

jQuery	for	Designers	Beginner’s	Guide
Second	Edition

Table	of	Contents

jQuery	for	Designers	Beginner’s	Guide	Second	Edition

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Time	for	action	–	heading

What	just	happened?

Pop	quiz	–	heading

Have	a	go	hero	–	heading

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Designer,	Meet	jQuery

What	is	jQuery?

Why	is	jQuery	awesome	for	designers?

It	uses	CSS	selectors	you	already	know

It	uses	HTML	markup	you	already	know

Impressive	effects	in	just	a	few	lines	of	code

Huge	plugin	library	available

Great	community	support

JavaScript	basics

Progressive	enhancement	and	graceful	degradation

Gotta	keep	‘em	separated

Content

Presentation

Behavior

Designer,	Meet	JavaScript

Variables

Objects

Functions

Downloading	jQuery	and	getting	set	up

Time	for	action	–	downloading	and	attaching	jQuery

What	just	happened?

Pop	quiz	–	setting	up	a	new	project

Another	option	for	using	jQuery

Your	first	jQuery	script

Time	for	action	–	getting	ready	for	jQuery

What	just	happened?

Adding	a	paragraph

Time	for	action	–	adding	a	new	paragraph

What	just	happened?

Have	a	go	hero	–	adding	more	content

Summary

2.	Enhancing	Links

Simple	tabs

Time	for	action	–	creating	simple	tabs

What	just	happened?

Pop	quiz	–	working	with	events

Designer,	meet	plugins

Choosing	a	plugin

Simple	custom	tooltips

Time	for	action	–	simple	custom	tooltips

What	just	happened?

Customizing	PowerTip’s	appearance

Time	for	action	–	customizing	PowerTip

What	just	happened?

Enhancing	navigation	with	tooltips

Time	for	action	–	building	a	fancy	navigation	bar

What	just	happened?

Showing	other	content	in	tooltips

Time	for	action	–	showing	custom	content	in	tooltips

What	just	happened?

Have	a	go	hero	–	create	clickable	tooltips	for	an	image	gallery

Summary

3.	Making	a	Better	FAQ	Page

Marking	up	the	FAQ	page

Time	for	action	–	setting	up	the	HTML	file

What	just	happened?

Time	for	action	–	moving	around	an	HTML	document

What	just	happened?

Sprucing	up	our	FAQ	page

Time	for	action	–	making	it	fancy

What	just	happened?

We’re	almost	there!

Time	for	action	–	adding	some	final	touches

What	just	happened?

Summary

4.	Building	an	Interactive	Navigation	Menu

The	horizontal	drop-down	menu

Time	for	action	–	creating	a	horizontal	drop-down	menu

What	just	happened?

The	vertical	fly-out	menu

Time	for	action	–	creating	a	vertical	fly-out	menu

What	just	happened?

Customizing	the	navigation	menu

:hover	and	.sfHover

Cascading	inherited	styles

Pop	quiz	–	understanding	the	cascade	in	CSS

Styling	the	:focus	pseudoclass

Time	for	action	–	customizing	Superfish	menus

What	just	happened?

The	hoverIntent	plugin

Time	for	action	–	incorporating	custom	animations

What	just	happened?

Have	a	go	hero	–	further	customizing	the	Superfish	menu

Summary

5.	Showing	Content	in	Lightboxes

A	simple	photo	gallery

Time	for	action	–	setting	up	a	simple	photo	gallery

What	just	happened?

Customizing	Colorbox’s	behavior

Transition

Time	for	action	–	using	a	custom	transition

What	just	happened?

Fixed	size

Time	for	action	–	setting	a	fixed	size

What	just	happened?

Creating	a	slideshow

Time	for	action	–	creating	a	slideshow

What	just	happened?

Fancy	login

Time	for	action	–	creating	a	fancy	login	form

What	just	happened?

Video	player

Time	for	action	–	showing	a	video	in	a	lightbox

What	just	happened?

Pop	quiz	–	loading	content	into	Colorbox

A	one-page	web	gallery

Time	for	action	–	creating	a	one-page	web	gallery

What	just	happened?

Have	a	go	hero	–	create	a	custom	Colorbox

Summary

6.	Creating	Slideshows	and	Sliders

Planning	a	slideshow	or	slider

A	simple	crossfade	slideshow

Time	for	action	–	creating	a	simple	crossfade	slideshow

What	just	happened?

Pop	quiz	–	working	with	jQuery	chaining

Using	the	Basic	Slider	plugin

Time	for	action	–	building	a	Basic	Slider

What	just	happened?

Have	a	go	hero	–	customize	the	Basic	Slider

Creating	a	Cycle2	slideshow

Time	for	action	–	building	a	slideshow	with	Cycle2

The	Cycle2	carousel

Time	for	action	–	building	a	Cycle2	carousel

Combining	a	carousel	with	a	slideshow

Setting	up	the	carousel

Time	for	action	–	creating	the	carousel	controller

Adding	the	slideshow

Time	for	action	–	adding	the	slideshow

Connecting	the	carousel	and	the	slider

Time	for	action	–	connecting	the	carousel	and	the	slider

Summary

7.	Working	with	Responsive	Designs

Using	FitVids	for	responsive	videos

Time	for	action	–	resizing	videos

What	just	happened?

Pop	quiz	–	choosing	breakpoints	for	responsive	design

Responsive	menus

Time	for	action	–	making	our	menu	responsive

What	just	happened?

Have	a	go	hero	–	create	a	custom	menu

Creating	a	tiled	layout

Time	for	action	–	creating	a	masonry	layout

What	just	happened?

Creating	a	tiled	layout	with	items	of	different	widths

Time	for	action	–	creating	a	tiled	layout	with	different	width	items

What	just	happened?

Summary

8.	Getting	the	Most	from	Images

Lazy	loading	images

Time	for	action	–	lazy	loading	images

What	just	happened?

Pop	quiz	–	building	accessible	pages

Creating	zoomable	images

Time	for	action	–	creating	zoomable	images

What	just	happened?

Zooming	in	on	multiple	images

Time	for	action	–	creating	multiple	zoomable	images

What	just	happened?

Using	fullscreen	backgrounds

Time	for	action	–	creating	a	fullscreen	background	image

What	just	happened?

Creating	a	fullscreen	slideshow

Time	for	action	–	creating	a	fullscreen	slideshow

What	just	happened?

Summary

9.	Improving	Typography

Sizing	headlines	perfectly

Time	for	action	–	sizing	headlines	to	the	screen	width

What	just	happened?

Creating	bold	text	blocks

Time	for	action	–	creating	a	bold	text	block	with	SlabText

What	just	happened?

Pop	quiz	–	sizing	text	in	responsive	designs

Styling	individual	letters

Time	for	action	–	using	Lettering.js	to	style	letters

What	just	happened?

Have	a	go	hero	–	creating	fancy	effects	with	Lettering.js

Setting	text	on	a	curve

Time	for	action	–	setting	text	on	a	curve	with	the	ArcText	plugin

What	just	happened?

Summary

10.	Displaying	Data	Beautifully

A	basic	data	grid

Time	for	action	–	creating	a	basic	data	grid

What	just	happened?

A	customized	data	grid

Time	for	action	–	customizing	the	data	grid

What	just	happened?

Pop	quiz	–	building	correct	tables

Showing	graphs	and	charts

Time	for	action	–	showing	data	in	graphs	and	charts

What	just	happened?

Creating	pie	charts

Time	for	action	–	creating	a	pie	chart

Using	charts	and	graphs	in	responsive	designs

Time	for	action	–	calculating	the	ideal	size	for	charts	and	graphs

What	just	happened?

Summary

11.	Reacting	to	Scrolling

Setting	up	the	document

Time	for	action	–	setting	up	the	HTML	file

What	just	happened?

Setting	up	HTML	for	scrolling	animations

Time	for	action	–	setting	up	HTML	for	Scrollorama

What	just	happened?

Adding	a	parallax	effect

Time	for	action	–	creating	a	parallax	effect

What	just	happened?

Creating	other	animations

Time	for	action	–	creating	a	horizontal	animation

What	just	happened?

Have	a	go	hero	–	add	custom	animations

Adding	navigation

Time	for	action	–	adding	navigation	to	sections	of	the	page

What	just	happened?

Pop	quiz	–	using	Scrollorama	in	responsive	design

Summary

12.	Improving	Forms

An	HTML5	web	form

Time	for	action	–	setting	up	an	HTML5	web	form

What	just	happened?

Pop	quiz	–	working	with	HTML5	form	elements

Setting	focus

Time	for	action	–	setting	focus	to	the	first	field

What	just	happened?

Validating	site	visitor	entry

Time	for	action	–	validating	form	values	on	the	fly

What	just	happened?

Improving	the	appearance

Time	for	action	–	improving	form	appearance

What	just	happened?

Styling	the	unstyleable

Time	for	action	–	adding	Fancyform	to	style	the	unstyleable

Have	a	go	hero	–	a	fully	custom	form

Summary

A.	Pop	Quiz	Answers

Chapter	1,	Designer,	Meet	jQuery

Pop	quiz	–	setting	up	a	new	project

Chapter	2,	Enhancing	Links

Pop	quiz	–	working	with	events

Chapter	4,	Building	an	Interactive	Navigation	Menu

Pop	quiz	–	understanding	the	cascade	in	CSS

Chapter	5,	Showing	Content	in	Lightboxes

Pop	quiz	–	loading	content	into	Colorbox

Chapter	6,	Creating	Slideshows	and	Sliders

Pop	quiz	–	working	with	jQuery	chaining

Chapter	7,	Working	with	Responsive	Designs

Pop	quiz	–	choosing	breakpoints	for	responsive	design

Chapter	8,	Getting	the	Most	from	Images

Pop	quiz	–	building	accessible	pages

Chapter	9,	Improving	Typography

Pop	quiz	–	sizing	text	in	responsive	designs

Chapter	10,	Displaying	Data	Beautifully

Pop	quiz	–	building	correct	tables

Chapter	11,	Reacting	to	Scrolling

Pop	quiz	–	using	Scrollorama	in	responsive	design

Chapter	12,	Improving	Forms

Pop	quiz	–	working	with	HTML5	form	elements

Index

jQuery	for	Designers	Beginner’s	Guide
Second	Edition

jQuery	for	Designers	Beginner’s	Guide
Second	Edition
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	April	2012

Second	edition:	July	2014

Production	reference:	1220714

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78328-453-5

www.packtpub.com

Cover	image	by	Suresh	Mogre	(<suresh.mogre.99@gmail.com>)

http://www.packtpub.com
mailto:suresh.mogre.99@gmail.com

Credits
Author

Natalie	MacLees

Reviewers

Olivier	Pons

M.	Ali	Qureshi

Dan	Wellman

Acquisition	Editor

Vinay	Argekar

Content	Development	Editor

Neeshma	Ramakrishnan

Technical	Editors

Pramod	Kumavat

Pooja	Nair

Mukul	Pawar

Copy	Editors

Janbal	Dharmaraj

Deepa	Nambiar

Alfida	Paiva

Project	Coordinators

Priyanka	Goel

Danuta	Jones

Proofreaders

Simran	Bhogal

Maria	Gould

Ameesha	Green

Indexers

Hemangini	Bari

Mehreen	Deshmukh

Rekha	Nair

Tejal	Soni

Priya	Subramani

Graphics

Valentina	D’silva

Production	Coordinators

Pooja	Chiplunkar

Manu	Joseph

Cover	Work

Pooja	Chiplunkar

About	the	Author
Natalie	MacLees	is	a	frontend	web	developer	and	UI	designer,	and	the	founder	and
principal	of	the	interactive	agency	Purple	Pen	Productions.	She	founded	and	runs	the
jQuery	LA	users’	group	and	together	with	Noel	Saw,	she	heads	the	Southern	California
WordPress	user’s	group,	organizing	WordPress	meetups,	help	sessions,	and	workshops.
She	was	the	lead	organizer	for	WordCamp	Los	Angeles	2013	and	2014	and	organized	the
first	annual	Website	Weekend	LA.	She’s	also	the	founder	of	the	Los	Angeles	chapter	of
Girl	Develop	It,	bringing	affordable	and	accessible	coding	classes	to	the	community.

She	makes	periodic	appearances	on	the	WPwatercooler	podcast	and	co-hosts	the	WP
Unicorn	Project	podcast	with	Suzette	Franck.	She	makes	her	online	home	at
nataliemac.com.

Her	obsession	with	the	Web	began	when	she	bought	her	first	computer	in	1996	and
promptly	used	it	to	build	her	first	website.	She	spends	the	few	moments	she	manages	to	be
offline	each	day	watching	baseball,	crafting,	reading,	baking,	belly	dancing,	collecting
Hello	Kitty	items,	and	avoiding	avocados	and	olives	at	all	costs.

http://nataliemac.com

Acknowledgments
Gracious	thanks	first	and	foremost	to	John	Resig	and	the	rest	of	the	jQuery	team	for
creating	and	sharing	such	a	useful	and	elegant	library	with	the	rest	of	us.

A	big	thank	you	to	Marlene	Angel,	Ninno	DePatrick,	Ed	Doolittle,	Crystal	Ehrlich,
Suzette	Franck,	Teresina	Goheen,	LeHang	Huynh,	Michelle	Kempner,	Mark	Tapio	Kines,
Chloë	Nguyễn,	Mario	Noble,	Joss	Rogers,	Noel	Saw,	Kimberly	Wilkinson,	and	Tammy
Wilson	for	their	support,	advice,	and	cheerleading—I	couldn’t	ask	for	better	friends.

Thank	you	to	Beebe	Lee	and	Brittany	Brooks,	my	Purple	Pen	support	team.

Thank	you	to	my	sisters,	Stefanie	Elder	and	Bethany	MacLees,	for	being	properly
impressed	that	somebody	wanted	me	to	write	a	book.	Thank	you	to	my	mom,	Patricia
Demby,	and	stepfather,	John	Demby,	for	being	proud	of	me	no	matter	what.

Thank	you	to	all	members	of	our	local	WordPress	and	jQuery	communities	including	Dre
Armeda,	Lucy	Beer,	Andrew	Behla,	Glenn	Bennett,	Stephen	Carnam,	Jason	Cosper,	Ryan
Cowles,	Joe	Chellman,	Gregory	Dahl,	Greg	Douglas,	Brandon	Dove,	Chris	Ford,	Gregg
Franklin,	Megan	Gray,	Lane	Halley,	John	Hawkins,	Susie	Karasic,	Chris	Lema,	Paul
Lumsdaine,	Kari	Leigh	Marucchi,	Karim	Marucchi,	Karen	McCamy,	Andrei	Mignea,	Troy
Miles,	Konstantin	Obenland,	Joseph	Karr	O’Connor,	David	Oshima,	Sé	Reed,	Andy
Roberts,	Mike	Schroder,	Adam	Silver,	Verious	Smith,	Jason	Tucker,	Nathan	Tyler,	Alex
Vasquez,	Sarah	Wefald,	Steve	Zehngut,	Jeffery	Zinn,	and	too	many	others	to	count	or
mention.

And	finally,	thank	you	to	Diane	Colella	Jones	for	believing	in	me,	even	before	I	did.

About	the	Reviewers
Olivier	Pons	is	a	developer	who’s	been	building	websites	since	1997.	He’s	a	teacher	at
IngeSup	(École	Supérieure	d’Ingénierie	Informatique;	for	more	information	visit
http://www.ingesup.com/	and	http://www.y-nov.com),	at	the	University	of	Sciences	(IUT)
in	Aix-en-Provence/France,	and	École	d’Ingénieurs	des	Mines	de	Gardanne,	where	he
teaches	HTML,	CSS,	jQuery/jQuery	Mobile,	PHP,	MVC	fundamentals,	WordPress,
Symfony,	Linux	basics,	and	advanced	VIM	techniques.	He	has	already	done	some
technical	reviews,	including	the	books	Ext	JS	4	First	Look,	Packt	Publishing	and	jQuery
Mobile	Web	Development	Essentials	Second	Edition,	Packt	Publishing,	among	others.	In
2011,	he	left	a	full-time	job	as	a	Delphi	and	PHP	developer	to	concentrate	on	his	own
company,	HQF	Development	(http://hqf.fr).	He	currently	runs	a	number	of	websites,
including	http://www.benativo.fr,	http://www.inesushi.com,	http://www.papdevis.fr,	and
http://olivierpons.fr,	his	own	web	development	blog.	He	works	as	a	consultant,	teacher,
project	manager,	and	sometimes	a	developer.

M.	Ali	Qureshi,	who	is	a	web	developer	based	in	Lahore,	Pakistan,	has	been	involved	in
web	development	in	2001.	Having	worked	in	a	number	of	companies	in	different
capacities,	he	is	aware	of	how	project	goals	are	achieved	efficiently.	Ali	founded	PI	Media
(http://parorrey.com)	in	2002	and	has	developed	creative,	interactive,	and	usable	web
solutions,	making	them	a	successful	technology	investment	for	clients.	He	has	also
worked	on	a	number	of	successful	products	and	authored	WordPress	plugins	and	themes
and	osCommerce	and	PrestaShop	add-ons.

Apart	from	PI	Media,	Ali	currently	works	as	a	software	architect	for	E2ESP
(http://e2esp.com)and	ConvoSpark	(http://convospark.com).	He	regularly	makes
contributions	to	the	latest	tips	and	trends	in	web	design,	PHP,	WordPress	and	CMS
development,	Flash	ActionScript,	and	Facebook	App	Development	on	his	blog
http://parorrey.com/blog/.

Ali	has	previously	reviewed	jQuery	Mobile	Web	Development	Essentials,	Packt
Publishing.	When	not	working,	he	spends	his	time	blogging	and	exploring	new
technologies.	He	is	an	avid	sports	fan	and	especially	likes	watching	cricket.	Pakistan	and
Australia	are	his	favorite	teams.

Dan	Wellman	is	an	author	and	software	engineer	based	in	the	south	coast	of	the	UK.	By
day,	he	works	for	the	Skype	division	at	Microsoft	bringing	web-based	audio	and	video
calling	to	the	world.	By	night,	he	writes	books	and	tutorials	for	many	online	digital	media
outlets	including	Nettuts,	Infinite	Skills,	and	many	others.	He	has	written	seven	books	so
far,	mostly	centered	on	jQuery	and	jQuery	UI.

http://www.ingesup.com/
http://www.y-nov.com
http://hqf.fr
http://www.benativo.fr
http://www.inesushi.com
http://www.papdevis.fr
http://olivierpons.fr
http://parorrey.com
http://e2esp.com
http://convospark.com
http://parorrey.com/blog/

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
This	book	is	intended	for	designers	who	have	a	basic	understanding	of	HTML	and	CSS,
but	want	to	advance	their	skill	set	by	learning	basic	JavaScript.	It’s	not	necessary	that	you
understand	JavaScript	well.	Even	if	you’ve	never	attempted	to	write	JavaScript	before,
this	book	will	guide	you	through	the	process	of	setting	up	basic	JavaScript	and
accomplishing	common	tasks	such	as	collapsing	content,	drop-down	menus,	and
slideshows;	all	thanks	to	the	jQuery	library.

What	this	book	covers
Chapter	1,	Designer,	Meet	jQuery,	is	an	introduction	to	the	jQuery	library	and	JavaScript.
You’ll	learn	about	jQuery’s	rise	to	fame,	why	it’s	so	great	for	designers,	and	how	it	can
help	you	create	some	fancy	special	effects	without	having	to	learn	a	lot	of	code.	This
chapter	also	includes	a	gentle	and	small	introduction	to	JavaScript,	progressive
enhancement,	and	graceful	degradation,	and	guides	you	through	writing	your	first
JavaScript	code.

Chapter	2,	Enhancing	Links,	walks	you	through	some	basic	enhancements	to	links.	You’ll
learn	how	to	use	jQuery	to	turn	a	list	of	links	into	a	tabbed	interface.	Then,	we’ll	take	our
first	look	at	jQuery	plugins	where	you’ll	learn	to	add	custom	tooltips	to	your	links	using
the	jQuery	PowerTip	plugin.

Chapter	3,	Making	a	Better	FAQ	Page,	will	introduce	you	to	collapsing	and	showing
content,	as	well	as	creating	simple	animations	and	traversing	an	HTML	document	to	move
from	one	element	to	another.	In	this	chapter,	we’ll	set	up	a	basic	FAQ	list,	then	work	to
progressively	enhance	it	to	make	it	easier	for	our	site	visitors	to	use.

Chapter	4,	Building	an	Interactive	Navigation	Menu,	guides	you	through	setting	up	fully
functioning	and	visually	stunning	drop-down	and	fly-out	menus.	We’ll	walk	through	the
complex	CSS	required	to	get	these	types	of	menus	working,	use	the	Superfish	plugin	to
fill	in	features	missing	from	pure	CSS	solutions,	and	then	take	a	look	at	customizing	the
appearance	of	the	menus.

Chapter	5,	Showing	Content	in	Lightboxes,	will	walk	you	through	showing	photos	and
slideshows	in	a	lightbox	using	the	Colorbox	jQuery	plugin.	Once	we	get	the	basics	down,
we’ll	also	take	a	look	at	using	the	Colorbox	plugin	to	create	a	fancy	login,	play	a
collection	of	videos,	and	even	set	up	a	single-page	website	gallery.

Chapter	6,	Creating	Slideshows	and	Sliders,	walks	you	through	setting	up	a	simple
crossfade	slideshow	without	a	plugin.	Then,	we’ll	take	a	look	at	the	Basic	Slider	plugin	to
create	a	simple	slideshow	with	controls.	Finally,	we’ll	take	a	look	at	the	Cycle2	plugin,	a
flexible	and	customizable	option	that	can	be	used	to	create	sliders,	slideshows,	and
carousels.

Chapter	7,	Working	with	Responsive	Designs,	will	dive	deep	into	jQuery	techniques	for
responsive	designs.	This	includes	fitting	videos	to	the	viewport,	turning	a	drop-down
menu	into	a	responsive	menu,	and	building	a	tiled	layout	for	displaying	image	galleries.

Chapter	8,	Getting	the	Most	from	Images,	walks	you	through	a	few	techniques	to	work
with	images	in	a	more	effective	way.	We’ll	take	a	look	at	lazy-loading	images	so	that
images	are	only	loaded	if	our	site	visitor	scrolls	to	them.	We’ll	add	an	image	zoom
capability	and	finally,	we’ll	take	a	look	at	creating	fullscreen	background	images	and
slideshows	for	our	pages.

Chapter	9,	Improving	Typography,	shows	you	techniques	to	deal	with	typography
effectively	in	responsive	designs.	We’ll	take	a	look	at	the	FitText	plugin	to	fit	headlines	to

the	width	of	the	browser	window,	the	SlabText	plugin	to	create	multiline	headlines,	the
Lettering.js	plugin	to	fine-tune	kerning	and	to	apply	special	effects,	and	finally,	the
ArcText	plugin	to	set	a	text	on	a	curve.

Chapter	10,	Displaying	Data	Beautifully,	takes	a	look	at	the	important	task	of	displaying
data	in	an	easy-to-understand	way	for	your	site	visitors.	First	of	all,	we’ll	take	a	look	at
turning	an	ordinary	HTML	table	into	an	interactive	data	grid	with	the	DataTables	plugin.
Then,	we’ll	look	at	turning	HTML	tables	into	charts	and	graphs	that	communicate	our	data
clearly	to	our	site	visitors	in	an	accessible	and	progressively	enhanced	way.

Chapter	11,	Reacting	to	Scrolling,	dives	into	the	fun	task	of	scrolling	animations	and
parallax	effects.	We’ll	use	the	Scrollorama	plugin	to	create	a	parallax	effect,	trigger
animations	on	scroll,	and	activate	a	navigation	bar	that	reacts	to	us	scrolling	down	the
page.

Chapter	12,	Improving	Forms,	takes	a	look	at	how	forms	can	be	improved.	This	chapter
walks	you	through	setting	up	an	HTML	form	properly	using	some	of	the	latest	HTML5
form	elements.	Then,	we	enhance	the	form	by	placing	the	cursor	in	the	first	field	and
validating	the	site	visitor’s	form	entries.	Finally,	we	take	a	look	at	the	FancyForm	jQuery
plugin,	which	allows	us	to	style	even	the	most	stubborn	and	challenging	form	elements	to
achieve	a	consistent	look	for	our	forms	across	browsers.

What	you	need	for	this	book
You’ll	need	a	text	editor	to	create	HTML,	CSS,	and	JavaScript	files.	Some	great	free
options	available	are	TextWrangler	for	Mac	or	Notepad++	for	Windows.	There	are	many
other	options	available,	and	you	are	free	to	use	your	favorite	text	editor	for	any	of	the
examples	in	this	book.	My	personal	favorite	is	Sublime	Text,	which	is	easy	to	work	with
and	has	a	very	nice	feature	set.	If	you	haven’t	tried	it	before,	I	encourage	you	to	download
an	evaluation	copy	for	free	to	give	it	a	try.

You’ll	also	need	a	browser.	My	personal	favorite	is	Google	Chrome,	which	includes	some
really	helpful	built-in	debugging	tools	for	both	CSS	and	JavaScript.	Again,	you	are	free	to
use	your	favorite	browser	for	the	examples	in	the	book.

If	you	want	to	create	images	for	your	own	designs,	then	Adobe	Photoshop	and	Adobe
Illustrator	will	be	helpful,	though	they	are	not	strictly	necessary.	All	images	needed	to	set
up	the	examples	used	in	this	book	are	included	in	the	sample	code.

jQuery	and	jQuery	plugins	are	being	updated	all	the	time.	As	new	browsers	are	released
with	new	support	and	capabilities,	and	as	JavaScript,	HTML,	and	CSS	are	further
developed,	new	versions	of	jQuery	and	plugins	are	released	to	keep	pace	with	the	change.
On	one	hand,	this	is	a	great	news—jQuery	and	accompanying	plugins	get	faster	and	more
powerful	all	the	time.	On	the	other	hand,	it	can	be	tough	to	keep	up	with	all	the	changes.
All	versions	of	the	plugins	referenced	were	current	at	the	time	of	writing	the	book,	but	you
might	find	some	differences	when	you	work	through	the	exercises.	Plugin	developers	are
usually	very	good	at	documenting	the	changes	and	updates,	so	don’t	be	afraid	to	read
through	the	documentation	so	you	can	understand	what’s	changed	and	what	adjustments
you	might	need	to	make.

Who	this	book	is	for
This	book	is	for	designers	who	know	the	basics	of	HTML	and	CSS,	but	want	to	extend
their	knowledge	by	learning	how	to	use	JavaScript	and	jQuery.

Conventions
In	this	book,	you	will	find	several	headings	that	appear	frequently.

To	give	clear	instructions	of	how	to	complete	a	procedure	or	task,	we	use:

Time	for	action	–	heading
1.	 Action	1
2.	 Action	2
3.	 Action	3

Instructions	often	need	some	extra	explanation	so	that	they	make	sense,	so	they	are
followed	with:

What	just	happened?
This	heading	explains	the	working	of	tasks	or	instructions	that	you	have	just	completed.

You	will	also	find	some	other	learning	aids	in	the	book,	including:

Pop	quiz	–	heading
These	are	short	multiple-choice	questions	intended	to	help	you	test	your	own
understanding.

Have	a	go	hero	–	heading
These	are	practical	challenges	that	give	you	ideas	for	experimenting	with	what	you	have
learned.

You	will	also	find	a	number	of	styles	of	text	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“This
returns	the	<body>	tag	wrapped	in	a	jQuery	object.”

A	block	of	code	is	set	as	follows:

var	x	=	5;

var	y	=	2;

var	z	=	x	+	y;

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

<head>

		<title>Practice	Page</title>

		<link	rel="stylesheet"	href="styles/styles.css"/>

</head>

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Just	go	to	your	browser’s
File	menu	and	choose	Save	Page	As…	or	right-click	on	the	page	and	select	Save	As….”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	through	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in
this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You
can	download	this	file	from	the	following	link:

https://www.packtpub.com/sites/default/files/downloads/4535OS_ColoredImages.pdf

https://www.packtpub.com/sites/default/files/downloads/4535OS_ColoredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.

http://www.packtpub.com/submit-errata

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Designer,	Meet	jQuery
You	might	have	heard	quite	a	lot	about	jQuery	over	the	past	couple	of	years.	It	has	quickly
become	one	of	the	most	popular	code	packages	in	use	on	the	Web	today.	And	you	might
have	wondered	what	all	the	fuss	was	about.

Whether	you’ve	tried	to	figure	out	JavaScript	before	and	have	thrown	up	your	hands	in
frustration	or	have	been	too	intimidated	to	even	give	it	a	go,	you’ll	find	that	jQuery	is	a
wonderfully	approachable	and	easy-to-understand	way	to	get	started	with	JavaScript.

In	this	chapter,	we	will	cover	the	following	topics:

What	jQuery	is	and	why	it’s	ideal	for	designers
Progressive	enhancement	and	graceful	degradation
JavaScript	basics
Downloading	jQuery
Your	first	jQuery	script

What	is	jQuery?
jQuery	is	a	JavaScript	library.	This	means	that	it’s	a	collection	of	reusable	JavaScript	code
that	accomplishes	common	tasks.	Since	web	developers	often	find	themselves	solving	the
same	problems	over	and	over	again,	it	makes	sense	to	collect	useful	bits	of	code	into	a
single	package	that	can	be	included	and	used	in	any	project.	The	creators	of	jQuery	have
written	code	to	smoothly	and	easily	handle	the	most	common	and	most	tedious	tasks	we
want	to	accomplish	with	JavaScript,	and	they’ve	ironed	out	all	the	little	differences	that
need	to	be	worked	out	to	get	the	code	working	in	different	browsers.

It’s	important	to	remember	that	jQuery	is	JavaScript,	not	a	language	of	its	own.	It	has	all
the	same	rules	and	is	written	the	same	way	as	JavaScript.	Don’t	let	this	frighten	you	away
—jQuery	really	does	make	writing	JavaScript	much	easier.

jQuery’s	official	tagline	is	“write	less,	do	more.”	This	is	an	excellent	and	accurate
description	of	the	jQuery	library—you	can	really	accomplish	amazing	things	in	just	a	few
lines	of	code.	My	own	unofficial	tagline	for	jQuery	is	“find	stuff	and	do	stuff	to	it”,
because	finding	and	manipulating	different	parts	of	an	HTML	document	is	extremely
tedious	with	raw	JavaScript	and	requires	lines	and	lines	of	code,	while	jQuery	makes	that
same	task	painless	and	quick.	Thanks	to	jQuery,	you	can	not	only	quickly	create	a	drop-
down	menu	but	you	can	also	create	one	that’s	animated	and	works	smoothly	in	many
different	browsers.

Why	is	jQuery	awesome	for	designers?
So	what	is	it	about	jQuery	that	makes	it	so	easy	to	learn,	even	if	you	have	limited	or	no
experience	with	JavaScript?

It	uses	CSS	selectors	you	already	know
The	first	thing	you’ll	often	do	in	a	jQuery	script	is	select	the	elements	you’d	like	to	work
with.	For	example,	if	you’re	adding	some	effects	to	a	navigation	menu,	you’ll	start	by
selecting	the	items	in	the	navigation	menu.	The	tools	you	use	for	this	job	are	selectors—
ways	to	select	certain	elements	on	the	page	you	want	to	work	with.

jQuery	borrowed	selectors	from	CSS	all	the	way	up	through	CSS3,	and	they	work	even	in
browsers	that	don’t	support	CSS3	selectors	just	yet.

Even	though	CSS	offers	a	pretty	robust	set	of	selectors,	jQuery	adds	a	few	more	of	its	own
to	make	accessing	just	the	elements	you	need	easy.

If	you	already	know	how	to	do	things	with	CSS,	such	as	make	all	the	first-level	headings
blue	or	make	all	the	links	green	and	underlined,	you’ll	easily	learn	how	to	select	the
elements	you’d	like	to	modify	with	jQuery.

It	uses	HTML	markup	you	already	know
If	you	want	to	create	new	elements	or	modify	existing	elements	with	raw	JavaScript,	you
better	crack	your	knuckles	and	get	ready	to	write	lots	and	lots	of	code—and	it	won’t	make
much	sense	either.

For	example,	if	we	wanted	to	append	a	paragraph	to	our	page	that	says	This	page	is
powered	by	JavaScript,	we	need	to	first	create	the	paragraph	element,	then	assign	the
text	that	should	be	inside	the	paragraph	to	a	variable	as	a	string,	and	finally	append	the
string	to	the	newly	created	paragraph	as	a	text	node.	And	after	all	this,	we’d	still	have	to
append	the	paragraph	to	the	document.	Phew!	(Don’t	worry	if	you	didn’t	understand	all	of
that—it	was	just	to	illustrate	how	much	work	and	code	it	requires	to	do	something
simple.)

With	jQuery,	adding	a	paragraph	to	the	bottom	of	our	page	is	as	simple	as	the	following
line	of	code:

$('body').append('<p>This	page	is	powered	by	jQuery.</p>');

That’s	right!	You	just	append	a	bit	of	HTML	directly	to	the	body,	and	you’re	all	set.	I	bet
that	without	understanding	JavaScript	at	all,	you	can	read	the	line	of	code	and	grasp	what
it’s	doing.	This	code	is	appending	a	paragraph	that	reads	This	page	is	powered	by
jQuery.	to	the	body	of	the	HTML	document.

Impressive	effects	in	just	a	few	lines	of	code
You’ve	got	better	things	to	do	than	sit	and	write	lines	and	lines	of	code	to	add	fade-in	and
fade-out	effects.	jQuery	provides	you	with	a	few	basic	animations	and	the	power	to	create
your	own	custom	animations	right	out	of	the	box.	Let’s	say,	we	wanted	to	make	an	image
fade	into	the	page;	we	will	use	the	following	code	line	for	this:

$('img').fadeIn();

Yep,	that’s	it!	We	use	one	little	line	of	code	in	which	I	select	the	image	and	then	tell	it	to
fade	in.	Later	in	the	chapter,	you’ll	see	exactly	where	this	line	of	code	will	go	in	your
HTML	page.

Huge	plugin	library	available
As	I	said	earlier,	web	developers	often	find	themselves	solving	the	same	problems	over
and	over	again.	You’re	most	likely	not	the	first	person	who	wants	to	build	a	rotating	image
slideshow,	an	animated	drop-down	menu,	or	a	news	ticker.

jQuery	has	an	impressively	large	library	of	scripts	available	freely—scripts	to	create
tooltips,	slideshows,	news	tickers,	drop-down	menus,	date	pickers,	character	counters,	and
on	and	on.	You	don’t	need	to	learn	how	to	build	all	these	things	from	scratch;	you	just
have	to	learn	how	to	harness	the	power	of	plugins.	We’ll	be	covering	some	of	the	most
popular	jQuery	plugins	in	this	book,	and	you’ll	be	able	to	apply	what	you’ve	learned	to
use	any	plugin	in	the	jQuery	plugin	library.

Great	community	support
jQuery	is	an	open	source	project,	which	means	that	it’s	being	collectively	built	by	a	team
of	super-smart	JavaScript	coders	and	is	freely	available	for	anyone	to	use.	The	success	or
failure	of	an	open	source	project	often	depends	on	the	community	behind	the	project,	and
jQuery	has	a	large	and	active	community	that	supports	it.

This	means	that	jQuery	itself	is	being	constantly	improved	and	updated.	And	on	top	of
that,	there	are	thousands	of	developers	out	there	who	are	creating	new	plugins,	adding
features	to	existing	plugins,	and	offering	support	and	advice	to	newcomers.	You’ll	find
new	tutorials,	blog	posts,	and	podcasts	on	a	daily	basis	for	just	about	anything	you	want	to
learn.

JavaScript	basics
In	this	section,	we’re	going	to	cover	a	few	basics	of	JavaScript	that	will	make	things	go
more	smoothly.	We’re	going	to	look	at	a	little	bit	of	code	and	step	through	how	it	works.
Don’t	be	intimidated;	this	will	be	quick	and	painless,	and	then	we’ll	be	ready	to	get	on
with	actually	doing	something	with	jQuery.

Progressive	enhancement	and	graceful	degradation
There	are	a	few	different	schools	of	thought	when	it	comes	to	enhancing	your	HTML
pages	with	JavaScript.	Let’s	talk	about	some	of	the	things	we	should	consider	before	we
dive	into	the	cool	stuff.

Progressive	enhancement	and	graceful	degradation	are	essentially	two	sides	of	the	same
coin.	They	both	mean	that	our	page	with	its	impressive	JavaScript	animations	and	special
effects	will	still	work	for	users	who	have	less	capable	browsers	or	devices.	Graceful
degradation	means	that	we	create	our	special	effect	and	then	make	sure	it	fails	gracefully
if	JavaScript	is	not	enabled.	If	we	take	the	progressive	enhancement	approach,	we’ll	first
build	out	a	bare	bones	version	of	our	page	that	works	for	everyone,	and	then	enhance	it	by
adding	our	JavaScript	special	effects.	I	tend	to	favor	the	progressive	enhancement
approach.

Why	should	we	care	about	users	who	don’t	have	JavaScript	enabled?	Well,	some	of	the
Web’s	biggest	users	and	search	engines	have	either	no	JavaScript	capabilities	or	very
limited	JavaScript	capabilities.	When	search	engines	are	crawling	and	indexing	your
pages,	they	will	not	have	access	to	all	of	the	content	and	features	that	are	being	added	to
your	pages	by	JavaScript.	This	is	often	referred	to	as	dynamic	content,	and	it	can’t	be
reliably	indexed	or	found	by	search	engines	if	it	can’t	be	reached	with	JavaScript	disabled.

We’re	also	in	an	era	where	we	can	no	longer	count	on	users	who	access	the	web	pages	we
build	with	a	conventional	desktop	or	laptop	computer.	We’re	quick	to	think	of
smartphones	and	tablets	as	the	next	candidates,	and	while	they	are	very	popular,	they	still
account	for	a	tiny	fraction	of	Internet	access.	People	are	accessing	the	Web	from	gaming
consoles,	feature	phones,	e-book	readers,	internet-enabled	televisions,	a	huge	variety	of
mobile	devices,	and	dozens	of	other	ways.	Not	all	of	these	devices	are	capable	of
executing	JavaScript,	and	some	of	them	don’t	even	have	color	screens!	Your	number	one
priority	should	be	making	sure	that	your	content	is	available	to	anyone	who	asks	for	it,	no
matter	what	device	they	happen	to	be	using.

Gotta	keep	‘em	separated
To	accomplish	this	task	of	making	our	content	available	to	as	wide	an	audience	as
possible,	we	have	to	think	of	our	web	pages	in	three	separate	and	distinct	layers:	content,
presentation,	and	behavior.

Content
Content	is	the	meat	of	our	web	page.	It’s	the	text	or	audio	or	video	content	that	we’re	most
interested	in	presenting	on	our	page;	so	this	is	where	we	start.

Mark	up	your	content	with	clean	and	simple	HTML	code.	Use	HTML	elements	the	way
they	were	intended	to	be	used.	Mark	up	headings	with	heading	tags,	paragraphs	with
paragraph	tags,	lists	with	list	tags,	and	save	tables	for	tabular	data.

Browsers	have	built-in	styles	for	these	basic	HTML	tags—headings	will	be	of	a	larger
type	and	will	probably	look	bold.	Lists	will	have	bullets	or	numbers.	It	might	not	look
very	fancy,	but	it’s	readable	and	accessible	to	anyone.

Presentation
The	presentation	layer	is	where	we	start	to	get	fancy.	This	is	where	we	introduce	CSS	and
start	applying	our	own	styles	to	the	content	we’ve	created.	As	we	style	our	page,	we	might
find	that	we	have	to	go	back	into	our	HTML	code	and	add	some	new	containers	and
markup	to	make	things	such	as	multicolumn	layouts	possible,	but	we	should	still	strive	to
keep	our	markup	as	simple	and	as	straightforward	as	we	can.

Behavior
Once	our	page	has	all	of	our	content	properly	marked	up	and	is	styled	to	look	the	way	we
like,	we	can	think	about	adding	in	some	interactive	behavior.	This	is	where	JavaScript	and
jQuery	come	in.	This	layer	includes	animations,	special	effects,	AJAX,	and	so	on.

Designer,	Meet	JavaScript
JavaScript	is	a	powerful	and	complex	language.	You	can	work	with	it	for	10	years	and	still
have	more	to	learn.	However,	don’t	let	that	frighten	you	away.	You	don’t	have	to	know
everything	about	it	to	be	able	to	take	advantage	of	what	it	has	to	offer.	In	fact,	you	just
have	to	get	down	to	a	few	basics.

This	section	introduces	some	JavaScript	basics	and	JavaScript	syntax.	Don’t	be	scared
away	by	that	developer	word,	syntax.	Syntax	just	means	the	rules	for	writing	a	language,
much	like	we	have	rules	of	grammar	to	write	English.

Variables
Let’s	start	with	something	simple:

var	x	=	5;

This	is	a	“sentence”	in	JavaScript.	In	English,	we	end	a	sentence	with	a	period	or	maybe	a
question	mark	or	an	exclamation	mark.	In	JavaScript,	we	end	our	sentences	with	a
semicolon.

In	this	sentence,	we’re	creating	a	variable	(var),	x.	A	variable	is	just	a	container	for
holding	something.	In	this	case,	x	holds	the	number	5.

We	can	do	math	with	JavaScript	as	shown	in	the	following	code	snippet:

var	x	=	5;

var	y	=	2;

var	z	=	x	+	y;

Just	like	algebra,	our	variable	z	now	holds	the	value	of	the	number	7	for	us.

However,	variables	can	also	hold	things	other	than	numbers.	For	example:

var	text	=	'A	short	phrase';

Here,	we’ve	named	our	variable	text	and	it’s	holding	some	alphabetical	characters	for	us.
This	is	called	a	string.	A	string	is	a	set	of	alphanumeric	characters.

Objects
Objects	might	be	the	hardest	thing	for	a	newcomer	in	JavaScript	to	grasp,	but	that’s	often
because	we	overthink	it,	convinced	it	has	to	be	more	complicated	than	it	actually	is.

An	object	is	just	what	it	sounds	like—a	thing,	anything,	just	as	a	car,	a	dog,	and	a	coffee
maker	are	objects.

Objects	have	properties	and	methods.	A	property	is	a	characteristic	of	an	object.	For
example,	a	dog	could	be	tall	or	short,	have	pointy	ears	or	floppy	ears,	and	could	be	brown
or	black	or	white.	All	of	these	are	properties	of	a	dog.	A	method	is	something	an	object
can	do.	For	example,	a	dog	can	run,	bark,	walk,	and	eat.

Let’s	take	my	dog,	Magdelena	von	Barkington,	as	an	example	to	see	how	we’d	deal	with
objects,	properties,	and	methods	in	JavaScript:

var	dog;

Here,	I’ve	created	a	variable	dog	that	I’m	using	as	a	container	to	hold	my	dog,	mostly
because	I	don’t	want	to	have	to	type	out	her	full	name	each	time	I	refer	to	her	in	my	code.
Now,	let’s	say	I	wanted	to	get	my	dog’s	color:

var	color	=	dog.color;

I	created	a	container	called	color	and	I’m	using	it	to	hold	my	dog’s	color	property
—color	is	now	equal	to	my	dog’s	color.

Now,	I’ve	trained	my	dog	very	well	and	I’d	like	her	to	roll	over.	The	following	line	of
code	shows	how	I’d	tell	her	to	roll	over	with	JavaScript:

dog.rollOver();

The	rollOver()	method	is	something	that	my	dog	can	do.	After	my	dog	rolls	over,	I
might	like	to	reward	her	with	a	treat.	The	following	line	of	code	shows	how	my	dog	eats	a
treat	with	JavaScript:

dog.eat('bacon');

Wait,	what’s	going	on	here?	Let’s	take	it	one	step	at	a	time.	We	have	dog,	which	we	know
is	a	container	for	my	dog,	Magdelena	von	Barkington.	We	have	the	eat	method,	which	we
know	is	something	that	my	dog	can	do.	However,	my	dog	can’t	just	eat—she	has	to	eat
“something”.	We	can	use	some	extra	code	inside	the	parentheses	to	say	what	it	is	that	she
is	eating.	In	JavaScript,	we	call	the	code	inside	the	parentheses	an	argument.	In	this	case,
my	lucky	dog	is	eating	bacon.	So	in	JavaScript,	we’d	describe	this	bit	of	code	by	saying
we	are	passing	bacon	to	the	eat()	method	of	the	dog	object.

So	you	see,	objects	aren’t	so	difficult—they’re	just	things.	Properties	are	like	adjectives—
they	describe	traits	or	characteristics	of	an	object.	Methods	are	like	verbs—they	describe
actions	that	an	object	can	do.

Functions
A	function	is	a	bit	of	reusable	code	that	tells	JavaScript	to	do	something.	For	example,
have	a	look	at	the	following	code:

function	saySomething()	{

		alert('Something!');

}

This	function	tells	JavaScript	to	pop	up	an	alert	box	that	says	Something!.	We	always	start
a	function	with	the	word	function	and	then	we	name	our	function.	This	is	followed	by	a
set	of	parentheses	and	a	set	of	curly	brackets.	The	lines	of	instruction	go	inside	the	curly
brackets.

Now,	my	saySomething()	function	won’t	actually	do	anything	until	it’s	called,	so	I	need
to	add	a	line	of	code	to	call	my	function,	as	follows:

function	saySomething()	{

		alert('Something!');

}

saySomething();

You	might	wonder	what	those	parentheses	are	for.	Do	you	remember	how	we	could	pass
arguments	to	a	method	by	including	them	in	parentheses?	We	used	the	following	line	of
code:

dog.eat('bacon');

In	this	case,	we	passed	bacon	to	say	what	the	dog	was	eating.	We	can	do	the	same	thing
for	functions.	In	fact,	methods	actually	are	functions;	they’re	just	functions	that	are
specialized	to	describe	what	an	object	can	do.	Let’s	look	at	how	we	modify	our
saySomething()	function	so	that	we	can	pass	text	to	it,	as	follows:

function	saySomething(text)	{

		alert(text);

}

saySomething('Hello	there!');

In	this	case,	when	I	wrote	the	saySomething()	function,	I	just	left	a	generic	container	in
place.	This	is	called	a	parameter.	In	JavaScript,	we’d	say	the	saySomething()	function
takes	a	text	parameter,	as	I’ve	called	my	parameter	text.	I	chose	the	name	text	because
it’s	a	short	and	handy	descriptor	of	what	we’re	passing	in.	We	can	pass	in	any	bit	of	text	to
this	function,	so	text	is	an	appropriate	name.	You	can	name	your	parameter	anything
you’d	like,	but	you’ll	make	your	code	easier	to	read	and	understand	if	you	apply	some
sensible	rules	when	you’re	selecting	names	for	your	parameters.	A	parameter	behaves	very
much	like	a	variable—it’s	just	a	container	for	something.

Downloading	jQuery	and	getting	set	up
We’re	ready	to	include	the	magic	of	jQuery	into	a	project,	but	first,	we	need	to	download
it	and	figure	out	how	to	get	it	attached	to	an	HTML	page.	Here,	we’ll	walk	through	getting
a	sample	HTML	file	started	and	all	the	associated	files	and	folders	we’ll	need	to	work
through	a	sample	project.	Once	we’re	finished,	you	can	use	these	files	as	a	template	for	all
the	future	exercises	in	the	book.

Time	for	action	–	downloading	and
attaching	jQuery
Earlier,	I	described	the	three	layers	of	an	HTML	document:	content,	presentation,	and
behavior.	Let’s	take	a	look	at	how	to	set	up	our	files	in	these	three	layers,	as	follows:

1.	 First,	let’s	set	up	a	folder	on	your	hard	drive	to	hold	all	of	your	work	as	you	work
through	the	lessons	in	this	book.	Find	a	good	place	on	your	hard	drive	and	create	a
folder	called	jQueryForDesigners.

2.	 Create	a	folder	called	images	in	the	jQueryForDesigners	folder	to	hold	any	images
we’ll	use.

3.	 Next,	create	a	folder	called	styles.	We’ll	use	this	folder	to	hold	any	CSS	files	we
create.	Inside	the	styles	folder,	create	an	empty	CSS	file	called	styles.css.

The	styles	represent	our	presentation	layer.	We’ll	keep	all	of	our	styles	in	this	file	to
keep	them	separate.

Tip
There	is	a	standard	CSS	style	sheet	that	we’ll	start	with	for	each	exercise	in	this	book,
which	applies	some	basic	colors	and	typography.	You’ll	find	the	CSS	code	that
should	be	included	with	all	examples	in	the	sample	code	for	the	book.

4.	 Next,	create	a	folder	called	scripts	to	hold	our	JavaScript	and	jQuery	code.	Inside
the	scripts	folder,	create	an	empty	JavaScript	file	called	scripts.js.

The	JavaScript	we	write	here	represents	our	behavior	layer.	We’ll	keep	all	of	our
JavaScript	in	this	folder	to	keep	it	separate	from	the	other	layers.

5.	 Now,	inside	the	jQueryForDesigners	folder,	create	a	new	HTML	page—very	basic
with	the	following	code:

<!DOCTYPE	html>

<html>

		<head>

				<title>Practice	Page</title>

		</head>

		<body>

				

				<!--	Our	content	will	go	here	-->

		</body>

</html>

Save	this	file	as	index.html.	The	HTML	file	is	our	content	layer	and	is	arguably	the
most	important	layer,	as	it’s	likely	to	be	the	reason	site	visitors	are	coming	to	our
website	at	all.

6.	 Next,	we’ll	attach	the	CSS	and	JavaScript	files	that	we	created	to	our	HTML	page.	In
the	head	section,	add	a	line	of	code	to	include	the	CSS	file,	as	follows:

<head>

		<title>Practice	Page</title>

		<link	rel="stylesheet"	href="styles/styles.css"/>

</head>

Then,	head	down	to	the	bottom	of	the	HTML	file,	just	before	the	closing	</body>
tag,	and	include	the	JavaScript	file	as	follows:

		<script	src="scripts/scripts.js"></script>

		</body>

</html>

As	these	files	are	just	empty	placeholders,	attaching	them	to	your	HTML	page	won’t
have	any	effect.	However,	now,	we	have	a	place	to	write	our	CSS	code	and
JavaScript	that	will	come	handy	when	we’re	ready	to	dive	into	an	exercise.

Note
It’s	perfectly	fine	to	self-close	a	<link>	element,	but	a	<script>	element	always
needs	a	separate	closing	</script>	tag.	Without	it,	your	JavaScript	won’t	work.

The	following	screenshot	is	what	my	folder	looks	like	at	this	point:

7.	 Now,	we	have	to	include	jQuery	in	our	page.	Head	over	to	http://jquery.com	and	hit
the	Download	jQuery	button.

This	will	take	you	to	the	Download	page	where	you’ll	see	that	you’ve	got	quite	a	few
options	to	download	jQuery	these	days.

http://jquery.com

Note
As	of	April	2013,	you	officially	have	two	versions	of	jQuery	to	choose	from.	In
developer	speak,	these	versions	are	called	branches.	To	easily	understand	which
branch	you	should	use,	keep	this	rule	in	mind.	The	2.x	branch	of	jQuery	no	longer
has	support	for	Internet	Explorer	(IE)	6,	7,	or	8.	If	you’re	working	on	a	project	that
will	need	to	work	in	these	older	versions	of	IE,	then	you’ll	need	to	work	with	the	1.x
branch	of	jQuery.	If	you	don’t	need	to	support	these	older	versions	of	IE,	then	you
can	choose	to	work	with	the	2.x	branch.	All	the	code	files	in	this	book	will	use	the
2.x	branch,	since	my	philosophy	with	web	development	is	to	look	forward,	not	back.
However,	all	of	the	code	samples	will	work	fine	with	either	the	1.x	branch	or	the	2.x
branch	of	jQuery.

Note	that	the	jQuery	team	will	be	discontinuing	support	for	IE6	and	IE7,	even	in	the
1.x	branch,	with	the	jQuery	1.12	release	in	2014.

On	the	Download	page,	in	the	section	for	your	selected	branch,	you’ll	see	several
files	available	for	download:	a	compressed	version	and	an	uncompressed	version,	a
map	file,	and	release	notes.	The	only	file	we	need	to	be	concerned	with	is	the
compressed,	production	version.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased
from	your	account	at	http://www.packtpub.com.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the
files	e-mailed	directly	to	you.

8.	 Clicking	on	the	link	for	the	compressed,	production	version	of	your	selected	branch
of	jQuery	will	open	the	production	jQuery	file	in	your	browser	window,	and	it	looks
a	bit	scary,	as	shown	in	the	following	screenshot:

http://www.packtpub.com
http://www.packtpub.com/support

9.	 Don’t	worry,	you	don’t	have	to	read	it	and	you	definitely	don’t	have	to	understand	it.
Just	go	to	your	browser’s	File	menu	and	choose	Save	Page	As…	or	right-click	on	the
page	and	select	Save	As….	Then,	save	the	file	to	your	hard	drive,	inside	the	scripts
folder	we	created.	By	default,	the	script	will	have	the	version	number	in	the	filename.
I’m	going	to	go	ahead	and	rename	the	file	to	jquery.js	to	keep	things	simple.

10.	 Now,	we	just	have	to	include	our	jQuery	script	in	our	page—just	like	we	included	our
empty	JavaScript	file.	Go	to	the	bottom	of	your	practice	HTML	file,	just	before	the
<script>	tag	we	created	earlier,	and	add	a	line	to	include	jQuery,	as	follows:

		<script	src="scripts/jquery.js"></script>

		<script	type="text/javascript"	src="scripts/scripts.js"></script>

</body>

</html>

You	won’t	notice	any	changes	to	your	HTML	page;	jQuery	doesn’t	do	anything	on	its
own.	It	just	makes	its	magic	available	for	you	to	use.

What	just	happened?
We	learned	how	to	set	up	our	files	and	folders	to	work	through	the	practice	exercises	in
this	book.	We	also	learned	how	to	select	and	download	the	correction	version	of	jQuery
and	get	it	attached	to	our	HTML	page.	Now	we’re	all	set	to	start	coding	pages	and	adding
jQuery	magic	to	them.

Pop	quiz	–	setting	up	a	new	project
Q1.	Which	of	the	following	is	the	content	layer	of	a	project?

1.	 HTML
2.	 CSS
3.	 JavaScript

Another	option	for	using	jQuery
There	is	nothing	wrong	with	downloading	and	using	your	own	copy	of	jQuery,	but	you	do
have	another	option	available	that	can	help	to	improve	the	performance	of	your	websites.
That’s	to	use	a	CDN-hosted	copy	of	jQuery.

In	case	you	don’t	know,	a	CDN	is	a	Content	Delivery	Network.	The	premise	behind	a
CDN	is	that	files	download	faster	from	servers	that	are	physically	closer	to	a	site	visitor’s
location.	So,	for	example,	if	you’re	in	Los	Angeles,	California,	a	copy	of	jQuery	that’s	on
a	server	in	Phoenix,	Arizona	will	download	faster	than	a	copy	that’s	on	a	server	in	New
York	City.	To	help	this	along,	a	CDN	has	a	copy	of	the	same	file	on	lots	of	different
servers	all	around	the	world.	Each	time	a	site	visitor	requests	a	file,	the	CDN	smartly
routes	their	request	to	the	closest	available	server,	helping	to	improve	response	times	and
overall	site	performance.

It	won’t	make	much	of	a	difference	for	the	relatively	simple	examples	and	pages	that	we’ll
build	in	this	book,	but	for	a	public-facing	website,	using	a	CDN-hosted	copy	of	jQuery
can	make	a	noticeable	difference.	There	are	a	few	options	out	there,	but	the	most	popular
by	far	is	Google’s	Ajax	API	CDN.	You	can	get	the	information	on	the	latest	version
available	and	the	correct	URL	at
http://code.google.com/apis/libraries/devguide.html#jquery.

Note
There	are	several	CDN-hosted	copies	of	jQuery	available.	You	can	find	out	about	these	on
jQuery’s	Download	page	(http://jquery.com/download/).	Just	scroll	down	to	the	section
titled	Using	jQuery	with	a	CDN	to	find	all	your	current	options.

If	you’d	like	to	use	the	Google	CDN-hosted	version	of	jQuery	in	your	files,	it’s	as	simple
as	adding	the	following	line	of	code	to	your	HTML	file,	instead	of	the	line	we	used	in	the
previous	section	to	include	jQuery:

<script	

src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js">

</script>

No	downloading	the	file,	no	saving	your	own	copy;	you	can	just	point	your	<script>	tag
directly	at	the	copy	of	jQuery	stored	on	Google’s	servers.	Google	will	then	take	care	of
sending	jQuery	to	your	site	visitors	from	the	closest	available	server.	Not	only	that,	but	as
Google’s	CDN	is	so	popular,	there’s	a	good	chance	that	your	site	visitor	has	already
visited	another	site	that’s	also	using	a	Google	CDN-hosted	copy	of	jQuery	and	that	they’ll
have	jQuery	cached	in	their	browser.	This	means	that	your	site	visitor	won’t	have	to
download	jQuery	at	all—it’s	already	saved	in	their	browser	and	available	to	be	used.
How’s	that	for	improving	performance?

http://code.google.com/apis/libraries/devguide.html#jquery
http://jquery.com/download/

Your	first	jQuery	script
Alright,	now	that	you	understand	a	few	basic	things	about	JavaScript	and	know	how	to	get
your	files	and	folders	set	up	to	build	a	sample	exercise,	let’s	build	our	first	simple	example
page	and	make	it	do	something	fancy	with	jQuery.

Time	for	action	–	getting	ready	for	jQuery
Perform	the	following	steps	to	start	with	your	first	jQuery	script:

1.	 Set	up	your	files	and	folders	just	like	we	did	in	the	previous	exercise.	Inside	the
<body>	tags	of	the	HTML	document,	add	a	heading	and	a	paragraph,	as	follows:

<body>

<div	class="content">

		<h1>My	First	jQuery</h1>

		<p>Thanks	to	jQuery	doing	fancy	JavaScript	stuff	is	easy.</p>

</div>

</body>

Feel	free	to	add	some	CSS	code	to	the	styles.css	file	in	the	styles	folder.	Style
this	however	you’d	like.

2.	 Next,	open	up	that	empty	scripts.js	file	we	created	earlier	and	add	this	bit	of	script
to	the	file:

$(document).ready();

What	just	happened?
Let’s	take	this	statement	one	thing	at	a	time—first,	the	dollar	sign.	Really?	What’s	this
doing	in	JavaScript?

The	$	here	is	just	a	variable—that’s	all.	It’s	a	container	for	the	jQuery	function.	Remember
how	I	said	we	might	use	a	variable	to	save	ourselves	a	few	keystrokes?	The	clever	writers
of	jQuery	have	provided	the	$	variable	to	save	us	from	having	to	write	out	jQuery	every
time	we	want	to	use	it.	The	following	code	does	the	same	thing	that	the	preceding	script
did:

jQuery(document).ready();

Except	that	it	takes	longer	to	type.	jQuery	uses	the	$	sign	as	its	short	name	because	it’s
unlikely	that	you’d	call	a	variable	$	on	your	own	as	it’s	an	uncommon	character.	Using	an
uncommon	character	reduces	the	chance	that	there	will	be	some	sort	of	conflict	between
some	other	JavaScript	being	used	on	a	page	and	the	jQuery	library.

So,	in	this	case,	we’re	passing	document	to	the	jQuery	(or	$)	function	because	we	want	to
select	our	HTML	document	as	the	target	of	our	code.	When	we	call	the	jQuery	function,
we	get	a	jQuery	object.	In	JavaScript,	we’d	say	that	the	jQuery	function	returns	a	jQuery
object.	The	jQuery	object	is	what	gives	the	jQuery	library	its	power.	The	entire	jQuery
library	exists	to	give	the	jQuery	object	lots	of	properties	and	methods	that	make	our	lives
easier.	We	don’t	have	to	deal	with	lots	of	different	sorts	of	objects;	we	just	have	to	deal
with	the	jQuery	object.

The	jQuery	object	has	a	method	called	ready.	In	this	case,	the	ready	method	will	be
called	when	the	document	is	loaded	into	the	browser	and	is	ready	for	us	to	work	with.	We
can	pass	a	function	to	the	ready	method	to	say	what	should	happen.	So
$(document).ready()	just	indicates	when	the	document	is	ready.

Adding	a	paragraph
Now,	we’re	all	set	to	do	something	when	the	document	is	ready,	but	what	is	it	that	we’ll
do?	Let’s	add	a	new	paragraph	to	our	page.

Time	for	action	–	adding	a	new	paragraph
Perform	the	following	steps	to	add	a	new	paragraph	to	our	page:

1.	 We	need	to	tell	jQuery	what	to	do	when	the	document	is	ready.	Since	we	want
something	to	happen,	we’ll	pass	in	a	function	like	this:

$(document).ready(function(){

		//	Our	code	will	go	here

});

We’ll	write	what’s	going	to	happen	inside	this	function.

What	about	the	line	that	starts	with	//?	That’s	one	way	of	writing	a	comment	in
JavaScript.	The	//	sign	tells	JavaScript	to	ignore	everything	else	on	that	line	because
it’s	a	comment.	Adding	comments	to	your	JavaScript	is	a	great	way	to	help	yourself
keep	track	of	what’s	happening	on	what	line.	It’s	also	great	for	helping	along	other
developers	who	might	need	to	work	on	your	code.	It	can	even	be	great	for	helping
yourself	if	you	haven’t	looked	at	your	own	code	in	a	few	months.

2.	 Next,	we’ll	add	what	we	want	the	function	to	do	as	soon	as	the	document	is	ready:

$(document).ready(function(){

		$('body').append('<p>This	paragraph	was	added	with	jQuery!</p>');

});

What	just	happened?
Our	new	function	is	using	the	jQuery	function	again,	as	follows:

$('body')

Remember	I	said	that	jQuery	uses	CSS	selectors	to	find	stuff?	This	is	how	we	use	those
CSS	selectors.	In	this	case,	we	want	the	<body>	tag,	so	we’ll	going	to	pass	body	to	the
jQuery	function.	This	returns	the	<body>	tag	wrapped	in	a	jQuery	object.	Handily,	the
jQuery	object	has	an	append	method	that	lets	us	add	something	new	to	the	page,	as
follows:

$('body').append();

All	we	have	to	do	is	call	the	append	method	and	pass	in	the	paragraph	we	want	to	add	to
the	page.	In	quotes,	pass	a	line	of	HTML:

$('body').append('<p>This	paragraph	was	added	with	jQuery!</p>');

That’s	it!	Now,	when	you	load	the	page	in	a	browser,	you’ll	see	the	heading	followed	by
two	paragraphs—jQuery	will	add	the	second	paragraph	as	soon	as	the	document	is	loaded
in	the	browser.	The	following	screenshot	shows	the	page	loaded	in	the	browser:

Have	a	go	hero	–	adding	more	content
Try	adding	the	following	bit	of	HTML	to	the	bottom	of	the	document	with	jQuery:

<div><p>This	was	added	with	jQuery	too!</p></div>

Style	it	with	CSS	so	that	it	stands	out.

Summary
In	this	chapter,	you	have	been	introduced	to	the	jQuery	library	and	have	learned	a	few
things	about	it.	We	covered	a	bit	of	JavaScript	basics	and	then	we	learned	how	to	set	up
our	files	and	folders	for	the	exercises	in	this	book.	Finally,	we	set	up	a	simple	HTML	page
that	took	advantage	of	jQuery	to	add	some	dynamic	content.	Now,	let’s	take	a	look	at	how
we	can	make	links	more	powerful	with	jQuery	by	creating	tabs	and	custom	tooltips.

Chapter	2.	Enhancing	Links
We	take	links	for	granted	these	days,	but	the	truth	of	the	matter	is	that	the	humble	link
revolutionized	documents	and	made	the	Web	as	we	know	it	today	possible.	Being	able	to
link	a	reader	directly	to	another	document	or	to	another	place	within	a	document	was	not
possible	before.

For	this	reason,	you	can	say	that	hyperlinks	are	the	backbone	of	the	Internet—without
them,	search	engines	wouldn’t	be	possible,	nor	would	most	websites.	Let’s	take	a	look	at
some	of	the	ways	we	can	make	links	work	even	harder	for	us.

In	this	chapter,	we	will	cover	the	following	topics:

How	to	turn	a	list	of	links	into	simple	tabs
How	to	customize	tooltips

Simple	tabs
If	we	have	a	large	amount	of	information	to	present	that	might	not	be	relevant	to	all	site
visitors,	we	can	compress	the	amount	of	space	the	information	takes	by	hiding	selected
bits	of	information	until	the	user	requests	it.	One	of	the	most	common	ways	of	making	all
the	information	available	but	hidden	until	requested	is	tabs.	Tabs	echo	the	real-world
example	of	a	tabbed	notebook	or	labeled	folders	in	a	filing	cabinet,	and	are	easy	for	site
visitors	to	understand.	Believe	it	or	not,	they’re	also	easy	to	implement	with	jQuery.

The	following	screenshot	gives	us	an	idea	of	what	our	page	will	look	like	after	we’ve
created	our	tabs:

Time	for	action	–	creating	simple	tabs
Perform	the	following	steps	to	turn	a	list	of	links	into	tabs:

1.	 We’ll	get	started	with	our	basic	HTML	file	and	associated	folders,	like	we	created	in
Chapter	1,	Designer,	Meet	jQuery.	Inside	the	<body>	tag,	we’ll	start	by	setting	up	a
simple	example	that	will	work	even	for	users	with	JavaScript	disabled.	We’ll	put	a
list	of	anchor	links	to	different	areas	of	the	page	at	the	top	and	then	wrap	each	of	our
content	sections	in	a	div	block	with	an	ID,	as	shown	in	the	following	code:

<header	class="content">

		<h1>Noble	Gases</h1>

		<p>Odorless,	colorless,	monatomic	gases	with	very	low	chemical	

reactivity</p>

</header>

<ul	id="tabs">

		He

		Ne

		Ar

		Kr

		Xe

		Rn

<div	id="he">

		<h2>Helium</h2>

		<p>Info	about	helium	here.</p>

</div>

<div	id="ne">

		<h2>Neon</h2>

		<p>Info	about	neon	here.</p>

</div>

<div	id="ar">

		<h2>Argon</h2>

		<p>Info	about	argon	here.</p>

</div>

<div	id="kr">

		<h2>Krypton</h2>

		<p>Info	about	krypton	here.</p>

</div>

<div	id="xe">

		<h2>Xenon</h2>

		<p>Info	about	xenon	here.</p>

</div>

<div	id="rn">

		<h2>Radon</h2>

		<p>Info	about	radon	here.</p>

</div>

Note	that	we	added	an	id	value	of	tabs	to	the	list	of	links.	This	will	make	it	easy	to
select	the	list	with	CSS	for	styling	and	with	JavaScript	to	create	the	tab	behavior.

If	you	view	this	HTML	in	a	browser,	you’ll	see	a	list	of	links	at	the	top	of	the	page,
which	when	clicked	on	the	ID,	jumps	down	to	the	appropriate	section	of	the	page	so
that	the	site	visitor	can	easily	find	each	section	without	scrolling	on	their	own.	We’ve
basically	created	a	clickable	table	of	contents	for	our	page.

2.	 Next,	we	want	to	style	our	page	a	bit	so	that	it	looks	nice	for	those	site	visitors	who
have	JavaScript	disabled.	We	only	want	these	styles	to	apply	to	the	page	if	JavaScript
is	disabled,	so	let’s	learn	a	handy	technique.	Add	a	class	of	jsOff	to	the	<body>	tag,
as	follows:

<body	class="jsOff">

Now,	you	can	reference	this	class	in	your	CSS	file	to	write	styles	for	site	visitors	who
have	JavaScript	disabled,	using	the	following	code:

.jsOff	ul#tabs	{

		line-height:	1.5;

		margin:	1.125em	0;

}

Feel	free	to	experiment	with	your	CSS	file	and	style	the	table	of	contents	the	way	you
want	like	for	the	no-JavaScript	case.

3.	 Now,	we	want	to	enhance	this	for	our	site	visitors	that	have	JavaScript	enabled.	We’ll
start	by	adding	a	class	name	to	each	of	the	<div>	blocks	that	contain	our	sections	of
content—this	will	make	it	easier	for	us	to	select	just	the	pieces	of	the	page	we	want
with	jQuery	and	will	also	make	it	easier	for	us	to	further	style	our	tabs	with	CSS.
Have	a	look	at	the	following	code:

		<ul	id="tabs">

				He

				Ne

				Ar

				Kr

				Xe

				Rn

		

		<div	id="he"	class="content	tab-section">

				<h2>Helium</h2>

				<p>Info	about	helium	here.</p>

		</div>

		<div	id="ne"	class="content	tab-section">

				<h2>Neon</h2>

				<p>Info	about	neon	here.</p>

		</div>

		<div	id="ar"	class="content	tab-section">

				<h2>Argon</h2>

				<p>Info	about	argon	here.</p>

		</div>

		<div	id="kr"	class="content	tab-section">

				<h2>Krypton</h2>

				<p>Info	about	krypton	here.</p>

		</div>

		<div	id="xe"	class="content	tab-section">

				<h2>Xenon</h2>

				<p>Info	about	xenon	here.</p>

		</div>

		<div	id="rn"	class="content	tab-section">

				<h2>Radon</h2>

				<p>Info	about	radon	here.</p>

		</div>

Here,	we	used	the	class	of	content	to	apply	document-wide	styles	to	the	tabbed
sections.	We	also	added	the	tab-section	class	for	styles	specific	to	just	the	tabbed
sections.	The	following	screenshot	shows	what	we’ve	got	so	far:

4.	 Now,	we’ll	go	back	to	the	jsOff	class	we	added	to	the	<body>	tag.	Remember	how
we	wrote	some	CSS	styles	that	applied	only	when	our	site	visitor	has	JavaScript
disabled?	Now,	we	can	use	some	jQuery	magic	to	change	this	class	for	site	visitors
who	have	JavaScript	enabled.

jQuery	makes	it	easy	for	us	to	add	or	remove	classes	from	elements.	In	this	case,	we
want	to	remove	the	jsOff	class	from	the	<body>	section.	To	do	this,	we’ll	use
jQuery’s	removeClass()	method.	Then,	we	will	add	a	new	class	called	jsOn	to	the
<body>	section.	To	do	this,	we’ll	use	jQuery’s	addClass	method.

Open	the	scripts.js	file	inside	your	scripts	folder	and	write	a	document	ready
statement,	as	shown	in	the	following	code,	just	like	we	did	in	Chapter	1,	Designer,
Meet	jQuery:

$(document).ready(function(){

		//	Our	code	will	go	here

});

Inside	the	document	ready	statement,	write	the	following	code	to	remove	the	jsOff
class:

$(document).ready(function(){

		$('body').removeClass('jsOff');

});

Next,	we	need	to	write	the	following	code	to	add	the	new	jsOn	class:

$(document).ready(function(){

		$('body').removeClass('jsOff');

		$('body').addClass('jsOn');

});

This	code	will	work,	but	jQuery	actually	makes	it	a	little	bit	easier	for	us.	We	can
write	less	code!	As	we’re	working	with	the	<body>	element	both	times,	we	can
actually	write	both	of	these	methods	on	one	line,	as	follows:

$(document).ready(function(){

		$('body').removeClass('jsOff').addClass('jsOn');

});

Now	we	can	use	the	jsOn	class	to	write	CSS	just	for	those	site	visitors	who	have
JavaScript	enabled.

5.	 We’ll	make	use	of	the	new	jsOn	class	to	hide	all	of	our	tab-section	<div>	elements.
Inside	the	styles.css	file,	add	the	following	CSS	code	to	hide	all	the	sections	as
soon	as	our	page	loads:

.jsOn	.tab-section	{

		display:	none;

}

Now,	when	we	reload	the	page,	we’ll	only	see	our	table	of	contents	as	shown	in	the
following	screenshot:

6.	 Now,	let’s	write	some	CSS	styles	to	get	the	list	of	links	to	look	like	tabs.	Open	the
styles.css	file	that’s	inside	your	styles	folder	and	add	some	CSS	styles.	As	we
want	these	styles	to	be	applied	only	for	site	visitors	with	JavaScript	enabled,	we’ll
use	the	jsOn	class	in	our	selectors.	Feel	free	to	customize	the	CSS	code	to	suit	your
own	taste.	I	have	customized	it	as	follows:

.jsOn	ul#tabs	{

		background:	#a0d468;

		border-top-left-radius:	7px;

		border-top-right-radius:	7px;

		font-size:	1.5em;

		margin:	1.5em	0	0	0;

}

.jsOn	ul#tabs:after	{

		clear:	both;

		content:	'';

		display:	table;

}

.jsOn	ul#tabs	li	{

		display:	block;

		float:	left;

}

.jsOn	ul#tabs	a	{

		border-right:	1px	solid	#8cc152;

		color:	white;

		display:	block;

		padding:	0.5em	1.125em;

		text-decoration:	none;

}

.jsOn	ul#tabs	li:first-child	a	{

		border-top-left-radius:	7px;		

}

.jsOn	ul#tabs	a:hover	{

		background:	#8cc152;

}

.jsOn	.tab-section	{

		background:	white;

		color:	#444;

		padding:	2em;

}

.jsOn	.tab-section	h2	{

		margin-top:	0;

}

Note	that	this	sample	CSS	uses	several	CSS3	properties	that,	at	the	time	of
publication,	are	not	supported	by	all	browsers.	Feel	free	to	add	in	vendor	prefixes	to
get	these	styles	working	in	more	current	browsers	if	you	wish.	Have	a	look	at	the
following	screenshot:

Tip
Browser	support	for	new	features

If	you’re	curious	to	know	what	browser	support	is	available	for	different	new	CSS3
properties	you	might	like	to	use	in	your	CSS,	a	great	resource	to	check	out	is
http://caniuse.com.	It’s	kept	up	to	date	and	will	give	you	detailed	information	about
which	browsers	support	each	new	property.

7.	 Next,	let’s	get	our	tabs	working.	When	a	site	visitor	clicks	on	a	tab,	we	want	to	show
the	appropriate	section	of	content.	First,	we	have	to	select	the	element	or	elements
that	we	want	to	work	with.	In	this	case,	we	want	to	do	something	when	our	site
visitor	clicks	on	a	link	inside	the		element	with	the	id	value	of	tabs.	We	can
select	these	links	as	follows:

$(document).ready(function(){

http://caniuse.com

		$('body').removeClass('jsOff').addClass('jsOn');

		$('#tabs	a')

});

8.	 Now,	we’ve	got	the	links	and	we	want	to	do	something	when	these	links	are	clicked.
jQuery	makes	this	easy	for	us	with	the	on()	method,	which	looks	like	the	following
code	snippet:

$(document).ready(function(){

		$('body').removeClass('jsOff').addClass('jsOn');

		$('#tabs	a').on();

});

In	this	case,	we	want	to	do	something	when	our	site	visitor	clicks	on	one	of	the	tab
links.	In	JavaScript,	the	click	is	called	an	event.	There	are	all	sorts	of	events:	clicking
on	an	element,	moving	the	mouse	over	an	element,	changing	the	text	in	a	form	field,
submitting	a	form,	and	so	on.	We	just	have	to	tell	jQuery	which	event	we’re	working
with.	In	this	case,	it’s	click:

$('#tabs	a').on('click');

Now,	jQuery	knows	that	we	want	to	do	something	when	the	user	clicks	on	a	tab	link,
but	we	haven’t	said	what	we	want	to	do.	We	can	say	what	should	happen	with	a
function,	as	follows:

$('#tabs	a').on('click',	function(){

		//	Event	code	will	go	here

});

In	JavaScript,	this	function	is	called	an	event	handler.	That	makes	sense,	right?	It’s
the	code	that	handles	an	event.

9.	 Remember	how	the	page	worked	when	JavaScript	was	disabled?	The	list	of	links
appeared	at	the	top	of	the	page,	and	clicking	on	one	of	them	would	jump	to	the
corresponding	section	of	the	page.	As	we’re	going	to	hide	and	show	those	bits	of
content	depending	on	which	link	was	clicked,	we	need	to	make	sure	that	we	cancel
the	default	action—we	don’t	want	the	page	to	jump.	The	following	code	is	how	we
cancel	the	browser’s	default	reaction	to	an	event:

$('#tabs	a').on('click',	function(e){

		e.preventDefault();

});

We	have	to	pass	our	event	inside	the	parentheses	of	the	function	shown	in	the
preceding	code.	You	may	call	this	what	you	want.	Sometimes,	developers	will	name
it	e,	event,	or	evt.	Then,	inside	our	function,	we	call	the	preventDefault	method	for
the	event.	If	you	load	the	page	in	a	browser	at	this	point,	you’ll	see	that	clicking	on
the	links	does	nothing—the	default	action	has	been	cancelled.	Now,	we	have	to	write
a	function	to	specify	what	should	happen	instead.

10.	 When	a	site	visitor	clicks	on	a	table	of	contents	link,	we	want	to	select	the

appropriate	section	and	show	it.	To	do	this,	we’ll	use	hash,	or	the	part	of	the	href
attribute	that	includes	the	#	symbol:

$('#tabs	a').on	('click',	function(e){

		$(this.hash).show();

		e.preventDefault();

});

When	we	pass	this.hash	to	the	jQuery	function,	the	this	keyword	we’re	dealing
with	is	the	link	that	was	just	clicked	on	and	this.hash	is	the	value	of	the	href
attribute	starting	with	the	#	symbol	and	continuing	to	the	end.	For	example,	if	a	site
visitor	were	to	click	on	the	He	tab,	passing	this.hash	to	the	jQuery	function	is	the
same	as	writing	the	following	line	of	code:

$('#he');

Of	course,	we’ve	done	it	in	a	much	more	flexible	way	and	our	code	will	work	for	any
tab	linked	to	any	section	of	the	site.	So,	for	example,	if	I	wanted	to	remove	the	Rn
tab	or	expand	my	list	to	include	the	halogens	in	addition	to	the	noble	gases,	I
wouldn’t	have	to	update	JavaScript,	only	the	HTML	markup	itself—JavaScript	is
flexible	enough	to	adjust	to	changes.

11.	 If	you	reload	the	page	in	the	browser	at	this	point,	you’ll	see	that	when	you	click	on
one	of	the	tab	links,	the	associated	section	becomes	visible.	We’re	making	progress!
However,	if	you	keep	clicking	on	links,	the	sections	just	keep	showing	up,	and	after
clicking	on	all	the	links,	all	the	sections	are	visible—this	not	what	we	want.	We’ll
have	to	hide	the	visible	section	and	show	only	the	section	we	want.	Let’s	add	a	line	to
our	code,	as	follows,	to	select	the	visible	<div>	with	the	class	of	tab-section	and
hide	it	before	we	show	the	new	section:

$('#tabs	a').on('click',	function(e){

		$('.tab-section:visible').hide();

		$(this.hash).show();

		e.preventDefault();

});

You’re	probably	familiar	with	pseudoclass	selectors	in	CSS—they’re	often	used	to
select	the	hover,	visited,	and	active	states	of	links	(a:hover,	a:visited,	and
a:active).	jQuery	makes	a	few	additional	pseudoclass	selectors	available	to	us.
There	are	pseudoclass	selectors	for	buttons,	empty	elements,	disabled	form	fields,
checkboxes,	and	so	on.	You	can	check	out	all	the	available	selectors	for	jQuery	in	the
jQuery	documentation	at	http://api.jquery.com/category/selectors/.	Here,	we’re	using
the	:visible	pseudoclass	to	select	the	.tab-section	that’s	currently	visible.	Once
we’ve	selected	the	visible	.tab-section,	we	hide	it	and	then	find	the	correct	tab-
section	and	show	it.

12.	 Now,	if	you	load	this	in	a	browser,	you’ll	see	that	there’s	something	missing;	we
should	highlight	the	currently	selected	tab	to	make	it	obvious	which	one	is	selected.
We	can	do	that	by	adding	a	CSS	class	to	the	current	tab.	Go	back	to	your	scripts.js
file	and	add	a	bit	of	code	to	add	a	class	to	the	current	tab	and	remove	the	class	from

http://api.jquery.com/category/selectors/

any	non-current	tabs	as	follows:

$('#tabs	a').on	('click',	function(e){

		$('#tabs	a.current').removeClass('current');

		$('.tab-section:visible').hide();

		$(this.hash).show();

		$(this).addClass('current');

		e.preventDefault();

});

First,	we’ll	find	the	tab	that	has	the	current	class	and	remove	this	class.	Then,	we’ll
get	the	tab	that	was	just	clicked	and	add	the	current	class	to	it.	In	this	way,	we	make
sure	that	only	one	tab	will	be	marked	as	the	current	tab	at	any	given	time.

The	$(this)	element	is	the	jQuery	way	of	referring	to	the	jQuery	object	that	we’re
currently	working	with.	In	this	case,	we’re	selecting	all	the	tab	links	and	we’ve
attached	this	function	to	be	called	whenever	our	site	visitor	clicks	on	a	link.	When	a
site	visitor	clicks	on	a	link,	we	want	to	work	with	the	link	that	was	clicked.	A	simple
and	quick	way	of	referring	to	the	current	link	is	to	use	$(this).

13.	 Next,	we’ll	add	some	styles	in	our	CSS	file	for	our	new	class.	Open	styles.css	and
add	a	bit	of	CSS	to	distinguish	the	currently	selected	tab.	I’m	styling	mine	as	follows,
but	feel	free	to	customize	the	style	to	suit	your	own	tastes:

.jsOn	ul#tabs	a.current	{

		background:	#4fc1e9;

}

14.	 Now	our	tabs	are	working	the	way	we	expect,	and	the	only	thing	left	to	do	is	to	make
the	first	tab	active	and	show	the	first	content	section	when	the	page	is	first	loaded
instead	of	leaving	them	all	hidden.	We’ve	already	written	the	function	to	do	this,	so
now	all	we	have	to	do	is	call	it	for	our	first	tab,	as	shown	in	the	following	code
snippet:

$('#tabs	a').on	('click',	function(e){

		$('#tabs	a.current').removeClass('current');

		$('.tab-section:visible').hide();

		$(this.hash).show();

		$(this).addClass('current');

		e.preventDefault;

}).filter(':first').click();

The	jQuery	object’s	filter	method	will	allow	us	to	filter	a	previously	selected	set	of
elements.	In	this	case,	we’re	dealing	with	all	of	the	<a>	tags	inside	the		tags	with
the	#tabs	ID.	We	bind	a	click	function	to	all	of	these	links,	then	we’ll	filter	out	just
the	first	link	using	the	:first	pseudoclass	made	available	to	us	in	jQuery,	and	tell
jQuery	to	click	on	the	first	tab	for	us.	This	will	run	our	function,	adding	the	current
class	to	the	first	link	and	showing	the	first	.tab-section—just	the	way	we’d	expect
the	page	to	look	when	we	load	it,	as	seen	in	the	following	screenshot:

What	just	happened?
We	set	up	a	set	of	simple	tabs	with	jQuery.	For	site	visitors	with	JavaScript	disabled,	the
tabs	will	function	like	a	table	of	contents	at	the	top	of	the	document,	jumping	them	to	the
various	sections	of	content	when	they’re	clicked.	For	site	visitors	with	JavaScript	enabled,
the	sections	of	content	will	be	completely	hidden	until	needed.	Clicking	on	each	tab
reveals	the	content	associated	with	that	tab.	This	is	a	great	way	to	save	space	in	a	UI,
making	all	the	content	available	on	demand	in	a	small	space.

We	used	our	jsOn	class	name	to	hide	the	tab	contents	to	be	sure	that	users	without
JavaScript	enabled	would	still	be	able	to	access	all	of	our	content.

Pop	quiz	–	working	with	events
Q1.	Which	of	the	following	are	the	examples	of	events	in	JavaScript?

1.	 Clicking	on	a	link
2.	 Entering	a	value	in	a	form	input
3.	 Moving	the	mouse	over	an	image
4.	 Pressing	a	key	on	the	keyboard
5.	 All	of	the	above

Q2.	What	is	an	event	handler?

1.	 The	site	visitor	that	decides	which	button	to	click
2.	 A	bit	of	code	that	is	run	in	response	to	an	event
3.	 The	site	visitor	submitting	a	form

Designer,	meet	plugins
We’ve	already	talked	about	how	programmers	solve	the	same	problems	over	and	over
again.	It’s	these	common	tasks	that	jQuery	simplifies	so	that	we	can	accomplish	these
tasks	with	a	minimum	amount	of	code.	What	about	the	tasks	that	are	only	somewhat
common,	like	the	ability	to	customize	the	appearance	of	tooltips?

That’s	where	the	jQuery	community	becomes	important.	Developers	in	the	jQuery
community	write	code	that	extends	the	functionality	of	jQuery	to	simplify	tasks	that	are
only	somewhat	common.	These	bits	of	code	are	called	plugins,	and	they	are	used	in
conjunction	with	the	jQuery	library	to	make	coding	complex	interactions,	widgets,	and
effects	as	simple	as	using	the	features	already	built	into	jQuery.

You’ll	find	a	library	of	hundreds	of	jQuery	plugins	on	the	official	jQuery	site	at
http://plugins.jquery.com.	In	addition	to	this,	there	are	literally	thousands	more	available
from	sites	across	the	Web	for	just	about	any	task	you	want	to	accomplish.

To	create	custom-designed	tooltips,	we’ll	be	using	Steven	Benner’s	jQuery	PowerTip
plugin.	You’ll	learn	how	to	install	the	plugin	on	your	page	and	how	to	configure	the	CSS
code	and	options	to	make	your	tooltips	look	and	work	the	way	you	want.

http://plugins.jquery.com

Choosing	a	plugin
Recently,	the	jQuery	team	has	started	supporting	a	small	number	of	official	jQuery
plugins,	and	you	can	use	them	confidently,	knowing	that	they	have	the	same	level	of
expertise,	documentation,	and	support	behind	them	that	jQuery	itself	has.	All	other	jQuery
plugins	are	provided	by	various	members	of	the	jQuery	community,	and	those	authors	are
solely	responsible	for	the	documentation	and	for	their	own	plugins.	Writing	and	providing
jQuery	plugins	is	a	bit	of	a	free-for-all,	and	sadly,	you	will	come	across	a	fair	number	of
jQuery	plugins	that	are	poorly	documented,	poorly	supported,	and	even	worse,	poorly
written.	What	kinds	of	things	should	you,	as	a	newcomer	to	jQuery,	look	for	when
choosing	a	plugin?

A	recent	update	to	the	plugin:	Frequent	updates	mean	that	a	plugin	is	well
supported	and	that	the	author	is	keeping	the	plugin	up	to	date	as	jQuery	and	browsers
evolve.	You’ll	even	sometimes	find	other	community	members	making	contributions
and	updates	to	a	plugin,	as	is	the	case	with	the	jQuery	PowerTip	plugin.
Thorough	and	easy-to-understand	documentation:	Before	attempting	to	download
and	use	a	plugin,	take	a	look	through	the	plugin’s	documentation	and	make	sure	that
you	understand	how	to	implement	the	plugin	and	how	to	use	the	options	that	the
plugin	makes	available	to	you.
Browser	support:	Great	plugins	generally	have	the	same	browser	support	as	the
jQuery	library.
Working	demo:	Most	plugins	will	offer	one	or	more	working	demos	of	their	plugin
in	action.	Check	out	the	demo(s)	in	as	many	different	browsers	as	possible	to	make
sure	that	the	plugin	works	as	advertised.
Reviews	and	ratings:	You	won’t	find	reviews	and	ratings	for	all	plugins,	but	if	you
can	find	some,	they	can	be	helpful	indicators	of	the	quality	and	reliability	of	the
plugin.

Simple	custom	tooltips
Browsers	automatically	create	tooltips	when	you	include	the	title	attribute	on	your
HTML	element.	Titles	are	usually	used	on	links	and	images,	but	they	can	be	added	to
nearly	every	type	of	HTML	element.	When	your	site	visitors	hover	their	mouse	cursor
over	an	element	with	a	title	attribute	or	move	focus	to	the	item	by	tabbing	to	it	using	the
keyboard,	the	tooltip	will	appear—usually	as	a	small	yellow	box	that	appears	to	be
floating	over	the	page.

Tooltips	are	a	great	way	to	add	a	little	additional	information	to	your	page.	Screen	reader
software	reads	out	tooltip	text	for	site	visitors	with	disabilities	who	are	using	assistive
technology,	making	them	useful	for	enhancing	accessibility.	Furthermore,	the	title
attributes	on	images	and	links	can	help	search	engines	index	your	content	more
effectively.

I	hope	I’ve	convinced	you	that	the	title	attributes	are	great	for	enhancing	both	the
usability	and	the	accessibility	of	your	site.	The	only	problem	with	tooltips	is	that	they
can’t	be	customized	in	any	way.	Each	browser	has	its	own	style	of	tooltip	and	that	style	is
not	accessible	via	CSS.	This	is	fine,	but	sometimes,	it’s	nice	to	have	more	control	over	the
appearance	of	tooltips.

Time	for	action	–	simple	custom	tooltips
We’ll	start	off	by	creating	a	simple	replacement	for	the	browser’s	default	tooltips	that	we
can	style	any	way	we’d	like.	Perform	the	following	steps:

1.	 Set	up	a	basic	HTML	file	and	associated	files	and	folders	like	we	did	in	Chapter	1,
Designer,	Meet	jQuery.	Our	HTML	file	should	contain	a	list	of	images	with	the	title
attributes	as	follows:

<div	class="content">

		<h2	id="pb-gallery">Photo	Gallery</h2>

		<ul	class="gallery">

				<img	src="images/bridge.jpg"	title="One	of	many	bridges	in	

Pittsburgh"/>

				<img	src="images/downtown.jpg"	title="Downtown	Pittsburgh	with	

bridges"/>

				<img	src="images/icecream.jpg"	title="A	great	way	to	beat	the	

summer	heat"/>

		

</div>

Feel	free	to	use	CSS	to	style	this	list	in	the	way	like.	If	you	open	the	page	in	a
browser	and	move	your	mouse	over	the	images,	you’ll	see	the	text	that’s	contained	in
the	title	attributes	displayed	as	tooltips.	Where	the	tooltip	appears	and	what	it	looks
like	will	depend	on	your	browser,	but	here’s	how	it	looks	in	mine	(Google	Chrome	on
Mac	OS):

2.	 Now,	let’s	spruce	that	up	a	bit	by	replacing	the	default	browser	tooltip	with	our	own
styled	one,	at	least	for	our	site	visitors	that	have	JavaScript	enabled.	First,	we’ll	need
a	copy	of	Steven	Benner’s	jQuery	PowerTip	plugin.	It’s	available	on	GitHub	at
http://stevenbenner.github.io/jquery-powertip/.	The	GitHub	page	has	a	list	of
features,	some	sample	demos,	the	documentation	you’ll	need	to	learn	to	use	the
plugin,	and	a	link	to	the	files	available	for	download.	Click	on	the	green	Download
button	to	download	a	ZIP	file	that	consists	all	the	files	you’ll	need.	For	this,	have	a
look	at	the	following	screenshot:

http://stevenbenner.github.io/jquery-powertip/

3.	 Unzip	the	file	you	downloaded	and	examine	its	contents.	Inside,	you’ll	find	a	css
folder	with	several	.css	files,	an	examples	folder	with	a	few	working	examples	for
you	to	look	at,	two	JavaScript	files,	and	a	LICENSE.txt	file.	Have	a	look	at	the
following	screenshot:

Let’s	start	with	all	the	CSS	files.	You’ll	find	two	files	named	jquery.powertip.css
and	jquery.powertip.min.css.	These	two	files	are	the	default	tooltip	styles	for	this
plugin	and	have	exactly	the	same	content.	The	difference	between	them	is	that	the
second	file	is	minified,	making	it	smaller	and	ideal	for	use	in	production.	The	other
file	is	a	development	version	that	we	could	easily	edit	ourselves	or	use	as	an	example
if	we	wanted	to	write	our	own	custom	styles	for	our	tooltips.

The	rest	of	the	CSS	files	are	assorted	styles	and	color	schemes	for	the	tooltips.	If	you

look	closely,	you’ll	see	the	names	of	colors	in	the	filenames,	for	example,
jquery.powertip-purple.css	or	jquery.powertip-blue.css.	Each	of	these	files
also	have	a	minified	production	version	and	a	development	version.	All	of	these
styles	are	prewritten	and	available	to	you	to	use	in	your	project.

You	can	select	one	of	these	CSS	files	and	attach	it	to	your	page.	Copy
jquery.powertip.css	to	your	own	styles	folder	and	then	attach	the	file	to	your
HTML	document	in	the	<head>	section,	as	follows:

<head>

		<title>Chapter	2:	jQuery	for	Designers</title>

		<link	rel="stylesheet"	href="styles/styles.css">

		<link	rel="stylesheet"	href="styles/jquery.powertip.css">

</head>

4.	 Next,	let’s	look	at	the	JavaScript	files.	We	have	jquery.powertip.js	and
jquery.powertip.min.js.	Just	like	the	CSS	files,	these	are	two	different	versions	of
the	same	file,	and	we	simply	have	to	choose	one	and	attach	it	to	our	HTML
document.	The	first	file,	jquery.powertip.js,	is	the	development	version	of	the	file
and	the	largest	at	35	KB.	The	second	file	is	minified	and	is	just	9	KB.	As	we	don’t
need	to	edit	the	plugin	itself	and	are	going	to	use	it	as	it	is,	let’s	select	the	smaller
minified	version.	Copy	jquery.powertip.min.js	to	your	own	scripts	folder	and
attach	it	at	the	bottom	of	your	HTML	file,	between	jQuery	and	your	own	scripts.js
file.	This	is	shown	in	the	following	code:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.powertip.min.js"></script>

<script	src="scripts/scripts.js"></script>

</body>

</html>

5.	 The	last	thing	we	need	to	do	is	call	the	plugin	code.	Open	your	scripts.js	file	and
add	the	following	document	ready	statement	and	function:

$(document).ready(function(){

});

6.	 Inside	the	function,	select	the	images	inside	the	list	and	call	the	powerTip	method	on
these	links,	as	shown	in	the	following	code:

$(document).ready(function(){

		$('.gallery	img').powerTip();

});

Now,	when	you	view	the	page	in	the	browser	and	move	your	mouse	over	the	images
with	the	title	attributes,	you’ll	see	the	PowerTip-styled	tooltips	instead	of	the
browser’s	default	tooltips,	as	seen	in	the	following	screenshot:

The	default	style	for	PowerTip	tooltips	is	a	slightly	transparent	black	tooltip	that
appears	directly	above	the	item	you’re	hovering	your	mouse	over.	These	tooltips	will
appear	with	this	same	style,	no	matter	which	browser	and	operating	system	we’re
using,	except	that	the	tooltip	will	be	opaque	in	browsers	that	don’t	support	RGBA
colors	for	transparency.

What	just	happened?
We	downloaded	the	jQuery	PowerTip	plugin	and	attached	one	CSS	file	and	one	JavaScript
file	to	our	HTML	document.	Then,	we	added	just	a	couple	lines	of	jQuery	code	to	activate
the	custom	tooltips.

We	selected	all	the	images	in	the	gallery	list.	We	did	this	by	taking	advantage	of	jQuery’s
CSS	selectors:

$('.gallery	img')

Once	we’ve	selected	all	the	images,	all	that	was	left	to	do	was	call	the	powerTip	method
that	the	PowerTip	plugin	provided	for	us.	The	powerTip	method	takes	care	of	all	the
actions	that	need	to	be	performed	to	replace	the	default	tooltip	with	a	custom	one.	But
what	if	we	want	to	alter	the	style	or	placement	of	the	tooltips?	Let’s	take	a	look	at	how	we
can	customize	the	tooltips.

Customizing	PowerTip’s	appearance
The	default	PowerTip	style	displays	the	tooltip	centered	above	the	item	that	we’re
hovering	our	mouse	over.	The	PowerTip	plugin	offers	lots	of	options	to	customize	where
the	tooltip	appears	and	what	it	looks	like.	It	does	so	in	a	straightforward	and	easy-to-
understand	way.

Time	for	action	–	customizing	PowerTip
Let’s	take	a	look	at	some	of	the	options	we	have	to	customize	PowerTip	and	how	we	can
use	them.	We’ll	keep	working	with	the	files	we	set	up	in	the	preceding	example:

1.	 Let’s	say	that	we	want	to	change	the	position	of	the	tooltip.	PowerTip	gives	us	plenty
of	options	to	position	tooltips	on	our	page,	as	follows:

How	do	we	tell	PowerTip	where	we	want	our	tooltips	to	appear?	Let’s	go	back	to	that
line	of	code	in	our	scripts.js	file	where	we	called	the	powerTip	method	to	create
the	custom	tooltips:

$('.gallery	img').powerTip();

Remember	in	Chapter	1,	Designer,	Meet	jQuery,	we	talked	about	how	we	can	pass
things	to	methods	and	functions	by	putting	them	inside	the	parentheses?	We	had	the
example	dog.eat('bacon');,	where	we	wanted	to	say	that	the	dog	was	eating	bacon.
So,	in	JavaScript,	we	passed	bacon	to	the	eat	method	of	the	dog.

Well,	in	this	case,	we	can	pass	a	set	of	options	to	the	powerTip	method	to	define
where	our	tooltips	are	placed,	among	other	things.	To	define	the	position	of	our
tooltips,	we’ll	set	the	placement	option	to	the	direction	we	want	(n,	ne,	ne-alt,	e,	se,
se-alt,	s,	sw,	sw-alt,	w,	nw,	or	nw-alt).	We	just	have	to	make	the	following	simple
modification	to	our	code:

$('.gallery	img').powerTip({placement:	'sw-alt'});

In	this	example,	we’ll	place	the	tooltips	underneath	the	image	we’re	hovering	over
and	anchor	them	to	the	bottom-left	(or	south-west)	corner.

You’ll	notice	that	each	of	the	four	corner	options	for	PowerTip	have	an	additional	alt
placement	option.	The	default	corner	option	will	display	the	tooltip	anchored	to	your
chosen	corner	and	the	tooltip	itself	to	the	side	of	the	item	you’re	hovering	over.

The	alt	option	for	each	corner	also	displays	the	tooltips	anchored	to	your	chosen
corner,	but	shows	the	tooltip	directly	above	or	below	the	item	you’re	hovering	over
rather	than	to	the	side,	as	shown	in	the	following	screenshot:

As	our	images	are	side-by-side	in	this	example,	the	alt	placement	option	makes
more	sense,	so	that’s	the	one	we’ll	use.

2.	 Depending	on	the	width	of	our	browser	window	and	the	layout	of	our	content,	our
chosen	placement	for	the	tooltips	might	sometimes	result	in	the	tooltip	being
displayed	completely	or	partly	out	of	view.	Luckily,	the	developers	of	this	plugin
have	anticipated	this	possibility	and	have	provided	us	with	an	option	to	make	sure
that	the	tooltips	are	always	visible.	It’s	called	Smart	Placement,	and	we	can	enable
this	option	by	setting	the	smartPlacement	option	to	true,	as	shown	in	the	following
code:

$('.gallery	img').powerTip({smartPlacement:	true});

What	if	you	need	to	pass	more	than	one	option	to	the	powerTip	method?	To	pass
more	than	one	option,	you	just	have	to	separate	the	options	with	a	comma.	So,	we	can
define	our	tooltip	position	and	turn	on	Smart	Placement	as	follows:

$('.gallery	img').powerTip({placement:	'sw-alt',	smartPlacement:	

true});

Now,	you	can	see	that	if	I	were	setting	a	dozen	or	more	options,	this	line	of	code
would	get	long	and	hard	to	read.	For	this	reason,	it’s	a	common	practice	to	break
options	out	on	separate	lines	as	follows:

$('.gallery	img').powerTip({

		placement:						'sw-alt',

		smartPlacement:	true

});

The	content	is	the	same,	it’s	just	that	it’s	easier	for	us	humans	to	read	and	understand
the	code	when	it’s	broken	into	lines	this	way.	A	computer	doesn’t	care	one	way	or	the
other.

Tip
Be	careful	not	to	add	an	extra	comma	after	the	last	option/value	pair.	Most	browsers
will	handle	this	gracefully,	but	IE	will	throw	a	vague	error	and	your	JavaScript	won’t
work	at	all.	It	can	be	a	frustrating	problem	to	try	and	track	it	down.

3.	 In	addition	to	changing	the	position	of	the	tooltip,	we	can	use	CSS	to	change	the
appearance	of	the	tooltip	itself.	If	you	wanted	to	use	one	of	the	alternate	color
schemes	that	was	included	with	PowerTip,	you’d	just	have	to	swap	the	style	sheet	in
your	HTML	document	with	the	one	you	wanted	to	use.	That’s	very	simple	and
straightforward.

However,	we	can	also	write	our	own	CSS	styles	for	our	tooltips.	To	get	started,	we’ll
examine	the	jquery.powertip.css	file	that	was	included	with	the	PowerTip
download.	The	following	code	is	an	example	from	this	file	that	shows	how	the	colors
and	styles	are	specified:

#powerTip	{

		cursor:	default;

		background-color:	#333;

		background-color:	rgba(0,0,0,.8);

		border-radius:	6px;

		color:	#fff;

		display:	none;

		padding:	10px;

		position:	absolute;

		white-space:	nowrap;

		z-index:	2147483647;

}

#powerTip:before	{

		content:	"";

		position:	absolute;

}

#powerTip.n:before,#powerTip.s:before	{

		border-right:	5px	solid	transparent;

		border-left:	5px	solid	transparent;

		left:	50%;

		margin-left:	-5px;

}

#powerTip.n:before	{

		border-top:	10px	solid	#333;

		border-top:	10px	solid	rgba(0,0,0,.8);

		bottom:	-10px;

}

#powerTip.s:before	{

		border-bottom:	10px	solid	#333;

		border-bottom:	10px	solid	rgba(0,0,0,.8);

		top:	-10px;

}

You’ll	notice	that	there’s	quite	a	lot	of	code	using	the	:before	and	:after	CSS
pseudoclasses,	and	you	might	wonder	what	exactly	is	going	on	with	that.	This	is	a
clever	CSS	technique	to	create	triangle	shapes	without	relying	on	images.	This	code
creates	the	triangle-shaped	connector	between	the	tooltip	and	the	item	you’re
hovering	your	mouse	over.	If	you’d	like	to	learn	more	about	this	technique,	there’s	an
excellent	tutorial	with	plenty	of	explanations	at	http://konigi.com/tools/css-tooltips-
and-speech-bubbles.

4.	 By	examining	the	CSS	code,	you	can	see	that	all	we	need	to	do	to	create	our	own
color	scheme	is	replace	all	the	color	definitions	in	this	file	with	a	color	of	our	own
choosing.	I’m	going	to	choose	a	melon	orange	shade,	which	is	#fc6e51	as	a	hex	color
and	252,	110,	81	as	an	RGB	color.	The	RGB	color	is	important	because	we	can	use
it	to	create	an	RGBA	color	that	is	transparent.

To	switch	to	a	new	color	scheme,	all	we	need	to	do	is	go	through	the
jquery.powertip.css	file	and	switch	the	color	values	to	the	newly	selected	values.
An	example	from	the	new	CSS	is	shown	in	the	following	code:

#powerTip	{

		cursor:	default;

		background-color:	#fc6e51;

		background-color:	rgba(252,	110,	81,	0.8);

		border-radius:	6px;

		color:	#fff;

		display:	none;

		padding:	10px;

		position:	absolute;

		white-space:	nowrap;

		z-index:	2147483647;

}

#powerTip:before	{

		content:	"";

		position:	absolute;

}

#powerTip.n:before,	#powerTip.s:before	{

		border-right:	5px	solid	transparent;

		border-left:	5px	solid	transparent;

		left:	50%;

http://konigi.com/tools/css-tooltips-and-speech-bubbles

		margin-left:	-5px;

}

#powerTip.n:before	{

		border-top:	10px	solid	#fc6e51;

		border-top:	10px	solid	rgba(252,	110,	81,	0.8);

		bottom:	-10px;

}

#powerTip.s:before	{

		border-bottom:	10px	solid	#fc6e51;

		border-bottom:	10px	solid	rgba(252,	110,	81,	0.8);

		top:	-10px;

}

Similarly,	go	on	replacing	the	color	values	throughout	the	entire	file.	Now,	when	you
preview	the	tooltip	in	the	browser,	you’ll	see	an	orange	tooltip,	as	shown	in	the
following	screenshot:

You	can	take	the	customization	as	far	as	you	want.	You	can	modify	the	border	radius,
add	a	gradient,	add	a	text	shadow	and/or	a	box	shadow,	change	the	text	color,	add	a
border,	and	so	on.

What	just	happened?
We	learned	how	we	can	adjust	the	positioning	of	our	tooltips,	how	we	can	use	other
options	provided	by	the	PowerTip	plugin,	and	we	created	our	own	custom	style	for	the
tooltips.	You	can	use	any	CSS	styles	you	like	to	customize	the	appearance	of	the	tooltips;
there’s	virtually	no	limit	to	the	possibilities	of	styles	for	your	tooltips.

Enhancing	navigation	with	tooltips
Once	you	know	how	to	make	custom	tooltips,	you’ll	find	that	there	are	many	possible	uses
for	them.	Let’s	take	a	look	at	enhancing	a	standard	navigation	bar	with	custom	tooltips
using	the	PowerTip	plugin.

Time	for	action	–	building	a	fancy
navigation	bar
Let’s	take	a	look	at	how	we	can	use	custom-designed	tooltips	to	add	a	little	progressively
enhanced	punch	to	a	basic	navigation	bar.	We’ll	continue	working	with	the	files	we’ve	set
up	in	the	last	two	custom	tooltips	examples.	Perform	the	following	steps:

1.	 Let’s	get	started	by	adding	a	navigation	bar	to	the	top	of	our	HTML	page.	While
we’re	at	it,	let’s	go	ahead	and	also	add	a	header	to	the	top	of	the	page:

<header	class="content">

		<h1>Pittsburgh,	Pennsylvania</h1>

		<p>City	of	Bridges,	Steel	City,	City	of	Champions,	The	'Burgh</p>

</header>		

<nav>

		

				Photo	

Gallery

				About

				<a	href="#pb-geography"	title="Learn	about	Pittsburg's	

geography">Geography

				<a	href="#pb-moreinfo"	title="Get	more	info	about	

Pittsburgh">More	Information

		

</nav>

We’ve	made	sure	to	include	the	title	attributes	on	each	link.	For	the	purpose	of	this
example,	these	are	internal	links	that	will	jump	to	different	sections	within	this
HTML	document.

2.	 Next,	we’ll	add	some	CSS	styles	to	our	navigation	bar.	If	you	prefer	a	different	style,
feel	free	to	customize	the	CSS	code	to	suit	your	own	taste.	Have	a	look	at	the
following	code:

nav	{

		margin:	2em	0;

}

nav	ul	{

		background:	#fff;

		border-radius:	7px;

		text-align:	center;

}

nav	li	{

		display:	inline-block;

}

nav	a	{

		display:	block;

		color:	#444;

		padding:	1.5em;

		text-decoration:	none;

		text-transform:	uppercase;

}

nav	a:hover	{

		color:	#a0d468;

}

Now,	we	have	a	navigation	bar	horizontally	across	our	page,	as	shown	in	the
following	screenshot:

When	you	move	your	mouse	over	the	links	in	this	navigation	bar,	the	browser’s
default	tooltips	appear.	We’ll	replace	those	boring	browser	tooltips	with	friendly
looking	conversation	bubbles	above	the	navigation	bar.

3.	 Next,	open	your	scripts.js	file	so	that	we	can	call	the	powerTip	method	and	pass	in
our	customizations.	Hey,	wait	a	minute—we’re	already	calling	the	powerTip	method
in	scripts.js.	Yes,	you’re	right,	we	are.	However,	we’re	going	to	learn	how	to	call
it	again	and	have	two	different	tooltip	styles	in	one	single	document.

Let’s	get	started	by	adding	a	comment	for	ourselves	to	help	us	keep	track	of	what
we’re	doing	in	our	code,	as	follows:

$(document).ready(function(){

		/*	Add	text	tooltips	to	photo	gallery	*/

		$('.gallery	img').powerTip({

				placement:	'sw-alt'

		});

});

4.	 Now	that	we	can	easily	keep	track	of	the	code	for	our	photo	gallery	tooltips,	let’s	go
ahead	and	add	a	comment	and	selector	and	call	to	powerTip	for	the	navigation:

$(document).ready(function(){

		/*	Add	tooltips	to	navigation	*/

		$('nav	a').powerTip();

		/*	Add	text	tooltips	to	photos	*/

		$('.gallery	img').powerTip({

				placement:	'sw-alt'

		});

});

Open	up	the	HTML	file	in	a	browser	to	take	a	look	and	you’ll	see	that	we	now	have
orange	tooltips	that	appear	directly	above	each	of	our	navigation	items,	as	seen	in	the

following	screenshot):

This	is	okay,	but	as	the	navigation	items	turn	green	when	they	are	hovered	over,	it
would	be	better	if	these	tooltips	were	green.	Let’s	see	how	we	can	change	the	style.

5.	 If	you’ll	recall	from	jquery.powertip.css,	all	the	styles	we	wrote	for	our	tooltips
were	based	on	the	#powerTip	ID,	which	was	assigned	to	our	tooltips	by	the	PowerTip
plugin.	We	have	a	configuration	option	to	change	the	ID,	which	will	allow	us	to	write
some	new	CSS	code	to	create	a	new	tooltip	style.	Let’s	start	by	modifying	the	ID	of
the	tooltips	that	are	displayed	on	our	navigation	bar,	as	follows:

$('nav	a').powerTip({

		popupId:	'navTip'

});

6.	 Next,	we	can	open	jquery.powertip.css	and	add	some	new	styles	for	navTip.

#navTip	{

		cursor:	default;

		background-color:	#a0d468;

		border-radius:	6px;

		color:	#fff;

		display:	none;

		padding:	10px;

		position:	absolute;

		white-space:	nowrap;

		z-index:	2147483647;

}

Similarly,	go	on	styling	those	however	you	want.	Now,	when	we	move	our	mouse
over	the	navigation,	green	tooltips	will	be	displayed.

What	just	happened?
We	reviewed	how	to	create	and	attach	a	custom-styled	tooltip	to	our	HTML	document.	We
learned	how	to	include	two	different	tooltip	styles	in	the	same	document.	Now,	we	have
orange	tooltips	that	are	displayed	below	the	photos	in	our	photo	gallery	and	green	tooltips
that	are	displayed	above	our	navigation	bar.	Let’s	find	out	what	else	we	can	do	with
PowerTip.

Showing	other	content	in	tooltips
So	far,	we’ve	seen	how	we	can	customize	the	appearance	and	position	of	the	tooltips	that
the	PowerTip	plugin	helps	us	create.	However,	we’ve	only	used	these	tooltips	to	display
text,	namely,	the	text	we’ve	placed	inside	an	element’s	title	attribute.	We	have	a	lot	more
powerful	options	though.	We	can	load	just	about	any	content	we	want	in	our	tooltips.	Let’s
take	a	look	at	how	we	can	load	content	from	somewhere	else	in	the	HTML	document	into
our	tooltips.

Time	for	action	–	showing	custom	content
in	tooltips
Perform	the	following	steps	to	load	custom	content	into	your	tooltips:

1.	 We’ll	keep	working	with	the	document	that	we’ve	been	building	over	the	past	few
tooltip	tutorials.	The	first	thing	we	want	to	add	is	some	new	content.	First,	we’ll
create	some	blocks	of	helpful	content	at	the	bottom	of	our	HTML	page,	as	shown	in
the	following	code:

<h2	id="pb-moreinfo">More	Information</h2>

<ul	class="info-boxes">

		<li	id="info-box-bridge">

				<div	class="info-box-container">

						

						<div	class="info-box-content">

								<p>One	of	many	bridges	in	Pittsburgh</p>

						</div>

				</div>

		

		<li	id="info-box-downtown">

				<div	class="info-box-container">

						

						<div	class="info-box-content">

								<p>Downtown
Pittsburgh</p>

						</div>

				</div>

		

		<li	id="info-box-icecream">

				<div	class="info-box-container">

						

						<div	class="info-box-content">

								<p>Ice	cream	beats	the	summer	heat</p>

						</div>

				</div>

		

We’re	including	some	images	and	a	bit	of	text	about	each	one.	Next,	we’ll	style	this
with	CSS	as	follows:

Ul.info-boxes	li	{

		display:	inline-block;

		margin-right:	1em;

}

.info-box-container	{

		width:	200px;

}

.info-box-container	img	{

		border-top-left-radius:	7px;

		border-top-right-radius:	7px;

}

.info-box-content	{

		background:	white;

		border-bottom-left-radius:	7px;

		border-bottom-right-radius:	7px;

		color:	#444;

		line-height:	1.5;

		padding:	1em;

		text-align:	center;

}

.info-box-content	p	{

		margin:	0;

}

Now,	if	we	look	at	this	page	in	a	browser,	we’ll	see	the	information	boxes	lined	up
and	nicely	styled	at	the	bottom	of	the	page,	as	shown	in	the	following	screenshot:

2.	 Next	up,	we’ll	add	a	couple	of	paragraphs	of	text	that	link	to	these	information	boxes.
Add	this	text	above	the	information	boxes	so	that	they	are	displayed	between	the
photo	gallery	and	the	information	boxes,	using	the	following	code:

<h2	id="pb-about">About	Pittsburgh</h2>

<p>Pittsburgh	is	the	second-largest	city	in	the	US	Commonwealth	of	

Pennsylvania	and	the	county	seat	of	Allegheny	County.	<a	href="#info-

box-downtown"	class="info-box">Downtown	Pittsburgh	retains	

substantial	economic	influence,	ranking	at	25th	in	the	nation	for	jobs	

within	the	urban	core	and	6th	in	job	density.</p>

<h2	id="pb-geography">Geography</h2>

<p>Pittsburgh	is	known	colloquially	as	"The	City	of	Bridges"	and	"The	

Steel	City"	for	its	many	

bridges	and	former	steel	manufacturing	base.</p>

<p>Conditions	are	often	humid,	and	combined	with	the	90°F	

(occurring	on	an	average	of	8.4	days	per	annum),	a	considerable	heat	index	arises.</p>

We	need	an	easy	way	to	select	and	interact	with	the	links	to	the	information	boxes,	so
we’ve	added	a	CSS	class	of	info-box	to	each	one.

3.	 Now,	what	we’ll	do	is	load	the	corresponding	information	box	in	the	tooltip	when
each	of	these	links	is	hovered	over.	Pretty	cool,	right?

First,	we’ll	have	to	associate	each	of	the	links	with	the	corresponding	information
box.	We	can	do	this	by	adding	an	HTML5	data	attribute	to	each	link,	as	shown	in	the
following	code	snippet:

<a	href="#info-box-downtown"	class="info-box"	data-

powertiptarget="info-box-downtown">Downtown	Pittsburgh

The	documentation	on	the	PowerTip	plugin	explains	that	the	plugin	will	look	for	a
data	attribute	named	powertiptarget.	If	the	attribute	exists,	then	PowerTip	will	pull
in	the	content	from	the	element	with	that	ID	and	display	it	in	the	tooltip.

Let’s	talk	about	the	data	attributes.	They	can	be	used	to	attach	all	different	sorts	of
hidden	information	to	the	HTML	elements,	which	we	can	then	use	in	JavaScript	to
achieve	all	sorts	of	special	effects.	You	start	a	data	attribute	with	data-.	After	this,
you	name	the	data	attribute.	In	this	case,	we	knew	from	the	PowerTip	documentation
that	the	attribute	should	be	named	powertiptarget.	In	other	cases,	you’ll	be	able	to
name	your	data	attributes	whatever	you	wish.	Picking	names	that	make	logical	sense
will	help	you	and	others	make	sense	of	your	code	more	easily—in	much	the	same
way	that	picking	logical	names	for	JavaScript	variables	helps	your	code	make	sense.

When	we	hover	over	this	link,	we	want	to	display	the	information	box	that	we’ve
given	the	ID	of	info-box-downtown,	so	this	is	the	value	we’ll	assign	to	the
powertiptarget	data	attribute.

4.	 Next	up,	we’re	ready	to	jump	back	into	scripts.js.	Add	a	new	line	inside	your
document	ready	statement	and	comment	it	so	that	you	remember	this	is	the	code	to
add	the	information	box	tooltips,	as	shown	in	the	following	code:

$(document).ready(function(){

		/*	Add	tooltips	to	navigation	*/

		$('nav	a').powerTip({

				popupId:	'navTip'

		});

		/*	Add	text	tooltips	to	photos	*/

		$('.gallery	img').powerTip({

				placement:	'sw-alt'

		});

		/*	Add	new	content	to	text	links	*/

		$('.info-box').powerTip();

});

If	you	view	the	page	in	a	browser,	you’ll	see	that	the	data	attributes	we	applied	to
our	links	are	already	working;	if	you	hover	over	one	of	the	links,	you’ll	see	the
corresponding	information	box	displayed	in	a	tooltip,	as	shown	in	the	following
screenshot:

That’s	a	good	start,	but	we’ll	want	to	change	some	of	the	PowerTip	configuration
options	and	also	the	style	of	the	tooltip.

5.	 We’ll	tackle	the	configuration	options	first.	We’d	like	the	information	box	tooltip	to
show	to	the	right	of	the	links	unless	they	don’t	fit	on	the	screen.	We’d	like	to	write
some	new	CSS	styles,	and	we’d	like	to	allow	our	site	visitors	to	move	their	mouse
over	the	information	boxes.	The	following	code	shows	what	we’ll	add	as
configuration	options:

$('.info-box').powerTip({

		placement:	'e',

		mouseOnToPopup:	true,

		smartPlacement:	true,

		popupId:	'infoTip'

});

Setting	the	placement	option	to	e	will	make	the	tooltips	display	on	the	right-hand	(or
east)	side	of	the	links.	We	can	make	sure	the	tooltips	are	visible	even	for	links	near
the	right-hand	side	of	the	screen	by	setting	smartPlacement	to	true.	We	can	use	an
option	called	mouseOnToPopup	and	set	it	to	true	to	allow	site	visitors	to	move	their
mouse	onto	the	tooltip—this	feature	is	particularly	useful	for	those	cases	where	we
might	have	links	or	other	interactive	content	included	in	our	tooltip	content.	Finally,
as	we	want	to	write	some	new	CSS	styles	for	the	tooltip,	we’re	going	to	set	a	new	ID
for	the	tooltips,	for	which	we’ve	chosen	the	infoTip	ID.

6.	 Now,	the	only	thing	left	to	do	is	to	write	some	new	CSS	styles	for	the	tooltips.	We’re
going	to	change	the	background	color	to	white	and	make	sure	the	text	can	wrap.	Feel
free	to	style	your	tooltips	the	way	you	want.	The	following	code	is	a	sample	from	the
example	code	included	with	the	book:

/*	Info	box	tooltips	*/

#infoTip	{

		cursor:	default;

		background-color:	#fff;

		border-radius:	7px;

		box-shadow:	0	0	15px	rgba(0,0,0,0.5);

		color:	#444;

		display:	none;

		padding:	0;

		position:	absolute;

		z-index:	2147483647;

}

#infoTip:before	{

		content:	"";

		position:	absolute;

}

#infoTip.n:before,	#infoTip.s:before	{

		border-right:	5px	solid	transparent;

		border-left:	5px	solid	transparent;

		left:	50%;

		margin-left:	-5px;

}

#infoTip.n:before	{

		border-top:	10px	solid	#fff;

		bottom:	-10px;

}

#infoTip.s:before	{

		border-bottom:	10px	solid	#fff;

		top:	-10px;

}

Now,	if	you	view	the	page	in	a	browser,	you’ll	see	that	the	tooltips	have	their	own
style	and	are	displayed	where	we	specified,	as	seen	in	the	following	screenshot:

Also,	if	the	link	gets	too	close	to	the	right,	PowerTip	will	figure	out	how	to	adjust	the
placement	of	the	tooltip	to	make	sure	it’s	visible,	as	seen	in	the	following	screenshot:

Also,	if	you	move	your	mouse	over	the	tooltip,	you’ll	see	it	stays	open	to	allow	you
to	interact	with	any	content	that	might	be	inside.

7.	 Now,	there’s	just	one	issue	with	our	page:	for	users	with	JavaScript	disabled,	we	set
up	the	links	to	jump	down	the	page	so	that	the	relevant	associated	content	was	visible
on	the	screen.	Now	that	our	tooltips	are	working,	this	behavior	feels	a	little	odd;	if	the
content	is	already	visible,	why	jump	down	the	page	to	it?

We	can	fix	that	by	canceling	the	browser’s	default	behavior	when	a	link	is	clicked.
Go	back	to	scripts.js	and	adjust	your	JavaScript	as	follows:

$('.info-box')

		.on('click',	function(e)	{

				e.preventDefault();

		})

		.powerTip({

				placement:	'e',

				mouseOnToPopup:	true,

				smartPlacement:	true,

				popupId:	'infoTip'

		});

There	are	a	few	things	going	on	here.	Let’s	start	by	talking	about	how	.on	and
.powerTip	are	divided	in	separate	lines.	For	the	most	part,	JavaScript	doesn’t	care
about	white	space,	so	we’re	free	to	format	our	code	the	way	we	want.	Computers
don’t	have	any	issues	parsing	or	reading	our	code	even	if	it’s	sloppy	and	the
indentations	don’t	line	up.	When	our	code	is	broken	up	onto	separate	lines,	as	shown
in	the	preceding	code	snippets,	it’s	easier	for	us	humans,	who	might	want	to	read	or
edit	the	code,	to	read	and	understand.	We	don’t	have	to	go	searching	through	one
long	line	of	code	for	what	we’re	looking	for	because,	believe	it	or	not,	all	this	code	is
technically	just	one	line	of	JavaScript.

It’s	easy	for	us	to	see	that	we’re	working	with	some	HTML	element	that	has	a	CSS
class	of	info-box.	We’ve	got	a	function	to	tell	the	browser	what	to	do	when	someone
clicks	on	this	HTML	element,	and	we’re	setting	up	the	powerTip	method	to	display
tooltips.

Next,	let’s	talk	about	chaining.	You	can	see	in	the	preceding	code	that	we’re	only
referring	to	the	HTML	element	with	the	class	of	info-box	once,	but	we’re	writing
two	bits	of	code	for	it.	jQuery	allows	us	to	do	this	with	the	feature	called	chaining.
Most	jQuery	functions	(but	not	all)	can	be	chained.	For	example,	consider	the
following	line	of	code:

$('.foo').hide().addClass('bar').show();

This	line	of	code	will	select	an	HTML	element	with	a	class	of	foo,	hide	it,	add	a	new
CSS	class	to	it,	and	then	show	it	again.	You	can	see	how	this	chaining	feature	would
allow	us	to	save	quite	a	lot	of	typing.

What	just	happened?
We	learned	how	we	can	pull	in	content	from	elsewhere	on	the	page	to	be	displayed	inside
our	tooltips.	Being	able	to	display	the	title	attributes	in	a	more	attractive	way	is
definitely	a	nice	feature,	but	the	PowerTip	plugin	is	even	more	powerful	than	that.	By
adding	HTML5	data	attributes	to	our	elements,	we	can	specify	any	content	to	be
displayed	inside	our	tooltips:	links,	images,	text,	icons,	and	so	on.	We	learned	how	to
allow	site	visitors	to	move	their	mouse	over	the	tooltips	to	interact	with	the	content	there.
Also,	we	saw	how	we	can	stop	the	browser	from	jumping	down	the	page	when	the	links
are	clicked	by	preventing	the	default	events	from	happening	in	response	to	actions.

Have	a	go	hero	–	create	clickable	tooltips	for	an
image	gallery
Set	up	an	image	gallery	of	a	set	of	images	of	your	choice.	When	each	image	is	hovered
over,	show	a	tooltip	that	provides	a	short	description	and	links	to	an	article	on	Wikipedia
for	more	information.	Style	the	image	gallery	and	tooltips	the	way	you	like.

Summary
In	this	chapter,	we	learned	how	to	take	basic	links—the	backbone	of	the	Internet—and
enhance	them	to	add	some	new	behaviors	and	capabilities.	We	learned	how	to	turn	a	list	of
links	into	a	tabbed	interface	and	how	to	create	customized	tooltips	for	links.	We	also
learned	how	to	load	in	any	kind	of	content	into	those	tooltips;	we	are	no	longer	limited	to
displaying	simple	text	in	them.	Next	up,	let’s	take	a	look	at	how	we	can	combine	link
customization	with	some	other	behaviors	to	create	an	interactive	FAQ	page.

Chapter	3.	Making	a	Better	FAQ	Page
The	Frequently	Asked	Questions	(FAQ)	page	has	been	a	mainstay	of	all	types	of	websites
since	the	dawn	of	the	Web.	It’s	used	as	a	marketing	page,	as	an	attempt	to	reduce	the
number	of	calls	or	e-mails	to	a	customer	service	department	and	as	a	helpful	tool	for	site
visitors	to	learn	more	about	the	company	or	organization	they’re	dealing	with	or	the
products	or	services	they’re	interested	in	purchasing.

Though	we’ll	be	building	an	FAQ	page,	for	this	example,	the	expand	and	collapse
techniques	will	be	useful	in	many	different	situations—a	list	of	events	with	event	details,	a
listing	of	staff	or	members	with	bios,	a	list	of	products	with	details—any	situation	where	a
listing	of	items	should	be	quick	and	easy	for	site	visitors	to	scan,	but	where	more
information	should	be	readily	and	easily	available	upon	demand	when	they	find	the	thing
they’re	looking	for.

In	this	chapter,	you’ll	learn:

How	to	traverse	an	HTML	document	with	jQuery
How	to	show	and	hide	elements
How	to	use	simple	jQuery	animations
How	to	easily	toggle	a	class	name	for	an	element

Marking	up	the	FAQ	page
We’ll	get	started	by	taking	some	extra	care	and	attention	with	the	way	we	mark	up	our
FAQ	list.	As	with	most	things	that	deal	with	web	development,	there’s	no	right	way	of
doing	anything,	so	don’t	assume	this	approach	is	the	only	correct	one.	Any	markup	that
makes	sense	semantically	and	makes	it	easy	to	enhance	your	list	with	CSS	and	JavaScript
is	perfectly	acceptable.

Time	for	action	–	setting	up	the	HTML
file
Perform	the	following	steps	to	get	the	HTML	file	set	up	for	our	FAQ	page:

1.	 We’ll	get	started	with	our	sample	HTML	file	and	associated	files	and	folders,	like	we
set	up	in	Chapter	1,	Designer,	Meet	jQuery.	In	this	case,	our	HTML	page	will	contain
a	definition	list	with	the	questions	inside	the	<dt>	tags	and	the	answers	wrapped	in
the	<dd>	tags.	By	default,	most	browsers	will	indent	the	<dd>	tags,	which	means	the
questions	hang	into	the	left	margin,	making	them	easy	to	scan.	Inside	the	<body>	tag
of	your	HTML	document,	add	a	heading	and	a	definition	list	as	shown	in	the
following	code:

<h1>Frequently	Asked	Questions</h1>

<dl>

		<dt>What	is	jQuery?</dt>

		<dd>

				<p>jQuery	is	an	awesome	JavaScript	library</p>

		</dd>

		<dt>Why	should	I	use	jQuery?</dt>		

		<dd>

				<p>Because	it's	awesome	and	it	makes	writing	JavaScript	faster	and	

easier</p>

		</dd>

		

		<dt>Why	would	I	want	to	hide	the	answers	to	my	questions?</dt>

		<dd>

				<p>To	make	it	easier	to	peruse	the	list	of	available	questions	-	

then	you	simply	click	to	see	the	answer	you're	interested	in	reading.

</p>

		</dd>

		

		<dt>What	if	my	answers	were	a	lot	longer	and	more	complicated	than	

these	examples?</dt>

		<dd>

				<p>The	great	thing	about	the	<dd>	element	is	that	it's	a	

block	level	element	that	can	contain	lots	of	other	elements.</p>

				<p>That	means	your	answer	could	contain:</p>

				

						Unordered

						Lists

						with	lots

						of	items

						(or	ordered	lists	or	even	another	definition	list)

				

				<p>Or	it	might	contain	text	with	lots	of	special	

formatting.</p>

				<h2>Other	things</h2>

				<p>It	can	even	contain	headings.	Your	answers	could	take	up	an	

entire	screen	or	more	all	on	their	own	-	it	doesn't	matter	since	the	

answer	will	be	hidden	until	the	user	wants	to	see	it.</p>

		</dd>

		

		<dt>What	if	a	user	doesn't	have	JavaScript	enabled?</dt>

		<dd>

				<p>You	have	two	options	for	users	with	JavaScript	disabled	-	which	

you	choose	might	depend	on	the	content	of	your	page.</p>

				<p>You	might	just	leave	the	page	as	it	is	-	and	make	sure	the	

<dt>	tags	are	styled	in	a	way	that	makes	them	stand	out	and	easy	

to	pick	up	when	you're	scanning	down	through	the	page.	This	would	be	a	

great	solution	if	your	answers	are	relatively	short.</p>

				<p>If	your	FAQ	page	has	long	answers,	it	might	be	helpful	to	put	a	

table	of	contents	list	of	links	to	individual	questions	at	the	top	of	

the	page	so	users	can	click	it	to	jump	directly	to	the	question	and	

answer	they're	interested	in.	This	is	similar	to	what	we	did	in	the	

tabbed	example,	but	in	this	case,	we'd	use	jQuery	to	hide	the	table	of	

contents	when	the	page	loaded	since	users	with	JavaScript	wouldn't	need	

to	see	the	table	of	contents.</p>

		</dd>

</dl>

2.	 You	can	adjust	the	style	of	the	page	however	you’d	like	by	adding	in	some	CSS
styles.	The	following	screenshot	shows	how	the	page	is	styled	in	the	example	code
included	with	the	book:

For	users	with	JavaScript	disabled,	this	page	works	fine	as	is.	The	questions	hang
into	the	left	margin	and	are	bolder	and	larger	than	the	rest	of	the	text	on	the	page,
making	them	easy	to	scan.

What	just	happened?
We	set	up	a	basic	definition	list	to	hold	our	questions	and	answers.	The	default	style	of	the
definition	list	lends	itself	nicely	to	making	the	list	of	questions	scannable	for	site	visitors
without	JavaScript.	We	can	enhance	that	further	with	our	own	custom	CSS	code	to	make
the	style	of	our	list	match	our	site.

Note
As	this	simple	collapse-and-show	(or	accordion)	action	is	such	a	common	one,	two	new
elements	have	been	proposed	for	HTML5:	<summary>	and	<details>	that	will	enable	us
to	build	accordions	in	HTML	without	the	need	for	JavaScript	interactivity.	However,	at	the
time	of	writing	this,	the	new	elements	are	only	supported	in	Webkit	browsers,	which
require	some	finagling	to	get	them	styled	with	CSS,	and	are	also	not	accessible.	Do	keep
an	eye	on	these	new	elements	to	see	if	more	widespread	support	for	them	develops.	You
can	read	about	the	elements	in	the	HTML5	specs	(http://www.whatwg.org/specs/web-
apps/current-work/multipage/interactive-elements.html).	If	you’d	like	to	understand	the
elements	better,	the	HTML5	Doctor	has	a	great	tutorial	that	explains	their	use	and	styling
at	http://html5doctor.com/the-details-and-summary-elements/.

http://www.whatwg.org/specs/web-apps/current-work/multipage/interactive-elements.html
http://html5doctor.com/the-details-and-summary-elements/

Time	for	action	–	moving	around	an
HTML	document
Perform	the	following	steps	to	move	from	one	element	to	another	in	JavaScript:

1.	 We’re	going	to	keep	working	with	the	files	we	set	up	in	the	previous	section.	Open
up	the	scripts.js	file	that’s	inside	your	scripts	folder.	Add	a	document	ready
statement,	then	write	a	new	empty	function	called	dynamicFAQ,	as	follows:

$(document).ready(function(){

});

function	dynamicFAQ()	{

		//	Our	function	will	go	here		

}

2.	 Let’s	think	through	how	we’d	like	this	page	to	behave.	We’d	like	to	have	all	the
answers	to	our	questions	hidden	when	the	page	is	loaded.	Then,	when	a	user	finds	the
question	they’re	looking	for,	we’d	like	to	show	the	associated	answer	when	they	click
on	the	question.

This	means	the	first	thing	we’ll	need	to	do	is	hide	all	the	answers	when	the	page
loads.	We	can	do	this	just	like	we	did	with	the	tab	exercise	in	the	Chapter	2,
Enhancing	Links.	Get	started	by	adding	a	class	jsOff	to	the	<body>	tag,	as	follows:

<body	class="jsOff">

Now,	inside	the	document	ready	statement	in	scripts.js,	add	the	line	of	code	that
removes	the	jsOff	class	and	adds	a	class	selector	of	jsOn:

$(document).ready(function(){

		$('body').removeClass('jsOff').addClass('jsOn');

});

Finally,	in	the	styles.css	file,	add	this	bit	of	CSS	to	hide	the	answers	for	the	site
visitors	who	have	JavaScript	enabled:

.jsOn	dd	{

		display:	none;

}

Now	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	<dd>	elements	and	the
content	they	contain	are	no	longer	visible	(see	the	following	screenshot):

3.	 Now,	we	need	to	show	the	answer	when	the	site	visitor	clicks	on	a	question.	To	do
that,	we	need	to	tell	jQuery	to	do	something	whenever	someone	clicks	on	one	of	the
questions	or	the	<dt>	tags.	Inside	the	dynamicFAQ	function,	add	a	line	of	code	to	add
a	click	event	handler	to	the	<dt>	elements,	as	shown	in	the	following	code:

function	dynamicFAQ()	{

		$('dt').on('click',	function(){

				//Show	function	will	go	here

		});

}

When	the	site	visitor	clicks	on	a	question,	we	want	to	get	the	answer	to	that	question
and	show	it	because	our	FAQ	list	is	set	up	as	follows:

<dl>

		<dt>Question	1</dt>

		<dd>Answer	to	Question	1</dd>

		<dt>Question	2</dt>

		<dd>Answer	to	Question	2</dd>

		...

</dl>

We	know	that	the	answer	is	the	next	node	or	element	in	the	DOM	after	our	question.
We’ll	start	from	the	question.	When	a	site	visitor	clicks	on	a	question,	we	can	get	the
current	question	by	using	jQuery’s	$(this)	selector.	The	user	has	just	clicked	on	a
question,	and	we	say	$(this)	to	mean	the	question	they	just	clicked	on.	Inside	the
new	click	function,	add	$(this)	so	that	we	can	refer	to	the	clicked	question,	as
follows:

$('dt').on('click',	function(){

		$(this);

});

4.	 Now	that	we	have	the	question	that	was	just	clicked,	we	need	to	get	the	next	thing,	or
the	answer	to	that	question	so	that	we	can	show	it.	This	is	called	traversing	the
DOM	in	JavaScript.	It	just	means	that	we’re	moving	to	a	different	element	in	the
document.

jQuery	gives	us	the	next	method	to	move	to	the	next	node	in	the	DOM.	We’ll	select
our	answer	by	inserting	the	following	code:

$('dt').on('click',	function(){

		$(this).next();

});

5.	 Now,	we’ve	moved	from	the	question	to	the	answer.	Now	all	that’s	left	to	do	is	show
the	answer.	To	do	so,	add	a	line	of	code	as	follows:

$('dt').on('click',	function(){

		$(this).next().show();

});

6.	 If	you	refresh	the	page	in	the	browser,	you	might	be	disappointed	to	see	that	nothing
happens	when	we	click	the	questions.	Don’t	worry—that’s	easy	to	fix.	We	wrote	a
dynamicFAQ()	function,	but	we	didn’t	call	it.	Functions	don’t	work	until	they’re
called.	Inside	the	document	ready	statement,	call	the	function	as	follows:

$(document).ready(function(){

$('body').removeClass('jsOff').addClass('jsOn');

dynamicFAQ();

});

7.	 Now,	if	we	load	the	page	in	the	browser,	you	can	see	that	all	of	our	answers	are
hidden	until	we	click	on	the	question.	This	is	nice	and	useful,	but	it	would	be	even
nicer	if	the	site	visitor	could	hide	the	answer	again	when	they’re	done	reading	it	to
get	it	out	of	their	way.	Luckily,	this	is	such	a	common	task,	jQuery	makes	this	very
easy	for	us.	All	we	have	to	do	is	replace	our	call	to	the	show	method	with	a	call	to	the
toggle	method	as	follows:

$('dt').on('click',	function(){

		$(this).next().toggle();

});

Now	when	you	refresh	the	page	in	the	browser,	you’ll	see	that	clicking	on	the
question	once	shows	the	answer	and	clicking	on	the	question	a	second	time	hides	the
answer	again.

What	just	happened?
We	learned	how	to	traverse	the	DOM—how	to	get	from	one	element	to	another.	Toggling
the	display	of	elements	on	a	page	is	a	common	JavaScript	task,	so	jQuery	already	has
built-in	methods	to	handle	it	and	make	it	simple	and	straightforward	to	get	this	up	and
running	on	our	page.	That	was	pretty	easy—just	a	few	lines	of	code.

Sprucing	up	our	FAQ	page
That	was	so	easy,	in	fact,	that	we	have	plenty	of	time	left	over	to	enhance	our	FAQ	page	to
make	it	even	better.	This	is	where	the	power	of	jQuery	becomes	apparent—you	can	not
only	create	a	show/hide	FAQ	page,	but	you	can	make	it	a	fancy	one	and	still	meet	your
deadline.	How’s	that	for	impressing	a	client	or	your	boss?

Time	for	action	–	making	it	fancy
Perform	the	following	steps	to	add	some	fancy	new	features	to	the	FAQ	page:

1.	 Let’s	start	with	a	little	CSS	code	to	change	the	cursor	to	a	pointer	and	add	a	little
hover	effect	to	our	questions	to	make	it	obvious	to	site	visitors	that	the	questions	are
clickable.	Open	up	the	styles.css	file	that’s	inside	the	styles	folder	and	add	the
following	bit	of	CSS	code:

.jsOn	dt	{

		cursor:	pointer;

}

.jsOn	dt:hover	{

		color:	#ac92ec;

}

We’re	only	applying	these	styles	for	those	site	visitors	that	have	JavaScript	enabled.
These	styles	definitely	help	to	communicate	to	the	site	visitor	that	the	questions	are
clickable.	You	might	also	choose	to	change	something	other	than	the	font	color	for
the	hover	effect.	Feel	free	to	style	your	FAQ	list	however	you’d	like.	Have	a	look	at
the	following	screenshot:

2.	 Now	that	we’ve	made	it	clear	that	our	<dt>	elements	can	be	interacted	with,	let’s	take
a	look	at	how	to	show	the	answers	in	a	nicer	way.	When	we	click	on	a	question	to	see
the	answer,	the	change	isn’t	communicated	to	the	site	visitor	very	well;	the	jump	in
the	page	is	a	little	disconcerting	and	it	takes	a	moment	to	realize	what	just	happened.
It	would	be	nicer	and	easier	to	understand	if	the	questions	were	to	slide	into	view.
The	site	visitor	could	literally	see	the	question	appearing	and	would	understand
immediately	what	change	just	happened	on	the	screen.

jQuery	makes	that	easy	for	us.	We	just	have	to	replace	our	call	to	the	toggle	method
with	a	call	to	the	slideToggle	method:

$('dt').on('click',	function(){

		$(this).next().slideToggle();

});

Now	if	you	view	the	page	in	your	browser,	you	can	see	that	the	questions	slide
smoothly	in	and	out	of	view	when	the	question	is	clicked.	It’s	easy	to	understand
what’s	happening	when	the	page	changes,	and	the	animation	is	a	nice	touch.

3.	 Now,	there’s	just	one	little	detail	we’ve	still	got	to	take	care	of.	Depending	on	how
you’ve	styled	your	FAQ	list,	you	might	see	a	little	jump	in	the	answer	at	the	end	of
the	animation.	This	is	caused	by	some	extra	margins	around	the	<p>	tags	inside	the
<dd>	element.	They	don’t	normally	cause	any	issues	in	HTML,	and	browsers	can
figure	how	to	display	them	correctly.	However,	when	we	start	working	with
animation,	sometimes	this	becomes	a	problem.	It’s	easy	to	fix.	Just	remove	the	top
margin	from	the	<p>	tags	inside	the	FAQ	list	as	follows:

.content	dd	p	{

		margin-top:	0;

}

If	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	little	jump	is	now	gone	and
our	animation	smoothly	shows	and	hides	the	answers	to	our	questions.

What	just	happened?
We	replaced	our	toggle	method	with	the	slideToggle	method	to	animate	the	showing
and	hiding	of	the	answers.	This	makes	it	easier	for	the	site	visitor	to	understand	the	change
that’s	taking	place	on	the	page.	We	also	added	some	CSS	to	make	the	questions	appear	to
be	clickable	to	communicate	the	abilities	of	our	page	to	our	site	visitors.

We’re	almost	there!
jQuery	made	animating	that	show	and	hide	so	easy	that	we’ve	still	got	time	left	over	to
enhance	our	FAQ	page	even	more.	It	would	be	nice	to	add	some	sort	of	indicator	to	our
questions	to	show	that	they’re	collapsed	and	can	be	expanded,	and	to	add	some	sort	of
special	style	to	our	questions	once	they’re	opened	to	show	that	they	can	be	collapsed
again.

Time	for	action	–	adding	some	final
touches
Perform	the	following	steps	to	add	some	finishing	touches	to	our	FAQ	list:

1.	 Let’s	start	with	some	simple	CSS	code	to	add	a	small	arrow	icon	to	the	left	side	of
our	questions.	Head	back	into	style.css	and	modify	the	styles	a	bit	to	add	an	arrow
as	follows:

.jsOn	dt:before	{

		border:	0.5em	solid;

		border-color:	transparent	transparent	transparent	#f2eeef;

		content:	'';

		display:	inline-block;

		height:	0;

		margin-right:	0.5em;

		vertical-align:	middle;

		width:	0;

}

.jsOn	dt:hover:before	{

		border-left-color:	#ac92ec;

}

You	might	be	wondering	about	this	sort	of	odd	bit	of	CSS.	This	is	a	technique	to
create	triangles	in	pure	CSS	without	having	to	use	any	images.	If	you’re	not	familiar
with	this	technique,	I	recommend	checking	out	appendTo’s	blog	post	that	explains
pure	CSS	triangles	at	http://appendto.com/2013/03/pure-css-triangles-explained/.

We’ve	also	included	a	hover	style	so	that	the	triangle	will	match	the	text	color	when
the	site	visitor	hovers	his/her	mouse	over	the	question.	Note	that	we’re	using	the	jsOn
class	so	that	arrows	don’t	get	added	to	the	page	unless	the	site	visitors	have
JavaScript	enabled.	See	the	triangles	created	in	the	following	screenshot:

2.	 Next,	we’ll	change	the	arrow	to	a	different	orientation	when	the	question	is	opened.

http://appendto.com/2013/03/pure-css-triangles-explained/

We’ll	create	a	new	CSS	class	open	and	use	it	to	define	some	new	styles	for	our	CSS
arrow	using	the	following	code:

.jsOn	dt.open:before	{

		border-color:	#f2eeef	transparent	transparent	transparent;

		border-bottom-width:	0;

}

.jsOn	dt.open:hover:before	{

		border-left-color:	transparent;

		border-top-color:	#ac92ec;

}

Tip
Just	make	sure	you	add	these	new	classes	after	the	other	CSS	we’re	using	to	style	our
<dt>	tags.	This	will	ensure	that	the	CSS	cascades	the	way	we	intended.

3.	 So	we	have	our	CSS	code	to	change	the	arrows	and	show	our	questions	are	open,	but
how	do	we	actually	use	that	new	class?	We’ll	use	jQuery	to	add	the	class	to	our
question	when	it	is	opened	and	to	remove	the	class	when	it’s	closed.

jQuery	provides	some	nice	methods	to	work	with	CSS	classes.

The	addClass	method	will	add	a	class	to	a	jQuery	object	and	the	removeClass
method	will	remove	a	class.	However,	we	want	to	toggle	our	class	just	like	we’re
toggling	the	show	and	hide	phenomenon	of	our	questions.	jQuery’s	got	us	covered
for	that	too.	We	want	the	class	to	change	when	we	click	on	the	question,	so	we’ll	add
a	line	of	code	inside	our	dynamicFAQ	function	that	we’re	calling	each	time	a	<dt>	tag
is	clicked	as	follows:

$('dt').on('click',	function(){

		$(this).toggleClass('open');

		$(this).next().slideToggle();

});

Now	when	you	view	the	page,	you’ll	see	your	open	styles	being	applied	to	the	<dt>
tags	when	they’re	open	and	removed	again	when	they’re	closed.	To	see	this,	have	a
look	at	the	following	screenshot:

4.	 However,	we	can	actually	crunch	our	code	to	be	a	little	bit	smaller.	Remember	how
we	chain	methods	in	jQuery?	We	can	take	advantage	of	chaining	again.	We	have	a	bit
of	redundancy	in	our	code	because	we’re	starting	two	different	lines	with	$(this).

We	can	remove	this	extra	$(this)	and	just	add	our	toggleClass	method	to	the	chain
we’ve	already	started	as	follows:

$(this).toggleClass('open').next().slideToggle();

This	helps	keep	our	code	short	and	concise,	and	just	look	at	what	we’re
accomplishing	in	one	line	of	code!

What	just	happened?
We	created	the	CSS	styles	to	style	the	open	and	closed	states	of	our	questions,	and	then	we
added	a	bit	of	code	to	our	JavaScript	to	change	the	CSS	class	of	the	question	to	use	our
new	styles.	jQuery	provides	a	few	different	methods	to	update	CSS	classes,	which	is	often
a	quick	and	easy	way	to	update	the	display	of	our	document	in	response	to	input	from	the
site	visitor.	In	this	case,	since	we	wanted	to	add	and	remove	a	class,	we	used	the
toggleClass	method.	It	saved	us	from	having	to	figure	out	on	our	own	whether	we
needed	to	add	or	remove	the	open	class.

We	also	took	advantage	of	chaining	to	simply	add	this	new	functionality	to	our	existing
line	of	code,	making	the	animated	show	and	hide	phenomenon	of	the	answer	and	the
change	of	CSS	class	of	our	question	happen	all	in	just	one	line	of	code.	How’s	that	for
impressive	power	in	a	small	amount	of	code?

Summary
In	this	chapter,	you	learned	how	to	set	up	a	basic	FAQ	page	that	hides	the	answers	to	the
questions	until	the	site	visitor	needs	to	see	them.	Because	jQuery	made	this	so	simple,	we
had	plenty	of	time	left	over	to	enhance	our	FAQ	page	even	more,	adding	animations	to	our
show	and	hide	phenomenon	for	the	answers,	and	taking	advantage	of	CSS	to	style	our
questions	with	special	open	and	closed	classes	to	communicate	to	our	site	visitors	how	our
page	works.	And	we	did	all	of	that	with	just	a	few	lines	of	code!

Next,	we’ll	learn	how	to	build	an	interactive	drop-down	navigation	menu.

Chapter	4.	Building	an	Interactive
Navigation	Menu
In	2003,	an	article	published	on	A	List	Apart	(http://alistapart.com)	called	Suckerfish
Dropdowns	showed	how	HTML	and	CSS	alone	(with	just	a	little	JavaScript	help	for	IE	6)
can	be	used	to	build	a	complex	multilevel	drop-down	menu.	The	Suckerfish	name	derived
from	the	gorgeously	designed	demo	of	the	technique,	which	featured	illustrations	of
remoras	and	sharksuckers.	While	useful,	the	original	requires	that	the	site	visitors	not
move	their	mouse	outside	the	menu	area	while	navigating	or	the	menu	disappears.	Over
the	years,	the	Suckerfish	Dropdowns	article	has	inspired	a	lot	of	spinoffs—Sons	of
Suckerfish,	Improved	Suckerfish,	and	so	on—that	attempt	to	address	the	shortcomings	of
the	original.	Because	jQuery	can	make	everything	better,	we’ll	build	on	this	idea	using	the
Superfish	jQuery	plugin	to	make	the	menu	easier	to	use.

The	developer	of	the	Superfish	plugin,	Joel	Birch,	says	that	most	support	issues	with	the
plugin	come	from	people	not	understanding	the	CSS	for	the	menu.	To	be	sure	you	have	a
firm	grasp	on	the	CSS,	I	highly	recommend	reading	the	original	Suckerfish	Dropdowns
article	on	A	List	Apart	at	http://www.alistapart.com/articles/dropdowns.

To	get	started	with	this	plugin,	we’ll	be	building	on	a	basic	Suckerfish	menu—as	this	menu
only	requires	CSS,	we	still	get	an	interactive	menu	if	we	have	JavaScript	disabled.	The
menu	is	just	improved	for	users	with	JavaScript	enabled.

In	this	chapter,	we’ll	learn:

How	to	use	the	Superfish	jQuery	plugin	to	create	a	horizontal	drop-down	menu
How	to	create	a	vertical	fly-out	menu	with	the	Superfish	plugin
How	to	customize	the	drop-down	and	fly-out	menus	created	with	the	Superfish
plugin

http://alistapart.com
http://www.alistapart.com/articles/dropdowns

The	horizontal	drop-down	menu
The	horizontal	drop-down	menu	was	for	a	long	time	a	common	item	in	desktop	software
but	challenging	if	not	impossible	to	implement	in	websites	until	first	CSS	and,	later,
JavaScript	finally	arrived	on	the	scene	to	make	them	possible.

Time	for	action	–	creating	a	horizontal
drop-down	menu
Let’s	take	a	look	at	how	we	can	use	the	Superfish	plugin	to	enhance	a	CSS	horizontal
drop-down	menu:

1.	 To	get	started,	we’ll	create	a	simple	HTML	page	and	the	associated	folders	and	files
like	we	created	in	Chapter	1,	Designer,	Meet	jQuery.	To	get	started,	we	won’t	attach
the	styles.css	file	to	our	page.	We’ll	add	that	in	later.	The	body	of	our	HTML	file
will	contain	a	heading	and	a	navigation	menu	that	consists	of	nested	unordered	lists,
as	follows:

<div	class="content">

<h1>Butterflies</h1>

</div>

<ul	id="sfNav"	class="sf-menu">

		Papilionidae

				

						Common	Yellow	Swallowtail

						Spicebush	Swallowtail

						Lime	Butterfly

						Ornithoptera

								

										Queen	Victoria's	Birdwing

										Wallace's	Golden	Birdwing

										Cape	York	Birdwing

								

						

				

		

		Pieridae

				

						Small	White

						Green-veined	White

						Common	Jezebel

				

		

		Lycaenidae

				

						Xerces	Blue

						Karner	Blue

						Red	Pierrot

				

		

		Riodinidae

				

						Duke	of	Burgundy

						Plum	Judy

				

		

		Nymphalidae

				

						Painted	Lady

						Monarch

						Morpho

								

										Sunset	Morpho

										Godart's	Morpho

								

						

						Speckled	Wood

				

		

		Hesperiidae

				

						Mallow	Skipper

						Zabulon	Skipper

				

		

Note	that	we’ve	added	an	id	variable	of	sfNav	and	a	class	of	sf-menu	to	the	
element	that	contains	our	menu.	This	will	make	it	easy	for	us	to	select	and	style	the
menu	the	way	we’d	like.	If	you	view	your	page	in	the	browser,	it	will	look	something
like	the	following	screenshot:

As	you	can	see,	we’ve	organized	our	links	into	a	hierarchy.	This	is	useful	to	find	the
information	that	we	want,	but	it	takes	up	quite	a	lot	of	space.	This	is	where	we	can
use	a	technique	of	hiding	extra	information	until	it’s	needed.

2.	 Next,	we	need	a	copy	of	the	Superfish	plugin.	Head	over	to
http://plugins.jquery.com/superfish/,	where	you’ll	find	Joel	Birch’s	Superfish	plugin

http://plugins.jquery.com/superfish/

available	for	download	along	with	links	to	documentation	and	examples.	Superfish	is
available	in	the	official	jQuery	plugin	repository,	as	shown	in	the	following
screenshot:

You	can	download	a	copy	of	the	plugin	by	clicking	on	the	orange	Download	now
button	in	the	black	box	on	the	right-hand	side	corner	of	the	page.	By	clicking	on	this
button,	you	will	download	a	ZIP	file	to	your	computer.	We’ll	open	that	up	and	take	a
look	in	a	minute.

3.	 In	the	black	box	on	the	right-hand	side	corner,	you’ll	also	find	links	to	more
information	about	the	plugin.	If	you	follow	the	Read	the	Docs	link,	you’ll	find	the
documentation	that	explains	how	to	use	the	Superfish	plugin.

At	the	bottom	of	the	Getting	Started	tab,	you’ll	find	the	plugin’s	Quick	Start
Guide,	where	you	can	see	that	there	are	three	simple	steps	to	implement	the
Superfish	plugin:

1.	 Write	the	CSS	to	create	a	Suckerfish-style	drop-down	menu.
2.	 Link	to	the	superfish.js	file.
3.	 Call	the	superfish()	method	on	the	element	that	contains	your	menu.

4.	 Now	let’s	unzip	that	file	we	downloaded	and	take	a	look	inside.	There	are	a	lot	of

files	in	there,	and	not	all	of	them	make	sense.

Don’t	be	intimidated	by	those	extra	files	that	you	don’t	quite	understand.	Files	such
as	bower.json,	Gruntfile.coffee,	package.json,	and	superfish.jquery.json	are
all	for	more	advanced	developers—you	don’t	have	to	give	them	a	second	thought	at
this	point,	but	if	you	realize	that	you	actually	kind	of	like	working	with	JavaScript,
you	might	one	day	investigate	things	such	as	Grunt,	CoffeeScript,	and	Bower.

In	fact,	the	only	folders	we	need	to	pay	attention	to	here	are	dist	and	examples.	In
the	examples	folder,	you’ll	find	a	couple	of	HTML	files	with	working	examples	of
Superfish.	Go	ahead	and	open	those	in	the	browser	if	you’d	like	to	take	a	look.

Inside	the	dist	folder,	you’ll	find	the	JavaScript	files	required	to	get	Superfish	drop-
down	menus	working	along	with	some	sample	CSS	files.

We’ll	use	those	sample	CSS	files	to	get	started	quickly.	We’ll	look	at	customizing	the
appearance	of	our	menu	later,	but	for	now,	we’ll	go	ahead	and	use	the	CSS	included
with	the	plugin.

5.	 Inside	the	dist	folder,	the	first	file	we’ll	need	is	the	superfish.css	file	from	the	css
folder.	Copy	this	file	to	your	own	styles	folder.

6.	 Next,	we’ll	edit	our	HTML	file	to	include	the	superfish.css	file	in	the	head	of	the
document:

<head>

		<title>Chapter	4:	jQuery	for	Designers</title>

		<link	rel="stylesheet"	href="styles/superfish.css"/>

</head>

7.	 Now,	if	you	refresh	the	page	in	a	browser,	you’ll	see	that	the	long	list	of	nested	
elements	has	become	a	working	Suckerfish	drop-down	menu,	as	shown	in	the
following	screenshot:

When	you	move	your	mouse	over	the	first	link,	the	nested		element	becomes
visible.	If	you	move	your	mouse	down	to	the	last	link	in	the	drop-down	menu,	the
	element	nested	at	the	third	level	becomes	visible.

Keep	in	mind	that	all	of	this	is	accomplished	without	JavaScript—just	CSS.	If	you
spend	a	few	moments	using	the	menu,	you’ll	probably	quickly	recognize	some
shortcomings.	First,	if	you	want	to	move	your	mouse	from	the	Ornithoptera	link	to
the	Cape	York	Birdwing	link,	your	natural	inclination	is	to	move	your	mouse
diagonally.	However,	as	soon	as	your	mouse	leaves	the	blue	menu	area,	the	menu
closes	and	disappears.	You	have	to	adjust	to	move	your	mouse	directly	right	onto	the
submenu,	then	down	to	the	link	you’re	interested	in.

This	is	awkward	and	makes	the	menu	feel	fragile.	If	your	mouse	moves	even	1	pixel
outside	the	menu,	the	menu	collapses	and	disappears.	Another	problem	is	that	the
menu	opens	as	soon	as	the	mouse	hovers	over	it.	If	you	are	moving	your	mouse	over
the	menu	moving	from	one	part	of	the	page	to	another,	the	menu	opens	and	closes

quickly,	which	can	be	distracting	and	unexpected.

This	is	a	great	place	for	jQuery	to	step	in	to	make	things	a	bit	better	and	more	usable.

8.	 Go	back	to	the	files	we	downloaded,	and	find	the	superfish.js	file	inside	the	js
folder.	Copy	it	to	your	own	scripts	folder,	and	then	attach	the	Superfish	plugin	to
the	HTML	page	at	the	bottom	of	the	file,	between	jQuery	and	the	scripts.js	file:

				<script	src="scripts/jquery.js"></script>

				<script	src="scripts/superfish.js"></script>

				<script	src="scripts/scripts.js"></script>

		</body>

</html>

9.	 Next,	open	your	scripts.js	file	and	we’ll	write	the	code	to	call	the	superfish()
method.	As	usual,	we’ll	get	started	with	the	document	ready	statement	so	that	our
script	runs	as	soon	as	the	page	is	loaded	into	the	browser:

$(document).ready(function(){

		//	Our	code	will	go	here.

});

10.	 Looking	at	the	documentation	for	the	Superfish	plugin,	we	see	that	we	only	have	to
select	the	element	that	contains	our	menu	and	then	call	the	superfish()	method.
Inside	our	ready()	method,	we’ll	add	the	following	code:

$(document).ready(function(){

		$('#sfNav').superfish();

});

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	the	menu	still	looking	very
similar,	but	with	much	improved	behavior.	The	Superfish	JavaScript	and	CSS	work
together	to	add	arrows	to	the	menu	items	that	have	nested	children.	If	you	move	your
mouse	away	from	the	menu,	it	does	not	disappear	immediately,	making	it	possible	to
move	the	mouse	diagonally	to	nested	menu	items.	There’s	also	a	subtle	fade	in
animation	when	the	menu	items	appear.	And	a	background	color	change	to	each
menu	item	on	hover,	making	it	easy	to	see	which	item	is	currently	active.

What	just	happened?
We	set	up	a	navigation	menu	that	consists	of	a	set	of	nested	lists,	forming	a	hierarchy.
Next,	we	attached	a	CSS	file	to	add	simple	drop-down	functionality	to	our	menu.
However,	this	CSS-only	menu	had	a	few	shortcomings.	So	we	attached	the	Superfish
plugin	to	take	care	of	those	and	make	our	menu	more	user	friendly.

The	vertical	fly-out	menu
We	saw	how	the	addition	of	the	Superfish	plugin	enhanced	the	user	experience	of	our
drop-down	menu,	but	what	if	we	wanted	to	create	a	vertical	fly-out	menu	instead?

Time	for	action	–	creating	a	vertical	fly-
out	menu
Switching	from	a	horizontal	drop-down	menu	to	a	vertical	fly-out	menu	couldn’t	be	easier.
We’ll	use	the	same	HTML	markup	and	our	JavaScript	code	will	stay	the	same.	The	only
difference	we’ll	need	to	make	is	to	add	some	new	CSS	to	make	our	menu	display
vertically	instead	of	horizontally.	We	can	keep	working	with	the	same	files	we	used	in	the
last	example.	Perform	the	following	steps	to	create	a	fly-out	menu:

1.	 In	the	css	folder	of	the	Superfish	download,	you’ll	find	a	file	named	superfish-
vertical.css.	Copy	that	file	to	your	own	styles	folder.	In	the	head	section	of	the
HTML	file,	we’ll	attach	the	new	CSS	file,	after	superfish.css,	as	shown	in	the
following	code:

<link	rel="stylesheet"	href="styles/superfish.css"/>

<link	rel="stylesheet"	href="styles/superfish-vertical.css"/>

2.	 Now,	inside	your	index.html	file,	find	the		element	that	holds	the	entire	menu
and	add	a	class	of	sf-vertical:

<nav>

		<ul	id="sfNav"	class="sf-menu	sf-vertical">

				Papilionidae

Now	refresh	the	page	in	a	browser;	you’ll	see	that	the	menu	displays	vertically	with
flyouts:

What	just	happened?
The	only	difference	between	the	horizontal	drop-down	menu	and	the	vertical	fly-out	menu
is	the	CSS	file	and	a	class	name	added	to	the	menu	container.	By	simply	adding	a	new
CSS	file,	it’s	possible	to	create	a	vertical	fly-out	menu	instead	of	a	horizontal	drop-down
menu.

Customizing	the	navigation	menu
The	included	CSS	with	the	Superfish	plugin	makes	creating	an	interactive	navigation
menu	quick	and	simple,	but	a	soft	blue	menu	isn’t	going	to	fit	into	every	design,	so	let’s
customize	the	menu.

We’re	going	to	take	a	look	at	how	we	can	customize	the	look	of	the	menu	by	writing	our
own	CSS,	customize	the	animation	to	show	the	nested	menus,	and	enhance	the	hover
behavior	of	the	menu.

We’re	going	to	get	started	by	writing	some	CSS	code	to	create	a	custom	look	for	our
menus.	We’re	going	to	use	the	Suckerfish	Dropdown	approach	to	create	a	menu	that	will
work	for	our	site	visitors	who	don’t	have	JavaScript	enabled.	We’re	going	to	create	a
simple	white	menu	with	drop-downs	in	green	with	rounded	corners,	as	shown	in	the
following	screenshot:

Here	are	some	things	to	keep	in	mind	as	you	write	custom	CSS	for	a	drop-down	or	fly-out
menu.

:hover	and	.sfHover
In	the	CSS	file	provided	with	the	Superfish	plugin,	you’ll	see	that	the	:hover	pseudoclass
is	always	used	together	with	the	.sfHover	class.	So	you’ll	see	the	following	lines	in	the
.css	file:

.sf-menu	li:hover	>	ul,

.sf-menu	li.sfHover	>	ul	{

		display:	block;

}

Prior	to	IE	7,	the	IE	browsers	did	not	support	the	:hover	pseudoclass	for	elements	other
than	links	(<a>).	The	plugin	dynamically	added	and	removed	this	class	from	list	items	that
were	hovered	over	to	enable	the	drop-down	menus	to	work	in	all	the	versions	of	IE.

These	days,	usage	of	IE	6	has	fallen	off	to	tiny	proportions	for	most	websites	and	it’s	often
not	worth	the	extra	effort	required	to	make	sure	your	pages	look	and	work	perfectly	in	this
outdated	browser.

Just	in	case	you	do	find	yourself	in	the	unenviable	position	of	having	to	write	code	that
works	in	IE	6,	you’ll	want	to	make	sure	that	you	include	the	.sfHover	class	in	your	CSS
file.	However,	if	you	don’t	need	to	support	IE	6,	then	you	can	safely	skip	including	the
extra	lines	in	your	CSS	file.

Cascading	inherited	styles
It’s	the	very	nature	of	CSS	for	styles	to	cascade	down	the	DOM	and	be	applied	to	all
children	of	the	selector	as	well	as	the	selector	itself.	So,	write	code	to	style	the	list	items	of
the	first-level	menu	as	follows:

ul.sf-menu	li		{

		background:	#cc0000;	/*	Dark	red	background	*/

}

All	of	the		elements	in	your	menu	are	going	to	have	a	dark-red	background,	no	matter
which	level	of	the	menu	they	appear	in.	If	you	want	to	apply	different	styles	to	different
menu	levels,	you’ll	have	to	override	the	cascade	in	other	lines	of	code.	For	example,	if	I
wanted	to	make	the	second-level	menu	have	a	dark-blue	background,	I’d	add	the
following	snippet	of	CSS	after	the	preceding	code:

ul.sf-menu	li	li		{

		background:	#0000cc;	/*	Dark	blue	background	*/

}

This	means	for	an		inside	another	,	the	background	will	be	blue.	Keep	in	mind
that	now	this	style	will	in	turn	cascade	down	to	other	menu	levels,	so	if	you	want	a	dark-
green	background	for	the	third-level	menu,	you’ll	need	to	add	another	bit	of	CSS	as
follows:

ul.sf-menu	li	li	li		{

		background:	#00cc00;	/*	Dark	green	background	*/

}

In	some	cases,	making	use	of	direct	descendent	selectors	in	your	CSS	file	can	help	to
prevent	you	from	having	to	write	too	many	lines	of	CSS	overriding	styles	written	for
elements	higher	up	in	the	DOM.	For	example,	consider	the	following	code:

ul.sf-menu	>	li		{

		background:	#cc0000;	/*	Dark	red	background	*/

}

This	bit	of	CSS	takes	advantage	of	a	direct	descendent	selector	(>).	The	dark-red
background,	in	this	case,	will	only	apply	to		elements	nested	directly	inside	the	
element	with	a	class	of	.sf-menu.	It	will	not	cascade	down	to	the	second-	or	third-level
menus.

Pop	quiz	–	understanding	the	cascade	in	CSS
Go	through	the	following	CSS	code	for	a	nested	list	navigation	menu:

ul	{	background:	#3BAFDA;	}

ul	li	{	background:	#4FC1E9;	}

ul	>	li	{	background:	#AC92EC	}

ul	li	li	{			background:	#967ADC;	}

Q1.	What	color	will	the	background	of	the	second	level	of	links	be?

1.	 #3BAFDA
2.	 #4FC1E9
3.	 #AC92EC
4.	 #967ADC

Styling	the	:focus	pseudoclass
You	won’t	want	to	leave	out	anyone	who	chooses	to	navigate	your	page	with	their
keyboard	rather	than	their	mouse,	so	you’ll	want	to	make	sure	that	each	time	you	style	the
:hover	pseudoclass	for	links,	that	you	also	write	styles	for	the	:focus	pseudoclass.	This
will	make	it	possible	for	a	site	visitor	to	easily	see	what	link	is	currently	selected.	Style
both	the	:hover	and	:focus	pseudoclasses	as	follows:

.sf-arrows	>	li	>	.sf-with-ul:focus:after,

.sf-arrows	>	li:hover	>	.sf-with-ul:after	{

		border-top-color:	white;

}

Note	that	it’s	not	necessary	to	write	the	:focus	styles	for	list	items.	List	items	don’t
receive	focus	by	using	the	Tab	key	on	the	keyboard,	so	adding	extra	styles	for	them	won’t
have	any	effect.	You	only	have	to	worry	about	the	:focus	styles	for	links.

Time	for	action	–	customizing	Superfish
menus
Customizing	a	Superfish	menu	mostly	involves	writing	your	own	CSS	code	to	style	the
menu	the	way	you’d	like.	The	following	steps	show	how	we’ll	create	a	custom	look	for
the	menu:

1.	 If	you	remember	some	web	basics,	you’ll	remember	that	CSS	stands	for	Cascading
Style	Sheets.	This	cascading	feature	is	what	we’ll	focus	on	here.	Any	styles	we	write
for	the	top	level	of	our	menu	are	going	to	cascade	down	to	the	other	levels	of	the
menu.	We	have	to	remember	this	and	handle	all	the	cases	where	we’d	rather	stop	a
style	from	cascading	downward.

We’ll	keep	working	with	the	same	index.html	file,	but	we	won’t	need	the
superfish.css	or	superfish-vertical.css	files	any	longer.	We’ll	now	attach	our
styles.css	file	to	the	index.html	file	to	apply	all	of	our	default	styles.	Let’s	get
started	by	writing	some	general	styles	for	the	menu	container	and	other	elements.
Place	the	following	code	inside	your	styles.css	file:

/*	General	*/

nav	{

		margin:	2em	0;

}

.sf-menu	{

		background:	white;

		border-radius:	7px;

}

.sf-menu:after	{

		clear:	both;

		content:	'';

		display:	table;

}

Here	we’re	just	giving	our	navigation	menu	some	breathing	room	with	a	generous
margin	and	giving	the	menu	a	white	background	and	round	corners.	However,	what’s
that	last	bit,	with	the	:after	pseudoclass	in	the	selector?

We’re	going	to	float	our	list	items	inside	our	navigation	bar.	We	have	to	make	sure
we	clear	the	floats	so	that	the	background	color	we’ve	set	is	visible.	This	method	of
using	the	:after	pseudoclass	and	setting	the	clear,	content,	and	display	attributes
is	clean	and	simple,	which	doesn’t	require	any	extra	markup	and	works	well	across
many	browsers.

2.	 Next,	let’s	style	the	top	level	of	our	menu.	Add	the	following	code	to	your
styles.css	file:

/*	Level	1	*/

.sf-menu	li	{

		position:	relative;

		white-space:	nowrap;

}

.sf-menu	li:hover	{

		background:	#a0d468;

}

.sf-menu	a	{

		color:	#444;

		display:	block;

		padding:	1.5em	1em;

		position:	relative;

		text-decoration:	none;

}

.sf-menu	a:hover	{

		background:	#a0d468;

		color:	white;

}

.sf-menu	>	li:first-child,

.sf-menu	>	li:first-child	a	{

		border-top-left-radius:	7px;

}

.sf-menu	>	li	{

		float:	left;

}

We’re	adding	a	green	background	to	the	menu	items	on	hover	and	changing	the	font
color	from	a	dark	grey	to	white.	We’re	also	adding	the	corner	radius	to	the	first	item
to	make	sure	the	menu	bar	still	has	a	top-left	rounded	corner	when	the	first	item	is
hovered	over.

3.	 Next,	let’s	take	a	look	at	how	we’ll	style	the	second	level	of	our	menus.	Add	the
following	CSS	code	to	your	styles.css	file	to	style	the	second	level:

/*	Level	2	*/

.sf-menu	ul	{

		background:	#a0d468;

		border-bottom-right-radius:	7px;

		border-bottom-left-radius:	7px;

		display:	none;

		left:	0;

		min-width:	12em;

		position:	absolute;

		top:	100%;

		z-index:	99;

}

.sf-menu	ul	li:hover	{

		background:	#8cc152;

}

.sf-menu	ul	a:hover	{

		background:	#8cc152;

}

.sf-menu	li:hover	>	ul	{

		display:	block;

}

.sf-menu	ul	>	li:last-child,

.sf-menu	ul	>	li:last-child	a	{

		border-bottom-left-radius:	7px;

		border-bottom-right-radius:	7px;

}

The	items	in	this	menu	level	have	a	green	background	and	turns	to	a	darker	green	on
hover.	We	have	also	added	rounded	corners	to	the	bottom,	which	requires	us	then	to
add	rounded	corners	to	the	last	item	in	each	nested		element.

4.	 Finally,	we	still	have	a	third	level	of	menu	to	style.	Add	these	styles	to	your
styles.css	file:

/*	Level	3	*/

.sf-menu	ul	ul	{

		background:	#8cc152;

		border-top-right-radius:	7px;

		top:	0;

		left:	100%;

}

.sf-menu	ul	ul	li:hover	{

		background:	#7bb140;

}

.sf-menu	ul	ul	a:hover	{

		background:	#7bb140;

}

.sf-menu	ul	ul	>	li:first-child,

.sf-menu	ul	ul	>	li:first-child	a	{

		border-top-right-radius:	7px;

}

.sf-menu	ul	ul	>	li:last-child,

.sf-menu	ul	ul	>	li:last-child	a	{

		border-bottom-right-radius:	7px;

}

This	third	level	has	a	background	color	that’s	just	a	shade	darker	than	the	level
before,	and	when	hovered,	turns	another	shade	darker.	The	progression	to	darker
shades	of	green	helps	to	communicate	the	relationships	between	the	items	in	our
menu.

5.	 The	last	thing	we	need	to	do	is	write	some	styles	to	add	arrows	to	our	menu	items	if
they	have	submenu	items	hiding	underneath	them.	These	styles	are	only	used	if
JavaScript	is	enabled,	but	they’re	one	more	little	thing	Superfish	does	to	make	our
menus	more	user-friendly.	We’ll	use	the	same	CSS	triangle	technique	that	we’ve	seen
a	couple	of	times	already.	Add	the	following	CSS	code	to	your	styles.css	file:

/*	Extras	*/

.sf-arrows	.sf-with-ul	{

		padding-right:	2.5em;

}

.sf-arrows	.sf-with-ul:after	{

		border:	5px	solid	transparent;

		border-top-color:	#444;

		content:	'';

		height:	0;

		margin-top:	-3px;

		position:	absolute;

		right:	1em;

		top:	50%;

		width:	0;

}

.sf-arrows	>	li	>	.sf-with-ul:focus:after,

.sf-arrows	>	li:hover	>	.sf-with-ul:after	{

		border-top-color:	white;

}

.sf-arrows	ul	.sf-with-ul:after	{

		margin-top:	-5px;

		margin-right:	-3px;

		border-color:	transparent;

		border-left-color:	#e7f2dc;

}

.sf-arrows	ul	li	>	.sf-with-ul:focus:after,

.sf-arrows	ul	li:hover	>	.sf-with-ul:after	{

		border-left-color:	white;

}

And	take	a	deep	breath,	because	we’ve	finally	reached	the	end	of	the	CSS	code	to
create	a	custom	style	for	the	menu.	The	bonus	of	this	CSS	code	is	that	it	will	work
even	without	JavaScript	enabled.	The	Superfish	plugin	just	enhances	the	menu	and
makes	it	more	usable.

What	just	happened?
We	wrote	custom	CSS	to	style	our	menu	to	match	a	design	that	we	created.	We	had	to	dig
into	the	cascading	feature	of	CSS	and	decide	which	styles	should	cascade	down	through
all	levels	of	the	menu	and	which	should	not.	Just	be	patient	and	keep	the	cascade	in	mind
as	you	work	down	through	the	levels	of	the	menu.

The	hoverIntent	plugin
Earlier,	I	pointed	out	that	one	problem	with	our	menu	was	how	quickly	the	menu	reacted
to	the	mouseover	event.	Any	time	the	mouse	is	moved	over	the	menu,	the	nested	menus
open.	While	that	might	seem	like	a	good	thing	at	first,	it	might	be	disconcerting	or
surprising	to	site	visitors	if	they	are	simply	moving	their	mouse	on	the	screen	and	aren’t
intending	to	use	the	drop-down	or	fly-out	menus.

The	Superfish	plugin	has	built-in	support	for	the	hoverIntent	plugin.	The	hoverIntent
plugin	sort	of	pauses	the	mouseover	event	and	makes	the	page	wait	to	see	if	the	mouse
slows	down	or	stops	on	an	item	to	make	sure	it’s	what	the	site	visitor	intended	to	do.	That
way	if	the	site	visitor	just	happens	to	roll	their	mouse	over	the	drop-down	menu	on	their
way	to	something	else	on	the	page,	the	submenus	won’t	start	appearing,	throwing	them
into	confusion.

If	you’ll	recall,	the	hoverIntent	plugin	was	actually	included	in	the	ZIP	file	when	we
downloaded	the	Superfish	plugin.	To	take	advantage	of	the	hoverIntent	plugin,	perform
the	following	steps:

1.	 In	the	Superfish	download,	locate	the	hoverIntent.js	file	inside	the	js	folder	and
copy	the	file	to	your	own	scripts	folder.

2.	 Next,	we	need	to	attach	the	hoverIntent	plugin	to	our	HTML	page.

Tip
Don’t	forget	to	keep	dependencies	in	mind	when	attaching	multiple	JavaScript	files
to	a	page.	All	jQuery	plugins	depend	on	jQuery	to	operate,	so	jQuery	needs	to	be
attached	to	your	page	before	any	plugins.	In	this	case,	the	Superfish	plugin	depends
on	the	hoverIntent	plugin,	so	we	need	to	make	sure	hoverIntent	is	added	to	our	page
before	the	Superfish	plugin.

Add	the	new	<script>	tag	to	the	bottom	of	your	page	with	the	other	scripts	as
follows:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/hoverIntent.js"></script>

<script	src="scripts/superfish.js"></script>

<script	src="scripts/scripts.js">

</script>

</body>

</html>

Now	if	you	refresh	the	page	in	a	browser,	you’ll	see	that	there’s	a	short	pause	when
your	mouse	moves	over	the	menu	before	the	nested	submenu	appears.	And	if	you	run
your	mouse	across	the	page	quickly,	crossing	the	menu,	no	unwanted	submenus
appear	on	the	page.

Time	for	action	–	incorporating	custom
animations
Next,	a	sliding	animation	would	be	better	suited	to	our	menu	style.	The	default	animation
is	to	fade	the	submenus	in.	We	can	override	this	default	behavior	and	replace	it	with	a
sliding	animation.

1.	 Fading	the	menu	in	means	that	the	menu	opacity	is	animating	from	0	percent	to	100
percent.	We’d	rather	animate	the	height	of	the	submenu,	so	that	the	submenu	slides
into	view.	To	do	that,	open	up	your	scripts.js	file	and	customize	the	animation
value	inside	the	superfish()	method	as	follows:

		$(document).ready(function(){

				$('#sfNav').superfish({

						animation:		{height:'show'}

				});

		});

Just	adding	a	value	here	will	override	the	default	behavior	of	the	plugin	and	replace	it
with	the	animation	we	choose	instead.

Now	when	you	refresh	the	page	in	a	browser,	you’ll	see	the	submenus	slide	into	view
instead	of	fade	in,	which	is	a	much	more	fitting	animation	for	the	CSS	We’ve	used	to
style	the	menus.

What	just	happened?
We	took	advantage	of	one	of	the	customization	options	for	the	Superfish	plugin	to	change
the	show	animation	of	the	nested	subnavigation	links.	There	are	more	customization
options	covered	in	the	documentation	of	the	Superfish	menu.

Have	a	go	hero	–	further	customizing	the	Superfish
menu
Review	the	styles	that	make	a	CSS-only	drop-down	menu	work	and	look	through	the
documentation	for	the	Superfish	plugin.	Design	and	build	your	own	custom	drop-down	or
fly-out	menu.	Try	using	the	different	customization	options	for	the	Superfish	plugin	that
are	outlined	in	the	documentation.

Summary
Whew!	That	was	a	lot	of	work	we	just	did,	but	I	have	to	say	we	have	a	pretty	impressive
navigation	menu	to	show	for	our	efforts.	We	learned	how	to	use	the	Superfish	jQuery
plugin	to	produce	horizontal	drop-down	menus	or	vertical	fly-out	menus.	Also,	we	learned
how	to	fully	customize	the	look	and	feel	of	our	menu	to	fit	our	site	design	perfectly.	Being
able	to	hide	subsections	of	the	site	until	they’re	needed	makes	a	complex	navigation
structure	less	overwhelming	for	your	site	visitors.	It’s	simple	and	clear	to	see	what	the
main	sections	of	the	site	are,	and	they	can	easily	drill	down	to	just	the	content	they	want.

Next,	we’ll	take	a	look	at	displaying	content	in	lightboxes.

Chapter	5.	Showing	Content	in
Lightboxes
It’s	become	common	to	see	galleries	of	photos	displayed	in	lightboxes	on	the	Web.
Lightboxes	can	be	useful	for	other	things	too—playing	videos,	showing	additional
information,	displaying	important	information	to	site	visitors,	or	even	showing	other
websites.	In	this	chapter,	we’ll	see	how	to	use	the	flexible	and	adaptable	Colorbox	plugin
to	create	lightboxes	for	a	variety	of	purposes.

An	example	of	an	image	shown	in	a	lightbox	is	depicted	in	the	following	screenshot:

In	this	chapter,	we’ll	take	a	look	at	how	to	use	the	Colorbox	plugin	to	do	the	following:

Create	a	simple	photo	gallery
Customize	photo	gallery	settings
Build	a	fancy	login	box
Play	a	collection	of	videos
Create	a	one-page	website	portfolio

A	simple	photo	gallery
A	simple	photo	gallery	is	probably	the	most	common	use	for	lightboxes.	We’ll	set	up	a
page	that	shows	thumbnails	of	each	photo	and	displays	the	full-size	image	in	a	lightbox
when	the	thumbnail	is	clicked.	To	get	started,	you’ll	need	a	series	of	photographs	with
smaller-sized	thumbnails	of	each.

Time	for	action	–	setting	up	a	simple
photo	gallery
We’ll	walk	through	the	creation	of	a	simple	photo	gallery	with	the	Colorbox	plugin:

1.	 We’ll	get	started	by	setting	up	a	basic	HTML	page	and	associated	files	and	folders
just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	The	body	of	the	HTML
document	will	contain	a	heading	and	a	list	of	thumbnails	as	shown	in	the	following
code:

<div	class="content">

		<h1>Ireland</h1>

</div>

<ul	class="thumb-list">

		<a	href="images/cemetary.jpg"	title="Celtic	Cemetary	with	Celtic	

Crosses"	rel="ireland"><img	src="images/thumbs/cemetary.jpg"	

alt="Celtic	Cemetary"/>

		<a	href="images/cliffs-of-moher.jpg"	title="Cliffs	of	Moher"	

rel="ireland"><img	src="images/thumbs/cliffs-of-moher.jpg"	alt="Cliffs	

of	Moher"/>

		...

Note	that	we’ve	wrapped	each	thumbnail	in	a	link	to	the	full-size	version	of	the
image.	If	you	load	the	page	in	a	browser,	you’ll	see	that	the	page	works	for	users	with
JavaScript	disabled.	Clicking	on	a	thumbnail	opens	the	full-sized	image	in	the
browser.	The	back	button	takes	you	back	to	the	gallery.

Note	that	we’ve	also	included	a	title	attribute	on	each	link.	This	is	helpful	for	our
site	visitors	as	it	will	show	a	short	description	of	the	image	in	a	tooltip	when	they
hover	over	the	thumbnail	with	their	mouse,	but	it	will	also	be	used	later	on	for	the
Colorbox	plugin.	We’ve	also	included	a	rel	attribute	on	each	link	and	set	its	value	to
ireland.	This	will	make	selecting	our	group	of	links	to	Ireland’s	images	easy	when
we’re	ready	to	add	the	Colorbox	plugin’s	magic.

2.	 Next,	we’ll	add	a	bit	of	CSS	to	lay	our	images	out	in	a	grid.	Open	styles.css	and
add	the	following	styles:

.thumb-list	{

		margin:	2em	0;

		text-align:	center;

}

.thumb-list	li	{

		display:	inline-block;

		padding:	0.5em;

}

Refresh	the	page	and	you	will	see	something	like	the	following	screenshot:

Feel	free	to	play	around	a	bit	with	the	CSS	to	create	a	different	layout	for	your	image
thumbnails	if	you’d	like.

3.	 Now,	let’s	add	the	jQuery	magic.	We’re	going	to	use	Jack	Moore’s	Colorbox	plugin.
Head	over	to	http://jacklmoore.com/colorbox	to	find	the	downloads,	documentation,
and	demos.	You’ll	find	the	download	link	near	the	top	of	the	page.	Just	click	on	the
big	blue	Download	link	to	download	a	ZIP	file.

http://jacklmoore.com/colorbox

4.	 Unzip	the	folder	and	take	a	look	inside	it.	You’ll	not	only	find	the	plugin	script	file
but	a	lot	of	other	goodies	as	well.

The	plugin	code	itself	is	contained	in	the	two	JavaScript	files—you’ll	find	both	the
development	and	minified	versions.	Each	of	the	five	example	folders	contains	an
example	file	(index.html)	that	shows	the	plugin	in	action.	Why	five	different	folders
you	might	ask?	Each	folder	contains	the	same	basic	example	but	with	five	different

styles	for	Colorbox.	These	same	examples	can	be	viewed	on	the	Colorbox	website	by
clicking	the	numbers	in	the	View	Demos	section	on	the	website.

Right	out	of	the	box,	the	plugin’s	developers	provide	us	with	five	different
possibilities	for	our	Colorbox’s	look	and	feel.	And	if	that’s	not	enough	choice,
they’ve	also	included	a	colorbox.ai	(Adobe	Illustrator)	file	that	contains	all	the
image	assets	used	to	create	these	five	different	looks.	You	can	customize	them	to
your	heart’s	content	and	then	export	your	new	fully	customized	look	from	Illustrator
to	create	your	own	appearance.	Changing	colors	and	special	effects	is	straightforward
enough,	but	remember	that	if	you	change	the	size	and	shape	of	the	image	assets,
you’ll	have	to	touch	up	the	accompanying	CSS	file	to	accommodate	the	new	sizes.

The	content	folder	contains	the	image	assets	that	make	the	examples	work.	We	again
see	the	.json	files	for	Bower—you	can	safely	ignore	those	for	now.	If	you	find	that
you	really	like	working	with	jQuery	and	want	to	move	on	to	more	advanced
techniques,	you	can	explore	Bower.	We’ve	also	got	a	README	file	and	an	i18n	folder
—this	is	for	internationalization	or	translating	the	plugin	so	that	it	can	be	used	on
sites	written	in	languages	other	than	English.

5.	 Try	out	each	of	the	different	examples,	either	on	the	website	or	using	the	example
files	included	in	the	ZIP	download	file.	Note	that	the	appearance,	size,	and	placement
of	the	back	and	forward	buttons,	the	close	button,	the	caption,	and	the	pagination
indicator	(Image	1	of	3),	among	others,	are	all	controlled	via	CSS—not	the	plugin
code	itself.	This	makes	it	very	easy	to	customize	the	look	and	feel;	it’s	all	done	via
CSS	rather	than	in	JavaScript.

6.	 Copy	jquery.colorbox-min.js	from	the	Colorbox	download	to	your	own	scripts
folder.

7.	 We’ll	get	started	by	choosing	one	of	the	provided	CSS	styles.	Pick	your	favorite,	then
copy	and	paste	its	CSS	file	to	your	own	styles	folder.	Open	up	the	images	folder	for
that	CSS	skin	and	copy	and	paste	the	images	from	that	folder	to	your	own	images
folder.	Once	you’ve	chosen	a	style,	your	own	setup	should	look	like	the	one	shown	in
the	following	screenshot:

The	index.html	file	contains	the	HTML	with	thumbnail	images	that	link	to	full-sized
versions.	The	images	folder	contains	the	images	provided	with	your	chosen	Colorbox
skin,	along	with	your	own	images	for	the	slideshow,	both	the	thumbnail	and	full-
sized	versions.	The	scripts	folder	contains	jQuery	(jquery.js)	and	the	Colorbox
plugin	script	(jquery.colorbox-min.js).	The	styles	folder	contains	the	CSS	file
for	the	Colorbox	skin	you	chose.

8.	 We	do	have	to	open	up	colorbox.css	to	make	a	minor	set	of	edits.	In	the	example
files,	the	CSS	file	is	not	in	a	styles	or	css	folder,	but	rather	sits	at	the	top	level
alongside	the	index.html	file.	We’ve	chosen	to	follow	our	preferred	convention	and
store	our	CSS	in	our	styles	folder.	This	means	that	we’ll	have	to	open	the
colorbox.css	file	and	update	the	references	to	the	images	in	the	CSS.	We’ll	have	to
modify	file	paths	that	look	like	this:

#cboxTopLeft{

		width:	21px;

		height:	21px;

		background:	url(images/controls.png)	no-repeat	-100px	0;

}

The	new	file	paths	should	look	like	this:

#cboxTopLeft{

		width:	21px;

		height:	21px;

		background:url(../images/controls.png)	no-repeat	-100px	0;

}

We’re	just	telling	the	CSS	to	go	up	one	level	and	then	look	for	the	images	folder.	You
should	be	able	to	replace	all	of	these	quickly	by	using	the	Find	and	Replace
functionality	of	your	text	editor.

9.	 Next,	open	up	your	index.html	file	and	attach	the	colorbox.css	file	in	the	head
section,	before	your	own	styles.css:

<head>

		<title>Chapter	8:	Showing	Content	in	Lightboxes</title>

		<link	rel="stylesheet"	href="styles/colorbox.css"/>

		<link	rel="stylesheet"	href="styles/styles.css"/>

</head>

10.	 Then,	head	down	to	the	bottom	of	the	file,	just	before	the	closing	</body>	tag	and
attach	the	Colorbox	plugin,	after	jQuery	and	before	your	own	scripts.js	file:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.colorbox-min.js"></script>

<script	src="scripts/scripts.js"></script>

11.	 Now,	remember	the	rel="ireland"	attribute	we	included	on	each	of	our	links?
We’re	going	to	use	that	in	our	JavaScript	to	select	all	of	our	Ireland	image	links	for
the	Colorbox	plugin.	Open	your	scripts.js	file	and	write	the	attribute	selector	to
select	all	links	with	a	rel	attribute	equal	to	ireland	inside	the	document’s	ready
statement:

$(document).ready(function(){

		$('a[rel="ireland"]')

});

12.	 The	only	thing	left	to	do	is	call	the	colorbox()	method	on	those	links—the	Colorbox
plugin	will	take	care	of	everything	else	for	us.

$('a[rel="ireland"]').colorbox();

Now,	if	you	open	the	page	in	the	browser	and	click	on	one	of	the	thumbnail	images,
you’ll	see	the	full-size	image	open	up	in	a	Colorbox.	You	can	navigate	through	all	of
the	full-size	images	without	having	to	close	the	lightbox,	thanks	to	the	back	and
forward	buttons.	You	can	also	move	between	the	images	by	pressing	the	left	and	right
arrow	keys	on	your	keyboard.	The	pagination	indicator	helps	you	to	see	where	you
are	in	the	collection	of	photos.	You’ll	also	notice	that	the	title	attribute	included	on
each	link	gets	reused	as	an	image	caption	for	each	image.	The	Colorbox	can	be
closed	by	clicking	on	the	close	button,	clicking	outside	the	Colorbox,	or	by	hitting
the	Esc	key	on	your	keyboard.	All	in	all,	it’s	a	pretty	nice	experience	right	out	of	the
box.

What	just	happened?
We	used	the	Colorbox	jQuery	plugin	to	turn	a	list	of	links	to	images	into	a	lightbox	that
allows	site	visitors	to	navigate	through	the	full-size	images	without	leaving	the	page.	We
used	the	title	attribute	of	the	links	to	provide	captions	for	the	images.	We	used	one	of	the
five	Colorbox	styles	provided	with	the	plugin	to	create	a	nicely	designed	lightbox.

Customizing	Colorbox’s	behavior
If	you	take	a	look	through	the	Settings	section	of	the	Colorbox	website,	you’ll	see	that
you	have	plenty	of	options	to	customize	how	Colorbox	behaves.	Let’s	take	a	look	at	how
we	can	put	some	of	these	options	to	use.	For	this	section,	we’ll	keep	working	with	the	files
we	set	up	in	the	previous	section.

Transition
First	up,	we’ll	try	out	the	different	transition	effects	that	are	available.	The	default
transition	is	elastic.	If	your	full-size	images	are	all	different	sizes,	you’ll	see	that
Colorbox	uses	a	nice	resizing	animation	to	transition	between	them.	The	other	options	for
transitions	are	fade	and	none.	Let’s	take	a	look	at	how	we	can	modify	the	transition.

Time	for	action	–	using	a	custom
transition
Follow	these	steps	to	change	the	default	transition	between	images:

1.	 For	this	example,	we’ll	take	a	look	at	how	to	use	the	fade	transition.	Open	your
scripts.js	file.	All	we	have	to	do	is	pass	the	fade	value	for	transition	to	the
colorbox()	method	as	follows:

$(document).ready(function(){

		$('a[rel="ireland"]').colorbox({transition:'fade'});

});

Note	that	we’ve	added	some	curly	braces	inside	the	parentheses.	Inside	these	curly
braces,	we	can	pass	in	key/value	pairs	to	customize	different	aspects	of	the	Colorbox.
In	this	case,	the	key	is	transition	and	the	value	is	'fade'.

If	you	reload	the	page	in	the	browser,	click	one	of	the	thumbnails,	and	then	click	the
next	and	previous	buttons	to	flip	through	the	images;	you’ll	see	that	the	Colorbox
fades	out	and	then	back	in	between	each	image.

2.	 What	if	we	decided	that	we’d	rather	get	rid	of	the	transitions	altogether?	We’d	simply
have	to	change	the	value	for	the	transition	key	to	'none'.

$(document).ready(function(){

		$('a[rel="ireland"]').colorbox({transition:'none'});

});

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	images	change
without	any	transition	effect	between	them.

What	just	happened?
We	saw	how	to	take	advantage	of	one	of	the	available	settings	with	the	Colorbox	plugin
and	modified	the	transition	between	images	as	our	site	visitor	moves	through	them.

Fixed	size
In	a	case	where	the	photos	you’re	loading	into	the	Colorbox	are	of	widely	varying	sizes,
you	might	decide	that	all	the	resizing	is	distracting	to	the	site	visitors	and	that	you	want	to
set	a	fixed	size	for	the	Colorbox.	That’s	easy	to	do	as	well,	by	passing	in	a	couple	more
key/value	pairs.	Looking	through	the	documentation,	you’ll	see	that	there	are	many
settings	to	control	the	width	and	height	of	the	Colorbox.	To	keep	things	simple,	we’re
going	to	use	width	and	height.

Time	for	action	–	setting	a	fixed	size
Follow	these	steps	to	set	a	fixed	width	and	height	for	the	Colorbox:

1.	 Open	up	your	scripts.js	file.	We’re	going	to	make	a	few	changes	to	our	code	to	set
a	fixed	width	and	height	for	the	Colorbox:

$('a[rel="ireland"]').colorbox({

		transition:	'none',

		width:	'90%',

		height:	'70%'

});

2.	 Now,	if	you	refresh	the	page	in	the	browser	window,	you’ll	see	that	the	Colorbox
remains	the	same	size.	No	matter	what	size	the	images	or	the	browser	window	is,
Colorbox	will	always	fill	90	percent	of	the	width	and	70	percent	of	the	height	of	the
browser	window.	The	images	inside	resize	proportionally	to	fit	into	the	available
space	if	they	are	too	large.

3.	 You	can	set	a	fixed	width	and	height	in	pixels	or	percentages.	Percentage	height	and
width	are	useful	in	responsive	designs.	You	can	be	sure	that	your	site	visitor	will	see
the	entire	image,	no	matter	what	size	their	screen	happens	to	be.

What	just	happened?
We	set	the	width	and	height	settings	to	percentage	values.	This	is	a	really	helpful	option
if	you	have	large	photos	that	could	potentially	be	larger	than	your	site	visitor’s	browser
window.	Setting	the	width	and	height	values	to	percentage	values	ensures	that	in	this
case,	the	Colorbox	will	be	90	percent	of	the	width	and	70	percent	of	the	height	of	your	site
visitor’s	browser	window,	no	matter	what	size	the	browser	window	happens	to	be.	This
way,	if	the	browser	window	is	small,	your	site	visitor	will	be	able	to	see	the	complete
photo.

Colorbox	also	provides	some	other	settings	for	the	width	and	height:

innerWidth/innerHeight:	These	keys	provide	the	width	and	height	values	for	the
content	inside	the	Colorbox	instead	of	for	the	Colorbox	itself.	This	can	be	helpful	in
cases	where	you	know	the	exact	width	and	height	of	the	actual	content,	for	example,
a	video	player.
initialWidth/initialHeight:	Colorbox	is	very	flexible	and	can	be	used	for	a	variety	of
different	content	(as	we’ll	see	shortly).	Setting	an	initialWidth	and	initialHeight
set	of	values	allows	you	to	control	the	size	of	the	Colorbox	before	any	content	is
loaded	in.	If	you	load	in	content	via	AJAX,	it	can	take	a	few	moments	to	load	into	the
Colorbox.	Setting	initialWidth	and	initialHeight	allows	you	to	specify	how	large
the	Colorbox	should	be	while	you	wait	for	the	content	to	be	loaded	in.
maxWidth/maxHeight:	These	keys	allow	you	to	set	a	maximum	width	and
maximum	height	for	the	Colorbox.	If	the	content	is	smaller,	then	the	box	will	appear
smaller	on	the	screen.	However,	when	you’re	loading	larger	content,	it	won’t	exceed
the	maxWidth	and	maxHeight	values	you	specify.	For	example,	if	you	want	to	set	up	a
Colorbox	for	images	in	a	variety	of	sizes,	you	can	allow	Colorbox	to	be	resized	with
fade	or	elastic	transitions	between	images,	but	set	maxWidth	and	maxHeight	to	be	sure
that	larger	images	won’t	exceed	the	visitor’s	browser	window.

Creating	a	slideshow
Colorbox	also	provides	us	with	an	option	to	automatically	cycle	through	all	the	images	so
that	the	visitor	doesn’t	have	to	continually	click	on	the	next	button	to	see	them	all.

Time	for	action	–	creating	a	slideshow
We’ll	keep	working	with	the	files	we	created	in	the	previous	section.	Here’s	how	we	can
turn	our	lightbox	image	gallery	into	a	slideshow:

1.	 Open	scripts.js.	We’re	going	to	add	another	key/value	pair	to	our	settings.	To
create	a	slideshow	inside	our	Colorbox,	set	the	slideshow	key	to	true:

$('a[rel="ireland"]').colorbox({

		transition:	'none',

		width:	'90%',

		height:	'70%',

		slideshow:	true

});

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	after	you	open	the
Colorbox,	it	automatically	cycles	through	the	images,	using	whichever	transition
effect	you’ve	chosen.	A	link	is	provided	so	that	site	visitors	can	stop	the	slideshow	at
any	time.	You	will	see	your	Colorbox	similar	to	the	one	shown	in	the	following
screenshot:

2.	 Colorbox	provides	a	few	more	keys	that	we	can	use	to	control	the	slideshow.	We	can
provide	a	value	for	slideshowSpeed	to	set	the	number	of	milliseconds	for	which	each

photo	will	be	displayed.	If	we	don’t	want	the	slideshow	to	automatically	play,	we	can
set	slideshowAuto	to	false.	We	can	change	the	text	that	appears	in	the	link	to	start
and	stop	the	slideshow	by	passing	in	values	for	the	slideshowStart	and
slideshowStop	keys	respectively.	This	would	all	look	like	the	following	code:

$('a[rel="ireland"]').colorbox({

		transition:	'none',

		width:	'90%',

		height:	'60%',

		slideshow:	true,

		slideshowSpeed:	2000,

		slideshowAuto:	false,

		slideshowStart:	'Let\'s	get	started!',

		slideshowStop:	'Ok,	that\'s	enough.'

});

With	this	code,	we’ve	set	up	our	slideshow	to	show	each	photo	for	2	seconds	(2000
milliseconds),	to	not	start	the	slideshow	automatically,	and	to	customize	the	text	on	the
links	that	start	and	stop	the	slideshow.

Note	that	each	key/value	pair	is	separated	by	a	comma,	but	that	there’s	no	comma	after	the
last	key/value	pair.	No	comma	after	the	last	one	is	only	important	for	Internet	Explorer—if
you	accidentally	put	a	comma	after	the	last	key/value	pair	in	Internet	Explorer,	it	will
throw	an	error	and	none	of	your	JavaScript	will	work.	Other	browsers	will	ignore	that	last
comma	and	continue	to	work	gracefully.

Note
Always	test	your	work	in	Internet	Explorer	before	you	make	it	available	to	the	public.

Let’s	talk	for	a	minute	about	the	\'	set	of	characters	that	appear	in	the	text	we’re	using	for
the	link	to	start	and	stop	the	slideshow.	Since	these	are	strings,	we	have	to	wrap	them	in
quote	marks;	either	'single'	quotes	or	"double"	quotes	will	work,	and	which	one	you
choose	is	a	matter	of	personal	preference.	We	have	to	tell	JavaScript	that	these	are	part	of
my	string	and	not	characters	that	JavaScript	should	pay	attention	to.	In	JavaScript-speak
this	is	called	escaping	those	characters.

Consider	the	following	line:

slideshowStart:	'Let's	get	started!'

When	JavaScript	got	to	the	'	character	in	Let's,	it	would	get	confused	because	it	would
think	that	it	had	reached	the	end	of	the	string	and	wouldn’t	know	what	to	make	of	the	rest
of	that	line	of	text.	It	would	throw	an	error.

In	this	case,	if	our	personal	preference	were	for	using	double	quotes	to	write	strings,	we
wouldn’t	have	to	do	anything	at	all.	The	following	line	of	code	would	be	perfectly
acceptable:

slideshowStart:	"Let's	get	started!"

Since	we’re	using	double	quotes	around	our	string,	there’s	no	chance	that	JavaScript	will

accidentally	read	it	as	the	end	of	our	string.	Once	JavaScript	sees	an	opening	"	character,	it
will	automatically	look	for	the	matching	ending	"	character.

Now	that	we’ve	got	our	slideshow	customized,	refresh	the	page	in	the	browser	and	click
on	one	of	the	image	thumbnails	to	open	the	Colorbox.	The	only	visible	difference	is	the
addition	of	the	Let’s	get	started	link.	Clicking	on	it	kicks	off	the	slideshow	and	switches
the	link	to	say	Ok,	that’s	enough	so	that	we	can	stop	the	slideshow.

What	just	happened?
We	saw	how	to	create	and	customize	a	slideshow.	We	did	this	by	taking	the	simple
lightbox	photo	gallery	we	created	and	customizing	it	by	passing	a	series	of	key/value	pairs
to	the	colorbox()	method.

Fancy	login
It’s	nice	enough	to	be	able	to	use	a	lightbox	to	display	images,	galleries,	and	slideshows,
but	Colorbox	is	more	capable	and	flexible	than	that.	In	this	section,	we’ll	take	a	look	at
how	to	show	a	login	form	in	a	Colorbox.	Note	that	our	login	form	isn’t	hooked	up	to
anything	and	won’t	actually	function	in	the	sample	case.	However,	this	same	technique
can	be	applied	to	a	dynamic	site	to	allow	your	site	visitors	to	view	the	login	form	in	a
lightbox.

Time	for	action	–	creating	a	fancy	login
form
Follow	these	steps	to	create	a	login	form	in	a	lightbox:

1.	 We’ll	get	started	by	setting	up	an	HTML	page	and	the	associated	files	and	folders,
like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	Our	HTML	page	will	contain	a
header	that	displays	a	login	form	as	shown	in	the	following	code.	It’s	common	for
sites	to	allow	people	to	log	in	from	any	page	on	the	site.

<header	id="page-header">

		<h1>Ireland:	The	Emerald	Isle</h1>

		<form	action="#"	id="login-form">

				<div><label	for="username">Username:</label>	<input	type="text"	

id="username"/></div>

				<div><label	for="password">Password:</label>	<input	type="password"	

id="password"/></div>

				<div><input	type="submit"	value="Log	In"/></div>

		</form>

</header>

2.	 Next,	we’ll	open	styles.css	and	add	some	CSS	so	that	the	header	is	displayed	with
the	title	on	the	left	and	the	form	on	the	right:

#page-header	{

		background:	white;

		color:	#444;

		border-radius:	7px;

		overflow:	hidden;

}

#page-header	h1	{

		background:	#fc6e51;

		color:	white;

		float:	left;

		font-size:	1.5em;

		padding:	0.5em	0	0.5em	1em;

		width:	35%;

}

#login-form	{

		float:	right;

		line-height:	2.75em;

		padding:	0	1em	0	0;

}

#page-header	#login-form	div	{

		display:	inline;

}

#login-form	input[type='text'],

#login-form	input[type='password']	{

		width:	8em;

}

#login-form	input[type='submit']	{

		background:	#333;

		border:	0	none;

		border-radius:	7px;

		color:	white;

		cursor:	pointer;

		padding:	0.25em	1em;

}

#login-form	input[type='submit']:hover	{

		background:	#fc6e51;

}

#login-link	{

		display:	block;

		float:	right;

		line-height:	2.75em;

		padding-right:	1em;

}

input	{

		font-family:	inherit;

		font-size:	inherit;

}

If	you	view	the	page	in	a	browser,	you’ll	see	this:

This	is	perfectly	acceptable	for	users	without	JavaScript	enabled—they’ll	be	able	to
log	in	to	the	site	from	any	page.	However,	it	is	a	bit	cluttered,	so	if	our	site	visitor	has
JavaScript	enabled,	we’ll	want	to	hide	the	login	form	and	show	it	in	a	Colorbox	when
the	site	visitor	is	ready	to	log	in.

3.	 Next,	we’ll	get	ready	to	use	the	Colorbox	plugin	the	same	way	we	did	in	the	previous
section.	Choose	one	of	the	provided	styles	for	Colorbox	and	attach	its	style	sheet	to
the	head	section	of	our	document,	move	all	the	required	images	to	your	image
directory	and	update	the	path	to	the	images	in	the	CSS,	and	attach	the	Colorbox
plugin	at	the	foot	of	the	document,	between	jQuery	and	our	scripts.js	tag.

4.	 Once	all	that’s	out	of	the	way,	we’re	ready	to	write	our	JavaScript.	Open	up
scripts.js	and	write	your	document	ready	statement:

$(document).ready(function(){

		//Our	code	goes	here

});

5.	 The	first	thing	we	need	to	do	is	hide	the	login	form.	We’re	going	to	do	that	using
JavaScript	rather	than	CSS	because	we	do	want	the	login	form	to	be	visible	for	the

site	visitors	who	don’t	have	JavaScript	enabled.	We	want	to	hide	the	form
immediately	as	soon	as	the	page	is	loaded,	so	we’ll	write	our	hidden	code	inside	the
ready()	method	for	the	document:

$(document).ready(function(){

		var	form	=	$('#login-form');

		form.hide()

});

You’ll	notice	that	we	created	a	variable	called	form	and	used	it	to	store	the	jQuery
selector	for	the	form.	We’re	going	to	have	to	refer	to	the	login	form	several	times	in
our	code.	We	could	write	$('#login-form')	each	time	we	want	to	select	the	login
form,	but	each	time,	jQuery	would	have	to	look	through	the	DOM	of	the	page	to	find
it	again.	If	we	store	it	in	a	variable,	our	code	will	run	faster	and	be	more	efficient
since	jQuery	will	not	have	to	find	the	login	form	each	time	we	refer	to	it.	In
JavaScript-speak,	we’d	call	this	caching	a	selector.

If	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	login	form	has	disappeared.

6.	 However,	now,	we	need	a	way	to	show	it	to	the	site	visitors	so	they	can	log	in	to	the
site.	We’ll	use	jQuery	to	add	a	login	link	to	the	page,	which	will	appear	right	where
the	form	was:

$(document).ready(function(){

		var	form	=	$('#login-form');

		form.hide()

		form.before('Login');

});

We’re	already	referring	to	the	form	again	by	inserting	the	login	link	before	the	form.
We	already	included	some	styles	in	the	CSS	to	style	the	link	and	display	it	where
we’d	like.	If	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	login	form	has
been	replaced	with	a	login	link.

7.	 However,	clicking	on	the	login	link	doesn’t	do	anything.	Let’s	fix	this	by	adding	in
some	Colorbox	magic.	We’ll	select	our	login	link	and	call	the	colorbox()	method	as
shown	in	the	following	code:

$(document).ready(function(){

		var	form	=	$('#login-form');

		form.hide()

		form.before('Login');

		$('#login-link').colorbox();

});

Refresh	the	page	in	the	browser	and	try	clicking	the	link.	We	just	get	an	empty
Colorbox	without	any	content	inside.	Hmmm.	This	is	not	really	what	we	had	in	mind,

right?	We	have	to	tell	Colorbox	that	we	want	to	load	up	some	content	that’s	already
on	the	page.

8.	 We	already	put	the	reference	to	the	login	form	in	the	href	attribute	of	the	link,	so
we’ll	use	that	to	our	advantage.	We’ll	pass	a	couple	of	key/value	pairs	to	the
colorbox()	method	to	tell	Colorbox	that	we	want	to	load	some	content	that’s	already
on	the	page,	and	we’ll	also	tell	Colorbox	exactly	which	content	we	want	to	show:

$(document).ready(function(){

		var	form	=	$('#login-form');

		form.hide();

		form.before('Login');

		$('#login-link').colorbox({

				inline:	true,

				content:	$(this).attr('href')

		});

});

Refresh	the	page	in	the	browser	and	you’ll	see	that	the	Colorbox	opens,	but	it	appears
to	be	empty.	This	is	because	we	hid	our	form.	It’s	been	loaded	into	the	Colorbox,	but
it’s	hidden	from	view.

9.	 We’ll	use	another	key/value	pair	to	tell	Colorbox	to	show	the	form	when	the
Colorbox	opens:

$(document).ready(function(){

		var	form	=	$('#login-form');

		form.hide()

		form.before('Login');

		$('#login-link').colorbox({

				inline:	true,

				content:	$(this).attr('href'),

				onOpen:	function()	{	form.show();	}

		});

});

The	onOpen	tag	is	one	of	the	keys	provided	by	the	Colorbox	plugin.	It	allows	us	to
write	a	function	that	will	be	run	when	the	Colorbox	opens.	In	this	case,	we’re
searching	the	form	and	showing	it.	Now,	if	you	refresh	the	page	in	the	browser,	you’ll
be	able	to	see	the	form	in	the	Colorbox	as	shown	in	the	following	screenshot:

10.	 This	looks	good	enough,	and	we’ll	touch	this	up	with	a	bit	of	CSS	in	a	moment	to
make	it	look	even	better.	But	what	happens	when	you	close	the	Colorbox?	That	pesky
login	form	is	visible	again	in	the	header.	So	we’ll	pass	another	key/value	pair	to	our
colorbox()	method	to	hide	the	form	when	the	Colorbox	closes:

$(document).ready(function(){

		var	form	=	$('#login-form');

		form.hide()

		form.before('Login');

		$('#login-link').colorbox({

				inline:	true,

				content:	$(this).attr('href'),

				onOpen:	function()	{	form.show();	},

				onCleanup:	function()	{	form.hide();	}

		});

});

This	new	function	will	hide	our	form	when	we	close	the	Colorbox.	This	will	ensure
the	form	doesn’t	show	up	in	the	header	again.

11.	 Now,	let’s	make	our	login	form	look	a	bit	friendlier.	Open	up	styles.css	and	add
some	CSS	that	will	style	the	login	form	only	when	it	appears	inside	the	lightbox:

#cboxContent	#login-form	{

		line-height:	1.25;

		padding:	0.5em	1em;

}

#cboxContent	#login-form	div	{

		padding:	0.25em	0;

}

#cboxContent	#login-form	div:after	{

		clear:	both;

		content:	'';

		display:	table;

}

#cboxContent	input[type='text'],

#cboxContent	input[type='password'],

#cboxContent	input[type='submit']	{

		font-size:	1.25em;

		padding:	0.25em;

		width:	90%;

}

12.	 We	also	want	to	make	the	login	form	box	a	bit	wider,	so	we’re	going	to	pass	a	width
key	to	the	colorbox()	method:

$(document).ready(function(){

		var	form	=	$('#login-form');

		form.hide()

		form.before('Login');

		$('#login-link').colorbox({

				width:	'400px',

				inline:	true,

				content:	$(this).attr('href'),

				onOpen:	function()	{	form.show();	},

				onCleanup:	function()	{	form.hide();	}

		});

});

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	Colorbox	is	indeed
400	pixels	wide,	and	our	login	form	has	taken	on	the	nice	chunky	appearance	we
wanted	with	our	CSS,	but	there’s	still	a	bit	of	a	problem.	Our	form	is	too	tall	for	the
Colorbox,	as	shown	in	the	following	screenshot:

The	Colorbox	script	hasn’t	realized	that	our	form	has	a	different	set	of	CSS	once	it’s
displayed	inside	the	Colorbox—it’s	still	expecting	the	form	to	be	of	the	same	height
it	was	when	it	was	displayed	in	the	header.	However,	that	form	is	much	smaller.	If
you	take	your	mouse	over	the	login	form	and	scroll	down,	you’ll	see	the	rest	of	the
login	form	is	there—we	just	can’t	see	it.

13.	 We	don’t	want	any	scrolling	in	our	Colorbox,	so	we’ll	turn	that	off	and	we’ll	tell	the
Colorbox	to	resize	itself	to	its	content	instead	by	passing	a	couple	more	key/value
pairs	to	the	colorbox()	method:

$(document).ready(function(){

		var	form	=	$('#login-form');

		form.hide()

		form.before('Login');

		$('#login-link').colorbox({

				width:	'400px',

				inline:	true,

				scrolling:	false,

				content:	$(this).attr('href'),

				onOpen:	function()	{	form.show();	},

				onComplete:	function()	{	$.colorbox.resize();	},

				onCleanup:	function()	{	form.hide();	}

		});

});

The	scrolling	key	allows	us	to	turn	off	any	scrolling	inside	the	Colorbox,	and	the

onComplete	key	is	a	callback	function	that’s	called	as	soon	as	the	content	loads	into
the	Colorbox.	As	soon	as	the	content	loads	into	the	Colorbox,	we’re	going	to	call	a
method	that	the	Colorbox	plugin	has	made	available	to	us	in	order	to	resize	the
Colorbox	to	accommodate	its	content.

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	the	Colorbox	slide	open	to	a
larger	height	to	accommodate	the	new	CSS	for	our	form.	Perfect!

What	just	happened?
We	learned	how	to	take	a	simple	header	login	form	and	change	it	to	a	login	link	that	opens
a	login	form	in	a	Colorbox	when	clicked.	We	worked	through	any	potential	problems
caused	by	this	approach	by	passing	in	callback	functions	as	values	for	keys	specified	in
the	Colorbox	plugin	documentation.	We	learned	how	to	call	functions	to	run	when	the
Colorbox	opens,	when	the	content	is	loaded	into	the	Colorbox,	and	when	the	Colorbox
closes.	We	learned	that	we	can	force	the	Colorbox	to	resize	to	accommodate	its	current
contents	by	calling	the	$.colorbox.resize()	method.

Video	player
Colorbox	is	flexible	enough	to	be	used	to	display	a	video	player	as	content.	We’ll	link	out
to	a	YouTube	video,	then	add	some	Colorbox	magic	to	display	the	video	in	a	Colorbox.

In	this	section,	we’ll	dive	into	using	AJAX	for	the	first	time.	In	case	you	aren’t	familiar,
AJAX	is	a	method	that	is	used	to	fetch	some	new	content	from	the	server	and	displays	it	to
the	site	visitor	without	having	to	completely	refresh	the	page.	As	the	browser	only	gets
and	displays	just	the	bit	of	information	the	site	visitor	needs,	it’s	often	much	faster	and
snappier	than	loading	a	whole	new	page.

Just	a	quick	note	before	we	dive	into	AJAX	for	the	first	time.	Modern	browsers	have
several	security	rules	for	AJAX	requests.	You	won’t	be	able	to	simply	view	your	ajaxified
HTML	files	in	a	browser	as	we’ve	been	doing	up	until	this	point.	In	order	to	view	AJAX
in	action,	you’ll	either	have	to	upload	your	files	to	a	server	before	viewing	them,	or	you’ll
have	to	set	up	a	server	on	your	own	computer.	For	an	easy	and	hassle-free	way	to	set	up	a
server	on	your	own	computer,	I	highly	recommend	DesktopServer	from	ServerPress.	You
can	learn	more	and	download	DesktopServer	from
http://serverpress.com/products/desktopserver/.	DesktopServer	works	for	both	Windows
and	Mac	users.

http://serverpress.com/products/desktopserver/

Time	for	action	–	showing	a	video	in	a
lightbox
Follow	these	steps	to	set	up	Colorbox	to	play	a	set	of	videos:

1.	 We’ll	get	started	as	we	usually	do,	by	setting	up	a	basic	HTML	file	and	the	associated
files	and	folders,	just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	In	the	body	of
our	HTML	document,	we’re	going	to	include	a	link	to	a	YouTube	video:

<p>

		<a	href="http://www.youtube.com/embed/wsRk0TXYXuA?autoplay=1"	

id="video-link">Watch	the	video

</p>

Note	a	couple	of	things	about	my	video	link.	First,	I’m	using	the	embed	URL	for	the
video	rather	than	the	link	to	YouTube’s	video	page.	For	users	without	JavaScript
enabled,	this	will	take	them	to	a	standalone	video	player	page	on	YouTube’s	site.	For
users	with	JavaScript	enabled,	it	will	ensure	that	only	the	video	player	is	loaded	into
the	Colorbox	rather	than	the	full	YouTube	video	page.	Second,	I’m	adding	a
parameter	to	the	URL	for	the	video,	setting	autoplay	to	1.	This	is	how	you	can	make
embedded	YouTube	videos	play	automatically	when	the	site	visitor	views	your	page.
It’s	generally	a	bad	idea	to	have	a	video	autoplay,	but	in	this	case,	the	user	will	have
already	clicked	a	link	that	says	Watch	the	video,	so	it	seems	like	a	safe	bet	that
they’ll	be	expecting	a	video	to	play	once	they’ve	clicked	that	link.

2.	 Next,	just	as	with	the	other	Colorbox	examples	so	far,	you’ll	need	to	attach	your
chosen	Colorbox	skin’s	CSS	file	in	the	head	of	your	document;	make	sure	the	images
are	available,	update	the	path	to	the	images	in	the	CSS	if	necessary,	and	finally	attach
the	Colorbox	plugin	in	the	foot	of	the	document.

3.	 Now,	we’ll	open	up	our	scripts.js	file	and	get	set	to	write	our	custom	JavaScript.
We’ll	get	started	with	the	document	ready	statement:

$(document).ready(function(){});

4.	 Next,	we’ll	select	the	video	link	and	call	the	colorbox()	method:

$(document).ready(function(){

		$('#video-link').colorbox();

});

However,	if	we	refresh	the	page	in	a	browser	and	attempt	to	view	the	video,	we	get
an	error.	This	is	because	we’re	attempting	to	load	in	the	video	via	AJAX,	and	because
of	browser-security	restrictions,	we	can’t	make	asynchronous	requests	to	a	different
server.	In	this	case,	we’re	trying	to	make	a	call	to	http://youtube.com,	but	that’s	not
where	our	Colorbox	page	is	hosted,	so	the	browser	blocks	our	request.

5.	 Luckily,	we	can	create	an	iframe	and	load	our	external	content	into	the	iframe.	Also,
luckily,	Colorbox	provides	a	way	for	us	to	do	this	very	easily.	We’ll	just	pass	a
key/value	pair	to	the	colorbox()	method,	setting	iframe	to	true	as	shown	in	the

http://youtube.com

following	code:

$('#video-link').colorbox({

		iframe:	true

});

Now,	our	video	loads	into	the	Colorbox,	but	the	Colorbox	has	no	idea	how	large	our
video	might	be,	so	we	can’t	see	it.

6.	 We’ll	have	to	tell	Colorbox	how	big	we	expect	our	video	player	to	be.	We’ll	do	this
by	passing	in	key/value	pairs	for	the	innerWidth	and	innerHeight	properties.	We’re
using	innerWidth	and	innerHeight	rather	than	width	and	height	in	this	case
because	we’re	passing	in	values	that	specify	how	large	we	want	the	video	player	(or
content)	to	be,	rather	than	how	large	we	want	the	Colorbox	to	be.

$('#video-link').colorbox({

		iframe:	true,

		innerWidth:	640,

		innerHeight:	390

});

Since	we	didn’t	specify	a	unit	of	measurement	for	our	width	and	height,	Colorbox
will	assume	we	meant	pixels.	The	video	player	will	be	640	pixels	wide	and	390
pixels	tall.

7.	 We	can	also	use	Colorbox	to	create	a	way	for	users	to	easily	view	several	videos.
Let’s	go	back	into	index.html	and	add	a	list	of	favorite	videos	to	our	page	instead	of
just	one	link	to	a	video.	We’ll	use	a	rel	attribute	that	is	set	to	favorites	for	each	one
and	provide	a	title	attribute	so	our	videos	will	display	a	caption	underneath:

<h3>Favorite	Videos</h3>

		

				<a	href="http://www.youtube.com/embed/wsRk0TXYXuA?autoplay=1"	

title="Kid	Snippets:	Salesman"	rel="favorites">Salesman

		

		

				<a	href="http://www.youtube.com/embed/IhK5lY1Phm8?autoplay=1"	

title="Kid	Snippets:	Basketball	Class"	rel="favorites">Basketball	

Class

		

		

				<a	href="http://www.youtube.com/embed/zG6NbAd8r2Q?autoplay=1"	

title="Kid	Snippets:	Blind	Date"	rel="favorites">Blind	Date

		

8.	 The	only	update	we	have	to	make	to	our	JavaScript	in	scripts.js	is	to	update	the
selector.	Instead	of	selecting	one	single	link	by	ID,	we’re	going	to	select	our	set	of
favorite	links	by	their	rel	attribute:

$('a[rel="favorites"]').colorbox({

		iframe:	true,

		innerWidth:	640,

		innerHeight:	390

});

If	you	view	the	page	in	the	browser,	you’ll	see	that	you	have	a	caption	under	the
video	and	next	and	previous	buttons	that	allow	you	to	navigate	between	the	videos
without	closing	the	Colorbox.

9.	 The	only	thing	that’s	a	bit	awkward	is	that	our	pagination	indicator	says	Image	1	of	3
when	we’re	showing	videos,	not	images.	Luckily,	Colorbox	provides	a	way	for	us	to
customize	this	text	with	the	current	key:

$('a[rel="favorites"]').colorbox({

		iframe:	true,

		innerWidth:	640,

		innerHeight:	390,

		current:	'Video	{current}	of	{total}'

});

Now,	our	pagination	indicator	correctly	reads	Video	1	of	3.	Our	site	visitors	can
easily	move	from	video	to	video	without	having	to	close	the	Colorbox,	and	each
video	displays	a	caption.

What	just	happened?
We	learned	how	to	create	both	a	standalone	video	player	and	a	multiple	video	player
inside	a	Colorbox.	We	learned	how	to	pass	in	key/value	pairs	to	tell	Colorbox	to	load	in
external	content	in	an	iframe,	working	around	cross-domain	AJAX	restrictions.	We	also
learned	how	to	modify	the	pagination	indicator	text	to	fit	our	current	content	type.	We
used	the	innerWidth	and	innerHeight	keys	to	set	the	video	player’s	size.

Pop	quiz	–	loading	content	into	Colorbox
Which	content	type	loads	in	an	external	link	into	a	Colorbox?

1.	 iframe
2.	 Inline
3.	 HTML
4.	 Photo

A	one-page	web	gallery
Next	up,	we’ll	take	a	look	at	how	we	can	create	a	single-page	web	gallery	to	show	off
your	favorite	sites	or	all	the	incredible	sites	you’ve	designed	yourself.	Note	that	this
example	makes	use	of	AJAX,	so	you’ll	either	have	to	load	your	pages	on	a	web	server	or
create	a	web	server	on	your	own	computer	to	see	it	in	action.

Time	for	action	–	creating	a	one-page	web
gallery
Follow	these	steps	to	create	a	one-page	web	gallery:

1.	 We’ll	get	started	by	setting	up	a	basic	HTML	file	and	the	associated	files	and	folders,
just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	Inside	the	body	of	our	HTML
document,	we’ll	create	a	list	of	links	to	the	sites	we	want	to	include	in	our	design
gallery,	as	shown	in	the	following	code:

<h3>One-Page	Web	Design	Gallery</h3>

		Packt	Publishing

		NatalieMac

		Google

Note	that	we’ve	added	a	rel	attribute	equal	to	gallery	to	each	link.

2.	 Now,	just	as	with	the	other	Colorbox	examples,	choose	a	style	and	attach	the	style
sheet	in	the	header	of	the	document,	make	all	the	necessary	images	available	to	your
page,	update	the	path	to	the	images	in	the	CSS	if	necessary,	and	attach	the	Colorbox
plugin	at	the	bottom	of	the	page.

3.	 Next,	we’ll	open	our	scripts.js	file	and	add	our	document	ready	statement:

$(document).ready(function(){});

4.	 Next,	we’ll	select	all	links	with	the	rel	attribute	equal	to	gallery	and	call	the
colorbox()	method:

$(document).ready(function(){

		$('a[rel="gallery"]').colorbox();

});

5.	 Just	as	we	did	with	the	video	example,	we’ll	set	the	iframe	key	to	true	since	we’re
loading	in	content	from	other	domains.	We’ll	also	set	the	width	and	height	attributes
of	the	Colorbox	to	90%	so	that	it	takes	up	nearly	the	entire	browser	window.	Finally,
we’ll	adjust	the	pagination	indicator	text	to	read	Website	instead	of	Image:

$('a[rel="gallery"]').colorbox({

		iframe:	true,

		width:	'90%',

		height:	'90%',

		current:	'Website	{current}	of	{total}'

});

Now,	if	you	refresh	the	page	in	the	browser,	you	can	see	that	clicking	one	of	the	links
opens	a	Colorbox	and	loads	that	website	into	the	Colorbox.	A	site	visitor	can	interact
with	the	loaded	website	just	as	they	would	if	they	had	loaded	it	into	a	separate
browser	window,	browsing	through	pages,	and	so	on.	When	finished	with	one	site,

they	can	click	the	next	arrow	to	visit	the	next	website	in	the	list	and	then	hit	the	Esc
key	on	the	keyboard,	or	click	the	close	button	or	click	anywhere	outside	the	Colorbox
to	close	the	Colorbox	when	they’re	finished.	The	Colorbox	output	will	be	as	shown
in	the	following	screenshot:

Note
Note	that	it	is	possible	for	website	owners	to	block	your	ability	to	load	their	sites	into	an
iframe.	If	you	have	set	up	a	local	server	using	Desktop	Server,	MAMP,	or	WAMP,	then
you	might	notice	that	the	Google	example	won’t	load	into	your	page.	It	will,	however,
load	if	you	upload	your	code	to	an	external	server.	Be	sure	to	test	all	the	sites	you	want	to
use	in	your	web	gallery	to	ensure	that	they	work	as	expected.

What	just	happened?
We	used	most	of	what	we	learned	to	create	a	Colorbox	video	player	to	display	external
websites	inside	a	Colorbox.	This	allows	our	site	visitor	to	browse	through	a	collection	of
websites	without	ever	leaving	our	page.	We	once	again	told	Colorbox	to	load	our	content
into	an	iframe	to	work	around	cross-domain	AJAX	restrictions.	We	customized	the
pagination	indicator	text	and	set	the	width	and	height	for	our	Colorbox.

Have	a	go	hero	–	create	a	custom	Colorbox
Create	your	own	custom	style	and	layout	for	Colorbox,	including	your	own	custom
overlay	pattern.	Try	moving	the	next	and	previous	buttons,	the	caption,	and	the	close
button	to	different	areas	in	the	Colorbox.

Summary
We’ve	seen	several	uses	for	the	adaptable	and	flexible	Colorbox	plugin,	which	can	be	used
to	display	any	kind	of	content	in	a	lightbox.	It	can	be	used	to	create	browsable	image
galleries,	give	access	to	forms	and	video	players	without	cluttering	up	the	page	with
clunky	UI	elements,	and	even	to	create	a	browsable	website	gallery.	The	Colorbox	plugin
is	completely	styled	with	CSS,	making	it	possible	for	the	lightbox	to	have	any	appearance
you	can	dream	of.	The	plugin	even	includes	vector	image	assets	that	can	be	used	as	a
starting	point	to	create	your	own	lightbox	design.	The	behavior	of	the	lightbox	can	be
modified	by	passing	a	series	of	key/value	pairs	to	the	colorbox()	method,	making	the
Colorbox	plugin	suitable	for	any	possible	lightbox	use.

Next	up,	we’ll	take	a	look	at	another	common	website	task,	that	is,	creating	slideshows.

Chapter	6.	Creating	Slideshows	and
Sliders
Traditionally	created	in	Flash,	slideshows	and	sliders	are	a	great	way	to	show	off	photos,
products,	illustrations,	portfolios,	and	more.	Hands-down,	creating	slideshows	is	one	of
the	most	common	tasks	for	jQuery	developers.	In	this	chapter,	we’ll	take	a	look	at	how	to
create	a	simple	slideshow	from	scratch	and	then	we’ll	take	a	look	at	the	Basic	Slider
plugin	to	add	some	more	features	to	a	slideshow.	Finally,	we’ll	take	a	look	at	the	powerful
and	flexible	Cycle2	plugin,	which	can	be	used	to	create	many	different	types	of	slideshows
and	sliders.

In	this	chapter,	we’ll	cover:

How	to	plan	a	slideshow
How	to	write	a	simple	crossfading	slideshow	from	scratch
How	to	create	a	simple	slideshow	with	controls	using	the	Basic	Slider	plugin
How	to	use	the	Cycle2	plugin	to	create	animated	slideshows
How	to	create	carousels	with	the	Cycle2	plugin
How	to	use	the	Cycle2	plugin	to	create	a	combination	carousel/slideshow

Planning	a	slideshow	or	slider
There	are	a	few	things	to	consider	when	you’re	preparing	to	build	a	jQuery	slideshow	or
slider.

1.	 First,	you	have	to	decide	what	the	experience	will	be	for	users	who	have	JavaScript
disabled.	The	priority	of	the	various	pieces	of	content	in	the	slideshow	should	be	your
guide.	If	the	slideshow	is	simply	featuring	bits	of	content	available	elsewhere	on	the
site,	then	it	should	be	sufficient	to	simply	show	one	featured	photo	or	slide.	If	the
slideshow	is	the	only	way	to	access	the	content,	then	you’ll	have	to	be	sure	to	make
that	content	available	for	users	without	JavaScript	enabled.	We’ll	take	a	look	at	both
strategies	in	the	various	examples	in	this	chapter.

2.	 Second,	you	have	to	determine	the	ideal	size	for	your	slideshow.	The	size	and	aspect
ratio	of	the	slideshow	could	be	determined	by	the	content,	by	the	page	layout,	or	even
by	the	browser	window’s	size.	If	your	slideshow	or	slider	contains	only	images,
cropping	all	images	to	a	certain	size	is	simple	enough,	but	what	if	your	slideshow	or
slider	also	contains	video,	text,	buttons,	or	other	elements?	Plan	how	these	elements
will	appear	on	the	page.

3.	 Next,	you	need	to	consider	whether	your	site	visitors	need	to	have	any	kind	of	control
over	the	slideshow	or	slider.	Sometimes,	it’s	handy	to	simply	have	a	set	of	images	on
automatic	rotation.	At	other	times,	it’s	helpful	to	allow	site	visitors	to	pause	the
slideshow	or	manually	move	forward	and	backward	through	a	slider.

A	simple	crossfade	slideshow
In	this	section,	you’ll	learn	how	to	build	a	simple	crossfade	slideshow.	This	type	of
slideshow	is	ideal	for	identically-sized	images	and	can	be	displayed	as	a	single	image
when	JavaScript	is	disabled.	Finally,	this	type	of	slideshow	offers	no	control	over	the
slideshow	to	your	site	visitors.	They	cannot	pause	the	slideshow	or	manually	move
through	the	slides.

Time	for	action	–	creating	a	simple
crossfade	slideshow
Follow	these	steps	to	create	a	simple	crossfading	slideshow	from	scratch:

1.	 We’ll	get	started	by	creating	a	basic	HTML	document	and	the	associated	files	and
folders	just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	In	the	body	of	the
HTML	document,	include	a	list	of	images.	Each	list	item	will	contain	an	image,
which	can	optionally	be	wrapped	in	a	link.	In	the	sample	code	for	the	book,	the
images	are	cropped	to	800	pixels	by	450	pixels.	Here’s	what	the	HTML	looks	like:

<ul	id="crossfade">

		<img	

src="images/AguaAzul.jpg">

		<img	

src="images/BurneyFalls.jpg">

		<img	

src="images/Deer_Leap_Falls.jpg">		

...

2.	 Next,	we’ll	write	a	few	lines	of	CSS	to	style	the	slideshow.	A	slideshow	shows	just
one	image	at	a	time,	and	the	easiest	way	to	show	only	one	image	is	to	stack	the
images	on	top	of	one	another.	If	the	site	visitor	has	JavaScript	disabled,	they’ll	just
see	the	last	slide	in	the	list.	Add	the	following	lines	of	code	in	the	styles.css	file:

#crossfade	{

		height:	450px;

		overflow:	hidden;

		position:	relative;

		width:	800px;

}

#crossfade	li	{	

		height:	450px;

		position:	absolute;

		width:	800px;

}

If	you	view	the	page	in	a	browser,	you’ll	see	that	the	last	item	in	the	slideshow	is
visible,	but	none	of	the	other	items	are—they	are	all	stacked	beneath	the	last	item.
This	is	what	our	experience	will	be	for	site	visitors	with	JavaScript	disabled.

3.	 Next,	open	up	scripts.js	and	we’ll	get	started	with	writing	our	JavaScript	code.
This	script	will	be	a	little	bit	different	from	the	scripts	that	we’ve	set	up	before.
Instead	of	something	happening	just	once	when	the	document	loads	or	when	a	site
visitor	clicks	on	a	link,	we	actually	want	to	set	up	a	function	that	will	happen	on	a
timer.	For	example,	if	we	want	each	slide	of	our	slideshow	to	be	visible	for	three
seconds,	we’ll	have	to	set	up	a	function	to	switch	slides,	which	gets	called	every	three
seconds.

We’ve	already	got	our	slides	stacked	up	on	top	of	one	another	on	the	page	with	the
last	item	on	top.	Think	about	how	you	handle	a	stack	of	photographs.	You	view	the
photograph	on	top,	and	then	move	it	to	the	bottom	of	the	stack	to	view	the	second
photo.	Then,	you	move	the	second	photo	to	the	bottom	to	view	the	third	photo	and	so
on.	We’re	going	to	apply	the	same	principle	to	our	slideshow.

Inside	scripts.js,	create	a	function	called	slideshow.	This	is	the	function	that	we’ll
call	every	three	seconds	when	we	want	to	switch	photos.

function	slideshow()	{

}

4.	 The	first	thing	we	need	to	do	inside	our	function	is	select	the	first	photo	in	the	stack:

function	slideshow()	{

		$('#crossfade	li:first')

}

5.	 Now	that	we’ve	got	the	first	photo	in	the	stack,	we	just	need	to	move	it	to	the	bottom
of	the	stack	to	make	the	next	photo	visible.	We	can	do	that	by	using	jQuery’s
appendTo()	method.	This	will	remove	the	first	photo	from	the	beginning	of	the	list
and	append	it	to	the	end	of	the	list.

function	slideshow()	{

		$('#crossfade	li:first').appendTo('#crossfade');

}

6.	 Our	photo-flipping	function	is	ready.	Now,	all	we	have	to	do	is	some	initial	setup	as
soon	as	our	page	loads.	Then,	we’ll	set	up	a	call	to	our	photo-flipping	function	every
three	seconds.	We’ll	get	that	started	by	calling	the	ready()	method	on	the	document.

$(document).ready(function(){

		//	Document	setup	code	will	go	here

});

function	slideshow()	{

		$('#crossfade	li:first').appendTo('#crossfade');

}

7.	 As	soon	as	our	document	is	ready,	we	want	to	prepare	our	slideshow.	We’ll	start	by
selecting	all	the	photos	in	the	slideshow.

$(document).ready(function(){

		$('#crossfade	li')

});

8.	 Next,	we	want	to	hide	all	the	photos	in	the	slideshow.

$(document).ready(function(){

		$('#crossfade	li').hide();

});

9.	 Then,	we’ll	filter	that	list	of	photos	to	get	just	the	first	one:

$(document).ready(function(){

		$('#crossfade	li').hide().filter(':first');

});

10.	 Finally,	we’ll	make	that	first	photo	visible.	All	other	photos	will	remain	hidden:

$(document).ready(function(){

		$('#crossfade	li').hide().filter(':first').show();

});

11.	 At	this	point,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	last	slide
visible	without	JavaScript	enabled	is	now	hidden	and	the	first	slide	in	the	list	is	now
visible	instead.	Now,	all	that’s	left	to	do	is	to	call	our	photo-flipping	function	every
three	seconds.	To	do	this,	we’ll	use	a	JavaScript	method	called	setInterval().	This
allows	us	to	call	a	function	at	regular	intervals.	We	pass	two	values	to	setInterval:
the	name	of	the	function	to	be	called	and	the	number	of	milliseconds	that	should
elapse	between	calls	to	the	function.	For	example,	to	call	the	slideshow	function
every	3	seconds	(or	3000	milliseconds),	we’d	write:

$(document).ready(function(){

	$('#crossfade	li').hide().filter(':first').show();

		setInterval(slideshow,	3000);

});

12.	 Now,	we’re	calling	our	photo-flipping	function	every	three	seconds,	so	you’d	expect
that	if	you	refresh	the	page	in	the	browser,	you’d	see	the	photos	change	every	three
seconds,	but	that	doesn’t	appear	to	be	the	case.	Reviewing	the	code,	it’s	easy	to	see
what’s	gone	wrong;	even	though	the	actual	order	of	the	stack	of	photos	is	changing
every	three	seconds,	all	the	photos	except	the	first	one	are	invisible.	Whether	the	first
photo	is	on	top	or	not,	it’s	the	only	photo	visible,	so	it	appears	that	our	slideshow	isn’t
changing.	We’ll	have	to	go	back	to	our	slideshow	function	and	modify	it	to	make	the
current	photo	invisible	and	make	the	next	photo	in	the	stack	visible.	Since	we	want
the	photos	to	switch	with	a	nice,	slow	crossfading	effect,	we’ll	call	the	fadeOut()
method	to	fade	the	first	photo	to	be	transparent,	and	we’ll	pass	'slow'	to	that	method
to	ensure	it	takes	its	time:

function	slideshow()	{

		$('#crossfade	li:first').fadeOut('slow').appendTo('#crossfade');

}

13.	 Now,	we	need	to	move	to	the	next	photo	in	the	list,	which	is	currently	invisible,	and
make	it	opaque.	We’re	going	to	use	the	next()	method	to	get	the	next	item	in	the	list
and	then	call	the	fadeIn()	method	to	make	it	appear.	Once	again,	since	we	want	a
slow	effect,	we’ll	pass	'slow'	to	the	fadeIn()	method:

function	slideshow()	{

		$('#crossfade	

li:first').fadeOut('slow').next().fadeIn('slow').appendTo('#crossfade');

}

14.	 We’ve	gotten	ourselves	into	a	little	bit	of	trouble	with	our	chaining	of	jQuery
methods.	We	started	with	the	first	photo	in	the	stack,	faded	it	out,	then	moved	to	the

second	photo	in	the	stack	and	faded	it	in.	Now,	however,	when	we	call	the
appendTo()	method,	we’re	appending	the	second	photo	in	the	stack	to	the	end—
we’re	moving	the	second	photo	in	the	stack	to	the	bottom	instead	of	the	first	one.
Luckily,	jQuery	provides	a	method	for	us	to	return	to	our	original	selection—the
end()	method.	We	can	call	the	end()	method	after	fading	in	the	second	photo	to
make	sure	that	it’s	the	first	photo	that’s	getting	appended	to	the	bottom	of	the	photo
stack:

function	slideshow()	{

		$('#crossfade	

li:first').fadeOut('slow').next().fadeIn('slow').end().appendTo('#cross

fade');

}

15.	 Finally,	let’s	do	a	bit	of	cleaning	up.	If	you	take	a	look	at	the	code	we’ve	written,
you’ll	see	that	we’ve	selected	#crossfade	several	different	times.	Let’s	cache	that
selector	in	a	variable	so	we	don’t	have	to	keep	re-querying	the	document	to	find	it.
The	final	bit	of	code	after	cleanup	will	look	like	this:

$(document).ready(function(){

		slides	=	$('#crossfade');

		slides.find('li').hide().filter(':first').show();

		setInterval(slideshow,	3000);

});

var	slides;

function	slideshow()	{

		

slides.find('li:first').fadeOut('slow').next().fadeIn('slow').end().app

endTo(slides);

}

What	just	happened?
If	you	refresh	the	page	in	the	browser,	you’ll	see	that	you’ve	got	a	nice	crossfading
slideshow.	As	one	photo	fades	out,	the	next	photo	fades	in,	smoothly	transitioning
between	each	photo.	Since	we’re	constantly	moving	the	top	photo	in	the	stack	to	the
bottom,	we’ll	never	reach	the	end	of	the	slideshow,	just	as	you	can	continuously	flip
through	a	stack	of	photos:

We	set	up	a	slideshow	function	that	selected	the	first	photo	in	the	stack,	faded	it	out,	and
moved	it	to	the	bottom	of	the	stack.	Simultaneously,	we’re	finding	the	second	photo	in	the
stack	and	fading	it	in.	We	used	the	power	of	jQuery	chaining	to	accomplish	all	of	that	in
one	line	of	code.

We	set	up	a	timer	for	3	seconds	and	called	our	photo-flipping	function	at	the	end	of	each
3-second	interval.

Finally,	we	did	a	bit	of	setup	work	as	soon	as	the	document	is	loaded,	hiding	all	the	photos
and	then	making	the	first	one	visible.	This	will	ensure	that	the	photos	are	always	displayed
in	order	in	our	slideshow.

Next	up,	let’s	take	a	look	at	using	a	plugin	that	will	give	us	some	nice	options	for	our
slideshow.

Pop	quiz	–	working	with	jQuery	chaining
Q1.	In	a	long	chain	of	jQuery	methods,	how	do	you	return	to	the	original	selector	after	it’s
been	filtered?

1.	 Use	the	original()	method.
2.	 Start	a	new	line	of	code	that	starts	with	the	original	selector.
3.	 Use	the	end()	method.
4.	 Use	the	prev()	method.

Using	the	Basic	Slider	plugin
Our	simple	slideshow	is	nice	and	will	be	adequate	for	some	situations,	but	we	often	want
or	need	more	features	and	flexibility	out	of	our	sliders	and	slideshows.	There’s	no	shortage
of	jQuery	plugins	out	there	to	create	sliders	and	slideshows.	To	avoid	adding	lots	of
unused	code	to	projects,	try	to	find	the	simplest	slider	that	will	do	the	job.

The	Basic	Slider,	documented	at	and	available	for	download	at	http://www.basic-
slider.com/,	is	a	relative	newcomer	to	the	scene.	It’s	flexible,	simple	to	use,	and	easy	to
style.	It’s	a	great	fit	for	responsive	designs.	It	can	hold	any	kind	of	content,	so	we’re	not
limited	to	images.	We	could	use	text,	videos,	images	with	text,	or	any	other	combination
we	can	think	up.	The	Basic	Slider	has	got	about	a	dozen	options	you	can	adjust,	and	for
many	projects,	you’ll	find	that’s	more	than	enough.

http://www.basic-slider.com/

Time	for	action	–	building	a	Basic	Slider
Follow	these	steps	to	create	a	slider	using	the	Basic	Slider	plugin:

1.	 We’ll	get	started	by	writing	our	HTML	markup.	Looking	at	the	documentation	for	the
Basic	Slider	plugin,	we	see	that	the	plugin	requires	an	unordered	list	wrapped	in	a
<div>	element.	Each	of	our	slides	is	going	to	contain	a	photo	with	a	headline	overlay,
and	each	slide	is	going	to	link	to	pages	with	more	information	about	what’s	contained
in	that	slide.	Here’s	what	our	markup	looks	like:

<div	id="slider">

		<ul	class="bjqs">

				

						

								

								<div	class="headline">

										<h2>Agua	Azul</h2>

										<p>Tumbalá,	Chiapas,	Mexico</p>

								</div>

						

				

				

						

								

								<div	class="headline">

										<h2>Burney	Falls</h2>

										<p>Shasta	County,	California,	USA</p>

								</div>

						

				

				...

		

</div>

It	might	surprise	you	to	see	that	with	the	new	HTML5	specification,	we’re	allowed	to
wrap	links	(<a>)	around	block-level	elements	such	as	<div>	and	<h2>.	This	makes	it
easy	to	make	the	whole	slide	clickable.

2.	 Next	up,	we’re	going	to	write	some	CSS	to	style	the	slides,	and	we’ll	want	to	give
some	thought	to	site	visitors	with	JavaScript	disabled	while	we	do	so.	In	this
particular	case,	we’ll	show	all	of	the	slides	for	customers	who	happen	to	have
JavaScript	disabled.	First	up,	we’ll	place	the	headline	on	top	of	the	photos	with	a	few
lines	of	CSS	in	styles.css:

ul.bjqs	li	{

	margin-bottom:	1em;

	position:	relative;

}

ul.bjqs	li	.headline	{

		background:	rgba(0,0,0,0.5);

		left:	0;

		padding:	1em	2em	1em	3em;

		position:	absolute;

		top:	2em;

		z-index:	9999;

}

.headline	h2	{

		color:	white;

		font-size:	2em;

		line-height:	1.125;

}

.headline	p	{

		line-height:	1.5;

}

Now,	if	you	view	the	page	in	the	browser,	you’ll	see	each	of	our	slides	in	a	single
column	down	the	page,	each	with	a	styled	headline	over	the	photo:

3.	 Now	that	we	have	our	non-JavaScript	case	built,	let’s	go	ahead	and	progressively
enhance	it	to	build	a	more	interactive	experience	for	users	who	do	have	JavaScript.
We’ll	get	started	by	heading	over	to	http://basic-slider.com	and	downloading	the
Basic	Slider	plugin	ZIP	file.	Unzip	the	file	and	find	the	bjqs-1.3.min.js	file	inside
the	js	folder.	Copy	this	file	to	your	own	scripts	folder,	and	then	attach	it	to	the
HTML	file	in	the	footer	between	jQuery	and	the	scripts.js	file:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/bjqs-1.3.min.js"></script>

<script	src="scripts/scripts.js"></script>

</body>

</html>

http://basic-slider.com

4.	 The	Basic	Slider	plugin	comes	with	a	small,	simple	CSS	file	of	the	styles	that	are
required	for	the	slider	to	work.	Inside	the	plugin	folder,	you’ll	find	a	file	named
bjqs.css.	Copy	that	file	to	your	own	styles	folder	and	then	attach	it	in	the	<head>
section	of	your	HTML	document,	before	your	own	styles.css	file:

<title>Chapter	6:	jQuery	for	Designers</title>

<link	rel="stylesheet"	href="styles/bjqs.css">

<link	rel="stylesheet"	href="styles/styles.css">

5.	 If	you	head	back	to	the	browser	now	and	refresh	the	page,	you	might	see	something
you	didn’t	expect;	all	the	slides	that	will	make	up	our	slideshow	have	disappeared.	A
quick	look	in	the	bjqs.css	file	reveals	that	the		list	that	holds	our	slideshow	is
being	set	to	display:	none;.

This	is	a	necessary	part	of	getting	our	slider	to	work,	but	what	about	our	users
without	JavaScript?	We	can	pull	out	the	trick	of	adding	a	class	to	the	<body>	tag	that
we	can	use	in	CSS	to	write	different	styles	for	our	page,	depending	on	whether	or	not
JavaScript	is	available.	Add	a	class	of	jsOff	to	the	<body>	tag:

<body	class="jsOff">

Then,	open	up	your	scripts.js	file	and	add	the	necessary	code	to	change	this	class
if	JavaScript	is	enabled:

$(document).ready(function(){

		$('body').removeClass('jsOff').addClass('.jsOn');

});

With	all	that	out	of	the	way,	we	can	open	up	styles.css	and	write	some	code	just	for
users	without	JavaScript	to	be	sure	they	can	see	our	slides:

.jsOff	ul.bjqs	{

		display:	block;

}

Now,	all	of	our	slides	are	visible	for	site	visitors	who	have	JavaScript	disabled,	and
we	haven’t	interfered	with	the	CSS	that	the	Basic	Slider	plugin	is	relying	on	to	work
correctly.

6.	 Now	we	can	jump	into	making	the	slideshow	work	for	our	site	visitors	who	have
JavaScript	enabled.	Open	up	scripts.js,	select	the	<div>	that	wraps	the	slideshow
,	and	call	the	bjqs()	method

$(document).ready(function(){

		$('body').removeClass('jsOff').addClass('.jsOn');

		$('#slider').bjqs();

});

If	you	refresh	the	page	in	the	browser	now,	you’ll	see	that	our	slideshow	is	working,
though	it’s	not	the	right	size,	and	the	style	isn’t	very	attractive.

Let’s	see	what	we	can	do	to	get	those	details	fixed.

7.	 First,	let’s	set	some	options	for	the	bjqs()	method.	We	can	tell	the	width	and	height
of	our	slides	to	the	Basic	Slider:

$('#slider').bjqs({

		height:	450,

		width:	800

});

This	set	of	pixel	sizes	works	well	as	long	as	we’re	dealing	with	a	design	that’s	a	fixed
size.	But	many	modern	websites	are	responsive,	meaning	the	design	responds	to	the
size	of	the	browser	window	by	adjusting	element	sizes	and	layout.	If	we	want	to	use
our	slider	inside	a	responsive	design,	the	Basic	Slider	makes	it	really	easy.	We’ll	just
add	a	responsive	option	and	set	it	to	true:

$('#slider').bjqs({

		height:	450,

		width:	800,

		responsive:	true

});

Now	if	you	refresh	the	page	in	the	browser,	you’ll	see	the	slides	are	now	the	correct
size.	If	you	make	the	window	narrower,	the	slides	resize	to	fit.

8.	 Now,	let’s	jump	into	writing	some	CSS	to	make	our	slideshow	even	better.	First	up,
while	the	slideshow	itself	shrinks	to	fit	the	size	of	the	window	as	the	browser	window
gets	narrower,	the	slideshow	is	cropping	the	images.	Instead,	let’s	resize	the	images
so	that	they’re	still	fully	visible	inside	the	slideshow.	Here’s	the	code	we	can	use	to	fit
those	images	to	the	slideshow:

.bjqs	img	{

		height:	auto;

		max-width:	100%;

}

9.	 Next,	those	next	and	previous	buttons	are	just	link	text	laid	directly	over	the	photos,
and	they	look	a	bit	lost.	Let’s	add	a	bit	of	CSS	to	style	those	nicely:

.bjqs-prev	a,

.bjqs-next	a	{

		background:	rgba(0,0,0,0.5);

		color:	white;

		padding:	1em;

		text-decoration:	none;

}

10.	 The	page	numbers	underneath	the	slider	are	handy	to	let	site	visitors	get	to	any	of	the
slides	in	the	show,	but	let’s	replace	them	with	dot	indicators.	Here’s	the	CSS	we	can
use	to	accomplish	this:

ol.bjqs-markers	{

		margin:	1em	0;

}

ol.bjqs-markers	li	{

		border:	1px	solid	black;

		border-radius:	50%;

		display:	inline-block;

		line-height:	1;

		margin:	0	2px;

		padding:	1px;

}

ol.bjqs-markers	li	a	{

		background:	rgba(0,0,0,0.5);

		border-radius:	50%;

		display:	block;

		height:	0.6em;

		overflow:	hidden;

		text-indent:	-9999em;

		width:	0.6em;

}

ol.bjqs-markers	li.active-marker	a	{

		background:	#a0d468;

}

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	a	neat	row	of	dots	beneath	the
slideshow.	Clicking	on	any	dot	will	navigate	you	to	that	corresponding	slide.

11.	 One	final	thing	to	touch	up	is	that	as	the	window	gets	narrower,	the	headline	text

stays	huge	and	dominates	the	photo.	Let’s	adjust	this	to	reduce	the	text	size	on
smaller	screens	so	that	more	of	the	photo	is	visible.	Here’s	what	we’ll	add	to	the
bottom	of	the	CSS	to	accomplish	this:

@media	screen	and	(max-width:	650px)	{

		.bjqs	{

				font-size:	0.7em;

		}

}

This	bit	of	code	just	shrinks	the	font	size	for	the	slider	text	when	the	window	is
narrower	than	650	pixels	wide.	We’ll	use	650	pixels	because	it’s	around	that	width
that	the	text	starts	to	feel	much	too	large	for	the	images.	Now,	when	you	make	the
browser	window	narrower,	you’ll	see	that	the	text	snaps	to	a	smaller	size	and	fits
nicely	on	the	smaller	photos.

What	just	happened?
We	used	the	Basic	Slider	plugin	to	create	a	slideshow.	Even	though	this	plugin	is
lightweight	and	basic,	we	saw	how	we	can	use	the	available	options	combined	with	some
fancy	CSS	work	to	customize	the	slider.	Even	though	the	Basic	Slider	is	a	pretty	basic
slider	plugin,	it	has	just	the	right	options	to	make	it	a	great	choice	for	a	variety	of	projects.
It’s	also	easy	to	customize	and	style	with	CSS.

But	what	about	those	cases	where	we	need	more	options?	Let’s	take	a	look	at	the	flexible
Cycle2	plugin,	which	gives	us	dozens	of	options.

Have	a	go	hero	–	customize	the	Basic	Slider
Design	and	build	your	own	custom	version	of	the	Basic	Slider.	Try	a	different	size,
different	transition	effects,	and	different	layouts	for	the	content	inside	each	slide.	Use
numbered	pagination	and	style	the	next	and	previous	buttons	as	you	like.

Creating	a	Cycle2	slideshow
Let’s	take	a	look	at	how	to	put	the	Cycle2	plugin	from	M.	Alsup	to	good	use.	Cycle2
provides	some	nice	transition	effects	between	slides	and	offers	lots	of	configuration
options.	The	Cycle2	plugin	is	flexible	and	can	hold	many	types	of	content.	It	can	even
gracefully	handle	content	of	different	sizes	and/or	different	aspect	ratios,	which	the	two
sliders	we’ve	built	so	far	could	not.

There	are	options	to	include	controls	for	your	site	visitors	to	move	forward	and	backward,
to	pause	the	slideshow	when	the	mouse	is	hovered	over	it,	and	to	add	pagination	to	allow
site	visitors	to	move	easily	to	a	specific	slide.	Additionally,	there	are	options	to	allow
touch	gestures,	to	animate	different	transition	effects,	to	include	pagination	or	thumbnail
navigation,	and	more.	Compared	to	the	Basic	Slider,	Cycle2	has	dozens	of	more	options.
Cycle2	even	has	its	own	plugins	that	we	can	add	to	get	more	functionality,	making	it	super
flexible	and	adaptable	to	many	different	situations.	In	fact,	in	the	rest	of	this	chapter,	we’ll
look	at	building	three	very	different	types	of	sliders	and	slideshows,	all	with	the	Cycle2
plugin.

Unlike	most	other	plugins,	the	Cycle2	plugin	relies	almost	entirely	on	HTML	markup.
Apart	from	attaching	Cycle2	and	any	of	its	plugins	to	your	page,	you	often	don’t	have	to
open	a	single	JavaScript	file	or	write	a	single	line	of	JavaScript.

Time	for	action	–	building	a	slideshow
with	Cycle2
Follow	these	steps	to	build	your	first	Cycle2	slideshow:

1.	 We’ll	get	started	by	creating	a	basic	HTML	document	and	associated	files	and	folders
just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	In	the	body	of	the	HTML
document,	we’ll	create	a	container	<div>	and	then	wrap	the	markup	for	each	slide	in
a	<div>:

<div	class="cycle-slideshow">

		<div	class="slide">

				

						

				

		</div>

		<div	class="slide">

				

						

				

		</div>

		...

</div>

Notice	that	we’ve	used	a	class	cycle-slideshow	on	the	container	<div>	and	then	a
class	slide	on	the	<div>	elements	that	contain	the	markup	for	each	of	our	individual
slides.	These	are	important	for	the	Cycle2	plugin.	Remember	that	this	plugin	requires
us	to	write	little	or	no	JavaScript	at	all—instead,	it	relies	on	HTML	markup,	classes,
and	attributes	so	we	have	to	be	precise.

2.	 Now,	we’ll	use	the	technique	we’ve	used	before	to	make	sure	our	slideshow	content
looks	great	even	for	our	site	visitors	who	have	JavaScript	disabled.	First,	add	the
jsOff	class	to	the	<body>	tag:

<body	class="jsOff">

Next,	open	up	your	scripts.js	file	and	add	the	line	of	jQuery	that	will	remove	that
class	for	our	site	visitors	who	actually	do	have	JavaScript	enabled:

$(document).ready(function(){

		$('body').removeClass('jsOff').addClass('jsOn');

});

In	this	case,	the	slideshow	is	simply	visually	highlighting	content	that’s	available
elsewhere	on	the	page	and	that	the	slideshow	images	won’t	actually	provide	a	lot	of
value	for	site	visitors	with	JavaScript	disabled.	We’ll	just	hide	the	slideshow	for	those
visitors.	Add	these	styles	in	styles.css:

.jsOff	.cycle-slideshow	{

		display:	none;

}

3.	 Now	that	we’ve	taken	care	of	site	visitors	without	JavaScript,	let’s	get	the	slideshow
working	for	those	who	do	have	it.	We	need	to	download	the	Cycle2	plugin.	We’ll	find
that	in	the	jQuery	plugins	repository	at	http://plugins.jquery.com/cycle2/.	Click	on	the
large	orange	Download	now	button.	Save	the	file	to	your	own	scripts	folder.

4.	 Now,	we	need	to	attach	the	script	to	our	HTML	page.	At	the	bottom	of	the	HTML
file,	after	jQuery,	add	a	<script>	tag	to	include	the	Cycle2	plugin:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.cycle2.min.js"></script>

<script	src="scripts/scripts.js"></script>

</body>

</html>

5.	 Next,	we	need	to	let	the	Cycle2	plugin	know	which	elements	are	wrapping	our
individual	slides.	By	default,	Cycle2	assumes	that	our	slideshow	is	made	up	of	just
images,	but	we’ve	wrapped	each	of	our	images	in	a	link	and	in	a	<div>	block	with
the	class	slide.	To	let	Cycle2	know	what	our	slide	container	is,	we’ll	just	add	a	data
attribute	named	data-cycle-slides	to	the	slideshow	container.	The	value	for	that
attribute	is	a	jQuery	selector.	Find	the	<div>	block	with	the	cycle-slideshow	class
in	your	HTML	file	and	add	the	appropriate	data	attribute:

<div	class="cycle-slideshow"	data-cycle-slides=">	div.slide">

In	this	case,	I’m	using	the	direct	descendent	selector	(>)	to	find	all	the	<div>	element
with	a	class	of	slide.

If	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	slideshow	now	works.	It’s
just	that	simple	to	get	the	Cycle2	plugin	set	up	and	working.	We’ve	created	a	simple
image	slideshow	with	a	fading	transition.	That’s	perfectly	acceptable,	but	Cycle2

http://plugins.jquery.com/cycle2/

gives	us	lots	of	additional	options,	so	let’s	see	how	to	add	additional	features	and
adjust	the	settings.

6.	 Since	each	of	the	slides	links	the	site	visitors	to	a	page	with	more	information,	let’s
pause	the	slideshow	when	site	visitors	hover	over	the	slideshow	with	their	mouse.
This	will	ensure	that	they	always	get	sent	to	the	page	they	intended.	We	just	have	to
add	another	data	attribute	to	the	slideshow	container.	Since	we’ll	be	adding	a	few	of
these,	let’s	start	breaking	them	up	for	easy	readability:

<div	class="cycle-slideshow"	

		data-cycle-slides=">	div.slide"

		data-cycle-pause-on-hover="true"

</div>

In	this	case,	we’re	adding	a	data	attribute	called	data-cycle-pause-on-hover,	and
we’re	setting	the	value	equal	to	true.	Refresh	the	page	in	the	browser	and	try	to
hover	your	mouse	over	the	slideshow.	You’ll	see	that	the	slideshow	pauses	until	you
move	your	mouse	elsewhere.

7.	 Next,	let’s	add	some	next	and	previous	controls	so	that	our	site	visitors	can	move
through	the	slideshow	at	their	own	pace.	Inside	the	<div>	element	with	the	class
cycle-slideshow,	but	before	our	first	<div>	with	the	class	slide,	we’ll	add	two	new
<div>	elements:

<div	class="cycle-slideshow"	

data-cycle-slides=">	div.slide"

data-cycle-pause-on-hover="true">

<div	class="cycle-prev"></div>

<div	class="cycle-next"></div>

		<div	class="slide">

		...

The	Cycle2	plugin	will	automatically	look	for	<div>	elements	with	the	classes
cycle-next	and	cycle-prev	and	enable	those	as	controls	for	the	slideshow.	It’s	then
up	to	us	to	style	those	with	CSS	to	appear	how	and	where	we	want	them.	You	can
also	place	content	inside	those	<div>	elements,	irrespective	of	whether	you’d	like	to
type	words	or	include	images.	We’ll	use	CSS-generated	content	here.

We’ll	place	the	next	and	previous	button	on	top	of	the	slideshow	on	the	left	and	right
sides.	Here’s	the	CSS	we’ll	use	to	accomplish	that.	First,	we’ll	limit	the	width	of	the
slideshow	to	the	width	of	the	largest	item,	which	in	this	case	is	800	pixels:

.cycle-slideshow	{

		max-width:	800px;

}

Next,	we’ll	style	and	position	the	controls:

.cycle-prev,

.cycle-next	{

		cursor:	pointer;

		font-size:	6em;

		margin-top:	-0.6em;

		opacity:	0.4;

		position:	absolute;

		text-shadow:	0	0	4px	rgba(0,0,0,0.8);

		top:	50%;

		transition:	opacity	0.3s;

		z-index:	102;

}

.cycle-prev:hover,

.cycle-next:hover	{

		opacity:	0.9;

}

.cycle-prev	{

		left:	0.1em;

}

.cycle-prev:before	{

		content:	'\276E';

}

.cycle-next	{

		right:	0.1em;

}

.cycle-next:before	{

		content:	'\276F';

}

We’re	using	the	:before	pseudoclass	to	add	an	angle	bracket	to	the	controls,	so	now
the	site	visitors	can	use	these	to	move	forward	or	backward	through	the	slideshow.

8.	 We’ve	made	it	easy	to	move	forward	and	backward	through	the	slideshow	for	our	site
visitors	on	desktop	devices,	but	what	about	those	on	touch-enabled	devices?	They
don’t	get	the	benefit	of	pausing	the	slideshow	on	hover,	so	control	over	the	slideshow
is	even	more	important	for	them.	They	can	surely	use	those	next	and	previous	buttons
just	like	everybody	else,	but	we	can	also	provide	them	with	the	ability	to	move
through	the	slideshow	by	swiping	across	the	screen.	To	enable	the	swiping	motion	for
touch-enabled	devices,	we	just	have	to	add	a	data-cycle-swipe	attribute	and	set	it	to
true:

<div	class="cycle-slideshow"	

		data-cycle-slides=">	div.slide"

		data-cycle-pause-on-hover="true"

		data-cycle-swipe="true">

9.	 Now,	it	would	be	nice	to	provide	a	bit	more	information	about	each	of	our	slides.
Let’s	include	an	overlay	that	contains	a	title	and	a	line	or	two	with	description	about
each	one.	First,	we’ll	add	the	data	to	each	slide.	We’ll	do	this	by	adding	the	data-
cycle-title	and	data-cycle-desc	attributes	to	each	of	the	slides:

<div	class="slide"	data-cycle-title="Agua	Azul"	data-cycle-

desc="Tumbalá,	Chiapas,	Mexico">

		

				

		

</div>

It’s	important	to	add	these	two	data	attributes	to	the	container	of	each	slide	rather
than	to	an	element	inside	the	container.	Go	through	each	of	the	slides	and	add	these
two	data	attributes.

10.	 We’ve	got	the	data,	so	now	we	just	need	a	place	to	display	it.	Inside	the	<div>
element	with	the	class	as	cycle-slideshow,	but	before	the	first	<div>	element	with
the	class	slide,	add	a	<div>	element	with	class	cycle-overlay,	as	shown	in	the
following	code:

<div	class="cycle-slideshow"	

		data-cycle-slides=">	div.slide"

		data-cycle-pause-on-hover="true"

		data-cycle-swipe="true"		>

		<div	class="cycle-prev"></div>

		<div	class="cycle-next"></div>

		<div	class="cycle-overlay"></div>

		<div	class="slide"	data-cycle-title="Agua	Azul"	data-cycle-

desc="Tumbalá,	Chiapas,	Mexico">

...

Refresh	the	page	in	the	browser,	and	you’ll	see	that	the	title	and	description	that	we
added	to	each	slide	element	now	appears	beneath	the	slideshow.

11.	 That’s	a	good	start,	but	let’s	style	the	overlay	with	a	bit	of	CSS	to	display	it	on	top	of
the	slideshow:

.cycle-overlay	{

		background:	rgba(0,0,0,0.6);

		bottom:	0;

		left:	0;

		position:	absolute;

		right:	0;

		z-index:	101;

}

12.	 Using	Chrome’s	web	tools,	we	can	see	the	markup	created	by	the	Cycle2	plugin	to
display	the	title	and	description.	Each	line	is	simply	wrapped	in	a	<div>	element
without	a	class	or	an	id	value.

While	we	could	technically	use	CSS	pseudoclasses	or	advanced	CSS	selectors	to
select	each	of	those	<div>	elements	individually,	it	would	make	our	CSS	much	easier
to	write	if	we	had	some	control	over	that	markup	and	could	wrap	the	title	in	a
heading	tag	and	the	description	in	a	paragraph	tag.

Good	news!	Cycle2	does	give	us	a	way	to	specify	which	HTML	tags	should	be	used
to	mark	up	the	overlay	content	by	passing	an	HTML	template	in	a	data	attribute.
We’ll	use	the	data-cycle-overlay-template	attribute	and	we’ll	pass	it	the	markup
we’d	like	to	use	for	our	overlays:

<div	class="cycle-slideshow"	

		data-cycle-slides=">	div.slide"

		data-cycle-pause-on-hover="true"

		data-cycle-swipe="true"

		data-cycle-overlay-template="<div	class='headline'><h2>{{title}}</h2>

<p>{{desc}}</p></div>">

You	can	see	that	we’ve	used	the	{{title}}	token	to	show	Cycle2	where	to	display
the	bit	of	content	we’ve	designated	as	the	title	and	then	the	{{desc}}	token	to	tell
Cycle2	where	to	display	the	bit	of	content	that	makes	up	the	description	for	each
slide.	Now,	we	can	jump	back	over	to	our	styles.css	file	and	write	a	bit	of	CSS	to
style	this	new	markup:

.headline	{

		color:	white;

		padding:	1em;

}

.headline	h2	{

		color:	white;

		font-size:	2em;

		line-height:	1.125;		

}

.headline	p	{

		font-style:	italic;

		line-height:	1.5;

}

This	gives	us	a	gorgeous-looking	result	that	anyone	would	be	proud	of:

Our	slideshow	is	looking	pretty	good,	but	we’ve	got	a	few	more	tricks	up	our	sleeves
that	we	can	use	to	make	it	even	better:

13.	 While	the	fading	transition	animation	is	nice,	let’s	use	something	a	bit	fancier.	On	the
Demos	page	at	http://jquery.malsup.com/cycle2/demo/,	you	can	view	the	different
transitions	that	are	available	for	the	Cycle2	plugin.	Let’s	take	a	look	at	how	to	use
and	customize	the	tile	transition.

First,	we	have	to	download	the	Tile	Transition	plugin	and	attach	it	to	our	page.	The
optional	plugins	for	Cycle2	are	not	found	in	the	jQuery	plugins’	repository	like	the
core	plugin—they	need	to	be	downloaded	from	the	Cycle2	download	page	at
http://jquery.malsup.com/cycle2/download/.	Head	over	there	and	find	the	link	for	the

http://jquery.malsup.com/cycle2/demo/
http://jquery.malsup.com/cycle2/download/

Production	version	of	the	Tile	Transition	plugin	in	the	table	of	transition	plugins.

Save	the	file	to	your	own	scripts	folder.	Then,	open	up	your	HTML	file	and	attach
the	Tile	Transition	plugin	at	the	bottom	of	the	file,	after	the	Cycle2	plugin,	as	shown
in	the	following	code:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.cycle2.min.js"></script>

<script	src="scripts/jquery.cycle2.tile.min.js"></script>

<script	src="scripts/scripts.js"></script>

</body>

</html>

14.	 Next,	we	have	to	tell	our	slideshow	to	use	the	newly	available	tile	transition.	To	do
that,	we’ll	add	another	data	attribute	to	the	parent	container	of	our	slideshow.	In	your
HTML	file,	find	the	<div>	element	with	cycle-slideshow	as	the	class	value,	and	add
the	data-cycle-fx	attribute	set	to	tileSlide:

<div	class="cycle-slideshow"	

		data-cycle-slides=">	div.slide"

		data-cycle-pause-on-hover="true"

		data-cycle-swipe="true"

		data-cycle-overlay-template="<div	class='headline'><h2>{{title}}</h2>

<p>{{desc}}</p></div>"

		data-cycle-fx="tileSlide">

Refresh	the	page	in	the	browser,	and	you’ll	see	that	the	transition	between	slides	now
uses	the	sliding	tile	transition.

If	you	prefer,	you	could	switch	that	to	a	blinds-style	transition	by	specifying
tileBlind	as	the	value	for	the	data-cycle-fx	attribute:

<div	class="cycle-slideshow"	

		data-cycle-slides=">	div.slide"

		data-cycle-pause-on-hover="true"

		data-cycle-swipe="true"

		data-cycle-overlay-template="<div	class='headline'><h2>{{title}}</h2>

<p>{{desc}}</p></div>"

		data-cycle-fx="tileBlind">

15.	 By	default,	the	tile	transition	breaks	each	slide	into	seven	vertical	tiles.	However,	we
have	the	option	to	change	both	the	number	of	tiles	and	the	orientation	of	the	tiles	by
adding	a	few	more	data	attributes	to	our	slideshow.	Here,	we’re	using	13	horizontal
tiles	in	a	blinds	animation:

<div	class="cycle-slideshow"	

		data-cycle-slides=">	div.slide"

		data-cycle-pause-on-hover="true"

		data-cycle-swipe="true"

		data-cycle-overlay-template="<div	class='headline'><h2>{{title}}</h2>

<p>{{desc}}</p></div>"

		data-cycle-fx="tileBlind"

		data-cycle-tile-count="13"

		data-cycle-tile-vertical="false">

Experiment	with	the	available	options	for	the	slideshow	transition	and	find	one	you
like	best.	Feel	free	to	experiment	with	some	of	the	other	transition	plugins	as	well.

16.	 Now	that	we	have	a	fancy	transition	effect	in	place	for	the	slides,	notice	the	way	the

text	in	the	overlay	changes.	It	waits	until	the	animated	transition	is	complete,	and
then	just	snaps	to	the	new	value	when	the	next	slide	is	displayed.	Let’s	animate	that
too.

Luckily,	Cycle2	makes	that	easy	to	do	too!	There’s	another	optional	plugin	for
Cycle2	called	Caption2	that	allows	us	to	control	the	transitions	for	the	overlay.	Head
to	the	downloads	page	for	Cycle2	(http://jquery.malsup.com/cycle2/download/)	and
click	on	the	link	to	download	the	Production	version	of	the	Caption2	plugin.	Save
the	file	to	your	own	scripts	folder,	then	open	your	HTML	file	and	attach	the	new
plugin	in	the	footer:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.cycle2.min.js"></script>

<script	src="scripts/jquery.cycle2.tile.min.js"></script>

<script	src="scripts/jquery.cycle2.caption2.min.js"></script>

<script	src="scripts/scripts.js"></script>

</body>

</html>

17.	 Next,	we’ll	add	some	data	attributes	to	our	slideshow	to	control	the	transitions	for	the
overlay.	We	have	to	tell	our	slideshow	to	use	the	Caption2	plugin,	so	we’ll	start	by
adding	the	data-cycle-overlay-plugin	attribute	equal	to	caption2:

<div	class="cycle-slideshow"	

		data-cycle-slides=">	div.slide"

		data-cycle-pause-on-hover="true"

		data-cycle-swipe="true"

		data-cycle-overlay-template="<div	class='headline'><h2>{{title}}</h2>

<p>{{desc}}</p></div>"

		data-cycle-fx="tileSlide"

		data-cycle-tile-count="9"

		data-cycle-caption-plugin="caption2">

If	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	entire	overlay	now	fades	out
as	soon	as	the	slide	transition	begins	and	then	fades	back	in	with	the	new	value.	Let’s
allow	the	translucent	black	background	for	the	overlay	to	stay	in	place	and	for	just
the	text	itself	to	fade	out	and	back	in.	To	achieve	this,	we’ll	add	another	data	attribute
to	the	slideshow	to	specify	which	element	in	the	overlay	should	be	animated:

<div	class="cycle-slideshow"	

		data-cycle-slides=">	div.slide"

		data-cycle-pause-on-hover="true"

		data-cycle-swipe="true"

		data-cycle-overlay-template="<div	class='headline'><h2>{{title}}</h2>

<p>{{desc}}</p></div>"

		data-cycle-fx="tileSlide"

		data-cycle-tile-count="9"

		data-cycle-caption-plugin="caption2"

		data-cycle-overlay-fx-sel=">div">

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	overlay	container
stays	visible,	but	just	the	text	inside	fades	out	and	back	in	with	each	slide	transition.
This	helps	the	slideshow	feel	more	cohesive	and	makes	it	feel	as	if	the	overlay	is	a

http://jquery.malsup.com/cycle2/download/

part	of	the	slideshow.

We’ve	already	seen	quite	a	lot	of	what	the	Cycle2	plugin	can	do,	but	we’ve	barely
scratched	the	surface!	Let’s	next	take	a	look	at	how	we	can	create	an	image	carousel	with
the	Cycle2	plugin.

The	Cycle2	carousel
Cycle2	is	flexible;	you’re	not	limited	to	simple	slideshows.	You	can	put	Cycle2	to	use	to
create	a	carousel	that	shows	multiple	images	at	one	time.	Let’s	take	a	look	at	how	we
might	create	a	carousel	of	thumbnail	images.

Time	for	action	–	building	a	Cycle2
carousel
Follow	these	steps	to	create	a	carousel	with	the	Cycle2	plugin.

1.	 We’ll	get	started,	as	we	usually	do,	with	using	the	HTML	document	and	associated
files	and	folders	just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	First	up,	we’ll
get	the	HTML	markup	for	our	carousel	set	up.	Our	HTML	markup	will	be	similar	to
the	markup	for	the	slideshow	we	set	up	in	the	previous	example.	We	need	a	container
<div>	to	hold	the	slideshow.	Then,	we	also	need	individual	<div>	elements	inside	the
external	container	for	each	individual	slide	or	image	that	will	appear	in	our
slideshow:

<div	class="cycle-slideshow">

		<div	class="slide">

				

						

				

		</div>

		<div	class="slide">

				

						

				

		</div>

		<div	class="slide">

				

						

				

		</div>

		...

</div>

Our	markup	here	is	similar	to	the	previous	example	but	a	bit	simpler.	Since	we’re
using	thumbnail	images,	we	aren’t	going	to	be	using	text	overlays.	So	we	can	skip	the
extra	data	attributes	for	those.

2.	 Now,	we’ll	take	just	a	moment	to	consider	those	users	who	have	JavaScript	disabled.
Our	thumbnails	are	linking	them	off	to	more	information	about	each	of	those	slides,
so	let’s	show	them	these	images	as	a	grid.	First,	add	the	jsOff	class	to	the	<body>
tag:

<body	class="jsOff">

Next,	let’s	pop	into	our	styles.css	file	and	write	a	bit	of	code	that’s	going	to	display
those	thumbnails	nicely	for	site	visitors	without	JavaScript:

.jsOff	.cycle-slideshow	.slide	{

		display:	inline-block;

		padding:	0.5em;

}

The	users	with	JavaScript	disabled	will	see	the	page	as	shown	in	the	following
screenshot:

It’s	nothing	extra	fancy,	but	these	visitors	can	still	see	the	thumbnail	images	and	can
click	on	each	one	to	see	more	information,	so	it	fulfills	our	purpose.	They’ll	never
know	what	they’re	missing.	Finally,	we	have	to	open	our	scripts.js	file	and	add	a
bit	of	code	to	remove	the	jsOff	class	for	site	visitors	who	do	have	JavaScript
enabled:

$(document).ready(function(){

		$('body').removeClass('jsOff').addClass('jsOn');

});

This	isn’t	anything	we	haven’t	seen	before.	With	the	non-JavaScript	case	out	of	the
way,	let’s	take	a	look	at	creating	and	animating	our	carousel	for	everyone	else.

3.	 First	up,	let’s	download	and	attach	the	Cycle2	plugin	to	our	HTML	page.	This	is
available	for	download	in	the	jQuery	plugin	repository	or	also	from	the	download
page	of	the	Cycle2	documentation	(http://jquery.malsup.com/cycle2/download/).
Save	the	file	to	your	scripts.js	folder	and	then	attach	it	in	the	footer	of	your	HTML
document	after	jQuery	but	before	your	scripts.js	file:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.cycle2.min.js"></script>

<script	src="scripts/scripts.js"></script>

Now,	you	might	expect	to	see	a	thumbnail-sized	slideshow	if	you	refresh	the	page	in
the	browser	at	this	point,	but	that’s	not	the	case.	This	is	because	Cycle2,	by	default,
expects	a	collection	of	images	inside	the	parent	container,	but	we’ve	wrapped	each	of
our	images	in	a	link	and	a	<div>	element	with	the	slide	class.	We	just	have	to	tell
Cycle2	that	we’re	using	this	alternate	markup.	In	the	HTML	file,	find	the	<div>
element	with	the	cycle-slideshow	class	and	add	the	correct	data	attribute	as	shown
in	the	following	code:

<div	class="cycle-slideshow"

		data-cycle-slides=">	div.slide">

		<div	class="slide">

http://jquery.malsup.com/cycle2/download/

		...

Just	like	we	did	last	time,	we’ll	break	the	data	attributes	out	onto	individual	lines	to
make	them	easier	to	read.	Here,	we’ve	added	the	data-cycle-slides	attribute	and
set	the	value	equal	to	the	selector	for	each	of	our	individual	slides.	The	thumbnail-
sized	slideshow	will	look	like	the	one	shown	in	the	following	screenshot:

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	you	have	a	thumbnail-
sized	slideshow.	Let’s	turn	that	into	a	carousel.

4.	 We	need	to	add	a	Cycle2	plugin—the	Carousel	Transition	plugin.	Don’t	forget	that
while	the	Cycle2	plugin	itself	is	available	in	the	jQuery	plugins’	repository,	the
additional	plugins	that	add	the	functionality	are	not.	Additional	Cycle2	plugins	are
only	available	from	the	Cycle2	downloads	page	at
http://jquery.malsup.com/cycle2/download/.	Head	over	there	and	find	and	download
the	Production	version	of	the	Carousel	Transition	plugin.	Save	it	to	your	own
scripts	folder.

5.	 Next,	open	up	index.html	and	attach	the	carousel	plugin	at	the	bottom	of	the	file,
after	the	Cycle2	plugin,	but	before	your	scripts.js	file:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.cycle2.min.js"></script>

<script	src="scripts/jquery.cycle2.carousel.min.js"></script>

<script	src="scripts/scripts.js"></script>

</body>

</html>

6.	 Now,	we	need	to	add	a	data	attribute	to	our	slideshow	container,	so	Cycle2	knows	we
want	to	use	a	different	transition	effect.	Find	the	<div>	element	with	the	cycle-
slideshow	class	and	add	the	data-cycle-fx	attribute	set	to	carousel:

<div	class="cycle-slideshow"

		data-cycle-slides=">	div.slide"

		data-cycle-fx="carousel">

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	you	have	a	carousel,	as
shown	in	the	following	screenshot:

http://jquery.malsup.com/cycle2/download/

You’ll	see	that	the	carousel	automatically	advances	one	image	every	second	or	so.
That’s	nice,	but	it	would	be	even	nicer	to	put	100	percent	of	the	control	of	the
carousel	in	the	hands	of	our	site	visitors.

7.	 Let’s	disable	the	automatic	animations.	This	way,	site	visitors	won’t	be	distracted	by
the	images	marching	across	their	screen	unexpectedly.	To	do	this,	we	just	have	to	add
a	data	attribute.	Find	the	<div>	element	with	the	class	cycle-slideshow	and	add	the
data-cycle-timeout	attribute	in	it.	We	can	use	this	attribute	on	any	Cycle2
slideshow	to	specify	how	long	to	wait	between	animations.	In	this	case,	we	don’t
want	any	animations	at	all,	so	we’ll	set	it	equal	to	0:

<div	class="cycle-slideshow"

		data-cycle-slides=">	div.slide"

		data-cycle-fx="carousel"

		data-cycle-timeout="0">

8.	 Now	that	we’ve	removed	the	automatic	animations,	our	site	visitors	have	no	way	to
access	any	of	the	slides	that	aren’t	visible	on	page	load.	Let’s	fix	this	by	adding	some
previous	and	next	buttons.

By	default,	if	we	add	the	same	code	we	added	last	time	for	the	next	and	previous
buttons,	they’ll	both	be	shown	under	the	carousel	as	they	are	in	the	demos	on	the
Cycle2	documentation	site:

That’s	okay,	but	we’re	designers!	Let’s	place	our	buttons	to	the	left	and	right	of	the
slideshow.	Also,	let’s	use	graphic	images	instead	of	text.	Here’s	the	look	we’re	going
for:

Can	you	push	Cycle2	that	far	and	customize	it	to	such	an	extent?	You	bet	you	can!
Let’s	see	how	to	accomplish	this.

9.	 First	up,	we	have	to	add	some	space	around	the	slideshow	to	make	room	for	the
buttons.	We	also	need	a	way	to	position	those	buttons	on	either	side	of	the	slideshow.
To	accomplish	this,	we’ll	wrap	a	new	<div>	element	around	the	entire	slideshow:

<div	class="slideshow-wrap">

		<div	class="cycle-slideshow"

				data-cycle-slides=">	div.slide"

				data-cycle-fx="carousel"

				data-cycle-timeout="0"

				>

				<div	class="slide">

						

								

						

				</div>

				...

		</div>

</div>

Then,	jump	over	to	styles.css	and	style	that	new	container:

.slideshow-wrap	{

		position:	relative;

}

That’s	all	we	need	to	set	the	position	attribute	to	relative	so	that	we	can	easily
position	items	inside	the	container.

10.	 Next,	we	need	to	add	some	space	on	the	left	and	right	sides	of	the	slideshow	so	we’ve
got	space	to	include	the	buttons.	In	the	styles.css	file,	add	a	margin	to	the	div
element	that	contains	the	slideshow:

.cycle-slideshow	{

		margin:	0	3.5em	0	3em;

}

Don’t	forget	the	users	with	JavaScript	disabled.	The	margin	won’t	be	necessary	for
them,	so	let’s	remove	that	for	the	no-JavaScript	case:

.jsOff	.cycle-slideshow	{

		margin:	0;

}

11.	 Now	that	we’ve	made	space	for	them,	let’s	add	our	next	and	previous	buttons.	We
don’t	want	them	to	be	inside	the	slideshow	because	we	need	more	control.	Instead,
we’ll	place	them	after	the	slideshow,	but	inside	that	wrapper	<div>	element	we
added:

<div	class="slideshow-wrap">

		<div	class="cycle-slideshow"

				data-cycle-slides=">	div.slide"

				data-cycle-fx="carousel"

				data-cycle-timeout="0"

				>

				<div	class="slide">

						

								

						

				</div>

				...

		</div>

		<div	id="prev"><div	class="button-wrap"></div></div>

		<div	id="next"><div	class="button-wrap"></div></div>

</div>

Notice	that	we’re	adding	another	<div>	element	inside	those	next	and	previous
buttons.	We’ll	use	that	to	style	the	buttons	just	the	way	we’d	like.	Now,	we’ve	got	our
next	and	previous	buttons,	but	because	they’re	not	inside	the	slideshow,	Cycle2
doesn’t	even	know	about	them	yet.	We	just	have	to	tell	Cycle2	that	we’d	like	to	use
those	new	<div>	elements	as	the	next	and	previous	buttons.	We’ll	do	that	by	adding	a
couple	of	more	data	attributes	to	the	<div>	element	with	the	class	cycle-slideshow:

<div	class="cycle-slideshow"

		data-cycle-slides=">	div.slide"

		data-cycle-fx="carousel"

		data-cycle-timeout="0"

		data-cycle-next="#next"

		data-cycle-prev="#prev">

We’ll	use	the	data-cycle-next	and	data-cycle-prev	data	attributes	and	set	them	to
be	equal	to	selectors	for	whatever	elements	we’d	like	to	use	as	the	next	and	previous
buttons.

12.	 Now,	our	next	and	previous	buttons	work	to	control	the	slideshow	in	theory,	but	as
we	haven’t	styled	them	with	CSS	yet,	we	can’t	actually	see	them	to	click	and	try
them	out.

Before	we	get	started	with	styling	those	buttons,	let’s	remember	our	visitors	without
JavaScript	again.	Those	buttons	won’t	be	of	any	help	to	them,	so	let’s	tuck	them	out
of	view:

.jsOff	#next,

.jsOff	#prev	{

		display:	none;

}

Now,	we	can	get	to	work	on	styling	our	previous	and	next	buttons	for	everyone	else.
First,	set	the	size	and	position	of	each	of	the	buttons:

#next,

#prev	{

		bottom:	0;

		cursor:	pointer;

		overflow:	hidden;

		position:	absolute;

		top:	0;

		width:	3em;

}

#next	{

		right:	0;

}

#prev	{

		left:	0;

}

This	bit	of	code	absolutely	positions	the	buttons	to	either	the	left	or	the	right	of	the
slideshow,	in	the	space	we	created	for	them	when	we	added	a	margin	to	the	slideshow
container.	It	also	sets	the	width	of	the	buttons	to	3em	and	makes	them	equal	in	height
to	the	height	of	the	slideshow.

13.	 Now,	remember	that	extra	button-wrap	container	we	placed	inside	each	of	our
buttons?	We’re	going	to	use	that	to	create	the	half-circle	buttons.	Here	are	the	styles
to	apply:

.button-wrap	{

		background:	#4fc1e9;

		border-radius:	50%;

		bottom:	0;

		position:	absolute;

		top:	0;

		width:	6em;

}

#next	.button-wrap	{

		right:	0;

}

#prev	.button-wrap	{

		left:	0;

}

Let’s	take	a	look	at	this	to	be	sure	you	understand	what’s	going	on.	First	up,	we’re
setting	the	background	color	as	bright	blue.	By	setting	the	border-radius	value	to
50%,	we’re	creating	a	circle	shape.	Next,	we	absolutely	position	the	blue	circle	and	set
its	width	to	twice	the	width	of	the	parent	container.	Essentially,	we’re	creating	a
complete	circle	but	only	showing	half	of	the	circle.	The	circle,	along	with	its
attributes,	is	diagrammatically	shown	as	follows:

14.	 Now,	let’s	add	a	hover	style	and	make	the	blue	part	a	slightly	darker	shade	when	the
buttons	are	hovered	over:

#next	.button-wrap:hover,

#prev	.button-wrap:hover	{

		background:	#38afda;

}

That’s	simple	enough—it’s	just	a	simple	background	color	change.	But	what	if	we
wanted	a	quick	animation	from	color	to	color?	All	we	have	to	do	is	go	back	to	the
CSS	element	where	we	originally	defined	the	background	color	and	add	a	CSS
transition	property:

.button-wrap	{

		background:	#4fc1e9;

		border-radius:	50%;

		bottom:	0;

		position:	absolute;

		top:	0;

		transition:	background-color	0.3s;

		width:	6em;

}

Now,	if	you	hover	over	the	buttons,	you’ll	see	an	animation	that	takes	0.3	seconds	to
change	from	the	default	background	color	to	the	hover	background	color.

15.	 Our	carousel	is	looking	pretty	good	so	far,	but	we	do	need	to	add	some	arrows	to
those	buttons	to	make	their	functionality	clearer.	Remember	that	clever	technique	for
creating	triangles	with	CSS?	We’ll	put	that	to	use	here	again.	Let’s	define	a	slightly
transparent	white	triangle	for	each	button:

#next	.button-wrap:before,

#prev	.button-wrap:before	{

		border-style:	solid;

		content:	'';

		margin-top:	-0.866em;

		position:	absolute;

		top:	50%;		

}

#next	.button-wrap:before	{

		border-width:	0.866em	0	0.866em	1em;

		border-color:	transparent	transparent	transparent	

rgba(255,255,255,0.5);

		right:	1em;

}

#prev	.button-wrap:before	{

		border-width:	0.866em	1em	0.866em	0;

		border-color:	transparent	rgba(255,255,255,0.5)	transparent	

transparent;

		left:	1em;

}

We’re	absolutely	positioning	the	arrow	to	appear	in	the	middle	of	our	half-circle
button,	and	then	adjusting	the	border	widths	and	colors	to	produce	the	triangle.

16.	 The	only	thing	left	to	do	is	to	add	a	hover	effect	to	the	triangles.	Since	the	button
color	is	changing,	we	can	emphasize	that	difference	by	also	changing	the	triangles	to
be	less	transparent	when	hovered	over:

#next	.button-wrap:hover:before	{

		border-left-color:	rgba(255,255,255,0.8);

}

#prev	.button-wrap:hover:before	{

		border-right-color:	rgba(255,255,255,0.8);

}

Again,	if	we	wanted	to	animate	that	color	change,	we	can	use	the	CSS	transition
property.	But	since	we	now	have	two	things	changing,	we	could	actually	just	make	a
simple	change	to	the	transition	line	we	wrote	earlier	to	animate	both	the	button
background	color	and	the	triangle	color:

.button-wrap	{

		background:	#4fc1e9;

		border-radius:	50%;

		bottom:	0;

		position:	absolute;

		top:	0;

		transition:	all	0.3s;

		width:	6em;

}

Rather	than	animating	only	the	background	color,	we’ve	animated	anything	that
might	change—this	will	cover	the	background	animation	for	the	button	itself	as	well
as	the	arrow	color.	If	we	changed	other	properties	when	hovered	over,	those	would	be
animated	as	well.

We’ve	created	a	very	nice	carousel,	but	we	could	definitely	improve	upon	it.	What	if	our
carousel	were	just	a	tool	to	navigate	a	set	of	full-size	images?	Let’s	take	a	look	at	how	we
can	combine	a	carousel	and	a	slideshow.

Combining	a	carousel	with	a	slideshow
Not	only	can	you	include	more	than	one	Cycle2	slideshow	on	a	single	page,	you	can	also
set	up	those	slideshows	to	“talk”	to	one	another.	Let’s	take	a	look	at	how	we	can	set	up	a
carousel	to	act	as	a	controller	for	a	slideshow.	Here’s	an	example	of	what	we’ll	be
building:

Clicking	on	one	of	the	thumbnails	in	the	carousel	will	load	the	full-size	version	of	that
image	in	the	slideshow	section.

Setting	up	the	carousel
To	make	this	a	little	bit	easier	to	digest,	we’re	going	to	break	the	process	of	creating	the
carousel/slideshow	combo	into	three	pieces.	In	this	first	piece,	we’ll	get	the	carousel	set	up
and	working	and	look	at	the	special	considerations	we	have	to	make	to	ensure	that	it	will
work	flawlessly	with	our	slideshow	component.

Time	for	action	–	creating	the	carousel
controller
Follow	these	steps	to	create	a	Cycle2	carousel	that	can	act	as	a	controller	for	a	slideshow:

1.	 First,	we’ll	create	the	carousel.	Once	we	have	that	on	the	page	and	it’s	functioning,
we’ll	add	the	slideshow	and	then	connect	them	together.

Here’s	the	HTML	markup	we’ll	use	for	the	slideshow:

<div	id="carousel">

		<div	class="cycle-slideshow">

				<div>

						

								

						

				</div>

				<div>

						

								<img	src="images/BurneyFalls-thumb.jpg"	width="140"	

height="100">

						

				</div>

				<div>

						

								<img	src="images/Deer_Leap_Falls-thumb.jpg"	width="140"	

height="100">

						

				</div>

				</div>

</div>

We’ll	wrap	the	entire	slideshow	in	a	<div>	element	with	the	ID	of	carousel.	We’ll
use	this	<div>	element	for	styling	purposes	and	also	in	our	JavaScript	to	allow	us	to
select	items	in	the	carousel	or	the	slideshow	without	having	to	select	both.

This	markup	is	a	bit	different	than	the	markup	we	used	for	our	last	carousel.	Rather
than	linking	to	a	page	with	more	information	about	each	image,	we’re	going	to	link
the	thumbnail-size	of	the	image	to	the	full-size	image.

2.	 Now,	let’s	take	a	minute	to	consider	how	our	page	will	work	for	site	visitors	who
don’t	have	JavaScript	enabled.	The	basic	functionality	we’re	looking	for	is	to	view
the	full	size	of	each	image	when	we	click	on	the	thumbnail.	That’s	easy	enough	to
handle,	and	the	HTML	markup	we’ve	set	up	for	the	carousel	will	already	handle	that.

Add	the	jsOff	class	to	your	<body>	tag.	Then,	open	up	the	styles.css	file	and	style
the	carousel	thumbs:

.jsOff	.cycle-slideshow	div	{

		display:	inline-block;

		padding:	0.5em;

}

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	you	have	a	grid	of
thumbnails,	as	shown	in	the	following	screenshot:

Visitors	without	JavaScript	will	see	a	grid	of	thumbnails.	When	they	click	on	a
thumbnail,	they’ll	see	the	full-size	version	of	that	image.	They	can	then	use	the	back
button	on	the	browser	to	return	to	this	page	and	view	the	next	thumbnail.

3.	 Now	that	we	have	those	site	visitors	taken	care	of,	let’s	dive	into	the	interactive
version	for	the	site	visitors	that	do	have	JavaScript.	Open	the	scripts.js	file	and
add	a	bit	of	code	that	we’ve	seen	several	times	now	to	remove	the	jsOff	class	and
replace	it	with	a	jsOn	class:

$(document).ready(function(){

		$('body').removeClass('jsOff').addClass('jsOn');

});

4.	 Next,	we’ll	attach	the	JavaScript	files	that	we’ll	need	in	order	to	get	the	carousel
working.	Just	as	with	the	previous	carousel,	we’ll	need	the	Cycle2	plugin	itself	and
the	Carousel	Transition	plugin.	Place	both	of	those	files	into	your	scripts	folder.
Then,	head	down	to	the	bottom	of	the	HTML	file	and	attach	those	scripts	after	jQuery
but	before	your	scripts.js	file:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.cycle2.min.js"></script>

<script	src="scripts/jquery.cycle2.carousel.min.js"></script>

<script	src="scripts/scripts.js"></script>	

</body>

</html>

5.	 Now,	let’s	add	the	data	attributes	to	the	<div>	element	that	contains	our	carousel	to
get	it	working	just	the	way	we	need.	We’ll	need	the	data-cycle-slides	attribute	so
that	Cycle2	knows	what	markup	we’re	using	for	our	individual	slides,	and	we’ll	need
to	specify	that	we	want	to	use	the	carousel	transition	effect	with	the	data-cycle-fx
attribute:

<div	class="cycle-slideshow"

		data-cycle-slides=">	div"

		data-cycle-fx="carousel">

If	you	refresh	the	page	in	the	browser,	you’ll	see	that	we’re	on	our	way—we	now
have	a	functioning	carousel:

Now,	let’s	modify	the	carousal	to	suit	our	needs.	For	that,	perform	the	following
steps:

6.	 First,	we	don’t	want	the	carousel	to	advance	automatically,	so	add	the	data-cycle-
timeout	attribute	and	set	this	to	0:

<div	class="cycle-slideshow"

		data-cycle-slides=">	div"

		data-cycle-fx="carousel"

		data-cycle-timeout="0">

This	will	prevent	the	default	automatic	advance	through	the	slides.

7.	 Now	that	we’ve	taken	the	default	animation	away,	we	need	to	provide	a	way	for	our
site	visitors	to	get	to	all	the	slides	in	the	carousel.	We’ll	add	a	previous	button	and	a
next	button.	First,	add	the	HTML	markup	for	the	buttons.	These	should	be	inserted
after	the	closure	of	the	<div>	element	with	the	class	cycle-slideshow	but	before	the
closure	of	the	<div>	element	with	the	ID	carousel:

<div	id="carousel">

		<div	class="cycle-slideshow"

				data-cycle-slides=">	div"

				data-cycle-fx="carousel"

				data-cycle-timeout="0">

				<div>

						

								

						

				</div>

				...

		</div>

		<div	class="cycle-prev	cycle-button">

				<div	class="button-wrap"></div>

		</div>

		<div	class="cycle-next	cycle-button">

				<div	class="button-wrap"></div>

		</div>

</div>

8.	 Next,	we	have	to	tell	Cycle2	which	elements	on	our	page	will	be	acting	as	our	next
and	previous	buttons.	We	can	do	that	by	adding	two	additional	data	attributes	to	our
carousel:

<div	class="cycle-slideshow"

		data-cycle-slides=">	div"

		data-cycle-fx="carousel"

		data-cycle-timeout="0"

		data-cycle-prev="#carousel	.cycle-prev"

		data-cycle-next="#carousel	.cycle-next">

The	value	of	these	data	attributes	is	the	jQuery	(or	CSS)	selector	for	the	elements.
Now,	these	two	new	HTML	elements	are	activated	as	next	and	previous	buttons,	but
we	can’t	see	them	on	our	HTML	page	yet	since	we	haven’t	applied	any	CSS	styles.

9.	 We’ll	apply	similar	styles	as	we	did	in	the	last	carousel	example.	In	styles.css,	let’s
add	a	margin	to	the	carousel	to	make	room	for	the	next	and	previous	buttons	on	either
side:

#carousel	.cycle-slideshow	{

		margin:	0	3.5em;

}

Now	that	we’ve	got	space	for	them,	we	can	position	our	next	and	previous	buttons	on
either	side	of	the	carousel:

#carousel	{

		margin:	1em	0;

		position:	relative;

}

.cycle-button	{

		bottom:	0;

		cursor:	pointer;

		overflow:	hidden;

		position:	absolute;

		top:	0;

		width:	3em;

}

.cycle-next	{

		right:	0;

}

.cycle-prev	{

		left:	0;

}

10.	 Now,	we	can	style	the	<div>	element	with	the	button-wrap	class	that’s	inside	each	of
our	button	containers:

.button-wrap	{

		background:	#4fc1e9;

		border-radius:	50%;

		bottom:	0;

		position:	absolute;

		top:	0;

		transition:	all	0.3s;

		width:	6em;

}

.cycle-next	.button-wrap	{

		right:	0;

}

.cycle-prev	.button-wrap	{

		left:	0;

}

Just	like	we	did	last	time,	we’re	using	the	technique	of	creating	a	circle	with	CSS	and
then	only	showing	50	percent	of	the	circle	to	create	a	half-circle-shaped	button.	Next,
we’ll	change	the	background	color	of	those	buttons	when	our	site	visitor	hovers	over
them:

.cycle-button	.button-wrap:hover	{

		background:	#38afda;

}

11.	 We’ll	use	the	same	CSS	technique	we	used	last	time	to	add	triangles	to	these	buttons:

.cycle-button	.button-wrap:before	{

		border-style:	solid;

		content:	'';

		margin-top:	-0.866em;

		position:	absolute;

		top:	50%;		

}

.cycle-next	.button-wrap:before	{

		border-width:	0.866em	0	0.866em	1em;

		border-color:	transparent	transparent	transparent	

rgba(255,255,255,0.5);

		right:	1em;

}

.cycle-prev	.button-wrap:before	{

		border-width:	0.866em	1em	0.866em	0;

		border-color:	transparent	rgba(255,255,255,0.5)	transparent	

transparent;

		left:	1em;

}

Also,	just	like	last	time,	we’ll	add	a	hover	style	to	these	new	triangles	as	well:

.cycle-next	.button-wrap:hover:before	{

		border-left-color:	rgba(255,255,255,0.8);

}

.cycle-prev	.button-wrap:hover:before	{

		border-right-color:	rgba(255,255,255,0.8);

}

If	you	refresh	the	page	in	the	browser,	you’ll	see	that	we	now	have	a	working
carousel	that	looks	pretty	similar	to	the	carousel	we	built	the	first	time.

We	do	need	to	make	a	few	changes	to	our	carousel	now	to	get	it	ready	for	acting	as
the	controller	for	the	slideshow.	It’s	just	a	few	more	data	attributes	that	we	need	to
add	to	the	slideshow.

12.	 However,	let’s	take	a	minute	to	think	about	our	users	without	JavaScript.	They	won’t
get	any	use	from	the	next	and	previous	buttons,	and	it’s	probably	best	to	just	hide
those	from	them:

.jsOff	.cycle-button	{

		display:	none;

}

When	we’re	connecting	a	carousel	with	a	slideshow,	we	have	a	few	things	to	consider
that	we	wouldn’t	have	to	think	about	if	we	were	only	building	a	carousel.	The	first
problem	we	have	to	solve	is	what	we’ll	call	the	indexing	problem.	Let	me	explain
what	that	problem	is,	and	then	explain	how	we	can	solve	it.

The	carousel	and	slideshow	we’re	working	within	the	code	examples	for	this	book
each	contain	eight	different	slides.	If	we	create	a	carousel	with	thumbnails	and	then	a
slideshow	with	full-size	images	and	put	those	images	in	exactly	the	same	order,	then
we	can	use	a	simple	index	association	to	match	the	thumbnails	with	the	full-size
images.	In	other	words,	we	know	that	if	the	site	visitor	clicks	on	the	first	thumbnail	in
the	carousel,	we	should	show	them	the	first	image	in	the	slideshow.	When	they	click
on	the	third	thumbnail	in	the	carousel,	we	should	show	them	the	third	image	in	the
slideshow,	and	so	on.	So	what’s	the	problem?

If	you	click	on	the	next	button	on	this	carousel	repeatedly,	you’ll	see	that	the	set	of
slides	inside	it	loops—you	can	repeatedly	click	on	the	next	button	until	you	return	to
the	first	slide.

We	didn’t	have	to	do	any	extra	work	to	make	that	happen—this	is	a	feature	that	the
developer	of	the	Cycle2	plugin	thought	out	and	made	happen	for	us.	However,	this
feature	works	by	creating	some	extra	copies	of	the	slides	inside	the	carousel	and	then
using	jQuery	to	cleverly	move	them	around	as	needed	so	that	it	appears	that	the
carousel	just	moves	infinitely.	However,	Cycle2	slideshows	only	show	one	slide	at	a
time,	so	there’s	no	need	to	add	extra	copies	of	the	individual	slides	to	make	them

work.	The	fact	that	the	carousel	has	extra	slides	while	the	slideshow	does	not	can
make	things	difficult	when	we	want	to	build	a	combo.

The	eight	slides	we’re	placing	into	the	carousel	become	41	slides	when	Cycle2
finishes	making	all	of	its	magic	happen	on	the	page.	If	the	site	visitor	clicks	on	the
fifteenth	image	in	the	carousel,	we	don’t	have	a	fifteenth	image	in	the	slideshow	to
send	them	off	to,	and	our	carousel/slideshow	combo	breaks.

13.	 Luckily,	we	can	solve	this	problem	really	easily	by	telling	our	carousel	not	to	loop
infinitely,	by	adding	a	data	attribute	called	data-allow-wrap:

<div	class="cycle-slideshow"

		data-cycle-slides=">	div"

		data-cycle-fx="carousel"

		data-cycle-timeout="0"

		data-cycle-prev="#carousel	.cycle-prev"

		data-cycle-next="#carousel	.cycle-next"

		data-allow-wrap="false">

Now,	because	our	carousel	isn’t	wrapping	infinitely,	there’s	no	need	for	Cycle2	to
create	extra	copies	of	our	slides,	and	we	can	easily	associate	thumbnails	in	the
carousel	with	images	in	the	slideshow.

14.	 However,	if	you	click	the	next	button	on	the	carousel	repeatedly,	you’ll	see	that	the
thumbnails	keep	moving	over,	until	there’s	just	one	image	left,	as	shown	in	the
following	screenshot:

This	feels	really	awkward,	so	let’s	force	the	carousel	to	always	show	us	five	slides.
We	can	do	that	with	another	data	attribute:

<div	class="cycle-slideshow"

		data-cycle-slides=">	div"

		data-cycle-fx="carousel"

		data-cycle-timeout="0"

		data-cycle-prev="#carousel	.cycle-prev"

		data-cycle-next="#carousel	.cycle-next"

		data-allow-wrap="false"

		data-cycle-carousel-visible="5">

Now,	once	our	final	thumbnail	is	visible,	the	carousel	stops	advancing	forward.	Nice,
except	that	the	thumbnails	are	all	bunched	up,	as	shown	in	the	following	screenshot:

Luckily,	that’s	an	easy	fix	for	this	too.	If	we	just	add	the	data-cycle-carousel-
fluid	data	attribute	and	set	it	to	true,	Cycle2	will	take	care	of	spacing	out	our	five
thumbnails	to	fill	the	space	nicely:

<div	class="cycle-slideshow"

		data-cycle-slides=">	div"

		data-cycle-fx="carousel"

		data-cycle-timeout="0"

		data-cycle-prev="#carousel	.cycle-prev"

		data-cycle-next="#carousel	.cycle-next"

		data-allow-wrap="false"

		data-cycle-carousel-visible="5"	

		data-cycle-carousel-fluid="true">

This	gives	us	a	nice	result,	as	shown	in	the	following	screenshot,	and	it’s	responsive
too!

Now	that	we’ve	got	our	carousel	set	up	and	working,	let’s	layer	in	the	slideshow
component.

Adding	the	slideshow
Congratulations	to	us!	We’ve	got	a	gorgeous-looking	carousel	set	up	and	working,	and
we’ve	already	solved	some	of	the	problems	we	might	encounter	when	connecting	our
carousel	and	our	slideshow	together.

With	the	carousel	out	of	the	way,	let’s	dive	into	adding	the	slideshow	component.	After
this,	we’ll	connect	them	so	they	work	together.

Time	for	action	–	adding	the	slideshow
Follow	these	steps	to	set	up	the	slideshow	component	of	our	carousel/slideshow	combo:

1.	 As	usual,	we’ll	get	started	with	the	HTML	markup	for	our	slideshow.	Since	we	want
the	slideshow	to	be	visible	above	the	carousel,	we’ll	place	the	slideshow	into	the	code
before	the	carousel	code.	Everything	will	work	just	fine	if	you	choose	to	do	things
the	other	way	around.	Here’s	the	HTML	structure	for	the	slideshow:

<div	id="slideshow">

		<div	class="cycle-slideshow">

				<div	data-cycle-title="Agua	Azul"	data-cycle-desc="Tumbalá,	

Chiapas,	Mexico"></div>

				<div	data-cycle-title="Burney	Falls"	data-cycle-desc="Shasta	

County,	California,	USA"></div>

				<div	data-cycle-title="Deer	Leap	Falls"	data-cycle-desc="Dingmans	

Ferry,	Pennsylvania,	USA"></div>

				...

		</div>

</div>

We’re	including	the	data-cycle-title	and	data-cycle-desc	attributes	in	the
container	for	each	of	the	slides	because	we	want	to	use	those	later	on	to	show	an
overlay	just	like	we	did	when	we	built	our	previous	slideshow.

We’ve	also	wrapped	the	entire	slideshow	in	a	<div>	element	with	the	ID	of
slideshow	to	make	it	easy	to	select	elements	inside	the	slideshow	for	either	CSS	or
JavaScript	purposes.

2.	 We	don’t	want	the	slideshow	and	the	carousel	to	butt	up	against	one	another,	so	we’ll
go	into	styles.css	and	add	a	bit	of	space	around	both	the	components:

#carousel,

#slideshow	{

		margin:	1em	0;

		position:	relative;

}

Also,	we’ve	added	a	margin	on	the	left	and	right	sides	of	the	carousel	to	make	room
for	the	next	and	previous	buttons.	To	keep	things	nicely	aligned,	we	should	add	this
same	margin	around	the	slideshow	portion.	Find	the	line	in	styles.css	where	you
added	the	left	and	right	margin	around	the	carousel	and	apply	the	same	style	to	the
slideshow:

#carousel	.cycle-slideshow,

#slideshow	.cycle-slideshow	{

		margin:	0	3.5em;

}

3.	 Now,	just	like	we	always	do,	we’ll	take	a	moment	now	to	think	about	how	this
slideshow	should	look	and	behave	for	site	visitors	without	JavaScript.	For	the	visitors
who	do	have	JavaScript,	we’re	loading	up	the	full-size	version	of	the	image	in	the

slideshow	when	they	click	on	the	thumbnail.	A	similar	behavior	that	we	can
accomplish	for	visitors	without	JavaScript	would	be	what	we	already	built	in	the
carousel	section—we’ll	show	them	a	grid	of	images	that	link	to	the	full-size	version
of	the	images.	For	this,	it	would	make	sense	to	just	hide	the	slideshow	portion	of	our
combo	altogether	for	users	without	JavaScript.	Add	this	to	styles.css:

.jsOff	#slideshow	{

		display:	none;

}

4.	 Our	slideshow	won’t	work	until	we	tell	Cycle2	the	markup	for	our	slides.	Just	like
we’ve	done	before,	we’ll	add	the	data-cycle-slides	attribute:

<div	class="cycle-slideshow"

		data-cycle-slides=">	div">

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	we	have	a	working
slideshow.

5.	 Just	like	with	the	carousel,	we	don’t	want	automatic	animation	to	happen	since	we
want	our	site	visitors	to	have	complete	control	over	the	slideshow.	We’ll	use	the
data-cycle-timeout	data	attribute	to	turn	that	off:

		<div	class="cycle-slideshow"

				data-cycle-slides=">	div"

				data-cycle-timeout="0">

6.	 Next,	let’s	get	the	overlay	with	the	title	and	description	working	for	our	slideshow.
We’ll	add	a	<div>	element	to	contain	our	overlay	at	the	bottom	of	our	slideshow	after

the	closure	of	the	<div>	element	with	the	class	cycle-slideshow,	but	before	the
closure	of	<div>	element	with	the	ID	slideshow:

<div	id="slideshow">

		<div	class="cycle-slideshow"

				data-cycle-slides=">	div"

				data-cycle-timeout="0">

				<div	data-cycle-title="Agua	Azul"	data-cycle-desc="Tumbalá,	

Chiapas,	Mexico"></div>

				<div	data-cycle-title="Burney	Falls"	data-cycle-desc="Shasta	

County,	California,	USA"></div>

				...

		<div	id="overlay"	class="cycle-overlay"></div>

</div>

Now,	we	just	have	to	tell	Cycle2	that	this	is	the	container	we’d	like	to	use	for	the
overlay.	We’ll	do	that	with	a	data	attribute:

<div	class="cycle-slideshow"

		data-cycle-slides=">	div"

		data-cycle-timeout="0"

		data-cycle-overlay="#overlay">

If	you	refresh	the	page	in	the	browser	now,	you’ll	see	that	the	text	we	specified	as	the
data-cycle-title	and	data-cycle-desc	attributes	on	each	slide	are	now	displayed
below	the	slideshow,	as	shown	in	the	following	screenshot:

7.	 Next,	we	need	to	style	that	text.	Just	like	last	time,	we	want	to	specify	a	different	bit
of	HTML	to	be	used	to	mark	up	that	text	because	the	default	markup	is	a	bit

challenging	to	style	with	CSS.	We’ll	pass	the	data-cycle-overlay-template
attribute	with	the	HTML	we	want	to	use:

<div	class="cycle-slideshow"

		data-cycle-slides=">	div"

		data-cycle-timeout="0"

		data-cycle-overlay="#overlay"

		data-cycle-overlay-template="<div	class='headline'><h2>{{title}}</h2>

<p>{{desc}}</p></div>">

Then,	we’ll	jump	back	over	to	styles.css	and	add	some	CSS	to	style	that	overlay:

.cycle-overlay	{

		bottom:	0;

		left:	0;

		position:	absolute;

		right:	0;

		z-index:	101;

}

.headline	{

		background:	rgba(0,0,0,0.6);

		color:	white;

		margin:	0	4em;

		padding:	1em;

}

.headline	h2	{

		color:	white;

		font-size:	2em;

		line-height:	1.125;		

}

.headline	p	{

		font-style:	italic;

		line-height:	1.5;

}

Now,	if	you	refresh	the	page	in	the	browser,	you	can	see	that	the	overlay	is	close	to
the	final	position	we	want,	but	it	seems	just	a	bit	off:

This	is	happening	because	our	image	isn’t	centered	inside	the	stage	area	of	the
slideshow.	Let’s	take	a	look	at	how	we	can	fix	that.

8.	 Cycle2	has	a	Center	plugin	that	will	allow	us	to	center	content	vertically,
horizontally,	or	both	inside	the	slideshow	area.	This	can	be	one	method	of	nicely
handling	slides	that	are	of	different	sizes	or	aspect	ratios.	In	this	case,	we	want	to
bump	the	images	of	the	slideshow	over	so	that	they’re	centered.	Head	to	the	Cycle2
downloads	page	(http://jquery.malsup.com/cycle2/download/)	and	download	the
Production	version	of	the	Center	plugin	and	save	it	to	your	scripts	folder.	Then,
attach	it	at	the	bottom	of	index.html:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.cycle2.min.js"></script>

<script	src="scripts/jquery.cycle2.carousel.min.js"></script>

<script	src="scripts/jquery.cycle2.center.min.js"></script>

<script	src="scripts/scripts.js"></script>	

</body>

</html>

Now,	we	just	have	to	add	a	data	attribute	to	the	slideshow	to	tell	Cycle2	that	we	want
to	horizontally	center	the	slides:

<div	class="cycle-slideshow"

		data-cycle-slides=">	div"

		data-cycle-timeout="0"

		data-cycle-overlay="#overlay"

		data-cycle-overlay-template="<div	class='headline'><h2>{{title}}</h2>

<p>{{desc}}</p></div>"

		data-cycle-center-horz="true">

http://jquery.malsup.com/cycle2/download/

If	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	overlay	now	matches	up
with	our	slides	because	our	slides	are	properly	centered	in	the	stage	area.

Now,	our	slideshow	and	our	carousel	look	good;	the	only	thing	left	to	do	is	get	them
talking	to	each	other.

Connecting	the	carousel	and	the	slider
In	this	final	section,	we’ll	take	a	look	at	how	to	connect	the	carousel	with	the	slider	so	that
clicking	on	a	thumbnail	in	the	carousel	loads	up	the	full-size	version	of	the	image	in	the
slideshow.	Once	that’s	finished,	we’ll	make	some	final	adjustments	that	will	add	some
nice	touches.

Time	for	action	–	connecting	the	carousel
and	the	slider
Follow	these	steps	to	connect	the	carousel	and	the	slider:

1.	 We’ve	done	a	lot	so	far	with	Cycle2	without	writing	much	jQuery	to	make	it	all
happen.	We’ve	finally	found	something	we	want	to	do	with	Cycle2	that	will	require
us	to	write	a	few	lines	of	jQuery.	We	want	to	load	the	full-size	image	in	the	slideshow
when	our	site	visitor	clicks	on	the	thumbnail	in	the	carousel.	So	we’ll	get	started	with
scripts.js	by	selecting	all	the	slides	in	the	carousel.	Add	the	code	to	select	those
inside	the	document	ready	method,	after	the	bit	of	code	that	we’re	using	to	change
the	<body>	class:

$(document).ready(function(){

		$('body').removeClass('jsOff').addClass('jsOn');

		$('#carousel	.cycle-slide');

});

This	little	bit	of	code	won’t	change	anything	on	our	page,	but	now	we’ve	got	all	the
thumbnails	in	the	carousel	and	we	can	work	with	them.	The	cycle-slide	class	is
added	to	each	individual	slide	in	a	slideshow	by	the	Cycle2	plugin.

2.	 We	want	the	slides	in	the	slideshow	to	change	when	the	site	visitor	clicks	on	those
thumbnails	in	the	carousel,	so	we	need	to	add	a	click	event	to	those	thumbnails:

$(document).ready(function(){

		$('body').removeClass('jsOff').addClass('jsOn');

		$('#carousel	.cycle-slide').on('click',	function(){

				//	here's	what	happens	when	we	click	on	a	thumbnail

		});

});

Now,	we’re	all	set	to	take	some	action	when	our	site	visitor	clicks	on	a	thumbnail,	so
let’s	think	about	what	we	need	to	do.

3.	 Each	of	our	thumbnails	is	wrapped	in	a	link	to	the	full-size	image,	but	we	don’t	want
to	send	people	off	to	that	link	if	they	have	JavaScript	enabled.	The	first	thing	we’ll	do
is	cancel	this	default	action:

$('#carousel	.cycle-slide').on('click',	function(e){

		e.preventDefault();

});

Notice	that	we	made	a	change	at	the	end	of	the	first	line.	We	added	an	e	argument
inside	the	parentheses	after	my	function.	Recall	that	this	is	the	event	that	we’re
working	with.

Then,	inside	the	function,	we	can	call	a	method	of	that	event	to	change	what	happens.
We’re	calling	a	method	called	preventDefault()	that	cancels	the	default	action.	In

this	case,	it	will	prevent	the	opening	of	the	full-size	image	in	the	browser	window.
We	want	to	write	our	own	action	that	will	happen	when	a	site	visitor	clicks,	so	we
don’t	want	that	default	action	to	happen.

If	you	refresh	the	page	in	the	browser	now	and	click	on	one	of	the	thumbnails	in	the
carousel,	you’ll	see	that	nothing	happens.	Let’s	write	a	new	action.

4.	 When	a	site	visitor	clicks	on	one	of	the	carousel	thumbnails,	the	first	thing	we	need	to
do	is	figure	out	the	index	of	the	thumbnail.	Remember	earlier	we	talked	about	how
there	are	eight	slides	in	the	carousel	and	eight	slides	in	the	slideshow?	When	we	click
on	the	third	thumbnail,	we	want	to	show	the	third	image	in	the	slideshow.	In	order	to
be	able	to	that,	we	need	to	know	what	is	the	number	of	the	thumbnail	the	site	visitor
clicked.	This	number	is	called	the	index.

So,	the	next	step	of	our	action	is	figuring	out	the	index	of	the	thumbnail	that	the	site
visitor	clicked.	We’ll	set	up	a	variable	for	that	and	call	it	index:

$('#carousel	.cycle-slide').on('click',	function(e){

		e.preventDefault();

		var	index;

});

Remember,	a	variable	is	just	an	empty	container.	We’ve	created	an	empty	container
named	index.	Now,	let’s	figure	out	how	to	put	the	index	of	the	thumbnail	into	that
container.

5.	 The	Cycle2	plugin	actually	gives	us	a	pretty	nice	way	to	figure	out	which	thumbnail
was	clicked.	The	thumbnail	gets	stored	as	data	attached	to	the	carousel	container.	So,
the	first	thing	we’ll	do	is	select	the	carousel	container:

$('#carousel	.cycle-slide').on('click',	function(e){

		e.preventDefault();

		var	index	=	$('#carousel	.cycle-slideshow');

});

6.	 Now	that	we’ve	got	that	container,	we	just	need	to	access	the	data	that’s	attached	to
it.	To	do	that,	we’ll	use	jQuery’s	data()	method,	and	we’ll	use	cycle.API	that	the
Cycle2	plugin	has	provided	us:

$('#carousel	.cycle-slide').on('click',	function(e){

		e.preventDefault();

		var	index	=	$('#carousel	.cycle-slideshow').data('cycle.API');

});

The	cycle.API	is	just	a	programmer-speak	for	some	handy	bits	of	information	that
the	Cycle2	plugin	makes	available	to	us.	This	is	also	the	information	that	Cycle2	and
the	Cycle2	plugins	themselves	use	to	make	the	magic	happen.	You	can	take	a	look	at
the	assorted	information	available	to	us	by	looking	at	the	Cycle2	API	documentation
page	at	http://jquery.malsup.com/cycle2/api/advanced.php

Now,	chances	are	that	there’s	going	to	be	a	lot	of	information	there	that	you	don’t
understand—that’s	okay.	We’ll	just	need	to	understand	some	of	it	to	get	the

http://jquery.malsup.com/cycle2/api/advanced.php

functionality	we	want.

7.	 In	this	case,	the	bit	of	information	we’d	like	to	get	from	Cycle2	is	the	index	of	the
thumbnail	that	was	clicked.	We’ll	ask	for	that	with	the	getSlideIndex()	method:

$('#carousel	.cycle-slide').on('click',	function(e){

		e.preventDefault();

		var	index	=	$('#carousel	.cycle-

slideshow').data('cycle.API').getSlideIndex(this);

});

It’s	not	terribly	important	to	understand	exactly	how	this	works.	Just	know	that	when
a	thumbnail	in	the	carousel	is	clicked,	we	now	know	exactly	which	slide	it	was.

8.	 Now	that	we’ve	got	the	index	of	the	clicked	thumbnail,	we	have	to	figure	out	how	to
tell	the	slideshow	to	show	that	slide.	We	also	have	to	tell	the	carousel	that	we	want
that	thumbnail	to	be	moved	to	the	prime	position.	That	is	refreshingly	easy.	We’ll	get
started	by	selecting	the	slideshows:

$('#carousel	.cycle-slide').on('click',	function(e){

		e.preventDefault();

		var	index	=	$('#carousel	.cycle-

slideshow').data('cycle.API').getSlideIndex(this);

		$('.cycle-slideshow');

});

9.	 Now,	we	can	call	the	cycle()	method	and	tell	it	what	we’d	like	to	do.	In	this	case,
we	want	to	tell	the	slideshow	to	go	to	the	slide	that	matches	the	index:

$('#carousel	.cycle-slide').on('click',	function(e){

		e.preventDefault();

		var	index	=	$('#carousel	.cycle-

slideshow').data('cycle.API').getSlideIndex(this);

		$('.cycle-slideshow').cycle('goto',	index);

});

That’s	it,	just	a	couple	of	lines	of	code.	If	you	refresh	the	page	in	the	browser,	you’ll
see	that	when	you	click	on	one	of	the	thumbnails,	it	loads	up	the	full-size	version	of
that	image	in	the	slideshow	and	also	moves	that	thumbnail	to	the	first	position	as	long
as	we’re	not	too	close	to	the	end.

Now,	let’s	take	a	look	at	a	few	things	we	can	do	to	make	the	experience	of	using	our
slideshow/carousel	combo	even	better.

10.	 It’s	not	terribly	clear	which	thumbnail	in	the	carousel	represents	the	currently
selected	thumbnail.	We	can	fix	that	with	a	bit	of	CSS.	Open	styles.css	and	add	a
few	lines	to	style	the	thumbnails:

#carousel	.cycle-slide	img	{

		border:	2px	solid	transparent;

		display:	block;

		opacity:	0.7;

}

#carousel	.cycle-slide-active	img	{

		border-color:	#38AFDA;

		opacity:	1;

}

In	this	case,	we	are	fading	out	the	thumbnails	that	aren’t	selected	and	then	showing
the	selected	thumbnail	at	full	opacity	and	with	a	blue	border.	By	assigning	a	2px
transparent	border	to	the	unselected	thumbnails,	we	assure	that	there	won’t	be	any
awkward	2px	jumping	when	the	border	is	applied.	Rather	than	adding	and	removing
the	border,	we’re	just	changing	the	color	of	the	border.

And	where	does	that	cycle-slide-active	class	come	from?	It’s	added	for	us	by	the
Cycle2	plugin.	Refresh	the	page,	and	your	slideshow	should	look	like	the	following
screenshot:

Now,	it’s	easy	to	identify	at	a	glance	which	thumbnail	is	selected.

11.	 Remember	how	we	removed	the	infinite	looping	of	the	carousel?	We	had	to	do	that	in
order	to	make	the	carousel	work	as	a	controller	for	the	slideshow,	but	we’re	not	doing
a	very	good	job	of	communicating	to	our	site	visitor	that	they’ve	reached	the	end	of
the	carousel	and	further	clicking	isn’t	going	to	advance	them	any	further.

We	can	fix	that	by	adding	some	CSS	styles	for	disabled	carousel	buttons.	In
styles.css,	add	an	alternate	style	for	the	buttons	if	they’re	disabled:

.cycle-button.disabled	{

		opacity:	0.5;

}

In	this	case,	we’ll	to	fade	those	out	to	communicate	that	they’re	no	longer	active.	The

disabled	class	is	added	to	those	buttons	for	us	by	the	Cycle2	plugin.

12.	 Finally,	our	slideshow/carousel	combo	doesn’t	currently	behave	very	nicely	when	we
have	a	narrower	window,	like	our	site	visitors	might	have	on	a	tablet	or	a	mobile
phone.	Let’s	shrink	the	images	nicely	to	fit	in	the	space	available:

In	styles.css,	add	this	bit	of	code:

.cycle-slideshow	img	{

		height:	auto;

		max-width:	100%;

}

Refresh	the	page	in	the	browser	and	make	the	window	narrower.	You’ll	see	that	our
slideshow	now	behaves	pretty	nicely	and	fits	inside	the	screen.

Phew!	That	was	quite	a	lot	of	work	and	it	was	pretty	involved!	But	you	made	it
through.	Thanks	for	sticking	with	me.

Summary
In	this	chapter,	we	took	a	look	at	five	different	ways	in	which	we	can	deal	with	slideshows
and	sliders	on	websites.	We	started	off	by	building	a	simple	crossfading	slideshow	from
scratch	without	using	a	plugin.	Next,	we	took	a	look	at	implementing	the	Basic	Slider,
which	while	being	basic,	has	enough	options	and	the	ability	to	change	its	appearance	via
CSS,	making	it	a	great	fit	for	many	different	types	of	projects.

For	those	projects	that	require	fancy	transition	effects	and	even	more	options,	we	worked
through	three	different	types	of	sliders	that	we	can	build	with	the	Cycle2	plugin.	This
flexible	and	extensible	plugin	will	come	in	handy	for	many	different	types	of	slideshows
on	many	different	projects.

Next,	we’ll	take	a	look	at	some	techniques	to	use	when	working	with	responsive	designs.

Chapter	7.	Working	with	Responsive
Designs
The	last	couple	of	years	have	seen	a	rise	in	the	popularity	of	an	approach	to	designing
websites	called	responsive	design.	Coined	by	Ethan	Marcotte,	the	term	refers	to	websites
that	respond	to	the	viewport	size	of	your	website	visitor.	You	can	learn	more	about
responsive	design	in	Marcotte’s	article	at	http://alistapart.com/article/responsive-web-
design.	Whether	site	visitors	are	viewing	your	website	on	a	mobile	device,	a	tablet,	a
netbook,	or	a	huge	desktop	screen,	the	website	detects	the	viewport	size	and	responds	by
adjusting	layouts,	font	sizes,	image	sizes,	and	more	to	optimize	the	website	for	that
particular	viewport	size.

While	most	of	the	magic	of	responsive	design	happens	with	media	queries	and	other	CSS,
JavaScript	can	help	to	enhance	the	experience	even	further	for	our	website	visitors.	Some
elements	and	layouts	aren’t	easily	adapted	to	the	viewport	size	with	just	CSS.	JavaScript
can	fill	in	and	help	us	take	our	responsive	designs	to	the	next	level.

In	this	chapter,	we’ll	cover	the	following	topics:

Using	the	FitVids	plugin	to	fit	video	players	to	the	viewport
Turning	a	drop-down	menu	into	a	responsive	menu
Building	a	tiled	layout	to	display	image	galleries	in	responsive	designs

http://alistapart.com/article/responsive-web-design

Using	FitVids	for	responsive	videos
Video	players	are	one	of	the	handful	of	elements	on	a	website	that	don’t	readily	respond	to
being	resized	easily	with	just	CSS.	However,	video	players	are	so	popular	that	we	need	a
way	to	fit	those	into	our	responsive	designs.

jQuery	and	the	FitVids	plugin	come	to	the	rescue.	This	simple	little	script	automatically
sizes	your	videos	to	fit	inside	any	container,	whether	that’s	a	page	or	a	column	on	your
site.

Time	for	action	–	resizing	videos
Perform	the	following	steps	to	make	your	videos	respond	to	the	viewport	size:

1.	 We’ll	get	started	as	we	usually	do	by	creating	a	basic	HTML	document	and	the
associated	files	and	folders	just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	In
the	body	of	the	HTML	document,	we’ll	create	a	few	sections.	In	each	section,	we’ll
include	a	place	to	put	a	video,	a	title,	and	a	short	description,	as	shown	in	the
following	code:

<div	class="content">

		<h1>Favorite	Videos</h1>

		<section>

				<div	class="video">

				</div>

				<div	class="description">

						<h1>Maru	Being	Maru</h1>

						<p>A	video	of	Maru,	the	cutest	cat	in	Japan,	playing	with	a	box.

</p>

				</div>

		</section>

		<section>

				<div	class="video">

				</div>

				<div	class="description">

						<h1>Candy	apple	shaped	soft	candy</h1>

						<p>RRCherryPie	demonstrates	how	to	use	a	candy	kit	to	make	

adorable	candy	that	looks	like	miniature	candy	apples.</p>

				</div>

		</section>

</div>

2.	 Next,	we	want	to	add	our	videos.	I’m	going	to	choose	one	video	from	Vimeo	and	one
video	from	YouTube.	Feel	free	to	select	your	favorite	videos	to	use	for	this	example.
Each	video	service	offers	a	way	to	embed	videos	by	copying	and	pasting	a	short	bit
of	code.	Just	copy	the	following	code	to	embed	your	selected	video	into	the	<div>
element	with	class	of	video:

<div	class="video">

		<iframe	src="//player.vimeo.com/video/5056857"	width="500"	

height="333"	frameborder="0"	webkitallowfullscreen	mozallowfullscreen	

allowfullscreen></iframe>

</div>

<div	class="description">

		<h1>Maru	Being	Maru</h1>

		<p>A	video	of	Maru,	the	cutest	cat	in	Japan,	playing	with	a	box.</p>

</div>

Tip
If	you	want	to	view	your	videos	while	working	on	files	on	your	own	computer,	you’ll
have	to	make	a	small	adjustment	to	the	provided	embed	code	for	both	Vimeo	and
YouTube.	Both	services	remove	the	http:	protocol	from	the	beginning	of	the	src

attribute	to	ensure	that	their	videos	can	be	embedded	without	any	issues	on	both
secure	(https)	and	unsecure	(http)	websites.	To	view	your	videos	on	local	files,	you
just	have	to	restore	http:	as	follows:

<iframe	src="http://player.vimeo.com/video/5056857"	width="500"	

height="333"	frameborder="0"	webkitallowfullscreen	mozallowfullscreen	

allowfullscreen></iframe>

This	will	enable	you	to	view	the	videos	while	looking	at	your	local	files.

3.	 Next,	let’s	add	some	styles	to	nicely	display	our	videos	and	descriptions.	As	we’ll	be
making	our	videos	responsive,	let’s	go	ahead	and	style	the	layout	to	be	responsive,
starting	with	the	mobile	layout	first.	At	narrow	screen	widths,	we’ll	want	the
description	to	be	displayed	below	the	video.	Open	your	styles.css	file	and	add	the
few	lines	shown	in	the	following	code	snippet	to	style	your	section	elements:

.content	section	{

		margin:	1em	0;

}

.content	section	h1	{

		font-size:	1.5em;

		margin:	0	0	0.5em	0;

}

section	.video	{

		box-sizing:	border-box;

}

section	.description	{

		box-sizing:	border-box;

		padding:	0.5em	0	0	0;

}

We’re	going	to	add	just	a	bit	of	space	around	each	section	by	adding	a	top	and	bottom
margin.	Then,	we’ll	include	some	simple	styles	for	the	video	title	and	description.
Now,	view	the	page	in	the	browser	and	make	the	browser	window	narrow	to	test	your
layout.	You	should	see	something	like	the	following	screenshot:

Our	text	is	doing	just	what	we	wanted	and	is	wrapping	to	fit	within	the	browser
window.	The	videos	aren’t	resizing	correctly	though.	That’s	okay—we’ll	take	care	of
those	later	after	we’ve	set	up	our	responsive	layout	in	CSS	only.

4.	 Next,	we’ll	add	some	media	queries	to	the	CSS	files	so	that	when	the	screen	gets
wider,	the	text	will	appear	next	to	the	videos	rather	than	underneath	them.	In	your
styles.css	file,	add	the	following	styles:

@media	(min-width:	24em)	{

		section	.video	{

				float:	left;

				width:	50%;

		}

		section	.description	{

				float:	right;

				padding:	0	0	0	1em;

				width:	50%;

		}

}

@media	(min-width:	36em)	{

		section	.video	{

				width:	75%;

		}

		section	.description	{

				width:	25%;

		}

}

When	the	screen	is	at	least	24	em	wide,	we’ll	divide	the	screen	in	two	equal-width
(50%)	columns—one	column	will	hold	our	video	and	another	column	will	hold	the
title	and	description	for	the	video.	We’re	working	with	ems	rather	than	pixels	because
we	need	a	flexible	unit	when	working	with	responsive	designs.	Ems	or	rems	are
better	suited	to	responsive	designs	than	pixel	measurements.

When	the	screen	is	even	wider,	at	least	36	em	wide,	we’ll	let	the	video	take	up	75
percent	of	the	width	and	leave	25	percent	for	the	title	and	description.

The	only	thing	we	need	to	do	to	our	CSS	code	now	is	to	make	sure	that	we’re
containing	the	floats	inside	each	section.	That’s	easy	enough	to	do—just	add	the
following	code	snippet	to	your	styles.css	file:

.content	section:after	{

		clear:	both;

		content:	'';

		display:	table;

}

Now	if	you	open	the	page	in	a	browser	and	adjust	the	width	from	narrow	to	wide,
you’ll	see	the	layout	adjusted	as	shown	in	the	following	screenshot:

However,	our	videos	aren’t	adjusting	correctly,	which	is	frustrating.	In	fact,	the
videos	are	often	covering	up	the	text	because	they’re	too	wide	for	the	layout.

5.	 We’ll	use	the	FitVids	jQuery	plugin	to	resize	the	videos	so	that	they	fit	correctly
inside	our	responsive	layout.	First	of	all,	we	need	to	download	the	plugin.	You	won’t
find	FitVids	inside	the	jQuery	plugin	repository,	but	it	is	hosted	on	GitHub.	There’s	a
brief	page	with	some	demos	at	http://fitvidsjs.com;	scroll	down	the	page	to	find	the
link	to	download	the	plugin	from	GitHub.	Follow	that	link,	then	click	on	the
Download	Zip	button.

6.	 Unzip	the	folder	and	take	a	look	at	the	files	inside.	The	following	screenshot	shows
the	contents	of	the	folder:

http://fitvidsjs.com

This	is	a	pretty	simple	plugin,	so	there’s	not	a	whole	lot	here.	We’ve	already	seen	the
bower.js	file	in	other	plugins	and	know	that	we	can	safely	ignore	that.	There’s	a
README	file	with	some	information	about	the	plugin.	The	CONTRIBUTING	file	has	some
information	for	developers	who	might	want	to	contribute	towards	making	the	plugin
better.	That	leaves	us	with	the	tests.html	file	and	jquery.fitvids.js.	The	HTML
file,	as	you	can	probably	guess,	is	just	a	file	with	several	different	videos	embedded
from	different	video	services	to	show	them	working	inside	a	responsive	design.	The
JavaScript	file	is	our	plugin.	Copy	jquery.fitvids.js	to	your	own	scripts	folder.

7.	 Next,	we’ll	attach	the	plugin	to	our	HTML	page.	At	the	bottom	of	the	file,	add	a
<script>	tag	to	include	the	plugin	after	jQuery,	but	before	your	own	scripts.js
file:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.fitvids.js"></script>

<script	src="scripts/scripts.js"></script>

</body>

</html>

8.	 Finally,	we	have	to	write	a	bit	of	JavaScript	to	tell	FitVids	to	resize	our	videos
correctly.	Open	your	scripts.js	file	and	add	the	document	ready	statement:

$(document).ready(function(){

		//	Our	code	will	go	here

});

9.	 A	quick	look	at	the	documentation	for	the	video	shows	us	that	we	need	to	select
whatever	HTML	element	it	is	that	contains	our	video	or	videos	and	then	call	the
fitVids()	method.	We’ve	wrapped	each	of	our	videos	in	a	div	element	with	class
of	video,	so	this	is	what	we’ll	select.	Use	the	following	code	to	select	the	correct
element	and	call	the	fitVids()	method:

$(document).ready(function(){

		$('.video').fitVids();

});

Now,	if	you	refresh	the	page	in	the	browser	and	try	resizing	the	window	to	different
widths,	you’ll	see	that	the	videos	resize	correctly	to	fit	within	the	responsive	layout

that	we’ve	created,	as	shown	in	the	following	screenshot:

What	just	happened?
We	used	the	FitVids	jQuery	plugin	to	resize	videos	embedded	from	Vimeo	and	YouTube
to	fit	within	a	responsive	layout.	Now,	no	matter	what	width	our	screen	is,	the	videos
display	at	the	perfect	size,	and	the	plugin	is	both	small	and	easy	to	use.	After	setting	up	a
responsive	layout,	include	the	plugin	file,	select	the	HTML	element	that	contains	your
videos,	and	then	call	the	fitVids()	method.	The	plugin	takes	care	of	everything	else	to
make	the	videos	resize	fluidly	to	fit	within	a	responsive	layout.

Pop	quiz	–	choosing	breakpoints	for	responsive
design
Q1.	Which	of	the	following	is	the	best	approach	to	choosing	breakpoints	for	a	responsive
design?

1.	 Set	breakpoints	to	the	pixel	widths	of	the	most	popular	devices.
2.	 Always	use	the	same	three	breakpoints	for	consistency	across	websites.
3.	 Set	breakpoints	where	your	content	starts	to	look	and	feel	awkward.
4.	 Choose	breakpoints	at	random.

Responsive	menus
In	Chapter	4,	Building	an	Interactive	Navigation	Menu,	we	made	great	use	of	the
Superfish	plugin	to	create	animated	drop-down	and	fly-out	menus.	The	gorgeous	menus
we	can	create	with	Superfish	are	nice,	but	they’re	not	going	to	work	very	nicely	for	us	if
we’re	making	a	responsive	design.	On	wider	screen	sizes,	the	menus	will	work	great,	but
as	we	start	to	use	smaller	screens	like	those	found	on	mobile	devices,	we’ll	lose	all	the
benefits	of	the	Superfish	plugin.

A	convention	is	quickly	being	established	for	responsive	menus:	on	screen	sizes	too	small
to	display	a	full	menu	bar,	the	menu	is	collapsed	to	a	single	three-line	character	(☰),
sometimes	accompanied	by	the	word	Menu.	This	character	is	most	often	referred	to	as	a
hamburger,	but	might	also	be	called	a	same-o	or	navigation	drawer.	When	the
hamburger	is	clicked,	the	menu	opens	and	is	available	for	exploration	to	our	site	visitor.

We’ll	take	a	look	at	how	we	can	combine	the	MeanMenu	jQuery	plugin	with	Superfish	to
create	a	menu	that	works	well,	no	matter	what	screen	size	our	site	visitors	are	using.

Time	for	action	–	making	our	menu
responsive
We’ll	get	started	with	the	custom-designed	menu	we	created	in	the	section	The	hoverIntent
plugin	of	Chapter	4,	Building	an	Interactive	Navigation	Menu.	Then,	we’ll	perform	the
following	steps	to	make	that	menu	work	for	responsive	designs:

1.	 We’re	going	to	use	the	MeanMenu	plugin	from	MeanThemes	to	make	our	menu
responsive.	The	MeanMenu	plugin	is	available	from	GitHub	at
https://github.com/weare2ndfloor/meanMenu.	Head	over	there	and	find	the
Download	Zip	button	in	the	right-hand	side	column	to	download	a	ZIP	file	of	all	the
files	we’ll	need	to	get	the	MeanMenu	working.

2.	 Now	that	we’ve	downloaded	that	ZIP	file,	let’s	open	it	up	and	take	a	look	at	what’s
inside:

This	is	pretty	straightforward.	We	have	a	demo	HTML	file	to	show	us	the	MeanMenu
plugin	in	action.	There’s	a	copy	of	the	GPL	license.	There	are	the	JavaScript	and	CSS
files	for	the	menu,	along	with	a	minified	copy	of	each.	And	finally,	there’s	a	README
file	with	some	documentation.

3.	 First	of	all,	we’ll	get	the	JavaScript	we	need	copied	to	our	own	project	and	attached
to	our	HTML	file.	Copy	jquery.meanmenu.min.js	to	your	own	scripts	folder,	then
attach	it	at	the	bottom	of	your	HTML	file	before	your	own	scripts.js	file,	as
follows:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/hoverIntent.js"></script>

<script	src="scripts/superfish.js"></script>

<script	src="scripts/jquery.meanmenu.min.js"></script>

<script	src="scripts/scripts.js"></script>

</body>

</html>

4.	 Next,	we	need	some	CSS	code	to	style	the	menu.	We’re	going	to	end	up	with	three
different	types	of	CSS	code:

The	first	one	is	CSS	that	applies	to	our	menu	items	at	all	times.	These	items	are
things	such	as	font-family,	background-color,	color,	and	so	on.	Our	menu	is

https://github.com/weare2ndfloor/meanMenu

going	to	have	the	.sf-menu	class	at	all	times,	so	we	can	use	that	to	prepend	our
selectors	for	CSS	that	should	always	apply.
Then,	we	have	CSS	that	only	applies	to	our	menu	on	smaller	screens	where	the
menu	is	collapsed	to	a	hamburger.	The	MeanMenu	plugin	adds	a	class	of	mean-
container	to	the	<body>	tag	when	the	MeanMenu	is	displayed.	We	can	use	that
class	to	prepend	our	selectors	for	CSS	that	should	only	apply	to	the	collapsed
menu.
And	lastly,	we	have	CSS	that	only	applies	to	our	menu	on	larger	screens	where
the	full	menu	bar	is	visible.	We	can	add	a	CSS	class	of	super-nav	to	the	<nav>
tag	that	wraps	our	menu.	Then	we	can	use	this	class	to	prepend	our	CSS
selectors	for	the	full	menu	to	be	sure	they	only	apply	when	the	full	menu	is
visible.	This	is	achieved	as	follows:

<nav	class="super-nav">

		<ul	id="sfNav"	class="sf-menu">

				Papilionidae

				...

				

		

</nav>

5.	 Let’s	get	started	by	taking	the	styles	we’ve	already	written	for	our	menu	and	dividing
them	up	into	universal	navigation	styles	and	styles	used	only	for	wider	screens	where
the	full	menu	is	visible.	These	styles	will	replace	the	styles	we’ve	already	written	in
our	CSS	file	to	style	our	menu.	The	following	styles	are	the	universal	styles	for	the
menu:

.sf-menu	{

		background:	white;

}

.sf-menu:after	{

		clear:	both;

		content:	'';

		display:	table;

}

Next,	we	have	some	universal	styles	for	the	first	level	of	the	menu:

.sf-menu	li	{

		position:	relative;

}

.sf-menu	li:hover	{

		background:	#a0d468;

}

.sf-menu	a	{

		color:	#444;

		display:	block;

		padding:	1.5em	1em;

		position:	relative;

		text-decoration:	none;

}

.sf-menu	a:hover	{

		background:	#a0d468;

		color:	white;

}

The	following	are	some	universal	styles	for	the	second	level	of	the	menu:

.sf-menu	ul	{

		background:	#a0d468;

		z-index:	99;

}

.sf-menu	ul	li:hover	{

		background:	#8cc152;

}

.sf-menu	ul	a:hover	{

		background:	#8cc152;

}

.sf-menu	li:hover	>	ul	{

		display:	block;

}

Finally,	we	have	some	universal	styles	for	the	third	level	of	the	menu:

.sf-menu	ul	ul	{

		background:	#8cc152;

}

.sf-menu	ul	ul	li:hover	{

		background:	#7bb140;

}

.sf-menu	ul	ul	a:hover	{

		background:	#7bb140;

}

6.	 Next	up,	we’ll	get	those	styles	that	apply	just	to	the	large-screen	version	of	our	menu.
We’ll	start	off	with	general	menu	styles,	as	follows:

nav.super-nav	{

		margin:	2em	1em;

}

.super-nav	.sf-menu	{

		border-radius:	7px;

}

Then,	we’ll	write	some	styles	for	the	first	level	of	the	navigation.	Notice	how	each
selector	includes	the	.super-nav	class	at	the	beginning	to	make	sure	these	styles	only
apply	when	the	full	menu	is	visible:

.super-nav	.sf-menu	li	{

		white-space:	nowrap;

}

.super-nav	.sf-menu	>	li:first-child,

.super-nav	.sf-menu	>	li:first-child	a	{

		border-top-left-radius:	7px;

}

.super-nav	.sf-menu	>	li	{

		float:	left;

}

Next	up,	we	have	some	styles	for	the	second	level	of	the	navigation:

.super-nav	.sf-menu	ul	{

		border-bottom-right-radius:	7px;

		border-bottom-left-radius:	7px;

		display:	none;

		left:	0;

		min-width:	12em;

		position:	absolute;

		top:	100%;

}

.super-nav	.sf-menu	ul	>	li:last-child,

.super-nav	.sf-menu	ul	>	li:last-child	a	{

		border-bottom-left-radius:	7px;

		border-bottom-right-radius:	7px;

}

Then,	we	have	some	styles	for	the	third	level:

.super-nav	.sf-menu	ul	ul	{

		border-top-right-radius:	7px;

		top:	0;

		left:	100%;

}

.super-nav	.sf-menu	ul	ul	>	li:first-child,

.super-nav	.sf-menu	ul	ul	>	li:first-child	a	{

		border-top-right-radius:	7px;

}

.super-nav	.sf-menu	ul	ul	>	li:last-child,

.super-nav	.sf-menu	ul	ul	>	li:last-child	a	{

		border-bottom-right-radius:	7px;

}

Finally,	we	have	some	styles	for	the	extras—mainly	the	arrows	that	show	whether	a
menu	item	is	hiding	a	submenu:

.super-nav	.sf-arrows	.sf-with-ul	{

		padding-right:	2.5em;

}

.super-nav	.sf-arrows	.sf-with-ul:after	{

		border:	5px	solid	transparent;

		border-top-color:	#444;

		content:	'';

		height:	0;

		margin-top:	-3px;

		position:	absolute;

		right:	1em;

		top:	50%;

		width:	0;

}

.super-nav	.sf-arrows	>	li	>	.sf-with-ul:focus:after,

.super-nav	.sf-arrows	>	li:hover	>	.sf-with-ul:after	{

		border-top-color:	white;

}

.super-nav	.sf-arrows	ul	.sf-with-ul:after	{

		margin-top:	-5px;

		margin-right:	-3px;

		border-color:	transparent;

		border-left-color:	#e7f2dc;

}

.super-nav	.sf-arrows	ul	li	>	.sf-with-ul:focus:after,

.super-nav	.sf-arrows	ul	li:hover	>	.sf-with-ul:after	{

		border-left-color:	white;

}

7.	 Now,	the	only	thing	left	to	style	is	the	collapsed	menu	that	will	be	visible	only	on
narrower	screens.	For	that,	we	can	use	the	CSS	code	that	was	supplied	with	the
MeanMenu	plugin	as	a	template	and	just	customize	it	to	suit	our	needs.

As	we’re	going	to	change	the	styles	quite	a	lot	to	fit	our	design,	we’ll	copy	the
MeanMenu	CSS	code	to	our	own	styles.css	file,	and	then	modify	it	to	suit	our
needs.	Starting	from	the	CSS	code	provided	with	a	jQuery	plugin	is	a	great	way	to
customize	the	appearance	without	having	to	do	all	the	legwork	of	figuring	out	what
styles	are	needed	on	your	own.	We’ll	start	by	writing	some	general	styles	for	the
MeanMenu	container,	as	follows:

a.meanmenu-reveal	{

		display:	none;

}

.mean-container	.mean-bar	{

		background:	white;

		padding:	0.222em	0;

		min-height:	2.531em;

		position:	relative;

		width:	100%;

		z-index:	999999;

}

We’ll	hide	the	button	to	reveal	the	menu	and	then	use	JavaScript	later	to	only	show	it
when	we	need	it.

8.	 Now	we’ll	style	the	reveal	button	to	look	just	the	way	we’d	like:

.mean-container	a.meanmenu-reveal	{

		color:	#444;

		cursor:	pointer;

		display:	block;

		font-size:	18px;

		height:	1.5em;

		line-height:	1.5;

		padding:	13px	13px	11px	13px;

		position:	absolute;

		right:	0;

		text-decoration:	none;

		text-indent:	-9999em;

		top:	0;

		width:	1.5em;

}

.mean-container	a.meanmenu-reveal	span	{

		background:	#444;

		display:	block;

		height:	0.198em;

		margin-top:	0.198em;

		width:	100%;

}

9.	 Next,	we’ll	write	some	styles	for	the	different	levels	of	the	menu,	when	the	mobile
version	is	visible:

.mean-container	.mean-nav	{

		background:	white;

		margin-top:	2.25em;

		width:	100%;

}

.mean-container	.mean-nav	ul	{

		width:	100%;

}

.mean-container	.mean-nav	ul	li	{

		position:	relative;

		width:	100%;

}

.mean-container	.mean-nav	ul	li:after	{

		clear:	both;

		content:	'';

		display:	table;

}

.mean-container	.mean-nav	ul	li	a	{

		border-bottom:	1px	solid	rgba(160,	212,	104,	0.3);

		color:	#444;

		display:	block;

		padding:	1em	5%;

		text-align:	left;

		text-decoration:	none;

		width:	90%;

}

.mean-container	.mean-nav	ul	li:hover	a,

.mean-container	.mean-nav	ul	li	a:hover	{

		color:	white;

}

.mean-container	.mean-nav	ul	li	li	a	{

		border-bottom:	1px	solid	rgba(255,255,255,0.5);

		padding:	1em	10%;

		width:	80%;

}

.mean-container	.mean-nav	ul	li.mean-last	a	{

		border-bottom:	none;

		margin-bottom:	0;

}

.mean-container	.mean-nav	ul	li	li	li	a	{

		width:	70%;

		padding:	1em	15%;

}

.mean-container	.mean-nav	ul	li	li	li	li	a	{

		width:	60%;

		padding:	1em	20%;

}

.mean-container	.mean-nav	ul	li	li	li	li	li	a	{

		width:	50%;

		padding:	1em	25%;

}

10.	 Now,	we	can	write	some	styles	for	the	reveal	and	hide	buttons	for	the	menu:

.mean-container	.mean-nav	ul	li	a.mean-expand	{

		border:	none;

		height:	1.688em;

		padding:	0.75em;

		position:	absolute;

		right:	0;

		text-align:	center;

		top:	0;

		width:	1.688em;

		z-index:	2;

}

.mean-container	.mean-nav	ul	li	a.mean-expand:hover	{

		background:	none;

}

.mean-container	.mean-push	{

		clear:	both;

		float:	left;

		width:	100%;

}

11.	 Finally,	we’ll	finish	up	with	some	general	styles	for	the	mobile	menu:

.mean-nav	.wrapper	{

		width:	100%;

}

.mean-container	.mean-bar,	.mean-container	.mean-bar	*	{

		box-sizing:	content-box;

}

12.	 Phew!	That	was	a	lot	of	CSS,	but	really	these	plugins	do	their	job	so	well,	most	of	the
work	in	getting	these	menus	to	work	is	getting	all	the	CSS	code	properly	sorted	out.
Now	that	we’ve	got	that	out	of	the	way,	let’s	open	up	our	scripts.js	file	and	add	a
line	to	call	the	meanmenu()	method	for	our	menu,	as	follows:

$(document).ready(function(){

		$('#sfNav').superfish({

				animation:	{

						height:	'show'

				}

		});

		$('nav').meanmenu();

});

Now,	if	you	refresh	the	page	in	the	browser	and	make	the	window	narrow,	you’ll	see
that	the	Superfish	navigation	bar	disappears	and	is	replaced	by	a	hamburger	menu,	as
shown	in	the	following	screenshot:

Clicking	on	the	hamburger	opens	up	the	menu	for	further	exploration,	as	follows:

13.	 Now,	let’s	take	a	look	at	how	we	can	use	some	of	the	options	supplied	with	the
MeanMenu	plugin	to	adjust	our	menu	to	work	just	the	way	we’d	like.

First	of	all,	let’s	figure	out	how	narrow	the	screen	will	look	when	the	MeanMenu
plugin	kicks	in.	By	default,	MeanMenu	will	replace	the	full	navigation	when	the
screen	is	480	pixels	wide	or	less.	However,	our	menu	is	pretty	wide	and	starts	to	wrap
to	a	new	line	way	before	that.	Testing	out	the	menu	by	adjusting	the	browser	width,
we	can	see	that	we’ll	need	MeanMenu	to	replace	the	full	navigation	bar	for	screens
that	are	about	880	pixels	or	narrower.

Tip
Each	navigation	bar	is	unique,	so	it’s	important	to	test	your	navigation	bar,	and	in
fact,	all	of	your	content,	to	see	at	which	screen	widths	it	starts	to	look	or	feel
awkward.	Rather	than	setting	breakpoints	at	the	widths	of	specific	devices	that
happen	to	be	popular	right	now,	use	your	design	and	content	to	determine	where	the

breakpoints	should	be	placed.	This	way,	your	design	will	remain	fresh,	relevant,	and
usable	no	matter	which	devices	and	screen	sizes	are	popular	in	the	following	year	or
in	the	next	five	years.

To	adjust	the	width	for	MeanMenu,	we’ll	use	the	meanScreenWidth	option,	as
follows:

$('nav').meanmenu({

		meanScreenWidth:	'880'

});

14.	 Next	up,	the	MeanMenu	plugin	uses	a	hamburger	as	the	symbol	that	will	open	the
menu,	and	then	a	letter	X	as	the	character	that	will	close	the	menu.	The	multiplication
symbol	(×)	is	more	aesthetically	pleasing,	so	let’s	switch	the	close	symbol.	We	can
use	the	meanMenuClose	option	to	set	the	close	symbol	to	whatever	character	we’d
like,	as	shown	in	the	following	code:

$('nav').meanmenu({

		meanScreenWidth:	'880',

		meanMenuClose:	'\xD7'

});

Wait,	\xd7?	What	is	that?	It’s	a	peculiar	JavaScript	way	of	writing	special	characters
such	as	the	multiplication	sign.	How	are	you	supposed	to	know	what	that	special
code	is?	Head	on	over	to	http://www.charbase.com/	and	do	a	quick	search	for	the
character	you’re	looking	for.	A	search	for	multiplication	easily	turns	up	our
multiplication	sign	and	you	can	see	that	a	JavaScript	Escape	value	is	listed.	You	just
have	to	copy	and	paste	it	into	your	JavaScript	to	produce	the	special	character.

On	the	left,	you	can	see	the	menu	with	the	letter	X	as	the	close	symbol,	and	on	the
right	with	the	multiplication	sign.	The	difference	is	subtle,	but	the	multiplication
symbol	feels	more	like	a	close	button.

15.	 Finally,	as	the	hyphen	(-)	character	used	to	collapse	submenu	items	is	a	bit	too	small,
let’s	replace	it	with	an	em	dash	to	make	it	a	larger	and	more	noticeable	target.	We	can
use	the	meanContract	option	to	set	this:

$('nav').meanmenu({

		meanScreenWidth:	'880',

		meanMenuClose:	'\xD7',

		meanContract:	'\u2014'

});

http://www.charbase.com/

Again,	we’re	using	the	special	JavaScript	Escape	for	that	character.	The	following
screenshot	shows	the	difference	between	using	a	hyphen	(-)	and	an	em	dash	(—):

You	can	see	that	the	em	dash	is	significantly	larger	than	the	hyphen,	and	makes	it
easier	to	tap	or	click	on	the	character	to	collapse	the	submenus	again.	Now	the	menus
work	well	for	all	site	visitors,	no	matter	what	screen	size	they	happen	to	be	using.

What	just	happened?
We	took	our	custom,	animated	drop-down	menu	that	we	created	in	Chapter	4,	Building	an
Interactive	Navigation	Menu,	and	updated	it	to	make	it	ideal	for	use	in	responsive	designs.
We	used	the	MeanMenu	plugin	to	help	us	handle	the	transition	between	the	full	menu	and
the	responsive	menu.	The	responsive	menu	is	replaced	with	a	hamburger	icon,	which
when	clicked	or	tapped	opens	the	full	menu.

Have	a	go	hero	–	create	a	custom	menu
Now	that	you’ve	seen	how	to	work	with	MeanMenu	and	Superfish,	design	and	build	your
own	custom	menu.	Customize	the	appearance,	the	animations,	the	size	at	which	it
collapses	to	the	mobile	menu,	and	so	on.

Creating	a	tiled	layout
In	a	tiled	layout,	or	a	masonry	layout,	HTML	elements	are	fit	together	like	bricks	in	a	wall
rather	than	the	strict	grid	layouts	we	can	create	with	just	CSS.	With	CSS,	we’re	limited	to
layouts	as	shown	in	the	following	figure:

This	is	a	perfectly	acceptable	way	to	lay	out	our	content;	our	site	visitors	can	view	all	of
the	content	without	a	problem.	However,	if	we	add	JavaScript	to	the	mix,	we	can	improve
those	layouts	a	bit	by	making	them	fit	together	as	shown	in	the	following	figure:

Tiled	layouts	or	masonry	layouts	can	help	to	close	up	gaps	left	by	items	of	different
heights.	Tiled	layouts	are	great	for	situations	where	our	site	visitors	are	browsing	through
lots	of	graphical	content—such	as	a	photo	gallery.	They’re	less	ideal	for	situations	where
site	visitors	might	be	looking	for	something	specific	or	where	the	content	is	less	graphical
—such	as	a	list	of	search	results.

To	accomplish	our	tiled	layout,	we’ll	be	using	the	excellent	Masonry	library	by	David
DeSandro.

Time	for	action	–	creating	a	masonry
layout
Perform	the	following	steps	to	create	a	tiled	layout:

1.	 We’ll	get	started	by	creating	a	basic	HTML	document	and	the	associated	files	and
folders	just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	In	the	body	of	the
HTML	document,	we’ll	set	up	a	container	with	a	series	of	repeating	elements	inside.
We’ll	use	a	list	()	as	the	container	and	individual	list	items	()	inside	for	the
repeating	elements.	Inside	each	list	item,	we’ll	place	an	image	and	some	text	that
describes	that	image,	as	follows:

<div	class="content">

		<h1>Cats	of	the	World</h1>

</div>

<ul	class="container">

		<li	class="cat">

				<figure>

						

						<figcaption>

								<h2>Siamese</h2>

						</figcaption>

				</figure>

				<div	class="info">

						<div	class="traits">

								<dl>

										<dt>Country</dt>

										<dd>Thailand</dd>

								</dl>

								<dl>

										<dt>Coat</dt>

										<dd>Short</dd>

								</dl>

								<dl>

										<dt>Pattern</dt>

										<dd>Colorpoint</dd>

								</dl>

						</div>

				</div>

		

		...

We’re	using	an	HTML5	<figure>	element	to	hold	the	image	itself	and	a	caption	for
the	image	inside	a	<figcaption>	element.	Next,	we	created	an	area	where	we	can
share	some	more	details	about	the	image.

Create	at	least	a	dozen	similar	list	items	inside	the	container	so	that	you’ll	be	able	to
see	the	difference	made	once	we	apply	the	Masonry	script.

2.	 Next,	we’ll	style	our	list	items.	Open	up	your	styles.css	file	and	add	the	following
lines:

.cat	{

		background:	white;

		border-radius:	5px;

		color:	#434a54;

		margin:	5%	0;

		vertical-align:	top;

		width:	100%;

}

We’re	going	to	style	our	layout	responsively,	starting	with	mobile	layout	first.	At
small	screen	sizes,	we	want	each	list	item	to	fill	the	width	of	the	screen.

3.	 Next,	we’ll	add	a	media	query	to	display	the	items	in	two	columns	for	slightly	wider
screens.	Add	the	following	code	snippet	to	your	styles.css	file:

@media	(min-width:30em)	{

		.container	{

				font-size:	0.75em;

		}

		.cat	{

				display:	inline-block;

				margin:	3%	1%;

				width:	44%;

		}

}

First,	we’ll	make	the	font	size	a	bit	smaller	to	make	sure	that	our	text	fits	into	the
narrow	columns.	Next,	we	set	our	individual	items	to	display:	inline-block,
which	lines	them	up,	add	a	bit	of	a	margin,	and	set	a	width.

4.	 Next,	let’s	create	a	three-column	layout	for	wider	screens.	Add	the	following	code
snippet	to	your	styles.css	file:

@media	(min-width:45em)	{

		.cat	{

				margin:	2%	1%;

				width:	30%;

		}

}

Since	the	display:	inline-block	declaration	will	still	apply	at	this	width,	all	we
have	to	do	is	adjust	the	width	and	margins	of	our	individual	items.

5.	 Finally,	if	the	screen	is	wide	enough,	we	can	set	the	font	size	back	to	full	size.	Add
the	following	code	snippet	to	your	styles.css	file:

@media	(min-width:60em)	{

		.container	{

				font-size:	1em;

		}

}

Now,	if	you	view	your	page	in	the	browser	and	change	the	width	of	the	window,

you’ll	see	the	layout	changes	from	one	column,	at	narrow	widths,	to	two	columns,	as
the	window	gets	wider,	to	three	columns,	as	it	gets	even	wider.	Have	a	look	at	the
following	screenshot:

However,	our	images	are	overflowing	their	containers	and	the	text	isn’t	very
readable.	Let’s	style	those	items	next.

6.	 We’re	going	to	position	the	image	caption	over	the	image	and	ensure	that	the	images
don’t	overflow	their	containers.	Add	the	following	code	snippet	to	your	styles.css
file:

.cat	img	{

		border-radius:	5px	5px	0	0;

		height:	auto;

		width:	100%;

}

.cat	figure	{

		position:	relative;

}

.cat	figcaption	{

		background:	linear-gradient(to	bottom,	rgba(0,0,0,0.65)	

0%,rgba(0,0,0,0)	100%);

		border-radius:	5px	5px	0	0;

		position:	absolute;

		top:	0;

		width:	100%;

}

.cat	figcaption	h2	{

		color:	white;

		font-size:	2.25em;

		margin:	0;

		padding:	0.25em;

}

As	we	can’t	be	sure	that	all	the	images	will	be	dark	enough	at	the	top	for	a	white

headline	to	be	visible,	we’ll	add	a	dark	gradient	as	a	background	on	the
<figcaption>	element	to	make	sure	the	text	is	visible.	Then,	we’ll	position	the
caption	at	the	top	of	each	image.	If	you	refresh	the	page	in	a	browser	now,	the	layout
is	easier	to	see:

7.	 Next	up,	let’s	style	the	text	underneath	each	image.	To	make	sure	it’s	flexible,	we’ll
use	a	table-like	layout.	Add	the	following	code	snippet	to	your	styles.css	file:

.cat	.info	{

		display:	table;

		width:	100%;

}

.cat	.traits	{

		display:	table-row;

}

.cat	.traits	dl	{

		display:	table-cell;

		line-height:	1.125;

		padding:	1em	0.5em;

		text-align:	center;

		vertical-align:	top;

		width:	33%;

}

.cat	.traits	dt	{

		color:	#aab2bd;

		font-size:	0.75em;

}

.cat	.traits	dd	{

		font-size:	1.125em;

}

This	lines	up	our	three	bits	of	information	about	each	image	in	a	neat	row	under	the
image,	as	shown	in	the	following	screenshot:

Because	we’ve	set	the	widths	in	percentages,	this	row	of	text	will	flex	with	our	layout
and	always	fit	nicely	into	three	columns	beneath	the	image.

At	this	point,	we	have	a	responsive	grid	layout	that’s	perfectly	acceptable	for	our	site
visitors	who	may	not	have	JavaScript	enabled.	Next,	let’s	take	a	look	at	using
JavaScript	to	switch	this	to	a	tiled	layout	for	those	site	visitors	who	do	have
JavaScript	enabled.

8.	 We’re	going	to	use	the	Masonry	library.	Masonry	is	not	a	jQuery	plugin—it	will
work	with	or	without	jQuery.	In	our	case,	we’re	going	to	use	jQuery	because	it	makes
it	just	a	bit	easier	to	work	with.	First	of	all,	head	over	to
http://masonry.desandro.com/	to	get	the	documentation	and	download	for	Masonry.
To	download	the	file	we	need,	click	on	the	Download	masonry.pkgd.min.js	button.

This	opens	the	JavaScript	file	right	in	your	browser	window.	You	can	right-click	on	it
and	then	click	on	Save	As	or	from	the	File	menu,	click	on	Save	to	save	the	file	to
your	own	scripts	folder.

9.	 Next,	we	need	to	attach	the	Masonry	file	to	our	HTML	file.	At	the	bottom	of	the
document,	add	the	file	between	jQuery	and	your	own	scripts.js	file,	using	the
following	highlighted	line	of	code:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/masonry.pkgd.min.js"></script>

<script	src="scripts/scripts.js"></script>

10.	 Now	open	your	scripts.js	file	and	add	the	document	ready	statement,	as	follows:

http://masonry.desandro.com/

$(document).ready(function(){

		//	Our	code	will	go	here

});

11.	 When	we	use	Masonry	with	jQuery,	it	can	work	just	like	a	jQuery	plugin—we	can
select	an	element,	then	call	the	masonry()	method	on	that	element.	The	element	we
select	is	the	container	of	all	of	our	items.	In	our	case,	it’s	the		element	with	a
class	selector	of	container.	Select	that	element	and	call	the	masonry()	method,	as
follows:

$(document).ready(function(){

		$('.container').masonry();

});

12.	 While	that’s	technically	all	we	need	to	get	a	tiled	layout	to	work,	David	DeSandro,
Masonry’s	author,	recommends	that	we	always	set	two	options	that	will	help
Masonry	perform	better.	These	two	options	are	columnWidth	and	itemSelector.	The
columnWidth	option	sets	a	width	for	the	columns	in	the	layout	and	itemSelector
helps	Masonry	identify	which	items	we	want	to	tile	in	our	layout.	The	itemSelector
option	is	easy	enough—we	want	to	use	the	list	items	inside	our	container,	to	which
we’ve	assigned	a	class	selector	of	cat.	Add	this	option	to	your	scripts.js	file,	as
follows:

$(document).ready(function(){

		$('.container').masonry({

				itemSelector:	'.cat'

		});

});

13.	 However,	this	columnWidth	option	is	a	little	more	problematic	as	we’re	using	a
responsive	layout—we	don’t	want	to	set	a	fixed	width	for	our	items.	Luckily,
Masonry	makes	this	easy	too.	We	can	use	an	item	inside	our	list	to	set	the
columnWidth	option—Masonry	will	then	calculate	the	width	of	all	items	based	on
whatever	width	our	selected	item	is.	Go	back	to	your	list	of	items	in	the	HTML	file
and	select	a	list	item—the	first	item	is	as	good	as	any;	as	in	this	case,	all	of	our	items
are	of	the	same	width.	Now,	add	a	class	of	gridsize	to	that	item,	as	follows:

<ul	class="container">

		<li	class="cat	gridsize">

						...

		

14.	 Now,	we	can	tell	Masonry	to	use	the	width	of	that	item	to	calculate	our	columnWidth
option:

$(document).ready(function(){

		$('.container').masonry({

				columnWidth:	'.gridsize',

				itemSelector:	'.cat'

		});

});

Now	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	grid	layout	has	been
transformed	into	a	responsive	tiled	layout:

What’s	more,	Masonry	has	a	lovely	transition	animation	that	floats	the	items	to	their
new	positions	after	we	resize	the	browser	window.

What	just	happened?
We	took	an	ordinary	CSS	grid	layout	and	transformed	it	into	a	tiled	layout	with	the	help	of
the	Masonry	JavaScript	library.	Items	now	move	upward	to	fill	in	vertical	gaps,	which
helps	to	make	a	grid	of	items	of	different	heights	appear	more	pleasing	to	the	eye.	The
Masonry	library	makes	creating	these	layouts	super-simple,	especially	when	we	pair	it
with	the	jQuery	library.	For	site	visitors	without	JavaScript	enabled,	the	items	will	appear
in	a	usable	CSS	grid	layout.

Creating	a	tiled	layout	with	items	of	different
widths
The	tiled	layout	we	created	works	well	as	long	as	all	of	our	items	have	the	same	width,	but
what	if	our	elements	have	different	widths?	Let’s	take	a	look	at	how	we’d	go	about	setting
up	such	a	layout.

We’re	going	to	keep	working	with	the	tiled	layout	example	we	set	up	in	the	section	Time
for	action	–	creating	a	masonry	layout.

Time	for	action	–	creating	a	tiled	layout
with	different	width	items
Perform	the	following	steps	to	take	the	tiled	layout	we’ve	already	created	and	to	make	it
work	for	items	with	different	widths:

1.	 First,	we	need	to	create	items	of	different	widths.	A	few	of	the	items	in	the	layout
have	images	that	are	landscape	rather	than	portrait	orientation,	which	means	those
items	appear	particularly	small	in	the	layout.	Let’s	make	those	the	width	of	two
columns	so	they	stand	out	more.	Go	back	to	the	HTML	file	for	the	list	of	items	and
add	a	class	of	w2	to	each	item	that	will	now	be	two	columns	wide:

<li	class="cat	w2">

		<figure>

				

				<figcaption>

						<h2>Himalayan</h2>

				</figcaption>

		</figure>

		<div	class="info">

				...

		</div>

2.	 Next,	open	your	styles.css	file	and	style	these	items	with	a	wider	width.	As	all
items	are	of	full	width	at	narrow	screen	sizes,	we	only	have	to	add	the	new	width	for
wider	screens	inside	our	media	queries	as	follows:

@media	(min-width:30em)	{

		.container	{

				font-size:	0.75em;

		}

		.cat	{

				display:	inline-block;

				margin:	3%	1%;

				width:	44%;

		}

		.cat.w2	{

				width:	89%;

		}

}

Where	did	we	get	that	value	of	89%?	We	want	our	block	to	be	as	wide	as	two
columns.	Each	of	our	columns	is	44	percent	wide,	so	two	of	them	would	be	88
percent	wide.	However,	there	is	also	a	1	percent	margin	between	the	single	width
images,	so	44	percent	+	1	percent	+	44	percent	=	89	percent.	For	the	widest	screens,
have	a	look	at	the	following	code:

@media	(min-width:45em)	{

		.cat	{

				margin:	2%	1%;

				width:	30%;

		}

		.cat.w2	{

				width:	61%;

		}

}

Again,	we’re	making	the	width	double	and	accounting	for	the	1	percent	margin,	so	30
percent	+	1	percent	+	30	percent	=	61	percent.

3.	 Finally,	we	just	have	to	make	sure	that	the	item	we’re	using	to	define	the
columnWidth	option	is	a	single-column	item	rather	than	one	of	the	new	two-column
wide	items.	Make	sure	that	you’ve	selected	an	item	that	doesn’t	have	the	w2	class	to
have	the	gridsize	class,	as	follows:

<li	class="cat	gridsize">

		...

<li	class="cat	w2">

		...

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	a	handful	items	are	two
columns	wide	rather	than	one	at	wider	screen	sizes:

What	just	happened?
We	took	the	tiled	layout	that	we	already	created	and	modified	it	so	that	not	all	of	our	items
share	the	same	width.	Now	we	can	see	how	Masonry	fills	in	gaps	and	creates	a	pleasing
layout	even	if	our	items	share	different	widths	as	well	as	different	heights.	All	we	needed
to	do	was	select	a	handful	of	our	items	and	modify	their	width	in	the	CSS	code—Masonry
takes	care	of	the	rest.

Summary
In	this	chapter,	we	took	a	look	at	some	jQuery	plugins	and	one	JavaScript	library	that	can
make	it	just	a	little	bit	better	to	work	with	responsive	designs.	First,	we	took	a	look	at	how
we	can	use	the	FitVids	jQuery	plugin	to	make	the	videos	resize	correctly	inside	responsive
designs.	Then	we	took	our	animated	drop-down	menu	originally	created	in	Chapter	4,
Building	an	Interactive	Navigation	Menu,	and	made	it	work	inside	responsive	designs
with	the	help	of	the	MeanMenu	plugin.	Finally,	we	took	at	look	at	how	to	build	responsive
tiled	layouts	with	the	help	of	the	Masonry	JavaScript	library.

Next	up,	we’ll	look	at	some	different	ways	that	jQuery	can	help	us	work	with	images	in	a
better	way,	including	images	inside	responsive	layouts.

Chapter	8.	Getting	the	Most	from	Images
Working	with	images	in	a	responsive	design	world	has	presented	a	whole	new	set	of
challenges	and	opportunities.	We	need	to	balance	optimizing	performance	along	with
taking	advantage	of	new	capabilities	and	gorgeous	image	display	on	retina	screens	with
minimizing	bandwidth	for	those	on	slower	connections.	It’s	a	great	idea	to	have	several
tools	in	your	toolbox	that	will	help	you	work	with	images	in	a	robust	and	flexible	way.
We’ll	be	looking	at	a	few	tools	to	deal	with	images.

In	this	chapter,	we’ll	cover	the	following	topics:

Using	lazy	loading	of	images	so	that	images	are	only	downloaded	if	they’re	scrolled
into	view
Using	image	zoom	to	allow	site	visitors	to	enlarge	the	part	of	an	image	they’re	most
interested	in
Using	fullscreen	background	images	and	slideshows

Lazy	loading	images
Imagine	you	want	to	build	a	responsive	page	with	many	big,	gorgeous	images.	What	are
the	things	you	need	to	consider	to	be	sure	that	the	page	is	as	flexible	and	optimized	as
possible?	First,	it	would	be	nice	if	we	only	loaded	the	images	when	needed;	if	a	page	has
twenty	large	images	but	a	site	visitor	never	scrolls	down	the	page	to	see	more	than	the	first
two	or	three	of	them,	why	load	all	twenty?	Second,	it	would	be	great	if	we	could	load
high-resolution	images	for	those	who	use	retina	displays	to	ensure	that	the	images	look	as
clear	and	crisp	as	possible.

There	are	a	few	proposals	in	the	works	within	the	upcoming	HTML5	specification	that
will	build	some	of	this	functionality	into	HTML.	At	the	time	of	writing	this	book,	nothing
has	been	decided	for	sure,	though	many	different	solutions	have	been	proposed.	In	the
meantime,	we	can	build	websites	that	address	these	issues	with	jQuery,	using	the	Unveil
plugin	from	Luís	Almeida.

Tip
It’s	important	that	this	is	one	case	where	we	cannot	use	progressive	enhancement.	If	we
create	a	page	with	several	image	tags,	we	can’t	prevent	those	images	from	loading	with
jQuery—all	the	images	will	load	no	matter	what.	So	for	this	example,	we’re	going	to	use
the	principle	of	graceful	degradation.	The	page	will	still	work	for	users	with	JavaScript
disabled—when	they	view	the	page,	we’ll	load	the	regular	resolution	of	each	image.

Time	for	action	–	lazy	loading	images
Perform	the	following	steps	to	create	a	page	of	images	that	load	the	correct	resolution	only
when	needed:

1.	 We’ll	get	started	by	creating	a	basic	HTML	document	and	associated	files	and	folders
just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	Inside	the	body	of	the	HTML
document,	we’ll	add	a	series	of	images	using	the	new	HTML5	figure	and
figcaption	elements,	as	shown	in	the	following	code:

<figure>

		

		<figcaption>

				<a	href="http://www.public-domain-image.com/wallpapers-public-

domain-images-pictures/a-bench-for-resting.jpg.html"	title="A	bench	for	

resting">A	bench	for	resting	by	Steve	Hillebrand,	U.S.	Fish	and	

Wildlife	Service

		</figcaption>

</figure>

Note	that	we’ve	used	a	small,	animated	.gif	image	as	a	placeholder	rather	than	the
image	we	actually	want	to	display.	We’ll	be	replacing	this	later	with	the	actual	image.
You’ll	want	to	add	at	least	four	or	five	images	to	the	page	to	appreciate	the	effect	that
Unveil	makes	possible.

2.	 Next,	we	need	to	add	some	information	about	the	paths	to	the	regular	resolution	and
high-resolution	images.	We’ll	use	the	new	HTML5	data	attributes	to	add	this	data	to
our	placeholder	image,	as	follows:

<figure>

		<img	src="images/loading.gif"	data-src="images/bench.jpg"	data-src-

retina="images/bench-2x.jpg"	/>

		...

</figure>

Add	a	data-src	attribute	that	contains	the	path	to	the	regular	resolution	image.	If	you
also	have	a	high-resolution	image	suitable	for	retina	displays,	you	can	add	the	path	to
this	image	inside	a	data-src-retina	attribute.	Note	that	the	high-resolution	image	is
optional—Unveil	will	work	just	fine	if	you	exclude	high-resolution	images.

3.	 Now,	we	can	add	a	bit	of	CSS	to	style	our	images.	Open	up	your	styles.css	file	and
add	the	following	styles:

figure	{

		margin:	2.531em	auto;

		max-width:	800px;

		text-align:	center;

}

figcaption	{

		line-height:	1.125;

		padding:	0.75em	0	1.5em	0;

}

figure	img	{

		border-radius:	5px;

		display:	inline-block;

		height:	auto;

		max-width:	100%;

}

This	bit	of	code	just	centers	the	list	of	images	on	the	page	and	adds	some	spacing
between	each	image	and	caption	pair.	If	you	look	at	the	page	in	a	browser	at	this
point,	you’ll	just	see	the	loading	image	repeated	down	the	page,	each	with	a	caption
beneath,	as	shown	in	the	following	screenshot:

4.	 Now,	we	need	to	add	the	jQuery	plugin	and	the	code	that	will	replace	these	.gif
images	with	the	actual	images.	The	Unveil	plugin	is	hosted	on	GitHub	at
https://github.com/luis-almeida/unveil—just	as	we’ve	done	before	with	plugins
hosted	on	GitHub,	click	on	the	Download	ZIP	button	in	the	right-hand	side	column.

Unzip	the	folder	and	take	a	look	inside	it.	You	should	recognize	what’s	inside	by	now
—bower.json	for	those	using	Bower,	an	img	directory	and	index.html	file	to	demo
the	plugin	at	work,	a	jQuery	file,	a	README.md	file	with	information	about	the	plugin,
and	then	the	development	and	production	versions	of	the	Unveil	plugin	,	as	shown	in
the	following	screenshot:

https://github.com/luis-almeida/unveil

Tip
jQuery	and	jQuery	plugins	are	being	updated	all	the	time.	As	new	browsers	are
released	with	new	support	and	capabilities,	and	as	JavaScript,	HTML,	and	CSS	are
further	developed,	new	versions	of	jQuery	and	plugins	are	released	to	keep	pace	with
the	change.	On	one	hand,	this	is	a	great	news—jQuery	and	accompanying	plugins	get
faster	and	more	powerful	all	the	time.	On	the	other	hand,	it	can	be	tough	to	keep	up
with	all	the	changes.	All	versions	of	the	plugins	referenced	were	current	at	the	time
of	writing	the	book,	but	you	might	find	some	differences	when	you	work	through	the
exercises.	Plugin	developers	are	usually	very	good	at	documenting	the	changes	and
updates,	so	don’t	be	afraid	to	read	through	the	documentation	so	you	can	understand
what’s	changed	and	what	adjustments	you	might	need	to	make.

5.	 Copy	jquery.unveil.js	to	your	own	scripts	folder.	Then,	attach	it	in	your	HTML
file	at	the	bottom,	between	jQuery	and	your	own	scripts.js	file,	as	follows:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.unveil.js"></script>

<script	src="scripts/scripts.js"></script>

6.	 Now,	we’re	ready	to	put	the	script	into	action.	Open	your	scripts.js	file	and	add
the	document	ready	statement:

$(document).ready(function(){

		//	Our	code	will	go	here

});

7.	 Inside	the	document	ready	statement,	add	the	following	line	of	code	to	select	the
images	and	call	the	unveil()	method:

$(document).ready(function(){

		$('img').unveil();

});

In	this	case,	our	page	is	very	simple	and	we	want	to	select	all	the	images	on	the	page.
You	might	find	yourself	in	situations	where	you	want	to	select	just	the	images	inside
a	certain	container,	or	images	with	a	certain	class	assigned	to	them.	Just	adjust	your
selector	accordingly.

If	you	refresh	the	page	at	this	point,	you’ll	see	that	the	loading	animations	are
replaced	with	either	the	regular	or	high-resolution	images,	depending	on	whether

you’re	currently	using	a	retina	display,	as	shown	in	the	following	screenshot:

8.	 So	far,	our	page	appears	to	be	working	pretty	well,	but	there	are	a	few	things	we	can
do	to	make	it	even	better.	First,	what	about	the	users	who	have	JavaScript	disabled?
The	way	the	page	is	set	up	now,	they’ll	only	see	the	loading	animations.	Let’s	get	that
fixed	so	that	it	gracefully	degrades.

After	each	image,	add	a	<noscript>	element.	Inside	the	tags,	we’ll	add	a	regular	old
HTML	image	tag,	as	follows:

<figure>

		<img	src="images/loading.gif"	data-src="images/bench.jpg"	data-src-

retina="images/bench-2x.jpg"	/>

		<noscript></noscript>

		...

</figure>

Now,	visitors	who	have	JavaScript	disabled	can	see	our	images,	but	they’ll	also	see
the	loading	.gif	image	above	each	one.	Let’s	hide	these	images	for	them.

9.	 Inside	the	HTML	document,	add	a	class	selector	of	jsOff	to	the	body	tag,	using	the
following	line	of	code:

<body	class="jsOff">

Then,	in	the	styles.css	file,	add	a	bit	of	CSS	to	hide	those	loading	.gif	images	if
the	body	has	the	jsOff	class,	as	shown	in	the	following	code:

.jsOff	figure	>	img	{

		display:	none;

}

Finally,	inside	the	scripts.js	file,	add	a	bit	of	code	to	remove	this	class	from	the
body—the	code	in	the	class	will	only	run	if	JavaScript	is	enabled:

$(document).ready(function(){

		$('body').removeClass('jsOff');

		$('img').unveil();

});

Now,	our	page	degrades	gracefully	for	those	site	visitors	who	don’t	have	JavaScript
enabled—they’ll	see	the	list	of	images	just	fine.	The	majority	of	users	will	benefit
from	having	the	correct	resolution	of	image	loaded	and	improved	performance	from
the	images	only	loaded	when	and	as	needed,	but	those	without	JavaScript	will	never
know	what	they’re	missing.	For	them,	the	experience	will	seem	complete.

10.	 We	can	also	take	the	effect	one	step	further	for	those	site	visitors	who	have	JavaScript
enabled.	We	can	fade	in	the	image	rather	than	just	popping	them	onto	the	page.	The
unveil()	method	will	let	us	set	some	options.

First,	we	can	set	a	threshold	option—how	far	from	appearing	on	the	screen	should	an
image	be	before	we	start	the	process	of	downloading	and	displaying	it?	Let’s	set	a
threshold	of	200	pixels—when	an	image	is	200	pixels	from	appearing	on	the	screen,
we’ll	start	loading	it:

$('img').unveil(200);

Next,	we	can	write	a	function	to	be	called	when	it’s	time	to	unveil	or	load	an	image.
The	following	code	shows	what	we’ll	do	to	fade	an	image	in:

$('img').unveil(200,	function(){

		$(this).hide().fadeIn();

});

This	bit	of	code	will	select	the	image	tag	and	hide	it,	then	fade	in	the	real	image	as
soon	as	it’s	loaded.	If	you	refresh	the	page	in	the	browser	now,	you’ll	see	the	images
fade	on	to	the	page	rather	than	just	appear.

What	just	happened?
We	set	up	a	page	with	many	large	images	so	that	it	only	loaded	the	images	when	needed,
thereby	helping	to	improve	performance	and	reduce	the	load	on	our	server.	We	are	also
loading	a	high-resolution	version	of	our	image	for	those	site	visitors	who	might	be	using	a
retina	display	capable	of	displaying	our	images	at	a	higher	resolution.	We	used	the	Unveil
plugin	by	Luís	Almeida	to	accomplish	all	of	that	in	just	a	few	lines	of	code.	Note	that	the
images	load	very	quickly,	even	if	they’re	large,	when	you’re	viewing	a	page	on	your	own
computer.	To	get	a	real	feel	for	the	difference	this	plugin	makes,	you	might	want	to	try
uploading	your	page	to	a	server	and	accessing	it	via	the	Web.

Pop	quiz	–	building	accessible	pages
Q1.	We’ve	learned	about	both	progressive	enhancement	and	graceful	degradation.	Why
are	these	principles	important	when	working	with	JavaScript?

1.	 They	allow	site	visitors	with	disabilities	to	access	and	use	the	pages	we	build.
2.	 They	allow	search	engines	to	correctly	index	the	pages	we	build.
3.	 They	allow	site	visitors	on	less-capable	devices	to	use	the	pages	we	build.
4.	 They	allow	site	visitors	with	JavaScript	disabled	to	access	and	use	the	pages	we

build.
5.	 All	of	the	above.

Creating	zoomable	images
Sometimes,	we	include	a	small	image	to	maintain	a	nice	layout	and	fit	more	content	on	the
screen,	but	our	site	visitors	might	want	to	see	a	larger	image	to	see	more	details.	One	way
of	handling	this	is	showing	the	full-size	image	in	a	lightbox,	like	we	did	in	Chapter	5,
Showing	Content	in	Lightboxes.	However,	another	option	we	have	is	to	zoom	in	on	the
image	right	where	it	is.	Our	site	visitor	can	move	their	mouse	to	move	around	the	image	to
see	the	details.	On	touch	screens,	they	can	use	their	finger	to	drag	over	the	image	and
zoom	in.

To	accomplish	this,	we’ll	use	the	jQuery	Zoom	plugin	by	Jack	Moore.	You	might
recognize	Jack	Moore’s	name;	he	is	also	the	author	of	the	Colorbox	plugin	we	used	in
Chapter	5,	Showing	Content	in	Lightboxes.

Time	for	action	–	creating	zoomable
images
Perform	the	following	steps	to	create	zoomable	images	on	your	HTML	pages:

1.	 We’ll	get	started	by	creating	a	basic	HTML	document	and	the	associated	files	and
folders	just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	You’ll	need	two	sizes	of
the	same	image—I’ve	found	that	if	the	smaller	image	is	approximately	one-third	the
size	of	the	larger	image,	the	zoom	functionality	works	very	well.	Inside	the	body	of
the	HTML	document,	we’ll	add	an	image	and	some	information	about	the	image,	as
follows:

<article>

		<figure>

				

		</figure>

		<div	class="flower-info">

				<h2>Aster</h2>

				<p>Aster	is	a	genus	of	flowering	plants	in	the	family	Asteraceae.	

Its	circumscription	has	been	narrowed,	and	it	now	encompasses	around	

180	species,	all	but	one	of	which	are	restricted	to	Eurasia;	many	

species	formerly	in	Aster	are	now	in	other	genera	of	the	tribe	

Astereae.</p>

		</div>

</article>

2.	 Next,	we’ll	style	this	HTML	document.	For	small	screens,	we’ll	show	the	image	with
the	information	underneath.	For	wide	screens,	we’ll	show	the	image	on	the	left-hand
side	and	the	text	on	the	right-hand	side	of	the	screen.	Open	your	styles.css	file	and
add	the	following	styles:

article	{

		margin:	2.25em	0;

}

article:after	{

		clear:	both;

		content:	'';

		display:	table;

}

figure	{

		margin:	0	0	1em	0;

		max-width:	100%;

}

figure	img	{

		height:	auto;

		max-width:	100%;

}

@media	(min-width:36rem)	{

		figure	{

				float:	left;

				margin:	0	2.25em	0	0;

				max-width:	50%;

		}

}

.flower-info	{

		overflow:	hidden;

}

article	h2	{

		font-size:	2.25em;

		line-height:	1.125;

		margin:	0	0	0.75em	0;

}

article	p	{

		line-height:	1.5;

		margin:	0	0	1.5em	0;

}

Now,	if	you	view	the	page	in	the	browser,	you’ll	see	the	images	and	accompanying
text	are	nicely	styled	and	the	layout	adjusts	nicely	to	the	width	of	the	screen,	as
shown	in	the	following	screenshot:

3.	 Next,	we	need	to	get	the	Zoom	plugin.	Head	over	to
http://www.jacklmoore.com/zoom/	where	you’ll	find	the	download	as	well	as	the
documentation	for	the	plugin.	Click	on	the	Download	link	under	the	two	sample
zoomable	images	to	download	the	ZIP	file.

4.	 Unzip	the	file.	Inside	it,	you’ll	find	all	the	usual	files—a	README.md	file,	some
samples,	and	so	on.	Look	for	jquery.zoom.min.js	and	copy	it	to	your	own	scripts
folder.

http://www.jacklmoore.com/zoom/

5.	 Now,	we	need	to	attach	the	Zoom	plugin	file	to	our	HTML	file.	At	the	bottom	of	the
file,	between	jQuery	and	your	own	scripts.js	file,	add	the	plugin	file	as	follows:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.zoom.min.js"></script>

<script	src="scripts/scripts.js"></script>

6.	 Next,	we’ll	jump	into	our	scripts.js	file	and	add	a	bit	of	code	to	get	the	zoom
working	for	the	image.	Get	started	by	adding	the	document	ready	statement:

$(document).ready(function(){

		//	Our	code	will	go	here

});

7.	 To	get	the	zoom	working,	we	need	to	select	the	element	that	actually	wraps	our
image,	rather	than	the	image	itself.	In	our	case,	we’ve	wrapped	our	image	in	a
<figure>	element,	so	this	is	what	we’ll	select.	Then,	we’ll	call	the	zoom()	method,	as
follows:

$(document).ready(function(){

		$('figure').zoom();

});

8.	 Now,	there’s	just	one	thing	that	the	Zoom	plugin	needs	to	know	from	us	in	order	to
work—we	have	to	tell	Zoom	the	path	to	the	larger	version	of	our	image.	We	can	do
that	by	passing	in	a	url	option	as	follows:

$(document).ready(function(){

		$('figure').zoom({

				url:	'images/lg-aster.jpg'

		});

});

If	you	refresh	the	page	in	the	browser	now	and	move	your	mouse	over	the	image,
you’ll	see	the	zoom	in	effect.	As	you	move	your	mouse	over	the	image,	the	zoom
effect	moves	over	different	areas	of	the	image,	allowing	you	to	see	the	details	in	all
parts	of	the	image.

9.	 It	feels	a	bit	strange	that	as	we	move	the	mouse	cursor	over	the	image,	we’re	just
seeing	the	default	cursor.	A	few	browsers	have	started	supporting	some	new	cursors,
including	the	zoom-in	cursor.	Let’s	add	a	few	lines	of	CSS	to	show	this	cursor	instead
of	the	default	for	the	browsers	that	have	this	capability.	Inside	your	styles.css	file,
add	the	following	styles	for	the	img	element:

figure	img	{

		cursor:	-webkit-zoom-in;

		cursor:	-moz-zoom-in;

		cursor:	zoom-in;

		height:	auto;

		max-width:	100%;

}

Now,	if	you’re	using	a	browser	with	support	for	this	new	cursor,	when	you	move
your	mouse	over	the	image,	you’ll	see	a	magnifying	glass	icon	instead	of	the	default

cursor:

What	just	happened?
We	created	a	zoomable	image	using	the	Zoom	plugin	by	Jack	Moore.	We	created	a	page
with	a	smaller	version	of	the	image	along	with	some	text	that	describes	the	image.	Then,
we	added	the	plugin	and	a	few	lines	of	code.	Now,	when	we	move	our	mouse	over	the
image,	you’ll	see	the	larger	version	of	the	image	appear.

Zooming	in	on	multiple	images
While	the	Zoom	plugin	was	simple	and	easy	to	use,	the	plugin	will	only	work	as	long	as
we	have	just	one	image	that’s	zoomable.	If	we	want	to	have	multiple	images	on	a	single
page,	then	we	have	to	make	some	modifications.

Remember	when	we	passed	the	url	option	to	the	zoom()	method?	We	added	a	url	option
that	points	to	the	larger	version	of	the	image—this	image	name	is	now	hardcoded	in	our
JavaScript.	If	you	add	a	second	image	to	the	page,	you’ll	find	that	when	you	try	to	zoom
in	on	it,	you’ll	see	the	first	image	rather	than	the	second.

Let’s	take	a	look	at	how	we	can	address	this	issue	and	also	make	our	JavaScript	more
portable	and	flexible.

Time	for	action	–	creating	multiple
zoomable	images
We’ll	keep	working	with	the	files	we	created	in	the	example	to	create	zoomable	images—
with	just	a	few	modifications;	we’ll	be	able	to	place	as	many	zoomable	images	on	the
page	as	we	like.	Perform	the	following	steps	to	create	multiple	zoomable	images:

1.	 Inside	the	HTML	file,	add	a	few	more	images	and	accompanying	text.	The	CSS	code
we	wrote	earlier	is	flexible	enough	to	handle	multiple	blocks	of	code.	We’re	going	to
make	just	one	small	change	to	the	HTML	file.	In	the		element,	we’ll	add	an
HTML5	data	attribute	that	contains	the	path	to	the	larger	version	of	the	image,	as
shown	in	the	following	code:

<article>

		<figure>

				<img	src="images/chamomile.jpg"	height="879"	width="1024"	

alt="Chamomile"	data-lgsrc="images/lg-chamomile.jpg">

		</figure>

		<div	class="flower-info">

				<h2>Chamomile</h2>

				<p>...</p>

		</div>

</article>

2.	 Next,	we	need	to	modify	the	JavaScript	that	we	wrote	earlier	so	that	it’s	a	bit	more
flexible.	Inside	the	document	ready	statement,	remove	the	code	we	wrote	earlier	so
that	your	scripts.js	file	looks	like	the	following	code	snippet:

$(document).ready(function(){

		

});

3.	 Each	individual	image	has	its	own	accompanying	larger	image	that	should	be	shown
when	we	zoom	in.	We’ll	need	to	step	through	each	image,	one	at	a	time,	and	collect
the	appropriate	image	path.	To	do	this,	we’ll	use	the	jQuery’s	each()	method.	This
gets	started	as	follows:

$(document).ready(function(){

		$('figure').each();

});

4.	 Inside	the	each()	method,	we’ll	run	a	function	that	will	find	the	unique	file	path	and
then	assign	it	inside	the	zoom()	method.	This	just	means	that	we’re	going	to	go
through	each	image	on	the	page	and	tell	the	Zoom	plugin	which	big	image	to	show
when	we	zoom	in.	Add	a	function	inside	each(),	as	follows:

$(document).ready(function(){

		$('figure').each(function(){

		});

});

5.	 The	first	thing	we’ll	do	inside	the	function	is	get	the	path	to	the	larger	image.	We’ll
create	a	variable	to	hold	the	path.	Remember	that	a	variable	is	just	an	empty
container.	We’re	creating	a	convenient	place	to	store	the	file	path,	as	follows:

$(document).ready(function(){

		$('figure').each(function(){

				var	filePath;

		});

});

6.	 Now,	we	need	to	get	the	file	path	to	the	larger	image	and	store	it	in	the	variable.
Recall	that	we	added	a	data	attribute	to	the		element.	As	we’re	working	with
the	<figure>	element	that	wraps	the		element,	we’ll	have	to	find	the	image.
This	is	achieved	by	adding	a	line	of	code	as	follows:

$(document).ready(function(){

		$('figure').each(function(){

				var	filePath	=	$(this).find('img');

		});

});

7.	 Now	that	we	have	the	image,	we	can	use	the	handy	jQuery	data()	method	to	get	the
value	of	that	data	attribute	we	added	to	our	HTML	file:

$(document).ready(function(){

		$('figure').each(function(){

				var	filePath	=	$(this).find('img').data('lgsrc');

		});

});

8.	 Now	that	we’ve	got	the	path	to	the	large	file,	we	can	call	the	zoom()	method	for	each
image	and	use	our	filePath	variable	for	the	path	to	the	large	image,	as	shown	in	the
following	code:

$(document).ready(function(){

		$('figure').each(function(){

				var	filePath	=	$(this).find('img').data('lgsrc');

				$(this).zoom({

						url:	filePath

				});

		});

});

This	is	the	same	function	we	wrote	earlier	in	the	example	with	just	one	image.	The
only	difference	is	that	we’re	using	this	variable	to	pass	in	the	correct	large	image	for
each	image	on	the	page.	If	you	refresh	the	page	now,	you’ll	see	that	multiple	images
each	zoom	into	the	correct	larger	image	when	you	move	your	mouse	over.

What	just	happened?
We	made	some	modifications	to	our	earlier	code	so	that	we	can	create	multiple	zoomable
images	on	each	page.	First,	we	added	the	path	to	the	larger	image	as	a	data	attribute	in	the
HTML.	Then,	we	modified	our	JavaScript	to	loop	through	each	image	individually	and
assign	the	correct	larger	image	to	be	used	for	the	zooming	effect.	Now,	our	page	can	work
with	one	image	or	with	a	dozen	images	or	even	with	100	images.	We’ve	structured	our
JavaScript	in	a	flexible	way	that’s	not	dependent	on	the	number	of	images	we	have	on	the
page.	This	gives	us	the	ability	to	edit	the	HTML	file	to	add	or	remove	images	without
having	to	rewrite	the	JavaScript.

Using	fullscreen	backgrounds
For	websites	where	we’re	emphasizing	imagery,	using	a	single	image	as	a	fullscreen
background	image	is	a	great	way	to	create	a	visual	punch.	However,	there	are	a	few
challenges	we	have	to	overcome,	which	are	as	follows:

We	need	to	fill	the	entire	background	of	the	page,	no	matter	what	screen	size	or
device	our	site	visitor	uses,	without	gaps	or	repetition
We	need	to	minimize	the	file	size	of	the	images	to	increase	speed	and	performance
We	need	to	maintain	the	proportions	of	the	image	without	distorting	it,	while	still
scaling	it	to	best	fit	the	current	window	size
We	need	the	image	to	appear	at	an	acceptable	quality	level,	without	visible
degradation

CSS3	has	introduced	the	background-size	property,	which	we	can	use	to	proportionally
scale	an	image	to	the	window	size.	This	works	pretty	well	in	the	browsers	that	have
support	for	this	new	property	(check	http://caniuse.com/#search=background-size	for	the
latest	information	on	support)	but	even	in	browsers	with	support,	we’ll	see	a	JPG
background	image	load	progressively.	Let’s	take	a	look	at	how	we	can	use	jQuery	to
support	more	browsers,	scale	the	images	perfectly,	and	also	include	a	lovely	fade-in	effect
for	the	image	once	it’s	completely	loaded.

We’ll	be	using	Jay	Salvat’s	Vegas	Background	plugin,	which	has	a	variety	of	features	that
make	it	flexible	and	easy	to	work	with.

Tip
Reducing	image	file	sizes

When	using	large,	fullscreen	images,	there	are	a	couple	of	nifty	techniques	you	can	use	to
get	the	smallest	file	size	possible.	First,	in	your	image	editing	program,	increase	the	size	of
the	images	to	at	least	twice	their	normal	size	(some	developers	use	three	or	four	times
their	normal	size),	then	save	for	Web	as	a	JPG	file	with	zero	percent	image	quality.	This
produces	a	very	large,	low-quality	image	that	will	be	scaled	down	for	nearly	all	browsers
and	will	appear	crisp,	clean,	and	indistinguishable	from	a	high-quality	image	for	most	of
your	site	visitors.	Best	of	all,	the	file	size	will	be	very	small.

Also,	before	using	your	images	on	the	Web,	use	an	image	compression	tool	such	as
ImageOptim	(http://imageoptim.com/),	JPEGmini	(http://www.jpegmini.com/),	or	RIOT
(http://luci.criosweb.ro/riot/)	to	compress	them	as	much	as	possible	without	affecting	the
quality.

http://caniuse.com/#search=background-size
http://imageoptim.com/
http://www.jpegmini.com/
http://luci.criosweb.ro/riot/

Time	for	action	–	creating	a	fullscreen
background	image
Perform	the	following	steps	to	create	a	page	with	a	fullscreen	background	image:

1.	 We’ll	get	started	by	creating	a	basic	HTML	document	and	the	associated	files	and
folders	just	like	we	created	in	Chapter	1,	Designer,	Meet	jQuery.	Inside	the	HTML
document,	we’ll	add	just	a	few	lines	of	text,	as	shown	in	the	following	code:

<div	class="content">

		<h1>Seychelles</h1>

		<p>Seychelles,	officially	the	Republic	of	Seychelles,	is	a	155-island	

country	(as	per	the	Constitution)	spanning	an	archipelago	in	the	Indian	

Ocean,	whose	capital,	Victoria,	lies	some	1,500	kilometres	(932	mi)	

east	of	mainland	Southeast	Africa,	northeast	of	the	island	of	

Madagascar.</p>

</div>

2.	 Next,	we’ll	add	a	few	styles	for	this	text.	To	make	sure	it’s	readable	over	the	photo
background,	let’s	add	a	transparent	black	background	to	the	div	element	with	a	class
selector	of	content,	as	shown	in	the	following	code:

.content	{

		background:	black;

		background:	rgba(0,0,0,0.5);

		margin-top:	4em;

		padding:	2em;

}

3.	 As	our	page	is	so	simple,	it’s	already	time	to	start	working	with	our	JavaScript.	Head
over	to	http://vegas.jaysalvat.com/	where	you	can	find	the	download	and
documentation	for	the	Vegas	plugin.	To	download	it,	click	on	the	DOWNLOAD
VEGAS	link	near	the	bottom-right	corner	of	the	screen.	Unzip	the	folder	and	take	a
look	inside	the	folder;	you	will	see	the	contents	as	shown	in	the	following	screenshot:

Note	that	this	plugin	doesn’t	contain	a	sample	HTML	file	like	most	of	the	plugins
we’ve	worked	with	so	far—just	the	files	we’ll	need	to	get	the	plugin	working.	Inside
the	images	folder,	you’ll	find	a	loading.gif	file.	Copy	this	file	to	your	own	images
folder.	Copy	the	entire	overlays	folder	to	your	own	project	directory.	Then,	copy

http://vegas.jaysalvat.com/

jquery.vegas.min.css	to	your	own	styles	folder	and	copy	jquery.vegas.min.js
to	your	own	scripts	folder.

When	you’re	finished,	your	own	project	directory	should	look	like	the	following
screenshot:

The	images	folder	contains	both	the	loading.gif	file	copied	from	the	Vegas
download	folder,	along	with	any	images	that	you’ll	be	working	with	to	create
fullscreen	backgrounds.

4.	 Next,	attach	the	Vegas	style	sheet	at	the	top	of	the	HTML	file,	after	your	own	style
sheet,	as	shown	in	the	following	code:

<head>

		<title>Chapter	8:	Fullscreen	Background</title>

		<link	rel="stylesheet"	href="styles/styles.css">

		<link	rel="stylesheet"	href="styles/jquery.vegas.min.css">

</head>

5.	 Attach	the	Vegas	plugin	file	at	the	bottom	of	the	HTML	file,	after	jQuery	but	before
your	own	scripts.js	file:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.vegas.min.js"></script>

<script	src="scripts/scripts.js"></script>

</body>

</html>

6.	 Now,	it’s	time	to	open	up	the	scripts.js	file	to	write	some	JavaScript.	Get	started
with	the	document	ready	statement,	as	follows:

$(document).ready(function(){

		//	Our	code	will	go	here

});

7.	 Next,	we’ll	call	the	Vegas	plugin.	Vegas	works	just	a	bit	differently	from	many	of	the
other	plugins	we’ve	seen	so	far.	We	don’t	have	to	select	an	element	in	our	document

that	we	want	to	work	with.	The	following	code	shows	how	to	call	the	vegas()
method:

$(document).ready(function(){

		$.vegas();

});

8.	 Then,	we	just	have	to	pass	in	some	options.	First,	we’ll	use	the	src	option	to	tell
Vegas	which	image	to	use	as	the	background:

$(document).ready(function(){

		$.vegas({

				src:	'images/seychelles.jpg'

		});

});

Note	that	the	path	to	the	image	is	relative	to	the	HTML	file,	not	to	the	scripts.js
file	where	we’re	writing	this	code.

9.	 We	want	the	image	to	fade	on	to	the	page	rather	than	progressively	downloading	as
the	JPG	files	usually	do,	so	we’ll	pass	another	option,	fade:

$(document).ready(function(){

		$.vegas({

				src:	'images/seychelles.jpg',

				fade:	2000

		});

});

The	number	we	pass	to	the	fade	option	should	be	the	number	of	milliseconds	the
fading	action	will	take—2000	milliseconds	is	2	seconds.	If	you	refresh	the	page	in
the	browser,	you’ll	see	a	solid	background	color	until	the	image	fades	in	for	2
seconds.	If	you	try	resizing	the	browser	window,	you’ll	see	that	the	image	responds
just	as	we’d	like;	it	scales	to	best	fit	the	window	without	distorting	and	stays
centered.

10.	 The	Vegas	plugin	has	an	additional	handy	option	available	that	is	tremendously
helpful	when	we’re	using	images	as	fullscreen	backgrounds—overlays.	Inside	the
overlays	folder,	you’ll	find	15	different	PNG	files—each	one	creates	a	different

pattern	when	used	to	fill	an	area—dots,	stripes,	checks,	grids,	and	so	on.	By	laying
one	of	these	patterns	over	our	background	images,	we	can	help	disguise	or	hide	any
image	degradation	that	might	be	visible	when	our	images	are	stretched	to	fill	larger
screens.	These	overlay	patterns	also	help	darken	our	background	images,	to	make	the
text	content	on	top	just	a	bit	easier	to	read.	To	add	an	overlay	to	our	background
image,	we’ll	just	chain	the	overlay	options,	as	follows:

$(document).ready(function(){

		$.vegas({

				src:	'images/seychelles.jpg',

				fade:	2000

		})('overlay',	{

				src:	'overlays/03.png'

		});

});

Just	like	the	background	image	itself,	we	have	an	src	option	for	the	overlay.	Again,
the	path	to	the	overlay	is	relative	to	the	HTML	document,	not	the	JavaScript
document	where	you’re	writing	this	code.	I’ve	selected	03.png	as	my	overlay	of
choice,	but	feel	free	to	experiment	with	all	the	15	options	provided	with	the	plugin	or
to	create	one	of	your	own.

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	the	subtle	overlay	pattern	on
the	image.

What	just	happened?
We	used	the	Vegas	plugin	to	create	a	flexible,	scalable	fullscreen	background	image	for
our	HTML	page.	We	added	options	for	the	image	to	fade	in	for	2	seconds	and	also	added
an	overlay	to	the	image	that	helps	to	darken	it	just	a	bit	and	also	to	hide	any	image
degradation	that	might	happen,	particularly	on	large	screens.	When	we	resize	the	window,
the	image	resizes	while	remaining	centered	and	doesn’t	distort.

Creating	a	fullscreen	slideshow
In	addition	to	creating	perfectly	responsive	fullscreen	background	images,	the	Vegas
plugin	will	also	allow	us	to	create	fullscreen	background	slideshows.	Let’s	take	a	look	at
how	we	can	take	this	same	HTML	file	and	create	a	fullscreen	slideshow	behind	the	text
rather	than	just	a	single	fullscreen	image.

Time	for	action	–	creating	a	fullscreen
slideshow
We’ll	keep	working	with	the	files	that	we	created	in	the	Time	for	action	–	creating	a
fullscreen	background	image	section.	The	only	change	we’ll	need	to	make	to	create	a
slideshow	rather	than	a	single	fullscreen	background	image	is	to	our	scripts.js	file.	To
do	so,	perform	the	following	steps:

1.	 Open	scripts.js	and	remove	the	src	and	fade	options	from	the	vegas()	method,	as
shown	in	the	following	code:

$(document).ready(function(){

		$.vegas({

		

		})('overlay',	{

				src:	'overlays/03.png'

		});

});

2.	 Next,	we	need	to	tell	Vegas	that	we	want	to	use	a	slideshow.	Before	we	pass	in	the
options	object,	tell	Vegas	to	use	a	slideshow,	as	shown	in	the	code:

$(document).ready(function(){

		$.vegas('slideshow',	{

		})('overlay',	{

				src:	'overlays/03.png'

		});

});

Note	that	this	slideshow	option	is	outside	the	curly	braces.

3.	 We’ll	pass	in	the	slideshow	options	we	want	to	use,	inside	the	curly	braces.	First,	let’s
add	delay.	This	tells	Vegas	how	long	to	display	each	image	in	the	slideshow.	As	the
slideshow	takes	up	the	entire	screen,	it	works	best	if	the	slideshow	is	slow.	We’ll	let
each	image	be	displayed	for	5	seconds	or	5000	milliseconds,	as	shown	in	the	code:

$(document).ready(function(){

		$.vegas('slideshow',	{

				delay:	5000

		})('overlay',	{

				src:	'overlays/03.png'

		});

});

4.	 We’ll	tell	Vegas	which	images	we	want	to	use	in	our	slideshow.	We’ll	do	that	with	the
backgrounds	option,	as	shown	in	the	following	code:

$(document).ready(function(){

		$.vegas('slideshow',	{

				delay:	5000,

				backgrounds:	[]

		})('overlay',	{

				src:	'overlays/03.png'

		});

});

Don’t	forget	to	add	a	comma	after	the	delay	option	to	separate	it	from	the
backgrounds	option.	We’ve	added	a	pair	of	square	brackets	as	the	value	for	the
backgrounds	option.	Square	brackets	denote	an	array—an	array	is	just	a	collection
of	values	instead	of	a	single	value.	As	our	slideshow	is	going	to	contain	multiple
background	images,	we’ll	use	an	array	to	make	sure	Vegas	knows	about	each	one.

5.	 Inside	the	array,	we’ll	pass	some	information	about	each	of	our	images	inside	curly
braces.	We	need	the	path	to	each	image,	along	with	how	long	the	animation	for	each
image	will	be:

$(document).ready(function(){

		$.vegas('slideshow',	{

				delay:	5000,

				backgrounds:	[

						{	src:	'images/seychelles.jpg',	fade:	2000	},

						{	src:	'images/seychelles2.jpg',	fade:	2000	},

						{	src:	'images/seychelles3.jpg',	fade:	2000	}

]

		})('overlay',	{

				src:	'overlays/03.png'

		});

});

Again,	because	the	slideshow	is	occupying	the	entire	page,	it’s	best	if	the	transition
between	the	images	is	slow—here,	we	allow	2	full	seconds	for	the	image	to	change.

Now	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	our	single	fullscreen
background	image	has	been	replaced	by	a	fullscreen	slideshow.	Experiment	with	the
delay,	fade,	and	overlay	options	to	find	the	combination	that	works	best	for	the
images	that	you’re	using.

What	just	happened?
We	modified	the	settings	of	the	Vegas	plugin	to	create	a	fullscreen	slideshow	on	our
page’s	background	rather	than	just	a	single	fullscreen	background	image.	Just	like	the
single	background	image,	the	slideshow	is	responsive	and	resizes	flawlessly	as	we	resize
our	browser	window.	We	were	able	to	set	the	amount	of	time	each	image	in	the	slideshow
should	be	visible	for,	and	we	were	also	able	to	pass	in	an	array	of	images	to	use	in	the
slideshow	along	with	the	duration	of	the	transition	animation	for	each	one.

Summary
In	this	chapter,	we	took	a	look	at	few	techniques	for	working	with	images	in	responsive
designs.	First,	we	set	up	lazy	loading	so	that	images	will	only	be	loaded	if	and	when	they
are	required.	Then,	we	took	a	look	at	adding	the	ability	to	zoom	in	images	to	get	more
detail.	Finally,	we	looked	at	how	to	create	both	fullscreen	background	images	and
fullscreen	background	slideshows.	Armed	with	this	knowledge,	we	can	create	even	more
flexible	and	more	full-featured	responsive	pages.	Next,	we’ll	take	a	look	at	ways	to	make
our	typography	just	as	flexible	and	responsive.

Chapter	9.	Improving	Typography
A	lot	of	the	responsive	design	tutorials	that	you’ll	find	on	the	Web	tend	to	be	very	focused
around	images,	videos,	and	column	layouts.	But	the	backbone	of	most	websites	is	the	text
content—this	is	where	having	some	knowledge	and	skills	around	typography	and	making
typography	more	responsive	is	especially	useful.	If	you	can	make	the	content	on	a	website
a	visual	delight	and	a	pleasure	to	read,	you’re	more	likely	to	draw	in	regular	readers	than
if	your	text	content	is	poorly	set	and	difficult	to	read.

In	this	chapter,	you’ll	learn:

How	to	use	the	FitText	plugin	to	size	headlines	responsively	according	to	the	width
of	the	browser	window
How	to	use	the	SlabText	plugin	to	create	perfectly-sized	multiline	blocks	of	text
How	to	use	the	Lettering.js	plugin	to	fine-tune	kerning	and	apply	special	text	effects
How	to	use	the	ArcText	plugin	to	set	text	on	a	curve

Sizing	headlines	perfectly
With	the	recent	rise	in	the	popularity	of	responsive	design,	some	designers	have	pointed
out	that	the	Web	is	responsive	by	default—we’ve	made	the	Web	unresponsive	by	setting
fixed	widths	in	layouts.	That’s	partially	true.	Text	on	the	Web	will	automatically	flow	to
best	fit	its	container,	but	that	can	sometimes	lead	to	awkward	line	breaks	and	line	lengths
(or	measures)	that	make	reading	difficult.

While	we	can	use	CSS	and	media	queries	to	fix	some	of	these	issues,	adding	a	little	bit	of
JavaScript	magic	into	the	mix	can	allow	us	to	accomplish	things	that	we	wouldn’t	be	able
to	accomplish	with	CSS	alone.	Let’s	take	a	look	at	resizing	headlines	to	accommodate	the
width	of	the	screen.	This	can	be	really	helpful	to	prevent	awkward	line	breaks	in	headings.

Tip
Modular	scale

To	create	visual	harmony	and	text	that’s	set	with	precision,	give	the	modular	scale	a	try.	A
modular	scale	is	a	mathematical	scale	of	numbers	that	share	the	same	relation	to	one
another.	When	you	choose	numbers	from	the	scale	to	set	your	font	sizes,	line	heights,
column	widths,	margins,	and	padding,	you’ll	create	typography	that’s	more	professional
and	aesthetically	pleasing.	Tim	Brown,	the	type	manager	at	TypeKit,	has	produced
http://modularscale.com—a	tool	that	enables	anyone	to	calculate	a	scale	and	produce
gorgeous	typography.	Links	to	several	articles	on	http://modularscale.com	will	help	you
understand	and	use	a	modular	scale	more	effectively	for	setting	your	typography.

http://modularscale.com
http://modularscale.com

Time	for	action	–	sizing	headlines	to	the
screen	width
Perform	the	following	steps	to	create	headlines	that	resize	according	to	the	width	of	the
browser	window:

1.	 We’ll	get	started	by	creating	a	basic	HTML	document	and	associated	files	and	folders
just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	Inside	the	HTML	document,
we’re	going	to	create	a	bit	of	text	with	a	headline,	as	follows:

<div	class="content">

		<h1>What	is	Typography?</h1>

		<p>Typography	is	the	art…</p>

</div>

2.	 Inside	styles.css,	some	basic	CSS	that	is	applied	helps	to	set	the	size	of	the
heading,	the	paragraph,	and	padding	and	margin	around	both	elements.	If	you	take	a
look	at	the	sample	code	included	with	the	book,	you’ll	see	the	following	bit	of	CSS
that	styles	basic	text	elements:

.content	p	{

		line-height:	1.5;

		margin:	1.125em	0;

}

.content	h1	{

		font-size:	3.375em;

		line-height:	1.125;

		margin:	1.125em	0	0.5em	0;

}

For	our	site	visitors	without	JavaScript,	this	bit	of	text	is	perfectly	acceptable,	no
matter	what	their	screen	width	happens	to	be.	The	text	of	both	the	paragraph	and	the
headline	simply	reflows	as	the	browser	window	resizes,	as	shown	in	the	following
screenshot:

However,	by	using	in	the	FitText	plugin,	we	gain	a	little	more	control	over	the
headline,	and	we	can	resize	it	fluidly	so	that	it	will	fill	the	width	of	the	screen.

3.	 You’ll	find	documentation	and	download	links	for	FitText	at	http://fittextjs.com/.	Just
click	on	the	Download	on	GitHub	link	to	be	redirected	to	GitHub.	Once	you’re	on
GitHub,	just	click	on	the	Download	ZIP	button	as	we’ve	done	with	other	plugins
that	we’ve	downloaded	from	GitHub.

4.	 Unzip	and	open	the	ZIP	file.	Look	for	jquery.fittext.js	and	copy	it	to	your	own
scripts	folder.	Then,	in	the	HTML	file,	add	the	FitText	file	at	the	bottom,	after
jQuery	but	before	your	own	scripts.js,	as	follows:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.fittext.js"></script>

<script	src="scripts/scripts.js"></script>

</body>

</html>

5.	 Open	your	scripts.js	file	and	get	started	by	adding	the	document	ready	statement,
as	follows:

$(document).ready(function(){

		//	Our	code	will	go	here

});

6.	 Next,	we’ll	select	the	element	we’d	like	to	resize	and	then	call	the	fitText()
method.	Make	sure	you	pay	careful	attention	to	the	letter	T	in	the	middle	of	the
method	name—it	won’t	work	if	you	forget	that:

$(document).ready(function(){

		$('h1').fitText();

});

7.	 Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	headline	resizes
according	to	the	browser	window’s	width,	but	it’s	not	working	exactly	the	way	we
want,	as	shown	in	the	following	screenshot:

While	the	text	is	resizing	with	the	browser	window,	it’s	a	little	too	big	and	is	spread
over	two	lines.	Let’s	take	a	look	at	how	we	can	fine-tune	FitText	and	gain	a	bit	more
control	over	the	resizing	of	text.

8.	 FitText	includes	what	the	developers	of	the	plugin	call	“the	compressor.”	It’s
basically	the	ability	to	control	how	aggressive	FitText	is	about	resizing	the	text.	The
default	value	is	1,	but	we	can	pass	a	new	value	to	the	fitText()	method.	Often,	it’s	a
matter	of	trying	out	a	few	different	values	to	find	the	one	that	works	best	for	your

http://fittextjs.com/

particular	situation:

$(document).ready(function(){

		$('h1').fitText(1.1);

});

9.	 In	addition	to	the	control	we	gain	from	passing	values	for	the	compressor,	we	can
also	set	minimum	and	maximum	font	sizes	for	the	text.	In	this	example,	our	body	text
is	set	to	the	browser’s	default	font	size,	and	we’d	like	our	heading	to	always	be	just	a
tad	larger	than	the	body	text	so	that	we	don’t	end	up	with	a	headline	that’s	actually
smaller	than	the	body	text.	After	the	compressor,	we	can	pass	the	fitText()	method
a	settings	object	to	set	the	minimum	font	size	to	1.2em:

$(document).ready(function(){

		$('h1').fitText(1.1,	{minFontSize:	'1.2em'});

});

Now,	even	if	our	screen	were	to	get	very	narrow,	the	heading’s	font	size	would
always	be	20	percent	larger	than	that	of	the	body	text,	even	if	it	means	that	the	text
will	wrap	onto	a	second	(or	even	third)	line.	FitText	also	includes	a	maxFontSize
setting,	but	we	won’t	need	to	use	it	in	this	example.

If	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	headline	now	appears	on	a
single	line	and	the	font	resizes	to	best	fit	the	current	width	of	the	browser	window,
while	never	going	below	1.2	em:

What	just	happened?
We	used	the	FitText	plugin	to	resize	our	headline	so	that	it	always	fits	neatly	on	one	single
line.	We	learned	how	to	adjust	the	Compressor	for	more	control	over	the	resizing	and	also
learned	how	to	set	minimum	and	maximum	font	sizes	for	the	headline	to	make	sure	that	it
stays	within	the	boundaries	that	we	set.	In	this	example,	we	set	a	minimum	font	size	of	On
one	line	please	to	ensure	that	the	headline	is	always	larger	than	the	body	text.	FitText	is
only	intended	to	be	used	for	headlines—it	will	significantly	impact	the	performance	of
your	website	if	you	attempt	to	use	it	for	your	body	text	or	for	all	the	text	on	the	page.	Stick
to	using	FitText	to	create	impactful,	bold	headlines.

Creating	bold	text	blocks
FitText	is	ideal	for	situations	where	we	want	to	resize	a	headline	to	best	fit	the	screen	size,
but	what	if	want	to	take	this	a	step	further	and	create	blocks	of	perfectly-sized	text,	as
shown	in	the	following	screenshot:

We	could	wrap	bits	of	our	headline	in	some		tags	and	then	set	individual	font	sizes
for	each	one,	but	handling	the	rewrapping	of	the	text	at	different	font	sizes	would	be
difficult,	if	not	impossible.	That’s	where	the	fabulous	SlabText	plugin	comes	in.	SlabText
will	automatically	calculate	the	best	places	to	insert	line	breaks	and	then	resize	the	text	to
perfectly	fill	each	line.	Let’s	take	a	look	at	how	it	works.

Time	for	action	–	creating	a	bold	text
block	with	SlabText
Perform	the	following	steps	to	break	a	headline	into	multiple	lines,	all	resized	to	fit	the
width	perfectly:

1.	 We’ll	get	started	by	creating	a	basic	HTML	document	and	associated	files	and	folders
just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	Inside	the	HTML	document,
we’re	going	to	place	a	headline	as	follows:

<header>

		<h1>Pride	&	Prejudice</h1>

</header>

2.	 Next,	we’ll	add	some	styles	to	style	our	headline	the	way	we’d	like.	Open	your
styles.css	file	and	add	the	following	lines:

header	{

		margin:	5.063em	0;

}

header	h1	{

		line-height:	1.125;

		margin:	0;

		padding:	0;

		text-transform:	uppercase;

}

h1	{

		font-size:	3.375em;

}

We’ve	removed	any	default	margins	or	padding	from	the	<h1>	element.	We’ll	use	the
<header>	element	to	add	white	space	around	our	headline	instead.	Also,	note	that	we
used	a	unitless	number	for	our	line-height	value.	Unitless	line	heights	allow	these
values	to	cascade	down	the	DOM	in	a	more	elegant	and	useful	manner.

We’ve	set	text-transform	to	uppercase	since	the	SlabText	effect	is	more	visually
impactful	if	we’re	using	uppercase	letters.

3.	 Next,	we	need	to	download	the	SlabText	plugin	and	get	it	attached	to	our	HTML
page.	You’ll	find	the	SlabText	plugin	in	the	jQuery	plugins	repository	at
http://plugins.jquery.com/slabtext/.	Just	click	on	the	big	orange	Download	now
button	to	download	the	ZIP	file.	Unzip	it,	locate	the	jquery.slabtext.min.js	file
inside	the	js	folder,	and	copy	it	to	your	own	scripts	folder.

Now,	at	the	bottom	of	your	HTML	file,	add	the	<script>	tag	to	include	the	file	after
jQuery,	but	before	your	own	scripts.js	file,	as	shown	in	the	code:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.slabtext.min.js"></script>

http://plugins.jquery.com/slabtext/

<script	src="scripts/scripts.js"></script>

4.	 The	SlabText	plugin	also	includes	some	CSS	that	we’ll	need	for	the	plugin	to	work	as
expected.	You’ll	find	a	slabtext.css	file	inside	the	css	folder.	We	could	copy	this
file	to	our	own	project	and	attach	the	file	to	our	HTML	page,	but	it’s	only	a	few	lines.
We’ll	get	better	performance	on	our	pages	if	we	reduce	the	number	of	external	files
we	include,	so	instead,	let’s	open	up	that	CSS	file,	copy	the	code	that’s	there,	and	add
it	to	our	own	styles.css	file	as	shown	in	the	code:

.slabtexted	.slabtext	{

		display:	-moz-inline-box;

		display:	inline-block;

		white-space:	nowrap

}

.slabtextinactive	.slabtext	{

		display:	inline;

		font-size:	1em	!important;

		letter-spacing:	inherit	!important;

		*letter-spacing:	0	!important;

		white-space:	normal;

		word-spacing:	inherit	!important;

		*word-spacing:0	!important;

}

.slabtextdone	.slabtext	{

		display:	block;

		line-height:	0.9;

}

5.	 Now,	open	your	scripts.js	file	and	add	the	document	ready	statement	as	follows:

$(document).ready(function(){

		//	Our	code	will	go	here

});

6.	 SlabText	works	like	most	other	jQuery	plugins;	we	select	an	element	and	then	call	the
slabText()	method.	In	this	case,	we	want	to	work	with	the	<h1>	element:

$(document).ready(function(){

		$('h1').slabText();

});

If	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	text	now	expands	to	fill	the
horizontal	space.	If	you	resize	the	browser	window,	you’ll	see	that	the	text	size	is
recalculated	and	at	narrower	widths,	even	broken	into	two	lines,	each	of	equal	length,
as	shown	in	the	following	screenshot:

7.	 Many	typography	experts	recommend	using	the	best	ampersand	(&)	you	possibly	can
—and	the	ampersand	that’s	included	with	the	font	we’re	using	here	(Geneva)	is	a	bit
flat	and	boring.	The	SlabText	plugin	automatically	wraps	ampersands	in	a	
element	with	an	amp	class.	We	can	use	this	class	to	style	the	ampersand	in	a	nicer
style.	In	your	styles.css	file,	add	the	following	lines	of	code:

.amp	{

		font-family:	Baskerville,	'Goudy	Old	Style',	Palatino,	'Book	

Antiqua',	serif;

		font-size:	1.125em;

		font-style:	italic;

		font-weight:	normal;

}

This	is	the	font	style	that	is	recommended	by	Dan	Cederholm	to	style	ampersands	on
the	Web.	If	you	refresh	the	page	in	the	browser	now,	you’ll	see	our	ampersand
replaced	by	a	much	nicer	and	more	visually	interesting	ampersand,	as	shown	in	the
following	screenshot:

8.	 We’ve	created	a	nice	text	effect,	but	this	bit	of	text	is	rather	short.	Let’s	take	a	look	at
how	this	effect	might	work	with	a	longer	bit	of	text.	Open	your	index.html	file	and
add	another	headline:

<header>

		<h1>The	Importance	of	Being	Earnest:	A	Trivial	Comedy	for	Serious	

People	by	Oscar	Wilde</h1>

</header>

If	you	refresh	the	page	in	the	browser	now,	you’ll	see	that	this	headline	breaks	into
multiple	lines,	all	of	which	fill	the	width	of	the	page.	However,	the	line	breaks	are	a
bit	awkward,	and	the	resizing	of	text	feels	random	and	strange,	as	shown	in	the
following	screenshot:

9.	 Luckily,	the	SlabText	plugin	provides	a	way	for	us	to	have	control	over	where	the
text	is	broken	into	lines.	We	can	do	that	by	just	wrapping	each	line	in	a	
element	with	the	class	selector	of	slabtext.	Inside	index.html,	add	some	
tags	around	the	text	as	follows:

<header>

		<h1>

				The	Importance	of	Being

				Earnest:

				A	Trivial	Comedy	for	Serious	People

				by	Oscar	Wilde

		</h1>

</header>

Now,	if	you	refresh	the	page	in	the	browser,	you	can	see	that	our	line	breaks	make
more	visual	sense,	as	shown	in	the	following	screenshot:

The	line	breaks	are	the	same,	no	matter	how	wide	or	narrow	the	browser	window	is.

10.	 Wrapping	each	line	in	its	own		tag	also	gives	us	the	opportunity	to	style	each
line	a	bit	differently.	Inside	the	index.html	file,	add	classes	for	the	line	numbers	to

each		element:

<header>

		<h1>

				The	Importance	of	Being

				Earnest:

				A	Trivial	Comedy	for	Serious	

People

				by	Oscar	Wilde

		</h1>

</header>

11.	 We	can	use	these	new	classes	to	add	some	additional	styles	to	the	lines	of	text.	For
example,	let’s	take	the	first	and	third	lines	and	make	them	green	and	set	them	in	the
same	font-family	style	that	we	used	for	the	ampersand	earlier.	In	the	styles.css
file,	add	the	following	styles:

.line1,	.line3	{

		color:	#a1d36e;

		font-family:	Baskerville,	"Times,	Times	New	Roman",	serif;

}

Refresh	the	page	in	the	browser,	and	you’ll	see	that	the	first	and	third	lines	of	text	are
green	and	are	in	a	serif	typeface:

All	lines	of	text	still	resize	correctly	to	fill	the	width	of	the	screen.

12.	 So	far,	we’ve	tried	a	few	different	techniques.	What	if	we	have	a	case	where	we	want
to	control	just	one	line	break	in	the	text	and	allow	the	others	to	happen	naturally?	If
we	add	the	author	to	our	first	example	headline,	our	code	will	look	as	follows:

<header>

		<h1>Pride	&	Prejudice	by	Jane	Austen</h1>

</header>

We’d	always	want	to	have	a	line	break	between	the	title	and	the	author,	but	within	the
title	and	within	the	author,	we’d	want	the	line	breaks	to	happen	naturally.

If	we	wrap	the	title	and	the	author	each	in	a		element,	like	we	did	in	the
previous	example,	each	of	those	lines	will	resize	to	always	fill	the	screen	width.
Pride	&	Prejudice	won’t	wrap	to	two	lines	at	narrow	screen	widths.

The	solution	is	to	wrap	each	bit	of	text	in	its	own	tag	and	then	call	the	slabText()
method	on	both	elements.	Change	the	HTML	markup	as	follows:

<header>

		<h1>Pride	&	Prejudice</h1>

		<h2>by	Jane	Austen</h2>

</header>

13.	 Next,	we	need	to	add	a	few	new	styles	to	styles.css	to	account	for	the	<h2>
element:

header	h1,	header	h2	{

		line-height:	1.125;

		margin:	0;

		padding:	0;

		text-transform:	uppercase;

}

h2	{

		font-size:	2.25em;

}

14.	 The	last	thing	to	do	is	to	modify	the	scripts.js	file	to	call	slabText()	on	both
levels	of	heading:

$(document).ready(function(){

		$('h1,	h2').slabText();

});

Refresh	the	page	in	the	browser	and	try	changing	the	window	width.	You’ll	see	that
both	the	title	and	the	author	name	resize	themselves	to	fit	the	width,	and	each	of	them
wraps	to	a	new	line	when	it	seems	best	to	do	so.

What	just	happened?
We	took	a	look	at	using	the	SlabText	plugin	to	create	large	blocky	headlines.	We	saw	how
to	control	the	line	breaks	in	the	headline	by	using		tags	inserted	in	the	headline	or
by	using	multiple	HTML	elements.	SlabText	takes	care	of	recalculating	the	correct	font
size	for	each	line	of	the	headline	so	that	it	fills	the	width	of	the	container.	We	use	the
SlabText	plugin	by	selecting	the	elements	we	want	to	work	with	and	calling	the
slabText()	method.

Pop	quiz	–	sizing	text	in	responsive	designs
Q1.	When	we’re	using	plugins	such	as	FitText	and	SlabText	to	resize	text,	it’s	best	to	use
this	functionality	on	which	types	of	text?

1.	 The	entire	text	on	the	page—everything	should	be	sized	together	for	consistency.
2.	 Just	the	text	in	the	main	content	area.
3.	 Headlines	and	other	short,	important	bits	of	text	such	as	pull	quotes.
4.	 Just	the	text	in	the	footer.

Styling	individual	letters
Next,	we’ll	take	a	look	at	the	Lettering.js	plugin,	which	gives	us	fine-tuned	control	over
individual	characters.	Just	like	the	FitText	and	SlabText	plugins,	we’ll	reserve	the	power
of	Lettering.js	for	headlines.	Our	webpage	would	suffer	some	pretty	serious	performance
issues	if	we	tried	to	use	it	for	all	the	text	on	the	page.	Stick	to	applying	these	text	effects	to
text	that	deserves	extra	attention—items	such	as	headlines	and	pull	quotes.

Time	for	action	–	using	Lettering.js	to
style	letters
Perform	the	following	steps	to	use	the	Lettering.js	plugin:

1.	 We’ll	get	started	by	creating	a	basic	HTML	document	and	associated	files	and
folders,	just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	Inside	the	HTML
document,	we	need	a	headline	to	work	with.	It’s	nice	to	also	have	at	least	a	bit	of	text
on	the	page	as	well	in	order	to	really	understand	how	our	headline	will	look	with
other	text	on	the	page:

<div	class="content">

		<h1>Alice’s	Adventures	in	Wonderland</h1>

		<section>

				<h2>CHAPTER	I.	Down	the	Rabbit-Hole</h2>

				<p>Alice	was	beginning	to	get	very	tired	of	sitting	by	her	sister	

on	the	bank,	and	of	having	nothing	to	do:	once	or	twice	she	had	peeped	

into	the	book	her	sister	was	reading,	but	it	had	no	pictures	or	

conversations	in	it,	‘and	what	is	the	use	of	a	book,’	

thought	Alice	‘without	pictures	or	conversations?’</p>

		</section>

</div>

Note	that	we’ve	used	a	typographically	correct	apostrophe	in	the	headline.	As	we’re
paying	close	attention	to	typography	in	this	chapter,	we’ll	try	to	use	all	the	correct
characters	instead	of	the	shortcuts	that	so	often	get	used	on	the	Web.

2.	 We’ve	already	got	default	styles	set	for	content	in	our	default	style	sheet,	so	we	don’t
have	to	write	any	special	styles	just	yet.	We	can	head	over	to	http://letteringjs.com/	to
get	the	download	file	and	documentation	for	the	Lettering.js	plugin.	Follow	the
DOWNLOAD	ON	GITHUB	link	and	then	click	on	Download	ZIP	to	get	the	files
you’ll	need.

3.	 Unzip	the	file,	find	jquery.lettering.js	inside,	and	copy	it	to	your	own	scripts
folder.	Then,	at	the	bottom	of	the	HTML	file,	attach	the	Lettering.js	plugin	after
jQuery,	but	before	your	own	scripts.js	file,	as	follows:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.lettering.js"></script>

<script	src="scripts/scripts.js"></script>

4.	 Open	scripts.js	and	add	the	document	ready	statement,	as	follows:

$(document).ready(function(){

		//	Our	code	will	go	here

});

5.	 Next,	we	need	to	call	the	lettering()	method.	We	want	to	add	the	capabilities	of
Lettering.js	to	our	header,	so	we’ll	select	the	<h1>	element:

$(document).ready(function(){

http://letteringjs.com/

		$('h1').lettering();

});

6.	 If	you	refresh	the	page	in	the	browser,	you’ll	see	that	it	appears	as	though	nothing	has
changed	on	the	page.	However,	if	you	open	the	Inspector	tools	in	Safari	or	Chrome,
or	Firebug	in	Firefox,	you’ll	see	that	each	individual	character	in	the	heading	is	now
wrapped	in	a		tag	with	a	numbered	class,	as	shown	in	the	following
screenshot:

This	is	all	that	the	Lettering.js	plugin	does.	By	wrapping	each	character	in	a	span	and
giving	each	a	unique	class,	it	enables	us	to	write	CSS	to	style	each	character
individually.	But	how	can	that	be	useful?

7.	 First	up,	it	allows	us	to	fine-tune	kerning.	For	example,	the	gap	between	the	letter	W
and	the	letter	o	in	Wonderland	is	too	large	in	many	typefaces.	We	can	close	that	up
by	selecting	o	(char24)	and	applying	a	negative	left	margin.	In	your	styles.css	file,
add	the	following	lines	of	code:

.char24	{

		margin-left:	-0.05em;

}

Have	a	look	at	the	following	screenshot	and	find	the	difference	in	the	words:

You	can	see	in	the	bottom	Wonderland	text	that	the	gap	between	W	and	o	is	smaller
and	the	spacing	between	W	and	o	feels	consistent	with	the	spacing	between	the
remaining	letters.

8.	 Another	possibility	is	to	add	individual	styles	to	each	letter.	We	can	add	individual
colors,	background	colors,	background	images,	padding,	margins,	and	so	on.	We	can
also	use	the	new	CSS3	capabilities	to	add	box	shadows,	text	shadows,	transforms,
transitions,	gradients,	and	so	on.	Let’s	take	a	look	at	adding	a	bit	of	whimsy	to	the
first	word	(ALICE’S)	in	our	title.	We’ll	get	started	by	adding	some	styles	that	will
apply	to	all	the	letters	in	that	word	in	the	styles.css	file,	as	shown	in	the	following
code:

.char1,	.char2,	.char3,	.char4,	.char5,	.char6,	.char7	{

		border-radius:	50%;

		cursor:	pointer;

		display:	inline-block;

		margin:	0	0.125em;

		padding:	0.125em	0.25em;

		text-align:	center;

		text-transform:	uppercase;

		transition:	all	300ms;

		width:	1em;

}

9.	 Next,	we’ll	add	some	individual	styles	for	each	of	those	letters,	as	follows:

.char1	{	

background:	#fa6f57;	

-webkit-transform:	rotate(7deg);	

}

.char2	{	

background:	#42b0d8;	

-webkit-transform:	rotate(-5deg);	

}

.char3	{	

background:	#a1d36e;	

-webkit-transform:	rotate(12deg);	

}

.char4	{	

background:	#967dd9;	

-webkit-transform:	rotate(-10deg);	

}

.char5	{	

background:	#e75845;	

-webkit-transform:	rotate(-5deg);	

}

.char6	{	

background:	#55c1e7;	

-webkit-transform:	rotate(4deg);	

}

.char7	{	

background:	#ac94e9;	

-webkit-transform:	rotate(13deg);	

}

We’ll	also	style	the	:hover	pseudoclass	for	each	letter	to	add	a	bit	of	interactivity.
When	our	site	visitor	moves	their	mouse	over	the	letters,	they’ll	see	a	subtle
animation:

.char1:hover	{	

background:	#a1d36e;	

-webkit-transform:	rotate(-8deg);	

}

.char2:hover	{	

background:	#967dd9;	

-webkit-transform:	rotate(10deg);	

}

.char3:hover	{	

background:	#e75845;	

-webkit-transform:	rotate(-3deg);	

}

.char4:hover	{	

background:	#55c1e7;	

-webkit-transform:	rotate(5deg);	

}

.char5:hover	{	

background:	#ac94e9;	

-webkit-transform:	rotate(10deg);

Improving	Typography	

}

.char6:hover	{	

background:	#fa6f57;	

-webkit-transform:	rotate(-9deg);	

}

.char7:hover	{	

background:	#42b0d8;	

-webkit-transform:	rotate(-2deg);	

}

Refresh	the	page	in	the	browser	and	you’ll	see	that	the	letters	are	encapsulated	in
differently	colored	circles	and	tilted	in	different	directions:

When	you	move	your	mouse	over	each	letter,	they	rotate	and	change	background
colors.	Feel	free	to	add	your	own	styles	and	colors	to	each	letter—the	only	limit	to
what	you	can	accomplish	is	your	own	imagination.

What	just	happened?
We	applied	the	Lettering.js	plugin	to	our	headline.	While	the	jQuery	plugin	itself	doesn’t
actually	make	any	changes	to	the	appearance	of	the	page,	it	does	make	it	possible	for	us	to
style	each	individual	letter	with	CSS.	This	allows	us	to	fine-tune	kerning	and	apply
creative	styles.	Take	a	look	through	the	gallery	on	http://letteringjs.com/	to	get	a	feel	for
what’s	possible.	The	plugin	itself	is	very	simple	to	use—just	one	line	of	JavaScript	gets
you	up	and	running.	After	that,	the	remainder	of	the	work	is	CSS.

http://letteringjs.com/

Have	a	go	hero	–	creating	fancy	effects	with
Lettering.js
Take	a	look	through	the	gallery	for	Lettering.js	(http://letteringjs.com)	and	see	whether
you	can	recreate	the	effect	of	your	choosing,	or	design	your	own	special	lettering	effect
and	put	the	Lettering.js	plugin	to	work	to	create	your	design.	Use	gradients,	transforms,
3D	transforms,	box	shadows,	text	shadows,	border	radii,	or	CSS	animations	to	create	your
custom	appearance.

http://letteringjs.com

Setting	text	on	a	curve
Using	CSS3	transforms,	it	would	technically	be	possible	to	set	text	on	a	curve	using	the
Lettering.js	plugin.	It	would,	however,	require	us	to	do	quite	a	lot	of	calculations	to	get	the
letters	arranged	just	so.

Thankfully,	Pedro	Botelho,	author	of	the	ArcText	plugin,	has	figured	out	a	way	to	let
JavaScript	do	all	the	math	for	us.	He	started	from	the	Lettering.js	plugin,	but	then	added
the	ability	to	set	text	perfectly	to	a	curve	of	your	choosing.	The	result	is	the	ArcText
plugin,	which	allows	us	to	set	any	text	on	a	curve	of	any	radius.

Time	for	action	–	setting	text	on	a	curve
with	the	ArcText	plugin
Perform	the	following	steps	to	set	text	on	a	curve:

1.	 We’ll	get	started	by	creating	a	basic	HTML	document	and	associated	files	and
folders,	just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	Inside	the	HTML
document,	we’ll	add	a	heading,	as	follows:

<div	class="content">

		<header	id="ex1">

				<h1>A	Tale	of	Two	Cities</h1>

		</header>

</div>

2.	 Next,	we’ll	download	the	ArcText	plugin.	The	plugin	is	available	through	a	tutorial
on	the	Codrops	blog	by	Tympanus.	Head	over	to
http://tympanus.net/codrops/2012/01/24/arctext-js-curving-text-with-css3-and-jquery/
and	click	on	the	DOWNLOAD	SOURCE	button	to	get	the	ZIP	file.

Unzip	the	file.	Inside	the	js	folder,	you’ll	find	the	jquery.arctext.js	file—copy
this	file	to	your	own	scripts	folder.

3.	 At	the	bottom	of	the	HTML	file,	attach	the	ArcText	plugin,	after	jQuery	but	before
your	own	scripts.js	file,	as	follows:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.arctext.js"></script>

<script	src="scripts/scripts.js"></script>

</body>

</html>

4.	 Open	the	scripts.js	file	and	add	the	document	ready	statement,	as	follows:

$(document).ready(function(){

		//	Our	code	will	go	here

});

5.	 Next,	we’ll	need	to	call	the	arctext()	method.	Select	the	headline	and	call	the
arctext()	method,	as	follows:

$(document).ready(function(){

		$('h1').arctext();

});

Refresh	the	page	in	the	browser	and	you’ll	see	that	the	headline	is	now	curved.

http://tympanus.net/codrops/2012/01/24/arctext-js-curving-text-with-css3-and-jquery/

6.	 The	curve	we	get	by	default	might	not	be	exactly	what	we	wanted,	so	let’s	take	a	look
at	the	options	we	have	in	the	ArcText	plugin.	First,	we	have	control	over	the	radius
document	ready	of	the	circle	used	to	set	the	text.	Let’s	try	setting	that	to	500,	as
shown	in	the	following	code:

$('h1').arctext({

		radius:	500

});

The	following	screenshot	shows	the	change	in	the	arc:

This	gives	us	a	much	more	gentle	arc	and	is	generally	more	readable.	Feel	free	to
experiment	with	different	values	to	get	the	effect	you’d	like.

7.	 Next,	we	can	control	the	direction	of	the	arc.	By	default,	the	text	arcs	up,	but	we	can
also	make	it	arc	down.	We	use	the	dir	option—if	set	to	1,	the	curve	bends	upwards,
and	if	set	to	-1,	the	curve	bends	downwards:

$('h1').arctext({

		radius:	500,

		dir:	-1

});

Don’t	forget	to	include	a	comma	between	different	options	but	no	comma	after	the
last	option.	The	following	screenshot	shows	the	change	in	the	arc:

8.	 By	default,	ArcText	will	rotate	our	letters	to	the	curve.	But	we	can	turn	that	off	if	we
wish	to	with	the	rotate	option.	If	we	set	it	to	false,	as	follows,	each	letter	remains
vertical:

$('h1').arctext({

		radius:	500,

		rotate:	false

});

The	following	screenshot	shows	the	change	in	the	letters	on	setting	the	rotation	of
letters	to	false:

9.	 The	final	option	we	have	is	one	you’re	already	familiar	with.	ArcText	will	optionally
resize	the	arced	text	to	best	fit	the	width	of	its	container.	To	use	this	option,	just	set
fitText	to	true,	as	follows:

$('h1').arctext({

		radius:	500,

		fitText:	true

});

Now,	as	you	resize	the	browser	window,	the	text	will	automatically	resize	to	best	fit
into	the	available	space.

Note	that	as	the	text	gets	larger,	the	arc’s	radius	increases.

10.	 The	arced	headline	looks	just	fine,	but	if	we	try	to	add	other	text	to	the	page,	we’ll
find	that	it	overlaps	with	the	arced	text,	as	shown	in	the	following	screenshot:

It’s	simple	enough	to	correct	this	issue	by	adding	a	margin	to	the	headline	that
contains	the	arced	text.	Inside	styles.css,	add	the	following	style:

.content	h1	{

		margin-bottom:	3em;

		text-align:	center;

}

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	body	text	added	after
the	headline	no	longer	overlaps,	as	shown	in	the	following	screenshot:

You	can	experiment	with	the	margin	value	to	find	the	value	that	best	works	for	your

text.	Note	that	if	you	are	using	the	fitText	option,	you’ll	want	to	set	the	margin	in
ems	so	that	it	will	adjust	in	proportion	to	the	font	size	at	different	screen	widths.

What	just	happened?
We	used	the	ArcText	plugin	to	set	our	text	on	a	curve.	The	ArcText	plugin	automatically
calculates	the	rotation	and	position	of	each	letter	in	the	headline	for	us	to	set	it	on	a	perfect
arc.	The	options	that	are	included	allow	us	to	control	the	direction	of	the	arc	and	the	radius
of	the	arc,	whether	or	not	the	letters	are	rotated,	and	whether	or	not	the	arced	text	is
resized	to	best	fit	the	screen.	We	gave	all	of	these	options	a	try.	We	also	saw	how	we	can
adjust	the	margin	of	the	arced	text	to	avoid	any	subsequent	text	from	overlapping.

Summary
In	this	chapter,	we	took	at	look	at	several	options	we	have	to	work	with	text	inside
responsive	designs.	We	saw	how	we	can	make	headlines	resize	automatically	to	fill	the
available	space	using	the	FitText	plugin.	We	learned	how	to	use	the	SlabText	plugin	to
create	blocky	chunks	of	text.	We	tried	using	the	Lettering.js	plugin	to	fine-tune	kerning
and	apply	styles	to	individual	letters.	Finally,	we	learned	how	to	set	text	on	an	arc	using
the	ArcText	plugin.	Next,	we’ll	explore	some	ways	to	present	data	beautifully	in	our
designs	with	interactive	data	grids,	graphs,	and	charts.

Chapter	10.	Displaying	Data	Beautifully
While	you	might	not	consider	displaying	data	to	be	all	that	exciting,	it	is	often	crucial	to
present	large	amounts	of	data	to	site	visitors	in	a	way	that	makes	it	easy	for	them	to
understand,	explore,	and	interact	with	in	new	ways.	Finding	new	and	better	ways	to
display	data	helps	to	communicate	complex	principles	effectively.	Allowing	site	visitors	to
interact	with	data	enables	them	to	make	their	own	discoveries.	As	we	are	presented	with
more	and	more	data	everyday,	the	field	of	data	visualization	grows.	Let’s	take	a	look	at
some	simple	things	we	can	do	when	working	with	large	amounts	of	data	to	make	it	easier
for	our	site	visitors	to	consume	and	understand.

In	this	chapter,	we’ll	learn:

How	to	turn	an	ordinary	table	into	an	interactive	data	grid	using	the	DataTables
jQuery	plugin	by	Allan	Jardine
How	to	customize	the	appearance	and	behavior	of	the	data	grid	using	the	jQuery	UI
ThemeRoller	plugin
How	to	use	the	jQuery	Visualize	plugin	to	use	tables	of	data	to	create	charts	and
graphs

A	basic	data	grid
We’ll	get	started	by	using	the	DataTables	plugin	to	create	a	basic	data	grid,	keeping	the
default	settings	and	the	styles	provided	with	the	data	grid.	Data	grids	are	most	helpful
when	we	have	large	amounts	of	data	to	present,	and	the	site	visitors	might	want	to	filter
and	sort	the	data	in	different	ways	to	find	the	information	they	are	looking	for.	Think,	for
example,	of	a	list	of	flights;	one	site	visitor	might	be	interested	in	sorting	the	flights	by	the
departure	time	to	find	the	earliest	possible	departure,	while	another	site	visitor	might	want
to	sort	the	flights	by	duration	of	the	flight	to	find	the	shortest	possible	flight.	Presenting
the	data	in	an	interactive	data	grid	allows	each	site	visitor	to	quickly	and	easily	find	just
the	information	they’re	looking	for	in	a	sea	of	information.	For	site	visitors	with
JavaScript	disabled,	they’ll	simply	see	a	large	table	of	data	and	will	never	know	that
they’re	missing	out	on	the	interactive	features.	All	of	the	information	will	still	be	available
to	them.

Time	for	action	–	creating	a	basic	data
grid
Let’s	take	a	look	at	how	to	turn	a	basic	HTML	table	into	an	interactive	data	grid,	as
follows:

1.	 We’ll	get	started	as	usual	with	our	basic	HTML	file	and	associated	files	and	folders,
just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	We’ll	fill	the	<body>	element	of
our	HTML	document	with	the	HTML	markup	for	a	large	table	of	data.	The
DataTables	plugin	requires	us	to	be	careful	and	correct	with	our	table	markup,
otherwise	the	DataTables	features	may	not	work	as	expected.	We’ll	need	to	ensure
that	we	use	a	<thead>	element	for	the	table’s	header,	and	a	<tbody>	element	for	the
table’s	body.	A	<tfoot>	element	for	the	table’s	footer	is	optional.	The	following	code
is	an	abbreviated	sample	of	the	HTML	markup	for	a	table	of	the	all-time	best-selling
books:

<table	id="book-grid">

		<thead>

				<tr>

						<th>Title</th>

						<th>Author(s)</th>

						<th>Original	Language</th>

						<th>First	Published</th>

						<th>Approximate	Sales</th>

				</tr>

		</thead>

		<tbody>

				<tr>

						<td>A	Tale	of	Two	Cities</td>

						<td>Charles	Dickens</td>

						<td>English</td>

						<td>1859</td>

						<td>200	million</td>

				</tr>

				<tr>

						<td>The	Lord	of	the	Rings</td>

						<td>J.	R.	R.	Tolkien</td>

						<td>English</td>

						<td>1955</td>

						<td>150	million</td>

				</tr>

				...

		</tbody>

</table>

In	the	sample	code	for	the	book,	you’ll	find	that	the	table	contains	a	total	of	127
books,	each	marked	up	just	as	these	are.	Note	that	we’ve	added	an	id	value	(book-
grid)	to	the	table	element,	we	have	used	the	<th>	elements	for	the	heading	of	each
column,	and	we’ve	enclosed	these	elements	in	a	<thead>	element.	We’ve	also	used	a
<tbody>	element	to	wrap	all	the	rows	in	the	table’s	body.

2.	 Next,	we’ll	download	the	DataTables	plugin.	Head	over	to	http://datatables.net,
where	you’ll	find	the	plugin’s	downloads,	documentation,	and	examples.	Click	on	the
Download	link	in	the	menu	to	go	to	the	download	page.	Then,	click	on	the
Download	DataTables	button	to	download	a	ZIP	file.

3.	 Unzip	the	file	and	take	a	look	inside	the	folder.	There’s	a	folder	of	examples	with
several	different	examples	of	the	DataTables	plugin	in	action.	There’s	folder	that
provides	extra	functionality	for	advanced	data	tables—we	won’t	be	using	any	of
those	here.	There’s	a	media	folder	that	contains	images,	css,	and	js	resources.	Next,
a	Readme.md	file	contains	information	on	the	plugin’s	creator,	information	for	where
to	find	the	documentation,	and	so	on.	Finally,	you’ll	find	the	license	for	the	plugin
and	a	few	other	files	we’ve	seen	before	and	can	safely	ignore	for	now.

4.	 We’re	going	to	be	setting	up	a	basic	example,	so	we’ll	just	need	a	couple	of	things	for
our	own	project.	First,	copy	the	contents	of	the	images	folder	from	the	downloaded
folder	to	your	own	images	folder.	Open	the	css	folder	and	copy
jquery.dataTables.min.css	to	your	own	styles	folder.	Finally,	in	the	js	folder,
find	the	minified	version	of	the	plugin,	jquery.dataTables.min.js,	and	copy	it	to
your	own	scripts	folder.

5.	 Next,	we’ll	get	all	the	necessary	files	attached	to	our	HTML	page	that	contains	our
table.	In	the	<head>	section	of	the	document,	attach	the	CSS	file	before	your	own
styles.css	file,	as	follows:

<link	rel="stylesheet"	href="styles/jquery.dataTables.min.css"/>

<link	rel="stylesheet"	href="styles/styles.css"/>

6.	 Inside	styles.css,	we	have	to	add	just	one	style	for	our	table	to	make	sure	it	fills	the
available	width,	and	to	adjust	the	text	color	for	the	table	contents.	The	style	is	as
shown	in	the	following	code:

table	{

		color:	#333;

		width:	100%;

}

7.	 Next,	at	the	bottom	of	the	HTML	document,	attach	the	DataTables	plugin	in	between
the	jQuery	file	and	your	own	scripts.js	file,	as	shown	in	the	following	code:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.dataTables.min.js"></script>

<script	src="scripts/scripts.js"></script>

</body>

</html>

8.	 Next,	open	your	scripts.js	file,	and	inside	a	document	ready	statement,	select	the
table	and	call	the	dataTable()	method,	as	follows:

$(document).ready(function(){

		$('#book-grid').dataTable();

});

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	your	table	has	been
transformed	into	a	data	grid.	You	can	select	the	number	of	items	to	view	at	one	time,

http://datatables.net

type	into	the	search	box	to	find	specific	table	entries,	and	use	the	pagination	controls
at	the	bottom-right	corner	of	the	table	to	page	through	the	data	table’s	rows.

What	just	happened?
We	set	up	a	basic	HTML	table	and	turned	it	into	an	interactive	data	grid	by	attaching	a
CSS	file	and	the	DataTables	plugin.	We	selected	the	table	and	called	the	dataTable()
method	to	activate	the	DataTables	plugin.

That	was	pretty	easy,	wasn’t	it?	Of	course,	chances	are	that	this	lavender	design	doesn’t	fit
the	design	of	your	site,	so	let’s	take	a	look	at	how	we	can	customize	the	appearance	of	the
data	table.

A	customized	data	grid
The	DataTables	plugin	is	the	first	plugin	we’ve	used	that	has	support	for	the	jQuery	UI
ThemeRoller	plugin.	jQuery	UI	is	a	collection	of	widgets	and	interactions	that	make
building	complex	applications	easier	and	faster.	Learning	jQuery	UI	itself	is	beyond	the
scope	of	this	book,	but	we’ll	take	a	look	at	how	to	use	the	jQuery	UI	ThemeRoller	to
create	a	custom	theme	for	our	data	table.	This	same	theme	would	apply	to	any	jQuery	UI
widgets	used	on	our	page,	as	well	as	any	jQuery	plugins	being	used	that	include	support
for	the	jQuery	UI	ThemeRoller.

Time	for	action	–	customizing	the	data
grid
We’ll	pick	up	right	from	where	we	left	off	with	our	data	table.	If	you’d	like	to	save	your
basic	data	grid	example,	just	save	a	copy	of	the	files	we	created.	Then,	perform	the
following	steps	to	customize	the	appearance	of	your	data	grid:

1.	 Head	over	to	http://jqueryui.com/themeroller	where	we’ll	take	a	look	at	the
ThemeRoller	plugin.	Take	a	look	at	the	following	screenshot	to	see	the	page.	In	the
left-hand	side	column,	you’ll	find	the	controls	for	selecting	a	predefined	theme	or
creating	a	custom	theme,	and	the	right-hand	side	wide	column	contains	samples	of
several	different	types	of	widgets.

2.	 Click	on	the	Gallery	tab	in	the	left-hand	side	column,	and	you’ll	see	that	you	have
dozens	of	choices	of	prebuilt	ThemeRoller	themes	to	choose	from.	As	you	click	on
different	samples,	you’ll	see	the	sample	widgets	in	the	right-hand	side	column	update
to	reflect	that	style.	I	usually	like	to	get	started	by	selecting	a	prebuilt	theme	that’s
reasonably	close	to	the	color	scheme	or	appearance	that	I	want,	and	then	I	flip	to	the
Roll	Your	Own	tab	to	tweak	it	to	suit	my	needs.	For	this	example,	I’m	going	to	start
with	the	Cupertino	style.

After	flipping	to	the	Roll	Your	Own	tab,	you’ll	see	that	there	are	settings	for	fonts,
colors,	corners,	headers,	and	so	on.	Make	the	adjustments	you’d	like	in	order	to	get
the	theme	to	look	just	the	way	you’d	like.	Feel	free	to	play	and	experiment.	If	you	go
too	far	and	get	to	something	you	don’t	like,	it’s	easy	to	flip	back	to	the	Gallery	tab

http://jqueryui.com/themeroller

and	select	the	prebuilt	theme	again,	stripped	of	any	of	your	customizations,	and	then
start	again.

Tip
Any	of	your	customizations	will	be	lost	if	you	reselect	a	prebuilt	theme.	Once	you	get
something	you	like,	be	sure	to	move	on	to	step	3	to	save	it.

3.	 Once	you’ve	got	your	theme	set	up	just	the	way	you’d	like,	click	on	the	Download
theme	button.

You’ll	find	yourself	on	the	Download	Builder	page,	which	might	seem	a	little
confusing.	See,	jQuery	UI	is	so	large	and	has	so	many	different	features	to	offer	that
the	developers	realize	that	forcing	everyone	to	download	the	entire	thing	would	be
overkill.	If	you	only	wanted	to	use	one	widget,	there’d	be	no	need	to	download	all	the
other	widgets	and	effects.	This	page	lets	you	pick	and	choose	different	components	of
jQuery	UI	so	that	you	don’t	have	to	download	more	than	you	need.

In	the	Version	section,	go	ahead	and	leave	the	version	set	to	the	default.	Since	we’re
just	getting	a	theme,	we’ll	just	use	the	latest	stable	version.

Uncheck	the	Toggle	All	checkbox	in	the	Components	section.	We	won’t	need	to
download	any	of	these	components	because	we	just	want	a	theme.

Then,	we’ll	leave	the	Theme	settings	at	the	bottom	of	the	page	at	their	defaults	and
click	on	the	Download	button	to	download	a	ZIP	file.

4.	 Unzip	the	file	and	take	a	look	inside.	You’ll	see	that	even	though	we	got	the	simplest
download	we	could,	we	still	have	quite	a	few	files	shown	in	the	following	screenshot:

We’ve	got	an	external	folder	that	contains	the	jQuery	library,	an	images	folder	that
contains	the	images	we’ll	need,	and	then	several	.js	and	.css	files.

The	only	items	we	need	are	the	images	folder	and	the	CSS	for	the	theme	you
selected,	which	is	contained	in	a	file	named	jquery-ui.theme.min.css.	Copy	the
CSS	file	to	your	styles	folder	and	copy	the	images	folder	to	your	own	styles
folder.	This	is	important—please	be	sure	to	nest	the	jQuery	UI	images	folder	inside

your	own	styles	folder.

5.	 Next,	we’ll	attach	our	theme’s	CSS	file	to	our	HTML	file.	Inside	the	<head>	section,
attach	your	theme’s	CSS	file	before	the	jquery.dataTables.min.css	file	we
attached	in	the	example	of	basic	data	grid,	as	follows:

<link	rel="stylesheet"	href="styles/jquery.dataTables_themeroller.css">

<link	rel="stylesheet"	href="styles/jquery.dataTables.min.css">

6.	 Now,	unfortunately,	our	theme’s	CSS	file	doesn’t	quite	have	all	the	styles	we’ll	need
for	a	nicely-styled	data	grid.	After	all,	the	jQuery	UI	developers	have	no	way	of
knowing	all	the	different	types	of	widgets	and	plugins	people	will	want	to	use,	so
there’s	no	possible	way	they	could	cover	every	single	case.	Luckily,	the	DataTables
plugin	author,	Allan	Jardine,	has	already	done	some	nice	work	for	us	in	this	area	and
has	provided	a	CSS	file	with	the	styles	we’ll	need	to	get	our	themed	data	grid	to	look
its	best.

You	can	read	up	on	styling	the	DataTables	plugin	in	the	documentation	that	Allan
Jardine	has	made	available	at	http://datatables.net/styling/.

Back	inside	the	DataTables	plugin	files,	look	inside	the	css	folder	that	is	inside	the
media	folder	to	find	the	jquery.dataTables_themeroller.css	file.	Copy	it	to	your
own	styles	folder	and	update	your	<link>	tag	to	link	to	point	to	this	new	CSS	file
instead	of	jquery.dataTables.min.css,	as	follows:

<link	rel="stylesheet"	href="styles/jquery-ui.theme.min.css">

<link	rel="stylesheet"	href="styles/jquery.dataTables_themeroller.css">

7.	 Now,	we	just	have	to	make	a	small	update	to	our	JavaScript	code.	We	have	to	tell	the
dataTable()	method	that	we	want	to	use	jQuery	UI.	Head	back	into	your
scripts.js	file	and	we’ll	add	a	pair	of	curly	brackets	and	pass	a	key/value	pair	to
enable	jQuery	UI	styling	for	our	data	table,	as	follows:

$(document).ready(function(){

		$('#book-grid').dataTable({

				'jQueryUI':	true

		});

});

If	you	refresh	the	page	in	the	browser	now,	you’ll	see	that	the	data	grid	is	now	using	a
style	that’s	consistent	with	the	widgets	we	saw	on	the	jQuery	UI	ThemeRoller	page.
Take	a	look	at	the	following	screenshot:

http://datatables.net/styling/

8.	 Let’s	make	some	adjustments	to	Open	styles.css	and	add	some	styles	to	add	zebra-
striping	to	the	table	as	follows:

tr.odd	td	{

		background-color:	#f5fbf0;

}

tr.even	td	{

		background-color:	white;

}

I’m	going	with	a	pale	green	for	odd	rows	and	white	for	even	rows	to	match	the
customized	Cupertino	style	I	selected	earlier.	Feel	free	to	choose	colors	that	match
your	own	chosen	theme.

9.	 Next,	we’ll	change	the	color	scheme	for	the	currently	sorted	row.	Add	a	style	for	this
to	styles.css.	I’m	going	to	change	mine	to	a	medium	green,	as	follows:

tr.odd	td.sorting_1	{

		background-color:	#d4ebbc;

}

10.	 Finally,	we	can	add	the	CSS	code	for	the	sorted	even	row	in	styles.css.	I’m	going
to	change	this	to	a	light	green,	as	follows:

tr.even	td.sorting_1	{

		background-color:	#e5f3d6;

}

You	can	select	your	own	colors	that	coordinate	with	your	own	chosen	theme.

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	zebra-striping	pattern
of	the	table	fits	with	our	ThemeRoller	theme,	as	shown	in	the	following	screenshot:

11.	 Our	table	could	use	a	bit	of	help	style-wise,	so	let’s	add	a	few	more	of	our	own
custom	styles	to	styles.css	to	get	things	to	look	a	bit	nicer,	as	shown	in	the
following	code:

th	{

		cursor:	pointer;

		vertical-align:	middle;

}

th,	td	{

		padding:	0.5em;

}

td	{

		border-bottom:	1px	solid	#c3e3a2;

}

These	styles	help	to	add	a	bit	of	space	inside	the	table	cells,	a	subtle	border	between
rows,	and	help	to	fix	the	alignment	of	the	table	headers.	The	result	is	a	much	more
readable	table.	Have	a	look	at	the	following	screenshot:

12.	 We	might	decide	that	for	this	particular	data	table,	the	search	function	doesn’t	make
sense.	The	DataTables	plugin	offers	a	way	for	us	to	disable	individual	features.	To
disable	the	search	box	filtering,	we’ll	pass	another	key/value	pair,	as	follows:

$(document).ready(function(){

		$('#book-grid').dataTable({

				'jQueryUI':	true,

				'searching':	false

		});

});

Refresh	the	page	in	the	browser	and	you’ll	see	that	the	search	box	has	disappeared,	as
shown	in	the	following	screenshot:

13.	 You’ve	probably	noticed	that	by	default,	DataTables	is	sorting	our	table	by	the	first
column	in	the	ascending	order,	from	A	to	Z.	This	might	be	fine	in	some	cases,	but	in
this	case,	since	we’re	listing	the	all-time	bestselling	books,	we	probably	want	to	sort
the	table	to	show	the	books	with	the	highest	sales	first.	We’ll	pass	in	a	new	key/value
pair	to	specify	which	column	should	be	used	for	the	default	sort	and	which	direction
the	sort	should	go,	as	follows:

$(document).ready(function(){

		$('#book-grid').dataTable({

				'jQueryUI':	true,

				'searching':	false,

				'order':	[[4,	'desc']]

		});

});

The	key	we’re	using	is	called	order,	and	the	value	is	the	column	number	and	sort
direction	inside	two	sets	of	square	brackets.	Don’t	forget	that	JavaScript	starts
counting	at	zero,	not	one.	So	the	fifth	column	in	our	table	is	actually	column	4.	Then,
we	want	the	highest	number	at	the	top,	so	we	pass	desc	for	the	descending	order.

Refresh	the	page	in	the	browser	and	you’ll	see	that	the	books	are	now	in	order	from
the	highest	sales	to	lowest	sales.	Also,	note	that	this	default	sort	order	doesn’t	affect
your	site	visitor’s	ability	to	sort	the	table	by	any	of	the	other	columns	in	any	order
they’d	like.	The	site	visitor	can	still	interact	with	your	table.	We’re	just	redefining	the
default	view	in	a	way	that	makes	the	most	sense	for	the	data	we’re	presenting.

What	just	happened?
We	took	our	basic	data	grid	and	took	it	a	step	further	by	customizing	the	appearance	and
behavior	of	the	plugin.	We	learned	how	to	use	the	jQuery	UI	ThemeRoller	to	create	a
custom	theme	for	our	data	grid.	Then,	we	learned	how	to	disable	searching	the	table	and
how	to	set	a	default	sort	for	the	data	grid.

Pop	quiz	–	building	correct	tables
Q1.	What	is	the	correct	order	of	elements	in	a	table?

1.	 thead,	tbody,	tfoot.
2.	 tbody,	thead,	tfoot.
3.	 thead,	tfoot,	tbody.
4.	 tfoot,	thead,	tbody.

Showing	graphs	and	charts
In	some	cases,	a	table	is	the	ideal	way	of	presenting	a	set	of	data.	At	other	times,	it	would
be	more	helpful	to	see	that	data	visualized	as	a	chart	or	a	graph.	Unfortunately,	charts	and
graphs	can	be	challenging	to	present	in	HTML.	Without	the	help	of	JavaScript,	we	are
stuck	using	static	images	to	present	graphs,	which	can	then	be	difficult	to	update	when	the
data	changes.

This	is	when	jQuery	comes	to	the	rescue.	In	this	section,	we’ll	take	a	look	at	using	the
Visualize	plugin	to	turn	tables	of	data	into	graphs	and	charts.	The	best	part	is	that	site
visitors	without	JavaScript	enabled	will	still	have	access	to	the	data	in	the	form	of	an
HTML	table,	so	nobody	misses	out	on	what	we’re	trying	to	share.	The	data	also	remains
accessible	for	those	who	visit	our	page	and	who	might	have	visual	impairment	or	other
disabilities	that	would	prevent	them	from	consuming	the	data	if	it	were	presented	in	a
static	image.

Time	for	action	–	showing	data	in	graphs
and	charts
Perform	the	following	steps	to	create	graphs	and	charts	from	HTML	tables:

1.	 We’ll	get	started	as	usual	with	our	basic	HTML	file	and	associated	files	and	folders,
just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	Inside	the	<body>	element	of
the	HTML	document,	we’ll	include	a	heading	and	a	table	with	some	numerical	data,
as	follows:

<div	class="content">

		<h1>A	Mad	Tea-Party</h1>

</div>

<table	id="menu">

		<caption>Menu	Items</caption>

		<thead>

				<tr>

						<td>Title</td>

						<th	scope="col">Total	Items</th>

				</tr>

		</thead>

		<tbody>

				<tr>

						<th	scope="row">Scones</th>

						<td>23</td>

				</tr>

				<tr>

						<th	scope="row">Tea	Sandwiches</th>

						<td>18</td>

				</tr>

				<tr>

						<th	scope="row">Pastries</th>

						<td>19</td>

				</tr>

				<tr>

						<th	scope="row">Tea</th>

						<td>28</td>

				</tr>

		</tbody>

</table>

Note	that	just	as	with	the	data	table	example,	we’re	careful	to	use	the	correct	markup
for	our	table,	wrapping	the	header	row	in	a	<thead>	element,	and	the	body	of	the
table	in	a	<tbody>	element.	Additionally,	we’ve	included	the	scope	attribute	on	all
the	<th>	elements	to	specify	whether	they	apply	to	the	column	or	the	row	in	which
they	are	placed.	Notice	also	that	we	included	an	id	attribute	for	the	table	to	make	it
easy	to	select	with	jQuery	later.

2.	 Next,	we’ll	include	some	CSS	to	style	the	table.	Open	your	styles.css	file	and	add

the	following	lines	of	code:

table	{

		border-collapse:	collapse;

		margin:	2.531em	0;

}

td,	th	{

		background:	white;

		border:	1px	solid	#ddd;

		color:	#444;

		padding:	0.5em	1em;

		text-align:	left;

}

thead	th,	thead	td	{

		background-color:	#a1d36e;

		border-color:	#8dc059;

}

caption	{

		margin:	0	0	0.5em	0;

}

caption	{

		font-size:	1.5em;

}

Feel	free	to	adjust	these	styles	to	suit	your	own	tastes.	Now,	if	we	view	the	page	in	a
browser,	we	see	a	nicely	styled	table,	as	shown	in	the	following	screenshot:

This	table	effectively	communicates	our	data,	and	is	accessible	to	anyone	who	might
visit	the	page,	no	matter	what	their	abilities	or	the	capabilities	of	their	device	and
browser	are.	However,	we	can	progressively	enhance	the	experience.

3.	 The	files	for	the	jQuery	Visualize	plugin	itself	are	available	on	GitHub	at
https://github.com/filamentgroup/jQuery-Visualize.	Click	on	the	Download	ZIP
button	to	grab	a	copy	of	the	files.

Tip
While	the	Visualize	plugin	and	the	examples	are	available	for	download	at	GitHub,
the	documentation	for	the	plugin	can	be	found	on	the	Filament	Group’s	website	at
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/

4.	 Unzip	the	downloaded	file.	Inside,	you’ll	find	some	example	files,	images,	CSS,	and
the	necessary	JavaScript	files.

Inside	the	js	folder,	find	the	visualize.jQuery.js	file	and	copy	and	paste	it	to	your
own	scripts	folder.	Inside	the	css	folder,	find	the	visualize.css	file	and	copy	that
to	your	own	styles	folder.	In	addition	to	this	CSS	file,	which	includes	the	basic
styles	needed	to	display	the	charts	and	graphs,	you’ll	also	need	to	choose	one	of	the
color	scheme	files.	Visualize	comes	with	both	a	dark	and	light	color	scheme.	We’ll	go
with	the	light	color	scheme	for	this	example,	so	also	copy	visualize-light.css	to
your	own	styles	folder.

5.	 In	your	index.html	file,	attach	the	visualize.jQuery.js	file	at	the	bottom	after
jQuery	but	before	your	own	scripts.js	file,	as	follows:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/visualize.jQuery.js"></script>

<script	src="scripts/scripts.js"></script>

</body>

</html>

In	the	<head>	section	of	the	document,	attach	the	visualize.css	file	as	well	as	our
color	scheme	styles,	before	your	own	styles.css	file,	as	shown	in	the	following
code:

		<title>Chapter	10:	Charts	and	Graphs</title>

		<link	rel="stylesheet"	href="styles/visualize.css">

		<link	rel="stylesheet"	href="styles/visualize-light.css">

		<link	rel="stylesheet"	href="styles/styles.css">

</head>

6.	 Next,	open	your	scripts.js	file	so	we	can	write	some	JavaScript.	Get	started	by
adding	the	document	ready	statement,	as	follows:

$(document).ready(function(){

		//	Our	code	will	go	here

});

7.	 Select	the	table	element	that	contains	our	data,	and	call	the	visualize()	method:

$(document).ready(function(){

		$('#menu').visualize();

});

Refresh	the	page	in	the	browser,	and	you’ll	see	that	a	graph	has	been	inserted	after

https://github.com/filamentgroup/jQuery-Visualize
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/

the	table	in	the	document,	as	shown	in	the	following	screenshot:

The	<caption>	tag	for	the	table	is	repurposed	as	the	title	of	the	graph.	The	text	we
included	in	the	table’s	<th>	elements	are	used	as	labels	for	the	data	in	the	graph.

The	chart	works	and	accurately	represents	our	data,	but	it	doesn’t	fit	our	design	very
well.	Let’s	take	a	look	at	how	we	can	customize	the	appearance	of	the	chart.

8.	 Just	like	several	other	jQuery	plugins	we’ve	used	so	far,	the	Visualize	plugin	includes
several	options	we	can	use	to	customize	the	charts	and	graphs	it	creates.	First	up,	we
can	specify	a	set	width	and	height	for	the	graph:

$('#menu').visualize({

		width:	'460px',

		height:	'205px'

});

9.	 Next,	we	can	specify	what	colors	should	be	used	for	each	of	the	bars	in	our	chart	with
the	colors	option.	The	colors	option	accepts	an	array	of	colors.	Remember	that	an

array	is	just	a	collection.	Specifying	an	array	of	colors	looks	like	this:

$('#menu').visualize({

		width:	'460px',

		height:	'205px',

		colors:	['#e75845','#967dd9','#8dc059','#42b0d8']

});

We’ll	wrap	the	array,	or	collection	of	colors,	in	square	brackets	[...].	Each	color
value	is	wrapped	in	quotes	and	a	comma	separates	each	color	value.

10.	 We	can	also	specify	the	amount	of	space	between	each	bar	in	the	chart	with	the
barMargin	option.	Let’s	add	some	extra	white	space	around	each	bar	in	the	chart,	as
follows:

$('#menu').visualize({

		width:	'460px',

		height:	'205px',

		colors:	['#e75845','#967dd9','#8dc059','#42b0d8'],

		barMargin:	20

});

Now,	refresh	the	page	in	the	browser	and	you’ll	see	our	customizations	take	effect,	as
shown	in	the	following	screenshot:

11.	 We	can	customize	our	graph	even	further	by	modifying	the	CSS	code.	In	the	<head>
section	of	index.html,	remove	the	visualize-light.css	file,	as	follows:

		<title>Chapter	10:	Charts	and	Graphs</title>

		<link	rel="stylesheet"	href="styles/visualize.css">

		<link	rel="stylesheet"	href="styles/styles.css">

</head>

Rather	than	using	the	style	as	provided	to	us	with	the	plugin,	we’ll	write	our	own
CSS	file.	This	is	often	an	option	with	jQuery	plugins.	Just	use	the	provided	CSS	file
as	a	guide	for	creating	your	own.

12.	 Open	your	styles.css	file.	We’ll	get	started	with	some	general	styles	for	the	graph
container.	Add	the	following	styles:

.visualize	{

		margin:	3.797em	0;

		padding:	3.797em	2.531em	5.695em;

		background:	white;

		-moz-border-radius:	3px;

		-webkit-border-radius:	3px;

		border-radius:	3px;

}

.visualize	canvas	{

		border:	1px	solid	#aaa;

		margin:	-1px;

		background:	#fff;

}

13.	 Next	up,	we’ll	add	some	custom	styles	for	the	labels	that	appear	on	the	graph,	as
follows:

.visualize-labels-x,

.visualize-labels-y	{

		font-size:	0.75em;

		left:	30px;

		top:	70px;

		z-index:	100;

}

.visualize-pie	.visualize-labels	{

		left:	40px;

		position:	absolute;

		top:	70px;

}

.visualize-labels-x	li	span.label,

.visualize-labels-y	li	span.label	{

		color:	#444;

		padding-right:	5px;

}

14.	 Now,	we’ll	add	some	styles	for	the	lines,	graph	information,	and	the	graph	title,	as
follows:

.visualize-labels-y	li	span.line	{

		border-style:	solid;

		opacity:	.7;

}

.visualize	.visualize-info	{

		background:	none;

		border:	0;

		opacity:	1;

		position:	static;

}

.visualize	.visualize-title	{

		color:	#333;

		font-size:	1.688em;

		font-weight:	bold;

		left:	20px;

		margin-bottom:	0;

		position:	absolute;

		right:	20px;

		text-align:	center;

		top:	20px;

}

15.	 Finally,	we’ll	add	some	styles	for	the	key:

.visualize	ul.visualize-key	{

		background:	#efefef;

		bottom:	1em;

		color:	#aaa;

		left:	0;

		padding:	0.75em;

		position:	absolute;

		right:	0;

		z-index:	10;

}

.visualize	ul.visualize-key	li	{

		float:	left;

}

.visualize	ul.visualize-key	.visualize-key-color	{

		display:	inline-block;

		height:	1em;

		margin:	0	0.25em	0	0;

		position:	static;

		vertical-align:	baseline;

		width:	1em;

}

.visualize	ul.visualize-key	.visualize-key-label	{

		color:	#333;

}

Now,	refresh	the	page	in	the	browser,	and	you’ll	see	that	our	graph	is	completely
customized	and	matches	the	design	of	our	page	perfectly.	Have	a	look	at	the
following	screenshot:

What	just	happened?
We	used	the	jQuery	Visualize	plugin	to	take	data	in	an	HTML	table	and	present	it	as	a
graph	on	the	page.	The	<caption>	tag	for	the	table	is	repurposed	as	the	title	of	the	graph,
and	the	table	headings	that	we	included	in	the	table’s	<th>	elements	repurposed	for	the
labels	of	the	data	points	in	the	graph.	We	saw	how	we	could	customize	various	options	in
the	graph	and	how	we	could	further	customize	the	graph	by	writing	our	own	CSS	code	to
style	the	assorted	components	of	the	graph.	Now,	let’s	take	a	look	at	how	we	can	do	even
more	with	the	charts	and	graphs	generated	by	the	Visualize	plugin.

Creating	pie	charts
We’ve	already	taken	a	look	at	some	of	the	options	available	to	us	with	the	jQuery
Visualize	plugin,	but	there’s	even	more	we	can	do.	In	this	section,	we’ll	take	a	look	at	how
we	can	use	the	plugin	to	create	pie	charts.

Time	for	action	–	creating	a	pie	chart
We’ll	keep	working	with	the	files	we	set	up	in	the	previous	section.	Perform	the	following
steps	to	create	a	pie	chart	with	the	Visualize	plugin:

1.	 Inside	the	HTML	file,	add	a	second	HTML	table	that	contains	some	data,	as	shown	in
the	following	code:

<table	id="eaten">

		<caption>Who	had	what?</caption>

		<thead>

				<tr>

						<td> </td>

						<th	scope="col">Scones</th>

						<th	scope="col">Tea	Sandwiches</th>

						<th	scope="col">Pastries</th>

						<th	scope="col">Tea</th>

				</tr>

		</thead>

		<tbody>

				<tr>

						<th	scope="row">Alice</th>

						<td>1</td>

						<td>3</td>

						<td>1</td>

						<td>2</td>

				</tr>

				<tr>

						<th	scope="row">Mad	Hatter</th>

						<td>0</td>

						<td>6</td>

						<td>3</td>

						<td>1</td>

				</tr>

				<tr>

						<th	scope="row">Dormouse</th>

						<td>1</td>

						<td>6</td>

						<td>0</td>

						<td>3</td>

				</tr>

				<tr>

						<th	scope="row">March	Hare</th>

						<td>2</td>

						<td>3</td>

						<td>2</td>

						<td>1</td>

				</tr>

		</tbody>

</table>

Just	like	last	time,	we’ve	been	careful	to	use	appropriate	table	markup,	and	have
included	<thead>,	<tbody>,	and	<th>	elements	where	appropriate.	This	time,	our
dataset	is	a	bit	more	complex,	including	multiple	columns	as	well	as	rows	of	data.

Refresh	the	page	in	the	browser	to	view	the	new	table,	as	shown	in	the	following
screenshot:

2.	 Next,	open	your	scripts.js	file.	Inside	the	document	ready	statement,	select	the
new	table	and	call	the	visualize()	method,	as	follows:

$(document).ready(function(){

		$('#menu').visualize({

				...

		});

		$('#eaten').visualize();

});

3.	 Now,	we’ll	pass	some	options	to	the	new	chart,	as	shown	in	the	following	code.	First
up,	let’s	specify	that	we	want	to	work	with	a	pie	chart	this	time,	rather	than	a	bar
graph.

$('#eaten').visualize({

		type:	'pie'

});

The	Visualize	plugin	includes	four	options	for	graph	and	chart	types:	bar,	pie,	line,
and	area.

4.	 We’ll	set	a	width	and	height	for	the	pie	chart,	and	include	a	set	of	colors	to	be	used
for	the	segments	of	the	pie,	as	follows:

$('#eaten').visualize({

		type:	'pie',

		width:	'460px',

		height:	'205px',

		colors:	['#e75845','#967dd9','#8dc059','#42b0d8']

});

Refresh	the	page	in	the	browser,	and	you’ll	see	our	pie	chart	displayed	after	the
second	table,	as	shown	in	the	following	screenshot:

5.	 However,	what	if	we	don’t	want	to	display	both	the	table	and	the	chart?	If	our	site
visitor	has	JavaScript	enabled,	then	we	want	to	hide	the	table	and	display	just	the
chart.	Site	visitors	without	JavaScript	enabled	will	just	see	the	table.	The	following
code	shows	how	we	can	do	that:

$('#eaten').addClass('accessHide').visualize({

		type:	'pie',

		width:	'460px',

		height:	'205px',

		colors:	['#e75845','#967dd9','#8dc059','#42b0d8']

});

We	just	add	another	method	to	our	chain.	The	CSS	file	included	with	the	Visualize
plugin	includes	a	CSS	class	called	accessHide,	which	positions	our	table	off	the
screen.	The	data	included	in	the	table	is	still	accessible	to	screen	readers,	but	won’t
be	seen	within	the	page.	Refresh	the	page	in	the	browser	and	you’ll	see	that	the	table
is	no	longer	visible—we	just	see	the	pie	chart,	as	shown	in	the	following	screenshot:

6.	 Our	pie	chart	looks	nice,	but	it’s	a	wee	bit	on	the	small	side.	Let’s	decrease	the	white
space	around	the	pie	chart.	We	can	do	that	using	the	pieMargin	option,	as	shown	in
the	following	code:

$('#eaten').addClass('accessHide').visualize({

		type:	'pie',

		width:	'460px',

		height:	'205px',

		colors:	['#e75845','#967dd9','#8dc059','#42b0d8'],

		pieMargin:	10

});

Now,	refresh	the	page	in	the	browser	and	you’ll	see	that	the	white	space	around	the
pie	chart	is	reduced.	Take	a	look	at	the	following	screenshot:

This	helps	our	pie	chart	to	appear	a	tad	bigger.	The	default	setting	is	20	pixels,	so
we’ve	cut	that	in	half	by	setting	it	to	10.

7.	 So	far,	we’ve	only	placed	our	chart	either	directly	after	or	in	place	of	our	table.
However,	we	can	also	move	the	chart	around	the	page,	and	display	it	wherever	we
wish.	Let’s	add	a	few	paragraphs	of	text	beneath	the	HTML	tables	in	the	index.html
file:

<div	class="content">

		<p>

				There	was	a	table	set	out	under	a	tree	in	front	of	the	house,	and	

the	March	Hare	and	the	Hatter	were	having	tea	at	it:	a	Dormouse	was	

sitting	between	them,	fast	asleep,	and	the	other	two	were	using	it	as	a	

cushion,	resting	their	elbows	on	it,	and	talking	over	its	head.	

‘Very	uncomfortable	for	the	Dormouse,’	thought	Alice;	

‘only,	as	it's	asleep,	I	suppose	it	doesn't	

mind.’

		</p>

		<p>

				The	table	was	a	large	one,	but	the	three	were	all	crowded	together	

at	one	corner	of	it:	‘No	room!	No	room!’	they	cried	out	

when	they	saw	Alice	coming.	‘There's	PLENTY	of	room!’	

said	Alice	indignantly,	and	she	sat	down	in	a	large	arm-chair	at	one	

end	of	the	table.</p>

		...

</div>

8.	 Somewhere	inside	the	block	of	text,	we’ll	place	a	<div>	element	that	will	act	as	a
placeholder	for	our	chart,	as	follows:

<div	class="content">

		<p>

				There	was	a…

		</p>

		<div	id="pie-container"	class="chart	left"></div>

		<p>

				The	table	was…</p>

		...

</div>

We’d	like	to	display	our	pie	chart	inside	this	<div>	element.	If	the	<div>	element	has
no	content,	then	it	collapses	to	zero	width	and	zero	height,	taking	up	no	space	in	our
HTML	document.

9.	 Next,	open	your	styles.css	file	and	add	some	styles	for	the	newly	created	<div>
element,	as	follows:

.chart.left	{

		float:	left;

		margin:	0	1em	0.5em	0;

}

.chart.right	{

		float:	right;

		margin:	0	0	0.5em	1em;

}

10.	 Now,	inside	the	scripts.js	file,	we’ll	use	jQuery’s	appendTo()	method	to	move	the
newly	generated	pie	chart	to	the	<div>	element	we	just	created,	as	shown	in	the
following	code.	After	moving	the	chart,	we	do	have	to	trigger	a	refresh.

$('#eaten').addClass('accessHide').visualize({

		type:	'pie',

		width:	'460px',

		height:	'205px',

		colors:	['#e75845','#967dd9','#8dc059','#42b0d8'],

		pieMargin:	10

}).appendTo('#pie-container').trigger('visualizeRefresh');

We’ve	selected	the	id	attribute	of	the	<div>	element	to	move	our	chart	there.	Then,
we	used	the	trigger()	method	and	passed	it	visualRefresh	to	ensure	that	our	chart
displays	correctly.

Refresh	the	page	in	the	browser,	and	you’ll	see	that	rather	than	appearing	at	the	top	of
the	document,	the	pie	chart	is	now	displayed	inside	our	text	block,	as	shown	in	the
following	screenshot:

We’re	getting	closer,	but	our	pie	chart	needs	a	bit	of	style	adjustment.	Now	that	we’re
trying	to	include	it	inside	a	text	area,	the	large	margins	we	specified	above	and	below
the	chart	don’t	work.	Also,	the	style	of	the	key	and	labels	seems	a	bit	off.

11.	 Open	up	styles.css.	First,	we’ll	add	a	bit	of	CSS	to	remove	those	large	top	and
bottom	margins	if	the	pie	chart	appears	inside	a	block	of	text:

.chart	.visualize	{

		margin:	0;

}

12.	 The	misalignment	of	the	pie	chart’s	labels	and	key	are	because	of	some	styles	set	for
our	text	block	that	are	interfering	with	the	styles	set	for	the	pie	chart.	Just	add	a	bit	of
CSS	code	to	override	those,	as	shown	in	the	following	code	snippet:

.chart	.visualize	ul	{

		margin:	0;

}

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	pie	chart	is	displayed
as	expected,	and	is	seamlessly	integrated	into	our	block	of	text:

Using	charts	and	graphs	in	responsive	designs
We’ve	learned	how	to	create	charts	and	graphs	to	represent	tabular	data,	but	if	you’ve	tried
resizing	your	browser	window,	you	would	have	likely	noticed	that	the	size	of	the	charts
and	graphs	remains	fixed,	making	them	less	than	ideal	for	use	in	responsive	designs.
While	we	can’t	make	the	charts	and	graphs	completely	fluid,	we	can	detect	the	ideal	width
and	height	based	on	our	browser	window’s	width,	and	adjust	accordingly.

Time	for	action	–	calculating	the	ideal	size
for	charts	and	graphs
We’ll	keep	working	with	the	files	we	created	in	the	previous	section.	Perform	the
following	steps	to	dynamically	set	the	width	and	height	of	our	charts	and	graphs	according
to	the	width	of	the	browser	window:

1.	 Open	your	scripts.js	file.	We’ll	want	to	add	a	few	quick	calculations.	First	up,	let’s
set	a	preferred	width	for	our	graphs	and	charts,	as	follows:

$(document).ready(function(){

		var	preferredWidth	=	450;

		$('#menu').visualize({

				...

		});

		$('#eaten').addClass('accessHide').visualize({

				...

		}).appendTo('#pie-container').trigger('visualizeRefresh');

});

We	created	a	variable	named	preferredWidth.	Recall	that	a	variable	is	just	a
container—in	this	case,	the	variable	contains	the	size	in	pixels	that	we’d	like	our
charts	and	graphs	to	appear	by	default.

2.	 Next,	we	need	to	get	the	actual	width	of	the	available	content	area	on	our	page.	As
our	CSS	code	is	fluid,	this	will	change	depending	on	the	width	of	the	browser
window.	The	exact	element	you	use	to	calculate	this	will	change	depending	on	what
your	HTML	markup	looks	like.	In	this	case,	we	can	use	the	width	of	the	paragraphs
inside	the	text	block,	as	shown	in	the	following	code:

$(document).ready(function(){

		var	preferredWidth	=	450,

				contentWidth	=	$('.content	p:first').width()	-	83;

		$('#menu').visualize({

				...

		});

		$('#eaten').addClass('accessHide').visualize({

				...

		}).appendTo('#pie-container').trigger('visualizeRefresh');

});

We’re	selecting	the	first	paragraph	in	the	text	block,	and	getting	its	width.	Then,
because	the	graphs	have	a	considerable	amount	of	padding	around	them,	we’re
subtracting	83	pixels	from	that	width	to	allow	for	the	padding.

3.	 Now	that	we’ve	got	both	the	preferredWidth	variable	and	the	actual	content	width,
it’s	just	a	simple	matter	of	comparing	the	two	to	calculate	the	correct	width.	Take	a
look	at	the	following	code:

$(document).ready(function(){

		var	preferredWidth	=	450,

				contentWidth	=	$('.content	p:first').width()	-	83,

				finalWidth	=	(preferredWidth	>	contentWidth)	?	contentWidth	:	

preferredWidth;

		$('#menu').visualize({

				...

		});

		$('#eaten').addClass('accessHide').visualize({

				...

		}).appendTo('#pie-container').trigger('visualizeRefresh');

});

We’ve	seen	this	type	of	statement	before.	Recall	that	this	is	called	a	ternary
operator.	First,	we’re	comparing	our	preferredWidth	variable	with	our
contentWidth	variable	to	see	which	is	wider.	If	the	preferredWidth	variable	is
wider,	then	we	want	to	set	the	finalWidth	variable	equal	to	contentWidth—as
preferredWidth	is	too	wide	for	our	page.	Otherwise,	we	can	use	our
preferredWidth.

4.	 Next,	we	need	to	calculate	the	height	of	the	charts	and	graphs.	We’ll	make	it	half	the
width,	as	follows:

$(document).ready(function(){

		var	preferredWidth	=	450,

				contentWidth	=	$('.content	p:first').width()	-	83,

				finalWidth	=	(preferredWidth	>	contentWidth)	?	contentWidth	:	

preferredWidth,

				finalHeight	=	finalWidth/2	+	'px';

		$('#menu').visualize({

				...

		});

		$('#eaten').addClass('accessHide').visualize({

				...

		}).appendTo('#pie-container').trigger('visualizeRefresh');

});

5.	 We	just	have	to	add	the	measurement	to	the	end	of	the	finalWidth	variable,	as
follows:

$(document).ready(function(){

		var	preferredWidth	=	450,

				contentWidth	=	$('.content	p:first').width()	-	83,

				finalWidth	=	(preferredWidth	>	contentWidth)	?	contentWidth	:	

preferredWidth,

				finalHeight	=	finalWidth/2	+	'px',

				finalWidth	+=	'px';

		$('#menu').visualize({

				...

		});

		$('#eaten').addClass('accessHide').visualize({

				...

		}).appendTo('#pie-container').trigger('visualizeRefresh');

});

6.	 Now	that	we’ve	calculated	the	best	possible	value	for	the	width	and	height	of	our
charts,	we	just	have	to	insert	those	values	as	the	width	and	height	options	inside
each	visualize()	method:

$('#menu').visualize({

		width:	finalWidth,

		height:	finalHeight,

		colors:	['#e75845','#967dd9','#8dc059','#42b0d8'],

		barMargin:	20

});

$('#eaten').addClass('accessHide').visualize({

		type:	'pie',

		width:	finalWidth,

		height:	finalHeight,

		colors:	['#e75845','#967dd9','#8dc059','#42b0d8'],

		pieMargin:	10

}).appendTo('#pie-container').trigger('visualizeRefresh');

7.	 If	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	charts	and	graphs	resize	to
best	fit	in	the	available	area,	as	shown	in	the	following	screenshot:

If	you	resize	the	browser	window,	you’ll	have	to	refresh	the	page	in	order	for	the
charts	and	graphs	to	recalculate	their	sizes.	It’s	not	quite	as	fluid	as	responsive

designs	typically	are,	but	it’s	much	nicer	than	just	allowing	the	charts	and	graphs	to
always	appear	the	same	size.

What	just	happened?
While	we	can’t	make	our	charts	and	graphs	as	fluid	as	other	elements	on	the	page	in	a
responsive	design,	we	can	improve	the	experience	a	bit	by	calculating	the	best	possible
size	for	the	charts	and	graphs	when	the	page	is	first	loaded	into	the	browser.	We	learned
how	to	compare	our	preferred	width	with	the	actual	width	available	for	displaying	the
charts	and	graphs	and	set	the	correct	value	for	both	the	width	and	height	accordingly.	It’s
not	a	perfect	solution	to	displaying	charts	and	graphs	in	a	responsive	design,	but	it’s	a	big
improvement	over	always	displaying	the	charts	and	graphs	at	a	single	fixed	size,
regardless	of	the	window	width.

Summary
In	this	chapter,	we	learned	how	to	turn	an	ordinary	HTML	table	into	an	interactive	data
grid.	Our	site	visitors	can	now	take	advantage	of	sorting	different	columns	of	the	table	to
view	the	data	in	different	ways.	Site	visitors	with	JavaScript	disabled	simply	see	an
ordinary	HTML	table	that	contains	all	of	the	data.	Data	grids	aren’t	terribly	exciting,	but
they	can	make	dealing	with	large	amounts	of	data	worlds	easier	for	your	site	visitors.	We
also	took	a	look	at	how	to	display	numerical	tabular	data	in	charts	and	graphs,	adding
visual	interest	to	our	pages.	Next	up,	we’ll	take	a	look	at	using	scrolling	effects	in	our
pages,	including	parallax	effects.

Chapter	11.	Reacting	to	Scrolling
We	can	create	some	fun	effects	by	reacting	to	our	site	visitors	when	they	scroll	up/down
through	our	pages.	As	they	scroll	down	the	page,	we	can	create	parallax	effects,	animate
various	elements	on	the	page,	and	trigger	other	changes	on	the	page	as	well.	This	helps
our	pages	to	feel	dynamic	and	alive—we	can	turn	the	simple	act	of	scrolling	through	a
page	to	read	the	content	into	an	interactive	one.

In	this	chapter,	we	will:

Set	up	an	HTML	document	(page)	divided	into	sections
Create	a	parallax	effect	in	one	of	the	sections	on	the	page
Trigger	an	animation	in	one	of	the	sections	on	the	page
Add	and	activate	navigation	for	the	page	that	also	reacts	to	scrolling

Setting	up	the	document
The	first	step	in	creating	a	page	with	scrolling	effects	is	to	plan	an	HTML	page	divided
into	clear	sections.	In	this	example,	we’re	going	to	set	up	a	weather	forecast—each	day	or
night	will	be	one	block	with	its	own	icon,	text,	and	background.

Time	for	action	–	setting	up	the	HTML
file
Perform	the	following	steps	to	set	up	an	HTML	document	that	is	ideal	for	adding	the
scrolling	effects:

1.	 We’ll	get	started	as	usual	with	our	basic	HTML	file	and	associated	files	and	folders,
just	like	we	did	in	Chapter	1,	Designer,	Meet	jQuery.	Note	that	because	we’re	going
to	be	creating	several	full-width	sections,	the	CSS	file	for	this	chapter	is	slightly
modified	from	the	starting	CSS	file	we	used	in	the	previous	chapters.	You’ll	find	the
correct	version	of	the	CSS	file	in	the	code	samples	for	the	book.

Inside	the	HTML	document,	we’ll	create	a	series	of	the	<section>	elements,	each	of
which	will	contain	the	day	or	night,	an	icon,	and	a	short	weather	forecast.	To	do	this,
take	a	look	at	the	following	code:

<section	class="scrollblock"	id="monday">

		<div	class="day">Monday</div>

		<div	class="forecast">72°	Sunny</div>

		<div	class="icon"><img	src="images/Sun.svg"	alt="Sunny"	width="300"	

height="300"></div>

</section>

<section	class="scrollblock"	id="moneve">

		<div	class="day">Monday	evening</div>

		<div	class="forecast">62°	Clear</div>

		<div	class="icon"><img	src="images/Moon.svg"	alt="Clear"	width="300"	

height="300"></div>

</section>

<section	class="scrollblock"	id="tueday">

		<div	class="day">Tuesday</div>

		<div	class="forecast">67°	Cloudy</div>

		<div	class="icon"><img	src="images/Cloud.svg"	alt="Cloudy"	

width="300"	height="300"></div>

</section>

<section	class="scrollblock"	id="tueeve">

		<div	class="day">Tuesday	evening</div>

		<div	class="forecast">58°	Rainy</div>

		<div	class="icon"><img	src="images/Cloud-Drizzle-Moon.svg"	alt="Rainy	

Night"	width="300"	height="300"></div>

</section>

<section	class="scrollblock"	id="wedday">

		<div	class="day">Wednesday</div>

		<div	class="forecast">69°	Windy</div>

		<div	class="icon"	id="wind"><img	src="images/Cloud-Wind.svg"	

alt="Cloudy	Windy"	width="300"	height="300"></div>

</section>

<section	class="scrollblock"	id="wedeve">

		<div	class="day">Wednesday	evening</div>

		<div	class="forecast">57°	Clearing</div>

		<div	class="icon"><img	src="images/Cloud-Fog-Moon.svg"	alt="Clearing"	

width="300"	height="300"></div>

</section>

Note	that	every	<section>	element	has	the	class	scrollblock,	but	every	element
also	has	a	unique	id	attribute,	which	will	help	us	to	target	just	the	block	with	either
JavaScript	or	CSS.

The	code	samples	provided	with	the	book	use	the	excellent	Climacons	from	Adam
Whitcroft,	which	are	available	for	download	at	http://adamwhitcroft.com/climacons/.
I’m	using	the	.svg	format	in	this	tutorial—if	your	browser	doesn’t	yet	support	SVG
images,	you’ll	need	to	use	the	source	files	provided	by	Adam	Whitcroft	to	create
.png	files.

2.	 Next,	we’ll	add	some	styles.	Open	your	styles.css	file	and	get	started	by	adding
some	general	styles	for	the	page	and	for	each	of	our	forecast	blocks,	as	follows:

html,	body	{

		height:	100%;

}

.scrollblock	{

		left:	0;

		min-height:	28.833em;

		position:	relative;

		right:	0;

}

.day	{

		font-size:	2.25em;

		left:	1em;

		position:	absolute;

		top:	1em;

}

.forecast	{

		bottom:	1em;

		font-size:	2.25em;

		position:	absolute;

		right:	1em;

}

.icon	{

		left:	50%;

		position:	absolute;

		top:	50%;

}

.icon	img	{

		margin:	-50%	0	0	-50%;

}

These	styles	set	up	a	minimum	height	for	each	block,	then	position	the	day,	icon,	and
forecast	within	each	block.	If	you	look	at	our	page	in	the	browser,	you’ll	see	that	the

http://adamwhitcroft.com/climacons/

elements	are	in	place,	as	shown	in	the	following	screenshot:

The	page	is	shaping	up,	but	we	don’t	have	any	visual	divide	between	the	different
sections	on	the	page.	Let’s	take	care	of	that	in	the	next	steps.

3.	 In	styles.css,	let’s	add	a	different	background	color	to	each	section	of	the	forecast,
as	follows:

#monday	{

		background:	#7ec0ee;

}

#moneve	{

		background:	#003366;

}

#tueday	{

		background:	#999;

}

#tueeve	{

		background:	#333;

}

#wedday	{

		background:	#6a93b1;

}

#wedeve	{

		background:	#003366;

}

Now,	it’s	easier	to	see	the	separation	between	the	blocks	as	you	scroll	down	through
the	page.

4.	 In	addition	to	the	background	colors,	let’s	also	add	background	images	to	some	of	the
blocks,	as	follows:

#moneve	{

		background:	#003366	url(../images/starrysky.jpg)	50%	50%	/	cover	

fixed	no-repeat;

}

#tueday	{

		background:	#999	url(../images/cloudysky.jpg)	50%	50%	/	cover	fixed	

no-repeat;

}

#wedeve	{

		background:	#003366	url(../images/sunset.jpg)	50%	50%	/	cover	fixed	

no-repeat;

}

We’re	using	the	shorthand	for	backgrounds	here.	Recall	that	writing	out	all	the
background	values	on	one	line	is	just	a	shorthand	way	of	writing	them	out
individually,	as	shown	in	the	following	code	snippet:

#moneve	{

		background-color:	#003366;

		background-image:	url(../images/starrysky.jpg);

		background-position:	50%	50%;

		background-size:	cover;

		background-attachment:	fixed;

		background-repeat:	no-repeat;

}

There	is	one	new	property	that	you	might	not	recognize:	background-size.	This	is	a
newly-provided	background	property	introduced	by	CSS3.	We	can	specify	either	a
fixed	size	for	our	background	image,	such	as	100px,	or	we	can	use	cover	to	indicate
that	the	background	image	should	cover	the	entire	area.	You	can	read	up	on	the	new
background-size	property	at	CSS3.info	(http://www.css3.info/preview/background-
size/).

If	you	refresh	the	page	in	the	browser,	you’ll	see	that	every	section	is	nicely	separated
from	the	others	by	its	background	color	or	image,	and	the	images	have	a	nice	effect
as	we	scroll	down	the	page—thanks	to	the	combination	of	background-size:	cover
with	background-attachment:	fixed.

http://www.css3.info/preview/background-size/

What	just	happened?
We	set	up	our	HTML	document	and	got	it	ready	to	add	some	snazzy	scrolling	effects.	We
added	a	different	background	color	or	image	to	each	block	of	our	weather	forecast	and
used	the	new	CSS	background-size:	cover	property	along	with	background-
attachment:	fixed	to	create	a	nice	background	scrolling	effect	even	for	those	site
visitors	who	have	JavaScript	disabled.	Next,	we’ll	look	at	adding	a	parallax	scrolling
effect	to	one	of	the	sections	on	the	page.

Setting	up	HTML	for	scrolling	animations
Now	that	we	have	our	HTML	set	up,	it’s	time	to	start	getting	things	ready	to	add
animations.	We’ll	be	using	the	Scrollorama	plugin	from	John	Polacek.	We	just	have	some
preliminary	work	to	do	before	we	get	ready	to	add	in	our	fancy	effects.

Time	for	action	–	setting	up	HTML	for
Scrollorama
Perform	the	following	steps	to	get	the	page	set	up	to	add	scrolling	animations:

1.	 Head	over	to	http://johnpolacek.github.io/scrollorama/.	You’ll	find	a	link	to
download	a	ZIP	file	right	near	the	top	of	the	page,	but	feel	free	to	take	a	moment	to
scroll	down	the	page	to	see	demos	of	the	different	types	of	animations	that	are
possible.	When	you’re	done,	go	ahead	and	download	the	file	and	unzip	it.

Inside,	you’ll	find	a	couple	of	sample	CSS	style	sheets,	a	sample	index.html	file,	a
README	file,	a	.json	file,	and	some	JavaScripts.	The	JavaScripts	include	jQuery	itself,
the	Scrollorama	plugin,	and	the	Lettering.js	plugin.	Yep,	this	is	the	same	Lettering.js
plugin	that	we	used	in	Chapter	9,	Improving	Typography.	In	this	case,	the	plugin’s
author,	John	Polacek,	used	it	to	create	animations	on	individual	letters	in	the	samples
provided	with	the	plugin.

The	only	file	we’ll	need	here	is	jquery.scrollorama.js.	Go	ahead	and	copy	it	to
your	own	scripts	folder.

2.	 Next,	at	the	bottom	of	your	HTML	file,	attach	the	Scrollorama	plugin	after	jQuery
but	before	your	own	scripts.js	file,	as	follows:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.scrollorama.js"></script>

<script	src="scripts/scripts.js"></script>

3.	 We’ll	implement	our	reliable	class-switching	trick	to	apply	different	CSS	to	the	page,
whether	or	not	JavaScript	is	enabled.	In	the	HTML	file,	add	a	class	attribute	of
jsOff	to	the	<html>	element,	as	shown	in	the	following	code:

<!DOCTYPE	html>

<html	class="jsOff">

<head>

4.	 Then,	in	your	scripts.js	file,	add	the	document	ready	statement:

$(document).ready(function()	{

		//	Our	code	goes	here

});

5.	 Inside	the	document	ready	statement,	remove	the	jsOff	class	and	add	a	jsOn	class
instead,	as	follows:

$(document).ready(function()	{

		/*	CSS	classes	for	JS	state	*/

		$('html').removeClass('jsOff').addClass('jsOn');

});

Notice	that	we’ve	included	a	comment	before	the	line	of	text	we	just	added.	Our

http://johnpolacek.github.io/scrollorama/

JavaScript	file	will	ultimately	contain	quite	a	bit	of	code,	so	we	need	to	write	little
notes	to	ourselves	or	to	any	other	developer	who	might	work	on	this	file	about	what
each	bit	of	the	code	does.

6.	 Next,	we’ll	make	each	block	of	our	weather	forecast	the	same	height	as	the	window.
If	our	site	visitor	has	a	large	screen,	we	should	take	advantage	of	it	to	really	showcase
our	animations.	If	they	have	a	smaller	screen,	we’ll	want	to	adjust	to	ensure	that	the
forecast	fits	nicely	without	a	lot	of	extra	scrolling	required.	First,	we	have	to	calculate
the	height	of	the	window.	Later	on,	we’ll	also	need	the	width	of	the	window,	so	we’ll
go	ahead	and	measure	it	now,	as	shown	in	the	following	code:

		/*	CSS	classes	for	JS	state	*/

		$('html').removeClass('jsOff').addClass('jsOn');

		/*	Vars	that	we'll	need	*/

		var	win	=	$(window),

				winHeight	=	win.height(),

				winWidth	=	win.width();

If	we’re	setting	up	more	than	one	variable,	then	we	can	just	separate	them	with
commas,	and	we	don’t	have	to	keep	typing	var	repeatedly.

First,	we	set	up	a	variable	for	the	window	since	we’re	using	it	twice—once	to	get	the
width	and	once	to	get	the	height.	Next,	we	use	jQuery’s	height()	method	to	quickly
grab	the	window’s	height	and	jQuery’s	width()	method	to	grab	the	width.	Now,	we
have	these	values	safely	stored	away	for	easy	use	later	on	in	our	code.

7.	 We’ll	select	each	block	of	our	weather	forecast	and	set	its	height	to	the	height	of	the
window,	as	follows:

		/*	Vars	that	we'll	need	*/

		var	win	=	$(window),

				winHeight	=	win.height(),

				winWidth	=	win.width();

		/*	Set	each	block	to	window	height	*/

		$('.scrollblock').css('height',	winHeight);

Each	block	has	a	class	of	scrollblock,	so	we	use	this	to	select	the	all	the	blocks.
Then,	we	use	jQuery’s	css()	method	to	set	the	height	of	each	block.

What	just	happened?
We	downloaded	the	Scrollorama	plugin	and	attached	it	to	our	page.	Then,	we	did	some
initial	setting	up	of	our	document	and	JavaScript	in	order	to	get	ready	to	add	animation
effects.	We	used	our	handy	class-switching	trick	to	enable	us	to	style	the	page	with
different	CSS,	depending	on	whether	or	not	JavaScript	is	enabled.	Then,	we	selected	each
block	of	our	weather	forecast	and	set	the	height	to	the	height	of	the	window.	If	you	scroll
through	the	page	now,	you’ll	see	that	each	block	is	equal	to	the	height	of	the	window.

Adding	a	parallax	effect
If	you	look	out	of	the	window	while	riding	in	a	car	or	a	train,	you’ll	notice	that	the	grass
and	trees	that	are	closer	to	you	seem	to	go	by	much	faster	than	the	trees	or	mountains	that
are	further	away	from	you.	There’s	a	complex	body	of	geometry	that	explains	this	effect,
but	luckily,	we	don’t	have	to	dig	into	that	in	great	detail	to	be	able	to	recreate	this	effect	on
our	web	pages.

As	we	scroll	down	the	page,	the	elements	on	the	page	will	go	by	at	the	speed	that	our	site
visitor	is	scrolling.	We	can	then	react	to	that	scrolling	action	to	make	other	elements	on	the
page	appear	to	go	by	faster	or	slower	than	the	page	elements	that	are	simply	moving	with
the	scroll.

This	sounds	complicated,	but	it’s	as	simple	as	shifting	the	vertical	position	of	elements
within	their	container	while	scrolling.	For	example,	if	an	element	starts	at	the	top	of	its
container	and	then	moves	towards	the	bottom	of	the	container	while	I	scroll	by,	it	will
appear	to	be	moving	more	slowly	than	the	other	elements	on	the	page.	Vice	versa,	if	it
moves	from	near	the	bottom	to	near	the	top,	it	will	appear	to	go	by	more	quickly	than	the
other	elements	on	the	page.

The	circle	will	move	with	the	page	when	it’s	scrolled	as	expected.	The	square	will	be
animated	towards	the	top	of	the	page.

As	we	scroll	by,	we’ll	animate	the	position	of	the	square	so	that	it	moves	towards	the	top

of	the	page.	The	square	appears	to	move	more	quickly	than	the	circle	as	we	scroll.

We’ll	take	advantage	of	this	optical	illusion	to	create	three	layers	of	clouds	that	will	move
by	at	different	speeds	as	we	scroll	past	our	cloudy	weather	forecast	on	Tuesday.	We’ll
reuse	the	same	cloud	icon	that	we	used	in	the	forecast—our	site	visitors	will	already	have
that	asset	loaded	into	their	browser	cache,	so	there’s	no	extra	download.	Also,	since	we’re
using	SVG,	we	can	easily	resize	the	icon	to	any	size	and	it	will	remain	crisp	and	clear.

Time	for	action	–	creating	a	parallax
effect
Perform	the	following	steps	to	add	a	parallax	effect	to	the	cloudy	weather	forecast:

1.	 We’ll	get	started	by	adding	the	layer	of	clouds	that	will	appear	to	be	furthest	away.
Inside	the	section	of	the	cloudy	forecast,	add	a	<div>	element	and	place	several	cloud
icons	inside	it,	as	shown	in	the	following	code:

<section	class="scrollblock"	id="tueday">

		<div	class="day">Tuesday</div>

		<div	class="forecast">67°	Cloudy</div>

		<div	class="icon"><img	src="images/Cloud.svg"	alt="Cloudy"	

width="300"	height="300"></div>

		<div	class="cloud-layer"	id="cloud-layer-back">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="100"	height="100"	

id="bcloud1">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="150"	height="150"	

id="bcloud2">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="125"	height="125"	

id="bcloud3">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="112"	height="112"	

id="bcloud4">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="75"	height="75"	

id="bcloud5">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="140"	height="140"	

id="bcloud6">

		</div>

</section>

2.	 In	styles.css,	add	some	styles	to	position	the	clouds	so	that	they’re	scattered	over
the	forecast	block,	as	follows:

.cloud-layer	{

		height:	100%;

		left:	0;

		position:	absolute;

		top:	0;

		width:	100%;

}

.cloud-layer	img	{

		position:	absolute;

}

#cloud-layer-back	{	opacity:	.1;	}

		#bcloud1	{	top:	98%;		left:	10%;	}

		#bcloud2	{	top:	40%;		left:	85%;	}

		#bcloud3	{	top:	60%;		left:	30%;	}

		#bcloud4	{	top:	0%;		left:	45%;	}

		#bcloud5	{	top:	15%;		left:	5%;	}

		#bcloud6	{	top:	5%;			left:	65%;	}

First,	we	absolutely	position	the	.cloud-layer	class	and	make	it	the	same	width	and
height	as	that	of	its	parent.	Next,	we	absolutely	position	all	the	images.	Then,	we
select	the	entire	back	cloud	layer	and	set	the	opacity	to	.1.	Since	these	clouds	are
furthest	away,	it	makes	sense	that	they	would	be	the	smallest	and	faintest.	Then,	we
specify	percentage	positions	for	each	of	the	clouds	inside	the	layer.	We’re	using
percentages	because	we’re	keeping	responsive	design	in	mind.

If	you	refresh	the	page	in	the	browser,	you’ll	see	several	faint	and	small	cloud	icons
scattered	over	the	forecast	block,	as	shown	in	the	following	screenshot:

3.	 Next,	we’ll	add	a	middle	layer.	To	do	this,	first	add	the	block	of	HTML	to	add	several
cloud	icons	inside	the	cloudy	forecast	block,	as	follows:

<section	class="scrollblock"	id="tueday">

		<div	class="day">Tuesday</div>

		<div	class="forecast">67°	Cloudy</div>

		<div	class="icon"><img	src="images/Cloud.svg"	alt="Cloudy"	

width="300"	height="300"></div>

		<div	class="cloud-layer"	id="cloud-layer-back">

				...

		</div>

		<div	class="cloud-layer"	id="cloud-layer-mid">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="150"	height="150"	

id="mcloud1">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="225"	height="225"	

id="mcloud2">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="188"	height="188"	

id="mcloud3">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="169"	height="169"	

id="mcloud4">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="113"	height="113"	

id="mcloud5">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="207"	height="207"	

id="mcloud6">

		</div>

</section>

Note	that	we’re	making	these	cloud	icons	just	a	bit	bigger	than	the	back	layer.	Since
they’re	a	bit	closer,	it	makes	sense	that	they’d	appear	to	be	a	little	larger.

4.	 Next,	open	up	styles.css	and	add	the	styles	to	position	these	cloud	icons:

#cloud-layer-mid	{	opacity:	.5;	}

		#mcloud1	{	top:	2%;				left:	15%;	}

		#mcloud2	{	top:	60%;		left:	35%;	}

		#mcloud3	{	top:	40%;		left:	70%;	}

		#mcloud4	{	top:	90%;		left:	65%;	}

		#mcloud5	{	top:	80%;		left:	80%;	}

		#mcloud6	{	top:	40%;		left:	5%;	}

We’re	setting	the	opacity	of	this	layer	to	.5	so	that	these	clouds	appear	a	bit	brighter
than	the	back	layer.	If	you	refresh	the	page	in	the	browser,	you’ll	see	this	new	layer
of	clouds	appear	over	the	one	we	placed	previously,	as	shown	in	the	following
screenshot:

Even	though	we	haven’t	introduced	any	animation	yet,	you	can	still	see	how
displaying	the	icons	at	different	sizes	and	opacities	lend	a	visual	effect	of	depth.

5.	 Now,	we’ll	add	the	final	layer,	the	front	layer	of	clouds.	Add	a	block	of	HTML	to
your	index.html	file	to	display	another	set	of	cloud	icons,	as	shown	in	the	following
code:

<section	class="scrollblock"	id="tueday">

		<div	class="day">Tuesday</div>

		<div	class="forecast">67°	Cloudy</div>

		<div	class="icon"><img	src="images/Cloud.svg"	alt="Cloudy"	

width="300"	height="300"></div>

		<div	class="cloud-layer"	id="cloud-layer-back">

				...

		</div>

		<div	class="cloud-layer"	id="cloud-layer-mid">

				...

		</div>

		<div	class="cloud-layer"	id="cloud-layer-front">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="200"	height="200"	

id="fcloud1">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width						="300"	

height="300"	id="fcloud2">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="250"	height="250"	

id="fcloud3">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="225"	height="225"	

id="fcloud4">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="150"	height="150"	

id="fcloud5">

				<img	src="images/Cloud.svg"	alt="Cloudy"	width="275"	height="275"	

id="fcloud6">

		</div>

</section>

As	this	layer	of	clouds	will	appear	to	be	closest,	we’ve	made	these	even	larger	than
the	middle	layer.

6.	 Next,	open	styles.css	and	position	the	cloud	icons	on	this	layer,	as	follows:

#cloud-layer-front	{	opacity:	.9;	}

		#fcloud1	{	top:	50%;		left:	60%;	}

		#fcloud2	{	top:	10%;		left:	5%;	}

		#fcloud3	{	top:	0;				left:	85%;	}

		#fcloud4	{	top:	5%;				left:	30%;	}

		#fcloud5	{	top:	60%;		left:	20%;	}

		#fcloud6	{	top:	90%;		left:	40%;	}

As	these	clouds	are	closest,	we’ve	set	the	opacity	to	.9	to	make	these	the	brightest
clouds.	Refresh	the	page	in	the	browser	to	see	the	effect	of	all	three	layers	of	clouds,
as	shown	in	the	following	screenshot:

Now	that	we’ve	got	a	very	nice	cloud	effect	that	has	a	visual	depth	to	it,	let’s	make
those	clouds	move.

7.	 Open	your	scripts.js	file.	First,	we	have	to	tell	Scrollorama	that	we	want	to	use	it
and	what	our	blocks	of	content	are	called.	Inside	the	document	ready	statement,	after
the	code	we’ve	added	so	far,	add	the	following	bit	of	code:

$(document).ready(function()	{

		...

		/*	Scrollorama	setup	*/

		var	weather	=	$.scrollorama({

				blocks:'.scrollblock'

		});

});

First,	we	create	a	new	variable	and	call	it	weather	as	we’re	presenting	a	weather
forecast.	Then,	we	call	the	scrollorama()	method.	We	pass	the	scrollorama()
method	the	selector	for	our	blocks	of	content.	As	each	block	has	a	class	of
scrollblock,	this	is	the	selector	we	pass.

Now,	Scrollorama	is	all	set	up	and	ready	for	us	to	use.	Let’s	take	a	look	at	how	to
animate	the	movement	of	our	cloud	layers.

8.	 Now	that	we’ve	got	Scrollorama	set	up,	we	can	use	that	weather	variable	to	tell
Scrollorama	what	to	animate.	The	following	code	shows	how	we	animate	the	back
layer	of	clouds:

/*	Scrollorama	setup	*/

var	weather	=	$.scrollorama({

		blocks:'.scrollblock'

});

/*	Parallax	cloud	animation	*/

weather

		.animate('#cloud-layer-back',	{

				duration:		1000,

				property:		'top',

				start:				100,

				end:						-100

		});

Let’s	take	a	moment	to	step	through	this.	We’ve	broken	this	out	onto	separate	lines	to
make	it	easier	to	read	and	understand,	but	this	is	all	actually	one	line	of	code.	We
start	with	weather,	then	we	call	the	animate()	method.	We	want	to	animate	this
layer	of	clouds	with	the	scroll,	so	that	makes	sense.

Next,	we	pass	in	a	selector	of	what	we	want	to	animate.	We	gave	that	back	layer	of
clouds	an	id	attribute	of	cloud-layer-back,	so	we	can	use	that	now	to	select	this
layer	for	animation.

Then,	we	tell	Scrollorama	exactly	how	that	animation	should	work	by	passing	in	a	set
of	key/value	pairs.	We	use	the	duration	key	to	specify	how	many	pixels	of	scrolling
the	animation	should	last.	Here,	we’ve	set	up	a	long	animation—we’ll	see	the	clouds
moving	for	1000	pixels	of	scrolling.

We	use	the	property	key	to	tell	Scrollorama	which	CSS	property	to	animate.	Just
like	with	regular	old	jQuery	animations,	we	can	select	any	numeric	CSS	property.
We’ve	selected	top	since	we	want	to	move	the	entire	cloud	layer	up	and	down.

We	use	the	start	key	to	specify	what	the	starting	value	for	the	selected	property
should	be.	Here,	we’re	working	with	top.	So	at	the	start	of	our	animation,	it	will	be
like	assigning	this	CSS	style	to	the	back	cloud	layer:

#cloud-layer-back	{	top:	100px;	}

That’s	where	our	cloud	layer	will	start	off	as	we	scroll	by.	We	use	the	end	key	to
specify	where	the	cloud	layer	will	end	up	after	the	animation	completes.	It’s	like
assigning	this	CSS	style	to	the	back	cloud	layer:

#cloud-layer-back	{	top:	-100px;	}

We’re	moving	the	cloud	layer	200	pixels	in	total,	from	100	pixels	to	-100	pixels.	This
will	make	it	appear	to	move	just	a	bit	faster	than	the	rest	of	the	content	going	by	as
we	scroll.

9.	 If	you	refresh	the	page	in	the	browser	at	this	point,	you’ll	notice	that	the	back	cloud
layer	moves	when	you	scroll	up	and	down	past	the	cloudy	weather	forecast.
However,	specifying	the	duration,	start,	and	end	values	in	pixels	can	be	problematic
in	responsive	designs.	With	so	many	different	screen	sizes,	how	can	we	possibly
know	or	set	exact	pixel	values	for	the	cloud	animation?	We	might	want	those	to	move

only	50	pixels	on	smaller	screens,	but	we	might	want	them	to	move	400	pixels	or
more	on	larger	screens	to	make	the	parallax	effect	really	work.

However,	Scrollorama	doesn’t	accept	percentage	values.	We	can’t	tell	Scrollorama	to
move	the	cloud	layer	from	10	percent	to	-10	percent.	So	we	have	to	get	a	little	more
resourceful.

Luckily,	JavaScript	is	really	good	at	doing	math.	Remember	how	we	grabbed	the
width	and	height	of	the	browser	window	earlier?	We	can	now	use	those	values	to
calculate	pixel	values	for	the	duration,	start,	and	end,	based	on	the	size	of	the	browser
window.	Here’s	how	we	can	do	that.	Go	back	to	the	code	we	added	in	step	8	and	edit
it	so	that	it	looks	like	the	following	code:

/*	Parallax	cloud	animation	*/

weather

		.animate('#cloud-layer-back',	{

				duration:		winHeight	*	2,

				property:				'top',

				start:				winHeight	*	.1,

				end:						-winHeight	*	.1

		});

Now,	we’re	letting	JavaScript	do	all	the	hard	work	of	calculating	the	values	for	us,
based	on	our	site	visitor’s	screen	size.	For	example,	if	our	site	visitor’s	browser
window	is	400	pixels	tall,	the	duration	of	the	animation	will	be	800	pixels,	and	the
clouds	will	start	at	40	pixels	and	move	to	-40	pixels.

If,	on	the	other	hand,	our	site	visitor’s	screen	is	1,600	pixels	tall,	then	the	duration
will	be	3200	pixels,	with	the	clouds	moving	from	160	pixels	to	-160	pixels.	Just	like
magic,	our	animation	adjusts	to	our	site	visitor’s	browser	window	size.

10.	 Now	that	we’ve	got	animating	a	cloud	layer	all	figured	out,	let’s	go	ahead	and	add	the
code	to	animate	the	middle	and	front	cloud	layers	to	scripts.js	as	follows:

weather

		.animate('#cloud-layer-back',	{

				duration:		winHeight	*	2,

				property:		'top',

				start:					winHeight	*	.1,

				end:							-winHeight	*	.1

		})

		.animate('#cloud-layer-mid',	{

				duration:		winHeight	*	2,

				property:		'top',

				start:					winHeight	*	.25,

				end:							-winHeight	*	.25

		})

		.animate('#cloud-layer-front',	{

				duration:		winHeight	*	2,

				property:		'top',

				start:					winHeight	*	.5,

				end:							-winHeight	*	.5

		});

First	up,	notice	that	we’re	taking	advantage	of	jQuery’s	chaining	feature—this	is	just
one	line	of	code!	But	that	would	not	be	very	easy	to	read,	so	we’ve	broken	it	up	to
make	it	easier	for	us	to	read,	understand,	and	edit.	Also,	be	very	careful	with	the
placement	of	semicolons—because	this	is	all	one	line,	we	don’t	need	to	place	a
semicolon	until	the	very	end	of	the	statement

Next,	notice	that	we’re	increasing	the	position	for	the	animation	for	each	layer.	For
the	first	layer,	we	just	moved	the	clouds	from	10	percent	to	-10	percent.	However,	for
the	middle	layer,	we’re	moving	from	25	percent	to	-25	percent,	and	for	the	top-most
layer,	we’re	moving	from	50	percent	to	-50	percent.	The	clouds	that	appear	closer
will	move	much	more	quickly	as	we	scroll	past.	Refresh	the	page	in	the	browser	and
scroll	past	the	cloudy	weather	forecast	a	few	times	to	see	the	effect	of	the	moving
clouds.	Nice,	right?

What	just	happened?
We	created	three	layers	of	clouds	and	then	animated	them	at	different	speeds	to	give	the
illusion	of	depth.	As	we	scroll	by	the	cloudy	weather	forecast,	the	clouds	move	by	at
different	speeds,	all	moving	faster	than	the	rest	of	the	content	as	we	scroll.

While	the	Scrollorama	plugin	is	limited	to	accepting	pixel	values,	we	were	able	to	use	the
magic	of	JavaScript	to	dynamically	calculate	the	values	for	our	animation,	which	allows
our	design	and	animation	to	adjust	better	to	different	screen	sizes,	making	it	ideal	for	use
in	responsive	designs.

Creating	other	animations
Parallax	scrolling	effects	are	nice,	but	we	can	also	create	other	types	of	animations	with
the	Scrollorama	plugin.	Let’s	take	a	look	at	how	we	can	emphasize	the	windy	weather
forecast	by	animating	the	cloud	that	is	blowing	across	the	screen	as	we	scroll	by.

Time	for	action	–	creating	a	horizontal
animation
Perform	the	following	steps	to	create	a	horizontal	animation	in	the	windy	weather
forecast.

1.	 Inside	index.html,	the	only	change	we’ll	make	is	to	add	an	id	attribute	of	wind	to
the	<div>	element	that	contains	the	weather	icon,	as	follows:

<section	class="scrollblock"	id="wedday">

		<div	class="day">Wednesday</div>

		<div	class="forecast">69°	Windy</div>

		<div	class="icon"	id="wind"><img	src				="images/Cloud-Wind.svg"	

alt="Cloudy	Windy"	width="300"	height="300"></div>

</section>

Technically,	this	isn’t	strictly	necessary	as	we	have	other	available	ways	to	select	that
item	for	animation,	but	selecting	an	item	by	id	is	the	quickest	and	most	efficient	way.
By	working	directly	with	id,	we	can	get	a	little	performance	boost	from	our	code.

2.	 Next,	we	can	open	up	scripts.js	and	add	the	details	of	the	animation	we’d	like	to
create.	Add	the	following	code	just	below	the	animation	block	we	added	to	create	the
parallax	animations,	still	inside	the	document	ready	statement:

/*	Animate	wind	*/

weather

		.animate('#wind',	{

				duration:		winHeight	*	1.7,

				property:	'left',

				start:				winWidth	*	.7,

				end:				winWidth	*	.3

		});

This	should	look	pretty	familiar.	We’re	using	the	same	winHeight	and	winWidth
values	we	calculated	back	at	the	beginning	of	the	chapter.	In	this	case,	we	want	the
animation	to	last	170	percent	of	the	window	height—I	arrived	at	that	value	through
experimentation.	I	just	tried	out	different	values	until	I	found	one	that	looked	the	way
I	wanted.

Since	we’re	animating	the	cloud	horizontally	rather	than	vertically,	we’re	using
winWidth	rather	than	winHeight	to	calculate	the	values.	We’ll	move	the	cloud	from	a
left	value	of	70	percent	to	a	left	value	of	30	percent.

Also	note	that	we	could	have	just	chained	this	function	onto	the	functions	we	wrote
to	create	the	parallax	cloud	animations	we	coded	in	the	section	Adding	a	parallax
effect.	It	would	have	worked	just	fine,	but	in	this	case,	I	decided	to	make	my	code
just	a	bit	longer	in	the	interest	of	keeping	it	readable.

Refresh	the	page	in	the	browser	window	and	scroll	past	the	windy	forecast.	You’ll	see
the	cloud	blow	across	the	screen	as	you	scroll	by.

What	just	happened?
We	used	Scrollorama	to	create	a	horizontal	animation	as	we	scroll	by.	We	can	animate	any
numeric	CSS	property.	This	leaves	a	lot	of	possibilities	open:	we	can	move	items
horizontally,	vertically,	and	diagonally;	we	can	adjust	the	opacity	to	fade	items	in	and	out;
and	we	can	adjust	the	font	size,	width,	height,	padding,	margins,	border	width,	rotation,
and	so	on.

Have	a	go	hero	–	add	custom	animations
The	only	limit	to	what	you	can	animate	with	the	Scrollorama	plugin	is	your	imagination.
Take	a	look	through	the	weather	forecasts	and	see	what	else	you	might	like	to	animate.
Can	you	fade	in	the	day	of	the	week	headers	in	each	block?	Can	you	add	animations	to	the
other	weather	icons?

Adding	navigation
Now,	let’s	make	it	easier	both	to	navigate	through	the	weather	forecast	days	and	to
understand	where	we	are	on	the	page.	We’ll	use	JavaScript	to	dynamically	create	a
navigation	bar.	Our	site	visitors	will	be	able	to	use	the	navigation	bar	to	move	directly	to
the	different	days	in	the	forecast.	Additionally,	as	our	site	visitor	scrolls	down	the	page
through	the	different	days	in	the	forecast,	we’ll	update	the	highlighted	item	in	the
navigation	to	show	them	where	they	are.

Time	for	action	–	adding	navigation	to
sections	of	the	page
Perform	the	following	steps	to	add	navigation	to	our	weather	forecast:

1.	 Open	up	scripts.js.	The	first	thing	we	want	to	do	is	create	an	unordered	list	to	hold
our	navigation.	After	the	animation	code	we	wrote	earlier,	but	still	inside	the
document	ready	statement,	add	the	following	bit	of	code:

var	dotnav	=	$('<ul	id="dotnav">');

First,	we	create	a	variable,	dotnav.	Recall	that	a	variable	is	just	a	container.	Inside
this	container,	we’re	going	to	create	a	jQuery	object	that	holds	an	unordered	list	with
the	id	attribute	of	dotnav.

2.	 Now	that	we’ve	got	our	unordered	list,	the	next	thing	we’ll	do	is	add	it	to	our
document.	That’s	easy	enough,	just	one	short	line	of	code:

var	dotnav	=	$('<ul	id="dotnav">');

$('body').append(dotnav);

We’re	selecting	the	<body>	element	of	the	document	and	appending	our	navigation	to
the	end	of	the	body	using	jQuery’s	append()	method.

3.	 Next,	we	need	to	fill	the	navigation	with	links	to	the	various	parts	of	the	document.
We	know	that	each	block	of	our	weather	forecast	is	wrapped	in	a	<section>	element
with	the	class	scrollblock.	We	can	use	those	sections	to	create	just	the	right	links	in
our	navigation	as	follows:

var	dotnav	=	$('<ul	id="dotnav">');

$('body').append(dotnav);

$('.scrollblock').each(function(){

		var	id	=	this.id;

		dotnav.append('');

});

Let’s	step	through	that	to	make	sure	we	understand.	First,	we	select	all	the	<section>
elements	with	a	class	of	scrollblock.	Then,	we	use	jQuery’s	each()	method	to	loop
through	each	block,	one	at	a	time.

Inside	the	each()	method,	we	write	a	function.	The	function	first	gets	the	id	attribute
of	the	current	section	and	stores	it	in	a	variable.

Finally,	we	get	our	navigation,	which	we’ve	stored	in	the	variable	called	dotnav,	and
append	a	new	list	item	and	link.	We	add	an	href	attribute	that	points	us	to	the	id
attribute	for	each	section.	For	example,	for	the	Monday	forecast,	this	bit	of	code	will
add	a	list	item	and	a	link	that	looks	like	this:

That’s	pretty	easy	to	understand.	If	we	had	created	the	navigation	in	HTML,	that’s

how	we	would	have	linked	to	the	different	sections	on	the	page.	If	you	refresh	the
page	in	the	browser,	you	won’t	see	anything	new	on	the	page—without	CSS,	our	new
element	is	invisible.	However,	if	you	use	the	web	developer	tools	to	take	a	look	at	the
code	on	the	page,	you’ll	see	the	new	navigation	element	at	the	end	of	the	document,
as	shown	in	the	following	screenshot:

4.	 Now,	let’s	use	a	bit	of	CSS	to	style	our	navigation.	Open	up	styles.css	and	add	the
following	styles	for	the	navigation:

#dotnav	{

		position:	fixed;

		right:	1em;

		top:	50%;

}

#dotnav	li	{

		background:	rgba(255,255,255,0.8);

		box-shadow:	0	0	5px	rgba(0,0,0,0.2);

		border-radius:	50%;

		display:	block;

		height:	0.8em;

		margin:	0.333em	0;

		padding:	0.2em;

		width:	0.8em;

}

#dotnav	a	{

		background:	transparent;

		border-radius:	50%;

		display:	block;

		height:	0.8em;

		transition:	background	200ms;

		width:	0.8em;

}

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	the	navigation	appear
vertically	along	the	right-hand	side	of	the	page,	as	shown	in	the	following	screenshot:

5.	 We’re	making	progress,	but	the	navigation	is	a	bit	too	low.	Let’s	use	our	trusted
winHeight	measurement	to	bump	that	up	into	the	right	position.	In	scripts.js,	add
the	following	bit	of	code:

var	dotnav	=	$('<ul	id="dotnav">');

$('body').append(dotnav);

$('.scrollblock').each(function(){

		...

});

var	navHeight	=	dotnav.height();

dotnav.css('top',	(winHeight/2	-	navHeight/2));

First,	we	get	the	height	of	our	navigation	bar	itself,	and	store	it	in	a	variable	named
navHeight.	Next,	we	need	to	calculate	what	the	appropriate	top	value	of	the
navigation	should	be.	We	divide	the	winHeight	value	in	half,	then	subtract	the
navHeight	value	divided	in	half	to	get	the	proper	value	for	the	top	of	the	navigation
bar.	We	use	jQuery’s	css()	method	to	set	that	value	and	position	the	navigation	right
in	the	middle	of	the	screen.

Refresh	the	page	in	the	browser	and	you’ll	see	that	the	navigation	is	now	positioned
correctly,	as	shown	in	the	following	screenshot:

6.	 If	you	click	on	the	dots	in	the	navigation,	you’ll	see	that	they	work—the	page	jumps
to	the	different	days	in	the	weather	forecast.	However,	it	jumps	so	quickly	that	we
don’t	get	to	see	our	fancy	animations.	Let’s	modify	the	jumping	so	we	can	appreciate
all	the	hard	work	we’ve	done	so	far.	First,	we	need	to	select	the	elements	we	want	to
work	with—the	links	inside	the	navigation	bar—and	attach	a	click	event,	as	follows:

dotnav.css('top',	(winHeight/2	-	navHeight/2));

dotnav.find('a').on('click',	function(e){

		//	Our	code	will	go	here

});

In	plain	English,	the	highlighted	code	says	“Get	all	the	links	inside	the	navigation	and
do	something	special	when	they’re	clicked	on.”	Now,	we	have	to	write	the	code	to
say	what	should	happen.

7.	 The	first	thing	we	want	to	do	inside	this	function	is	to	stop	the	immediate	jumping	to
each	section	of	the	page.	We	can	do	this	as	follows:

dotnav.find('a').on('click',	function(e){

e.preventDefault();

});

We	use	the	preventDefault()	method	to	stop	the	default	action.	By	default,	the
browser	jumps	immediately	to	a	section.	We	don’t	want	that	to	happen,	so	we	prevent
it	with	this	bit	of	code.	If	you	refresh	the	page	in	the	browser	and	try	clicking	on	the
navigation,	you’ll	see	that	nothing	happens.	We	canceled	the	default	action,	but	we
haven’t	said	what	to	do	instead.

8.	 When	we	click	on	one	of	the	navigation	links,	we	want	to	animate	scrolling	for	that
section.	To	animate	scrolling,	we’ll	animate	the	<html>	and	<body>	elements.	Let’s
select	those	elements	and	call	jQuery’s	animate()	method,	as	follows:

dotnav.find('a').on('click',	function(e){

		e.preventDefault();

		$('html,	body').animate();

});

Now	that	we’re	ready	to	animate	the	scrolling,	we	just	have	to	tell	the	animate()
method	what	to	animate.

9.	 The	first	thing	the	animate()	method	needs	to	know	is	what	property	we	want	to
animate.	Since	we’re	animating	the	scrolling,	the	property	we’ll	be	working	with	is
scrollTop.	Thus,	add	it	to	the	scripts.js	file	as	shown	in	the	following	code:

dotnav.find('a').on('click',	function(e){

		e.preventDefault();

		$('html,	body').animate({

				scrollTop:

		});

});

10.	 We	want	to	scroll	to	the	top	of	the	block	of	the	weather	forecast	that	we’re	navigating
to,	but	the	animate()	method	is	expecting	a	pixel	value—how	many	pixels	down	the
page	should	we	scroll?	Luckily,	it’s	pretty	easy	to	calculate	how	many	pixels	down
the	page	each	of	our	weather	forecast	blocks	are	using	jQuery’s	offset()	method.
Let’s	say	we	wanted	to	find	out	how	far	down	the	page	the	Tuesday	evening	weather
forecast	was.	We’d	find	out	as	follows:

$('#tueeve').offset().top;

We’d	just	select	the	element,	then	call	the	offset()	method.	After	that,	we	can	get
either	the	top	or	the	left	properties.

That	seems	easy	enough,	but	in	this	case,	we’re	clicking	on	a	link	and	we	want	to
scroll	to	the	matching	weather	forecast.	How	do	we	select	the	right	forecast?	We	set
up	our	links	to	point	at	the	right	sections.	All	the	information	we	need	is	stored	right
in	the	href	attribute	of	each	link.	We	can	select	the	right	forecast	block	as	follows:

$(this.hash);

The	following	code	shows	how	this	all	looks	in	our	function	that	handles	what
happens	when	we	click	on	a	navigation	link:

dotnav.find('a').on('click',	function(e){

		e.preventDefault();

		$('html,	body').animate({

				scrollTop:	$(this.hash).offset().top	+	1

		});

});

In	this	case,	we’re	adding	one	more	pixel	to	the	value	to	make	sure	the	navigation
interacts	nicely	with	Scrollorama.

If	you	refresh	the	page	in	the	browser,	you’ll	see	that	clicking	on	the	navigation	links
now	scrolls	you	smoothly	to	each	weather	forecast	block.	However,	the	page	sure
does	go	by	quickly.	We	don’t	even	get	a	chance	to	enjoy	the	animations	going	by.

11.	 By	default,	any	animations	we	set	up	with	jQuery’s	animate()	method	happen	in	400
milliseconds—less	than	half	a	second.	That’s	really	fast.	Let’s	slow	that	down	a	bit
maybe	to	a	full	second:

dotnav.find('a').on('click',	function(e){

		e.preventDefault();

		$('html,	body').animate({

				scrollTop:	$(this.hash).offset().top	+	1

		},	1000);

});

We	just	pass	in	a	second	value	to	the	animate()	method—the	number	of
milliseconds	the	animation	should	take	to	complete.

If	you	refresh	the	page	in	the	browser	now	and	try	clicking	on	the	navigation	links,
you’ll	see	the	scrolling	is	much	slower.	You	might	want	to	experiment	with	different
values.	Where	can	you	best	see	the	animations	going	by	without	delaying	the	site
visitors	from	reaching	their	destination	too	much?

12.	 Now	that	we’ve	got	the	navigation	and	animation	working,	wouldn’t	it	be	nice	if	we
could	see	exactly	where	we	were	on	the	page	by	highlighting	the	current	weather
forecast	block	in	the	navigation?

We	could	add	some	code	to	our	click	function	to	just	add	a	class	to	each	link	that	is
clicked.	But	what	about	the	times	that	our	site	visitors	just	scroll	down	the	page	and
don’t	click	on	the	links	at	all?	We	still	want	to	show	them	how	far	down	the	page
they	are	and	how	many	sections	are	left.

Luckily,	Scrollorama	gives	us	a	way	to	detect	when	we’re	seeing	a	new	block	of	our
page	and	to	trigger	other	changes	on	the	page.	Let’s	take	a	look	at	how	we	can
highlight	the	right	item	in	the	navigation	depending	on	how	far	down	the	page	we’ve
scrolled.	We	can	do	that	with	the	onBlockChange()	method.

But	first,	let’s	set	up	the	.active	style	for	the	navigation	links	in	styles.css,	as
follows:

#dotnav	a.active	{

		background:	#e75845;

}

We’ll	change	the	background	color	of	the	link	to	a	bright	orange	color	when	it’s	the
current	link.

13.	 Now,	we’ll	jump	back	into	scripts.js	and	set	up	a	function	that	will	run	each	time
we	scroll	to	a	new	block.	After	the	click	function	that	we	wrote,	but	still	inside	the
document	ready	method,	add	the	following	lines	to	set	up	our	new	function:

/*	Update	dotnav	while	scrolling	*/

weather.onBlockChange(function()	{

		//	Our	code	will	go	here

});

We’re	still	leaving	little	notes	for	ourselves	or	for	any	other	developer	who	comes

along	to	work	on	our	code	about	what	each	bit	of	code	does.	We	select	our	weather
variable	and	then	call	the	onBlockChange()	method.	We	pass	an	empty	function	to
the	method.

14.	 The	first	thing	we	need	to	do	inside	that	function	is	figure	out	which	block	we	can	see
in	the	window.	Scrollorama	makes	that	easy	for	us	with	the	blockIndex	property,	as
shown	in	the	following	code:

weather.onBlockChange(function()	{

		var	i	=	weather.blockIndex;

});

Now,	the	i	variable	contains	the	index	of	the	current	block.	When	we’re	looking	at
the	first	block,	i	will	be	equal	to	0—don’t	forget	that	JavaScript	starts	counting	at	0
and	not	at	1.

15.	 Now	that	we	know	which	block	is	currently	visible,	we	just	have	to	select	the
matching	link	in	the	navigation.	That’s	easy	enough—if	we’re	on	the	second	block,
we’ll	just	select	the	second	link.	The	following	code	shows	how	we	can	do	that:

weather.onBlockChange(function()	{

		var	i	=	weather.blockIndex;

		dotnav.find('a').eq(i);

});

Here,	we	get	our	dotnav	variable,	which	contains	the	navigation,	and	then	we	find	all
the	links.	Then,	we	use	jQuery’s	eq()	method	to	select	the	link	that	matches	the
currently	visible	block.

16.	 Now,	we	just	have	to	add	the	active	CSS	class	to	the	link:

weather.onBlockChange(function()	{

		var	i	=	weather.blockIndex;

		dotnav.find('a').eq(i).addClass('active');

});

That’s	easy	enough,	right?	However,	scroll	down	through	the	page	and	you’ll	see	that
very	quickly	every	link	in	the	navigation	is	highlighted.	This	is	handy	if	we	just	want
to	keep	track	of	where	we’ve	been,	but	not	very	handy	for	telling	us	where	we
currently	are.

17.	 After	a	block	isn’t	visible	any	more,	we	need	to	remove	the	active	class	from	its
matching	link.	We	can	do	that	pretty	easily	by	just	removing	the	active	class	from
all	the	links	before	we	add	it	to	the	matching	one,	as	follows:

weather.onBlockChange(function()	{

		var	i	=	weather.blockIndex;

		dotnav.find('a').removeClass('active').eq(i).addClass('active');

});

Now,	if	you	refresh	the	page	in	the	browser,	and	scroll	down,	you’ll	see	that	the
navigation	changes	to	reflect	your	current	position	on	the	page.	The	navigation	also
updates	if	you	click	on	the	links—since	those	links	scroll	the	page,	the

onBlockChange()	event	is	still	fired.	We	don’t	have	to	write	separate	code	to
highlight	the	links	while	clicking	on	them	and	highlighting	the	links	while	scrolling.
Just	one	bit	of	code	handles	both	nicely.

What	just	happened?
We	used	jQuery	to	create	a	navigation	bar	for	our	blocks	of	weather	forecast.	Then,	we
animated	the	scroll	to	each	of	those	blocks	when	the	navigation	links	were	clicked.
Finally,	we	used	the	onBlockChange()	method	provided	by	Scrollorama	to	change	the
CSS	classes	on	the	links	to	make	it	obvious	where	we	were	on	the	page.

Pop	quiz	–	using	Scrollorama	in	responsive	design
Q1.	How	can	we	use	Scrollorama	effectively	in	responsive	designs?

1.	 Use	percentage	values	for	animation	duration,	animation	start,	and	animation	stop.
2.	 There’s	no	need	to	do	anything	special—Scrollorama	is	responsive	by	default.
3.	 Use	JavaScript	to	calculate	appropriate	values	based	on	the	current	screen	size.
4.	 Scrollorama	cannot	be	used	in	responsive	design.

Summary
In	this	chapter,	we	looked	at	a	few	different	ways	of	reacting	to	our	site	visitors	who	scroll
down	the	page.	We	created	a	parallax	effect	by	animating	the	position	of	layers	of	content
at	different	speeds	as	we	scroll	down	the	page.	We	created	a	horizontal	animation	that
reacts	to	scrolling.	Finally,	we	created	a	navigation	bar	that	not	only	updates	as	we	scroll
down	the	page	but	also	allows	us	to	easily	move	to	the	different	areas	of	the	page.	Not	too
shabby.	Next	up,	we’ll	look	at	some	ways	to	make	forms	nicer-looking	as	well	as	easier
for	our	site	visitors	to	work	with.

Chapter	12.	Improving	Forms
If	you’ve	ever	tried	to	work	with	web	forms,	you	know	how	complex	they	can	be.	Luckily,
the	authors	of	HTML5	are	working	hard	to	ensure	that	the	experience	improves	for
designers,	developers,	and	web	site	visitors	alike.	Browser	support	for	the	new	HTML5
form	elements	and	attributes	is	coming	along	really	nicely,	and	even	in	browsers	that	don’t
have	support,	the	new	elements	and	attributes	are	backward	compatible.

In	this	chapter,	you’ll	learn:

How	to	mark	up	a	form	with	some	of	the	new	HTML5	attributes
How	to	place	the	cursor	in	the	first	form	field	automatically
How	to	validate	your	site	visitors’	form	entries
How	to	style	stubborn	form	elements	such	as	file	uploads	and	select	dropdowns

An	HTML5	web	form
We’ll	get	started	by	taking	advantage	of	some	of	the	new	attributes	made	available	to	us	in
HTML5.	The	great	thing	about	these	additions	is	that	they	are	completely	backward
compatible—browsers	that	don’t	know	how	to	handle	them	will	either	ignore	them	or
default	to	a	simple	text	input,	and	our	site	visitors	on	older	browsers	will	be	able	to	use	our
forms	without	even	knowing	what	they’re	missing.

First,	a	word	of	caution	about	web	forms.	A	web	form	doesn’t	work	by	itself—it	needs	to
have	some	fancy	backend	programming	on	a	server	somewhere	to	collect	the	form	entries
and	process	them,	which	could	mean	writing	fields	to	the	database	or	sending	the	form
information	via	an	e-mail.	Because	of	this,	the	forms	we	build	in	this	chapter	won’t
actually	function—nothing	will	happen	after	clicking	on	the	Submit	button	on	the	form.	If
you	want	to	add	a	functioning	web	form	to	a	project,	you	have	a	few	options,	which	are	as
follows:

You	can	learn	to	do	server-side	programming	to	handle	your	form,	but	server-side
programming	is	well	beyond	the	scope	of	this	book.
You	can	use	a	CMS	that	will	most	likely	include	form	handling	either	in	its	core
functionality	or	as	an	add-on.	Good	candidates	include	Drupal,	WordPress,	and
Joomla.
You	can	hire	a	server-side	developer	to	get	your	form	working,	or	befriend	one	and
barter	your	design	skills	for	their	coding	skills.
You	can	use	a	web	form	service	to	handle	all	the	server-side	processing	of	your	form.
My	personal	favorite	is	WuFoo	(http://wufoo.com),	which	I	have	used	for	years
without	a	single	hiccup.

Any	of	these	methods	will	help	you	create	a	working	web	form	to	be	included	in	your
project.	However,	let’s	take	a	look	at	how	we	can	make	the	frontend	of	our	form	the	best	it
can	be.

http://wufoo.com

Time	for	action	–	setting	up	an	HTML5
web	form
Perform	the	following	steps	to	set	up	a	form	using	the	new	HTML5	elements	and
attributes:

1.	 We’ll	get	started	with	a	simple	HTML	document	and	the	associated	files	and	folders,
just	like	we	set	up	in	Chapter	1,	Designer,	Meet	jQuery.	Inside	the	<body>	tag,	open
up	a	<form>	tag	as	shown	in	the	following	code:

<form	action="#"	id="account-form">

</form>

The	form	tag	needs	an	action	attribute	in	order	to	appear	correctly	on	our	page.
Since	our	forms	are	just	dummy	forms	used	for	scripting	and	styling	purposes,	we’ll
just	use	#	as	the	value	for	this	attribute.	The	value	of	the	action	attribute	is	usually	a
URL—the	place	on	the	server	where	we’re	going	to	send	our	form	data	for
processing.	We	also	added	an	id	attribute	to	make	it	easy	to	select	the	form	for	CSS
and	JavaScript	purposes	later.

2.	 Next	up,	we’ll	create	a	section	for	our	site	visitor	to	create	the	Username	and
Password	fields.	We’ll	wrap	these	two	fields	in	a	<fieldset>	element	with	a
<legend>	element	to	group	them	together,	as	follows:

<form	action="#"	id="account-form">

		<fieldset>

				<legend>My	Account</legend>

				<p>

						<label	for="username">Username</label>

						<input	type="text"	name="username"	id="username"	

placeholder="Choose	a	username…">

				</p>

				<p>

						<label	for="password">Password</label>

						<input	type="text"	name="password"	id="password"	

placeholder="Choose	a	secure	password…">

				</p>

		</fieldset>

</form>

Here,	we’ve	wrapped	each	field	and	its	associated	label	in	a	paragraph	tag	(<p>).
There	is	a	world	of	opinions	out	there	on	the	best	tags	to	use	to	mark	up	your	form
fields.	Some	developers	swear	by	simple	<div>	elements,	while	others	like	to	make
the	form	a	list	()	with	each	field	a	list	item	().	Some	others	like	to	use	a
definition	list	(<dl>)	and	place	the	labels	inside	the	<dt>	tags	and	the	form	fields
inside	the	<dd>	tags.	Pragmatically	speaking,	any	of	these	will	do	just	fine	and	your
form	will	work	as	expected	for	your	site	visitors.	Use	the	tags	that	you	personally
prefer.

Look	carefully	at	the	HTML	markup	we’ve	written	so	far	for	our	form.	There	are	a

few	important	things	to	note,	which	are	as	follows:

Each	<input>	tag	has	a	type	attribute	that	is	relevant	to	its	purpose.	The
username	field	has	a	text	type,	and	the	password	field	has	a	password	type.
Each	<input>	tag	has	a	unique	id	attribute.	Remember	that	each	id	must	to	be
unique	on	the	page,	so	select	the	id	attributes	of	your	form	inputs	carefully.
Each	<input>	tag	has	a	name	attribute.	This	is	passed	to	the	code	that	is	handling
your	form	on	the	server	side.	It’s	a	common	practice	to	use	the	same	value	for
the	name	and	id	attributes	of	a	form	element,	but	it’s	not	compulsory.	You	can
easily	select	a	different	value	for	the	id	value	anytime	you	like,	but	if	you’d	like
to	change	the	name	value,	you	should	first	check	with	your	server-side	developer
to	ensure	that	the	code	they	have	written	will	continue	to	work.
Each	<input>	tag	has	a	placeholder	attribute.	This	new	attribute,	introduced	in
HTML5,	currently	has	very	good	browser	support.	The	value	of	this	attribute	is
displayed	as	grayed-out	text	in	each	field	until	the	site	visitor	starts	typing.	It	can
be	useful	to	give	additional	instructions	for	a	field	or	to	give	an	example	of	the
type	of	information	the	site	visitor	should	enter.
Each	<label>	tag	has	a	for	attribute	that	associates	it	with	a	particular	form
element.	The	value	in	the	for	attribute	is	equal	to	the	id	value	of	the	form
element	with	which	it	is	associated	(not	the	name	attribute).	This	makes	some
nice	functionality	available	to	our	site	visitors—clicking	on	a	label	will	bring
focus	to	the	associated	form	element.	This	behavior	is	especially	useful	for
checkbox	and	radio	button	inputs,	which	are	small	and	can	be	difficult	to	click.

Each	browser	has	its	own	default	way	of	styling	form	elements.	For	example,	with	no
CSS	attached	to	the	preceding	HTML	markup,	the	following	screenshot	shows	what
the	form	element	looks	like	in	Google	Chrome	on	Mac	OS	X:

Note	that	the	default	CSS	code	we	use	with	the	example	code	in	this	book	removes
(or	resets)	most	of	these	default	styles.	The	following	screenshot	shows	how	the	form
appears	after	attaching	our	CSS	file:

3.	 Next	up,	we’ll	create	an	About	Me	section	for	our	form,	as	follows:

<fieldset>

		<legend>About	Me</legend>

		<p>

				<label	for="name">Name</label>

				<input	type="text"	id="name"	name="name"	placeholder="First	Last">

		</p>

		<p>

				<label	for="email">Email	address</label>

				<input	type="email"	id="email"	name="email"	

placeholder="you@example.com">

		</p>

		<p>

				<label	for="website">Website</label>

				<input	type="url"	id="website"	name="website"	placeholder="Don't	

forget	the	http://…">

		</p>

		<p>

				<label	for="birthdate">Birth	date</label>

				<input	type="date"	id="birthdate"	name="birthdate">

		</p>

</fieldset>

Again,	the	text	type	was	used	for	the	Name	field,	as	names	are	strings.	However,
take	a	look	at	the	type	attribute	for	the	Email	address,	Website,	and	Birth	date
fields.	We’re	using	the	new	HTML5	input	types	here.	In	browsers	where	these	input
types	are	not	supported,	these	fields	will	look	and	work	just	like	inputs	with	a	type
attribute	of	text.	However,	in	browsers	where	these	input	types	are	recognized,
they’ll	behave	in	a	slightly	different	way.	The	browser	will	automatically	validate	the
user	input.	For	example,	if	a	site	visitor	types	an	invalid	e-mail	address	into	an	input
with	the	type	email,	the	browser	will	warn	them	that	they’ve	entered	an	invalid	e-
mail	address.	Also,	on	devices	with	soft	keyboards,	the	keyboard	keys	will	be	altered
to	reflect	the	characters	necessary	for	entering	that	data	type.	For	example,	an	input
with	a	type	of	email	will	open	a	keyboard	with	the	.	key	and	the	@	key	showing	on
an	iPhone	or	an	iPad,	making	it	easier	for	your	site	visitors	on	these	devices	to
complete	the	required	information.

4.	 The	next	section	in	the	form	will	be	a	section	about	beverage	preferences.	We	want
the	site	visitor	to	select	their	favorite	beverages	from	a	list	and	then	answer	a	question
about	how	many	days	per	year	they	drink	a	beverage.	The	following	code	is	a	sample
of	what	the	list	looks	like:

<fieldset>

		<legend>Beverage	Info</legend>

		<fieldset>

				<legend>Select	your	favorite	beverage(s)</legend>

				<p>Please	select	at	least	three	but	no	more	than	six	beverages.</p>

				

						

								<input	type="checkbox"	name="favorites[]"	id="bev-water"	

value="bev-water">

								<label	for="bev-water">Water</label>

						

						

								<input	type="checkbox"	name="favorites[]"	id="bev-juice"	

value="bev-juice">

								<label	for="bev-juice">Juice</label>

						

						...

				

		</fieldset>

		<p>

				<label	for="days">How	many	days	of	the	year	do	you	drink	a	

beverage?</label>

				<input	type="number"	id="days"	name="days"	placeholder="How	many	

days?">

		</p>

</fieldset>

Now,	when	you	refresh	the	page,	you’ll	see	the	list	as	shown	in	the	following
screenshot:

A	few	new	things	to	note	about	the	HTML	that	we’ve	used	to	mark	up	this	section:

Fieldsets	can	be	nested.	A	fieldset	is	an	excellent	way	to	group	a	set	of
checkboxes	or	radio	buttons	together,	and	we	can	use	the	legend	tag	of	the
fieldset	element	to	create	a	header	for	our	radio	or	checkbox	group.
A	set	of	checkboxes	are	identified	as	such	because	they	will	all	share	the	same
name.	Because	a	site	visitor	can	select	more	than	one	item	in	a	set	of
checkboxes,	we	add	square	brackets	([])	at	the	end	of	the	name	so	that	the
server	will	collect	all	of	the	answers	into	an	array.
Each	checkbox	in	the	set	has	its	own	unique	id	and	value	attributes.	The	id	and

value	attributes	do	not	necessarily	have	to	match,	but	it’s	often	easy	to	make
them	the	same.
Finally,	the	number	of	days	per	year	is	given	an	input	type	number,	as	only	a
number	would	be	acceptable	here.	Be	careful	with	this	input	type.	It	is	very
strict	and	will	not	accept	any	nonnumeric	characters.	Some	bits	of	data	appear	to
be	numbers	but	are	actually	strings,	for	example,	telephone	numbers	and	credit
card	numbers.	If	you	wouldn’t	do	some	sort	of	math	with	your	number,	then	it
shouldn’t	be	the	number	input	type.

5.	 The	next	section	we’ll	add	to	our	form	is	a	payment	information	section,	which	is
shown	in	the	following	code:

<fieldset>

		<legend>Payment	Info</legend>

		<fieldset>

				<legend>Credit	Card	Type</legend>

				

						

								<input	type="radio"	name="cc-type"	id="cc-visa"	value="cc-

visa">

								<label	for="cc-visa">Visa</label>

						

						

								<input	type="radio"	name="cc-type"	id="cc-mastercard"	

value="cc-mastercard">

								<label	for="cc-mastercard">Mastercard</label>

						

						

								<input	type="radio"	name="cc-type"	id="cc-amex"	value="cc-

amex">

								<label	for="cc-amex">American	Express</label>

						

						

								<input	type="radio"	name="cc-type"	id="cc-discover"	value="cc-

discover">

								<label	for="cc-discover">Discover</label>

						

				

		</fieldset>

		<p>

				<label	for="cc-number">Credit	card	number</label>

				<input	type="text"	name="cc-number"	id="cc-number"	

placeholder="xxxx	xxxx	xxxx	xxxx">

		</p>

</fieldset>

Much	like	the	checkboxes,	we’ve	grouped	a	set	of	radio	controls	inside	a	fieldset
with	the	legend	tag	acting	as	the	header	for	this	section.	Just	like	checkboxes,	all	the
radio	buttons	in	the	set	of	radio	buttons	share	the	same	name,	but	each	has	its	own
unique	id	and	value	attributes.	However,	in	the	case	of	radio	buttons,	only	one	can
be	selected	at	a	time,	so	there	is	no	need	to	mark	them	as	an	array.

We’ve	also	added	a	field	for	collecting	our	site	visitor’s	credit	card	number.	Note	that

we’ve	assigned	an	input	type	of	text	to	this	field.	Even	though	a	credit	card	number
appears	to	be	a	number,	we	want	to	store	it	just	as	it	is,	and	won’t	ever	be	performing
calculations	with	this	number.	The	following	screenshot	shows	the	payment
information	section:

6.	 Finally,	we’ll	add	a	checkbox	for	our	site	visitor	to	accept	our	terms	of	service,	and	a
Submit	button	for	them	to	submit	the	form	information	to	us,	as	follows:

<fieldset>

		

				

						<input	type="checkbox"	name="tos"	id="tos"	value="tos"/>

						<label	for="tos">Click	here	to	accept	our	terms	of	

service</label>

				

		

		<p>

				<input	type="submit"	value="Sign	me	up!"/>

		</p>

</fieldset>

The	only	new	thing	here	is	the	Submit	button.	By	default,	the	input	tag	with	a	type
attribute	of	submit	will	read	Submit.	We	can	change	the	text	by	adding	a	value
attribute	with	the	text	we’d	like	to	display	on	the	button.	The	following	screenshot
shows	the	text	that	we	used;	in	our	case,	it	is	Sign	me	up!:

7.	 The	only	thing	left	to	do	is	to	style	our	form	with	a	bit	of	CSS.	The	following	code
shows	the	CSS	used	for	this	simple	form	in	the	sample	code	for	the	book:

fieldset	{

		background:	white;

		border-radius:	5px;

		color:	#656d78;

		margin:	1em	0;

		padding:	1em;

		width:	80%;

}

legend	{

		background:	#fa6f57;

		border-radius:	5px;

		color:	white;

		font-size:	1.125em;

		padding:	0.333em	1em;

}

fieldset	fieldset	legend	{

		background:	transparent;

		color:	#42b0d8;

		padding:	0;

}

fieldset	p	{

		line-height:	1.5em;

		margin:	1em	0;

}

fieldset	label	{

		display:	inline-block;

		width:	20%;

}

fieldset	li	{

		line-height:	1.5;

		margin:	0.5em	0;

}

fieldset	ul	label	{

		display:	inline;

		width:	auto;

}

input[type='text'],

input[type='password'],

input[type='email'],

input[type='url'],

input[type='email'],

input[type='date'],

input[type='number']	{

		border:	1px	solid	#ccd1d9;

		border-radius:	5px;

		color:	#656d78;

		font-family:	inherit;

		font-size:	inherit;

		padding:	0.222em;

		transition:	border	300ms;

}

input[type='text']:focus,

input[type='password']:focus,

input[type='email']:focus,

input[type='url']:focus,

input[type='email']:focus,

input[type='date']:focus,

input[type='number']:focus	{

		border-color:	#656d78;

		outline:	none;

}

Note	that	the	type	attribute	of	our	inputs	can	be	used	to	select	them	for	styling.	In
this	case,	we’ve	styled	them	all	identically,	but	it	would	also	be	possible	to	give	each
one	its	own	set	of	styles	if	desired.

The	following	screenshot	shows	how	the	form	looks	with	this	CSS.	Feel	free	to	get
creative	and	write	your	own	styles	for	the	form.

What	just	happened?
We	took	a	look	at	some	of	the	new	HTML5	input	types	and	how	to	use	them	properly	to
put	together	a	web	form.	We	saw	how	to	use	the	fieldset	and	legend	tags	to	group	fields
together	under	a	heading	and	how	to	associate	labels	with	form	elements.	We	learned	the
proper	use	of	the	text,	password,	email,	url,	date,	checkbox,	radio,	and	number	input
types.

Pop	quiz	–	working	with	HTML5	form	elements
Q1.	HTML5	provides	several	new	types	of	<input>	elements	for	us	to	work	with	(url,
email,	number,	and	so	on).	What	happens	to	these	form	elements	in	older	browsers	that
don’t	have	explicit	support	for	them?

1.	 They	appear	and	function	as	though	they	were	of	type	text.
2.	 They	aren’t	visible	on	the	page.
3.	 They	appear	as	checkboxes.
4.	 They	cause	an	error	and	render	the	form	unusable.

Setting	focus
If	you	head	over	to	http://google.com,	you’ll	see	that	they’ve	made	it	really	easy	for	you	to
conduct	a	web	search—as	soon	as	the	page	is	loaded	in	the	browser,	the	cursor	is	blinking
in	the	search	field.	There	are	other	sites	on	the	Web	that	behave	this	way	too,	making	it
quick	and	easy	to	get	started	with	filling	in	a	form.

Any	time	you	have	a	page	where	the	site	visitor’s	main	task	will	be	to	complete	a	form,
you	can	make	things	easy	for	your	site	visitor	by	placing	the	cursor	into	the	first	form	field
so	they	can	just	start	typing.	And	it’s	wicked	easy	with	jQuery.	Here’s	how	to	do	it.

http://google.com

Time	for	action	–	setting	focus	to	the	first
field
We’ll	keep	working	with	the	sample	form	we	set	up	in	the	previous	example.	Perform	the
following	steps	to	set	the	focus	to	the	first	field	in	the	form.

1.	 Open	up	your	empty	scripts.js	file	and	add	a	document	ready	statement,	as
follows:

$(document).ready(function(){

		//	Our	code	goes	here

});

2.	 Next	up,	we	want	to	select	the	first	field	in	our	form.	There	are	many	different	ways
to	go	about	this.	While	we	could	use	the	id	attribute	of	the	first	field,	this	is	not	very
flexible.	If	we	update	our	form	later	to	add	a	new	field	at	the	beginning,	we’d	also
have	to	remember	to	update	our	JavaScript.	Instead,	let’s	just	find	the	first	input
element,	as	follows:

$(document).ready(function(){

		$('input').first();

});

This	works	pretty	well,	but	there	are	several	cases	where	we	would	not	like	to	set	the
focus	on	the	first	input	element,	for	example,	if	the	first	element	is	disabled,	or	if	it’s
a	button,	a	checkbox,	or	a	radio	button.	Let’s	add	a	filter	to	remove	these,	as	follows:

		

$('input').first().not(':radio,:checkbox,:button,:disabled,:file,:image

,:reset,:submit');

We	won’t	bother	setting	the	focus	to	radio	buttons,	checkboxes,	buttons,	disabled
form	elements,	file	inputs,	image	inputs,	reset	buttons,	or	submit	buttons.

3.	 All	that’s	left	to	do	is	to	call	the	focus()	method	for	the	selected	element,	as	follows:

		

$('input').first().not(':radio,:checkbox,:button,:disabled,:file,:image

,:reset,:submit').focus();

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	cursor	is	blinking	in
the	Username	field	of	the	form—the	very	first	field.

What	just	happened?
We	used	a	couple	of	lines	of	jQuery	to	move	the	focus	to	the	first	field	in	our	form	to
make	it	easy	for	our	site	visitors	to	jump	right	in	to	completing	our	form.	It	was	as	simple
as	selecting	the	first	form	element	and	then	calling	the	focus()	method	for	that	element.

Validating	site	visitor	entry
Sometimes,	it	can	feel	frustrating	for	a	site	visitor	when	they	have	to	submit	a	form	several
times	over,	correcting	errors	that	they’ve	made	while	filling	it	out.	Without	JavaScript,	the
only	way	to	validate	the	information	that	the	site	visitor	has	entered	is	to	wait	for	them	to
submit	the	form,	then	identify	the	issues	on	the	server,	and	send	back	a	page	that	contains
the	form	along	with	any	error	messages	that	might	help	the	site	visitor	correct	the
problem.

Showing	errors	as	soon	as	they	occur	goes	a	long	way	towards	making	your	form	feel
snappy	and	responsive	and	helping	your	site	visitors	submit	the	form	correctly	on	the	first
try.	In	this	section,	we’ll	learn	how	to	use	the	Validation	plugin	from	Jörn	Zaefferer.	This
plugin	is	powerful	and	flexible	and	can	handle	validation	in	several	different	ways.	We’ll
take	a	look	at	the	most	straightforward	way	of	adding	client-side	validation	to	your	form.

Time	for	action	–	validating	form	values
on	the	fly
We’ll	continue	working	with	the	form	we’ve	been	creating	through	the	last	three	sections.
Perform	the	following	steps	to	validate	user	entry	into	the	form:

1.	 The	first	thing	we’ll	do	is	download	the	Validation	plugin	and	get	it	attached	to	our
page.

Head	over	to	http://jqueryvalidation.org/	and	click	on	the	Download	button	in	the
Files	section	to	download	a	ZIP	file.

2.	 Open	up	the	ZIP	file	and	take	a	look	at	what	we’ve	got.

There’s	a	lot	going	on	here—there	are	several	different	JavaScript	files,	some	demos,
a	change	log,	and	so	on.	Remember	how	I	said	this	plugin	is	powerful	and	can	handle
lots	of	different	approaches	to	validation?	That’s	what	all	this	is	for—handling	form
validation	in	just	about	any	old	crazy	situation	you	might	find	yourself	in.

Luckily,	though,	our	situation	is	pretty	simple,	so	we	don’t	have	to	do	anything
complicated.

3.	 Inside	the	dist	folder,	find	jquery.validate.min.js	and	copy	it	to	your	own
scripts	folder.	Then,	attach	it	to	your	HTML	page,	as	follows:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.validate.min.js"></script>

<script	src="scripts/scripts.js"></script>

4.	 Next,	we’re	going	to	go	back	to	our	form	and	add	some	information	that	the
Validation	plugin	will	use.	Let’s	start	with	the	Username	field:

<p>

		<label	for="username">Username</label>

		<input	type="text"	name="username"	id="username"	placeholder				

	 ="At	least	5	characters	long"	minlength="5"	maxlength				

	 ="20"	required/>

</p>

This	is	a	required	field—any	site	visitor	who	completes	this	form	must	select	a
username,	so	we’ll	simply	add	an	attribute	called	required.	This	attribute	is	for	form
validation	purposes,	but	we	could	also	use	it	to	create	a	special	style	in	our	CSS	for
the	required	fields	in	the	form.

All	usernames	must	be	between	five	and	20	characters	long.	So	we’ve	added	the
minlength	and	maxlength	attributes.

5.	 Next	up	is	the	Password	field,	which	is	also	a	required	field.	So	let’s	add	the
required	attribute,	as	follows:

<p>

		<label	for="password">Password</label>

http://jqueryvalidation.org/

		<input	type="password"	name="password"	id				

	 ="password"	required	placeholder				

	 ="Choose	a	secure	password"/>

</p>

While	we’re	at	it,	let’s	add	the	required	attribute	to	the	e-mail	field	too:

<p>

		<label	for="email">Email	address</label>

		<input	type="email"	name="email"	id="email"	placeholder				

	 ="you@example.com"	required/>

</p>

6.	 Next,	let’s	take	a	look	at	that	list	of	favorite	beverages.	Remember	we	included	a	note
in	the	fieldset	to	indicate	that	the	site	visitor	was	to	select	at	least	three	but	not	more
than	six	beverages?	We	can	actually	enforce	that	with	the	Validation	plugin.	Go	to	the
first	checkbox	in	the	series	and	add	the	minlength	and	maxlength	attributes	as
follows:

		<input	type="checkbox"	name="favorites[]"	id				

	 ="bev-water"	value="bev-water"	maxlength="6"	minlength				

	 ="3"	required/>

		<label	for="bev-water">Water</label>

We	only	have	to	add	this	on	the	first	checkbox	and	not	on	all	of	them.	Validation	is
smart	enough	to	figure	out	that	we’re	referring	to	the	entire	set	of	checkboxes.

7.	 Now,	let’s	take	a	look	at	the	field	where	we	ask	the	site	visitor	how	many	days	per
year	they	drink	a	beverage.	Obviously,	as	there	are	only	365	days	in	a	year,	it’s	the
highest	number	they	could	enter	in	this	field.	So	we’ll	add	a	max	attribute	to	specify
the	highest	possible	number:

<p>

		<label	for="days">How	many	days	per	year	do	you	drink	a	beverage?

</label>

		<input	type="number"	name="days"	id="days"	max="365"/>

</p>

8.	 This	brings	us	to	the	payment	section.	Whatever	we’re	selling,	it’s	not	free,	so	we’re
going	to	require	both	the	credit	card	type	and	credit	card	number.	To	require	entry	for
radio	buttons,	we	just	have	to	add	the	required	attribute	to	the	first	radio	button	in
the	set,	as	follows:

		<input	type="radio"	name="cc-type"	id="cc-visa"	value				

	 ="cc-visa"	required/>

		<label	for="cc-visa">Visa</label>

We	don’t	have	to	make	any	other	changes	to	the	radio	button	series.

9.	 Now,	let’s	handle	the	credit	card	number	itself.	We	need	to	add	the	required
attribute,	as	shown	in	the	following	code.	We	also	need	to	add	a	creditcard	class	to

validate	that	the	number	entered	is,	in	fact,	a	valid	credit	card	number:

<p>

		<label	for="cc-number">Credit	card	number</label>

		<input	type="text"	name="cc-number"	id				

	 ="cc-number"	placeholder="xxxxxxxxxxxxxxxx"	class				

	 ="creditcard"	required/>

</p>

10.	 At	the	bottom	of	our	form,	we	have	a	checkbox	to	accept	the	terms	of	service.	This	is
required	too,	so	we’ll	add	the	required	attribute,	as	follows:

		<input	type="checkbox"	name="tos"	id				

	 ="tos"	required	value="tos"/>

		<label	for="tos">Click	here	to	accept	our	terms	of	service</label>

11.	 Now,	we	just	need	to	call	the	validate()	method	that	Validation	makes	available	to
us.	In	scripts.js,	inside	the	document	ready	statement,	select	the	form	and	call	the
validate()	method,	as	shown	in	the	following	code:

$(document).ready(function(){

		

$('input').first().not(':radio,:checkbox,:button,:disabled,:file,:image

,:reset,:submit').focus();

		$('#account-form').validate();

});

12.	 Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	you	can’t	submit	the	form
without	filling	anything	in—the	required	fields	will	be	marked	with	an	error	message
that	says	the	field	is	required.	If	you	try	to	type	an	invalid	URL	or	e-mail	address	into
the	Website	or	Email	address	fields,	you’ll	get	an	error	message	that	will	let	you
know	there’s	a	problem	to	be	corrected.	However,	those	error	messages	are	in	a	weird
place	for	our	checkboxes	and	radio	buttons,	as	shown	in	the	following	screenshot:

This	doesn’t	really	help	people	understand	exactly	what’s	going	on.	Luckily,
Validation	allows	us	to	add	our	own	error	messages	to	the	page	wherever	we’d	like
them	to	display.

We’re	going	to	add	an	error	message	before	the	list	of	credit	card	type	radio	buttons:

<fieldset>

		<legend>Payment	Info</legend>

		<fieldset>

				<legend>Credit	Card	Type</legend>

				<label	for="cc-type"	class="error"></label>

				

						...

				

		</fieldset>

		...

</fieldset>

We’ll	add	a	<label>	element	to	the	document	where	we’d	like	the	error	message	to
show.	The	for	attribute	will	refer	to	the	name	of	the	field—in	this	case,	all	the	radio
buttons	share	the	cc-type	name.	We’ll	add	a	class	attribute	of	error.

Tip
In	this	case,	the	for	attribute	of	our	label	is	referring	to	the	name	attribute	of	the	field
rather	than	the	id	attribute.	This	is	a	special	case	created	by	the	Validation	plugin.	If
you’re	not	using	custom	error	messages	with	the	Validation	plugin,	then	your	label’s
for	attribute	should	always	reference	the	id	attribute	of	the	form	element.

13.	 Next,	we	don’t	want	any	error	messages	showing	up	on	the	page	unless	they’re
needed.	We’d	also	like	them	to	display	in	red	so	that	they	stick	out	and	are	easy	to
find.	Open	your	styles.css	file	and	add	some	styles	for	the	error	messages,	as
shown	in	the	following	code:

fieldset	label.error	{

		color:	#e75845;

		display:	none;

		margin-left:	0.5em;

		width:	auto;

}

We’re	adding	a	width	value	as	we’ve	set	the	other	labels	to	a	width	of	20	percent.
We’re	also	adding	a	little	margin	for	some	space	between	the	error	message	and	the
field	it’s	referring	to.

Now,	if	you	refresh	the	browser	and	try	to	submit	the	form	without	selecting	a	credit
card	type,	you’ll	get	the	error	message	in	a	much	better	place,	as	shown	in	the
following	screenshot:

14.	 Next,	we	need	to	do	the	same	thing	for	our	favorite	beverages	and	our	Terms	of
Service	checkbox.	The	following	code	shows	what	we’ll	add	as	our	favorite
beverages:

<fieldset>

		<legend>Beverage	Info</legend>

		<fieldset>

				<legend>Select	your	favorite	beverage(s)</legend>

				<p>Please	select	at	least	three	but	no	more	than	six	beverages.</p>

				<label	for="favorites[]"	class="error"></label>

				

						...

				

		</fieldset>

		...

</fieldset>

The	following	code	is	what	we’ll	add	to	the	terms	of	service	checkbox:

<fieldset>

		

				...

		

		<label	for="tos"	class="error"></label>

		...

</fieldset>

Now,	if	you	refresh	the	page	in	the	browser	and	try	to	submit	the	form	without
completing	the	required	fields	or	try	to	enter	invalid	information	in	the	form,	you’ll
get	error	messages	in	the	appropriate	places.

15.	 While	our	error	messages	are	now	showing	up	in	better	spots	on	the	page,	they’re	not
always	very	helpful.	For	example,	if	we	only	select	two	beverages,	the	error	message
reads	Please	enter	at	least	3	characters.

The	default	error	messages	work	in	many	cases,	but	not	in	all	cases.	Luckily,	it’s	easy
to	customize	the	error	messages.	All	we	have	to	do	is	add	a	title	attribute	to	the
form	element	with	the	error	message	we’d	like	to	show.	Add	this	title	attribute	to
the	first	<input>	element	in	beverages,	as	shown	in	the	following	code:

<input	type="checkbox"	name="favorites[]"	id="bev-water"	value="bev-

water"	minlength="3"	maxlength="6"	required	title="You	must	select	at	

least	three	but	not	more	than	six	beverages">

Now,	the	error	message	makes	more	sense	for	our	site	visitors.	You	can	add	a	title
attribute	that	contains	an	error	message	specific	to	that	field	to	any	of	the	form
elements	in	the	form.

What	just	happened?
We	used	the	Validation	plugin	to	add	some	simple	client-side	validation	to	our	form.	The
simplest	way	to	use	the	Validation	plugin	is	to	simply	add	some	class	names	and	attributes
to	your	form	elements.	Validation	will	take	care	of	the	rest—it’s	smart	enough	to
recognize	the	HTML5	input	types	and	validate	them,	and	it	offers	some	other	useful
validation	rules	such	as	required	fields,	a	maximum	number	value,	minimum	and
maximum	lengths,	and	credit	card	numbers.	We	dropped	in	a	bit	of	CSS	to	style	the	error
messages	the	way	we	wanted.

Improving	the	appearance
If	you’ve	tried	styling	web	forms	with	CSS,	then	you’ve	probably	discovered	that	some
form	elements,	such	as	text	inputs	and	buttons,	are	pretty	easy	to	style.	There	are	a	few
quirks,	but	once	you	get	those	figured	out,	you	can	get	those	form	elements	to	look	just
about	any	way	you’d	like.	Other	form	elements,	however,	are	much	more	stubborn	and
don’t	respond	much,	if	at	all,	to	CSS	styles.	It’s	so	frustrating	to	design	a	lovely	form	only
to	realize	that	it’s	technically	impossible.

These	troublesome	form	elements	are	as	follows:

<select>

<input	type="file">

<input	type="checkbox">

<input	type="radio">

Not	only	are	these	four	form	elements	impossible	to	style	with	CSS,	but	they	also	look
radically	different	in	different	browsers	and	operating	systems,	leaving	us	with	little
control	over	the	appearance	of	our	form.	Let’s	see	how	Lutrasoft’s	Fancyform	plugin	can
help	us	out.

Time	for	action	–	improving	form
appearance
Perform	the	following	steps	to	take	advantage	of	the	styling	options	made	possible	by	the
Fancyform	plugin:

1.	 We’ll	get	started	with	a	basic	HTML	file	and	associated	files	and	folders,	just	like	we
set	up	in	Chapter	1,	Designer,	Meet	jQuery.	We’ll	work	with	a	new	HTML	file,	but
let’s	keep	using	the	styles	we	set	up	for	the	earlier	forms.	Open	your	styles.css	file
and	paste	in	the	styles	we	used	for	our	forms	in	the	previous	sections.

2.	 For	this	example,	in	the	body	of	the	HTML	document,	we’re	going	to	set	up	a	simple
form	with	examples	of	each	type	of	hard-to-style	form	element.	Get	started	with	a
<form>	tag,	as	follows:

<form	id="pretty-form"	action="#">

</form>

3.	 Then,	inside	our	form,	we’ll	add	our	form	elements.	We’ll	start	off	with	a	select
drop-down	option,	as	follows:

<fieldset>

		<legend>Select	your	favorite	juice</legend>

		<p>

				<label	for="juice">Favorite	Juice</label>

				<select	id="juice"	name="juice">

						<option>Select	one</option>

						<option	value="orange">Orange	Juice</option>

						<option	value="grape">Grape	Juice</option>

						<option	value="grapefruit">Grapefruit	Juice</option>

						<option	value="cranberry">Cranberry	Juice</option>

						<option	value="tomato">Tomato	Juice</option>

						<option	value="pineapple">Pineapple	Juice</option>

						<option	value="apple">Apple	Juice</option>

				</select>

		</p>

</fieldset>

We’re	following	the	same	rules	we	followed	for	the	previous	form,	making	sure	the
form	works	properly	and	is	accessible.

Exactly	what	this	<select>	element	looks	like	will	depend	on	your	browser	and
operating	system,	but	the	following	screenshot	shows	how	mine	looks	in	Google
Chrome	on	Mac	OS	X:

4.	 Next,	we’ll	add	a	file	input,	as	shown	in	the	following	code:

<fieldset>

		<legend>Fruit	Picture</legend>

		<p>

				<label	for="fruit-photo">Upload	a	photo	of	your	favorite	

fruit</label>

				<input	type="file"	id="fruit-photo"	name="fruit-photo"/>

		</p>

</fieldset>

It’s	hard	to	believe	that	this	innocent-looking	little	tag	could	be	the	source	of	so	much
styling	headache,	but	there	you	are.	The	following	screenshot	shows	how	it	looks	in
Google	Chrome	on	Mac	OS	X:

5.	 Next	up,	let’s	add	a	few	checkboxes,	as	follows:

<fieldset>

		<legend>Which	hot	beverages	do	you	enjoy?</legend>

		

										<input	type="checkbox"	name="hot-bevs[]"	id="hot-

coffee">

						<label	for="hot-coffee">Coffee</label>

				

				

						<input	type="checkbox"	name="hot-bevs[]"	id="hot-chocolate">

						<label	for="hot-chocolate">Hot	Chocolate</label>

				

				

						<input	type="checkbox"	name="hot-bevs[]"	id="hot-tea">

						<label	for="hot-tea">Tea</label>

				

		

</fieldset>

If	you	refresh	the	page	in	the	browser,	the	checkboxes	will	appear	as	shown	in	the
following	screenshot:

6.	 Then,	let’s	add	some	radio	buttons,	as	follows:

<fieldset>

		<legend>Select	your	favorite	soft	drink</legend>

		

				

						<input	type="radio"	name="soft-drinks"	id="soda"/>

						<label	for="soda">Soda</label>

				

				

						<input	type="radio"	name="soft-drinks"	id="sparkling-water"/>

						<label	for="sparkling-water">Sparkling	water</label>

				

				

						<input	type="radio"	name="soft-drinks"	id="iced-tea"/>

						<label	for="iced-tea">Iced	Tea</label>

				

				

						<input	type="radio"	name="soft-drinks"	id="lemonade"/>

						<label	for="lemonade">Lemonade</label>

				

		

</fieldset>

If	you	refresh	the	page	in	the	browser,	the	radio	buttons	will	appear	as	shown	in	the
following	screenshot:

7.	 Finally,	the	last	thing	that	we’ll	do	is	add	a	few	elements	to	our	form	that	are	easy	to
style,	so	that	we	can	learn	how	to	style	these	to	match	our	custom	styles:

<fieldset>

		<legend>Some	other	stuff	about	me</legend>

		<p>

				<label	for="name">My	name</label>

				<input	type="text"	id="name"	name="name"/>

		</p>

		<p>

				<label	for="about-me">About	me</label>

				<textarea	rows="10"	cols="40"	id="about-me"	name="about-me">

</textarea>

		</p>

</fieldset>

<p	class="buttons">

		<input	type="submit"/>

		<input	type="reset"/>

</p>

We’ve	already	written	CSS	to	style	the	fieldset,	legend,	text	input,	and	submit	input.
We	haven’t	yet	styled	the	text	area	or	the	reset	input.	We’ll	tackle	these	in	a	bit.

What	just	happened?
Now,	we’ve	got	our	unstyled	form	set	up.	Exactly	what	our	form	looks	like	will	depend	on
your	browser	and	operating	system.	We	followed	all	the	rules	established	earlier	in	this
chapter	for	setting	up	a	correct	and	accessible	form.	Except	that	this	time,	we’ve	included
some	difficult-to-style	form	elements.	Let’s	take	a	look	now	at	how	we	can	use	the
Fancyform	plugin	to	get	our	form	to	look	better	and	uniform	across	as	many	browsers	as
possible.

Styling	the	unstyleable
If	you	want	to	take	a	little	time	out	and	try	writing	some	CSS	to	style	these	form	elements,
you’ll	see	that	there’s	not	much	that	touches	them.	Some	of	them	don’t	seem	to	be	affected
by	CSS	at	all,	and	when	they	are,	it’s	not	always	in	the	way	that	you’d	expect.	No	wonder
these	form	fields	give	everyone	so	much	trouble.	This	is	when	jQuery	comes	to	the	rescue.

Time	for	action	–	adding	Fancyform	to
style	the	unstyleable
Perform	the	following	steps	to	use	the	Fancyform	plugin	to	gain	styling	control	over	your
form	elements:

1.	 Let’s	get	the	Fancyform	plugin	and	take	a	look	at	how	it	works.	Head	over	to
https://github.com/Lutrasoft/Fancyform	and	click	on	the	Download	ZIP	button.

2.	 Unzip	the	file	and	take	a	look	inside	the	folder.

This	is	pretty	straightforward,	right?	We’ve	got	a	demo	folder,	a	README	file,	the
Fancyform	JavaScript,	and	some	other	associated	scripts—we’ve	seen	this	all	before.
We	also	see	a	V2	folder—the	developer	is	starting	on	the	next	version	of	the	plugin.	If
you	read	the	notes	in	GitHub	carefully,	you’ll	see	that	V2	isn’t	quite	ready	for	prime
time	yet,	so	we’ll	just	ignore	that	for	now.

3.	 Next,	we	need	to	add	the	Fancyform	script	to	our	own	project	and	attach	it	to	our
HTML	page.	Copy	jquery.fancyform.js	to	your	own	scripts	folder	and	attach	the
Fancyform	script	between	jQuery	and	your	own	scripts.js	file,	as	follows:

<script	src="scripts/jquery.js"></script>

<script	src="scripts/jquery.fancyform.js"></script>

<script	src="scripts/scripts.js"></script>

</body>

</html>

4.	 Open	your	scripts.js	file	and	add	the	document	ready	statement,	as	follows:

$(document).ready(function(){

		//	Our	code	will	go	here

});

5.	 Next,	select	all	the	<select>	elements	and	call	the	transformSelect()	method,	as
follows:

$(document).ready(function(){

		$('select').transformSelect();

});

If	you	refresh	the	page	in	the	browser	now,	you’ll	see	that	the	<select>	element	is
replaced	by	a	bit	of	text.	Clicking	on	the	text	opens	up	a	list	of	options.	Then,
clicking	on	one	of	the	options	changes	the	bit	of	text	to	the	option	we	clicked.	The
following	screenshot	shows	what	happens:

https://github.com/Lutrasoft/Fancyform

The	basic	functionality	is	present;	we	just	have	to	style	everything	with	CSS	to	look
the	way	we’d	like.

6.	 Let’s	get	started	with	the	styles	by	styling	the	select	box	itself.	Open	your
styles.css	file	and	add	the	following	styles:

.transformSelect	{

		display:	inline-block;

		vertical-align:	middle;

		width:	200px;

}

.transformSelect	li	{

		margin:	0;

		position:	relative;

}

.transformSelect	>	li	>	span	{

		background:	white;

		border:	1px	solid	#ccd1d9;

		border-radius:	5px;

		color:	#656d78;

		cursor:	pointer;

		display:	block;

		left:	0;

		line-height:	20px;

		margin:	0;

		overflow:	hidden;

		padding:	3px	5px;

		text-overflow:	ellipsis;

		top:	0;

		white-space:	nowrap;

}

Refresh	the	page	in	the	browser	and	you’ll	see	that	the	select	box	is	placed	correctly
and	has	a	border	and	border	radius	that	match	the	styles	we’ve	created	so	far	for	our
forms.

7.	 Now,	we’ll	create	the	arrow	on	the	right-hand	side	of	the	drop-down	box:

.transformSelect	>	li	>	span:before	{

		border-left:	1px	solid	#ccd1d9;

		bottom:	4px;

		content:	'';

		position:	absolute;

		right:	2em;

		top:	4px;

}

.transformSelect	>	li	>	span:after	{

		border-left:	7px	solid	transparent;

		border-right:	7px	solid	transparent;

		border-top:	10px	solid	#ccd1d9;

		content:	'';

		height:	0;

		margin-top:	-4px;

		position:	absolute;

		right:	10px;

		top:	50%;

		width:	0;

}

This	is	the	CSS	triangle	technique	we’ve	used	many	times	already.	Refresh	the	page
in	the	browser	and	you’ll	see	that	our	select	box	is	looking	pretty	good,	as	shown	in
the	following	screenshot:

8.	 Now,	let’s	tackle	the	list	of	options	that	appears	after	we	click	on	our	styled	select
drop-down	menu,	as	follows:

.transformSelect	li.open	>	span	{

		border-radius:	5px	5px	0	0;

}

.transformSelectDropdown	{

		background:	white;

		border:	1px	solid	#ccd1d9;

		border-radius:	0	0	5px	5px;

		border-top:	0;

		box-shadow:	5px	5px	10px	rgba(0,0,0,0.2);

		position:	absolute;

		width:	198px;

}

.transformSelectDropdown	span	{

		cursor:	pointer;

		display:	block;

		padding:	0.222em	0.5em;

}

.transformSelectDropdown	span:hover	{

		background:	#ccecf8;

}

.transformSelectDropdown	li:last-child	span	{

		border-radius:	0	0	5px	5px;

}

This	is	all	pretty	straightforward—no	magic	tricks	here.	Refresh	the	page	in	the
browser	and	you’ll	see	that	we’ve	got	a	perfectly	styled	drop-down	form	element,	as
shown	in	the	following	screenshot:

9.	 Next	up,	let’s	tackle	that	file	input.	This	is	one	of	the	toughest	elements	to	style	as	it
looks	wildly	different	in	different	browsers.	In	your	scripts.js	file,	select	all	file
inputs	and	call	the	transformFile()	method,	as	follows:

$(document).ready(function(){

		$('select').transformSelect();

		$(':file').transformFile();

});

What	does	:file	mean?	That’s	one	of	the	shortcut	selectors	that	jQuery	makes
available	for	us.	Using	the	:file	selector	is	the	same	as	using	the	following	line	of
code:

input[type='file']

However,	it	requires	a	lot	less	typing.

Refresh	the	page	in	the	browser,	and	you’ll	see	that	the	file	input	is	now	replaced	by	a
bit	of	text,	as	shown	in	the	following	screenshot:

Clicking	on	the	text	opens	up	your	system	file	dialog	to	allow	you	to	browse	and	find
a	file	to	upload.	Just	like	with	the	select	drop-down	box,	we’ve	got	the	functionality
down;	we	just	have	to	write	some	CSS	to	make	it	look	the	way	we’d	like.

10.	 First,	we’ll	style	the	wrapper	element	that	contains	our	styleable	version	of	the	file
input.	Add	the	following	lines	to	styles.css:

.customInput	{

		cursor:	pointer;

		display:	inline-block;

		vertical-align:	middle;

}

.customInput:after	{

		clear:	both;

		content:	'';

		display:	table;

}

See	how	we’ve	styled	the	:after	pseudoclass?	This	is	just	a	way	of	clearing	floats—
we’re	going	to	be	floating	the	elements	inside	this	container,	and	we	want	to	make
sure	they	are	cleared.

11.	 Next,	we’ll	style	the	element	that	will	show	the	path	to	the	file	we’ve	selected.	In
styles.css,	add	the	following	lines:

.inputPath	{

		border:	1px	solid	#ccd1d9;

		border-right:	0	none;

		border-radius:	5px	0	0	5px;

		color:	#656d78;

		cursor:	pointer;

		display:	block;

		float:	left;

		padding:	0.222em;

		width:	188px;

}

.customInputMouseOver	.inputPath	{

		border-color:	#addf7a;

}

Refresh	the	page	in	the	browser	and	you’ll	see	that	we’re	getting	there—our	file	input
looks	half-styled,	as	shown	in	the	following	screenshot:

12.	 Now,	we’ll	style	the	button	part	of	the	element.	Add	the	following	lines	to
styles.css:

.inputButton	{

		background:	#a1d36e;

		border:	1px	solid	#a1d36e;

		border-radius:	0	5px	5px	0;

		color:	white;

		cursor:	pointer;

		display:	block;

		float:	left;

		padding:	0.222em	0.75em;

		-webkit-transition:	background	300ms;

		-moz-transition:	background	300ms;

		-ms-transition:	background	300ms;

		-o-transition:	background	300ms;

		transition:	background	300ms;

}

.custonInputMouseOver	.inputButton	{

		background:	#addf7a;

}

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	our	file	input	is	styled
consistently	with	our	other	form	elements,	and	even	better,	has	a	consistent	style
when	viewed	in	different	browsers.

That	wasn’t	so	hard,	right?	Let’s	keep	going.

13.	 Let’s	take	a	look	at	the	checkboxes.	Just	like	with	the	other	elements,	our	first	step	in
customizing	their	appearance	is	to	open	up	our	scripts.js	file,	select	the	elements
we	want	to	work	with,	and	call	the	right	transform	method.	Inside	the	document
ready	statement,	add	the	following	bit	of	code:

$(':checkbox').transformCheckbox({

		base:	'class',

		trigger:	'parent'

});

Once	again,	we’ve	used	jQuery’s	shortcut	selector	(:checkbox)	to	select	all	the
checkboxes	on	the	page.	Then,	we	called	the	transformCheckbox()	method,	but	this
time,	we	passed	a	few	options	to	the	method.

First,	the	transformCheckbox()	method	requires	us	to	specify	a	base	option.	This
option	has	two	possible	values:	class	or	image.	If	we	choose	the	class	option,	then
the	Fancyform	plugin	adds	a		element	with	a	class	to	our	document,	and	we
can	style	that	with	CSS	to	our	heart’s	content.	If	we	choose	the	image	option,	then
Fancyform	will	replace	our	checkboxes	with	an	image.	We’d	then	have	to	set	a	few
more	options—one	for	the	image	path	for	a	checked	checkbox	and	one	for	an
unchecked	checkbox.

The	image	option	is	a	lot	less	flexible,	and	it	requires	loading	up	at	least	two
additional	resources	on	our	page.	With	the	power	of	CSS3	on	our	side,	there’s	not
much	we	can’t	accomplish	if	we	choose	the	class	option.

Second,	the	trigger	option	also	has	two	possible	values:	self	or	parent.	With	the
self	option,	clicking	only	on	the	checkbox	itself	will	result	in	the	checkbox	being
checked.	With	the	parent	option,	clicking	anywhere	on	the	parent	element	will	check
the	checkbox.	That’s	a	lot	easier	for	our	site	visitors,	so	we’ll	go	with	the	parent
option.

If	you	refresh	the	page	in	the	browser,	you’ll	see	that	the	checkboxes	have	simply
disappeared,	as	shown	in	the	following	screenshot:

While	not	visible,	our	checkboxes	have	been	replaced	by		elements.	Now,	we
just	have	to	write	a	bit	of	CSS	to	style	them.

14.	 In	styles.css,	add	the	following	lines	to	style	the		elements:

.trans-element-checkbox	{

		border:	1px	solid	#ccd1d9;

		border-radius:	3px;

		display:	inline-block;

		height:	1em;

		margin:	0	0.5em	0	0;

		position:	relative;

		vertical-align:	text-bottom;

		width:	1em;

}

.trans-element-checkbox.checked	{

		background-color:	#ccecf8;

		border-color:	#55c1e7;

}

Refresh	the	page	in	the	browser,	and	you’ll	see	our	empty	checkboxes	appear.	Click
on	the	checkbox	or	the	text	next	to	it,	and	you’ll	see	that	the	box	turns	blue	with	a
blue	border,	as	shown	in	the	following	screenshot:

At	least	it’s	an	indicator	that	a	box	has	been	clicked,	but	our	site	visitors	will	no
doubt	be	accustomed	to	seeing	a	tick	mark	appear	in	the	checkboxes.

15.	 We’ll	use	a	well-known	icon	font,	Font	Awesome,	to	create	the	tick	marks	in	our
checkboxes.	Head	over	to	http://fortawesome.github.io/Font-Awesome/	and	click	on
the	Download	button	to	grab	a	ZIP	file.

Unzip	the	file.	Copy	the	fonts	folder	to	your	own	project	file,	where	it	will	sit
alongside	your	styles	and	scripts	folders.	Then,	open	the	css	folder	and	copy
font-awesome.css	to	your	own	styles	folder.	Now,	your	project	files	should	look
like	those	shown	in	the	following	screenshot:

16.	 In	the	head	section	of	the	HTML	document,	add	the	Font	Awesome	style	sheet,
before	your	own	styles.css	file:

<head>

		<title>Chapter	12:	jQuery	for	Designers</title>

		<link	rel="stylesheet"	href="styles/font-awesome.css">

http://fortawesome.github.io/Font-Awesome/

		<link	rel="stylesheet"	href="styles/styles.css">

</head>

Now,	the	Font	Awesome	icon	font	is	all	loaded	up	on	our	page	and	ready	to	use.

17.	 Now,	head	back	into	styles.css	and	we’ll	add	a	bit	of	code	to	show	tick	marks	in
the	checkboxes,	as	follows:

.trans-element-checkbox.checked:before	{

		content:	'\f00c';

		font-family:	'FontAwesome';

		height:	1em;

		left:	50%;

		margin:	-0.7em	0	0	-0.5em;

		position:	absolute;

		top:	50%;

		width:	1em;

}

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	clicking	on	the
checkboxes	turns	them	blue	and	shows	a	tick	mark,	as	shown	in	the	following
screenshot:

Perfect!	Just	what	our	site	visitors	will	expect.	The	good	news	is	that	as	we’re	using
CSS	and	an	icon	font	to	create	our	checkboxes,	we	can	make	them	any	size,	and
they’ll	appear	on	the	page	crisp	and	clear,	even	on	retina	displays.

18.	 Now,	let’s	tackle	those	radio	buttons.	They	function	and	are	styled	very	similarly	to
the	checkboxes.	First,	in	the	scripts.js	file,	add	the	following	bit	of	code	inside	the
document	ready	statement	to	replace	the	radio	buttons	with	spans	that	we	can	style:

$(':radio').transformRadio({

		base:	'class',

		trigger:	'parent'

});

This	is	very	similar	to	the	code	we	used	for	checkboxes.

19.	 Next,	let’s	add	some	styles	for	the	radio	buttons.	In	styles.css,	add	the	following
lines	of	code:

.trans-element-radio	{

		border:	1px	solid	#ccd1d9;

		border-radius:	50%;

		display:	inline-block;

		height:	1em;

		margin:	0	0.5em	0	0;

		position:	relative;

		vertical-align:	text-bottom;

		width:	1em;

}

.trans-element-radio.checked	{

		border-color:	#55c1e7;

}

.trans-element-radio.checked:before	{

		color:	#55c1e7;

		content:	'\f111';

		font-family:	'FontAwesome';

		font-size:	0.8em;

		height:	1em;

		left:	50%;

		line-height:	1;

		margin:	-0.45em	0	0	-0.5em;

		position:	absolute;

		text-align:	center;

		top:	50%;

		width:	1em;

}

Once	again,	there	are	a	lot	of	similarities	between	this	CSS	code	and	the	CSS	we
used	for	checkboxes.	We	used	a	50	percent	border	radius	for	the	radio	buttons	as	they
are	usually	circular	rather	than	squared.	We	also	used	a	different	icon	from	Font
Awesome	for	the	checked	state	of	the	radio	buttons.	Refresh	the	page	in	the	browser,
and	you’ll	see	that	the	radio	buttons	behave	as	expected	when	we	click	on	them,	as
shown	in	the	following	screenshot:

Just	like	with	the	checkboxes,	we	can	easily	resize	the	radio	buttons	to	any	size	we
might	like.	We	are	also	free	to	experiment	with	border	colors,	sizes	or	colors,
background	colors	or	gradients,	box	shadows,	and	so	on	to	get	just	the	appearance	we
need	for	our	design,	and	the	design	will	appear	consistently	across	different	browsers.

20.	 Now,	the	only	thing	left	to	style	is	the	text	area	and	the	reset	button	that	weren’t
styled	earlier.	Inside	styles.css,	add	the	following	lines	to	style	these	elements:

textarea	{

		border:	1px	solid	#ccd1d9;

		border-radius:	5px;

		color:	#656d78;

		font-family:	inherit;

		font-size:	inherit;

		padding:	0.333em;

		transition:	border	300ms;

}

textarea:focus	{

		border-color:	#656d78;

		outline:	none;

}

input[type='reset']	{

		background:	#ccd1d9;

		border:	0	none;

		border-radius:	5px;

		color:	white;

		cursor:	pointer;

		font-family:	inherit;

		font-size:	inherit;

		padding:	0.333em	1em;

		transition:	background	300ms;

}

input[type='reset']:hover	{

		background:	#a5aebc;

}

Now,	if	you	refresh	the	page	in	the	browser,	you’ll	see	that	all	of	our	form	elements
are	styled	consistently	and	appear	the	same	across	browsers,	as	shown	in	the
following	screenshot.	Great	work!

Have	a	go	hero	–	a	fully	custom	form
Combine	what	you’ve	learned	about	form	validation	with	the	Validation	plugin	and	what
you’ve	learned	about	customizing	form	elements	with	the	Fancyform	plugin	to	create	a
new	form.	Design	a	custom	style	for	all	elements	in	the	form	(be	sure	to	use	some	of	the
unstyleable	form	elements)	and	also	make	custom	validation	rules	for	the	fields	in	the
form.

Summary
Well,	this	wraps	up	the	chapter	on	forms.	We	learned	how	to	properly	use	the	new
HTML5	form	elements	to	create	a	form	that	functions	perfectly	and	is	accessible	to	boot.
We	learned	how	to	focus	the	first	field	in	the	form,	validate	our	site	visitor’s	form	input,
and	style	those	stubborn	and	notoriously	unstyleable	form	elements.	Now,	you’ve	got	an
arsenal	of	tools	on	your	side	to	create	gorgeous-looking	forms	that	enhance	your	site
visitors’	experience	on	your	site.	And	the	best	of	all,	they	all	degrade	gracefully	for	users
with	JavaScript	disabled	as	we	approached	our	forms	with	the	progressive	enhancement
mindset—by	first	building	a	working	form,	and	then	layering	in	enhancements	for	site
visitors	whose	browsers	support	them.

I	know	that	JavaScript	can	be	a	scary	subject	for	designers.	Kudos	to	you	for	sticking	with
me	to	the	end	of	the	book!	I	hope	that	you	now	have	a	basic	understanding	of	jQuery	and
feel	sure	that	you’ll	be	able	to	tackle	your	next	JavaScript	challenge	with	confidence.	You
know	how	to	put	the	jQuery	library	to	good	use	to	enhance	your	sites.	You	know	how	to
find	good	plugins	to	make	coding	interactions	quick	and	easy.	You	know	how	CSS	and
JavaScript	can	work	together	to	enhance	the	site	visitor’s	experience	on	your	site.	You	also
know	that	there	is	no	shortage	of	online	tutorials,	resources,	help	forums,	articles,	and
discussions	to	help	you	along	if	you	get	stuck.

For	its	part,	jQuery	gets	better	with	every	release—sleeker,	faster,	and	more	capable.	The
jQuery	team	is	careful	to	keep	the	documentation	updated,	so	you’ll	always	be	able	to
figure	out	just	how	to	use	each	method.	The	jQuery	team	is	smart	and	quick,	and	new
jQuery	updates	are	being	announced	on	a	regular	schedule.	All	of	this	points	to	a	lively
and	useful	library	that	will	only	continue	to	grow	in	popularity	across	the	Web.	It’s	a
favorite	of	many	coders,	from	experienced	hackers	to	beginners	like	you.

I	hope	that	you’ve	enjoyed	this	book	and	that	it’s	given	you	many	new	ideas	to	design	and
build	interactive	elements	for	your	sites.	Be	sure	to	stay	connected	to	the	jQuery
community—it	will	be	your	best	resource	moving	forward	while	further	improving	and
growing	your	JavaScript	skills.

Appendix	A.	Pop	Quiz	Answers

Chapter	1,	Designer,	Meet	jQuery

Pop	quiz	–	setting	up	a	new	project
Q1 1

Chapter	2,	Enhancing	Links

Pop	quiz	–	working	with	events
Q1 5

Q2 2

Chapter	4,	Building	an	Interactive
Navigation	Menu

Pop	quiz	–	understanding	the	cascade	in	CSS
Q1 4

Chapter	5,	Showing	Content	in
Lightboxes

Pop	quiz	–	loading	content	into	Colorbox
Q1 1

Chapter	6,	Creating	Slideshows	and
Sliders

Pop	quiz	–	working	with	jQuery	chaining
Q1 3

Chapter	7,	Working	with	Responsive
Designs

Pop	quiz	–	choosing	breakpoints	for	responsive
design
Q1 3

Chapter	8,	Getting	the	Most	from	Images

Pop	quiz	–	building	accessible	pages
Q1 5

Chapter	9,	Improving	Typography

Pop	quiz	–	sizing	text	in	responsive	designs
Q1 3

Chapter	10,	Displaying	Data	Beautifully

Pop	quiz	–	building	correct	tables
Q1 3

Chapter	11,	Reacting	to	Scrolling

Pop	quiz	–	using	Scrollorama	in	responsive	design
Q1 3

Chapter	12,	Improving	Forms

Pop	quiz	–	working	with	HTML5	form	elements
Q1 1

Index
A

accessHide	class	/	Time	for	action	–	creating	a	pie	chart
action	attribute	/	Time	for	action	–	setting	up	an	HTML5	web	form
addClass	method	/	Time	for	action	–	adding	some	final	touches
AJAX	/	Video	player
alt	option	/	Time	for	action	–	customizing	PowerTip
amp	class	/	Time	for	action	–	creating	a	bold	text	block	with	SlabText
animations

horizontal	animation,	creating	/	Creating	other	animations,	What	just	happened?
appendTo()	method	/	Time	for	action	–	creating	a	simple	crossfade	slideshow,	Time
for	action	–	creating	a	pie	chart
arctext()	method	/	Time	for	action	–	setting	text	on	a	curve	with	the	ArcText	plugin
ArcText	plugin

text,	setting	on	curve	with	/	Time	for	action	–	setting	text	on	a	curve	with	the
ArcText	plugin
URL	/	Time	for	action	–	setting	text	on	a	curve	with	the	ArcText	plugin

argument	/	Objects

B
background-size	property	/	Using	fullscreen	backgrounds

URL,	for	information	/	Time	for	action	–	setting	up	the	HTML	file
barMargin	option	/	Time	for	action	–	showing	data	in	graphs	and	charts
Basic	Slider	plugin

downloading,	URL	/	Using	the	Basic	Slider	plugin
about	/	Using	the	Basic	Slider	plugin
used,	for	creating	slider	/	Time	for	action	–	building	a	Basic	Slider,	What	just
happened?

behavior,	Colorbox
customizing	/	Customizing	Colorbox’s	behavior

bold	text	block
creating,	with	SlabText	/	Creating	bold	text	blocks,	Time	for	action	–	creating	a
bold	text	block	with	SlabText

branches	/	Time	for	action	–	downloading	and	attaching	jQuery

C
Caption2	option,	Cycle2	plugin	/	Time	for	action	–	building	a	slideshow	with	Cycle2
carousel

creating,	with	Cycle2	plugin	/	Time	for	action	–	building	a	Cycle2	carousel
combining,	with	Cycle2	slideshow	/	Combining	a	carousel	with	a	slideshow
connecting,	with	slider	/	Time	for	action	–	connecting	the	carousel	and	the	slider

CDN
about	/	Another	option	for	using	jQuery

chaining	/	Time	for	action	–	showing	custom	content	in	tooltips
charts

creating,	from	HTML	tables	/	Time	for	action	–	showing	data	in	graphs	and
charts,	What	just	happened?
height,	setting	/	Time	for	action	–	calculating	the	ideal	size	for	charts	and	graphs
width,	setting	/	Time	for	action	–	calculating	the	ideal	size	for	charts	and	graphs

checkbox
adding	/	Time	for	action	–	improving	form	appearance

class	attribute	/	Time	for	action	–	validating	form	values	on	the	fly
cloudy	weather	forecast

parallax	effect,	adding	to	/	Time	for	action	–	creating	a	parallax	effect,	What	just
happened?

Colorbox
URL	/	Time	for	action	–	setting	up	a	simple	photo	gallery
behavior,	customizing	/	Customizing	Colorbox’s	behavior
custom	transition,	creating	/	Time	for	action	–	using	a	custom	transition
fixed	size,	setting	for	/	Time	for	action	–	setting	a	fixed	size

colorbox()	method	/	Time	for	action	–	setting	up	a	simple	photo	gallery
Colorbox	plugin

used,	for	creating	simple	photo	gallery	/	Time	for	action	–	setting	up	a	simple
photo	gallery

columnWidth	option	/	Time	for	action	–	creating	a	masonry	layout,	Time	for	action	–
creating	a	tiled	layout	with	different	width	items
content	/	Content
creditcard	class	/	Time	for	action	–	validating	form	values	on	the	fly
crossfade	slideshow

about	/	A	simple	crossfade	slideshow
creating,	from	scratch	/	Time	for	action	–	creating	a	simple	crossfade	slideshow,
What	just	happened?

curve
ArcText	plugin	used,	for	setting	text	on	/	Time	for	action	–	setting	text	on	a
curve	with	the	ArcText	plugin

custom	Colorbox
creating	/	Have	a	go	hero	–	create	a	custom	Colorbox

custom	content

loading,	in	tooltips	/	Time	for	action	–	showing	custom	content	in	tooltips
custom	tooltips

about	/	Simple	custom	tooltips
creating	/	Time	for	action	–	simple	custom	tooltips,	What	just	happened?
used,	for	navigation	bar	enhancing	/	Time	for	action	–	building	a	fancy
navigation	bar,	What	just	happened?
content,	loading	in	/	Showing	other	content	in	tooltips,	Time	for	action	–
showing	custom	content	in	tooltips

Cycle2	carousel	controller
creating	/	Time	for	action	–	creating	the	carousel	controller

Cycle2	plugin
about	/	Creating	a	Cycle2	slideshow
used,	for	building	slideshow	/	Time	for	action	–	building	a	slideshow	with
Cycle2
URL	/	Time	for	action	–	building	a	slideshow	with	Cycle2,	Time	for	action	–
building	a	Cycle2	carousel
download,	URL	/	Time	for	action	–	building	a	slideshow	with	Cycle2
used,	for	building	carousel	/	The	Cycle2	carousel,	Time	for	action	–	building	a
Cycle2	carousel
documentation,	URL	/	Time	for	action	–	building	a	Cycle2	carousel

Cycle2	slideshow
building,	points	/	Planning	a	slideshow	or	slider
building,	with	Cycle2	plugin	/	Time	for	action	–	building	a	slideshow	with
Cycle2
customizing	/	Time	for	action	–	building	a	slideshow	with	Cycle2
carousel,	combining	with	/	Combining	a	carousel	with	a	slideshow,	Setting	up
the	carousel

D
data	grid

about	/	A	basic	data	grid
creating	/	Time	for	action	–	creating	a	basic	data	grid
customizing	/	Time	for	action	–	customizing	the	data	grid

DataTables	plugin
URL	/	Time	for	action	–	creating	a	basic	data	grid
about	/	Time	for	action	–	customizing	the	data	grid

DesktopServer
about	/	Video	player
URL,	for	downloading	/	Video	player

E
eat	method	/	Objects
end()	method	/	Time	for	action	–	creating	a	simple	crossfade	slideshow
event	/	Time	for	action	–	creating	simple	tabs
event	handler	/	Time	for	action	–	creating	simple	tabs

F
*focus	pseudoclass

styling	/	Styling	the	:focus	pseudoclass
Superfish	menus,	customizing	/	Time	for	action	–	customizing	Superfish	menus

-file	selector
about	/	Time	for	action	–	adding	Fancyform	to	style	the	unstyleable

<figure>	element
using	/	Time	for	action	–	creating	a	masonry	layout

fadeIn()	method	/	Time	for	action	–	creating	a	simple	crossfade	slideshow
fadeOut()	method	/	Time	for	action	–	creating	a	simple	crossfade	slideshow
fancy	effects

creating,	with	Lettering.js	/	Have	a	go	hero	–	creating	fancy	effects	with
Lettering.js

Fancyform	plugin
using	/	Time	for	action	–	adding	Fancyform	to	style	the	unstyleable
URL	/	Time	for	action	–	adding	Fancyform	to	style	the	unstyleable

fancy	login	form
creating,	in	lightbox	/	Time	for	action	–	creating	a	fancy	login	form

FAQ	page
HTML	file,	setting	up	/	Time	for	action	–	setting	up	the	HTML	file,	What	just
happened?
HTML	document,	moving	around	/	Time	for	action	–	moving	around	an	HTML
document
new	features,	adding	/	Sprucing	up	our	FAQ	page,	Time	for	action	–	making	it
fancy
finishing	touches,	adding	/	Time	for	action	–	adding	some	final	touches,	What
just	happened?

fieldset
about	/	Time	for	action	–	setting	up	an	HTML5	web	form

fieldset	tag
about	/	Time	for	action	–	setting	up	an	HTML5	web	form

file	input
adding	/	Time	for	action	–	improving	form	appearance

filter	method	/	Time	for	action	–	creating	simple	tabs
first	field

selecting,	in	form	/	Setting	focus,	Time	for	action	–	setting	focus	to	the	first	field
FitText

URL	/	Time	for	action	–	sizing	headlines	to	the	screen	width
fitText()	method	/	Time	for	action	–	sizing	headlines	to	the	screen	width
fitText	option	/	Time	for	action	–	setting	text	on	a	curve	with	the	ArcText	plugin
FitVids

used,	for	fitting	videos	in	responsive	designs	/	Using	FitVids	for	responsive
videos,	Time	for	action	–	resizing	videos,	What	just	happened?

URL	/	Time	for	action	–	resizing	videos
fitVids()	method	/	What	just	happened?
fixed	size

setting,	for	Colorbox	/	Time	for	action	–	setting	a	fixed	size
focus()	method	/	Time	for	action	–	setting	focus	to	the	first	field
Font	Awesome

URL	/	Time	for	action	–	adding	Fancyform	to	style	the	unstyleable
for	attribute	/	Time	for	action	–	setting	up	an	HTML5	web	form,	Time	for	action	–
validating	form	values	on	the	fly
form

first	field,	selecting	/	Setting	focus,	Time	for	action	–	setting	focus	to	the	first
field
user	entry,	validating	/	Validating	site	visitor	entry,	Time	for	action	–	validating
form	values	on	the	fly,	What	just	happened?

form	appearance
improving	/	Improving	the	appearance,	Time	for	action	–	improving	form
appearance,	What	just	happened?
Fancyform	plugin,	using	/	Styling	the	unstyleable,	Time	for	action	–	adding
Fancyform	to	style	the	unstyleable

form	elements
about	/	Improving	the	appearance

fullscreen	background	image
creating	/	Using	fullscreen	backgrounds,	Time	for	action	–	creating	a	fullscreen
background	image
challenges	/	Using	fullscreen	backgrounds

fullscreen	slideshow
creating	/	Creating	a	fullscreen	slideshow,	Time	for	action	–	creating	a
fullscreen	slideshow

function,	JavaScript	/	Functions

G
GitHub

URL	/	Time	for	action	–	simple	custom	tooltips
graceful	degradation	/	Progressive	enhancement	and	graceful	degradation
graphs

creating,	from	HTML	tables	/	Time	for	action	–	showing	data	in	graphs	and
charts,	What	just	happened?
width,	setting	/	Time	for	action	–	calculating	the	ideal	size	for	charts	and	graphs
height,	setting	/	Time	for	action	–	calculating	the	ideal	size	for	charts	and	graphs

H
*hover	pseudoclass	/	:hover	and	.sfHover
<header>	element	/	Time	for	action	–	creating	a	bold	text	block	with	SlabText
hamburger

about	/	Responsive	menus
headlines

sizing,	to	screen	width	/	Sizing	headlines	perfectly,	Time	for	action	–	sizing
headlines	to	the	screen	width,	What	just	happened?

horizontal	animation
creating,	in	windy	weather	forecast	/	Time	for	action	–	creating	a	horizontal
animation,	What	just	happened?

horizontal	drop-down	menu
about	/	The	horizontal	drop-down	menu
creating	/	Time	for	action	–	creating	a	horizontal	drop-down	menu

hoverIntent	plugin
about	/	The	hoverIntent	plugin

HTML
setting	up,	for	Scrollorama	/	Time	for	action	–	setting	up	HTML	for
Scrollorama,	What	just	happened?

HTML5	specs
URL	/	What	just	happened?

HTML5	web	form
about	/	An	HTML5	web	form
setting	up	/	Time	for	action	–	setting	up	an	HTML5	web	form,	What	just
happened?
pop	quiz	/	Pop	quiz	–	working	with	HTML5	form	elements

HTML	document
setting	up,	for	adding	scrolling	effect	/	Setting	up	the	document,	Time	for	action
–	setting	up	the	HTML	file,	What	just	happened?

HTML	file,	FAQ	page
setting	up	/	Time	for	action	–	setting	up	the	HTML	file

HTML	tables
graphs,	creating	from	/	Time	for	action	–	showing	data	in	graphs	and	charts
charts,	creating	from	/	Time	for	action	–	showing	data	in	graphs	and	charts

I
<input>	tag	/	Time	for	action	–	setting	up	an	HTML5	web	form
id	attribute	/	Time	for	action	–	setting	up	an	HTML5	web	form
ImageOptim

URL	/	Using	fullscreen	backgrounds
image	option

about	/	Time	for	action	–	adding	Fancyform	to	style	the	unstyleable
images

transition,	modifying	between	/	Time	for	action	–	using	a	custom	transition
lazy	loading	images	/	Lazy	loading	images
zoomable	images,	creating	/	Creating	zoomable	images
fullscreen	backgrounds,	using	/	Using	fullscreen	backgrounds

initialHeight	setting	/	What	just	happened?
initialWidth	setting	/	What	just	happened?
innerHeight	setting	/	What	just	happened?
innerWidth	setting	/	What	just	happened?
Internet	Explorer	(IE)	/	Time	for	action	–	downloading	and	attaching	jQuery
itemSelector	option	/	Time	for	action	–	creating	a	masonry	layout

J
JavaScript

basics	/	JavaScript	basics
about	/	Designer,	Meet	JavaScript
variables	/	Variables
objects	/	Objects
function	/	Functions
moving,	from	one	element	to	other	/	Time	for	action	–	moving	around	an	HTML
document

JavaScript	basics
progressive	enhancement	/	Progressive	enhancement	and	graceful	degradation
graceful	degradation	/	Progressive	enhancement	and	graceful	degradation
web	pages,	content	/	Content
web	pages,	presentation	layer	/	Presentation
web	pages,	behavior	/	Behavior

JPEGmini
URL	/	Using	fullscreen	backgrounds

jQuery
about	/	What	is	jQuery?
features	/	Why	is	jQuery	awesome	for	designers?
downloading	/	Time	for	action	–	downloading	and	attaching	jQuery
URL	/	Time	for	action	–	downloading	and	attaching	jQuery,	Another	option	for
using	jQuery
using,	option	/	Another	option	for	using	jQuery
plugin	/	Choosing	a	plugin

jQuery,	features
CSS	selectors	/	It	uses	CSS	selectors	you	already	know
HTML	markup	/	It	uses	HTML	markup	you	already	know
effects	/	Impressive	effects	in	just	a	few	lines	of	code
plugin	library	/	Huge	plugin	library	available
community	support	/	Great	community	support

jQuery	function	/	What	just	happened?
jQuery	plugins

URL	/	Designer,	meet	plugins
jQuery	script

starting	with	/	Time	for	action	–	getting	ready	for	jQuery,	What	just	happened?
jQuery	UI	/	A	customized	data	grid
jQuery	Visualize	plugin

on	GitHub,	URL	/	Time	for	action	–	showing	data	in	graphs	and	charts

L
<label>	tag	/	Time	for	action	–	setting	up	an	HTML5	web	form,	Time	for	action	–
validating	form	values	on	the	fly
lazy	loading	images

about	/	Lazy	loading	images
page	of	images,	setting	up	/	Time	for	action	–	lazy	loading	images

legend	tag
about	/	Time	for	action	–	setting	up	an	HTML5	web	form

lettering()	method	/	Time	for	action	–	using	Lettering.js	to	style	letters
Lettering.js

used,	to	style	letters	/	Styling	individual	letters,	Time	for	action	–	using
Lettering.js	to	style	letters,	What	just	happened?
URL	/	Time	for	action	–	using	Lettering.js	to	style	letters
fancy	effects,	creating	with	/	Have	a	go	hero	–	creating	fancy	effects	with
Lettering.js

letters
styling,	Lettering.js	used	/	Time	for	action	–	using	Lettering.js	to	style	letters,
What	just	happened?

lightbox
fancy	login	form,	creating	in	/	Time	for	action	–	creating	a	fancy	login	form,
What	just	happened?
video,	setting	up	in	/	Time	for	action	–	showing	a	video	in	a	lightbox,	What	just
happened?

lightbox	image	gallery
turning,	into	slideshow	/	Time	for	action	–	creating	a	slideshow,	What	just
happened?

M
masonry()	method	/	Time	for	action	–	creating	a	masonry	layout
Masonry	library

used,	for	creating	tiled	layouts	/	Time	for	action	–	creating	a	masonry	layout,
What	just	happened?
URL	/	Time	for	action	–	creating	a	masonry	layout

max	attribute	/	Time	for	action	–	validating	form	values	on	the	fly
maxHeight	setting	/	What	just	happened?
maxWidth	setting	/	What	just	happened?
MeanMenu	plugin,	GitHub

used,	for	making	menus	responsive	/	Time	for	action	–	making	our	menu
responsive,	What	just	happened?
URL	/	Time	for	action	–	making	our	menu	responsive

menus,	responsive	design
creating	/	Responsive	menus,	Time	for	action	–	making	our	menu	responsive,
What	just	happened?

modular	scale
about	/	Sizing	headlines	perfectly
URL	/	Sizing	headlines	perfectly

N
name	attribute	/	Time	for	action	–	setting	up	an	HTML5	web	form
navigation

adding	/	Adding	navigation
adding,	to	page	sections	/	Time	for	action	–	adding	navigation	to	sections	of	the
page,	What	just	happened?
adding,	to	weather	forecast	/	Time	for	action	–	adding	navigation	to	sections	of
the	page,	What	just	happened?

navigation	bar
enhancing,	with	custom	tooltips	/	Enhancing	navigation	with	tooltips,	Time	for
action	–	building	a	fancy	navigation	bar,	What	just	happened?

navigation	menu
customizing	/	Customizing	the	navigation	menu
*hover	pseudoclass,	using	/	:hover	and	.sfHover
.sfHover	class,	using	/	:hover	and	.sfHover
inherited	styles,	cascading	/	Cascading	inherited	styles

next()	method	/	Time	for	action	–	creating	a	simple	crossfade	slideshow

O
objects,	JavaScript	/	Objects
one-page	web	gallery

about	/	A	one-page	web	gallery
creating	/	Time	for	action	–	creating	a	one-page	web	gallery,	What	just
happened?

onOpen	tag	/	Time	for	action	–	creating	a	fancy	login	form

P
page	sections

navigation,	adding	to	/	Time	for	action	–	adding	navigation	to	sections	of	the
page,	What	just	happened?

paragraph
adding	/	Time	for	action	–	adding	a	new	paragraph,	Have	a	go	hero	–	adding
more	content

parallax	effect
adding	/	Adding	a	parallax	effect
adding,	to	cloudy	weather	forecast	/	Time	for	action	–	creating	a	parallax	effect,
What	just	happened?

parameter	/	Functions
pie	chart

creating	/	Time	for	action	–	creating	a	pie	chart
placeholder	attribute	/	Time	for	action	–	setting	up	an	HTML5	web	form
plugin

about	/	Designer,	meet	plugins
choosing	/	Choosing	a	plugin
choosing,	important	points	/	Choosing	a	plugin

powerTip	method	/	What	just	happened?
PowerTip	plugin

about	/	Customizing	PowerTip’s	appearance
customizing	/	Time	for	action	–	customizing	PowerTip

presentation	layer	/	Presentation
progressive	enhancement	/	Progressive	enhancement	and	graceful	degradation
property	/	Objects
pseudoclass	selectors	/	Time	for	action	–	creating	simple	tabs

R
radio	buttons

adding	/	Time	for	action	–	improving	form	appearance
ready()	method	/	Time	for	action	–	creating	a	simple	crossfade	slideshow
removeClass	method	/	Time	for	action	–	adding	some	final	touches
required	attribute	/	Time	for	action	–	validating	form	values	on	the	fly
responsive	design

FitVids,	used	for	fitting	in	videos	/	Using	FitVids	for	responsive	videos,	Time
for	action	–	resizing	videos,	What	just	happened?

RIOT
URL	/	Using	fullscreen	backgrounds

rotate	option	/	Time	for	action	–	setting	text	on	a	curve	with	the	ArcText	plugin

S
.sfHover	class	/	:hover	and	.sfHover
<script>	tag	/	Time	for	action	–	creating	a	bold	text	block	with	SlabText
	tag	/	Time	for	action	–	creating	a	bold	text	block	with	SlabText
screen	width

headlines,	sizing	to	/	Sizing	headlines	perfectly,	Time	for	action	–	sizing
headlines	to	the	screen	width,	What	just	happened?

scrolling	effect
HTML	documents,	setting	up	for	/	Setting	up	the	document,	Time	for	action	–
setting	up	the	HTML	file,	What	just	happened?

Scrollorama
HTML,	setting	up	for	/	Time	for	action	–	setting	up	HTML	for	Scrollorama,
What	just	happened?

ServerPress
about	/	Video	player

setInterval()	method	/	Time	for	action	–	creating	a	simple	crossfade	slideshow
settings,	Colorbox

innerWidth	/	What	just	happened?
innerHeight	/	What	just	happened?
initialWidth	/	What	just	happened?
initialHeight	/	What	just	happened?
maxHeight	/	What	just	happened?
maxWidth	/	What	just	happened?

simple	photo	gallery
about	/	A	simple	photo	gallery
creating,	with	Colorbox	plugin	/	Time	for	action	–	setting	up	a	simple	photo
gallery

SlabText
bold	text	block,	creating	with	/	Creating	bold	text	blocks,	Time	for	action	–
creating	a	bold	text	block	with	SlabText
URL	/	Time	for	action	–	creating	a	bold	text	block	with	SlabText

slabText()	method	/	What	just	happened?
slider

building,	points	/	Planning	a	slideshow	or	slider
creating,	with	Basic	Slider	plugin	/	Time	for	action	–	building	a	Basic	Slider,
What	just	happened?
connecting,	with	carousel	/	Time	for	action	–	connecting	the	carousel	and	the
slider

slideshow
lightbox	image	gallery,	turning	into	/	Time	for	action	–	creating	a	slideshow,
What	just	happened?,	Time	for	action	–	creating	a	fancy	login	form,	What	just
happened?
building,	points	/	Planning	a	slideshow	or	slider

slideshow	component
setting	up	/	Time	for	action	–	adding	the	slideshow

slideshow	function	/	Time	for	action	–	creating	a	simple	crossfade	slideshow
sliding	animation

incorporating	/	Time	for	action	–	incorporating	custom	animations
string	/	Variables
Superfish	menu

customizing	/	Have	a	go	hero	–	further	customizing	the	Superfish	menu
Superfish	menus

customizing	/	Time	for	action	–	customizing	Superfish	menus
Superfish	plugin

used,	for	enhancing	horizontal	drop-down	menu	/	Time	for	action	–	creating	a
horizontal	drop-down	menu
URL	/	Time	for	action	–	creating	a	horizontal	drop-down	menu

T
tabs

about	/	Simple	tabs
creating	/	Time	for	action	–	creating	simple	tabs,	What	just	happened?

Tabs	echo	/	Simple	tabs
ternary	operator	/	Time	for	action	–	calculating	the	ideal	size	for	charts	and	graphs
text

setting,	on	curve	with	ArcText	plugin	/	Time	for	action	–	setting	text	on	a	curve
with	the	ArcText	plugin

tiled	layouts
creating	/	Creating	a	tiled	layout,	Time	for	action	–	creating	a	masonry	layout,
What	just	happened?
basic	HTML	document,	creating	/	Time	for	action	–	creating	a	masonry	layout
list	items,	styling	/	Time	for	action	–	creating	a	masonry	layout
media	query,	adding	/	Time	for	action	–	creating	a	masonry	layout
three-column	layout,	creating	/	Time	for	action	–	creating	a	masonry	layout
font	size,	setting	to	full	size	/	Time	for	action	–	creating	a	masonry	layout
creating,	with	different	width	items	/	Creating	a	tiled	layout	with	items	of
different	widths,	Time	for	action	–	creating	a	tiled	layout	with	different	width
items,	What	just	happened?

title	attribute	/	Time	for	action	–	validating	form	values	on	the	fly
transition

modifying,	between	images	/	Time	for	action	–	using	a	custom	transition
traversing	the	DOM	/	Time	for	action	–	moving	around	an	HTML	document
trigger	option

about	/	Time	for	action	–	adding	Fancyform	to	style	the	unstyleable
type	attribute	/	Time	for	action	–	setting	up	an	HTML5	web	form

U
unveil()	method	/	Time	for	action	–	lazy	loading	images
Unveil	plugin

URL	/	Time	for	action	–	lazy	loading	images
user	entry

validating,	in	form	/	Validating	site	visitor	entry,	Time	for	action	–	validating
form	values	on	the	fly,	What	just	happened?

V
*visible	pseudoclass	/	Time	for	action	–	creating	simple	tabs
validate()	method	/	Time	for	action	–	validating	form	values	on	the	fly
Validation	plugin

downloading	/	Time	for	action	–	validating	form	values	on	the	fly
URL	/	Time	for	action	–	validating	form	values	on	the	fly

value	attribute	/	Time	for	action	–	setting	up	an	HTML5	web	form
variables,	JavaScript	/	Variables
Vegas	plugin

URL	/	Time	for	action	–	creating	a	fullscreen	background	image
vertical	fly-out	menu

creating	/	Time	for	action	–	creating	a	vertical	fly-out	menu,	What	just
happened?

video
displaying,	in	lightbox	/	Time	for	action	–	showing	a	video	in	a	lightbox,	What
just	happened?

video	player
about	/	Video	player

videos
fitting,	in	responsive	designs	with	FitVids	/	Using	FitVids	for	responsive	videos,
Time	for	action	–	resizing	videos,	What	just	happened?
resizing	/	Time	for	action	–	resizing	videos

Visualize	plugin
used,	for	creating	pie	chart	/	Time	for	action	–	creating	a	pie	chart

W
web	form

about	/	An	HTML5	web	form
WuFoo

URL	/	An	HTML5	web	form

Z
zoomable	images

creating	/	Creating	zoomable	images,	Time	for	action	–	creating	zoomable
images
multiple	zoomable	images,	creating	/	Time	for	action	–	creating	multiple
zoomable	images

Zoom	plugin
URL	/	Time	for	action	–	creating	zoomable	images

	jQuery for Designers Beginner's Guide Second Edition
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Time for action – heading
	What just happened?
	Pop quiz – heading
	Have a go hero – heading
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Designer, Meet jQuery
	What is jQuery?
	Why is jQuery awesome for designers?
	It uses CSS selectors you already know
	It uses HTML markup you already know
	Impressive effects in just a few lines of code
	Huge plugin library available
	Great community support
	JavaScript basics
	Progressive enhancement and graceful degradation
	Gotta keep 'em separated
	Content
	Presentation
	Behavior
	Designer, Meet JavaScript
	Variables
	Objects
	Functions
	Downloading jQuery and getting set up
	Time for action – downloading and attaching jQuery
	What just happened?
	Pop quiz – setting up a new project
	Another option for using jQuery
	Your first jQuery script
	Time for action – getting ready for jQuery
	What just happened?
	Adding a paragraph
	Time for action – adding a new paragraph
	What just happened?
	Have a go hero – adding more content
	Summary
	2. Enhancing Links
	Simple tabs
	Time for action – creating simple tabs
	What just happened?
	Pop quiz – working with events
	Designer, meet plugins
	Choosing a plugin
	Simple custom tooltips
	Time for action – simple custom tooltips
	What just happened?
	Customizing PowerTip's appearance
	Time for action – customizing PowerTip
	What just happened?
	Enhancing navigation with tooltips
	Time for action – building a fancy navigation bar
	What just happened?
	Showing other content in tooltips
	Time for action – showing custom content in tooltips
	What just happened?
	Have a go hero – create clickable tooltips for an image gallery
	Summary
	3. Making a Better FAQ Page
	Marking up the FAQ page
	Time for action – setting up the HTML file
	What just happened?
	Time for action – moving around an HTML document
	What just happened?
	Sprucing up our FAQ page
	Time for action – making it fancy
	What just happened?
	We're almost there!
	Time for action – adding some final touches
	What just happened?
	Summary
	4. Building an Interactive Navigation Menu
	The horizontal drop-down menu
	Time for action – creating a horizontal drop-down menu
	What just happened?
	The vertical fly-out menu
	Time for action – creating a vertical fly-out menu
	What just happened?
	Customizing the navigation menu
	:hover and .sfHover
	Cascading inherited styles
	Pop quiz – understanding the cascade in CSS
	Styling the :focus pseudoclass
	Time for action – customizing Superfish menus
	What just happened?
	The hoverIntent plugin
	Time for action – incorporating custom animations
	What just happened?
	Have a go hero – further customizing the Superfish menu
	Summary
	5. Showing Content in Lightboxes
	A simple photo gallery
	Time for action – setting up a simple photo gallery
	What just happened?
	Customizing Colorbox's behavior
	Transition
	Time for action – using a custom transition
	What just happened?
	Fixed size
	Time for action – setting a fixed size
	What just happened?
	Creating a slideshow
	Time for action – creating a slideshow
	What just happened?
	Fancy login
	Time for action – creating a fancy login form
	What just happened?
	Video player
	Time for action – showing a video in a lightbox
	What just happened?
	Pop quiz – loading content into Colorbox
	A one-page web gallery
	Time for action – creating a one-page web gallery
	What just happened?
	Have a go hero – create a custom Colorbox
	Summary
	6. Creating Slideshows and Sliders
	Planning a slideshow or slider
	A simple crossfade slideshow
	Time for action – creating a simple crossfade slideshow
	What just happened?
	Pop quiz – working with jQuery chaining
	Using the Basic Slider plugin
	Time for action – building a Basic Slider
	What just happened?
	Have a go hero – customize the Basic Slider
	Creating a Cycle2 slideshow
	Time for action – building a slideshow with Cycle2
	The Cycle2 carousel
	Time for action – building a Cycle2 carousel
	Combining a carousel with a slideshow
	Setting up the carousel
	Time for action – creating the carousel controller
	Adding the slideshow
	Time for action – adding the slideshow
	Connecting the carousel and the slider
	Time for action – connecting the carousel and the slider
	Summary
	7. Working with Responsive Designs
	Using FitVids for responsive videos
	Time for action – resizing videos
	What just happened?
	Pop quiz – choosing breakpoints for responsive design
	Responsive menus
	Time for action – making our menu responsive
	What just happened?
	Have a go hero – create a custom menu
	Creating a tiled layout
	Time for action – creating a masonry layout
	What just happened?
	Creating a tiled layout with items of different widths
	Time for action – creating a tiled layout with different width items
	What just happened?
	Summary
	8. Getting the Most from Images
	Lazy loading images
	Time for action – lazy loading images
	What just happened?
	Pop quiz – building accessible pages
	Creating zoomable images
	Time for action – creating zoomable images
	What just happened?
	Zooming in on multiple images
	Time for action – creating multiple zoomable images
	What just happened?
	Using fullscreen backgrounds
	Time for action – creating a fullscreen background image
	What just happened?
	Creating a fullscreen slideshow
	Time for action – creating a fullscreen slideshow
	What just happened?
	Summary
	9. Improving Typography
	Sizing headlines perfectly
	Time for action – sizing headlines to the screen width
	What just happened?
	Creating bold text blocks
	Time for action – creating a bold text block with SlabText
	What just happened?
	Pop quiz – sizing text in responsive designs
	Styling individual letters
	Time for action – using Lettering.js to style letters
	What just happened?
	Have a go hero – creating fancy effects with Lettering.js
	Setting text on a curve
	Time for action – setting text on a curve with the ArcText plugin
	What just happened?
	Summary
	10. Displaying Data Beautifully
	A basic data grid
	Time for action – creating a basic data grid
	What just happened?
	A customized data grid
	Time for action – customizing the data grid
	What just happened?
	Pop quiz – building correct tables
	Showing graphs and charts
	Time for action – showing data in graphs and charts
	What just happened?
	Creating pie charts
	Time for action – creating a pie chart
	Using charts and graphs in responsive designs
	Time for action – calculating the ideal size for charts and graphs
	What just happened?
	Summary
	11. Reacting to Scrolling
	Setting up the document
	Time for action – setting up the HTML file
	What just happened?
	Setting up HTML for scrolling animations
	Time for action – setting up HTML for Scrollorama
	What just happened?
	Adding a parallax effect
	Time for action – creating a parallax effect
	What just happened?
	Creating other animations
	Time for action – creating a horizontal animation
	What just happened?
	Have a go hero – add custom animations
	Adding navigation
	Time for action – adding navigation to sections of the page
	What just happened?
	Pop quiz – using Scrollorama in responsive design
	Summary
	12. Improving Forms
	An HTML5 web form
	Time for action – setting up an HTML5 web form
	What just happened?
	Pop quiz – working with HTML5 form elements
	Setting focus
	Time for action – setting focus to the first field
	What just happened?
	Validating site visitor entry
	Time for action – validating form values on the fly
	What just happened?
	Improving the appearance
	Time for action – improving form appearance
	What just happened?
	Styling the unstyleable
	Time for action – adding Fancyform to style the unstyleable
	Have a go hero – a fully custom form
	Summary
	A. Pop Quiz Answers
	Chapter 1, Designer, Meet jQuery
	Pop quiz – setting up a new project
	Chapter 2, Enhancing Links
	Pop quiz – working with events
	Chapter 4, Building an Interactive Navigation Menu
	Pop quiz – understanding the cascade in CSS
	Chapter 5, Showing Content in Lightboxes
	Pop quiz – loading content into Colorbox
	Chapter 6, Creating Slideshows and Sliders
	Pop quiz – working with jQuery chaining
	Chapter 7, Working with Responsive Designs
	Pop quiz – choosing breakpoints for responsive design
	Chapter 8, Getting the Most from Images
	Pop quiz – building accessible pages
	Chapter 9, Improving Typography
	Pop quiz – sizing text in responsive designs
	Chapter 10, Displaying Data Beautifully
	Pop quiz – building correct tables
	Chapter 11, Reacting to Scrolling
	Pop quiz – using Scrollorama in responsive design
	Chapter 12, Improving Forms
	Pop quiz – working with HTML5 form elements
	Index

