meaning.

Similarly, we must escape the forward slash in the [/b] tag with a backslash, to

prevent it from being mistaken for the delimiter that marks the end of the regular

expression.

Without a matching [, the] loses its special meaning, so it’s unnecessary to escape

it, although you could put a backslash in front of it as well if you wanted to be

thorough.

Also notice that, since we’re using the i modifier on each of the two regular expres-

sions to make them case insensitive, both [B] and [b] (as well as [/B] and [/b])

will work as tags in our custom markup language.

Italic text can be achieved in the same way:

 $text = preg_replace('/\[I]/i', '', $text);

 $text = preg_replace('/\[\/I]/i', '', $text);

Paragraphs
While we could create tags for paragraphs just as we did for bold and italic text

above, a simpler approach makes more sense. Since your users will type the content

into a form field that allows them to format text using the Enter key, we'll take a

single new line to indicate a line break (
) and a double new line to indicate a

new paragraph (</p><p>).

You can represent a new line character in a regular expression as \n. Other

whitespace characters you can write this way include a carriage return (\r) and a

tab space (\t).

Exactly which characters are inserted into text when the user hits Enter is dependant

on the operating system in use. In general, Windows computers represent a line

break as a carriage-return/new-line pair (\r\n), whereas older Mac computers rep-

249Content Formatting with Regular Expressions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

resent it as a single carriage return character (\r). Only recent Macs and Linux

computers use a single new line character (\n) to indicate a new line.4

To deal with these different line-break styles, any of which may be submitted by

the browser, we must do some conversion:

 // Convert Windows (\r\n) to Unix (\n)

 $text = preg_replace('/\r\n/', "\n", $text);

 // Convert Macintosh (\r) to Unix (\n)

 $text = preg_replace('/\r/', "\n", $text);

Regular Expressions in Double Quoted Strings

All of the regular expressions we’ve seen so far in this chapter have been expressed

as single-quoted PHP strings. The automatic variable substitution provided by

PHP strings is sometimes more convenient, but they can cause headaches when

used with regular expressions.

Double-quoted PHP strings and regular expressions share a number of special

character escape codes. "\n" is a PHP string containing a new line character.

Likewise, /\n/ is a regular expression that will match any string containing a

new line character. We can represent this regular expression as a single-quoted

PHP string ('/\n/'), and all is well, because the code \n has no special meaning

in a single-quoted PHP string.

If we were to use a double-quoted string to represent this regular expression, we’d

have to write "/\\n/"—with a double-backslash. The double-backslash tells PHP

to include an actual backslash in the string, rather than combining it with the n

that follows it to represent a new line character. This string will therefore generate

the desired regular expression, /\n/.

Because of the added complexity it introduces, it’s best to avoid using double-

quoted strings when writing regular expressions. Note, however, that I have used

double quotes for the replacement strings ("\n") passed as the second parameter

to preg_replace. In this case, we actually do want to create a string containing

a new line character, so a double-quoted string does the job perfectly.

4 In fact, the type of line breaks used can vary between software programs on the same computer. If

you’ve ever opened a text file in Notepad to see all the line breaks missing, then you’ve experienced the

frustration this can cause. Advanced text editors used by programmers usually let you specify the type

of line breaks to use when saving a text file.

Build Your Own Database Driven Web Site Using PHP & MySQL250

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

With our line breaks all converted to new line characters, we can convert them to

paragraph breaks (when they occur in pairs) and line breaks (when they occur alone):

 // Paragraphs

 $text = '<p>' . preg_replace('/\n\n/', '</p><p>', $text) . '</p>';

 // Line breaks

 $text = preg_replace('/\n/', '
', $text);

Note the addition of <p> and </p> tags surrounding the joke text. Because our jokes

may contain paragraph breaks, we must make sure the joke text is output within

the context of a paragraph to begin with.

This code does the trick: the line breaks in the next will now become the natural

line- and paragraph-breaks expected by the user, removing the requirement to learn

custom tags to create this simple formatting.

It turns out, however, that there’s a simpler way to achieve the same result in this

case—there’s no need to use regular expressions at all! PHP’s str_replace function

works a lot like preg_replace, except that it only searches for strings—instead of

regular expression patterns:

$newString = str_replace(searchFor, replaceWith, oldString);

We can therefore rewrite our line-breaking code as follows:

chapter8/includes/helpers.inc.php (excerpt)

 // Convert Windows (\r\n) to Unix (\n)

 $text = str_replace("\r\n", "\n", $text);

 // Convert Macintosh (\r) to Unix (\n)

 $text = str_replace("\r", "\n", $text);

 // Paragraphs

 $text = '<p>' . str_replace("\n\n", '</p><p>', $text) . '</p>';

 // Line breaks

 $text = str_replace("\n", '
', $text);

str_replace is much more efficient than preg_replace because there’s no need

for it to interpret your search string for regular expression codes. Whenever

str_replace (or str_ireplace, if you need a case-insensitive search) can do the

job, you should use it instead of preg_replace.

251Content Formatting with Regular Expressions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

You might be tempted to go back and rewrite the code for processing [B] and [I]

tags with str_replace. Hold off on this for now—in just a few pages I’ll show you

another technique that will enable you to make that code even better!

Hyperlinks
While supporting the inclusion of hyperlinks in the text of jokes may seem unne-

cessary, this feature makes plenty of sense in other applications. Hyperlinks are a

little more complicated than the simple conversion of a fixed code fragment into

an HTML tag. We need to be able to output a URL, as well as the text that should

appear as the link.

Another feature of preg_replace comes into play here. If you surround a portion

of the regular expression with parentheses, you can capture the corresponding

portion of the matched text and use it in the replacement string. To do this, you’ll

use the code $n, where n is 1 for the first parenthesized portion of the regular ex-

pression, 2 for the second, and so on, up to 99 for the 99th. Consider this example:

$text = 'banana';

$text = preg_replace('/(.*)(nana)/', '$2$1', $text);

echo $text; // outputs “nanaba”

In the above, $1 is replaced with ba in the replacement string, which corresponds

to (.*) (zero or more non-new line characters) in the regular expression. $2 is re-

placed by nana, which corresponds to (nana) in the regular expression.

We can use the same principle to create our hyperlinks. Let’s begin with a simple

form of link, where the text of the link is the same as the URL. We want to support

this syntax:

Visit [URL]http://sitepoint.com/[/URL].

The corresponding HTML code, which we want to output, is as follows:

Visit http://sitepoint.com/.

First, we need a regular expression that will match links of this form. The regular

expression is as follows:

Build Your Own Database Driven Web Site Using PHP & MySQL252

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

/\[URL][-a-z0-9._~:\/?#@!$&'()*+,;=%]+\[\/URL]/i

This is a rather complicated regular expression. You can see how regular expressions

have gained a reputation for being indecipherable! Let me break it down for you:

/

As with all of our regular expressions, we choose to mark its beginning with a

slash.

\[URL]

This matches the opening [URL] tag. Since square brackets have a special

meaning in regular expressions, we must escape the opening square bracket

with a backslash to have it interpreted literally.

[-a-z0-9._~:\/?#@!$&'()*+,;=%]+

This will match any URL.5 The square brackets contain a list of characters that

may appear in a URL, which is followed by a + to indicate that one or more of

these acceptable characters must be present.

Within a square-bracketed list of characters, many of the characters that normally

have a special meaning within regular expressions lose that meaning. ., ?, +, *,

(, and) are all listed here without the need to be escaped by backslashes. The

only character that does need to be escaped in this list is the slash (/), which

must be written as \/ to prevent it being mistaken for the end-of-regular-expres-

sion delimiter.

Note also that to include the hyphen (-) in the list of characters, you have to

list it first. Otherwise, it would have been taken to indicate a range of characters

(as in a-z and 0-9).

\[\/URL]

This matches the closing [/URL] tag. Both the opening square bracket and the

slash must be escaped with backslashes.

5 It will also match some strings that are invalid URLs, but it’s close enough for our purposes. If you’re

especially intrigued by regular expressions, you might want to check out RFC 3986, the official standard

for URLs. Appendix B of this specification demonstrates how to parse a URL with a rather impressive

regular expression.

253Content Formatting with Regular Expressions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

/i

We mark the end of the regular expression with a slash, followed by the case-

insensitivity flag, i.

To output our link, we’ll need to capture the URL and output it both as the href

attribute of the <a> tag, and as the text of the link. To capture the URL, we surround

the corresponding portion of our regular expression with parentheses:

/\[URL]([-a-z0-9._~:\/?#@!$&'()*+,;=%]+)\[\/URL]/i

We can therefore convert the link with the following PHP code:

 $text = preg_replace(

 '/\[URL]([-a-z0-9._~:\/?#@!$&\'()*+,;=%]+)\[\/URL]/i',

 '$1', $text);

As you can see, $1 is used twice in the replacement string to substitute the captured

URL in both places.

Note that because we’re expressing our regular expression as a single-quoted PHP

string, you have to escape the single quote that appears in the list of acceptable

characters with a backslash.

We’d also like to support hyperlinks for which the link text differs from the URL.

Such a link will look like this:

Check out [URL=http://www.php.net/]PHP[/URL].

Here’s the regular expression for this form of link:

/\[URL=([-a-z0-9._~:\/?#@!$&'()*+,;=%]+)]([^[]+)\[\/URL]/i

Squint at it for a little while, and see if you can figure out how it works. Grab your

pen and break it into parts if you need to. If you have a highlighter pen handy, you

might use it to highlight the two pairs of parentheses (()) used to capture portions

of the matched string—the link URL ($1) and the link text ($2).

This expression describes the link text as one or more characters, none of which is

an opening square bracket ([^[]+).

Build Your Own Database Driven Web Site Using PHP & MySQL254

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Here’s how to use this regular expression to perform the desired substitution:

 $text = preg_replace(

 '/\[URL=([-a-z0-9._~:\/?#@!$&\'()*+,;=%]+)]([^[]+)\[\/URL]/i',

 '$2', $text);

Matching Tags
A nice side-effect of the regular expressions we developed to read hyperlinks is that

they’ll only find matched pairs of [URL] and [/URL] tags. A [URL] tag missing its

[/URL] or vice versa will be undetected, and will appear unchanged in the finished

document, allowing the person updating the site to spot the error and fix it.

In contrast, the PHP code we developed for bold and italic text in the section called

“Boldface and Italic Text” will convert unmatched [B] and [I] tags into unmatched

HTML tags! This can lead to ugly situations in which, for example, the entire text

of a joke starting from an unmatched tag will be displayed in bold—possibly even

spilling into subsequent content on the page.

We can rewrite our code for bold and italic text in the same style we used for hyper-

links. This solves the problem by only processing matched pairs of tags:

 $text = preg_replace('/\[B]([^[]+)\[\/B]/i',

 '$1', $text);

 $text = preg_replace('/\[I]([^[]+)\[\/I]/i', '$1',

 $text);

We’ve still some more work to do, however.

One weakness of these regular expressions is that they represent the content between

the tags as a series of characters that lack an opening square bracket ([^\[]+). As a

result, nested tags (tags within tags) will fail to work correctly with this code.

Ideally, we’d like to be able to tell the regular expression to capture characters fol-

lowing the opening tag until it reaches a matching closing tag. Unfortunately, the

regular expression symbols + (one or more) and * (zero or more) are what we call

greedy, which means they’ll match as many characters as they can. Consider this

example:

255Content Formatting with Regular Expressions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

This text contains [B]two[/B] bold [B]words[/B]!

Now, if we left unrestricted the range of characters that could appear between

opening and closing tags, we might come up with a regular expression like this one:

/\[B](.+)\[\/B]/i

Nice and simple, right? Unfortunately, because the + is greedy, the regular expression

will match only one pair of tags in the above example—and it’s a different pair to

what you might expect! Here are the results:

This text contains two[/B] bold[B]words!

As you can see, the greedy + plowed right through the first closing tag and the

second opening tag to find the second closing tag in its attempt to match as many

characters as possible. What we need in order to support nested tags are non-greedy

versions of + and *.

Thankfully, regular expressions do provide non-greedy variants of these control

characters! The non-greedy version of + is +?, and the non-greedy version of * is

*?. With these, we can produce improved versions of our code for processing [B]

and [I] tags:

chapter8/includes/helpers.inc.php (excerpt)

 // [B]old

 $text = preg_replace('/\[B](.+?)\[\/B]/i', '$1',

 $text);

 // [I]talic

 $text = preg_replace('/\[I](.+?)\[\/I]/i', '$1', $text);

We can give the same treatment to our hyperlink processing code:

chapter8/includes/helpers.inc.php (excerpt)

 // [URL]link[/URL]

 $text = preg_replace(

 '/\[URL]([-a-z0-9._~:\/?#@!$&\'()*+,;=%]+)\[\/URL]/i',

 '$1', $text);

Build Your Own Database Driven Web Site Using PHP & MySQL256

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 // [URL=url]link[/URL]

 $text = preg_replace(

 '/\[URL=([-a-z0-9._~:\/?#@!$&\'()*+,;=%]+)](.+?)\[\/URL]/i',

 '$2', $text);

Putting It All Together
Here’s our finished helper function for converting BBCode to HTML:

chapter8/includes/helpers.inc.php (excerpt)

function bbcode2html($text)

{

 $text = html($text);

 // [B]old

 $text = preg_replace('/\[B](.+?)\[\/B]/i',

 '$1', $text);

 // [I]talic

 $text = preg_replace('/\[I](.+?)\[\/I]/i', '$1', $text);

 // Convert Windows (\r\n) to Unix (\n)

 $text = str_replace("\r\n", "\n", $text);

 // Convert Macintosh (\r) to Unix (\n)

 $text = str_replace("\r", "\n", $text);

 // Paragraphs

 $text = '<p>' . str_replace("\n\n", '</p><p>', $text) . '</p>';

 // Line breaks

 $text = str_replace("\n", '
', $text);

 // [URL]link[/URL]

 $text = preg_replace(

 '/\[URL]([-a-z0-9._~:\/?#@!$&\'()*+,;=%]+)\[\/URL]/i',

 '$1', $text);

 // [URL=url]link[/URL]

 $text = preg_replace(

 '/\[URL=([-a-z0-9._~:\/?#@!$&\'()*+,;=%]+)](.+?)\[\/URL]/i',

 '$2', $text);

257Content Formatting with Regular Expressions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 return $text;

}

For added convenience when using this in a PHP template, we’ll add a bbcodeout

function that calls bbcode2html and then echoes out the result:

chapter8/includes/helpers.inc.php (excerpt)

function bbcodeout($text)

{

 echo bbcode2html($text);

}

We can then use this helper in our two templates that output joke text. First, in the

admin pages, we have the joke search results template:

chapter8/admin/jokes/jokes.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Manage Jokes: Search Results</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <h1>Search Results</h1>

 <?php if (isset($jokes)): ?>

 <table>

 <tr><th>Joke Text</th><th>Options</th></tr>

 <?php foreach ($jokes as $joke): ?>

 <tr valign="top">

 <td><?php bbcodeout($joke['text']); ?></td>

 <td>

 <form action="?" method="post">

 <div>

 <input type="hidden" name="id" value="<?php

 htmlout($joke['id']); ?>"/>

 <input type="submit" name="action" value="Edit"/>

 <input type="submit" name="action" value="Delete"/>

Build Your Own Database Driven Web Site Using PHP & MySQL258

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 </div>

 </form>

 </td>

 </tr>

 <?php endforeach; ?>

 </table>

 <?php endif; ?>

 <p>New search</p>

 <p>Return to JMS home</p>

 </body>

</html>

Second, we have the public joke list page:

chapter8/jokes/jokes.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>List of Jokes</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p>Add your own joke</p>

 <p>Here are all the jokes in the database:</p>

 <?php foreach ($jokes as $joke): ?>

 <form action="?deletejoke" method="post">

 <blockquote>

 <p>

 <?php bbcodeout($joke['text']); ?>

 <input type="hidden" name="id" value="<?php

 echo $joke['id']; ?>"/>

 <input type="submit" value="Delete"/>

 </p>

 </blockquote>

 </form>

 <?php endforeach; ?>

 </body>

</html>

259Content Formatting with Regular Expressions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

With these changes made, take your new markup language for a spin! Edit a few of

your jokes to contain BBCode tags and verify that the formatting is correctly dis-

played.

Real World Content Submission
It seems a shame to have spent so much time and effort on a content management

system that’s so easy to use, when the only people who are actually allowed to use

it are the site administrators. Furthermore, while it’s extremely convenient for an

administrator to be able to avoid having to to edit HTML to make updates to the

site’s content, submitted documents still need to be transcribed into the “Add new

joke” form, and any formatted text converted into the custom formatting language

we developed above—a tedious and mind-numbing task to say the least.

What if we put the “Add new joke” form in the hands of casual site visitors? If you

recall, we actually did this in Chapter 4 when we provided a form through which

users could submit their own jokes. At the time, this was simply a device that

demonstrated how INSERT statements could be made from within PHP scripts. We

excluded it in the code we developed from scratch in this chapter because of the

inherent security risks involved. After all, who wants to open the content of a site

for just anyone to tamper with?

In the next chapter, you’ll turn your joke database into a web site that could survive

in the real world by introducing access control. Most importantly, you’ll limit access

to the admin pages for the site to authorized users only. But perhaps more excitingly,

you’ll place some limits on what normal users can get away with.

Build Your Own Database Driven Web Site Using PHP & MySQL260

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Chapter9
Cookies, Sessions, and Access Control
Cookies and sessions are two of those mysterious technologies that are almost always

made out to be more intimidating and complex than they really are. In this chapter,

I’ll debunk those myths by explaining in simple language what they are, how they

work, and what they can do for you. I’ll also provide practical examples to demon-

strate each.

Finally, we’ll use these new tools to provide sophisticated access control to the

administration features of your Internet Joke Database site.

Cookies
Most computer programs these days preserve some form of state when you close

them. Whether it be the position of the application window, or the names of the

last five files that you worked with, the settings are usually stored in a small file on

your system, so they can be read back the next time the program is run. When web

developers took web design to the next level, and moved from static pages to com-

plete, interactive, online applications, there was a need for similar functionality in

web browsers—so cookies were born.

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

A cookie is a name-value pair associated with a given web site, and stored on the

computer that runs the client (browser). Once a cookie is set by a web site, all future

page requests to that same site will also include the cookie until it expires, or be-

comes out of date. Other web sites are unable to access the cookies set by your site,

and vice versa, so, contrary to popular belief, they’re a relatively safe place to store

personal information. Cookies in and of themselves are incapable of compromising

a user’s privacy.

Illustrated in Figure 9.1 is the life cycle of a PHP-generated cookie.

First, a web browser requests a URL that corresponds to a PHP script. Within

that script is a call to the setcookie function that’s built into PHP.

The page produced by the PHP script is sent back to the browser, along with

an HTTP set-cookie header that contains the name (for example, mycookie)

and value of the cookie to be set.

When it receives this HTTP header, the browser creates and stores the specified

value as a cookie named mycookie.

Subsequent page requests to that web site contain an HTTP cookie header that

sends the name/value pair (mycookie=value) to the script requested.

Upon receipt of a page request with a cookie header, PHP automatically creates

an entry in the $_COOKIE array with the name of the cookie

($_COOKIE['mycookie']) and its value.

In other words, the PHP setcookie function lets you set a variable that will auto-

matically be set by subsequent page requests from the same browser. Before we ex-

amine an actual example, let’s take a close look at the setcookie function:

setcookie(name[, value[, expiryTime[, path[, domain[, secure[,

httpOnly]]]]]])

Square Brackets Indicate Optional Code

The square brackets ([…]) in the above code indicate portions of the code that are

optional. Leave out the square brackets when using the syntax in your code.

Build Your Own Database Driven Web Site Using PHP & MySQL262

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 9.1. The life cycle of a cookie

Like the header function we saw in Chapter 4, the setcookie function adds HTTP

headers to the page, and thus must be called before any of the actual page content

is sent. Any attempt to call setcookie after page content has been sent to the browser

will produce a PHP error message. Typically, therefore, you will use these functions

in your controller script before any actual output is sent (by an included PHP tem-

plate, for example).

The only required parameter for this function is name, which specifies the name

of the cookie. Calling setcookie with only the name parameter will actually delete

the cookie that’s stored on the browser, if it exists. The value parameter allows you

to create a new cookie, or modify the value stored in an existing one.

By default, cookies will remain stored by the browser, and thus will continue to be

sent with page requests, until the browser is closed by the user. If you want the

cookie to persist beyond the current browser session, you must set the expiryTime

parameter to specify the number of seconds from January 1, 1970 to the time at

which you want the cookie to be deleted automatically. The current time in this

format can be obtained using the PHP time function. Thus, a cookie could be set to

expire in one hour, for example, by setting expiryTime to time() + 3600. To delete

a cookie that has a preset expiry time, change this expiry time to represent a point

in the past (such as one year ago: time() – 3600 * 24 * 365). Here’s an example:

263Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

// Set a cookie to expire in 1 year

setcookie('mycookie', 'somevalue', time() + 3600 * 24 * 365);

// Delete it

setcookie('mycookie', '', time() – 3600 * 24 * 365);

The path parameter lets you restrict access to the cookie to a given path on your

server. For instance, if you set a path of '/~kyank/' for a cookie, only requests for

pages in the ~kyank directory (and its subdirectories) will include the cookie as part

of the request. Note the trailing /, which prevents other scripts in other directories

beginning with /~kyank (such as /~kyankfake/) from accessing the cookie. This is

helpful if you’re sharing a server with other users, and each user has a web home

directory. It allows you to set cookies without exposing your visitors’ data to the

scripts of other users on your server.

The domain parameter serves a similar purpose; it restricts the cookie’s access to a

given domain. By default, a cookie will be returned only to the host from which it

was originally sent. Large companies, however, commonly have several host names

for their web presence (for example, www.example.com and support.example.com).

To create a cookie that’s accessible by pages on both servers, you would set the

domain parameter to '.example.com'. Note the leading ., which prevents another

site at fakeexample.com from accessing your cookies on the basis that their domain

ends with example.com.

The secure parameter, when set to 1, indicates that the cookie should be sent only

with page requests that happen over a secure (SSL) connection (that is, with a URL

that starts with https://).

The httpOnly parameter, when set to 1, tells the browser to prevent JavaScript code

on your site from seeing the cookie that you’re setting. Normally, the JavaScript

code you include in your site can read the cookies that have been set by the server

for the current page. While this can be useful in some cases, it also puts the data

stored in your cookies at risk should an attacker figure out a way to inject malicious

JavaScript code into your site. This code could then read your users’ potentially

sensitive cookie data and do unspeakable things with it. If you set httpOnly to 1,

the cookie you’re setting will be sent to your PHP scripts as usual, but will be invis-

ible to JavaScript code running on your site.

Build Your Own Database Driven Web Site Using PHP & MySQL264

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

While all parameters except name are optional, you must specify values for earlier

parameters if you want to specify values for later ones. For instance, to call

setcookie with a domain value, you also need to specify a value for the expiryTime

parameter. To omit parameters that require a value, you can set string parameters

(value, path, domain) to '' (the empty string) and numerical parameters (expiryTime,

secure) to 0.

Let’s now look at an example of cookies in use. Imagine you want to display a special

welcome message to people on their first visit to your site. You could use a cookie

to count the number of times a user had been to your site before, and only display

the message when the cookie was not set. Here’s the code:

chapter9/cookiecounter/index.php

<?php

if (!isset($_COOKIE['visits']))

{

 $_COOKIE['visits'] = 0;

}

$visits = $_COOKIE['visits'] + 1;

setcookie('visits', $visits, time() + 3600 * 24 * 365);

include 'welcome.html.php';

?>

This code starts by checking if $_COOKIE['visits'] is set. If it isn’t, it means the

visits cookie has yet to be set in the user’s browser. To handle this special case,

we set $_COOKIE['visits'] to 0. The rest of our code can then safely assume that

$_COOKIE['visits'] contains the number of previous visits the user has made to

the site.

Next, to work out the number of this visit, we take $_COOKIE['visits'] and add

1. This variable, $visits, will be used by our PHP template.

Finally, we use setcookie to set the visits cookie to reflect the new number of

visits. We set this cookie to expire in one year’s time.

With all the work done, our controller includes the PHP template welcome.html.php:

265Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter9/cookiecounter/welcome.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Cookie counter</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p>

 <?php

 if ($visits > 1)

 {

 echo "This is visit number $visits.";

 }

 else

 {

 // First visit

 echo 'Welcome to my web site! Click here for a tour!';

 }

 ?>

 </p>

 </body>

</html>

Figure 9.2 shows what this example looks like the first time a browser visits the

page. Subsequent visits look like Figure 9.3.

Figure 9.2. The first visit

Build Your Own Database Driven Web Site Using PHP & MySQL266

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 9.3. The second visit

Before you go overboard using cookies, be aware that browsers place a limit on the

number and size of cookies allowed per web site. Some browsers will start deleting

old cookies to make room for new ones after you’ve set 20 cookies from your site.

Other browsers will allow up to 50 cookies per site, but will reject new cookies

beyond this limit. Browsers also enforce a maximum combined size for all cookies

from all web sites, so an especially cookie-heavy site might cause your own site’s

cookies to be deleted.

For these reasons, you should do your best to keep the number and size of the

cookies your site creates to a minimum.

PHP Sessions
Because of the limitations I’ve just described, cookies are inappropriate for storing

large amounts of information. If you run an ecommerce web site that uses cookies

to store the items in a user’s shopping cart as the user makes his or her way through

your site, this can be a big problem—the bigger a customer’s order, the more likely

it will run afoul of a browser’s cookie restrictions.

Sessions were developed in PHP as the solution to this issue. Instead of storing all

your (possibly large) data as cookies in the web browser, sessions let you store the

data on your web server. The only value that’s stored in the browser is a single

cookie that contains the user’s session ID—a variable for which PHP watches on

subsequent page requests, and uses to load the stored data that’s associated with

that session.

Unless configured otherwise, a PHP session automatically sets in the user’s browser

a cookie that contains the session ID—a long string of letters and numbers that serves

267Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

to identify that user uniquely for the duration of that visit to your site. The browser

then sends that cookie along with every request for a page from your site, so that

PHP can determine to which of potentially numerous sessions-in-progress the request

belongs. Using a set of temporary files that are stored on the web server, PHP keeps

track of the variables that have been registered in each session, and their values.

Before you can go ahead and use the spiffy session-management features in PHP,

you need to ensure that the relevant section of your php.ini file has been set up

properly. If you’re using a server that belongs to your web host, it’s probably safe

to assume this has been done for you. Otherwise, open your php.ini file in a text

editor and look for the section marked [Session] (say that ten times fast!). Beneath

it, you’ll find around 20 options that begin with the word session. Most of them

are just fine as they are, but here are a few crucial ones you’ll want to check:

session.save_handler = files

session.save_path = "C:\WINDOWS\TEMP"

session.use_cookies = 1

session.save_path tells PHP where to create the temporary files used to track

sessions. It must be set to a directory that exists on the system, or you’ll receive

ugly error messages when you try to create a session on one of your pages. On Mac

OS X and Linux systems, /tmp is a popular choice. In Windows, you could use

C:\WINDOWS\TEMP, or some other directory if you prefer (I use D:\PHP\SESSIONS).

With these adjustments made, restart your web server software to allow the changes

to take effect.

You’re now ready to start working with PHP sessions. But before we jump into an

example, let’s quickly look at the most common session management functions in

PHP. To tell PHP to look for a session ID, or to start a new session if none is found,

you simply call session_start. If an existing session ID is found when this function

is called, PHP restores the variables that belong to that session. Since this function

attempts to create a cookie, it must come before any page content is sent to the

browser, just as we saw for setcookie above:

session_start();

Build Your Own Database Driven Web Site Using PHP & MySQL268

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

To create a session variable, which will be available on all pages in the site when

accessed by the current user, simply set a value in the special $_SESSION array. For

example, the following will store the variable called password in the current session:

$_SESSION['password'] = 'mypassword';

To remove a variable from the current session, use PHP’s unset function:

unset($_SESSION['password']);

Finally, should you want to end the current session and delete all registered variables

in the process, you can clear all the stored values and use session_destroy:

$_SESSION = array();

session_destroy();

For more detailed information on these and the other session-management functions

in PHP, see the relevant section of the PHP Manual.1

Now that we have these basic functions under our belt, let’s put them to work in a

simple example.

A Simple Shopping Cart
This example will consist of a controller script feeding two PHP templates:

■ a product catalog, through which you can add items to your shopping cart
■ a checkout page, which displays the contents of the user’s shopping cart for

confirmation

From the checkout page, the order could then be submitted to a processing system

that would handle the details of payment acceptance and shipping arrangements.

That system is beyond the scope of this book, but if you’d like to try one I’d recom-

mend playing with PayPal,2 which is quite easy to set up. The developer document-

ation3 should be well within reach of your PHP skills at this point.

1 http://www.php.net/session
2 http://www.paypal.com/
3 https://developer.paypal.com/

269Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.php.net/session
http://www.paypal.com/
https://developer.paypal.com/
https://developer.paypal.com/

Let’s start with the controller code that sets up the list of items we’ll have for sale

in our online store. For each item, we wish to list a description and a price per unit.

For this example, we’ll code these details as a PHP array. In a real-world system,

you would probably store these details in a database, but I’m using this method so

we can focus on the session code. You should already know all you need to put

together a database driven product catalog, so if you’re feeling ambitious, go ahead

and write it now!

Here’s the code for our list of products:

chapter9/shoppingcart/index.php (excerpt)

<?php

include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/magicquotes.inc.php';

$items = array(

 array('id' => '1', 'desc' => 'Canadian-Australian Dictionary',

 'price' => 24.95),

 array('id' => '2', 'desc' => 'As-new parachute (never opened)',

 'price' => 1000),

 array('id' => '3', 'desc' => 'Songs of the Goldfish (2CD set)',

 'price' => 19.99),

 array('id' => '4', 'desc' => 'Simply JavaScript (SitePoint)',

 'price' => 39.95));

Each item in this array is itself an associative array of three items: a unique item

ID, the item description, and the price. It’s no coincidence that this looks like an

array of results we might build from querying a database.

Now, we’re going to store the list of items the user placed in the shopping cart in

yet another array. Because we’ll need this variable to persist throughout a user’s

visit to your site, we’ll store it using PHP sessions. Here’s the code that’s responsible:

chapter9/shoppingcart/index.php (excerpt)

session_start();

if (!isset($_SESSION['cart']))

{

 $_SESSION['cart'] = array();

}

Build Your Own Database Driven Web Site Using PHP & MySQL270

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

session_start either starts a new session (and sets the session ID cookie), or restores

the variables registered in the existing session, if one exists. The code then checks

if $_SESSION['cart'] exists, and, if it doesn’t, initializes it to an empty array to

represent the empty cart.

That’s all we need to display a product catalog, using a PHP template:

chapter9/shoppingcart/index.php (excerpt)

include 'catalog.html.php';

Let’s look at the code for this template:

chapter9/shoppingcart/catalog.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Product catalog</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <style type="text/css">

 table {

 border-collapse: collapse;

 }

 td, th {

 border: 1px solid black;

 }

 </style>

 </head>

 <body>

 <p>Your shopping cart contains <?php

 echo count($_SESSION['cart']); ?> items.</p>

 <p>View your cart</p>

 <table border="1">

 <thead>

 <tr>

 <th>Item Description</th>

 <th>Price</th>

 </tr>

 </thead>

271Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 <tbody>

 <?php foreach ($items as $item): ?>

 <tr>

 <td><?php htmlout($item['desc']); ?></td>

 <td>

 $<?php echo number_format($item['price'], 2); ?>

 </td>

 <td>

 <form action="" method="post">

 <div>

 <input type="hidden" name="id" value="<?php

 htmlout($item['id']); ?>"/>

 <input type="submit" name="action" value="Buy"/>

 </div>

 </form>

 </td>

 </tr>

 <?php endforeach; ?>

 </tbody>

 </table>

 <p>All prices are in imaginary dollars.</p>

 </body>

</html>

Here are the highlights:

We use the built-in PHP function count to output the number of items in the

array stored in the $_SESSION['cart'].

We provide a link to let the user view the contents of the shopping cart. In a

system that provided checkout facilities, you might label this link Proceed to

Checkout.

We use PHP’s built-in number_format function to display the prices with two

digits after the decimal point (see the PHP Manual4 for more information about

this function).

For each item in the catalog, we provide a form with a Buy button that submits

the unique ID of the item.

Figure 9.4 shows the product catalog produced by this template.

4 http://www.php.net/number_format

Build Your Own Database Driven Web Site Using PHP & MySQL272

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.php.net/number_format

Figure 9.4. The completed product catalog

Now, when a user clicks one of the Buy buttons, our controller will receive a form

submission with $_POST['action'] set to 'Buy'. Here’s how we process this in the

controller:

chapter9/shoppingcart/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action'] == 'Buy')

{

 // Add item to the end of the $_SESSION['cart'] array

 $_SESSION['cart'][] = $_POST['id'];

 header('Location: .');

 exit();

}

We add the product ID of the item to the $_SESSION['cart'] array before redirecting

the browser back to the same page, but without a query string, thereby ensuring that

refreshing the page avoids repeatedly adding the item to the cart.

When the user clicks the View your cart link, our controller will receive a request

with $_GET['cart'] set. Here’s how our controller will handle this:

273Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter9/shoppingcart/index.php (excerpt)

if (isset($_GET['cart']))

{

 $cart = array();

 $total = 0;

 foreach ($_SESSION['cart'] as $id)

 {

 foreach ($items as $product)

 {

 if ($product['id'] == $id)

 {

 $cart[] = $product;

 $total += $product['price'];

 break;

 }

 }

 }

 include 'cart.html.php';

 exit();

}

What this code does is build an array ($cart) much like the $items array, except

that the items in $cart reflect the items the user has added to the shopping cart.

To do this, it uses two nested foreach loops. The first loops through the IDs in

$_SESSION['cart']. For each of these IDs, it uses the second foreach loop to search

through the $items array looking for a product whose ID ($product['id']) is equal

to the $id from the cart. When it finds the product, it adds it to the $cart array.

At the same time, this code tallies the total price of the items in the shopping cart.

Each time the second foreach loop finds the product in the cart, it adds its price

($product['price']) to the $total.

The break command tells PHP to stop executing the second foreach loop, since it

has found the product for which it has been searching.

Once the $cart array is built, we load the second of our two PHP templates,

cart.html.php.

Build Your Own Database Driven Web Site Using PHP & MySQL274

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The code for cart.html.php is very similar to the product catalog template. All it does

is list the items in the $cart array instead of the $items array. It also outputs the

total in the footer of the table:

chapter9/shoppingcart/cart.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Shopping cart</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 <style type="text/css">

 table {

 border-collapse: collapse;

 }

 td, th {

 border: 1px solid black;

 }

 </style>

 </head>

 <body>

 <h1>Your Shopping Cart</h1>

 <?php if (count($cart) > 0): ?>

 <table>

 <thead>

 <tr>

 <th>Item Description</th>

 <th>Price</th>

 </tr>

 </thead>

 <tfoot>

 <tr>

 <td>Total:</td>

 <td>$<?php echo number_format($total, 2); ?></td>

 </tr>

 </tfoot>

 <tbody>

 <?php foreach ($cart as $item): ?>

 <tr>

 <td><?php htmlout($item['desc']); ?></td>

 <td>

275Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 $<?php echo number_format($item['price'], 2); ?>

 </td>

 </tr>

 <?php endforeach; ?>

 </tbody>

 </table>

 <?php else: ?>

 <p>Your cart is empty!</p>

 <?php endif; ?>

 <form action="?" method="post">

 <p>

 Continue shopping or

 <input type="submit" name="action" value="Empty cart"/>

 </p>

 </form>

 </body>

</html>

Once you have filled your cart with goodies, Figure 9.5 shows the output of this

template.

Figure 9.5. A full cart

This template also provides an Empty cart button that causes the controller script

to unset the $_SESSION['cart'] variable, which results in a new, empty shopping

cart. Here’s the code:

Build Your Own Database Driven Web Site Using PHP & MySQL276

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter9/shoppingcart/index.php (excerpt)

if (isset($_POST['action']) and $_POST['action'] == 'Empty cart')

{

 // Empty the $_SESSION['cart'] array

 unset($_SESSION['cart']);

 header('Location: ?cart');

 exit();

}

And Figure 9.6 shows what the cart looks like once emptied.

Figure 9.6. Avoid going home empty-handed!

That’s it! Here’s the complete code for the controller, with all the pieces assembled:

chapter9/shoppingcart/index.php

<?php

$items = array(

 array('id' => '1', 'desc' => 'Canadian-Australian Dictionary',

 'price' => 24.95),

 array('id' => '2', 'desc' => 'As-new parachute (never opened)',

 'price' => 1000),

 array('id' => '3', 'desc' => 'Songs of the Goldfish (2CD set)',

 'price' => 19.99),

 array('id' => '4', 'desc' => 'Simply JavaScript (SitePoint)',

 'price' => 39.95));

session_start();

277Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

if (!isset($_SESSION['cart']))

{

 $_SESSION['cart'] = array();

}

if (isset($_POST['action']) and $_POST['action'] == 'Buy')

{

 // Add item to the end of the $_SESSION['cart'] array

 $_SESSION['cart'][] = $_POST['id'];

 header('Location: .');

 exit();

}

if (isset($_POST['action']) and $_POST['action'] == 'Empty cart')

{

 // Empty the $_SESSION['cart'] array

 unset($_SESSION['cart']);

 header('Location: ?cart');

 exit();

}

if (isset($_GET['cart']))

{

 $cart = array();

 $total = 0;

 foreach ($_SESSION['cart'] as $id)

 {

 foreach ($items as $product)

 {

 if ($product['id'] == $id)

 {

 $cart[] = $product;

 $total += $product['price'];

 break;

 }

 }

 }

 include 'cart.html.php';

 exit();

}

include 'catalog.html.php';

?>

Build Your Own Database Driven Web Site Using PHP & MySQL278

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Access Control
One of the most common reasons for building a database driven web site is that it

allows the site owner to update the site from any web browser, anywhere! But, in

a world where roaming bands of jubilant hackers will fill your site with viruses and

pornography, you need to stop and think about the security of your administration

pages.

At the very least, you’ll want to require username and password authentication

before a visitor to your site can access the administration area. There are two main

ways of doing this:

■ configure your web server software to require a valid login for the relevant pages
■ use PHP to prompt the user and check the login credentials as appropriate

If you have access to your web server’s configuration, the first option is often the

easiest to set up, but the second is by far the more flexible. With PHP, you can design

your own login form, and even embed it into the layout of your site if you wish.

PHP also makes it easy to change the credentials required to gain access, or manage

a database of authorized users, each with their own credentials and privileges.

In this section, you’ll enhance your joke database site to protect sensitive features

with username/password-based authentication. In order to control which users can

do what, you’ll build a sophisticated role-based access control system.

“What does all this have to do with cookies and sessions?” you might wonder. Well,

rather than prompting your users for login credentials every time they wish to view

a sensitive page or perform a sensitive action, you can use PHP sessions to hold

onto those credentials throughout their visit to your site.

Database Design
Depending on the type of application you’re working on, you may need to create a

new database table to store the list of authorized users and their passwords. In the

case of the joke database site, you already have a table to do the job—the author

table:

279Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysql> DESCRIBE author;

+-------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------+--------------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| name | varchar(255) | YES | | NULL | |

| email | varchar(255) | YES | | NULL | |

+-------+--------------+------+-----+---------+----------------+

3 rows in set (0.03 sec)

Rather than track authors and users separately, let’s extend this existing database

table so that authors can log into your site. Some authors in the database may never

log in, and may exist only to give credit for jokes. Other authors may never write a

joke, existing only to give a person administrative access to the site. But for those

users who may do both, it will be more elegant to have their details stored in this

one table, rather than spread across two different tables.

We can actually use each author’s email address as a username. To do this, we’ll

want to ensure that each author in the database has a unique email address. We can

do this with an ALTER TABLE ADD UNIQUE command:5

mysql> ALTER TABLE author ADD UNIQUE (email);

Query OK, 3 rows affected (0.76 sec)

Records: 3 Duplicates: 0 Warnings: 0

With this change made, MySQL will now generate an error if you try to create a

new author with the same email address as an existing author.

Now, all this table needs is an extra column to store each author’s password:

mysql> ALTER TABLE author ADD COLUMN password CHAR(32);

Query OK, 3 rows affected (0.54 sec)

Records: 3 Duplicates: 0 Warnings: 0

5 In this chapter I’ll show you the SQL commands needed to modify the database we’ve built up to this

point. If you need to recreate the database from scratch, the necessary commands are provided in the

ijdb.sql file in the code archive for this chapter.

Build Your Own Database Driven Web Site Using PHP & MySQL280

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Note that we refrain from using the NOT NULL modifier on this column, so some

authors may have no password. When we write the PHP code that uses this column,

we’ll simply prevent authors with no password from logging in.

Note the column type: CHAR(32). It’s a big no-no to store users’ actual passwords

in your database. Many users share a bad habit of reusing the same password across

many different web sites. It’s an expected courtesy, therefore, as a site administrator,

to scramble the passwords your users give you, so that even if your database were

stolen out from under you, those passwords would be useless to an attacker trying

to gain access to your users’ accounts on other web sites.

A typical method of scrambling passwords is to use the md5 function built into

PHP:

$scrambled = md5($password . 'ijdb');

Adding 'ijdb' to the end of the password supplied by the user before scrambling

it ensures that the scrambled password in your site’s database is different to the

scrambled version of the same password in another site’s database. Security experts

call this salt, as in “add a dash of salt before you scramble the eggs.”

A Note from the Security Experts

Security experts will tell you that using the same salt for every password in your

database is asking for trouble, since an attacker who’s able to figure out your salt

(say by obtaining a copy of your site’s code) will be one step closer to being able

to guess the original passwords based on the scrambled versions in your database.

Of course, those same security experts will tell you that, rather than write your

own password-handling code, you should rely on a proven solution developed

by security experts like themselves.

This example provides a basic level of security with plenty of room for improve-

ment if you’re interested in doing a little research.

The md5 function creates a string exactly 32 characters long made up of apparently

random letters and numbers. Although the same password will always generate the

same string of 32 characters, it’s effectively impossible to guess the password that

was used to generate a given 32-character string. By storing only these strings in

your database, you’ll be able to check if a user has entered the correct password.

281Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Unlike the VARCHAR column type, a column of type CHAR(32) will only store values

exactly 32 characters long. This added regularity makes your database perform

faster. Since the md5 function always generates a string 32 characters long, we can

safely take advantage of this speed boost.

It turns out that MySQL has an MD5 function that performs the same task. Go ahead

and store a password for your own author entry—or create one from scratch if you

need to—now:

mysql> UPDATE author SET password = MD5('passwordijdb')

 -> WHERE id = 1;

Query OK, 1 row affected (0.04 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Note that you have to tack on to your desired password the same suffix ('ijdb' in

this example) that you’re using in your PHP code.

Next, we need to store the list of sensitive actions each author is permitted to do.

While you could simply give every logged-in user carte blanche—blanket permission

to do absolutely anything—on most sites it will make greater sense to have more

granular control over what each user’s able to do.

Let’s build a new table that will contain a list of roles that you’ll be able to assign

to each of your authors. Each author may have one or more of these roles assigned

to them. An author who’s assigned the role of Content Editor, for example, would

be able to edit jokes in your CMS. This type of system is called role-based access

control:

mysql> CREATE TABLE role (

 -> id VARCHAR(255) NOT NULL PRIMARY KEY,

 -> description VARCHAR(255)

 ->) DEFAULT CHARACTER SET utf8;

Query OK, 0 rows affected (0.04 sec)

Each role will have a short string ID and a longer description. Let’s fill in a few roles

now:

mysql> INSERT INTO role (id, description) VALUES

 -> ('Content Editor', 'Add, remove, and edit jokes'),

 -> ('Account Administrator', 'Add, remove, and edit authors'),

Build Your Own Database Driven Web Site Using PHP & MySQL282

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 -> ('Site Administrator', 'Add, remove, and edit categories');

Query OK, 3 rows affected (0.06 sec)

Records: 3 Duplicates: 0 Warnings: 0

Finally, we’ll need a lookup table to assign roles to users in a many-to-many rela-

tionship:

mysql> CREATE TABLE authorrole (

 -> authorid INT NOT NULL,

 -> roleid VARCHAR(255) NOT NULL,

 -> PRIMARY KEY (authorid, roleid)

 ->) DEFAULT CHARACTER SET utf8;

Query OK, 0 rows affected (0.03 sec)

While you’re at it, assign yourself the Account Administrator role:

mysql> INSERT INTO authorrole (authorid, roleid) VALUES

 -> (1, 'Account Administrator');

Query OK, 1 row affected (0.00 sec)

That takes care of the database. Now let’s turn our attention to the PHP code that

will use these new database structures.

Controller Code
Obviously, access control is a feature that will be very handy in many different PHP

projects. Therefore, like our database connection code and our view helpers, it

makes sense to write as much of our access control code as a shared include file,

so that we can then reuse in future projects.

Rather than try to guess what functions our shared include file should contain, let’s

start by modifying our controller code as if we already had the include file written.

You’ll recall that our administration pages start with with an ordinary HTML page

that displays the menu shown in Figure 9.7.

283Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 9.7. No protection required on this page

Your instinct might be to protect this page, but in fact it contains no sensitive in-

formation, so we can safely leave it alone. Each of the three links, however, point

to a PHP controller script that performs all sorts of sensitive operations:

/admin/jokes/index.php Searches for, displays, adds, edits, and removes

jokes from the system. Only users with the Con-

tent Editor role should be able to perform these

actions.

/admin/authors/index.php Lists, adds, edits, and removes authors from the

system. Users with the Account Administrator

role only should be able to perform these actions.

/admin/categories/index.php Lists, adds, edits, and removes categories from

the system. Only users with the Site Administrator

role should be able to perform these actions.

Each of these controllers, therefore, should check if the user is currently logged in

and is assigned the required role before proceeding. If the user has yet to log in, it

should display a login form. If the user is logged in, but lacks the required role, it

should display an appropriate error message.

If we imagine that we already have functions to achieve all these actions, here’s

what the code might look like:

Build Your Own Database Driven Web Site Using PHP & MySQL284

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter9/admin/authors/index.php (excerpt)

<?php

include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/magicquotes.inc.php';

require_once $_SERVER['DOCUMENT_ROOT'] . '/includes/access.inc.php';

if (!userIsLoggedIn())

{

 include '../login.html.php';

 exit();

}

if (!userHasRole('Account Administrator'))

{

 $error = 'Only Account Administrators may access this page.';

 include '../accessdenied.html.php';

 exit();

}

⋮ The rest of the controller code is unchanged.

We add the similar code to each of our other two controllers, but with the appropriate

role specified for each:

chapter9/admin/categories/index.php (excerpt)

<?php

include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/magicquotes.inc.php';

require_once $_SERVER['DOCUMENT_ROOT'] . '/includes/access.inc.php';

if (!userIsLoggedIn())

{

 include '../login.html.php';

 exit();

}

if (!userHasRole('Site Administrator'))

{

 $error = 'Only Site Administrators may access this page.';

 include '../accessdenied.html.php';

 exit();

285Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

}

⋮ The rest of the controller code is unchanged.

chapter9/admin/jokes/index.php (excerpt)

<?php

include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/magicquotes.inc.php';

require_once $_SERVER['DOCUMENT_ROOT'] . '/includes/access.inc.php';

if (!userIsLoggedIn())

{

 include '../login.html.php';

 exit();

}

if (!userHasRole('Content Editor'))

{

 $error = 'Only Content Editors may access this page.';

 include '../accessdenied.html.php';

 exit();

}

⋮ The rest of the controller code is unchanged.

From each of these blocks of code, we can see that we have the following tasks

ahead of us:

■ Write the login form, login.html.php.
■ Write the “access denied” error page, accessdenied.html.php.
■ Write the shared include file access.inc.php, containing the following functions:

userIsLoggedIn Checks if the user’s already logged in, or if the user has just

submitted the login form with a correct email address and

password.

userHasRole Checks if the user who’s logged in has been assigned the

specified role in the database.

Build Your Own Database Driven Web Site Using PHP & MySQL286

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Since the login form and the error page will be shared by all three of our controllers,

we’ll put them in the admin directory alongside index.html.

The code for the error page is completely straightforward. All it does is output the

$error variable set by the controller:

chapter9/admin/accessdenied.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Access Denied</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <h1>Access Denied</h1>

 <p><?php echo htmlout($error); ?></p>

 </body>

</html>

The login form takes a little more thought. Here’s the code:

chapter9/admin/login.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Log In</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <h1>Log In</h1>

 <p>Please log in to view the page that you requested.</p>

 <?php if (isset($loginError)): ?>

 <p><?php echo htmlout($loginError); ?></p>

 <?php endif; ?>

287Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 <form action="" method="post">

 <div>

 <label for="email">Email: <input type="text" name="email"

 id="email"/></label>

 </div>

 <div>

 <label for="password">Password: <input type="password"

 name="password" id="password"/></label>

 </div>

 <div>

 <input type="hidden" name="action" value="login"/>

 <input type="submit" value="Log in"/>

 </div>

 </form>

 <p>Return to JMS home</p>

 </body>

</html>

The form takes an email address and a password, as you might expect.

If the user submits the login form with an incorrect email address or password,

the user will be denied access, simply being presented with the login form

again. We need a way to tell the user what went wrong in this situation; this

template will check if a variable named $loginError exists, and if so, will

display it above the form.

The <form> tag has an empty action attribute, so this form will be submitted

back to the same URL that produced this form. Thus, if the user’s login attempt

is successful, the controller will display the page that the browser originally

requested.

Notice the second <input/> tag has its type attribute set to password. This

tells the browser to hide the value that the user types in, to shield the password

from prying eyes.

This hidden field will be submitted with the form, to act as a signal to the

userIsLoggedIn function that the user has submitted this form in an attempt

to log in. You might be tempted simply to put the name="action attribute on

the submit button’s <input/> tag and watch for that—but if the user submits

the form by hitting Enter while editing one of the two text fields, the submit

button will not be submitted with the form. Using a hidden field like this en-

Build Your Own Database Driven Web Site Using PHP & MySQL288

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

sures that the action variable will be submitted no matter how the form sub-

mission is triggered.

A user might request a protected page by accident, or might be unaware that

a page is protected until they see the login form. We therefore provide a link

back to an unprotected page as a way out.

This form will take care of people logging in, but we also want to provide a way for

a logged-in user to log out. Just as our userIsLoggedIn function will detect submis-

sions of the login form to log users in, we can also make it detect the submission of

a logout form to log users out. Let’s add this form to the bottom of each of our pro-

tected pages:

chapter9/admin/logout.inc.html.php

<form action="" method="post">

 <div>

 <input type="hidden" name="action" value="logout"/>

 <input type="hidden" name="goto" value="/admin/"/>

 <input type="submit" value="Log out"/>

 </div>

</form>

Again, we use a hidden action field to signal the user’s intentions. The goto field

indicates where we wish to send the user that’s just logged out.

To add this form to each of our protected pages, simply add the necessary include

command to the bottom of each template:

chapter9/admin/authors/authors.html.php (excerpt)

 ⋮
 <p>Return to JMS home</p>

 <?php include '../logout.inc.html.php'; ?>

 </body>

</html>

289Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter9/admin/authors/categories.html.php (excerpt)

 ⋮
 <p>Return to JMS home</p>

 <?php include '../logout.inc.html.php'; ?>

 </body>

</html>

chapter9/admin/authors/searchform.html.php (excerpt)

 ⋮
 <p>Return to JMS home</p>

 <?php include '../logout.inc.html.php'; ?>

 </body>

</html>

chapter9/admin/authors/jokes.html.php (excerpt)

 ⋮
 <p>Return to JMS home</p>

 <?php include '../logout.inc.html.php'; ?>

 </body>

</html>

Function Library
Finally, we can look at writing the shared include file, access.inc.php. The code above

demands a lot from this humble file, but having written all the code that depends

on it ahead of time, we have a fairly good idea of what it needs to do.

Let’s review. This file must define two custom functions:

userIsLoggedIn This function should return TRUE if the user is logged in, or

FALSE otherwise.

This function should also detect and handle a couple of special

cases:

■ If the current request contains a submission of the login

form, as indicated by the hidden field in the form (which

sets $_POST['action'] to 'login'), it should check if the

submitted username and password are correct. If they are,

Build Your Own Database Driven Web Site Using PHP & MySQL290

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

it should log in the user and return TRUE. Otherwise, it

should set the global variable $loginError to an appropriate

error message, and return FALSE.

■ If the current request contains a submission of the logout

form, as indicated by the hidden field in the form (which

sets $_POST['action'] to 'logout'), it should log out the

user and redirect the browser to the URL specified by

$_POST['goto'].

userHasRole This function should look in the database and check if the

currently logged-in user has been assigned the role that’s passed

to this function. If the role has been assigned, this function

should return TRUE; if not, it should return FALSE.

Let’s work through these two functions a few lines at a time:

chapter9/includes/access.inc.php (excerpt)

<?php

function userIsLoggedIn()

{

 if (isset($_POST['action']) and $_POST['action'] == 'login')

 {

We start with the userIsLoggedIn function. The first deed it does is check if the

login form has been submitted:

chapter9/includes/access.inc.php (excerpt)

 if (!isset($_POST['email']) or $_POST['email'] == '' or

 !isset($_POST['password']) or $_POST['password'] == '')

 {

 $GLOBALS['loginError'] = 'Please fill in both fields';

 return FALSE;

 }

Next, before we go looking in the database, we should make sure that the user has

filled in a value for both the email address and password. If either of these was not

submitted, or was submitted as an empty string, we set the global $loginError

291Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

variable (using the special $GLOBALS array we looked at in Chapter 6) and return

FALSE.

Now that we have checked that an email address and password were actually sub-

mitted, we can look for a matching author in the database. The first task we need

to do is scramble the submitted password to match the scrambled version that will

be stored in the database:

chapter9/includes/access.inc.php (excerpt)

 $password = md5($_POST['password'] . 'ijdb');

Next, we’ll query the database for a matching author record. Since this is an under-

taking we’ll need to do more than once in this code, we’ll write another custom

function to do it:

chapter9/includes/access.inc.php (excerpt)

function databaseContainsAuthor($email, $password)

{

 include 'db.inc.php';

 $email = mysqli_real_escape_string($link, $email);

 $password = mysqli_real_escape_string($link, $password);

 $sql = "SELECT COUNT(*) FROM author

 WHERE email='$email' AND password='$password'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error searching for author.';

 include 'error.html.php';

 exit();

 }

 $row = mysqli_fetch_array($result);

 if ($row[0] > 0)

 {

 return TRUE;

 }

 else

 {

Build Your Own Database Driven Web Site Using PHP & MySQL292

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 return FALSE;

 }

}

This code should be quite familiar to you by now. We start by connecting to the

database using our shared db.inc.php include file.6 We then use

mysqli_real_escape_string to prepare our two submitted values—the email address

and the scrambled password—for use in a database query. We then execute a database

query that will count the number of records in the author table that have a matching

email address and password. If the number returned is greater than zero, we return

TRUE; if not, we return FALSE.

If the database query fails for some reason, we use an error.html.php template to

display an error message to the user, so make sure you drop this into the includes

directory alongside the access.inc.php file:

chapter9/includes/error.html.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>PHP Error</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <p>

 <?php echo $error; ?>

 </p>

 </body>

</html>

Now, back in the userIsLoggedIn function, we can call our new

databaseContainsAuthor function:

6 We use include instead of include_once here, since the $link variable that db.inc.php creates

will be unavailable outside this function. Code elsewhere in our application that requires a database

connection will therefore have to include db.inc.php again.

293Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter9/includes/access.inc.php (excerpt)

 if (databaseContainsAuthor($_POST['email'], $password))

 {

If the database contains a matching author, it means the user filled out the login

form correctly and we have to log in the user. But what exactly does “log in the

user” mean? There are two approaches to this, both of which involve using PHP

sessions:

■ You can log in the user by setting a session variable as a “flag” (for example,

$_SESSION['loggedIn'] = TRUE). On future requests, you can just check if this

variable is set. If it is, the user is logged in, and the isUserLoggedIn function

can return TRUE.

■ You can store the “flag” variable as well as the submitted email address and

scrambled password in two additional session variables. On future requests, you

can check if these variables are set. If they are, you can use the

databaseContainsAuthor function to check if they still match an author stored

in the database. If they do, the isUserLoggedIn function can return TRUE.

The first option offers greater performance, since the user’s credentials are only

checked once—when the login form is submitted. The second option offers greater

security, since the user’s credentials are checked against the database every time a

sensitive page is requested.

In general, the more secure option is preferable, since it allows you to remove authors

from the site even while they’re logged in. Otherwise, once a user is logged in, they’ll

stay logged in for as long as their PHP session remains active. That’s a steep price

to pay for a little extra performance.

So, here’s the code for the second option:

chapter9/includes/access.inc.php (excerpt)

 session_start();

 $_SESSION['loggedIn'] = TRUE;

 $_SESSION['email'] = $_POST['email'];

 $_SESSION['password'] = $password;

 return TRUE;

 }

Build Your Own Database Driven Web Site Using PHP & MySQL294

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

And finally, of course, if the user submits a login form with incorrect values, we

need to ensure the user is logged out, set an appropriate error message, and return

FALSE.

chapter9/includes/access.inc.php (excerpt)

 else

 {

 session_start();

 unset($_SESSION['loggedIn']);

 unset($_SESSION['email']);

 unset($_SESSION['password']);

 $GLOBALS['loginError'] =

 'The specified email address or password was incorrect.';

 return FALSE;

 }

 }

That takes care of processing the login form. The second special case we need to

handle is the logout form. This one’s much simpler—so much so that the code

should be self-explanatory:

chapter9/includes/access.inc.php (excerpt)

 if (isset($_POST['action']) and $_POST['action'] == 'logout')

 {

 session_start();

 unset($_SESSION['loggedIn']);

 unset($_SESSION['email']);

 unset($_SESSION['password']);

 header('Location: ' . $_POST['goto']);

 exit();

 }

Finally, if neither of the two special cases are detected, we simply check if the user

is logged in using the session variables we have already discussed:

chapter9/includes/access.inc.php (excerpt)

 session_start();

 if (isset($_SESSION['loggedIn']))

 {

 return databaseContainsAuthor($_SESSION['email'],

295Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 $_SESSION['password']);

 }

}

That takes care of userIsLoggedIn. Now let’s look at userHasRole. This function

really just performs a complex database query: Given an author’s email address

(stored in the session), and a role ID (passed to the function), we need to check if

the specified author has been assigned that role. This query will involve three dif-

ferent database tables, so let’s look at the SQL code in isolation:

SELECT COUNT(*) FROM author

INNER JOIN authorrole ON author.id = authorid

INNER JOIN role ON roleid = role.id

WHERE email = email AND role.id = roleID

We join the author table to the authorrole table by matching up the author table’s

id field with the authorrole table’s authorid field. We then join those with the

role table by matching up the authorrole table’s roleid field with the role table’s

id field. Finally, with our three tables joined, we use the WHERE clause to look for

records with the email address and role ID for which we’re looking.

From there, it’s just a matter of writing the PHP code to execute this query and in-

terpret the results:

chapter9/includes/access.inc.php (excerpt)

function userHasRole($role)

{

 include 'db.inc.php';

 $email = mysqli_real_escape_string($link, $_SESSION['email']);

 $role = mysqli_real_escape_string($link, $role);

 $sql = "SELECT COUNT(*) FROM author

 INNER JOIN authorrole ON author.id = authorid

 INNER JOIN role ON roleid = role.id

 WHERE email = '$email' AND role.id='$role'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error searching for author roles.';

Build Your Own Database Driven Web Site Using PHP & MySQL296

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 include 'error.html.php';

 exit();

 }

 $row = mysqli_fetch_array($result);

 if ($row[0] > 0)

 {

 return TRUE;

 }

 else

 {

 return FALSE;

 }

}

Understand all that? Save your changes, and try visiting some of the protected pages.

If you gave yourself the Account Administrator role as I suggested above, you should

be able to visit and use the Manage Authors section of the admin pages. The other

sections should display the appropriate “access denied” errors. Also try clicking

the Log out button on any of the protected admin pages. These should return you

to the admin index, and prompt you to log in again if you try to access a protected

page afterwards.

If you have any problems, check your code using whatever error messages you see

as a guide. For easy reference, here’s the completed access.inc.php file:

chapter9/includes/access.inc.php

<?php

function userIsLoggedIn()

{

 if (isset($_POST['action']) and $_POST['action'] == 'login')

 {

 if (!isset($_POST['email']) or $_POST['email'] == '' or

 !isset($_POST['password']) or $_POST['password'] == '')

 {

 $GLOBALS['loginError'] = 'Please fill in both fields';

 return FALSE;

 }

 $password = md5($_POST['password'] . 'ijdb');

297Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 if (databaseContainsAuthor($_POST['email'], $password))

 {

 session_start();

 $_SESSION['loggedIn'] = TRUE;

 $_SESSION['email'] = $_POST['email'];

 $_SESSION['password'] = $password;

 return TRUE;

 }

 else

 {

 session_start();

 unset($_SESSION['loggedIn']);

 unset($_SESSION['email']);

 unset($_SESSION['password']);

 $GLOBALS['loginError'] =

 'The specified email address or password was incorrect.';

 return FALSE;

 }

 }

 if (isset($_POST['action']) and $_POST['action'] == 'logout')

 {

 session_start();

 unset($_SESSION['loggedIn']);

 unset($_SESSION['email']);

 unset($_SESSION['password']);

 header('Location: ' . $_POST['goto']);

 exit();

 }

 session_start();

 if (isset($_SESSION['loggedIn']))

 {

 return databaseContainsAuthor($_SESSION['email'],

 $_SESSION['password']);

 }

}

function databaseContainsAuthor($email, $password)

{

 include 'db.inc.php';

 $email = mysqli_real_escape_string($link, $email);

 $password = mysqli_real_escape_string($link, $password);

Build Your Own Database Driven Web Site Using PHP & MySQL298

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 $sql = "SELECT COUNT(*) FROM author

 WHERE email='$email' AND password='$password'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error searching for author.';

 include 'error.html.php';

 exit();

 }

 $row = mysqli_fetch_array($result);

 if ($row[0] > 0)

 {

 return TRUE;

 }

 else

 {

 return FALSE;

 }

}

function userHasRole($role)

{

 include 'db.inc.php';

 $email = mysqli_real_escape_string($link, $_SESSION['email']);

 $role = mysqli_real_escape_string($link, $role);

 $sql = "SELECT COUNT(*) FROM author

 INNER JOIN authorrole ON author.id = authorid

 INNER JOIN role ON roleid = role.id

 WHERE email = '$email' AND role.id='$role'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error searching for author roles.';

 include 'error.html.php';

 exit();

 }

 $row = mysqli_fetch_array($result);

 if ($row[0] > 0)

 {

 return TRUE;

 }

299Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 else

 {

 return FALSE;

 }

}

?>

Managing Passwords and Roles
Now that we’ve added passwords and roles to the database, we should update our

author admin pages so that they can manipulate these aspects of authors.

First, let’s add to the author add/edit form a Set password field, as well as a set of

checkboxes for choosing the roles that the user should be assigned:

chapter9/admin/authors/form.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title><?php htmlout($pagetitle); ?></title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

 </head>

 <body>

 <h1><?php htmlout($pagetitle); ?></h1>

 <form action="?<?php htmlout($action); ?>" method="post">

 <div>

 <label for="name">Name: <input type="text" name="name"

 id="name" value="<?php htmlout($name); ?>"/></label>

 </div>

 <div>

 <label for="email">Email: <input type="text" name="email"

 id="email" value="<?php htmlout($email); ?>"/></label>

 </div>

<div>

 <label for="password">Set password: <input type="password"

 name="password" id="password"/></label>

 </div>

 <fieldset>

Build Your Own Database Driven Web Site Using PHP & MySQL300

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 <legend>Roles:</legend>

 <?php for ($i = 0; $i < count($roles); $i++): ?>

 <div>

 <label for="role<?php echo $i; ?>"><input

 type="checkbox" name="roles[]"

 id="role<?php echo $i; ?>"

 value="<?php htmlout($roles[$i]['id']); ?>"<?php

 if ($roles[$i]['selected'])

 {

 echo ' checked="checked"';

 }

 ?>/><?php htmlout($roles[$i]['id']); ?></label>:

 <?php htmlout($roles[$i]['description']); ?>

 </div>

 <?php endfor; ?>

 </fieldset>

 <div>

 <input type="hidden" name="id" value="<?php

 htmlout($id); ?>"/>

 <input type="submit" value="<?php htmlout($button); ?>"/>

 </div>

 </form>

 </body>

</html>

The Set password field is a little special because, when it’s left blank, it should cause

the controller to leave the user’s current password alone. Remember that, because

we store only scrambled passwords in the database, we’re unable to display a user’s

existing password in the form for editing.

The role checkboxes are a lot like the category checkboxes we created for the joke

add/edit form in Chapter 7, with one notable difference. Since we’re using strings

instead of numbers for our role IDs in the database, we’re unable to use the IDs to

generate the <input> tags’ id attributes. The id attribute can’t contain spaces. We

therefore have to go a little out of our way to generate a unique number for each

role. Instead of using a foreach loop to step through our array of roles, we use an

old-fashioned for loop instead:

chapter9/admin/authors/form.html.php (excerpt)

 <?php for ($i = 0; $i < count($roles); $i++): ?>

301Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The counter variable $i starts at 0 and each time through the loop it’s incremented

by one. We can therefore access each role within the loop as $roles[$i], and we

can also use $i to build our unique id attributes:

chapter9/admin/authors/form.html.php (excerpt)

 id="role<?php echo $i; ?>"

Now you can update the controller to handle these new fields. The code for the

password field is straightforward, and the code for the role checkboxes is nearly

identical to what we wrote to process joke categories. I’ve highlighted the changes

in bold below. Take a look, and satisfy yourself that you understand everything

that’s going on:

chapter9/admin/authors/index.php

<?php

include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/magicquotes.inc.php';

require_once $_SERVER['DOCUMENT_ROOT'] . '/includes/access.inc.php';

if (!userIsLoggedIn())

{

 include '../login.html.php';

 exit();

}

if (!userHasRole('Account Administrator'))

{

 $error = 'Only Account Administrators may access this page.';

 include '../accessdenied.html.php';

 exit();

}

if (isset($_GET['add']))

{

include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $pagetitle = 'New Author';

 $action = 'addform';

 $name = '';

 $email = '';

Build Your Own Database Driven Web Site Using PHP & MySQL302

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 $id = '';

 $button = 'Add author';

// Build the list of roles

 $sql = "SELECT id, description FROM role";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error fetching list of roles.';

 include 'error.html.php';

 exit();

 }

 while ($row = mysqli_fetch_array($result))

 {

 $roles[] = array(

 'id' => $row['id'],

 'description' => $row['description'],

 'selected' => FALSE);

 }

 include 'form.html.php';

 exit();

}

if (isset($_GET['addform']))

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $name = mysqli_real_escape_string($link, $_POST['name']);

 $email = mysqli_real_escape_string($link, $_POST['email']);

 $sql = "INSERT INTO author SET

 name='$name',

 email='$email'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error adding submitted author.';

 include 'error.html.php';

 exit();

 }

$authorid = mysqli_insert_id($link);

 if ($_POST['password'] != '')

 {

303Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 $password = md5($_POST['password'] . 'ijdb');

 $password = mysqli_real_escape_string($link, $password);

 $sql = "UPDATE author SET

 password = '$password'

 WHERE id = '$authorid'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error setting author password.';

 include 'error.html.php';

 exit();

 }

 }

 if (isset($_POST['roles']))

 {

 foreach ($_POST['roles'] as $role)

 {

 $roleid = mysqli_real_escape_string($link, $role);

 $sql = "INSERT INTO authorrole SET

 authorid='$authorid',

 roleid='$roleid'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error assigning selected role to author.';

 include 'error.html.php';

 exit();

 }

 }

 }

 header('Location: .');

 exit();

}

if (isset($_POST['action']) and $_POST['action'] == 'Edit')

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $id = mysqli_real_escape_string($link, $_POST['id']);

 $sql = "SELECT id, name, email FROM author WHERE id='$id'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error fetching author details.';

 include 'error.html.php';

Build Your Own Database Driven Web Site Using PHP & MySQL304

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 exit();

 }

 $row = mysqli_fetch_array($result);

 $pagetitle = 'Edit Author';

 $action = 'editform';

 $name = $row['name'];

 $email = $row['email'];

 $id = $row['id'];

 $button = 'Update author';

// Get list of roles assigned to this author

 $sql = "SELECT roleid FROM authorrole WHERE authorid='$id'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error fetching list of assigned roles.';

 include 'error.html.php';

 exit();

 }

 $selectedRoles = array();

 while ($row = mysqli_fetch_array($result))

 {

 $selectedRoles[] = $row['roleid'];

 }

 // Build the list of all roles

 $sql = "SELECT id, description FROM role";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error fetching list of roles.';

 include 'error.html.php';

 exit();

 }

 while ($row = mysqli_fetch_array($result))

 {

 $roles[] = array(

 'id' => $row['id'],

 'description' => $row['description'],

 'selected' => in_array($row['id'], $selectedRoles));

 }

305Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 include 'form.html.php';

 exit();

}

if (isset($_GET['editform']))

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $id = mysqli_real_escape_string($link, $_POST['id']);

 $name = mysqli_real_escape_string($link, $_POST['name']);

 $email = mysqli_real_escape_string($link, $_POST['email']);

 $sql = "UPDATE author SET

 name='$name',

 email='$email'

 WHERE id='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error updating submitted author.';

 include 'error.html.php';

 exit();

 }

if ($_POST['password'] != '')

 {

 $password = md5($_POST['password'] . 'ijdb');

 $password = mysqli_real_escape_string($link, $password);

 $sql = "UPDATE author SET

 password = '$password'

 WHERE id = '$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error setting author password.';

 include 'error.html.php';

 exit();

 }

 }

 $sql = "DELETE FROM authorrole WHERE authorid='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error removing obsolete author role entries.';

 include 'error.html.php';

 exit();

 }

Build Your Own Database Driven Web Site Using PHP & MySQL306

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 if (isset($_POST['roles']))

 {

 foreach ($_POST['roles'] as $role)

 {

 $roleid = mysqli_real_escape_string($link, $role);

 $sql = "INSERT INTO authorrole SET

 authorid='$id',

 roleid='$roleid'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error assigning selected role to author.';

 include 'error.html.php';

 exit();

 }

 }

 }

 header('Location: .');

 exit();

}

if (isset($_POST['action']) and $_POST['action'] == 'Delete')

{

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

 $id = mysqli_real_escape_string($link, $_POST['id']);

// Delete role assignments for this author

 $sql = "DELETE FROM authorrole WHERE authorid='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error removing author from roles.';

 include 'error.html.php';

 exit();

 }

 // Get jokes belonging to author

 $sql = "SELECT id FROM joke WHERE authorid='$id'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Error getting list of jokes to delete.';

 include 'error.html.php';

 exit();

 }

307Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 // For each joke

 while ($row = mysqli_fetch_array($result))

 {

 $jokeId = $row[0];

 // Delete joke category entries

 $sql = "DELETE FROM jokecategory WHERE jokeid='$jokeId'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error deleting category entries for joke.';

 include 'error.html.php';

 exit();

 }

 }

 // Delete jokes belonging to author

 $sql = "DELETE FROM joke WHERE authorid='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error deleting jokes for author.';

 include 'error.html.php';

 exit();

 }

 // Delete the author

 $sql = "DELETE FROM author WHERE id='$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Error deleting author.';

 include 'error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

// Display author list

include $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

$result = mysqli_query($link, 'SELECT id, name FROM author');

if (!$result)

{

 $error = 'Error fetching authors from database!';

 include 'error.html.php';

 exit();

Build Your Own Database Driven Web Site Using PHP & MySQL308

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

}

while ($row = mysqli_fetch_array($result))

{

 $authors[] = array('id' => $row['id'], 'name' => $row['name']);

}

include 'authors.html.php';

?>

That’s it! Take your enhancements for a spin and give yourself ultimate power by

assigning yourself all the roles! Make sure everything works, otherwise fix it. Just

for kicks, try changing your own password while you’re logged in. You should be

kicked out to the login form with the next link or button you click, where you can

enter your new password to log back in.

A Challenge: Joke Moderation
It’s all well and good to follow along with the code that I present, but it is quite

another to write a significant new feature yourself. Now is a good time to try your

hand at planning and building a significant new feature for the joke database web

site.

For the past few chapters, we’ve been so focused on the administration pages, that

the public side of the site has become a little out-of-date. When we last left it, the

main page of our joke database site looked like Figure 9.8.

Figure 9.8. Feeling left behind?

309Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Obviously, those Delete buttons must go, but what about that Add your own joke link?

Currently, this link goes to the form shown in Figure 9.9.

Figure 9.9. Another nugget of comic genius is added to the database

When submitted, this form inserts a new joke into the database with no associated

author or categories. Nevertheless, the joke is immediately displayed on the front

page. Launch the site like this, and spammers will be filling up your database with

junk in no time!

How would you deal with this problem? Remove the feature? Force authors to email

their submissions to a content editor? Think about it: there must be a way to preserve

this “easy submission” feature without having your front page filled with spam.

Is it necessary for new joke submissions to appear on the site immediately? What

if you add a new column to the joke table called visible that could take one of

two values: 'YES' and 'NO'? Newly submitted jokes could automatically be set to

'NO', and could be prevented from appearing on the site if you simply added WHERE

visible='YES' to any query of the joke table for which the results are intended for

public viewing. Jokes with visible set to 'NO' would wait in the database for review

by a Content Editor, who could edit each joke and assign it an author and categories

before making it visible, or just delete it as unwanted.

To create a column that can contain either of two values, of which one is the default,

you’ll need a new MySQL column type called ENUM:

mysql> ALTER TABLE joke ADD COLUMN

 -> visible ENUM('NO', 'YES') NOT NULL;

Since we declared this column as required (NOT NULL), the first value listed within

the parentheses ('NO' in this case) is the default value, which is assigned to new

Build Your Own Database Driven Web Site Using PHP & MySQL310

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

entries if no value is specified in the INSERT command. All that’s left for you to do

is modify the administration system, enabling Content Editors to make hidden jokes

visible. A simple checkbox in the joke add/edit form should do the trick. You also

may want to modify the joke search form to allow Content Editors to search only

for visible or hidden jokes.

Newly submitted jokes will be without an author associated. How to deal with that

I leave up to you. The Add your own joke form could prompt visitors to include

contact information with their submissions, which Content Editors could then use

to identify and assign authors to submitted jokes. A more challenging solution might

be to invite authors to sign up, set a password, and then log in before submitting

new jokes.

There’s no right answer, but I challenge you to find a way to deal with the issue,

and build that into your Internet Joke Database site. You have all the tools you need:

set aside some time and see what you can build if you put your mind to it! If you

get stuck, the SitePoint PHP Forum7 is a friendly place to gain answers to your

questions.

The Sky’s the Limit
In this chapter, you learned about the two main methods of creating persistent

variables—those variables that continue to exist from page to page in PHP. The first

stores the variable in the visitor’s browser in the form of a cookie. By default,

cookies terminate at the end of the browser session, but by specifying an expiry

time, they can be preserved indefinitely. Unfortunately, cookies are fairly unreliable

because you have no way of knowing when the browser might delete your cookies,

and because some users occasionally clear their cookies out of concern for their

privacy.

Sessions, on the other hand, free you from all the limitations of cookies. They let

you store an unlimited number of potentially large variables. Sessions are an essential

building block in modern ecommerce applications, as we demonstrated in our

simple shopping cart example. They’re also a critical component of systems that

provide access control, like the one we built for your joke content management

system.

7 http://www.sitepoint.com/forums/forumdisplay.php?f=34

311Cookies, Sessions, and Access Control

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/forums/forumdisplay.php?f=34

At this point, you should be equipped with all the basic skills and concepts you

need to build your very own database driven web site. While you may be tempted

to skip the challenge of building a complete system for safely accepting public

submissions, I encourage you to give it a try. You should already have all the skills

necessary to build it, and there is no better way to learn than to make a few mistakes

of your own to learn from. At the very least, set this challenge aside for now and

come back to it when you’ve finished this book. If you can tackle it with confidence,

you will have proven to yourself that you are now a qualified PHP and MySQL

programmer.

If you’ve solved this challenge, try another! Want to let users rate the jokes on the

site? How about letting joke authors make changes to their jokes, but with with the

backup of requiring an administrator to approve the changes before they go live on

the site? The power and complexity of the system is limited only by your imagina-

tion.

In the rest of this book, I’ll cover more advanced topics that will help optimize your

site’s performance and solve some complex problems with less code. Oh, and of

course we’ll explore more exciting features of PHP and MySQL!

In Chapter 10, we’ll take a step away from our joke database and have a close-up

look at MySQL server maintenance and administration. We’ll learn how to make

backups of our database (a critical task for any web-based company), to administer

MySQL users and their passwords, and to log into a MySQL server if you’ve forgotten

your password.

Build Your Own Database Driven Web Site Using PHP & MySQL312

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Chapter10
MySQL Administration
At the core of most well-designed, content driven sites is a relational database. In

this book, we’ve used the MySQL Relational Database Management System (RDBMS)

to create our database. MySQL is a popular choice among web developers—because

it’s free and because MySQL servers are fairly simple to set up. As I demonstrated

in Chapter 1, armed with proper instructions, a new user can have a MySQL server

up and running in less than 30 minutes—under ten if you practice a little!

If all you want is to have a MySQL server to play with a few examples and experi-

ment a little, then the initial installation process we went through in Chapter 1 is

likely to be all you’ll need. If, on the other hand, you want to set up a database back

end to a real live web site—perhaps a site upon which your company depends—then

there are a few more fundamentals you’ll need to learn how to do before you can

rely on a MySQL server day-in and day-out.

First, as I promised in Chapter 2, I’ll show you how to set up phpMyAdmin to

browse, edit, and administer your databases using your web browser. Using

phpMyAdmin is generally much easier than gaining access to a MySQL command

prompt, particularly when working with a MySQL server running on another com-

puter.

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Next, we’ll look at backups. Backing up data that’s important to you or your business

should be an essential item on any administrator’s list of priorities. Unfortunately,

because there are usually more interesting tasks in an administrator’s role, backup

procedures are mainly arranged once out of necessity and deemed “good enough”

for all applications. If, until now, your answer to the question, “Should we back up

our databases?” has been, “It’s okay; they’ll be backed up along with everything

else,” you really should read on. I’ll show you why a generic file backup solution

is inadequate for many MySQL installations, and I’ll demonstrate the right way to

back up and restore a MySQL database.

In Chapter 1, we set up the MySQL server so that you could connect as the special

user “root” with a password you chose. This root MySQL user (which, incidentally,

has nothing to do with the root user on Linux and similar systems) had read/write

access to all databases and tables. In many organizations, it’s necessary to create

users whose access is limited to particular databases and tables, and to restrict that

access in some way (for example, read-only access to a particular table). In this

chapter, we’ll also learn how to facilitate such restrictions using two new MySQL

commands: GRANT and REVOKE.

Finally, in some situations, such as power outages, MySQL databases can become

damaged. There are alternatives, however, to scrambling for your backups when

this occurs. We’ll finish off our review of MySQL database administration by

learning how to use the MySQL database check and repair utility to fix simple

database corruptions.

phpMyAdmin
Like most of the code in this book, phpMyAdmin1 is a PHP script designed to

communicate with a MySQL server to generate web pages on the fly. Rather than

generating pleasing pages for your visitors, however, phpMyAdmin’s job is to provide

for you a web-based interface for administering your MySQL server.

phpMyAdmin will let you do almost anything you can do from the MySQL command

prompt using a handy point-and-click interface, rather than by typing SQL queries

by hand. Of course, if you want to perform a task that can only be expressed in

1 http://www.phpmyadmin.net/

Build Your Own Database Driven Web Site Using PHP & MySQL314

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.phpmyadmin.net/

handwritten SQL, phpMyAdmin also offers a form for you to type that SQL code,

and will execute it on your behalf and display the results.

Most commercial web hosts will actually give you access to a pre-configured copy

of phpMyAdmin within your hosting plan’s administration console. Also, if you

set up your MySQL server using one of the all-in-one solutions (WampServer or

MAMP), you’ll find they also include a copy of phpMyAdmin; you’ll need to update

its configuration to include the MySQL root password you established in Chapter 1,

though.

If there’s no phpMyAdmin on your server, installing it yourself is relatively easy.

Head over to the phpMyAdmin download page2 and download the latest recommen-

ded version (3.1.3.2 as I write this) in a convenient format (.zip on Windows or Mac

OS X, .tar.gz on Linux). Extract the file, and there’ll be a directory called

phpMyAdmin-version-language. Rename it to phpMyAdmin and move it into the docu-

ment root of your web server.

Using your text editor, create a new file named config.inc.php within the phpMyAdmin

directory, and type the following code into it:

<?php

$cfg['blowfish_secret'] = 'bhvhbv3577h3qguw83qdh37b2fnqelinbq38qhg';

$cfg['Servers'][1]['auth_type'] = 'cookie';

?>

Set the $cfg['blowfish_secret'] value to any jumble of letters and numbers. It’s

unnecessary to remember this value, it just needs to be difficult for a hacker to

guess—so the closer to random you can make it, the better.

The second line configures your phpMyAdmin installation to connect to the MySQL

server running on the same computer, and to prompt the user for a MySQL username

and password. If your MySQL server is on a different computer, or if you wish to

set up phpMyAdmin to log into the MySQL server automatically, the installation

instructions that come with the software will make worthwhile reading. Just open

the Documentation.html file in the phpMyAdmin directory using your browser of

choice.

2 http://www.phpmyadmin.net/home_page/downloads.php

315MySQL Administration

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.phpmyadmin.net/home_page/downloads.php

With the configuration file in place, open your browser and load up

http://localhost/phpMyAdmin/ (or whatever URL will point to the phpMyAdmin

directory on your web server). You should be greeted by a login screen similar to

Figure 10.1.

Figure 10.1. phpMyAdmin’s login screen

You can safely ignore the warning about the mcrypt extension if it appears. On most

servers, it’s an optional PHP component that will greatly speed up phpMyAdmin

if installed, but phpMyAdmin will work fine without it.3

In the Username field, type root. In the Password field, type your MySQL server’s

root password. Alternatively, if you’re unaware of the root password for the MySQL

server to which you’re connecting, type the username and password that you do

have; phpMyAdmin will then work with the same privileges that have been granted

to that MySQL user.

When you log in, you should see a similar screen to Figure 10.2.

3 mcrypt is required on some 64-bit operating systems. phpMyAdmin will let you know if it’s unable to

proceed without it, in which case you’ll need to look into adding the mcrypt extension to your copy of

PHP. On Windows this may be as simple as uncommenting the extension=php_mcrypt.dll line

in your php.ini file, but on Mac OS X and Linux servers you’ll need to install the libmcrypt software and

then recompile PHP—there are better ways to spend an afternoon!

Build Your Own Database Driven Web Site Using PHP & MySQL316

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 10.2. The interface may be a little intimidating, but be strong!

Try to avoid being intimidated by the dazzling array of options at your disposal.

phpMyAdmin is complex, yes, but once you explore a little you’ll feel right at home.

Start by looking at the list of databases on the left-hand side. If this is the server you

used to develop the examples in this book, you should see the ijdb database listed

among them. Otherwise, you can go ahead and create it now.

If you have the necessary privileges to create databases on this server, use the Create

new database form in the middle of the screen to create a new database named ijdb.

You can leave the Collation drop-down menu alone. When you click the Create

button, phpMyAdmin will drop you in the new, empty ijdb database, with the

message “No tables found in database” displayed on the screen, as in Figure 10.3.

317MySQL Administration

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 10.3. No tables found

If you’re restricted to working within a single database that was created for you (say,

by your web host), just click the database’s name in the menu on the left-hand side.

Again, you’ll be presented with the list of tables, or the “No tables found” message

if the database is empty.

Now you can use phpMyAdmin to create all the tables required by the Internet Joke

Database web site. Click the Import tab at the top of the page, and then under File to

import, browse to select the chapter9/sql/ijdb.sql file from the code archive for this

book. Click the Go button at the bottom of the page, and phpMyAdmin will feed

the contents of the file to your MySQL server, which will create the tables and

sample data for the Internet Joke Database.

The tables should now be listed down the left-hand side of the page. Click any of

the table names to browse its contents. With a table selected, explore each of the

tabs in phpMyAdmin’s interface. Much of what you see will make sense; some of

it will not. If you’re curious about a feature, try it out and see what happens (on a

nonessential MySQL server, of course!). Just be careful of the Empty and Drop tabs,

which will empty a table and delete a table or database, respectively.

Few PHP developers understand every part of a complex tool like phpMyAdmin,

but even a basic understanding of its features will make it an extremely useful tool

for administering your MySQL database.

Build Your Own Database Driven Web Site Using PHP & MySQL318

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Backing Up MySQL Databases
Like web servers, most MySQL servers are expected to remain online 24 hours a

day, seven days a week. This makes backups of MySQL database files problematic.

Because the MySQL server uses memory caches and buffers to improve the efficiency

of updates to the database files stored on disk, these files may be in an inconsistent

state at any given time. Since standard backup procedures involve merely copying

system and data files, backups of MySQL data files are unreliable, as there’s no

guarantee that the files that are copied are in a fit state to be used as replacements

in the event of a crash.

Furthermore, as many databases receive new information at all hours of the day,

standard backups can provide only snapshots of database data. Any information

stored in the database that’s changed after the last backup will be lost in the event

that the MySQL data files are destroyed or become unusable. In many situations,

such as when a MySQL server is used to track customer orders on an ecommerce

site, this is an unacceptable loss.

Facilities exist in MySQL to keep up-to-date backups that are largely unaffected by

server activity at the time at which the backups are generated. Unfortunately, they

require you to set up a backup scheme specifically for your MySQL data, completely

apart from whatever backup measures you’ve established for the rest of your data.

As with any good backup system, however, you’ll appreciate it when the time comes

to use it.

Database Backups Using mysqldump
In addition to mysql, the MySQL client, a MySQL installation comes with many

useful utility programs. We’ve seen mysqladmin, which is responsible for the control

and retrieval of information about an operational MySQL server, for example.

mysqldump is another such program. When run, it connects to a MySQL server (in

much the same way as the mysql program or the PHP language does) and downloads

the complete contents of the database(s) you specify. It then outputs these as a series

of SQL CREATE TABLEand INSERT commands that, if run in an empty MySQL server,

would recreate the MySQL database(s) with exactly the same contents as the original.

If you redirect the output of mysqldump to a file, you can store a snapshot of the

database(s) as a backup. The following command (typed all on one line) connects

319MySQL Administration

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

to the MySQL server running on the local machine as user root with password

password, and saves a backup of all databases into the file full_backup.sql:4

mysqldump -u root -ppassword --all-databases > full_backup.sql

To restore this database after a server crash, you would use this command:

mysql -u root -ppassword < full_backup.sql

This command connects to the MySQL server using the usual mysql program, and

feeds in our backup file as a list of commands to be executed. If you prefer working

at the MySQL command line client, you can use the source command to run the

commands contained in the full_backup.sql file instead:

mysql> source full_backup.sql

The source Command is not SQL

source is a barely documented5 command supported directly by the mysql client

program, rather than an actual SQL command like CREATE DATABASE. You should,

therefore, omit the semicolon at the end, as this will prevent the command from

working properly.

In this way, we can use mysqldump to create backups of our databases. mysqldump

connects to the MySQL server to perform backups, rather than by accessing directly

the database files in the MySQL data directory. The backup it produces is guaranteed

to be a valid copy of the databases, instead of merely a database files snapshot,

which may be in a state of flux as long as the MySQL server is online.

But how do we bridge the gap between these snapshots to maintain a database

backup that’s always up to date? The solution is simple: instruct the server to keep

a binary log.

4 To run mysqldump and the other MySQL utility programs, you need to be in the bin directory of your

MySQL installation, or that directory must be added to the system path. If you followed the installation

instructions in Chapter 1, your system path should already be set up correctly.
5 http://dev.mysql.com/doc/refman/5.1/en/batch-commands.html

Build Your Own Database Driven Web Site Using PHP & MySQL320

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/refman/5.1/en/batch-commands.html

Incremental Backups Using Binary Logs
As I mentioned above, many situations in which MySQL databases are used would

make the loss of data—any data—unacceptable. In cases like these, we need a way

to bridge the gaps between the backups we made using mysqldump as described

above. The solution is to instruct the MySQL server to keep a binary log. A binary

log is a record of all SQL queries that were received by the database, and which

modified the contents of the database in some way. This includes INSERT, UPDATE,

and CREATE TABLE statements (among others), but excludes SELECT statements.

The basic idea is that you should be able to restore the contents of the database at

the very moment at which a disaster occurred. This restoration involves applying

a backup (made using mysqldump), and then applying the contents of the binary

logs that were generated after that backup was made.

You can also edit binary logs to undo mistakes that might have been made. For ex-

ample, if a co-worker comes to you after accidentally issuing a DROP TABLEcommand,

you can export your binary log to a text file and then edit that file to remove the

command. You can then restore the database using your last backup and then running

the edited binary log. In this way, you can even keep changes to other tables that

were made after the accident. And, as a precaution, you should probably also revoke

your co-worker’s DROP privileges (see the next section to find out how).

When you launch a MySQL server from the command prompt, you can tell it to

keep binary logs with the --log-bin switch. For example, on a Mac OS X system:

Machine:~ user$ sudo mysqld_safe --log-bin=binlog

The above command starts the MySQL server and tells it to create files named

binlog.000001, binlog.000002, and so on, in the server’s data directory

(/usr/local/mysql/data on Mac OS X and Linux systems if you set up the server ac-

cording to the instructions in Chapter 1). A new file will then be created each time

the server flushes its log files; in practice, this occurs whenever the server is restarted.

If you want to store your binary logs elsewhere (usually a good idea—if the disk

that contains your data directory dies, you’d prefer your backups to survive!), you

can specify the full path for the binary log files.

321MySQL Administration

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

If you run your MySQL server full-time, you probably have your system set up to

launch the MySQL server at startup. It can be difficult to add command-line options

to the server in this case. A simpler way to have update logs created is to add the

option to the MySQL configuration file, my.cnf (or my.ini on Windows servers).

Like php.ini, which controls your server’s PHP configuration, my.cnf or my.ini is a

simple text file with a list of options that control your MySQL server. By default,

MySQL is installed without a configuration file, and simply runs with the default

settings. In order to switch on binary logs, you’ll need to create a my.cnf or my.ini

file and set the correct option.

All-in-one Installations

In the following instructions, I’ll assume you’ve installed a MySQL server yourself,

from scratch. This is an especially good idea when building a real-world production

server.

The all-in-one solutions like WampServer or MAMP come with a built-in MySQL

configuration file already set up. While it’s possible to go in and edit this file to

modify the MySQL configuration and enable binary logging, you’d be better off

taking a step back and setting up your own MySQL server from scratch.

Setting up binary logs for a development server is overkill anyway. If you want

to back up your development server, simply shut it down and perform a backup

of the MySQL data files while they’re not in use.

On Windows, use Notepad or another text editor to create a file named my.ini in

your MySQL installation directory (for example, C:\Program Files\MySQL\MySQL

Server 5.x).

On Mac OS X or Linux, use your text editor of choice to create a text file named

my.cnf with the necessary configuration settings, and then move it into your MySQL

installation directory (/usr/local/mysql). You’ll likely need administrator privileges

to put the file there.

However you create the file, here’s what it should contain:

[mysqld]

log-bin=/tmp/binlog

Build Your Own Database Driven Web Site Using PHP & MySQL322

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

In this example I’m instructing the server to store its binary log files in the /tmp

directory. In the real world, you’ll want to pick a more suitable location (such as a

secondary backup drive). On Mac OS X and Linux servers, it’s important to make

sure that whatever location you choose will be writable by the mysql user account

that’s used to run your MySQL server.

With your new configuration file in place, restart your MySQL server. From now

on, the server will behave as if it were launched using the --log-bin option on the

command line. To make sure, check the location you specified to verify that a new

log file was created when the server started up.

Obviously, binary logs can take up a lot of space on an active server. For this reason,

it’s important to tell MySQL to delete obsolete binary logs whenever you perform

a full backup using mysqldump:

mysqldump -u root -ppassword --all-databases --flush-logs

➥ --master-data=2 --delete-master-logs > backup.sql

The --flush-logs option tells the MySQL server to close the current binary log file

and start a new one, as if the MySQL server had been restarted. The --master-

data=2 option instructs mysqldump to include a comment at the end of the

ijdb_backup.sql file that indicates the name of the new binary log file; this will contain

the first changes that are made to the database following the full backup. Finally,

the --delete-master-logs command tells mysqldump to delete the binary log files

that are no longer needed, now that a full backup has taken place.

In the event of a disaster, as long as you have a full backup and the binary log files

that were generated since the backup was made, restoring your database should be

fairly simple. Set up a new, empty MySQL server, then apply the full backup as

described in the previous section. All that’s left is to apply the binary logs using

the mysqlbinlog utility included with your MySQL installation.

mysqbinlog’s job is to convert the data format of MySQL binary logs into SQL com-

mands that you can run on your database. Say you had two binary log files that you

needed to apply after restoring your most recent full backup. You can generate an

SQL text file from the two files using mysqlbinlog, and then apply that file to your

MySQL server just as you would a file generated by mysqldump:

323MySQL Administration

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysqlbinlog binlog.000041 binlog.000042 > binlog.sql

mysql -u root -ppassword < binlog.sql

MySQL Access Control
In Chapter 2, I mentioned that the database called mysql, which appears on every

MySQL server, is used to keep track of users, their passwords, and what they are

allowed to do. Until now, however, you’ve always logged into the server as the root

user, which gives you access to all databases and tables.

If your MySQL server will only be accessed through PHP, and you’re careful about

who’s given the password to the root MySQL account, then the root account may

be sufficient for your needs. However, in cases where a MySQL server is shared

among many users (for example, if a web host wishes to use a single MySQL server

to provide a database to each of its users), it’s usually a good idea to set up user

accounts with more restricted access.

The MySQL access control system is fully documented in Chapter 5 of the MySQL

Reference Manual.6 In essence, user access is governed by the contents of five tables

in the mysql database: user, db, host, tables_priv, and columns_priv. If you plan

to edit these tables directly using INSERT, UPDATE, and DELETE statements, I’d suggest

you read the relevant section of the MySQL manual first. But, for us mere mortals,

MySQL has a simpler method to manage user access. Using GRANT and REVOKE—non-

standard commands provided by MySQL—you can create users and set their priv-

ileges without worrying about the details of how they’ll be represented in the tables

mentioned above.

Granting Privileges
The GRANT command, which is used to create new users, assign user passwords,

and add user privileges, looks like this:

mysql> GRANT privilege [(columns)] ON what

 -> TO user [IDENTIFIED BY 'password']

 -> [WITH GRANT OPTION];

6 http://dev.mysql.com/doc/mysql/en/privilege_system.html

Build Your Own Database Driven Web Site Using PHP & MySQL324

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/mysql/en/privilege_system.html
http://dev.mysql.com/doc/mysql/en/privilege_system.html

As you can see, there are a lot of blanks to be filled in with this command. Let’s

describe each of them in turn, then review some examples to gain an idea of how

they work together.

privilege

is the privilege you wish to grant with this command. The privileges you can

specify can be sorted into three groups:

Database/Table/Column privileges

ALTER Modify existing tables (for example, add or remove

columns) and indexes.

CREATE Create new databases and tables.

DELETE Delete table entries.

DROP Delete tables and/or databases.

INDEX Create and/or delete indexes.

INSERT Add new table entries.

LOCK TABLES Lock tables for which the user has SELECT privileges

(see Chapter 11).

SELECT View/search table entries.

SHOW DATABASES View a list of available databases.

UPDATE Modify existing table entries.

Global administrative privileges

FILE Read and write files on the MySQL server machine.

PROCESS View and/or kill server threads that belong to other users.

RELOAD Reload the access control tables, flush the logs, and so on.

SHUTDOWN Shut down the MySQL server.

325MySQL Administration

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Special privileges

ALL The user is allowed to do anything (like root), except grant priv-

ileges.

USAGE The user is only allowed to log in—nothing else.

Some of these privileges apply to features of MySQL that we’ve yet to see, but

most should be familiar to you.

what

defines the areas of the database server to which the privileges apply.

■ *.* means the privileges apply to all databases and tables.

■ dbName.* means the privileges apply to all tables in the database called db-

Name.

■ dbName.tblName means the privileges apply only to the table called tblName

in the database called dbName.

You can even specify privileges for individual table columns—simply place a

list of the columns between the parentheses that follow the privileges to be

granted (we’ll see an example of this in a moment).

user

specifies the user to which these privileges should apply. In MySQL, a user is

specified both by the username given at login, and the host name/IP address of

the machine from which the user connects. The two values are separated by the

@ sign (that is, user@host). Both values may contain the % wildcard character,

but you need to put quotes around any value that does (for example, kevin@"%"

will allow the username kevin to log in from any host and use the privileges

you specify).

password

specifies the password that’s required to connect the user to the MySQL server.

As indicated by the square brackets above, the IDENTIFIED BY 'password'

portion of the GRANT command is optional. Any password specified here will

replace the existing password for that user. If no password is specified for a

new user, a password will be unnecessary when connecting.

Build Your Own Database Driven Web Site Using PHP & MySQL326

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The optional WITH GRANT OPTION portion of the command specifies that the user

be allowed to use the GRANT/REVOKE commands in order to allow identical privileges

to another user. Be careful with this option—the repercussions are sometimes not

obvious! A WITH GRANT OPTION user can give the option to other users in order to

trade privileges.

Let’s consider a few examples. To create a user named dbmgr that can connect from

example.com with password managedb, as well as have full access to the database

named ijdb only (including the ability to grant access to that database to other

users), use this GRANT command:

mysql> GRANT ALL ON ijdb.*

 -> TO dbmgr@example.com

 -> IDENTIFIED BY 'managedb'

 -> WITH GRANT OPTION;

Subsequently, to change that user’s password to funkychicken, use:

mysql> GRANT USAGE ON *.*

 -> TO dbmgr@example.com

 -> IDENTIFIED BY 'funkychicken';

Notice that no additional privileges have been granted (the USAGE privilege prohibits

a user from doing anything besides log in), but the user’s existing privileges remain

unchanged.

Now, let’s create a new user named jess, who’ll connect from various machines in

the example.com domain. Say she’s responsible for updating the names and email

addresses of authors in the database, but may need to refer to other database inform-

ation at times. As a result, she’ll have read-only (that is, SELECT) access to the ijdb

database, but will be able to UPDATE the name and email columns of the author table.

Here are the commands:

mysql> GRANT SELECT ON ijdb.*

 -> TO jess@"%.example.com"

 -> IDENTIFIED BY "jessrules";

mysql> GRANT UPDATE (name, email) ON ijdb.author

 -> TO jess@"%.example.com";

327MySQL Administration

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Notice that, in the first command, we used the % (wildcard) character in the host

name to indicate the host from which jess could connect. Notice also that we've

denied her the ability to pass her privileges to other users, as we omitted WITH

GRANT OPTION from the end of the command. The second command demonstrates

how privileges are granted for specific table columns—it lists the column(s), separ-

ated by commas, in parentheses after the privilege(s) being granted.

To see what privileges have been granted to a particular user, use the SHOW GRANTS

command:

mysql> SHOW GRANTS FOR jess@"%.example.com"

This command outputs a list of GRANT commands that you could run to recreate this

user from scratch.

Revoking Privileges
The REVOKE command, as you’d expect, is used to strip previously granted privileges

from a user. The syntax for the command is as follows:

mysql> REVOKE privilege [(columns)]

 -> ON what FROM user;

All the fields in this command work just as they do in GRANT above.

To revoke the DROP privileges of a co-worker of Jess’s (for instance, this person has

demonstrated a habit of occasionally deleting tables and databases by mistake), you

would use this command:

mysql> REVOKE DROP ON *.* FROM idiot@"%.example.com";

Revoking a user’s login privileges is about the only task that requires a different

command to GRANT and REVOKE. The following commands will definitely prevent

a user from doing anything of consequence besides logging in:

mysql> REVOKE ALL PRIVILEGES ON *.* FROM idiot@"%.example.com";

mysql> REVOKE GRANT OPTION ON *.* FROM idiot@"%.example.com";

But, to remove a user completely, you’ll need to use the DROP USER command:

Build Your Own Database Driven Web Site Using PHP & MySQL328

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysql> DROP USER idiot@"%.example.com";

Access Control Tips
As a result of the way the access control system in MySQL works, there are a couple

of idiosyncrasies of which you should be aware before you launch into user creation.

When you create users that can log into the MySQL server only from the computer

on which that server is running (for example, you require them to log into the

server and run the MySQL client from there, or to communicate using server-side

scripts like PHP), you may ask yourself what the user part of the GRANT command

should be. Imagine the server is running on www.example.com. Should you set up

the user as username@www.example.com or username@localhost?

The answer is that both are unreliable to handle all connections. In theory, if, when

connecting, the user specifies the host name either with the mysql client program,

or with PHP’s mysqli_connect function, that host name will have to match the

entry in the access control system. However, as you probably want to avoid forcing

your users to specify the host name a particular way (in fact, users of the mysql client

are likely to want to steer clear of specifying the host name at all), it’s best to use a

workaround.

For users who need the ability to connect from the machine on which the MySQL

server is running, it’s best to create two user entries in the MySQL access system:

one with the actual host name of the machine (username@www.example.com, for

example), the other with localhost (for example, username@localhost). Of course,

you’ll have to grant/revoke all privileges to both of these user entries individually,

but this is the only workaround that you can really rely upon.

Another problem commonly faced by MySQL administrators is that user entries

whose host names contain wild cards (for example, jess@"%.example.com" above)

may fail to work. When a failure occurs, it’s usually due to the way MySQL priorit-

izes the entries in the access control system. Specifically, it orders entries so that

more specific host names appear first (for example, www.example.com is absolutely

specific, %.example.com is less specific, and % is totally unspecific).

In a fresh installation, the MySQL access control system contains two anonymous

user entries (these allow connections to be made from the local host using any

329MySQL Administration

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

username—the two entries support connections from localhost and the server’s

actual host name, as described above), and two root user entries. The problem de-

scribed above occurs when the anonymous user entries take precedence over our

new entry because their host name is more specific.

Let’s look at the abridged contents of the user table on www.example.com, our ficti-

tious MySQL server, after we add Jess’s entry. The rows are sorted in the order in

which the MySQL server considers them when it validates a connection:

+-----------------+------+-----------------+

| Host | User | Password |

+-----------------+------+-----------------+

| localhost | root | encrypted value |

| www.example.com | root | encrypted value |

| localhost | | |

| www.example.com | | |

| %.example.com | jess | encrypted value |

+-----------------+------+-----------------+

As you can see, since Jess’s entry has the least specific host name, it comes last in

the list. When Jess attempts to connect from www.example.com, the MySQL server

matches her connection attempt to one of the anonymous user entries (a blank User

value matches anyone). Since a password is unnecessary for these anonymous

entries, and presumably Jess enters her password, MySQL rejects the connection

attempt. Even if Jess managed to connect without a password, she would be given

the very limited privileges that are assigned to anonymous users, as opposed to the

privileges assigned to her entry in the access control system.

The solution to this problem is either to make your first order of business as a MySQL

administrator the deletion of those anonymous user entries (DELETE FROM

mysql.user WHERE User=""), or to give two more entries to all users who need to

connect from localhost (that is, entries for localhost and the actual host name of

the server):

Build Your Own Database Driven Web Site Using PHP & MySQL330

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

+-----------------+------+-----------------+

| Host | User | Password |

+-----------------+------+-----------------+

| localhost | root | encrypted value |

| www.example.com | root | encrypted value |

| localhost | jess | encrypted value |

| www.example.com | jess | encrypted value |

| localhost | | |

| www.example.com | | |

| %.example.com | jess | encrypted value |

+-----------------+------+-----------------+

As it’s excessive to maintain three user entries (and three sets of privileges) for each

user, I recommend that you remove the anonymous users unless you have a partic-

ular need for them:

+-----------------+------+-----------------+

| Host | User | Password |

+-----------------+------+-----------------+

| localhost | root | encrypted value |

| www.example.com | root | encrypted value |

| %.example.com | jess | encrypted value |

+-----------------+------+-----------------+

Locked Out?
Like locking your keys in the car, forgetting your password after you’ve spent an

hour installing and tweaking a new MySQL server can be an embarrassment—to

say the least! Fortunately, if you have administrator access to the computer on which

the MySQL server is running, or if you can log in as the user you set up to run the

MySQL server (mysql if you followed the Linux installation instructions in

Chapter 1), all is well. The following procedure will let you regain control of the

server.

First, you must shut down the MySQL server. If you do this using mysqladmin, which

requires your forgotten password, you’ll instead need to kill the server process to

shut it down. Under Windows, use Task Manager to find and end the MySQL pro-

cess, or simply stop the MySQL service if you’ve installed it as such. Under Mac

OS X and Linux, use the ps command, or look in the server’s PID file in the MySQL

331MySQL Administration

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

data directory to determine the process ID of the MySQL server, then terminate it

with this command:

kill pid

pid is the process ID of the MySQL server.

This should be enough to stop the server. Do not use kill -9 unless absolutely

necessary, as this may damage your table files. If you’re forced to do so, however,

the next section provides instructions on how to check and repair those files.

Now that the server’s down, you can restart it by running mysqld_safe with the

--skip-grant-tables command line option. This instructs the MySQL server to

allow unrestricted access to anyone. Obviously, you’ll want to run the server in this

mode as infrequently as possible, to avoid the inherent security risks.

Once you’re connected, change your root password to a memorable one:

mysql> UPDATE mysql.user SET Password=PASSWORD("newpassword")

 -> WHERE User="root";

Finally, disconnect, and instruct the MySQL server to reload the grant tables to begin

requiring passwords:

mysqladmin flush-privileges

That does it—and nobody ever has to know what you did. As for locking your keys

in your car, you’re on your own there.

Checking and Repairing MySQL Data Files
In power outages, situations where you need to forcibly terminate (kill -9) the

MySQL server process, or when Jess’s friend idiot@"%.example.com" accidentally

kicks the plug out of the wall, there’s a risk that your MySQL data files may be

damaged. This situation can arise if the server’s in the middle of making changes

to the files at the time of the disturbance, as the files may be left in a corrupt or in-

consistent state. Since this type of damage can be subtle, it can go undetected for

days, weeks, or even months. As a result, by the time you do finally discover the

problem, all your backups may contain the same corruption.

Build Your Own Database Driven Web Site Using PHP & MySQL332

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Chapter 6 of the MySQL Reference Manual7 describes the myisamchk utility that

comes with MySQL, and how you can use it to check and repair your MySQL data

files. While that chapter is recommended reading for anyone who wants to set up

a heavy-duty preventative maintenance schedule for their MySQL server, we’ll

cover all the essentials here.

Before we go any further, though, it’s important to realize that the myisamchk program

expects to have sole access to the MySQL data files that it checks and modifies. If

the MySQL server works with the files at the same time, and makes a modification

to a file that myisamchk is in the middle of checking, myisamchk might incorrectly

detect an error and try to fix it—which in turn could trip up the MySQL server!

Thus, to avoid making the situation worse instead of better, it’s usually a good idea

to shut down the MySQL server while you’re working on the data files. Alternatively,

shut down the server just long enough to make a copy of the files, then do the work

on the copies. When you’re done, shut down the server again briefly to replace the

files with the new ones, and perhaps apply any binary logs that were made in the

interim.

The MySQL data directory is fairly easy to understand. It contains a subdirectory

for each database, and each of these subdirectories contains the data files for the

tables in the corresponding database. Each table is represented by three files that

have the same name as the table, but three different extensions. The tblName.frm file

is the table definition, which keeps track of the columns contained in the table, as

well as their types. The tblName.MYD file contains all the table data. The tblName.MYI

file contains any indexes for the table. For example, it might contain the lookup

table that helps the table’s primary key column speed up queries based on this table.

To check a table for errors, just run myisamchk (in the MySQL bin directory) and

provide either the location of these files and the name of the table, or the name of

the table index file:8

myisamchk /usr/local/mysql/data/dbName/tblName

myisamchk /usr/local/mysql/data/dbName/tblName.MYI

7 http://dev.mysql.com/doc/mysql/en/table-maintenance.html
8 Though omitted here to simplify the discussion, you’ll likely need administrative privileges to access

the MySQL data files on Mac OS X or Linux. Type sudo myisamchk instead of just myisamchk, in

order to run myisamchk with administrator privileges.

333MySQL Administration

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/mysql/en/table-maintenance.html

Or, on Windows:

myisamchk "C:\Program Files"\MySQL\data\dbName\tblName"

myisamchk "C:\"Program Files"\MySQL\data\dbName\tblName.MYI"

Either of the above will perform a check of the specified table. To check all tables

in the database, use a wild card:

myisamchk /usr/local/mysql/data/dbName/*.MYI

To check all tables in all databases, use two:

myisamchk /usr/local/mysql/data/*/*.MYI

Without any options, myisamchk performs a normal check of the table files. If you

suspect problems with a table and a normal check fails to bring anything to light,

you can perform a more thorough (but much slower!) check using the --extend-

check option:

myisamchk --extend-check /path/to/tblName

Checking for errors is nondestructive, so there’s no need to worry that you might

make an existing problem worse if you perform a check on your data files. Repair

operations, on the other hand, while usually safe, will make changes to your data

files that are impossible to undo. For this reason, I strongly recommend that you

make a copy of any damaged table files before you attempt to repair them. As usual,

make sure your MySQL server is shut down before you make copies of live data

files.

There are three types of repair that you can use to fix a problem with a damaged

table. These should be tried in order with fresh copies of the data files each time

(that is, don’t try the second recovery method on a set of files that result from a

failed attempt of the first recovery method). If at any point you receive an error

message that indicates that a temporary file is unable to be created, delete the file

to which the message refers and try again—the offending file is a remnant of a pre-

vious repair attempt.

The three repair methods can be executed as follows:

Build Your Own Database Driven Web Site Using PHP & MySQL334

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

myisamchk --recover --quick /path/to/tblName

myisamchk --recover /path/to/tblName

myisamchk --safe-recover /path/to/tblName

The first is the quickest, and fixes the most common problems; the last is the

slowest, and fixes a few problems that the other methods do not.

If these methods fail to resurrect a damaged table, there are a couple more tricks

you can try before you give up:

■ If you suspect that the table index file (tblName.MYI) is damaged beyond repair,

or even missing entirely, it can be regenerated from scratch and used with your

existing data (tblName.MYD) and table form (tblName.frm) files. To begin, make a

copy of your table data (tblName.MYD) file. Restart your MySQL server and connect

to it, then delete the contents of the table with the following command:

mysql> DELETE FROM tblName;

This command does more than just delete the contents of your table; it also

creates a brand new index file for that table. Log out and shut down the server

again, then copy your saved data file (tblName.MYD) over the new (empty) data

file. Finally, perform a standard repair (the second method stated above), and

use myisamchk to regenerate the index data based on the contents of the data

and table form files.

■ If your table form file (tblName.frm) is missing or damaged beyond repair, but

you know the table well enough to reproduce the CREATE TABLE statement that

defines it, you can generate a new .frm file and use it with your existing data

and index files. If the index file is no good, use the above method to generate a

new one afterwards. First, make a copy of your data and index files, then delete

the originals and remove any record of the table from the data directory.

Start up the MySQL server and create a new table using exactly the same CREATE

TABLE statement. Log out and shut down the server, then copy your two saved

files over the top of the new, empty files. The new .frm file should work with

them, but perform a standard table repair—the second method above—for good

measure.

335MySQL Administration

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Better Safe than Sorry
Admittedly, this chapter hasn’t been the usual nonstop, action-packed code-fest to

which you may have become accustomed by now. But our concentration on these

topics—the back up and restoration of MySQL data, the administration of the MySQL

access control system, and table checking and repair—has armed you with the tools

you’ll need in order to set up a MySQL database server that will stand the test of

time, as well as endure the constant traffic your site will attract during that period.

In Chapter 11, we’ll return to the fun stuff and learn some advanced SQL techniques

that can make a relational database server perform tricks you may never have thought

possible.

Build Your Own Database Driven Web Site Using PHP & MySQL336

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Chapter11
Advanced SQL Queries
As you’ve worked through the construction of the Internet Joke Database web site,

you’ve had opportunities to explore most aspects of Structured Query Language

(SQL). From the basic form of a CREATE TABLE query, to the two syntaxes of INSERT

queries, you probably know many of these commands by heart now.

In an effort to tie up some loose ends in this chapter, we’ll look at a few more SQL

tricks that we've yet to come across—some may have been a bit too advanced. As

is typical, most of these will expand on your knowledge of what’s already the most

complex and potentially confusing SQL command available to you: the SELECT

query.

Sorting SELECT Query Results
Long lists of information are always easier to use when they’re presented in some

kind of order. To find a single author in a list from your author table, for example,

could become an exercise in frustration if you had more than a few dozen registered

authors in your database. While at first it might appear that they’re sorted in order

of database insertion, with the oldest records first and the newest records last, you’ll

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

quickly notice that deleting records from the database leaves invisible gaps in this

order; these gaps are filled by the insertion of newer entries.

Fortunately, there’s another, optional part of the SELECT query that lets you specify

a column by which your table of results can be sorted. Let’s say you wanted to print

out a listing of the entries in your author table for future reference. As you’ll recall,

this table has three columns: id, name, and email. Since id is really just a means to

associating entries in this table with entries in the joke table, you’ll usually list

only the remaining two columns when you work with this table in isolation. Here’s

a short list of a table of authors:

mysql> SELECT name, email FROM author;

+----------------+---------------------+

| name | email |

+----------------+---------------------+

| Kevin Yank | kevin@sitepoint.com |

| Jessica Graham | jess@example.com |

| Michael Yates | yatesy@example.com |

| Amy Mathieson | amym@example.com |

+----------------+---------------------+

As you can see, the entries are unsorted, which is fine for a short list like this; it

would be easier, though, to find a particular author’s email address (that of Amy

Mathieson, for example) in a very long list of authors—say a few hundred or so—if

the authors’ names appeared in alphabetical order. Here’s how you’d create that

ordering:

mysql> SELECT name, email FROM author ORDER BY name;

+----------------+---------------------+

| name | email |

+----------------+---------------------+

| Amy Mathieson | amym@example.com |

| Jessica Graham | jess@example.com |

| Kevin Yank | kevin@sitepoint.com |

| Michael Yates | yatesy@example.com |

+----------------+---------------------+

The entries now appear sorted alphabetically by their names. Just as you can add

a WHERE clause to a SELECT statement to narrow down the list of results, you can

also add an ORDER BY clause to specify a column by which a set of results should

Build Your Own Database Driven Web Site Using PHP & MySQL338

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

be sorted. Adding the keyword DESC after the name of the column allows you to

sort the entries in descending order:

mysql> SELECT name, email FROM author ORDER BY name DESC;

+----------------+---------------------+

| name | email |

+----------------+---------------------+

| Michael Yates | yatesy@example.com |

| Kevin Yank | kevin@sitepoint.com |

| Jessica Graham | jess@example.com |

| Amy Mathieson | amym@example.com |

+----------------+---------------------+

You can actually use a comma-separated list of several column names in the ORDER

BY clause to have MySQL sort the entries by the first column, then sort any sets of

tied entries by the second, and so on. Any of the columns listed in the ORDER BY

clause may use the DESC keyword to reverse the sort order.

Obviously, in a large table, MySQL must do a lot of work to sort the result set. You

can ease this burden by setting up indexes for columns (or sets of columns) that

you expect to use to sort result sets. When you index a column, the database invisibly

creates and maintains a sorted list of the entries in that column, along with their

locations in the table. Whenever you INSERT a new entry or UPDATE an existing

entry, the database will update the index accordingly. When the database is asked

to sort results based on that column, all it needs to do is to refer to the index for the

pre-sorted list of entries.

To create an index, you can use a CREATE INDEXquery or an ALTER TABLE ADD INDEX

query. The following two queries are equivalent, and both create an index for the

name column of the author table:

mysql> CREATE INDEX nameidx ON author (name);

Query OK, 4 rows affected (0.28 sec)

Records: 4 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE author ADD INDEX nameidx (name);

Query OK, 4 rows affected (0.28 sec)

Records: 4 Duplicates: 0 Warnings: 0

339Advanced SQL Queries

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

In both query formats, you place in parentheses the list of columns you want to use

for the index. In this example, you’re creating an index for a single column.

Removing an index is equally easy, and can again be done with either of two query

types:

mysql> DROP INDEX nameidx ON author;

Query OK, 4 rows affected (0.16 sec)

Records: 4 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE author DROP INDEX nameidx;

Query OK, 4 rows affected (0.28 sec)

Records: 4 Duplicates: 0 Warnings: 0

All of these queries are described in Appendix A. A more detailed look at indexes

and how they can be used to speed up queries can be found in the article Optimizing

your MySQL Application1 on sitepoint.com.

Setting LIMITs
Often, you might work with a large database table, but only be interested in a few

entries within it. Let’s say you wanted to track the popularity of different jokes on

your site. You could add a column named timesviewed to your joke table. Start it

with a value of zero for new jokes, and add one to the value of the requested joke

every time the joke is viewed, to keep count of the number of times each joke in

your database has been read.

The query that adds one to the timesviewed column of a joke with a given ID is as

follows:

$sql = "UPDATE joke SET

 timesviewed = timesviewed + 1

 WHERE id='$id'";

if (!mysqli_query($link, $sql))

{

 $error = 'Error updating joke view count.';

1 http://www.sitepoint.com/article/optimizing-mysql-application/

Build Your Own Database Driven Web Site Using PHP & MySQL340

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/article/optimizing-mysql-application/
http://www.sitepoint.com/article/optimizing-mysql-application/

 include 'error.html.php';

 exit();

}

You might use this joke view counter to present a “Top 10 Jokes” list on the front

page of your site, for example. Using ORDER BY timesviewed DESC to list the jokes

from highest timesviewed to lowest, you would just have to pick the first ten values

from the top of the list. But if you have thousands of jokes in your database, the re-

trieval of that entire list in order to obtain just ten results would be quite wasteful

in terms of the processing time and server system resources, such as memory and

CPU load, required.

However, if you use a LIMIT clause, you can specify a certain number of results to

be returned. In this example, you need only the first ten:

$sql = "SELECT * FROM joke ORDER BY timesviewed DESC LIMIT 10";

Although it’s much less interesting, you could eliminate the word DESC and retrieve

the ten least popular jokes in the database.

Often, you want to let users view a long list of entries—for example, the results of

a search—but wish to display only a few at a time.2 Think of the last time you went

looking through pages of search engine results to find a particular web site. You

can use a LIMIT clause to do this sort of action—simply specify the result with

which the list will begin, and the maximum number of results to display. The query

below, for example, will list the 21st to 25th most popular jokes in the database:

$sql = "SELECT * FROM joke ORDER BY timesviewed DESC LIMIT 20, 5";

Remember, the first entry in the list of results is entry number zero. Thus, the 21st

entry in the list is entry number 20.

LOCKing TABLES
Notice how, in the UPDATE query given above, and repeated here for convenience,

we take the existing value of timesviewed and add one to it to set the new value:

2 I have written an article that explores this technique in greater detail at sitepoint.com, entitled Object

Oriented PHP: Paging Result Sets [http://www.sitepoint.com/article/php-paging-result-sets].

341Advanced SQL Queries

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/article/php-paging-result-sets
http://www.sitepoint.com/article/php-paging-result-sets

$sql = "UPDATE joke SET

 timesviewed = timesviewed + 1

 WHERE id='$id'";

If you’d been unaware that you were allowed to use this shortcut, you might have

performed a separate SELECT to gain the current value, added one to it, then per-

formed an UPDATE using that newly calculated value. Besides the fact that this

would’ve required two queries instead of one, and thus would take about twice as

long, there’s a danger to using this method. What if, while that new value was being

calculated, another person viewed the same joke? The PHP script would be run a

second time for that new request. When it performed the SELECT to obtain the current

value of timesviewed, it would retrieve the same value the first script did, because

the value would yet to be updated. Both scripts would then add one to the same

value, and write the new value into the table. See what happens? Two users view

the joke, but the timesviewed counter increments by just one!

In some situations, this kind of fetch–calculate–update procedure is unavoidable,

and the possibility of interference between simultaneous requests of this nature

must be dealt with. Other situations in which this procedure might be necessary

include cases in which you need to update several tables in response to a single

action (for example, updating inventory and shipping tables in response to a sale

on an ecommerce web site).

By locking the table or tables with which you’re working in a multiple-query oper-

ation, you can obtain exclusive access for the duration of that operation, and prevent

potentially damaging interference from concurrent operations. The syntax that locks

a table is fairly simple:

LOCK TABLES tblName { READ | WRITE }

As shown, when you lock a table, you must specify whether you want a read lock

or a write lock. The former prevents other processes from making changes to the

table, but allows others to read the table. The latter stops all other access to the

table.

When you’re finished with a table you’ve locked, you must release the lock to give

other processes access to the table again:

Build Your Own Database Driven Web Site Using PHP & MySQL342

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

UNLOCK TABLES

A LOCK TABLES query implicitly releases whatever locks you may already have.

Therefore, to safely perform a multi-table operation, you must lock all the tables

you’ll use with a single query. Here’s what the PHP code might look like for the

ecommerce application we mentioned above:

mysqli_query($link, 'LOCK TABLES inventory WRITE, shipping WRITE');

⋮ Perform the operation…

mysqli_query($link, 'UNLOCK TABLES');

For simple databases that require the occasional multi-table operation, table locking,

as described here, will do the trick. More demanding applications, however, can

benefit from the increased performance and crash-proof nature of transactions.

Transactions in MySQL

Many high-end database servers (for example, Oracle, MS SQL Server, and so on)

support a feature called transactions, which lets you perform complex, multi-

query operations in a single, uninterrupted step. Consider what would happen if

your server were struck by a power failure halfway through a database update in

response to a client order. For example, the server might have crashed after it

updated your shipping table, but before it updated your inventory table, in

response to a customer’s order.

Transactions allow a group of table updates such as this to be defined so that they

all occur, or none of them will. You can also manually cancel a transaction halfway

through if the logic of your application requires it.

MySQL 5 includes built-in support for InnoDB tables, which support transactions

in addition to the foreign key constraints I mentioned in Chapter 7. A full discus-

sion of transactions is outside the scope of this book; please refer to the MySQL

Reference Manual for a full description of InnoDB tables3 and transaction support.4

3 http://dev.mysql.com/doc/mysql/en/innodb.html
4 http://dev.mysql.com/doc/mysql/en/transactional-commands.html

343Advanced SQL Queries

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/mysql/en/innodb.html
http://dev.mysql.com/doc/mysql/en/transactional-commands.html

Column and Table Name Aliases
In some situations, it may be more convenient to refer to MySQL columns and tables

using different names. Let’s take the example of a database used by an airline’s online

booking system; this example actually came up in the SitePoint Forums when I was

first writing this book. The database structure can be found in airline.sql in the code

archive if you want to follow along.

To represent the flights offered by the airline, the database contains two tables:

flight and city. Each entry in the flight table represents an actual flight between

two cities—the origin and destination of the flight. Obviously, origincityid and

destinationcityid are columns in the flight table; other columns record inform-

ation like the date and time of the flight, the type of aircraft, the flight numbers, and

the various fares.

The city table contains a list of all the cities to which the airline flies. Thus, both

the origincityid and destinationcityid columns in the flight table will just

contain IDs referring to entries in the city table.

Now, consider these queries. To retrieve a list of flights with their origins, here’s

what you do:

mysql> SELECT flight.number, city.name

 -> FROM flight INNER JOIN city

 -> ON flight.origincityid = city.id;

+--------+-----------+

| number | name |

+--------+-----------+

| CP110 | Montreal |

| QF2026 | Melbourne |

| CP226 | Sydney |

| QF2027 | Sydney |

+--------+-----------+

To obtain a list of flights with their destinations, the query is very similar:

mysql> SELECT flight.number, city.name

 -> FROM flight INNER JOIN city

 -> ON flight.destinationcityid = city.id;

+--------+-----------+

Build Your Own Database Driven Web Site Using PHP & MySQL344

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

| number | name |

+--------+-----------+

| CP226 | Montreal |

| QF2027 | Melbourne |

| CP110 | Sydney |

| QF2026 | Sydney |

+--------+-----------+

Now, what if you wanted to list both the origin and destination of each flight with

a single query? That’s reasonable, right? Here’s a query you might try:

mysql> SELECT flight.number, city.name, city.name

 -> FROM flight INNER JOIN city

 -> ON flight.origincityid = city.id

 -> INNER JOIN city

 -> ON flight.destinationcityid = city.id;

ERROR 1066 (42000): Not unique table/alias: 'city'

Why does this fail? Have another look at the query, and this time focus on what it

actually says, rather than what you expect it to do. It tells MySQL to join the flight,

city, and city (yes, twice!) tables. This attempt at joining the same table twice is

what produces the error message you see above.

But even without this error, the query lacks sense. It attempts to list the flight

number, city name, and city name (twice again!) of all entries obtained, by matching

up the origincityid with the city id, and the destinationcityid with the city

id. In other words, the origincityid, destinationcityid, and city id must all be

equal! Even if this query worked, it would result in a list of all flights where the

origin and the destination are the same! Unless your airline offers scenic flights,

it’s unlikely there’ll be any entries that match this description.

What we need is a way to use the city table twice without confusing MySQL. We

want to be able to return two different entries from the city table—one for the origin

and one for the destination—for each result. If we had two copies of the table, one

called origin and one called destination, this would be much easier to do, but

why maintain two tables that contain the same list of cities? The solution is to give

the city table two different aliases (temporary names) for the purposes of this query.

If we follow the name of a table with AS alias in the FROM portion of the SELECT

query, we can give it a temporary name by which we can refer to it elsewhere in

345Advanced SQL Queries

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

the query. Here’s that first query again (to display flight numbers and origins only),

but this time we’ve given the city table an alias: origin.

mysql> SELECT flight.number, origin.name

 -> FROM flight INNER JOIN city AS origin

 -> ON flight.origincityid = origin.id;

+--------+-----------+

| number | name |

+--------+-----------+

| CP110 | Montreal |

| QF2026 | Melbourne |

| CP226 | Sydney |

| QF2027 | Sydney |

+--------+-----------+

The query still works the same way, and the results remain unchanged—but, for

long table names, it can save some typing. Consider, for example, if we had given

aliases of f and o to flight and origin, respectively. The query would be much

shorter as a result.

Let’s now return to our problem query. If we refer to the city table twice, using

different aliases, we can use a three-table join (in which two of the tables are actually

one and the same) to achieve the effect we want:

mysql> SELECT flight.number, origin.name, destination.name

 -> FROM flight INNER JOIN city AS origin

 -> ON flight.origincityid = origin.id

 -> INNER JOIN city AS destination

 -> ON flight.destinationcityid = destination.id;

+--------+-----------+-----------+

| number | name | name |

+--------+-----------+-----------+

| CP110 | Montreal | Sydney |

| QF2026 | Melbourne | Sydney |

| CP226 | Sydney | Montreal |

| QF2027 | Sydney | Melbourne |

+--------+-----------+-----------+

You can also define aliases for column names. We could use this, for example, to

differentiate the two name columns in our result table above:

Build Your Own Database Driven Web Site Using PHP & MySQL346

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysql> SELECT f.number, o.name AS origin, d.name AS destination

 -> FROM flight AS f INNER JOIN city AS o

 -> ON f.origincityid = o.id

 -> INNER JOIN city AS d

 -> ON f.destinationcityid = d.id;

+--------+-----------+-------------+

| number | origin | destination |

+--------+-----------+-------------+

| CP110 | Montreal | Sydney |

| QF2026 | Melbourne | Sydney |

| CP226 | Sydney | Montreal |

| QF2027 | Sydney | Melbourne |

+--------+-----------+-------------+

You could use this same technique to add a messaging system to the Internet Joke

Database web site, whereby one author could send a message to another author on

the site. The table of sent messages would reference the author table twice—once

for the sender of the message, and another for the recipient. If you’re keen for a fresh

challenge, try building this system!

GROUPing SELECT Results
In Chapter 2, you saw the following query, which tells you how many jokes are

stored in your joke table:

mysql> SELECT COUNT(*) FROM joke;

+----------+

| COUNT(*) |

+----------+

| 4 |

+----------+

The MySQL function COUNT used in this query belongs to a special class of functions

called summary functions or group-by functions, depending on where you look. A

complete list of these functions is provided in Chapter 11 of the MySQL Manual5

and in Appendix B. Unlike other functions, which affect each entry individually

in the result of the SELECT query, summary functions group together all the results

and return a single result. In the above example, for instance, COUNT returns the total

number of result rows.

5 http://dev.mysql.com/doc/mysql/en/group-by-functions.html

347Advanced SQL Queries

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/mysql/en/group-by-functions.html

Let’s say you wanted to display a list of authors along with the number of jokes they

have to their names. Your first instinct might be to retrieve a list of all the authors’

names and IDs, then use COUNT to count the number of results when you SELECT the

jokes with each author’s ID. The PHP code (presented without error handling, for

simplicity) would look a little like this:

// Get a list of all the authors

$authors = mysqli_query($link, 'SELECT name, id FROM author');

// Process each author

while ($author = mysqli_fetch_array($authors))

{

 $name = $author['name'];

 $id = $author['id'];

 // Get count of jokes attributed to this author

 $result = mysqli_query($link,

 "SELECT COUNT(*) AS numjokes FROM joke WHERE authorid='$id'");

 $row = mysqli_fetch_array($result);

 $numjokes = $row['numjokes'];

 // Display the author & number of jokes

 $output = "$name ($numjokes jokes)";

}

Note the use of AS in the second query above to give a friendlier name (numjokes)

to the result of COUNT(*).

This technique will work, but will require n+1 separate queries (where n is the

number of authors in the database). Having the number of queries depend on a

number of entries in the database is always worth avoiding, as a large number of

authors would make this script unreasonably slow and resource-intensive. Fortu-

nately, another advanced feature of SELECT comes to the rescue!

If you add a GROUP BY clause to a SELECT query, you can tell MySQL to group the

query results into sets, the results in each set sharing a common value in the specified

column. Summary functions like COUNT then operate on those groups—rather than

the entire result set as a whole. The next query, for example, lists the number of

jokes attributed to each author in the database:

Build Your Own Database Driven Web Site Using PHP & MySQL348

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysql> SELECT author.name, COUNT(*) AS numjokes

 -> FROM joke INNER JOIN author

 -> ON authorid = author.id

 -> GROUP BY authorid;

+---------------+----------+

| name | numjokes |

+----------------+----------+

| Kevin Yank | 3 |

| Jessica Graham | 1 |

+----------------+----------+

If you group the results by author ID (authorid), you receive a breakdown of results

for each author. Note that you could have specified GROUP BY author.id and

achieved the same result (since, as stipulated in the FROM clause, these columns

must be equal). GROUP BY author.name would also work in most cases, but, since

there’s always the possibility, however slight, that two different authors might have

the same name (in which case their results would be lumped together) it’s best to

stick to the ID columns, which are guaranteed to be unique for each author.

LEFT JOINs
You can see from the results above that Kevin Yank has three jokes to his name,

and Jessica Graham has one. What these results conceal is that there’s a third and

fourth author, Amy Mathieson and Michael Yates, who have no jokes. Since there

are no entries in the joke table with authorid values that match either author ID,

there will be no results that satisfy the ON clause in the query above, and they are

therefore excluded from the table of results.

About the only practical way to overcome this challenge with the tools we’ve seen

so far would be to add another column to the author table and simply store the

number of jokes attributed to each author in that column. Keeping that column up

to date, however, would be a real pain, because we’d have to remember to update

it every time a joke was added to, removed from, or changed (if, for example, the

value of authorid was changed) in the joke table. To keep it all synchronized, we’d

have to use LOCK TABLES whenever we made such changes, as well. Quite a mess,

to say the least!

349Advanced SQL Queries

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Besides the INNER JOINs we’ve used so far, MySQL provides another type of join.

Called a left join, it’s designed for just this type of situation. To understand how

left joins differ from standard joins, we must first recall how inner joins work.

Figure 11.1. Inner joins take all possible combinations of rows

As shown in Figure 11.1, MySQL performs a standard join of two tables by listing

all possible combinations of the rows of those tables. In a simple case, a standard

join of two tables with two rows apiece will contain four rows: row 1 of table 1 with

row 1 of table 2, row 1 of table 1 with row 2 of table 2, row 2 of table 1 with row 1

of table 2, and row 2 of table 1 with row 2 of table 2. With all of these result rows

calculated, MySQL then looks to the ON condition for guidance on which rows

should actually be kept (for example, those where the id column from table 1

matches the authorid column from table 2).

The reason why the above solution is unsuitable for our purposes is that we’d like

to also include rows in table 1 (that is, author) that don’t match any rows in table

2 (joke). A left join does exactly what we need—it forces a row to appear in the

results for each row in the first (left-hand) table, even if no matching entries are

Build Your Own Database Driven Web Site Using PHP & MySQL350

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

found in the second (right-hand) table. Such forced rows are given NULL values for

all of the columns in the right-hand table.

To perform a left join between two tables in MySQL, simply type LEFT JOIN instead

of INNER JOIN within the FROM clause. Here’s our revised query for listing authors

and the number of jokes to their credit:

mysql> SELECT author.name, COUNT(*) AS numjokes

 -> FROM author LEFT JOIN joke

 -> ON authorid = author.id

 -> GROUP BY author.id;

A couple of important points to note about this query:

■ We must type author LEFT JOIN joke, rather than joke LEFT JOIN author.

The order in which we list the tables to be joined is significant. A LEFT JOIN

will only force all rows from the table on the left to appear in the results. In this

example, we want every row in the author table to appear in the results.

■ We must use GROUP BY author.id, rather than GROUP BY authorid.

author.id is the id field of the author table, whereas authorid is the authorid

field of the joke table. In all previous SELECT queries, our join has guaranteed

that these would always have matching values, but when the LEFT JOIN creates

a forced row based on a row in the author table that has no matching row in the

joke table, it assigns a value of NULL to all the columns in the joke table. This

includes the authorid field. If we used GROUP BY authorid, the query would

group all our authors with no jokes together, since they all share an authorid

value of NULL following the LEFT JOIN.6

6 You may find you have to read this a few times to understand it. That’s because this is by far the subtlest

aspect of the SQL language that you’ll find in this book.

351Advanced SQL Queries

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

If you type that query just right, you should achieve these results:

+----------------+----------+

| name | numjokes |

+----------------+----------+

| Kevin Yank | 3 |

| Jessica Graham | 1 |

| Michael Yates | 1 |

| Amy Mathieson | 1 |

+----------------+----------+

Wait just a minute! Suddenly Amy Mathieson and Michael Yates have one joke?

That can’t be right! In fact, it is—but only because the query is still wrong. COUNT(*)

counts the number of rows returned for each author. If we look at the ungrouped

results of the LEFT JOIN, we can see what’s happened:

mysql> SELECT author.name, joke.id AS jokeid

 -> FROM author LEFT JOIN joke

 -> ON authorid = author.id;

+----------------+--------+

| name | jokeid |

+----------------+--------+

| Kevin Yank | 1 |

| Kevin Yank | 2 |

| Kevin Yank | 4 |

| Jessica Graham | 3 |

| Michael Yates | NULL |

| Amy Mathieson | NULL |

+----------------+--------+

See? Amy Mathieson and Michael Yates do have rows—the rows are forced because

there are no matching rows in the right-hand table of the LEFT JOIN (joke). The

fact that the joke ID value is NULL has no affect on COUNT(*)—it still counts it as a

row. If, instead of *, you specify an actual column name (say, joke.id) for the COUNT

function to look at, it will ignore NULL values in that column, and give us the count

we want:

mysql> SELECT author.name, COUNT(joke.id) AS numjokes

 -> FROM author LEFT JOIN joke

 -> ON authorid = author.id

 -> GROUP BY author.id;

Build Your Own Database Driven Web Site Using PHP & MySQL352

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

+----------------+----------+

| name | numjokes |

+----------------+----------+

| Kevin Yank | 3 |

| Jessica Graham | 1 |

| Michael Yates | 0 |

| Amy Mathieson | 0 |

+----------------+----------+

Limiting Results with HAVING
What if we wanted a list of only those authors that had no jokes to their name? Once

again, let’s look at the query that many developers would try first:

mysql> SELECT author.name, COUNT(joke.id) AS numjokes

 -> FROM author LEFT JOIN joke

 -> ON authorid = author.id

 -> WHERE numjokes = 0

 -> GROUP BY author.id;

ERROR 1054: Unknown column 'numjokes' in 'where clause'

By now, you’re probably unfazed that it failed to work as expected. The reason why

WHERE numjokes = 0 caused an error has to do with the way MySQL processes

result sets. First, MySQL produces the raw, combined list of authors and jokes from

the author and joke tables. Next, it processes the ON portion of the FROM clause and

the WHERE clause so that only the relevant rows in the list are returned (in this case,

rows that match authors with their jokes, and which have a numjokes value of 0).

Finally, MySQL processes the GROUP BY clause by grouping the results according

to their authorid, COUNTing the number of entries in each group that have non-NULL

joke.id values, and producing the numjokes column as a result.

Notice that the numjokes column is actually created after the GROUP BY clause is

processed, and that happens only after the WHERE clause does its stuff! Thus the error

message above—the WHERE clause is looking for a numjokes column that is yet to

exist.

If you wanted to exclude jokes that contained the word “chicken” from the count,

you could use the WHERE clause without a problem, because that exclusion doesn’t

rely on a value that the GROUP BY clause is responsible for producing. Conditions

353Advanced SQL Queries

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

that affect the results after grouping takes place, however, must appear in a special

HAVING clause. Here’s the corrected query:

mysql> SELECT author.name, COUNT(joke.id) AS numjokes

 -> FROM author LEFT JOIN joke

 -> ON authorid = author.id

 -> GROUP BY author.id

 -> HAVING numjokes = 0;

+---------------+----------+

| name | numjokes |

+---------------+----------+

| Michael Yates | 0 |

| Amy Mathieson | 0 |

+---------------+----------+

Some conditions work both in the HAVING and the WHERE clauses. For example, if

we wanted to exclude a particular author by name, we could do this by using au-

thor.name != 'Author Name' in either the WHERE or the HAVING clause; that’s be-

cause, regardless of whether you filter out the author before or after you group the

results, the same results are returned. In such cases, it’s always best to use the WHERE

clause, because MySQL is better at optimizing such queries internally so they happen

faster.

Further Reading
In this chapter, you rounded out your knowledge of Structured Query Language

(SQL), as supported by MySQL. We focused predominantly on features of SELECT

that allow you to view information stored in a database with an unprecedented

level of flexibility and power. With judicious use of the advanced features of SELECT,

you can have MySQL do what it does best—and lighten the load on PHP in the

process.

There are still a few isolated query types that we’ve yet to seen, and MySQL offers

a whole library of built-in functions to do tasks like calculate dates and format text

strings (see Appendix B). To become truly proficient with MySQL, you should also

have a firm grasp on the various column types offered by MySQL. The TIMESTAMP

type, for example, can be a real time-saver (no pun intended). All of these are fully

documented in the MySQL Manual, and briefly covered in Appendix C.

Build Your Own Database Driven Web Site Using PHP & MySQL354

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

For more detailed coverage of the features of SQL covered in this chapter—and a

whole lot more that wasn’t—I highly recommend the book Simply SQL7 by Rudy

Limeback (Melbourne: SitePoint, 2008).

7 http://www.sitepoint.com/books/sql1/

355Advanced SQL Queries

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.sitepoint.com/books/sql1/

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Chapter12
Binary Data
All the examples of database driven web sites we’ve seen so far have dealt with

sites based around textual data. Jokes, authors, categories … all of these elements

can be fully represented with strings of text. But, what if you ran, say, an online

digital photo gallery to which people could upload pictures taken with digital

cameras? For this idea to work, we need to be able to let visitors to our site upload

their photos, and we need to be able to keep track of them.

In this chapter, you will develop a system whereby users can upload binary files

(images, documents … whatever!) and have them stored on your web server for

display on your site. There are several techniques you need to learn on the way,

though, and I’ll cover all of these in this chapter: working with files in PHP, handling

uploaded files in PHP, and storing and retrieving binary data in MySQL.

As we learn to juggle files with PHP, we’ll also take the opportunity to relieve some

of the load on your web server with the help of semi-dynamic pages.

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Semi-dynamic Pages
As the owner of a successful—or soon-to-be so—web site, site traffic is probably

worth encouraging. Unfortunately, high site traffic is just the kind of thing that a

web server administrator dreads—especially when that site’s primarily composed

of dynamically generated, database driven pages. Such pages take a great deal more

horsepower from the computer that runs the web server software than do plain, old

HTML files, because every page request is like a miniature program that runs on

that computer.

While some pages of a database driven site must always display current-to-the-

second data culled from the database, others do not. Consider the front page of a

web site like sitepoint.com. Typically, it presents a sort of digest of what’s new and

fresh on the site. But how often does that information actually change? Once an

hour? Once a day? And how important is it that visitors to your site see those changes

the instant they occur? Would your site really suffer if changes took effect after a

slight delay?

By converting high-traffic dynamic pages into semi-dynamic equivalents—static

pages that are regenerated dynamically at regular intervals to freshen their con-

tent—you can significantly reduce the toll that the database driven components of

your site take on your web server’s performance.

Say you have a controller script, index.php that uses a PHP template to generate

your front page, which provides a summary of new content on your site. Through

examination of server logs, you’ll probably find that this is one of the most requested

pages on your site. If you ask yourself some of the questions above, you’ll realize

that there’s no need to dynamically generate this page for every request. As long as

it’s updated every time new content is added to your site, it’ll be as dynamic as it

needs to be. Instead of using a controller script to handle every request for the front

page of your site, you can use the PHP code instead to generate a static snapshot of

the PHP template’s output and put this snapshot online, in place of the dynamic

version, as index.html.

This little trick will require some reading, writing, and juggling of files. PHP is

perfectly capable of accomplishing this task, but we’ve yet to see the functions we’ll

need:

Build Your Own Database Driven Web Site Using PHP & MySQL358

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

file_get_contents

This function opens a file and reads the contents, returning them in the form

of a PHP string. The file can be stored on the server’s hard disk, or PHP can load

it from a URL just like a web browser would. If an error occurs, the function

returns FALSE instead.

file_put_contents

This function opens a file and writes the specified data into it. You can option-

ally specify settings like whether the data should be added to the end of the

existing file, rather than replacing the file completely (the default).1

file_exists

This function checks if a file with a specific name exists or not. If the file exists,

the function returns TRUE; otherwise, it returns FALSE.

copy

This function performs a run-of-the-mill file copy operation.

unlink

This function deletes a file from the hard disk.

Do you see where we’re headed? If not, I assure you—you will in a moment.

Let’s begin with a dead simple controller script and template for displaying a list

of the three most recent jokes in the databases of the Internet Joke Database, as we

last left it in Chapter 9:

chapter12/recentjokes/controller.php

<?php

include_once $_SERVER['DOCUMENT_ROOT'] . '/includes/db.inc.php';

$result = mysqli_query($link,

 'SELECT id, joketext FROM joke

 ORDER BY jokedate DESC

 LIMIT 3');

if (!$result)

{

1 For full details of the available options, check out the PHP Manual [http://php.net/file_put_contents].

359Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://php.net/file_put_contents

 $error = 'Error fetching jokes: ' . mysqli_error($link);

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

}

while ($row = mysqli_fetch_array($result))

{

 $jokes[] = array('text' => $row['joketext']);

}

include 'jokes.html.php';

?>

chapter12/recentjokes/jokes.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Recent Jokes</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8"/>

<link rel="canonical" href="/recentjokes/"/>

 </head>

 <body>

 <p>Here are the most recent jokes in the database:</p>

 <?php foreach ($jokes as $joke): ?>

 <div>

 <?php bbcodeout($joke['text']); ?>

 </div>

 <?php endforeach; ?>

 </body>

</html>

Normally, you would name the controller script index.php, so that a browser request

for http://www.example.com/recentjokes/ would run the controller script and build

the list of jokes on-the-fly. However, the controller is named controller.php in this

case. A browser that knew this file name could still request the controller, but as

Build Your Own Database Driven Web Site Using PHP & MySQL360

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

indicated by the <link rel="canonical"/>
2 tag in the jokes.html.php template, we

still expect most visitors to access the page as http://www.example.com/recentjokes/.

Instead of triggering the controller, however, browsers that request this URL will

hit a static version of the page that’s been prepared in advance.

To generate this static version, we’ll write another script: generate.php. It will be

the responsibility of this script to load controller.php—the dynamic version of your

front page, as a web browser would, then to write an up-to-date static snapshot of

the page as index.html. If anything goes wrong in this process, you want to avoid

the potential destruction of the existing version of index.html, so we’ll make this

script write the new static version into a temporary file (tempindex.html), then copy

it over index.html if all is well.

We start out by setting some PHP variables to configure the URL of the PHP script

we wish to load, the temporary filename to use in the process, and the name of the

static page we wish to create:

chapter12/recentjokes/generate.php (excerpt)

<?php

$srcurl = 'http://localhost/recentjokes/controller.php';

$tempfilename = $_SERVER['DOCUMENT_ROOT'] .

 '/recentjokes/tempindex.html';

$targetfilename = $_SERVER['DOCUMENT_ROOT'] .

 '/recentjokes/index.html';

$srcurl Must Be a URL

Resist the temptation to set $srcurl to the filename of controller.php on your web

server. In order for this script to retrieve the page produced by the controller.php

script, it must request the script using a URL that points to your web server. If

you pointed the script directly at the file, it would receive the code of the

controller.php script itself—rather than the HTML output it produces.

Now, to do the work. We start out by deleting the temporary file, in case it was

previously left lying around by a failed execution of this script. We use file_exists

to check if the file exists, then unlink to delete it if it does:

2 For a full description of the <link rel="canonical"/> tag, check out the Google Webmaster

Central Blog [http://googlewebmastercentral.blogspot.com/2009/02/specify-your-canonical.html].

361Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://googlewebmastercentral.blogspot.com/2009/02/specify-your-canonical.html
http://googlewebmastercentral.blogspot.com/2009/02/specify-your-canonical.html

chapter12/recentjokes/generate.php (excerpt)

if (file_exists($tempfilename))

{

 unlink($tempfilename);

}

Now we can load the dynamic page (controller.php) by requesting its URL with

file_get_contents. Since we’re requesting the file as a URL, rather than directly

using its file name, the PHP script will be processed by the web server before we

receive it, so what we’ll end up with is essentially a static HTML page:

chapter12/recentjokes/generate.php (excerpt)

$html = file_get_contents($srcurl);

if (!$html)

{

 $error = "Unable to load $srcurl. Static page update aborted!";

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

}

With the page contents tucked away in the $html variable, we now want to write

them into a static HTML file. The file_put_contents function makes this a piece

of cake:

chapter12/recentjokes/generate.php (excerpt)

if (!file_put_contents($tempfilename, $html))

{

 $error =

 "Unable to write $tempfilename. Static page update aborted!";

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

}

With the static page written into a temporary file, we now want to copy the temporary

file over the previous version of the static file using copy. We can then delete the

temporary file with unlink:

Build Your Own Database Driven Web Site Using PHP & MySQL362

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter12/recentjokes/generate.php (excerpt)

copy($tempfilename, $targetfilename);

unlink($tempfilename);

?>

Now, whenever generate.php is executed, a fresh copy of index.html will be generated

from controller.php. Go ahead and request generate.php with your browser, then load

the recentjokes directory (for example, http://localhost/recentjokes/). You should

see the contents of the generated index.html file.

Errors Due to File Permissions

Particularly on Mac OS X and Linux servers, this script could be tripped up if it

has insufficient privileges to copy and delete files in this directory on your server.

If generate.php outputs errors that indicate this, you’ll need to make the directory

containing these files writable by your web server. Usually, this can be done with

a simple chmod command:

chmod 777 /path/to/recentjokes

Check with your web host if you need help setting permissions to make a directory

PHP-writable on your site.

Of course, it would be a pain to have to manually request the generate.php script

whenever the content of your site changes. The easiest way to automate this process

is to include the generate.php script from within the code of your site’s content

management system whenever a joke is added, updated, or removed from the site.

If a page is quite complex, it may be difficult to find all the right places within your

content management system to regenerate its static version. Alternatively, you may

simply wish to set up your server to run generate.php at regular intervals—say every

hour. Under Windows, you can use the Task Scheduler to run php.exe (a standalone

version of PHP included with the Windows PHP distribution) automatically every

hour. Just create a batch file called generate.bat that contains this line of text:

chapter12/recentjokes/generate.bat

@C:\PHP\php.exe generate.php

363Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Adjust the paths and filenames as necessary, then set up Task Scheduler to run

generate.bat every hour. Done!

Under Mac OS X or Linux, you can do a similar thing with cron—a system-level

utility that lets you define tasks to be run at regular intervals. Type man crontab at

your system’s Terminal prompt to read about how you can set up tasks for cron.

The task you’ll set cron to run will be very similar to the Windows task discussed

above. However, the standalone version of PHP that you’ll need lacks the PHP

Apache module we compiled way back in Chapter 1. You’ll need to compile it

separately, from the same package we used to compile the Apache module. Instruc-

tions are provided with the package and on the PHP web site,3 but feel free to post

in the SitePoint Forums if you need help!

For experienced cron users in a hurry, here’s what the line in your crontab file should

look like:

0 0-23 * * * php /path/to/generate.php > /dev/null

Handling File Uploads
Okay, we can now juggle files we’ve created ourselves, but the next piece of the

puzzle is to accept files uploaded by visitors to your site, and handle them just as

deftly.

We’ll start with the basics: let’s write an HTML form that allows users to upload

files. HTML makes this quite easy with its <input type="file"/> tag. By default,

however, only the name of the file selected by the user is sent. To have the file itself

submitted with the form data, we need to add enctype="multipart/form-data"

to the <form> tag:

<form action="index.php" method="post"

enctype="multipart/form-data">

 <div><label id="upload">Select file to upload:

 <input type="file" id="upload" name="upload"/></label></div>

 <div>

 <input type="hidden" name="action" value="upload"/>

3 http://www.php.net/

Build Your Own Database Driven Web Site Using PHP & MySQL364

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.php.net/

 <input type="submit" value="Submit"/>

 </div>

</form>

As we can see, a PHP script (index.php, in this case) will handle the data submitted

with the form above. Information about uploaded files appears in a array called

$_FILES that’s automatically created by PHP. As you’d expect, an entry in this array

called $_FILES['upload'] (from the name attribute of the <input/> tag) will contain

information about the file uploaded in this example. However, instead of storing

the contents of the uploaded file, $_FILES['upload'] contains yet another array.

We therefore use a second set of square brackets to select the information we want:

$_FILES['upload']['tmp_name']

Provides the name of the file stored on the web server’s hard disk in the system

temporary file directory, unless another directory has been specified using the

upload_tmp_dir setting in your php.ini file. This file is only kept as long as the

PHP script responsible for handling the form submission is running. So, if you

want to use the uploaded file later on (for example, store it for display on the

site), you need to make a copy of it elsewhere. To do this, use the copy function

described in the previous section.

$_FILES['upload']['name']

Provides the name of the file on the client machine before it was submitted. If

you make a permanent copy of the temporary file, you might want to give it its

original name instead of the automatically-generated temporary filename that’s

described above.

$_FILES['upload']['size']

Provides the size (in bytes) of the file.

$_FILES['upload']['type']

Provides the MIME type of the file (sometimes referred to as file type or content

type, an identifier used to describe the file format, for example, text/plain,

image/gif, and so on).

Remember, 'upload' is just the name attribute of the <input/> tag that submitted

the file, so the actual array index will depend on that attribute.

365Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

You can use these variables to decide whether to accept or reject an uploaded file.

For example, in a photo gallery we would only really be interested in JPEG and

possibly GIF and PNG files. These files have MIME types of image/jpeg, image/gif,

and image/png respectively, but to cater to differences between browsers,4 you

should use regular expressions to validate the uploaded file’s type:

if (preg_match('/^image\/p?jpeg$/i', $_FILES['upload']['type']) or

 preg_match('/^image\/gif$/i', $_FILES['upload']['type']) or

 preg_match('/^image\/(x-)?png$/i', $_FILES['upload']['type']))

{

 ⋮ Handle the file…
}

else

{

 $error = 'Please submit a JPEG, GIF, or PNG image file.';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

}

See Chapter 8 for help with regular expression syntax.

While you can use a similar technique to disallow files that are too large (by

checking the $_FILES['upload']['size'] variable), I’d advise against it. Before

this value can be checked, the file is already uploaded and saved in the temporary

directory. If you try to reject files because you have limited disk space and/or

bandwidth, the fact that large files can still be uploaded, even though they’re deleted

almost immediately, may be a problem for you.

Instead, you can tell PHP in advance the maximum file size you wish to accept.

There are two ways to do this. The first is to adjust the upload_max_filesize setting

in your php.ini file. The default value is 2MB, so if you want to accept uploads larger

than that, you’ll immediately need to change that value.5

4 The exact MIME type depends on the browser in use. Internet Explorer uses image/pjpeg for JPEG

images and image/x-png for PNG images, while Firefox and other browsers use image/jpeg and

image/png respectively.
5 A second restriction, affecting the total size of form submissions, is enforced by the post_max_size

setting in php.ini. Its default value is 8MB, so if you want to accept really big uploads, you’ll need to

modify that setting, too.

Build Your Own Database Driven Web Site Using PHP & MySQL366

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The second method is to include a hidden <input/> field in your form with the

name MAX_FILE_SIZE, and the maximum file size you want to accept with this form

as its value. For security reasons, this value can’t exceed the upload_max_filesize

setting in your php.ini, but it does provide a way for you to accept different maximum

sizes on different pages. The following form, for example, will allow uploads of up

to 1 kilobyte (1024 bytes):

<form action="upload.php" method="post"

 enctype="multipart/form-data">

 <p><label id="upload">Select file to upload:

<input type="hidden" name="MAX_FILE_SIZE" value="1024"/>

 <input type="file" id="upload" name="upload"/></label></p>

 <p>

 <input type="hidden" name="action" value="upload"/>

 <input type="submit" value="Submit"/>

 </p>

</form>

Note that the hidden MAX_FILE_SIZE field must come before any <input

type="file"/> tags in the form, so that PHP is apprised of this restriction before it

receives any submitted files. Note also that this restriction can easily be circumvented

by a malicious user who simply writes his or her own form without the

MAX_FILE_SIZE field. For fail-safe security against large file uploads, use the up-

load_max_filesize setting in php.ini.

Assigning Unique Filenames
As I explained above, to keep an uploaded file, you need to copy it to another dir-

ectory. And while you have access to the name of each uploaded file with its

$_FILE['upload']['name'] variable, you have no guarantee that two files with the

same name will not be uploaded. In such a case, storage of the file with its original

name may result in newer uploads overwriting older ones.

For this reason, you’ll usually want to adopt a scheme that allows you to assign a

unique filename to every uploaded file. Using the system time (which you can access

using the PHP time function), you can easily produce a name based on the number

of seconds since January 1, 1970. But what if two files happen to be uploaded

within one second of each other? To help guard against this possibility, we’ll also

use the client’s IP address (automatically stored in $_SERVER['REMOTE_ADDR'] by

PHP) in the filename. Since you’re unlikely to receive two files from the same IP

367Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

address within one second of each other, this is an acceptable solution for most

purposes:

// Pick a file extension

if (preg_match('/^image\/p?jpeg$/i', $_FILES['upload']['type']))

{

 $ext = '.jpg';

}

else if (preg_match('/^image\/gif$/i', $_FILES['upload']['type']))

{

 $ext = '.gif';

}

else if (preg_match('/^image\/(x-)?png$/i',

 $_FILES['upload']['type']))

{

 $ext = '.png';

}

else

{

 $ext = '.unknown';

}

// The complete path/filename

$filename = 'C:/uploads/' . time() . $_SERVER['REMOTE_ADDR'] . $ext;

// Copy the file (if it is deemed safe)

if (!is_uploaded_file($_FILES['upload']['tmp_name']) or

 !copy($_FILES['upload']['tmp_name'], $filename))

{

 $error = "Could not save file as $filename!";

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

}

Important to note in the above code is the use of the is_uploaded_file function

to check if the file is “safe.” All this function does is return TRUE if the filename it’s

passed as a parameter ($_FILES['upload']['tmp_name'] in this case) was in fact

uploaded as part of a form submission. If a malicious user loaded this script and

manually specified a filename such as /etc/passwd (the system password store on

Linux servers), and you had failed to use is_uploaded_file to check that

$_FILES['upload'] really referred to an uploaded file, your script might be used

to copy sensitive files on your server into a directory from which they would become

publicly accessible over the Web! Thus, before you ever trust a PHP variable that

Build Your Own Database Driven Web Site Using PHP & MySQL368

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

you expect to contain the filename of an uploaded file, be sure to use

is_uploaded_file to check it.

A second trick I have used in the above code is to combine is_uploaded_file and

copy together as the condition of an if statement. If the result of

is_uploaded_file($_FILES['upload']['tmp_name']) is FALSE (making

!is_uploaded_file($_FILES['upload']['tmp_name']) TRUE), PHP will know

immediately that the entire condition will be TRUE when it sees the or operator

separating the two function calls. To save time, it will refrain from bothering to run

copy, so the file won’t be copied when is_uploaded_file returns FALSE. On the

other hand, if is_uploaded_file returns TRUE, PHP goes ahead and copies the file.

The result of copy then determines whether or not an error message is displayed.

Similarly, if we’d used the and operator instead of or, a FALSE result in the first part

of the condition would cause PHP to skip evaluating the second part. This charac-

teristic of if statements is known as short-circuit evaluation, and works in other

conditional structures such as while and for loops, too.

Finally, note in the above script that I’ve used UNIX-style forward slashes (/) in the

path, despite it being a Windows path. If I’d used backslashes I’d have had to replace

them with double-backslashes (\\) to avoid PHP interpreting them as escaped

characters. However, PHP is smart enough to convert forward slashes in a file path

to backslashes when it’s running on a Windows system. Since we can also use single

slashes (/) as usual on non-Windows systems, adopting forward slashes in general

for file paths in PHP will make your scripts more portable.

Recording Uploaded Files in the Database
So, you’ve created a system whereby visitors can upload JPEG, GIF, and PNG images

and have them saved on your server … but this book was supposed to be about

database driven web sites—right? If we used the system as it stands now, the sub-

mitted images would need to be collected out of the folder in which they’re saved,

then added to the web site by hand! If you think back to the end of Chapter 9, when

I suggested you develop a system that enabled site visitors to submit jokes and have

them stored in the database ready for quick approval by a content administrator,

you’ll know there must be a better way!

MySQL has several column types that allow you to store binary data. In database

parlance, these column types let us store BLOBs (Binary Large OBjects). However,

369Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

the storage of potentially large files in a relational database is often a bad idea. While

there is convenience in having all the data located in one place, large files lead to

large databases, and large databases lead to reduced performance and much larger

backup files.

The best alternative is usually to store the filenames in the database. As long as you

remember to delete files when you delete their corresponding entries in the database,

everything should work just the way you need it to. Since we’ve seen all the SQL

code involved in this time and again, I’ll leave the details to you. As usual, the

SitePoint Forum community is there to offer a helping hand if you need it.

In cases where you’re dealing with relatively small files—for example, head shots

for use in a staff directory—the storage of data in MySQL is quite practical. In the

rest of this chapter, I’ll demonstrate how to use PHP to store binary files uploaded

over the Web in a MySQL database, and how to retrieve those files for download

or display.

Binary Column Types
As with most database driven web applications, the first thing to consider is the

layout of the database. To keep this example separate from the Internet Joke Database,

I recommend creating a new database for it:

mysql> CREATE DATABASE filestore;

If you lack this freedom (for example, if you’re working on a hosted MySQL server

where you’re only allowed a single database), go ahead and stick with your existing

database.

For each of the files that’s stored in our database, we’ll store the filename, the MIME

type (for example, image/jpeg for JPEG image files), a short description of the file,

and the binary data itself. Here’s the CREATE TABLE statement to create the table:

mysql> CREATE TABLE filestore (

 -> id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

 -> filename VARCHAR(255) NOT NULL,

 -> mimetype VARCHAR(50) NOT NULL,

 -> description VARCHAR(255) NOT NULL,

 -> filedata MEDIUMBLOB

 ->) DEFAULT CHARACTER SET utf8;

Build Your Own Database Driven Web Site Using PHP & MySQL370

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

This code is also provided as filestore.sql in the code archive for this chapter.

Most of this syntax should be familiar to you; however, the MEDIUMBLOB column

type is new. If you consult the MySQL Column Type Reference in Appendix C,

you’ll find that MEDIUMBLOB is the same as MEDIUMTEXT, except that it performs case-

sensitive searches and sorts. In fact, from MySQL’s point of view, there’s no differ-

ence between binary data and blocks of text—both are just long strings of bytes to

be stored in the database. MySQL just applies a bunch of extra rules to text column

types to ensure that the expected sorting behavior and character encoding conver-

sions are performed transparently.

Aside from the increased performance you gain from avoiding these extra rules,

MySQL provides BLOB column types like MEDIUMBLOB to support situations in

which you might need to compare the contents of one binary file with another. In

such cases, you’d want the comparison to be case sensitive, as binary files may use

byte patterns that are equivalent to alphabetical letters; for example, you’d want to

distinguish the byte pattern that represents “A” from that which represents “a,”

which a MEDIUMTEXT column would consider equal.

MEDIUMBLOB is one of several BLOB column types designed to store variable-length

binary data. These column types differ from one another only in two aspects: the

maximum size of the data a particular value in the column can contain, and the

number of bytes used to store the length of each data value. The different binary

column types are listed with these details in Table 12.1.

Table 12.1. Binary Column Types in MySQL

Space required per entryMaximum sizeColumn type

Data size + 1 byte255BTINYBLOB

Data size + 2 bytes65KBBLOB

Data size + 3 bytes16.7MBMEDIUMBLOB

Data size + 4 bytes4.3GBLONGBLOB

As you can see, the table we created above will be able to store files up to 16.7MB

in size. If you think you’ll need larger files, you can bump the filedata column up

to a LONGBLOB. Each file will occupy one more byte in the database, because MySQL

will require that extra byte in order to record larger file sizes, but you’ll be able to

371Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

store files up to 4.3GB in size—assuming that your operating system allows files of

this size!

If you took my advice to create this table in a separate database, you’ll need a new

db.inc.php file to enable this example to connect to that database:

chapter12/filestore/db.inc.php

<?php

$link = mysqli_connect('localhost', 'root', 'password');

if (!$link)

{

 $error = 'Unable to connect to the database server.';

 include 'error.html.php';

 exit();

}

if (!mysqli_set_charset($link, 'utf8'))

{

 $output = 'Unable to set database connection encoding.';

 include 'output.html.php';

 exit();

}

if (!mysqli_select_db($link, 'filestore'))

{

 $error = 'Unable to locate the filestore database.';

 include 'error.html.php';

 exit();

}

?>

Storing Files
With the database ready and waiting, the next step is to create a PHP controller

script and template that lets users upload files and store them in the database. You

can hold off copying the code in the next two sections—I’ll present the completed

code at the end of the chapter. Here’s the code for the form—there should be no

surprises here:

Build Your Own Database Driven Web Site Using PHP & MySQL372

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

chapter12/filestore/files.html.php (excerpt)

<form action="" method="post" enctype="multipart/form-data">

 <div>

 <label for="upload">Upload File:

 <input type="file" id="upload" name="upload"/></label>

 </div>

 <div>

 <label for="desc">File Description:

 <input type="text" id="desc" name="desc"

 maxlength="255"/></label>

 </div>

 <div>

 <input type="hidden" name="action" value="upload"/>

 <input type="submit" value="Upload"/>

 </div>

</form>

As you should already know from your reading in this chapter, this form will create

a temporary file on the server and store the name of that file in

$_FILES['upload']['tmp_name']. It also creates $_FILES['upload']['name'] (the

original name of the file), $_FILES['upload']['size'] (the file size in bytes), and

$_FILES['upload']['type'] (the MIME type of the file).

Inserting the file into the database is a relatively straightforward process: read the

data from the temporary file into a PHP variable, then use that variable in a standard

MySQL INSERT query. Again, we make use of is_uploaded_file to make sure the

filename we use does, in fact, correspond to an uploaded file before we do any of

this. Here’s the code:

chapter12/filestore/index.php (excerpt)

<?php

include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/magicquotes.inc.php';

if (isset($_POST['action']) and $_POST['action'] == 'upload')

{

 // Bail out if the file isn't really an upload

 if (!is_uploaded_file($_FILES['upload']['tmp_name']))

 {

 $error = 'There was no file uploaded!';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

373Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 exit();

 }

 $uploadfile = $_FILES['upload']['tmp_name'];

 $uploadname = $_FILES['upload']['name'];

 $uploadtype = $_FILES['upload']['type'];

 $uploaddesc = $_POST['desc'];

 $uploaddata = file_get_contents($uploadfile);

 include 'db.inc.php';

 // Prepare user-submitted values for safe database insert

 $uploadname = mysqli_real_escape_string($link, $uploadname);

 $uploadtype = mysqli_real_escape_string($link, $uploadtype);

 $uploaddesc = mysqli_real_escape_string($link, $uploaddesc);

 $uploaddata = mysqli_real_escape_string($link, $uploaddata);

 $sql = "INSERT INTO filestore SET

 filename = '$uploadname',

 mimetype = '$uploadtype',

 description = '$uploaddesc',

 filedata = '$uploaddata'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Database error storing file!';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

Viewing Stored Files
Armed with the code that accepts file uploads and stores them in a database, you’re

halfway home. But you still need to be able to pull that data out of the database to

use it. For our purposes, this will mean sending the file to a requesting browser.

Once again, this turns out to be a relatively straightforward process. We simply re-

trieve the data for the requested file from the database and send it to the web browser.

The only tricky part is to send the browser information about the file:

Build Your Own Database Driven Web Site Using PHP & MySQL374

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

the file size so that the browser can display accurate download progress in-

formation to the user

the file type so that the browser knows what to do with the data it re-

ceives—that is, display it as a web page, a text file, an image, or

offer to save the file

the filename without specifying this, the browser will assume all files

downloaded from our script have the same filename as our

controller script

All this information is sent to the browser using HTTP headers—lines of information

that precede the transmission of the file data itself. As we’ve already seen, sending

HTTP headers via PHP is quite easy using the header function, but as headers must

be sent before plain content, any calls to this function must come before anything

is outputted by your script.

The file size is specified with a Content-length header:

chapter12/filestore/index.php (excerpt)

 header('Content-length: ' . strlen($filedata));

strlen is a built-in PHP function that returns the length of the given string. Since

binary data is just a string of bytes as far as PHP is concerned, you can use this

function to count the length (in bytes) of the file data.

The file type is specified with a Content-type header:

chapter12/filestore/index.php (excerpt)

 header("Content-type: $mimetype");

Finally, the filename is specified with a Content-disposition header:

 header("Content-disposition: inline; filename=$filename");

You could use the code below to fetch a file with a given ID from the database, and

send it to the browser:

375Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 include 'db.inc.php';

 $id = mysqli_real_escape_string($link, $_GET['id']);

 $sql = "SELECT filename, mimetype, filedata

 FROM filestore

 WHERE id = '$id'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Database error fetching requested file.';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

 }

 $file = mysqli_fetch_array($result);

 if (!$file)

 {

 $error = 'File with specified ID not found in the database!';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

 }

 $filename = $file['filename'];

 $mimetype = $file['mimetype'];

 $filedata = $file['filedata'];

 header("Content-disposition: inline; filename=$filename");

 header("Content-type: $mimetype");

 header('Content-length: ' . strlen($filedata));

 echo $filedata;

 exit();

One final trick we can add to this code is to allow a file to be downloaded, instead

of viewed, if the user so desires. Web standards suggest that the way to do this is

to send a Content-disposition of attachment instead of inline. Here’s the modified

code. It checks if $_GET['action'] equals 'download', which would indicate that

this special file type should be sent:

 include 'db.inc.php';

 $id = mysqli_real_escape_string($link, $_GET['id']);

Build Your Own Database Driven Web Site Using PHP & MySQL376

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 $sql = "SELECT filename, mimetype, filedata

 FROM filestore

 WHERE id = '$id'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Database error fetching requested file.';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

 }

 $file = mysqli_fetch_array($result);

 if (!$file)

 {

 $error = 'File with specified ID not found in the database!';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

 }

 $filename = $file['filename'];

 $mimetype = $file['mimetype'];

 $filedata = $file['filedata'];

$disposition = 'inline';

 if ($_GET['action'] == 'download')

 {

 $disposition = 'attachment';

 }

 header("Content-disposition: $disposition; filename=$filename");

 header("Content-type: $mimetype");

 header('Content-length: ' . strlen($filedata));

 echo $filedata;

 exit();

Unfortunately, many older browsers generally ignore the Content-disposition

header, deciding what to do with a file based on the Content-type header in-

stead—especially when it comes after the Content-disposition header.

To achieve the desired download behavior in as many browsers as possible, make

sure the Content-type header comes before the Content-disposition header, and

377Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

replace the file’s actual MIME type with a generic Content-type of application/oct-

et-stream (which is required to force a download in older browsers):

chapter12/filestore/index.php (excerpt)

 include 'db.inc.php';

 $id = mysqli_real_escape_string($link, $_GET['id']);

 $sql = "SELECT filename, mimetype, filedata

 FROM filestore

 WHERE id = '$id'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Database error fetching requested file.';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

 }

 $file = mysqli_fetch_array($result);

 if (!$file)

 {

 $error = 'File with specified ID not found in the database!';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

 }

 $filename = $file['filename'];

 $mimetype = $file['mimetype'];

 $filedata = $file['filedata'];

 $disposition = 'inline';

 if ($_GET['action'] == 'download')

 {

$mimetype = 'application/octet-stream';

 $disposition = 'attachment';

 }

// Content-type must come before Content-disposition

 header("Content-type: $mimetype");

 header("Content-disposition: $disposition; filename=$filename");

 header('Content-length: ' . strlen($filedata));

Build Your Own Database Driven Web Site Using PHP & MySQL378

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 echo $filedata;

 exit();

Putting It All Together
Below, you’ll find the complete file store example. It combines all the elements

given above with some simple code that will list the files in the database and allow

them to be viewed, downloaded, or deleted. As always, this code is available in the

code archive.

First, the controller script:

chapter12/filestore/index.php

<?php

if (isset($_POST['action']) and $_POST['action'] == 'upload')

{

 // Bail out if the file isn't really an upload

 if (!is_uploaded_file($_FILES['upload']['tmp_name']))

 {

 $error = 'There was no file uploaded!';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

 }

 $uploadfile = $_FILES['upload']['tmp_name'];

 $uploadname = $_FILES['upload']['name'];

 $uploadtype = $_FILES['upload']['type'];

 $uploaddesc = $_POST['desc'];

 $uploaddata = file_get_contents($uploadfile);

 include 'db.inc.php';

 // Prepare user-submitted values for safe database insert

 $uploadname = mysqli_real_escape_string($link, $uploadname);

 $uploadtype = mysqli_real_escape_string($link, $uploadtype);

 $uploaddesc = mysqli_real_escape_string($link, $uploaddesc);

 $uploaddata = mysqli_real_escape_string($link, $uploaddata);

 $sql = "INSERT INTO filestore SET

 filename = '$uploadname',

 mimetype = '$uploadtype',

 description = '$uploaddesc',

379Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 filedata = '$uploaddata'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Database error storing file!';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

if (isset($_GET['action']) and

 ($_GET['action'] == 'view' or $_GET['action'] == 'download') and

 isset($_GET['id']))

{

 include 'db.inc.php';

 $id = mysqli_real_escape_string($link, $_GET['id']);

 $sql = "SELECT filename, mimetype, filedata

 FROM filestore

 WHERE id = '$id'";

 $result = mysqli_query($link, $sql);

 if (!$result)

 {

 $error = 'Database error fetching requested file.';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

 }

 $file = mysqli_fetch_array($result);

 if (!$file)

 {

 $error = 'File with specified ID not found in the database!';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

 }

 $filename = $file['filename'];

 $mimetype = $file['mimetype'];

 $filedata = $file['filedata'];

 $disposition = 'inline';

 if ($_GET['action'] == 'download')

Build Your Own Database Driven Web Site Using PHP & MySQL380

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 {

 $mimetype = 'application/x-download';

 $disposition = 'attachment';

 }

 // Content-type must come before Content-disposition

 header("Content-type: $mimetype");

 header("Content-disposition: $disposition; filename=$filename");

 header('Content-length: ' . strlen($filedata));

 echo $filedata;

 exit();

}

if (isset($_POST['action']) and $_POST['action'] == 'delete' and

 isset($_POST['id']))

{

 include 'db.inc.php';

 $id = mysqli_real_escape_string($link, $_POST['id']);

 $sql = "DELETE FROM filestore

 WHERE id = '$id'";

 if (!mysqli_query($link, $sql))

 {

 $error = 'Database error deleting requested file.';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

 }

 header('Location: .');

 exit();

}

include 'db.inc.php';

$sql = 'SELECT id, filename, mimetype, description

 FROM filestore';

$result = mysqli_query($link, $sql);

if (!$result)

{

 $error = 'Database error fetching stored files.';

 include $_SERVER['DOCUMENT_ROOT'] . '/includes/error.html.php';

 exit();

}

381Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

$files = array();

while ($row = mysqli_fetch_array($result))

{

 $files[] = array(

 'id' => $row['id'],

 'filename' => $row['filename'],

 'mimetype' => $row['mimetype'],

 'description' => $row['description']);

}

include 'files.html.php';

?>

Next, the PHP template that includes the upload form and the list of files:

chapter12/filestore/files.html.php

<?php include_once $_SERVER['DOCUMENT_ROOT'] .

 '/includes/helpers.inc.php'; ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>PHP/MySQL File Repository</title>

 <meta http-equiv="content-type"

 content="text/html; charset=utf-8" />

 </head>

 <body>

 <h1>PHP/MySQL File Repository</h1>

 <form action="" method="post" enctype="multipart/form-data">

 <div>

 <label for="upload">Upload File:

 <input type="file" id="upload" name="upload"/></label>

 </div>

 <div>

 <label for="desc">File Description:

 <input type="text" id="desc" name="desc"

 maxlength="255"/></label>

 </div>

 <div>

 <input type="hidden" name="action" value="upload"/>

 <input type="submit" value="Upload"/>

 </div>

Build Your Own Database Driven Web Site Using PHP & MySQL382

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 </form>

 <?php if (count($files) > 0): ?>

 <p>The following files are stored in the database:</p>

 <table>

 <thead>

 <tr>

 <th>File name</th>

 <th>Type</th>

 <th>Description</th>

 </tr>

 </thead>

 <tbody>

 <?php foreach($files as $f): ?>

 <tr valign="top">

 <td>

 <a href="?action=view&id=<?php htmlout($f['id']); ?>"

 ><?php htmlout($f['filename']); ?>

 </td>

 <td><?php htmlout($f['mimetype']); ?></td>

 <td><?php htmlout($f['description']); ?></td>

 <td>

 <form action="" method="get">

 <div>

 <input type="hidden" name="action"

 value="download"/>

 <input type="hidden" name="id"

 value="<?php htmlout($f['id']); ?>"/>

 <input type="submit" value="Download"/>

 </div>

 </form>

 </td>

 <td>

 <form action="" method="post">

 <div>

 <input type="hidden" name="action" value="delete"/>

 <input type="hidden" name="id"

 value="<?php htmlout($f['id']); ?>"/>

 <input type="submit" value="Delete"/>

 </div>

 </form>

 </td>

 </tr>

383Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

 <?php endforeach; ?>

 </tbody>

 </table>

 <?php endif; ?>

 </body>

</html>

And just to be thorough, the database connection include file:

chapter12/filestore/db.inc.php

<?php

$link = mysqli_connect('localhost', 'root', 'password');

if (!$link)

{

 $error = 'Unable to connect to the database server.';

 include 'error.html.php';

 exit();

}

if (!mysqli_set_charset($link, 'utf8'))

{

 $output = 'Unable to set database connection encoding.';

 include 'output.html.php';

 exit();

}

if (!mysqli_select_db($link, 'filestore'))

{

 $error = 'Unable to locate the filestore database.';

 include 'error.html.php';

 exit();

}

?>

Note that this uses a different database (filestore) than the Internet Joke Database

site. If you prefer to put the filestore table in the ijdb database along with

everything else that’s in there, you can just use the shared db.inc.php include file

instead.

With all these files in place, and the database set up, fire up your browser and take

a look. The empty repository should produce a page like the one in Figure 12.1.

Build Your Own Database Driven Web Site Using PHP & MySQL384

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Figure 12.1. The Empty Repository

Upload a few files, and you should see them listed in a table, as shown in Figure 12.2.

Figure 12.2. A couple of files on board

Click on a file’s name, and it should be displayed in the browser (assuming the file

is of a type that your browser supports). Also, try out the Download and Delete buttons

provided for each file. They should work as you would expect.

385Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

This example demonstrates all the techniques you need in order to juggle binary

files with PHP and MySQL, and I invite you to think of some creative uses of this

code. Consider, for example, a file archive to which users must provide a username

and password before they’re allowed to view or download the files. If a user enters

an incorrect username/password combination, your script can display an error page

instead of sending the file data. Another possibility would be a script that sends

different files depending on the details submitted by the form.

Large File Considerations
In systems like those developed above, large files present some unique challenges

to the developer. I’ll explain these here briefly, but fully developed solutions to

these problems are beyond the scope of this book.

MySQL Packet Size
By default, MySQL rejects commands (packets) that are longer than 1MB. This default

puts a reasonably severe limit on the maximum file size you can store, unless you’re

prepared to write your file data in 1MB chunks, using an INSERT followed by several

UPDATEs. Increase the maximum packet size by setting the max_allowed_packet

option in your my.cnf or my.ini file. Refer to the MySQL manual6 for more information

on this issue.

PHP Script Timeout
PHP is configured by default to kill PHP scripts that run for more than 30 seconds.

For large downloads over slow connections, this limit will be reached fairly quickly!

Use PHP’s set_time_limit function to set an appropriate time limit for the down-

load, or simply set the time limit to zero, which allows the script to run to comple-

tion, however long it takes. But only do this if you’re positive your script will always

terminate, and not run forever!

6 http://dev.mysql.com/doc/refman/5.1/en/packet-too-large.html

Build Your Own Database Driven Web Site Using PHP & MySQL386

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/refman/5.1/en/packet-too-large.html

The End
In this chapter, we completed our exploration of PHP and MySQL with a practical

look at handling file uploads and storing binary data in MySQL databases. Admit-

tedly, this is a rather arbitrary place to end this book; there are plenty of other aspects

of PHP and MySQL that you could explore, some of which could be called no less

basic or essential than binary data.

PHP in particular, with its “batteries included” philosophy of packing as much

functionality as possible directly into the language in the form of built-in functions,

could fill ten books this size. Exactly which aspects you’ll need to learn before

tackling any particular project will vary wildly. Having worked as a professional

PHP developer for many years now, I have to admit that I remain unfamiliar with

most of the functionality that PHP has to offer. There’s just so much available to

explore! That’s why very few people bother to print out the PHP Manual7 in its

entirety!

By far the best way to cement your newfound knowledge of PHP and MySQL is to

put it to work: build your own database driven web site from scratch using the

techniques covered in this book. Publish it on the Web, and ask for feedback from

real, live users. Chances are they’ll push you to make improvements to the site that

you may find you lack the knowhow to implement right away. These real-world

requirements should direct your further exploration of PHP and MySQL—and there’s

plenty more to be learned!

A great resource on your adventures would be a copy of The PHP Anthology: 101

Essential Tips, Tricks & Hacks, 2nd Edition8 (Melbourne: SitePoint, 2007). Beginning

with an exploration of PHP’s object oriented programming features, it then builds

on that foundation to demonstrate efficient ways of tackling some of the problems

we looked at in this book—and many more that we didn’t.

If you end up tackling more than one project, you may find yourself writing the

same pieces of code over and over again. Rather than spending time perfecting your

7 http://php.net/docs.php
8 http://www.sitepoint.com/books/phpant2/

387Binary Data

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://php.net/docs.php
http://www.sitepoint.com/books/phpant2/
http://www.sitepoint.com/books/phpant2/

own collection of shared include files, you might like to spend some time learning

a PHP framework, such as Zend Framework,9 CakePHP,10 or Symfony.11

Each of these frameworks represents many thousands of hours’ work by PHP experts

who’ve developed ready-made solutions for the most common problems tackled by

PHP developers. By using these solutions in your own projects, you can focus on

writing the code to solve the problems that are unique to that project, and waste

less time reinventing the wheel. Each framework has its own philosophy, strengths,

and weaknesses, and finding the right one for you will take some work. If you plan

on becoming a professional PHP developer, however, you’ll find it time well spent.

However you proceed from this point, rest assured you’re starting out with a solid

grounding in the essentials. That’s more than can be said for many developers

working today! Take that advantage and use it.

Most importantly, go out there and write some code!

9 http://framework.zend.com/
10 http://cakephp.org/
11 http://www.symfony-project.org/

Build Your Own Database Driven Web Site Using PHP & MySQL388

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://framework.zend.com/
http://cakephp.org/
http://www.symfony-project.org/

Appendix A: MySQL Syntax Reference
This appendix describes the syntax of the majority of SQL statements implemented

in MySQL, as of version 5.1.34 (current as of this writing).

The following conventions are used in this reference:

■ Commands are listed in alphabetical order for easy reference.

■ Optional components are surrounded by square brackets ([]).

■ Lists of elements from which one element must be chosen are surrounded by

braces ({}), with the elements separated by vertical bars (|).

■ An ellipsis (…) means that the preceding element may be repeated.

The query syntax documented in this appendix has been simplified in several places

by the omission of the alternative syntax, and of keywords that performed no

function, but which were originally included for compatibility with other database

systems. Query features having to do with some advanced features such as transac-

tions have also been omitted. For a complete, up-to-date reference to supported

MySQL syntax, see the MySQL Reference Manual.1

SQL Statements Implemented in MySQL
ALTER TABLE

ALTER [IGNORE] TABLE tbl_name action[, action …]

In this code, action refers to an action as defined below.

ALTER TABLE queries may be used to change the definition of a table without losing

any of the information in that table (except in obvious cases, such as the deletion

of a column). Here are the main actions that are possible:

1 http://dev.mysql.com/doc/refman/5.1/en/

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/refman/5.1/en/

ADD [COLUMN] create_definition [FIRST | AFTER column_name]

This action adds a new column to the table. The syntax for create_definition is

as described for the section called “CREATE TABLE”. By default, the column will

be added to the end of the table, but by specifying FIRST or AFTER column_name,

you can place the column wherever you like. The optional word COLUMN performs

no actual function—leave it off unless you particularly like to see it there.

ADD INDEX [index_name] (index_col_name, …)

This action creates a new index to speed up searches based on the column(s)

specified. It’s usually a good idea to assign a name to your indices by specifying

the index_name, otherwise, a default name based on the first column in the

index will be used. When creating an index based on CHAR and/or VARCHAR

columns, you can specify a number of characters to index as part of in-

dex_col_name (for example, myColumn(5) will index the first five characters of

myColumn). This number must be specified when indexing BLOB and TEXT

columns. For detailed information on indexes, see the MySQL Reference

Manual,2 or Mike Sullivan’s excellent article Optimizing your MySQL Applica-

tion3 on SitePoint.

ADD FULLTEXT [index_name] (index_col_name, …)

This action creates a full-text index on the column(s) specified. This special

type of index allows you to perform complex searches for text in CHAR, VARCHAR,

or TEXT columns using the MATCH MySQL function. For full details, see the

MySQL Reference Manual.4

ADD PRIMARY KEY (index_col_name, …)

This action creates an index for the specified row(s) with the name PRIMARY,

identifying it as the primary key for the table. All values (or combinations of

values) must be unique, as described for the ADD UNIQUE action below. This

action will cause an error if a primary key already exists for this table. in-

dex_col_name is defined as it is for the ADD INDEX action above.

ADD UNIQUE [index_name] (index_col_name, …)

This action creates an index on the specified columns, but with a twist: all

values in the designated column—or all combinations of values, if more than

2 http://dev.mysql.com/doc/mysql/en/Indexes.html
3 http://www.sitepoint.com/article/optimizing-mysql-application
4 http://dev.mysql.com/doc/mysql/en/fulltext-search.html

Build Your Own Database Driven Web Site Using PHP & MySQL390

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/mysql/en/Indexes.html
http://dev.mysql.com/doc/mysql/en/Indexes.html
http://www.sitepoint.com/article/optimizing-mysql-application
http://www.sitepoint.com/article/optimizing-mysql-application
http://dev.mysql.com/doc/mysql/en/fulltext-search.html

one column is included in the index—must be unique. The parameters in-

dex_name and index_col_name are defined as they are for the ADD INDEXaction

above.

ALTER [COLUMN] col_name {SET DEFAULT value | DROP DEFAULT}

This action assigns a new default value to a column (SET DEFAULT), or removes

the existing default value (DROP DEFAULT). Again, the word COLUMN is completely

optional, and has no effect.

CHANGE [COLUMN] col_name create_definition

This action replaces an existing column (col_name) with a new column, as

defined by create_definition (the syntax of which is as specified for the section

called “CREATE TABLE”). The data in the existing column is converted, if neces-

sary, and placed in the new column. Note that create_definition includes a new

column name, so this action may be used to rename a column. If you want to

leave the name of the column unchanged, however, don’t forget to include it

twice (once for col_name and once for create_definition), or use the MODIFY action

below.

DISABLE KEYS

ENABLE KEYS

When you insert a large number of records into a table, MySQL can spend a lot

of time updating the index(es) of the table to reflect the new entries. Executing

ALTER TABLE … DISABLE KEYS before you perform the inserts will instruct

MySQL to postpone those index updates. Once the inserts are complete, execute

ALTER TABLE … ENABLE KEYS to update the indexes for all the new entries at

once. This will usually save time over performing the updates one at a time.

DROP [COLUMN] col_name

Fairly self-explanatory, this action completely removes a column from the table.

The data in that column is irretrievable after this query completes, so be sure

of the column name you specify. COLUMN, as usual, can be left off—it just makes

the query sound better when read aloud.

DROP PRIMARY KEY

DROP INDEX index_name

These actions are quite self-explanatory: they remove from the table the primary

key, and a specific index, respectively.

391Appendix A: MySQL Syntax Reference

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

MODIFY [COLUMN] create_definition

Nearly identical to the CHANGE action above, this action lets you specify a new

declaration for a column in the table, but assumes the name will remain the

same. Thus, you simply have to re-declare the column with the same name in

the create_definition parameter (as defined for the section called “CREATE

TABLE”). As before, COLUMN is completely optional and does nothing. Although

convenient, this action is not standard SQL syntax, and was added for compat-

ibility with an identical extension in Oracle database servers.

ORDER BY col_name

This action lets you sort a table’s entries by a particular column. However, as

soon as new entries are added to the table, or existing entries modified, ordering

can no longer be guaranteed. The only practical use of this action would be to

increase performance of a table that you sorted regularly in a certain way in

your application’s SELECT queries. Under some circumstances, arranging the

rows in (almost) the right order to begin with will make sorting quicker.

RENAME [TO] new_tbl_name

This action renames the table. The word TO is completely optional, and does

nothing. Use it if you like it.

table_options

Using the same syntax as in the CREATE TABLE query, this action allows you to

set and change advanced table options. These options are fully documented in

the MySQL Reference Manual.5

ANALYZE TABLE

ANALYZE TABLE tbl_name[, tbl_name, …]

This function updates the information used by the SELECT query in the optimization

of queries that take advantage of table indices. It pays in performance to run this

query periodically on tables whose contents change a lot over time. The table(s) in

question are locked “read-only” while the analysis runs.

5 http://dev.mysql.com/doc/mysql/en/CREATE_TABLE.html

Build Your Own Database Driven Web Site Using PHP & MySQL392

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/mysql/en/CREATE_TABLE.html

CREATE DATABASE

CREATE DATABASE [IF NOT EXISTS] db_name

This action simply creates a new database with the given name (db_name). This

query will fail if the database already exists (unless IF NOT EXISTS is specified),

or if you lack the required privileges.

CREATE INDEX

CREATE [UNIQUE | FULLTEXT] INDEX index_name ON tbl_name

(col_name[(length)], …)

This query creates a new index on an existing table. It works identically to ALTER

TABLE ADD {INDEX | UNIQUE | FULLTEXT}, described in the section called “ALTER

TABLE”.

CREATE TABLE

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] [db_name.]tbl_name

 { [(create_definition, …)]

 [table_options] [[IGNORE | REPLACE] select_statement]

 | LIKE [db_name.]old_tbl_name }

Where create_definition is:

{ col_name type [NOT NULL] [DEFAULT default_value]

 [AUTO_INCREMENT] [PRIMARY KEY]

 | PRIMARY KEY (index_col_name, …)

 | INDEX [index_name] (index_col_name, …)

 | FULLTEXT [index_name] (index_col_name, …)

 | UNIQUE [INDEX] [index_name] (index_col_name, …) }

In this code, type is a MySQL column type (see Appendix C), and index_col_name

is as described for ALTER TABLE ADD INDEX in the section called “ALTER TABLE”.

393Appendix A: MySQL Syntax Reference

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

CREATE TABLE is used to create a new table called tbl_name in the current database

(or in a specific database if db_name is specified). If TEMPORARY is specified, the

table disappears upon termination of the connection by which it was created. A

temporary table created with the same name as an existing table will hide the existing

table from the current client session until the temporary table is deleted or the session

ends; however, other clients will continue to see the original table.

Assuming TEMPORARY is not specified, this query will fail if a table with the given

name already exists, unless IF NOT EXISTS is specified (in which case the query is

ignored). A CREATE TABLE query will also fail if you lack the required privileges.

Most of the time, the name of the table will be followed by a series of column de-

clarations (create_definition above). Each column definition includes the name and

data type for the column, and any of the following options:

NOT NULL

This specifies that the column may not be left empty (NULL). Note that NULL is

a special “no value” value, which is quite different from, say, an empty string

(''). A column of type VARCHAR, for instance, which is set NOT NULL may be set

to '' but will not be NULL. Likewise, a NOT NULL column of type INT may contain

zero (0), which is a value, but it may not contain NULL, as this is not a value.

DEFAULT default_value

DEFAULT lets you specify a value to be given to a column when no value is as-

signed in an INSERT statement. When this option is not specified, NULL columns

(columns for which the NOT NULL option is not set) will be assigned a value of

NULL when there is no value given in an INSERT statement. NOT NULL columns

will instead be assigned a “default default value”: an empty string (''), zero (0),

'0000-00-00', or a current timestamp, depending on the data type of the column.

AUTO_INCREMENT

As described in Chapter 2, an AUTO_INCREMENT column will automatically insert

a number that is one greater than the current highest number in that column,

when NULL is inserted. AUTO_INCREMENT columns must also be NOT NULL, and

be either a PRIMARY KEY or UNIQUE.

PRIMARY KEY

This option specifies that the column in question should be the primary key

for the table; that is, the values in the column must identify uniquely each of

Build Your Own Database Driven Web Site Using PHP & MySQL394

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

the rows in the table. This forces the values in this column to be unique, and

speeds up searches for items based on this column by creating an index of the

values it contains.

UNIQUE

Very similar to PRIMARY KEY, this option requires all values in the column to

be unique and indexes the values for high speed searches.

In addition to column definitions, you can list additional indexes you wish to create

on the table using the PRIMARY KEY, INDEX, and FULLTEXT forms of create_definition.

See the descriptions of the equivalent forms of ALTER TABLE in the section called

“ALTER TABLE” for details.

The table_options portion of the CREATE TABLE query is used to specify advanced

properties of the table, and is described in detail in the MySQL Reference Manual.6

The select_statement portion of the CREATE TABLEquery allows you to create a table

from the results of a SELECT query (see the section called “SELECT”). When you

create this table, it’s unnecessary to declare separately the columns that correspond

to those results. This type of query is useful if you want to obtain the result of a

SELECT query, store it in a temporary table, and then perform a number of SELECT

queries upon it.

Instead of defining a table from scratch, you can instead instruct MySQL to create

the new table using the same structure as some other table. Rather than a list of

create_definitions and the table_options, simply end the CREATE TABLE query with

LIKE, followed by the name of the existing table.

DELETE

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]

 { FROM tbl_name

 [WHERE where_clause]

 [ORDER BY order_by_expr]

 [LIMIT rows]

 | tbl_name[, tbl_name …]

 FROM table_references

6 http://dev.mysql.com/doc/mysql/en/create-table.html

395Appendix A: MySQL Syntax Reference

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/mysql/en/create-table.html

 [WHERE where_clause]

 | FROM tbl_name[, tbl_name …]

 USING table_references

 [WHERE where_clause] }

The first form of this query deletes all rows from the specified table, unless the op-

tional (but desirable) WHERE or LIMIT clauses are specified. The WHERE clause works

the same way as its twin in the SELECT query (see the section called “SELECT”). The

LIMIT clause simply lets you specify the maximum number of rows to be deleted.

The ORDER BY clause lets you specify the order in which the entries are deleted,

which, in combination with the LIMIT clause, allows you to do things like delete

the ten oldest entries from the table.

The second and third forms are equivalent, and enable you to delete rows from

multiple tables in a single operation, in much the same way as you can retrieve

entries from multiple tables using a join in a SELECT query (see the section called

“SELECT”). The table_references work the same way as they do for SELECT queries

(you can create simple joins or outer joins), while the WHERE clause lets you narrow

down the rows that are considered for deletion. The first list of tables (tbl_name[,

tbl_name, …]), however, identifies from the table_references the tables from which

rows will actually be deleted. In this way, you can use a complex join involving a

number of tables to isolate a set of results, then delete the rows from only one of

those tables.

The LOW_PRIORITY option causes the query to wait until there are no clients reading

from the table before performing the operation. The QUICK option attempts to speed

up lengthy delete operations by changing the way it updates the table’s index(es).

The IGNORE option instructs MySQL to refrain from reporting any errors that occur

while the delete is performed.

DESCRIBE/DESC

{DESCRIBE | DESC} tbl_name [col_name | wild]

This command supplies information about the columns, a specific column

(col_name), or any columns that match a pattern containing the wild cards % and _

(wild), that make up the specified table. The information returned includes the

Build Your Own Database Driven Web Site Using PHP & MySQL396

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

column name, its type, whether it accepts NULL as a value, whether the column has

an index, the default value for the column, and any extra features it has (for example,

AUTO_INCREMENT).

DROP DATABASE

DROP DATABASE [IF EXISTS] db_name

This is a dangerous command. It will immediately delete a database, along with all

of its tables. This query will fail with an error if the database does not exist (unless

IF EXISTS is specified, in which case it will fail silently), or if you lack the required

privileges.

DROP INDEX

DROP INDEX index_name ON tbl_name

DROP INDEX has exactly the same effect as ALTER TABLE DROP INDEX, described in

the section called “ALTER TABLE”.

DROP TABLE

DROP TABLE [IF EXISTS] tbl_name[, tbl_name, …]

This query completely deletes one or more tables. This is a dangerous query, since

the data can never be retrieved once this action is executed. Be very careful with

it!

This query will fail with an error if the table doesn’t exist (unless IF EXISTS is

specified, in which case it will fail silently) or if you lack the required privileges.

EXPLAIN

The explain query has two very different forms. The first,

EXPLAIN tbl_name

is equivalent to DESCRIBE tbl_name or SHOW COLUMNS FROM tbl_name.

397Appendix A: MySQL Syntax Reference

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The second format,

EXPLAIN select_statement

where select_statement can be any valid SELECT query, will produce an explanation

of how MySQL would determine the results of the SELECT statement. This query is

useful for finding out where indexes will help speed up your SELECT queries, and

also for determining if MySQL is performing multi-table queries in optimal order.

See the STRAIGHT_JOIN option of the SELECT query in the section called “SELECT”

for information on how to override the MySQL optimizer and control this order

manually. See the MySQL Reference Manual7 for complete information on how to

interpret the results of an EXPLAIN query.

GRANT

GRANT priv_type [(column_list)], …

 ON {tbl_name | * | *.* | db_name.*}

 TO username [IDENTIFIED BY 'password'], …

 [WITH GRANT OPTION]

GRANT adds new access privileges to a user account, and creates a new account if

the specified username does not yet exist, or changes the password if IDENTIFIED

BY 'password' is used on an account that already has a password.

See the section called “MySQL Access Control” in Chapter 10 for a complete query

description.

INSERT

INSERT [LOW_PRIORITY | DELAYED] [IGNORE] [INTO] tbl_name

 { [(col_name, …)] VALUES (expression, …), …

 | SET col_name=expression, col_name=expression, …

 | [(col_name, …)] SELECT … }

7 http://dev.mysql.com/doc/mysql/en/explain.html

Build Your Own Database Driven Web Site Using PHP & MySQL398

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/mysql/en/explain.html

The INSERT query is used to add new entries to a table. It supports three general

options:

LOW_PRIORITY

The query will wait until there are no clients reading from the table before it

proceeds.

DELAYED

The query completes immediately from the client’s point of view, and the INSERT

operation is performed in the background. This option is useful when you wish

to insert a large number of rows without waiting for the operation to complete.

Be aware that the client will not know the last inserted ID on an AUTO_INCREMENT

column when a DELAYED insert is performed (for example, mysqli_insert_id

in PHP will fail to work correctly).

IGNORE

Normally, when an insert operation causes a clash in a PRIMARY KEY or UNIQUE

column, the insert fails and produces an error message. This option allows the

insert to fail silently—the new row is not inserted, but no error message is dis-

played.

The word INTO is entirely optional, and has no effect on the operation of the query.

As you can see above, INSERT queries may take three forms. The first form lets you

insert one or more rows by specifying the values for the table columns in parentheses.

If the optional list of column names is omitted, then the list(s) of column values

must include a value for every column in the table, in the order in which they appear

in the table.

The second form of INSERT can be used only to insert a single row, but, very intuit-

ively, it allows you to assign values to the columns in that row by giving them in

col_name=value format.

In the third and final form of INSERT, the rows to be inserted result from a SELECT

query. Again, if the list of column names is omitted, the result set of the SELECT

must contain values for each and every column in the table, in the correct order. A

SELECT query that makes up part of an insert statement may not contain an ORDER

BY clause, and you’re unable to use the table into which you are inserting in the

FROM clause.

399Appendix A: MySQL Syntax Reference

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Columns to which you assign no value (for example, if you leave them out of the

column list) are assigned their default. By default, inserting a NULL value into a NOT

NULL field will also cause that field to be set to its default value; however, if MySQL

is configured with the DONT_USE_DEFAULT_FIELDS option enabled, such an INSERT

operation will cause an error. For this reason, it’s best to avoid them.

LOAD DATA INFILE

LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE

 'file_name.txt' [REPLACE | IGNORE] INTO TABLE tbl_name

 [FIELDS

 [TERMINATED BY 'string']

 [[OPTIONALLY] ENCLOSED BY 'char']

 [ESCAPED BY 'char']]

 [LINES [STARTING BY ''] [TERMINATED BY 'string']]

 [IGNORE number LINES]

 [(col_name, …)]

The LOAD DATA INFILE query is used to import data from a text file either on the

MySQL server, or on the LOCAL (client) system (for example, a text file created with

a SELECT INTO OUTFILEquery). The syntax of this command is given above; however,

I refer you to the MySQL Reference Manual8 for a complete explanation of this

query and the issues that surround its use.

LOCK/UNLOCK TABLES

LOCK TABLES

tbl_name [AS alias] {READ [LOCAL] | [LOW_PRIORITY] WRITE},

tbl_name …

UNLOCK TABLES

LOCK TABLES locks the specified table(s) so that the current connection has exclusive

access to them, while other connections will have to wait until the lock is released.

The lock can be released with UNLOCK TABLES, with another LOCK TABLES query, or

with the closure of the current connection.

8 http://dev.mysql.com/doc/mysql/en/load-data.html

Build Your Own Database Driven Web Site Using PHP & MySQL400

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/mysql/en/load-data.html

A READ lock prevents the specified table(s) from being written by this, or any other

connection. This allows you to make certain that the contents of a table (or set of

tables) are unchanged for a certain period of time. READ LOCAL allows INSERT

statements to continue to be processed on the table while the lock is held, but blocks

UPDATEs and DELETEs as usual.

A WRITE lock prevents all other connections from reading or writing the specified

table(s). It’s useful when a series of INSERT or UPDATE queries must be performed

together to maintain the integrity of the data model in the database. New support

for transactions in MySQL provides more robust support for these types of “grouped

queries” (see the sidebar in the section called “LOCKing TABLES” in Chapter 11 for

details).

By default, a WRITE lock that is waiting for access to a table will take priority over

any READ locks that may also be waiting. To specify that a WRITE lock should yield

to all other READ lock requests, you can use the LOW_PRIORITY option. Be aware,

however, that if there are always READ lock requests pending, a LOW_PRIORITY WRITE

lock will never be allowed to proceed.

When locking tables, you must list the same aliases that you’re going to use in the

queries you’ll be performing. If, for example, you are going to refer to the same table

with two different aliases in one of your queries, you’ll need to obtain a lock for

each of those aliases beforehand.

For more information on locking tables, see the section called “LOCKing TABLES” in

Chapter 11.

OPTIMIZE TABLE

OPTIMIZE TABLE tbl_name[, tbl_name, …]

Much like a hard disk partition becomes fragmented if existing files are deleted or

resized, MySQL tables become fragmented over time as you delete rows and modify

variable-length columns (such as VARCHAR or BLOB). This query performs the database

equivalent of a defrag on the table, reorganizing the data it contains to eliminate

wasted space.

It’s important to note that a table is locked while an optimize operation occurs, so

if your application relies on a large table being constantly available, that application

401Appendix A: MySQL Syntax Reference

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

will grind to a halt while the optimization takes place. In such cases, it’s better to

copy the table, optimize the copy, and then replace the old table with the newly

optimized version using a RENAME query. Changes made to the original table in the

interim will be lost, so this technique is only appropriate for some applications.

RENAME TABLE

RENAME TABLE tbl_name TO new_table_name[, tbl_name2 TO …, …]

This query quickly and conveniently renames one or more tables. This differs from

ALTER TABLE tbl_name RENAME in that all the tables being renamed in the query

are locked for the duration of the query, so that no other connected clients may access

them. As the MySQL Reference Manual explains,9 this assurance of atomicity lets

you replace a table with an empty equivalent; for example, if you wanted to safely

start a new table once a certain number of entries was reached:

CREATE TABLE new_table (…)

 RENAME TABLE old_table TO backup_table, new_table TO old_table;

You can also move a table from one database to another by specifying the table name

as db_name.tbl_name, as long as both tables are stored on the same physical disk,

which is usually the case.

You must have ALTER and DROP privileges on the original table—as well as CREATE

and INSERT privileges on the new table—in order to perform this query. A RENAME

TABLE query that fails to complete halfway through will automatically be reversed,

so that the original state is restored.

REPLACE

REPLACE [LOW_PRIORITY | DELAYED] [INTO] tbl_name

 { [(col_name, …)] VALUES (expression, …), …

 | [(col_name, …)] SELECT …

 | SET col_name=expression, col_name=expression, … }

9 http://dev.mysql.com/doc/mysql/en/rename-table.html

Build Your Own Database Driven Web Site Using PHP & MySQL402

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/mysql/en/rename-table.html

REPLACE is identical to INSERT, except that if an inserted row clashes with an existing

row in a PRIMARY KEY or UNIQUE column, the old entry is replaced with the new.

REVOKE

REVOKE priv_type [(column_list)], …

 ON {tbl_name | * | *.* | db_name.*}

 FROM user, …

This function removes access privileges from a user account. If all privileges are

removed from an account, the user will still be able to log in, though unable to access

any information.

See the section called “MySQL Access Control” in Chapter 10 for a complete de-

scription of this query.

SELECT

SELECT [select_options]

select_expression, …

 [INTO {OUTFILE | DUMPFILE} 'file_name' export_options]

 [FROM table_references

 [WHERE where_definition]

 [GROUP BY {col_name | col_pos } [ASC | DESC], …]

 [HAVING where_definition]

 [ORDER BY {col_name | col_pos } [ASC | DESC], …]

 [LIMIT [offset,] rows]]

SELECT is the most complex query in SQL, and is used to perform all data retrieval

operations. This query supports the following select_options, which may be specified

in any sensible combination simply by listing them separated by spaces:

ALL

DISTINCT

DISTINCTROW

Any one of these options may be used to specify the treatment of duplicate rows

in the result set. ALL (the default) specifies that all duplicate rows appear in the

result set, while DISTINCT and DISTINCTROW (they have the same effect) specify

that duplicate rows should be eliminated from the result set.

403Appendix A: MySQL Syntax Reference

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

HIGH_PRIORITY

This option does exactly what it says—it assigns a high priority to the SELECT

query. Normally, if a query is waiting to update a table, all read-only queries

(such as SELECT) must yield to it. A SELECT HIGH_PRIORITY, however, will go

first.

STRAIGHT_JOIN

Forces MySQL to join multiple tables specified in the table_references portion

of the query in the order specified there. If you think MySQL’s query optimizer

is doing it the slow way, this argument lets you override it. For more information

on joins, see the section called “Joins” below.

SQL_BUFFER_RESULT

This option forces MySQL to store the result set in a temporary table. This frees

up the tables that were used in the query for use by other processes, while the

result set is transmitted to the client.

SQL_CACHE

This option instructs MySQL to store the result of this query in the query cache,

an area of memory set aside by the server to store the results of frequently-run

queries so that no need to recalculate them from scratch if the contents of the

relevant tables have not changed. MySQL can be configured so that only queries

with the SQL_CACHE option are cached. If the query cache is disabled, this option

will have no effect.

SQL_NO_CACHE

This option instructs MySQL to avoid storing the result of this query in the

query cache (see the previous option). MySQL can be configured so that every

query is cached unless it has the SQL_NO_CACHE option. If the query cache is

disabled, this option will have no effect.

SQL_CALC_FOUND_ROWS

For use in conjunction with a LIMIT clause, this option calculates and sets aside

the total number of rows that would be returned from the query if no LIMIT

clause were present. You can then retrieve this number using SELECT

FOUND_ROWS() (see Appendix B).

select_expression defines a column of the result set to be returned by the query.

Typically, this is a table column name, and may be specified as col_name,

Build Your Own Database Driven Web Site Using PHP & MySQL404

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

tbl_name.col_name, or db_name.tbl_name.col_name, depending on how specific

you need to be for MySQL to identify the column to which you are referring. se-

lect_expressions can refer to other expressions apart from the database

column—simple mathematical formulas including column names as variables, and

complex expressions calculated with MySQL functions may also be used. Here’s

an example of the latter, which will give the date one month from now in the form

“January 1, 2010”:

SELECT DATE_FORMAT(

 DATE_ADD(CURDATE(), INTERVAL 1 MONTH), '%M %D, %Y')

select_expressions may also contain an alias, or assigned name for the result column,

if the expression is followed with [AS] alias (the AS is entirely optional). This

expression must be used when referring to that column elsewhere in the query (for

example, in WHERE and ORDER BY clauses), as follows:

SELECT jokedate AS jd FROM joke ORDER BY jd ASC

MySQL lets you use an INTO clause to output the results of a query into a file instead

of returning them to the client. The most typical use of this clause is to export the

contents of a table into a text file containing comma-separated values (CSV). Here’s

an example:

SELECT * INTO OUTFILE '/home/user/myTable.txt'

 FIELDS TERMINATED BY ',' OPTIONALY ENCLOSED BY '"'

 LINES TERMINATED BY '\n'

 FROM myTable

The file to which the results are dumped must not exist beforehand, or this query

will fail. This restriction prevents an SQL query from being used to overwrite crit-

ical operating system files. The created file will also be world-readable on systems

that support file security, so consider this before you export sensitive data to a text

file that anyone on the system can read.

DUMPFILE may be used instead of OUTFILE to write to the file only a single row,

without row or column delimiters. It can be used, for example, to dump a BLOB

stored in the table to a file (SELECT blobCol INTO DUMPFILE …). For complete in-

405Appendix A: MySQL Syntax Reference

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

formation on the INTO clause, see the MySQL Reference Manual.10 For information

on reading data back from a text file, see the section called “LOAD DATA INFILE”.

The FROM clause contains a list of tables from which the rows composing the result

set should be formed, along with instructions on how they should be joined together.

At its most basic, table_references is the name of a single database table, which may

be assigned an alias with or without using AS as described for select_expression

above. If you specify more than one table name, you’re performing a join. These are

discussed in the section called “Joins” below.

The where_definition in the WHERE clause sets the condition for a row to be included

in the table of results sent in response to the SELECT query. This may be a simple

condition (for example, id = 5), or a complex expression that makes use of MySQL

functions and combines multiple conditions using Boolean operators (AND, OR, NOT).

The GROUP BY clause lets you specify one or more columns (by name, alias, or

column position, where 1 is the first column in the result set) for which rows with

equal values should be collapsed into single rows in the result set. This clause

should usually be used in combination with the MySQL grouping functions such

as COUNT, MAX, and AVG, described in Appendix B, to produce result columns that

give summary information about the groups produced. By default, the grouped

results are sorted in ascending order of the grouped column(s); however, the ASC

or DESC argument may be added following each column reference to explicitly sort

that column’s results in ascending or descending order, respectively. Results are

sorted by the first column listed, then tying sets of rows are sorted by the second,

and so on.

Note that the WHERE clause is processed before GROUP BY grouping occurs, so condi-

tions in the WHERE clause may not refer to columns that depend on the grouping

operation. To impose conditions on the post-grouping result set, you should use

the HAVING clause instead. This clause’s syntax is identical to that of the WHERE

clause, except the conditions specified here are processed just prior to returning

the set of results, and are not optimized. For this reason, you should use the WHERE

clause whenever possible. For more information on GROUP BYand the HAVING clause,

see Chapter 11.

10 http://dev.mysql.com/doc/mysql/en/select.html

Build Your Own Database Driven Web Site Using PHP & MySQL406

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/mysql/en/select.html

The ORDER BY clause lets you sort results according to the values in one or more

rows before they’re returned. As for the GROUP BY clause, each column may be

identified by a column name, alias, or position (where 1 is the first column in the

result set), and each column may have an ASC or DESC argument to specify that

sorting occurs in ascending or descending order, respectively (ascending is the de-

fault). Rows initially are sorted by the first column listed, then tying sets of rows

are sorted by the second, and so on.

The LIMIT clause instructs the query to return only a portion of the results it would

normally generate. In the simple case, LIMIT n returns only the first n rows of the

complete result set. You can also specify an offset by using the form LIMIT x, n.

In this case, up to n rows will be returned, beginning from the xth row of the complete

result set. The first row corresponds to x = 0, the second to x = 1, and so on.

Joins
As described above, the FROM clause of a SELECT query lets you specify the tables

that are combined to create the result set. When multiple tables are combined in

this way, it’s called a join. MySQL supports several types of joins, as defined by the

following supported syntaxes for the table_references component of the FROM clause

above:

table_ref

table_references, table_ref

table_references [CROSS] JOIN table_ref

table_references INNER JOIN table_ref join_condition

table_references STRAIGHT_JOIN table_ref

table_references LEFT [OUTER] JOIN table_ref join_condition

 { oj table_ref LEFT OUTER JOIN table_ref ON cond_expr }

table_references NATURAL [LEFT [OUTER]] JOIN table_ref

407Appendix A: MySQL Syntax Reference

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

table_references RIGHT [OUTER] JOIN table_ref join_condition

table_references NATURAL [RIGHT [OUTER]] JOIN table_ref

where table_ref is defined as:

table_name [[AS] alias] [USE INDEX (key_list)]

 [IGNORE INDEX (key_list)]

and join_condition is defined as one of the following:

ON cond_expr

USING (column_list)

Don’t be disheartened by the sheer variety of join types; I’ll explain how each of

them works below.

The most basic type of join, an inner join, produces rows made up of all possible

pairings of the rows from the first table with the second. You can perform an inner

join in MySQL either by separating the table names with a comma (,) or with the

words JOIN, CROSS JOIN, or INNER JOIN (these are all equivalent).

It’s common—especially in older PHP code—to use the comma (,) form to create

an inner join, and then to use the WHERE clause of the SELECT query to specify a

condition to narrow down which of the combined rows are actually returned (for

example, to match up a primary key in the first table with a column in the second);

however, this is generally considered untidy and bad practice today.

Instead the INNER JOIN syntax followed by a join_condition should be used. The

ON form of the join_condition puts the condition(s) required to join two tables right

next to the names of those tables, keeping the WHERE clause for conditions unrelated

to the join operations.

As a final alternative, the USING (column_list) form of join_condition lets you

specify columns that must match between the two tables. For example:

SELECT * FROM t1 INNER JOIN t2 USING (tid)

Build Your Own Database Driven Web Site Using PHP & MySQL408

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

The above is equivalent to:

SELECT * FROM t1 INNER JOIN t2 ON t1.tid = t2.tid

STRAIGHT_JOIN works in the same way as an inner join, except that the tables are

processed in the order listed (left first, then right). Normally, MySQL selects the

order that will produce the shortest processing time, but if you think you know

better, you can use a STRAIGHT_JOIN.

The second type of join is an outer join, which is accomplished in MySQL with

LEFT/RIGHT [OUTER] JOIN (OUTER is completely optional, and has no effect). In a

LEFT outer join, any row in the left-hand table that has no matching rows in the

right-hand table (as defined by the join_condition), will be listed as a single row in

the result set. NULL values will appear in all the columns that come from the right-

hand table.

The { oj … } syntax is equivalent to a standard left outer join; it’s included for

compatibility with other ODBC databases.

RIGHT outer joins work in the same way as LEFT outer joins, except in this case, it’s

the table on the right whose entries are always included, even if they lack a

matching entry in the left-hand table. Since RIGHT outer joins are nonstandard, it’s

usually best to stick to LEFT outer joins for cross-database compatibility.

For some practical examples of outer joins and their uses, see Chapter 11.

Natural joins are “automatic” in that they automatically will match up rows based

on column names that are found to match between the two tables. Thus, if a table

called joke has an authorid column that refers to entries in an author table whose

primary key is another authorid column, you can perform a join of these two tables

on that column very simply (assuming there are no other columns with identical

names in the two tables):

SELECT * FROM joke NATURAL JOIN author

Unions
A union combines the results from a number of SELECT queries to produce a single

result set. Each of the queries must produce the same number of columns, and these

409Appendix A: MySQL Syntax Reference

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

columns must be of the same types. The column names produced by the first query

are used for the union’s result set:

SELECT …

 UNION [ALL | DISTINCT]

 SELECT …

 [UNION [ALL | DISTINCT]

 SELECT …] …

By default, duplicate result rows in the union will be eliminated so that each row

in the result set is unique. The DISTINCT option can be used to make this clear, but

it has no actual effect. The ALL option, on the other hand, allows duplicate results

through to the final result set.

SET

SET option = value, …

The SET query allows you to set a number of options both on your client and on the

server.

There are two common uses of the SET option query; the first is to change your

password:

SET PASSWORD = PASSWORD('new_password')

The second is to change another user’s password (if you have appropriate access

privileges):

SET PASSWORD FOR user = PASSWORD('new_password')

For a complete list of the options that may be SET, refer to the MySQL Reference

Manual.11

11 http://dev.mysql.com/doc/mysql/en/set-option.html

Build Your Own Database Driven Web Site Using PHP & MySQL410

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/mysql/en/set-option.html
http://dev.mysql.com/doc/mysql/en/set-option.html

SHOW

The SHOW query may be used in a number of forms to obtain information about the

MySQL server, the databases, and the tables it contains. Many of these forms have

an optional LIKE wild component, where wild is a string that may contain wildcard

characters (% for multiple characters, _ for just one) to filter the list of results. Each

of the forms of the SHOW query are described below:

SHOW DATABASES [LIKE wild]

This query lists the databases that are available on the MySQL server.

SHOW [OPEN] TABLES [FROM db_name] [LIKE wild]

This query lists the tables (or, optionally, the currently OPEN tables) in the default

or specified database.

SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [LIKE wild]

When FULL is not used, this query provides the same information as a DESCRIBE

query (see the section called “DESCRIBE/DESC”). The FULL option adds to this

information a listing of the privileges you have on each column. SHOW FIELDS

is equivalent to SHOW COLUMNS.

SHOW INDEX FROM tbl_name [FROM db_name]

This query provides detailed information about the indexes that are defined on

the specified table. See the MySQL Reference manual12 for a guide to the results

produced by this query. SHOW KEYS is equivalent to SHOW INDEX.

SHOW TABLE STATUS [FROM db_name] [LIKE wild]

This query displays detailed information about the tables in the specified or

default database.

SHOW STATUS [LIKE wild]

This query displays detailed statistics for the server. See the MySQL Reference

Manual13 for details on the meaning of each of the figures.

12 http://dev.mysql.com/doc/en/show-index.html
13 http://dev.mysql.com/doc/en/show-status.html

411Appendix A: MySQL Syntax Reference

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/en/show-index.html
http://dev.mysql.com/doc/en/show-status.html
http://dev.mysql.com/doc/en/show-status.html

SHOW VARIABLES [LIKE wild]

This query lists the MySQL configuration variables and their settings. See the

MySQL Reference Manual14 for a complete description of these options.

SHOW [FULL] PROCESSLIST

This query displays all threads running on the MySQL server and the queries

being executed by each. If you don’t have the process privilege, you’ll only see

threads executing your own queries. The FULL option causes the complete

queries to be displayed, rather than only the first 100 characters of each (the

default).

SHOW GRANTS FOR user

This query lists the GRANT queries that would be required to recreate the priv-

ileges of the specified user.

SHOW CREATE TABLE table_name

This query displays the CREATE TABLEquery that would be required to reproduce

the specified table.

TRUNCATE

TRUNCATE [TABLE] tbl_name

A TRUNCATE command deletes all of the rows in a table, just like a DELETE command

with no WHERE clause. TRUNCATE, however, takes a number of shortcuts to make the

process go much faster, especially with large tables. In effect, TRUNCATE performs a

DROP TABLE query, followed by a CREATE TABLE query to re-create an empty table.

UNLOCK TABLES

See the section called “LOCK/UNLOCK TABLES”.

14 http://dev.mysql.com/doc/en/show-variables.html

Build Your Own Database Driven Web Site Using PHP & MySQL412

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/en/show-variables.html

UPDATE

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name

 SET col_name = expr[, …]

 [WHERE where_definition]

 [ORDER BY …]

 [LIMIT #]

The UPDATE query updates existing table entries by assigning new values to the

specified columns. Columns that are not listed are left alone, with the exception of

columns with the TIMESTAMP type (see Appendix C). The WHERE clause lets you

specify a condition (where_definition) that rows must satisfy if they’re to be updated,

while the LIMIT clause lets you specify a maximum number of rows to be updated.

Avoid Omitting WHERE or LIMIT

If WHERE and LIMIT are unspecified, then every row in the table will be updated!

The ORDER BY clause lets you specify the order in which entries are updated. This

is most useful in combination with the LIMIT clause—together they let you create

queries like “update the ten most recent rows.”

An UPDATE operation will fail with an error if the new value assigned to a row clashes

with an existing value in a PRIMARY KEYor UNIQUE column, unless the IGNORE option

is specified, in which case the query will simply have no effect on that particular

row.

The LOW_PRIORITY option instructs MySQL to wait until there are no other clients

reading the table before it performs the update.

Like the DELETE query (see the section called “DELETE”), UPDATE has an alternate

form that can affect multiple tables in a single operation:

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name[, tbl_name …]

 SET col_name = expr[, …]

 [WHERE where_definition]

413Appendix A: MySQL Syntax Reference

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

USE

USE db_name

This simple query sets the default database for MySQL queries in the current session.

Tables in other databases may still be accessed as db_name.tbl_name.

Build Your Own Database Driven Web Site Using PHP & MySQL414

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Appendix B: MySQL Functions
MySQL provides a sizeable library of functions to format and combine data within

SQL queries in order to produce the desired results in the preferred format. This

appendix provides a reference to the most useful of these functions, as implemented

in MySQL as of version 5.1.34 (current this writing).

For a complete, up-to-date reference to supported SQL functions, see the MySQL

Reference Manual.1

Control Flow Functions
IFNULL(expr1, expr2)

This function returns expr1 unless it’s NULL, in which case it returns expr2.

NULLIF(expr1, expr2)

This function returns expr1 unless it equals expr2, in which case it returns NULL.

IF(expr1, expr2, expr3)

If expr1 is TRUE (that is, not NULL or 0), this function returns expr2; otherwise,

it returns expr3.

CASE value WHEN [compare-value1] THEN result1 [WHEN …] [ELSE else-res-

ult] END

This function returns result1 when value=compare-value1 (note that several

compare-value/result pairs can be defined); otherwise, it returns else-result,

or NULL if none is defined.

CASE WHEN [condition1] THEN result1 [WHEN …] [ELSE else-result] END

This function returns result1 when condition1 is TRUE (note that several condi-

tion/result pairs can be defined); otherwise, it returns else-result, or NULL if none

is defined.

1 http://dev.mysql.com/doc/mysql/en/functions.html

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/mysql/en/functions.html
http://dev.mysql.com/doc/mysql/en/functions.html

Mathematical Functions
ABS(expr)

This function returns the absolute (positive) value of expr.

SIGN(expr)

This function returns -1, 0, or 1 depending on whether expr is negative, zero,

or positive, respectively.

MOD(expr1, expr2)

expr1 % expr2

This function returns the remainder of dividing expr1 by expr2.

FLOOR(expr)

This function rounds down expr (that is, it returns the largest integer value that

is less than or equal to expr).

CEILING(expr)

CEIL(expr)

This function rounds up expr (that is, it returns the smallest integer value that’s

greater than or equal to expr).

ROUND(expr)

This function returns expr rounded to the nearest integer. Note that this func-

tion’s behavior when the value is exactly an integer plus 0.5 is system-dependent.

Thus, you should not rely on any particular outcome when migrating to a new

system.

ROUND(expr, num)

This function rounds expr to a number with num decimal places, leaving trailing

zeroes in place. Use a num of 2, for example, to format a number as dollars and

cents. Note that the same uncertainty about the rounding of 0.5 applies as dis-

cussed for ROUND above.

EXP(expr)

This function returns eexpr, the base of natural logarithms raised to the power

of expr.

Build Your Own Database Driven Web Site Using PHP & MySQL416

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

LOG(expr)

This function returns ln(expr), or loge(expr), the natural logarithm of expr.

LOG(B, expr)

This function returns the logarithm of expr with the arbitrary base B.

LOG(B, expr) = LOG(expr) / LOG(B)

LOG10(expr)

This function returns the base-10 logarithm of expr.

POW(expr1, expr2)

POWER(expr1, expr2)

This function returns expr1 raised to the power of expr2.

SQRT(expr)

This function returns the square root of expr.

PI()

This function returns the value of π (pi).

COS(expr)

This function returns the cosine of expr in radians (for example, COS(PI()) =

-1).

SIN(expr)

This function returns the sine of expr in radians (for example, SIN(PI()) = 0).

TAN(expr)

This function returns the tangent of expr in radians (for example, TAN(PI()) =

0).

ACOS(expr)

This function returns the arc cosine (cos-1 or inverse cosine) of expr (for example,

ACOS(-1) = PI()).

417Appendix B: MySQL Functions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

ASIN(expr)

This function returns the arc sine (sin-1 or inverse sine) of expr (for example,

ASIN(0) = PI()).

ATAN(expr)

This function returns the arc tangent (tan-1 or inverse tangent) of expr (for ex-

ample, ATAN(0) = PI()).

ATAN(y, x)

ATAN2(y, x)

This function returns the angle (in radians) made at the origin between the

positive x axis and the point (x,y) (for example, ATAN(1, 0) = PI() / 2).

COT(expr)

This function returns the cotangent of expr (for example, COT(PI() / 2) = 0).

RAND()

RAND(expr)

This function returns a random, floating point number between 0.0 and 1.0. If

expr is specified, a random number will be generated based on that value, which

will always be the same.

LEAST(expr1, expr2, …)

This function returns the smallest of the values specified.

GREATEST(expr1, expr2, …)

This function returns the largest of the values specified.

DEGREES(expr)

This function returns the value of expr (in radians) in degrees.

RADIANS(expr)

This function returns the value of expr (in degrees) in radians.

TRUNCATE(expr, num)

This function returns the value of floating point number expr truncated to num

decimal places (that is, rounded down).

Build Your Own Database Driven Web Site Using PHP & MySQL418

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

BIN(expr)

This function converts decimal expr to binary, equivalent to CONV(expr, 10,

2).

OCT(expr)

This function converts decimal expr to octal, equivalent to CONV(expr, 10,

8).

HEX(expr)

This function converts decimal expr to hexadecimal, equivalent to CONV(expr,

10, 16).

CONV(expr, from_base, to_base)

This function converts a number (expr) in base from_base to a number in base

to_base. Returns NULL if any of the arguments are NULL.

String Functions
ASCII(str)

This function returns the ASCII code value of the left-most character in str, 0 if

str is an empty string, or NULL if str is NULL.

ORD(str)

This function returns the ASCII code of the left-most character in str, taking

into account the possibility that it might be a multi-byte character.

CHAR(expr, …)

This function creates a string composed of characters, the ASCII code values of

which are given by the expressions passed as arguments.

CONCAT(str1, str2, …)

This function returns a string made up of the strings passed as arguments joined

end-to-end. If any of the arguments are NULL, NULL is returned instead.

CONCAT_WS(separator, str1, str2, …)

CONCAT “with separator” (WS). This function is the same as CONCAT, except that

the first argument is placed between each of the additional arguments when

they’re combined.

419Appendix B: MySQL Functions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

LENGTH(str)

OCTET_LENGTH(str)

CHAR_LENGTH(str)

CHARACTER_LENGTH(str)

All of these return the length in characters of str. CHAR_LENGTH and

CHARACTER_LENGTH, however, take multi-byte characters into consideration when

performing the count.

BIT_LENGTH(str)

This function returns the length (in bits) of str (that is, BIT_LENGTH(str) = 8 *

LENGTH(str)).

LOCATE(substr, str)

POSITION(substr IN str)

This function returns the position of the first occurrence of substr in str (1 if it

occurs at the beginning, 2 if it starts after one character, and so on). It returns 0

if substr does not occur in str.

LOCATE(substr, str, pos)

Same as LOCATE(substr, str), but begins searching from character number

pos.

INSTR(str, substr)

This function is the same as LOCATE(substr, str), but with argument order

swapped.

LPAD(str, len, padstr)

This function shortens or lengthens str so that it’s of length len. Lengthening is

accomplished by inserting padstr to the left of the characters of str (for example,

LPAD('!', '5', '.') = '....!').

RPAD(str, len, padstr)

This function shortens or lengthens str so that it’s of length len. Lengthening is

accomplished by inserting padstr to the right of the characters of str (for example,

RPAD('!','5','.') = '!....').

LEFT(str, len)

This function returns the left-most len characters of str. If str is shorter than len

characters, str is returned with no extra padding.

Build Your Own Database Driven Web Site Using PHP & MySQL420

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

RIGHT(str, len)

This function returns the right-most len characters of str. If str is shorter than

len characters, str is returned with no extra padding.

SUBSTRING(str, pos, len)

SUBSTRING(str FROM pos FOR len)

MID(str, pos, len)

This function returns a string up to len characters long taken from str beginning

at position pos (where 1 is the first character). The second form of SUBSTRING

is the ANSI standard.

SUBSTRING(str, pos)

SUBSTRING(str FROM pos)

This function returns the string beginning from position pos in str (where 1 is

the first character) and going to the end of str.

SUBSTRING_INDEX(str, delim, count)

MySQL counts count occurrences of delim in str, then takes the substring from

that point. If count is positive, MySQL counts to the right from the start of the

string, then takes the substring up to but not including that delimiter. If count

is negative, MySQL counts to the left from the end of the string, then takes the

substring that starts right after that delimiter, and runs to the end of str.

LTRIM(str)

This function returns str with any leading white space trimmed off.

RTRIM(str)

This function returns str with any trailing white space trimmed off.

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

This function returns str with either white space (by default) or occurrences of

the string remstr removed from the start of the string (LEADING), end of the string

(TRAILING), or both (BOTH, the default).

SOUNDEX(str)

This function produces a string that represents how str sounds when read aloud.

Words that sound similar should have the same “soundex string.”

For example:

421Appendix B: MySQL Functions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

SOUNDEX("tire") = "T600"

SOUNDEX("tyre") = "T600"

SOUNDEX("terror") = "T600"

SOUNDEX("tyrannosaur") = "T6526"

SPACE(num)

This function returns a string of num space characters.

REPLACE(str, from_str, to_str)

This function returns str after replacing all occurrences of from_str to to_str.

REPEAT(str, count)

This function returns a string made up of str repeated count times, an empty

string if count <= 0, or NULL if either argument is NULL.

REVERSE(str)

This function returns str spelled backwards.

INSERT(str, pos, len, newstr)

This function takes str, and removes the substring beginning at pos (where 1 is

the first character in the string) with length len, then inserts newstr at that pos-

ition. If len = 0, the function simply inserts newstr at position pos.

ELT(N, str1, str2, str3, …)

This function returns the Nth string argument (str1 if N = 1, str2 if N = 2, and so

on), or NULL if there’s no argument for the given N.

FIELD(str, str1, str2, str3, …)

This function returns the position of str in the subsequent list of arguments (1

if str = str1, 2 if str = str2, and so on).

FIND_IN_SET(str, strlist)

When strlist is a list of strings of the form 'string1,string2,string3,…' this

function returns the index of str in that list, or 0 if str is not in the list. This

function is ideally suited (and optimized) for determining if str is selected in a

column of type SET (see Appendix C).

MAKE_SET(bits, str1, str2, …)

This function returns a list of strings of the form 'string1,string2,string3,…'

using the string parameters (str1, str2, and so on) that correspond to the bits

Build Your Own Database Driven Web Site Using PHP & MySQL422

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

that are set in the number bits. For example, if bits = 10 (binary 1010) then bits

2 and 4 are set, so the output of MAKE_SET will be 'str2,str4'.

EXPORT_SET(bits, on_str, off_str[, separator[, number_of_bits]])

This function returns a string representation of which bits are, and are not set

in bits. Set bits are represented by the on_str string, while unset bits are repres-

ented by the off_str string. By default, these bit representations are comma-

separated, but the optional separator string lets you define your own. By default,

up to 64 bits of bits are read; however, number_of_bits lets you specify that a

smaller number be read.

For example:

EXPORT_SET(10, 'Y', 'N', ',', 6) = 'N,Y,N,Y,N,N'

LCASE(str)

LOWER(str)

This function returns str with all letters in lowercase.

UCASE(str)

UPPER(str)

This function returns str with all letters in uppercase.

LOAD_FILE(filename)

This function returns the contents of the file specified by filename (an absolute

path to a file readable by MySQL). Your MySQL user should also have file

privileges.

QUOTE(str)

This function returns str surrounded by single quotes, and with any special

characters escaped with backslashes. If str is NULL, the function returns the

string NULL (without surrounding quotes).

Date and Time Functions
DAYOFWEEK(date)

This function returns the weekday of date in the form of an integer, according

to the ODBC standard (1 = Sunday, 2 = Monday, 3 = Tuesday … 7 = Saturday).

423Appendix B: MySQL Functions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

WEEKDAY(date)

This function returns the weekday of date in the form of an integer (0 = Monday,

1 = Tuesday, 2 = Wednesday … 6 = Sunday).

DAYOFMONTH(date)

This function returns the day of the month for date (from 1 to 31).

DAYOFYEAR(date)

This function returns the day of the year for date (from 1 to 366—remember

leap years!).

MONTH(date)

This function returns the month for date (from 1, January, to 12, December).

DAYNAME(date)

Returns the name of the day of the week for date (for example, 'Tuesday').

MONTHNAME(date)

This function returns the name of the month for date (for example, 'April').

QUARTER(date)

This function returns the quarter of the year for date (for example,

QUARTER('2005-04-12') = 2).

WEEK(date[, mode])

This function returns the week of the year for date by default in the range 0-53

(where week 1 is the first week that starts in this year), assuming that the first

day of the week is Sunday.

By specifying one of the mode values in Table B.1, you can alter the way this

value is calculated.

Build Your Own Database Driven Web Site Using PHP & MySQL424

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Table B.1. Modes for week calculations

Week 1Return Value
Range

Week starts
on

mode

first week that starts in this year0 to 53Sunday0

first week that has more than 3 days in this year0 to 53Monday1

first week that starts in this year1 to 53Sunday2

first week that has more than 3 days in this year1 to 53Monday3

first week that has more than 3 days in this year0 to 53Sunday4

first week that starts in this year0 to 53Monday5

first week that has more than 3 days in this year1 to 53Sunday6

first week that starts in this year1 to 53Monday7

YEAR(date)

This function returns the year for date (from 1000 to 9999).

YEARWEEK(date)

YEARWEEK(date, first)

This function returns the year and week for date in the form 'YYYYWW'. Note

that the first or last day or two of the year may often belong to a week of the

preceding or following year, respectively.

For example:

YEARWEEK("2006-12-31") = 200701

HOUR(time)

This function returns the hour for time (from 0 to 23).

MINUTE(time)

This function returns the minute for time (from 0 to 59).

SECOND(time)

This function returns the second for time (from 0 to 59).

425Appendix B: MySQL Functions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

PERIOD_ADD(period, num_months)

This function adds num_months months to period (specified as 'YYMM' or

'YYYYMM') and returns the value in the form 'YYYYMM'.

PERIOD_DIFF(period1, period2)

This function returns the number of months between period1 and period2 (each

of which should be specified as 'YYMM' or 'YYYYMM').

DATE_ADD(date, INTERVAL expr type)

DATE_SUB(date, INTERVAL expr type)

ADDDATE(date, INTERVAL expr type)

SUBDATE(date, INTERVAL expr type)

This function returns the result of either adding or subtracting the specified

interval of time to or from date (a DATE or DATETIME value). DATE_ADD and ADDDATE

are identical, as are DATE_SUB and SUBDATE. expr specifies the interval to be

added or subtracted and may be negative if you wish to specify a negative inter-

val, and type specifies the format of expr, as shown in Table B.2.

If date and expr involve only date values, the result will be a DATE value; other-

wise, this function will return a DATETIME value.

Here are a few examples to help you see how this family of functions works.

The following both return the date six months from now:

ADDDATE(CURDATE(), INTERVAL 6 MONTH)

DATE_ADD(CURDATE(), INTERVAL '0-6' YEAR_MONTH)

The following all return this time tomorrow:

ADDDATE(NOW(), INTERVAL 1 DAY)

SUBDATE(NOW(), INTERVAL -1 DAY)

DATE_ADD(NOW(), INTERVAL '24:0:0' HOUR_SECOND)

DATE_ADD(NOW(), INTERVAL '1 0:0' DAY_MINUTE)

Build Your Own Database Driven Web Site Using PHP & MySQL426

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Table B.2. Interval types for date addition/subtraction functions

Format for exprtype

number of secondsSECOND

number of minutesMINUTE

number of hoursHOUR

number of daysDAY

number of monthsMONTH

number of yearsYEAR

'minutes:seconds'MINUTE_SECOND

'hours:minutes'HOUR_MINUTE

'days hours'DAY_HOUR

'years-months'YEAR_MONTH

'hours:minutes:seconds'HOUR_SECOND

'days hours:minutes'DAY_MINUTE

'days hours:minutes:seconds'DAY_SECOND

TO_DAYS(date)

This function converts date to a number of days since year 0. Allows you to

calculate differences in dates (that is, TO_DAYS(date1) - TO_DAYS(date2) =

days between date1 and date2).

FROM_DAYS(days)

Given the number of days since year 0 (as produced by TO_DAYS), this function

returns a date.

DATE_FORMAT(date, format)

This function takes the date or time value date and returns it formatted according

to the formatting string format, which may contain as placeholders any of the

symbols shown in Table B.3.

427Appendix B: MySQL Functions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Table B.3. DATE_FORMAT symbols (2004-01-01 01:00:00)

ExampleDisplaysSymbol

JanuaryMonth name%M

ThursdayWeekday name%W

1stDay of the month with English suffix%D

2004Year, numeric, 4 digits%Y

03Year, numeric, 2 digits%y

ThuAbbreviated weekday name%a

01Day of the month%d

1Day of the month%e

01Month of the year, numeric%m

1Month of the year, numeric%c

JanAbbreviated month name%b

001Day of the year%j

01Hour of the day (24 hour format, 00-23)%H

1Hour of the day (24 hour format, 0-23)%k

01Hour of the day (12 hour format, 01-12)%h

01Hour of the day (12 hour format, 01-12)%I

1Hour of the day (12 hour format, 1-12)%l

00Minutes%i

01:00:00 AMTime, 12 hour (hh:mm:ss AM/PM)%r

01:00:00Time, 24 hour (hh:mm:ss)%T

00Seconds%S

00Seconds%s

AMAM or PM%p

4Day of the week, numeric (0=Sunday)%w

00Week (00-53), Sunday first day of the week%U

01Week (00-53), Monday first day of the week%u

2003Year of the week where Sunday is the first day of the week,

4 digits (use with %V)

%X

Build Your Own Database Driven Web Site Using PHP & MySQL428

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

ExampleDisplaysSymbol

53Week (01-53), Sunday first day of week (%X)%V

2004Like %X, Monday first day of week (use with %v)%x

01Week (01-53), Monday first day of week (%x)%v

%An actual percent sign%%

TIME_FORMAT(time, format)

This function is the same as DATE_FORMAT, except the format string may only

contain symbols referring to hours, minutes, and seconds.

CURDATE()

CURRENT_DATE

This function returns the current system date in the SQL date format

'YYYY-MM-DD' (if used as a date) or as YYYYMMDD (if used as a number).

CURTIME()

CURRENT_TIME

CURRENT_TIME()

This function returns the current system time in the SQL time format 'HH:MM:SS'

(if used as a time) or as HHMMSS (if used as a number).

NOW()

SYSDATE()

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP()

LOCALTIME

LOCALTIME()

LOCALTIMESTAMP

LOCALTIMESTAMP()

This function returns the current system date and time in SQL date/time format

'YYYY-MM-DD HH:MM:SS' (if used as a date/time) or as YYYYMMDDHHMMSS (if used

as a number).

UNIX_TIMESTAMP()

UNIX_TIMESTAMP(date)

This function returns either the current system date and time, or the specified

date/time as the number of seconds since 1970-01-01 00:00:00 GMT.

429Appendix B: MySQL Functions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

FROM_UNIXTIME(unix_timestamp)

The opposite of UNIX_TIMESTAMP, this function converts a number of seconds

from 1970-01-01 00:00:00 GMT to 'YYYY-MM-DD HH:MM:SS' (if used as a

date/time) or YYYYMMDDHHMMSS (if used as a number), local time.

FROM_UNIXTIME(unix_timestamp, format)

This function formats a UNIX timestamp according to the format string, which

may contain any of the symbols listed in Table B.3.

SEC_TO_TIME(seconds)

This function converts some number of seconds to the format 'HH:MM:SS' (if

used as a time) or HHMMSS (if used as a number).

TIME_TO_SEC(time)

This function converts a time in the format 'HH:MM:SS' to a number of seconds.

Miscellaneous Functions
DATABASE()

This function returns the currently selected database name, or an empty string

if no database is currently selected.

USER()

SYSTEM_USER()

SESSION_USER()

This function returns the current MySQL username, including the client host

name (for example, 'kevin@localhost'). The SUBSTRING_INDEX function may

be used to obtain the username alone:

SUBSTRING_INDEX(USER(), "@", 1) = 'kevin'

CURRENT_USER()

This function returns the user entry in the MySQL access control system that

was used to authenticate the current connection, and which controls its priv-

ileges, in the form 'user@host'. In many cases, this will be the same as the

value returned by USER, but when entries in the access control system contain

wild cards, this value may be less specific (for example, '@%.mycompany.com').

Build Your Own Database Driven Web Site Using PHP & MySQL430

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

PASSWORD(str)

This is a one-way password encryption function, which converts any string

(typically a plain text password) into an encrypted format precisely 16 characters

in length. A particular plain text string always will yield the same encrypted

string of 16 characters; thus, values encoded in this way can be used to verify

the correctness of a password without actually storing the password in the

database.

This function uses a different encryption mechanism to UNIX passwords; use

ENCRYPT for that type of encryption.

ENCRYPT(str[, salt])

This function uses standard UNIX encryption (via the crypt() system call) to

encrypt str. The salt argument is optional, and lets you control the seed that’s

used for generating the password. If you want the encryption to match a UNIX

password file entry, the salt should be the two first characters of the encrypted

value you’re trying to match. Depending on the implementation of crypt() on

your system, the encrypted value may only depend on the first eight characters

of the plain text value.

On systems where crypt() is unavailable, this function returns NULL.

ENCODE(str, pass_str)

This function encrypts str using a two-way password-based encryption algorithm,

with password pass_str. To subsequently decrypt the value, use DECODE.

DECODE(crypt_str, pass_str)

This function decrypts the encrypted crypt_str using two-way password-based

encryption, with password pass_str. If the same password is given that was

provided to ENCODE, the original string will be restored.

MD5(string)

This function calculates an MD5 hash based on string. The resulting value is a

32-digit hexadecimal number. A particular string will always produce the same

MD5 hash; however, MD5(NOW()) may be used, for instance, to obtain a semi-

random string when one is needed (as a default password, for instance).

431Appendix B: MySQL Functions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

LAST_INSERT_ID()

This function returns the last number that was automatically generated for an

AUTO_INSERT column in the current connection.

FOUND_ROWS()

When you execute a SELECT query with a LIMIT clause, you may sometimes

want to know how many rows would’ve been returned if you omitted a LIMIT

clause. To do this, use the SQL_CALC_FOUND_ROWS option for the SELECT query

(see Appendix A), then call this function in a second SELECT query.

Calling this function is considerably quicker than repeating the query without

a LIMIT clause, since the full result set does not need to be sent to the client.

FORMAT(expr, num)

This function formats a number expr with commas as “thousands separators”

and num decimal places (rounded to the nearest value, and padded with zeroes).

VERSION()

This function returns the MySQL server version (for example, '5.1.34').

CONNECTION_ID()

This function returns the thread ID for the current connection.

GET_LOCK(str, timeout)

If two or more clients must synchronize tasks beyond what table locking can

offer, named locks may be used instead. GET_LOCK attempts to obtain a lock with

a given name (str). If the named lock is already in use by another client, this

client will wait up to timeout seconds before giving up waiting for the lock to

become free.

Once a client has obtained a lock, it can be released either using RELEASE_LOCK

or by using GET_LOCK again to obtain a new lock.

GET_LOCK returns 1 if the lock was successfully retrieved, 0 if the time specified

by timeout elapsed, or NULL if some error occurred.

GET_LOCK is not a MySQL command in and of itself—it must appear as part of

another query.

For example:

Build Your Own Database Driven Web Site Using PHP & MySQL432

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

SELECT GET_LOCK("mylock", 10)

RELEASE_LOCK(str)

This function releases the named lock that was obtained by GET_LOCK. It returns

1 if the lock was released, 0 if the lock wasn’t locked by this thread, or NULL if

the lock doesn’t exist.

IS_FREE_LOCK(str)

This function checks if the named lock is free to be locked. It returns 1 if the

lock was free, 0 if the lock was in use, or NULL if an error occurred.

BENCHMARK(count, expr)

This function repeatedly evaluates expr count times, for the purposes of speed

testing. The MySQL command line client allows the operation to be timed.

INET_NTOA(expr)

This function returns the IP address represented by the integer expr. See

INET_ATON to create such integers.

INET_ATON(expr)

This function converts an IP address expr to a single integer representation.

For example:

INET_ATON('64.39.28.1') = 64 * 2553 + 39 * 2552 + 28 * 255 + 1

 = 1063751116

Functions for Use with GROUP BY Clauses
Also known as summary functions, the following are intended for use with GROUP

BY clauses, where they’ll produce values based on the set of records making up each

row of the final result set.

If used without a GROUP BY clause, these functions will cause the result set to be

displayed as a single row, with a value calculated based on all of the rows of the

complete result set. Without a GROUP BYclause, mixing these functions with columns

where there are no summary functions will cause an error, because you’re unable

to collapse those columns into a single row and gain a sensible value.

433Appendix B: MySQL Functions

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

COUNT(expr)

This function returns a count of the number of times in the ungrouped result

set that expr had a non-NULL value. If COUNT(*) is used, it will simply provide

a count of the number of rows in the group, irrespective of NULL values.

COUNT(DISTINCT expr[, expr …])

This function returns a count of the number of different non-NULL values (or

sets of values, if multiple expressions are provided).

AVG(expr)

This function calculates the arithmetic mean (average) of the values appearing

in the rows of the group.

MIN(expr)

MAX(expr)

This function returns the smallest or largest value of expr in the rows of the

group.

SUM(expr)

This function returns the sum of the values for expr in the rows of the group.

STD(expr)

STDDEV(expr)

This function returns the standard deviation of the values for expr in the rows

of the group (either of the two function names may be used).

BIT_OR(expr)

BIT_AND(expr)

This function calculates the bit-wise OR and the bit-wise AND of the values for

expr in the rows of the group, respectively.

Build Your Own Database Driven Web Site Using PHP & MySQL434

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Appendix C: MySQL Column Types
When you create a table in MySQL, you must specify the data type for each column.

This appendix documents all of the column types that MySQL provides as of version

5.1.34 (current this writing).

In this reference, many column types can accept optional parameters to further

customize how data for the column is stored or displayed. First, there are the M and

D parameters, which are indicated (in square brackets when optional) immediately

following the column type name.

The parameter M is used to specify the display size (that is, maximum number of

characters) to be used by values in the column. In most cases, this will limit the

range of values that may be specified in the column. M may be any integer between

1 and 255. Note that for numerical types (for example, INT), this parameter does

not actually restrict the range of values that may be stored. Instead, it causes spaces

(or zeroes in the case of a ZEROFILL column—see below for details) to be added to

the values so that they reach the desired display width when they’re displayed.

Note also that the storage of values longer than the specified display width can

cause problems when the values are used in complex joins, and thus should be

avoided whenever possible.

The parameter D lets you specify how many decimal places will be stored for a

floating-point value. This parameter may be set to a maximum of 30, but M should

always allow for these places (that is, D should always be less than or equal to M –

2 to allow room for a zero and a decimal point).

The second type of parameter is an optional column attribute. The attributes sup-

ported by the different column types are listed for each; to enable them, simply type

them after the column type, separated by spaces. Here are the available column at-

tributes and their meanings:

ZEROFILL Values for the column always occupy their maximum display length,

as the actual value is padded with zeroes. The option automatically

sets the UNSIGNED option as well.

UNSIGNED The column may accept only positive numerical values (or zero). This

restriction frees up more storage space for positive numbers, effectively

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

doubling the range of positive values that may be stored in the column,

and should always be set if you know that there’s no need to store

negative values.

BINARY By default, comparisons of character values in MySQL (including

sorting) are case-insensitive. However, comparisons for BINARY columns

are case-sensitive.

For a complete, up-to-date reference to supported SQL column types, see the MySQL

Reference Manual.1

Numerical Types
TINYINT[(M)]

Description:

A tiny integer value

Attributes allowed:

UNSIGNED, ZEROFILL

Range:

-128 to 127 (0 to 255 if UNSIGNED)

Storage space:

1 byte (8 bits)

SMALLINT[(M)]

Description:

A small integer value

Attributes allowed:

UNSIGNED, ZEROFILL

Range:

-32768 to 32767 (0 to 65535 if UNSIGNED)

1 http://dev.mysql.com/doc/mysql/en/data-types.html

Build Your Own Database Driven Web Site Using PHP & MySQL436

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://dev.mysql.com/doc/mysql/en/data-types.html
http://dev.mysql.com/doc/mysql/en/data-types.html

Storage space:

2 bytes (16 bits)

MEDIUMINT[(M)]

Description:

A medium integer value

Attributes allowed:

UNSIGNED, ZEROFILL

Range:

-8588608 to 8388607 (0 to 16777215 if UNSIGNED)

Storage space:

3 bytes (24 bits)

INT[(M)]

Description:

A regular integer value

Attributes allowed:

UNSIGNED, ZEROFILL

Range:

-2147483648 to 2147483647 (0 to 4294967295 if UNSIGNED)

Storage space:

4 bytes (32 bits)

Alternative syntax:

INTEGER[(M)]

BIGINT[(M)]

Description:

A large integer value

Attributes allowed:

UNSIGNED, ZEROFILL

437Appendix C: MySQL Column Types

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Range:

-9223372036854775808 to 9223372036854775807 (0 to

18446744073709551615 if UNSIGNED)

Storage space:

8 bytes (64 bits)

Notes:

MySQL performs all integer arithmetic functions in signed BIGINT format;

thus, BIGINT UNSIGNED values over 9223372036854775807 (63 bits) will

only work properly with bit functions (for example, bit-wise AND, OR, and

NOT). Attempting integer arithmetic with larger values may produce inac-

curate results due to rounding errors.

FLOAT[(M, D)]

FLOAT(precision)

Description:

A floating point number

Attributes allowed:

ZEROFILL

Range:

0 and ±1.175494351E-38 to ±3.402823466E+38

Storage space:

4 bytes (32 bits)

Notes:

precision (in bits), if specified, must be less than or equal to 24, or else a

DOUBLE column will be created instead (see below).

DOUBLE[(M, D)]

DOUBLE(precision)

Description:

A high-precision floating point number

Build Your Own Database Driven Web Site Using PHP & MySQL438

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Attributes allowed:

ZEROFILL

Range:

0 and ±2.2250738585072014-308 to ±1.7976931348623157E+308

Storage space:

8 bytes (64 bits)

Notes:

precision (in bits), if specified, must be greater than or equal to 25, or else

a FLOAT column will be created instead (see above). precision may not be

greater than 53.

Alternative syntax:

DOUBLE PRECISION[(M,D)] or REAL[(M,D)]

DECIMAL[(M[, D])]

Description:

A floating point number stored as a character string

Attributes allowed:

ZEROFILL

Range:

As for DOUBLE, but constrained by M and D (see Notes)

Storage space:

Depends on the stored value. For a value with X digits before the decimal

point and Y digits after, the storage space used is approximately (X+Y)×4÷10

bytes.

Notes:

If D is unspecified, it defaults to 0 and numbers in this column will have

no decimal point or fractional part. If M is unspecified, it defaults to 10.

Alternative syntax:

NUMERIC([M[,D]])

439Appendix C: MySQL Column Types

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

BIT(M)

Description:

An M-bit binary value, where M can be 1 to 64. In other words, a series of

M digits, each of which may be 1 or 0.

Range:

As constrained by M.

Storage space:

M + 2 bytes (8 × M + 16 bits)

Notes:

Intended for storing sets of Boolean (true or false) flags. To write BIT values,

use the form b'ddd…', where each digit d can be 1 (to indicate “true”) or 0

(to indicate “false”). For example, an 8-bit binary value where all the flags

are true is b'11111111'.

Character Types
CHAR(M)

Description:

A fixed-length character string

Attributes allowed:

BINARY

Maximum length:

M characters

Storage space:

M bytes (8 × M bits)

Notes:

CHAR values are stored as strings of length M, even though the assigned value

may be shorter. When the string is shorter than the full length of the field,

spaces are added to the end of the string to bring it exactly to M characters.

Trailing spaces are stripped off when the value is retrieved.

Build Your Own Database Driven Web Site Using PHP & MySQL440

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

CHAR columns are quicker to search than variable-length character column

types such as VARCHAR, since their fixed-length nature makes the underlying

database file format more regular.

M may take any integer value from 0 to 255, with a CHAR(0) column able to

store only two values: NULL and '' (the empty string), which occupy a single

bit.

Alternative syntax:

CHARACTER(M)

VARCHAR(M)

Description:

A variable-length character string

Attributes allowed:

BINARY

Maximum length:

M characters

Storage space:

Length of stored value, plus 1 byte to store length

Notes:

As VARCHAR values occupy only the space they require, there’s usually no

point to specifying a maximum field length M of anything less than 255 (the

maximum). Values anywhere from 1 to 255 are acceptable, however, and

will cause strings longer than the specified limit to be chopped to the

maximum length when inserted. Trailing spaces are stripped from values

before they’re stored.

Alternative syntax:

CHARACTER VARYING(M)

441Appendix C: MySQL Column Types

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

TINYBLOB

TINYTEXT

Description:

A short, variable-length character string

Maximum length:

255 characters

Storage space:

Length of stored value, plus 1 byte to store length

Notes:

These types are basically equivalent to VARCHAR(255) BINARY and

VARCHAR(255), respectively. However, these column types do not trim

trailing spaces from inserted values. The only difference between TINYBLOB

and TINYTEXT is that the former performs case-sensitive comparisons and

sorts, while the latter does not.

BLOB

TEXT

Description:

A variable-length character string

Maximum length:

65535 characters (65KB)

Storage space:

Length of stored value, plus 2 bytes to store length

Notes:

The only difference between BLOB and TEXT is that the former performs case-

sensitive comparisons and sorts, while the latter does not.

MEDIUMBLOB

MEDIUMTEXT

Description:

A medium, variable-length character string

Build Your Own Database Driven Web Site Using PHP & MySQL442

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Maximum length:

16777215 characters (16.8MB)

Storage space:

Length of stored value, plus 3 bytes to store length

Notes:

The only difference between MEDIUMBLOB and MEDIUMTEXT is that the former

performs case-sensitive comparisons and sorts, while the latter does not.

LONGBLOB

LONGTEXT

Description:

A long, variable-length character string

Maximum length:

4294967295 characters (4.3GB)

Storage space:

Length of stored value, plus 4 bytes to store length

Notes:

The only difference between LONGBLOB and LONGTEXT is that the former

performs case-sensitive comparisons and sorts, while the latter does not.

ENUM(value1, value2, ...)

Description:

A set of values from which a single value must be chosen for each row

Maximum Length:

One value chosen from up to 65535 possibilities

Storage space:

■ 1 to 255 values: 1 byte (8 bits)

■ 256 to 65535 values: 2 bytes (16 bits)

443Appendix C: MySQL Column Types

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Notes:

Values in this type of field are stored as integers that represent the element

selected. 1 represents the first element, 2 the second, and so on. The special

value 0 represents the empty string '', which is stored if a value that does

not appear in a column declaration is assigned.

NOT NULL columns of this type default to the first value in the column de-

claration if no particular default is assigned.

SET(value1, value2, ...)

Description:

A set of values, each of which may be set or not set

Maximum length:

Up to 64 values in a given SET column

Storage space:

■ 1 to 8 values: 1 byte (8 bits)

■ 9 to 16 values: 2 bytes (16 bits)

■ 17 to 24 values: 3 bytes (24 bits)

■ 25 to 32 values: 4 bytes (32 bits)

■ 33 to 64 values: 8 bytes (64 bits)

Notes:

Values in this type of field are stored as integers representing the pattern

of bits for set and unset values. For example, if a set contains eight values,

and in a particular row the odd values are set, then the binary representation

01010101 becomes the decimal value 85. Values may therefore be assigned

either as integers, or as a string of set values, separated by commas (for ex-

ample, 'value1,value3,value5,value7' = 85). Searches should be per-

formed either with the LIKE operator, or the FIND_IN_SET function.

Build Your Own Database Driven Web Site Using PHP & MySQL444

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Date/Time Types
DATE

Description:

A date

Range:

'1000-01-01' to '9999-12-31', and '0000-00-00'

Storage space:

3 bytes (24 bits)

TIME

Description:

A time

Range:

'-838:59:59' to '838:59:59'

Storage space:

3 bytes (24 bits)

DATETIME

Description:

A date and time

Range:

'1000-01-01 00:00:00' to '9999-12-31 23:59:59'

Storage space:

8 bytes (64 bits)

YEAR

Description:

A year

445Appendix C: MySQL Column Types

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Range:

1901 to 2155, and 0000

Storage space:

1 byte (8 bits)

Notes:

You can specify a year value with a four-digit number (1901 to 2155, or

0000), a four-digit string ('1901' to '2155', or '0000'), a two-digit number

(70 to 99 for 1970 to 1999, 1 to 69 for 2001 to 2069, or 0 for 0), or a two-digit

string ('70' to '99' for 1970 to 1999, '00' to '69' for 2000 to 2069). Note

that you cannot specify the year 2000 with a two-digit number, and you

can’t specify the year 0 with a two-digit string. Invalid year values are always

converted to 0.

TIMESTAMP[(M)]

Description:

A timestamp (date/time), in YYYYMMDDHHMMSS format

Range:

19700101000000 to some time in 2037 on current systems

Storage space:

4 bytes (32 bits)

Note:

An INSERT or UPDATE operation on a row that contains one or more

TIMESTAMP columns automatically will update the first TIMESTAMP column

in the row with the current date/time. This lets you use such a column as

the “last modified date/time” for the row. Assigning a value of NULL to the

column will have the same effect, thereby providing a means of “touching”

the date/time. You can also assign actual values as you would for any other

column.

Allowable values for M are 14, 12, 10, 8, 6, 4, and 2, and correspond to the

display formats YYYYMMDDHHMMSS, YYMMDDHHMMSS, YYMMDDHHMM, YYYYMMDD,

YYMMDD, YYMM, and YY respectively. Odd values from 1 to 13 automatically

Build Your Own Database Driven Web Site Using PHP & MySQL446

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

will be bumped up to the next even number, while values of 0 or greater

than 14 are changed to 14.

447Appendix C: MySQL Column Types

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Appendix D: PHP Functions for
Working with MySQL
PHP provides a vast library of built-in functions that let you perform all sorts of

tasks without having to look to third-party software vendors for a solution. The

online reference1 to these functions provided by the PHP web site is second to none.

Obtaining detailed information about a function is as simple as opening your browser

and typing:

http://www.php.net/functionname

As a result of the convenience of this facility, I decided that a complete PHP function

reference is beyond the scope of this book. All the same, this appendix contains a

reference to the most commonly used PHP functions specifically designed to interact

with MySQL databases, so that if you use this book as your primary reference while

building a database driven web site, there’ll be no need for you to look elsewhere

for further information.

Common PHP mysqli_* Functions
This list of functions and their definitions are current as of PHP 5.2.9.

mysqli_affected_rows

mysqli_affected_rows(link)

This function returns the number of affected rows in the previous MySQL INSERT,

UPDATE, DELETE, or REPLACE operation performed with the specified link. If the

previous operation was a SELECT, this function returns the same value as

mysqli_num_rows. It returns -1 if the previous operation failed.

mysqli_character_set_name

mysql_client_encoding(link)

1 http://www.php.net/mysqli

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

http://www.php.net/mysqli

This function returns the name of the default character set in use by the specified

connection (for example, latin1 or utf8).

mysqli_close

mysqli_close(link)

This function closes the specified MySQL connection (link). If link refers to a per-

sistent connection (see mysqli_connect below), this function call is ignored. As

non-persistent connections automatically are closed by PHP at the end of a script,

this function is usually unnecessary.

This function returns TRUE on success, FALSE on failure.

mysqli_connect

mysqli_connect(

 [host[, username[, password[, database[, port[, socket]]]]]])

This function opens a connection to a MySQL server and returns a link reference

that may be used in other MySQL-related functions. This function takes up to six

arguments, all of them optional:2

host The address of the computer where the MySQL server is running, as a

hostname or IP address string. The special values 'localhost' or NULL

can be used to connect to the same computer that’s running your web

server.

Add p: to the start of this value to tell PHP to reuse an existing connec-

tion to the server if one has previously been established by your web

server.

username The MySQL username to be used for the connection.

password The password for the MySQL user to be used for the connection, or

NULL to connect without a password.

2 PHP obtains the default values for these arguments from your web server’s php.ini file.

Build Your Own Database Driven Web Site Using PHP & MySQL450

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

database The default database for queries using this connection.

port The port number to connect to on the specified host. MySQL servers

usually run on port 3306.

socket The named socket to use for a local server connection. When connecting

to a MySQL server running on the same computer, PHP can use a named

socket instead of the TCP/IP protocol to create a more efficient connec-

tion.

If the connection attempt is unsuccessful, an error message will be displayed and

the function will return FALSE.

mysqli_connect_errno

mysqli_connect_errno()

If the last call to mysqli_connect failed, this function will return a number that

indicates the type of error that occurred. If the last call to mysqli_connect was

successful, this function will return 0.

mysqli_connect_error

mysqli_connect_error()

If the last call to mysqli_connect failed, this function will return a string that de-

scribes the error that occurred. If the last call to mysqli_connect was successful,

this function will return '' (an empty string).

mysqli_data_seek

mysqli_data_seek(result, row_number)

This function moves the internal result pointer of the result set identified by result

to row number row_number, so that the next call to a mysqli_fetch_… function will

retrieve the specified row. It returns TRUE on success, and FALSE on failure. The first

row in a result set is number 0.

451Appendix D: PHP Functions for Working with MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysqli_errno

mysqli_errno(link)

This function returns a number that indicates the type of error that occurred as a

result of the last MySQL operation on specified MySQL connection (link). If no error

occurred, this function returns 0.

mysqli_error

mysqli_error(link)

This function returns the text of the error message from the last MySQL operation

on the specified MySQL connection (link). If no error occurred, this function returns

'' (an empty string).

mysqli_fetch_all

mysqli_fetch_all(result[, type])

This function fetches the complete contents of the MySQL result set result in the

form of an array. Each item within that array corresponds to a row of the result set,

and is itself represented by an array.

The optional type argument can be used to specify the type of arrays that are used

to represent the rows of the result set. If specified, this argument must be set to one

of these constants:

MYSQLI_ASSOC

The rows are represented by associative arrays (that is,

$results[rowNumber][columnName]).

MYSQLI_NUM

The rows are represented by numbered arrays (that is,

$results[rowNumber][columnNumber]).

Build Your Own Database Driven Web Site Using PHP & MySQL452

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

MYSQLI_BOTH (default)

The rows are represented by arrays that provided both numbered and associative

indexes.

mysqli_fetch_array

mysqli_fetch_array(result[, type])

This function fetches the next row of the MySQL result set result, then advances

the internal row pointer of the result set to the next row. If there are no rows left in

the result set, it returns NULL instead.

By default, the returned array provides both numbered and associative indexes;

however, you can use the optional type argument to specify the type of array to be

returned. See the section called “mysqli_fetch_all” for more details.

mysqli_fetch_assoc

mysqli_fetch_assoc(result)

This function fetches a result row as an associative array. It’s identical to

mysqli_fetch_array called with the type argument set to MYSQLI_ASSOC.

mysqli_fetch_field

mysqli_fetch_field(result)

This function returns a PHP object that contains information about a column in the

supplied result set (result), beginning with the first column. Call this function re-

peatedly to retrieve information about each of the columns of the result set in turn.

When all of the columns have been described, this function returns FALSE.

Assuming the result of this function is stored in $field, then the properties of the

retrieved field are accessible as shown in Table D.1.

453Appendix D: PHP Functions for Working with MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Table D.1. Object fields for mysqli_fetch_field_direct

Information ContainedObject Property

Column name or alias$field->name

The original (non-alias) column name$field->orgname

Name or alias of the table to which the column belongs$field->table

The original (non-alias) table name$field->orgtable

The default value for this field, as a string$field->def

Maximum length of the column in this result set$field->max_length

Maximum length of the column in the table definition$field->length

The number identifying the character set for this field$field->charsetnr

An integer whose bits describe attributes of the field$field->flags

An integer that indicates the data type of the field$field->type

The number of decimal places in the field (for numbers)$field->decimals

mysqli_fetch_field_direct

mysqli_fetch_field_direct(result, field_pos)

This function returns a PHP object that contains information about a particular

column in the supplied result set (result). The field_pos argument specifies the po-

sition of the column to describe (0 indicates the first column).

The object returned by this function is as described in the section called

“mysqli_fetch_field”.

mysqli_fetch_fields

mysqli_fetch_fields(result)

This function returns an array of PHP objects that contain information about each

of the columns in the supplied result set (result). Each of these objects is as described

in the section called “mysqli_fetch_field”.

Build Your Own Database Driven Web Site Using PHP & MySQL454

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysqli_fetch_lengths

mysqli_fetch_lengths(result)

This function returns an array containing the lengths of each of the fields in the

last-fetched row of the specified result set.

mysqli_fetch_object

mysqli_fetch_object(result[, className[, params]])

This function returns the next result row from result in the form of an object, and

advances the internal row pointer of the result set to the next row. Column values

for the row become accessible as named properties of the object (for example,

$row->user for the value of the user field in the $row object). If there are no rows

left in the result set, it returns NULL instead.

The optional className argument specifies the name of a PHP class to use for the

object. The params argument can be used to provide an array of parameters to be

passed to the constructor.

mysqli_fetch_row

mysqli_fetch_row(result)

This function fetches a result row as a numerical array. It’s identical to

mysqli_fetch_array called with the type argument set to MYSQL_NUM.

mysqli_field_count

mysqli_field_count(link)

This function returns the number of columns present in the result set of the last

query performed with the specified MySQL connection (link). This function will

return 0 if the last query was an INSERT, UPDATE, DELETE, or other query that does

not return a result set.

455Appendix D: PHP Functions for Working with MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysqli_field_seek

mysqli_field_seek(result, field_position)

This function sets the field position for the next call to mysqli_fetch_field.

mysqli_field_tell

mysqli_field_tell(result)

This function returns the position of the next column of the result set result whose

description would be returned by a call to mysqli_fetch_field (0 indicates the

first column).

mysqli_free_result

mysqli_free_result(result)

This function destroys the specified result set (result), freeing all memory associated

with it. As all memory is freed automatically at the end of a PHP script, this function

is only really useful when a large result set is no longer needed and your script still

has a lot of work to do.

mysqli_get_client_info

mysqli_get_client_info()

This function returns a string indicating the version of the MySQL client library

that PHP is using (for example, '5.1.34').

mysqli_get_client_version

mysqli_get_client_version()

This function returns an integer indicating the version of the MySQL client library

that PHP is using (for example, 50134).

Build Your Own Database Driven Web Site Using PHP & MySQL456

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysqli_get_host_info

mysqli_get_host_info(link)

This function returns a string describing the type of connection and server host

name for the specified (link) MySQL connection (for example, 'Localhost via

UNIX socket').

mysqli_get_proto_info

mysqli_get_proto_info(link)

This function returns an integer indicating the MySQL protocol version in use for

the specified (link) MySQL connection (for example, 10).

mysqli_get_server_info

mysqli_get_server_info(link)

This function returns a string indicating the version of MySQL server in use on the

specified (link) MySQL connection (for example, '5.1.34').

mysqli_get_server_version

mysqli_get_server_version(link)

This function returns an integer indicating the version of the MySQL server to which

the specified connection (link) is connected (for example, 50134).

mysqli_info

mysqli_info(link)

This function returns a string that contains information about the effects of the last

query executed on the specified connection (link), if it was a query that inserted

new data into the database (such as an INSERT, UPDATE, or LOAD DATA INFILEquery).

457Appendix D: PHP Functions for Working with MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysqli_insert_id

mysqli_insert_id(link)

This function returns the value that was assigned to an AUTO_INCREMENT column

automatically in the previous INSERT query for the specified MySQL connection

(link). If no AUTO_INCREMENT value was assigned in the previous query, 0 is returned

instead.

mysqli_num_fields

mysqli_num_fields(result)

This function returns the number of columns in a MySQL result set (result).

mysqli_num_rows

mysqli_num_rows(result)

This function returns the number of rows in a MySQL result set (result). This

method is incompatible with unbuffered result sets created by calling

mysqli_real_query followed by mysqli_use_result, or by calling mysqli_query

with the resultmode parameter set to MYSQLI_USE_RESULT.

mysqli_ping

mysqli_ping(link)

When a PHP script runs for a long time, it’s possible that an open MySQL connection

(link) may be closed or disconnected at the server end. If you suspect this possibility,

call this function before using the suspect connection to confirm that it’s active,

and to reconnect if the connection did indeed go down.

mysqli_query

mysqli_query(link, query[, mode])

Build Your Own Database Driven Web Site Using PHP & MySQL458

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

This function executes the specified MySQL query (query) using the specified

database connection (link), and returns a MySQL result set.

The optional mode parameter can be set to MYSQLI_USE_RESULT to instruct PHP to

download the results from the MySQL server on demand, instead of all at once.

This can reduce the amount of memory used by your PHP script when processing

large result sets. If you choose to do this, you must make sure to call

mysqli_free_result before attempting to perform another query using the same

database connection.

If the query fails, an error message to that effect will be displayed, and the function

will return FALSE instead of a result set (which evaluates to TRUE). If the error occurs,

the error number and message can be obtained using mysqli_errno and

mysqli_error respectively.

mysqli_real_escape_string

mysqli_real_escape_string(link, string)

This function returns an escaped version of a string (with backslashes before special

characters such as quotes) for use in a MySQL query. This function is more thorough

than addslashes or PHP’s Magic Quotes feature.

This function takes into account the character set of the specified MySQL connection

(link) when determining which characters need to be escaped.

mysqli_real_query

mysqli_real_query(link, query)

A less convenient alternative to mysqli_query, this function executes the specified

MySQL query (query) using the specified database connection (link), but ignores

the result set returned by the server (if any). If you wish to retrieve the results of a

query performed using this function, you must call mysqli_store_result or

mysqli_use_result. You can determine if a result set is available to be retrieved

using mysqli_field_count.

This function returns TRUE if the query was successful, or FALSE if an error occurred.

459Appendix D: PHP Functions for Working with MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysqli_select_db

mysqli_select_db(link, database)

This function selects the default database (database) for the MySQL connection

specified (link).

mysqli_set_charset

mysqli_set_charset(link, charset)

This function sets the default character set (charset) to be used for text values in

the SQL queries sent to and result sets received from the specified MySQL connection

(link). In web applications, it’s most common to set the character set to 'utf8' to

submit and retrieve UTF-8 encoded text.

mysqli_stat

mysqli_stat(link)

This function returns a string describing the current status of the MySQL server.

The string is identical in format to that produced by the mysqladmin utility:

Uptime: 28298 Threads: 1 Questions: 56894 Slow queries: 0

 Opens: 16 Flush tables: 1 Open tables: 8 Queries per second avg:

 36.846

mysqli_store_result

mysqli_store_result(link)

Retrieves and returns the entire result set for an SQL query just performed using

mysqli_real_query on the specified MySQL connection (link). It’s much more

common (and convenient) to simply use mysqli_query to perform the query and

then immediately retrieve the results.

This function returns FALSE if there’s an error retrieving the result set, or if there’s

no result set available to retrieve.

Build Your Own Database Driven Web Site Using PHP & MySQL460

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

mysqli_thread_id

mysqli_thread_id(link)

This function returns the ID of the server thread responsible for handling the spe-

cified connection (link).

mysqli_use_result

mysqli_use_result(link)

Begins to retrieve the result set for an SQL query just performed using

mysqli_real_query on the specified MySQL connection (link). The results will be

retrieved from the MySQL server a row at a time, on demand, which can reduce the

amount of memory required by your PHP script when working with a large result

set. It’s much more common (and convenient) to simply use mysqli_query to perform

the query and then immediately begin to retrieve the results.

This function returns FALSE if there’s an error retrieving the result set, or if there’s

no result set available to retrieve.

You must make sure to call mysqli_free_result before trying to perform another

query using the same database connection.

461Appendix D: PHP Functions for Working with MySQL

Licensed to botuongxulang@yahoo.com

Download at Boykma.Com

Licensed to botuongxulang@yahoo.com

Index

Symbols
!, not operator, PHP, 111, 118

!=, not equal operator, PHP, 102

$

(see also variables, PHP)

prefix identifying PHP variables, 78

use in regular expressions, 245

$srcurl, 361

%

modulus operator, MySQL, 416

wild card for LIKE operator, 69

wild card in hostnames, 326, 328

&&, and operator, PHP, 99

&, query string variable separator, 89

()

calling PHP functions, 77

in regular expressions, 246

*

in regular expressions, 246

multiplication operator, PHP, 78

wild card in myisamchk, 334

+

addition operator, PHP, 78

in regular expressions, 246

++, signifying increment by one, 102

.

concatenation operator, PHP, 79

in regular expressions, 247

.=, append operator, PHP, 222

/

division operator, PHP, 78

file path separator, 369

// and /* */, comment indicators, PHP,

78

;

on the MySQL command prompt, 59

terminating PHP statements, 75

<, less than, PHP, 102

<=, less than or equal to, PHP, 102

<?php ?> code delimiters, 74

=, assignment operator, PHP, 78

==, equal operator, PHP, 98

>(=), greater than (or equal to), PHP, 102

?

in regular expressions, 246

introducing a query string, 82

\c, on the MySQL command prompt, 59

^, in regular expressions, 245

| in regular expressions, 246

||, or operator, PHP, 99

A
absolute paths, include file location, 181

access control, 279–311

controller code, 283–290

database design, 279–283

function library, 290–300

managing passwords and roles, 300–

309

access control, MySQL, 324

anonymous user problem, 329

further resource, 324

tips, 329

unrestricted access, 332

access privileges

GRANT command and, 324, 325

Licensed to botuongxulang@yahoo.com

level of application, 326

REVOKE command and, 328

addition operator, PHP, 78

addslashes function, PHP

mysqli_escape_string and, 459

administration area security, 279

administration interface

content management systems as, 197

managing authors example, 204

airline booking system example, 344

aliases (temporary names), 345

aliasing

columns and tables, 344–347

summary function results, 348

ALL privilege, GRANT command, 326

ALTER TABLE ADD UNIQUE command,

280

ALTER TABLE command, 152, 153, 389–

392

adding indexes using, 339

dropping columns, 156

ampersand, query string variable separat-

or, 89

ANALYZE TABLE command, 392

and operator, PHP, 99

anonymous users, MySQL access control,

329

Apache Service Monitor, 14

Apache web server, 4, 122

apostrophes in form fields, 91

append operator, PHP, 222

areas of rectangles, example calculation

using a custom function, 184

arguments, 450–451

arithmetic operators, 78

array function, PHP, 79

arrays, 79

(see also variables, PHP)

associative, 80, 128

processing when submitted, 233

submitting in a form, 227

super-global arrays, 190

use with checkboxes, 226

AS keyword, SELECT queries, 345

use with summary functions, 348

assignment operator, PHP, 78

associative arrays, 80

rows in result sets, 128

asterisk wild card in myisamchk, 334

AUTO_INCREMENT columns, 62

obtaining last assigned value, 234

automatic content submission, 260

B
backslashes

avoiding in path notation, 181, 369

escaping special characters, 245, 249

backups, MySQL

binary logs and incremental backups,

321

importance of, 314

inadequacy of standard file backups,

319

using mysqldump, 319

BBCode, 248

BINARY attribute, MySQL, 436

binary data files, 357–386

MySQL column types tabulated, 371

binary logs, 321

managing, 323

BLOB (Binary Large Object) column

types, 369, 371, 442

boldface text, 248–249, 255

bookmarking queries, 93

464

Licensed to botuongxulang@yahoo.com

braces, use in custom functions, 185

brackets (see parentheses; square brack-

ets)

break command, 274

browsers

limits on cookies, 267

built-in functions, PHP, 77, 449–461

(see also custom functions)

array function, 79

mysqli_connect, 117

number_format, 272

str_ireplace, 251

strlen, 375

C
cancelling a query, 59

caret, use in regular expressions, 245

carriage returns, platform-specific issues,

250

Cascading Style Sheets (CSS), 144

case-sensitivity

function names, 185

in SQL queries, 59

TEXT and BLOB column types, 371

categories

assigning to CMS items with PHP, 218

database design and, 166

managing with PHP, 212

CGI (Common Gateway Interface), 182

character column types, MySQL, 440–

444

checkboxes, 301

passing values to variables, 234

selecting multiple categories, 226

checking and repairing files, 333

chmod command, 363

CMS (see content management systems)

code delimiters, PHP, 74

column attributes, MySQL column tyes,

435

column types, MySQL

binary data storage, 369, 370

character types, 440

date/time types, 445

ENUM, 310

full listing, 435–447

INT, 62

numerical types, 436

TEXT, 62

TEXT vs. BLOB types, 371

columns, 54, 344–347

(see also fields)

access privileges on, 328

adding, 153

renaming, using aliases, 344

setting data types, 63

commands, MySQL (see queries)

comments, PHP, 78

Common Gateway Interface (CGI), 182

concatenation operators, 79

concurrent operations, locking tables,

341

conditional structures, PHP (see control

structures)

configuration files, creating binary logs,

322

connecting to MySQL, 117

using global variables, 187

using include files, 174, 176

using include_once, 180

465

Licensed to botuongxulang@yahoo.com

connection identifiers (see link identifi-

ers)

constraints

checking, search engine example, 222

foreign key constraints, 205

NOT NULL constraints, 62

content formatting, 241

content management system example

adding and editing authors, 207

deleting authors, 204

formatting stage, 242

front page, 198

managing authors, 202

managing categories, 212

managing jokes, 218–238

content management systems, 197–239

content submission by visitors, 260

content-disposition header, HTTP, 375,

376, 377

Content-length header, HTTP, 375

content-type header, HTTP, 375

control flow functions, MySQL, 415

control structures, PHP, 94

for loops, 102

if-else statements, 94

short-circuit evaluation, 369

while loops, 100

controller code, 283–290

cookies, 261–267

browser-enforced limits, 267

session alternative to, 267

setting and deleting, 263

square brackets indicate optional

code, 262

copy function, 359, 362, 369

copyright notices, 172

corrupted data recovery, 332, 335

COUNT function, MySQL, 68, 347, 434

omitting NULLs, 352

count function, PHP, 272

CREATE DATABASE command, 61, 393

CREATE INDEX command, 339, 393

CREATE TABLE command, 61, 393

binary file details, 370

nondestructive alternative, 156

CREATE TABLE queries, 337

CREATE TABLE statements, 321

cron utility

updating semi-dynamic pages, 364

CURDATE function, MySQL, 137

currency information display, 272

custom functions, 184–191

accessing global variables, 189

difference from include files, 187

function libraries and, 186

naming, 185

variable scope, 187

custom markup languages, 247

D
data

deleting from the database, 142–147

deleting stored, 70

inserting into the database, 132–141

modifying stored, 69–70

viewing stored, 66–69

data relationships (see relationships)

data types

(see also column types, MySQL)

PHP as a loosely-typed language, 78

database administration, 313–335

database design, 151–169, 279–283

delete anomalies, 154

further resources on, 151

466

Licensed to botuongxulang@yahoo.com

relationships, 163

update anomalies, 154

database servers, 53

database, MySQL, 451

database-driven web sites

role of content management systems,

197

role of scripting languages, 116

semi-dynamic pages and performance,

358

databases, 53

(see also MySQL)

adding items with PHP, 207

binary data storage, 369

creating, 61

deleting data from, 142–147

inserting data into, 132–141

inserting data using PHP, 132

listing available, 58

management using a CMS, 197

mysql and test databases, 58

recording uploaded files, 369–379

selection, in PHP, 120

storing web site content in, 54, 115

using, 61

date and time functions, MySQL, 423–

430

CURDATE function, 137, 429

DATE_FORMAT symbols, 429

interval types for date addition/sub-

traction, 427

modes for week calculation, 425

date function, PHP, 77

date/time column types, MySQL, 445–

447

delete anomalies, 154

Delete button, 237

DELETE command, 70, 142, 395

Delete hyperlink, 146

DELETE queries

confirmation page, 207

rows affected by, 70, 124

DELETE query, 145

deleting items with PHP, 142, 204

DESC keyword, 339

DESCRIBE command, 64, 153, 396

DISTINCT keyword, 154

division operator, PHP, 78

“do nothing” WHERE clauses, 221

document root, 182

document root tracking, include files,

182

dollar sign

PHP variable prefix, 78

use in regular expressions, 245

double equals sign, 98

DROP DATABASE command, 58, 397

DROP INDEX command, 397

DROP TABLE command, 64, 321, 397

recovering from unintentional, 321

drop-down lists and checkboxes, 226

duplication

avoiding, using DISTINCT, 154

avoiding, using include files, 172

E
echo statement, PHP, 76

example, 77

parentheses and, 107

echo statements, 116

enctype attribute, form tag, 364

ENUM column type, 310, 443

equal operator, PHP, 98

467

Licensed to botuongxulang@yahoo.com

equals sign, as PHP assignment operator,

78

error checking

include files and, 175

using myisamchk, 333

error messages

require statement and, 180

simple join example, 160

errors due to file permissions, 363

exclamation mark, as PHP not operator,

111

exit command, MySQL, 60

exit function, PHP, 119

expiry time, cookies, 263

EXPLAIN command, 397

F
fields

(see also columns)

as database components, 54

inadvisability of multiple values, 164,

166

file permissions, errors due to, 363

file sizes

problems with large files, 386

uploading files and, 366

file_exists function, 359

file_get_contents function, 359, 362

file_put_contents function, 359, 362

filenames, assigning unique, 367–369

files

(see also include files)

assigning unique names, 367

downloading stored files, 376

file access functions in PHP, 358

large file considerations, 386

storing in MySQL, 372

uploaded, recording in the database,

369–379

uploading, 364–370

viewing stored files, 374

Firefox, 2

flow of control (see control structures)

for loops, 102

logical flow through, 103

forced rows, 351

foreach loop, 129, 274

foreign key constraints, 205

form fields, apostrophes in, 91

form tags and file uploads, 364

formatting content, 241

forms submission methods, 92

forward slash path separator, 181, 369

front pages (see index pages)

function calls used as conditions, 119

function keyword, PHP, 185

function libraries, PHP, 184–191, 290–

300

function scoped variables, 187

functions, MySQL, 415–434

control flow functions, 415

COUNT function, 68, 347, 434

date and time functions, 423

LEFT function, 67

listed by type, 415–434

mathematical functions, 416–419

miscellaneous functions, 430–433

string functions, 419–430

use with GROUP BY clauses, 433–434

functions, PHP

(see also built-in functions)

custom functions, 184–191

expression, 243

parameters, 77

468

Licensed to botuongxulang@yahoo.com

return values, 117

session management functions, 268

working with MySQL, reference, 449–

461

G
global scope, 187

global statement, 190

global variables, 187

GRANT command, 324, 398

examples of use, 327

“greedy” special characters, 255

GROUP BY clause, SELECT queries, 348,

406

GROUP BY clauses, 433–434

group-by functions (see summary func-

tions)

H
HAVING clause, SELECT command,

353, 406

header function, PHP, 375

hidden form fields

MAX_FILE_SIZE, 367

host, MySQL, 450

.htaccess file

protecting directories with, 198

HTML

embedding in PHP output text, 76

forms, user interaction with, 90

include files containing, 172

markup, 144

PHP code conversion to, 74

static pages from URL requests, 362

tags, PHP code to match, 255

HTTP headers

cookie, 262

sending file details, 375

set-cookie, 262, 263

HTTP methods (see variables, $_GET;

variables, $_POST)

HTTP redirect, 138

hyperlinks, 146

hyperlinks within content, 252

I
ID columns, 54, 62

(see also primary keys)

if statements, error handling, 118, 119,

120

if-else statements, 94

importing global variables, 189

include command, 171

include files, 172–183

containing HTML, 172

database connection example, 176

difference from custom functions, 187

locating, 181

naming, 176

PHP statements usable with, 180

shared, 181–183

include statement, PHP, 179

require statement and, 180

include_once statement, PHP, 180, 186

incrementing values by one, 102, 340

index pages

as semi-dynamic pages, 358

indexes, 80

adding and removing, 339

further resources on, 340

regenerating after corruption, 335

sorting and, 339

469

Licensed to botuongxulang@yahoo.com

inner joins, 350

InnoDB tables, 205, 343

INSERT command, 71, 398

REPLACE command compared to, 403

TIMESTAMP columns and, 446

two forms of, 64

INSERT command., 311

INSERT function, MySQL, 422

INSERT queries, 71, 137, 157, 236, 337

rows affected by, 124

storing uploaded files, 373

INSERT statements, 260, 321

installation, 1–52

all-in-one, 322

Linux installation, 32–43

Mac OS X installation, 20–32

MySQL, 3, 322

PHP, 3

post-installation set-up tasks, 44–47

toolbox, 52

what to ask your web host, 47–48

Windows installation, 3–20

your first PHP script, 48–52

your own web server, 2–3

INT MySQL column type, 62, 437

Internet Explorer, 2

INTO clause, SELECT queries, 405

is_uploaded_file function, 368, 373

isset function, 111

italic text, 248–249, 255

J
JavaScript, 1, 75, 81, 85, 264

JavaScript and server-side languages, 73

joins, 159–162, 407–409

airline booking system example, 345

inner, 350

inner joins, 408

left joins, 349–353, 409

MySQL supported types, 407–409

natural joins, 409

outer joins, 409

self joins, 346

K
killing servers, 331

L
LEFT function, MySQL, 67, 420

left joins, 349–353

LIKE operator, SQL, 68, 223

LIMIT clause, SELECT queries, 341

LIMIT command, 413

line breaks as platform-specific issues,

250

link identifiers, 117

links within content, 252

Linux installation, 32–43

installing MySQL, 33–36

installing PHP, 37–43

LOAD DATA INFILE command, 400

localhost access privileges, 329, 330

LOCK TABLES command, 342, 343, 400

locking functions, MySQL, 432

login credentials, access control example,

279

lookup tables, 166

queries using, 168

M
Mac OS X installation, 20–32

all-in-one installation, 20–23

installing individual packages, 24–32

470

Licensed to botuongxulang@yahoo.com

installing MySQL, 24–28

installing PHP, 28–32

magic quotes, 91, 134

magic quotes feature

mysqli_escape_string and, 459

MAMP, 122, 322

Manage Authors, 297

many-to-many relationships, 166, 169

many-to-one relationships, 163, 169

markup languages

(see also HTML)

custom markup languages, 247

markup, imperfect, 144

mathematical functions, MySQL, 416–

419

max_allowed_packet option,

my.cnf/my.ini, 386

MAX_FILE_SIZE field, 367

MEDIUMTEXT and MEDIUMBLOB

column types, 371

method attribute, form tag, 92

MIME type checking, uploadable files,

365

miscellaneous functions, MySQL, 430–

433

modifying data (see UPDATE command)

multiplication operator, PHP, 78

my.cnf file, 322

max_allowed_packet option, 386

my.ini file, 322

max_allowed_packet option, 386

MyISAM table format, 205

myisamchk utility, 333

MySQL, 2, 312, 387

access control, 324–332

administration, 58, 313–335

backing up data, 319, 321

command line, 149

command-line client, mysql, 55, 323

connecting to a remote server, 57

connecting to, from PHP, 117

using global variables, 187

using include files, 174, 176

using include_once, 180

controlling access to, 324

data directory structure, 333

data files, checking and repairing,

332–335

database, 451

getting started with, 53–70

host, 450

installation, 3, 9–12, 24–28, 33–36,

322

killing server process, 331

link identifier, 119

logging on to, 55

lost password recovery, 331

mysql and test databases, 58

packet size, 386

password, 315, 450

password prompts, 56

port, 451

repairing corrupt data files, 332, 335

restoring backed up data, 320, 323

socket, 451

syntax, 389–414

transaction support, 343

username, 315, 450

MySQL column types (see column types,

MySQL)

MySQL database, 61, 70, 71, 75, 113,

115, 116, 149, 151, 169

access control and, 324

backing up, 319–323

471

Licensed to botuongxulang@yahoo.com

backups using mysqldump, 319–320

function in MySQL, 58

incremental backups using binary

logs, 321–323

MySQL functions (see functions,

MySQL)

MySQL program, 55

mysql program

restoring the database using, 323

MySQL queries (see queries, MySQL)

MySQL Relational Database Management

System (RDBMS), 313

MySQL server, 120, 121, 134, 313, 314,

321, 450

MySQL syntax, 389–414

ALTER TABLE, 389–392

ANALYZE TABLE, 392

CREATE DATABASE, 393

CREATE INDEX, 393

CREATE TABLE, 393–395

DELETE, 395–396

DESCRIBE DESC, 396–397

DROP DATABASE, 397

DROP INDEX, 397

DROP TABLE, 397

EXPLAIN, 397–398

GRANT, 398

INSERT, 398–400

joins, 407–409

LOAD DATA INFILE, 400

LOCK/UNLOCK TABLES, 400–401

OPTIMIZE TABLE, 401–402

RENAME TABLE, 402

REPLACE, 402–403

REVOKE, 403

SELECT, 403–407

SET, 410

SHOW, 411–412

TRUNCATE, 412

unions, 409–410

UNLOCK TABLES, 412

UPDATE, 413

USE, 414

mysql_affected_rows function, 125

mysql_error function, 124

mysqladmin commands, 55

mysqldump, 319–320

mysqldump utility, 319

mysqli_* functions, PHP, listed, 449–461

mysqli_affected_rows function, 449

mysqli_character_set_name function, 449

mysqli_close function, 450

mysqli_connect function, 117, 450

mysqli_connect_errno function, 451

mysqli_connect_error function, 451

mysqli_data_seek function, 451

mysqli_errno function, 452

mysqli_error function, 452

mysqli_fetch_all function, 452

mysqli_fetch_array function, 127, 453

mysqli_fetch_assoc function, 453

mysqli_fetch_field function, 453

mysqli_fetch_field_direct function, 454

mysqli_fetch_fields function, 454

mysqli_fetch_lengths function, 455

mysqli_fetch_object function, 455

mysqli_fetch_row function, 455

mysqli_field_count function, 455

mysqli_field_seek function, 456

mysqli_field_tell function, 456

mysqli_free_result function, 456

mysqli_get_client_info function, 456

mysqli_get_client_version function, 456

mysqli_get_host_info function, 457

472

Licensed to botuongxulang@yahoo.com

mysqli_get_proto_info function, 457

mysqli_get_server_info function, 457

mysqli_get_server_version function, 457

mysqli_info function, 457

mysqli_insert_id function, 234, 399, 458

mysqli_num_fields function, 458

mysqli_num_rows function, 458

mysqli_ping function, 458

mysqli_query function, 123, 458

insert queries, 137

using result sets from, 126

mysqli_real_escape_string function, 459

mysqli_real_query function, 459

mysqli_select_db function, 120, 460

mysqli_set_charset function, 119, 460

mysqli_stat function, 460

mysqli_store_result function, 460

mysqli_thread_id function, 461

mysqli_use_result function, 461

N
naming conventions

custom functions, 185

include files, 176

nested tags, 255

new line characters

platform-specific issues, 250

no browser compatibility issues, 75

NOT NULL column constraint, 62, 310

not operator, PHP, 111, 118

NULL values and LEFT JOINs, 351

number_format function, PHP, 272

numerical column types, MySQL, 436–

440

O
one-to-many relationships, 163, 169

one-to-one relationships, 163

OOP (object oriented programming),

171, 195

operators, PHP, 78–79

append operator, 222

comparative and not equal operators,

102

equal and logical operators, 98

not operator, 111, 118

OPTIMIZE TABLE command, 401

optional parameters, MySQL column

types, 435

or operator, PHP, 99

ORDER BY clause, SELECT queries, 338,

407

P
packet size, MySQL, 386

paging result sets, 341

paragraph tags, custom markup language,

249

parameters

(see also arguments)

in PHP functions, 77, 185

MySQL column types, 435

parentheses

in PHP functions, 77, 185

in regular expressions, 246, 252

password authentication, 279

password, MySQL, 450

passwords

changing, using GRANT, 327

instructing MySQL to prompt for, 56

managing, 300–309

473

Licensed to botuongxulang@yahoo.com

recovery from losing, 331

specifying using GRANT, 326

pattern modifiers, 244

period

concatenation operator, PHP, 79

in regular expressions, 247

personalized welcome messages, 83, 89

without query strings, 93

PHP, 312, 387

(see also control structures; functions,

PHP; PHP installation)

and sending SQL queries, 123–126

automatic disconnection, 123

avoid advertising your technology

choices, 104–105

basic syntax, 75

code, 174–179

code delimiters, 74

commands, 116

configuration, 122

error display, 122

getting started with, 73–113

hiding the seams, 104–112

installation, 3, 12–20, 28–32, 37–43

interpreter, 117

many templates, one controller, 109–

112

object oriented features, 171, 195

Perks and Pitfalls of UTF-8, 87–88

programming language, 104

script, 2, 71, 116, 386

script timeout, 386

security, 84, 91

sessions, 267–278

templates, 106–108, 173, 191–194, 269

PHP functions (see functions, PHP)

php.exe file, 363

php.ini file

effects of disabling errors, 180

post_max_size setting, 366

session setup, 268

upload_max_filesize setting, 366

upload_tmp_dir setting, 365

phpMyAdmin, 314–318

pipe character, in regular expressions,

246

port, MySQL, 451

post_max_size setting, php.ini file, 366

preg_match function, PHP, 243

preg_replace function

example using, 248

preg_replace function, PHP, 247, 252

str_replace and, 251

primary keys, 167

product catalog, shopping cart example,

270

Q
queries, MySQL, 60

advanced SQL, 337

cancelling, 59

case sensitivity, 59

depending on lookup tables, 168

search engine example, 223

semicolon terminator, 59

sending, using PHP, 123

query strings, 82

question marks, introducing query

strings, 82

quit command, MySQL, 60

quotes

double, as PHP string delimiter, 79

single, around PHP strings, 77

single, around strings in PHP, 79

474

Licensed to botuongxulang@yahoo.com

R
read locks, 342

rectangles

calculate area example

using a custom function, 184

referential integrity, 205

Refresh button, 146

regular expressions, 242–260

capturing matched text, 252

in double quoted strings, 250

matching hyperinks, 252

matching paired tags, 255

string replacement with, 247

validating MIME types, 366

relational database management system

(RDBMS), 2

relationships

example, 155

many-to-many relationships, 166

preserving referential integrity, 205

relationship types, 163

RENAME TABLE command, 402

REPLACE command, 402

require statement, PHP

include statement and, 180

require_once statement, PHP, 180, 186

required columns (see NOT NULL)

restoring MySQL databases

from mysqldump backups, 320

using binary logs, 323

result sets, 126

paging, 341

processing order in MySQL, 353

restricting the size of, 340, 353

sorting, 337

return statement, PHP, 185

return values, PHP functions, 117

REVOKE command, 328, 403

role-based access control, 282

role-based access control system, 279

rows, 54

affected by deletes and updates, 124

counting, in MySQL, 68

deleting, 70

updating, 69

S
script timeouts, PHP, 386

scripting languages, role, 116

search engine example, 218

security, 281

access control example, 279

upload_max_filesize setting, 367

using is_uploaded_file, 368

security, PHP, 84, 91

SELECT command, 66, 403–410

(see also SELECT queries)

DISTINCT keyword, 154

GROUP BY clause, 406

HAVING clause, 406

INTO clause, 405

LIKE operator, 68, 223

ORDER BY clause, 407

WHERE clauses, 68, 406

“do nothing” WHERE clauses, 221

select multiple tag, 227

SELECT queries, 126, 142

aliases in, 346

building dynamically with PHP, 221

from multiple tables, 162

grouping results, 347–349

limiting number of results, 340, 353

search engine example, 220

475

Licensed to botuongxulang@yahoo.com

sorting results, 337

table joins and, 159

using result sets from, 126

with multiple tables, 158

SELECT statement, 338

SELECT statements, 321

self-closing tags, 90

semicolon

PHP statement terminator, 75

semicolon, on the MySQL command

prompt, 59

semi-dynamic pages, 358–364

server restarts

update log flushing, 321

with unrestricted access, 332

server-side languages, 73

advantages, 75

server-side resources, access to, 75

server-side scripting language, 2

session ID, 267

session management functions, PHP, 268

session_destroy function, PHP, 269

session_start function, PHP, 268, 271

sessions, 267–269

shopping cart example, 269–278

SET command, 410

Set password field, 300

set_time_limit function, PHP, 386

setcookie function, PHP, 262, 263

shopping cart example, 269–278

product catalog, 270

short-circuit evaluation, 369

SHOW DATABASES command, 58

SHOW GRANTS command, 328

SHOW queries, 411–412

SHOW TABLES command, 63

SitePoint Forums, 56

socket, MySQL, 451

sorting result sets, 337

special characters

escaping, in regular expressions, 245,

249, 253

SQL

advanced queries, 337

case sensitivity in queries, 59

column and table name aliases, 344–

347

locking tables, 341–343

MySQL and, 60

MySQL command syntax, 389–414

queries, 71

queries, sending with PHP, 123–126

setting limits, 340

SQL injection attack, 134

square brackets

array indices, 80

use in regular expressions, 246

square brackets indicate optional code,

262

SSIs (Server-Side Includes), 172

state preservation (see cookies)

statements, PHP, 75

static includes, 172

static or semi-dynamic pages, 358

str_ireplace function, 251

str_replace function, PHP, 251

string functions, MySQL, 419–423

string replacement with regular expres-

sions, 247–260

boldface and italic text, 248–249

hyperlinks, 252–255

matching tags, 255–256

paragraphs, 249–252

putting it all together, 257–260

476

Licensed to botuongxulang@yahoo.com

strlen function, PHP, 375

structured programming, 171–194

Structured Query Language (see SQL)

subtraction operator, PHP, 78

summary functions, 433

summary functions, MySQL, 347, 433–

434

super-global variables

super-global arrays, 190

T
table formats, 205

table joins (see joins)

tables

as database components, 54

checking with myisamchk, 333

counting number of entries, 68

creating, 61

deleting, 64

deleting entries, 70

inserting data, 64

listing, 64

locking, 342, 343

recovery after corruption, 332, 335

relationships between (see relation-

ships)

renaming, using aliases, 344

repairing damaged tables, 334

separating data with, 153

structural overview, 54

temporary, 394

updating entries, 69

using different names, 344–347

viewing entries, 66

Task Scheduler, Windows, 363

updating semi-dynamic pages, 364

templates, PHP, 106–108

test database, in MySQL, 58

text formatting, 241

boldface and italic text, 248–249

hyperlinks, 252–255

paragraphs, 249–252

string replacement with regular expres-

sions, 247

TEXT MySQL column types, 442

TEXT type, 62

text string, 65

time function, PHP

constructing unique names, 367

cookie expiry and, 263

time functions, MySQL (see date and

time functions)

TIMESTAMP, 354

transactions, 343

TRUNCATE command, 412

U
unions, 409

unique file names, 367

unlink function, 359, 362

UNLOCK TABLES command, 343, 400,

412

unset function, PHP, 269, 276

UNSIGNED attribute, MySQL, 435

update anomalies, 154

UPDATE command, 69, 413

TIMESTAMP columns and, 446

WHERE clause, 69

UPDATE queries, 153, 157, 236

rows affected by, 124, 413

UPDATE statements, 321

upload_max_filesize setting, php.ini file,

366

upload_tmp_dir setting, php.ini file, 365

477

Licensed to botuongxulang@yahoo.com

uploading files, 364–370

unique file names, 367

USAGE privilege, GRANT command,

326, 327

USE command, 61, 414

user accounts, restricting access, 324

user interaction in PHP, 81

user privileges

granting, 324

revoking, 328

username authentication, 279

username, MySQL, 450

users

removing, 328

specifying in GRANT commands,

326, 329

UTF-8, 87–88

utility programs, MySQL, 320

V
variable interpolation, 79

variable scope, 187

variable-length character string, 153

variables, PHP, 78

(see also arrays)

$_COOKIE, 262

$_FILES array, 365, 373

$_GET and query strings, 83

$_POST array, 92

$_REQUEST array, 93

$_SERVER array, 139

DOCUMENT_ROOT, 182

$_SESSION array, 269, 271, 273, 276

$GLOBALS array, 190

custom function declarations, 185

embedding in text strings, 79

incrementing by one, 102

super-global arrays, 190

W
WampServer, 4, 5, 6, 8, 58, 122, 322

Web servers, 2

restricting access to administration

pages, 198

web servers

(see also Apache web server)

welcome pages, personalizing, 82

WHERE clause, 338

WHERE clauses

“do nothing” WHERE clauses, 221

SELECT command, 68, 406

simple joins, 159

UPDATE command, 69

WHERE command, 413

while loop, 143

while loops, 100

processing result sets, 127

wild cards

control problems from, 329

for LIKE operator, 69

in hostnames, 326, 328

myisamchk utility, 334

Windows

and filename extensions, 16

Windows Essentials (AMD64 / Intel

EM64T), 10

Windows Essentials (x86), 10

Windows installation, 3–20

all-in-one installation, 3–9

installing individual packages, 9–20

installing MySQL, 9–20

installing PHP, 12–20

Windows Task Scheduler, 363

Windows x64, 10

478

Licensed to botuongxulang@yahoo.com

WITH GRANT OPTION clause, 327

write locks, 342

X
XHTML (Extensible HTML), 90

Z
ZEROFILL attribute, MySQL, 435

ZEROFILL column, 435

479

Licensed to botuongxulang@yahoo.com

	Build Your Own Database Driven Web Site Using PHP & MySQL
	Table of Contents
	Preface
	Who Should Read This Book
	What’s in This Book
	Where to Find Help
	The SitePoint Forums
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Newsletters
	Your Feedback
	Conventions Used in This Book
	Code Samples
	Tips, Notes, and Warnings

	Installation
	Your Own Web Server
	Windows Installation
	All-in-one Installation
	Installing Individual Packages
	Installing MySQL
	Installing PHP

	Mac OS X Installation
	All-in-one Installation
	Installing Individual Packages
	Installing MySQL
	Installing PHP

	Linux Installation
	Installing MySQL
	Installing PHP

	Post-Installation Set-up Tasks
	What to Ask Your Web Host
	Your First PHP Script
	Full Toolbox, Dirty Hands

	Introducing MySQL
	An Introduction to Databases
	Logging On to MySQL
	Structured Query Language
	Creating a Database
	Creating a Table
	Inserting Data into a Table
	Viewing Stored Data
	Modifying Stored Data
	Deleting Stored Data
	Let PHP Do the Typing

	Introducing PHP
	Basic Syntax and Statements
	Variables, Operators, and Comments
	Arrays
	User Interaction and Forms
	Control Structures
	Hiding the Seams
	Avoid Advertising Your Technology Choices
	Use PHP Templates
	Many Templates, One Controller

	Bring On the Database

	Publishing MySQL Data on the Web
	The Big Picture
	Connecting to MySQL with PHP
	Sending SQL Queries with PHP
	Handling SELECT Result Sets
	Inserting Data into the Database
	Deleting Data from the Database
	Mission Accomplished

	Relational Database Design
	Giving Credit Where Credit is Due
	Rule of Thumb: Keep Entities Separate
	SELECT with Multiple Tables
	Simple Relationships
	Many-to-Many Relationships
	One for Many, and Many for One

	Structured PHP Programming
	Include Files
	Including HTML Content
	Including PHP Code
	Types of Includes
	Shared Include Files

	Custom Functions and Function Libraries
	Variable Scope and Global Access

	Structure in Practice: Template Helpers
	The Best Way

	A Content Management System
	The Front Page
	Managing Authors
	Deleting Authors
	Adding and Editing Authors

	Managing Categories
	Managing Jokes
	Searching for Jokes
	Adding and Editing Jokes
	Deleting Jokes

	Summary

	Content Formatting with Regular Expressions
	Regular Expressions
	String Replacement with Regular Expressions
	Boldface and Italic Text
	Paragraphs
	Hyperlinks
	Matching Tags
	Putting It All Together

	Real World Content Submission

	Cookies, Sessions, and Access Control
	Cookies
	PHP Sessions
	A Simple Shopping Cart

	Access Control
	Database Design
	Controller Code
	Function Library
	Managing Passwords and Roles
	A Challenge: Joke Moderation

	The Sky’s the Limit

	MySQL Administration
	phpMyAdmin
	Backing Up MySQL Databases
	Database Backups Using mysqldump
	Incremental Backups Using Binary Logs

	MySQL Access Control
	Granting Privileges
	Revoking Privileges
	Access Control Tips
	Locked Out?

	Checking and Repairing MySQL Data Files
	Better Safe than Sorry

	Advanced SQL Queries
	Sorting SELECT Query Results
	Setting LIMITs
	LOCKing TABLES
	Column and Table Name Aliases
	GROUPing SELECT Results
	LEFT JOINs
	Limiting Results with HAVING
	Further Reading

	Binary Data
	Semi-dynamic Pages
	Handling File Uploads
	Assigning Unique Filenames

	Recording Uploaded Files in the Database
	Binary Column Types
	Storing Files
	Viewing Stored Files

	Putting It All Together
	Large File Considerations
	MySQL Packet Size
	PHP Script Timeout

	The End

	Appendix A: MySQL Syntax Reference
	SQL Statements Implemented in MySQL
	ALTER TABLE
	ANALYZE TABLE
	CREATE DATABASE
	CREATE INDEX
	CREATE TABLE
	DELETE
	DESCRIBE/DESC
	DROP DATABASE
	DROP INDEX
	DROP TABLE
	EXPLAIN
	GRANT
	INSERT
	LOAD DATA INFILE
	LOCK/UNLOCK TABLES
	OPTIMIZE TABLE
	RENAME TABLE
	REPLACE
	REVOKE
	SELECT
	Joins
	Unions

	SET
	SHOW
	TRUNCATE
	UNLOCK TABLES
	UPDATE
	USE

	Appendix B: MySQL Functions
	Control Flow Functions
	Mathematical Functions
	String Functions
	Date and Time Functions
	Miscellaneous Functions
	Functions for Use with GROUP BY Clauses

	Appendix C: MySQL Column Types
	Numerical Types
	Character Types
	Date/Time Types

	Appendix D: PHP Functions for Working with MySQL
	Common PHP mysqli_* Functions
	mysqli_affected_rows
	mysqli_character_set_name
	mysqli_close
	mysqli_connect
	mysqli_connect_errno
	mysqli_connect_error
	mysqli_data_seek
	mysqli_errno
	mysqli_error
	mysqli_fetch_all
	mysqli_fetch_array
	mysqli_fetch_assoc
	mysqli_fetch_field
	mysqli_fetch_field_direct
	mysqli_fetch_fields
	mysqli_fetch_lengths
	mysqli_fetch_object
	mysqli_fetch_row
	mysqli_field_count
	mysqli_field_seek
	mysqli_field_tell
	mysqli_free_result
	mysqli_get_client_info
	mysqli_get_client_version
	mysqli_get_host_info
	mysqli_get_proto_info
	mysqli_get_server_info
	mysqli_get_server_version
	mysqli_info
	mysqli_insert_id
	mysqli_num_fields
	mysqli_num_rows
	mysqli_ping
	mysqli_query
	mysqli_real_escape_string
	mysqli_real_query
	mysqli_select_db
	mysqli_set_charset
	mysqli_stat
	mysqli_store_result
	mysqli_thread_id
	mysqli_use_result

	Index

