
Lighttpd

Installing, compiling, configuring, optimizing, and
securing this lightning-fast web server

Andre Bogus

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

Lighttpd

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, without the prior written

permission of the publisher, except in the case of brief quotations embedded in

critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of

the information presented. However, the information contained in this book is sold

without warranty, either express or implied. Neither the author, Packt Publishing,

nor its dealers or distributors will be held liable for any damages caused or alleged to

be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the

companies and products mentioned in this book by the appropriate use of capitals.

However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2008

Production Reference: 1151008

Published by Packt Publishing Ltd.

32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847192-10-3

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Andre Bogus

Reviewer

Peter Lavetsky

Development Editor

Swapna V. Verlekar

Technical Editors

Dhiraj Chandiramani

Rasika Sathe

Editorial Team Leader

Akshara Aware

Project Manager

Abhijeet Deobhakta

Project Coordinator

Abhijeet Deobhakta

Indexer

Monica Ajmera

Proofreader

Claire Lane

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

About the Author

Andre Bogus is a musician turned programmer. He has worked in different jobs
from voice acting to programming to teaching to managing software projects. At the
moment he works as a consultant and implementer for KOGIT GmbH, an Identity
Management company based in Germany.

He found Lighttpd while searching for the ideal software for his personal web server
and quickly learned the tricks to make it do what he wanted. He enjoys learning
new things and telling others about them. When his full schedule allows it, he can be
found on the #lighttpd IRC channel.

He wants to thank his wife, Ania, without whose support he would
not have been able to finish this book. Also he appreciates his
employer for allowing him to write besides his day job. The nice
people at PACKT Publishing have also earned his gratitude by
helping this book to become what it is.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Peter Lavetsky is a Senior Research and Development Analyst with Dealer.com,
located in Burlington, VT. He has written multiple Lighttpd plugins as well as tuned
many instances tailored to Dealer.com’s web serving needs. Peter currently works on
integrating third-parties into the Dealer.com platform, including Google Base and
Google AdWords. In his spare time he enjoys checkraising the turn and feeding the
tiger shark.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http:Dealer.com
http://www.allitebooks.org

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Introduction to Lighttpd 7

Installing Lighttpd 7

Building Lighttpd using Autotools 9

Building Lighttpd using CMake 12

Summary 13

Chapter 2: Configuring and Running Lighttpd 15

Starting Lighttpd by Hand 16

Other Core Options 18

Mime Types 19

Selectors 20

Excursion: Regular Expressions 22

Play it Again, Sam 23

Are You There? 24

Decisions, Decisions 24

Group and Capture 24

Lucky Escape 25

Rewriting and Redirecting Requests 26

Including Variables, Files, and Shell-code 28

Summary 31

Chapter 3: More Virtual Hosting and CGI 33

Extended Virtual Hosting 34

MySQL based Virtual Hosting 35

Installing MySQL 35

Bringing MySQL and mod_mysqlvhost Together 36

Going Dynamic 37

CGI with mod_cgi 38

FastCGI 38

SCGI 41

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

mod_proxy_core and backends 41

Summary 43

: Downloads and Streams 45
Chapter 4
Core Settings 46

Traffic Shaping 47

Showing Directory Contents 48

Securing Downloads 52

Streaming Content 57

Putting it All Together 58

Summary 60

Chapter 5: Big Brother Lighttpd 61

Privacy 61

O Browser, Where Art Thou? 62

Access Logging 65

Tracking Users 67

Other Data Points 70

Summary 71

Chapter 6: Encryption: SSL 73

Self-Signed Keys 74

Being our own Certificate Authority 75

Obtaining a Key Pair from a Third-Party Supplier 79

Configuring Lighttpd to use SSL 80

Summary 81

Chapter 7: Securing Lighttpd 83

Barriers to Entry 83

Evading Denial of Service Attacks 88

Setting up Logrotate 91

Know Your Foe 91

RRDtool 92

Grepping the Logs 95

Summary 97

Chapter 8: Containing Lighttpd 99

Giving up Privileges 100

Changing Root 101

Separating the Backend 105

Summary 108

Chapter 9: Optimizing Lighttpd 109

Installing http_load 110

Running http_load Tests 111

[ii]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Specific Optimizations 115

Example: Caching with mod_magnet 116

Measuring System Load 117

Profiling with gprof 118

Load Testing our Profiling Build 119

Summary 123

Chapter 10: Migration from Apache 125

Adding Lighttpd to the Mix 126

Excursion: mod_proxy 127

Reducing Apache Load 127

mod_perl, mod_php, and mod_python 128

.htaccess 129

.htaccess and PHP 133

Rewriting Rules 133

WebDAV 134

Summary 135

: CGI Revisited 137
Chapter 11
Ruby on Rails 137

WordPress 142

phpMyAdmin 144

MediaWiki 148

Trac 149

AWStats 152

AjaxTerm 154

Summary 157

Chapter 12: Using Lua with Lighttpd 159

Lua: A small Primer 159

Useful Lua Libraries 165

Lua/FastCGI 166

Installing Lua/FastCGI 166

GET and POST Requests 168

Looking at the Cache 170

Running mod_magnet 171

: A Shoutbox 175
Example

Summary 179

Chapter 13: Writing Lighttpd Modules 181

Handling Configuration 184

Rewriting the Request 188

Manipulating the Response 191

Summary 199

[iii]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

: HTTP Status Codes 201
Appendix A
Appendix B: Module/Configuration Index 203

Internal 203

mod_accesslog 206

mod_alias 206

mod_auth 206

mod_cgi 207

mod_cml 207

mod_chunked 207

mod_compress 207

mod_deflate 208

mod_dirlisting 208

mod_evasive 209

mod_evhost 209

mod_expire 209

mod_fastcgi 209

mod_flv_streaming 209

mod_indexfile 210

mod_magnet 210

mod_proxy 210

mod_proxy_core 210

mod_redirect 211

mod_rewrite 212

mod_rrdtool 212

mod_scgi 212

mod_secure_download 213

mod_setenv 213

mod_simple_vhost 213

mod_sql_vhost_core, mod_mysql_vhost 214

mod_ssi 214

mod_staticfile 214

mod_status 215

mod_trigger_b4_dl 215

mod_uploadprogress 216

mod_webdav 217

Index 219

[iv]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

Preface
This book explains downloading, installing, and configuring the Lighttpd HTTP
server, illustrates how to extend it with modules and Lua code, shows a migration
path from Apache httpd, gives case studies in setting up a number of popular web
applications, and even demonstrates how to extend Lighttpd by writing our
own modules.

The name Lighttpd (pronounced "Lighty") is an abbreviation pulling together
Light (as in weight) and HTTPD (which is an abbreviation for Hypertext Transport
Protocol Daemon, in short web server). Early versions called themselves LightTPD
to emphasize the "lightweight" part, but this led to confusion over pronunciation and
meaning, so the capitalization was reduced.

What This Book Covers
Chapter 1 gives directions how to obtain Lighttpd. Regardless, if we want to use a
binary package or build from source, everything is there. In addition, dependencies,
optional packages, and compilation options are examined. After working through
this chapter, we should have an installed Lighttpd to work with.

Chapter 2 introduces all elements of the configuration language by example. Usable
examples include sending the correct MIME type, setting up multiple domains,
rewriting, and redirecting. Also the command line options are explained. For those
who are not fluent in regular expressions, the chapter has an excursion. At the end of
this chapter, we have our Lighttpd up and running.

Chapter 3 builds on the concepts of the second chapter and discusses the
configuration various CGI-like interfaces, three modules for virtual hosting, also
introducing the MySQL database, which is used in one of the modules.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Preface

Chapter 4 shows how to set up Lighttpd as a download or streaming server,
covering optimizations for large downloads as well as guarding our site against
denial of service attacks, dealing with proxies, and restricting download speeds for
anonymous clients.

Chapter 5 extends our Lighttpd to learn more about our users: Geo-tracking
the location from the client IP address, dissecting the page traversal behavior
("clickstream analysis") and other data points. Also responsible access logging
practices are outlined.

Chapter 6 adds SSL support to our Lighttpd and walks through the steps to acquire
or create the required certificates, whether we obtain a certificate from a public or
corporate certificate authority, self-sign a certificate, or become our own certificate
authority.

Chapter 7 helps us securing our Lighttpd by authorizing access, limiting traffic by
IP to thwart denial-of-service attacks, and measuring our success by rigorously
examination of our log files. Setting up log rotate and log parsers is also covered.

Chapter 8 concerns itself with limiting the potential damage a subverted Lighttpd
could do to the system. The techniques to achieve this are reducing privileges and
putting the whole Lighttpd in a secluded environment. Containing Lighttpd and a
CGI backend in different environments is also demonstrated.

Chapter 9 shows a strategy to optimize our Lighttpd from system and configuration
settings to the source code itself. The chapter also shows specific optimizations
known to yield benefits across most systems.

Chapter 10 takes a pragmatic look on the migration path from Apache httpd. It
shows how to port basic configuration, rewrite and redirect rules, how to deal with
.htaccess files, and even discusses when not to migrate.

Chapter 11 revisits the CGI interfaces by getting various example applications from
Ruby on Rails over WordPress, phpMyAdmin, trac, and AWstats to AjaxTerm up
and running with our Lighttpd.

Chapter 12 adds the small and fast scripting language Lua to the mix, which can
be used to extend the functionality of Lighttpd by mod_magnet or as a backend
language by the Lua/FastCGI interface written by the same author as Lighttpd. Both
options are discussed, along with an introduction to the language itself.

Chapter 13 gives a run down of extending Lighttpd by extending existing modules or
even writing our own. With these modules, we can change the behavior of Lighttpd
from request parsing to sending or altering content. This chapter is aimed at an
average C programmer.

[2]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Preface

Appendix A lists the HTTP status codes that our Lighttpd can return on answering
a request, giving directions which chapter or other source might have more
information on each request.

Appendix B is the module and configuration index. Each configuration option for
every Lighttpd module of the official distribution is explained here in one or two
short sentences. Forgotten how a configuration option is written, what type it has or
what it means? Look no further.

What You Need For this Book
To work through this book effectively, you will need at least a computer running
on one of the supported operating systems (Refer to Chapter 1 on installation)
connected to the Internet. Basic knowledge about computers, the Internet, (especially
the HTTP protocol), and one or more programming language is also helpful.

Who is This Book For
This book pulls together all the information and gives helpful examples instead of
complex theories. As Lighttpd is mostly used in an environment, common interfaces
are also shown.

So, if you are a web developer or an administrator, and you want to learn how you
can install, configure, secure, optimize (or even extend), and generally get the most
out of Lighttpd, you should read this book.

Now, before reaping the benefits of Lighttpd, we first need to download and
install it.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

[3]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Preface

A block of code will be set as follows:

$HTTP["url"] =~ ".py" { # use SCGI for python files
 proxy_core.protocol = "scgi"
 proxy-core.balancer = "carp" # tries to keep processes together
 proxy-core.backends = { # we have 3 SCGI servers to balance:

 "127.0.0.1:3456", # a local port (by IP address)
 "otherhost.mydomain.net:3456", # a port on another host
 "unix:/tmp/python.socket" # a unix socket

 }
 proxy-core.max-pool-size = 3 # for SCGI the number of backends
 # for other options, see Appendix B

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

<startup>

while (FCGI_Accept())

 <handle request>

<cleanup>

Any command-line input and output is written as follows:

$ gcc -Wall -O2 -g -o magnet magnet.c -lfcgi -llua -lm -ldl -Wl,-E

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Important notes appear in a box like this.

Tips and tricks appear like this.

[4]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Preface

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/2103_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

[5]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http:feedback@packtpub.com
http:suggest@packtpub.com
http://www.packtpub.com/files/code/2103_Code.zip
http://www.packtpub
http://www.packtpub.com/support

Preface

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide the location address or website name immediately so we can pursue
a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

[6]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Introduction to Lighttpd
In this chapter, we will learn:

• What Lighttpd is
• How to install Lighttpd
•	 How to build Lighttpd using:

° Autotools

° CMake

What is Lighttpd? Lighttpd, or Lighty, as it is affectionately called, is an extensible,
modular, low-footprint, single-threaded, high performance, web server that
will happily run on small servers, and outperform an Apache server or Microsoft
IIS in most settings. Lighttpd powers many large sites, such as the YouTube video
download servers and the image upload server of Wikipedia. At the time of
this writing, Lighttpd has the fifth place in the netcraft web server top ten. The
plugin architecture encourages developing custom modules and trying new ideas.
The development community around Lighttpd is friendly, helpful and pragmatic,
and the documentation, though a little scattered, is quite thorough, if you know
where to look.

Installing Lighttpd
Lighttpd has very little dependencies considering the wealth of functionalities it
provides. For most systems, getting Lighttpd is just a matter of downloading and
installing a package. Before we go out and get one, we better know what we want.
There are two branches of Lighttpd: a stable branch and a development branch.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Introduction to Lighttpd

The stable branch is very solid and changes at the most once every two months
(if bug fixes are not counted, then about once a year), allowing the developers to
concentrate on bug fixes. The development branch moves faster, with a new release
every four to six weeks. The development snapshots contain new shiny features, but
can also contain hidden bugs, break old features and can generally be less stable.

At the time of writing, version 1.4.19 is deemed to be the stable version, while
pre-releases of the upcoming 1.5.0 version are distributed for more testing before
the final release. Some systems might have packages of older versions, but anything
older than the stable branch many contain known security holes.

For a live server, or if we want the latest versions, we usually compile Lighttpd
from sources. For a development server, we might take the easy route and install a
precompiled package to leave the worries about dependencies to whoever maintains
the package database.

The last question is, on which system we should use Lighttpd? My pragmatic
advice is to use what you have. For a development system, take the platform you
currently work on. For integration and production platforms, this advice needs to be
constrained a little—apart from Windows, which allows too little connections to be
open in parallel, most operating systems are suitable for production use—the
POSIX-implementing ones (Linux, every BSD, Solaris, Mac OS X, and so on) also
benefit from numerous optimizations.

Now, without further ado, here is a list of binary packages per system:

System Download address or command
Debian GNU/Linux,
Ubuntu, Knoppix,
other Derivatives

Fedora / Red Hat
Novell / SuSE Linux
other RPM-based
distributions

Gentoo Linux
Windows

apt-get install libpcre3
apt-get install zlib1g
apt-get install mysql-common libmysqlclient12
apt-get install lighttpd lighttpd-doc
yum install pcre
yum install zlib
wget http://www.kevindustries.com/media/kw/files/
linux/lighttpd/RPMS/lighttpd-1.4.13-3.KWEL4.i386.
rpm rpm -Uhv lighttpd-1.4.13-3.KWEL4.i386.rpm
emerge lighttpd
http://www.kevinworthington.com:8181/?cat=20

[8]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.kevindustries.com/media/kw/files/
http://www.kevinworthington.com:8181/?cat=20

Chapter 1

To compile Lighttpd from source, download the latest source package from
http://lighttpd.net/download/. Between Lighttpd versions 1.4.19 and 1.5.0, the
build system has changed from Autotools to CMake. Before we can install it, we
need the following:

• A compiler and toolchain—most systems have gcc make and a libc (usually
glibc) providing the usual functions. For some embedded platforms, the
need to define some constants by hand before cross-compiling has
been observed.

•	 PCRE—the libpcre package (http://www.pcre.org) supplies
PERL-compatible regular expressions to Lighttpd. Lighttpd will run without
it, but won't do anything more complex than serving web pages directly
under only one hostname and path, without any rewriting or redirecting.

Apart from these, there are some optional packages that expand the capabilities
of Lighttpd:

•	 OpenSSL (http://openssl.org) or any other SSL library (but OpenSSL is
the most-tested one) is needed for transport layer encryption, so our site can
be accessed via https.

•	 zlib (http://www.zlib.org) is required for mod_compress to supply
on-the-fly gzip compression for static content. As virtually every system has
zlib available, this should not concern us.

•	 bzip2 (http://www.bzip.org) can also be used by mod_compress static
content for clients who allow bzip2 compression. It is a little slower than zlib,
but achieves higher compression rates.

•	 Lua (http://www.lua.org) is a small, fast, powerful scripting language,
which is a perfect match for Lighttpd and can be embedded as mod_magnet.

•	 MySQL (http://www.mysql.org) is a product by the company that employs
the author of Lighttpd. Therefore, it is no surprise that Lighttpd uses MySQL
for database-backed virtual hosting. Also, under Debian, a binary install
depends on MySQL.

•	 pkg-config (http://pkgconfig.freedesktop.org) is not strictly necessary,
but it will make the installation easier. Especially for Lua, the Lighttpd
installation process relies on it unless given explicit library paths.

Building Lighttpd using Autotools
Lighttpd was built using Autotools until version 1.5.0, in which the authors
experimented with CMake (and other build systems). The Autotools build system
has been around for some time. So, almost every system that has a sufficient
toolchain can build Lighttpd.

[9]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://lighttpd.net/download/
(http://www.pcre.org)
(http://openssl.org)
(http://www.zlib.org)
(http://www.bzip.org)
(http://www.lua.org)
(http://www.mysql.org)
(http://pkgconfig.freedesktop.org)

Introduction to Lighttpd

Note that the building can and should be done as a normal user, while the
installation must usually be done as a superuser, unless the target directory is owned
by the normal user. The easiest way (provided we have sudo) is:

configure && make && sudo make install

Before we enter this command line, we can set a few environment variables that will
affect the build process. We can do this in a bash compatible shell using:

export SOME_VAR=X

This will set the variable SOME_VAR to X and export it to the shell. Alternatively, we
can just omit the export if we write the variable declarations at the beginning of our
command, as in:

SOME_VAR=X; OTHER_VAR=Y; configure

Here are the most important variables:

Variable name Useful value Description
CC arm-gcc

icc
Specify an alternate compiler if you
cross-compile Lighttpd or have a more
optimizing compiler compared to gcc.

CFLAGS
LDFLAGS

-g -Os
-L/usr/local/lib

These options go to the gcc compiler. Read
up on gcc for further information.

PKG_CONFIG /opt/pkg_config We may need to specify where
pkg-config is, if configure cannot find it.

FAM_CFLAGS
FAM_LIBS

-I/opt/fam/include
-L/opt/fam/lib

We can specify alternate C Flags and linker
settings (for example, paths) for FAM.

LUA_CFLAGS
LUA_LIBS

-I/usr/include/lua/
-llua

This tells configure where to find Lua
(for example, if pkg-config is missing)

configure takes some options to select features. These options are usually
expressed as:

configure --with-lua=/usr/src/lua-5.1 --with-pcre

Note that for every "with-something" option, there also is a "without-something"
option that does the exact opposite. Here are the most important options:

[10]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

Parameter (example)	 Description
--help	 This makes configure print a help screen and exit.
--prefix=/usr/ Specify your installation directory if you want to install
--prefix=/opt/lighttpd/ Lighttpd at a location different from default/usr/local/.
--bindir=... --sbindir=... We can also set each directory individually for the
--datadir=... --libdir=... 	 installation process.
--sysconfdir=...

--host=PLATFORM If we want to cross-compile Lighttpd or have different

--target=PLATFORM platforms to compile Lighttpd against, we can specify them

--build=PLATFORM here. Usually, we can leave these settings alone.

--enable-static Makes configure build static or shared libraries to link to the
--enable-shared Lighttpd executable. The same default is shared.
--enable-lfs This option enables large files (above 2Gig). Set it if you host

HD-movies or large genome sequence files.
--disable-ipv6	 Lighttpd by default can use IPv6 in addition to the usual IPv4.

Disabling it may reduce the size a little bit and quell our fears of
possible bugs in the IPv6 implementation, but may leave out all
users of next-gen Internet technologies in the cold.

--with-pcre This is on by default if PCRE is available. You probably want it
anyway, unless your target system is embedded.

--with-openssl This enables SSL (usually using OpenSSL).
--with-kerberos5 This makes configure use the kerberos5 support supplied by

OpenSSL.
--with-zlib This adds libgz compression to Lighttpd (via mod_compress).
--with-zlib=/usr/local/lib/	 If the path is omitted, configure will try to infer it.
--with-bzip	 This adds bzip2 compression to Lighttpd (via mod_compress).
--with-bzip=/opt/lib/ See --with-zlib.
--with-fam This activates the use of the FAM/gamin stat cache which
--with-fam=/opt/fam/ speeds up Lighttpd considerably on repeated requests for the

same file.
--with-ldap	 This allows Lighttpd to authenticate users (in mod_auth)

against an LDAP directory.
--with-webdav-props These options enable properties and locks in WebDAV
--with-webdav-locks (mod_webdav).
--with-gdbm These options enables the use of GDBM or memcached storage
--with-memcache in mod_trigger_b4_dl, respectively.

[11]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Introduction to Lighttpd

Parameter (example) Description
--with-atttr This makes Lighttpd support XFS' extended attributes to get the

MIME type for a file (by mimetype.use-xattr).
--with-mysql This option adds MySQL support by mod_mysql_vhost. The
--with-mysql=/opt/mysql/ optional path should contain mysql_config.
--with-lua This enables the use of the Lua programming language to be
--with-lua=/usr/src/lua embedded into lightTPD as mod_magnet.
--with-valgrind This adds internal valgrind support. We only need this if we

want to debug Lighttpd memory usage.

The make utility will use the Makefile that configure has generated to build and
install Lighttpd. Configure Lighttpd to your needs, but the defaults will take care of
most of them.

Building Lighttpd using CMake
Starting with 1.5.0, the Lighttpd developers tried using CMake instead of Autotools
to speed up the build process. However, it was apparently removed in the
development snapshots, for which Autotools are used. If we come across a version
with a CMakeLists.txt file, we can build it using CMake.

CMake can be run with the -i option to start it in the wizard mode so that we are
queried on all options. This is probably the easiest way of setting up Lighttpd, but
depending on how many installations we have we might want to do a command-line
install. In this case, cmake -L gives us a list of options, which we can supply via the
-D switch, as in:

cmake -DWITH_OPENSSL:BOOL=OFF -DCMAKE_INSTALL_PREFIX:PATH=/home/lighty

Options of the type BOOL can take the values ON, OFF (or TRUE, False,
Y, N, and so on). All other types are basically handled like strings. The
naming of the options should be similar to the options for Automake in
the preceding table.

[12]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 1

Summary
Regardless of whether we use precompiled packages for our target operating system,
or compile our own Lighttpd, the setup would not be much easier. A seasoned
administrator will compile and install a basic Lighttpd in under 15 minutes (in fact
even a less weathered one can do, since this is what I timed on my last attempt to
install 1.4.19).

Now that we have installed our Lighttpd, let us get it up and running.

[13]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Configuring and

Running Lighttpd

In this chapter, we will learn:

• How to configure Lighttpd
• What Selectors are
• How to use Selectors
• How to rewrite and redirect requests
• How to include variables in the configuration files

Now that you have successfully installed Lighttpd onto your system, I will show
you how to configure it to serve web pages (yes, just web pages, nothing else) and
expand from there. Lighttpd needs a configuration file called lighttpd.conf—in
fact it will not run without one. To make it as simple as possible, we start with the
absolute minimum:

server.document-root = "/var/www"

mimetype.assign = ("" => "text/html")

Yes, that is all. Of course you should take the path to your website as your document
root. Under UNIX, /var/www is a probable path, while Windows users may want to
put their site in a place like C:\www\mysite. The mimetype.assign statement simply
says that everything is to be served as if it were an HTML page.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Configuring and Running Lighttpd

Put this lighttpd.conf into the standard directory of your system:

OS Path to lighttpd.conf Run script
Linux /etc/lighttpd/ /etc/init.d/lighttpd {start|stop}

Windows C:\lighttpd\etc\ cd C:\lighttpd\bin; {start|stop}­
lighttpd

MacOS X /etc/lighttpd/ /etc/startd/lighttpd

In Windows, all the installers that I tested put the lighttpd.conf file and run scripts
under C:\lighttpd by default. However, we might want to change the Lighttpd
directory to suit our system, for example, we may want to put it under "Program
Files" or on another disk drive. We may alternatively put the lighttpd.conf file into
any directory of our choice, but then the run scripts provided with Lighttpd may not
work. This is not a big deal though, as we can still start Lighttpd directly from the
command line. Note that under most systems, Lighttpd needs to be started from the
administrator or root account so that it can listen to port 80.

Starting Lighttpd by Hand
Lighttpd can be started without the help of a startup script. The path to the Lighttpd
executable depends on your system and installation. Given that it is in your path, we
can start Lighttpd by using the following command:

lighttpd -f [full path to your config file]

With some distributions (especially some Windows builds), the -f option will be
hardcoded, so we cannot and need not supply the configuration file path. When in
doubt, refer to the documentation of the installation package.

There are also other command line options that are worth taking a look at:

Option What Lighttpd does
-m Loads modules from [directory], and proceeds to serve web pages (you will

[directory] still need to give the configuration file path with -f).

-p Pretty prints the configuration and exits.

-t Tests the lighttpd.conf file for syntax errors and exits—this is useful

before restarting Lighttpd and after changing the configuration to make sure
no downtime will ensue.

-D No-Daemon mode: Does not go to the background; useful for testing.
-v Shows the Lighttpd version and exits—you might want to add it to the

questions you post on the forum if something does not work.
-V Shows the compile-time options (event/network handlers and features)

and exits.
-h Shows a list of configuration options and exits.

[16]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 2

Now, run Lighttpd from the command line or with the provided startup script
and point your browser of choice to http://127.0.0.1/index.html. Given
that you have an index.html, you should see it in your browser. If you see it,
congratulations!—you have made your first step into a bright future as a
Lighttpd user.

Otherwise, we should tackle the problem methodically. First, start Lighttpd with
the -t option to see if our configuration is parsed correctly; correct it if necessary.
Next, see if the run script/Lighttpd startup failed. If it did, there are three
possible culprits:

1.	 Port 80 (which is standard for HTTP) is blocked by some other application.
In this case, you should see something else in your browser (given that the
other application that listens on port 80 speaks HTTP).

2.	 Lighttpd does not have sufficient privileges to listen on port 80. Try running
Lighttpd as root, or use ports higher than 1024, say, port 8080.

3.	 Your Lighttpd installation or package is erroneous. Try another version or
visit the forum at http://forum.lighttpd.net and ask for help.

If Lighttpd starts without error, make sure that your index.html is in your
document-root directory and readable by the Lighttpd instance. If that does not solve
the problem, we will need some debugging to find out what has failed. To do this,
extend your lighttpd.conf file to include logging and up to four debug directives:

server.modules += ("mod_accesslog")
server.errorlog = "/var/log/lighttpd/error.log"

 # or wherever you want to put it
debug.log-file-not-found = "enabled"
debug.log-request-header = "enabled"
debug.log-request-handling = "enabled"
debug.log-response-header = "enabled"

Now, you can restart Lighttpd, browse at http://127.0.0.1/index.html, and look
into your error log to see what went wrong.

Generally, setting options are done with [module].[option] = [value], where
value can be a "string", a number, or a boolean (note that instead of "true" and "false"
Lighttpd configuration expects "enabled" and "disabled" or a comma-separated list of
values in parenthesis (like server.modules). You can also append values to list with
[module].[option] += ([values]).

[17]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://127.0.0.1/index.html
http://forum.lighttpd.net
http://127.0.0.1/index.html

Configuring and Running Lighttpd

Other Core Options
There are some other core options we can set:

server.bind = "[Hostname, IP address or UNIX socket]".

This directive tells Lighttpd to bind only to specific interfaces. This may be useful if
you have more than one network interface and want to bind Lighttpd only on one of
them. Valid examples are:

server.bind = "myserver.com" # binds to the IP found at myserver.com

server.bind = "192.168.1.81" # binds the network interface at
192.168.1.81

server.bind = "/tmp/lighttpd.socket" # binds to a UNIX named socket

By default, Lighttpd binds to all network interfaces it can find. Usually, you will
have only one interface. Binding to a UNIX named socket can be useful to proxy
Lighttpd by some other server.

Setting server.port can change the port Lighttpd listens at. This might be useful if
you cannot run Lighttpd with sufficient permissions to open ports below 1024.

server.port = 1234

The default port for unencrypted HTTP is 80, the alternate unprivileged port is 8080.

server.tag changes the so-called Server Tag that is sent with each HTTP response.
It defaults to Lighttpd [version] (for example, Lighttpd 1.5.0 for version 1.5.0). If
you do not want anyone to know you use Lighttpd, you can change it to anything
you like.

server.name tells Lighttpd its hostname. Otherwise, the hostname or IP from the
request will be used while processing the response.

server.modules is a list of modules Lighttpd will load at startup and execute
on each request in the exact order they are specified. Modules are the extension
mechanism Lighttpd uses to adapt to many different tasks while staying small if
only a part of this power is used.

server.indexfiles may contain a list of filenames (without path) that is
searched if the URI matches a directory. So if you set server.indexfiles =
("index.html"), you can enter http://127.0.0.1/ in your browser and it
will still show your index.html page, given that the file exists and is readable.
The first file found is served. Note that this requires the mod_indexfile module
as of version 1.4.

[18]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://127.0.0.1/

Chapter 2

Mime Types
To give the client a hint of what to do with a file, the HTTP protocol defines that each
file should be sent with a Mime type. A Mime type consists of a Content type and a
subtype. The Content type is one of application, audio, example, image, message,
model, multipart, text, and video. Subtypes can be registered with IANA by a
Web form. The Internet Assigned Numbers Authority (IANA) maintains a list of
mime types. Most Linux or BSD systems have a local list at /etc/mime.types. The
authoritative list can be found at http://www.iana.org/assignments/media-types.

All mime types
You can download a mime-types.py python script that uses the mime
type module to create a mime type mapping suitable for inclusion
in a Lighttpd configuration at http://packtpub.com/files/
code/2103_Code.zip. Start the script with python mime-types.py
and it writes a mime-types.conf file in the current directory.
If you do not have a python interpreter, get one from
http://www.python.org.

For a single web project, a fairly small map of mime types will usually suffice:

mimetype.assign = (

".html" => "text/html",

".txt" => "text/plain",

".jpg" => "image/jpeg",

".jpeg" => "image/jpeg",

".gif" => "image/gif",

".png" => "image/png",

".zip" => "application/zip",

".tar.gz" => "application/x-tgz",

".gz" => "application/x-gzip")

Note the last two entries; the order is of the essence here. Had we swapped them,
any .tar.gz file would match .gz and would thus be served as application/x-gzip.

Default mime type
Using an empty extension, you can define a default mime type that will
be used if no matching extension can be found, like we did in our first
lighttpd.conf example.

[19]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.iana.org/assignments/media-types
http://packtpub.com/files/
http://www.python.org

Configuring and Running Lighttpd

The standard mime type for an HTML page is "text/html", but this changes if you
use XHTML, which can be sent as "text/html", "text/xml" or "application/xml", the
correct type being "application/xhtml+xml". Some browsers react differently on each
type. Storing them with the extension ".xhtml" will make it easier to distinguish
between HTML and XHTML files.

If the file system in use supports XFS-style attributes, we can set the mime type for
each file with the attr program:

attr -s Content-Type -V image/jpeg foto.jpg

This Content-Type attribute can be used wherever it is present by setting

 mimetype.use-xattr = "enable"

in our lighttpd.conf file, Lighttpd will fall back to the mime-type.assignment for
files without Content-Type attribute.

Selectors
The features that make the configuration of Lighttpd very powerful, yet keep
it concise, are selectors. A selector is a criterion within a curly-braced region of
the configuration that only applies if the criterion is met. After the optional else
keyword, another curly-braced region can be added that applies for the inverse of
the criteria. So the basic formula for a selector is one of the following:

criteria { configuration }

or

criteria { configuration } else { configuration }

Suppose that we want to serve .html files from the subdirectory /xhtml of our
document root as application/xhtml+xml and from any other directory as
text/html:

mimetype.assign = (...[our list of mime types, omitting .html]...)
$HTTP["url"] =~ "^/xhtml" {

mimetype.assign += (".html" => "application/xhtml+xml")
} else {

mimetype.assign += (".html" => "text/html")
}

[20]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

x

Chapter 2

As we can see in the example, each criterion consists of a value, an operator, and a
pattern. The value to compare is either $SERVER["socket"], which matches the IP
plus port (or just the port, if the IP is omitted in the pattern) or $HTTP["x"], where 'x'
is one of the following:

Description Example value
host The hostname of the request example.com

remoteip The IP of the client 12.34.56.78
cookie A list of cookies loginHash=A3DF25B
useragent The "user-agent" header of the Mozilla/5.0 (Windows; U; Windows NT 5.1; en;

request rv:1.8.1.1) Gecko/20061204 Firefox/2.0.0.1
referer The page that linked to here http://example.com/some.html

url The part of the URL after the /other.html
hostname

The example values would occur if a user with the IP address 12.34.56.78 using
the english version of Mozilla Firefox 2.0.0.1 would click on a link on the page at
http://example.com/some.html bringing him or her to http://example.com/
other.html.

There are two pairs of operators: == and != to check for equality and inequality
respectively, of the values and the verbatim text. =~ and !~ match the value against
a pattern using Perl-Compatible Regular Expressions (PCRE), and will only work if
your Lighttpd is compiled with PCRE support. =~ applies if the pattern matches and
!~ applies if the pattern does not match.

To become even more powerful, selectors can be nested, but not in any particular
order. The value $HTTP["url"] always needs to be in the innermost selector. This is
not a problem at all. Suppose you have two selectors:

$HTTP["url"] == "..." { $HTTP["cookie"] == "..." { ... } }

you can easily turn them inside out:

$HTTP["cookie"] == "..." { $HTTP["url"] == "..." { ... } }

Now, if you have an else-clause, this will not work, but remember that else clauses
can be simulated by inverting the expression:

$HTTP["referer"] =~ "..." {
server.document-root = "/www/referred"

} else {
server.document-root = "/www/no_ref"

}

[21]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://example.com/some.html
http://example.com/some.html
http://example.com/

Configuring and Running Lighttpd

is equivalent to:

$HTTP["referer"] =~ "..." {
server.document-root = "/www/referred"

}
$HTTP["referer"] !~ "..." {

server.document-root = "/www/no_ref"

}

This way, we can split the else clauses apart and invert their ordering, if necessary.
The following example shows a document-root based browser switch:

$HTTP["useragent"] =~ "MSIE" {

server.document-root = "/www/msie"

} else $HTTP["useragent"] =~ "Opera" {

server.document-root = "/www/opera"

} else { server.document-root = "/www/default" }

Alternatively, we can also set up a kind of virtual hosting by looking at the hostname
and changing the document root:

$HTTP["host"] == "some.ourdomain.net" {

server.document-root = "/www/some"

} else $HTTP["host"] == "other.ourdomain.net" {

server.document-root = "/www/other"

}

... add as many subdomains as you like.

Excursion: Regular Expressions

If you already know regular expressions, feel free to skip this section.

Regular Expressions, popularly known as regexes, regexen, or regexps, come from
Noam Chomsky's formal language works. Chomsky searched for ways to formalize
languages (without necessarily giving them meaning) and found that there was
a class of languages that could be described by a finite automaton. This means a
machine can decide if an input string is part of the language or not by only looking at
each symbol once.

[22]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 2

Due to the nature of their construction, regular languages, as Chomsky called them,
can also be described by regular expressions. In fact, every regular expression
constructs a regular language, and the PCRE used by Lighttpd actually builds
something akin to the finite state machine to decide if the input is part of the regular
language or not—that is, if the input "matches". It should be noted that the PCRE
engine extends the classical regexes in a way that enables them to define some
non-regular languages, thus giving them even more power.

H Hi i i, ' m A an nd r e e. v f u w t tL gh h t p d I

nf u ma eg s
Match! No Match

This diagram shows how regular expressions match an input text. It also goes to
show that learning Lighttpd is not all fun and games (well, it's fun, but no games).
The pattern needs to match only part of the input text. Most characters in the pattern
match themselves. If you want to match only from the beginning, you can match the
beginning itself with "^". Similarly the end is matched by a dollar-sign "$":

H Hi i i, ' m A an nd r e e. v f u w t tL gh h t p d

Match! Match!No Match No Match

I

H a ev^

^

H i ^ H a ev $

$

t t p d $

Play it Again, Sam
One of the powerful features of regexps is repetition. The pattern a+ would match
a, aa, aaa, any number of as. The pattern a* matches everything a+ matches, plus
the empty string. The pattern a{2,4} matches aa, aaa, and aaaa. You can of course
put any value instead of 2 and 4, or even omit the second value to match the exact
number of as.

Note that the *, +, and {} operators are "greedy". This means they try to match as
much as possible of the first occurrence.

aaaaa fffffffddddddddd eee

f* g*d{2,9} d{3,5} e{4}

b

a+ bb

b

b+

c

c c

c

Match! Match! Match! Match! No Match Match! Match!

[23]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Configuring and Running Lighttpd

Are You There?
If you want to match something if it is there, but not lose your match if it is not,
you can put a question mark "?" after it. The question mark also turns the greedy
operators + and * into meek operators that match only what is absolutely needed.
A period in the pattern will match one character, regardless of what it is—so, * will
match everything.

aaa d

Match! Match!

eee

a b? C

c xx s oo m ttt

x .* y

x .*? y

yy nn h r

Match!

Decisions, Decisions
Sometimes we need to match either of the two values, for example www and web.
The vertical bar does just that. So our pattern would read www|web. Now, if we also
want to match net, we just extend our pattern with another vertical bar and get
www|web|net. Note that the vertical bar binds weaker than the other operators, so
ba*|cd+ would not match bdd. A usual case is to match a single digit, letter or other
character. So, a shortcut was invented: [abc] is equal to a|b|c, [0-9] will match one
digit and [a-z] will match one lowercase character. To invert the character range,
use ^ at the beginning of the character group, for example [^0-9] will match one
character that is not a digit. We can match, if we put it at the beginning of the range.

m mma ee. . .w wwt t hh p p

Match! Match! Match! No Match

I Iet tt: / / / /x c o 1 2 3 4 s

f t p h t t p [^a-z]* [0 - 9 /] + [A - Z]

Group and Capture
Putting parenthesis around a pattern will group and capture this pattern. First, to go
with the example above b(a*|c)d+ will match bdd. It will also "capture" an empty
string (matched by a*) into $1. This is not very interesting for selectors but will be
very useful when it comes to rewriting and redirecting. The captures are ordered by
the position of the opening parenthesis.

[24]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 2

It is also possible to create a non-capturing group using ?= pattern that will match a
pattern without capturing, or even a negative group using ?! pattern that will only
match if the pattern is not there.

m mm ma ee. .w wwt t hh p p

Match! $1= some-site $2= test.html $3= testNo Match

.I ee e tt tt: //// x c o o ss s

(?!http):

- i

m.w w \w+ \w{3}w h t/ /(?= \. \.))([^/]+?) ((.*) I $

$
I

Lucky Escape
Now you might want to ask how to match against those characters that make up the
operators? We can "escape" them by prefixing them with a backslash in the pattern,
so they will match themselves verbatim. Also the usual C-string like escapes work as
usual. The following table shows the escapes and what they mean:

Escape Match Escape Match Escape Match Escape Match Escape Match
\\ \ \((\)) \[[\]]
\. . \{ { \} } \? ? \| |
* * \+ + \­ - \^ ^ \$ $
\t tabulator \r carriage return \n newline
\l line feed \xxy char with hexcode xy \e escape

Additionally, there are some abbreviations for commonly used character classes:

Escape Description Escape Description
\d All digits \D All non-digits
\w Alphanumeric + "_" \W Non-alphanumeric and not "_"
\s Whitespace, newlines, tabs, \S Non-whitespace characters

and so on.
\b Word boundary \B Not on word boundary

The character classes can be mixed and matched with single characters and ranges,
for example [\w\-] or [a-z\d:\.]. The word boundary matches the position
between \w and \W, or vice versa:

a . . . ,to o os- -i in n nd d dg 1 2 3 4 5 6 7 8 9 0 rr u yw b

\D* \d \s \w* b\b \B \.+
Match! Match! Match! Match! Match!

[25]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Configuring and Running Lighttpd

There are more tricks you can do with regular expressions—in fact there are
entire books written about them. The basics presented here should be enough to
understand the examples that will follow.

Testing Regular Expressions
The best way to learn regular expressions is to test them with some input.
There are some programs that do this. The PCRE library comes with a
"pcretest" utility that lets you enter the regular expression (note that it
requires you to "quote" the regexes) and then multiple input texts.
I also use the jEdit regexp tester sometimes. To get jEdit and the regexp
tester plugin, visit http://jedit.org. You can also search for "regexp
test" at http://freshmeat.net to find other regular expression
testing programs.

Now, we can structure our configuration with selectors and carve out regions of our
server landscape using regex matching. Let us put this ability to use to rewrite and
redirect requests.

Rewriting and Redirecting Requests
URLs are a part of the user interface of every website, be it a full-blown application
or just a bunch of static pages. Users sometimes use URLs to navigate, say, by cutting
a suffix to "move up a directory". So, we want to present them a clean structured tree.
Unfortunately, reality is usually not that nice. We may have some web frameworks
stitched together that require their own path names. We may want to hide from
the user that she is calling a script. Whatever the reason be, mod_rewrite and
mod_redirect are here to help us.

The difference between rewrite and redirect is that a rewrite happens directly in the
server, while redirecting a request is done by sending a header to the user telling
her where the page really is. This difference is important when deciding whether to
rewrite or to redirect. If we have a kind of shortcut or a second domain name and
want to direct the user to the "correct" URL, we redirect. Otherwise, we rewrite, for
example to present a coherent URL tree to the user when in reality the tree is created
by a parameterized CGI script or distributed across multiple directories.

Both modules share the same conventions. So we'll discuss them in one go. Before
using mod_rewrite and mod_redirect, we need to tell Lighttpd to load them:

server.modules = ("mod_rewrite", "mod_redirect", ...)

[26]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://jedit.org
http://freshmeat.net

Chapter 2

Remember that the order of modules loaded is important—mod_rewrite and
mod_redirect change the query URL, so they should come first. Otherwise, your
request might be done with before the modules even had a chance to rewrite or
redirect something.

mod_rewrite gives us the options url.rewrite-once and url.rewrite-repeat,
mod_redirect provides the url.redirect option. It would make no sense to have
url.redirect-repeat, as this would require keeping track of who was redirected
to where. Also, if the user is redirected to himself or herself, an infinite loop would
occur. All browsers I have tested guard against such infinite loops and present an
error to the user. Naturally, we have to be careful with url.rewrite-repeat, as the
rewrite happens inside the server and will stop only after a hundred iterations.

Each of these options takes a list of regex => URL pairs. The URL should be fully
qualified, for example: "http://www.example.com/mysite/", not "/mysite/".

Remember captures from regular expressions? This is where they shine. In the URL,
the expressions $1, $2, ..., $9 are expanded to the respective captures of the regex.
As in:

url.rewrite = ("^/mysite/([^/]*)/(.*)" => "http://www.example.com/
mysite.php?x=$1&y=$2")

If the user browses http://www.example.com/mysite/one/two, the rewritten URL
will be http://www.example.com/mysite.php?x=one&y=two.

Or it would be even better, if we put our rewrite and redirect lists into a host selector
and use its captures using %1, %2, ..., %9: for example, if we want to redirect every
URL not starting with www to the same URL, but with "www." prefixed, we just add
to our configuration:

$HTTP["host"] =~ "www\..*" {
 # we can do something for the correct URL here.
} else $HTTP["host"] =~ "^(.*)$" {

we use the else here so we can capture the whole hostname.
url.redirect = ("^(.*)$" => "www.%1/$1")

}

Now, any call to http://example.com will be redirected to
http://www.example.com.

This is the beauty of Lighttpd—a set of simple, but extensible components cleverly
integrated, so we do not have to learn more complicated syntax.

[27]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

"http://www.example.com/mysite/"
"http://www.example.com/
http://www.example.com/mysite/one/two
http://www.example.com/mysite.php?x=one&y=two
http://example.com
http://www.example.com

Configuring and Running Lighttpd

Of course, if you want to have a quote, dollar sign, percent sign, or backslash
verbatim in your URL, you have to prefix it with a backslash to escape it. Percent
signs are quite usual for URL-encoded characters (that is a percent sign followed by a
hex code). For example:

url.rewrite = (
"^(.*)$" => "ourdomain.net/dispatch.cgi?test=\"\%5F\"&page=$1"

)

You could use this method to extend the flexibility of your virtual hosting method
to any possible subdomain. The trick is to rewrite the host name to be part of the
document path:

$HTTP["host"] =~ "^(.*)\.ourdomain.net$" {
url.rewrite = ("^(.*)$" => "ourdomain.net/%1/$1")

}

Add a directory for any subdomain you might want named exactly like the
subdomain. In our example, a subdirectory named "somewhere" in the document
root would be mapped to http://somewhere.ourdomain.net. This method has
a small drawback: the error returned for undefined subdomains is a file-not-found
instead of a server-not-found. A better method will be discussed in the next chapter.

Now, we can serve static pages even with virtual hosting. Our configuration file is
likely to become a little bloated. Luckily, Lighttpd gives us some features to manage
the complexity by including files, defining and using variables to give name values
which are often used, including the output of an executable file (usually shell code)
into the configuration.

Including Variables, Files, and Shell-code
Lighttpd allows us to define and use variables in its configuration files. To make
it easier to distinguish between a configuration option and a variable, you have to
prefix your variables with var. as in var.docroot. Later on, you can use them by
simply putting them in place of whatever value you have given them. For example:

var.docroot = "/var/www"

server.document-root = var.docroot

This can be useful if you have values that appear in a lot of places. Just put them in a
variable and if you need to change the value, you only need to change it in one place.
We can also set and get variables of the environment. The env namespace is reserved
for this:

server.document-root = env.HOME + "/htdocs" # for a user dir
server.document-root = env.LIGHTTPD_BASE + var.htmldir

to use an environment variable

[28]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://somewhere.ourdomain.net

Chapter 2

You can also include files with an include statement:

include "some.conf"

This tells Lighttpd to parse the contents of some.conf as if they were in place of the
include statement. You can use includes and variables together to have something
like a subroutine in most programming languages. Set variables in the outer config,
use them in the included config, and we have a re-usable configuration component!

For example: A virtual host has its document root in /var/www/vhost1, another in
/var/www/vhost2. We could set things up for both with a small code snippet in a file
we will call vhost.conf file:

$HTTP["host"] == var.vhost + ".ourdomain.net" {

server.name = var.vhost + ".ourdomain.net"

server.document-root = var.docroot + var.vhost

server.follow-symlink = disabled

 # we do not trust our vhost

accesslog.filename = var.log + var.vhost

log each vhost seperately

index-file.names = ("index.html", "index.htm")

only HTML index files, may be different outside the vhosts
}

Then, our lighttpd.conf could include it like this:

#...

var.docroot = "/var/www/"

var.log = "/var/log/"

var.vhost = "vhost1"

include "vhost.conf"

var.vhost = "vhost2"

include "vhost.conf"

#...

Now, we have set up both virtual hosts and our lighttpd.conf file still looks quite
tidy. It is also possible to include the output of a program into the lighttpd.conf
file with the include_shell command.

This might seem like a great deal, but remember that usually you are the one starting
Lighttpd, so you can also put the output of the include_shell command into a file
and include it.

[29]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Configuring and Running Lighttpd

Security Alert (virtual hosting only)
If you are setting up virtual hosting and want to allow your users access
to their own configuration, you need to disable or otherwise forbid this
feature. Othewise, you give everyone whose configuration you include, a
free root shell (given that Lighttpd is started as root, which is required
for listening on port 80). You can disable this by downloading
configfile.c.patch file from http://www.packtpub.com/
files/code/2103_Code.zip.

Another thing variables can be useful for is distinguishing a test and production
environment. You might want to run a test Lighttpd without disturbing your
production Lighttpd. Variables to the rescue—put the following into
lighttpd.conf file:

var.http_port = 80

var.https_port = 443

var.docroot = "/var/www/prod"

include "lighttpd_conf.conf"

And create a test.conf with:

var.http_port = 1080

var.https_port = 1443

var.docroot = "/var/www/test"

include "lighttpd_conf.conf"

Now our lighttpd.conf file can simply use the variables to set the ports (instead
of having them plain in our file) and the document root, and then we can start a test
Lighttpd that:

•	 Listens on different ports and will thus start while our production Lighttpd is
still running.

•	 Does not mess with our production assets as it uses another document root.

[30]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.packtpub.com/

Chapter 2

Summary
This chapter only dealt with the configuration to serve static pages, but there
are already many options to set. The relevant options can be grouped into
three categories:

1.	 Options that tell Lighttpd where to look for a file.
2.	 Options that tell Lighttpd which interfaces and addresses to serve.
3.	 Options that tell Lighttpd how to serve content, for example,which

MIME type.

We learned about includes and variables, and had a brief introduction to regular
expressions that Lighttpd uses in many places.

The next chapter will discuss more ways to do virtual hosting, and how we can add
dynamic content to our bag of tricks.

[31]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

More Virtual Hosting and CGI

In this chapter, we will learn:

• How to set up virtual hosting
• How to install MySQL server and configure with Lighttpd modules
• How to configure SCGI and FastCGI with Lighttpd modules

Suppose that we want to host a lot of sites without restarting Lighttpd whenever a
new site comes and goes. Given that all sites share the same configuration, we can do
this using the line of mod_*vhost modules. To use them, we may include one of the
following lines:

server.modules += ("mod_simple_vhost") # for simple virtual hosting

server.modules += ("mod_evhost") # for extended virtual hosting

server.modules += ("mod_mysqlvhost")
for virtual hosting with a MySQL database

The most basic, but an already usable module is mod_simple_vhost. With this
simple virtual hosting solution, all we have to do is to supply a server root for virtual
hosting, a default host name, and a document root, like this:

simple-vhost.server-root = "/var/www/vhost/"

simple-vhost.default-host = "myvirtualhost.net"

simple-vhost.document-root = "htdocs"

mod_simple_vhost intercepts each request and constructs a document path out of
the server root, the host name (either from the request or the default), the document
root, and the file path. Given http://some.virtualhost.net/some/file.html as
the request URL, mod_simple_vhost would construct the path as:

"/var/www/vhost"/"some.virtualhost.net"/"htdocs"/"some/file.html"

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://some.virtualhost.net/some/file.html

More Virtual Hosting and CGI

If the file could not be found, mod_simple_vhost will see if the directory
some.virtualhost.net exists in the server root . If so, it will return a file not found
error (HTTP code 404). Otherwise, it will not even answer the request, as the domain
is obviously not on this server.

Extended Virtual Hosting
Too simple? Well, we can gain one level of complexity by using mod_evhost. The
"e" stands for extended and while it does a little more than mod_simple_vhost, the
configuration is even more minimal. In fact, there is only one option:

evhost.path-pattern = "/var/www/vhost/%3.%0/htdocs"

This example would do exactly the same as the code above, only using mod_evhost
instead of mod_simple_vhost. The percent-signs with numbers are placeholders
for the following values (in our example for the subdomain some.domain.
myvirtualhost.net):

Placeholder Value Description
%0 "myvirtualhost.net" The domain name including top-level-domain
%1 "net" The top-level-domain
%2 "myvirtualhost" The domain name without top-level-domain
%3 "domain" The subdomain name

This implies that "%0" could also be stated as "%2.%1". We do not gain much
flexibility over mod_simple_vhost; the most common usage is:

evhost.path-pattern = "/var/www/vhost/%0/%3/htdocs"

So, we can have a directory per-domain containing a directory for each subdomain,
or if we serve only one domain, we can leave out the domain name:

evhost.path-pattern = "/var/www/vhost/%3/htdocs"

Now, we have omitted the domain name in our path. We can also use a similar pattern
to create per-user homepages under http://username.myvirtualhost.net where
every user has a home directory under /home/username with a subdirectory html:

evhost.path-pattern = "/home/%3/html"

[34]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://username.myvirtualhost.net

Chapter 3

MySQL based Virtual Hosting
To have the freedom to put our sites up anywhere we want, we can use
mod_mysqlvhost. This module reads the document root for a domain from
a MySQL database table and will thus need a running MySQL server.
mod_mysqlvhost gives the maximum flexibility, usually at a small
performance cost.

Many Web projects already use MySQL as a backend database, so the cost of
running MySQL does not need to be taken into the calculation. For all other
installations, the cost of running a MySQL server would probably not be worth the
additional flexibility.

Installing MySQL
If you already have a running MySQL, you can skip this section.

First, we need to download MySQL. The MySQL download site, available
under http://www.mysql.com/downloads/mysql/, links to mirrors that have
packages for almost all systems. To pick the optimal package source, here are my
recommendations:

System Recommendation
Windows Download "Windows (x86) ZIP/Setup.EXE" from the MySQL

download site. Run the installer and create an options file in
C:\Windows\my.ini (C:\WinNT\my.ini for Windows NT).

Linux (Red Hat, Ubuntu, Start the package manager and install the distribution's
Novell/SuSE, Debian, MySQL package.
other popular binary

distributions)

Gentoo Linux Type emerge mysqld on the shell.

Other Linuxes Download the static tarball from the MySQL download site.

FreeBSD Download the static tarball from the MySQL download site.

Solaris Download the package for your Solaris version from the MySQL

download site.
Mac OS X Download the .dmg for your CPU type from the MySQL

download site.
AIX, HP-UX, Novell The MySQL download site has binary packages for your platform.
NetWare, QNX, SCO
OpenServer
Others Download the source packages from the MySQL download site.

Follow the README to compile MySQL.

[35]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.mysql.com/downloads/mysql/

More Virtual Hosting and CGI

The options file fo Windows installations should include the following lines
(given that you have installed MySQL in C:\mysql):

[mysqld]

basedir=C:/mysql # note the / instead of \

datadir=C:/mysql/data

The installers usually set up their own options file.

Bringing MySQL and mod_mysqlvhost
Together
mod_mysqlvhost is as flexible as possible – you can create your database the way
you want it. The only thing that is really needed is a table with at least two columns,
one of which contains the domain name and the other the path. Both are usually
stored as VARCHARs. A possible database setup SQL script might be:

GRANT SELECT ON domains.* TO lighttpd@localhost

IDENTIFIED BY '********';

CREATE DATABASE domains;

USE domains;

CREATE TABLE domains (

domain VARCHAR(64) not null primary key,

document_root VARCHAR(256) not null);

The corresponding Lighttpd configuration is:

mysql-vhost.db = "domains"

mysql-vhost.user = "lighttpd"

mysql-vhost.password = "********"

mysql-vhost.sock = "/var/sock/mysql.lighttpd.sock"

mysql-vhost.sql = "SELECT document_root from domains WHERE domain=?"

Of course, we should take a password not only consisting of asterisks. Adding,
moving, and deleting domains can now be done with the following SQL:

Add a domain

INSERT INTO domains

VALUES ('subdomain.ourdomain.net', '/var/www/sub1');

Move a domain to another directory

UPDATE domains SET document_root = '/var/www/subdomain'

WHERE domain = 'subdomain.ourdomain.net';

Delete a domain

DELETE FROM domains WHERE domain='subdomain.ourdomain.net';

Change a domain name by deleting the old and adding a new entry.

[36]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 3

Now we have everything in place to be completely free with our domain to
document root mapping.

MySQL Administration Programs
MySQL comes with a very minimal command line client. To speak with
the server more comfortably, the following programs might help:
MySQL Gui Tools come from the same folks as the MySQL database
itself, so they are easily the tool of choice when it comes to working with
MySQL.
phpMyAdmin from http://phpmyadmin.net is a CGI-based tool
written in PHP. It even works with Lighttpd. To learn to install it, read
chapter 9.
Java SQL Admin Tool can work with MySQL and is completely written
in Java, so it "runs everywhere" according to the Sun Microsystems
marketing slogan. Find it at http://www.trash.net/~ffischer/
admin/index.html.

Under Linux, both Gnome and KDE have MySQL administration
programs (Gnome MySQL client and KNoda). Lastly, go to
http://freshmeat.net and search for "MySQL admin".

Going Dynamic
When the Internet was created, it was all a bunch of text (and later some graphics)
files. Things have changed a lot since then—the majority of websites today are not
primarily static sites. Either the HTML itself is created by a Content Management
System (CMS) or the site embeds applications in the static content. To allow
two-way communication between the browser and a program running on a web
server, and to generate the content dynamically on the server, the Common Gateway
Interface (CGI) was created.

CGI is very simple. The server gets a request, sets up an environment, starts the CGI
process and optionally (for HTTP POST requests) pipes the request content into
the CGI process' standard input. The CGI process prints the response (including
headers) to its standard output, from where it is forwarded to the user by the server.

The simplicity of CGI gave it a big advantage over embedding applications in the
server (as is done with Microsoft's Active Server Pages or Sun Microsystems' Java
Server Pages), as one could run a CGI application over any web server supporting it,
thus giving web server and web application creators a motivation to implement CGI.

[37]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://phpmyadmin.net
http://www.trash.net/~ffischer/
http://freshmeat.net

More Virtual Hosting and CGI

With the proliferation of CGI-capable servers and applications, the downside of
CGI has become apparent. CGI spawns one process per request , which taxes the
operating system, memory and CPU, and leaves no chance to cache data between
requests, as each CGI process starts with a clean slate.

There have been some attempts to create a successor to CGI. Two of the most
successful successors are implemented as Lighttpd modules: SCGI and FastCGI.

Up to and including version 1.4.20, Lighttpd came with a module for each interface:
mod_cgi for CGI, mod_scgi for SCGI, and mod_fastcgi for FastCGI. From version
1.5.0 onwards, these modules have ceased to exist, and mod_proxy_core, a shared
code base for all application and proxying interfaces, has been extended by backend
modules: mod_scgi_backend and mod_fastcgi_backend. Still, as at the time of this
writing, 1.4.20 is in active use by many, we will start with mod_cgi.

CGI with mod_cgi
To enable CGI in Lighttpd, we need to include and configure the module. For
example, we might want to execute all files with the cgi extension:

server.modules += ("mod_cgi")
cgi.assign = (".cgi" => "")

The "" in cgi.assign means that CGI scripts are started in their own shell.
Otherwise, this entry would contain the path to the CGI interpreter/application.

We probably want to add index.cgi to the list of index files:
server.indexfiles = ("index.cgi", "index.html")

Alternatively, we might prefer putting all CGI programs in one directory instead of
distinguishing them by extension:

cgi.assign = ("/cgi-bin/" => "")
Patterns starting with "/" match the path.

If the CGI protocol is very simple, why should the configuration be any
more complex?

FastCGI
The FastCGI interface was created with speed in mind, while giving a programming
environment almost equal to the CGI protocol. FastCGI distinguishes between
Responders and Authenticators, both of which can get a request and issue a
response. However, most FastCGI applications just use the Responder part of
the protocol.

[38]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 3

A FastCGI application runs in a while-loop, with the rest of the program being
written in plain CGI style. As the program runs continuously, we can store data
between requests; also the setup cost is removed for all requests but the first. A
typical program would look like this (in most languages):

<startup>

while (FCGI_Accept())

<handle request>

<cleanup>

The FastCGI protocol comes with libraries for C, Perl and Java. In addition, there
are FastCGI libraries in many programming languages. PHP even comes with an
optional FastCGI-compatible interpreter. Visit http://www.fastcgi.org/ to find
the library for your favorite language, or read Chapter 13 for real world examples.

We can configure FastCGI using mod_fastcgi with Lighttpd versions prior to 1.5.0:

server.modules += ("mod_fastcgi")

fastcgi.server = (
".cgi" => (# suffix-match if it starts with "."

List of servers load-balanced by Lighttpd
("host" => "localhost", # FastCGI over TCP/IP

"port" => 1234),
FastCGI over UNIX domain sockets
("socket" => "/var/sock/lighttpd-fcgi.sock"),
FastCGI application started by Lighttpd
("bin-path" => "/usr/bin/perl",

"docroot" => "/var/www/myperlapp")
),
"/cgi-bin" => (# prefix-match if it starts with "/"

("bin-path" => "/usr/bin/php-fcgi",
 "broken-scriptfilename" => "enable",
 "min-procs" => 1,
 "max-procs" => 4 # ... other options folllow

)

)

)

[39]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.fastcgi.org/

More Virtual Hosting and CGI

mod_fastcgi will load-balance the given servers. If we use the bin-path directive, it
will even start them for us (until version 1.5.0, which comes with its own utility to do
this). Let us have a detailed look at the options per server. As we see in our example,
there are three ways to reach a server:

• By TCP host and port
• By UNIX domain socket, and
• By starting it from bin-path.

If we let Lighttpd start our FastCGI program, we also have some more options:

Option Description
"bin-environment" => ("key1"=>"value1", ...) Sets the environment entries in the FastCGI

environment.
"bin-copy-environment" => ("key1", ...) Copies the given environment entries to the

FastCGI environment.
"min-procs" = 1 Starts and keeps alive at least 1 and at the
"max-procs" = 4 most 4 instances of our FastCGI program.
"max-load-per-proc" => 3 Starts a new instance on 3 waiting requests.
"idle-timeout" => 120 Kills a process if it is idle for 120 seconds.

The entry "mode"=>"authorizer" tells Lighttpd to treat the FastCGI program as
Authorizer. We can also set "mode" => "responder", but this is the default anyway.
For Authorizers, the "docroot" entry is mandatory. For responders, it does not hurt
to set "docroot", especially if the FastCGI program uses it somewhere.

The "check-local" entry can be enabled or disabled. If it is enabled, it tells Lighttpd
to look for a local file in the "docroot" path at the given address, and sends out a
404 error if it does not find anything. This is useful for using scripting languages as
FastCGI responders.

If Lighttpd detects a server outage, it will route the requests to the remaining servers
and check regularly if the broken server comes up again. We can set the duration in
seconds between such checks with the "disable-time" entry.

For PHP, if the "broken-scriptfilename" entry is enabled, Lighttpd will mangle
the SCRIPT_FILENAME FastCGI environment entry so that PHP has a correct
PATH_INFO. The allow-x-send-file allows a backend to put the response in a file
(perhaps a cache), set a X-LIGHTTPD-send-file header and have Lighttpd send out
the content of this file.

[40]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

mod_fastcgi supplies two additional global options, but we will seldom use them:

fastcgi.map-extensions = ("php4" => "php")

to handle php4 analog to php files.

fastcgi.debug = 1 # or 0 to disable debugging

Since the version 1.5.0, mod_proxy, mod_fastcgi, and mod_scgi have been pulled
together to mod_proxy_core plus various backends. The configuration options
are the same for all the modules and are explained below (mod_proxy_core
and backends).

SCGI
The Simple Common Gateway Interface (SCGI) was created to remove the burden
of starting a new process for each request while being simple to implement. Re-using
the process is a big win for scripting languages, where the interpreter can stay in
memory as the scripts are loaded and cached. The overall goal of SCGI is simplicity
of implementation. SCGI was created as a primary interface between python web
applications and web servers.

With SCGI, the headers are sent as a concatenation of pairs of zero-terminated
strings, so that C programs can use them without copying. The SCGI standard
does not specify how the transport between the application and the web server is
implemented, as long as it carries a stream of bytes.

SCGI and FastCGI are quite similar, but SCGI gives up backward-compatibility
to gain simplicity. Due to the similarities, the Lighttpd SCGI module shares the
configuration options of the FastCGI module.

mod_proxy_core and backends
Since version 1.5.0, the dynamic page processing interface core functionality was
consolidated into mod_proxy_core and only the differences between the interfaces
moved into a backend for each. This reduces duplication, with some obvious
benefits. Less duplicated code implies less stuff in memory, less chances for errors,
more testing for the core, and optimizations apply to all interfaces.

The syntax has changed a little, for example, we no longer assign path prefixes to
configurations, but use selectors to reduce the reach of the backends.

[41]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

More Virtual Hosting and CGI

Suppose that we want to use mod_proxy_core, we add it to server_modules
along with the backends we want. Then we carve out a niche for each backend and
configure the backends. For example, to use SCGI for a python application and
FastCGI for PHP, we write:

server.modules = (...,
"mod_proxy_core",
"mod_proxy_backend_fastcgi",
"mod_proxy_backend_scgi", # see appendix B for all backends.
...)

$HTTP["url"] =~ ".py" { # use SCGI for python files
proxy_core.protocol = "scgi"
proxy-core.balancer = "carp" # tries to keep processes together
proxy-core.backends = { # we have 3 SCGI servers to balance:

"127.0.0.1:3456", # a local port (by IP address)
"otherhost.mydomain.net:3456", # a port on another host
"unix:/tmp/python.socket" # a unix socket

}
proxy-core.max-pool-size = 3 # for SCGI the number of backends
for other options, see Appendix B

}

$HTTP["url"] =~ ".php" { # use FastCGI for PHP files
proxy_core.protocol = "fastcgi"
proxy-core.balancer = "sqf" # tries to balance workload fairly
proxy-core.backends = {

"unix:/tmp/php-fastcgi.socket",
"[::1]:4001" # on IPv6 host 1 in this network, port 4001

}
proxy-core.max-keep-alive-requests = 8

analog to server.max-keep-alive-requests, see chapter 9
proxy-core.allow-x-sendfile = "enable" # see chapter 9

}

The use of selectors gives us greater freedom on when to use which backend, and the
uniform syntax makes it easy to learn and use.

[42]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 3

Summary
In this chapter, we have learned how to set up virtual hosting—from totally simple
with mod_simple_vhost to absolutely flexible with mod_mysql_vhost. As in most
circumstances we can control where our Web projects are, the simplest solution
will usually suffice. Lastly, we can use simple selectors, which give us a lot more
control on what modules we want to allow for which site, but need a reload of the
configuration for every domain change.

Then, we had a brief look at the web application interfaces that Lighttpd offers
and discussed how they can be configured in different Lighttpd versions.
Chapter 11 will present detailed usage examples for common applications and
programming languages.

[43]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Downloads and Streams
A huge section of the Internet is reserved for downloadable and streamable content.
Music, images, movies, programs, and things we have not thought about yet are
made available (maybe for a small fee or through their advertisements) as a direct
download. Music and movies (the latter often in flash video or short flv format) can
also be streamed. Sites like YouTube, using Lighttpd to serve video files, show that
Lighttpd has got what it takes to do this job.

Large files present a special scenario to our Lighttpd: we will have less, but bigger
requests. Some users will use download managers that create a number of HTTP
range requests in parallel to optimize against bandwidth restrictions some providers
operate with. We may or may not want to allow that, especially if our throughput is
high. In that case each additional connection from one user will take resources away
from all the others. On the other hand, we may want to allow range requests, to let
our customers resume broken downloads.

If we want to serve large files, we need to set the write timeouts higher than
usual—to compensate for the longer time the transfer will need. We may also want
to use the writev network backend or one of the aio backends in the new version.

Keep large content static
This message is probably obvious. But do not try serving large files
dynamically. It just hogs our Lighttpd plus a backend job squeezes a large
amount of bytes through two sockets or pipes.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Downloads and Streams

Core Settings
Using this scenario as a starting point, we will enumerate the knobs to be turned.
Here are some configuration settings that will make our Lighttpd serve large files
faster and more reliably than the defaults. First, we make sure range requests are
enabled using the following command:

if we have disabled range requests for some reason:

server.range-requests = "enable"

We want to use the optimal network backend for sending out content. If in doubt,
take a file of the size we want to serve or create (for example, we can use dd to create
a 1GB file):

$ dd if=/dev/zero of=our_file bs=1024 count=10480576

Now, put this file into our document root and run an http_load test (refer to
Chapter 9 for further details) with each network backend that we get to run. Then,
pick the fastest network backend. Probably it is one of the following, depending on
your system. Take your pick and be sure to test on our system; when in doubt, test
all of them:

server.backend = "writev" # optimal for 1.4 versions

server.backend = "posix-aio" # the fastest for large files

server.backend = "gthread-aio" # using threads to multiplex

server.backend = "linux-aio-sendfile" # optimized for linux

Each backend uses a different strategy to optimize throughput. On
POSIX-compatible systems, posix-aio is, at least for the time being, the
fastest backend for large files.

In the next step, ramp up the idle write timeouts:

server.max-write-idle = 720 # double to 12 minutes.

This allows clients to keep a connection-on-hold a little longer, which they might do
for any old reason (for example, their network might be down for a second), without
killing their download. On the other hand, we might want to reduce the maximum
keep-alive requests to free up connections sooner (because we will not have as many
requests, but the ones we have will last longer):

server.max-keepalive-requests = 8 # half the requests
 # if we have a different setting than the default, set

server.max-keepalive-idle = 5 # seconds

[46]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

This should be all it needs to make our Lighttpd large-file friendly. Note that some
of the settings may be pessimizations in other scenarios, for example, say some small
requests. Therefore, we might want to limit the impact of these options to where we
need them.

Multiple configurations

All the above settings have a connection scope, which is that we can put
them into selectors. This means that we can have some areas optimized
for large content, and other areas optimized for lots of small requests, for
example, AJAX applications.

Traffic Shaping
We may either want to set up an anonymous download zone, where download
speeds are throttled, and a high-speed zone for our paying customers, or we may
just keep our server within a monthly budget. To achieve these goals, we can use the
following settings:

server.kbytes-per-second = 1024 # for all connections

connection.kbytes-per-second = 32 # per connection

And disable the settings within a selector for the paying customers:

server.kbytes-per-second = 0 # disabled traffic shaping
connection.kbytes-per-second = 0

Note that since Lighttpd version 1.5.0, mod_evasive has gained the functionality to
let a response header with the name of X-LIGHTTPD-KBytes-per-second be used as
value for the connection speed setting. To enable this, we add the following to
our configuration:

speed.just-copy-header = "enable"

However, this solution will turn very complex for most cases. If a user complains
of slow downloads, is Lighttpd the problem, or was the X-LIGHTTPD-KBytes-per­
second header wrong? Unless we want to calculate the speed for every user, we are
better off with a direct setting.

Some users will use download managers that try to open a multitude of connections
to bypass throughput limits. To keep those users at bay, we need a way of limit
the number of connections per user. As of Lighttpd version 1.4.9, we can use
mod_evasive to do this:

server.modules = (..., "mod_evasive", ...)
evasive.max-conns-per-ip = 2 # limit connections per IP

[47]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Downloads and Streams

This will still give maximum throughput of 64 kilobytes per second per user, up to
16 simultaneous users. To keep our paying users at the maximum download speed,
we can limit the reach of this configuration through selectors, as the tip from above
also applies here.

Still, there is a problem with this approach because some users trying to
download simultaneously may sit behind a proxy as their IP address is same. The
mod_extforward module handles this by letting us add a list of trusted proxies, so
that the X-forwarded for header value will be used as a client IP:

the order matters, otherwise mod_accesslog and mod_evasive

will get the proxy IP instead of the client IP

server.modules = (

...

 "mod_accesslog",

 "mod_evasive",

 "mod_extforward",

...

)

trust proxy at 1.2.3.4

extforward.forwarder = (

 "1.2.3.4" => "trust",

)

We could also tell mod_extforward to trust all proxies with an extforward.
forwarder entry of "all" => "trust". However, the documentation warns us that
this is a bad idea, and here is why: a bad user could set up her own proxy that gives
each request a new X-forwarded for IP address to fool our Lighttpd into thinking it
is serving different users, annulling the effect of mod_evasive. Worse, if we use the
client IP for session handling, they could hijack other legitimate users' sessions.

In a normal setting, it should suffice to start with a list of well-known proxies (search
the Internet for "proxy server" or even start with an empty list) and add proxies to
the list when users complain.

Showing Directory Contents
If we have a download directory and want to easily serve an up-to-date listing of
its contents, mod_dirlisting can do the job. It is configurable with the header and
footer, custom CSS, and exclude filters (which should usually match our mod_access
settings, to hide inaccessible files from the listing).

[48]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

mod_dirlisting versus Large Directories
Since Lighttpd is single-threaded, while the directory listing gets created,
no other work is done by Lighttpd, as with all modules. Therefore, use
mod_dirlisting only for small download directories—less than 100
entries should be a good rule of thumb. Otherwise, use a script through
one of the CGI backends, which can run independently from Lighttpd.

Let us get straight to an example configuration of mod_dirlisting. In this example,
we want to activate mod_dirlisting for the download directory, show a hidden
HEADER.txt file (if there is one in the directory) before the listing, show "dotfiles"
(starting with a ".") in the listing, but hide files ending with "~" or ".old", and use a
custom CSS and footer:

server.modules += ("mod_dirlisting") # add mod_dirlisting to modules

$HTTP["url"] =~ "(^|/)/download/" {
 dir-listing.activate = "enable" # enable dirlisting
 dir-listing.hide-dotfiles = "disable"
show files starting with "."
 dir-listing.exclude = ("~$", "\.old$")
hide files ending with "~" or ".old"

 dir-listing.external-css = "/css/dir.css" # use custom CSS

 dir-listing.show-header = "enable"
 # show the contents of the HEADER.txt file before the dirlisting
 dir-listing.hide-header-file = "enable"
 # hide the HEADER.txt file from the dirlisting

 dir-listing.set-footer = "Thanks for trusting
<a \href=\"http://ourdomain.com\">us!"

 # show a custom footer (the HTML code is inserted directly)

 dir-listing.encoding = "utf-8"
 # oh, and show the whole thing encoded in UTF-8.

}

[49]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Downloads and Streams

This shows a fair amount of configuration options for mod_dirlisting. Here is the
complete table of options. The first few options enable the listing and select the files
that are shown or hidden, while the remaining options change the display of
the listing:

Option name Default / useful value Description
dir-listing.activate "disable" Each option enables showing a
server.dir-listing listing if a directory is requested.
dir-listing.hide-dotfiles "enable" Hides files starting with a dot.
dir-listing.exclude ("^~", ".old$") A list of regular expressions (refer to

Chapter 2). Filenames that match will
be hidden from the listing.

dir-listing.hide-header-file "disable" Hides the "HEADER.txt" file from
the listing.

dir-listing.hide-readme-file "disable" Hides the "README.txt" file from
the listing.

dir-listing.show-header "disable" Shows the contents of the "HEADER.
txt" above the listing.

dir-listing.show-readme "disable" Shows the contents of the "README.
txt" below the listing, but above the
footer.

dir-listing.set-footer server.tag HTML code to be written below the
"Lighttpd 1.4.19" listing, defaults to server.tag, if any;

else to the "Lighttpd " + version.
dir-listing.encoding "iso-8859-1" Selects the encoding of the generated

HTML code.
dir-listing.external-css "/css/dir.css" Uses a custom CSS.

These options allow us to customize almost everything. The listing will show
subdirectories first, then the files. The files will be shown with the name (which is
linked to the file itself), last modification time, size, and MIME type.

[50]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

The generated HTML code contains a number of style classes to customize the
display in the external CSS. The CSS style included by default, if no external CSS is
set, should provide a good starting point:

a, a:active {text-decoration: none; color: blue;}
a:visited {color: #48468F;}
a:hover, a:focus {text-decoration: underline; color: red;}
body {background-color: #F5F5F5;}
h2 {margin-bottom: 12px;}
table {margin-left: 12px;}
th, td { font: 90% monospace; text-align: left;}
th { font-weight: bold; padding-right: 14px; padding-bottom: 3px;}
td {padding-right: 14px;}
td.s, th.s {text-align: right;}
div.list { background-color: white; border-top: 1px solid #646464;

 border-bottom: 1px solid #646464; padding-top: 10px;
 padding-bottom:14px;}

div.foot { font: 90% monospace; color: #787878; padding-top: 4px;}

Here is a complete list of CSS classes and their corresponding HTML elements:

HTML element, CSS class Description
pre.header A preformatted text area to show the contents of the

HEADER.txt file, if activated
h2 The heading "Index of " + path is an h2 element
div.list A div containing the listing
table The table containing the entries of the dir-listing
thead, tr th The heading for the table
tbody, tr The content of the table
td.n The cells of the name column
td.m The cells of the time of the last modification column
td.s The cells of the size column
td.t The cells of the MIME type column

Armed with this knowledge, we can make our listing beautiful, or at least colorful.
But how do we protect our download area from deep linking, and separate our
paying customers from the anonymous freeloaders? Lighttpd offers not one, but two
modules to secure our valuable download.

[51]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Downloads and Streams

Securing Downloads
The two modules that Lighttpd offers require that a user must first get permissions
to download, and have to do so within a specified window of time after which the
permission times out. The difference is in the way of getting permission:
mod_trigger_b4_dl just defines a trigger URL that a user must visit before the
download is permitted, while mod_secdownload validates against a token to be
created by a backend application (for example, our login for paying customers).
Therefore, we can use mod_trigger_b4_dl to fight deep linking and
mod_secdownload to differentiate between user groups.

First, let us start with mod_trigger_b4_dl. Let us presume that we want everyone
to view (well, we cannot really control that, but at least download) a certain
advertisement, for example, an image at the path /ads/342hgf.gif, before they can
access any of our high-quality content within the next 10 seconds. We can get this to
work with the following configuration:

server.modules += ("mod_trigger_b4_dl")
trigger-before-download.gdbm-filename = "/web/internal/ad_trigger.db"
trigger-before-download.trigger-url = "^/ads/342hgf.gif"
trigger-before-download.download-url = "^/download/"
trigger-before-download.deny-url = "/sorry.html"
trigger-before-download.trigger-timeout = 10

mod_trigger_b4_dl needs a place to store the IP addresses of the users who
are downloading. We have a choice between using a memcache host or a GDBM
database. In this case, we use the GDBM support, which has to be compiled (refer to
Chapter 1), and then we set the gdbm-filename to a database file.

Note that GDBM is available on most systems by default; if our system lacks it, we
can get it from http://www.gnu.org/software/gdbm/. If we do not have a GDBM
database file at the path where trigger-before-download.gdbm-filename points
to, mod_trigger_b4_dl will create one for us automatically.

If we have a memcache host and libmemcache support compiled into our Lighttpd
(again, refer to Chapter 1), we can alternatively use it to store the IP addresses. In this
case, replace the line:

trigger-before-download.gdbm-filename = "/web/internal/ad_trigger.db"

With:

trigger-before-download.memcache-hosts =
 ("memcache.ourdomain.net:2345") # a list of hosts

trigger-before-download.memcache-namespace = "ad-trigger"

[52]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.gnu.org/software/gdbm/

Chapter 4

Then, put the memcache hosts we want to use into the list. Both the methods work.
The performance impact of one method over another is negligible, so use memcache
if we already have a memcache host up and running (and possibly used for other
things, too); otherwise use GDBM.

In either case, the IP addresses are stored along with a timestamp, and each time the
download URL is invoked, all stored timestamps are checked. Timestamps older
than the trigger-timeout are discarded from the database or memcache. If the IP
address is found, and the entry has not timed out, the handling of the download
URL is resumed; else a temporary redirect to the deny-url gets sent out.

The following diagram shows the process:

(1) The user connects to our server and surfs to a mod_trigger_b4_dl-enabled site. If
the user (2) visits the trigger URL, (3) the hit is recorded in the database and he or she
can (4) access the download. Otherwise, he or she is (5) redirected to the deny URL.

3

2

5

4trigger_b4_dl

Lighttpd

<html>
trigger

access
denied

GDBM
database /
memcache

1

download

In our example, a client trying to download a file from the download directory
without fetching the ads/342hgf.gif image would be redirected to
http://ourdomain.com/sorry.html.

Possible Accessibility Issue
Requiring the client to download a graphic may lock out text-only
browsers, which are often used by the visually impaired, for little benefit.
Using an index.html as the trigger file may be a better choice unless
the downloads we seek to protect are themselves of visual nature, for
example, movies or images.

[53]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://ourdomain.com/sorry.html

Downloads and Streams

Anyway, here is a table of all the configuration options of mod_trigger_b4_dl:

Option name Default / Example Description
.trigger-url "/index.html" The URL that permits the download for

the client's IP until trigger-timeout
.download-url "^/download/" A regular expression that matches the

download to secure from deep linking
.deny-url "/deny.html"	 The URL that any client that has not

loaded trigger-url within the
timeout gets redirected to when trying to
access the download

.trigger-timeout 10 the permission to access the secured
content is valid in number of seconds

.gdbm-filename "/path/to/trigger.db" The path to a GDBM database file to
store the actual permissions

.memcache-hosts ("127.0.0.1:2345") A list of memcache hosts to store the
actual permissions

.memcache-namespace "trigger" A unique memcache namespace

.debug "disable" Enable to show debugging info in the
error log

Now that we can fight deep linking, we will put mod_secdownload to use by
allowing access to a restricted download area to our paying customers.

The mod_secdownload module was created to solve a dilemma. Static downloads
can only be secured from anonymous access by HTTP authentication, which is
cumbersome and inflexible. On the other hand, if we use a web application to
authorize the download, we also need to push all those bytes through our web
application, keeping up two connections (one to the client and one to the backend)
and processing data twice, which is a bad way of spending our system resources.

Now with the mod_secdownload module, we can have our cake and eat it, too. This
is done by splitting the tasks of authentication and authorization—authentication is
still done in our web application, which then computes a token that is included in the
URL for the download. mod_secdownload will then check the token and let Lighttpd
serve the download directly if it is valid. Since the download is served by Lighttpd,
we get the speed of static downloads and the authentication of our
web application.

[54]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

access
denied

Lighttpd

1

<html>
tweb

application

downloadsecdownload

token

4

2

3

(1) The user requests the download. (2) mod_secdownload redirects the request to the
web application page, which returns an authentication link (for example, as rewrite).
mod_secdownload then validates the link. If the link is valid, (3) mod_secdownload
rewrites the download link to the download directory, from which Lighttpd serves
the download as a static file. If the link is invalid, (4) access is denied.

The whole process is quite simple, apart from the calculation of the token, which is
also made easy by the fact that the computation uses some well-known algorithms.

The mod_secdownload module documentation (which can be read online at
http://trac.lighttpd.net/trac/wiki/Docs%3AModSecDownload) contains three
code listings in PHP, Ruby, and Python. Here is the corresponding Lua magnet
implementation using the MD5 library of the Kepler Project (refer to Chapter 12 for
further information):

require("md5") # for hash function

prefix = "/download/" # change this to match our configuration

secret = "change this" # as we really should

function gen_sec_link(relpath)
 if not relpath:match("^/") then relpath = "/" .. relpath end
 local time = string.format("%x", os.time())
 local token = md5.sumhexa(secret .. relpath .. hextime)
 return string.format("%s%s/%s%s", prefix, token, time, relpath)

end

In our further code, we can just generate a link to "WeLoveLighttpd.avi" using the
gen_sec_link function like this:

link = gen_sec_link("WeLoveLighttpd.avi")

Which will generate a link to some URL that should look like the following:

/download/4b75945527344cf16fa08cc62ef83f51/48cec3fe/WeLoveLighttpd.avi

[55]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://trac.lighttpd.net/trac/wiki/Docs%3AModSecDownload

Downloads and Streams

On the Lighttpd side, we will configure mod_secdownload to:

•	 Disallow direct access to /download/ and everything below this directory
•	 Allow access to "/download/" + token + timestamp + relpath, rewriting

the URL on the fly to "/download/" + relpath
•	 Send a 403 (Forbidden) header on wrong tokens, a 408 (Request Timeout)

for Lighttpd versions prior to 1.5.0, and a 410 (Gone) as of this version on
requests after their timeout.

This is done by the following settings:

server.modules = (..., "mod_secdownload", ...)

secdownload.secret = "change this" # we still should

secdownload.document-root = "/web/ourserver/"

secdownload.uri-prefix = "/download/"

secdownload.timeout = 120

By the way, if we do not want to make our links very complicated, we may also set a
cookie in the application and match mod_secdownload with mod_rewrite to get the
cookie contents into our URL. For this, we need to make sure that mod_rewrite gets
called before mod_secdownload and uses a special rewrite rule:

server.modules = (..., "mod_rewrite", ..., "mod_secdownload", ...)

set a global document root

server.document-root = "/web/ourserver"

insert a set download cookie into the URL

$HTTP["cookie"] =~ "download/([0-9a-f]){32}/([0-9a-f]){8}" {

 url.rewrite = ("/download/(.*)$" => "/download/%1/%2/$1")

}

configure secdownload

secdownload.secret = "change this, too" # well...

secdownload.document-root = server.document-root

secdownload.uri-prefix = "/download/"

secdownload.timeout = 120

Now, the user will see only the http://ourserver.com/download/file.pdf
URL, while mod_secdownload will get the full URL. Also, we can make the cookie
expire after 120 seconds; so the timeout of the cookie and mod_secdownload
are synchronized.

We now have everything we need to authorize downloads and streams, which we
will look at in the following section.

[56]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://ourserver.com/download/file.pdf

Chapter 4

Streaming Content
There are different solutions for streaming flash videos. Dedicated streaming servers,
an apache module, and different CGI-backend-based solutions have sprung up. Of
course, Lighttpd plays this game, too, with mod_flv_streaming. The configuration
is as simple as it gets:

add mod_flv_streaming to our module list
server.modules = (..., "mod_flv_streaming", ...)

set a list of extensions to stream
flv-streaming.extensions = (".flv")

That's it. Now we need a player that works with our streaming protocol. Fabian
Topfsted has written such a player, and has made it available for noncommercial
purposes at http://www.topfstedt.de/weblog/?page_id=208. The site has
everything we need to know about setting up and embedding the player into
our pages.

Apart from that, we need to be sure that our videos have the metadata (byte position
of the first frame in the file, kilobytes per second, and so on) embedded in the
beginning. For flash video, which keeps a constant bitrate, the playing position can
then be set freely. H.264 video, which has variable bitrates, can only be played from
start to end.

There are some tools to convert videos to the flv format and change the metadata:

•	 MPlayer/MEncoder at www.mplayerhq.hu is a fairly minimal
player/encoder combo that is quite fast and plays or encodes almost
everything with a minimal user interface and lots of command line options.

•	 yamdi (short for "Yet Another MetaData Injector for FLV") is a command
line tool to inject metadata to FLV files. It is pretty fast, because it reads only
what it needs. Download it from http://yamdi.sourceforge.net.

•	 FLVTool2, located at http://inlet-media.de/flvtool2 is another

utility for FLV metadata. FLVTool2 is written in Ruby, and is thus

platform-agnostic. It may not be the fastest tool, but it does the job.

•	 FLVMDI is a Windows-based tool with a GUI that sets and shows FLV
metadata. The homepage at http://www.buraks.com/flvmdi has the
documentation and the downloads.

This is it. We can now go and build our own YouTube. Or whatever site we may
want to enhance with FLV streams.

[57]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.topfstedt.de/weblog/?page_id=208
http://yamdi.sourceforge.net
http://inlet-media.de/flvtool2
http://www.buraks.com/flvmdi

Downloads and Streams

Putting it All Together
As we have seen on the last pages, Lighttpd has a lot to offer for setting up a
download or streaming server. But we might be puzzled about how they relate to
each other, and how we can use them together for optimal benefit. Therefore, here is
a huge example configuration that has it all:

use all modules we need
server.modules = (...,
 "mod_rewrite", "mod_trigger_b4_dl", "mod_flv_streaming",
 "mod_evasive", "mod_extforward", "mod_secdownload", "mod_alias",
 "mod_accesslog", ...)

server.document-root = "/web/public"

use the rewrite trick

$HTTP["cookie"] =~ "download/([0-9a-f]){32}/([0-9a-f]){8}" {

 url.rewrite = ("/download/(.*)$" => "/download/%1/%2/$1")

} else {

 # rewrite to avert mod_secdownload

 url.rewrite = ("^/download/" => "/freeload/")

}

configure mod_secdownload

secdownload.secret = "foo bar qux!!!1one!eleven"

secdownload.document-root = server.document-root

secdownload.uri-prefix = "/download/"

secdownload.timeout = 120

configure mod_dirlisting

dir-listing.exclude = ("~$", "\.old$")

dir-listing.show-header = "enable"

dir-listing.hide-header-file = "enable"

dir-listing.external-css = "/css/dir.css"

or use a dir listing generator

(see chapter 3 for PHP configuration)

server.index_files = ("index.html", "/dirlisting.php")

$HTTP["url"] =~ "^/download/([0-9a-f]){32}/([0-9a-f]){8}/" {

 # paying customers, full speed

 server.backend = "posix-aio"

 server.kbytes-per-second = 0

 connection.kbytes-per-second = 0

[58]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

make it easy on the paying customer

 server.max-write-idle = 720

 # they pay, we trust

 extforward.forwarder = ("all" => "trust")

 dir-listing.activate = "enable"
 dir-listing.set-footer = "Thanks for trusting <a\

href=\"http://ourdomain.com\">ourdomain.com!"

 # finally, allow streaming

 flv-streaming.extensions = (".flv")

} else $HTTP["url"] =~ "^/freeload" {
 # also downloads, so use the best backend
 server.backend = "posix-aio"

 # re-redirect internally to circumvent mod_secdownload. We could
also use a different directory with symbolic links
 alias.url = ("/freeload" => "/download")

 # anonymous freeloaders, support by ads
 trigger-before-download.gdbm-filename = "/web/internal/ad_trigger.

db"
 trigger-before-download.trigger-url = "^/ads/"
 trigger-before-download.download-url = "^/download/"
 trigger-before-download.deny-url = "/no-ads-no-downloads.html"
 trigger-before-download.trigger-timeout = 5

 dir-listing.activate = "enable"
 dir-listing.set-footer = "Why not <a\

href=\"http://ourdomain.com/sign.html\">sign up?"

 # also traffic-shape, make it sloooow

 server.kbytes-per-second = 1024

 connection.kbytes-per-second = 32

 evasive.max-conns-per-ip = 2

 # and throttle keepalives to close sessions earlier

 server.max-keepalive-requests = 8

 server.max-keepalive-idle = 5

 # allow streaming anyway
 flv-streaming.extensions = (".flv")

}

[59]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Downloads and Streams

With this configuration, our Lighttpd is a true download server. Note that most of
this configuration has little or no side effects. So we can also use our Lighttpd for
other purposes in parallel. By the way, if you want to use the above configuration,
download the downloadserver.conf file from http://www.packtpub.com/files/
code/2103_Code.zip.

Summary
Lighttpd offers superb download performance as well as some unique
features to make it one of the best HTTP servers for download archives.
Using mod_flv_streaming, we can also stream flash movies directly; no
additional server required.

We can shape traffic, evade lechers and deep link, allow proxy servers, and use our
web application to authorize customers using mod_evasive, mod_trigger_b4_dl,
mod_extforward, and mod_secdownload. All of them give us terrific functionality
for a very small performance cost.

[60]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.packtpub.com/files/

Big Brother Lighttpd
Considering all the recent debate over privacy and data security, this chapter on
how to spy on our users might seem a little off-beat. Still, there are valid reasons for
wanting to know more about our users. And of course, Lighttpd can help us in our
quest for this knowledge. But to stay with the zeitgeist, first a few lines about
data protection.

Privacy
The early definition of privacy was "the right to be let alone". But since the late
nineties of the nineteenth century, a lot has changed. As we create a bigger and
bigger "data shadow" just by living normally, it becomes more about "the right to
claim ownership of data about oneself". And data is a very malleable concept
these days.

In short, we should take the means to try and keep the data about the site visitors
to the minimum, to ensure a working site. We need not even store personal data;
in most countries it is quite possible to match a person to an IP-address. Moreover,
we should not gather more information about our visitors than necessary to process
their requests.

But why, I hear some of you asking, shouldn't we gather the information? There
is nobody other than us to read it anyway. In general, this may be true, but where
I live, numerous illegal lists with personal data have made it into the news, while
companies which got broken into because of shoddy security had to pay out high
sums as compensation. Hackers are increasingly targeting sites to get access to the
customer database. So giving them nothing for their work is a winning proposition.

With that out of the way, let us take a look at how to learn more about our users to
enhance their experience.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Big Brother Lighttpd

O Browser, Where Art Thou?
Early methods to find out where users are resident involved a reverse DNS lookup
and use of the Top-Level-Domain (which in many but not all cases were country
domains) to find the country. These methods worked sometimes. They, however,
broke down when a visitor came from a.com, .org, .gov, .edu, .info domain or
any other non-country domain. Plus, some providers now use a .tv domain just for
the heck of it, placing all their customers in Tuvalu on our radar.

With mod_geoip, we can attach a Geo-IP-database to Lighttpd to find out where
our visitors are based directly from their IP address. This works much better and
does not need a DNS lookup (which is quite time-consuming, involving yet another
network call, with the likelihood of failure at times).

mod_geoip is not part of the standard distribution of Lighttpd. We have to
download and install it manually. If we use Lighttpd version 1.5, we have to get
the file http://trac.lighttpd.net/trac/attachment/wiki/Docs/ModGeoip/
mod_geoip.4.c; for earlier versions, get http://trac.lighttpd.net/trac/
attachment/wiki/Docs/ModGeoip/mod_geoip.5.c. Put this file in the src
directory of the unpacked Lighttpd source.

Also, we need the GeoIP C Api and a database. We can get both these from the GeoIP
database website. Regarding the database, we have to decide between a 570 kilobyte-
sized database containing only IP and country information, and a 17.2 megabyte
database that includes city information (both gzipped). Here is a list of links:

URL What
http://www.maxmind.com/download/geoip/ GeoIP Database, country
database/GeoIP.dat.gz information only
http://www.maxmind.com/download/geoip/ GeoIP Database, with city
database/GeoLiteCity.dat.gz information
http://www.maxmind.com/download/geoip/api/c/ The latest version of the C API
GeoIP.tar.gz

The C API needs to be compiled and installed, too. Unzip the GeoIP.tar.gz file and
perform the usual installation steps (the following command line example assumes
GeoIP version 1.4.5):

$ tar xzf GeoIP.tar.gz

$ cd GeoIP-1.4.5

$./configure && make && make install

checking for a BSD-compatible install... /usr/bin/install -c

checking whether build environment is sane... yes

checking whether make sets $(MAKE)... yes

... (more messages from configure and make omitted for brevity) ...

[62]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://trac.lighttpd.net/trac/attachment/wiki/Docs/ModGeoip/
http://trac.lighttpd.net/trac/
http://www.maxmind.com/download/geoip/
http://www.maxmind.com/download/geoip/
http://www.maxmind.com/download/geoip/api/c/

Chapter 5

We may also want to put the database into some directory, which will later be
included in our Lighttpd configuration, for example, /opt/geoip/. Do not forget to
gunzip the database file.

As the installation routine for mod_geoip is not included in the standard Lighttpd
source distribution, we need to add it to the automake definitions. This is done by
adding the following to src/Makefile.am at the end of the file:

lib_LTLIBRARIES += mod_geoip.la

mod_geoip_la_SOURCES = mod_geoip.c

mod_geoip_la_LDFLAGS = -module -E -avoid-version -no-undefined

mod_geoip_la_LIBADD = $(common_libadd) -lGeoIP

Then we need to go into the Lighttpd source directory and rebuild the configure
script. Finally, we can configure, compile, and install our Lighttpd. For the configure
script, we need to enable the maintainer mode, so automake will find mod_geoip.

$ aclocal && automake -a && autoconf

$./configure –enable-maintainer-mode

checking build system type... i686-pc-linux-gnu

checking host system type... i686-pc-linux-gnu

checking target system type... i686-pc-linux-gnu

checking for a BSD-compatible install... /usr/bin/install -c

checking whether build environment is sane... yes

... (more messages from configure omitted for brevity) ...

$ make && make install

cd . && /bin/sh /home/andre/lighttpd-1.4.19/missing --run autoheader

rm -f stamp-h1

touch config.h.in

cd . && /bin/sh ./config.status config.h

config.status: creating config.h

make all-recursive

... (a lot of messages from make omitted for brevity) ...

Now that we have installed mod_geoip, we can use it to resolve IP addresses into
location information, which is then placed in the environment. Add mod_geoip to
our server.modules and set the path to our database (mod_geoip will figure out
autonomously which type of database we feed it):

server.modules += ("mod_geoip")

geoip.db-filename = "/opt/geoip/GeoLiteCity.dat"

[63]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Big Brother Lighttpd

This should be enough to get some new request headers in our environment. The
whole configuration of mod_geoip is as follows:

Option Default / Example Description
geoip.db- "/opt/geoip/GeoIP.dat" The path to our GeoIP database file.
filename

geoip.memory- "disable" Enable to let mod_geoip cache the
cache database in memory for fast access

Configure mod_geoip and restart Lighttpd. The following request parameters will be
set based on the client IP address:

Header Key Example Description / Example
GEOIP_COUNTRY_CODE GB ISO 3166 country code (alpha-2)
GEOIP_COUNTRY_CODE3 GBR ISO 3166 country code (alpha-3)
GEOIP_COUNTRY_NAME United The complete country name

Kingdom
The following request parameters are set only if we use a city database:
GEOIP_CITY_NAME Alfreton The city where the server resides
GEOIP_CITY_POSTAL_CODE DE55 Postal code of the city
GEOIP_CITY_LATITUDE 53.1 Latitude of the location
GEOIP_CITY_LONG_LATITUDE -1.3833 Longitude of the location
GEOIP_CITY_DMA_CODE DMA code (where applicable)

GEOIP_CITY_AREA_CODE Area code (where applicable)

For more information on the ISO 3166 country codes, see the discussion at
http://en.wikipedia.org/wiki/ISO_3166-1.

As of Lighttpd version 1.5, the configuration is in the global scope, otherwise,
Lighttpd may hang. Also the request parameters registered by mod_geoip cannot be
used in configuration selectors. However, we can use a mod_magnet script or a CGI
backend program to make use of the information. For example, here is a mod_magnet
script that redirects based on country code:

-- redir-country.lua mod_magnet script

-- redirect-by-country, default to "us"

local countryCode = string.lower(

 lighty.env("GEOIP_COUNTRY_CODE") or "us")

lighty.header["Location"] = string.gsub(

 lighty.env["request.uri"] or "",

"^(www%.)?", countryCode .. ".")

return 302

[64]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://en.wikipedia.org/wiki/ISO_3166-1

Chapter 5

Note that this magnet script should only attract connections to ourdomain.com or
www.ourdomain.com. This can be ensured by placing the attractor in a selector
on host:

server.modules = (..., "mod_magnet", ...) # add mod_magnet

match only ourdomain.com and www.ourdomain.com
$HTTP["host"] =~ "^(www\.)?ourdomain.com" {
 magnet.attract-raw-url-to = "/www/magnetscripts/redir-country.lua"

} else $HTTP["host"] =~ "(\w\w)\.ourdomain.com" {
 url.rewrite = ("^(.*)$" => "/%1/$1")

}

The else part is mapping the country-code domains to subdirectories of the
document root. Now all we have to do is create the directories for each country code
containing everything we want. Alternatively, we could use a web application to
match the country codes to languages.

Access Logging
We can configure logging to include more or less information. By default, Lighttpd
uses the Common Log Format (CLF) as used by most available HTTP servers with
varying extensions. However, the access logging is completely configurable.

If we do not care about logging, or, we are really strapped for disk space
(for example, on embedded systems) we can turn it off entirely by removing
mod_accesslog from our server.modules (on embedded systems we would go
one step further and remove mod_accesslog entirely). Otherwise, we can configure
logging to strike a balance between space and use privacy requirements on one hand,
and our interest in the data on the other hand.

The access.log file follows a format laid out in the accesslog.format
configuration option. The contents of this option are included as plain text on each
line, but only for entries starting with a percent sign. These entries are placeholders
for information about the logged event. Here is a list of these placeholders:

Placeholder Example Value Description
%A ourdomain.com Our server's address
%a 127.0.0.1 The client's IP address
%B, %b 12756 Bytes sent for the body
%f /var/www/index.html The physical filename sent
%H HTTP/1.1 HTTP protocol version

[65]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http:www.ourdomain.com

Big Brother Lighttpd

Placeholder Example Value Description
%h otherdomain.com Client domain name (or IP address if DNS

lookup failed)
%I 635 Number of bytes used for the request
%{name}i /index.html The request header with the name given in

curly braces. Example: %{Referer}i
%m GET The request method (GET, POST, and

so on.)
%O 13242 Number of bytes sent for the whole

response (headers + body)
%{name}o 12756 The response header with the name given in

curly braces. Example: %{Content-Length}o
%p 80 The port on which the request was received
%q lang=en The query string (GET parameters)
%r GET /index.html HTTP/1.1 The request line (method, URI, protocol)
%s, %>s, %<s 200 The returned status code (other notations for

Apache compatibility)
%T 2 Time in seconds used for the request
%t 11/Jan/2008:11:11:11 +0100 A time stamp for the request
%U /index.html The requested URI
%u andre The authenticated user or "-" if the user is

not authenticated
%V sub.ourdomain.com Host name of the request
%v ourdomain.com Host name of our Lighttpd (server.name)
%X + A "+" for keep-alive requests, else "-"
%% % Adds a percent sign

The default for accesslog.format is "%h %l %u %t \"%r\" %>s %b
\"%{Referer}i\" \"%{User-Agent}i\"" in compliance with the CLF. The other
configuration options of mod_accesslog allow us to use a syslog daemon for logging
or specifying an alternative file path for the access log:

either

accesslog.use-syslog = "enable"

or

accesslog.filename = "/var/log/lighttpd.log"

[66]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

Tracking Users
Many sites use unique cookies to track users. There are two use cases for them: first,
we may want to know how the users access our site "clickstream", second, we could
have a web application that uses the cookies as a key into an internal session table.

Never use cookies as a single session key
If we use cookies as session keys, we should always add a check for the
client IP address before permitting session access. Otherwise, our site
could allow session-stealing attacks, even if the cookies are hard to guess.

The idiom is so common that Lighttpd has grown a module to do it.The
mod_usertrack module does nothing but set a cookie so that we can track the
users through multiple connections. A sample mod_usertrack configuration
snippet is here:

server.modules += ("mod_usertrack")

usertrack.cookie-domain = "ourdomain.com"

usertrack.cookie-max-age = 3600 # make the cookie last an hour

usertrack.cookie-name = "ourid"

This sets the cookie-domain to our domain, makes the cookies last an hour, and gives
the cookie a name of "ourid". Note that all settings can be used within selectors (to
limit the reach of the cookie, for example, excluding images).

The following table of settings will explain why we should use all three settings if we
employ mod_usertrack to set session cookies:

Option	 Description
usertrack.cookie-domain	 This is the domain of the cookie; so the client will send it back

only to the servers with this domain. That is why it should be
equal to our domain, or we cannot read the cookie. Worse,
other servers would also be able to read our cookie.

usertrack.cookie-max-age 	 If this is not set, the cookies will never expire. This may even be
desirable from our point of view, but may alienate some of our
users.

usertrack.cookie-name	 The name of the cookie defaults to TRACKID. This will be
visible to the users who care, so we should use an innocent
sounding name. Older Lighttpd versions use usertrack.
cookie-name instead, which is deprecated in Lighttpd 1.4.

The cookie generated by mod_usertrack is an MD5 hash of the URI path, the current
time, and a random number.

[67]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Big Brother Lighttpd

Two reasons for letting our cookies expire
First, if we use the cookie as a session key, expiring the cookie will expire
the session and enhance security (note that a new cookie will be given
to the user). Second, some users see their privacy invaded by permanent
cookies, and will delete them or even disable them altogether.

Needless to say, we can use the cookie in selectors, mod_magnet scripts and
CGI / SCGI / FastCGI applications. The use of selectors will usually be limited to
the absence of our cookie, as in the following example:

server.modules = (..., "mod_rewrite", ..., "mod_usertrack", ...)

usertracking as above

$HTTP["cookie"] !~ "ourid=" {

 url.redirect = ("" => "/nocookie.html")

}

The user gets redirected to nocookie.html if no cookie is returned. In conjunction
with mod_usertrack, the redirect will only be shown to users that disable cookies for
our site.

Note that since the cookie is completely random, and even in a hashed form contains
no information about the client IP address or other characteristics, most people
will not object to this anonymized use of the data, as long as there is no sensitive
information in the URIs and their IP addresses are not stored on our server after the
expiry of a session (that is, set our accesslog.format to exclude "%h").

Still, there is one small problem in using the access log files for clickstream analysis.
Lighttpd does not support logging cookies yet. To solve this, we have two options:
first, there is a patch against Lighttpd version 1.5.0 that allows logging cookies with
"%{cookie-name}C" in the log pattern. Second, we could use mod_setenv to add the
cookie value to the environment before logging, so we can get the value from there.

To enable cookie logging in Lighttpd 1.5.0, we need to download the patch from
http://trac.lighttpd.net/trac/raw-attachment/ticket/1145/cookie.log.
patch.txt, and save it in the base path of our Lighttpd source directory. Then we
can apply the patch with the following command line:

$ patch -p0 < cookie.log.patch.txt

patching file src/mod_accesslog.c

patch unexpectedly ends in middle of line

Hunk #3 succeeded at 881 with fuzz 1.

[68]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://trac.lighttpd.net/trac/raw-attachment/ticket/1145/cookie.log

Chapter 5

Now recompile our Lighttpd and change the accesslog.format to include "%C". An
explanation of the mod_accesslog configuration is given above. For example, we
could add the following line to our configuration:

server.modules = ("mod_accesslog", ...)

remove %h (client IP) from log
add %{ourid}C to get ourid-cookie-value instead
accesslog.format = "%{ourid}C %l %u %t \"%r\" %>s %b \"%{Referer}i\"
\"%{User-Agent}i\""

The second option does not involve recompiling Lighttpd. We use mod_setenv to
put the cookie value into the environment and configure mod_accesslog to use the
environment value instead of the client IP:

server.modules = ("mod_setenv", "mod_accesslog", ...)

$HTTP["cookie"] =~ "ourid=(.{32})" {
 # the above should match our MD5 hash. Now put it into
 # the request
 setenv.add-request-header = ("ourid" => "%1")

}
uncomment the following lines if you want to use the
client IP address if cookies are disabled.
else $HTTP["remoteip"] =~ "(.*)" {
setenv.add-request-header = ("ourid" => "%1")
#}

remove %h (client IP) from log
add %{ourid}i to get ourid-cookie-value instead
accesslog.format = "%{ourid}i %l %u %t \"%r\" %>s %b \"%{Referer}i\"
\"%{User-Agent}i\""

The second method has the advantage of working without a recompile; however,
it uses one additional (but small) module. If we are already using mod_setenv (for
example, to set response headers), we can put it to another use through this method.
If not, we may have to decide if we want to invest about half a kilobyte or recompile
our Lighttpd.

No matter which way we choose, we should certainly set up our logging to include
the mod_usertrack cookie instead of client IP, if we are serious about clickstream
analysis or the privacy of our users.

[69]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Big Brother Lighttpd

Clickstream Analysis: Client IP address vs. Cookies
There is an ongoing discussion whether to use the client IP address or a
unique cookie to distinguish unique visitors. Both methods have their
upsides and downsides. Client IP addresses may be the same for different
visitors (for example, two visitors being behind the same proxy), while
cookies may be deactivated by the client. However, if we respect the
visitors of our site, we should also respect their privacy.

Other Data Points
By default, a web server gets some data from the client in exchange for its services.
The usual HTTP requests come with some headers that are usually not in use, but
can give us information about the users. Here is a table of possible interesting HTTP
GET headers:

Header Name Example Value Description
Accept */*, text/html A list of MIME types the client will

accept for a request
Accept-Charset utf-8,iso-8859-1 A list of character sets and encodings
Accept-Encoding *, gzip, compress (mostly compression) that the client

will accept
Accept-Language en-us, en-gb;q=0.2, en A list of acceptable languages; we

could use this as an alternative or in
conjunction with mod_geoip

Referer http://ourdomain.com/ The site from which the client was
directed to the requested site

User-Agent Mozilla/4.0 (compatible; A String containing information about
MSIE 6.0; Windows NT 5.0) the browser used

We can add any of these header values to our access log by adding "%{header­
name}i" to the accesslog.format option (where the header-name is one of the
above header names). Note that only the Referer and the User-Agent header can be
used in a selector (refer to Chapter 2 for an example). All request headers can be used
from mod_magnet or any of the *CGI backends.

The Referer header is not sent by all browsers, and those that send it tend to do it
only if the Referer is from our site (for example, set it when loading images, CSS,
and so on to an already loaded HTML page, otherwise omit it entirely).

[70]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

The User-Agent string can be used to distinguish between different browser brands,
but be warned that some browsers try to pass for other brands, because in the early
days of the Web, a group of less-than-clever website operators had the stunning
idea to allow access to their sites only through one brand of browsers. Luckily, most
operators have found out now that this is a bad idea, but the legacy lives on in some
browsers (notably Opera).

Summary
We can learn more about our users, and use this information to personalize our site
without gathering too much information or using it in an irresponsible manner.

mod_geoip will enable us to assume a user's location. This can be used to present
a country-specific site, maybe even translated to the user's presumed language. Of
course we should use this only as a default setting and allow our users to override
this; otherwise we will invariably end up angering some of them.

Also the module could be used to block specific content for some countries, for
example, to comply with national takedown notices.

mod_accesslog can be configured to put the information we want into the access.
log while keeping the information we don't want from clogging our disk space.

mod_usertrack allows us to set unique random cookies in an easy standardized
way. While we don't have to care about the content of the cookies any more, we
should still use them with care, to avoid opening security holes or enraging our
privacy-aware users. Patching mod_accesslog, or rewriting the query to include the
cookie information allows us to log the cookie to enable the clickstream analysis.

Finally, the HTTP protocol gives us some information on our clients. While the
utility of this information is mostly limited to statistics, we might use some of it in
conjunction with the other methods.

[71]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Encryption: SSL
In this chapter, we will learn:

• How to create a self-assigned key
• How to set keys for certificate authority
• How to obtain keys from other suppliers
• How to configure Lighttpd to use SSL

For many applications, you may want to secure the user—web-server transport
from eavesdropping and tampering. To solve this problem, the Secure Socket Layer
(SSL) was created as a transparent layer between the TCP/IP transport and higher
protocols using streams. SSL provides authentication and encryption based on Public
Key Cryptography.

In short, Public Key Cryptography works with two keys on each side—one for
encryption and authentication, which is called a certificate or public key, and the
other for decryption and signing, which is called a private key. The public key can
be published freely, while the private key has to be kept—well, private. For a more
detailed discussion, read:

Introduction to Public Key Cryptography from Sun Microsystems at
http://docs.sun.com/source/816-6154-10/ or RSA crypto FAQ at
http://www.rsa.com/rsalabs/node.asp?id=2152.

We will not discuss signing here as Lighttpd uses SSL only for encryption and is
rarely used anyway. The client will ask the server for its certificate, while giving
the server its own. The server can then encrypt the communication with the client's
certificate, while the client will encrypt with the certificate of the server. Both use
their respective private keys to decrypt the messages.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://docs.sun.com/source/816-6154-10/
http://www.rsa.com/rsalabs/node.asp?id=2152

Encryption: SSL

Keep your private key under tight security, or an attacker will decrypt the
client's requests, possibly revealing sensitive information.

Before we can enable SSL in Lighttpd, we need to generate a key pair, or obtain it in
some other way. Assuming that we use OpenSSL, we can use the following examples
(tested with version 0.98d).

Let's go through the methods, which range from simple to extensive.

Self-Signed Keys
The easiest method for key pair creation is to create a self-signed key. This key is
self-signed because no other authority guarantees its authenticity. For testing
purposes, it is sufficient to create one that works for 30 days using the
following command:

 openssl req -new -x509 -keyout server.pem -out server.pem -nodes

This command will ask some questions. If you want to use the default, just press
enter. If you want to leave them blank, you can enter a period. However, the
certificate may then be deemed invalid by some clients.

Country Name (2 letter code) [AU]: UK
State or Province Name (full name) [Some-State]: .
Locality Name (eg, city) []: London
Organization Name (eg, company) [Internet Widgits Pty Ltd]: Packt Publishing
Organizational Unit Name (eg, section) []: .
Common Name (eg, YOUR name) []: www.packtpub.com
Email Address []: admin@packtpub.com

Enter country name, city name, organization name and email address. For the
common name, enter your server address. The common name will be the full domain
name of our server, for example, somedomain.org or other.domain.com.

To use the certificate for a multitude of subdomains, you may use * as
wildcard, for example, *.mydomain.net

After we have answered all the questions, OpenSSL will create a file named
server.pem which you should store with minimal permissions. Usually, we want
to put this file in the same directory where we keep the lighttpd.conf file. The
encryption file will be secure as long as we keep the file secure, but most browsers on
the market will still mark our site as potentially insecure. There is no way to find out
if the key really belongs to our server.

[74]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

mailto:admin@packtpub.com
http:other.domain.com

Chapter 6

We can use this key pair to test out SSL with your Lighttpd. If we do not care about
the warnings that browsers emit when loading a page using this key pair, we can use
such a key even in production. However, we may want to give it a longer expiry by
adding -days n (where n is the number of days the key pair is valid, for example,
365 for a year) to the command line.

If a certificate expires, most browsers will give a warning. To renew a certificate and
suppress the warning, simply create a new key pair exactly as described earlier.

Being our own Certificate Authority
If we do not want all browsers to worry users with a warning, but we know that our
users will trust us enough to install a certificate, it is possible to become our own
Certificate Authority (CA) using OpenSSL. This is only a little more work than using
a self-signed certificate.

OpenSSL includes a demo-CA, but we need to set up a few things to use it. First,
go into a clean directory (possibly create it before). Now, create a directory called
"demoCA". Then, create a file with the name of "serial" with the string "01" (that is
zero-one) in it, plus an empty file called index.txt. The following commands will
do this on the usual POSIX-compatible system:

> mkdir demoCA
> cd demoCA
> mkdir private newcerts
> touch index.txt
> echo 01 > serial

Now, set up a key for the CA, similar to the self-signed key described earlier, but with
the CA-extensions. OpenSSL will prompt for a password to secure your CA; enter it
twice. Then, it will ask the same questions as it does for the self-signed key. Do not
leave any field other than the organizational unit empty, or we will run into errors
later. Enter the name of your personal CA into the Common Name field. For this
example, I base my CA in Munich, Germany, as I happen to sit in a train from there
while I write this. You will of course want to base your CA where you happen to be.

> openssl req -new -x509 -extensions v3_ca -keyout private/cakey.pem
-out cacert.pem -days 365

Generating a 1024 bit RSA private key

.......................++++++

.........++++++

writing new private key to 'private/cakey.pem'

[75]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Encryption: SSL

Enter PEM pass phrase: [enter the password here silently]

Verifying - Enter PEM pass phrase: [enter the same password again]

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:de

State or Province Name (full name) [Some-State]:Bavaria

Locality Name (eg, city) []:Munich

Organization Name (eg, company) [Internet Widgits Pty Ltd]:MuniCA

Organizational Unit Name (eg, section) []:.

Common Name (eg, YOUR name) []:MuniCA Certificate Authority

Email Address []:test@munica.de

The CA key has been created. Now, go up one directory and create a request with
the same data as you would for a self-signed key. OpenSSL will ask the usual
questions again. When it comes to the Common Name, this time enter the hostname
of our server. The optional fields can safely be left empty. However, all other fields
must be set, or we will run into errors later.

For our example, we will request a signed key pair for the domain, lighttpd.
packtpub.com. Note that the country code must be the same as that of our CA key
pair. However, the country code does not need to correspond to our top-level-domain.

> cd..

> openssl req -new -nodes -out req.pem

Generating a 1024 bit RSA private key

....++++++

[76]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

mailto:[]:test@munica.de
http:packtpub.com

Chapter 6

...............................++++++

writing new private key to 'privkey.pem'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:de

State or Province Name (full name) [Some-State]:Bavaria

Locality Name (eg, city) []:Munich

Organization Name (eg, company) [Internet Widgits Pty Ltd]:MuniCA

Organizational Unit Name (eg, section) []:Lighttpd Testing

Common Name (eg, YOUR name) []:lighttpd.packtpub.com

Email Address []:lighttpd@packtpub.com

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

Now, we are ready to create a key pair and sign it as the CA in one step. Enter the
CA password to sign the certificate created with the data of the request.

> openssl ca -out cert.pem -infiles req.pem

Using configuration from /usr/ssl/openssl.cnf

[77]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

mailto:[]:lighttpd@packtpub.com

Encryption: SSL

Enter pass phrase for ./demoCA/private/cakey.pem: [enter the CA password here]

Check that the request matches the signature

Signature ok

Certificate Details:

 Serial Number: 1 (0x1)

 Validity

 Not Before: Jan 11 17:05:13 2007 GMT

 Not After : Jan 11 17:05:13 2008 GMT

 Subject:

 countryName = de

 stateOrProvinceName = Bavaria

 organizationName = MuniCA

 commonName = lighttpd.packtpub.com

 emailAddress = lighttpd@packtpub.com

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 Netscape Comment:

 OpenSSL Generated Certificate

 X509v3 Subject Key Identifier:

 4E:50:69:57:F0:F2:62:D9:A6:FE:ED:38:E0:1E:06:51:F8:4F:8A:E1

 X509v3 Authority Key Identifier:

 keyid:09:57:68:CB:F3:90:E1:05:88:8A:CD:8B:5C:BD:D4:F1:E2:6A:A7:11

Certificate is to be certified until Jan 11 17:05:13 2008 GMT (365 days)

Sign the certificate? [y/n]:y

[78]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

mailto:lighttpd@packtpub.com

Chapter 6

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

If all works well, we have two files now, cert.pem and privkey.pem. Just join them
to our server.pem (assuming our Lighttpd config directory is /etc/lighttpd):

> cat privkey.pem cert.pem > /etc/lighttpd/server.pem

We can use this key pair to run Lighttpd. All browsers will still warn us about an
unknown CA unless we install our CA certificate. So this key pair will be sufficient
for sites with restricted audience.

If we are running a commercial site, our customers will expect us to have a certificate
from a known authority.

Obtaining a Key Pair from a Third-Party
Supplier
Most commercial CAs will issue short-lived, cost-free certificates for testing
purposes. If you have a web browser, you can see the "usual" Certificate Authorities
by looking for certificates in the preferences.

With Firefox 2 or 3, click Tools | Options | Advanced | Encryption |View
Certificates | Authorities.

With Internet Explorer 7, you need to click Tools | Internet Options | Content |
Certificates | Trusted Root Certificate Authorities.

Certificates signed by these CAs will show up as secure in this browser. Note that
while all browsers appear to trust the biggest CAs, some smaller Authorities (for
example, StartCom, a company giving out free certificates) will show up only in
Firefox, Konqueror and Friends. If we know that most of our users browse our site
with one of these, go to https://cert.startcom.org/?app=101 and get a free
certificate from StartCom CA. Otherwise, we will need to spend the cash.

I will not recommend a commercial CA, as any recommendation will get outdated in
a few months, given the eventful nature of the Internet. A list of CAs can be found at
http://www.pki-page.org/.

[79]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

https://cert.startcom.org/?app=101
http://www.pki-page.org/

Encryption: SSL

To request a certificate from a CA, you do not need OpenSSL, as virtually all CAs
will have a web-based form to create the request automatically. Most CAs will give
detailed explanation on how to get a certificate from them.

Configuring Lighttpd to use SSL
The two configuration entries to use are ssl.engine and ssl.pemfile. To enable
SSL, set ssl.engine="enable"; to disable SSL, set ssl.engine="disable".

The ssl.pemfile should contain the path of your server.pem relative to the
configuration file. If we only want to serve HTTPS, we can simply change our
server.port and enable SSL:

server.port = 443 # standard HTTPS port

ssl.engine = "enable"

ssl.pemfile = "server.pem"

Usually we may want to serve HTTP and HTTPS, depending on how the client is
connected. Remember selectors from Chapter 2? We can put the following into
our configuration:

$SERVER["socket"] == ":443" {

ssl.engine = "enable"

ssl.pemfile = "server.pem"

}

Unless we use $SERVER["socket"] elsewhere, adding this snippet will allow all pages
to be requested via HTTP or HTTPS without changing their functionality.

Sometimes, we want to go one step further, and redirect all traffic to HTTPS for a
security-conscious subset of our site. We can do this using mod_redirect, which we
had discussed in Chapter 2. Here is an example that sets up redirection to HTTPS for
one subdomain:

$SERVER["socket"] == ":80" {
$HTTP["host"] == "subdomain.example.org" {

 url-redirect = ("/(.*)" => "https://subdomain.example.org/$1")
}

}

[80]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

"https://subdomain.example.org/$1"
http://www.allitebooks.org

Chapter 6

Put it into our configuration in addition to the previous snippet, and all traffic
for http://subdomain.example.org will automatically be redirected to
https://subdomain.example.org. If we want to do this for more than one
domain (let us assume they all start with "sec" for simplicity), we can use the percent
sign capture trick outlined in Chapter 2 as follows:

$SERVER["socket"] == ":80" {
$HTTP["url"] == "(sec.*)\.example\.org/.*" {

url-redirect = ("/(.*)" => "https://%1.example.org/$1")
}

}

Congratulations, our Lighttpd can now handle encrypted communication!

Summary
If we care about the security of our site, encrypting our traffic should be a no-brainer.
The configuration is quite simple. Use ssl.enable = "enable" to enable SSL, and
ssl.pemfile to point to our public or private key pair.

If we can afford to pay for a certificate, there are many options on the market, which
will provide optimal security and are trusted by most browsers (and, in effect, users).
Otherwise, a self-signed key pair created with openssl req is enough to encrypt
our traffic.

[81]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://subdomain.example.org
https://subdomain.example.org
"https://%1.example.org/$1"

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Securing Lighttpd
Until now, we have allowed any user or attacker to read any file below our
document-root without boundaries or surveillance. This may include calling our
web applications with any conceivable parameter, no matter how long or how
strange the characters may be. For many applications, we may want to know or even
restrict what users or attackers can do with our Lighttpd, and programs connected to
it.

Our goal as administrator is to keep the system running for the lawful users while
keeping out attackers as far as possible. The problem is our inability to distinguish
between attackers and lawful users, because attackers can use seemingly harmless
interactions, while lawful users may occasionally try something stupid.

Attackers will usually try to do one of the following three things:

• Access a resource in huge numbers to overwhelm the server
• Access a resource that they are not privileged to access
• Access a resource in a way that harms the application

To repel attackers, and to make it easier to distinguish them from lawful users, we
need to erect some fences.

Barriers to Entry
The simplest version of access control involves unconditionally denying access to
certain files. Lighttpd has mod_access, which defines a url.access-deny directive
that gets a list of patterns to look for. If one of these patterns match, Lighttpd will
give a 404 (File not Found) error instead of sending the file. Combined with our
trustworthy selectors, we can deny access to certain files, to certain remote addresses,
to certain browsers, to clients without a certain cookie, or to files not coming from a
certain referrer:

deny access to files with a "~" or ".bak" in the name

url.access-deny = ("~", ".bak")

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Securing Lighttpd

By the way, the reason for sending a 404 error is to keep the attacker in the dark if a
file that he or she might not access is there or not.

deny access to all files below a certain path
$HTTP["url"] =~ "/certain-path/" { url.access-deny = ("") }

deny access on all jpeg images to the Google bot

$HTTP["useragent"] =~ "Google" { url.access-deny = (".jpg") }

deny access by referrer

$HTTP["referrer"] !~ "^($|www.ourhost.com)" {

url.access-deny = ("")

}

If we want to allow access only to a group of users, we need authentication. This
is usually done by entering a username and password. Lighttpd has mod_auth to
implement this feature.

server.modules: Order matters
The order of server.modules is also the order in which the modules
handle the request. So it is necessary to include mod_auth before
including mod_cgi or mod_proxy. Otherwise, the request will already
be processed before access can be denied.

In the face of rewrites and redirects, mod_auth can be called more than once for
every request. While a redirect is done in the client, and an authentication may be
done before and after the redirect, a rewrite would require only one authentication
if mod_auth is included in server.modules before mod_rewrite. In this case, the
order is more a matter of taste, as it involves a trade-off between marginal speed
improvements and a double authentication which adds another security perimeter.

mod_auth implements two authentication methods: plain and digest. The difference
between the two is that with the former, the username and password are sent in
plain text, while with the latter method only a salted hash of the password is sent.

Despite sounding like something right out of a bakery, a hash is a value derived by a
"hash function" that takes in a stream of values and outputs a distinct value. So, the
chances of getting the same output for similar but not equal input is very low, and
there is also no chance to guess the input stream from the output value. Salting refers
to adding a "salt" value before the input to foil attacks that just replay the hash value
to login.

Note that the digest method (as of version 1.4.20) is slightly out of standard, as it still
allows a replay attack. The best bet for security is to authenticate only over HTTPS,
so that the username and password will not be sent unencrypted.

[84]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

Let us start with the most simple authentication method. We can use it as follows:

server.modules = (# ...after rewrites, and redirects.
"mod_auth", # ...before fastcgi, rrdtool, etc.

)

auth.backend = "plain"

auth.backend.plain.userfile = "/etc/lighttpd/lighttpd.users"

auth.require = ("/membersonly" =>

("method" => "basic",

"realm" => "Members only",

"require" => "valid-user")

)

This will require authentication before allowing access to everything below the
"members only" directory. The realm will usually show up in the authentication
dialog browsers display. The "require" option can also contain a vertical-bar­
separated list of users such as "user=me|user=you".

To hold the users and passwords, we create a user file in /etc/lighttpd/
lighttpd.users with each line containing a username and password, separated
by a colon. Empty lines are not allowed. Such a file would look like this:

me:secret

you:password

andre:bogus

Surely no one would use passwords this weak! Anyway, we can define multiple user
files for different areas using selectors:

auth.backend = "plain"
$HTTP["host"] == "staff.mydomain.net" {

auth.backend.plain.userfile = "/etc/lighttpd/staff.users"

auth.require = ("/" =>

("method" => "basic",
 "realm" => "Staff only",
 "require" => "valid-user")

)

} else $HTTP["host"] == "members.mydomain.net" {

auth.backend.plain.userfile = "/etc/lighttpd/members.users"

auth.require = ("/" =>

("method" => "basic",

 "realm" => "Members only",

 "require" => "valid-user")

)

}

This example would require a staff and a member user file like the one we
created earlier.

[85]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Securing Lighttpd

The drawback of plain authentication, besides the clear-text sending of passwords, is
that anyone with access to the users file can read them in the clear. To make it a little
bit harder to obtain passwords this way, we can use digest authentication. Lighttpd
implements two hash functions for this method, namely UNIX crypt and MD5.
The former maintains userfile compatibility with Apache (and its htpasswd tool),
but is cryptographically weak. The latter is much stronger, at the cost of using a
different format.

To use the crypt function, we just change the auth block to:

auth.backend = "htpasswd"

auth.backend.htpasswd.userfile = "/etc/lighttpd/htpasswd.user"

auth.require = ("/" =>
("method" => "digest,

 "realm" => "Members only",

 "require" => "valid-user")

)

Now, our /etc/lighttpd/htpasswd.user file needs to contain the username and
crypted password, for example:

me:fSINkGlMuEWKs

you:R2Xj0BGOvqQyc

andre:cBWFgkg0nbDGk

To create such a file, use either the Apache htpasswd tool or the following bash script
(presuming our system has a UNIX crypt utility):

#!/bin/bash

htpasswd.sh – create a htpasswd entry

usage: htpasswd.sh [username] [password]

echo $1:$(crypt $2)

Alternatively, the htdigest backend will do MD5 hashing for us. Just change the first
two lines of our previous configuration snippet:

auth.backend = "htdigest"

auth.backend.htdigest.userfile = "/etc/lighttpd/htdigest.user"

The MD5'd htdigest.user file needs to contain the realm and would look like this:

me:Members only:dc97b661b50d882cea7a3d9041a4651a

you:Members only:5bb0ccec87fafcdd5400dd2e075986eb

andre:Members only:817a7c2ec1700c70f8421ca34d94e0d7

[86]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

To create this file, use the Apache htdigest tool or the following bash script:

#!/bin/bash

htdigest.sh – create a htdigest entry

usage: htdigest.sh [username] [realm] [password]

echo $1:$2:$(echo $1:$2:$3 | md5sum | cut -b -32)

If md5sum is not available on our system, here is an alternative python
implementation that runs without it:

#!/usr/bin/python

htdigest.py [user] [realm] [password]

import sys, md5

a = sys.argv

print a[1] + ":" + a[2] + ":" + md5.new(a[1] + a[2] + a[3]).

hexdigest()

mod_auth also allows authenticating against an LDAP directory. LDAP means
Lightweight Directory Access Protocol and these directories are used as a phone
and address book and may allow authentication against a single source to all
applications that use LDAP. This method is recommended if you already have a
LDAP directory set up or if you have a large number of users. In the latter case, there
are many free and commercial offerings, notably OpenLDAP from
http://openldap.org and from http://www.sun.com/software/products/
directory_srvr_ee/get.jsp the Sun Java System Directory Server (formerly
iPlanet).

To connect Lighttpd to such an LDAP server, we configure mod_auth as such:

auth.backend.ldap.hostname = "localhost" # or wherever our LDAP is
auth.backend.ldap.base-dn = "dc=my-domain,dc=com"
auth.backend.ldap.filter = "(uid=$)"

optional use TLS (needs a CA certificate, see Chapter 4)

auth.backend.ldap.starttls = "enable"

auth.backend.ldap.ca-file = "/etc/lighttpd/CAcert.pem"

This will make Lighttpd try to bind and authenticate against the directory every time
HTTP authentication is required.

If we do not want to use HTTP authentication, we can use a mod_fastcgi authorizer
or a cookie-based authentication. The advice of encrypting the authentication session
using HTTPS applies here as well.

[87]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://openldap.org
http://www.sun.com/software/products/

Securing Lighttpd

Evading Denial of Service Attacks
A Denial of Service attack (or short DoS) is an attack by which the server is
overwhelmed by requests until it exhausts one of the needed resources (like memory
or file handles) and stops responding.

This type of attack does not take special skills; any script kiddie can launch one.
However, Lighttpd is not easy to overwhelm, and we can make it even harder.

Before we try to evade them, we need to understand how DoS attacks are carried
out. The idea is simple: send as many requests as you can to a server. This means the
attacker can maximize the strength of the attacks by distributing the task of sending
packets. This is the reason many folks try to take over as many computers as possible
by sending out internet worms, creating a "bot-net" of lots of compromised machines.

To make things even worse, the attacker will swamp our Lighttpd with lots of
request packets containing bogus IP addresses. So our poor Lighttpd will try to send
out responses to other servers which are not even listening. This also means that we
cannot trace the attacker by the IP addresses of the requests.

Most DoS attacks do not target the HTTP server directly, but the underlying TCP
stack or the network layer of the operating system (for example, by sending "ping"
requests). This means Lighttpd's immunity against such attacks is limited by the
vulnerability of the host system network stack, which is another reason to choose a
POSIX-compatible operating system, as they tend to have solid network stacks.

The proliferation of high-profile sites such as http://slashdot.org means that
a lot of traffic can be induced just by spreading the word to the web server. A
"slashdotting" looks quite like a distributed DoS attack. In this case, the clients are
interested in our response, but there are so many of them that it is hard to keep up.

The term "slashdotting" is named after the website, http://slashdot.org. There
are many other sites now. So, if you have a good (or bad) day, your site can be
slashdotted, dugg and boingboinged at the same time!

More and more sites today are created dynamically. This allows for great flexibility,
but comes at a performance cost—every request has to be touched by Lighttpd, our
CGI, SCGI or FastCGI program, and the database we use. This takes away CPU time,
memory, file handles and probably some other valuable system resources. So the
first thing to do in order to survive a massive number of requests is to mirror the
most-requested content and route the traffic to the static mirror instead. We might
even get away with doing this dynamically if we cache dynamically generated
content. The cache will keep the most wanted sites, and our CGI or database will not
be touched.

[88]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://slashdot.org
http://slashdot.org

Chapter 7

However, to control caching, we can use mod_magnet as of version 1.4.12. This is a
Lighttpd module that wraps Lua, a powerful but small scripting language, thereby
adding the capacity to change the request and response parameters or even generate
the response directly in the Lighttpd process. We will learn more about it in Chapter
12, but here is a small example to whet your appetite:

-- let us assume that our application writes temporary files
-- into /var/tmp/lighttpd-cache
local p = "/var/tmp/lighttpd-cache/" .. lighty.env["physical.path"]
if lighty.stat(p) ~= nil then

output_include = { { filename = p } }

return 200

else

return lighty.RESTART_REQUEST

end

We could put this in a file named "cache.lua" next to our configuration, to which
we add the following:

server.modules = (#...after auth, access, rewrites and redirects,
"mod_magnet",
... but before the CGI and logging modules

)

magnet.attract-physical-path-to = "cache.lua"

We can also limit the caching with selectors:

$HTTP["url"] =~ "cgi-bin/" { # only cache the cgi-bin path

magnet.attract-physical-path-to = "cache.lua"

}

The next thing we can do is to limit the number of connections, which as of Lighttpd
1.5.0 can be done with mod_evasive. The configuration for mod_evasive has only
one setting:

evasive.max-conns-per-ip = 4 	 # allows only four concurrent
connections for one IP

For a distributed Denial of Service from an attacker, this will probably not help due
to IP spoofing, but it might help survive a slashdotting.

[89]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Securing Lighttpd

Probably the best weapon against a DoS attack with IP spoofing is the configuration
option, server.max_write_idle. This option controls how long Lighttpd will
try sending out packets if the client is not taking them. The standard value of 360
seconds is way too high in case of a DoS attack. Turning it down to 60 or even 30
seconds will make Lighttpd drop slow connections, but also drop faked connections
faster. Depending on our site and requirements, a higher or lower value may work
better.

Another knob to turn is HTTP keepalive—a feature of HTTP wherein a connection
is left open over a series of requests to save the hassle of re-establishing a connection
for each new request. The rub is that keepalive improves performance especially
if your content is spread over many files, while simultaneously increasing the risk
of our Lighttpd maxing out file descriptors. This is because Lighttpd needs a file
descriptor for every open connection. If we use CGI or FastCGI, we actually need
two, and if we use a database, we might even need three. But this problem has been
ameliorated with mod_magnet.

Experience has shown that the default values (keepalive for 16 requests, allow idling
up to 30 seconds) are quite good for a majority of applications. Again, the problem
lies in idling. So, turning down the server.max-keep-alive-idle option to 5 or 10
seconds will improve our chances of survival, because file descriptors are recovered
quickly. However, this measure increases the chance of closed slow connections. So
we should turn this option up again once the attack has waned.

An attacker might try to put a lot of POST requests of ridiculous sizes on your
Lighttpd. We can counter this attack by limiting the size of POST requests with the
server.max-request-size option. Again, we can use selectors to limit the reach
of this option—for example, we can have a site for bigger uploads only for
authorized users:

server.max-request-size = 64 # limit requests to 64k
$HTTP["url"] =~ "/member-area/member-upload.html" {

server.max-request-size = 524288 # limit requests to 512MB

}

The last resource we have to care for is the disk space. An attacker has two ways of
filling our disks, through uploaded data or log files. Uploading data requires a web
application that can limit the amount of data by IP address and globally. For log files,
a responsible administrator will use log rotation and put older logs at another place,
compress them or delete them entirely. On BSD, the newsyslog utility performs a
similar task.

[90]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

Setting up Logrotate
The original logrotate apparently comes from RedHat, but there are replacements for
almost any system. Most UNIX systems will have packages. Once we have installed
it, we need a configuration file (which will usually go into /etc/logrotate.d/, refer
to the logrotate manual pages) with something akin to the following:

assuming logs go to /var/log/lighttpd,
match access.log and error.log
"/var/log/lighttpd/*.log" {
 daily # rotate at least once per day
 size 10M # rotate if logfiles grow larger than 10 megabytes
 missingok # if there is no logfile, that is fine.
 copytruncate # truncate the logfile and copying instead of moving
 rotate 7 # keep logfiles for 7 days

 mail me@my.org # mail logfiles to me before they get overwritten
 # alternatively specify "nomail"

 compress # grip-compress logfiles to save space
 notifempty # do not rotate empty logfiles
 sharedscripts # call script below once per run
 postrotate # line below called after logs have been rotated
 /etc/init.d/lighttpd reload

 # should give a SIGHUP to Lighttpd
 endscript # this ends the postrotate section

}

The comments (beginning with "#") should explain our example. The me@my.org
mail address is hopefully somewhere secure. We can then start logrotate by hand,
which is great for debugging when adding -d to go into debug mode and -f
to force rotation:

logrotate -d -f

Usually a cron job is automatically added by installation. Check the output of
crontab -l to ensure this.

Know Your Foe
A good administrator has ways to learn what people do with the system. The
primary source of information is the access log, which mod_accesslog will write
out. Additionally, Lighttpd writes error logs. These are of special interest, because an
attacker will try to provoke errors in order to create system states that circumvent the
usual restrictions.

[91]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

mailto:me@my.org
mailto:me@my.org

Securing Lighttpd

There are many tools that visualize, filter, correlate or otherwise mangle the log
entries that a web server emits. Luckily for us, Lighttpd writes it's logs in the
standard web server log file format. So tools written for Apache logs will happily
munch Lighttpd logs.

RRDtool
RRDtool is probably the easiest way to get a decent visualization of our Lighttpd
access logs. RRD stands for Round-Robin Database, which in this case means that
while new data enters the database, old data is discarded.

The neat thing about using RRDtool is that Lighttpd integrates the setup and the
data collecting stage with mod_rrdtool. There are only two things to do: install
RRDtool and get graphs out of it.

Installing RRDtool is quite easy. There are binary distributions for Windows (with or
without Cygwin), AIX, Debian, RedHat and even NetWare on the main download
site at http://oss.oetiker.ch/rrdtool/download.en.html. Other Linux
distributions have their own packages, for MacOS X, darwinports has a version at
http://rrdtool.darwinports.com/.

Even if we do not find a suitable binary install, compiling on a POSIX-like system is
quite simple, given that we all have libraries that RRDtool depends on, such as zlib,
libpng, freetype, and libart_lgpl. Most Linux systems today have these. We
select a build and install the directory. Then we go there and start the compile:

$ VERSION = 1.2.17 # change this to match the version we want
$ BUILD_DIR=/tmp/rrdbuild
$ INSTALL_DIR=/usr/
$ mkdir -p $BUILD_DIR && cd $BUILD_DIR
$ # now copy your tar.gz or download, for example using wget:

 --12:34:56-- http://oss.oetiker.ch/rrdtool/pub/rrdtool-.tar.gz
 => 'rrdtool-.tar.gz'
 (... output of wget omitted ...)

$ tar xzf rrdtool-$VERSION.tar.gz
$ cd rrdtool-$VERSION
$./configure --prefix=$INSTALL_DIR && make && make install

After we have an installed RRDtool, we can set it up to work with our Lighttpd. To
do this, we include mod_rrdtool into our lighttpd.conf file:

server.modules += ("mod_rrdtool")

rrdtool.binary = "/usr/bin/rrdtool"

rrdtool.db-name = "/var/www/lighttpd.rrd"

[92]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://oss.oetiker.ch/rrdtool/download.en.html
http://rrdtool.darwinports.com/
http://oss.oetiker.ch/rrdtool/pub/rrdtool-.tar.gz

Chapter 7

Now, Lighttpd sets up a Round-Robin Database and fills it with request and traffic
data for us. The only thing we still need to do is to extract this data into graphs.
This can be done using the rrdtool-graph.sh script that comes with the Lighttpd
documentation. We just need to change the first three variables to suit our needs.

Starting this script will cause RRDtool to write out some PNG images
graphing traffic in bytes per second and requests per second, as shown in
the following images:

The first graph shows the requests per second while the next shows how
many bytes my Lighttpd has pumped out (as you can see, my test server is not
exactly overloaded).

[93]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Securing Lighttpd

The knowledge of requests and bytes per second allows us to adapt our Lighttpd
to the traffic we get. There are other free programs to visualize, parse, or otherwise
process the logs. Here is a short lineup:

•	 The webalizer can be downloaded from http://www.mrunix.net/
webalizer and has a large number of binary packages available from source.
Installation is a simple configure && make && make install. It does
not deal with the timing information and parses the whole logfile (or a
date-delimited part of it) to create a chart and a text table with statistics for
hits, views, sites, and so on. The webalizer requires the GD graphics library
(at http://www.boutell.com/gd), which in turn depends on libpng and
zlib, both of which are usually available.

•	 AWStats, another free log mining program written in PERL, so do not expect
binary packages. Apart from being run on the command line, it also has a
CGI mode (which we will test in Chapter 11). It creates very comprehensive
statistics. You can find it at http://awstats.sf.net.

•	 Under http://www.analog.cx, we can find Analog, which according to
the website is "the most popular logfile analyser in the world". It also creates
very extensive reports including traffic by date, browser, file types, files,
search queries, status codes, and more. Binary packages are provided for
a lot of systems.

We can process logs anywhere
Note that the three tools introduced earlier can be used as command
line programs. If we use log rotation, we can analyze the mailed log files
instead of the files on the server, thereby freeing our server from the
resulting load.

Now, we have enough tools at our disposal to see how crowded our server really is.
The more interesting thing to do, security-wise, is to look out for unusual patterns.
Unfortunately, a computer is bad at finding them, and visualizations often hide
important information about a request for the sake of a cleaner picture. Humans, on
the other hand, are quite good at spotting unusual things in a stream of information.
Therefore, a lot of administrators still regard plain old grep as the best log analysis
tool available, because it allows us to reduce the information by exclusion. A good
procedure is to first use an analyzer to look at the big picture, and then to use grep to
get to the details.

[94]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.mrunix.net/
http://www.boutell.com/gd
http://awstats.sf.net
http://www.analog.cx

Chapter 7

Grepping the Logs
grep is one of those utilities that come in handy in unexpected places. It can
filter a stream of lines (for example, server logs) for plain text patterns or regular
expressions. If we add -P to the command line, newer greps will use the same
regular expression syntax that Lighttpd uses for selectors, rewrite rules, and so on
(refer to Chapter 2). Otherwise, a reduced regular expression language may be used.
Check the documentation (for example, man page) of your grep version.

To see what we have to look for, we will just walk through a simple example. While
it may be interesting to know which files were served, the files which were not
served are quite an amusement, too. For example, we can search our log file (in this
case, we search /var/log/lighttpd/access.log) for file not found errors using
grep to filter, and less to view, as shown in the following command line:

grep ' 404 ' /var/log/lighttpd/access.log | less

Or, if we have gzipped our logfile (some systems also have a gzcat utility that does
the same as gunzip -c, namely writing the unpacked contents to standard output):

gunzip -c /var/log/lighttpd/access.log.1.gz | grep ' 404 ' | less

This shows a simple usage of grep with a pattern and a file. Note the spaces between
the apostrophes and the 404. Without them, we would get all requests which contain
the string "404".

grep is also available for Windows. Download it at
http://gnuwin32.sourceforge.net/packages/grep.htm.

If our server has run for a while, it will show the following lines (IP addresses
masked to protect the guilty and my server):

4?.??.??.?? ??.??.??.?2 - [15/Jan/2008:21:23:43 +0100] "GET /phpchat//chat/messagesL.
php3 HTTP/1.1" 404 345 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"

2?.??.??.??? ??.??.??.?2 - [17/Jan/2008:21:27:24 +0100] "GET /phpmyadmin/read_
dump.phpmain.php HTTP/1.0" 404 345 "-" "-"

6?.??.???.? ??.??.??.?2 - [20/Feb/2008:22:09:44 +0100] "GET //blogs/xmlrpc.php
HTTP/1.1" 404 345 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"

1??.??.???.?? ??.??.??.?2 - [31/Mar/2008:21:55:52 +0100] "GET /cacti//graph_image.php
HTTP/1.1" 404 345 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"

[95]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://gnuwin32.sourceforge.net/packages/grep.htm

Securing Lighttpd

These are presumably script kiddies or automated hacking tools searching for
vulnerable applications—at least I have none of these applications running. Other
lines might contain spelling mistakes. Other interesting status codes include 403, 413,
500, and 502. A list of HTTP status codes is in Appendix A.

Apart from -P, most grep versions allow the following parameters:

Parameter Description
-r Recurse into subdirectories, as in grep -r stupid_variable code/
-i Match case insensitivity
-m [number] Match up to [number] lines
-n Prefix matches by line number
-v Inverts match; shows all lines that do not match the pattern
-o Outputs only the matching part instead of the whole line
-e Uses extended regular expressions for matching (though newer versions

of grep no longer make any difference)

Invocations of grep can be chained by pipes (with "|", see above) to construct
multiple-stage filters. For anything more sophisticated, pulling the logs into a
database and using specialized data mining tools is probably the way to go.

The error log can also say some interesting things to us, depending on the log level.
Most errors of web applications will end up here. Each error log line consists of a
timestamp (as in "2008-06-11 16:43:40:"), the source file and a line in parenthesis
(like mod_fastcgi.c.2592 for errors in CGI scripts served through FastCGI) and the
actual error message. Messages in connections.c correspond to erroneous HTTP(S)
requests. If they do not arrive in bulk, they usually do not cause any problem.
Messages from log.c tell us when the server was stopped, started or reconfigured. A
usual error log may have one of the following typical messages:

2008-02-21 18:12:53: (log.c.75) server started

2008-02-21 18:12:56: (mod_fastcgi.c.2570) FastCGI-stderr: ./index.cgi:syntax error [...]

2008-02-24 02:56:28: (request.c.535) no uri specified -> 400

2008-02-27 16:51:55: (connections.c.279) SSL: 1 error:140780E5:SSL routines:SSL23_
READ:ssl handshake failure

[96]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

Depending on whether you serve applications or large files, we may get other
log entries. We can specify the parts of the system that we want to log using the
following variables:

Configuration entry Description
debug.log-condition-cache- Logs condition cache handling internals for
handling debugging
debug.log-condition-handling Logs condition handling internals for debugging
debug.log-file-not-found Logs every 404 file not found error
debug.log-request-handling Logs request handling internals for debugging
debug.log-request-header Logs each request header
debug.log-request-header-on- Logs only those request headers that resulted in
error an error
debug.log-response-header Logs response headers
debug.log-state-handling Logs state handling internals for debugging
debug.log-timing Shows timing information, which is useful

for profiling

Summary
The Internet is an insecure space. Therefore we should keep an eye on our server—
the logs tell us what we need to know, if we know where to look. Sometimes it is nice
to have statistics. We can gather them easily with RRDtool and mod_rrdtool.

We can disallow access to certain areas of our site with mod_access, and mark out
private space where only authenticated users can roam with mod_auth. By design,
Lighttpd is quite capable of holding on in a Denial of Service or slashdotting. We
can harden it further against such "attacks" by changing timeouts and limiting
traffic, request sizes and HTTP sessions. Keeping an eye on our resource usage
always helps.

Remember that none of the above will help us if we deploy an insecure web
application through Lighttpd. The system is only as secure as its weakest part.

[97]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Containing Lighttpd
In this chapter, we will learn about:

•	 Mechanisms in Lighttpd that contain attack risks:

° Giving up privileges

° Changing roots

• Techniques to implement security

Securing Lighttpd against attacks is a good cause, but there may be attacks of the
types we are not even aware of. Under POSIX-like systems, Lighttpd has to run as
root, so that it can bind to port 80. This makes it a target worth attacking. Moreover,
Lighttpd presents an open interface to the network, so it is easy to try and subvert it.

Attackers will try the most unlikely things to get a system out of the defined states,
say, through huge requests with null characters and other niceties. I would not bet
my life on the non-existence of a certain request that makes Lighttpd open its doors
to an attacker. Therefore, it makes sense to contain the risk to Lighttpd.

Think of a car—it has break assistance, ESP and other "active security" to reduce the
likelihood of an accident. But it also has seat belts and airbags to reduce the harm in
case an accident happens anyway.

We can do the same with Lighttpd—secure it, so it will not be compromised. But we
also need to secure the system from Lighttpd, so that breaking Lighttpd does not
break our system.

Lighttpd implements two mechanisms to contain the risk of attack: giving up
privileges and changing root. The former method is quite simple and should offer
reasonable protection for a normal site. The latter method will restrict hackers to
access only the files needed for running Lighttpd, thus granting maximum security.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Containing Lighttpd

Note that neither method harms performance.

Giving up Privileges
I must admit that I lied a little when I told you that Lighttpd needs to run with
root privileges—the only thing requiring them is binding to Port 80. After binding,
Lighttpd can change the user, thus giving up privileges and making it a lesser target
for attack. The configuration is so simple that most installation packages enable it
by default:

server.username = "lighttpd"

server.groupname = "lighttpd"

This will make Lighttpd run as user lighttpd in the group lighttpd. The only thing we
have to care about is that all of the files we want to serve need to be accessible, and all
web applications we want to spawn need to be executable to this user or group.

It's so easy, that there is little reason not to do it. In fact, we may need to do
nothing at all, because most installations do it for us by default. Just look into our
lighttpd.conf file to see if the above statements, possibly with other user and
group name, are there and not commented out.

No user or group—no Lighttpd
Make sure that the user and group we want Lighttpd to assume exist
on our system. If not, add them with the groupadd and useradd,
respectively before running Lighttpd.

The only reason to keep Lighttpd running as root is that we may want to use
per-user directories without requiring the directories to be made readable by the
Lighttpd user. However, serving potentially compromised scripts as the root user is
a security disaster waiting to happen.

A far more radical approach of separating Lighttpd from the rest of the system is to
change the Lighttpd processes' root directory to chroot, as it is called in UNIX slang.
Note that chroot is only available on UNIX-like systems (this includes MacOS X and
cygwin, though I would not recommend running a production server on
the latter).

[100]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

Changing Root
The idea of changing root is that of running security-critical applications in a
minimal environment so that an attacker who manages to subvert the application
has limited access only to the chroot environment and can use only the tools that this
environment supplies.

As with all ideas to improve security, chrooting presents its own share of security
problems. If a user gains root privileges, she can break out of a chroot environment
by either remounting the file system or chdir() out of the chroot until the original
root is reached, and then chroot to this directory. So we should configure our
Lighttpd to give up root privileges in addition to changing root, and also be sure not
to have any User ID executable in our chroot environment.

Set User ID (SUID for short) is a method to run a process under a different user's
privileges. UNIX file systems allow setting up a SetUID flag on an executable
combined with a User ID. The program will be executed with the privileges of the
User whose User ID is set. This is useful for programs that need to run with higher
privileges (such as Lighttpd), but can be a terrible security issue, as an attacker who
subverts a SUID program can gain the privileges of the SUID user.

Keep your chroot environment's bin/ and lib/ directories non-writable
to any user other than the root user!
Or give me your keys, bank account number, and all of your belongings.J

Ironically, the biggest threat to chroot security comes from outside the environment.
If a user can modify the contents of the chroot environment, she could subvert the
environment's libraries to gain root privileges inside the chroot environment. Then
she could enter the chroot environment, use the root privileges to break out of the
chroot and have total control over the system!

Now that we are sufficiently warned, let's go and build our chroot environment.
First, we need a directory to put it. Let us name it lighttpd:

mkdir /lighttpd

cd /lighttpd

Next, we need to create subdirectories for logging in, temporary files, cache,
configuration, binary, libraries, and document root:

mkdir -p var/log/lighttpd
chown lighttpd:lighttpd var/log/lighttpd

mkdir tmp
chmod 1777 tmp

mkdir -p var/tmp/lighttpd/cache/compress

[101]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Containing Lighttpd

chown lighttpd:lighttpd var/tmp/lighttpd/cache/compress

mkdir -p etc/lighttpd

mkdir -p usr/sbin

mkdir -p usr/lib

mkdir -p docroot

chown lighttpd:lighttpd docroot

chmod 0700 docroot

Now, we have two options:

• To re-install Lighttpd into the chroot environment use the following command:
configure –prefix /lighttpd/usr

• To copy over the files from the standard environment. The problem here is
that we also need to copy the shared libraries. The program ldd can help
us find out. Here is a little bash script to automatically copy the necessary
shared libraries (you can download the cpdynlib.sh file from :
http://www.packtpub.com/files/code/2103_Code.zip).

#!/bin/bash
Change FILES according to your system, some systems name the
library files different than .so – ls /usr/lib/mod* may help.
FILES="/usr/sbin/lighttpd /usr/lib/mod_*.so"for FILE in $FILES
do

 mkdir -p /lighttpd${FILE%/*}

 cp $FILE /lighttpd$FILE

 ldd $FILE | while read A B C D

 do

check if there is an entry

if ["not" == "$A"]

then

echo "$FILE: not a dynamic executable"
elif [-z $C]
then

mkdir -p /lighttpd${A%/*}
cp $A /lighttpd$A

else

mkdir -p /lighttpd${C%/*}

cp $C /lighttpd$C

fi

 done

done

Finally, we need to copy the SSL certificate into /lighttpd/etc/lighttpd, if we
use SSL. Note that the configuration file is read before changing the root. So, we can
leave it as is, but for one line:

server.chroot = "/lighttpd"

[102]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.packtpub.com/files/code/2103_Code.zip

Chapter 8

The same script can be modified to copy any needed CGI backend into our chroot
environment. Just change the first line to make the files point to the executable
(if there are any) and the modules, and run it.

Our environment will probably look like the following, although our mileage
may vary:

$ cd /lighttpd && find . -type f

./etc/lighttpd/lighttpd.pem

./usr/sbin/lighttpd

./usr/lib/libgssapi_krb5.so.2

./usr/lib/libkrb5.so.3

./usr/lib/libk5crypto.so.3

./usr/lib/libz.so.1

./usr/lib/libbz2.so.1

./usr/lib/mod_access.so

... (skipped all the modules for brevity)

./usr/lib/mod_webdav.so

./lib/libpcre.so.0

./lib/libdl.so.2

./lib/libssl.so.4

./lib/libcrypto.so.4

./lib/tls/libc.so.6

./lib/tls/libm.so.6

./lib/ld-linux.so.2

./lib/libcom_err.so.2

./lib/libresolv.so.2

./lib/libcrypt.so.1

$ _

Restart Lighttpd. Congratulations, we just got our own chrooted Lighttpd! Now, let
us go and copy all the files we want to serve into our /lighttpd/docroot, so that
our chrooted Lighttpd will find them.

How to handle errors
Sometimes, ldd will not catch all the dependencies, and our
chrooted Lighttpd will crash. To resolve this issue, get a strace utility
(Solaris 10 users could also use ptrace). With this utility, we can trace
Lighttpd calling the following command:
strace /usr/sbin/lighttpd -D -f /etc/lighttpd/lighttpd.conf

[103]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http:./usr/lib/libgssapi_krb5.so
http:./usr/lib/libkrb5.so
http:./usr/lib/libk5crypto.so
http:./usr/lib/libz.so
http:./usr/lib/libbz2.so
http:./lib/libpcre.so
http:./lib/libdl.so
http:./lib/libssl.so
http:./lib/libcrypto.so
http:./lib/tls/libc.so
http:./lib/tls/libm.so
http:./lib/ld-linux.so
http:./lib/libcom_err.so
http:./lib/libresolv.so
http:./lib/libcrypt.so

Containing Lighttpd

This will throw up lots of information on the system calls done. We
probably need to look only at the last lines before the crash. The last line
containing "open", and a filename may be informative, because chances
are that filename belongs to the missing file responsible for the crash.

Now, we can add a scripting language and a database to our chroot environment.
There is a third way of preparing the chroot environment for some distributions—the
package manager might give out a list of files for each package, so we could use this
list to copy the files with a little shell magic.

For example, we could call the package manager like this:
for rpm-using distributions, e.g. RedHat, CentOS, Fedora, SuSE, etc.

rpm -q –-filesbypkg lighttpd | while read x y; do # x == "lighttpd"

if [! -d $y]; then cp $y /lighttpd$y; fi

done

for debian-inspired systems using dpkg

dpkg -L lighttpd | while read x; do

if [! -d $x]; then cp $x /lighttpd$x; fi

done

or apt – "apt-file list" is the same as "dpkg -L"

apt-file list lighttpd | while read x; do

if [! -d $x]; then cp $x /lighttpd$x; fi

done

This way, we can copy all the files of a package into our chroot environment.
Depending on our distribution, we might need to add additional packages that our
Lighttpd package depends on.

Beware of Missing Files!
Note that using the above method does not necessarily copy all
dependencies such as the ldd script mentioned earlier. Also note that the
package might contain start/stop scripts and other things that we do
not need in the chroot environment. So the ldd method is preferred.

The ldd script above can easily be changed to move the backend. Note that the
spawn-FCGI utility used to start backend processes provided with Lighttpd can
remain outside the chroot environment, as it is capable of changing root while
running. Just edit the first line of our script to make it copy the backend files:

add magnet
FILES="/usr/local/bin/magnet"

or python (for example 2.4)

FILES="/usr/bin/python $(find /usr/lib/python2.4 -type f)"

or php-fcgi

FILES="/usr/local/bin/php /etc/php.ini /etc/php.d/*"

[104]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

Running the changed script will copy the selected backend into our chroot
environment. This enables us to run dynamic web applications from a chrooted
Lighttpd. So even if an attacker could gain privileges through the backend, he or she
is stuck in the chroot environment. However, there is an alternative that promises
better security.

Separating the Backend
If we use Lighttpd to serve web applications, we may use an external spawner
for our application instead of letting Lighttpd spawn the backend processes. This
spawner and the needed runtime can be put in a separate chroot environment.

Keeping the backend separate allows us to spawn it under different user privileges
or even in a different chroot environment. This reduces the privileges the Lighttpd
server needs at the cost of some convenience and perhaps even some avenues for
optimization. (For example, X-Lighttpd-send-file, requires a path that both
environments can read or write, thereby undermining the security of both the
environments).

Note that if we need access to static files from the backend, we must copy or link
them into both the environments. The first is a hassle, and introduces the risk of
having different versions of the same file in each backend. The second negates the
effect of separating both the environments. Thus, if we really cannot do without
accessing files which are otherwise served directly from Lighttpd, we better use one
chroot environment for both Lighttpd and the backend.

If we keep Lighttpd in a chroot environment, keeping the backend out of the
environment can drastically reduce the environment size and make it easier to create
and manage the chroot environment.

Often the backend is far more complex than Lighttpd, especially with today's
Web 2.0 applications. So it may make sense to keep it separate from Lighttpd.

In our example, we will create a user and group called "backend", and make it own
all backend files by typing chown –r backend:backend /backend into the shell.

We can change the script for our backend, replacing /lighttpd with /backend,
to have a script that moves our backend to a different location. We can now make
the backend application listen to a port. But that would potentially open it up to
attackers from outside.

[105]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Containing Lighttpd

There is a final trick we can pull out of our hat to connect both the environments
without needing to use a firewall or risk putting our backend online, and that is a
FIFO, also called a named pipe. The abbreviation FIFO is short for First In First Out,
which is a succinct and fitting description of a Queue.

Lighttpd accepts backend addresses as IPv4, IPv6, ports, and local filenames. This
local filename needs to point to a FIFO. The mkfifo command can create one for us.
To make it appear in both the environments, we can use a hard link. For example:

create a FIFO in our lighttpd chroot environment
mkfifo /lighttpd/etc/backend.socket

make our lighttpd user/group own the fifo to get access
chown lighttpd:lighttpd /lighttpd/etc/backend.socket

create a hard link into our backend environment
ln /lighttpd/etc/backend.socket /backend/etc/lighttpd.socket

make our backend user/group own the linked fifo to get access
chown backend:backend /backend/etc/lighttpd.socket

We can use the spawn-FCGI program supplied with Lighttpd (this is why we copied
it over with the backend before) to make the backend listen to the socket. The syntax
is as follows: /usr/local/bin/spawn-fcgi -f <executable> -s <socket>

For example, we can use the Lua magnet:

$ /usr/local/bin/spawn-fcgi -f /usr/local/bin/magnet -s \

/etc/lighttpd.socket -u backend -g backend -c backend

This will run the Lua magnet in our backend. The spawn-FCGI executable takes the
following parameters:

Parameter Description
-f <path> Indicates the path to the executable file of the FastCGI application; for

example, /usr/local/bin/php or /usr/bin/python
-s <socket> Indicates the path to a named pipe created with mkfifo;
-p <port> a port number that will be listened to
-c <path> (Use a small C here!) Indicates the root of our chroot environment, if the

executable is to be chrooted
-u <username> Indicates the user under whose privileges the executable is run
-g <groupname> Indicates the group under whose privileges the executable is run
-C <number> (Use a big C here!) Indicates the number of processes to be spawned

[106]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

If we use -C to spawn multiple instances of our backend, the spawn-FCGI program
will automatically create FIFOs for each instance. For example, we could add -C 2 to
our command line, as shown here:

$ /usr/local/bin/spawn-fcgi -f /usr/local/bin/magnet -s \
/etc/lighttpd.socket -u backend -g backend -c backend -C 2

The spawn-FCGI would then create two files:

$ ls /backend/etc/lighttpd.socket*
/backend/etc/lighttpd.socket-0 /backend/etc/lighttpd.socket-1

We can now link the sockets into our Lighttpd chroot environment using the
following bash commands:

$ for name in $(ls /backend/etc/lighttpd.socket*); do
> target=/lighttpd/etc/backend${name#/backend/etc/lighttpd}
> ln $name $target
> chown lighttpd:lighttpd $target
> done

Now, the sockets can be accessed from Lighttpd while keeping it separated from the
backend. To do this, we need the following in our lighttpd.conf. In 1.4 style:

fastcgi.server = ("lua" =>
(

"backend-0" => ("socket" => "/etc/backend.socket-0", ...),
"backend-1" => ("socket" => "/etc/backend.socket-1", ...)

)

)

Or in 1.5 style:

$HTTP["URL"] =~ "^\.lua" {

proxy-core.backends = (# a list of backends

"/etc/backend.socket-0", "/etc/backend-socket-1")

...

}

Refer to Chapter 3, Chapter 11, or Appendix B for further information regarding the
FastCGI configuration.

To summarize:

1.	 Start the backends using spawn-FCGI.
2.	 Link the FIFOs into our Lighttpd chroot environment using the

given commands.

3.	 Start Lighttpd.

[107]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Containing Lighttpd

Finally, we can go through those three steps and congratulate ourselves on having
our Lighttpd and backend fully contained.

Summary
Lighttpd can be run quite securely, if we invest a little in its security. We can use the
built-in methods to achieve the least privilege, and hence the highest security.

The least we should do is configure Lighttpd so that it will give up root privileges
after binding to the needed ports.

If our site is a high-profile site and/or handles monetary transactions or sensitive
user information, we should go all the way and put Lighttpd into a chroot
environment. In doing so, we need to be very careful not to create any new entry
points for attack.

Putting the backend in a separate environment and keeping only a FIFO open
to connect both the environments can introduce another considerable barrier for
hackers. This way, at least the backend is cleanly cut off from the outside as well as
from the static files. So, attacks that require interferences between both are diverted.

Finally, a small table of pros and cons for both methods:

Changing User / Group Running in Chroot Environment

Pro Easy to achieve Maximal security, if carefully executed

A successful attack on Lighttpd gives
only user privileges

Allows clean separation from the backend

Even if an attacker breaks into Lighttpd,
he or she is still trapped in the
chroot environment

Con A successful attack on Lighttpd allows
the attacker to roam around large
portions of the system

The files to be served need to be
accessible to Lighttpd user, so that
per-user directories can be made
readable to the Lighttpd group

Creating a chroot environment is a
complex task

Errors in creating the chroot
environment could open fatal holes
in the system security

All files to be served need to be within
the chroot environment. Allowing
anyone to place files there constitutes a
security breach!

[108]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Optimizing Lighttpd
Lighttpd was introduced at the beginning of this book as a lean and fast web server.
This chapter will help us make Lighttpd work even faster. Before we start optimizing
our Lighttpd installation, there are some things to consider such as where is Lighttpd
going to run?

The most tested system with perhaps the most optimized backend is Linux. So if we
need to squeeze every little request per second out of a server, it is a sure guess. In
fact, apart from Linux, all systems except Windows are quite capable of delivering
good performance.

If our Lighttpd runs on a multi-processor machine, it can take advantage of that by
spawning multiple versions of itself. Also, most Lighttpd installations will not have a
machine to themselves; therefore, we should not only measure the speed but also its
resource usage.

Optimizing Compilers
gcc with the usual settings (-O2) already does quite a good job of creating
a fast Lighttpd executable. However, -O3 may nudge the speed up a tiny
little bit (or slow it down, depending on our system) at the cost of a bigger
executable system. If there are optimizing compilers for our platform (for
example, Intel and Sun Microsystems each have compilers that optimize
for their CPUs), they might even give another tiny speed boost.
If we do not want to invest money in commercial compilers, but
maximize on what gcc has to offer, we can use Acovea, which is an open
source project that employs genetic algorithms and trial-and-error to find
the best individual settings for gcc on our platform.

Get it from http://www.coyotegulch.com/products/acovea/.

Finally, optimization should stop where security (or, to a lesser extent,
maintainability) is compromised. A slower web server that does what we want is
way better than a fast web server obeying the commands of a script kiddie.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.coyotegulch.com/products/acovea/

Optimizing Lighttpd

Before we optimize away blindly, we better have a way to measure the "speed". A
useful measure most administrators will agree with is "served requests per second".
http_load is a tool to measure the requests per second. We can get it from
http://www.acme.com/software/http_load/.

http_load is very simple. Give it a site to request, and it will flood the site with
requests, measuring how many are served in a given amount of time. This allows
a very simplistic approach to optimizing Lighttpd: Tweak some settings, run
http_load with a sufficient realistic scenario, and see if our Lighttpd handles more
or less requests than before.

We do not yet know where to spend time optimizing. For this, we
need to make use of timing log instrumentation that has been included
with Lighttpd 1.5.0 or even use a profiler to see where the most time is
spent. However, there are some "big knobs" to turn that can increase
performance, where http_load will help us find a good setting.

Installing http_load
http_load can be downloaded as a source .tar file (which was named .tar.gz for
me, though it is not gzipped). The version as of this writing is 12Mar2006. Unpack it
to /usr/src (or another path by changing the /usr/src) with:

$ cd /usr/src && tar xf /path/to/http_load-12Mar2006.tar.gz

$ cd http_load-12Mar2006

We can optionally add SSL support. We may skip this if we do not
need it.

To add SSL support we need to find out where the SSL libs and includes are. I
assume they are in /usr/lib and /usr/include, respectively, but they may or may
not be the same on your system. Additionally, there is a "SSL tree" directory that is
usually in /usr/ssl or /usr/local/ssl and contains certificates, revocation lists,
and so on. Open the Makefile with a text editor and look at line 11 to 14,
which reads:

#SSL_TREE = /usr/local/ssl

#SSL_DEFS = -DUSE_SSL

#SSL_INC = -I$(SSL_TREE)/include

#SSL_LIBS = -L$(SSL_TREE)/lib -lssl -lcrypto

[110]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.acme.com/software/http_load/

Chapter 9

Change them to the following (assuming the given directories are correct):

SSL_TREE = /usr/ssl

SSL_DEFS = -DUSE_SSL

SSL_INC = -I/usr/include

SSL_LIBS = -L/usr/lib -lssl -lcrypto

Read on here if you skipped SSL support.

Now compile and install http_load with the following command:

$ make all install

Now we're all set to load-test our Lighttpd.

Running http_load Tests
We just need a URL file, which contains URLs that lead to the pages our Lighttpd
serves. http_load will then fetch these pages at random as long as, or as often as we
ask it to. For example, we may have a front page with links to different articles. We
can just start putting a link to our front page into the URL file, which we will name
urls to get started; for example, http://localhost/index.html.

Note that the file just contains URLs, nothing less, nothing more (for example,
http_load does not support blank lines). Now we can make our first test run:

$ http_load -parallel 10 -seconds 60 urls

This will run for one minute and try to open 10 connections per second. Let's see if
our Lighttpd keeps up:

343 fetches, 10 max parallel, 26814 bytes, in 60 seconds

78.1749 mean bytes/connection

5.71667 fetches/sec, 446.9 bytes/sec

msecs/connect: 290.847 mean, 9094 max, 15 min

msecs/first-response: 181.902 mean, 9016 max, 15 min

HTTP response codes:

 code 200 – 327

[111]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://localhost/index.html

Optimizing Lighttpd

As we can see, it does. http_load needs one of the two start conditions and one of
the two stop conditions plus a URL file to run. We can create the URL file manually
or crawl our document root(s) with the following python script called crawl.py:

#!/usr/bin/python

#run from document root, pipe into URLs file. For example:

/path/to/docroot$ crawl.py > urls

import os, re, sys

hostname = "http://localhost/"

for (root, dirs, files) in os.walk("."):

 for name in files:

 filepath = os.path.join(root, name)

 print re.sub("\\./", hostname, filepath)

You can download the crawl.oy file from
http://www.packtpub.com/files/code/2103_Code.zip.

Capture the output into a file to use as URL file. For example, start the script from
within our document root with:

$ python crawl.py > urls

This will give us a urls file, which will make http_load try to get all files (given
that we have specified enough requests). Then we can start http_load as discussed
in the preceding example. http_load takes the following options:

Option Useful value Description
Required start condition

-rate 100	 Try to start the given number of new connections per
second. Use a high value to see how high we can ramp up
the load.

-parallel 100	 Keep the given number of connections open at any given
moment, which will work unless Lighttpd is so fast that
http_load cannot keep up.

Required stop condition

-seconds 300 Keep up the load for the given time in seconds.
-fetches 10000 Amass the given number of requests.
Optional arguments
-verbose Output stats every minute (for longer test runs).
-proxy proxy.net:81 Use the proxy specified by the host name and the port.
-timeout 60 Time-out every request after the given seconds (defaults

to 60).

[112]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

"http://localhost/"
http://www.packtpub.com/files/code/2103_Code.zip

Chapter 9

Option Useful value Description
-cipher fastsec This selects the TLS cipher, for https addresses. We can use
(If SSL is one of three keywords or a cipher name. The keywords are:
enabled) fastsec (RC4-MD5), highsec (DES-CBC3-SHA), and paranoid

(AES256-SHA). The SSL main page for ciphers has a list of
all the cipher names.

-jitter If -rate was specified as the start condition, randomly
deviates up to ±10% from the given rate.

-throttle Simulates access by modem users (33.6kbps).
-sip ips Selects a random IP address from the file ips (one IP

address per line) to use as source address. See below.

For the -sip option, we will need a list of IP addresses. Here is a useful python script
that will write a number of distinct IP addresses below a given subnet (which we can
then route to our loopback device):

#!/bin/env python

run with: makeips.py 1000 101.202.0.0

to create 1000 ip entries in the subnet 101.202.*.*

import random, sys

ips = {}

def makeip(subnet, ip=None):
 while ip is None or ips.get(ip):

 ip = ".".join(x != "0" and x or str(int(random.random()*256))
 for x in subnet.split("."))

 ips[ip] = 1
 return ip

def makeips(amount, subnet):
 maxips = 256 ** sum("0" == x for x in subnet.split("."))
 if maxips < amount:

 print "Can only fit %i ips in the subnet %s." % (maxips, subnet)
 amount = maxips

 ipfile = open("ips", "w")
 for i in xrange(amount):

 ipfile.write(makeip(subnet) + "\n")
 ipfile.close();

if __name__ == "__main__":
 try: makeips(argv[1], argv[2])
 except: print "usage: python makeips.py [amount] [subnet]"

You can download the makeips.py code file at
http://www.packtpub.com/files/code/2103_Code.zip.

[113]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.packtpub.com/files/code/2103_Code.zip

Optimizing Lighttpd

With this we can route the subnet to the loopback device and make it look as if
different clients are requesting the pages. Use this to counter the effect of expiry
on our tests; as the only alternative would be to remove mod_expire from the
configuration, which is probably not desirable.

Route a whole subnet to our local host or use one we already have
With UNIX-like operating systems (Linux, Solaris, BSD, and MacOS X),
use the route add command. On Windows (with or without cygwin),
we can make use of the fact that the whole 127.*.*.* network is looped
back (using the default IP 127.0.0.1). So running python makeips.py
255 127.0.0.0 will give us a range of IP addresses we can use even if
we cannot change our routing tables.

Before we work on fine tuning our network, we can tweak some configuration
settings to increase performance:

1.	 Select the best event handler and write the backend for the job. Here is the
recommendation per system:

System Linux 2.6 Linux 2.4 Solaris Other UNIX Windows
Event linux-sysepoll linux-rtsig solaris-devpoll Poll Give up all
Network sendfile64 sendfile sendfilev sendfile hope

Use sendfile64 only if large files (>2GB) are disabled, which we
should do if we do not serve files that big.

2.	 If we have dynamic content, we should choose our CGI protocol wisely.
FastCGI and SCGI are better choices than CGI. If you have the luxury of
choosing your CGI language, you might want to try a small and fast scripting
language such as Python or even Lua.

3.	 Static data is best served from static files. The usual file systems in use
today will easily outperform any database/CGI solution. If we have a big
page with lots of JavaScript and a smaller part of the page is dynamic (for
example, not the JavaScript), we should put the JavaScript in a static .js file
and link them.

4.	 Use SSL only for sensitive data. Clients do not cache data sent over SSL. So
if we have images or other static data that does not compromise the client's
information, send it over to plain HTTP.

5.	 Remove unused modules from the configuration. This is a win-win option
for both speed and memory.

[114]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

There are some settings that affect speed and stability, and depend on the
scenario we deploy Lighttpd in. For example, if we have a huge number of
concurrent connections open, we can run out of file descriptors. We can counter
that by increasing the number of file descriptors in the kernel and setting
server.max-fds higher (default is 1024). If we have a lot of small requests, we might
increase server.max-keepalive-requests. On the other hand, if we send out a few
big files at any given time, we might want to increase the send buffer (note that this
has to be allocated for each request, so it might eat into our memory pretty fast). The
following are the three scenarios with settings that should give good performance:

1.	 Many small requests (typical for AJAX applications): The defaults are
quite good here, although for big applications we might raise
server.max-keep-alive-requests to 256 or even higher (try how many
sessions we can keep alive without running into the file handle barrier).

2.	 Big requests (for example, YouTube): Increase the send file buffer; for
example, on Linux set the kernel configuration to:
net.ipv4.tcp_wmem = 4096 65536 524288

net.core.wmem_max = 1048576

On BSD set net.inet.tcp.sendspace = 8192 (or even higher, but
remember it eats a lot of the kernel RAM per open connection).

3.	 Big files upload (for whatever): Do the same to the read file buffer: Under
Linux do the same as in step 3, but replace "wmem" with "rmem", and under
BSD set net.inet.tcp.recvspace = 8192.

With any server that handles many requests per second, a huge pile of file
descriptors is a good thing to have. Note that other applications are also using up file
descriptors, for example, the CGI backends (if we have more than one).

These are just common scenarios and some tips to work with them. In any case, run
http_load and look at the result. If the throughput is higher, and/or the latency
lower, good! If not, roll back the change and try something else.

Specific Optimizations
Until now, our methods and tools to measure performance are quite blunt—we can
see how fast our Lighttpd is with a specific optimization, but we do not know where
to start. Ahmdahl's law (see http://en.wikipedia.org/wiki/Amdahl%27s_law)
implies that if we optimize a portion of the code that takes up a portion X of the time by the
ratio Y, the resulting speedup is limited by X. The downside of this is optimizing code
that never gets called which is a good way to throw away our time. The upside is
that if we know which portions of the code takes up most of the time, we know
where to optimize.

[115]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://en.wikipedia.org/wiki/Amdahl%27s_law

Optimizing Lighttpd

A crude way of finding out where Lighttpd spends its time (at least between reading
and writing) is log timing. As of Lighttpd 1.5.0, there is a new configuration option:
debug.log-timing. This option can be enabled to insert timing information into
the log files. For each request, the start time plus three intervals will be timed. The
interval between receiving and queuing the request, the time used for reading the
request, and the time used for writing a response, is in the following format:

write-start: #.#### read-queue-wait: #### ms read-time: #### ms
write-time: #### ms

This timing can be helpful if we want to know whether we should spend our time
on optimizing the read cycle or the write cycle. As a rule of thumb, if we have a big
read-queue-wait time, we may have too many requests. So increasing file handles
or maybe even load-balancing on multiple systems might help. If there is a long read
time, look out for uploads or big forms, and try to select a better event handler. If the
write time is long see if we can improve the network backend; or if Lighttpd serves
a dynamic page, see if we can improve the web application. Perhaps we can use a
different CGI backend, introduce caching, and use mod_magnet for very small tasks.

Example: Caching with mod_magnet
Suppose we have a PHP script that runs through a database, fetches a set of records,
and creates a HTML page. So far so slow; our database, PHP interpreter, and CGI
interface are taxed on every request. Further, suppose that we do not really need
millisecond up-to-date data. We could run the PHP script say every five minutes,
thus improving its performance as it runs.

Firstly, we can change our PHP script to write the HTML output into a file instead of
standard output and send a X-Lighttpd-Sendfile header (enable this in the CGI
backend configuration—refer to Appendix B). This has two benefits: Lighttpd can send
out the file directly with no speed penalty and we have the cached file. Make sure our
Lighttpd is built with Lua support. Now, we can add the following configuration:

server.modules = (..., "mod_magnet", ...)
magnet.attract-physical-path-to = ("/application/" => "app.lua")

Our app.lua can then use the cache to see if the file is older than five minutes and if
so call the PHP. The following code does exactly that:

-- app.lua: cache a PHP application for 5 minutes
php_path = "/app.php"
cache_dir = lighty.env["physical.doc-root"] .. "/cache/"
cache_time = 300 -- 300 seconds = 5 minutes

path = lighty.env["physical.rel-path"]

[116]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

s = lighty.stat(cache_dir .. path)

if s ~= nil then -- not in cache, call out to PHP

 lighty.env["request.uri"] = php_path

 return lighty.RESTART_REQUEST

end

if s[8] + cache_time > os.time() then -- too old, call out to PHP
 lighty.env["request.uri"] = php_path

 return lighty.RESTART_REQUEST

end

lighty.header["Content-Type"] = "text/html"

lighty.content = {{ filename = cache_dir .. path }}

return 200

This may look like a special case, but there are many web applications out there
which do not use any caching at the application level. Plus, its integration into the
web server makes this a winning performance for all cases. When the page is cached,
it is served almost as fast as a static file.

On the other hand, if the page is not in the cache or is too old, the X-Lighttpd-
Sendfile header trick at least reduces the number of file handles needed for the
transaction and improves the throughput by shifting the work from our Lighttpd
process to the operating system.

Measuring System Load
From a holistic viewpoint (or if we plan to invest in hardware), we might be
interested in the resource, which is limiting the performance of our Lighttpd. Most
UNIX-like systems have a command, vmstat, which shows a small table of system
load parameters:

procs ---------memory---------- --swap-- ---io--- --system- ----cpu---­

r b swpd free buff cache si so bi bo in cs us sy id wa

 1 0 0 302064 0 0 0 0 0 0 0 0 0 0 100 0

[117]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Optimizing Lighttpd

In this case, the system is sitting idle. The following fields are of particular interest:

Section / Field	 Description
memory / swpd	 The amount of swap space used. Ideally, it should be zero. If

our Lighttpd gets swapped out, the performance will degrade
dramatically.

memory / free	 The amount of free memory. If this gets close to zero, watch out
for swapping.

io / bi	 The amount of blocks received and sent, respectively. Nothing
io / bo	 bad to see here.
cpu / us	 The user mode and kernel mode CPU times, as percentage of
cpu / sy	 available CPU time. Add them. If it is close to 100, we need more

CPU capacity.
cpu / id	 The percentage of time the CPU sits idle. If greater than zero, our

CPU load is quite healthy.
cpu / wa	 This is the percentage of time the CPU had to wait for IO. This

is of special interest to us, as it shows whether we are in need of
more threads, a different IO backend, and so on.

Under Microsoft Windows operating systems, the task manager shows CPU load,
memory/swap file usage, and network performance. If one of these maxes out,
we have a candidate for improvement. The basic idea is the same as with the
UNIX-like systems.

Profiling with gprof
To see where Lighttpd is spending its time in more detail, the use of a profiler is
recommended. gcc comes with a profiling tool called gprof. We first need to tell gcc
to prepare a Lighttpd version for profiling, then put it under load with http_load,
stop Lighttpd, and run gprof to get a list of functions sorted by the time spent,
which we can then interpret to see what to optimize. Now, let's see each step in
more detail.

We can create a gprof ready Lighttpd by specifying a flag for the C compiler. This is
done with the following commands before calling configure:

$ export CFLAGS=-pg

$ export LDFLAGS=-pg

[118]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

Otherwise, proceed as in Chapter 1 to create a Lighttpd build. We might also want to
install this Lighttpd in a location different from our production build, as the profiling
code will slow down our Lighttpd just slightly, and may also fill our file system with
profiling data while running. So use the configure –prefix argument to specify a
different location, for example, configure –prefix=/opt/lighttpd-gprof.

The build might fail with an error of "undefined references to _mcount"

In this case, edit the libtool shell script created by configure.
Search for a line compiler_flags= and add -pg so that the line says
compiler_flags=-pg. Now make clean all should build our
Lighttpd with profiling support.

Given that our build succeeded, we can now execute our profiling Lighttpd and test
load to get the profiling data.

Load Testing our Profiling Build
Our profiling build can be run exactly as usual. For directions on load testing using
http_load, see the example. For this example, we use a 100-byte HTML file and
set http_load to fetch 10,000 times with 10 parallel connections. After running the
test and stopping our Lighttpd, we should find a new file with the name gmon.out
(given a post-20th century-version of gprof). We can now run gprof to get some
statistics. gprof needs at least two parameters: the path to the Lighttpd executable
and the path to the gmon.out, our profiling run just created. For example:

$ gprof /opt/lighttpd-gprof/sbin/lighttpd gmon.out

This will show a lot of text, including two interesting tables: the flat profile and
the call graph. The flat profile is a table of functions with a percentage of the full
runtime, the cumulative runtime in seconds, the internal runtime (self) in seconds,
the number of calls, the internal and cumulative runtimes per call, and finally the
function name.

The cumulative runtime of a function is the time from when the first line
of the function is executed until the execution returns from the function,
whereas the internal runtime is the complete runtime minus the sum of
complete runtimes of all functions called from the function.

[119]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Optimizing Lighttpd

The flat profile is very helpful to determine where our time is best spent optimizing.
For us, the internal runtime and the number of calls show how much an optimization
might affect total performance. The list is ordered by the percentage of the total time.
So the higher on the list a function is, the more time we can shave off by optimizing
it. The following is our example flat profile:

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 12.79 0.50 0.50 10000 0.05 0.08 http_request_parse

 7.42 0.79 0.29 150179 0.00 0.00 array_get_index

 5.63 1.01 0.22 370497 0.00 0.00 buffer_caseless...

 4.35 1.18 0.17 13806 0.01 0.02 connection_hand...

 3.84 1.33 0.15 20128 0.01 0.02 connection_reset

 3.84 1.48 0.15 20599 0.01 0.16 connection_stat...

 3.32 1.61 0.13 300039 0.00 0.00 buffer_append_s...

 3.07 1.73 0.12 10000 0.01 0.06 http_response_p...

 2.56 1.83 0.10 10000 0.01 0.05 http_response_w...

 2.56 1.93 0.10 10000 0.01 0.01 network_write_c...

 2.30 2.02 0.09 370095 0.00 0.00 buffer_prepare_...

 2.30 2.11 0.09 40018 0.00 0.00 LI_ltostr

 1.66 2.18 0.07 350705 0.00 0.00 buffer_prepare_...

 1.66 2.24 0.07 120001 0.00 0.00 buffer_is_equal

 1.66 2.31 0.07 633052 0.00 0.00 buffer_reset

 1.53 2.37 0.06 310064 0.00 0.00 buffer_copy_str...

 1.53 2.43 0.06 80855 0.00 0.00 chunkqueue_remo...

 1.53 2.49 0.06 10000 0.01 0.01 connection_close

 1.53 2.55 0.06 __divdi3

 1.53 2.61 0.06 70019 0.00 0.00 array_insert_un...

 1.28 2.66 0.05 120000 0.00 0.00 buffer_append_s...

 1.28 2.71 0.05 20000 0.00 0.00 hashme

 1.28 2.76 0.05 10000 0.01 0.02 stat_cache_get_...

 1.28 2.81 0.05 etag_mutate

 1.02 2.85 0.04 60384 0.00 0.00 array_reset

 1.02 2.89 0.04 40018 0.00 0.00 buffer_append_long

 1.02 2.93 0.04 30256 0.00 0.00 config_setup_co...

 1.02 2.97 0.04 10238 0.00 0.02 connection_accept

 1.02 3.01 0.04 10000 0.00 0.02 network_write_c...

 1.02 3.05 0.04 10000 0.00 0.01 request_check_h...

[120]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

The long function names were cut off in the name of readability, as well as all the
following functions one percent of the runtime. As we can see, the http_request_
parse function takes the biggest chunk of runtime. This should be so, given that we
are sending out the same short file over and over again, which should be cached
from the second request onwards. Note that the http_request_parse function
would be top priority on our list should we want to optimize the code, because it has
the biggest internal runtime and also gets a decent number of calls (one per request).

An even more detailed report is the call graph. It shows a table for every function
with a list of callers before and a list of callees after it. For each entry, the time
(complete and internal), and the number of calls (from the parent function and total)
is shown. We can use this to find out why a function is called so often, and trace the
code paths. However, without a decent visualization, we can easily get lost in the
mountains of data. Here is an example call tree (again, function names are cut off
for brevity):

index % time self children called

[1] 94.7 0.01 3.69

0.00 1.90

0.08 1.67

0.00 0.02

0.01 0.01

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

288/288

10599/20599

1/1

599/599

1/1

1/1

2/3

1/1

4/50159

1/1

1/1

292/292

1/1

1/1

1/1

1/10001

1/1

1/1

1/26794

10599/20599

name

 <spontaneous>

main [1]

network_server_h... [3]

connection_state... [2]

connections_free [60]

connection_hand... [61]

config_read [90]

server_free [95]

log_error_write [104]

plugins_load [107]

array_get_element [15]

log_error_open [109]

network_init [110]

stat_cache_tri... [111]

plugins_free [115]

config_set_def... [117]

server_init [122]

fdevent_unregister [42]

network_close [124]

network_regist... [127]

fdevent_event_del [64]

plugins_call_h... [133]

[121]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Optimizing Lighttpd

index % time self children called name

 0.00 0.00 887/887 fdevent_event_... [150]

 0.00 0.00 887/887 fdevent_event_... [149]

 0.00 0.00 887/887 fdevent_event_... [148]

 0.00 0.00 887/887 fdevent_get_ha... [152]

 0.00 0.00 887/887 fdevent_get_co... [151]

 0.00 0.00 639/639 fdevent_poll [156]

 0.00 0.00 292/292 plugins_call_h... [160]

 0.00 0.00 1/1 plugins_call_init [188]

 0.00 0.00 1/1 plugins_call_s... [189]

 0.00 0.00 1/1 fdevent_init [180]

 0.00 0.00 1/1 stat_cache_init [192]

 0.00 0.00 1/10001 fdevent_fcntl_set [134]

 0.00 0.00 1/1 log_error_close [186]

0.07 1.58 10000/20599 network_server_h... [3]

 0.08 1.67 10599/20599 main [1]

[2] 86.9 0.15 3.25 20599 connection_state_mac... [2]

 0.02 1.07 10000/10000 connection_handl... [4]

 0.50 0.28 10000/10000 http_request_parse [5]

 0.12 0.50 10000/10000 http_response_pr... [6]

 0.16 0.06 13207/13806 connection_hand... [14]

 0.02 0.18 10000/10000 connection_hand... [19]

 0.07 0.10 10000/20128 connection_reset [10]

...

Although we now have specific numbers where our Lighttpd uses its time, and even
which functions gets called from where, we still do not know how to optimize the
settings to reduce the runtime.

Alas, unless we want to optimize directly in the source code (which thanks to
Lighttpd underlying the revised BSD license and being available in source form, we
can), there is no easy way apart from trial and error to find out which setting creates
which effect. At least, we can see where this effect comes into play.

[122]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

Summary
Knowing what to optimize beats knowing how to optimize. Therefore, load testing
and collecting usage statistics (see last chapter) is paramount to improving
throughput and minimizing latency. Probably, the most important thing about
optimization is to know when to stop.

At the moment, there is no easier way than trial and error to find out what makes our
Lighttpd work faster. On the other hand, optimizing for performance may conflict
with other goals such as security and maintainability.

Logging the timing of the request or response phases can give us a broad overview
where to optimize first. Knowing which system resources limit our Lighttpd's
performance can also give us a hint on what to do. If we need a more detailed picture
of where our Lighttpd spends its time, profiling is our course of action.

[123]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Migration from Apache
The most common web server used today is still Apache, so whilst we wait for
Lighttpd world domination, the migration from this server warrants its own
chapter. As this is a book on Lighttpd and not on Apache, this chapter assumes
some knowledge of the Apache configuration. If anything is unclear, the Apache
documentation at http://apache.org/docs/ will hopefully help.

Now starting from a working Apache installation, what can Lighttpd offer us?

• Improved performance for most cases (as in more hits per second)
• Reduced CPU time and memory usage
• Improved security (refer to Chapter 8 to maximize your return on investment)

Of course, the move to Lighttpd is not a small one, especially if our Apache
configuration makes use of its many features. Systems tied into Apache as a module
may make the move hard or even impossible without porting the module to a
Lighttpd module or moving the functionality into CGI programs, if possible.

We can ease the pain by moving in small steps. The following descriptions assume
that we have one Apache instance running on one hardware instance. But we can
scale the method by repeating it for every hardware instance.

When not to migrate
Before we start this journey, we need to know that our hardware and
operating systems support Lighttpd, that we have root access (or access
to someone who has), and that the system has enough space for another
Lighttpd installation (yes, I know, Lighttpd should reduce space concerns,
but I have seen Apache installations munching away entire RAID arrays).
Probably, this only makes sense if we plan on moving a big percentage of
traffic to Lighttpd. We also might make extensive use of Apache module,
which means a complete migration would involve finding or writing
suitable substitutes for Lighttpd.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://apache.org/docs/

Migration from Apache

Adding Lighttpd to the Mix
Install Lighttpd on the system that Apache runs on. Refer to Chapter 1 for
installation instructions. Find an unused port (refer to a port scanner if needed) to set
server.port to. For example, if port 4080 is unused on our system, we would look
for server.port in our Lighttpd configuration and change it to:

server.port = 4080

If we want to use SSL, we should change all occurrences of the port 443 to another
free port, say 4443. We assume our Apache is answering requests on HTTP port 80.

Now let's use this Lighttpd instance as a proxy for our Apache by adding the
following configuration:

server.modules = (

 #...

 "mod_proxy",

 #...

)

#...

proxy.server = (
 "" => { # proxy everything

 host => "127.0.0.1" # localhost

 port => "80"

)

)

This tells our Lighttpd to proxy all requests to the server that answers on localhost,
port 80, which happens to be our Apache server. Now, when we start our Lighttpd
and point our browser to http://localhost:4080/, we should be able to see the
same thing our Apache is returning.

What is a proxy?

A Proxy stands in front of another object, simulating the proxied object

by relaying all requests to it. A proxy can change requests on the fly, filter
requests, and so on. In our case, Lighttpd is the web server to the outside,
whilst Apache will still get all requests as usual.

[126]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://localhost:4080/

Chapter 10

Excursion: mod_proxy
mod_proxy is the module that allows Lighttpd to relay requests to another web
server. It is not to be confused with mod_proxy_core (of Lighttpd 1.5.0), which
provides a basis for other interfaces such as CGI. Usually, we want to proxy only a
specific subset of requests, for example, we might want to proxy requests for
Java server pages to a Tomcat server. This could be done with the following
proxy directive:

proxy.server = (
 ".jsp" => (host => "127.0.0.1", port => "8080")

 # given our tomcat is on port 8080
)

Thus the tomcat server only serves JSPs, which is what it was built to do, whilst our
Lighttpd does the rest.

Or we might have another server which we want to include in our Web presence at
some given directory:

 proxy.server = (

 "/somepath" => (host => "127.0.0.1", port => "8080")

)

Assuming the server is on port 8080, this will do the trick. Now http://localhost/
somepath/index.html will be the same as http://localhost:8080/index.html.

Reducing Apache Load
Note that as most Lighttpd directives, proxy.server can be moved into a selector
(refer to Chapter 2), thereby reducing its reach. This way, we can reduce the set
of files Apache will have to touch in a phased manner. For example, YouTube™
uses Lighttpd to serve the videos. Usually, we want to make Lighttpd serve static
files such as images, CSS, and JavaScript, leaving Apache to serve the dynamically
generated pages.

Now, we have two options: we can either filter the extensions we want Apache
to handle, or we can filter the addresses we want Lighttpd to serve without
asking Apache.

[127]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://localhost/
http://localhost:8080/index.html

Migration from Apache

Actually, the first can be done in two ways. Assuming we want to give all addresses
ending with .cgi and .php to Apache, we could either use the matching of
proxy.server:

proxy.server = (
 ".cgi" => (host = "127.0.0.1", port = "8080"),
 ".php" => (host = "127.0.0.1", port = "8080")

)

or match by selector:

$HTTP['url'] =~ "(.cgi|.php)$" {
 proxy.server = ("" => (host = "127.0.0.1", port = "8080"))

}

The second way also allows negative filtering and filtering by regexp—just use !~
instead of =~.

mod_perl, mod_php, and mod_python
There are no Lighttpd modules to embed scripting languages into Lighttpd (with the
exception of mod_magnet, which embeds Lua) because this is simply not the Lighttpd
way of doing things. Instead, we have the CGI, SCGI, and FastCGI interfaces (refer to
Chapter 7) to outsource this work to the respective interpreters. In the next chapter,
there will be sample installations and configurations for some popular applications.

Most mod_perl scripts are easily converted to FastCGI using CGI::Fast. Usually,
our mod_perl script will look a lot like the following script:

use CGI;

my $q = CGI->new;

initialize(); # this might need to be done only once

process_query($q); # this should be done per request

print response($q); # this, too

Using the easiest way to convert to FastCGI:

use CGI:Fast # instead of CGI
while (my $q = CGI:Fast->new) { # get requests in a while-loop
 initialize();
 process_query($q);
 print response($q);

}

[128]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 10

If this runs, we may try to put the initialize() call outside of the loop to make
our script run even faster than under mod_perl. However, this is just the basic case.
There are mod_perl scripts that manipulate the Apache core or use special hooks, so
these scripts can get a little more complicated to migrate.

Migrating from mod_php to php-fcgi is easier—we do not need to change the
scripts, just the configuration. This means that we do not get the benefits of an
obvious request loop, but we can work around that by setting some global variables
only if they are not already set. The security benefit is obvious. Even for Apache,
there are some alternatives to mod_php, which try to provide more security, often
with bad performance implications.

mod_python can be a little more complicated, because Apache calls out to the python
functions directly, converting form fields to function arguments on the fly. If we
are lucky, our python scripts could implement the WSGI (Web Server Gateway
Interface). In this case, we can just use a WSGI-FastCGI wrapper. Looking on the
Web, I already found two: one standalone (http://svn.saddi.com/py-lib/trunk/
fcgi.py), and one, a part of the PEAK project (http://peak.telecommunity.com/
DevCenter/FrontPage). Otherwise, python usually has excellent support for SCGI.

As with mod_perl, there are some internals that have to be moved into the
configuration (for example dynamic 404 pages, the directive for this is
server.error-handler-405, which can also point to a CGI script). However, for basic
scripts, we can use SCGI (either from http://www.mems-exchange.org/software/
scgi/ or as a python-only version from http://www.cherokee-project.com/
download/pyscgi/). We also need to change import cgi to import scgi and change
CGIHandler and CGIServer to SCGIHandler and SCGIServer, respectively.

.htaccess
A lot of Lighttpd users converting from Apache ask if Lighttpd has any substitutes
for .htaccess files, which were made popular by Apache and are now a de-facto
Standard used by many web servers. Instead, Lighttpd has its own configuration
syntax, so all the old .htaccess files won't work with Lighttpd.

There is no perfect solution to this problem, but as the most used feature of
.htaccess files is authentication, we can at least solve that. Let's have a look at the
authentication directive format in Apache and Lighttpd:

•	 Apache just assumes that the path required for authentication is the path
where the .htaccess file resides, while Lighttpd needs to add this explicitly.

•	 The httpd.conf adds some more stuff, which is given as default from
httpd.conf. In the lighttpd.conf example, we do not assume
such defaults.

[129]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.mems-exchange.org/software/
http://www.cherokee-project.com/

Migration from Apache

Note that the Lighttpd configuration gets a little more complicated if we have
multiple backends or user files. In this case, we need to use a selector to limit the
reach of our directives. For example, assume that we want digest authentication
for internal.mydomain.com, but htpasswd authentication for some directories in
mydomain.com, with a different htpasswd file for the messages directory:

server.modules = (..., "mod_auth", ...)

auth.backend = "htpasswd"

auth.backend.htpasswd.userfile = "/web/general/.htpasswd"

$HTTP["host"] == "internal.mydomain.com" {

 auth.backend = "htdigest"

 auth.backend.htdigest.userfile = "/web/internal/.htdigest"

 auth.require = (

 "/" => (

 "method" => "digest",

 "realm" => "internal",

 "require" => "valid-user"

)
)

}

else

$HTTP["url"] =~ "^/messages" {

 auth.backend.htpasswd.userfile = "/web/messages/.htpasswd"
 auth.require = (

 "/" => (

 "method" => "basic",

 "realm" => "messages",

 "require" => "valid-user"

)
)

}

auth.require = (# This table assigns authentication requirements
 # to directories or file types.

 "/admin/" => (# everything below the /admin path
 "method" => "basic",
 "realm" => "admin",
 "require" => "user=andre|user=bob" # allow only bob and me

),
 "/download" => (

 "method" => "basic",

 "realm" => "download",

 "require" => "valid-user"

),

[130]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http:internal.mydomain.com
http:mydomain.com

Chapter 10

".private" => (# all files ending with .private
 "method" => "basic",
 "realm" => "private",
 "require" => "user=andre"

)
 # ... we could add more directories here.

)

The first selector marks out a region internal.mydomain.com, where we then use
digest authentication. The next selector catches the message directory everywhere
else and includes the use of the /web/messages/.htpasswd user file. Finally, we add
all the requirements for the other directories.

Note that the following two are identical:

$HTTP["url"] =~ "^/messages" {

auth.require = ("/" => (...)) auth.require = ("/messages" => (...))

}

But the left version is more flexible as it allows defining different user files and
backends for each path that matches a certain pattern. Armed with this knowledge,
we can write a small script that runs through our web root, finds all .htaccess files
and emits corresponding Lighttpd configuration (at least for the access directives). In
fact we do not even need to do this, because I already did the coding:

#!/bin/env python

import os

def toUserList(users):

 return "|".join(["user="+user for user in users.split(" ")])

 def groups(groupFileName, gps):

 groupFile = open(groupFileName)

 groupDict = {}

 for groupLine in groupFile:group, users = groupLine.split(":")

 groupDict[group.strip()] = users.strip()

 return "|".join([toUserList(groupDict[g])

 for g in gps.split(" ")])

for (root, dirs, files) in os.walk(path):

 if ".htaccess" not in files: continue

 filepath = os.path.join(root, ".htaccess")

 f = open(filepath)

 try:

 realm = root.rsplit(os.path.sep, 1)[1]

 except:

 realm = root

 try:

[131]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http:internal.mydomain.com

Migration from Apache

try some sensible defaults
 r = {"authtype":"Basic", "url":root,

"required":"nothing","realm":realm,

"authuserfile":os.path.join(root, ".htpasswd",

 "error":None}

 for line in f:
 try:

 tempdirective, arguments = line.split(" ", 1)
 directive = tempdirective.lower()

 r[directive] = arguments.strip('"')
 except:

 pass
 if r["required"].startswith("user"):

 r["required"] = toUserList(r["required"][5:])
 elif r["required"].startswith("group"):

 r["required"] = groups(r["authgroupfile"], r["required"][6:])
 if r["required"] != "nothing" and r["error"] is None:

 r["backend"] = {"Basic":"htpasswd",
"Digest":"htdigest"}[r["authtype"]]

 r["authtype"] = r["authtype"].lower()
 print """$HTTP["url"] =~ "%{url}s" {

 auth.backend = "${backend}s"

 auth.backend.${backend}s.userfile = "${authuserfile}s"

 auth.require = ("/" => (

 "method" => "${authtype}s",

"realm" => "${realm}s",

 "require" => "${required}s"

))

}""" % r;

 finally:

 f.close()

The htaccess2lighttpd.py script is available at
http://www.packtpub.com/files/code/2103_Code.zip.

Note the script does have one limitation: Lighttpd does not handle groups. However,
it allows specification of a list of users directly, as in user=andre|user=bob that we
required for admin access. The other way is to have a separate password file for
each group. The script, however, takes the first way. This means that we need to
re-run the script each time a group membership changes. So this solution would only
be temporary—the move to per-group access files can then be made without
being hectic.

[132]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.packtpub.com/files/code/2103_Code.zip

Chapter 10

.htaccess and PHP
Apart from that, some users might put PHP options into the .htaccess files. Pier
Alan Joye maintains a htscanner program to ease the transition. It is available at
http://pecl.php.net/package/htscanner. This program basically moves PHP
options from .htaccess files into the php.ini file.

Rewriting Rules
On the Lighttpd forums, most former Apache administrators ask how they can adapt
their rewrite rules to work with Lighttpd. There is no program (yet) to do this, but
here are some typical constructs and advice on how to do that in Lighttpd lingua:

Apache Lighttpd

LoadModule "rewrite_module"
RewriteEngine on

A simple rewrite
RewriteRule ^from_here(.*)/to_there$1

RewriteCond %{HTTP_HOST} me\..*
RewriteRule ^/(.*) /me/$1

Redirecting a single file
RewriteRule move.html target.html [R]

Solving the trailing slash problem
RewriteCond %{REQUEST_FILENAME} -d
RewriteRule (.*) $1/

Redirecting failed web pages to xyz.com
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.+) http://xyz.com/$1

Time-based multiplexing
RewriteCond %{TIME_HOUR} > 07
RewriteCond %{TIME_HOUR} < 19
RewriteRule ^foo.html foo.day.html
RewriteRule ^foo.html foo.night.html

server.modules = (..., "mod_rewrite",
"mod_redirect", ...)

refer to Chapter 2
url.rewrite = ("^/from_here" => "to_there")

$HTTP["host"] =~ "me\..*" {
url.rewrite = ("^/" => "/me/"

}

url.redirect =

("move.html" => "target.html")

nothing to do here. Lighttpd does not
have this problem.

use an CGI error page that redirects
server-error-handler-404 = "redirect.cgi"
see Chapter 12 on how to do this in lua

either use mod_magnet, see Chapter 12, or
solve this outside of Lighttpd, for example
by using a cron job to set symbolic links.

[133]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://pecl.php.net/package/htscanner
http://xyz.com/$1

Migration from Apache

Apache Lighttpd

Rewrite for google bot
RewriteCond %{HTTP_USER_AGENT} \

Google
RewriteRule ^(.+) /bots/$1

Rewrite by cookie (missing session)
RewriteCond %{HTTP_COOKIE} sess [N]
RewriteRule ^(.+) index.php

set environment variable based on query
RewriteCond %{QUERY_STRING} \

id=([^&]*)
RewriteRule ^(.*)$ /$1 [E=ID:%1]

block images by referer

RewriteCond %{REFERER} !^$

RewriteCond %{REFERER} !my\.net [NC]

RewriteRule ^images/*.png - [F]

match for useragent
$HTTP["useragent"] =~ "Google" {

url.rewrite = "^/" => "/bots"
}

use a negative regexp match
$HTTP["cookie"] !~ "sess" {

url.rewrite = ("(.*)" => "index.pho")
}

server.modules += ("mod_setenv")
$HTTP["url"] =~ "[?&]id=([^&]*)" {

setenv.add_request_header = "ID: %1"
}

deny for non-empty outside referers
$HTTP["referer"] !~ "^($|.*my\.net) {

url.access-deny = (".png")
}

Naturally this table cannot cover all aspects of Apache rewrite rules, but remember
that all complex systems have emerged from simple systems. The following chapter
will show how to set up some oft-used web applications with Lighttpd.

WebDAV
Apache does WebDAV out of the box, while Lighttpd needs the mod_webdav module
to support WebDAV, and it still has some rough edges. For example, Window users
will find that their mod_auth login does not work when they activate WebDAV;
this can be compensated by a cookie-based login. Oh, and we need to have webdav
support configured at compile time, if we built our Lighttpd from source. The
configuration, as always, is pretty straightforward:

server.modules += ("mod_webdav")

 # activate WebDAV for the server "dav.my.net"

 $HTTP["host"] == "dav.my.net" {

 webdav.activate = "enable"

[134]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 10

enable writing for members only (identify by sess cookie)

 $HTTP["cookie"] !~ "sess" {

 $HTTP["url"] =~ "^/members/" {

 webdav.is-readonly = "enable"

 }

 }

}

The important directives here are webdav.activate and webdav.is-readonly. The
former activates WebDAV, if we set it to enable. Otherwise, WebDAV is deactivated
by default. The latter forbids operations that modify files on the server (PUT and
DELETE), and is disabled by default. So unless we enable this option, PUT and
DELETES are served.

Summary
There are some obstacles on the way from Apache to Lighttpd. But a planned and
careful approach will allow us to keep our server working while we change it. The
.htaccess scanner script can be a stop gap measure to smoothen the transition for
.htaccess authentication users. Finally, a heavy use of rewrite rules can make it
tricky to move. However, we can translate them one by one into something that will
work with Lighttpd, especially when we add Lua to the mix as we will show in the
following chapter.

[135]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

CGI Revisited
In this chapter, we will go through some example setups of popular web applications
and frameworks, and see how they can be made to work with Lighttpd. We will set
up the following popular applications and frameworks:

• Ruby on Rails
• WordPress
• PhPMyAdmin
• MediaWiki
• trac
• AWStats
• AjaxTerm

Now without further ado, let's configure our Lighttpd to work with Rails:

Ruby on Rails
Ruby on Rails is a popular web application framework that has generated a lot of
hype since 2006. We can find it at http://www.rubyonrails.org. It usually works
with Apache, but with some simple configuration and mod_fastcgi we can make it
fly with Lighttpd.

Ensure a full FastCGI installation
As stated in Chapter 1, depending on our system, we might need
to add fastcgi-devel packages to actually use it. If our Lighttpd has
mod_fastcgi, we should be fine.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.rubyonrails.org

CGI Revisited

First, if we do not already have mod_fastcgi, we need to install the Ruby
interpreter. The download page at http://www.ruby-lang.org/de/downloads/
has directions for Ubuntu Linux and Mac OS X, as well as an installer for Windows.
The installation should be quite simple. Just follow the instructions on the page.

Next, we need RubyGems, the ruby package install manager. This is also
a simple download and installation (using Ruby itself). Download this from
http://rubyforge.org/frs/download.php/38646/rubygems-1.2.0.tgz, unpack
the distribution, and install it with the following command:

$ ruby setup.rb

mkdir -p /usr/local/lib/ruby/site_ruby/1.8

mkdir -p /usr/local/bin

mkdir -p /usr/local/lib/ruby/site_ruby/1.8/rbconfig

install -c -m 0644 rbconfig/datadir.rb /usr/local/lib/ruby/site_ruby/1.8/

rbconfig/datadir.rb

mkdir -p /usr/local/lib/ruby/site_ruby/1.8/rubygems

install -c -m 0644 rubygems/builder.rb /usr/local/lib/ruby/site_ruby/1.8/

rubygems/builder.rb

... [lots of text omitted] ...

RubyGems installed the following executables:

 /usr/local/bin/gem

If gem was installed by a previous RubyGems installation, you may need to remove
it manually.

With RubyGems installed, we can use it to automatically download and install Rails
with the following command:

$ gem install rails

Successfully installed rake-0.8.1

Successfully installed activesupport-2.1.0

Successfully installed activerecord-2.1.0

Successfully installed actionpack-2.1.0

Successfully installed actionmailer-2.1.0

Successfully installed activeresource-2.1.0

Successfully installed rails-2.1.0

7 gems installed

Installing ri documentation for rake-0.8.1...

... [Installing ri documentation for all other packages] ...

Installing ri documentation for activeresource-2.1.0...

[138]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.ruby-lang.org/de/downloads/
http://rubyforge.org/frs/download.php/38646/rubygems-1.2.0.tgz

Chapter 11

Installing RDoc documentation for rake-0.8.1...

... [Installing RDoc documentation for all other packages] ...

Installing RDoc documentation for activeresource-2.1.0...

Now for the sake of this example, let's presume that we create a rails application at
/web/railsapp, which would be initiated with the following command:

$ rails /web/railsapp

 create

 create app/controllers

 create app/helpers

 create app/models

 create app/views/layouts

 create config/environments

 create config/initializers

 create db

 create doc

... [creating lots of other stuff] ...

 create doc/README_FOR_APP

 create log/server.log

 create log/production.log

 create log/development.log

 create log/test.log

Finally, we add our rails application to Lighttpd. To do this, we need to make sure
we have the necessary modules:

server.modules += ("mod_rewrite", "mod_redirect", "mod_fastcgi")

We may want our Lighttpd to serve only this Rails application. In this case, we just
need to set the document-root to our Rails application's public directory:

server.document-root = "/web/railsapp/public"

Alternatively, we could want to have a subdomain or a subdirectory where our Rails
application will reside.

Either:

$HTTP["host"] == "rails.ourdomain.com" {

 server.document-root = "/web/railsapp/public"

}

[139]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

CGI Revisited

or:

$HTTP["url"] =~ "/rails/" {

 server.document-root = "/web/railsapp/public"

 url.rewrite = ("/rails" => "")

}

If we use Lighttpd 1.4, we can tell it to start the rails application for us and also to
respawn them (this is what computer science folks call restarting a process which
has died—poetic, isn't it?) should they die:

fastcgi.server = (

 ".fcgi" => (

(
"min-procs" => 1,
"max-procs" => 5,
 "socket" => "/tmp/rails_fcgi.socket",
 "bin-path" => "/www/railsapp/public/dispatch.fastcgi",
"docroot" => "/www/railsapp/public"

)

)

)

For Lighttpd since 1.5.0, we need the spawn-fcgi script, which is included with the
Lighttpd package. We can run it as follows:

spawn-fcgi -f /www/railsapp/public/dispatch.fastcgi -s \

 /tmp/rails-fcgi.socket -C 5

Then we can use the code as above but for the bin-path setting, which is no
longer required.

We also want to make sure that HTML files and fcgi files are served automatically if
they are present, and that dispatch.fcgi is invoked otherwise:

server.index-files = ("index.html", "index.fcgi")

server.error-handler-404 = "/dispatch.fcgi"

Now let's pull those pieces together:

server.modules = (..., "mod_fastcgi", ...)

$HTTP["host"] == "rails.ourdomain.com" {

 server.index-files = ("index.html", "index.fcgi")

 server.error-handler-404 = "/dispatch.fcgi"

 server.document-root = "/web/railsapp/public"

 fastcgi.server = (

[140]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

".fcgi" => (
(
"min-procs" => 1,
 "max-procs" => 5,
 "socket" => "/tmp/rails_fcgi.socket",
 # alternatively use spawn-fcgi as above
 "bin-path" => "/www/railsapp/public/dispatch.fcgi",
 "docroot" => "/www/railsapp/public"
)

)

)

}

Voilà! Our rails application is now served by Lighttpd! By the way, FastCGI is not
the only alternative. Zed Shaw has also created a Rails application for the SCGI
connector. Install it with the following command line (at the time of this writing, the
latest version available was 0.4.3; change it appropriately):

$ wget http://www.zedshaw.com/downloads/scgi_rails/scgi_rails-0.4.3.gem

20:22 - http://www.zedshaw.com/downloads/scgi_rails/scgi_rails-0.4.3.gem

 => 'scgi_rails-0.4.3.gem'

Resolving www.zedshaw.com... 67.207.134.146

Connecting to www.zedshaw.com[67.207.134.146]:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 69,120 [application/octet-stream]

100%

[==>] 69,120 112.67K/s

20:22:20 (112.59 KB/s) - 'scgi_rails-0.4.3.gem' saved [69,120/69,120]

$ gem install scgi_rails-0.4.3.gem

Now, we can change our configuration from fastcgi.server to scgi.server:

modules = (..., "mod_scgi", ...)

server.index-files = ("index.html", "index.scgi")

server.error-handler-404 = "/dispatch.scgi"

scgi.server = (

 ".fcgi" => (

(
 "min-procs" => 1,
 "max-procs" => 5,
 "socket" => "/tmp/rails_scgi.socket",
 "bin-path" => "/www/railsapp/public/dispatch.scgi",
 "docroot" => "/www/railsapp/public"

)

)

)

[141]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.zedshaw.com/downloads/scgi_rails/scgi_rails-0.4.3.gem
http://www.zedshaw.com/downloads/scgi_rails/scgi_rails-0.4.3.gem
http:www.zedshaw.com..

CGI Revisited

With version 1.5.0, spawn-fcgi should also work with SCGI programs,
as both interfaces require an application looping forever while listening
on a socket.

WordPress
This is a popular blogging software written in PHP. So we can just set it up like most
PHP applications. In this example, we will use php-cgi via the FastCGI interface.

To get a FastCGI-compatible PHP, we can either install from source (--with­
fastcgi) or let our package manager figure it out. Most distributions will
automatically add FastCGI support, if we have the FastCGI packages installed.
Gentoo users might want to set the fastcgi use flag. The Windows binaries from
http://www.php.net/downloads.php already support FastCGI by default.

Depending on our system, the executable file to use would either be php or
php-cgi. The correct executable file should give the following message (here on
a windows box):

C:\>php-cgi -v

PHP 5.2.6 (cgi-fcgi) (built: May 2 2008 18:02:06)

Copyright (c) 1997-2008 The PHP Group

Zend Engine v2.2.0, Copyright (c) 1998-2008 Zend Technologies

The (cgi-fcgi) is the thing to watch out for.

PHP without FastCGI
It is also possible to use PHP without FastCGI support through mod_cgi
at a much diminished speed.

Next, we can download WordPress from http://wordpress.org/. The page
contains links to the tar.gz and zip packages. We can simply unpack it into our
WordPress document root (in this example, in /web/wordpress).

Again, as with most web applications that want to dispatch URLs themselves, we set
the error-handler-404 to the provided dispatcher, in this case, /index.php. Also
we want to make sure that WordPress' own 404 template gets rewritten to
/index.php file in order to make permalinks work. Here is the code:

server.modules = (..., "mod_rewrite", ... "mod_fastcgi", ...)

$HTTP["host"] == "wordpress.ourdomain.com" {

[142]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.php.net/downloads.php
http://wordpress.org/

Chapter 11

server.document-root = "/web/wordpress/"

 server.index-files = ("index.html", "index.php")

 server.error-handler-404 = "/index.php"

url.rewrite = ("/themes/.*/404.php(\??.*)" => "/index.php$1")

 fastcgi.server = (

 ".php" => (

(
"min-procs" => 1,
 "max-procs" => 5, # for tuning, see chapter 8.
 "socket" => "/tmp/php-fcgi.socket",
 # alternatively use the spawn-php.sh script that comes
 # with Lighttpd in the doc/ directory.
 "bin-path" => "/usr/bin/php-cgi",
 "docroot" => "/web/wordpress"
)

)

)

}

Apart from that, we also definitively want to restrict access to the wp-admin
subdirectory. For this, we can use mod_access (refer to Chapter 7) and limit access to
valid users:

still within
$HTTP["host"] == "wordpress.ourdomain.com" {
 auth.backend = "htdigest"
 auth.backend.htdigest.userfile = "/etc/lighttpd/wordpress.admin"
 auth.require = (

 "/wp-admin" => (

"method" => "digest",

 "realm" => "WordPress",

 "require" => "valid-user"

)

)

}

Refer to Chapter 7 to know how to create /etc/lighttpd/wordpress.admin and
/etc/lighttpd/htdigest.userfile. Now, we can go on to configure our new
WordPress blog to our heart's content and start blogging—about how happy are we
with our Lighttpd!

[143]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

CGI Revisited

phpMyAdmin
As promised in Chapter 7, we will now install phpMyAdmin to work with our
Lighttpd. We assume that MySQL is already installed (if not, refer to Chapter 3 for
details on installation; also, for PHP setup, see the previous section on Wordpress).
Apart from that, phpMyAdmin benefits from two optional PHP extensions.

Extension Name Description Usage in phpMyAdmin
GD2 Binds the GD2 graphics library to PHP Showing inline JPEGs
Mcrypt Cryptographic library, very advisable Fast cookie hashing

With that out of the way, let's get phpMyAdmin up and running. If our system has
a package manager, we may look if it has a phpMyAdmin package. Otherwise,
http://www.phpmyadmin.net/home_page/downloads.php has the goods.

We get to choose between English and an International language, and between a
stable version and beta version in multiple compressed formats. As far as I can tell,
the beta is stable enough. But for this example, we will stick with the stable version,
which at the time of this writing is 2.11.9. After downloading, we can simply unpack
the archive into the directory where we want to use phpMyAdmin. For our example,
we will use /web/phpmyadmin. We should make sure that our PHP processes have
read access to the directory, especially if we have a separate chroot environment for
PHP. For this example, we'll assume the Lighttpd user will be used for PHP as well.

mkdir -p /web/phpmyadmin

unzip -d /web/phpmyadmin phpMyAdmin-2.11.9-all-languages.zip

chown -R lighttpd:lighttpd /web/phpmyadmin

Next, we need to setup phpMyAdmin. There are two way of doing this. The first
way is to create a configuration file in the phpMyAdmin folder. The second way is
using a PHP script to create said configuration file. For the latter, skip this section
and browse to the setup page at http://phpmyadmin.ourdomain.com/scripts/
setup.php (change ourdomain.com to your host address) right after configuring
your Lighttpd to serve phpMyAdmin.

Myth: phpMyAdmin is a security hole
Using phpMyAdmin will not open our server to anyone, because
someone using phpMyAdmin to administrate a database will still need
the correct user name and password for the database login and will have
restricted access to the database user's rights.

[144]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.phpmyadmin.net/home_page/downloads.php
http://phpmyadmin.ourdomain.com/scripts/

Chapter 11

Otherwise, copy the config.sample.inc.php to config.inc.php, and edit to match
our needs. For example, suppose we want to administrate a database on localhost
(for example, we might want to have a database table for mod_mysql_vhost), we
change the config.inc.php to:

<?php

$cfg['blowfish_secret'] = '1b63f8c02e5a9827';

// This should be a secret 16-digit hexadecimal number. Should it get

// known, our phpMyAdmin becomes vulnerable to session stealing.

$i=0;

$i++;

// The phpMyAdmin developers suggest using a running variable. This

// way, we cannot make typos causing configuration item mixups.

$cfg['Servers'][$i]['auth_type'] = 'cookie';

$cfg['Servers'][$i]['host'] = 'localhost';

$cfg['Servers'][$i]['connect_type'] = 'tcp';

$cfg['Servers'][$i]['compress'] = false;

// add further code here.

?>

This restricts phpMyAdmin to the database server localhost. We can also add a
MySQL user and password with the following addition (assuming we use the root
user with a password of secret, change accordingly):

$cfg['Servers'][$i]['user'] = 'root';

$cfg['Servers'][$i]['password'] = 'secret';

Note that this implies that anyone having access to the phpMyAdmin will have full
access to the database! So to keep this secure, we should add HTTP authentication
and serve it only with SSL (given we may want to use it from outside our local
network). Now it is time to edit our Lighttpd's configuration. Assuming that we have
PHP with FastCGI support (see above), the following will suffice:

mod_auth needed only if MySQL logins are preset

server.modules = (..., "mod_access", "mod_auth", "mod_fastcgi", ...)

$HTTP["host"] == "phpmyadmin.ourdomain.com" {

 # uncomment the following if we have finished configuring

 # phpMyAdmin for sensible security:

 # url.access-deny = ("/scripts/setup.php", ".inc.php")

 server.document-root = "/web/phpmyadmin/"

 server.index-files = ("index.html", "index.php")

 fastcgi.server = (

 ".php" => (

(

[145]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

CGI Revisited

"min-procs" => 1,

 "max-procs" => 5,

 "socket" => "/tmp/php_fcgi.socket",

 # alternatively use the spawn-php.sh script that comes

 # with Lighttpd in the doc/ directory.

 "bin-path" => "/usr/bin/php-cgi",

 "docroot" => "/web/phpmyadmin"

)

)
)
 # if we need additional security because we have given a MySQL
 # login in our config.inc.php or plan to do so, we should add
 # this:
 $SERVER["socket"] == ":80" {

 # serve only via SSL

 url.redirect = ("(.*)" =>

"https://phpmyadmin.ourdomain.com/$1")
 }
 auth.backend = "htdigest" # see chapter 7 for creating htdigests.
 auth.backend.htdigest.userfile = "/etc/lighttpd/phpmyadmin.users"
 auth.require = (

 "" => (

 "method" => "digest",

 "realm" => "phpMyAdmin",

 "require" => "valid-user"

)

)

}

Now, unless we have postponed configuring our phpMyAdmin because we want
to use the scripts/setup.php, uncomment the line denying access to this script.
In either case, make Lighttpd reload its configuration (either by sending a SIGHUP
using pkill -1 lighttpd or restarting it).

If we want to configure by using setup.php, we first need to create a config
directory below /web/phpmyadmin (for example, by issuing the following command
to the console:

mkdir /web/phpmyadmin/config

[146]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

"https://phpmyadmin.ourdomain.com/$1"

Chapter 11

Browse to https://phpmyadmin.ourdomain.com/scripts/setup.php. The
following screen will appear:

Note that if we have failed to create the config directory, the following error
message will appear:

Otherwise, we can set the settings in this dialog and either download the resulting
config.inc.php to later put it on our server into the /web/phpmyadmin directory by
clicking on the download link or press the Save button to save the configuration into
the config-directory we just created (this is a security measure, by the way). We can
then either copy it into the /web/phpmyadmin directory or create a link, so that future
reconfigurations can take effect immediately, at the cost of some security:

cd /web/phpmyadmin

either

cp config/config.inc.php .

or

ln config/config.inc.php config.inc.php

[147]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

https://phpmyadmin.ourdomain.com/scripts/setup.php

CGI Revisited

Now, we better uncomment the url.access-deny directive in our lighttpd.conf.
This way, our phpMyAdmin configuration remains private (see that Display button,
that could show our configuration to some script kiddie). Restart our Lighttpd again,
and we can congratulate ourselves on this fully functional phpMyAdmin.

MediaWiki
MediaWiki is probably not only one of the most popular wiki software today, but
also powers Wikipedia, one of the biggest sites today. MediaWiki, like WordPress is
a simple PHP application. Well, maybe not on the inside, but the complexity is nicely
hidden away from the web server. By the way, Wikipedia uses Lighttpd to power its
upload page.

First, download the MediaWiki distribution from the Wikimedia site at
http://download.wikimedia.org/mediawiki.The latest version at the time of
writing is 1.13.0. As MediaWiki relies on PHP, it will run on almost any system
that has a fairly recent PHP installed. Unpack the file to a directory, which we will
use as the document-root. For our example, it will be /web/mediawiki. Make
sure this folder is accessible to our PHP process—when in doubt, just run
chown -R lighttpd:lighttpd /web/mediawiki (or whichever user:group
combination our PHP process runs with).

For our example, we will assume that our PHP interpreter has FastCGI support;
if not, refer to the WordPress section. Now add the following configuration to our
lighttpd.conf:

server.modules = (..., "mod_access", "mod_fastcgi", ...)

$HTTP["host"] == "wíki.ourdomain.com" {

 server.document-root = "/web/mediawiki/"

 url.access-deny = ("/config/")

 server.index-files = ("index.html", "index.php")

 server.error-handler-404 = "/index.php"

fastcgi.server = (

 ".php" => (

(

"min-procs" => 1,

 "max-procs" => 5,

 "socket" => "/tmp/php_fcgi.socket",

 # alternatively use the spawn-php.sh script that comes

 # with Lighttpd in the doc/ directory.

 "bin-path" => "/usr/bin/php-cgi",

 "docroot" => "/web/mediawiki"

)

)

)

}

[148]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://download.wikimedia.org/mediawiki.The

Chapter 11

Now Lighttpd already serves our Mediawiki. However, we still probably want to
configure it. So point your browser to http://wiki.ourdomain.com/config to get
to the following page:

This page shows the MediaWiki environment check and allows us to configure
our wiki. Follow the documentation on the site, fill the form, and click the install
MediaWiki button. Then uncomment the url.access-deny line in our lighttpd.conf to
keep the config page private, lest a hacker should reconfigure our wiki.

Depending on the purpose of our wiki, we might add some authentication or other
security measures. Refer Chapter 7 for further directions.

Trac
Trac is a wiki and an issue tracker put into a blender and set to 10. Needless to say,
it is a great tool for every software project. trac talks FastCGI if we run trac that
way. Getting the newest trac version from Subversion seems pretty much a good
idea, as the old versions have a lot of dependencies that the trac team removed, but
they apparently never got around to releasing a "stable" version since then. The bad
news is that we will need a local install of Subversion (look at http://subversion.
tigris.org). But we can remove it after we have retrieved trac from the repository,
or use it integrated with trac.

[149]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://wiki.ourdomain.com/config
http://subversion

CGI Revisited

Setting up trac is a tedious task, even without Lighttpd. So in order to rule out errors
we should first set trac up as a standalone server and see if it runs. We can bind it to
Lighttpd afterwards.

Authentication with trac
Using trac's authentication is probably a good idea, as it allows us to
fine-tune the user permissions. We do not need the trac-digest.py,
but can use our htdigest.sh (refer to Chapter 7 and download the
htdigest.sh code file from http://www.packtpub.com/files/
code/2103_Code.zip). Be careful to remember the realm, as we need
to give it to tracd's command line. I always use "trac" as realm, to make
it easier to remember. However, if we have multiple trac installations, it
might be useful to differentiate the realms.

Once we have installed trac, we can set up a project. trac includes a trac-admin
executable that will allow us to do this in one step with the initenv command. For
our example, the trac project should reside in /web/trac/project.

$ trac-admin /web/trac/project initenv

Now, we can either run tracd as a standalone server and proxy it with Lighttpd or
use FastCGI. For the former method, we run tracd (let us assume it is on port 8000) as:

$ tracd -p 8000 –auth=project,/etc/lighttpd/trac.htdigest,project \

/web/trac/project

Optionally we can add a -s option so that trac will start with this project
directly instead of showing a project list. Now, we can add the following to our
lighttpd.conf:

server.modules = (..., "mod_proxy", ...)

$HTTP["host"] == "trac.ourdomain.com" {

 proxy.server = ("" => (host => "localhost", port => 8000))

}

Running trac with FastCGI is probably more secure (as we use no network-public
port to run the communication between Lighttpd and trac). However, it is a bit more
complicated. We create a new file at /web/trac/trac.fcgi, which contains
the following:

#!/usr/bin/python

import os

either set one project

os.environ['TRAC_ENV'] = "/web/trac/project/"

or set a parent-dir for multiple projects to get a project list:

#os.environ['TRAC_ENV_PARENT_DIR'] = "/web/trac/"

[150]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http:trac-digest.py
http://www.packtpub.com/files/

Chapter 11

run trac as FastCGI

from trac.web import fcgi_frontend

fcgi_frontend.run()

This trac.fcgi makes a FastCGI enabled trac out of our normal self-served trac.
Now we can summon our FastCGI trac using a modified version of our lighttpd.
conf snippet used to run MediaWiki:

server.modules = (..., "mod_access", "mod_fastcgi", ...)

$HTTP["host"] == "trac.ourdomain.com" {

 server.document-root = "/web/trac/project"

 # for multiple projects use "/web/trac" instead.

 url.access-deny = (".ini")

 # disallow access to ini files to keep our configuration private

 server.index-files = ("index.html", "trac.fcgi")
 server.error-handler-404 = "/web/trac/trac.fcgi"

 # track back to the main page if a page is not found

 fastcgi.server = (

 ".fcgi" => (

(
"min-procs" => 1, # configure to suit our needs
 "max-procs" => 5,
 "socket" => "/tmp/trac_fcgi.socket",
 # alternatively use the spawn-php.sh script that comes
 # with Lighttpd in the doc/ directory.
 "bin-path" => "/web/trac/trac.fcgi",
 "docroot" => "/web/trac/project"
)

)
)
 # Note that we have a choice between authenticating users by trac
 # or from within Lighttpd. If we choose the latter, see Chapter 7.

}

[151]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

CGI Revisited

Now, restart Lighttpd and we are right on trac! Sorry, couldn't resist myself ☺. We
will see something like this:

Note that for further trac configuration, edit the per-project configuration in
/web/trac/project/conf/trac.ini or the global /usr/share/trac/conf/trac.
ini file. See the trac documentation at http://trac.edgewall.org/wiki/
TracGuide to check which entries do what.

AWStats
As promised in Chapter 7, here are the steps to get AWStats up and running with our
Lighttpd. AWStats requires Perl and a few free kilobytes on our server. As the CGI
interface is used only to update the statistics, which should not be done very often
(actually once per hour or even per day is usually sufficient), serving AWStats via
mod_cgi should give us enough performance. However, if we want to use FastCGI
(which would remove the setup time for the Perl interpreter sitting in RAM), Chapter 10
has a description on how to port Perl CGI to CGI::FastCGI.

Now, we can configure AWStats by copying the awstats.model.conf to awstats.
ourdomain.conf. Search the following configuration options and change them to
match our Lighttpd configuration (long option names have been split into multiple
lines for the sake of brevity, while in the awstats.ourdomain.conf, they appear on
a single line):

[152]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://trac.edgewall.org/wiki/

Chapter 11

Option name Description Value to set (example)
LogFile This is where the log file should be, /var/log/lighttpd/access.log

depending on our system. C:\Programme\lighttpd\access.log
SiteDomain The domain for the main site of which www.ourdomain.com

log files should be parsed.
HostAliases Other names for our domain. "localhost 127.0.0.1

REGEX[ourdomain\.com$]"
AllowTo This is one of the long options. If set 1
UpdateStats to 1, it enables the "update" button on
FromBrowser the AWStats page.
CreateDirData (Optional) create DirData directory to 1
IfNotExists quell errors if it does not exist.

So, for example, we could search for a line with:

AllowToUpdateStatsFromBrowser=0

and change it to:

AllowToUpdateStatsFromBrowser=1

This is the minimum change required to make AWStats run on our domain. If
we omit the CreateDirDataIfNotExists directive, we should create a DirData
directory below our /web/awstats directory (assuming our AWStats is installed at
/web/awstats):

$ mkdir /web/awstats/DirData

Finally, we will tell Lighttpd to serve AWStats at http://awstats.ourdomain.com
with the following configuration:

server.modules = ("mod_access", "mod_auth", ... , "mod_cgi", ...)

$HTTP["host"] == "awstats.ourdomain.com" {

 server.document-root = "/web/awstats/wwwroot/"

 # use the perl script if no generated files are there.

 server.error-handler-404 =

"/web/awstats/wwwroot/cgi-bin/awstats.pl?config=ourdomain"

 url.access-deny = (".pm", ".conf", ".txt")
deny web access to modules, config and history files

 cgi.assign = (
 ".pl" => "/usr/bin/perl" # change to wherever your perl is

)

 # also as the awstats.pl may take some time and other server
 # resources, we want to restrict it to authenticated users

[153]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://awstats.ourdomain.com

CGI Revisited

auth.backend = "htdigest" # see chapter 7 for creating htdigests.
 auth.backend.htdigest.userfile = "/etc/lighttpd/awstats.users"
 auth.require = (
 "" => (

 "method" => "digest",

 "realm" => "AWStats",

 "require" => "valid-user"

)

)

}

Restart Lighttpd (or make it reload the configuration) for the changes to take effect.
Browse to http://awstats.ourdomain.com to run AWStats. Note that the canonical
URL for running the Perl script is http://awstats.ourdomain.com/cgi-bin/
awstats.pl?config=ourdomain. Click on the Update button and rejoice.

AjaxTerm
Setting up AjaxTerm (at the time of this writing, the page was unavailable, but I have
version 0.9 lying around) is as simple as this:

$ tar xzf AjaxTerm-0.9.tar.gz

$ cd AjaxTerm-0.9

$ configure && make install

Configuring prefix= /usr/local port= 8022

install -d "/usr/local/bin"

install -d "/usr/local/share/ajaxterm"

install ajaxterm.bin "/usr/local/bin/ajaxterm"

install ajaxterm.initd "/etc/init.d/ajaxterm"

install -m 644 ajaxterm.css ajaxterm.html ajaxterm.js qweb.py sarissa.js

sarissa_dhtml.js "/usr/local/share/ajaxterm"

install -m 755 ajaxterm.py "/usr/local/share/ajaxterm"

gzip --best -c ajaxterm.1 > ajaxterm.1.gz

install -d "/usr/local/share/man/man1"

install ajaxterm.1.gz "/usr/local/share/man/man1"

We can now start AjaxTerm as a daemon with the following command line:

$ /etc/init.d/ajaxterm start

Now, we can browse to http://ourdomain.com:8022/ to see if AjaxTerm is running.

[154]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://awstats.ourdomain.com
http://awstats.ourdomain.com/cgi-bin/
http://ourdomain.com:8022/

Chapter 11

Security Risk
Do not enter any sensitive information here though, as what we send and
receive is unencrypted as of now.

AjaxTerm includes its own HTTP server, so we can just proxy it using mod_proxy.
We also absolutely want to route access to it through SSL, which can be done by the
following simple configuration (refer to Chapter 6):

server.modules = (..., "mod_redirect", "mod_proxy", ...)

$HTTP["host"] == "ajaxterm.ourdomain.com" {

 $SERVER["socket"] == ":80" {

url.redirect = ("(.*)" =>

"https://ajaxterm.ourdomain.com$1")

 }

 proxy.server = ("" => (

 ("host" => "localhost", "port" => 8022)

))

}

We might also want to block access to port 8022 from outside through the use of
a firewall, just to be sure. For a thorough rundown of Lighttpd SSL setup, refer
Chapter 6.

Otherwise, AjaxTerm is a resource-intensive application. So it deserves to be
protected. Otherwise, an attacker could mount a denial-of-service attack by
launching a lot of AjaxTerm sessions in parallel.

The most effective solution against this type of attack is restricting it to authenticated
users. This can be done with the following code:

from within
$HTTP["host"] == "ajaxterm.ourdomain.com" {
 auth.backend = "htdigest" # see chapter 7 for creating htdigests.
 auth.backend.htdigest.userfile = "/etc/lighttpd/ajaxterm.users"
 auth.require = (

 "" => (

 "method" => "digest",

 "realm" => "AjaxTerm",

 "require" => "valid-user"

)
)
 # also as AjaxTerm will make a lot of request, turn the keepalive
 # knob to eleven:
 server.max-keep-alive-requests = 128
 server.max-keep-alive-idle = 10

}

[155]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

"https://ajaxterm.ourdomain.com$1"

CGI Revisited

We can also use the traffic-shaping abilities of our Lighttpd to limit the possible
damage (refer to Chapter 7):

from within
$HTTP["host"] == "ajaxterm.ourdomain.com" {
 # reduce max-write-idle to quit sessions earlier. Note: This may
 # introduce a problem with REALLY slow connections. If we get
dropped connections, tune this value up in increments of 10
 # until there are no more errors.
 server.max-write-idle = 60
 # reduce the maximum number of connections so a denial-of-service
 # attack can not bring down the system.
 server.max-connections = 64

}

Otherwise, as of version 1.5.0, we would be tempted to use mod_evasive. As long as
all clients obey the HTTP spec, which limits a client to two parallel connections, this
is fine. However, there are some plugins for all popular browsers available which lift
this barrier. If we are fine with stopping those people from accessing our AjaxTerm,
we can add the following configuration:

add mod_evasive to server.modules

server.modules = (..., "mod_evasive", ...)

limit to two parallel connections, within

 $HTTP["host"] == "ajaxterm.ourdomain.com" {

 evasive.max-conns-per-ip = 2

}

Restart Lighttpd and browse to ajaxterm.ourdomain.com to see the following:

[156]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 11

Note that we might use GET after we have entered the login for more speed but
less security. As we are running through SSL, this should not be high on our list of
concerns anyway.

By the way, someone might be tempted to hack the WSGI-FastCGI bridge from Allan
Saddi (you can get it at http://svn.saddi.com/py-lib/trunk/fcgi.py). But using
mod_proxy is clearly easier, as we do not need to dig into the python code.

Summary
Most web applications and frameworks run with Lighttpd easily by using the
FastCGI module. Some rewrite rules, and the right 404 handler will work wonders to
keep a nice URL scheme.

Applications that contain their own web servers (such as trac or AjaxTerm) can be
handled with mod_proxy, perhaps adding SSL and authentication in the process.
In this case, we probably want to block direct access to the web application from
outside by using a firewall.

Note that there is still a mod_cgi to talk to those legacy applications that will not
talk FastCGI or SCGI, as well as mod_ssi if we have some server-side includes we
want to move over from Apache. With version 1.5.0, this will be supplanted by
mod_fastcgi, which in this version will automatically restart terminated CGI scripts.

[157]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://svn.saddi.com/py-lib/trunk/fcgi.py

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Using Lua with Lighttpd
Now that we know how to attach most frameworks and applications to Lighttpd, it
is time to have a look at a tiny, yet powerful scripting language, which can be used
with FastCGI or directly integrated into Lighttpd.

Lua is one of the smallest scripting languages today (the whole distribution still fits
on a floppy disk easily), and prides itself on being a meta-paradigm-language.

As of Lighttpd 1.3, a module for cache control added Lua as a programming
language. This module was mod_cml (Cache Meta Language), and its purpose was
restricted to control cache operation.

Since Lighttpd 1.4.7, this module has been superseded by mod_magnet, which allows
Lua to manipulate the request and the reply with no startup cost. Instead it ties
up the whole Lighttpd process while the script runs. Alternatively, there is a Lua/
FastCGI application, by the author of Lighttpd, which reduces performance only a
little, but runs outside the Lighttpd process.

If we have compiled our Lighttpd without Lua, we may now go back to Chapter 1
and add it, or just download the Lua interpreter from http://www.lua.org
and play around a little bit. The Lua manual can be read online at
http://www.lua.org/manual/5.1.

Lua: A small Primer

This section is for coders who want to learn Lua.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.lua.org
http://www.lua.org/manual/5.1

Using Lua with Lighttpd

Lua is a small, fast, embeddable scripting language. It caters to no particular
paradigm, but has simple mechanisms that allow easy implementation of all
paradigms. Closures and functions as first-class types serve the functional style,
while tables, Lua's swiss-army-knife of data structures, can double up as classes or
objects. Co-routines allow turning the program flow inside-out, and an incremental
garbage collector keeps the memory requirements low for us. Without further ado,
everybody's favorite first program in Lua is:

print("Hello, World")

This is as unsurprising as most of the languages. Lua has only a few types:

Type Examples Description
nil nil This is a dummy for anything undefined.
boolean true, false Your basic standard boolean values.
number 0, 1, -42, 3.14159 Any number double precision floating point can do.
string "", 'Hi there', [[\0 Strings can contain escape sequences as in C, but need

multi-line strings]] not be zero-terminated.
function function idle() end Functions are a regular type in Lua. This means we

can work with functions as values.
table {}, {1,2,3},{a="b"} Tables are the swiss-army-knife collection type of Lua.

They work as arrays and associative arrays.

In Lua, all numbers are stored as double precision floating points. We also have
some operators:

Sign(s) Example Description
= a = 1	 = does assignment as usual.
== ~= < > a == b, x ~= nil, x < y, y 	 ~= tests for inequality. All the other relational
<= => > x, a <= b, g => h	 operators work as usual.
+ - * / 1 + 2 * 3 – 4 / 5	 The basic arithmetic operators work as advertised.
^ % 2 ^ 8, x % 7	 x^y means xy (or verbal x to the power of y). x%y is x

modulo y (the remainder of a division of x by y).
and or not a or "", x() and y	 Standard boolean operators. and/or are

short-changing: a or b() will not evaluate b() if a
is true.

.. "Hello, " .. world	 ".." concatenates strings (and numbers)
# #"Hi", #{...}	 The length operator. Works on strings and tables (for

the latter only based on counting indices).

Operator precedence is borrowed from C (and will usually work as expected). All
operators other than % and .. are left-associative.

[160]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

We can define functions with the function keyword. We can return multiple values
from a function:

function x(y) -- This is a comment
local a = y * y
return y + 1, a - 1 -- ";" at the end of a statement is optional

end -- [[This is a multiline comment

we can use our function as a, b = x(0)]]

The local keyword makes a variable scope, local. It is only reachable within the
defining block, function, if-clause, or loop. Note that we can also define a scope with:

do -- [[here is the scope]] end

Lua started out as a data description language, but evolved the usual structures to
control the program flow:

if condition() then block() end

if condition() then block() else block2() end

for i = 1, 3 do block(i) end -- block(1); block(2); block(3)

for i = 1, 5, 2 do block(i) end -- block(1); block(3); block(5)

for key, value in pairs({a="b", b="c"}) do
 io.write(k.."="..v..",") -- pairs is an iterator function.

end -- writes: "a=b,b=c" to standard output

i = 0

while i < 5 do i = i + 1 end -- increment i until 5

repeat i = i + 1 until i > 10 -- and on until 10

while (true) break end -- cheating ourselves out of the infinite loop

Most of the power of Lua comes from tables, and this is reflected in the language's
design. Tables have their own access operators and their own constructor syntax:

a = {} -- creates an empty table

b = {1, "a", function() return 1 end} -- a table used as array
-- as we can see, it can hold objects of any type

c = {a=1, b=2, ["c"]=4, [5]=6} -- both syntaxes for keyed tables

d = {{a=1}, {a=2}, i=function(...) end} -- tables can be nested

e = d[1] -- e == {a=1}; -- Lua counts from one instead of zero!!!

f = d["a"] -- f == nil, note this is also equivalent to f = d.a
-- this also explains while nil can not be a key for a keyed table

[161]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Using Lua with Lighttpd

Lua uses this powerful data structure in many places. Even the global scope is a
table, and can be accessed in the runtime as _G, which allows a powerful kind of
reflection. As we can see with the fourth example, tables alone are enough to create
a kind of object-orientation—a keyed table can encapsulate data and functions. Lua
emphasizes this idea by throwing in a bit of syntactic sugar, the implicit self by
colon. It has two uses:

function mytable:myfunction(a) return self.x + a end

-- function mytable.myfunction(self, a)...

mytable:myfunction(42) -- == mytable.myfunction(mytable, 42)

This shorthand for the implicit self makes it easy to distinguish functions that need
the self and those that do not. This is the same distinction as that between class and
instance methods. But the goodness does not end here: To make tables even more
powerful, Lua adds a mechanism called metatables that can define the functionality
for another table.

Metatable manipulation is done by calling the standard library functions
getmetatable and setmetatable:

mytable, mymeta = {}, {} -- multi-assignment works, too.

setmetatable(mytable, mymeta)

globmeta = getmetatable(_G) -- yes, we can even mess with _G.

Metatables can define a number of functions that are used by the operators:

Description Meta-Function How to exercise
Metafunctions for string,
table, and function
behavior

__len(self)
__concat(self, x)
__index(self, key)

#self
self .. x
self[key]

__setindex(self, key, value) self[key] = value
__call(self, ...) self(...)

Arithmetic functions __add(self, x) self + x
__sub(self, x) self – x
__mul(self, x) self * x
__div(self, x) self / x
__mod(self, x) self % x
__pow(self, x) self ^ x
__unm(self) - self

Comparisions (also used
for the opposite operator)

__eq(self, x)
__lt(self, x)

self == x (vs. self ~= x)
self < x (vs. self >= x)

__le(self, x) self <= x (vs. self > x)

[162]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

Metatable.__index can be a table
If the __index entry in the metatable is a table instead of
a function, its entries will mask the table entries of the original table.
For example, given a table t and meta = getmetatable(t) and
meta.__index = {a=1}, then t.a == 1, no matter whether t has
an entry at a or not.

As Lua uses tables for almost everything, and even the metatable of _G, the global
environment can be set. This allows for very flexible redefinition of runtime
behavior. However, for Web programming, some simple functions and tables
holding data usually do this job.

Iterators are another useful feature of Lua. In an above example, we have used
a "for loop" using the built-in ipairs iterator. As the iterator protocol of Lua is
documented, we can write our own iterators. For example, we could replace a
counting "for" loop with the following:

function range(f, t)
return function(_, x) return x<t and x+1 or nil end, nil, f–1

end -- use with: for i in range(1, 10) do ... end

Note that our function returns three values: The next() function (which is called
on each iteration), an environment (usually a table, here unused and thus nil,
given as first parameter to our next() function), and the initial variant (the second
parameter). We can also see a common Lua idiom: Using "_" to signify
unused variables.

What Web applications usually need is a way to handle strings. Lua comes only with
a small standard library that does not include Perl Compatible Regular Expressions.
Instead it has its own small regular expression engine with less functionality, more
speed, and a few odd things to note. First, Lua patterns do not use backslashes for
character classes and quoting. Instead the percent sign % is used.

Lua patterns do not allow nested groupings or groupings within multipliers. No
backtracking constructs are included. The usual (refer to Chapter 3) "[...]", "[^...]",
"^", "$", ".", "*", "+" and "?" work, along with "-", which works as the equivalent to
the non-greedy "*?" in PCRE. There is no direct equivalent to the non-greedy "+?". So
in the rare cases where we need it, we may just say "aa-" instead of the "a+?" that we
would use with PCRE.

[163]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Using Lua with Lighttpd

The following character classes are defined:

%w = [0-9A-Za-z] %c = [\0-\31] %p (punctuation)
%x = [0-9A-Fa-f] %a = [A-Za-z] %z = [\0] %s = [\9-\13]

%d = [0-9] %u = [A-Z] %l = [a-z] %n = [n] for all n in [^acdluswxz] (quoting)

For %p, the matched punctuation characters are:

! " § $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _ ` { | } ~

Note that for every %e character class there is a %E, which matches the character class
and is the opposite.

To match against a string literally using match, we first need to quote it against
interpretation by Lua's regex engine. We can do this with the following function:

function requote(p)
return (p or ""):gsub("([%^%$%(%)%%%.%[%]%*%+%-%?])", "%%%1")

end

Here we see a usage of Lua regular expressions: The gsub method replaces all
occurrences of a pattern with a replacement string, table, or function (which receives
all matched groups as parameters and needs to return a single string replacement).
We also see that every string has the string table as index in its metatable, so that
mystring:gsub(...) is equivalent to string.gsub(mystring, ...).

Apart from that, Lua has the following string functions:

Name Example Description
byte ("ab"):byte(1, 2) == 97, 98 Get the byte values of a string (or part of)
char string.char(97, 98) == "ab" Recreate the string by giving the byte values
dump loadstring(string.dump(f)) == f Dump a free function (without bound external

variables) to a lua-bytecode-string
format ("[%s]"):format("X") == "[X]" Our usual string formatting function
len s:len() == #s -- for all s Get the length of a string
lower lower("A") == "a" Change a string to all-uppercase or all-
upper upper("a") == "A" lowercase, respectively

rep ("*"):rep(3) == "***" Repeat a string n times
sub ("Hello"):sub(0, 4) == "Hell" Take a substring (second argument is optional)
reverse ("dooG"):reverse() == "Good" Reverse a string

These 14 functions are enough for advanced text processing. And if they are not
enough, we can get access to more functions by using modules, written either in Lua
or C/C++.

[164]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

The module system of Lua has undergone some changes in the last versions. Earlier,
Lua versions just had a "loadfile" built-in function. Now if we want to load a module,
we can do so with require("mymodule"). Lua will then search the two tables
of paths for Lua (package.path) and C modules (package.cpath), and load the
first available. It also keeps track of the already loaded modules, so we may need
require() twice without any problem. We can also create our own modules in Lua.
The module-function will reserve a fresh namespace for us:

module("mymodule")

We can also add an arbitrary number of functions to be applied over our newly-
created module namespace. For example, the package.seeall function will set the
metatable of our namespace to a table such as { __index = _G }. Just use it with:

module("mymodule", package.seeall)

Useful Lua Libraries
require() allows us to add functionality by loading C libraries at runtime (given
that we have compiled with dynamic linking, refer to Chapter 1). We can already
do some stuff with the standard distribution, but there is no support for advanced
file system operation, databases, imaging, network programming, and so on. The
following libraries should fill the biggest gaps:

•	 LuaFileSystem (http://keplerproject.org/luafilesystem): This library
is of interest if we want to manage files from within Lua. It contains functions
to iterate through directories, work with symbolic links, and file locking.

•	 LuaSQL (http://keplerproject.org/luasql): This connects to and works
with a number of SQL databases, including Oracle, MySQL, SQLite and
PostgreSQL.

•	 MD5 (http://www.keplerproject.org/md5/): This is another useful library
from project Kepler, adding an often-used hash function to our repertoire.

•	 LuaSocket (http://www.tecgraf.puc-rio.br/~diego/professional/
luasocket): This gives Lua networking capabilities and includes
implementations of HTTP/FTP/SMTP clients and some other helper classes to
work with MIME messages, URLs, and so on, on top of a low-level TCP/IP and
UDP core.

•	 Lua-GD (http://lua-gd.luaforge.net): This is a binding to the popular
GD graphics library. We may use it to generate graphics dynamically.

Apart from those, the Lua-users wiki (http://lua-users.org/wiki) has a lot of
sample code and extensions. There is also LuaForge (http://luaforge.net), a Lua
project site.

[165]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

(http://keplerproject.org/luafilesystem)
(http://keplerproject.org/luasql)
(http://www.keplerproject.org/md5/)
(http://www.tecgraf.puc-rio.br/~diego/professional/) >> endobj 1361 0 obj << /A 1362 0 R /BS << /S /S /Type /Border /W 0 >> /Border [0 0 0] /C [0.0 1.0 0.0] /Rect [194.392 260.782 482.74 271.821] /Subtype /Link /Type /Annot >> endobj 1364 0 obj << /S /URI /Type /A /URI ((http://lua-gd.luaforge.net)) >> endobj 1363 0 obj << /A 1364 0 R /BS << /S /S /Type /Border /W 0 >> /Border [0 0 0] /C [0.0 1.0 0.0] /Rect [185.632 194.544 340.906 206.064] /Subtype /Link /Type /Annot >> endobj 1366 0 obj << /S /URI /Type /A /URI ((http://lua-users.org/wiki)) >> endobj 1365 0 obj << /A 1366 0 R /BS << /S /S /Type /Border /W 0 >> /Border [0 0 0] /C [0.0 1.0 0.0] /Rect [282.229 160.706 431.742 172.225] /Subtype /Link /Type /Annot >> endobj 1368 0 obj << /S /URI /Type /A /URI ((http://luaforge.net)) >> endobj 1367 0 obj << /A 1368 0 R /BS << /S /S /Type /Border /W 0 >> /Border [0 0 0] /C [0.0 1.0 0.0] /Rect [350.746 148.106 466.061 159.626] /Subtype /Link /Type /Annot >> endobj 1354 0 obj [1355 0 R 1357 0 R 1359 0 R 1361 0 R 1363 0 R 1365 0 R 1367 0 R] endobj 1369 0 obj << /Length 3094 /Filter /FlateDecode >> stream
H��Wmo�8��n �a���CL��{�+�8I�{�]z�b?�EA˴��,����8����Rԛ�8{��hj�"�Ù�yfr�����\Lf�T����]�����;|����g�m������ﯮ�0�60���2p}��������s,��Y0�M�yAA��@
�8���c�.�M�0L���`2}4`������������b��,������X������������O��{��j6���sY�<؈%|�̒����>�u��"L�꒖�W�,����oחT��y�Q��ʣڏ�l&�4[
|���˱��R�3�X��/���t��Bd����~/��Ag����ӏ�hD��I���siy.��Q����p�����Νm�l��.����Bl!Y�ݎÆ簋�"['1�K���
��"�0���E</�Yd9�
(http://lua-gd.luaforge.net)
(http://lua-users.org/wiki)
(http://luaforge.net)

Using Lua with Lighttpd

Lua/FastCGI
The Lua/FastCGI interface comes as a single C file. It simply embeds the Lua
interpreter, binding it to the FastCGI interface, adding a little functionality here and
there. The result is that 223 lines of C code create a fully functional FastCGI scripting
environment, including a byte code cache, Lighttpd's stat cache and GET and POST
processing capabilities.

Installing Lua/FastCGI
We can get it from http://jan.kneschke.de/projects/lua. If we have already
installed Lua and FastCGI (refer to Chapter 1, if not); we can compile it using
gcc with:

$ gcc -Wall -O2 -g -o magnet magnet.c -lfcgi -llua -lm -ldl -Wl,-E

Why the -Wl,-E? The site says nothing about it?
The -Wl option gives a list of comma-separated options to the linker. The
-E linker option can also be written as "–export-dynamic" and tells the
linker to export all symbols as dynamic. If we omit this option, our Lua
scripts will not be able to find any C function, including all the built-in
functions! Also be sure to compile Lua with dynamic linking support, so
we can use Lua libraries.

Then we may put the magnet executable in a suitable place. Most Linux distributions
will want it in /usr/local/bin or /usr/bin. If we run Lighttpd in a chroot (refer
to Chapter 8), we may start magnet inside or outside the chroot, provided the socket
used is reachable from Lighttpd. Note that a big reason given in Chapter 8 for
separating Lighttpd from the backend does not usually apply here: Lua/FastCGI is
neither big nor complex (however, your applications might be written in it).

To make Lighttpd talk to our Lua/FastCGI applications, we add the following into
our lighttpd.conf file (or somewhere included from there):

server.modules = (#...

 "mod_fastcgi", # make sure we include mod_fastcgi

 #...

)

server.index-files = ("index.html", "index.lua")

fastcgi.server = (

".lua" => (
 ("socket" => "/tmp/lua-fcgi.socket",

 "bin-path" => "/usr/local/bin/magnet",

 "max-procs" => 8)

)

)

[166]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://jan.kneschke.de/projects/lua

Chapter 12

Now we can start with our first Lua website. Put the following into the index.lua
file, in a directory below the document root (let us say luatest):

print([[Status: 200

Content-Type: text/html

<html>

 <head>

 <title>

 Congratulations!

 </title>

 </head>

<body>

 Lua appears to work.

</body></html>]])

If we have compiled Lua/FCGI without error and configured Lighttpd correctly,
browsing http://localhost/luatest/ should now say: "Lua appears to work."

As we can see, we have complete control over the headers, so we can send different
HTTP status codes (for a complete definition of HTTP status codes see Appendix A
or http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html), which can be
quite interesting depending on our application. For example, sending a status of '204
No Content' if a dynamic site is unchanged will make the browser stay at the same
page after a POST request. Also, we can set the Content-Length, which we either
know before or collect by intercepting the print function:

header = {["Content-Type"]="text/html"}

content = {}

size = 0

_print = print

function print(...)
for _, v in pairs({...}) do

local tmp = tostring(v)

 size = size + #tmp

 table.insert(content, tmp)

end

end

function out()

 header["Content-Length"] = size + #content -- for newlines

for k, v in pairs(header) do _print(k .. ": " .. v) end

 print("\n")

for _, v in ipairs(content) do _print(v) end

end

[167]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://localhost/luatest/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Using Lua with Lighttpd

Now calling the print to output content will collect it to be printed out by the out
function, which we can call at the end of our script. This code just outlines the basic
idea (for example we might want to intercept io.write), but can be extended easily.

Manipulating the headers will also allow us to set Cookies, to create a session,
for example:

require("md5") -- from Kepler

require("mime") -- from LuaSocket

local sessionId = os.getenv("HTTP_COOKIE"):match("$id=[^&]*")

if sessionId == nil then

 sessionId = mime.b64(md5.sum(os.getenv("REMOTE_ADDRESS")..

 tostring(math.random())

 header["Set-Cookie"] = "id="..sessionId..";maxAge=3600"

end

We can then use this sessionId as key for a session table to store per-user data for
our Web application.

GET and POST Requests
It is good that now, we can let Lua write our pages, but we could also want to parse
the request for user input, so we can react to forms, file uploads, and so on. The
easiest form of request is a GET request: after the page URL and a "?" (or similar
separator) comes a "&" separated list of uri-encoded key=value pairs, which for
FastCGI scripts is usually in the QUERY_STRING environment variable. The following
code takes this environment variable and puts the uri-decoded key-values into
a table:

local function uridecode(k)

return (k or ""):gsub("[\r%+]",

{['\r']='\n', ["+"]=" "}):gsub("%%(%x%x)", function(h)

return string.char(tonumber(h,16))

end)

end

get, q = {}, os.getenv("QUERY_STRING") or ""

for k, v in q:gmatch("([^&=]+)=([^&=]*)") do

 get[uridecode(k)] = uridecode(v)

end

[168]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

Let us see what happens here. The uridecode function uses two little known
features of string.gsub. For replacement, it can take a table or even a function that
is called for each match with the matched groupings as arguments. The other code
just creates a table called get and iterates over the matches of the query string with a
key=value pattern, calling uridecode to sanitize the keys and values before putting
them in the table.

Reading POST requests is a wee tiny bit more complicated, as the request content
is read from the standard input. However, we may not read more than the content
length, lest our script will block, waiting for more bytes from the client, which of
course never arrive.

The easiest (and most carefree) way to read a "normal" form POST (using the
uridecode function discussed earlier) is as follows:

post, q = {}, io.read(os.getenv("CONTENT_LENGTH") or 0)

for k, v in q:gmatch("([^&=]+)=([^&=]*)") do

 post[uridecode(k)] = uridecode(v)

end

If we got a terabyte-sized POST request, this would actually try and read it into the
memory, bringing down the Lua/FastCGI, and maybe even freeze the whole system.

A more careful algorithm tries to read only as much bytes of the request as needed
and will write the data out into temporary files if there is more data than we want to
have in memory. Remember iterators? They come in handy, here:

function iterpost()
return function(e, _)

 readUntilMatches(e, kv) -- key-value-separator

 key = e.buf:match(e.b .. "(.-)" .. kv)

if key == nil then return nil end

 e.buf = e.buf:match(kv .. "(.*)")

 readUntilMatches(e, e.b) -- boundary

 value = e.buf:match("(.-)" .. e.b)

 e.buf = e.buf:sub(#value)

 return uridecode(key:match('name="(.-)"')), uridecode(value)
end,
 { -- the initial environment e for the above function

 bytes=tonumber(os.getenv("CONTENT_LENGTH") or 0),
 b="\n" .. requote((os.getenv("CONTENT_TYPE")
or ""):match("boundary=(%S*)")), kv="\r?\n\r?\n", buf=""

 }
end

[169]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Using Lua with Lighttpd

Now this is some dense code (even with the empty lines sprinkled here and there),
but it just basically reads blocks of data until it matches the next key, then further
until it matches the next value, and so on. We use the requote and the uridecode
functions we have defined earlier. The readUntilMatches function is trivially
defined as follows:

function readUntilMatches(e, b)
while e.bytes > 0 and not e.buf:match(b) do

 bytes = math.min(e.bytes, 8192)

-- using buffersize of 8192 bytes

 e.buf = e.buf .. io.read(bytes)

 e.bytes = e.bytes - bytes

end

end

This solution still takes everything into memory, even if only in steps.
However, it is possible (if not simple) to add code that puts values that
are bigger than our chunk size of 8192 directly into temp files. This code
was omitted for brevity, but is part of a cgi module you can download
the cgi.lua file from http://www.packtpub.com/files/
code/2103_Code.zip.

Looking at the Cache
Lua/FastCGI keeps a bytecode cache within Lua, so we can access the internals. The
cache is simply a table with script names as keys and more tables as values, each of
which has the following entries:

Entry Example Description
mtime 1196199674 When the entry was cached in Lua's os.time() format
hits 27 The number of hits since this entry was cached
script function (0xf85a71b) The compiled and cached bytecode as a Lua function

Note that these are plain Lua tables, and they are not even write-protected. This
means we can force a reload of the script myscript with the following command:

magnet.cache["myscript"] = { mtime=os.time(), hits=1,
 script=loadfile("myscript.lua") } -- or loadstring or function

Also reading the table gives us a good idea about pages, which have been requested
most often and they may be good targets for optimization (refer to Chapter 9).

We have now everything we need to create Web applications with Lua/FastCGI. On
to mod_magnet!

[170]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.packtpub.com/files/

Chapter 12

Running mod_magnet
Having Lua embedded in the server means there is no redirection, no interprocess
communication, and nothing to keep us from killing our Lighttpd if our code hangs.
For this section, we should have installed mod_magnet in Chapter 1 (if not, go back
there and reinstall). Now add the following to the configuration:

server.modules = (#...
 "mod_magnet", #...

)

either of the following two:

magnet.attract-raw-url-to = ("/path/to/my.lua")

magnet.attract-physical-path-to = ("/path/to/other.lua")

The first option will invoke the magnet before Lighttpd has even inferred the
physical path. We are operating directly on URLs. This is a good option if we want to
code complex rewrite logic in Lua. The other option will hand the parsed request to
our Lua script, which is fine when we want to manipulate the response.

mod_magnet gives us some hints at the request and environment, and some means
to manipulate the request and the response. When our magnet script starts, the
following tables are populated:

lighty={
 ["RESTART_REQUEST"]=99, -- A constant for returning to Lighttpd
header={ --[[The headers go here]] },
request={
 ["Accept"]="text/xml,application/xml,application/xhtml+xml," ..

"text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5",

 ["Accept-Charset"]="ISO-8859-1,utf-8;q=0.7,*;q=0.7",

 ["Accept-Encoding"]="gzip,deflate",

 ["Accept-Language"]="en-us;q=0.8,en-en;q=0.5,en;q=0.3",

 ["Host"]="mydomain.com",

 ["User-Agent"]="Mozilla/5.0 ..."

 },

 env={ --[[Depends on if we attract raw url or physical path]] },

 content={ --[[The content goes here]] },

 status={ --[[A table for mod_status/collecting statistics]] },

 stat=function(filename) ... end

}

print(...) will go straight to the Lighttpd error log for us to read.

stat(...) returns a table with the following quite self-describing entries: is_file,
is_dir, is_char, is_block, is_socket, is_link, is_fifo, st_mtime, st_
ctime, st_atime, st_uid, st_gui, st_size, st_ino, etag, content-type.

[171]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Using Lua with Lighttpd

Here are the contents of the lighty.env table on a normal request with
magnet.attract-raw-url set:

lighty.env = {

 ["uri.path"]="/path/to/file.html"

 ["uri.path-raw"]="/path/to/file.html"

 ["uri.scheme"]="http"

 ["uri.authority"]="mydomain.com"

 ["request.uri"]="/path/to/file.html"

 ["request.orig-uri"]="/path/to/file.html"

}

Note that no rewriting took place. If it did, request.uri and request.orig-uri
might differ. If we use magnet.attract-physical-path, we get the following
additional entries:

lighty.env = { ... -- see above

 ["physical.path"]="/var/www/docroot/path/to/file.html"

 ["physical.rel-path"]="/path/to/file.html"

 ["physical.doc-root"]="/var/www/docroot"

}

Now what to do with all these tables? The simple thing to do is to set headers and
content to be sent out by Lighttpd. So let us try it. We carve out a niche at our server
where we want to test mod_magnet by including it into our lighttpd.conf file:

server.modules = (#...

 "mod_magnet", #...

 # make sure it is there, for example right after mod_access

)

$HTTP["host"] == "magnet.ourdomain.com" {
 server.document-root = "/path/to/docroot"
 magnet.attract-physical-path-to = "/path/to/docroot/test.lua"

}

Now, we will put the following into our /path/to/docroot/test.lua:

lighty.headers = { ["Document-Type"] = "text/html" }
lighty.content = {"<html><head><title>mod_magnet</title></head>",
 "<body>It's alive!</body></html>"}

return 200

[172]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

Now point your browser at http://magnet.ourdomain.com—you should be
greeted by It's alive. This example shows that we can put as many strings into
lighty.content as we want. Lighttpd will send them out one by one. We also can
include files. For example, if we had a README file in the document root, we could
have it sent as a HTML file with:

lighty.headers = { ["Document-Type"] = "text/html" }

local root = lighty.env["physical.doc-root"]

lighty.content = {"<html><head><title>README</title></head><body>",

 "<pre>", {filename=root.."README"}, "</pre></body></html>"}

return 200

Yes, that's all. When mod_magnet encounters a table within the lighty.content
table, it will look for its filename field and include the named file. Note that in
conjunction with luafilesystem, we can use this to collect all files that match some
description and let Lighttpd put them together easily. Or we can add a standard
header and footer onto all the sites with all the fancy stuff that Lua lets us do.

Another use for mod_magnet is rewriting and redirecting. Although mod_rewrite
and mod_redirect do a good job for us, there are things they will not do, like
rewriting a URL to the first file found by a search or rewriting based on the time of
day or a random number. All these things can be done with mod_magnet and a little
Lua code. But first, let us dissect a simple mod_magnet rewrite:

lighty.env["request.uri"] = string.gsub(

 lighty.env["request.uri"] or "", "foo", "bar")

return lighty.RESTART_REQUEST

This code is changing the request URI and telling Lighttpd to restart the request
handling. Now a simple redirect looks like this:

lighty.header["Location"] = string.gsub(

 lighty.env["request.uri"] or "", "foo", "bar")

return 302 -- moved temporarily

Both snippets work if included with magnet.attract-raw-url-to. Now on to more
complex examples:

-- redirect to first found
if lighty.stat(lighty.env["uri.path"]) == nil then

 searchPatterns = {"media/?", "other/?", "cache/?"}

for _, v in ipairs(searchPatterns) do

local path = string.gsub(v, "%?", lighty.env["uri.path"])
if lighty.stat(path) ~= nil then

 lighty.request["Location"] = path

return 302

end

end

return 404

end

[173]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://magnet.ourdomain.com�you

Using Lua with Lighttpd

Included with magnet.attract-physical-path-to, it will redirect to the first
file found (if the file that was requested was not there in the first place) using the
searchPatterns or send a 404 file not found response if it finds no files.

Other possible uses include rewriting to a random file:

-- rewrite based on random number

dir = "/var/www/random/"

files = {"a.png", "x.png", "not.png", "else.png"}

lighty.header["Content-Type"] = "image/png"

lighty.content = {{filename=dir .. files[math.random(#files)]}}

return 200

Of course, we will want to change dir and files to suit our needs. Note that the
number we generate here with math.random can come from any source, so we may
serve files based on the time of day, the contents of the various header fields or any
other data we can imagine.

We might want to re-read the directory and the list of files from a file at runtime.
As the global environment _G changes only on restart of Lighttpd, we can use it
as a cache and use lighty.stat to know when to reload (here extending our
preceding example):

-- caching file contents in _G

source = "/var/www/random/files"

if _G.filecache == nil or

 lighty.stat(source).st_mtime > _G.filecache.time then

 _G.filecache = {time=os.time()}

for f in io.lines(source) do

if f ~= nil and f:gsub("%s", "") ~= "" then

 table.insert(_G.filecache, (f or ""):gsub("%s*$", ""))

end

end

end

-- now we can use _G.filecache as our "files" list as above.

Note that we might want to use a prefix of the name of the running script so as not to
overwrite the namespace of other magnet scripts. Also this caching can be used for
about everything, from lists of files to html snippets to search paths to rewrite rules,
for example, stored as a line containing pattern => replacement per rule.

[174]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

Example: A Shoutbox
In the following example, we will exercise both the Lua Magnet and mod_magnet to
create a shoutbox, a list of messages into which users can enter plain text. Only the
ten newest messages are shown.

The basic idea is that reading is done more often than shouting, is probably a fast
operation and can be cached, so we will use mod_magnet to assemble the shoutbox.
Shouting, on the other hand, involves validating a message against Cross-site
scripting attacks, writing it to a file, and possibly removing old messages. This will
be done using the Lua magnet.

The basic layout will be as follows:

Page name Description
/index.lua The mod_magnet script to assemble the shoutbox
/.header.html.inc A header to add to the shoutbox
/.footer.html.inc A footer to add to the shoutbox
/shout.lua The Lua magnet script to add a message
/messages/ The directory in which to store the messages
/messages/8783608325 A sample message named by 999999999—timestamp

To get a feeling of what we are trying to accomplish, look at the following picture.
The complete shoutbox should look like this:

Create the necessary directories and make the messages directory writable to our
Lua magnet, so shout.lua can write messages. Our example will be located in
/web/shoutbox, so enter the following commands (assuming a UNIX system):

$ mkdir -p /web/shoutbox/messages

$ chown lighttpd:lighttpd /web/shoutbox/messages

[175]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Using Lua with Lighttpd

Starting with a HTML mock-up (which when rendered looks like the preceding
picture), we can easily extract .header.html.inc:

<html>

<head>

<title>Shoutbox</title>

<style type="text/css">

.shoutBox { width:20em; height:10em; overflow:auto;

border:1px solid #777; padding:0px; }

.shoutBox p { display:block; width:100%; border-top:1px solid #700;

margin:1px 0px; }

</style>

</head>

<body>

<div class="shoutBox"><p>

Save the file in /web/shoutbox/.header.html.inc. The messages are separated
by </p><p>, which we will later use directly in index.lua. Now, we can extract
everything below the shouted messages into .footer.html.inc:

</p></div>

<form name="Shoutbox" action="shout" method="POST">

Shout: <input type="text" name="s" size="32" maxlength="160" />

<input type="submit" value="shout!" />

</form>

</body>

</html>

Save this file into /web/shoutbox/.footer.html.inc. Between the previous two
HTML pieces, the index.lua will concatenate the contents of all the files in the
messages directory, with a separator between each, add the header and footer, and
send it out. We use the fact that on all tested systems lfs.dir() sorts the filenames
in alphabetical order to save on sorting (we could have done it with table.
sort(...) else). The code is simple enough:

-- index.lua: put the shoutbox together.

require("lfs") -- use LuaFileSystem

lighty.headers = { ["Document-Type"] = "text/html" }

lighty.content = {{filename=".header.html.inc"}}

local root = lighty.env["physical.doc-root"]
for name in lfs.dir("messages") do

if name ~= "." and name ~= ".." then -- add to lighty.content
 table.insert(lighty.content, {filename=root..name})

[176]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

table.insert(lighty.content, "</p><p>" -- our separator
end

end

table.insert(lighty.content, {filename=".footer.html.inc"}}

return 200

Now we just need the messages to appear in the messages directory. This will be
done by using shout.lua. This script has to do the following:

1.	 Read.

2.	 Parse the message (in our example, we will just be using HTML-encode < >, &,
and ").

3.	 Write it to a file (we will prepare a code file using a simple formula which
will ensure that newer messages come first in alphabetical order).

4.	 Count the number of files and look whether it is greater than 10.
5.	 Delete the oldest file (if there are more than 10 entries).
6.	 Send a redirect to the index page.

Here is the code that performs this task step by step:

 -- shout.lua: save a message into the messages directory, clean up
 -- old messages

require("cgi") -- use the CGI module we created before
require("lfs") -- and the LuaFileSystems module

local numberofmessages = 10

local messagepath = "messages/"

-- 1. read message

local message = cgi.post["s"]

if message ~= nil then

 -- 2. parse message: Encode HTML tags

 message = message:gsub("[<>&\"]",

{"<"="<", ">"=">", "&"="&", '"'="""})

 -- 3. write message to file

local filename = 9999999999 - os.time()

local messagefile = io.open(messagepath .. filename))

 messagefile:write(message)

 messagefile:close()

end

[177]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Using Lua with Lighttpd

-- 4. count files

local files = {}

for file in lfs.dir() do

if file ~= "." and file ~= ".." then

 table.insert(files, file)

end

end

if #files > numberofmessages then -- 5. delete last file

 os.remove(messagepath .. files[#files])

end

-- 6. redirect to main page

print([[Status: 302

 Location: /]])

The Lua code is in place, so we can edit our Lighttpd configuration to make the
magnet attract the main directory to the shoutbox. Rewrite /shout to /shout.lua so
the form will have a valid target. Then make shout.lua served by Lua magnet and
put the whole thing on its own domain. Here is the code:

server.modules = ("mod_access", "mod_rewrite", "mod_magnet",

 "mod_fastcgi")

$HTTP["host"] == "shoutbox.ourdomain.com" {

 url.access-deny = (".header.html.inc", ".footer.html.inc",

 "/messages/")

 url.rewrite = ("^shout$" => "shout.lua")

 fastcgi.server = (

".lua" => (

 ("socket" => "/tmp/lua-fcgi.socket",

 "bin-path" => "/usr/local/bin/magnet",

 "max-procs" => 2) # will be enough

)

)

 $HTTP["url"] ~= "^/?$" {

 magnet.attract-physical-path = ("index.lua")

 }

}

Finally, we have the configuration, so we can restart Lighttpd and have fun
shouting into the shoutbox. By the way, feel free to use this code on your own site.
The shoutbox might be a very simple example, but the underlying method can be
extended to create a blog with comments, an AJAX live chat, or things that we can't
even yet imagine.

[178]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

Summary
Lua is a very powerful language and ideally suited for use with Lighttpd. While it
will probably not supersede the traditional Web scripting languages (most of which
begin with a "P"), its stable implementation, high-speed, and low-memory footprint
makes it a great addition to our tool chest.

mod_magnet has the advantage of zero startup cost plus access to Lighttpd's stat
cache implementation, at the price of stopping all other server tasks of this process
while the scripts run. Therefore, it should be used only for very small tasks (like
smart caching, picking a file or slapping a header and footer on a site). Also
mod_magnet is probably the best tool out there for coding complex and
dynamic rewrites.

For bigger tasks, Lua/FastCGI will have very little startup cost (compared to
other Web scripting languages), while still giving us the whole power of Lua in
a FastCGI environment. The added socket between Lua and Lighttpd costs little,
performance-wise. And the low-memory footprint means that we need little memory
per process, so we can ramp up the number of processes to distribute the workload.

With a combination of both these techniques, we can keep our site simple and fast,
as showcased in the shoutbox example. However, when mixing Lua magnet and
mod_magnet code, we have to be careful about the differences. With mod_magnet, we
have the lighty-table and return the status code, while Lua magnet scripts have the
magnet-table instead, and have to write the HTTP headers without outside help, but
unlike mod_magnet can be persuaded to parse POST-requests.

The dynamic nature of Lua makes it simple to gloss over some small differences, but
we are still unable to move code from mod_magnet to the Lua magnet or vice versa.
So, we can be thankful about having both in our toolbox.

[179]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Writing Lighttpd Modules
Lighttpd is built to be small. It also strives to give all the needed functionality
for a variety of applications. As different users tend to have different needs, it is
only logical that Lighttpd is extensible with modules. To keep this module small,
the module interface is quite simple. Modules get the full benefit of the Lighttpd
configuration file parser, so they do not need to create their own. This also keeps the
configuration syntax for modules consistent.

Modules live directly in the server. They are usually written in C (Lighttpd requires
a C binding, which could be done with C++ or other languages, but in practice
rarely is), so they are faster than using mod_magnet (which is already pretty fast).
The downside is that writing a module is much more tedious and error-prone than
writing a Lua script for use with mod_magnet. This brings us to the following rule
of thumb:

Do not write a module where a mod_magnet script will do
A mod_magnet script is usually smaller and much easier to write. The
higher level of abstraction leaves less chances of making mistakes. C,
unlike Lua, leaves the memory handling to the programmer. Also the
standard string-handling functions open security holes when used
improperly. Even if we are hell-bent on writing a module, it makes sense
to write a prototype mod_magnet script first, presuming, of course, that
the function is possible to implement in Lua.

Now that it is out of the way, we can start writing modules. First, we will implement
the famous "Hello, World" program as a Lighttpd module:

#includes "base.h"

#includes "log.h"

#includes "plugin.h"

#ifdef HAVE_CONFIG_H

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Writing Lighttpd Modules

#includes "config.h"

#endif

typedef struct { PLUGIN_DATA; /* no config */ } plugin_data;

INIT_FUNC(mod_helloworld_init) {

 plugin_data *p;

 UNUSED(srv);

 p = calloc(1, sizeof(*p));

 log_trace("Hello, World!");

 return p;

}

FREE_FUNC(mod_helloworld_free) {

 plugin_data *p = p_d;

 UNUSED(srv);

 if (p) free(p);

 return HANDLER_GO_ON;

}

int mod_helloworld_plugin_init(plugin *p) {

 p->version = LIGHTTPD_VERSION_ID;

 p->name = buffer_init_string("helloworld");

 p->init = mod_helloworld_init;

 p->cleanup = mod_helloworld_free;

 p->data = NULL;

 return 0;

}

This is the absolute minimum for a module, and it does nothing very useful. It
only logs "Hello, World" when loaded. However, by compiling, linking, and
running mod_helloworld.c from within Lighttpd, we can see if our toolchain
works as expected.

We presumably use a POSIX-compliant development system. If not, we
may need to make a few changes to the following command lines to make
them work.

Before we test our module, let us have a look at the source code. Apart from some
boiler plate (the #include) we have a type definition for the plugin data (we just
use the predefined PLUGIN_DATA, which just contains an id for our plugin) and
three functions.

[182]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 13

The mod_helloworld_plugin_init function is called directly after loading the
module. Then Lighttpd calls the mod_helloworld_init function to obtain a
plugin_data. Note that we need to return something that at least holds a
PLUGIN_DATA (which is conveniently the first element in our plugin_data
structure). When Lighttpd finishes, it calls mod_helloworld_free to release the
memory held by plugin_data. Beware that not freeing the plugin_data creates
a memory hole. The UNUSED(srv); line tells the C compiler that it is possible to
optimize away the variable (UNUSED is a macro defined in buffer.h). It is not
strictly needed, but a good style to include, and may also reduce warnings on
some compilers.

All functions except mod_helloworld_init (for obvious reasons) return an
integer value, usually the one defined in settings.h. We need to be careful with the
return values. All functions that are called when Lighttpd gets started may return
HANDLER_ERROR on failure, which will stop Lighttpd immediately. Other functions
are usually called per connection, so they should not return HANDLER_ERROR at all.
However, if they did, they would be shutting down Lighttpd every time the error
condition occurs. If there is an error during processing a connection, the correct
action is to set the HTTP status to 500 (internal server error) and return
HANDLER_FINISHED (unless we want a module for auto-shutdown):

con->http_status = 500;
return HANDLER_FINISHED;

If we do not want to finish the processing (for example, see the mod_helloworld_
free function), we can easily return HANDLER_GO_ON. Note that if a mod_*_free
function returned HANDLER_FINISHED, it would stop processing the "free" request,
opening the dreaded memory hole once again.

To test our module, we compile it first. The easiest way to do that is when we have
the mod_helloworld.c in the src directory of a Lighttpd source distribution. If we
do not have one, we can download the package from http://www.lighttpd.net
and unpack it.

Then from the src directory, we can just do the following (lines with $ are
console inputs):

$ make mod_helloworld.o

if gcc -DHAVE_CONFIG_H -DLIBRARY_DIR="\"/usr/local/lib\"" -I. -I. ­
I.. -D_REENTRANT -D__EXTENSIONS__ -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_
SOURCE -D_LARGE_FILES -pthread -I/usr/include/glib-2.0 -I/usr/lib/glib­
2.0/include -g -O2 -Wall -W -Wshadow -pedantic -std=gnu99 -MT mod_
helloworld.o -MD -MP -MF ".deps/mod_helloworld.Tpo" -c -o mod_helloworld.
o mod_helloworld.c; \

 then mv -f ".deps/mod_helloworld.Tpo" ".deps/mod_helloworld.Po";

[183]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http://www.lighttpd.net

Writing Lighttpd Modules

else rm -f ".deps/mod_helloworld.Tpo"; exit 1; fi

$ gcc -shared -o mod_helloworld.so mod_helloworld.o

ld: warning: creating a DT_TEXTREL in object.

$ # hooray, it compiled

Now we can install our module into the installation directory (presuming that
we've kept the default module installation directory of /usr/local/lib, change
if necessary):

$ /usr/bin/install -c mod_helloworld.so /usr/local/lib/mod_helloworld.so

$

Now we are ready to include our mod_helloworld into our lighttpd.conf:

server.modules = ("mod_helloworld", ...)

When we run our Lighttpd with the lighttpd.conf, we should see the following
(change the path to lighttpd.conf if needed):

$ /usr/local/sbin/lighttpd -D -f /etc/lighttpd/lighttpd.conf

Hello, World!

Note that after the module_init function has finished, all trace output
goes to the Lighttpd error.log file.

So far, so good. Now let's get on to something more demanding. For most module
implementations we will at least need some configuration. This is easily done by
extending the plugin_data type definition and augmenting the mod_init and
mod_free functions with the needed memory handling. Apart from that, a few other
functions are supplied to deal with configuration handling.

Handling Configuration
Most modules define a plugin_config data type, so they can re-use it from within
the plugin_data type. For each selector clause, Lighttpd opens a new configuration
context. Therefore, we need an array with one plugin_config for each context. This
array will be filled by the mod_*_setdefaults function, and needs to be freed by the
mod_*_free function. The usual configuration types are buffer and array, defined
in buffer.h and array.h, respectively (we do not need to include them, as they are
already included in base.h).

[184]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 13

Let us just add some configuration to our example. Here is a selection of possible
configuration values:

typedef struct {
 unsigned short boolean_value; /* e.g. our.fun=enable */
 unsigned short short_value; /* e.g. our.port=80 */
 unsigned int int_value; /* wherever we may need one */
 buffer *string_value; /* e.g. we.love="Lighttpd" */
 array *array_value; /* e.g. our.array=("a", "b") or ("a"=>"b") */
 /* be sure to include buffer.h and array.h */

} plugin_config;

Now we add this plugin_config to our plugin_data—once directly for the global
context and once in an array per context, to allow multiple contexts:

typedef struct {

 PLUGIN_DATA;

 plugin_config **config_storage;

 plugin_config conf;

} plugin_data;

A context is created by each selector, including else-clauses. This is
the secret to the power of Lighttpd's configuration system, because it
allows us to carve out sections where configuration may differ from
the global configuration.

We also need to add a new set of default functions (SETDEFAULTS_FUNC) to get
the configuration from the lighttpd.conf file into our plugin_config. Also,
we should be nice to the environment and clean up our configuration in the
mod_*_free function:

FREE_FUNC(mod_helloworld_free) {

 plugin_data *p = p_d;

 UNUSED(srv);

 if (!p) return HANDLER_GO_ON;

 if (p->config_storage) {

 size_t i;
 for (i = 0; i < srv->config_context->used; i++) {

 plugin_config *s = p->config_storage[i];
 if (!s) continue;
 /* we need to free string/array values with the

 respective function */
 if (s->string_value) buffer_free(s->string_value);
 if (s->array_value) array_free(s->array_value);
 /* now we can free the plugin_config */

[185]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Writing Lighttpd Modules

free(s);

 }

 free(p->config_storage);

 }

 free(p);

 return HANDLER_GO_ON;

}

SETDEFAULTS_FUNC(mod_helloworld_set_defaults) {
 plugin_data *p = p_d;
 size_t i;
 config_values_t cv[] = {

 /* name, destination (set later), type, scope */

 {"our.fun", NULL, T_CONFIG_BOOLEAN, T_CONFIG_SCOPE_CONNECTION},

 {"our.port", NULL, T_CONFIG_SHORT, T_CONFIG_SCOPE_CONNECTION},

 {"our.number", NULL, T_CONFIG_INT, T_CONFIG_SCOPE_CONNECTION},

 {"we.love", NULL, T_CONFIG_STRING, T_CONFIG_SCOPE_CONNECTION},

 {"our.set", NULL, T_CONFIG_ARRAY, T_CONFIG_SCOPE_CONNECTION},

 {NULL, NULL, T_CONFIG_UNSET, T_CONFIG_SCOPE_UNSET}

 /* needs to end with a NULL entry */

 };

 if (!p) return HANDLER_ERROR;

 p->config_storage = calloc(1, srv->config_context->used *

sizeof(specific_config *));

 for (i = 0; i < srv->config_context->used; i++) {

 plugin_config *s;

 s = calloc(1, sizeof(plugin_config));

 s->string_value = buffer_init();

 s->array_value = array_init();

 /* set the destinations to our new plugin_config */

 cv[0].destination = s->boolean_value;

 cv[1].destination = s->short_value;

 cv[2].destination = s->int_value;

 cv[3].destination = s->string_value;

 cv[4].destination = s->array_value;

 p->config_storage[i] = s;

 /* let Lighttpd do the rest */

 if (0 != config_insert_values_global(srv, ((data_config *)

 srv->config_context->data[i])->value, cv)) {

 return HANDLER_ERROR;

 }

 }

 return HANDLER_GO_ON;

}

[186]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 13

If the configuration would be the same for all the pages, this would be all. However,
Lighttpd allows us to carve out partitions of our site with different configuration
rules using selectors. Each selector within the configuration file opens up a new
context. We can use the config_check_cond function to see if the contents of the
selector match. This is called a matched context.

Now, whenever we need to get the applicable configuration, we just run through all
contexts. For each context, check if it matches, and if it does, put the contained entries
into the conf entry of the plugin data. Note that the first context (with number
zero) is the global context. This idiom is so common that almost every module has
a function to do it, which is usually called patch_connection. Ours would look
like this:

#define USED(n) (buffer_is_equal_string(du->key, CONST_STR_LEN(n)))

static int mod_helloworld_patch_connection(server *srv,
connection *con, plugin_data *p) {

 size_t i, j;

 plugin_config *s = p->config_storage[0];

 /* default to global context, one PATCH_OPTION per option */

 PATCH_OPTION(boolean_value);

 PATCH_OPTION(short_value);

 PATCH_OPTION(int_value);

 PATCH_OPTION(string_value);

 PATCH_OPTION(array_value);

 /* Go through all contexts (but global) */

 for (i = 1; i < srv->config_context->used; i++) {

 data_config *dc = (data_config *)srv->config_context->data[i];

 s = p->config_storage[i];

 if (!config_check_cond(srv, con, dc)) continue;

 /* Got matching context, enter the given values */

 for (j = 0; j < dc->value->used; j++) {

 data_unset *du = dc->value->data[j];

 /* if the option was set in this context, use it */

 if (USED("our.fun")) PATCH_OPTION(boolean_value);

 if (USED("our.port")) PATCH_OPTION(short_value);

 if (USED("our.number")) PATCH_OPTION(int_value);

 if (USED("we.love")) PATCH_OPTION(string_value);

 if (USED("our.set")) PATCH_OPTION(array_value);

 }

 }

 return 0;

}

#undef USED

[187]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Writing Lighttpd Modules

Now we can call this function from our handlers. After that, we can just use p.conf
as the correct configuration for the context of this connection. Lighttpd defines the
following handler callbacks (besides the init, set_defaults, and cleanup we have
already used):

Plugin Callback Name Called on Condition
handle_trigger Every second (for example, cleaning cache, should be fast)
handle_sighup On getting a sighup, it should re-read the configuration
handle_uri_raw When the raw URI is in request.uri (for example,

for rewrites)
handle_uri_clean After the URI is URL-decoded (refer to mod_access)
handle_docroot On getting the document root (refer to mod_simple_

vhost)
handle_physical Once the physical path has been set (refer to mod_alias)
handle_start_backend Called after handle_physical if the file to serve exists
handle_send_request_content Called to send out the request content
handle_response_header Called to send out the response header
handle_filter_response_content Called with the content, for example, for compression
handle_response_done Called after the response is sent
connection_reset Called after the request has been fully handled
handle_connection_close Called when the connection is closed
handle_joblist Called when all requests have been handled

The last two functions are marked as deprecated. However, handle_connection_
close is still in use by mod_proxy_core and mod_deflate to clean up connection
handling data. Maybe handle_connection_close will be merged with
connection_reset in a later version of Lighttpd.

Rewriting the Request
As we can get the URL of our connection easily, it is a small step to change it. For
example, we could want to add a random number to the filename to facilitate
random image loading (apparently still quite a popular task). To make the task easy
for us, we will add the number to the physical path after the URL has been parsed,
not to disrupt the MIME type handling:

#include <stdlib.h>

#include "buffer.h"

#include "base.h"

#include "plugin.h"

[188]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 13

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

typedef struct {
 unsigned int max;

} plugin_config;

typedef struct {
 PLUGIN_DATA;
 plugin_config **config_storage;
 plugin_config conf;

} plugin_data;

INIT_FUNC(mod_random_init) {
 plugin_data *p;
 UNUSED(srv);
 p = calloc(1, sizeof(*p));
 return p;

}

FREE_FUNC(mod_random_free) {
 plugin_data *p = p_d;

 UNUSED(srv);

 if (!p) return HANDLER_GO_ON;

 if (p->config_storage) {

 size_t i;
 for (i = 0; i < srv->config_context->used; i++) {

 plugin_config *s = p->config_storage[i];

 if (!s) continue;

 free(s);

 }
 free(p->config_storage);

 }

 free(p);

 return HANDLER_GO_ON;

}

SETDEFAULTS_FUNC(mod_random_set_defaults) {
 plugin_data *p = p_d;
 size_t i;
 config_values_t cv[] = {

 {"random.max", NULL, T_CONFIG_INT, T_CONFIG_SCOPE_CONNECTION},
 {NULL, NULL, T_CONFIG_UNSET, T_CONFIG_SCOPE_UNSET}

 };
 if (!p) return HANDLER_ERROR;
 p->config_storage = calloc(1, srv->config_context->used *

sizeof(specific_config *));

[189]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Writing Lighttpd Modules

for (i = 0; i < srv->config_context->used; i++) {

 plugin_config *s;

 s = calloc(1, sizeof(plugin_config));

 cv[0].destination = s;

 p->config_storage[i] = s;

 if (0 != config_insert_values_global(srv, ((data_config *)

 srv->config_context->data[i])->value, cv)) {

 return HANDLER_ERROR;

 }

 }

 return HANDLER_GO_ON;

}

static int mod_random_patch_connection(server *srv, connection *con,

 plugin_data *p) {

 size_t i, j;

 plugin_config *s = p->config_storage[0];

 PATCH_OPTION(max);

 for (i = 1; i < srv->config_context->used; i++) {

 data_config *dc = (data_config *)srv->config_context->data[i];

 s = p->config_storage[i];

 if (!config_check_cond(srv, con, dc)) continue;

 for (j = 0; j < dc->value->used; j++) {

 data_unset *du = dc->value->data[j];

 if (buffer_is_equal_string(du->key,

 CONST_STR_LEN("random.max"))) {

 PATCH_OPTION(max);

 }

 }

 }

 return 0;

}

URIHANDLER_FUNC(mod_random_uri_handler) {
 plugin_data *p = p_d;
 long r;
 UNUSED(srv);
 mod_random_patch_connection(srv, con, p);
 if (p->conf.max == 0) return HANDLER_GO_ON;
 /* get random value, shamelessly copied from "man rand" :-) */
 r = (long)((1.0 * p->conf.max) * (rand() / (RAND_MAX + 1.0)));
 buffer_append_long(con->physical.path, r);
 return HANDLER_GO_ON;

}

int mod_random_plugin_init(plugin *p) {

[190]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 13

p->version = LIGHTTPD_VERSION_ID;

 p->name = buffer_init_string("random");

 p->init = mod_random_init;

 p->handle_physical = mod_random_uri_handler;

 p->set_defaults = mod_random_set_defaults;

 p->cleanup = mod_random_free;

 p->data = NULL;

 return 0;

}

Compile and install again with the following commands (output omitted for
brevity):

$ make mod_random.o

$ gcc -shared -o mod_random.so mod_random.o

$ /usr/bin/install -c mod_random.so /usr/local/lib/mod_random.so

This time we use a selector to limit the effect of mod_random. Add the following to
our lighttpd.conf file:

server.modules = ("mod_random", ...)

$HTTP["url"] == "/image/ad.jpg" {

 random.max = 2

}

Now we should have three JPEG images in our image path related to the document
root named "ad.jpg0", "ad.jpg1", and "ad.jpg2". If we browse to "image/ad.jpg",
we will get served a random selection of those three images.

Note that we have already seen a more elegant and robust solution to this problem
using mod_magnet in the last chapter.

Manipulating the Response
There are a few ways to change the response sent. We could change the header
values with the handle_response_header callback, change where the response
content comes from by using handle_read_response_content or change the
response while it is sent out with the handle_filter_response_content callback.

Note that it is not absolutely necessary to use one of the callbacks to send out content.
For example, mod_flv_streaming, which sends out the headers for an embedded
flash video stream, does so by intercepting the handle_physical callback.

[191]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Writing Lighttpd Modules

Writing a response is as easy as getting a buffer from the send chunkqueue, and then
messing with the buffer contents. Some very useful functions to do this are defined
in buffer.h. We could for example do the following:

/* Get output buffer */
buffer *out = chunkqueue_get_append_buffer(con->send);

/* Define some helpful variables */

buffer *some_other_buffer = get_some_buffer();

char *some_string = get_some_string();

/* Start out new with copy, then append */
BUFFER_COPY_STRING_CONST(out, "Hi there.\n");
buffer_append_string_buffer(out, some_other_buffer);
buffer_append_string(out, some_string);
buffer_append_string_len(out, some_string, 5); /* only char 0-4 */
buffer_append_long(123456789);

We also need to increase the number of bytes to send out by our buffer. Usually, we
may also want to tell Lighttpd to close the connection to free valuable resources once
we are finished.

con->send->bytes_in += out->used – 1; /* set bytes to send */

con->send->is_closed = 1; /* close the connection */

Another way is to put stuff directly onto the chunkqueue, which is shown with a few
examples here:

#include "base.h"

#include "buffer.h"

#include "chunk.h"

/* put a buffer onto the chunkqueue – will make a copy, so we keep

 responsibility for the memory. Good for writing data we do not
 own. */

chunkqueue_append_buffer(con->write_queue, con->request_uri.query);

/* we can also put the buffer into the chunkqueue directly. This
 means the chunkqueue will take responsibility for freeing it so
 we don't need to. */

buffer *buffer = buffer_init();

buffer_append_memory(buffer, "Hello, World!", 13);

chunkqueue_append_buffer_weak(con->write_queue, buffer);

/* put a complete file onto the chunkqueue */

char *pathtofile = con->physical_path; /* in handle_physical_path */

int offset = 0; /* start from position zero */

int length; /* compute the length */

stat_cache_entry sce; /* defined in base.h */

[192]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 13

int result = stat_cache_get_entry(srv, con, pathtofile, &sce);

if (HANDLER_ERRROR == result) {

 con->http_status = 404; /* file not found */

 return HANDLER_FINISHED;

}

length = sce.st.st_size;

/* append the file from start to end onto the chunkqueue */
chunkqueue_append_file(con->write_queue, pathtofile, offset, length);
/* of course we can also use other values for offset and length */
return HANDLER_FINISHED;

The headers are stored as an array in the connection type. For example, we can add a
X-We-Love=Lighttpd header with the following code:

/* get a data_string to put our header in */

data_string *ds = (data_string *)array_get_unused_element(

 con->response.headers, TYPE_STRING);

if (ds == NULL) ds = data_response_init();

/* set key and value and add our entry to the response headers */
BUFFER_COPY_STRING_CONST(ds->key, "X-We-Love");
BUFFER_COPY_STRING_CONST(ds->value, "Lighttpd");
array_insert_unique(con->response.headers, (data_unset *)ds);

The con->http_status field holds the HTTP status code that has already been shown
for error handling. A list of status codes can be found in Appendix A. Finally, we can
read the contents of files using the stream functions, which will give us a character
pointer we can use for searching (refer to mod_ssi for example using PCRE):

stream s;

if (-1 == stream_open(&s, path)) {

 log_error_write(srv, __FILE__, __LINE__, "sb",

"stream-open: ", path);

 return -1;

}
/* we can use s.start as a char *pointer to directly map the file. */
stream_close(&s);

The concluding example of this chapter is a workaround to the fact that many HTML
pages do not declare a document type, which sends certain Internet browsers into
the so-called "quirks mode", which means they will interpret layout information in
a nonstandard way to be backwards-compatible to older versions that had the
same faults.

[193]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Writing Lighttpd Modules

Our mod_doctype takes two configuration strings, which will be put before html and
frameset documents, respectively. The implementation is very basic, but with the
right configuration, it might be useful nonetheless:

put directly before mod_staticfile

server.modules = (..., "mod_doctype", "mod_staticfile")

$HTTP["url"] =~ ".html$" {

 doctype.html = "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01\

 Transitional//EN\" \"http://www.w3.org/TR/html4/loose.dtd\">"
 doctype.frameset = "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01\

Frameset//EN\" \"http://www.w3.org/TR/html4/frameset.dtd\">
}

This tells mod_doctype to put the corresponding string as a document type
declaration before the file contents. Without further ado, here is the code:

#include "log.h"

#include "stream.h"

#include "plugin.h"

/* First, we include needed header files and define our plugin_config
 * and data structure, as seen above.

 */

typedef struct {

 buffer *html_doctype;

 buffer *frameset_doctype;

} plugin_config;

typedef struct {

 PLUGIN_DATA;

 plugin_config **config_storage;

 plugin_config conf;

} plugin_data;

/* Our usual init function to claim the plugin data memory. */
INIT_FUNC(mod_doctype_init) {

 plugin_data *p;

 p = calloc(1, sizeof(*p));

 return p;

}

/* Helper function for mod_doctype_free, free a single plugin_config.
 */
void mod_doctype_freeconf(plugin_config *c) {

 if (!c) return; /* beware of the null value */

 if (c->html_doctype) buffer_free(c->html_doctype);

[194]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

"http://www.w3.org/TR/html4/loose.dtd">"
"http://www.w3.org/TR/html4/frameset.dtd">

Chapter 13

if (c->frameset_doctype) buffer_free(c->frameset_doctype);
 free(c);

}

/* Our usual free function to let go of the memory for configuration.

 */

FREE_FUNC(mod_doctype_free) {

 plugin_data *p = p_d;

 UNUSED(srv);

 if (!p) return HANDLER_GO_ON;

 mod_doctype_freeconf(&(p->conf));

 if (p->config_storage) {

 size_t i; /* iterate over contexts, free plugin_configs */
 for (i = 0; i < srv->config_context->used; i++) {

 plugin_config *s = p->config_storage[i];

 mod_doctype_freeconf(s);

 }
 free(p->config_storage); /* free the storage array */

 }

 free(p); /* free our plugin_data struct */

 return HANDLER_GO_ON;

}

/* The set_defaults function also contains nothing surprising */
SETDEFAULTS_FUNC(mod_doctype_set_defaults) {
 plugin_data *p = p_d;
 size_t i;
 config_values_t cv[] = { /* name, destination, type, scope */

 {"doctype.html", NULL, T_CONFIG_STRING,

 T_CONFIG_SCOPE_CONNECTION},

 {"doctype.frameset", NULL, T_CONFIG_STRING,

 T_CONFIG_SCOPE_CONNECTION},

 {NULL, NULL, T_CONFIG_UNSET, T_CONFIG_SCOPE_UNSET}

 };

 if (!p) return HANDLER_ERROR;

 p->config_storage = calloc(1, srv->config_context->used *

sizeof(specific_config *));

 for (i = 0; i < srv->config_context->used; i++) {

 plugin_config *s;

 s = calloc(1, sizeof(plugin_config));

 s->html_doctype = buffer_init();

 s->frameset_doctype = buffer_init();

 cv[0].destination = s->html_doctype;

 cv[1].destination = s->frameset_doctype;

[195]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Writing Lighttpd Modules

p->config_storage[i] = s;
 if (0 != config_insert_values_global(srv, ((data_config *)

 srv->config_context->data[i])->value, cv)) {
 return HANDLER_ERROR;

 }

 }

 return HANDLER_GO_ON;

}

/* The usual patch_connection function – nothing new here
 */
#define PATCH(x) p->conf.x = s->x;
static int mod_doctype_patch_connection(server *srv, connection *con,

plugin_data *p) {

 size_t i, j;

 plugin_config *s = p->config_storage[0];

 PATCH(html_doctype);

 PATCH(frameset_doctype);

 for (i = 1; i < srv->config_context->used; i++) {

 data_config *dc = (data_config *)srv->config_context->data[i];

 s = p->config_storage[i];

 if (!config_check_cond(srv, con, dc)) continue;

 for (j = 0; j < dc->value->used; j++) { /* get all values */

 data_unset *du = dc->value->data[j];
 if (buffer_is_equal_string(du->key,

 CONST_STR_LEN("doctype.html"))) {
 PATCH(html_doctype); /* set html_doctype, if found */

 } else if (buffer_is_equal_string(du->key,
CONST_STR_LEN("doctype.frameset"))) {

 PATCH(frameset_doctype); /* set frameset_doctype */
 }

 }

 }

 return 0;

}
#undef PATCH

/* A helper function to determine if a html file contains a frameset.
 * Uses a stream to peek at the file contents.

 */

static int mod_doctype_is_frameset(server *srv, buffer *path) {
 stream s;
 int result;
 if (-1 == stream_open(&s, path)) {

[196]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 13

log_error_write(srv, __FILE__, __LINE__, "sb", "stream-open: ",
 path);

 return 0; /* defaulting to no frameset */
 }
 result = !strstr("<frameset", s.start); /* search for frameset */
 stream_close(&s); /* close the stream, release resources */
 return result;

}

/* Our physical path handling function.
 */
URIHANDLER_FUNC(mod_doctype_physical_path) {
 plugin_data *p = p_d;
 size_t i;
 if (con->physical.path->used == 0) return HANDLER_GO_ON;
 mod_doctype_patch_connection(srv, con, p);
 for (i = 0; i < p->conf.html_doctype->used; i++) {

 data_string *ds = (data_string *)p->conf.html_doctype;

 buffer *doctype;

 if (ds->value->used == 0) continue;

 if (mod_doctype_is_frameset(srv, con->physical.path)) {

 doctype = p->conf.frameset_doctype;

 } else {

 doctype = p->conf.html_doctype;
 }
 chunkqueue_append_buffer(con->write_queue, doctype);
 return HANDLER_GO_ON; /* let mod_staticfile do the rest */

 }
 return HANDLER_GO_ON;

}

/* Here is our basic init function. No surprise here, either.
 */
int mod_doctype_plugin_init(plugin *p) {
 p->version = LIGHTTPD_VERSION_ID;
 p->name = buffer_init_string("doctype");

 p->init = mod_doctype_init;

 p->handle_subrequest_start = mod_doctype_physical_path;

 p->set_defaults = mod_doctype_set_defaults;

 p->cleanup = mod_doctype_free;

 p->data = NULL;

 return 0;

}

[197]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Writing Lighttpd Modules

Note that the module does not allow for HTTP range requests, because adding this
would have diverted from the basics of handling streams, buffers, and the write
queue. The mod_doctype_physical_path function looks at the configuration context
to see if our document type adding applies, and then uses the mod_doctype_is_
frameset function to decide which document type string to use. It then adds the
selected buffer to the write queue and hands it over to mod_staticfile, which will
then send out the file. For the record, this is a 140 line C program where a 14 line
mod_magnet script (even with short lines) would have done the job, with none of the
restrictions of the C code:

mod_doctype.lua

local p = lighty.env["physical.doc-root"] + lighty.env["request.uri"]

local f = io.open(p, "r")

if f:read("*a"):find("<frameset", 0, true) then

 lighty.content = {'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01\

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">',
{filename=path}}
else
 lighty.content = {'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01\

Frameset//EN" "http://www.w3.org/TR/html4/frameset.dtd">',
{filename=path}}
end
f:close()

return 200

This is a good example of why we should think twice before writing a module. The
probability of errors is directly proportional to the number of code lines. So we are
bound to get ten times as many errors in the C module. Moreover, the mod_magnet
script is easier to put to use.

Nevertheless, if we have a compelling need (and looking from the modules section
on the Lighttpd wiki, people do find good uses for new modules), a module can fill a
niche where a mod_magnet script will be too slow, high-level or resource intensive.
And finally there are libraries that do not have Lua bindings, so we are left with the
choice of writing a Lighttpd module or a Lua binding.

[198]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

"http://www.w3.org/TR/html4/loose.dtd">'
"http://www.w3.org/TR/html4/frameset.dtd">'

Chapter 13

Summary
As we have seen, writing modules, while not exactly easy, is certainly doable for
an average C programmer. Lighttpd goes out of its way to make its plugin API
powerful and simple to use. But before writing a plugin, we should ask ourselves a
few questions:

• Is the solution from outside of Lighttpd sensible?
• Does the Lighttpd core or a standard module do the job?
• Can I write a mod_magnet script to solve my problem?
• Which standard module is the easiest to extend to solve the problem?

Only if we answer the first three questions with "no", we should consider writing a
module. The fourth question gives us a hint if we should extend another module that
solves a similar problem (be sure to read the license in COPYING first) or start from
mod_skeleton.c, which is supplied with the Lighttpd source. Alternatively, feel free
to use any of the implementations given in this chapter as a starting point. Oh,
and if the result is a useful plugin, think about giving it back to the Lighttpd
community. Thanks!

[199]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

HTTP Status Codes

Code Used For / Meaning
100 Continue These codes are reserved for future versions
101 Switching Protocols
200 OK The usual response to a GET
201 Created The correct response to a PUT/POST
202 Accepted The server accepted the data, but did not do anything with it yet

(for example in case of an upload)
203 Non-Authoritative Usually sent by a proxy
Information
204 No Content This is a good way to tell a client the page has not been updated
205 Reset Content This tells the client to reset all form fields
206 Partial Content This is implemented in HTTP 1.1 as a response for a

range request
300 Multiple Choice Give the client a choice where to fetch the data, for example,

for mirrors
301 Moved Permanently Tell the browser to redirect and update bookmarks
302 Moved Temporarily Tell the browser to redirect for now. Refer to

Chapter 2 for further information.
303 See other Redirects a POST request to a GET request.

304 Not modified Means the same as 204, but answers an If-Modified request

305 Use Proxy Tells the client to connect through a proxy server

307 Temporary Redirect Sent if a client denies a 302

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

HTTP Status Codes

Code Used For / Meaning
400 Bad Request The request does not conform to the HTTP syntax

401 Access Denied Sent by mod_auth; initiates HTTP authorization. Refer to
Chapter 7 for further information

402 Payment required For micropayment (not implemented)
403 Forbidden If the server could not access a file or if the HTTP

authorization failed
404 Not found The file was not found on the server.

Refer to server.error-handler-404 in Chapter 2.
405 Method not allowed The client should try a different method
406 Not Acceptable The request was denied for formal reasons
407 Proxy Authentication A HTTP proxy should be used for authenticating the client
required
408 Timeout Self descriptive, isn't it? Refer to server.timeout in Chapter 2
409 Conflict A file to read/write is locked.
410 Gone The page has moved to an unknown location, so a redirect is

not possible.
411 Length Required The server requires a Content-Length header on POST request
412 Precondition Failed A Precondition specified in the request could not be satisfied
413 Request Entity Some of the request entities were too large to fit in the buffers;
Too Large Bad luck.
414 Request URL The URL did not fit in the buffer so the request was probably bad
Too Long anyway.
415 Unsupported The client asked a MIME type that the server did not know
Media Type
416 Request Range We got a HTTP 1.1 range request with a negative or overflowing
Not Satisfiable range
417 Expectation Failed The client sent an Expect header with the request, but we could

not fulfill it
500 Internal Server Error Usually the result of a CGI script gone wrong
501 Not Implemented Sent out for a non-HTTP1.1 request—anything but GET, HEAD,

or POST
502 Bad Gateway Another server on the backend returned an error
503 Service Unavailable There was an error on the backend site, but it will be fixed real

soon now
504 Gateway Timeout The request was proxied to another server, but the proxied

request timed out
505 HTTP Version Not Lighttpd will send this for any version above 1.1
Supported

[202]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Module/Configuration Index

Internal

Here � stands for a switch with the possible values "enable" and
"disable", 123 stands for a number, ABC stands for a string, (...) stands for
a list and (X=>Y) for a mapping of values.

Name Type Description

connection.kbytes-per-second 123 Throttle the traffic per connection

debug.log-condition-cache-handling • Enable debug logging for different parts of
the Lighttpd server

debug.log-condition-handling •

debug.log-file-not-found •

debug.log-request-handling •

debug.log-request-header •

debug.log-request-header-on-error •

debug.log-response-header •

debug.log-state-handling •

debug.log-timing • Enable timing information in log messages

mimetype.assign (X=>Y) Assign a mimetype to fi le extensions

mimetype.use-xattr • Use the xattr call to get the mime type if we
use the X File System.

server.bind ABC Binds Lighttpd to the specifi ed hostname.
Otherwise the request hostname is used.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Module/Confi guration Index

Name Type Description
server.chroot ABC The directory to chroot into
server.core-files • Enable Resource Limiting for core files
server.docroot OLD Use server.document-root instead
server.document-root ABC The main directory where Lighttpd gets the

fi les from
server.error-handler-404 ABC Path to a file to serve on File not Found
server.errorfile-prefix ABC Path/prefix (+ error-code + ".html") to file
server.errorlog ABC Path to a file where errors are logged
server.errorlog-use-syslog • Alternatively use syslog for error logging
server.event-handler ABC Event handler to use (refer to Chapter 9)
server.follow-symlink • Enable Lighttpd following symbolic links
server.force-lower-case-files OLD Use server.force-lowercase-fi lenames instead
server.force-lowercase-filenames • Force all filenames to lower case
server.groupid OLD Use server.groupname instead
server.groupname ABC Run Lighttpd with this group
server.host OLD Use server.bind instead
server.kbytes-per-second 123 Throttle the server-wide throughput
server.max-connection-idle 123 Limit the number of idle connections
server.max-connections 123 Limit the number of overall connections
server.max-fds 123 Limit the number of fi le descriptors
server.max-keep-alive-idle 123 Seconds before an idle keepalive session is

dropped

server.max-keep-alive-requests 123 Number of requests before a keepalive
session is dropped

server.max-read-idle 123 Timeout for receiving data
server.max-read-threads 123 Limit the number of threads for read calls
server.max-request-size 123 Limit the request size until a 413 is sent
server.max-stat-threads 123 Limit the number of threads for stat calls
server.max-worker 123 Limit the number of worker processes (for

multi-CPU) to spawn.
server.max-write-idle 123 Timeout for sending data
server.modules (...) Which modules to use
server.name ABC The Server Name, defaults to hostname

[204]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Appendix B

Name Type Description
server.network-backend ABC Backend to use (refer to Chapter 9)
server.pid-file ABC A file to store Lighttpds pid (for example,

for init)
server.port 123 The port to bind to; or use selectors
server.protocol-http11 • Enable HTTP1.1 (usually enabled)
server.range-requests • Allow serving the specific ranges of files
server.stat-cache-engine ABC "disable", "simple", or "fam" (if available)
server.tag ABC Set the server tag (defaults to Lighttpd +

version)
server.upload-dirs (...) Set the directories for fi le upload
server.use-ipv6 • Enable IPv6 connections
server.use-keep-alive OLD Use server.max-keep-alive-requests = 0 to

disable keep-alive instead
server.use-noatime • Disable setting access time on read
server.userid OLD Use server.username instead
server.username ABC Run Lighttpd with this user
server.virtual-default-host OLD Load mod_simple_vhost and use simple­

vhost.default-host instead
server.virtual-docroot OLD Stricken since 1.5.0.
server.virtual-root OLD A list of ciphers, default is now TLS
ssl.ca-file ABC Enable SSL
ssl.cipher-list (...) Path to the certificate file, See Chapter 8
ssl.engine • Stricken since 1.5.0, default is now TLS
ssl.pemfile ABC
ssl.use-sslv2 •

mod_access
Name Type Description
access.deny-all • Since 1.5.0, denies access to all fi les; usually

set within a selector.

url.access-deny (...) Denies access to matching files

[205]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Module/Confi guration Index

mod_accesslog
Name
accesslog.filename
accesslog.format
accesslog.use-syslog

mod_alias
Name
alias.url

mod_auth
Name
auth.backend
auth.backend.htdigest.userfile
auth.backend.htpasswd.userfile
auth.backend.ldap.allow-empty-pw
auth.backend.ldap.base-dn
auth.backend.ldap.bind-dn
auth.backend.ldap.bind-pw
auth.backend.ldap.ca-file
auth.backend.ldap.cert

auth.backend.ldap.filter
auth.backend.ldap.hostname
auth.backend.ldap.key

auth.backend.ldap.starttls
auth.backend.plain.groupfile
auth.backend.plain.userfile
auth.debug
auth.require

Type Description
ABC Path to a file for log requests
ABC A template string, refer to Chapter 7
• Use syslog instead of logging to file

Type Description
(X=>Y) Map URLs to document roots

Type Description
ABC "plain", "htpasswd", "htdigest", or "ldap"

ABC Path to htdigest userfile

ABC Path to htpasswd userfile

• Since 1.5.0, allows bind with no password
ABC The base dn of the LDAP directory
ABC The user dn with which to bind
ABC The password for binding
ABC A certifi cate authority file. Refer to Chapter 6.
ABC Since 1.5.0, the public certificate

(for self-signing)
ABC A search filter for LDAP accounts
ABC The LDAP directory server (IP address)
ABC Since 1.5.0, the private key for self-signing,

use in conjunction with auth.backend.
ldap.cert.

• Enables Secure LDAP over TLS

ABC Path to a plain groupfi le (user:group)

ABC Path to a plain userfi le (user:password)

123 Sets the debug level for this module

(X=>Y) Maps matching URLs to requirements (Refer
to Chapter 7)

[206]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Appendix B

mod_cgi
Name Type	 Description
cgi.assign (...)	 Map matching URLs to CGI processes;

refer to Chapter 3, 10, and 12

cgi.execute-all •	 Since 1.5.0

mod_cml
This module has been introduced in version 1.3.15 and was replaced by the more
powerful mod_magnet (see below) in version 1.4.12.

Name Type	 Description
cml.extension ABC	 Lighty will interpret all the fi les ending

with this string by mod_cml, for example,

"cml"

cml.memcache-hosts (...)	 A list of memcached hosts

cml.memcache-namespace ABC	 Memcached namespace of the cache

cml.power-magnet ABC	 Since 1.4.9, mod_cml can intercept all
requests to a single Lua file by setting
power-magnet to the name of the file

mod_chunked
This module was introduced in version 1.5.0 to allow for chunked encoding of traffic.

Name Type	 Description
chunked.debug 123 Sets the debug level for this module
chunked.encoding • Enables chunked encoding

mod_compress
Name Type	 Description
compress.cache-dir ABC Path to a directory used for caching
compress.filetype (...) A list of file extensions to compress
compress.max-filesize 123 Compresses files to the given size

[207]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Module/Confi guration Index

mod_deflate
This module is a modified version of mod_compress and was introduced in 1.5.0 to
allow compression of dynamic content.

Name Type Description
deflate.allowed_encodings
deflate.compression-level
deflate.debug
deflate.enabled
deflate.mem-level
deflate.mimetypes
deflate.min-compress-size
deflate.output-buffer-size
deflate.sync-flush

deflate.window-size

deflate.work-block-size

(...)
123
�

�

123
(...)
123
123
�

123

123

Since 1.5.0, one to three of ("bzip2", "gzip", "deflate")
Compression level for bzip2 algorithm (1..9)
Enables Debugging for this module
Enables defl ate compression
Memory level for deflate compression (1..9)
Deflates the given mime types
Minimum size a file must be compressed to
Set the output buffer size in bytes
Enable to send output to the browser while compressing
the rest
For gzip compression the window size is two to the
power of this value (8..15)
The number of bytes to compress at once

mod_dirlisting
Name Type Description
dir-listing.activate
dir-listing.encoding
dir-listing.exclude
dir-listing.external-css
dir-listing.hide-dotfiles
dir-listing.hide-header-file
dir-listing.hide-readme-file
dir-listing.show-header

dir-listing.show-readme

server.dir-listing

�

ABC
(...)

ABC
�

�

�

�

�

�

Enables directory listings
Character encoding to use (for example, UTF-8)
Omits listing the matching directories
Path to the external CSS file to be included
Hides files starting with dot in the list
Hides HEADER.txt from the list
Hides the README.txt file, if it exists
Shows the contents of the HEADER.txt before listing
the directory
Shows the contents of README.txt before listing
the directory
Globally enables/disables directory listing

[208]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Appendix B

mod_evasive
Name Type	 Description
evasive.max-conns-per-ip 123	 Limits open connections per IP

mod_evhost
Name Type	 Description
evhost.path-pattern ABC	 A template for the path; refer to

Chapter 3

mod_expire
Name Type	 Description
expire.url (X=>Y) Expires matching URIs after a given

interval from access or modifi cation. The
interval is given as a number plus a unit
where the unit is in seconds, minutes,
hours, days, weeks, months, or years

mod_fastcgi
In version 1.5.0, mod_fastcgi has been deprecated and replaced by mod_proxy_core
and mod_proxy_backend_fastcgi.

Name Type	 Description
fastcgi.debug 123 Sets the debug level for this module
fastcgi.map-extensions (...) Maps file extensions to script interpreters
fastcgi.server (X=>Y) Maps matching URIs to FastCGI server

processes; see Chapter 3

mod_flv_streaming
Name Type	 Description
flv-streaming.extensions (...)	 A list of extensions to stream (usually flv)

[209]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Module/Confi guration Index

mod_indexfile
Name Type Description
index-file.names (...) Uses the first file found in the list as index
server.indexfiles (...) The same as index-file.names

mod_magnet
mod_magnet embeds the scripting language Lua into Lighttpd to mess with the
request-response chain. For further information refer to Chapter 12.

Name Type Description
magnet.attract-physical (X=>Y) = attract-physical-path-to in version 1.5.0
magnet.attract-physical-path-to (X=>Y) Maps encountered paths to Lua files
magnet.attract-raw (X=>Y) = attract-raw-url-to in version 1.5.0
magnet.attract-raw-url-to (X=>Y) Maps encountered URLs to Lua files
magnet.attract-response-content-to (X=>Y) Mangle the content after the headers have

been sent
magnet.attract-response-header-to (X=>Y) Mangle only the headers

mod_proxy
This module has been replaced in version 1.5.0 by mod_proxy_core and
mod_proxy_backend_http.

Name Type Description
proxy.balance ABC Selects the proxy algorithm from "hash",

"round-robin" or "fair"
proxy.debug 123 Sets the debug level for this module
proxy.server (X=>Y) Maps matching URLs to HTTP servers

mod_proxy_core
 Since version 1.5.0, mod_proxy_core replaces mod_proxy, and the various
mod_*cgis. We still need to load the backend modules for using them (starting with
mod_proxy_backend_, followed by the protocol name, see proxy-core.protocol).

[210]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Appendix B

Name Type Description
proxy-core.allow-x-rewrite • Enables X-Rewrite headers to relay request

to another host
proxy-core.allow-x-sendfile • Enables X-Sendfile headers to send an

already created file
proxy-core.backends (...) A list of hosts, either as IP addresses,

hostnames or UNIX sockets
proxy-core.balancer ABC Selects the load-balancing algorithm (one

of "round-robin", "sqf", "carp" or "static")
proxy-core.check-local OLD This was a workaround to a PHP bug, but

should no longer be necessary
proxy-core.debug 123 Sets the debug level for this module
proxy-core.max-keep-alive-requests 123 Requests until keep-alive session closes
proxy-core.max-pool-size 123 Size of the connection pool per backend
proxy-core.protocol ABC Selects the protocol to use ('http', 'fastcgi',

'ajp13', or 'scgi')
proxy-core.rewrite-request (X=>Y) Rewrites request headers or URI (similar to

mod_rewrite, but works on other request
parameters: "_uri", "_docroot", "_pathinfo",
"_scriptname"

proxy-core.rewrite-response (X=>Y) Rewrites response headers (by name);
proxy-core.split-hostnames • Disabling this option allows pooling

addresses if there are multiple IP
addresses for a given DNS hostname

mod_redirect
Name Type Description
url.redirect (X=>Y) Matching URLs are redirected,

see Chapter 2
url.redirect-code 123 Since 1.5.0, this tells Lighttpd which

redirect code to use (refer to
Appendix A)

[211]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Module/Confi guration Index

mod_rewrite
Name Type	 Description
url.rewrite (X=>Y)	 = url.rewrite-once
url.rewrite-final (X=>Y)	 = url.rewrite-once
url.rewrite-once (X=>Y)	 Maps search patterns to replacement

templates, will be executed once.

url.rewrite-repeat (X=>Y)	 Same as rewrite-once, but will be executed

until the pattern no longer matches
(at most a 100 times).

mod_rrdtool
mod_rrdtool might be stricken from 1.5.0 until the final release, leaving mod_status
to fill the niche, as Jan Kneschke has hinted in the Lighttpd blog. However, the
pre-releases so far still have it. Refer to Chapter 7 for instructions on how to setup
Lighttpd with rrdtool.

Name Type	 Description
rrdtool.binary ABC Path to the rrdtool binary
rrdtool.db-name ABC Path to the rrdtool database

mod_scgi
This module has been replaced in version 1.5.0 by mod_proxy_core and
mod_proxy_backend_scgi.

Name Type	 Description
scgi.debug 123	 Sets debug level for this module
scgi.server (X=>Y)	 Maps matching URIs to SCGI processes;

see Chapter 3

[212]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Appendix B

mod_secure_download
A way of securing downloads by an application supplied token, which is generated
with a timestamp and invalidated after a given time. Refer to Chapter 4 for
further information.

Name Type	 Description
secdownload.document-root ABC	 Document-root of the download area
secdownload.secret ABC	 A "secret" which will be hashed into a

token together with a timestamp

secdownload.timeout 123	 Seconds until the token is invalidated
secdownload.uri-prefix ABC	 The download URL will consist of this

prefix, the token and the path to the fi le to

download

mod_setenv
mod_setenv manipulates the environment, request, or response headers for external
processes. The configuration statements are best used within selectors. Refer to
Chapter 5 for further information.

Name Type	 Description
setenv.add-environment (X=>Y)	 Key-Value map to add to environment
setenv.add-request-header (X=>Y)	 Key-Value map to add to HTTP request

headers

setenv.add-response-header (X=>Y)	 Key-Value map to add to HTTP response

headers

mod_simple_vhost
Name Type	 Description
simple-vhost.debug 123	 Sets the debug level for this module
simple-vhost.default-host ABC	 Defaults to this host on missing directory
simple-vhost.document-root ABC The path is created by appending the

simple-vhost.server-root ABC server-root, the hostname, and the

document-root

[213]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Module/Confi guration Index

mod_sql_vhost_core, mod_mysql_vhost
 Before 1.5.0, mod_mysql_vhost was self-contained. In 1.5.0, the non-MySQL-specific
parts have been pulled into mod_sql_vhost_core, so there may be more database
backends in the future. In 1.5.0, the server.modules needs both entries in the above
order. Refer to Chapter 3 for more information.

Name Type Description
mysql-vhost.db
mysql-vhost.hostname
mysql-vhost.pass
mysql-vhost.port
mysql-vhost.sock
mysql-vhost.sql
mysql-vhost.user
sql-vhost.backend
sql-vhost.cache-ttl
sql-vhost.db
sql-vhost.debug
sql-vhost.hostname
sql-vhost.pass
sql-vhost.port
sql-vhost.select-vhost
sql-vhost.sock
sql-vhost.user

ABC
ABC
ABC
123

ABC
ABC
ABC
ABC
123

ABC
123

ABC
ABC
123

ABC
ABC
ABC

mod_mysql_vhost as user using pass as
password will connect to hostname:port,
uses the db database and executes the sql
statement which has a ? as placeholder for
the hostname
(italic words are directives, to be prefixed
with mysql-vhost)

The backend (only "mysql" for now)
The Cache Time-to-live in seconds
The new mysql-vhost.db
Sets the debug level for this module
The new mysql-vhost.hostname
The new mysql-vhost.pass
The new mysql-vhost.port
The new mysql-vhost.sql
A socket for a local database server
The new mysql-vhost.user

mod_ssi
Name Type Description
ssi.extension (...) List of file extensions for which to use

Server Side Includes

mod_staticfile
Name Type Description
static-file.exclude-extensions (...) List of file extensions for which to forbid

static access (for example, ("php") to secure
against serving source code)

[214]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Appendix B

mod_status
mod_status displays the status, statistics and configuration information about the
running server. Usually, we want to protect the configured URLs with mod_auth
(see above).

Name Type Description
status.config-url ABC The URL to display the configuration
status.enable-sort • Enables client-side javascript sorting for

the statistics page
status.statistics-url ABC The URL for the statistics page
status.status-url ABC The URL for the status page

mod_trigger_b4_dl
This module protects a download by a trigger site which must be visited before.
Refer to Chapter 4 for further information.

Name Type Description
trigger-before-download.debug • Enables debugging for

this module
trigger-before-download.deny-url ABC The URL where untriggered

downloads will end up
trigger-before-download.download-url ABC The download URL to protect
trigger-before-download.gdbm-filename ABC Stores triggers in a local

gdbm database
trigger-before-download.memcache-hosts (...) A list of memcached hosts to

store triggers externally
trigger-before-download.memcache-namespace ABC The namespace for triggers
trigger-before-download.trigger-timeout 123 Seconds to trigger deletion
trigger-before-download.trigger-url ABC The URL that triggers a

valid access

[215]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Module/Confi guration Index

mod_uploadprogress
Returns the status of running uploads as JSON containing three entries: state (one of
starting, error, done, uploading), status (the HTML status), size (total bytes), received
(bytes received so far).

Name
upload-progress.debug
upload-progress.progress-url

upload-progress.remove-timeout

mod_userdir
Name
userdir.basepath

userdir.exclude-user
userdir.include-user

userdir.path

mod_usertrack

Type	 Description
• Enables debug messages for this module

ABC	 If set, activates progress information on
this URL

123	 Time in seconds until connections are no
longer tracked (defaults to 60)

Type	 Description
ABC	 The prefix of all userdirs, for example "/

users/"
(...)	 A list of users to exclude from userdir
(...)	 Alternatively, userdir can be limited to a

list of users
ABC	 The suffix after the username, for example

"public_html"

Refer to Chapter 5 for further information

Name Type Description
usertrack.cookie-domain

usertrack.cookie-max-age

usertrack.cookie-name
usertrack.cookiename

ABC

123

ABC
OLD

The domain of the tracking cookie (usually
your hostname)
Seconds of user inactivity until the cookie
is invalidated
The name of the tracking cookie
Use usertrack.cookie-name instead

[216]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Appendix B

mod_webdav
Name
webdav.activate
webdav.is-readonly

webdav.log-xml
webdav.sqlite-db-name

Type	 Description
•	 Activate webdav, usually within selector
•	 If set, disables writing to the webdav

folder

•	 Path to an XML file to log on

ABC	 Name of a SQLite database in which to
store locks. Note that locking has to be
enabled at installation

[217]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Symbols
.htaccess file

about 129

and PHP file 133

A
access logging

about 65

access.log file 65

placeholders 65, 66

AjaxTerm
setting up 154-156

Apache to Lighttpd, migration
.htaccess files 129-132

Apache load, reducing 127, 128

configuration, adding 126

mod_perl script 128

mod_php script 129

mod_proxy module 127

mod_python 129

rewriting, rules 133, 134

tips 125

WebDAV 134, 135

AWStats
about 152

configuring 152-154

B
backends 41, 42

backend separating, Lighttpd security

105-108

barriers, Lighttpd 83

Index
C
CA. See Certificate Authority
call graph, profiling

example 121, 122

C API 62

Certificate Authority

creating 75, 76

key, setting up 75

key pair, creating 77, 79

CGI
about 37, 38

enabling 38

with mod_cgi 38

chroot environment, cons 108

chroot environment, pros 108

client IP address vs. cookies 70

Common Gateway Interface. See CGI

configuration index. See module index

configuring, Lighttpd 15, 16

core options 18

core settings 46, 47

D
Denial of Service attack. See DoS

directory content, showing 48-51

DoS

about 88, 90

logrotate, setting up 91

downloads, securing 52-56

F
FastCGI

about 38

configuring, mod_fastcgi used 39-41

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

flat profile, profiling
about 119

example 120, 121

G
GeoIP C API 62

giving up privileges, Lighttpd security 100

GREP

about 95

downloading 95

versions, parameters 96, 97

H
http_load

about 110

configuration settings, tweaking 114

installing 110, 111

options 112, 113

tests, running 111-114

HTTP GET headers 70

HTTP status codes 201, 202

I

installing, Lua/FastCGI

bytecode cache 170

GET request 168

POST request 169

steps 166, 167, 168

installing, Lighttpd 7-9

K
key pair

creating 77, 79

obtaining, from third-party supplier 79, 80

self-signed keys, creating 74, 75

L
Lighttpd

about 7

access logging 65, 66

barriers 83

building, Autotools used 9-12

building, CMake used 12

Certificate Authority, creating 76

Certificate Authority, setting up 75

CGI, enabling 38

command line options 16

command log format (CLF), used 65

compiling, from source 9

configuring 15, 16

configuring, to use SSL 80, 81

core options 18

core settings 46

data points 70, 71

directory content, showing 48-51

downloads, securing 52-56

example configuration 58, 60

files, defining 28-31

http_load 110, 111

installing 7-9

HTTP status codes 201, 202

Lua 89

Lua, using 159

mime type 19, 20

mod_access 83

mod_accesslog, configuration 69

mod_auth, configuring 87

mod_auth, implementing 84, 85

mod_evasive 47

mod_extforward module 48

mod_geoip 62

mod_geoip, configuration 64

mod_magnet, caching with 116, 117

mod_secdownload 52

mod_trigger_b4_dl 52

mod_usertrack module 67, 69

MySQL, installing 35, 36

packages 9

plain authentication, drawbacks 85, 86

profiling, gprof used 118

profiling build, load testing 119-122

requests, redirecting 26-28

requests, rewriting 26-28

restarting 17

RRDtool 92, 93

running, from command line 17

securing, against attacks 99

selectors 20-22

specific optimization 115

starting 16, 17

streaming content 57

[220]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

system load, measuring 117, 118

traffic, managing 47, 48

users, tracking 67-69

variables, defining 28-31

virtual hosting, extended 34

virtual hosting, MySQL based 35

Lighttpd, building
Autotools used 9-12

CMake used 12

Lighttpd, configuring to use SSL 80, 81

Lighttpd, securing against attacks 99

Lighttpd modules

configuration, handling 184, 186

handler callbacks 188

request, rewriting 188-191

response, manipulating 191-198

writing 181-183

Lighttpd security
backend, separating 105-108

privileges, giving up 100

root, changing 101-105

logs
Grepping 95

Lua
about 160

character classes 164

features, iterator 163

function keyword 161

libraries 165

local keyword 161

Lua magnet used, example 175-179

Metatable 162

Metatable._index 163

mod_magnet 171

next() function 163

operators 160

regular expressions 164

string functions 164, 165

tables 161

types 160

Lua/FastCGI
about 166

installing 166

Lua libraries
Lua-GD 165

LuaFileSystem 165

LuaSocket 165

LuaSQL 165

MD5 165

M
MediaWiki

configuring 149, 150

distribution, downloading 148

mime type
about 19

content type 19

default mime type 19

subtype 19

mod_access 205

mod_accesslog 206

mod_accesslog, configuration 69

mod_alias 206

mod_auth 206

mod_cgi 207

mod_chunked 207

mod_cml 207

mod_compress 207

mod_deflate 208

mod_dirlistin, configuration options 50

mod_dirlisting 208

mod_dirlisting vs. Large Directories 49

mod_evhost 209

mod_expire 209

mod_fastcgi 209

mod_flv_streaming 209

mod_geoapi

about 62, 63

configuration 64

mod_geoip
configuration 64

mod_indexfile 210

mod_magnet 210

mod_magnet, Lua

example, shoutbox 175-178

running 171-174

mod_mysql_vhost 214

mod_proxy 210

mod_proxy_core 41, 42, 210, 211

mod_redirect 211

mod_rewrite 212

mod_rrdtool 212

[221]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

mod_scgi 212

mod_script 64, 65

mod_secure_download 213

mod_setenv 213

mod_simple_vhost 213

mod_sql_vhost_core 214

mod_ssi 214

mod_staticfile 214

mod_status 215

mod_trigger_b4_dl 215

mod_uploadprogress 216

mod_userdir 216

mod_usertrack 67-69, 216

mod_webdav 217

module index

internal 203

mod_access 205

mod_accesslog 206

mod_alias 206

mod_auth 206

mod_cgi 207

mod_chunked 207

mod_cml 207

mod_compress 207

mod_deflate 208

mod_dirlisting 208

mod_evasive 209

mod_evhost 209

mod_expire 209

mod_fastcgi 209

mod_flv_streaming 209

mod_indexfile 210

mod_magnet 210

mod_mysql_vhost 214

mod_proxy 210

mod_proxy_core 210, 211

mod_redirect 211

mod_rewrite 212

mod_rrdtool 212

mod_scgi 212

mod_secure_download 213

mod_setenv 213

mod_simple_vhost 213

mod_sql_vhost_core 214

mod_ssi 214

mod_staticfile 214

mod_status 215

mod_trigger_b4_dl 215

mod_uploadprogress 216

mod_userdir 216

mod_usertrack 216

mod_webdav 217

MySQL
administration programs 37

and mod_mysqlvhost, merging 36, 37

based virtual hosting 36, 37

Gui tools 37

installing 35, 36

O
OpenSSL 75

optimizing compilers 109

other data points 70, 71

P
phpMyAdmin

configuring, set.php used 146

installing 147

myth 144

PHP extensions 144

PHP extensions, GD2 144

PHP extensions, Mcrypt 144

setting up, ways 144, 145

profiling
build, load testing 119-122

call graph 119

flat profile 119

gprof used 118

proxy 126

Public Key Cryptography 73

R
regular expressions, selectors

about 22, 23

character classes, abbreviations 26

escapes 25

features 23

negative group 25

non-capturing group 25

operators 24

pattern, capturing 24

shell-code 28-31

[222]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

testing 26

requests, redirecting 26-28

requests, rewriting 26-28

root changing, Lighttpd security 101-105

Round-Robin Database. See RRDtool

RRDtool

about 92, 93

Analog 94

AWStats 94

installing 92

webalizer 94

Ruby on Rails 137-141

S
SCGI 41

Secure Socket Layer. See SSL

selectors

about 20-22

regular expressions 22, 23

regular expressions, features 23

self-signed keys
creating 74, 75

Simple Common Gateway Interface. See
SCGI

specific optimization
about 115, 116

mod_magnet, caching with 116, 117

system load, measuring 117, 118

SSL
about 73, 74

streaming content
mod_flv_streaming used 57

videos, converting to flv format 57

T
trac

about 149

authentication 150

configuration 152

running, with FastCGI 151

setting up 150

U
user / group changing, cons 108

user / group changing, pros 108

users, tracking 67-69

V

virtual hosting, MySQL based

MySQL, installing 35, 36

MySQL and mod_mysqlvhost, merging

36, 37

W
WebDAV 134, 135

WordPress 142, 143

Y
yamdi 57

Yet Another MetaData Injector for FLV.

See yamdi

[223]

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Thank you for buying
Lighttpd

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Lighttpd, Packt will have given some of the money received
to the Lighttpd project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

http:author@packtpub.com
http:www.PacktPub.com

Xen Virtualization
ISBN: 978-1-847192-48-6 Paperback: 150 pages

A fast and practical guide to supporting multiple
operating systems with the Xen hypervisor

1.	 Installing and configuring Xen

2.	 Managing and administering Xen servers and
virtual machines

3.	 Setting up networking, storage, and encryption

4.	 Backup and migration

Hacking Vim
ISBN: 978-1-847190-93-2 Paperback: 228 pages

From personalizing Vim to productivity
optimizations: Recipes to make life easier for
experienced Vim users

1.	 Create, install, and use Vim scripts

2.	 Personalize your work-area

3.	 Optimize your Vim editor to be faster and
more responsive

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

	Cover
	Table of Content
	Preface
	Chapter 1: Introduction to Lighttpd
	Installing Lighttpd
	Building Lighttpd using Autotools
	Building Lighttpd using CMake
	Summary

	Chapter 2: Configuring and Running Lighttpd
	Starting Lighttpd by Hand
	Other Core Options
	Mime Types
	Selectors
	Excursion: Regular Expressions
	Play it Again, Sam
	Are You There?
	Decisions, Decisions
	Group and Capture
	Lucky Escape

	Rewriting and Redirecting Requests
	Including Variables, Files, and Shell-code
	Summary

	Chapter 3: More Virtual Hosting and CGI
	Extended Virtual Hosting
	MySQL based Virtual Hosting
	Installing MySQL
	Bringing MySQL and mod_mysqlvhost Together

	Going Dynamic
	CGI with mod_cgi
	FastCGI
	SCGI
	mod_proxy_core and backends
	Summary

	Chapter 4: Downloads and Streams
	Core Settings
	Traffic Shaping
	Showing Directory Contents
	Securing Downloads
	Streaming Content
	Putting it All Together
	Summary

	Chapter 5: Big Brother Lighttpd
	Privacy
	O Browser, Where Art Thou?
	Access Logging
	Tracking Users
	Other Data Points
	Summary

	Chapter 6: Encryption: SSL
	Self-signed Keys
	Being our own Certificate Authority
	Obtaining a Key Pair from a Third-Party Supplier
	Configuring Lighttpd to use SSL
	Summary

	Chapter 7: Securing Lighttpd
	Barriers to Entry
	Evading Denial of Service Attacks
	Setting up Logrotate

	Know Your Foe
	RRDtool
	Grepping the Logs

	Summary

	Chapter 8: Containing Lighttpd
	Giving up Privileges
	Changing Root
	Separating the Backend
	Summary

	Chapter 9: Optimizing Lighttpd
	Installing http_load
	Running http_load Tests

	Specific Optimizations
	Example: Caching with mod_magnet
	Measuring System Load

	Profiling with gprof
	Load Testing our Profiling Build

	Summary

	Chapter 10: Migration from Apache
	Adding Lighttpd to the Mix
	Excursion: mod_proxy
	Reducing Apache Load
	mod_perl, mod_php, and mod_python
	.htaccess
	.htaccess and PHP

	Rewriting Rules
	WebDAV
	Summary

	Chapter 11: CGI Revisited
	Ruby on Rails
	WordPress
	phpMyAdmin
	MediaWiki
	Trac

	AWStats
	AjaxTerm
	Summary

	Chapter 12: Using Lua with Lighttpd
	Lua: A small Primer
	Useful Lua Libraries
	Lua/FastCGI
	Installing Lua/FastCGI
	GET and POST Requests
	Looking at the Cache

	Running mod_magnet
	Example: A Shoutbox
	Summary

	Chapter 13: Writing Lighttpd Modules
	Handling Configuration
	Rewriting the Request
	Manipulating the Response
	Summary

	Appendix A : HTTP Status Codes
	Appendix B: Module/Configuration Index
	Index

