Learn by doing: less theory, more results

jQuery for Designers
Second Edition

Design interactive websites to improve user experience by
using the popular JavaScript library

Beginner's Guide

Natalie MacLees [open source

WHLITWING

jQuery for Designers Beginner’s Guide
Second Edition

Table of Contents

jQuery for Designers Beginner’s Guide Second Edition

Credits
About the Author

Acknowledgments

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Time for action — heading

What just happened?
Pop quiz — heading

Have a go hero — heading

Reader feedback

Customer support

Downloading the example code

Downloading the color images of this book

Errata

Piracy
Questions
1. Designer, Meet jQuery

What is jQuery?

Why is jQuery awesome for designers?

It uses CSS selectors you already know

It uses HTML markup you already know

Impressive effects in just a few lines of code

Huge plugin library available
Great community support
JavaScript basics
Progressive enhancement and graceful degradation
Gotta keep ‘em separated

Content

Presentation
Behavior

Designer, Meet JavaScript

Variables

Objects
Functions

Downloading jQuery and getting set up

Time for action — downloading and attaching jQuery
What just happened?

Pop quiz — setting up a new project
Another option for using jQuery

Your first jQuery script

Time for action — getting ready for jQuery

What just happened?

Adding a paragraph

Time for action — adding a new paragraph

What just happened?

Have a go hero — adding more content

Summary
2. Enhancing Links
Simple tabs

Time for action — creating simple tabs

What just happened?

Pop quiz — working with events

Designer, meet plugins
Choosing a plugin
Simple custom tooltips

Time for action — simple custom tooltips

What just happened?
Customizing PowerTip’s appearance
Time for action — customizing PowerTip
What just happened?
Enhancing navigation with tooltips
Time for action — building a fancy navigation bar
What just happened?
Showing other content in tooltips
Time for action — showing custom content in tooltips
What just happened?
Have a go hero — create clickable tooltips for an image gallery
Summary

3. Making a Better FAQ Page
Marking up the FAQ page

Time for action — setting up the HTML file

What just happened?

Time for action — moving around an HTML document

What just happened?

Sprucing up our FAQ page

Time for action — making it fancy

What just happened?

We’re almost there!

Time for action — adding some final touches

What just happened?

Summary

4. Building an Interactive Navigation Menu

The horizontal drop-down menu

Time for action — creating a horizontal drop-down menu

What just happened?

The vertical fly-out menu

Time for action — creating a vertical fly-out menu

What just happened?
Customizing the navigation menu
:hover and .sfHover
Cascading inherited styles
Pop quiz — understanding the cascade in CSS
Styling the :focus pseudoclass
Time for action — customizing Superfish menus
What just happened?
The hoverIntent plugin
Time for action — incorporating custom animations
What just happened?
Have a go hero — further customizing the Superfish menu
Summary

. Showing Content in Lightboxes
A simple photo gallery

Time for action — setting up a simple photo gallery
What just happened?

Customizing Colorbox’s behavior

Transition

Time for action — using a custom transition

What just happened?

Fixed size

Time for action — setting a fixed size

What just happened?

Creating a slideshow

Time for action — creating a slideshow

What just happened?

Fancy login

Time for action — creating a fancy login form
What just happened?

Video player

Time for action — showing a video in a lightbox

What just happened?
Pop quiz — loading content into Colorbox

A one-page web gallery

Time for action — creating a one-page web gallery
What just happened?

Have a go hero — create a custom Colorbox

Summary
6. Creating Slideshows and Sliders

Planning a slideshow or slider

A simple crossfade slideshow

Time for action — creating a simple crossfade slideshow
What just happened?
Pop quiz — working with jQuery chaining

Using the Basic Slider plugin

Time for action — building a Basic Slider

What just happened?

Have a go hero — customize the Basic Slider
Creating a Cycle2 slideshow

Time for action — building a slideshow with Cycle2

The Cycle2 carousel

Time for action — building a Cycle2 carousel

Combining a carousel with a slideshow

Setting up the carousel
Time for action — creating the carousel controller

Adding the slideshow

Time for action — adding the slideshow

Connecting the carousel and the slider

Time for action — connecting the carousel and the slider

Summary
7. Working with Responsive Designs

Using FitVids for responsive videos

Time for action — resizing videos
What just happened?
Pop quiz — choosing breakpoints for responsive design
Responsive menus
Time for action — making our menu responsive
What just happened?
Have a go hero — create a custom menu
Creating a tiled layout
Time for action — creating a masonry layout
What just happened?
Creating a tiled layout with items of different widths

Time for action — creating a tiled layout with different width items
What just happened?

Summary
8. Getting the Most from Images

Lazy loading images
Time for action — lazy loading images

What just happened?

Pop quiz — building accessible pages

Creating zoomable images

Time for action — creating zoomable images

What just happened?

Zooming in on multiple images

Time for action — creating multiple zoomable images

What just happened?

Using fullscreen backgrounds

Time for action — creating a fullscreen background image
What just happened?
Creating a fullscreen slideshow

Time for action — creating a fullscreen slideshow
What just happened?

Summary

9. Improving Typography

Sizing headlines perfectly

Time for action — sizing headlines to the screen width
What just happened?

Creating bold text blocks

Time for action — creating a bold text block with SlabText

What just happened?
Pop quiz — sizing text in responsive designs
Styling individual letters
Time for action — using Lettering.js to style letters
What just happened?

Have a go hero — creating fancy effects with Lettering.js

Setting text on a curve

Time for action — setting text on a curve with the ArcText plugin

What just happened?

Summary
10. Displaying Data Beautifully

A basic data grid

Time for action — creating a basic data grid

What just happened?

A customized data grid

Time for action — customizing the data grid
What just happened?

Pop quiz — building correct tables

Showing graphs and charts

Time for action — showing data in graphs and charts
What just happened?
Creating pie charts

Time for action — creating a pie chart
Using charts and graphs in responsive designs

Time for action — calculating the ideal size for charts and graphs
What just happened?

Summary

11. Reacting to Scrolling

Setting up the document

Time for action — setting up the HTML file
What just happened?
Setting up HTML for scrolling animations

Time for action — setting up HTML for Scrollorama
What just happened?
Adding a parallax effect

Time for action — creating a parallax effect

What just happened?

Creating other animations
Time for action — creating a horizontal animation

What just happened?

Have a go hero — add custom animations
Adding navigation

Time for action — adding navigation to sections of the page

What just happened?

Pop quiz — using Scrollorama in responsive design

Summary

12. Improving Forms

An HTML5 web form

Time for action — setting up an HTMLS5 web form

What just happened?
Pop quiz — working with HTML5 form elements

Setting focus

Time for action — setting focus to the first field

What just happened?
Validating site visitor entry

Time for action — validating form values on the fly

What just happened?
Improving the appearance
Time for action — improving form appearance
What just happened?
Styling the unstyleable
Time for action — adding Fancyform to style the unstyleable

Have a go hero — a fully custom form

Summary
A. Pop Quiz Answers
Chapter 1, Designer, Meet jQuery

Pop quiz — setting up a new project
Chapter 2, Enhancing Links

Pop quiz — working with events

Chapter 4, Building an Interactive Navigation Menu

Pop quiz — understanding the cascade in CSS

Chapter 5, Showing Content in Lightboxes

Pop quiz — loading content into Colorbox

Chapter 6, Creating Slideshows and Sliders

Pop quiz — working with jQuery chaining

Chapter 7, Working with Responsive Designs

Pop quiz — choosing breakpoints for responsive design

Chapter 8, Getting the Most from Images

Pop quiz — building accessible pages

Chapter 9, Improving Typography

Pop quiz — sizing text in responsive designs
Chapter 10, Displaying Data Beautifully

Pop quiz — building correct tables
Chapter 11, Reacting to Scrolling

Pop quiz — using Scrollorama in responsive design

Chapter 12, Improving Forms
Pop quiz — working with HTML5 form elements

Index

jQuery for Designers Beginner’s Guide
Second Edition

jQuery for Designers Beginner’s Guide
Second Edition

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2012
Second edition: July 2014
Production reference: 1220714
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-453-5

www.packtpub.com

Cover image by Suresh Mogre (<suresh.mogre.99@gmail.com>)

http://www.packtpub.com
mailto:suresh.mogre.99@gmail.com

Credits

Author

Natalie MacLees
Reviewers

Olivier Pons

M. Ali Qureshi

Dan Wellman
Acquisition Editor
Vinay Argekar
Content Development Editor
Neeshma Ramakrishnan
Technical Editors
Pramod Kumavat
Pooja Nair

Mukul Pawar

Copy Editors

Janbal Dharmaraj
Deepa Nambiar
Alfida Paiva

Project Coordinators
Priyanka Goel

Danuta Jones
Proofreaders

Simran Bhogal

Maria Gould
Ameesha Green
Indexers

Hemangini Bari
Mehreen Deshmukh
Rekha Nair

Tejal Soni

Priya Subramani
Graphics

Valentina D’silva
Production Coordinators
Pooja Chiplunkar

Manu Joseph

Cover Work

Pooja Chiplunkar

About the Author

Natalie MacLees is a frontend web developer and UI designer, and the founder and
principal of the interactive agency Purple Pen Productions. She founded and runs the
jQuery LA users’ group and together with Noel Saw, she heads the Southern California
WordPress user’s group, organizing WordPress meetups, help sessions, and workshops.
She was the lead organizer for WordCamp Los Angeles 2013 and 2014 and organized the
first annual Website Weekend L A. She’s also the founder of the Los Angeles chapter of
Girl Develop It, bringing affordable and accessible coding classes to the community.

She makes periodic appearances on the WPwatercooler podcast and co-hosts the WP
Unicorn Project podcast with Suzette Franck. She makes her online home at
nataliemac.com.

Her obsession with the Web began when she bought her first computer in 1996 and
promptly used it to build her first website. She spends the few moments she manages to be
offline each day watching baseball, crafting, reading, baking, belly dancing, collecting
Hello Kitty items, and avoiding avocados and olives at all costs.

http://nataliemac.com

Acknowledgments

Gracious thanks first and foremost to John Resig and the rest of the jQuery team for
creating and sharing such a useful and elegant library with the rest of us.

A big thank you to Marlene Angel, Ninno DePatrick, Ed Doolittle, Crystal Ehrlich,
Suzette Franck, Teresina Goheen, LeHang Huynh, Michelle Kempner, Mark Tapio Kines,
Chloé Nguyén, Mario Noble, Joss Rogers, Noel Saw, Kimberly Wilkinson, and Tammy
Wilson for their support, advice, and cheerleading—I couldn’t ask for better friends.

Thank you to Beebe Lee and Brittany Brooks, my Purple Pen support team.

Thank you to my sisters, Stefanie Elder and Bethany MacLees, for being properly
impressed that somebody wanted me to write a book. Thank you to my mom, Patricia
Demby, and stepfather, John Demby, for being proud of me no matter what.

Thank you to all members of our local WordPress and jQuery communities including Dre
Armeda, Lucy Beer, Andrew Behla, Glenn Bennett, Stephen Carnam, Jason Cosper, Ryan
Cowles, Joe Chellman, Gregory Dahl, Greg Douglas, Brandon Dove, Chris Ford, Gregg
Franklin, Megan Gray, Lane Halley, John Hawkins, Susie Karasic, Chris Lema, Paul
Lumsdaine, Kari Leigh Marucchi, Karim Marucchi, Karen McCamy, Andrei Mignea, Troy
Miles, Konstantin Obenland, Joseph Karr O’Connor, David Oshima, Sé Reed, Andy
Roberts, Mike Schroder, Adam Silver, Verious Smith, Jason Tucker, Nathan Tyler, Alex
Vasquez, Sarah Wefald, Steve Zehngut, Jeffery Zinn, and too many others to count or
mention.

And finally, thank you to Diane Colella Jones for believing in me, even before I did.

About the Reviewers

Olivier Pons is a developer who’s been building websites since 1997. He’s a teacher at
IngeSup (Ecole Supérieure d’Ingénierie Informatique; for more information visit
http://www.ingesup.com/ and http://www.y-nov.com), at the University of Sciences (IUT)
in Aix-en-Provence/France, and Ecole d’Ingénieurs des Mines de Gardanne, where he
teaches HTML, CSS, jQuery/jQuery Mobile, PHP, MVC fundamentals, WordPress,
Symfony, Linux basics, and advanced VIM techniques. He has already done some
technical reviews, including the books Ext JS 4 First Look, Packt Publishing and jQuery
Mobile Web Development Essentials Second Edition, Packt Publishing, among others. In
2011, he left a full-time job as a Delphi and PHP developer to concentrate on his own
company, HQF Development (http://hqf.fr). He currently runs a number of websites,
including http://www.benativo.fr, http://www.inesushi.com, http://www.papdevis.fr, and
http://olivierpons.fr, his own web development blog. He works as a consultant, teacher,
project manager, and sometimes a developer.

M. Ali Qureshi, who is a web developer based in Lahore, Pakistan, has been involved in
web development in 2001. Having worked in a number of companies in different
capacities, he is aware of how project goals are achieved efficiently. Ali founded PI Media
(http://parorrey.com) in 2002 and has developed creative, interactive, and usable web
solutions, making them a successful technology investment for clients. He has also
worked on a number of successful products and authored WordPress plugins and themes
and osCommerce and PrestaShop add-ons.

Apart from PI Media, Ali currently works as a software architect for E2ESP
(http://e2esp.com)and ConvoSpark (http://convospark.com). He regularly makes
contributions to the latest tips and trends in web design, PHP, WordPress and CMS
development, Flash ActionScript, and Facebook App Development on his blog
http://parorrey.com/blog/.

Ali has previously reviewed jQuery Mobile Web Development Essentials, Packt
Publishing. When not working, he spends his time blogging and exploring new
technologies. He is an avid sports fan and especially likes watching cricket. Pakistan and
Australia are his favorite teams.

Dan Wellman is an author and software engineer based in the south coast of the UK. By
day, he works for the Skype division at Microsoft bringing web-based audio and video
calling to the world. By night, he writes books and tutorials for many online digital media
outlets including Nettuts, Infinite Skills, and many others. He has written seven books so
far, mostly centered on jQuery and jQuery UL.

http://www.ingesup.com/
http://www.y-nov.com
http://hqf.fr
http://www.benativo.fr
http://www.inesushi.com
http://www.papdevis.fr
http://olivierpons.fr
http://parorrey.com
http://e2esp.com
http://convospark.com
http://parorrey.com/blog/

www.PacktPub.com

Support files, eBooks, discount offers, and
more

You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[lﬁ PACKT! i 1°

http://Packtl.ib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can access, read and search across Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print and bookmark content
¢ On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com

Preface

This book is intended for designers who have a basic understanding of HTML and CSS,
but want to advance their skill set by learning basic JavaScript. It’s not necessary that you
understand JavaScript well. Even if you’ve never attempted to write JavaScript before,
this book will guide you through the process of setting up basic JavaScript and
accomplishing common tasks such as collapsing content, drop-down menus, and
slideshows; all thanks to the jQuery library.

What this book covers

Chapter 1, Designer, Meet jQuery, is an introduction to the jQuery library and JavaScript.
You’ll learn about jQuery’s rise to fame, why it’s so great for designers, and how it can
help you create some fancy special effects without having to learn a lot of code. This
chapter also includes a gentle and small introduction to JavaScript, progressive
enhancement, and graceful degradation, and guides you through writing your first
JavaScript code.

Chapter 2, Enhancing Links, walks you through some basic enhancements to links. You’ll
learn how to use jQuery to turn a list of links into a tabbed interface. Then, we’ll take our
first look at jQuery plugins where you’ll learn to add custom tooltips to your links using
the jQuery PowerTip plugin.

Chapter 3, Making a Better FAQ Page, will introduce you to collapsing and showing
content, as well as creating simple animations and traversing an HTML document to move
from one element to another. In this chapter, we’ll set up a basic FAQ list, then work to
progressively enhance it to make it easier for our site visitors to use.

Chapter 4, Building an Interactive Navigation Menu, guides you through setting up fully
functioning and visually stunning drop-down and fly-out menus. We’ll walk through the
complex CSS required to get these types of menus working, use the Superfish plugin to
fill in features missing from pure CSS solutions, and then take a look at customizing the
appearance of the menus.

Chapter 5, Showing Content in Lightboxes, will walk you through showing photos and
slideshows in a lightbox using the Colorbox jQuery plugin. Once we get the basics down,
we’ll also take a look at using the Colorbox plugin to create a fancy login, play a
collection of videos, and even set up a single-page website gallery.

Chapter 6, Creating Slideshows and Sliders, walks you through setting up a simple
crossfade slideshow without a plugin. Then, we’ll take a look at the Basic Slider plugin to
create a simple slideshow with controls. Finally, we’ll take a look at the Cycle2 plugin, a
flexible and customizable option that can be used to create sliders, slideshows, and
carousels.

Chapter 7, Working with Responsive Designs, will dive deep into jQuery techniques for
responsive designs. This includes fitting videos to the viewport, turning a drop-down
menu into a responsive menu, and building a tiled layout for displaying image galleries.

Chapter 8, Getting the Most from Images, walks you through a few techniques to work
with images in a more effective way. We’ll take a look at lazy-loading images so that
images are only loaded if our site visitor scrolls to them. We’ll add an image zoom
capability and finally, we’ll take a look at creating fullscreen background images and
slideshows for our pages.

Chapter 9, Improving Typography, shows you techniques to deal with typography
effectively in responsive designs. We’ll take a look at the FitText plugin to fit headlines to

the width of the browser window, the SlabText plugin to create multiline headlines, the
Lettering.js plugin to fine-tune kerning and to apply special effects, and finally, the
ArcText plugin to set a text on a curve.

Chapter 10, Displaying Data Beautifully, takes a look at the important task of displaying
data in an easy-to-understand way for your site visitors. First of all, we’ll take a look at
turning an ordinary HTML table into an interactive data grid with the DataTables plugin.
Then, we’ll look at turning HTML tables into charts and graphs that communicate our data
clearly to our site visitors in an accessible and progressively enhanced way.

Chapter 11, Reacting to Scrolling, dives into the fun task of scrolling animations and
parallax effects. We’ll use the Scrollorama plugin to create a parallax effect, trigger
animations on scroll, and activate a navigation bar that reacts to us scrolling down the

page.

Chapter 12, Improving Forms, takes a look at how forms can be improved. This chapter
walks you through setting up an HTML form properly using some of the latest HTML5
form elements. Then, we enhance the form by placing the cursor in the first field and
validating the site visitor’s form entries. Finally, we take a look at the FancyForm jQuery
plugin, which allows us to style even the most stubborn and challenging form elements to
achieve a consistent look for our forms across browsers.

What you need for this book

You’ll need a text editor to create HTML, CSS, and JavaScript files. Some great free
options available are TextWrangler for Mac or Notepad++ for Windows. There are many
other options available, and you are free to use your favorite text editor for any of the
examples in this book. My personal favorite is Sublime Text, which is easy to work with
and has a very nice feature set. If you haven’t tried it before, I encourage you to download
an evaluation copy for free to give it a try.

You’ll also need a browser. My personal favorite is Google Chrome, which includes some
really helpful built-in debugging tools for both CSS and JavaScript. Again, you are free to
use your favorite browser for the examples in the book.

If you want to create images for your own designs, then Adobe Photoshop and Adobe
[lustrator will be helpful, though they are not strictly necessary. All images needed to set
up the examples used in this book are included in the sample code.

jQuery and jQuery plugins are being updated all the time. As new browsers are released
with new support and capabilities, and as JavaScript, HTML, and CSS are further
developed, new versions of jQuery and plugins are released to keep pace with the change.
On one hand, this is a great news—jQuery and accompanying plugins get faster and more
powerful all the time. On the other hand, it can be tough to keep up with all the changes.
All versions of the plugins referenced were current at the time of writing the book, but you
might find some differences when you work through the exercises. Plugin developers are
usually very good at documenting the changes and updates, so don’t be afraid to read
through the documentation so you can understand what’s changed and what adjustments
you might need to make.

Who this book is for

This book is for designers who know the basics of HTML and CSS, but want to extend
their knowledge by learning how to use JavaScript and jQuery.

Conventions

In this book, you will find several headings that appear frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action — heading

1. Action 1
2. Action 2
3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?

This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz — heading

These are short multiple-choice questions intended to help you test your own
understanding.

Have a go hero — heading

These are practical challenges that give you ideas for experimenting with what you have
learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: “This
returns the <body> tag wrapped in a jQuery object.”

A block of code is set as follows:

var x = b5,
var y = 2,
var z = X + vy,

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

<head>

<title>Practice Page</title>

<link rel="stylesheet" href="styles/styles.css"/>
</head>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “Just go to your browser’s
File menu and choose Save Page As... or right-click on the page and select Save As....”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You
can download this file from the following link:

https://www.packtpub.com/sites/default/files/downloads/45350S_ColoredImages.pdf

https://www.packtpub.com/sites/default/files/downloads/4535OS_ColoredImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/submit-
errata, selecting your book, clicking on the errata submission form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website, or added to any list of existing errata, under the
Errata section of that title.

http://www.packtpub.com/submit-errata

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:questions@packtpub.com

Chapter 1. Designer, Meet jQuery

You might have heard quite a lot about jQuery over the past couple of years. It has quickly
become one of the most popular code packages in use on the Web today. And you might
have wondered what all the fuss was about.

Whether you’ve tried to figure out JavaScript before and have thrown up your hands in
frustration or have been too intimidated to even give it a go, you’ll find that jQuery is a
wonderfully approachable and easy-to-understand way to get started with JavaScript.

In this chapter, we will cover the following topics:

What jQuery is and why it’s ideal for designers
Progressive enhancement and graceful degradation
JavaScript basics

Downloading jQuery

Your first jQuery script

What is jQuery?

jQuery is a JavaScript library. This means that it’s a collection of reusable JavaScript code
that accomplishes common tasks. Since web developers often find themselves solving the
same problems over and over again, it makes sense to collect useful bits of code into a
single package that can be included and used in any project. The creators of jQuery have
written code to smoothly and easily handle the most common and most tedious tasks we
want to accomplish with JavaScript, and they’ve ironed out all the little differences that
need to be worked out to get the code working in different browsers.

It’s important to remember that jQuery is JavaScript, not a language of its own. It has all
the same rules and is written the same way as JavaScript. Don’t let this frighten you away
—jQuery really does make writing JavaScript much easier.

jQuery’s official tagline is “write less, do more.” This is an excellent and accurate
description of the jQuery library—you can really accomplish amazing things in just a few
lines of code. My own unofficial tagline for jQuery is “find stuff and do stuff to it”,
because finding and manipulating different parts of an HTML document is extremely
tedious with raw JavaScript and requires lines and lines of code, while jQuery makes that
same task painless and quick. Thanks to jQuery, you can not only quickly create a drop-
down menu but you can also create one that’s animated and works smoothly in many
different browsers.

Why is jJQuery awesome for designers?

So what is it about jQuery that makes it so easy to learn, even if you have limited or no
experience with JavaScript?

It uses CSS selectors you already know

The first thing you’ll often do in a jQuery script is select the elements you’d like to work
with. For example, if you’re adding some effects to a navigation menu, you’ll start by
selecting the items in the navigation menu. The tools you use for this job are selectors—
ways to select certain elements on the page you want to work with.

jQuery borrowed selectors from CSS all the way up through CSS3, and they work even in
browsers that don’t support CSS3 selectors just yet.

Even though CSS offers a pretty robust set of selectors, jQuery adds a few more of its own
to make accessing just the elements you need easy.

If you already know how to do things with CSS, such as make all the first-level headings
blue or make all the links green and underlined, you’ll easily learn how to select the
elements you’d like to modify with jQuery.

It uses HTML markup you already know

If you want to create new elements or modify existing elements with raw JavaScript, you
better crack your knuckles and get ready to write lots and lots of code—and it won’t make
much sense either.

For example, if we wanted to append a paragraph to our page that says This page is
powered by JavaScript, we need to first create the paragraph element, then assign the
text that should be inside the paragraph to a variable as a string, and finally append the
string to the newly created paragraph as a text node. And after all this, we’d still have to
append the paragraph to the document. Phew! (Don’t worry if you didn’t understand all of
that—it was just to illustrate how much work and code it requires to do something
simple.)

With jQuery, adding a paragraph to the bottom of our page is as simple as the following
line of code:

$('body').append('<p>This page is powered by jQuery.</p>');

That’s right! You just append a bit of HTML directly to the body, and you’re all set. I bet
that without understanding JavaScript at all, you can read the line of code and grasp what
it’s doing. This code is appending a paragraph that reads This page is powered by
jQuery. to the body of the HTML document.

Impressive effects in just a few lines of code

You’ve got better things to do than sit and write lines and lines of code to add fade-in and
fade-out effects. jQuery provides you with a few basic animations and the power to create
your own custom animations right out of the box. Let’s say, we wanted to make an image
fade into the page; we will use the following code line for this:

$('img').fadeIn();

Yep, that’s it! We use one little line of code in which I select the image and then tell it to
fade in. Later in the chapter, you’ll see exactly where this line of code will go in your
HTML page.

Huge plugin library available

As I said earlier, web developers often find themselves solving the same problems over
and over again. You’re most likely not the first person who wants to build a rotating image
slideshow, an animated drop-down menu, or a news ticker.

jQuery has an impressively large library of scripts available freely—scripts to create
tooltips, slideshows, news tickers, drop-down menus, date pickers, character counters, and
on and on. You don’t need to learn how to build all these things from scratch; you just
have to learn how to harness the power of plugins. We’ll be covering some of the most
popular jQuery plugins in this book, and you’ll be able to apply what you’ve learned to
use any plugin in the jQuery plugin library.

Great community support

jQuery is an open source project, which means that it’s being collectively built by a team
of super-smart JavaScript coders and is freely available for anyone to use. The success or
failure of an open source project often depends on the community behind the project, and
jQuery has a large and active community that supports it.

This means that jQuery itself is being constantly improved and updated. And on top of
that, there are thousands of developers out there who are creating new plugins, adding
features to existing plugins, and offering support and advice to newcomers. You’ll find
new tutorials, blog posts, and podcasts on a daily basis for just about anything you want to
learn.

JavaScript basics

In this section, we’re going to cover a few basics of JavaScript that will make things go
more smoothly. We’re going to look at a little bit of code and step through how it works.
Don’t be intimidated; this will be quick and painless, and then we’ll be ready to get on
with actually doing something with jQuery.

Progressive enhancement and graceful degradation

There are a few different schools of thought when it comes to enhancing your HTML
pages with JavaScript. Let’s talk about some of the things we should consider before we
dive into the cool stuff.

Progressive enhancement and graceful degradation are essentially two sides of the same
coin. They both mean that our page with its impressive JavaScript animations and special
effects will still work for users who have less capable browsers or devices. Graceful
degradation means that we create our special effect and then make sure it fails gracefully
if JavaScript is not enabled. If we take the progressive enhancement approach, we’ll first
build out a bare bones version of our page that works for everyone, and then enhance it by
adding our JavaScript special effects. I tend to favor the progressive enhancement
approach.

Why should we care about users who don’t have JavaScript enabled? Well, some of the
Web’s biggest users and search engines have either no JavaScript capabilities or very
limited JavaScript capabilities. When search engines are crawling and indexing your
pages, they will not have access to all of the content and features that are being added to
your pages by JavaScript. This is often referred to as dynamic content, and it can’t be
reliably indexed or found by search engines if it can’t be reached with JavaScript disabled.

We’re also in an era where we can no longer count on users who access the web pages we
build with a conventional desktop or laptop computer. We’re quick to think of
smartphones and tablets as the next candidates, and while they are very popular, they still
account for a tiny fraction of Internet access. People are accessing the Web from gaming
consoles, feature phones, e-book readers, internet-enabled televisions, a huge variety of
mobile devices, and dozens of other ways. Not all of these devices are capable of
executing JavaScript, and some of them don’t even have color screens! Your number one
priority should be making sure that your content is available to anyone who asks for it, no
matter what device they happen to be using.

Gotta keep ‘em separated

To accomplish this task of making our content available to as wide an audience as
possible, we have to think of our web pages in three separate and distinct layers: content,
presentation, and behavior.

Content

Content is the meat of our web page. It’s the text or audio or video content that we’re most
interested in presenting on our page; so this is where we start.

Mark up your content with clean and simple HTML code. Use HTML elements the way
they were intended to be used. Mark up headings with heading tags, paragraphs with
paragraph tags, lists with list tags, and save tables for tabular data.

Browsers have built-in styles for these basic HTML tags—headings will be of a larger
type and will probably look bold. Lists will have bullets or numbers. It might not look
very fancy, but it’s readable and accessible to anyone.

Presentation

The presentation layer is where we start to get fancy. This is where we introduce CSS and
start applying our own styles to the content we’ve created. As we style our page, we might
find that we have to go back into our HTML code and add some new containers and
markup to make things such as multicolumn layouts possible, but we should still strive to
keep our markup as simple and as straightforward as we can.

Behavior

Once our page has all of our content properly marked up and is styled to look the way we
like, we can think about adding in some interactive behavior. This is where JavaScript and
jQuery come in. This layer includes animations, special effects, AJAX, and so on.

Designer, Meet JavaScript

JavaScript is a powerful and complex language. You can work with it for 10 years and still
have more to learn. However, don’t let that frighten you away. You don’t have to know
everything about it to be able to take advantage of what it has to offer. In fact, you just
have to get down to a few basics.

This section introduces some JavaScript basics and JavaScript syntax. Don’t be scared
away by that developer word, syntax. Syntax just means the rules for writing a language,
much like we have rules of grammar to write English.

Variables

Let’s start with something simple:
var x = 5;

This is a “sentence” in JavaScript. In English, we end a sentence with a period or maybe a
question mark or an exclamation mark. In JavaScript, we end our sentences with a
semicolon.

In this sentence, we’re creating a variable (var), x. A variable is just a container for
holding something. In this case, x holds the number 5.

We can do math with JavaScript as shown in the following code snippet:

var x = b5,
var y = 2,
var z = X + vy,

Just like algebra, our variable z now holds the value of the number 7 for us.
However, variables can also hold things other than numbers. For example:
var text = 'A short phrase';

Here, we’ve named our variable text and it’s holding some alphabetical characters for us.
This is called a string. A string is a set of alphanumeric characters.

Objects

Objects might be the hardest thing for a newcomer in JavaScript to grasp, but that’s often
because we overthink it, convinced it has to be more complicated than it actually is.

An object is just what it sounds like—a thing, anything, just as a car, a dog, and a coffee
maker are objects.

Objects have properties and methods. A property is a characteristic of an object. For
example, a dog could be tall or short, have pointy ears or floppy ears, and could be brown
or black or white. All of these are properties of a dog. A method is something an object
can do. For example, a dog can run, bark, walk, and eat.

Let’s take my dog, Magdelena von Barkington, as an example to see how we’d deal with
objects, properties, and methods in JavaScript:

var dog;

Here, I’ve created a variable dog that I’m using as a container to hold my dog, mostly
because I don’t want to have to type out her full name each time I refer to her in my code.
Now, let’s say I wanted to get my dog’s color:

var color = dog.color;

I created a container called color and I’m using it to hold my dog’s color property
—color is now equal to my dog’s color.

Now, I’ve trained my dog very well and I’d like her to roll over. The following line of
code shows how I'd tell her to roll over with JavaScript:

dog.rollover();

The rollover () method is something that my dog can do. After my dog rolls over, I
might like to reward her with a treat. The following line of code shows how my dog eats a
treat with JavaScript:

dog.eat('bacon');

Wait, what’s going on here? Let’s take it one step at a time. We have dog, which we know
is a container for my dog, Magdelena von Barkington. We have the eat method, which we
know is something that my dog can do. However, my dog can’t just eat—she has to eat
“something”. We can use some extra code inside the parentheses to say what it is that she
is eating. In JavaScript, we call the code inside the parentheses an argument. In this case,
my lucky dog is eating bacon. So in JavaScript, we’d describe this bit of code by saying
we are passing bacon to the eat () method of the dog object.

So you see, objects aren’t so difficult—they’re just things. Properties are like adjectives—
they describe traits or characteristics of an object. Methods are like verbs—they describe
actions that an object can do.

Functions

A function is a bit of reusable code that tells JavaScript to do something. For example,
have a look at the following code:

function saySomething() {
alert('Something!');
3

This function tells JavaScript to pop up an alert box that says Something!. We always start
a function with the word function and then we name our function. This is followed by a
set of parentheses and a set of curly brackets. The lines of instruction go inside the curly
brackets.

Now, my saySomething() function won’t actually do anything until it’s called, so I need
to add a line of code to call my function, as follows:

function saySomething() {
alert('Something!');

}
saySomething();

You might wonder what those parentheses are for. Do you remember how we could pass
arguments to a method by including them in parentheses? We used the following line of
code:

dog.eat('bacon');

In this case, we passed bacon to say what the dog was eating. We can do the same thing
for functions. In fact, methods actually are functions; they’re just functions that are
specialized to describe what an object can do. Let’s look at how we modify our
saySomething() function so that we can pass text to it, as follows:

function saySomething(text) {
alert(text);

iaySomething('Hello there!');

In this case, when I wrote the saySomething() function, I just left a generic container in
place. This is called a parameter. In JavaScript, we’d say the saySomething() function
takes a text parameter, as I’ve called my parameter text. I chose the name text because
it’s a short and handy descriptor of what we’re passing in. We can pass in any bit of text to
this function, so text is an appropriate name. You can name your parameter anything
you’d like, but you’ll make your code easier to read and understand if you apply some
sensible rules when you’re selecting names for your parameters. A parameter behaves very
much like a variable—it’s just a container for something.

Downloading jQuery and getting set up

We’re ready to include the magic of jQuery into a project, but first, we need to download
it and figure out how to get it attached to an HTML page. Here, we’ll walk through getting
a sample HTML file started and all the associated files and folders we’ll need to work
through a sample project. Once we’re finished, you can use these files as a template for all
the future exercises in the book.

Time for action — downloading and
attaching jQuery

Earlier, I described the three layers of an HTML document: content, presentation, and
behavior. Let’s take a look at how to set up our files in these three layers, as follows:

1. First, let’s set up a folder on your hard drive to hold all of your work as you work
through the lessons in this book. Find a good place on your hard drive and create a
folder called jQueryForDesigners.

2. Create a folder called images in the jQueryForDesigners folder to hold any images
we’ll use.

3. Next, create a folder called styles. We’ll use this folder to hold any CSS files we
create. Inside the styles folder, create an empty CSS file called styles.css.

The styles represent our presentation layer. We’ll keep all of our styles in this file to
keep them separate.

Tip
There is a standard CSS style sheet that we’ll start with for each exercise in this book,

which applies some basic colors and typography. You’ll find the CSS code that
should be included with all examples in the sample code for the book.

4. Next, create a folder called scripts to hold our JavaScript and jQuery code. Inside
the scripts folder, create an empty JavaScript file called scripts.js.

The JavaScript we write here represents our behavior layer. We’ll keep all of our
JavaScript in this folder to keep it separate from the other layers.

5. Now, inside the jQueryForDesigners folder, create a new HTML page—very basic
with the following code:

<!DOCTYPE html>
<html>
<head>
<title>Practice Page</title>
</head>
<body>

<!-- Our content will go here -->
</body>
</html>

Save this file as index.html. The HTML file is our content layer and is arguably the
most important layer, as it’s likely to be the reason site visitors are coming to our
website at all.

6. Next, we’ll attach the CSS and JavaScript files that we created to our HTML page. In
the head section, add a line of code to include the CSS file, as follows:

<head>

<title>Practice Page</title>

<link rel="stylesheet" href="styles/styles.css"/>
</head>
Then, head down to the bottom of the HTML file, just before the closing </body>
tag, and include the JavaScript file as follows:

<script src="scripts/scripts.js"></script>
</body>
</html>

As these files are just empty placeholders, attaching them to your HTML page won’t
have any effect. However, now, we have a place to write our CSS code and
JavaScript that will come handy when we’re ready to dive into an exercise.

Note

It’s perfectly fine to self-close a <1ink> element, but a <script> element always
needs a separate closing </script> tag. Without it, your JavaScript won’t work.

The following screenshot is what my folder looks like at this point:

68 0 68 [jQueryForDesigners
{[ei> e o et | [= . »
v [images

] index.html
¥ [scripts

+ scripts.js
v [svles
% styles.css

7. Now, we have to include jQuery in our page. Head over to http://jquery.com and hit
the Download jQuery button.

~ Download jQuery

v1.10.2 or v2.0.3

This will take you to the Download page where you’ll see that you’ve got quite a few
options to download jQuery these days.

http://jquery.com

Note

As of April 2013, you officially have two versions of jQuery to choose from. In
developer speak, these versions are called branches. To easily understand which
branch you should use, keep this rule in mind. The 2.x branch of jQuery no longer
has support for Internet Explorer (IE) 6, 7, or 8. If you’re working on a project that
will need to work in these older versions of IE, then you’ll need to work with the 1.x
branch of jQuery. If you don’t need to support these older versions of IE, then you
can choose to work with the 2.x branch. All the code files in this book will use the
2.x branch, since my philosophy with web development is to look forward, not back.
However, all of the code samples will work fine with either the 1.x branch or the 2.x
branch of jQuery.

Note that the jQuery team will be discontinuing support for IE6 and IE7, even in the
1.x branch, with the jQuery 1.12 release in 2014.

On the Download page, in the section for your selected branch, you’ll see several
files available for download: a compressed version and an uncompressed version, a
map file, and release notes. The only file we need to be concerned with is the
compressed, production version.

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book

elsewhere, you can visit http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

. Clicking on the link for the compressed, production version of your selected branch
of jQuery will open the production jQuery file in your browser window, and it looks
a bit scary, as shown in the following screenshot:

http://www.packtpub.com
http://www.packtpub.com/support

9.

10.

code.jquery.com/jquery- —

&« C # | code.jquery.com/jquery-2.1.1.min.js el + J—

f=! jQuery v2.1.1 | (ec) 2005, 2014 jOuery Foundation, Inc. | jguery.orgflicense =/

{function{a,b){"object"==typecf module&&"object"==Lypeof module.exports?module.exports~a.document?b(a,l0):function(a)
{if{la.document)throw new Error(”jQuery requires a window with a document”)jreturn b(aj}:b(a)}("undefined” |=typeof window?
windowsthie, function(a,b){var e=[],d=c.slice,e~c.concat,i»e,push,g=c,index0f h={},i=h.toStxing, j=h.hasOwnProperty, k=
{},1=a.document,m="2,1.1",n=functionfa,b){return new n.fn.init(a,b)},o=/"[\a\uFEFF\xAD]+ | [\s\WFEFF\xA0]+5/g,p=/"-ms~-/ ,q=/~
{I\da-z])/gi,r=function({a,b){return b.toUpperCase()};n.fn=n.prototypes=

{jguery:m, constructor:n,salecter:"" ,length: 0, toArray: function() (return d.call{this)},get:function(a) {return aull!=a?0>a?
thisfatthis.length]:thiafajid.call{thin)},pushStack:function(a){var bsn.marge(this.conatructor(),a);return
b.prevobject=this,b.context~this.context,b},each:ifunction(a,b){return n.each(this,s,b)},map:function(a){return
this.pushStack(n.map(this, function{b,c){return a.call(b,c,b)}))},8liceifunction(){return

this.pushStack(d.apply(this, arquments}))},first:function(){return this.eqg{0}},last:function(){return
this.eq(-1)},eq:function(a){var b=this.length,c=+a+(0>a?b:0) ;return this.pushStack(c>=0&&b>c?{this[c])]:[])}.end: function()
{returns this.prevObject||this.constructor(null)},push:f, sort:c.sort,aplice:c.splicea},n.extend=n. fn.extend=function(){var
a,b,c.d,e,f,g-argumentsa[0]| | {},h=1,i=arqumenta.length, j=11; for("boolean"==typoof gki(j~g,g=argumentafh]||
{},heé),"objoct"mwtypeof g||n.iaFunction(g)||({g={}}, hewwiis{g~thia, h-=)picvhjhée+)if(nulli={amarguments[h]})for(b in
ajemgib],d=alb],gl==des (jeEdEk(n,.isPlain0Object(d) | | (e=n.ishrray(d)})7{e?le~]l,f=chin.ishrray(c) et]} f=chbn.iaPlain0bject(c)?
e:{}.gibl=n.extend(j,L,d)}:rvoid Ol==di&({g[b]=d}));return g},n.extend({expando:" jQuery"+
[(m+Math.random()).replace{/\D/g,""},isReady: 10, error: function(a){throw new Error(a)},noop:function{){},isfunction:function(a)
{return"function"===n type(a)},isArray:Array.ishArray, isWindow: function{a){return nulll=agia===4 . window}, isRumeric: functionia)
{returnin.isArray(a)kita-parseFloat{a)>=0},isPlainObject:function(a)

{return"object"” |==n.type(a)| |a.nodeType| |n.isWindow(a)?!l:a.constructorkslj.call(a.constructor.prototype, "isPrototypeOf” j?11:t
0},isEmptyObjectifunction{aj{var bjfor({b in ajreturn!l;returnl0},type:function{a){return nulle=a?a+"";"object"” ==typeof
al|"function"==typeof aPh[i.callfa))!|"ocbject”:typeof a),globalBval:function{a){var b,e=eval;a=n.trim(a), a&s
[(i===a,index0f ["use atrict")?

(b=l.createElement ("seripk"),b.text=a,l head.appendChild(b).parentNode. removeChild(b)}:c(a))} camelCase: function{a){return
a.raplace(p,"ms~").replace(q,r)}, ,nodeNamea: function(a,b) {return
a.nodeName&éa.nodeName . toLowerCase |)===b.toLowerCase()} ,each:function{a,b,c) {var d,e=0,f=a.length,g=a{a);if(c){if{g)
{for{jf>eje++)if{dvb.apply(a[e],c),d===11)break}else for(e in ajif(d=b.applyl{ale],c),dw==ll)break}else if|(g)
{for{;f>e;e++}if(d=b,calllae],e,a[e]),d===11}break}else for{e in a)if{d=b.calliale],e ale]),d===]11)break;return
a},trim:function(a){return null==a3"":{a+"").replace{o,"")} ,makeArray: function(a,b){var e=b||[];retern nulli=atL{s({Objectia)}?
n.merge{c, "string"==typecf a?{aj:a):f.callfc,a)),c),inhkrray:function({a,b,c){return null==h?

-l:g.calli{b,a,c)} ,merge:fuonction{a,b){for[var c=+b.length,d~0 e~a.longthjc>d;d++)afe++]=b[d];return
a.length=e,a} ,grep: function{a,b,c){for{var d,o=[],f=0,g"a.length, h=lc;g>f;f++)d=lb{a[£],f),dl==h&se.push(a[f])jroturn

e} ,mapsfunction(a,b,e){var d,f=0,g~a.longth,h=s(a),i=|};if(h)for(sgrfsf++)d=blalf),f,e),nulll=desi.push(d)selse for(f in
ajde=b(a[f],f,c),nulll~d&ki.push(d) ;return e.appliy(().1i)},guid:]l,proxy:function(a,b){var c,e,{;return"string”"==typeof bk
{e=ajb],b=a,a=c),n.isFunction{a)?{e=d.call{arguments,2),f=function(){return

a.apply(b| |this,e.concat{d.call jarguments)))}, f.quid=a.guid=a.guid| |n.guid++, £):void

0} ,now:Date.now, support:k)) n.each({"Boolean Number String Function Array Date RegExp Object Brror".split(" "),function{a,b)
{h["{object "4b+"]" |=b.toLowerCase()});function s(a){var

b=a.length,c=n.type(a)jretura”function”===g| |n.isWindow(a)?l1ltl===a,.nodeTypessb?10: "array "===gc| |0===b| | "number®==typect
bieb>0&kb-1 in a)}var t=functien(a){vaxr b,ec,d,e,f,g,h,i,3,k,1,m,n,0,p;q.x,8,t,u~"sizzle " +-new
Date,v=a.document,w=0,6x=0,y=gb(},2z=gb{}),A=gb{) ,B=function{a,b){return a===hgs(l=10),0},C="undefined" D=1<<3], E=
{}.hasOwnProperty,F=[],G=F.pop, B=F.push,I=F.push,J=F.slice,K=F.index0f | | function|a) {for|var
b=0,c=this.length;e>b;jb++)if(this[b]===a)raturn b;raturn-

1},L="checked|selected | async|antofocus autoplay | controls |defer|disabled|hidden|ismap! loop multiple|open|readonly|reguired|scop
ed* Me " PA 200 VENV VA NDAAE T N 12 WA L L Ve) [T * A A 00\ ka0]) 4" 0=, replace] “w®, “wl*) Pe AT aMe A S e N (P M (e S -] 7

Don’t worry, you don’t have to read it and you definitely don’t have to understand it.
Just go to your browser’s File menu and choose Save Page As... or right-click on the
page and select Save As.... Then, save the file to your hard drive, inside the scripts
folder we created. By default, the script will have the version number in the filename.
I’'m going to go ahead and rename the file to jquery. js to keep things simple.

Now, we just have to include our jQuery script in our page—just like we included our
empty JavaScript file. Go to the bottom of your practice HTML file, just before the
<script> tag we created earlier, and add a line to include jQuery, as follows:

<script src="scripts/jquery.js"></script>

<script type="text/javascript" src="scripts/scripts.js'"></script>
</body>
</html>

You won’t notice any changes to your HTML page; jQuery doesn’t do anything on its
own. It just makes its magic available for you to use.

What just happened?

We learned how to set up our files and folders to work through the practice exercises in
this book. We also learned how to select and download the correction version of jQuery

and get it attached to our HTML page. Now we’re all set to start coding pages and adding
jQuery magic to them.

Pop quiz — setting up a new project
Q1. Which of the following is the content layer of a project?

1. HTML
2. CSS
3. JavaScript

Another option for using jQuery

There is nothing wrong with downloading and using your own copy of jQuery, but you do
have another option available that can help to improve the performance of your websites.
That’s to use a CDN-hosted copy of jQuery.

In case you don’t know, a CDN is a Content Delivery Network. The premise behind a
CDN is that files download faster from servers that are physically closer to a site visitor’s
location. So, for example, if you’re in Los Angeles, California, a copy of jQuery that’s on
a server in Phoenix, Arizona will download faster than a copy that’s on a server in New
York City. To help this along, a CDN has a copy of the same file on lots of different
servers all around the world. Each time a site visitor requests a file, the CDN smartly
routes their request to the closest available server, helping to improve response times and
overall site performance.

It won’t make much of a difference for the relatively simple examples and pages that we’ll
build in this book, but for a public-facing website, using a CDN-hosted copy of jQuery
can make a noticeable difference. There are a few options out there, but the most popular
by far is Google’s Ajax API CDN. You can get the information on the latest version
available and the correct URL at

http://code.google.com/apis/libraries/devguide.html#jquery.
Note

There are several CDN-hosted copies of jQuery available. You can find out about these on
jQuery’s Download page (http://jquery.com/download/). Just scroll down to the section
titled Using jQuery with a CDN to find all your current options.

If you’d like to use the Google CDN-hosted version of jQuery in your files, it’s as simple
as adding the following line of code to your HTML file, instead of the line we used in the
previous section to include jQuery:

<script
src="Ettp://ajax.googleapis.Com/ajax/libs/jquery/z.1.1/jquery.min.js”>
</script>

No downloading the file, no saving your own copy; you can just point your <script> tag
directly at the copy of jQuery stored on Google’s servers. Google will then take care of
sending jQuery to your site visitors from the closest available server. Not only that, but as
Google’s CDN is so popular, there’s a good chance that your site visitor has already
visited another site that’s also using a Google CDN-hosted copy of jQuery and that they’ll
have jQuery cached in their browser. This means that your site visitor won’t have to
download jQuery at all—it’s already saved in their browser and available to be used.
How’s that for improving performance?

http://code.google.com/apis/libraries/devguide.html#jquery
http://jquery.com/download/

Your first jJQuery script

Alright, now that you understand a few basic things about JavaScript and know how to get
your files and folders set up to build a sample exercise, let’s build our first simple example
page and make it do something fancy with jQuery.

Time for action — getting ready for jQuery

Perform the following steps to start with your first jQuery script:

1. Set up your files and folders just like we did in the previous exercise. Inside the
<body> tags of the HTML document, add a heading and a paragraph, as follows:

<body>
<div class="content">
<h1>My First jQuery</h1>
<p>Thanks to jQuery doing fancy JavaScript stuff is easy.</p>
</div>
</body>

Feel free to add some CSS code to the styles.css file in the styles folder. Style
this however you’d like.

2. Next, open up that empty scripts. js file we created earlier and add this bit of script
to the file:

$(document).ready();

What just happened?

Let’s take this statement one thing at a time—first, the dollar sign. Really? What’s this
doing in JavaScript?

The $ here is just a variable—that’s all. It’s a container for the jQuery function. Remember
how I said we might use a variable to save ourselves a few keystrokes? The clever writers
of jQuery have provided the $ variable to save us from having to write out jQuery every
time we want to use it. The following code does the same thing that the preceding script
did:

jQuery(document).ready();

Except that it takes longer to type. jQuery uses the $ sign as its short name because it’s
unlikely that you’d call a variable $ on your own as it’s an uncommon character. Using an
uncommon character reduces the chance that there will be some sort of conflict between
some other JavaScript being used on a page and the jQuery library.

So, in this case, we’re passing document to the jQuery (or $) function because we want to
select our HTML document as the target of our code. When we call the jQuery function,
we get a jQuery object. In JavaScript, we’d say that the jQuery function returns a jQuery
object. The jQuery object is what gives the jQuery library its power. The entire jQuery
library exists to give the jQuery object lots of properties and methods that make our lives
easier. We don’t have to deal with lots of different sorts of objects; we just have to deal
with the jQuery object.

The jQuery object has a method called ready. In this case, the ready method will be
called when the document is loaded into the browser and is ready for us to work with. We
can pass a function to the ready method to say what should happen. So
$(document).ready() just indicates when the document is ready.

Adding a paragraph

Now, we’re all set to do something when the document is ready, but what is it that we’ll
do? Let’s add a new paragraph to our page.

Time for action — adding a new paragraph

Perform the following steps to add a new paragraph to our page:

1. We need to tell jQuery what to do when the document is ready. Since we want
something to happen, we’ll pass in a function like this:

$(document).ready(function(){
// Our code will go here

1),

We’ll write what’s going to happen inside this function.

What about the line that starts with //? That’s one way of writing a comment in
JavaScript. The // sign tells JavaScript to ignore everything else on that line because
it’s a comment. Adding comments to your JavaScript is a great way to help yourself
keep track of what’s happening on what line. It’s also great for helping along other
developers who might need to work on your code. It can even be great for helping
yourself if you haven’t looked at your own code in a few months.

2. Next, we’ll add what we want the function to do as soon as the document is ready:

$(document) .ready(function(){
$('body').append('<p>This paragraph was added with jQuery!</p>'");
1)

What just happened?

Our new function is using the jQuery function again, as follows:
$('body")

Remember I said that jQuery uses CSS selectors to find stuff? This is how we use those
CSS selectors. In this case, we want the <body> tag, so we’ll going to pass body to the
jQuery function. This returns the <body> tag wrapped in a jQuery object. Handily, the
jQuery object has an append method that lets us add something new to the page, as
follows:

$('body').append();

All we have to do is call the append method and pass in the paragraph we want to add to
the page. In quotes, pass a line of HTML:

$('body').append('<p>This paragraph was added with jQuery!</p>"');

That’s it! Now, when you load the page in a browser, you’ll see the heading followed by
two paragraphs—jQuery will add the second paragraph as soon as the document is loaded
in the browser. The following screenshot shows the page loaded in the browser:

| Chapter 1: jQuery for Des = W ¥

C # [file:///Users/natalie/Desktop/jQ... 77 & =

My First jQuery

Thanks to jQuery doing fancy JavaScript stuff is easy.
This paragraph added with jQuery

Have a go hero — adding more content
Try adding the following bit of HTML to the bottom of the document with jQuery:

<div><p>This was added with jQuery too!</p></div>

Style it with CSS so that it stands out.

Summary

In this chapter, you have been introduced to the jQuery library and have learned a few
things about it. We covered a bit of JavaScript basics and then we learned how to set up
our files and folders for the exercises in this book. Finally, we set up a simple HTML page
that took advantage of jQuery to add some dynamic content. Now, let’s take a look at how
we can make links more powerful with jQuery by creating tabs and custom tooltips.

Chapter 2. Enhancing Links

We take links for granted these days, but the truth of the matter is that the humble link
revolutionized documents and made the Web as we know it today possible. Being able to
link a reader directly to another document or to another place within a document was not
possible before.

For this reason, you can say that hyperlinks are the backbone of the Internet—without
them, search engines wouldn’t be possible, nor would most websites. Let’s take a look at
some of the ways we can make links work even harder for us.

In this chapter, we will cover the following topics:

e How to turn a list of links into simple tabs
e How to customize tooltips

Simple tabs

If we have a large amount of information to present that might not be relevant to all site
visitors, we can compress the amount of space the information takes by hiding selected
bits of information until the user requests it. One of the most common ways of making all
the information available but hidden until requested is tabs. Tabs echo the real-world
example of a tabbed notebook or labeled folders in a filing cabinet, and are easy for site
visitors to understand. Believe it or not, they’re also easy to implement with jQuery.

The following screenshot gives us an idea of what our page will look like after we’ve
created our tabs:

Noble Gases

Odorless, colorless, monatomic gases with very low chemical reactivity

Helium

Helium is a chemical element with symbol He and atomic number 2. It is a colorless,
odorless, tasteless, non-toxic, inert, monatomic gas that heads the noble gas group in the
periodic table. Its boiling and melting points are the lowest among the elements and it
exists only as a gas except in extreme conditions.

Time for action — creating simple tabs

Perform the following steps to turn a list of links into tabs:

1. We’ll get started with our basic HTML file and associated folders, like we created in
Chapter 1, Designer, Meet jQuery. Inside the <body> tag, we’ll start by setting up a
simple example that will work even for users with JavaScript disabled. We’ll put a
list of anchor links to different areas of the page at the top and then wrap each of our
content sections in a div block with an ID, as shown in the following code:

<header class="content">

<h1>Noble Gases</hi1>

<p>0dorless, colorless, monatomic gases with very low chemical
reactivity</p>
</header>

<ul id="tabs">
He</1i>
Ne</1i>
Ar</1i>
Kr</1i>
Xe</1i>
Rn</1i>

<div id="he">

<h2>Helium</h2>

<p>Info about helium here.</p>
</div>

<div id="ne">

<h2>Neon</h2>

<p>Info about neon here.</p>
</div>

<div id="ar">

<h2>Argon</h2>

<p>Info about argon here.</p>
</div>

<div id="kr">

<h2>Krypton</h2>

<p>Info about krypton here.</p>
</div>

<div id="xe">

<h2>Xenon</h2>

<p>Info about xenon here.</p>
</div>

<div id="rn">

<h2>Radon</h2>

<p>Info about radon here.</p>
</div>

Note that we added an id value of tabs to the list of links. This will make it easy to
select the list with CSS for styling and with JavaScript to create the tab behavior.

If you view this HTML in a browser, you’ll see a list of links at the top of the page,
which when clicked on the ID, jumps down to the appropriate section of the page so
that the site visitor can easily find each section without scrolling on their own. We’ve
basically created a clickable table of contents for our page.

. Next, we want to style our page a bit so that it looks nice for those site visitors who
have JavaScript disabled. We only want these styles to apply to the page if JavaScript
is disabled, so let’s learn a handy technique. Add a class of jsoff to the <body> tag,
as follows:

<body class="jsOff">

Now, you can reference this class in your CSS file to write styles for site visitors who
have JavaScript disabled, using the following code:

.jsOff ul#tabs {
line-height: 1.5;
margin: 1.125em 0;

}

Feel free to experiment with your CSS file and style the table of contents the way you
want like for the no-JavaScript case.

. Now, we want to enhance this for our site visitors that have JavaScript enabled. We’ll
start by adding a class name to each of the <div> blocks that contain our sections of
content—this will make it easier for us to select just the pieces of the page we want
with jQuery and will also make it easier for us to further style our tabs with CSS.
Have a look at the following code:

<ul id="tabs">
He</1i>
Ne</1i>
Ar</1i>
Kr</1i>
Xe</1i>
Rn</1i>

<div id="he" class="content tab-section'>
<h2>Helium</h2>
<p>Info about helium here.</p>

</div>

<div id="ne" class="content tab-section'>
<h2>Neon</h2>
<p>Info about neon here.</p>

</div>

<div id="ar" class="content tab-section">
<h2>Argon</h2>
<p>Info about argon here.</p>

</div>

<div id="kr" class="content tab-section">
<h2>Krypton</h2>
<p>Info about krypton here.</p>

</div>

<div id="xe" class="content tab-section">
<h2>Xenon</h2>
<p>Info about xenon here.</p>

</div>

<div id="rn" class="content tab-section">
<h2>Radon</h2>
<p>Info about radon here.</p>

</div>

Here, we used the class of content to apply document-wide styles to the tabbed
sections. We also added the tab-section class for styles specific to just the tabbed
sections. The following screenshot shows what we’ve got so far:

Noble Gases

Odorless, colorless, monatomic gases with very low chemical reactivity
H
N
Ar

Fal

Helium

Helium is a chemical element with symbol He and atomic number 2. It is a colorless, odorless,
tasteless, non-toxic, inert, monatomic gas that heads the noble gas group in the periodic table.
Its boiling and melting points are the lowest among the elements and it exists only as a gas
except in extreme conditions.

Neon

MNeon is a chemical element with symbol Ne and atomic number 10. It is in group 18 (noble
gases) of the periodic table. Neon is a colorless, odorless monatomic gas under standard
conditions. with about two-thirds the density of air. It was discovered (alona with krvbton and

4. Now, we’ll go back to the jsoff class we added to the <body> tag. Remember how
we wrote some CSS styles that applied only when our site visitor has JavaScript
disabled? Now, we can use some jQuery magic to change this class for site visitors
who have JavaScript enabled.

jQuery makes it easy for us to add or remove classes from elements. In this case, we
want to remove the jsoff class from the <body> section. To do this, we’ll use
jQuery’s removecClass() method. Then, we will add a new class called json to the
<body> section. To do this, we’ll use jQuery’s addClass method.

Open the scripts. js file inside your scripts folder and write a document ready
statement, as shown in the following code, just like we did in Chapter 1, Designer,
Meet jQuery:

$(document).ready(function(){
// Our code will go here

1),

Inside the document ready statement, write the following code to remove the jsoff
class:

$(document) .ready(function(){
$('body').removeClass('jsoff');

1)

Next, we need to write the following code to add the new json class:

$(document).ready(function(){

$('body').removeClass('jsOoff');

$('body').addClass('jsOn');
1)i
This code will work, but jQuery actually makes it a little bit easier for us. We can
write less code! As we’re working with the <body> element both times, we can
actually write both of these methods on one line, as follows:

$(document).ready(function(){
$('body').removeClass('jsOoff').addClass('json');

1)

Now we can use the json class to write CSS just for those site visitors who have
JavaScript enabled.

5. We’ll make use of the new json class to hide all of our tab-section <div> elements.
Inside the styles.css file, add the following CSS code to hide all the sections as
soon as our page loads:

.jsoOn .tab-section {
display: none;
}
Now, when we reload the page, we’ll only see our table of contents as shown in the
following screenshot:

Chapter 2. [Query for D

C N file:// /Users/natalie/Desktop/jQ4D%202ed /Chapter¥202/45350T _02_Fork20...

Noble Gases

Odorless, colorless, monatomic gases with very low chemical reactivity

6. Now, let’s write some CSS styles to get the list of links to look like tabs. Open the
styles.css file that’s inside your styles folder and add some CSS styles. As we
want these styles to be applied only for site visitors with JavaScript enabled, we’ll
use the json class in our selectors. Feel free to customize the CSS code to suit your
own taste. [have customized it as follows:

.JjsOn ul#tabs {
background: #a0d468;
border-top-left-radius: 7px;
border-top-right-radius: 7px;
font-size: 1.5em;
margin: 1.5em @ 0 O;

}

.JjsOn ul#tabs:after {
clear: both;
content: '';
display: table;

3

.JjsOn ul#tabs 1i {
display: block;
float: left;

3

.jsOn ul#tabs a {
border-right: 1px solid #8cc152;
color: white;

display: block;
padding: 0.5em 1.125em;
text-decoration: none;

}

.jsOn ul#tabs 1li:first-child a {
border-top-left-radius: 7px;
}

.jsOn ul#tabs a:hover {
background: #8cc152;

}

.jsOn .tab-section {
background: white;
color: #444;
padding: 2em;

}

.jsoOn .tab-section h2 {

margin-top: 0O;
}
Note that this sample CSS uses several CSS3 properties that, at the time of
publication, are not supported by all browsers. Feel free to add in vendor prefixes to
get these styles working in more current browsers if you wish. Have a look at the
following screenshot:

Noble Gases

Odorless, colorless, monatomic gases with very low chemical reactivity

Tip

Browser support for new features

If you’re curious to know what browser support is available for different new CSS3
properties you might like to use in your CSS, a great resource to check out is

http://caniuse.com. It’s kept up to date and will give you detailed information about
which browsers support each new property.

. Next, let’s get our tabs working. When a site visitor clicks on a tab, we want to show
the appropriate section of content. First, we have to select the element or elements
that we want to work with. In this case, we want to do something when our site
visitor clicks on a link inside the element with the id value of tabs. We can
select these links as follows:

$(document).ready(function(){

http://caniuse.com

$('body').removeClass('jsOff').addClass('jsOn');

$('#tabs a')
1);
8. Now, we’ve got the links and we want to do something when these links are clicked.
jQuery makes this easy for us with the on() method, which looks like the following
code snippet:

$(document).ready(function(){
$('body').removeClass('jsOff').addClass('jsOn');

$('#tabs a').on();
1)

In this case, we want to do something when our site visitor clicks on one of the tab
links. In JavaScript, the click is called an event. There are all sorts of events: clicking
on an element, moving the mouse over an element, changing the text in a form field,
submitting a form, and so on. We just have to tell jQuery which event we’re working
with. In this case, it’s click:

$('#tabs a').on('click');

Now, jQuery knows that we want to do something when the user clicks on a tab link,
but we haven’t said what we want to do. We can say what should happen with a
function, as follows:

$('#tabs a').on('click', function(){
// Event code will go here

1)

In JavaScript, this function is called an event handler. That makes sense, right? It’s
the code that handles an event.

9. Remember how the page worked when JavaScript was disabled? The list of links
appeared at the top of the page, and clicking on one of them would jump to the
corresponding section of the page. As we’re going to hide and show those bits of
content depending on which link was clicked, we need to make sure that we cancel
the default action—we don’t want the page to jump. The following code is how we
cancel the browser’s default reaction to an event:

$('#tabs a').on('click', function(e){
e.preventDefault();

1);

We have to pass our event inside the parentheses of the function shown in the
preceding code. You may call this what you want. Sometimes, developers will name
it e, event, or evt. Then, inside our function, we call the preventDefault method for
the event. If you load the page in a browser at this point, you’ll see that clicking on
the links does nothing—the default action has been cancelled. Now, we have to write
a function to specify what should happen instead.

10. When a site visitor clicks on a table of contents link, we want to select the

11.

12.

appropriate section and show it. To do this, we’ll use hash, or the part of the href
attribute that includes the # symbol:

$('#tabs a').on ('click', function(e){
$(this.hash).show();
e.preventDefault();

1),

When we pass this.hash to the jQuery function, the this keyword we’re dealing
with is the link that was just clicked on and this.hash is the value of the href
attribute starting with the # symbol and continuing to the end. For example, if a site
visitor were to click on the He tab, passing this.hash to the jQuery function is the
same as writing the following line of code:

$('#he');

Of course, we’ve done it in a much more flexible way and our code will work for any
tab linked to any section of the site. So, for example, if I wanted to remove the Rn
tab or expand my list to include the halogens in addition to the noble gases, I

wouldn’t have to update JavaScript, only the HTML markup itself—JavaScript is
flexible enough to adjust to changes.

If you reload the page in the browser at this point, you’ll see that when you click on
one of the tab links, the associated section becomes visible. We’re making progress!
However, if you keep clicking on links, the sections just keep showing up, and after
clicking on all the links, all the sections are visible—this not what we want. We’ll
have to hide the visible section and show only the section we want. Let’s add a line to
our code, as follows, to select the visible <div> with the class of tab-section and
hide it before we show the new section:

$('#tabs a').on('click', function(e){
$('.tab-section:visible').hide();
$(this.hash).show();
e.preventDefault();

1)

You’re probably familiar with pseudoclass selectors in CSS—they’re often used to
select the hover, visited, and active states of links (a:hover, a:visited, and
a:active). jQuery makes a few additional pseudoclass selectors available to us.
There are pseudoclass selectors for buttons, empty elements, disabled form fields,
checkboxes, and so on. You can check out all the available selectors for jQuery in the
jQuery documentation at http://api.jquery.com/category/selectors/. Here, we’re using
the :visible pseudoclass to select the .tab-section that’s currently visible. Once
we’ve selected the visible . tab-section, we hide it and then find the correct tab-
section and show it.

Now, if you load this in a browser, you’ll see that there’s something missing; we
should highlight the currently selected tab to make it obvious which one is selected.
We can do that by adding a CSS class to the current tab. Go back to your scripts.js
file and add a bit of code to add a class to the current tab and remove the class from

http://api.jquery.com/category/selectors/

13.

14.

any non-current tabs as follows:

$('#tabs a').on ('click', function(e){
$('#tabs a.current').removeClass('current');
$('.tab-section:visible').hide();
$(this.hash).show();
$(this).addClass('current');
e.preventDefault();

1),

First, we’ll find the tab that has the current class and remove this class. Then, we’ll
get the tab that was just clicked and add the current class to it. In this way, we make
sure that only one tab will be marked as the current tab at any given time.

The $(this) element is the jQuery way of referring to the jQuery object that we’re
currently working with. In this case, we’re selecting all the tab links and we’ve
attached this function to be called whenever our site visitor clicks on a link. When a
site visitor clicks on a link, we want to work with the link that was clicked. A simple
and quick way of referring to the current link is to use $(this).

Next, we’ll add some styles in our CSS file for our new class. Open styles.css and
add a bit of CSS to distinguish the currently selected tab. I’m styling mine as follows,
but feel free to customize the style to suit your own tastes:

.jsoOn ul#tabs a.current {
background: #4fcle9;

}

Xenon

Xenon is a chemical element with the symbol Xe and atomic number 54. It is a
colorless, heavy, odorless noble gas, that occurs in the Earth's atmosphere in trace
amounts. Although generally unreactive, xenon can undergo a few chemical reactions
such as the formation of xenon hexafluoroplatinate, the first noble gas compound to
be synthesized.

Now our tabs are working the way we expect, and the only thing left to do is to make
the first tab active and show the first content section when the page is first loaded
instead of leaving them all hidden. We’ve already written the function to do this, so
now all we have to do is call it for our first tab, as shown in the following code
snippet:

$('#tabs a').on ('click', function(e){

$('#tabs a.current').removeClass('current');

$('.tab-section:visible').hide();

$(this.hash).show();

$(this).addClass('current');

e.preventDefault;
}).filter(':first').click();
The jQuery object’s filter method will allow us to filter a previously selected set of
elements. In this case, we’re dealing with all of the <a> tags inside the tags with
the #tabs ID. We bind a click function to all of these links, then we’ll filter out just
the first link using the : first pseudoclass made available to us in jQuery, and tell
jQuery to click on the first tab for us. This will run our function, adding the current
class to the first link and showing the first . tab-section—just the way we’d expect
the page to look when we load it, as seen in the following screenshot:

Noble Gases

Odorless, colorless, monatomic gases with very low chemical reactivity

Helium

Helium is a chemical element with symbol He and atomic number 2. It is a colorless,
odorless, tasteless, non-toxic, inert, monatomic gas that heads the noble gas group in the
periodic table. Its boiling and melting points are the lowest among the elements and it
exists only as a gas except in extreme conditions.

What just happened?

We set up a set of simple tabs with jQuery. For site visitors with JavaScript disabled, the
tabs will function like a table of contents at the top of the document, jumping them to the
various sections of content when they’re clicked. For site visitors with JavaScript enabled,
the sections of content will be completely hidden until needed. Clicking on each tab
reveals the content associated with that tab. This is a great way to save space in a Ul,
making all the content available on demand in a small space.

We used our json class name to hide the tab contents to be sure that users without
JavaScript enabled would still be able to access all of our content.

Pop quiz — working with events

Q1. Which of the following are the examples of events in JavaScript?

1. Clicking on a link

Entering a value in a form input
Moving the mouse over an image
Pressing a key on the keyboard
All of the above

SARE I

Q2. What is an event handler?

1. The site visitor that decides which button to click
2. A bit of code that is run in response to an event
3. The site visitor submitting a form

Designer, meet plugins

We’ve already talked about how programmers solve the same problems over and over
again. It’s these common tasks that jQuery simplifies so that we can accomplish these
tasks with a minimum amount of code. What about the tasks that are only somewhat
common, like the ability to customize the appearance of tooltips?

That’s where the jQuery community becomes important. Developers in the jQuery
community write code that extends the functionality of jQuery to simplify tasks that are
only somewhat common. These bits of code are called plugins, and they are used in
conjunction with the jQuery library to make coding complex interactions, widgets, and
effects as simple as using the features already built into jQuery.

You’ll find a library of hundreds of jQuery plugins on the official jQuery site at
http://plugins.jquery.com. In addition to this, there are literally thousands more available
from sites across the Web for just about any task you want to accomplish.

To create custom-designed tooltips, we’ll be using Steven Benner’s jQuery PowerTip
plugin. You’ll learn how to install the plugin on your page and how to configure the CSS
code and options to make your tooltips look and work the way you want.

http://plugins.jquery.com

Choosing a plugin

Recently, the jQuery team has started supporting a small number of official jQuery
plugins, and you can use them confidently, knowing that they have the same level of
expertise, documentation, and support behind them that jQuery itself has. All other jQuery
plugins are provided by various members of the jQuery community, and those authors are
solely responsible for the documentation and for their own plugins. Writing and providing
jQuery plugins is a bit of a free-for-all, and sadly, you will come across a fair number of
jQuery plugins that are poorly documented, poorly supported, and even worse, poorly
written. What kinds of things should you, as a newcomer to jQuery, look for when
choosing a plugin?

e Arecent update to the plugin: Frequent updates mean that a plugin is well
supported and that the author is keeping the plugin up to date as jQuery and browsers
evolve. You’ll even sometimes find other community members making contributions
and updates to a plugin, as is the case with the jQuery PowerTip plugin.

e Thorough and easy-to-understand documentation: Before attempting to download
and use a plugin, take a look through the plugin’s documentation and make sure that
you understand how to implement the plugin and how to use the options that the
plugin makes available to you.

e Browser support: Great plugins generally have the same browser support as the
jQuery library.

e Working demo: Most plugins will offer one or more working demos of their plugin
in action. Check out the demo(s) in as many different browsers as possible to make
sure that the plugin works as advertised.

¢ Reviews and ratings: You won'’t find reviews and ratings for all plugins, but if you
can find some, they can be helpful indicators of the quality and reliability of the
plugin.

Simple custom tooltips

Browsers automatically create tooltips when you include the title attribute on your
HTML element. Titles are usually used on links and images, but they can be added to
nearly every type of HTML element. When your site visitors hover their mouse cursor
over an element with a title attribute or move focus to the item by tabbing to it using the
keyboard, the tooltip will appear—usually as a small yellow box that appears to be
floating over the page.

Tooltips are a great way to add a little additional information to your page. Screen reader
software reads out tooltip text for site visitors with disabilities who are using assistive
technology, making them useful for enhancing accessibility. Furthermore, the title
attributes on images and links can help search engines index your content more
effectively.

I hope I've convinced you that the title attributes are great for enhancing both the
usability and the accessibility of your site. The only problem with tooltips is that they
can’t be customized in any way. Each browser has its own style of tooltip and that style is
not accessible via CSS. This is fine, but sometimes, it’s nice to have more control over the
appearance of tooltips.

Time for action — simple custom tooltips

We’ll start off by creating a simple replacement for the browser’s default tooltips that we
can style any way we’d like. Perform the following steps:

1. Set up a basic HTML file and associated files and folders like we did in Chapter 1,
Designer, Meet jQuery. Our HTML file should contain a list of images with the title
attributes as follows:

<div class="content">
<h2 id="pb-gallery">Photo Gallery</h2>
<ul class="gallery">
<img src="images/bridge.jpg" title="One of many bridges in
Pittsburgh"/></1i>
<img src="images/downtown.jpg" title="Downtown Pittsburgh with
bridges"/></1i>
<img src="images/icecream.jpg" title="A great way to beat the
summer heat"/></1i>

</div>

Feel free to use CSS to style this list in the way like. If you open the page in a
browser and move your mouse over the images, you’ll see the text that’s contained in
the title attributes displayed as tooltips. Where the tooltip appears and what it looks
like will depend on your browser, but here’s how it looks in mine (Google Chrome on
Mac OS):

Photo Gallery

.

2. Now, let’s spruce that up a bit by replacing the default browser tooltip with our own
styled one, at least for our site visitors that have JavaScript enabled. First, we’ll need
a copy of Steven Benner’s jQuery PowerTip plugin. It’s available on GitHub at
http://stevenbenner.github.io/jquery-powertip/. The GitHub page has a list of
features, some sample demos, the documentation you’ll need to learn to use the
plugin, and a link to the files available for download. Click on the green Download
button to download a ZIP file that consists all the files you’ll need. For this, have a
look at the following screenshot:

http://stevenbenner.github.io/jquery-powertip/

§] »
a8 e jQuery PowerTip =

« C#f | stevenbenner.github.io/jquery-powertip L ¢ (’.0 a & m @ f? m’ =

| 30x500 Ghost Sto L wesea [New folder || demo.hitml Press This L1 other Bookmarks

PowerTip

A jQuery plugin that creates hover tooltips.

%) Star 511 ¥ Fork 85 Fe1| 42 W Tweet 308
LY

PowerTip features a very flexible design that is easy to customize, gives you a number of different ways to use the tooltips,
has APls for developers, and supports adding complex data to tooltips. It is being actively developed and maintained, and

provides a very fluid user experience.
Download v1.2.0

Zip file with examples, CSS, and script.

Here are some basic examples of PowerTip in actions. You can also fiddle with PowerTip on the official jsFiddle demo.

Placement examples

North West Alt Morth West North MNorth East North East Alt
West East
South West Alt South West South South East South East Alt

3. Unzip the file you downloaded and examine its contents. Inside, you’ll find a css
folder with several .css files, an examples folder with a few working examples for
you to look at, two JavaScript files, and a LICENSE. txt file. Have a look at the
following screenshot:

* Ll css
¥ [examples
& examples_svg.html
= examples.html
E jguery.powertip.js
= jguery.powertip.min.js
| LICENSE.txt

Let’s start with all the CSS files. You’ll find two files named jquery.powertip.css
and jquery.powertip.min.css. These two files are the default tooltip styles for this
plugin and have exactly the same content. The difference between them is that the
second file is minified, making it smaller and ideal for use in production. The other
file is a development version that we could easily edit ourselves or use as an example
if we wanted to write our own custom styles for our tooltips.

The rest of the CSS files are assorted styles and color schemes for the tooltips. If you

look closely, you’ll see the names of colors in the filenames, for example,
jquery.powertip-purple.css or jquery.powertip-blue.css. Each of these files
also have a minified production version and a development version. All of these
styles are prewritten and available to you to use in your project.

You can select one of these CSS files and attach it to your page. Copy
jquery.powertip.css to your own styles folder and then attach the file to your
HTML document in the <head> section, as follows:

<head>

<title>Chapter 2: jQuery for Designers</title>

<link rel="stylesheet" href="styles/styles.css'">

<link rel="stylesheet" href="styles/jquery.powertip.css">
</head>

. Next, let’s look at the JavaScript files. We have jquery.powertip.js and
jquery.powertip.min. js. Just like the CSS files, these are two different versions of
the same file, and we simply have to choose one and attach it to our HTML
document. The first file, jquery.powertip.js, is the development version of the file
and the largest at 35 KB. The second file is minified and is just 9 KB. As we don’t
need to edit the plugin itself and are going to use it as it is, let’s select the smaller
minified version. Copy jquery.powertip.min.js to your own scripts folder and
attach it at the bottom of your HTML file, between jQuery and your own scripts.js
file. This is shown in the following code:

<script src="scripts/jquery.js"></script>

<script src="scripts/jquery.powertip.min.js"></script>
<script src="scripts/scripts.js"></script>

</body>

</html>

. The last thing we need to do is call the plugin code. Open your scripts.js file and
add the following document ready statement and function:

$(document).ready(function(){

1)

. Inside the function, select the images inside the list and call the powerTip method on
these links, as shown in the following code:

$(document).ready(function(){

$('.gallery img').powerTip();
3);
Now, when you view the page in the browser and move your mouse over the images
with the title attributes, you’ll see the PowerTip-styled tooltips instead of the
browser’s default tooltips, as seen in the following screenshot:

Photo Galls Downtown Pittsburgh with bridges

The default style for PowerTip tooltips is a slightly transparent black tooltip that
appears directly above the item you’re hovering your mouse over. These tooltips will
appear with this same style, no matter which browser and operating system we’re
using, except that the tooltip will be opaque in browsers that don’t support RGBA
colors for transparency.

What just happened?

We downloaded the jQuery PowerTip plugin and attached one CSS file and one JavaScript
file to our HTML document. Then, we added just a couple lines of jQuery code to activate
the custom tooltips.

We selected all the images in the gallery list. We did this by taking advantage of jQuery’s
CSS selectors:

$('.gallery img')

Once we’ve selected all the images, all that was left to do was call the powerTip method
that the PowerTip plugin provided for us. The powerTip method takes care of all the
actions that need to be performed to replace the default tooltip with a custom one. But
what if we want to alter the style or placement of the tooltips? Let’s take a look at how we
can customize the tooltips.

Customizing PowerTip’s appearance

The default PowerTip style displays the tooltip centered above the item that we’re
hovering our mouse over. The PowerTip plugin offers lots of options to customize where
the tooltip appears and what it looks like. It does so in a straightforward and easy-to-

understand way.

Time for action — customizing PowerTip

Let’s take a look at some of the options we have to customize PowerTip and how we can
use them. We’ll keep working with the files we set up in the preceding example:

1. Let’s say that we want to change the position of the tooltip. PowerTip gives us plenty
of options to position tooltips on our page, as follows:

Placement examples

MNorth West Alt North West Morth Morth East Morth East Alt

West East

South West Alt South West South South East South East Alt

How do we tell PowerTip where we want our tooltips to appear? Let’s go back to that
line of code in our scripts. js file where we called the powerTip method to create
the custom tooltips:

$('.gallery img').powerTip();

Remember in Chapter 1, Designer, Meet jQuery, we talked about how we can pass
things to methods and functions by putting them inside the parentheses? We had the
example dog.eat('bacon');, where we wanted to say that the dog was eating bacon.
So, in JavaScript, we passed bacon to the eat method of the dog.

Well, in this case, we can pass a set of options to the powerTip method to define
where our tooltips are placed, among other things. To define the position of our
tooltips, we’ll set the placement option to the direction we want (n, ne, ne-alt, e, se,
se-alt, s, sw, sw-alt, w, nw, or nw-alt). We just have to make the following simple
modification to our code:

$('.gallery img').powerTip({placement: 'sw-alt'});

In this example, we’ll place the tooltips underneath the image we’re hovering over
and anchor them to the bottom-left (or south-west) corner.

You’ll notice that each of the four corner options for PowerTip have an additional alt
placement option. The default corner option will display the tooltip anchored to your
chosen corner and the tooltip itself to the side of the item you’re hovering over.

|

A great way to beat the summer heat

=

The alt option for each corner also displays the tooltips anchored to your chosen
corner, but shows the tooltip directly above or below the item you’re hovering over
rather than to the side, as shown in the following screenshot:

Downtown Pittsburgh with bridges

As our images are side-by-side in this example, the alt placement option makes
more sense, so that’s the one we’ll use.

. Depending on the width of our browser window and the layout of our content, our
chosen placement for the tooltips might sometimes result in the tooltip being
displayed completely or partly out of view. Luckily, the developers of this plugin
have anticipated this possibility and have provided us with an option to make sure
that the tooltips are always visible. It’s called Smart Placement, and we can enable
this option by setting the smartPlacement option to true, as shown in the following
code:

$('.gallery img').powerTip({smartPlacement: true});

What if you need to pass more than one option to the powerTip method? To pass
more than one option, you just have to separate the options with a comma. So, we can
define our tooltip position and turn on Smart Placement as follows:

$('.gallery img').powerTip({placement: 'sw-alt', smartPlacement:
true});

Now, you can see that if I were setting a dozen or more options, this line of code
would get long and hard to read. For this reason, it’s a common practice to break
options out on separate lines as follows:

$('.gallery img').powerTip({

placement: 'sw-alt',
smartPlacement: true
1)

The content is the same, it’s just that it’s easier for us humans to read and understand
the code when it’s broken into lines this way. A computer doesn’t care one way or the
other.

Tip
Be careful not to add an extra comma after the last option/value pair. Most browsers

will handle this gracefully, but IE will throw a vague error and your JavaScript won’t
work at all. It can be a frustrating problem to try and track it down.

. In addition to changing the position of the tooltip, we can use CSS to change the
appearance of the tooltip itself. If you wanted to use one of the alternate color
schemes that was included with PowerTip, you’d just have to swap the style sheet in
your HTML document with the one you wanted to use. That’s very simple and
straightforward.

However, we can also write our own CSS styles for our tooltips. To get started, we’ll
examine the jquery.powertip.css file that was included with the PowerTip
download. The following code is an example from this file that shows how the colors
and styles are specified:

#powerTip {
cursor: default;
background-color: #333;
background-color: rgba(0,0,0,.8);
border-radius: 6px;
color: #fff,;
display: none;
padding: 10px;
position: absolute;
white-space: nowrap;
z-index: 2147483647;

}

#powerTip:before {
content: "";
position: absolute;

}

#powerTip.n:before, #powerTip.s:before {
border-right: 5px solid transparent;
border-left: 5px solid transparent;
left: 50%;
margin-left: -5px;

}

#powerTip.n:before {
border-top: 10px solid #333;
border-top: 10px solid rgba(0,0,0, .8);
bottom: -10px;

}

#powerTip.s:before {

border-bottom: 10px solid #333;

border-bottom: 10px solid rgba(©,0,0,.8);

top: -10px;
}
You’ll notice that there’s quite a lot of code using the :before and :after CSS
pseudoclasses, and you might wonder what exactly is going on with that. This is a
clever CSS technique to create triangle shapes without relying on images. This code
creates the triangle-shaped connector between the tooltip and the item you’re
hovering your mouse over. If you’d like to learn more about this technique, there’s an
excellent tutorial with plenty of explanations at http://konigi.com/tools/css-tooltips-

and-speech-bubbles.

. By examining the CSS code, you can see that all we need to do to create our own
color scheme is replace all the color definitions in this file with a color of our own
choosing. I’'m going to choose a melon orange shade, which is #fc6e51 as a hex color
and 252, 110, 81 as an RGB color. The RGB color is important because we can use
it to create an RGBA color that is transparent.

To switch to a new color scheme, all we need to do is go through the
jquery.powertip.css file and switch the color values to the newly selected values.
An example from the new CSS is shown in the following code:

#powerTip {
cursor: default;
background-color: #fc6e51;
background-color: rgba(252, 110, 81, 0.8);
border-radius: 6px;
color: #fff,;
display: none;
padding: 10px;
position: absolute;
white-space: nowrap;
z-index: 2147483647;

}

#powerTip:before {
content: "";
position: absolute;

}

#powerTip.n:before, #powerTip.s:before {
border-right: 5px solid transparent;
border-left: 5px solid transparent;
left: 50%;

http://konigi.com/tools/css-tooltips-and-speech-bubbles

margin-left: -5px;

}

#powerTip.n:before {
border-top: 10px solid #fc6eb51;
border-top: 10px solid rgba(252, 110, 81, 0.8);
bottom: -10px;

}

#powerTip.s:before {
border-bottom: 10px solid #fc6eb51;
border-bottom: 10px solid rgba(252, 110, 81, 0.8);
top: -10px;

3

Similarly, go on replacing the color values throughout the entire file. Now, when you
preview the tooltip in the browser, you’ll see an orange tooltip, as shown in the
following screenshot:

Downtown Pittsburgh with bridges

You can take the customization as far as you want. You can modify the border radius,
add a gradient, add a text shadow and/or a box shadow, change the text color, add a
border, and so on.

What just happened?

We learned how we can adjust the positioning of our tooltips, how we can use other
options provided by the PowerTip plugin, and we created our own custom style for the
tooltips. You can use any CSS styles you like to customize the appearance of the tooltips;
there’s virtually no limit to the possibilities of styles for your tooltips.

Enhancing navigation with tooltips

Once you know how to make custom tooltips, you’ll find that there are many possible uses
for them. Let’s take a look at enhancing a standard navigation bar with custom tooltips
using the PowerTip plugin.

Time for action — building a fancy
navigation bar

Let’s take a look at how we can use custom-designed tooltips to add a little progressively
enhanced punch to a basic navigation bar. We’ll continue working with the files we’ve set
up in the last two custom tooltips examples. Perform the following steps:

1. Let’s get started by adding a navigation bar to the top of our HTML page. While
we’re at it, let’s go ahead and also add a header to the top of the page:

<header class="content">

<hi1>Pittsburgh, Pennsylvania</h1>

<p>City of Bridges, Steel City, City of Champions, The 'Burgh</p>
</header>

<nav>

Photo
Gallery</1i>
About
</1li>
<a href="#pb-geography" title="Learn about Pittsburg's
geography'">Geography</1i>
<a href="#pb-moreinfo" title="Get more info about
Pittsburgh">More Information</1li>

</nav>

We’ve made sure to include the title attributes on each link. For the purpose of this
example, these are internal links that will jump to different sections within this
HTML document.

2. Next, we’ll add some CSS styles to our navigation bar. If you prefer a different style,
feel free to customize the CSS code to suit your own taste. Have a look at the
following code:

nav {
margin: 2em O;

}

nav ul {
background: #fff;
border-radius: 7px;
text-align: center;

}

nav 1i {
display: inline-block;
}

nav a {
display: block;

color: #444,;

padding: 1.5em;
text-decoration: none;
text-transform: uppercase;

}

nav a:hover {
color: #a0d468;

}

Now, we have a navigation bar horizontally across our page, as shown in the
following screenshot:

PHOTO GALLERY ABOUT GEOGRAPHY MORE INFORMATION

When you move your mouse over the links in this navigation bar, the browser’s
default tooltips appear. We’ll replace those boring browser tooltips with friendly
looking conversation bubbles above the navigation bar.

. Next, open your scripts. js file so that we can call the powerTip method and pass in
our customizations. Hey, wait a minute—we’re already calling the powerTip method
in scripts.js. Yes, you're right, we are. However, we’re going to learn how to call
it again and have two different tooltip styles in one single document.

Let’s get started by adding a comment for ourselves to help us keep track of what
we’re doing in our code, as follows:

$(document).ready(function(){

/* Add text tooltips to photo gallery */

$('.gallery img').powerTip({

placement: 'sw-alt'

1)
1);
. Now that we can easily keep track of the code for our photo gallery tooltips, let’s go
ahead and add a comment and selector and call to powerTip for the navigation:

$(document).ready(function(){

/* Add tooltips to navigation */
$('nav a').powerTip();

/* Add text tooltips to photos */
$('.gallery img').powerTip({
placement: 'sw-alt'
1)
3);

Open up the HTML file in a browser to take a look and you’ll see that we now have
orange tooltips that appear directly above each of our navigation items, as seen in the

following screenshot):

Get more info about Pittsburgh

This is okay, but as the navigation items turn green when they are hovered over, it
would be better if these tooltips were green. Let’s see how we can change the style.

. If you’ll recall from jquery.powertip.css, all the styles we wrote for our tooltips
were based on the #powerTip ID, which was assigned to our tooltips by the PowerTip
plugin. We have a configuration option to change the ID, which will allow us to write
some new CSS code to create a new tooltip style. Let’s start by modifying the ID of
the tooltips that are displayed on our navigation bar, as follows:

$('nav a').powerTip({
popupId: 'navTip'
1)

. Next, we can open jquery.powertip.css and add some new styles for navTip.

#navTip {
cursor: default;
background-color: #a0d468;
border-radius: 6px;
color: #fff;
display: none;
padding: 10px;
position: absolute;
white-space: nowrap;
z-index: 2147483647;

}

Similarly, go on styling those however you want. Now, when we move our mouse
over the navigation, green tooltips will be displayed.

What just happened?

We reviewed how to create and attach a custom-styled tooltip to our HTML document. We
learned how to include two different tooltip styles in the same document. Now, we have
orange tooltips that are displayed below the photos in our photo gallery and green tooltips
that are displayed above our navigation bar. Let’s find out what else we can do with

PowerTip.

Showing other content in tooltips

So far, we’ve seen how we can customize the appearance and position of the tooltips that
the PowerTip plugin helps us create. However, we’ve only used these tooltips to display
text, namely, the text we’ve placed inside an element’s title attribute. We have a lot more
powerful options though. We can load just about any content we want in our tooltips. Let’s
take a look at how we can load content from somewhere else in the HTML document into

our tooltips.

Time for action — showing custom content
in tooltips

Perform the following steps to load custom content into your tooltips:

1. We’ll keep working with the document that we’ve been building over the past few
tooltip tutorials. The first thing we want to add is some new content. First, we’ll
create some blocks of helpful content at the bottom of our HTML page, as shown in
the following code:

<h2 id="pb-moreinfo">More Information</h2>
<ul class="info-boxes">
<1li id="info-box-bridge'">
<div class="info-box-container">

<div class="info-box-content">
<p>0ne of many bridges in Pittsburgh</p>
</div>
</div>
</1li>
<1li id="info-box-downtown'">
<div class="info-box-container'">

<div class="info-box-content'">
<p>Downtown
Pittsburgh</p>
</div>
</div>
</1li>
<1li id="info-box-icecream">
<div class="info-box-container">

<div class="info-box-content'">
<p>Ice cream beats the summer heat</p>
</div>
</div>
</1li>

We’re including some images and a bit of text about each one. Next, we’ll style this
with CSS as follows:

Ul.info-boxes 1i {
display: inline-block;
margin-right: lem;

}

.info-box-container {
width: 200px;
}

.info-box-container img {
border-top-left-radius: 7px;
border-top-right-radius: 7px;

}

.info-box-content {
background: white;
border-bottom-left-radius: 7px;
border-bottom-right-radius: 7px;
color: #444;
line-height: 1.5;
padding: 1lem;
text-align: center;

}

.info-box-content p {
margin: 0O;
}
Now, if we look at this page in a browser, we’ll see the information boxes lined up
and nicely styled at the bottom of the page, as shown in the following screenshot:

More Information

- T
s »

-

One of many bridges Downtown lce cream beats the
in Pittsburgh Pittsburgh summer heat

. Next up, we’ll add a couple of paragraphs of text that link to these information boxes.
Add this text above the information boxes so that they are displayed between the
photo gallery and the information boxes, using the following code:

<h2 id="pb-about">About Pittsburgh</h2>

<p>Pittsburgh is the second-largest city in the US Commonwealth of
Pennsylvania and the county seat of Allegheny County. <a href="#info-
box-downtown" class="info-box">Downtown Pittsburgh retains
substantial economic influence, ranking at 25th in the nation for jobs
within the urban core and 6th in job density.</p>

<h2 id="pb-geography'">Geography</h2>

<p>Pittsburgh is known colloquially as "The City of Bridges" and "The
Steel City" for its many
bridges and former steel manufacturing base.</p>

<p>Conditions are often humid, and combined with the 90°F
(occurring on an average of 8.4 days per annum), a considerable heat index arises.</p>

We need an easy way to select and interact with the links to the information boxes, so
we’ve added a CSS class of info-box to each one.

3. Now, what we’ll do is load the corresponding information box in the tooltip when
each of these links is hovered over. Pretty cool, right?

First, we’ll have to associate each of the links with the corresponding information
box. We can do this by adding an HTMLS5 data attribute to each link, as shown in the
following code snippet:

<a href="#info-box-downtown" class="info-box" data-
powertiptarget="info-box-downtown">Downtown Pittsburgh

The documentation on the PowerTip plugin explains that the plugin will look for a
data attribute named powertiptarget. If the attribute exists, then PowerTip will pull
in the content from the element with that ID and display it in the tooltip.

Let’s talk about the data attributes. They can be used to attach all different sorts of
hidden information to the HTML elements, which we can then use in JavaScript to
achieve all sorts of special effects. You start a data attribute with data-. After this,
you name the data attribute. In this case, we knew from the PowerTip documentation
that the attribute should be named powertiptarget. In other cases, you’ll be able to
name your data attributes whatever you wish. Picking names that make logical sense
will help you and others make sense of your code more easily—in much the same
way that picking logical names for JavaScript variables helps your code make sense.

When we hover over this link, we want to display the information box that we’ve
given the ID of info-box-downtown, so this is the value we’ll assign to the
powertiptarget data attribute.

4. Next up, we’re ready to jump back into scripts.js. Add a new line inside your
document ready statement and comment it so that you remember this is the code to
add the information box tooltips, as shown in the following code:

$(document).ready(function(){
/* Add tooltips to navigation */
$('nav a').powerTip({
popupId: 'navTip'
37

/* Add text tooltips to photos */
$('.gallery img').powerTip({
placement: 'sw-alt'

1)

/* Add new content to text links */

$('.info-box').powerTip();
3);
If you view the page in a browser, you’ll see that the data attributes we applied to
our links are already working; if you hover over one of the links, you’ll see the
corresponding information box displayed in a tooltip, as shown in the following
screenshot:

Pittsburgh is the second-largest city in the US Commonwealth of Pennsylvania and the county seat of Allegheny County.
Regionally, it anchors the largest urban area of Appalachia and the Ohio River Valley, and nationally, it is the 22nd-

largest urban ar S nopulation of the city in 2010 was 305,704 while that of the seven-county
metropolitan ar S _ wrtown Pittsburgh retains substantial economic influence, ranking at 25th in
the nation for jo 6th in job density.

Geogra| S

The characterist) M g i itral business district is a triangular tract carved by the confluence of the
Allegheny and N [RiRAREEEASES M ' the Ohio River. The city features 151 high-rise buildings, 446 bridges,
two inclined rail Ways, and @ presrevaiotionary fortification. Pittsburgh is known colloquially as "The City of Bridges" and

"The Steel City" for its many bridges and former steel manufacturing base.

That’s a good start, but we’ll want to change some of the PowerTip configuration
options and also the style of the tooltip.

. We’ll tackle the configuration options first. We’d like the information box tooltip to
show to the right of the links unless they don’t fit on the screen. We’d like to write
some new CSS styles, and we’d like to allow our site visitors to move their mouse
over the information boxes. The following code shows what we’ll add as
configuration options:

$('.info-box"').powerTip({

placement: 'e',

mouseOnToPopup: true,

smartPlacement: true,

popupId: 'infoTip'
1);
Setting the placement option to e will make the tooltips display on the right-hand (or
east) side of the links. We can make sure the tooltips are visible even for links near
the right-hand side of the screen by setting smartPlacement to true. We can use an
option called mouseoOnToPopup and set it to true to allow site visitors to move their
mouse onto the tooltip—this feature is particularly useful for those cases where we
might have links or other interactive content included in our tooltip content. Finally,
as we want to write some new CSS styles for the tooltip, we’re going to set a new ID
for the tooltips, for which we’ve chosen the infoTip ID.

. Now, the only thing left to do is to write some new CSS styles for the tooltips. We’re
going to change the background color to white and make sure the text can wrap. Feel
free to style your tooltips the way you want. The following code is a sample from the
example code included with the book:

/* Info box tooltips */

#infoTip {
cursor: default;
background-color: #fff;
border-radius: 7px;
box-shadow: © 0 15px rgba(0,0,0,0.5);
color: #444,;

display: none;
padding: 0;
position: absolute;
z-index: 2147483647,

}

#infoTip:before {
content: "";
position: absolute;

3

#infoTip.n:before, #infoTip.s:before {
border-right: 5px solid transparent;
border-left: 5px solid transparent;
left: 50%;
margin-left: -5px;

3

#infoTip.n:before {
border-top: 10px solid #fff;
bottom: -10px;

3

#infoTip.s:before {
border-bottom: 10px solid #fff;
top: -10px;

}

Now, if you view the page in a browser, you’ll see that the tooltips have their own
style and are displayed where we specified, as seen in the following screenshot:

Geography

The characteristic shape of Pittsburg is a triangular tract carved by the confluence of the
Allegheny and Monongahela rivers, wh ““e city features 151 high-rise buildings, 446 bridges,
two inclined railways, and a pre-revolu Hurgh is known colloguially as "The City of Bridges" and
"The Steal City" for its many bridges+ > 4 uring base.

The warmest month of the year in Pitt — our average of 72.6°F. Conditions are often humid, and
combined with the 90°F (occurring on IR FNERRE T S annum), a considerable heat index arises,
in Pittsburgh

More Information

Also, if the link gets too close to the right, PowerTip will figure out how to adjust the
placement of the tooltip to make sure it’s visible, as seen in the following screenshot:

metropolitan area stood at 2,356,285. Downtown Pittsburgh retains substantial economic influence, ranking at 25th in

the nation for jobs within the urban core and 6th in job density. — ‘
Geography \....‘ |
|

The characteristic shape of Pittsburgh's central business district is a triangular tract carved by th

Allegheny and Monongahela rivers, which form the Ohio River. The city features 151 high-rise buil:
two inclined railways, and a pre-revolutionary fortification. Pittsburgh is known colloquially as "Th

"The Steel City" for its many bridgoes and former steel manufacturing base. Ice cream beats the
summer heat

The warmest month of the year in Pittsburgh is July, with a 24-hour average of 72.6°F. Conditions
combined with the 90°F (occurring on an average of 8.4 days per annum), a considerable heat index arises.

Also, if you move your mouse over the tooltip, you’ll see it stays open to allow you
to interact with any content that might be inside.

. Now, there’s just one issue with our page: for users with JavaScript disabled, we set
up the links to jump down the page so that the relevant associated content was visible
on the screen. Now that our tooltips are working, this behavior feels a little odd; if the
content is already visible, why jump down the page to it?

We can fix that by canceling the browser’s default behavior when a link is clicked.
Go back to scripts. js and adjust your JavaScript as follows:

$('.info-box")
.on('click', function(e) {
e.preventDefault();

1))
.powerTip({

placement: 'e',

mouseOnToPopup: true,

smartPlacement: true,

popupId: 'infoTip'

1);

There are a few things going on here. Let’s start by talking about how .on and
.powerTip are divided in separate lines. For the most part, JavaScript doesn’t care
about white space, so we’re free to format our code the way we want. Computers
don’t have any issues parsing or reading our code even if it’s sloppy and the
indentations don’t line up. When our code is broken up onto separate lines, as shown
in the preceding code snippets, it’s easier for us humans, who might want to read or
edit the code, to read and understand. We don’t have to go searching through one
long line of code for what we’re looking for because, believe it or not, all this code is
technically just one line of JavaScript.

It’s easy for us to see that we’re working with some HTML element that has a CSS
class of info-box. We’ve got a function to tell the browser what to do when someone
clicks on this HTML element, and we’re setting up the powerTip method to display
tooltips.

Next, let’s talk about chaining. You can see in the preceding code that we’re only
referring to the HTML element with the class of info-box once, but we’re writing
two bits of code for it. jQuery allows us to do this with the feature called chaining.
Most jQuery functions (but not all) can be chained. For example, consider the
following line of code:

$('.foo').hide().addClass('bar').show();

This line of code will select an HTML element with a class of foo, hide it, add a new
CSS class to it, and then show it again. You can see how this chaining feature would
allow us to save quite a lot of typing.

What just happened?

We learned how we can pull in content from elsewhere on the page to be displayed inside
our tooltips. Being able to display the title attributes in a more attractive way is
definitely a nice feature, but the PowerTip plugin is even more powerful than that. By
adding HTML5 data attributes to our elements, we can specify any content to be
displayed inside our tooltips: links, images, text, icons, and so on. We learned how to
allow site visitors to move their mouse over the tooltips to interact with the content there.
Also, we saw how we can stop the browser from jumping down the page when the links
are clicked by preventing the default events from happening in response to actions.

Have a go hero — create clickable tooltips for an
image gallery

Set up an image gallery of a set of images of your choice. When each image is hovered
over, show a tooltip that provides a short description and links to an article on Wikipedia
for more information. Style the image gallery and tooltips the way you like.

Summary

In this chapter, we learned how to take basic links—the backbone of the Internet—and
enhance them to add some new behaviors and capabilities. We learned how to turn a list of
links into a tabbed interface and how to create customized tooltips for links. We also
learned how to load in any kind of content into those tooltips; we are no longer limited to
displaying simple text in them. Next up, let’s take a look at how we can combine link
customization with some other behaviors to create an interactive FAQ page.

Chapter 3. Making a Better FAQ Page

The Frequently Asked Questions (FAQ) page has been a mainstay of all types of websites
since the dawn of the Web. It’s used as a marketing page, as an attempt to reduce the
number of calls or e-mails to a customer service department and as a helpful tool for site
visitors to learn more about the company or organization they’re dealing with or the
products or services they’re interested in purchasing.

Though we’ll be building an FAQ page, for this example, the expand and collapse
techniques will be useful in many different situations—a list of events with event details, a
listing of staff or members with bios, a list of products with details—any situation where a
listing of items should be quick and easy for site visitors to scan, but where more
information should be readily and easily available upon demand when they find the thing
they’re looking for.

In this chapter, you’ll learn:

How to traverse an HTML document with jQuery
How to show and hide elements

How to use simple jQuery animations

How to easily toggle a class name for an element

Marking up the FAQ page

We’ll get started by taking some extra care and attention with the way we mark up our
FAQ list. As with most things that deal with web development, there’s no right way of
doing anything, so don’t assume this approach is the only correct one. Any markup that
makes sense semantically and makes it easy to enhance your list with CSS and JavaScript
is perfectly acceptable.

Time for action — setting up the HTML
file
Perform the following steps to get the HTML file set up for our FAQ page:

1. We’ll get started with our sample HTML file and associated files and folders, like we
set up in Chapter 1, Designer, Meet jQuery. In this case, our HTML page will contain
a definition list with the questions inside the <dt> tags and the answers wrapped in
the <dd> tags. By default, most browsers will indent the <dd> tags, which means the
questions hang into the left margin, making them easy to scan. Inside the <body> tag
of your HTML document, add a heading and a definition list as shown in the
following code:

<hi>Frequently Asked Questions</hi1>
<dl>
<dt>What is jQuery?</dt>
<dd>
<p>jQuery is an awesome JavaScript library</p>
</dd>

<dt>Why should I use jQuery?</dt>
<dd>
<p>Because it's awesome and it makes writing JavaScript faster and
easier</p>
</dd>

<dt>Why would I want to hide the answers to my questions?</dt>
<dd>
<p>To make it easier to peruse the list of available questions -
then you simply click to see the answer you're interested in reading.
</p>
</dd>

<dt>What if my answers were a lot longer and more complicated than
these examples?</dt>
<dd>
<p>The great thing about the <dd> element is that it's a
block level element that can contain lots of other elements.</p>
<p>That means your answer could contain:</p>

Unordered</1li>
Lists</1li>
with lots</1li>
of items</1li>
(or ordered lists or even another definition list)</1li>

<p>0r it might contain text with lots of special
formatting.</p>
<h2>0ther things</h2>
<p>It can even contain headings. Your answers could take up an
entire screen or more all on their own - it doesn't matter since the
answer will be hidden until the user wants to see it.</p>

</dd>

<dt>What if a user doesn't have JavaScript enabled?</dt>
<dd>
<p>You have two options for users with JavaScript disabled - which
you choose might depend on the content of your page.</p>
<p>You might just leave the page as it is - and make sure the
<dt> tags are styled in a way that makes them stand out and easy
to pick up when you're scanning down through the page. This would be a
great solution if your answers are relatively short.</p>
<p>If your FAQ page has long answers, it might be helpful to put a
table of contents list of links to individual questions at the top of
the page so users can click it to jump directly to the question and
answer they're interested in. This is similar to what we did in the
tabbed example, but in this case, we'd use jQuery to hide the table of
contents when the page loaded since users with JavaScript wouldn't need
to see the table of contents.</p>
</dd>
</d1>

. You can adjust the style of the page however you’d like by adding in some CSS
styles. The following screenshot shows how the page is styled in the example code
included with the book:

Frequently Asked Questions

What is jQuery?
jQuery is an awesome JavaScript library
Why should | use jQuery?
Because it's awesome and it makes writing JavaScript faster and easier
Why would | want to hide the answers to my questions?

To make it easier to peruse the list of available questions - then you simply click to see the answer you're
interested in reading.

What if my answers were a lot longer and more complicated than these
examples?

The great thing about the <dd> element is that it's a block level element that can contain lots of other elements.
That means your answer could contain:

Unordered

Lists

For users with JavaScript disabled, this page works fine as is. The questions hang
into the left margin and are bolder and larger than the rest of the text on the page,
making them easy to scan.

What just happened?

We set up a basic definition list to hold our questions and answers. The default style of the
definition list lends itself nicely to making the list of questions scannable for site visitors
without JavaScript. We can enhance that further with our own custom CSS code to make
the style of our list match our site.

Note

As this simple collapse-and-show (or accordion) action is such a common one, two new
elements have been proposed for HTML5: <summary> and <details> that will enable us
to build accordions in HTML without the need for JavaScript interactivity. However, at the
time of writing this, the new elements are only supported in Webkit browsers, which
require some finagling to get them styled with CSS, and are also not accessible. Do keep
an eye on these new elements to see if more widespread support for them develops. You
can read about the elements in the HTMLS5 specs (http://www.whatwg.org/specs/web-

apps/current-work/multipage/interactive-elements.html). If you’d like to understand the
elements better, the HTMLS5 Doctor has a great tutorial that explains their use and styling

at http://html5doctor.com/the-details-and-summary-elements/.

http://www.whatwg.org/specs/web-apps/current-work/multipage/interactive-elements.html
http://html5doctor.com/the-details-and-summary-elements/

Time for action — moving around an
HTML document

Perform the following steps to move from one element to another in JavaScript:

1. We’re going to keep working with the files we set up in the previous section. Open
up the scripts.js file that’s inside your scripts folder. Add a document ready
statement, then write a new empty function called dynamicFAQ, as follows:

$(document).ready(function(){
3);

function dynamicFAQ() {
// Our function will go here

}

2. Let’s think through how we’d like this page to behave. We’d like to have all the
answers to our questions hidden when the page is loaded. Then, when a user finds the
question they’re looking for, we’d like to show the associated answer when they click
on the question.

This means the first thing we’ll need to do is hide all the answers when the page
loads. We can do this just like we did with the tab exercise in the Chapter 2,
Enhancing Links. Get started by adding a class jsoff to the <body> tag, as follows:

<body class="jsOff">

Now, inside the document ready statement in scripts. js, add the line of code that
removes the jsoff class and adds a class selector of json:

$(document).ready(function(){
$('body').removeClass('jsOoff').addClass('json');

1)

Finally, in the styles.css file, add this bit of CSS to hide the answers for the site
visitors who have JavaScript enabled:

.json dd {
display: none;
}
Now if you refresh the page in the browser, you’ll see that the <dd> elements and the
content they contain are no longer visible (see the following screenshot):

Frequently Asked Questions

What is jQuery?
Why should | use jQuery?
Why would | want to hide the answers to my questions?

What if my answers were a lot longer and more complicated than these
examples?

What if a user doesn't have JavaScript enabled?

3. Now, we need to show the answer when the site visitor clicks on a question. To do
that, we need to tell jQuery to do something whenever someone clicks on one of the
questions or the <dt> tags. Inside the dynamicFAQ function, add a line of code to add
a click event handler to the <dt> elements, as shown in the following code:

function dynamicFAQ() {
$('dt').on('click', function(){
//Show function will go here
});
}
When the site visitor clicks on a question, we want to get the answer to that question
and show it because our FAQ list is set up as follows:

<dl>
<dt>Question 1</dt>
<dd>Answer to Question 1</dd>
<dt>Question 2</dt>
<dd>Answer to Question 2</dd>

</d1>

We know that the answer is the next node or element in the DOM after our question.
We’ll start from the question. When a site visitor clicks on a question, we can get the
current question by using jQuery’s $(this) selector. The user has just clicked on a
question, and we say $(this) to mean the question they just clicked on. Inside the

new click function, add $(this) so that we can refer to the clicked question, as
follows:

$('dt').on('click', function(){
$(this);
3);

4. Now that we have the question that was just clicked, we need to get the next thing, or
the answer to that question so that we can show it. This is called traversing the
DOM in JavaScript. It just means that we’re moving to a different element in the
document.

jQuery gives us the next method to move to the next node in the DOM. We’ll select
our answer by inserting the following code:

$('dt').on('click', function(){
$(this).next();
1)

. Now, we’ve moved from the question to the answer. Now all that’s left to do is show
the answer. To do so, add a line of code as follows:

$('dt").on('click', function(){
$(this).next().show();
});

. If you refresh the page in the browser, you might be disappointed to see that nothing
happens when we click the questions. Don’t worry—that’s easy to fix. We wrote a
dynamicFAQ() function, but we didn’t call it. Functions don’t work until they’re
called. Inside the document ready statement, call the function as follows:

$(document).ready(function(){
$('body').removeClass('jsOff').addClass('jsOn');
dynamicFAQ();

1)

. Now, if we load the page in the browser, you can see that all of our answers are
hidden until we click on the question. This is nice and useful, but it would be even
nicer if the site visitor could hide the answer again when they’re done reading it to
get it out of their way. Luckily, this is such a common task, jQuery makes this very
easy for us. All we have to do is replace our call to the show method with a call to the
toggle method as follows:

$('dt').on('click', function(){
$(this).next().toggle();
1)

Now when you refresh the page in the browser, you’ll see that clicking on the
question once shows the answer and clicking on the question a second time hides the
answer again.

What just happened?

We learned how to traverse the DOM—how to get from one element to another. Toggling
the display of elements on a page is a common JavaScript task, so jQuery already has
built-in methods to handle it and make it simple and straightforward to get this up and
running on our page. That was pretty easy—ijust a few lines of code.

Sprucing up our FAQ page

That was so easy, in fact, that we have plenty of time left over to enhance our FAQ page to
make it even better. This is where the power of jQuery becomes apparent—you can not
only create a show/hide FAQ page, but you can make it a fancy one and still meet your
deadline. How’s that for impressing a client or your boss?

Time for action — making it fancy

Perform the following steps to add some fancy new features to the FAQ page:

1. Let’s start with a little CSS code to change the cursor to a pointer and add a little
hover effect to our questions to make it obvious to site visitors that the questions are
clickable. Open up the styles.css file that’s inside the styles folder and add the
following bit of CSS code:

.jsoOn dt {
cursor: pointer;

}

.json dt:hover {
color: #ac92ec;

}

We’re only applying these styles for those site visitors that have JavaScript enabled.
These styles definitely help to communicate to the site visitor that the questions are
clickable. You might also choose to change something other than the font color for
the hover effect. Feel free to style your FAQ list however you’d like. Have a look at
the following screenshot:

Frequently Asked Questions

What is jQuery?

Why should | use jQuery?

Why would | want to hide the answers to my questions?

What if my answers were a lot longer and more complicated than these
examples?

What if a user doesn't have JavaScript enabled?

2. Now that we’ve made it clear that our <dt> elements can be interacted with, let’s take
a look at how to show the answers in a nicer way. When we click on a question to see
the answer, the change isn’t communicated to the site visitor very well; the jump in
the page is a little disconcerting and it takes a moment to realize what just happened.
It would be nicer and easier to understand if the questions were to slide into view.
The site visitor could literally see the question appearing and would understand
immediately what change just happened on the screen.

jQuery makes that easy for us. We just have to replace our call to the toggle method
with a call to the slideToggle method:

$('dt').on('click', function(){
$(this).next().slideToggle();

1),

Now if you view the page in your browser, you can see that the questions slide
smoothly in and out of view when the question is clicked. It’s easy to understand
what’s happening when the page changes, and the animation is a nice touch.

. Now, there’s just one little detail we’ve still got to take care of. Depending on how
you’ve styled your FAQ list, you might see a little jump in the answer at the end of
the animation. This is caused by some extra margins around the <p> tags inside the
<dd> element. They don’t normally cause any issues in HTML, and browsers can
figure how to display them correctly. However, when we start working with
animation, sometimes this becomes a problem. It’s easy to fix. Just remove the top
margin from the <p> tags inside the FAQ list as follows:

.content dd p {
margin-top: O;
}
If you refresh the page in the browser, you’ll see that the little jump is now gone and
our animation smoothly shows and hides the answers to our questions.

What just happened?

We replaced our toggle method with the slideToggle method to animate the showing
and hiding of the answers. This makes it easier for the site visitor to understand the change
that’s taking place on the page. We also added some CSS to make the questions appear to
be clickable to communicate the abilities of our page to our site visitors.

We’re almost there!

jQuery made animating that show and hide so easy that we’ve still got time left over to
enhance our FAQ page even more. It would be nice to add some sort of indicator to our
questions to show that they’re collapsed and can be expanded, and to add some sort of
special style to our questions once they’re opened to show that they can be collapsed
again.

Time for action — adding some final
touches

Perform the following steps to add some finishing touches to our FAQ list:

1. Let’s start with some simple CSS code to add a small arrow icon to the left side of
our questions. Head back into style.css and modify the styles a bit to add an arrow

as follows:
.jsOn dt:before {

border: 0.5em solid;
border-color: transparent transparent transparent #f2eeef;

content: '';
display: inline-block;
height: 0;

margin-right: 0.5em;
vertical-align: middle;
width: 0;

}

.JjsOn dt:hover:before {
border-left-color: #ac92ec;

}

You might be wondering about this sort of odd bit of CSS. This is a technique to
create triangles in pure CSS without having to use any images. If you’re not familiar
with this technique, I recommend checking out appendTo’s blog post that explains

pure CSS triangles at http://appendto.com/2013/03/pure-css-triangles-explained/.

We’ve also included a hover style so that the triangle will match the text color when
the site visitor hovers his/her mouse over the question. Note that we’re using the json
class so that arrows don’t get added to the page unless the site visitors have
JavaScript enabled. See the triangles created in the following screenshot:

Frequently Asked Questions

P What is jQuery?
Why should | use jQuery?

Why would | want to hide the answers to my questions?

What if my answers were a lot longer and more complicated than
hese examples?

p What if a user doesn't have JavaScript enabled?

2. Next, we’ll change the arrow to a different orientation when the question is opened.

http://appendto.com/2013/03/pure-css-triangles-explained/

We’ll create a new CSS class open and use it to define some new styles for our CSS
arrow using the following code:

.jsoOn dt.open:before {
border-color: #f2eeef transparent transparent transparent;
border-bottom-width: 0;

}

.jsOn dt.open:hover:before {
border-left-color: transparent;
border-top-color: #ac92ec;

}

Tip

Just make sure you add these new classes after the other CSS we’re using to style our
<dt> tags. This will ensure that the CSS cascades the way we intended.

3. So we have our CSS code to change the arrows and show our questions are open, but
how do we actually use that new class? We’ll use jQuery to add the class to our
question when it is opened and to remove the class when it’s closed.

jQuery provides some nice methods to work with CSS classes.

The addClass method will add a class to a jQuery object and the removeClass
method will remove a class. However, we want to toggle our class just like we’re
toggling the show and hide phenomenon of our questions. jQuery’s got us covered
for that too. We want the class to change when we click on the question, so we’ll add
a line of code inside our dynamicFAQ function that we’re calling each time a <dt> tag
is clicked as follows:

$('dt').on('click', function(){
$(this).toggleClass('open');
$(this).next().slideToggle();
1);

Now when you view the page, you’ll see your open styles being applied to the <dt>
tags when they’re open and removed again when they’re closed. To see this, have a
look at the following screenshot:

Frequently Asked Questions

w What is jQuery?

JQuery is an awesome JavaScript library

P Why should | use jQuery?

4. However, we can actually crunch our code to be a little bit smaller. Remember how
we chain methods in jQuery? We can take advantage of chaining again. We have a bit
of redundancy in our code because we’re starting two different lines with $(this).

We can remove this extra $(this) and just add our toggleClass method to the chain
we’ve already started as follows:

$(this).toggleClass('open').next().slideToggle();

This helps keep our code short and concise, and just look at what we’re
accomplishing in one line of code!

What just happened?

We created the CSS styles to style the open and closed states of our questions, and then we
added a bit of code to our JavaScript to change the CSS class of the question to use our
new styles. jQuery provides a few different methods to update CSS classes, which is often
a quick and easy way to update the display of our document in response to input from the
site visitor. In this case, since we wanted to add and remove a class, we used the
toggleClass method. It saved us from having to figure out on our own whether we
needed to add or remove the open class.

We also took advantage of chaining to simply add this new functionality to our existing
line of code, making the animated show and hide phenomenon of the answer and the
change of CSS class of our question happen all in just one line of code. How’s that for
impressive power in a small amount of code?

Summary

In this chapter, you learned how to set up a basic FAQ page that hides the answers to the
questions until the site visitor needs to see them. Because jQuery made this so simple, we
had plenty of time left over to enhance our FAQ page even more, adding animations to our
show and hide phenomenon for the answers, and taking advantage of CSS to style our
questions with special open and closed classes to communicate to our site visitors how our
page works. And we did all of that with just a few lines of code!

Next, we’ll learn how to build an interactive drop-down navigation menu.

Chapter 4. Building an Interactive
Navigation Menu

In 2003, an article published on A List Apart (http://alistapart.com) called Suckerfish
Dropdowns showed how HTML and CSS alone (with just a little JavaScript help for IE 6)
can be used to build a complex multilevel drop-down menu. The Suckerfish name derived
from the gorgeously designed demo of the technique, which featured illustrations of
remoras and sharksuckers. While useful, the original requires that the site visitors not
move their mouse outside the menu area while navigating or the menu disappears. Over
the years, the Suckerfish Dropdowns article has inspired a lot of spinoffs—Sons of
Suckerfish, Improved Suckerfish, and so on—that attempt to address the shortcomings of
the original. Because jQuery can make everything better, we’ll build on this idea using the
Superfish jQuery plugin to make the menu easier to use.

The developer of the Superfish plugin, Joel Birch, says that most support issues with the
plugin come from people not understanding the CSS for the menu. To be sure you have a
firm grasp on the CSS, I highly recommend reading the original Suckerfish Dropdowns
article on A List Apart at http://www.alistapart.com/articles/dropdowns.

To get started with this plugin, we’ll be building on a basic Suckerfish menu—as this menu
only requires CSS, we still get an interactive menu if we have JavaScript disabled. The
menu is just improved for users with JavaScript enabled.

In this chapter, we’ll learn:

e How to use the Superfish jQuery plugin to create a horizontal drop-down menu

e How to create a vertical fly-out menu with the Superfish plugin

e How to customize the drop-down and fly-out menus created with the Superfish
plugin

http://alistapart.com
http://www.alistapart.com/articles/dropdowns

The horizontal drop-down menu

The horizontal drop-down menu was for a long time a common item in desktop software
but challenging if not impossible to implement in websites until first CSS and, later,
JavaScript finally arrived on the scene to make them possible.

Time for action — creating a horizontal
drop-down menu

Let’s take a look at how we can use the Superfish plugin to enhance a CSS horizontal
drop-down menu:

1. To get started, we’ll create a simple HTML page and the associated folders and files
like we created in Chapter 1, Designer, Meet jQuery. To get started, we won’t attach
the styles.css file to our page. We’ll add that in later. The body of our HTML file
will contain a heading and a navigation menu that consists of nested unordered lists,
as follows:

<div class="content">
<h1>Butterflies</h1>
</div>

<ul id="sfNav" class="sf-menu'">
Papilionidae

Common Yellow Swallowtail</1i>
Spicebush Swallowtail</1i>
Lime Butterfly</1li>
0rnithoptera

Queen Victoria's Birdwing</1li>
Wallace's Golden Birdwing</1li>
Cape York Birdwing</1li>

</1i>

</1i>
Pieridae

Small White</1li>
Green-veined White</1i>
Common Jezebel</1i>

</1i>
Lycaenidae

Xerces Blue</1li>
Karner Blue</1li>
Red Pierrot</1li>

</1i>
Riodinidae

Duke of Burgundy</1li>
Plum Judy</1i>

</1i>
Nymphalidae

Painted Lady</1li>
Monarch</1i>
Morpho

Sunset Morpho</1i>
Godart's Morpho</1i>

</1li>
Speckled Wood</1i>

</1li>
Hesperiidae

Mallow Skipper</1li>
Zabulon Skipper</1i>

</1li>

Note that we’ve added an id variable of sfNav and a class of sf-menu to the
element that contains our menu. This will make it easy for us to select and style the
menu the way we’d like. If you view your page in the browser, it will look something
like the following screenshot:

Butterflies

. E]E]J'ﬂm!!ﬂ' &
o Common Yellow Swallowail
o Spicebush Swallowtail
Lime Butierfly
¢ Ormithoplera
= Queen Victoria's Birdwing
= Wallace's Golden Birdwing
= Cape York Bindwing
» Pigridac
o Small Whitg
o CGreen-veined White
o Common Jezebel
» Lycacnidac
o Xeroes Blue
o Kamer Blue
o Red Picrmot
* Riodinidac
o Duke of Burgundy
o Plam Judy
» Nymphalidac
o Painted Lady
Monarch
= Sunset Morpho
» Godar's Mompho
Speckled Wood
« Hesperiidae
= Mallow Skipper
o Zabulon Skipper

As you can see, we’ve organized our links into a hierarchy. This is useful to find the
information that we want, but it takes up quite a lot of space. This is where we can
use a technique of hiding extra information until it’s needed.

. Next, we need a copy of the Superfish plugin. Head over to
http://plugins.jquery.com/superfish/, where you’ll find Joel Birch’s Superfish plugin

http://plugins.jquery.com/superfish/

available for download along with links to documentation and examples. Superfish is
available in the official jQuery plugin repository, as shown in the following
screenshot:

\'= [Query Superfish Menu P =
C & [plugins.jguery.com/superfish/

C 9 = D a

L | Your donations help fund the continued
\-" JQ ue { development and growth of jQuery.
write less, do more.
~ SUPPORT THE PROJECT

Naming Your Plugin Publishing Your Plugin Package Manifest Search

jQuery Superfish Menu Plugin

) June 30, 2013
by Joel Birch

Superfish is a jQuery plugin that adds usability enhancements to multi-level drop-down menus.
Fully supports touch devices and keyboard interaction.

Tags ® Fork on GitHub
% dropdown % navigation @ % responsive Z view Homepage

[Read the Docs

Versions

VERSION DATE

1.7.4 Jun 30 2013

/™ Bug Reports

® GitHub Activity
1.73 Jun 12013

You can download a copy of the plugin by clicking on the orange Download now
button in the black box on the right-hand side corner of the page. By clicking on this
button, you will download a ZIP file to your computer. We’ll open that up and take a
look in a minute.

3. In the black box on the right-hand side corner, you’ll also find links to more
information about the plugin. If you follow the Read the Docs link, you’ll find the
documentation that explains how to use the Superfish plugin.

At the bottom of the Getting Started tab, you’ll find the plugin’s Quick Start
Guide, where you can see that there are three simple steps to implement the
Superfish plugin:

1. Write the CSS to create a Suckerfish-style drop-down menu.
2. Link to the superfish. js file.
3. Call the superfish() method on the element that contains your menu.

4. Now let’s unzip that file we downloaded and take a look inside. There are a lot of

files in there, and not all of them make sense.

bower.json
7 changelog.txt
> [l dist
b [examples
M Gruntfile.coffee
7 MIT-LICENSE.txt
package.json
E README.md
* [src
 superfish.jquery.json
* [test

Don’t be intimidated by those extra files that you don’t quite understand. Files such
as bower . json, Gruntfile.coffee, package.json, and superfish.jquery.json are
all for more advanced developers—you don’t have to give them a second thought at
this point, but if you realize that you actually kind of like working with JavaScript,
you might one day investigate things such as Grunt, CoffeeScript, and Bower.

In fact, the only folders we need to pay attention to here are dist and examples. In
the examples folder, you’ll find a couple of HTML files with working examples of
Superfish. Go ahead and open those in the browser if you’d like to take a look.

Inside the dist folder, you’ll find the JavaScript files required to get Superfish drop-
down menus working along with some sample CSS files.

We’ll use those sample CSS files to get started quickly. We’ll look at customizing the
appearance of our menu later, but for now, we’ll go ahead and use the CSS included
with the plugin.

. Inside the dist folder, the first file we’ll need is the superfish.css file from the css
folder. Copy this file to your own styles folder.

. Next, we’ll edit our HTML file to include the superfish.css file in the head of the
document:

<head>

<title>Chapter 4: jQuery for Designers</title>

<link rel="stylesheet" href="styles/superfish.css"/>
</head>

. Now, if you refresh the page in a browser, you’ll see that the long list of nested
elements has become a working Suckerfish drop-down menu, as shown in the
following screenshot:

Butterflies

Papilionidac Pieridae Lycaenidae Riodinidae Nymphalidae Hesperiidae

Common Yellow Swallowtail

Spicebush Swallowtail

Lime Buterfly

Omithoptera Queen Victoria's Birdwing
Wallace's Golden Birdwing
Cape York Birdwing

When you move your mouse over the first link, the nested element becomes
visible. If you move your mouse down to the last link in the drop-down menu, the
 element nested at the third level becomes visible.

Keep in mind that all of this is accomplished without JavaScript—ijust CSS. If you
spend a few moments using the menu, you’ll probably quickly recognize some
shortcomings. First, if you want to move your mouse from the Ornithoptera link to
the Cape York Birdwing link, your natural inclination is to move your mouse
diagonally. However, as soon as your mouse leaves the blue menu area, the menu
closes and disappears. You have to adjust to move your mouse directly right onto the
submenu, then down to the link you’re interested in.

Papilionidae Pieridac Lycacnidac Riodinidae Papilionidae Pieridac Lycaenidae Riodinidae
Common Yellow Swallowtail Common Yellow Swallowtail

Spicebush Swallowtail Spicebush Swallow il

Lime Buterfly Lime Butterfly

Omithopiera Queen Victoria's Birdwing Omithopera » Victoria's Birdwing

Wallace's Golden Birdwing 's Golden Birdwing

Cape York Birdwing York Birdwing

This is awkward and makes the menu feel fragile. If your mouse moves even 1 pixel
outside the menu, the menu collapses and disappears. Another problem is that the
menu opens as soon as the mouse hovers over it. If you are moving your mouse over
the menu moving from one part of the page to another, the menu opens and closes

10.

quickly, which can be distracting and unexpected.
This is a great place for jQuery to step in to make things a bit better and more usable.

Go back to the files we downloaded, and find the superfish. js file inside the js
folder. Copy it to your own scripts folder, and then attach the Superfish plugin to
the HTML page at the bottom of the file, between jQuery and the scripts. js file:

<script src="scripts/jquery.js"></script>
<script src="scripts/superfish.js"></script>
<script src="scripts/scripts.js"></script>
</body>
</html>

Next, open your scripts. js file and we’ll write the code to call the superfish()
method. As usual, we’ll get started with the document ready statement so that our
script runs as soon as the page is loaded into the browser:

$(document).ready(function(){
// Our code will go here.

1),

Looking at the documentation for the Superfish plugin, we see that we only have to
select the element that contains our menu and then call the superfish() method.
Inside our ready () method, we’ll add the following code:

$(document) .ready(function(){
$('#sfNav').superfish();

1)

Now, if you refresh the page in the browser, you’ll see the menu still looking very
similar, but with much improved behavior. The Superfish JavaScript and CSS work
together to add arrows to the menu items that have nested children. If you move your
mouse away from the menu, it does not disappear immediately, making it possible to
move the mouse diagonally to nested menu items. There’s also a subtle fade in
animation when the menu items appear. And a background color change to each
menu item on hover, making it easy to see which item is currently active.

What just happened?

We set up a navigation menu that consists of a set of nested lists, forming a hierarchy.
Next, we attached a CSS file to add simple drop-down functionality to our menu.
However, this CSS-only menu had a few shortcomings. So we attached the Superfish
plugin to take care of those and make our menu more user friendly.

The vertical fly-out menu

We saw how the addition of the Superfish plugin enhanced the user experience of our
drop-down menu, but what if we wanted to create a vertical fly-out menu instead?

Time for action — creating a vertical fly-
out menu

Switching from a horizontal drop-down menu to a vertical fly-out menu couldn’t be easier.
We’ll use the same HTML markup and our JavaScript code will stay the same. The only
difference we’ll need to make is to add some new CSS to make our menu display
vertically instead of horizontally. We can keep working with the same files we used in the
last example. Perform the following steps to create a fly-out menu:

1. In the css folder of the Superfish download, you’ll find a file named superfish-
vertical.css. Copy that file to your own styles folder. In the head section of the
HTML file, we’ll attach the new CSS file, after superfish.css, as shown in the
following code:

<link rel="stylesheet" href="styles/superfish.css"/>
<link rel="stylesheet" href="styles/superfish-vertical.css"/>

2. Now, inside your index.html file, find the element that holds the entire menu
and add a class of sf-vertical:

<nav>
<ul id="sfNav" class="sf-menu sf-vertical">
Papilionidae

Now refresh the page in a browser; you’ll see that the menu displays vertically with

flyouts:
Papilionidae Common Yellow Swallowtail
Pieridae Spicebush Swallowtail
Lycaenidae Lime Bunerfly
Riodinidae Omithoptera Queen Victoria's Birdwing
Nymphalidae Wallace's Golden Birdwing
Hesperiidae Cape York Birdwing

What just happened?

The only difference between the horizontal drop-down menu and the vertical fly-out menu
is the CSS file and a class name added to the menu container. By simply adding a new
CSS file, it’s possible to create a vertical fly-out menu instead of a horizontal drop-down

mendu.

Customizing the navigation menu

The included CSS with the Superfish plugin makes creating an interactive navigation
menu quick and simple, but a soft blue menu isn’t going to fit into every design, so let’s
customize the menu.

We’re going to take a look at how we can customize the look of the menu by writing our
own CSS, customize the animation to show the nested menus, and enhance the hover
behavior of the menu.

We’re going to get started by writing some CSS code to create a custom look for our
menus. We’re going to use the Suckerfish Dropdown approach to create a menu that will
work for our site visitors who don’t have JavaScript enabled. We’re going to create a
simple white menu with drop-downs in green with rounded corners, as shown in the
following screenshot:

Butterflies

Papilionidae Pieridae - Lycaenidae =~ Riodinidae -~ Nymphalidae = Hesperiidae ~

Common Yellow Swallowtail

Spicebush Swallowtail

Lime Butterfly

Queen Victoria's Birdwing

Wallace's Golden Birdwing

Cape York Birdwing

Here are some things to keep in mind as you write custom CSS for a drop-down or fly-out
menu.

:hover and .sfHover

In the CSS file provided with the Superfish plugin, you’ll see that the :hover pseudoclass
is always used together with the .sfHover class. So you’ll see the following lines in the
.css file:

.sf-menu li:hover > ul,
.sf-menu 1li.sfHover > ul {

display: block;
}
Prior to IE 7, the IE browsers did not support the : hover pseudoclass for elements other
than links (<a>). The plugin dynamically added and removed this class from list items that
were hovered over to enable the drop-down menus to work in all the versions of IE.

These days, usage of IE 6 has fallen off to tiny proportions for most websites and it’s often
not worth the extra effort required to make sure your pages look and work perfectly in this
outdated browser.

Just in case you do find yourself in the unenviable position of having to write code that
works in IE 6, you’ll want to make sure that you include the .sfHover class in your CSS
file. However, if you don’t need to support IE 6, then you can safely skip including the
extra lines in your CSS file.

Cascading inherited styles

It’s the very nature of CSS for styles to cascade down the DOM and be applied to all
children of the selector as well as the selector itself. So, write code to style the list items of
the first-level menu as follows:

ul.sf-menu 1i {
background: #cc0000; /* Dark red background */

}

All of the <1i> elements in your menu are going to have a dark-red background, no matter
which level of the menu they appear in. If you want to apply different styles to different
menu levels, you’ll have to override the cascade in other lines of code. For example, if I
wanted to make the second-level menu have a dark-blue background, I’d add the
following snippet of CSS after the preceding code:

ul.sf-menu 1i 1i {
background: #0000cc; /* Dark blue background */

}

This means for an <1i> inside another <1i>, the background will be blue. Keep in mind
that now this style will in turn cascade down to other menu levels, so if you want a dark-
green background for the third-level menu, you’ll need to add another bit of CSS as
follows:

ul.sf-menu 1i 1i 1i {
background: #00cc00; /* Dark green background */

}

In some cases, making use of direct descendent selectors in your CSS file can help to
prevent you from having to write too many lines of CSS overriding styles written for
elements higher up in the DOM. For example, consider the following code:

ul.sf-menu > 11 {
background: #cc0000; /* Dark red background */

}

This bit of CSS takes advantage of a direct descendent selector (>). The dark-red
background, in this case, will only apply to <1i> elements nested directly inside the
element with a class of .sf-menu. It will not cascade down to the second- or third-level
menus.

Pop quiz — understanding the cascade in CSS

Go through the following CSS code for a nested list navigation menu:
ul { background: #3BAFDA; }

ul 1i { background: #4FC1E9; }

ul > 1i { background: #AC92EC }

ul 1i 11 { background: #967ADC; }

Q1. What color will the background of the second level of links be?

1. #3BAFDA
2. #4FC1E9
3. #AC92EC
4. #967ADC

Styling the :focus pseudoclass

You won’t want to leave out anyone who chooses to navigate your page with their
keyboard rather than their mouse, so you’ll want to make sure that each time you style the
:hover pseudoclass for links, that you also write styles for the : focus pseudoclass. This
will make it possible for a site visitor to easily see what link is currently selected. Style
both the :hover and : focus pseudoclasses as follows:

.sf-arrows > 1i > .sf-with-ul:focus:after,
.sf-arrows > li:hover > .sf-with-ul:after {
border-top-color: white;

}

Note that it’s not necessary to write the : focus styles for list items. List items don’t
receive focus by using the Tab key on the keyboard, so adding extra styles for them won’t
have any effect. You only have to worry about the : focus styles for links.

Time for action — customizing Superfish
menus

Customizing a Superfish menu mostly involves writing your own CSS code to style the
menu the way you’d like. The following steps show how we’ll create a custom look for
the menu:

1. If you remember some web basics, you’ll remember that CSS stands for Cascading
Style Sheets. This cascading feature is what we’ll focus on here. Any styles we write
for the top level of our menu are going to cascade down to the other levels of the
menu. We have to remember this and handle all the cases where we’d rather stop a
style from cascading downward.

We’ll keep working with the same index.html file, but we won’t need the
superfish.css or superfish-vertical.css files any longer. We’ll now attach our
styles.css file to the index.html file to apply all of our default styles. Let’s get
started by writing some general styles for the menu container and other elements.
Place the following code inside your styles.css file:

/* General */

nav {
margin: 2em O;

}

.sf-menu {
background: white;
border-radius: 7px;

}

.sf-menu:after {
clear: both;
content: '';
display: table;
}
Here we’re just giving our navigation menu some breathing room with a generous
margin and giving the menu a white background and round corners. However, what’s

that last bit, with the :after pseudoclass in the selector?

We’re going to float our list items inside our navigation bar. We have to make sure
we clear the floats so that the background color we’ve set is visible. This method of
using the :after pseudoclass and setting the clear, content, and display attributes
is clean and simple, which doesn’t require any extra markup and works well across
many browsers.

2. Next, let’s style the top level of our menu. Add the following code to your
styles.css file:

/* Level 1 */

.sf-menu 1i {
position: relative;
white-space: nowrap;

}

.sf-menu li:hover {
background: #a0d468;

}

.sf-menu a {
color: #444,
display: block;
padding: 1.5em lem;
position: relative;
text-decoration: none;

}

.sf-menu a:hover {
background: #a0d468;
color: white;

}

.sf-menu > 1li:first-child,
.sf-menu > li:first-child a {

border-top-left-radius: 7px;
}

.sf-menu > 11 {
float: left;

}

We’re adding a green background to the menu items on hover and changing the font
color from a dark grey to white. We’re also adding the corner radius to the first item
to make sure the menu bar still has a top-left rounded corner when the first item is
hovered over.

. Next, let’s take a look at how we’ll style the second level of our menus. Add the
following CSS code to your styles.css file to style the second level:

/* Level 2 */

.sf-menu ul {
background: #a0d468;
border-bottom-right-radius: 7px;
border-bottom-left-radius: 7px;
display: none;
left: 0,
min-width: 12em;
position: absolute;
top: 100%;
z-index: 99;

}

.sf-menu ul li:hover {

background: #8cc152;
}

.sf-menu ul a:hover {
background: #8cc152;

}

.sf-menu li:hover > ul {
display: block;
}

.sf-menu ul > li:last-child,

.sf-menu ul > li:last-child a {
border-bottom-left-radius: 7px;
border-bottom-right-radius: 7px;

}

The items in this menu level have a green background and turns to a darker green on
hover. We have also added rounded corners to the bottom, which requires us then to
add rounded corners to the last item in each nested element.

. Finally, we still have a third level of menu to style. Add these styles to your
styles.css file:

/* Level 3 */

.sf-menu ul ul {
background: #8cc152;
border-top-right-radius: 7px;
top: O,
left: 100%;

}

.sf-menu ul ul li:hover {
background: #7bb140;

}

.sf-menu ul ul a:hover {
background: #7bb140;

}

.sf-menu ul ul > 1li:first-child,
.sf-menu ul ul > li:first-child a {
border-top-right-radius: 7px;

}

.sf-menu ul ul > li:last-child,
.sf-menu ul ul > li:last-child a {
border-bottom-right-radius: 7px;

}

This third level has a background color that’s just a shade darker than the level
before, and when hovered, turns another shade darker. The progression to darker
shades of green helps to communicate the relationships between the items in our
menu.

5. The last thing we need to do is write some styles to add arrows to our menu items if
they have submenu items hiding underneath them. These styles are only used if
JavaScript is enabled, but they’re one more little thing Superfish does to make our
menus more user-friendly. We’ll use the same CSS triangle technique that we’ve seen
a couple of times already. Add the following CSS code to your styles.css file:

/* Extras */

.sf-arrows .sf-with-ul {
padding-right: 2.5em;
}

.sf-arrows .sf-with-ul:after {
border: 5px solid transparent;
border-top-color: #444;
content: '';
height: 0;
margin-top: -3px;
position: absolute;

right: lem;
top: 50%;
width: 0;

}

.sf-arrows > 1i > .sf-with-ul:focus:after,
.sf-arrows > li:hover > .sf-with-ul:after {
border-top-color: white;

}

.sf-arrows ul .sf-with-ul:after {
margin-top: -5px;
margin-right: -3px;
border-color: transparent;
border-left-color: #e7f2dc;

}

.sf-arrows ul 1i > .sf-with-ul:focus:after,
.sf-arrows ul li:hover > .sf-with-ul:after {
border-left-color: white;

}

And take a deep breath, because we’ve finally reached the end of the CSS code to
create a custom style for the menu. The bonus of this CSS code is that it will work
even without JavaScript enabled. The Superfish plugin just enhances the menu and
makes it more usable.

What just happened?

We wrote custom CSS to style our menu to match a design that we created. We had to dig
into the cascading feature of CSS and decide which styles should cascade down through
all levels of the menu and which should not. Just be patient and keep the cascade in mind
as you work down through the levels of the menu.

The hoverIntent plugin

Earlier, I pointed out that one problem with our menu was how quickly the menu reacted
to the mouseover event. Any time the mouse is moved over the menu, the nested menus
open. While that might seem like a good thing at first, it might be disconcerting or
surprising to site visitors if they are simply moving their mouse on the screen and aren’t
intending to use the drop-down or fly-out menus.

The Superfish plugin has built-in support for the hoverIntent plugin. The hoverIntent
plugin sort of pauses the mouseover event and makes the page wait to see if the mouse
slows down or stops on an item to make sure it’s what the site visitor intended to do. That
way if the site visitor just happens to roll their mouse over the drop-down menu on their
way to something else on the page, the submenus won’t start appearing, throwing them
into confusion.

If you’ll recall, the hoverIntent plugin was actually included in the ZIP file when we
downloaded the Superfish plugin. To take advantage of the hoverIntent plugin, perform
the following steps:

1. In the Superfish download, locate the hoverIntent.js file inside the js folder and
copy the file to your own scripts folder.
2. Next, we need to attach the hoverIntent plugin to our HTML page.

Tip

Don'’t forget to keep dependencies in mind when attaching multiple JavaScript files
to a page. All jQuery plugins depend on jQuery to operate, so jQuery needs to be
attached to your page before any plugins. In this case, the Superfish plugin depends

on the hoverIntent plugin, so we need to make sure hoverIntent is added to our page
before the Superfish plugin.

Add the new <script> tag to the bottom of your page with the other scripts as
follows:

<script src="scripts/jquery.js"></script>
<script src="scripts/hoverIntent.js"></script>
<script src="scripts/superfish.js"></script>
<script src="scripts/scripts.js">

</script>

</body>

</html>

Now if you refresh the page in a browser, you’ll see that there’s a short pause when
your mouse moves over the menu before the nested submenu appears. And if you run
your mouse across the page quickly, crossing the menu, no unwanted submenus
appear on the page.

Time for action — incorporating custom
animations

Next, a sliding animation would be better suited to our menu style. The default animation
is to fade the submenus in. We can override this default behavior and replace it with a
sliding animation.

1. Fading the menu in means that the menu opacity is animating from 0 percent to 100
percent. We’d rather animate the height of the submenu, so that the submenu slides
into view. To do that, open up your scripts. js file and customize the animation
value inside the superfish() method as follows:

$(document).ready(function(){
$('#sfNav').superfish({
animation: {height:'show'}

3);
1)
Just adding a value here will override the default behavior of the plugin and replace it
with the animation we choose instead.

Now when you refresh the page in a browser, you’ll see the submenus slide into view
instead of fade in, which is a much more fitting animation for the CSS We’ve used to
style the menus.

What just happened?

We took advantage of one of the customization options for the Superfish plugin to change
the show animation of the nested subnavigation links. There are more customization
options covered in the documentation of the Superfish menu.

Have a go hero — further customizing the Superfish
menu

Review the styles that make a CSS-only drop-down menu work and look through the
documentation for the Superfish plugin. Design and build your own custom drop-down or
fly-out menu. Try using the different customization options for the Superfish plugin that
are outlined in the documentation.

Summary

Whew! That was a lot of work we just did, but I have to say we have a pretty impressive
navigation menu to show for our efforts. We learned how to use the Superfish jQuery
plugin to produce horizontal drop-down menus or vertical fly-out menus. Also, we learned
how to fully customize the look and feel of our menu to fit our site design perfectly. Being
able to hide subsections of the site until they’re needed makes a complex navigation
structure less overwhelming for your site visitors. It’s simple and clear to see what the
main sections of the site are, and they can easily drill down to just the content they want.

Next, we’ll take a look at displaying content in lightboxes.

Chapter 5. Showing Content in
Lightboxes

It’s become common to see galleries of photos displayed in lightboxes on the Web.
Lightboxes can be useful for other things too—playing videos, showing additional
information, displaying important information to site visitors, or even showing other
websites. In this chapter, we’ll see how to use the flexible and adaptable Colorbox plugin
to create lightboxes for a variety of purposes.

An example of an image shown in a lightbox is depicted in the following screenshot:

Chapter 5: |Query for De

L C A file:/ / /Users/natalie /Desktop/jQ4D%202ed /Chapter®205/453507_05_For¥20Rewrites /code/ 1%20-%20simple. .,

In this chapter, we’ll take a look at how to use the Colorbox plugin to do the following:

e Create a simple photo gallery
e Customize photo gallery settings

¢ Build a fancy login box

¢ Play a collection of videos

e Create a one-page website portfolio

A simple photo gallery

A simple photo gallery is probably the most common use for lightboxes. We’ll set up a
page that shows thumbnails of each photo and displays the full-size image in a lightbox
when the thumbnail is clicked. To get started, you’ll need a series of photographs with
smaller-sized thumbnails of each.

Time for action — setting up a simple
photo gallery

We’ll walk through the creation of a simple photo gallery with the Colorbox plugin:

1. We’ll get started by setting up a basic HTML page and associated files and folders
just like we did in Chapter 1, Designer, Meet jQuery. The body of the HTML
document will contain a heading and a list of thumbnails as shown in the following
code:

<div class="content">

<h1>Ireland</h1>
</div>
<ul class="thumb-list">

<a href="images/cemetary.jpg" title="Celtic Cemetary with Celtic
Crosses" rel="ireland"><img src="images/thumbs/cemetary.jpg"
alt="Celtic Cemetary"/></1i>

<a href="images/cliffs-of-moher.jpg" title="Cliffs of Moher"
rel="ireland"><img src="images/thumbs/cliffs-of-moher.jpg" alt="Cliffs
of Moher"/></1i>

</Qi;
Note that we’ve wrapped each thumbnail in a link to the full-size version of the
image. If you load the page in a browser, you’ll see that the page works for users with

JavaScript disabled. Clicking on a thumbnail opens the full-sized image in the
browser. The back button takes you back to the gallery.

Note that we’ve also included a title attribute on each link. This is helpful for our
site visitors as it will show a short description of the image in a tooltip when they
hover over the thumbnail with their mouse, but it will also be used later on for the
Colorbox plugin. We’ve also included a rel attribute on each link and set its value to
ireland. This will make selecting our group of links to Ireland’s images easy when
we’re ready to add the Colorbox plugin’s magic.

2. Next, we’ll add a bit of CSS to lay our images out in a grid. Open styles.css and
add the following styles:

.thumb-1list {
margin: 2em 0O;
text-align: center;

}

.thumb-1list 1i {
display: inline-block;
padding: 0.5em;

}

Refresh the page and you will see something like the following screenshot:

(—

Feel free to play around a bit with the CSS to create a different layout for your image
thumbnails if you’d like.

. Now, let’s add the jQuery magic. We’re going to use Jack Moore’s Colorbox plugin.
Head over to http://jacklmoore.com/colorbox to find the downloads, documentation,
and demos. You’ll find the download link near the top of the page. Just click on the
big blue Download link to download a ZIP file.

http://jacklmoore.com/colorbox

4§ Colorbax - a jQuery light » ’

www jackimoore.com/colorbox

R -

[= [
@M

) s 2357

Moore W I3

Colorbox - a jQuery lightbox

A lightweight customizable lightbox plugin for jQuery

View Demos
00000

Download

Released under the MIT License. Source on Github (changelog).
Compatible with: jQuery 1.3.2+ in Firelox, Safari, Chrome, Opera, Internet Explorer 7+
Bower Package: jguery-colorbox

C) Fork @73

Supports photos, grouping, slideshow, ajax, inline, and iframed content.
Lighteeight: 10KB of JavaScript (less than 5KBs gzipped).
Appearance is controied through CSS so it can be restyled.

* Can be extended with callbacks & event-hooks without altering the source files
Completely unobtrusive, oplions are set in the JS and require no changes to existing HTML.
Preloads upcoming images in a pholo group.
Currently used on more than 1.9 milion websites.

Archive &= RSS

jQuery Plugins
Colorbox » jOuery lightbox. Mead the FAQ?
Autosize » auto-sizing for textares elements

Zoom » enlenge images on Mouseover.

Wheelzoom « enlarge images on mousawheel.

Recent Posts

Rounding Decimals in JavaScript
Cross-browsor mouse positioning
CHE Ribbon Manu

[Query Maodal Tutorial

A Batter jOuery Accordion

Fixing IE's Opacity Inhedtance
[Ouery Tabs Tutaral

HTMLS Placeholdar Attibule
MaturalWidth and MaturalHeight in IE
Colorbox with Flickr Fead

Tragady Struck On Threadless
Working with JavaScnpt click events
Solving IET & |EB PNG Opacity Problams

JavaBeript: Slice, Bubstring, or Subsir?

4. Unzip the folder and take a look inside it. You’ll not only find the plugin script file

but a lot of other goodies as well.

Name

yYyYyYyYyY vy wy yy

[i18n

=
|

| bower.json

__ colorbox.ai

| colorbox_jguery.json
[content

[examplel

[1] example2

[example3

[example4

[] examples

= jguery.colorbox-min.js
jguery.colorbox.js
README.md

The plugin code itself is contained in the two JavaScript files—you’ll find both the
development and minified versions. Each of the five example folders contains an
example file (index.html) that shows the plugin in action. Why five different folders
you might ask? Each folder contains the same basic example but with five different

styles for Colorbox. These same examples can be viewed on the Colorbox website by
clicking the numbers in the View Demos section on the website.

Right out of the box, the plugin’s developers provide us with five different
possibilities for our Colorbox’s look and feel. And if that’s not enough choice,
they’ve also included a colorbox.ai (Adobe Illustrator) file that contains all the
image assets used to create these five different looks. You can customize them to
your heart’s content and then export your new fully customized look from Illustrator
to create your own appearance. Changing colors and special effects is straightforward
enough, but remember that if you change the size and shape of the image assets,
you’ll have to touch up the accompanying CSS file to accommodate the new sizes.

The content folder contains the image assets that make the examples work. We again
see the . json files for Bower—you can safely ignore those for now. If you find that
you really like working with jQuery and want to move on to more advanced
techniques, you can explore Bower. We’ve also got a README file and an i18n folder
—this is for internationalization or translating the plugin so that it can be used on
sites written in languages other than English.

. Try out each of the different examples, either on the website or using the example
files included in the ZIP download file. Note that the appearance, size, and placement
of the back and forward buttons, the close button, the caption, and the pagination
indicator (Image 1 of 3), among others, are all controlled via CSS—not the plugin
code itself. This makes it very easy to customize the look and feel; it’s all done via
CSS rather than in JavaScript.

. Copy jquery.colorbox-min. js from the Colorbox download to your own scripts
folder.

. We’ll get started by choosing one of the provided CSS styles. Pick your favorite, then
copy and paste its CSS file to your own styles folder. Open up the images folder for
that CSS skin and copy and paste the images from that folder to your own images
folder. Once you’ve chosen a style, your own setup should look like the one shown in
the following screenshot:

Name Show items as icons, in a list, in colu
‘with Cover Flow

v [image-
| border.png
“ cemetary.jpg
« cliffs-of-moher.jpg
== controls.png
@ dublin.jpg
« falling-in.jpg
« guagan-barra.jpg
« inis-more.jpg
@ inis-mored.jpg
@ inis-more3.jpg
loading_background.png
loading.gif
mizen-head.jpg
« obriens-tower.jpg
W overlay.png
« random-castle.jpg
» [thumbs
« turoe-stone.jpg
& index.html
¥ [l scripts
& jguery.colorbox-min.js
= jquery.js
B scripts.js
v [styles
5 colorbox.css
&) styles.css

3

The index.html file contains the HTML with thumbnail images that link to full-sized
versions. The images folder contains the images provided with your chosen Colorbox
skin, along with your own images for the slideshow, both the thumbnail and full-
sized versions. The scripts folder contains jQuery (jquery.js) and the Colorbox
plugin script (jquery.colorbox-min.js). The styles folder contains the CSS file
for the Colorbox skin you chose.

. We do have to open up colorbox.css to make a minor set of edits. In the example
files, the CSS file is not in a styles or css folder, but rather sits at the top level
alongside the index.html file. We’ve chosen to follow our preferred convention and
store our CSS in our styles folder. This means that we’ll have to open the
colorbox.css file and update the references to the images in the CSS. We’ll have to
modify file paths that look like this:

#cboxTopLeft{
width: 21px;
height: 21px;
background: url(images/controls.png) no-repeat -100px 0O;

}
The new file paths should look like this:

#cboxTopLeft{

10.

11.

12.

width: 21px;
height: 21px;
background:url(../images/controls.png) no-repeat -100px 0;

}

We’re just telling the CSS to go up one level and then look for the images folder. You
should be able to replace all of these quickly by using the Find and Replace
functionality of your text editor.

Next, open up your index.html file and attach the colorbox.css file in the head
section, before your own styles.css:

<head>
<title>Chapter 8: Showing Content in Lightboxes</title>
<link rel="stylesheet" href="styles/colorbox.css"/>
<link rel="stylesheet" href="styles/styles.css"/>
</head>

Then, head down to the bottom of the file, just before the closing </body> tag and
attach the Colorbox plugin, after jQuery and before your own scripts. js file:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.colorbox-min.js"></script>
<script src="scripts/scripts.js'"></script>

Now, remember the rel="ireland" attribute we included on each of our links?
We’re going to use that in our JavaScript to select all of our Ireland image links for
the Colorbox plugin. Open your scripts.js file and write the attribute selector to
select all links with a rel attribute equal to ireland inside the document’s ready
statement:

$(document).ready(function(){
$('a[rel="ireland"]"')
1);
The only thing left to do is call the colorbox() method on those links—the Colorbox
plugin will take care of everything else for us.

$('a[rel="ireland"]"').colorbox();

Now, if you open the page in the browser and click on one of the thumbnail images,
you’ll see the full-size image open up in a Colorbox. You can navigate through all of
the full-size images without having to close the lightbox, thanks to the back and
forward buttons. You can also move between the images by pressing the left and right
arrow keys on your keyboard. The pagination indicator helps you to see where you
are in the collection of photos. You’ll also notice that the title attribute included on
each link gets reused as an image caption for each image. The Colorbox can be
closed by clicking on the close button, clicking outside the Colorbox, or by hitting
the Esc key on your keyboard. All in all, it’s a pretty nice experience right out of the
box.

What just happened?

We used the Colorbox jQuery plugin to turn a list of links to images into a lightbox that
allows site visitors to navigate through the full-size images without leaving the page. We
used the title attribute of the links to provide captions for the images. We used one of the
five Colorbox styles provided with the plugin to create a nicely designed lightbox.

Customizing Colorbox’s behavior

If you take a look through the Settings section of the Colorbox website, you’ll see that
you have plenty of options to customize how Colorbox behaves. Let’s take a look at how
we can put some of these options to use. For this section, we’ll keep working with the files

we set up in the previous section.

Transition

First up, we’ll try out the different transition effects that are available. The default
transition is elastic. If your full-size images are all different sizes, you’ll see that
Colorbox uses a nice resizing animation to transition between them. The other options for
transitions are fade and none. Let’s take a look at how we can modify the transition.

Time for action — using a custom
transition

Follow these steps to change the default transition between images:

1. For this example, we’ll take a look at how to use the fade transition. Open your
scripts.js file. All we have to do is pass the fade value for transition to the
colorbox() method as follows:

$(document).ready(function(){
$('a[rel="ireland"]"').colorbox({transition:'fade'});

1),

Note that we’ve added some curly braces inside the parentheses. Inside these curly
braces, we can pass in key/value pairs to customize different aspects of the Colorbox.
In this case, the key is transition and the value is 'fade'.

If you reload the page in the browser, click one of the thumbnails, and then click the
next and previous buttons to flip through the images; you’ll see that the Colorbox
fades out and then back in between each image.

. What if we decided that we’d rather get rid of the transitions altogether? We’d simply
have to change the value for the transition key to 'none’.

$(document) .ready(function(){
$('a[rel="ireland"]').colorbox({transition: 'none'});

1)

Now, if you refresh the page in the browser, you’ll see that the images change
without any transition effect between them.

What just happened?

We saw how to take advantage of one of the available settings with the Colorbox plugin
and modified the transition between images as our site visitor moves through them.

Fixed size

In a case where the photos you’re loading into the Colorbox are of widely varying sizes,
you might decide that all the resizing is distracting to the site visitors and that you want to
set a fixed size for the Colorbox. That’s easy to do as well, by passing in a couple more
key/value pairs. Looking through the documentation, you’ll see that there are many
settings to control the width and height of the Colorbox. To keep things simple, we’re
going to use width and height.

Time for action — setting a fixed size

Follow these steps to set a fixed width and height for the Colorbox:

1. Open up your scripts. js file. We’re going to make a few changes to our code to set
a fixed width and height for the Colorbox:

$('a[rel="ireland"]"').colorbox({
transition: 'none',
width: '90%',
height: '70%'

});

2. Now, if you refresh the page in the browser window, you’ll see that the Colorbox
remains the same size. No matter what size the images or the browser window is,
Colorbox will always fill 90 percent of the width and 70 percent of the height of the
browser window. The images inside resize proportionally to fit into the available
space if they are too large.

3. You can set a fixed width and height in pixels or percentages. Percentage height and
width are useful in responsive designs. You can be sure that your site visitor will see
the entire image, no matter what size their screen happens to be.

What just happened?

We set the width and height settings to percentage values. This is a really helpful option
if you have large photos that could potentially be larger than your site visitor’s browser
window. Setting the width and height values to percentage values ensures that in this
case, the Colorbox will be 90 percent of the width and 70 percent of the height of your site
visitor’s browser window, no matter what size the browser window happens to be. This
way, if the browser window is small, your site visitor will be able to see the complete
photo.

Colorbox also provides some other settings for the width and height:

¢ innerWidth/innerHeight: These keys provide the width and height values for the
content inside the Colorbox instead of for the Colorbox itself. This can be helpful in
cases where you know the exact width and height of the actual content, for example,
a video player.

e initialWidth/initialHeight: Colorbox is very flexible and can be used for a variety of
different content (as we’ll see shortly). Setting an initialwidth and initialHeight
set of values allows you to control the size of the Colorbox before any content is
loaded in. If you load in content via AJAX, it can take a few moments to load into the
Colorbox. Setting initialwidth and initialHeight allows you to specify how large
the Colorbox should be while you wait for the content to be loaded in.

e maxWidth/maxHeight: These keys allow you to set a maximum width and
maximum height for the Colorbox. If the content is smaller, then the box will appear
smaller on the screen. However, when you’re loading larger content, it won’t exceed
the maxwidth and maxHeight values you specify. For example, if you want to set up a
Colorbox for images in a variety of sizes, you can allow Colorbox to be resized with
fade or elastic transitions between images, but set maxwidth and maxHeight to be sure
that larger images won’t exceed the visitor’s browser window.

Creating a slideshow

Colorbox also provides us with an option to automatically cycle through all the images so
that the visitor doesn’t have to continually click on the next button to see them all.

Time for action — creating a slideshow

We’ll keep working with the files we created in the previous section. Here’s how we can
turn our lightbox image gallery into a slideshow:

1. Open scripts.js. We’re going to add another key/value pair to our settings. To
create a slideshow inside our Colorbox, set the slideshow key to true:

$('a[rel="ireland"]"').colorbox({
transition: 'none',
width: '90%',
height: '70%',
slideshow: true

1),

Now, if you refresh the page in the browser, you’ll see that after you open the
Colorbox, it automatically cycles through the images, using whichever transition
effect you’ve chosen. A link is provided so that site visitors can stop the slideshow at
any time. You will see your Colorbox similar to the one shown in the following
screenshot:

| Chapter 5: jQuery for De

« C # [file:///Users/natalie/Desktop/jQ4D%202ed/Chapter¥®205/45350T_05_For%20Rewrites /code/2%20-%20customi... 7. ﬂ'

2. Colorbox provides a few more keys that we can use to control the slideshow. We can
provide a value for slideshowSpeed to set the number of milliseconds for which each

photo will be displayed. If we don’t want the slideshow to automatically play, we can
set slideshowAuto to false. We can change the text that appears in the link to start
and stop the slideshow by passing in values for the slideshowStart and
slideshowStop keys respectively. This would all look like the following code:

$('a[rel="ireland"]"').colorbox({
transition: 'none',
width: '90%',
height: '60%',
slideshow: true,
slideshowSpeed: 2000,
slideshowAuto: false,
slideshowStart: 'Let\'s get started!',
slideshowStop: 'Ok, that\'s enough.'

1),

With this code, we’ve set up our slideshow to show each photo for 2 seconds (2000
milliseconds), to not start the slideshow automatically, and to customize the text on the
links that start and stop the slideshow.

Note that each key/value pair is separated by a comma, but that there’s no comma after the
last key/value pair. No comma after the last one is only important for Internet Explorer—if
you accidentally put a comma after the last key/value pair in Internet Explorer, it will
throw an error and none of your JavaScript will work. Other browsers will ignore that last
comma and continue to work gracefully.

Note

Always test your work in Internet Explorer before you make it available to the public.

Let’s talk for a minute about the \' set of characters that appear in the text we’re using for
the link to start and stop the slideshow. Since these are strings, we have to wrap them in
quote marks; either 'single' quotes or "double" quotes will work, and which one you
choose is a matter of personal preference. We have to tell JavaScript that these are part of
my string and not characters that JavaScript should pay attention to. In JavaScript-speak
this is called escaping those characters.

Consider the following line:

slideshowStart: 'Let's get started!'

When JavaScript got to the ' character in Let's, it would get confused because it would
think that it had reached the end of the string and wouldn’t know what to make of the rest
of that line of text. It would throw an error.

In this case, if our personal preference were for using double quotes to write strings, we
wouldn’t have to do anything at all. The following line of code would be perfectly
acceptable:

slideshowStart: "Let's get started!"

Since we’re using double quotes around our string, there’s no chance that JavaScript will

accidentally read it as the end of our string. Once JavaScript sees an opening " character, it
will automatically look for the matching ending " character.

Now that we’ve got our slideshow customized, refresh the page in the browser and click
on one of the image thumbnails to open the Colorbox. The only visible difference is the
addition of the Let’s get started link. Clicking on it kicks off the slideshow and switches
the link to say Ok, that’s enough so that we can stop the slideshow.

What just happened?

We saw how to create and customize a slideshow. We did this by taking the simple
lightbox photo gallery we created and customizing it by passing a series of key/value pairs

to the colorbox() method.

Fancy login

It’s nice enough to be able to use a lightbox to display images, galleries, and slideshows,
but Colorbox is more capable and flexible than that. In this section, we’ll take a look at
how to show a login form in a Colorbox. Note that our login form isn’t hooked up to
anything and won’t actually function in the sample case. However, this same technique
can be applied to a dynamic site to allow your site visitors to view the login form in a
lightbox.

Time for action — creating a fancy login
form

Follow these steps to create a login form in a lightbox:

1. We’ll get started by setting up an HTML page and the associated files and folders,
like we did in Chapter 1, Designer, Meet jQuery. Our HTML page will contain a
header that displays a login form as shown in the following code. It’s common for
sites to allow people to log in from any page on the site.

<header id="page-header'">
<hi1>Ireland: The Emerald Isle</hi1>
<form action="#" id="login-form">
<div><label for="username'">Username:</label> <input type="text"
id="username"/></div>
<div><label for="password">Password:</label> <input type="password"
id="password"/></div>
<div><input type="submit" value="Log In"/></div>
</form>
</header>

2. Next, we’ll open styles.css and add some CSS so that the header is displayed with
the title on the left and the form on the right:

#page-header {
background: white;
color: #444,;
border-radius: 7px;
overflow: hidden;

}

#page-header hl {
background: #fc6e51;
color: white;
float: left;
font-size: 1.5em;
padding: 0.5em 0 0.5em lem;
width: 35%;
}

#login-form {
float: right;
line-height: 2.75em;
padding: © lem 0 0;
¥

#page-header #login-form div {
display: inline;

}

#login-form input[type='text'],
#login-form input[type='password'] {
width: 8em;

}

#login-form input[type='submit'] {
background: #333;
border: 0 none;
border-radius: 7px;
color: white;
cursor: pointer;
padding: 0.25em lem;

}

#login-form input[type='submit']:hover {
background: #fc6e51;
}

#login-1link {
display: block;
float: right;
line-height: 2.75em;
padding-right: lem;
}

input {
font-family: inherit;
font-size: inherit;

}

If you view the page in a browser, you’ll see this:

This is perfectly acceptable for users without JavaScript enabled—they’ll be able to
log in to the site from any page. However, it is a bit cluttered, so if our site visitor has
JavaScript enabled, we’ll want to hide the login form and show it in a Colorbox when
the site visitor is ready to log in.

. Next, we’ll get ready to use the Colorbox plugin the same way we did in the previous
section. Choose one of the provided styles for Colorbox and attach its style sheet to
the head section of our document, move all the required images to your image
directory and update the path to the images in the CSS, and attach the Colorbox
plugin at the foot of the document, between jQuery and our scripts.js tag.

. Once all that’s out of the way, we’re ready to write our JavaScript. Open up
scripts.js and write your document ready statement:

$(document).ready(function(){
//0ur code goes here

1),

. The first thing we need to do is hide the login form. We’re going to do that using
JavaScript rather than CSS because we do want the login form to be visible for the

site visitors who don’t have JavaScript enabled. We want to hide the form
immediately as soon as the page is loaded, so we’ll write our hidden code inside the
ready () method for the document:

$(document) .ready(function(){
var form = $('#login-form');
form.hide()

3);

You’ll notice that we created a variable called form and used it to store the jQuery
selector for the form. We’re going to have to refer to the login form several times in
our code. We could write $('#1ogin-form') each time we want to select the login
form, but each time, jQuery would have to look through the DOM of the page to find
it again. If we store it in a variable, our code will run faster and be more efficient
since jQuery will not have to find the login form each time we refer to it. In
JavaScript-speak, we’d call this caching a selector.

If you refresh the page in the browser, you’ll see that the login form has disappeared.

. However, now, we need a way to show it to the site visitors so they can log in to the
site. We’ll use jQuery to add a login link to the page, which will appear right where
the form was:

$(document) .ready(function(){
var form = $('#login-form');
form.hide()
form.before('Login');

1)

We’re already referring to the form again by inserting the login link before the form.
We already included some styles in the CSS to style the link and display it where
we’d like. If you refresh the page in the browser, you’ll see that the login form has
been replaced with a login link.

. However, clicking on the login link doesn’t do anything. Let’s fix this by adding in
some Colorbox magic. We’ll select our login link and call the colorbox() method as
shown in the following code:

$(document).ready(function(){
var form = $('#login-form');
form.hide()
form.before('Login");
$('#login-1link').colorbox();
3);

Refresh the page in the browser and try clicking the link. We just get an empty
Colorbox without any content inside. Hmmm. This is not really what we had in mind,

right? We have to tell Colorbox that we want to load up some content that’s already
on the page.

. We already put the reference to the login form in the href attribute of the link, so
we’ll use that to our advantage. We’ll pass a couple of key/value pairs to the
colorbox() method to tell Colorbox that we want to load some content that’s already
on the page, and we’ll also tell Colorbox exactly which content we want to show:

$(document).ready(function(){
var form = $('#login-form');
form.hide();
form.before('Login"');
$('#login-1ink').colorbox({
inline: true,
content: $(this).attr('href')
37
3);

Refresh the page in the browser and you’ll see that the Colorbox opens, but it appears

to be empty. This is because we hid our form. It’s been loaded into the Colorbox, but
it’s hidden from view.

. We’ll use another key/value pair to tell Colorbox to show the form when the
Colorbox opens:

$(document).ready(function(){
var form = $('#login-form');
form.hide()
form.before('Login");
$('#login-1link').colorbox({
inline: true,
content: $(this).attr('href'),
onOpen: function() { form.show(); }

1)
1)

The onopen tag is one of the keys provided by the Colorbox plugin. It allows us to
write a function that will be run when the Colorbox opens. In this case, we’re
searching the form and showing it. Now, if you refresh the page in the browser, you’ll
be able to see the form in the Colorbox as shown in the following screenshot:

Username:

Password:

Log In

10. This looks good enough, and we’ll touch this up with a bit of CSS in a moment to
make it look even better. But what happens when you close the Colorbox? That pesky
login form is visible again in the header. So we’ll pass another key/value pair to our
colorbox() method to hide the form when the Colorbox closes:

$(document).ready(function(){
var form = $('#login-form');
form.hide()
form.before('Login"');
$('#login-1ink').colorbox({
inline: true,
content: $(this).attr('href'),
onOpen: function() { form.show(); },
onCleanup: function() { form.hide(); }

1)
1),

This new function will hide our form when we close the Colorbox. This will ensure
the form doesn’t show up in the header again.

11. Now, let’s make our login form look a bit friendlier. Open up styles.css and add
some CSS that will style the login form only when it appears inside the lightbox:

#cboxContent #login-form {
line-height: 1.25;
padding: 0.5em lem;

}

#cboxContent #login-form div {
padding: 0.25em O;

}

#cboxContent #login-form div:after {
clear: both;
content: '';
display: table;

}

#cboxContent input[type='text'],
#cboxContent input[type='password'],
#cboxContent input[type='submit'] {
font-size: 1.25em;
padding: 0.25em;
width: 90%;
}

12. We also want to make the login form box a bit wider, so we’re going to pass a width
key to the colorbox() method:

$(document).ready(function(){
var form = $('#login-form');
form.hide()
form.before('Login"');
$('#login-1link').colorbox({

width: '400px',

inline: true,

content: $(this).attr('href'),

onOpen: function() { form.show(); },
onCleanup: function() { form.hide(); }

1)
3);
Now, if you refresh the page in the browser, you’ll see that the Colorbox is indeed
400 pixels wide, and our login form has taken on the nice chunky appearance we
wanted with our CSS, but there’s still a bit of a problem. Our form is too tall for the
Colorbox, as shown in the following screenshot:

Username:

Password:

The Colorbox script hasn’t realized that our form has a different set of CSS once it’s
displayed inside the Colorbox—it’s still expecting the form to be of the same height
it was when it was displayed in the header. However, that form is much smaller. If
you take your mouse over the login form and scroll down, you’ll see the rest of the
login form is there—we just can’t see it.

13. We don’t want any scrolling in our Colorbox, so we’ll turn that off and we’ll tell the
Colorbox to resize itself to its content instead by passing a couple more key/value
pairs to the colorbox() method:

$(document).ready(function(){
var form = $('#login-form');
form.hide()
form.before('Login");
$('#login-1link').colorbox({
width: '400px',
inline: true,
scrolling: false,
content: $(this).attr('href'),
onOpen: function() { form.show(); },
onComplete: function() { $.colorbox.resize(); },
onCleanup: function() { form.hide(); }
3);
3);

The scrolling key allows us to turn off any scrolling inside the Colorbox, and the

onCcomplete key is a callback function that’s called as soon as the content loads into
the Colorbox. As soon as the content loads into the Colorbox, we’re going to call a
method that the Colorbox plugin has made available to us in order to resize the
Colorbox to accommodate its content.

Now, if you refresh the page in the browser, you’ll see the Colorbox slide open to a
larger height to accommodate the new CSS for our form. Perfect!

Username:

Password:

What just happened?

We learned how to take a simple header login form and change it to a login link that opens
a login form in a Colorbox when clicked. We worked through any potential problems
caused by this approach by passing in callback functions as values for keys specified in
the Colorbox plugin documentation. We learned how to call functions to run when the
Colorbox opens, when the content is loaded into the Colorbox, and when the Colorbox
closes. We learned that we can force the Colorbox to resize to accommodate its current
contents by calling the $.colorbox.resize() method.

Video player

Colorbox is flexible enough to be used to display a video player as content. We’ll link out
to a YouTube video, then add some Colorbox magic to display the video in a Colorbox.

In this section, we’ll dive into using AJAX for the first time. In case you aren’t familiar,
AJAX is a method that is used to fetch some new content from the server and displays it to
the site visitor without having to completely refresh the page. As the browser only gets
and displays just the bit of information the site visitor needs, it’s often much faster and
snappier than loading a whole new page.

Just a quick note before we dive into AJAX for the first time. Modern browsers have
several security rules for AJAX requests. You won’t be able to simply view your ajaxified
HTML files in a browser as we’ve been doing up until this point. In order to view AJAX
in action, you’ll either have to upload your files to a server before viewing them, or you’ll
have to set up a server on your own computer. For an easy and hassle-free way to set up a
server on your own computer, I highly recommend DesktopServer from ServerPress. You
can learn more and download DesktopServer from
http://serverpress.com/products/desktopserver/. DesktopServer works for both Windows
and Mac users.

http://serverpress.com/products/desktopserver/

Time for action — showing a video in a
lightbox

Follow these steps to set up Colorbox to play a set of videos:

1. We’ll get started as we usually do, by setting up a basic HTML file and the associated
files and folders, just like we did in Chapter 1, Designer, Meet jQuery. In the body of
our HTML document, we’re going to include a link to a YouTube video:
<p>

<a href="http://www.youtube.com/embed/wsRkOTXYXuA?autoplay=1"
id="video-link">Watch the video
</p>
Note a couple of things about my video link. First, I’m using the embed URL for the
video rather than the link to YouTube’s video page. For users without JavaScript
enabled, this will take them to a standalone video player page on YouTube’s site. For
users with JavaScript enabled, it will ensure that only the video player is loaded into
the Colorbox rather than the full YouTube video page. Second, I’'m adding a
parameter to the URL for the video, setting autoplay to 1. This is how you can make
embedded YouTube videos play automatically when the site visitor views your page.
It’s generally a bad idea to have a video autoplay, but in this case, the user will have
already clicked a link that says Watch the video, so it seems like a safe bet that
they’ll be expecting a video to play once they’ve clicked that link.

2. Next, just as with the other Colorbox examples so far, you’ll need to attach your
chosen Colorbox skin’s CSS file in the head of your document; make sure the images
are available, update the path to the images in the CSS if necessary, and finally attach
the Colorbox plugin in the foot of the document.

3. Now, we’ll open up our scripts. js file and get set to write our custom JavaScript.
We’ll get started with the document ready statement:

$(document).ready(function(){});

4. Next, we’ll select the video link and call the colorbox() method:

$(document).ready(function(){
$('#video-1ink').colorbox();

1)

However, if we refresh the page in a browser and attempt to view the video, we get
an error. This is because we’re attempting to load in the video via AJAX, and because
of browser-security restrictions, we can’t make asynchronous requests to a different
server. In this case, we’re trying to make a call to http://youtube.com, but that’s not
where our Colorbox page is hosted, so the browser blocks our request.

5. Luckily, we can create an iframe and load our external content into the iframe. Also,
luckily, Colorbox provides a way for us to do this very easily. We’ll just pass a
key/value pair to the colorbox() method, setting iframe to true as shown in the

http://youtube.com

following code:

$('#video-1link').colorbox({
iframe: true

1),

Now, our video loads into the Colorbox, but the Colorbox has no idea how large our
video might be, so we can’t see it.

. We’ll have to tell Colorbox how big we expect our video player to be. We’ll do this
by passing in key/value pairs for the innerwidth and innerHeight properties. We’re
using innerwidth and innerHeight rather than width and height in this case
because we’re passing in values that specify how large we want the video player (or
content) to be, rather than how large we want the Colorbox to be.

$('#video-1link').colorbox({
iframe: true,
innerwidth: 640,
innerHeight: 390

1),

Since we didn’t specify a unit of measurement for our width and height, Colorbox
will assume we meant pixels. The video player will be 640 pixels wide and 390
pixels tall.

. We can also use Colorbox to create a way for users to easily view several videos.
Let’s go back into index.html and add a list of favorite videos to our page instead of
just one link to a video. We’ll use a rel attribute that is set to favorites for each one
and provide a title attribute so our videos will display a caption underneath:

<h3>Favorite Videos</h3>

<a href="http://www.youtube.com/embed/wsRkOTXYXuA?autoplay=1"
title="Kid Snippets: Salesman" rel="favorites">Salesman
</1i>

<a href="http://www.youtube.com/embed/IhK51Y1Phm8?autoplay=1"
title="Kid Snippets: Basketball Class" rel="favorites">Basketball
Class
</1i>

<a href="http://www.youtube.com/embed/zG6NbAd8r2Q?autoplay=1"
title="Kid Snippets: Blind Date" rel="favorites">Blind Date
</1i>

. The only update we have to make to our JavaScript in scripts. js is to update the
selector. Instead of selecting one single link by ID, we’re going to select our set of
favorite links by their rel attribute:

$('a[rel="favorites"]"').colorbox({
iframe: true,
innerwidth: 640,

innerHeight: 390
1);

If you view the page in the browser, you’ll see that you have a caption under the
video and next and previous buttons that allow you to navigate between the videos
without closing the Colorbox.

. The only thing that’s a bit awkward is that our pagination indicator says Image 1 of 3
when we’re showing videos, not images. Luckily, Colorbox provides a way for us to
customize this text with the current key:

$('a[rel="favorites"]"').colorbox({
iframe: true,
innerwidth: 640,
innerHeight: 390,
current: 'Video {current} of {total}'

1),

Now, our pagination indicator correctly reads Video 1 of 3. Our site visitors can
easily move from video to video without having to close the Colorbox, and each
video displays a caption.

What just happened?

We learned how to create both a standalone video player and a multiple video player
inside a Colorbox. We learned how to pass in key/value pairs to tell Colorbox to load in
external content in an iframe, working around cross-domain AJAX restrictions. We also
learned how to modify the pagination indicator text to fit our current content type. We
used the innerwidth and innerHeight keys to set the video player’s size.

Pop quiz — loading content into Colorbox

Which content type loads in an external link into a Colorbox?

1. iframe
2. Inline
3. HTML
4. Photo

A one-page web gallery

Next up, we’ll take a look at how we can create a single-page web gallery to show off
your favorite sites or all the incredible sites you’ve designed yourself. Note that this
example makes use of AJAX, so you’ll either have to load your pages on a web server or
create a web server on your own computer to see it in action.

Time for action — creating a one-page web
gallery

Follow these steps to create a one-page web gallery:

1. We’ll get started by setting up a basic HTML file and the associated files and folders,
just like we did in Chapter 1, Designer, Meet jQuery. Inside the body of our HTML
document, we’ll create a list of links to the sites we want to include in our design
gallery, as shown in the following code:

<h3>0ne-Page Web Design Gallery</h3>

Packt Publishing
</1li>
NatalieMac</1i>
Google</1i>

Note that we’ve added a rel attribute equal to gallery to each link.

2. Now, just as with the other Colorbox examples, choose a style and attach the style
sheet in the header of the document, make all the necessary images available to your
page, update the path to the images in the CSS if necessary, and attach the Colorbox
plugin at the bottom of the page.

3. Next, we’ll open our scripts. js file and add our document ready statement:

$(document).ready(function(){});

4. Next, we’ll select all links with the rel attribute equal to gallery and call the
colorbox() method:

$(document).ready(function(){
$('a[rel="gallery"]').colorbox();

1)

5. Just as we did with the video example, we’ll set the iframe key to true since we’re
loading in content from other domains. We’ll also set the width and height attributes
of the Colorbox to 90% so that it takes up nearly the entire browser window. Finally,
we’ll adjust the pagination indicator text to read Website instead of Image:

$('a[rel="gallery"]"').colorbox({
iframe: true,
width: '90%',
height: '90%',
current: 'Website {current} of {total}'

1),

Now, if you refresh the page in the browser, you can see that clicking one of the links
opens a Colorbox and loads that website into the Colorbox. A site visitor can interact
with the loaded website just as they would if they had loaded it into a separate
browser window, browsing through pages, and so on. When finished with one site,

they can click the next arrow to visit the next website in the list and then hit the Esc
key on the keyboard, or click the close button or click anywhere outside the Colorbox
to close the Colorbox when they’re finished. The Colorbox output will be as shown
in the following screenshot:

Chaipter X: |Query for D

« C & | file:// /Users/natalie/Desktop/jQ40%202ed /Chapter%205/45350T_05_For¥20Rewrites code/5%20-%2 0website... 7

NatalieMag

web developer = Ui :_:::I_esigner = writer = speaker * list maker

-

WhatI Do

Purple Pen XA Geek Girl Life

DraAd vmtmme

Note

Note that it is possible for website owners to block your ability to load their sites into an
iframe. If you have set up a local server using Desktop Server, MAMP, or WAMP, then
you might notice that the Google example won’t load into your page. It will, however,
load if you upload your code to an external server. Be sure to test all the sites you want to
use in your web gallery to ensure that they work as expected.

What just happened?

We used most of what we learned to create a Colorbox video player to display external
websites inside a Colorbox. This allows our site visitor to browse through a collection of
websites without ever leaving our page. We once again told Colorbox to load our content
into an iframe to work around cross-domain AJAX restrictions. We customized the
pagination indicator text and set the width and height for our Colorbox.

Have a go hero — create a custom Colorbox

Create your own custom style and layout for Colorbox, including your own custom
overlay pattern. Try moving the next and previous buttons, the caption, and the close
button to different areas in the Colorbox.

Summary

We’ve seen several uses for the adaptable and flexible Colorbox plugin, which can be used
to display any kind of content in a lightbox. It can be used to create browsable image
galleries, give access to forms and video players without cluttering up the page with
clunky UI elements, and even to create a browsable website gallery. The Colorbox plugin
is completely styled with CSS, making it possible for the lightbox to have any appearance
you can dream of. The plugin even includes vector image assets that can be used as a
starting point to create your own lightbox design. The behavior of the lightbox can be
modified by passing a series of key/value pairs to the colorbox() method, making the
Colorbox plugin suitable for any possible lightbox use.

Next up, we’ll take a look at another common website task, that is, creating slideshows.

Chapter 6. Creating Slideshows and
Sliders

Traditionally created in Flash, slideshows and sliders are a great way to show off photos,
products, illustrations, portfolios, and more. Hands-down, creating slideshows is one of
the most common tasks for jQuery developers. In this chapter, we’ll take a look at how to
create a simple slideshow from scratch and then we’ll take a look at the Basic Slider
plugin to add some more features to a slideshow. Finally, we’ll take a look at the powerful
and flexible Cycle2 plugin, which can be used to create many different types of slideshows
and sliders.

In this chapter, we’ll cover:

How to plan a slideshow

How to write a simple crossfading slideshow from scratch

How to create a simple slideshow with controls using the Basic Slider plugin
How to use the Cycle2 plugin to create animated slideshows

How to create carousels with the Cycle2 plugin

How to use the Cycle2 plugin to create a combination carousel/slideshow

Planning a slideshow or slider

There are a few things to consider when you’re preparing to build a jQuery slideshow or
slider.

1. First, you have to decide what the experience will be for users who have JavaScript
disabled. The priority of the various pieces of content in the slideshow should be your
guide. If the slideshow is simply featuring bits of content available elsewhere on the
site, then it should be sufficient to simply show one featured photo or slide. If the
slideshow is the only way to access the content, then you’ll have to be sure to make
that content available for users without JavaScript enabled. We’ll take a look at both
strategies in the various examples in this chapter.

2. Second, you have to determine the ideal size for your slideshow. The size and aspect
ratio of the slideshow could be determined by the content, by the page layout, or even
by the browser window’s size. If your slideshow or slider contains only images,
cropping all images to a certain size is simple enough, but what if your slideshow or
slider also contains video, text, buttons, or other elements? Plan how these elements
will appear on the page.

3. Next, you need to consider whether your site visitors need to have any kind of control
over the slideshow or slider. Sometimes, it’s handy to simply have a set of images on
automatic rotation. At other times, it’s helpful to allow site visitors to pause the
slideshow or manually move forward and backward through a slider.

A simple crossfade slideshow

In this section, you’ll learn how to build a simple crossfade slideshow. This type of
slideshow is ideal for identically-sized images and can be displayed as a single image
when JavaScript is disabled. Finally, this type of slideshow offers no control over the
slideshow to your site visitors. They cannot pause the slideshow or manually move
through the slides.

Time for action — creating a simple
crossfade slideshow

Follow these steps to create a simple crossfading slideshow from scratch:

1. We’ll get started by creating a basic HTML document and the associated files and
folders just like we did in Chapter 1, Designer, Meet jQuery. In the body of the
HTML document, include a list of images. Each list item will contain an image,
which can optionally be wrapped in a link. In the sample code for the book, the
images are cropped to 800 pixels by 450 pixels. Here’s what the HTML looks like:

<ul id="crossfade'">

</1i>

</1i>

</1i>

2. Next, we’ll write a few lines of CSS to style the slideshow. A slideshow shows just
one image at a time, and the easiest way to show only one image is to stack the

images on top of one another. If the site visitor has JavaScript disabled, they’ll just
see the last slide in the list. Add the following lines of code in the styles.css file:

#crossfade {
height: 450px;
overflow: hidden;
position: relative;
width: 800px;

}

#crossfade 1i {

height: 450px;

position: absolute;

width: 800px;
}
If you view the page in a browser, you’ll see that the last item in the slideshow is
visible, but none of the other items are—they are all stacked beneath the last item.
This is what our experience will be for site visitors with JavaScript disabled.

3. Next, open up scripts.js and we’ll get started with writing our JavaScript code.
This script will be a little bit different from the scripts that we’ve set up before.
Instead of something happening just once when the document loads or when a site
visitor clicks on a link, we actually want to set up a function that will happen on a
timer. For example, if we want each slide of our slideshow to be visible for three
seconds, we’ll have to set up a function to switch slides, which gets called every three
seconds.

We’ve already got our slides stacked up on top of one another on the page with the
last item on top. Think about how you handle a stack of photographs. You view the
photograph on top, and then move it to the bottom of the stack to view the second
photo. Then, you move the second photo to the bottom to view the third photo and so
on. We’re going to apply the same principle to our slideshow.

Inside scripts.js, create a function called slideshow. This is the function that we’ll
call every three seconds when we want to switch photos.

function slideshow() {

}

. The first thing we need to do inside our function is select the first photo in the stack:

function slideshow() {
$('#crossfade li:first')

}

. Now that we’ve got the first photo in the stack, we just need to move it to the bottom
of the stack to make the next photo visible. We can do that by using jQuery’s
appendTo() method. This will remove the first photo from the beginning of the list
and append it to the end of the list.

function slideshow() {
$('#crossfade li:first').appendTo('#crossfade');

}

. Our photo-flipping function is ready. Now, all we have to do is some initial setup as
soon as our page loads. Then, we’ll set up a call to our photo-flipping function every
three seconds. We’ll get that started by calling the ready() method on the document.

$(document) .ready(function(){
// Document setup code will go here

1)

function slideshow() {
$('#crossfade li:first').appendTo('#crossfade');

}
. As soon as our document is ready, we want to prepare our slideshow. We’ll start by
selecting all the photos in the slideshow.

$(document).ready(function(){
$('#crossfade 1i'")

1);

. Next, we want to hide all the photos in the slideshow.

$(document).ready(function(){
$('#crossfade 1i').hide();

3);
. Then, we’ll filter that list of photos to get just the first one:

$(document).ready(function(){

10.

11.

12.

13.

14.

$('#crossfade 1i').hide().filter(':first');
1)

Finally, we’ll make that first photo visible. All other photos will remain hidden:

$(document) .ready(function(){
$('#crossfade 1i').hide().filter(':first').show();

1),

At this point, if you refresh the page in the browser, you’ll see that the last slide
visible without JavaScript enabled is now hidden and the first slide in the list is now
visible instead. Now, all that’s left to do is to call our photo-flipping function every
three seconds. To do this, we’ll use a JavaScript method called setInterval(). This
allows us to call a function at regular intervals. We pass two values to setInterval:
the name of the function to be called and the number of milliseconds that should
elapse between calls to the function. For example, to call the slideshow function
every 3 seconds (or 3000 milliseconds), we’d write:

$(document).ready(function(){
$('#crossfade 1i').hide().filter(':first').show();
setInterval(slideshow, 3000);

1)

Now, we’re calling our photo-flipping function every three seconds, so you’d expect
that if you refresh the page in the browser, you’d see the photos change every three
seconds, but that doesn’t appear to be the case. Reviewing the code, it’s easy to see
what’s gone wrong; even though the actual order of the stack of photos is changing
every three seconds, all the photos except the first one are invisible. Whether the first
photo is on top or not, it’s the only photo visible, so it appears that our slideshow isn’t
changing. We’ll have to go back to our slideshow function and modify it to make the
current photo invisible and make the next photo in the stack visible. Since we want
the photos to switch with a nice, slow crossfading effect, we’ll call the fadeout ()
method to fade the first photo to be transparent, and we’ll pass 'slow' to that method
to ensure it takes its time:

function slideshow() {
$('#crossfade 1li:first').fadeOut('slow').appendTo('#crossfade');

}

Now, we need to move to the next photo in the list, which is currently invisible, and
make it opaque. We’re going to use the next () method to get the next item in the list
and then call the fadeIn() method to make it appear. Once again, since we want a
slow effect, we’ll pass 'slow' to the fadeIn() method:

function slideshow() {
$('#crossfade
li:first').fadeOut('slow').next().fadeIn('slow').appendTo('#crossfade');

}

We’ve gotten ourselves into a little bit of trouble with our chaining of jQuery
methods. We started with the first photo in the stack, faded it out, then moved to the

15.

second photo in the stack and faded it in. Now, however, when we call the
appendTo() method, we’re appending the second photo in the stack to the end—
we’re moving the second photo in the stack to the bottom instead of the first one.
Luckily, jQuery provides a method for us to return to our original selection—the
end () method. We can call the end() method after fading in the second photo to
make sure that it’s the first photo that’s getting appended to the bottom of the photo
stack:

function slideshow() {

$('#crossfade
li:first').fadeOut('slow').next().fadeIn('slow').end().appendTo('#cross
fade');

}

Finally, let’s do a bit of cleaning up. If you take a look at the code we’ve written,
you’ll see that we’ve selected #crossfade several different times. Let’s cache that
selector in a variable so we don’t have to keep re-querying the document to find it.
The final bit of code after cleanup will look like this:

$(document).ready(function(){
slides = $('#crossfade');

slides.find('li').hide().filter(':first').show();
setInterval(slideshow, 3000);
1)

var slides;
function slideshow() {

slides.find('li:first').fadeOut('slow').next().fadeIn('slow').end().app
endTo(slides);

}

What just happened?

If you refresh the page in the browser, you’ll see that you’ve got a nice crossfading
slideshow. As one photo fades out, the next photo fades in, smoothly transitioning
between each photo. Since we’re constantly moving the top photo in the stack to the
bottom, we’ll never reach the end of the slideshow, just as you can continuously flip
through a stack of photos:

Waterfalls of the World

We set up a slideshow function that selected the first photo in the stack, faded it out, and
moved it to the bottom of the stack. Simultaneously, we’re finding the second photo in the
stack and fading it in. We used the power of jQuery chaining to accomplish all of that in
one line of code.

We set up a timer for 3 seconds and called our photo-flipping function at the end of each
3-second interval.

Finally, we did a bit of setup work as soon as the document is loaded, hiding all the photos
and then making the first one visible. This will ensure that the photos are always displayed
in order in our slideshow.

Next up, let’s take a look at using a plugin that will give us some nice options for our
slideshow.

Pop quiz — working with jQuery chaining

Q1. In a long chain of jQuery methods, how do you return to the original selector after it’s
been filtered?

1. Use the original() method.

2. Start a new line of code that starts with the original selector.
3. Use the end() method.

4. Use the prev() method.

Using the Basic Slider plugin

Our simple slideshow is nice and will be adequate for some situations, but we often want
or need more features and flexibility out of our sliders and slideshows. There’s no shortage
of jQuery plugins out there to create sliders and slideshows. To avoid adding lots of
unused code to projects, try to find the simplest slider that will do the job.

The Basic Slider, documented at and available for download at http://www.basic-
slider.com/, is a relative newcomer to the scene. It’s flexible, simple to use, and easy to
style. It’s a great fit for responsive designs. It can hold any kind of content, so we’re not
limited to images. We could use text, videos, images with text, or any other combination
we can think up. The Basic Slider has got about a dozen options you can adjust, and for
many projects, you’ll find that’s more than enough.

http://www.basic-slider.com/

Time for action — building a Basic Slider

Follow these steps to create a slider using the Basic Slider plugin:

1. We’ll get started by writing our HTML markup. Looking at the documentation for the
Basic Slider plugin, we see that the plugin requires an unordered list wrapped in a
<div> element. Each of our slides is going to contain a photo with a headline overlay,
and each slide is going to link to pages with more information about what’s contained
in that slide. Here’s what our markup looks like:

<div id="slider">
<ul class="bjgs">

<div class="headline">
<h2>Agua Azul</h2>
<p>Tumbalá, Chiapas, Mexico</p>
</div>

</1i>

<div class="headline">
<h2>Burney Falls</h2>
<p>Shasta County, California, USA</p>
</div>

</1i>

</div>

It might surprise you to see that with the new HTMLS5 specification, we’re allowed to
wrap links (<a>) around block-level elements such as <div> and <h2>. This makes it
easy to make the whole slide clickable.

2. Next up, we’re going to write some CSS to style the slides, and we’ll want to give
some thought to site visitors with JavaScript disabled while we do so. In this
particular case, we’ll show all of the slides for customers who happen to have
JavaScript disabled. First up, we’ll place the headline on top of the photos with a few
lines of CSS in styles.css:

ul.bjgs 1i {
margin-bottom: l1em;
position: relative;

}

ul.bjgs 1i .headline {
background: rgba(0,0,0,0.5);
left: 0;
padding: lem 2em lem 3em;

position: absolute;
top: 2em;
z-index: 9999;

3

.headline h2 {
color: white;
font-size: 2em;
line-height: 1.125;
}

.headline p {
line-height: 1.5;
}
Now, if you view the page in the browser, you’ll see each of our slides in a single
column down the page, each with a styled headline over the photo:

Waterfalls of the World

3. Now that we have our non-JavaScript case built, let’s go ahead and progressively
enhance it to build a more interactive experience for users who do have JavaScript.
We’ll get started by heading over to http://basic-slider.com and downloading the
Basic Slider plugin ZIP file. Unzip the file and find the bjgs-1.3.min. js file inside
the js folder. Copy this file to your own scripts folder, and then attach it to the
HTML file in the footer between jQuery and the scripts. js file:

<script src="scripts/jquery.js"></script>
<script src="scripts/bjgs-1.3.min.js"></script>
<script src="scripts/scripts.js"></script>
</body>

</html>

http://basic-slider.com

4. The Basic Slider plugin comes with a small, simple CSS file of the styles that are
required for the slider to work. Inside the plugin folder, you’ll find a file named
bjgs.css. Copy that file to your own styles folder and then attach it in the <head>
section of your HTML document, before your own styles.css file:

<title>Chapter 6: jQuery for Designers</title>
<link rel="stylesheet" href="styles/bjqs.css">
<link rel="stylesheet" href="styles/styles.css">

5. If you head back to the browser now and refresh the page, you might see something
you didn’t expect; all the slides that will make up our slideshow have disappeared. A
quick look in the bjgs.css file reveals that the list that holds our slideshow is
being set to display: none;.

This is a necessary part of getting our slider to work, but what about our users
without JavaScript? We can pull out the trick of adding a class to the <body> tag that
we can use in CSS to write different styles for our page, depending on whether or not
JavaScript is available. Add a class of jsoff to the <body> tag:

<body class="jsOff">

Then, open up your scripts. js file and add the necessary code to change this class
if JavaScript is enabled:

$(document) .ready(function(){
$('body').removeClass('jsOff').addClass('.jsOn');

1)

With all that out of the way, we can open up styles.css and write some code just for
users without JavaScript to be sure they can see our slides:

.jsOff ul.bjgs {

display: block;
}
Now, all of our slides are visible for site visitors who have JavaScript disabled, and
we haven’t interfered with the CSS that the Basic Slider plugin is relying on to work
correctly.

6. Now we can jump into making the slideshow work for our site visitors who have
JavaScript enabled. Open up scripts. js, select the <div> that wraps the slideshow
, and call the bjgs() method

$(document).ready(function(){
$('body').removeClass('jsOoff').addClass('.json');

$('#slider').bjqgs();
3);
If you refresh the page in the browser now, you’ll see that our slideshow is working,
though it’s not the right size, and the style isn’t very attractive.

Waterfalls of the World

dEETNE
i H
T Y

Hopetoun Falls

Beech Forest, Victoria, Australia

Let’s see what we can do to get those details fixed.

. First, let’s set some options for the bjgs() method. We can tell the width and height
of our slides to the Basic Slider:

$('#slider').bjgs({
height: 450,
width: 800

1);

This set of pixel sizes works well as long as we’re dealing with a design that’s a fixed
size. But many modern websites are responsive, meaning the design responds to the
size of the browser window by adjusting element sizes and layout. If we want to use
our slider inside a responsive design, the Basic Slider makes it really easy. We’ll just
add a responsive option and set it to true:

$('#slider').bjqgs({
height: 450,

width: 800,
responsive: true
1)

Now if you refresh the page in the browser, you’ll see the slides are now the correct
size. If you make the window narrower, the slides resize to fit.

8.

10.

Waterfalls of the

e

Deer Leap Falls

Dingmans Ferry, Pennsylvania, USA

-
A
e

12345678

Now, let’s jump into writing some CSS to make our slideshow even better. First up,
while the slideshow itself shrinks to fit the size of the window as the browser window
gets narrower, the slideshow is cropping the images. Instead, let’s resize the images
so that they’re still fully visible inside the slideshow. Here’s the code we can use to fit
those images to the slideshow:

.bjgs img {
height: auto;
max-width: 100%;

3

Next, those next and previous buttons are just link text laid directly over the photos,
and they look a bit lost. Let’s add a bit of CSS to style those nicely:

.bjgs-prev a,

.bjgs-next a {
background: rgba(0,0,0,0.5);
color: white;
padding: lem;
text-decoration: none;

}

The page numbers underneath the slider are handy to let site visitors get to any of the
slides in the show, but let’s replace them with dot indicators. Here’s the CSS we can
use to accomplish this:

ol.bjgs-markers {

margin: lem O;

}

ol.bjgs-markers 1i {
border: 1px solid black;
border-radius: 50%;
display: inline-block;
line-height: 1;
margin: 0 2px;
padding: 1px;

3

ol.bjgs-markers 1i a {
background: rgba(0,0,0,0.5);
border-radius: 50%;
display: block;
height: 0.6em;
overflow: hidden;
text-indent: -9999em;
width: 0.6em;

}

ol.bjgs-markers li.active-marker a {
background: #a0d468;

}

Now, if you refresh the page in the browser, you’ll see a neat row of dots beneath the
slideshow. Clicking on any dot will navigate you to that corresponding slide.

Waterfalls of the World

L} ‘

Burney Falls

Shasta County, Califorria liSa

R

i

11. One final thing to touch up is that as the window gets narrower, the headline text

stays huge and dominates the photo. Let’s adjust this to reduce the text size on
smaller screens so that more of the photo is visible. Here’s what we’ll add to the
bottom of the CSS to accomplish this:

@media screen and (max-width: 650px) {

.bjgs {
font-size: 0.7em;

3
b

This bit of code just shrinks the font size for the slider text when the window is
narrower than 650 pixels wide. We’ll use 650 pixels because it’s around that width
that the text starts to feel much too large for the images. Now, when you make the
browser window narrower, you’ll see that the text snaps to a smaller size and fits
nicely on the smaller photos.

Waterfalls of the
World

Fulmer Falls

Dingmans Ferry, Pennsylvania, LUS&

What just happened?

We used the Basic Slider plugin to create a slideshow. Even though this plugin is
lightweight and basic, we saw how we can use the available options combined with some
fancy CSS work to customize the slider. Even though the Basic Slider is a pretty basic

slider plugin, it has just the right options to make it a great choice for a variety of projects.
It’s also easy to customize and style with CSS.

But what about those cases where we need more options? Let’s take a look at the flexible
Cycle2 plugin, which gives us dozens of options.

Have a go hero — customize the Basic Slider

Design and build your own custom version of the Basic Slider. Try a different size,
different transition effects, and different layouts for the content inside each slide. Use
numbered pagination and style the next and previous buttons as you like.

Creating a Cycle2 slideshow

Let’s take a look at how to put the Cycle2 plugin from M. Alsup to good use. Cycle2
provides some nice transition effects between slides and offers lots of configuration
options. The Cycle2 plugin is flexible and can hold many types of content. It can even
gracefully handle content of different sizes and/or different aspect ratios, which the two
sliders we’ve built so far could not.

There are options to include controls for your site visitors to move forward and backward,
to pause the slideshow when the mouse is hovered over it, and to add pagination to allow
site visitors to move easily to a specific slide. Additionally, there are options to allow
touch gestures, to animate different transition effects, to include pagination or thumbnail
navigation, and more. Compared to the Basic Slider, Cycle2 has dozens of more options.
Cycle2 even has its own plugins that we can add to get more functionality, making it super
flexible and adaptable to many different situations. In fact, in the rest of this chapter, we’ll
look at building three very different types of sliders and slideshows, all with the Cycle2
plugin.

Unlike most other plugins, the Cycle2 plugin relies almost entirely on HTML markup.
Apart from attaching Cycle2 and any of its plugins to your page, you often don’t have to
open a single JavaScript file or write a single line of JavaScript.

Time for action — building a slideshow
with Cycle2

Follow these steps to build your first Cycle2 slideshow:

1. We’ll get started by creating a basic HTML document and associated files and folders
just like we did in Chapter 1, Designer, Meet jQuery. In the body of the HTML
document, we’ll create a container <div> and then wrap the markup for each slide in
a <div>:

<div class="cycle-slideshow">
<div class="slide">

</div>
<div class="slide">

</div>

</div>

Notice that we’ve used a class cycle-slideshow on the container <div> and then a
class slide on the <div> elements that contain the markup for each of our individual
slides. These are important for the Cycle2 plugin. Remember that this plugin requires

us to write little or no JavaScript at all—instead, it relies on HTML markup, classes,
and attributes so we have to be precise.

2. Now, we’ll use the technique we’ve used before to make sure our slideshow content
looks great even for our site visitors who have JavaScript disabled. First, add the
jsOff class to the <body> tag:

<body class="jsOff">

Next, open up your scripts.js file and add the line of jQuery that will remove that
class for our site visitors who actually do have JavaScript enabled:

$(document).ready(function(){
$('body').removeClass('jsOoff').addClass('json');

1);

In this case, the slideshow is simply visually highlighting content that’s available
elsewhere on the page and that the slideshow images won’t actually provide a lot of
value for site visitors with JavaScript disabled. We’ll just hide the slideshow for those
visitors. Add these styles in styles.css:

.jsOff .cycle-slideshow {
display: none;

}

3. Now that we’ve taken care of site visitors without JavaScript, let’s get the slideshow
working for those who do have it. We need to download the Cycle2 plugin. We’ll find
that in the jQuery plugins repository at http://plugins.jquery.com/cycle2/. Click on the
large orange Download now button. Save the file to your own scripts folder.

4. Now, we need to attach the script to our HTML page. At the bottom of the HTML
file, after jQuery, add a <script> tag to include the Cycle2 plugin:

<script src="scripts/jquery.js"></script>

<script src="scripts/jquery.cycle2.min.js"></script>
<script src="scripts/scripts.js"></script>

</body>

</html>

5. Next, we need to let the Cycle2 plugin know which elements are wrapping our
individual slides. By default, Cycle2 assumes that our slideshow is made up of just
images, but we’ve wrapped each of our images in a link and in a <div> block with
the class slide. To let Cycle2 know what our slide container is, we’ll just add a data
attribute named data-cycle-slides to the slideshow container. The value for that
attribute is a jQuery selector. Find the <div> block with the cycle-slideshow class
in your HTML file and add the appropriate data attribute:

<div class="cycle-slideshow" data-cycle-slides="> div.slide">

In this case, I’'m using the direct descendent selector (>) to find all the <div> element
with a class of slide.

Waterfalls of the World

If you refresh the page in the browser, you’ll see that the slideshow now works. It’s
just that simple to get the Cycle2 plugin set up and working. We’ve created a simple
image slideshow with a fading transition. That’s perfectly acceptable, but Cycle2

http://plugins.jquery.com/cycle2/

gives us lots of additional options, so let’s see how to add additional features and
adjust the settings.

. Since each of the slides links the site visitors to a page with more information, let’s
pause the slideshow when site visitors hover over the slideshow with their mouse.
This will ensure that they always get sent to the page they intended. We just have to
add another data attribute to the slideshow container. Since we’ll be adding a few of
these, let’s start breaking them up for easy readability:

<div class="cycle-slideshow"
data-cycle-slides="> div.slide"
data-cycle-pause-on-hover="true"
</div>

In this case, we’re adding a data attribute called data-cycle-pause-on-hover, and
we’re setting the value equal to true. Refresh the page in the browser and try to
hover your mouse over the slideshow. You’ll see that the slideshow pauses until you
move your mouse elsewhere.

. Next, let’s add some next and previous controls so that our site visitors can move
through the slideshow at their own pace. Inside the <div> element with the class
cycle-slideshow, but before our first <div> with the class slide, we’ll add two new
<div> elements:

<div class="cycle-slideshow"

data-cycle-slides="> div.slide"

data-cycle-pause-on-hover="true">

<div class="cycle-prev'"></div>

<div class="cycle-next"></div>
<div class="slide">

The Cycle2 plugin will automatically look for <div> elements with the classes
cycle-next and cycle-prev and enable those as controls for the slideshow. It’s then
up to us to style those with CSS to appear how and where we want them. You can
also place content inside those <div> elements, irrespective of whether you’d like to
type words or include images. We’ll use CSS-generated content here.

We’ll place the next and previous button on top of the slideshow on the left and right
sides. Here’s the CSS we’ll use to accomplish that. First, we’ll limit the width of the
slideshow to the width of the largest item, which in this case is 800 pixels:

.cycle-slideshow {
max-width: 800px;
}

Next, we’ll style and position the controls:

.cycle-prev,
.cycle-next {
cursor: pointer;
font-size: 6em;
margin-top: -0.6em;

opacity: 0.4;

position: absolute;

text-shadow: 0 0 4px rgba(0,0,0,0.8);
top: 50%;

transition: opacity 0.3s;

z-index: 102;

}

.cycle-prev:hover,

.cycle-next:hover {
opacity: 0.9;

}

.cycle-prev {
left: 0.1em;
3

.cycle-prev:before {
content: '\276E';

}

.cycle-next {
right: 0.1em;

}

.cycle-next:before {
content: '\276F';

}

We’re using the :before pseudoclass to add an angle bracket to the controls, so now
the site visitors can use these to move forward or backward through the slideshow.

Waterfalls of the World

8.

10.

11.

We’ve made it easy to move forward and backward through the slideshow for our site
visitors on desktop devices, but what about those on touch-enabled devices? They
don’t get the benefit of pausing the slideshow on hover, so control over the slideshow
is even more important for them. They can surely use those next and previous buttons
just like everybody else, but we can also provide them with the ability to move
through the slideshow by swiping across the screen. To enable the swiping motion for
touch-enabled devices, we just have to add a data-cycle-swipe attribute and set it to
true:

<div class="cycle-slideshow"

data-cycle-slides="> div.slide"

data-cycle-pause-on-hover="true"

data-cycle-swipe="true">
Now, it would be nice to provide a bit more information about each of our slides.
Let’s include an overlay that contains a title and a line or two with description about
each one. First, we’ll add the data to each slide. We’ll do this by adding the data-
cycle-title and data-cycle-desc attributes to each of the slides:

<div class="slide" data-cycle-title="Agua Azul" data-cycle-
desc="Tumbalá, Chiapas, Mexico">

</div>

It’s important to add these two data attributes to the container of each slide rather
than to an element inside the container. Go through each of the slides and add these
two data attributes.

We’ve got the data, so now we just need a place to display it. Inside the <div>
element with the class as cycle-slideshow, but before the first <div> element with
the class slide, add a <div> element with class cycle-overlay, as shown in the
following code:

<div class="cycle-slideshow"

data-cycle-slides="> div.slide"

data-cycle-pause-on-hover="true"

data-cycle-swipe="true" >

<div class='"cycle-prev'"></div>

<div class='"cycle-next'"></div>

<div class="cycle-overlay'"></div>

<div class="slide" data-cycle-title="Agua Azul" data-cycle-
desc="Tumbalá, Chiapas, Mexico">

Refresh the page in the browser, and you’ll see that the title and description that we
added to each slide element now appears beneath the slideshow.

That’s a good start, but let’s style the overlay with a bit of CSS to display it on top of
the slideshow:

.cycle-overlay {

background: rgba(0,0,0,0.6);
bottom: 0O;

left: 0;

position: absolute;

right: 0;

z-index: 101;

}

12. Using Chrome’s web tools, we can see the markup created by the Cycle2 plugin to
display the title and description. Each line is simply wrapped in a <div> element
without a class or an id value.

Niagara Falls I
Mew York, USA & Ontario, Canada

% |Elements ' Resources MNetwork Sources Timeline Profiles Audits Console
TaTa—CyC lE—TR= LLIES LI0E
data-cycle—overlay-template="<div class='headline's Styles | Computed Ewvent Listeners DOM Breakpoints »
<hZ={{title} < h2=<p={{desc}l=/p==/div="> element,style { + i -
data-cycle—caption—plugin="caption2" } .
data-cycle-overlay-fx-sel=">div'>—->
<div class="cycle-previ=</div. «cycle-overlay { styles, css; 160
=div class="cycle-next"=</div=> pirtkgrourd e [l black;
background: » M rgba (@, 8,0,0.5);
=div=iagara Falls</div> bottom: @;
=divsNew York, USA & Dntario, Canada</div> left: o;
e positien: absolute;
B =div class="slide cycle-slide" data—cycle-title="Agua ;f?:ééxailﬁl'
Azul" data-cycle-desc="Tumbald, Chiapas, Mexico" style= } i i
"position: absolute; top: Bpx; left: Bpx; z-index: 97;
opacity: B; display: none;">_</div> html, body, div, span, applet, object, iframe, styles. cse:8
k =div class="slide cycle-slide" data—cycle-title="Burney h1, h2, h3, h4, hS, hé, p, blockquote, pre, a, abbr,
Falls" data-cycle-desc="Shasta County, California, USA" acronym, address, big, cite, code, del, dfn, em, img, i
style="position: absolute; top: @px; left: Bpx; z-index: i A strike, stre ub, sup
96; display: none; opacity: 8;"s.</div= b, i id, ol, ul fi f
B orrliyg locc=""c]ida rwrla 1idg" Axd srlo i+l o=""Noger b | Pl wahla rant ¥ mr i aTetain] frimt thing

While we could technically use CSS pseudoclasses or advanced CSS selectors to
select each of those <div> elements individually, it would make our CSS much easier
to write if we had some control over that markup and could wrap the title in a
heading tag and the description in a paragraph tag.

Good news! Cycle2 does give us a way to specify which HTML tags should be used
to mark up the overlay content by passing an HTML template in a data attribute.
We’ll use the data-cycle-overlay-template attribute and we’ll pass it the markup
we’d like to use for our overlays:

<div class="cycle-slideshow"

data-cycle-slides="> div.slide"

data-cycle-pause-on-hover="true"

data-cycle-swipe="true"

data-cycle-overlay-template="<div class='headline'><h2>{{title}}</h2>
<p>{{desc}}</p></div>">

You can see that we’ve used the {{title}} token to show Cycle2 where to display
the bit of content we’ve designated as the title and then the {{desc}} token to tell
Cycle2 where to display the bit of content that makes up the description for each

slide. Now, we can jump back over to our styles.css file and write a bit of CSS to
style this new markup:

.headline {
color: white;
padding: 1lem;

3

.headline h2 {
color: white;
font-size: 2em;
line-height: 1.125;
}

.headline p {
font-style: italic;
line-height: 1.5;

3

This gives us a gorgeous-looking result that anyone would be proud of:

Waterfalls of the World

Burney Falls
Shasta County, California, USA

Our slideshow is looking pretty good, but we’ve got a few more tricks up our sleeves
that we can use to make it even better:

13. While the fading transition animation is nice, let’s use something a bit fancier. On the
Demos page at http://jquery.malsup.com/cycle2/demo/, you can view the different
transitions that are available for the Cycle2 plugin. Let’s take a look at how to use
and customize the tile transition.

First, we have to download the Tile Transition plugin and attach it to our page. The
optional plugins for Cycle2 are not found in the jQuery plugins’ repository like the
core plugin—they need to be downloaded from the Cycle2 download page at
http://jquery.malsup.com/cycle2/download/. Head over there and find the link for the

http://jquery.malsup.com/cycle2/demo/
http://jquery.malsup.com/cycle2/download/

14.

Production version of the Tile Transition plugin in the table of transition plugins.

Transition Plugms Production Development Demo Link

A plugin for desplaying slides in a carousal. A carousel slideshow differs from a narmal Dawnload Download Demo
Carousel gygeshow in that it displays multiple images at a time while advancing them one-by-cne. (2kb) [k}

A plugin for transitioning slides via CSS3 transformations. Download Download Damo
Flip {1kt (2kb)

A fadae/fadeout plugin for old versions of |E. This plugin corracts issuas that arise whean Daownkoad Download
IE-Fade giearype ts used with opachy {1kt) (1kE)

A vertical scroll plugin, Simitar to the scroliiHorz ransition effect, but moves slides Download Download Demo
ScrolVert yarically, {1Kb) (Kb}

A plugin which supports the classic Cycla Shuffie animation. The shuffle animation is Daownboad Download Damo
Shuffie somewhat like moving a card from the top of a deck of cards to the back of the deck, or | TkDj (2K}

Vice versa.

A plugin for tile-based slide transitions, Tlle animations break images into smaller sections Download Download Damo
Tie and transition them out piece by piece. Interesting effects can be achieved by changing (1kb) [4ki}

the direction, ke count, and spaed of the transitions

Save the file to your own scripts folder. Then, open up your HTML file and attach
the Tile Transition plugin at the bottom of the file, after the Cycle2 plugin, as shown
in the following code:

<script src="scripts/jquery.js"></script>

<script src="scripts/jquery.cycle2.min.js"></script>
<script src="scripts/jquery.cycle2.tile.min.js"></script>
<script src="scripts/scripts.js"></script>

</body>

</html>

Next, we have to tell our slideshow to use the newly available tile transition. To do
that, we’ll add another data attribute to the parent container of our slideshow. In your
HTML file, find the <div> element with cycle-slideshow as the class value, and add
the data-cycle-fx attribute set to tileSlide:

<div class="cycle-slideshow"

data-cycle-slides="> div.slide"

data-cycle-pause-on-hover="true"

data-cycle-swipe="true"

data-cycle-overlay-template="<div class='headline'><h2>{{title}}</h2>
<p>{{desc}}</p></div>"

data-cycle-fx="tileSlide">

Refresh the page in the browser, and you’ll see that the transition between slides now
uses the sliding tile transition.

15.

16.

Waterfalls of the World

Jonathan's Run
Fayette County, Pennsylvania, USA

If you prefer, you could switch that to a blinds-style transition by specifying
tileBlind as the value for the data-cycle-fx attribute:

<div class="cycle-slideshow"

data-cycle-slides="> div.slide"

data-cycle-pause-on-hover="true"

data-cycle-swipe="true"

data-cycle-overlay-template="<div class='headline'><h2>{{title}}</h2>
<p>{{desc}}</p></div>"

data-cycle-fx="tileBlind">

By default, the tile transition breaks each slide into seven vertical tiles. However, we
have the option to change both the number of tiles and the orientation of the tiles by
adding a few more data attributes to our slideshow. Here, we’re using 13 horizontal
tiles in a blinds animation:

<div class="cycle-slideshow"

data-cycle-slides="> div.slide"

data-cycle-pause-on-hover="true"

data-cycle-swipe="true"

data-cycle-overlay-template="<div class='headline'><h2>{{title}}</h2>
<p>{{desc}}</p></div>"

data-cycle-fx="tileBlind"

data-cycle-tile-count="13"

data-cycle-tile-vertical="false">

Experiment with the available options for the slideshow transition and find one you
like best. Feel free to experiment with some of the other transition plugins as well.

Now that we have a fancy transition effect in place for the slides, notice the way the

17.

text in the overlay changes. It waits until the animated transition is complete, and
then just snaps to the new value when the next slide is displayed. Let’s animate that
too.

Luckily, Cycle2 makes that easy to do too! There’s another optional plugin for
Cycle2 called Caption?2 that allows us to control the transitions for the overlay. Head

to the downloads page for Cycle2 (http://jquery.malsup.com/cycle2/download/) and
click on the link to download the Production version of the Caption2 plugin. Save

the file to your own scripts folder, then open your HTML file and attach the new
plugin in the footer:

<script src="scripts/jquery.js"></script>

<script src="scripts/jquery.cycle2.min.js"></script>

<script src="scripts/jquery.cycle2.tile.min.js"></script>
<script src="scripts/jquery.cycle2.caption2.min.js"></script>
<script src="scripts/scripts.js"></script>

</body>

</html>

Next, we’ll add some data attributes to our slideshow to control the transitions for the
overlay. We have to tell our slideshow to use the Caption2 plugin, so we’ll start by
adding the data-cycle-overlay-plugin attribute equal to caption2:

<div class="cycle-slideshow"

data-cycle-slides="> div.slide"

data-cycle-pause-on-hover="true"

data-cycle-swipe="true"

data-cycle-overlay-template="<div class='headline'><h2>{{title}}</h2>
<p>{{desc}}</p></div>"

data-cycle-fx="tileSlide"

data-cycle-tile-count="9"

data-cycle-caption-plugin="caption2">

If you refresh the page in the browser, you’ll see that the entire overlay now fades out
as soon as the slide transition begins and then fades back in with the new value. Let’s
allow the translucent black background for the overlay to stay in place and for just

the text itself to fade out and back in. To achieve this, we’ll add another data attribute
to the slideshow to specify which element in the overlay should be animated:

<div class="cycle-slideshow"

data-cycle-slides="> div.slide"

data-cycle-pause-on-hover="true"

data-cycle-swipe="true"

data-cycle-overlay-template="<div class='headline'><h2>{{title}}</h2>
<p>{{desc}}</p></div>"

data-cycle-fx="tileSlide"

data-cycle-tile-count="9"

data-cycle-caption-plugin="caption2"

data-cycle-overlay-fx-sel=">div">

Now, if you refresh the page in the browser, you’ll see that the overlay container
stays visible, but just the text inside fades out and back in with each slide transition.
This helps the slideshow feel more cohesive and makes it feel as if the overlay is a

http://jquery.malsup.com/cycle2/download/

part of the slideshow.

We’ve already seen quite a lot of what the Cycle2 plugin can do, but we’ve barely
scratched the surface! Let’s next take a look at how we can create an image carousel with
the Cycle2 plugin.

The Cycle2 carousel

Cycle? is flexible; you’re not limited to simple slideshows. You can put Cycle2 to use to
create a carousel that shows multiple images at one time. Let’s take a look at how we
might create a carousel of thumbnail images.

Time for action — building a Cycle2
carousel

Follow these steps to create a carousel with the Cycle2 plugin.

1. We’ll get started, as we usually do, with using the HTML document and associated
files and folders just like we did in Chapter 1, Designer, Meet jQuery. First up, we’ll
get the HTML markup for our carousel set up. Our HTML markup will be similar to
the markup for the slideshow we set up in the previous example. We need a container
<div> to hold the slideshow. Then, we also need individual <div> elements inside the
external container for each individual slide or image that will appear in our
slideshow:

<div class='"cycle-slideshow">
<div class="slide">

</div>
<div class="slide">

</div>
<div class="slide">

</div>

</div>
Our markup here is similar to the previous example but a bit simpler. Since we’re

using thumbnail images, we aren’t going to be using text overlays. So we can skip the
extra data attributes for those.

2. Now, we’ll take just a moment to consider those users who have JavaScript disabled.
Our thumbnails are linking them off to more information about each of those slides,
so let’s show them these images as a grid. First, add the jsoff class to the <body>
tag:

<body class="jsOff">

Next, let’s pop into our styles.css file and write a bit of code that’s going to display
those thumbnails nicely for site visitors without JavaScript:

.jsOff .cycle-slideshow .slide {
display: inline-block;
padding: 0.5em;

b

The users with JavaScript disabled will see the page as shown in the following
screenshot:

Waterfalls of the World

It’s nothing extra fancy, but these visitors can still see the thumbnail images and can
click on each one to see more information, so it fulfills our purpose. They’ll never
know what they’re missing. Finally, we have to open our scripts. js file and add a
bit of code to remove the jsoff class for site visitors who do have JavaScript
enabled:

$(document) .ready(function(){
$('body').removeClass('jsOff').addClass('jsOn');

1)

This isn’t anything we haven’t seen before. With the non-JavaScript case out of the
way, let’s take a look at creating and animating our carousel for everyone else.

. First up, let’s download and attach the Cycle2 plugin to our HTML page. This is
available for download in the jQuery plugin repository or also from the download
page of the Cycle2 documentation (http://jquery.malsup.com/cycle2/download/).
Save the file to your scripts. js folder and then attach it in the footer of your HTML
document after jQuery but before your scripts. js file:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.cycle2.min.js"></script>
<script src="scripts/scripts.js"></script>

Now, you might expect to see a thumbnail-sized slideshow if you refresh the page in
the browser at this point, but that’s not the case. This is because Cycle2, by default,
expects a collection of images inside the parent container, but we’ve wrapped each of
our images in a link and a <div> element with the slide class. We just have to tell
Cycle2 that we’re using this alternate markup. In the HTML file, find the <div>
element with the cycle-slideshow class and add the correct data attribute as shown
in the following code:

<div class="cycle-slideshow"
data-cycle-slides="> div.slide">
<div class="slide">

http://jquery.malsup.com/cycle2/download/

Just like we did last time, we’ll break the data attributes out onto individual lines to
make them easier to read. Here, we’ve added the data-cycle-slides attribute and
set the value equal to the selector for each of our individual slides. The thumbnail-

sized slideshow will look like the one shown in the following screenshot:

Waterfalls of the World

Now, if you refresh the page in the browser, you’ll see that you have a thumbnail-
sized slideshow. Let’s turn that into a carousel.

. We need to add a Cycle2 plugin—the Carousel Transition plugin. Don’t forget that
while the Cycle2 plugin itself is available in the jQuery plugins’ repository, the
additional plugins that add the functionality are not. Additional Cycle2 plugins are
only available from the Cycle2 downloads page at
http://jquery.malsup.com/cycle2/download/. Head over there and find and download
the Production version of the Carousel Transition plugin. Save it to your own
scripts folder.

. Next, open up index.html and attach the carousel plugin at the bottom of the file,
after the Cycle2 plugin, but before your scripts. js file:

<script src="scripts/jquery.js'"></script>

<script src="scripts/jquery.cycle2.min.js"></script>

<script src="scripts/jquery.cycle2.carousel.min.js"></script>
<script src="scripts/scripts.js"></script>

</body>

</html>

. Now, we need to add a data attribute to our slideshow container, so Cycle2 knows we
want to use a different transition effect. Find the <div> element with the cycle-
slideshow class and add the data-cycle-fx attribute set to carousel:

<div class="cycle-slideshow"
data-cycle-slides="> div.slide"
data-cycle-fx="carousel">

Now, if you refresh the page in the browser, you’ll see that you have a carousel, as
shown in the following screenshot:

http://jquery.malsup.com/cycle2/download/

Waterfalls of the World

By T~

You’ll see that the carousel automatically advances one image every second or so.
That’s nice, but it would be even nicer to put 100 percent of the control of the
carousel in the hands of our site visitors.

. Let’s disable the automatic animations. This way, site visitors won’t be distracted by
the images marching across their screen unexpectedly. To do this, we just have to add
a data attribute. Find the <div> element with the class cycle-slideshow and add the
data-cycle-timeout attribute in it. We can use this attribute on any Cycle2
slideshow to specify how long to wait between animations. In this case, we don’t
want any animations at all, so we’ll set it equal to o:

<div class="cycle-slideshow"
data-cycle-slides="> div.slide"
data-cycle-fx="carousel"
data-cycle-timeout="0">

. Now that we’ve removed the automatic animations, our site visitors have no way to
access any of the slides that aren’t visible on page load. Let’s fix this by adding some
previous and next buttons.

By default, if we add the same code we added last time for the next and previous
buttons, they’ll both be shown under the carousel as they are in the demos on the
Cycle2 documentation site:

B .. 5%

<< Preav Next >>

That’s okay, but we’re designers! Let’s place our buttons to the left and right of the
slideshow. Also, let’s use graphic images instead of text. Here’s the look we’re going
for:

10.

Waterfalls of the World

Can you push Cycle2 that far and customize it to such an extent? You bet you can!
Let’s see how to accomplish this.

First up, we have to add some space around the slideshow to make room for the
buttons. We also need a way to position those buttons on either side of the slideshow.
To accomplish this, we’ll wrap a new <div> element around the entire slideshow:

<div class="slideshow-wrap">
<div class='"cycle-slideshow"
data-cycle-slides="> div.slide"
data-cycle-fx="carousel"
data-cycle-timeout="0"
>
<div class="slide">

</div>
</div>
</div>

Then, jump over to styles.css and style that new container:

.slideshow-wrap {
position: relative;

}

That’s all we need to set the position attribute to relative so that we can easily
position items inside the container.

Next, we need to add some space on the left and right sides of the slideshow so we’ve
got space to include the buttons. In the styles.css file, add a margin to the div
element that contains the slideshow:

.cycle-slideshow {
margin: 0@ 3.5em O 3em;

}

Don’t forget the users with JavaScript disabled. The margin won’t be necessary for
them, so let’s remove that for the no-JavaScript case:

.JjsOff .cycle-slideshow {
margin: O;

}

11. Now that we’ve made space for them, let’s add our next and previous buttons. We
don’t want them to be inside the slideshow because we need more control. Instead,
we’ll place them after the slideshow, but inside that wrapper <div> element we
added:

<div class="slideshow-wrap">
<div class="cycle-slideshow"

data-cycle-slides="> div.slide"

data-cycle-fx="carousel"

data-cycle-timeout="0"

>

<div class="slide">

</div>

</div>
<div id="prev"><div class="button-wrap"></div></div>

<div id="next"><div class="button-wrap"></div></div>
</div>

Notice that we’re adding another <div> element inside those next and previous
buttons. We’ll use that to style the buttons just the way we’d like. Now, we’ve got our
next and previous buttons, but because they’re not inside the slideshow, Cycle2
doesn’t even know about them yet. We just have to tell Cycle2 that we’d like to use
those new <div> elements as the next and previous buttons. We’ll do that by adding a
couple of more data attributes to the <div> element with the class cycle-slideshow:

<div class="cycle-slideshow"

data-cycle-slides="> div.slide"

data-cycle-fx="carousel"

data-cycle-timeout="0"

data-cycle-next="#next"

data-cycle-prev="#prev'">
We’ll use the data-cycle-next and data-cycle-prev data attributes and set them to
be equal to selectors for whatever elements we’d like to use as the next and previous

buttons.

12. Now, our next and previous buttons work to control the slideshow in theory, but as
we haven’t styled them with CSS yet, we can’t actually see them to click and try
them out.

Before we get started with styling those buttons, let’s remember our visitors without
JavaScript again. Those buttons won’t be of any help to them, so let’s tuck them out
of view:

.JsOff #next,
.jsOff #prev {
display: none;

}

13.

Now, we can get to work on styling our previous and next buttons for everyone else.
First, set the size and position of each of the buttons:

#next,

#prev {
bottom: 0;
cursor: pointer;
overflow: hidden;
position: absolute;

top: O,
width: 3em;
}
#next {
right: 0;
}
#prev {
left: 0;
}

This bit of code absolutely positions the buttons to either the left or the right of the
slideshow, in the space we created for them when we added a margin to the slideshow
container. It also sets the width of the buttons to 3em and makes them equal in height
to the height of the slideshow.

Now, remember that extra button-wrap container we placed inside each of our
buttons? We’re going to use that to create the half-circle buttons. Here are the styles

to apply:

.button-wrap {
background: #4fcle9;
border-radius: 50%;
bottom: O;
position: absolute;
top: O,
width: 6em;

}

#next .button-wrap {
right: 0;
}

#prev .button-wrap {
left: 0;

}

Let’s take a look at this to be sure you understand what’s going on. First up, we’re
setting the background color as bright blue. By setting the border-radius value to
50%, we’re creating a circle shape. Next, we absolutely position the blue circle and set
its width to twice the width of the parent container. Essentially, we’re creating a
complete circle but only showing half of the circle. The circle, along with its
attributes, is diagrammatically shown as follows:

14.

15.

<div class="button-wrap">

7 \

<div id="prev'> <div id="next">

Now, let’s add a hover style and make the blue part a slightly darker shade when the
buttons are hovered over:

#next .button-wrap:hover,
#prev .button-wrap:hover {
background: #38afda;

b

That’s simple enough—it’s just a simple background color change. But what if we
wanted a quick animation from color to color? All we have to do is go back to the
CSS element where we originally defined the background color and add a CSS
transition property:

.button-wrap {
background: #4fcle9;
border-radius: 50%;

bottom: O;

position: absolute;

top: O,

transition: background-color 0.3s;
width: 6em;

}

Now, if you hover over the buttons, you’ll see an animation that takes 0.3 seconds to
change from the default background color to the hover background color.

Our carousel is looking pretty good so far, but we do need to add some arrows to
those buttons to make their functionality clearer. Remember that clever technique for
creating triangles with CSS? We’ll put that to use here again. Let’s define a slightly
transparent white triangle for each button:

#next .button-wrap:before,
#prev .button-wrap:before {
border-style: solid;
content: '';
margin-top: -0.866em;
position: absolute;
top: 50%;

#next .button-wrap:before {
border-width: 0.866em 0 0.866em lem;
border-color: transparent transparent transparent
rgba(255, 255, 255,0.5);
right: lem;
}

#prev .button-wrap:before {

border-width: 0.866em lem 0.866em 0;

border-color: transparent rgba(255,255,255,0.5) transparent
transparent;

left: 1em;

}

We’re absolutely positioning the arrow to appear in the middle of our half-circle
button, and then adjusting the border widths and colors to produce the triangle.

16. The only thing left to do is to add a hover effect to the triangles. Since the button
color is changing, we can emphasize that difference by also changing the triangles to
be less transparent when hovered over:

#next .button-wrap:hover:before {
border-left-color: rgba(255,255,255,0.8);

}

#prev .button-wrap:hover:before {
border-right-color: rgba(255,255,255,0.8);

}

Again, if we wanted to animate that color change, we can use the CSS transition
property. But since we now have two things changing, we could actually just make a
simple change to the transition line we wrote earlier to animate both the button
background color and the triangle color:

.button-wrap {
background: #4fcle9;
border-radius: 50%;
bottom: 0O;
position: absolute;
top: O,
transition: all 0.3s;
width: 6em;

}

Rather than animating only the background color, we’ve animated anything that
might change—this will cover the background animation for the button itself as well
as the arrow color. If we changed other properties when hovered over, those would be
animated as well.

We’ve created a very nice carousel, but we could definitely improve upon it. What if our
carousel were just a tool to navigate a set of full-size images? Let’s take a look at how we
can combine a carousel and a slideshow.

Combining a carousel with a slideshow

Not only can you include more than one Cycle2 slideshow on a single page, you can also
set up those slideshows to “talk” to one another. Let’s take a look at how we can set up a
carousel to act as a controller for a slideshow. Here’s an example of what we’ll be
building:

Waterfalls of the World

Agua Azul

Tumbald, Chiapas, Mexico

R

Clicking on one of the thumbnails in the carousel will load the full-size version of that
image in the slideshow section.

Setting up the carousel

To make this a little bit easier to digest, we’re going to break the process of creating the
carousel/slideshow combo into three pieces. In this first piece, we’ll get the carousel set up
and working and look at the special considerations we have to make to ensure that it will
work flawlessly with our slideshow component.

Time for action — creating the carousel
controller

Follow these steps to create a Cycle2 carousel that can act as a controller for a slideshow:

1. First, we’ll create the carousel. Once we have that on the page and it’s functioning,
we’ll add the slideshow and then connect them together.

Here’s the HTML markup we’ll use for the slideshow:

<div id="carousel">
<div class="cycle-slideshow">
<div>

</div>
<div>

<img src="images/BurneyFalls-thumb.jpg" width="140"
height="100">

</div>
<div>

<img src="images/Deer_Leap_Falls-thumb.jpg" width="140"
height="100">

</div>
</div>
</div>

We’ll wrap the entire slideshow in a <div> element with the ID of carousel. We’ll

use this <div> element for styling purposes and also in our JavaScript to allow us to
select items in the carousel or the slideshow without having to select both.

This markup is a bit different than the markup we used for our last carousel. Rather
than linking to a page with more information about each image, we’re going to link
the thumbnail-size of the image to the full-size image.

2. Now, let’s take a minute to consider how our page will work for site visitors who
don’t have JavaScript enabled. The basic functionality we’re looking for is to view
the full size of each image when we click on the thumbnail. That’s easy enough to
handle, and the HTML markup we’ve set up for the carousel will already handle that.

Add the jsoff class to your <body> tag. Then, open up the styles.css file and style
the carousel thumbs:

.jsOff .cycle-slideshow div {
display: inline-block;
padding: 0.5em;

}

Now, if you refresh the page in the browser, you’ll see that you have a grid of
thumbnails, as shown in the following screenshot:

Waterfalls of the World

Visitors without JavaScript will see a grid of thumbnails. When they click on a
thumbnail, they’ll see the full-size version of that image. They can then use the back
button on the browser to return to this page and view the next thumbnail.

. Now that we have those site visitors taken care of, let’s dive into the interactive
version for the site visitors that do have JavaScript. Open the scripts. js file and
add a bit of code that we’ve seen several times now to remove the jsoff class and
replace it with a json class:

$(document).ready(function(){
$('body').removeClass('jsOoff').addClass('json');

1)

. Next, we’ll attach the JavaScript files that we’ll need in order to get the carousel
working. Just as with the previous carousel, we’ll need the Cycle2 plugin itself and
the Carousel Transition plugin. Place both of those files into your scripts folder.
Then, head down to the bottom of the HTML file and attach those scripts after jQuery
but before your scripts. js file:

<script src="scripts/jquery.js"></script>

<script src="scripts/jquery.cycle2.min.js"></script>

<script src="scripts/jquery.cycle2.carousel.min.js"></script>
<script src="scripts/scripts.js"></script>

</body>

</html>

. Now, let’s add the data attributes to the <div> element that contains our carousel to
get it working just the way we need. We’ll need the data-cycle-slides attribute so
that Cycle2 knows what markup we’re using for our individual slides, and we’ll need
to specify that we want to use the carousel transition effect with the data-cycle-fx
attribute:

<div class="cycle-slideshow"
data-cycle-slides="> div"

data-cycle-fx="carousel">

If you refresh the page in the browser, you’ll see that we’re on our way—we now
have a functioning carousel:

Now, let’s modify the carousal to suit our needs. For that, perform the following
steps:

. First, we don’t want the carousel to advance automatically, so add the data-cycle-
timeout attribute and set this to o:

<div class="cycle-slideshow"
data-cycle-slides="> div"
data-cycle-fx="carousel"
data-cycle-timeout="0">

This will prevent the default automatic advance through the slides.

. Now that we’ve taken the default animation away, we need to provide a way for our
site visitors to get to all the slides in the carousel. We’ll add a previous button and a
next button. First, add the HTML markup for the buttons. These should be inserted
after the closure of the <div> element with the class cycle-slideshow but before the
closure of the <div> element with the ID carousel:

<div id="carousel">
<div class="cycle-slideshow"
data-cycle-slides="> div"
data-cycle-fx="carousel"
data-cycle-timeout="0">
<div>

</div>
</div>
<div class="cycle-prev cycle-button">
<div class="button-wrap"></div>
</div>
<div class="cycle-next cycle-button">
<div class="button-wrap"></div>
</div>
</div>

8. Next, we have to tell Cycle2 which elements on our page will be acting as our next

10.

and previous buttons. We can do that by adding two additional data attributes to our
carousel:

<div class="cycle-slideshow"
data-cycle-slides="> div"
data-cycle-fx="carousel"
data-cycle-timeout="0"
data-cycle-prev="#carousel .cycle-prev"
data-cycle-next="#carousel .cycle-next">

The value of these data attributes is the jQuery (or CSS) selector for the elements.
Now, these two new HTML elements are activated as next and previous buttons, but
we can’t see them on our HTML page yet since we haven’t applied any CSS styles.

We’ll apply similar styles as we did in the last carousel example. In styles.css, let’s
add a margin to the carousel to make room for the next and previous buttons on either
side:

#carousel .cycle-slideshow {
margin: @ 3.5em;

}

Now that we’ve got space for them, we can position our next and previous buttons on
either side of the carousel:

#carousel {
margin: lem O;
position: relative;

}

.cycle-button {
bottom: O;
cursor: pointer;
overflow: hidden;
position: absolute;
top: O,
width: 3em;

b

.cycle-next {
right: 0;
}

.cycle-prev {
left: 0,
}

Now, we can style the <div> element with the button-wrap class that’s inside each of
our button containers:

button-wrap {
background: #4fcle9;
border-radius: 50%;
bottom: 0;

11.

position: absolute;
top: 0O,
transition: all 0.3s;
width: 6em;

}

.cycle-next .button-wrap {
right: 0;
}

.cycle-prev .button-wrap {
left: 0,
}

Just like we did last time, we’re using the technique of creating a circle with CSS and
then only showing 50 percent of the circle to create a half-circle-shaped button. Next,
we’ll change the background color of those buttons when our site visitor hovers over
them:

.cycle-button .button-wrap:hover {
background: #38afda;

}

We’ll use the same CSS technique we used last time to add triangles to these buttons:

.cycle-button .button-wrap:before {
border-style: solid;
content: '';
margin-top: -0.866em;
position: absolute;
top: 50%;

}

.cycle-next .button-wrap:before {
border-width: 0.866em 0 0.866em lem;
border-color: transparent transparent transparent
rgbha(255,255,255,0.5);
right: lem;
}

.cycle-prev .button-wrap:before {

border-width: 0.866em l1em 0.866em O;

border-color: transparent rgba(255,255,255,0.5) transparent
transparent;

left: d1em;

}

Also, just like last time, we’ll add a hover style to these new triangles as well:

.cycle-next .button-wrap:hover:before {
border-left-color: rgba(255,255,255,0.8);

}

.cycle-prev .button-wrap:hover:before {
border-right-color: rgba(255,255,255,0.8);

}

12.

If you refresh the page in the browser, you’ll see that we now have a working
carousel that looks pretty similar to the carousel we built the first time.

Waterfalls of the World

5 1 Y I.k: d; i o r ! i _

We do need to make a few changes to our carousel now to get it ready for acting as
the controller for the slideshow. It’s just a few more data attributes that we need to
add to the slideshow.

However, let’s take a minute to think about our users without JavaScript. They won’t
get any use from the next and previous buttons, and it’s probably best to just hide
those from them:

.jsOff .cycle-button {

display: none;
}
When we’re connecting a carousel with a slideshow, we have a few things to consider
that we wouldn’t have to think about if we were only building a carousel. The first
problem we have to solve is what we’ll call the indexing problem. Let me explain
what that problem is, and then explain how we can solve it.

The carousel and slideshow we’re working within the code examples for this book
each contain eight different slides. If we create a carousel with thumbnails and then a
slideshow with full-size images and put those images in exactly the same order, then
we can use a simple index association to match the thumbnails with the full-size
images. In other words, we know that if the site visitor clicks on the first thumbnail in
the carousel, we should show them the first image in the slideshow. When they click
on the third thumbnail in the carousel, we should show them the third image in the
slideshow, and so on. So what’s the problem?

If you click on the next button on this carousel repeatedly, you’ll see that the set of
slides inside it loops—you can repeatedly click on the next button until you return to
the first slide.

We didn’t have to do any extra work to make that happen—this is a feature that the
developer of the Cycle2 plugin thought out and made happen for us. However, this
feature works by creating some extra copies of the slides inside the carousel and then
using jQuery to cleverly move them around as needed so that it appears that the
carousel just moves infinitely. However, Cycle2 slideshows only show one slide at a
time, so there’s no need to add extra copies of the individual slides to make them

13.

14.

work. The fact that the carousel has extra slides while the slideshow does not can
make things difficult when we want to build a combo.

The eight slides we’re placing into the carousel become 41 slides when Cycle2
finishes making all of its magic happen on the page. If the site visitor clicks on the
fifteenth image in the carousel, we don’t have a fifteenth image in the slideshow to
send them off to, and our carousel/slideshow combo breaks.

Luckily, we can solve this problem really easily by telling our carousel not to loop
infinitely, by adding a data attribute called data-allow-wrap:

<div class="cycle-slideshow"
data-cycle-slides="> div"
data-cycle-fx="carousel"
data-cycle-timeout="0"
data-cycle-prev="#carousel .cycle-prev"
data-cycle-next="#carousel .cycle-next"
data-allow-wrap="false">

Now, because our carousel isn’t wrapping infinitely, there’s no need for Cycle2 to
create extra copies of our slides, and we can easily associate thumbnails in the
carousel with images in the slideshow.

However, if you click the next button on the carousel repeatedly, you’ll see that the
thumbnails keep moving over, until there’s just one image left, as shown in the
following screenshot:

Waterfalls of the World

This feels really awkward, so let’s force the carousel to always show us five slides.
We can do that with another data attribute:

<div class="cycle-slideshow"
data-cycle-slides="> div"
data-cycle-fx="carousel"
data-cycle-timeout="0"
data-cycle-prev="#carousel .cycle-prev"
data-cycle-next="#carousel .cycle-next"
data-allow-wrap="false"
data-cycle-carousel-visible="5">

Now, once our final thumbnail is visible, the carousel stops advancing forward. Nice,
except that the thumbnails are all bunched up, as shown in the following screenshot:

Waterfalls of the World

T ., a | ——
: SR .
: D
" ¥ il
L4 -.I-.) {
. B - 3

Luckily, that’s an easy fix for this too. If we just add the data-cycle-carousel-
fluid data attribute and set it to true, Cycle2 will take care of spacing out our five
thumbnails to fill the space nicely:

<div class="cycle-slideshow"
data-cycle-slides="> div"
data-cycle-fx="carousel"
data-cycle-timeout="0"
data-cycle-prev="#carousel .cycle-prev"
data-cycle-next="#carousel .cycle-next"
data-allow-wrap="false"
data-cycle-carousel-visible="5"
data-cycle-carousel-fluid="true">

This gives us a nice result, as shown in the following screenshot, and it’s responsive
too!

Waterfalls of the World

1!'4“'.»—

Now that we’ve got our carousel set up and working, let’s layer in the slideshow
component.

Adding the slideshow

Congratulations to us! We’ve got a gorgeous-looking carousel set up and working, and
we’ve already solved some of the problems we might encounter when connecting our
carousel and our slideshow together.

With the carousel out of the way, let’s dive into adding the slideshow component. After
this, we’ll connect them so they work together.

Time for action — adding the slideshow

Follow these steps to set up the slideshow component of our carousel/slideshow combo:

1. As usual, we’ll get started with the HTML markup for our slideshow. Since we want
the slideshow to be visible above the carousel, we’ll place the slideshow into the code
before the carousel code. Everything will work just fine if you choose to do things
the other way around. Here’s the HTML structure for the slideshow:

<div id="slideshow">
<div class="cycle-slideshow">

<div data-cycle-title="Agua Azul" data-cycle-desc="Tumbalá,
Chiapas, Mexico'"></div>

<div data-cycle-title="Burney Falls" data-cycle-desc="Shasta
County, California, USA"></div>

<div data-cycle-title="Deer Leap Falls" data-cycle-desc="Dingmans
Ferry, Pennsylvania, USA"></div>

</div>
</div>
We’re including the data-cycle-title and data-cycle-desc attributes in the

container for each of the slides because we want to use those later on to show an
overlay just like we did when we built our previous slideshow.

We’ve also wrapped the entire slideshow in a <div> element with the ID of
slideshow to make it easy to select elements inside the slideshow for either CSS or
JavaScript purposes.

2. We don’t want the slideshow and the carousel to butt up against one another, so we’ll
go into styles.css and add a bit of space around both the components:

#carousel,

#slideshow {
margin: lem O;
position: relative;

}

Also, we’ve added a margin on the left and right sides of the carousel to make room
for the next and previous buttons. To keep things nicely aligned, we should add this
same margin around the slideshow portion. Find the line in styles.css where you
added the left and right margin around the carousel and apply the same style to the
slideshow:

#carousel .cycle-slideshow,
#slideshow .cycle-slideshow {
margin: @ 3.5em;

}

3. Now, just like we always do, we’ll take a moment now to think about how this
slideshow should look and behave for site visitors without JavaScript. For the visitors
who do have JavaScript, we’re loading up the full-size version of the image in the

slideshow when they click on the thumbnail. A similar behavior that we can
accomplish for visitors without JavaScript would be what we already built in the
carousel section—we’ll show them a grid of images that link to the full-size version
of the images. For this, it would make sense to just hide the slideshow portion of our
combo altogether for users without JavaScript. Add this to styles.css:

.jsOff #slideshow {
display: none;
¥
4. Our slideshow won’t work until we tell Cycle2 the markup for our slides. Just like
we’ve done before, we’ll add the data-cycle-slides attribute:

<div class="cycle-slideshow"
data-cycle-slides="> div">

Now, if you refresh the page in the browser, you’ll see that we have a working
slideshow.

Waterfalls of the World

5. Just like with the carousel, we don’t want automatic animation to happen since we
want our site visitors to have complete control over the slideshow. We’ll use the
data-cycle-timeout data attribute to turn that off:

<div class="cycle-slideshow"
data-cycle-slides="> div"
data-cycle-timeout="0">

6. Next, let’s get the overlay with the title and description working for our slideshow.
We’ll add a <div> element to contain our overlay at the bottom of our slideshow after

the closure of the <div> element with the class cycle-slideshow, but before the
closure of <div> element with the ID slideshow:

<div id="slideshow">
<div class="cycle-slideshow"

data-cycle-slides="> div"

data-cycle-timeout="0">

<div data-cycle-title="Agua Azul" data-cycle-desc="Tumbalá,
Chiapas, Mexico'"></div>

<div data-cycle-title="Burney Falls" data-cycle-desc="Shasta
County, California, USA"></div>

<div id="overlay" class="cycle-overlay"></div>
</div>

Now, we just have to tell Cycle2 that this is the container we’d like to use for the
overlay. We’ll do that with a data attribute:

<div class="cycle-slideshow"
data-cycle-slides="> div"
data-cycle-timeout="0"
data-cycle-overlay="#overlay">

If you refresh the page in the browser now, you’ll see that the text we specified as the
data-cycle-title and data-cycle-desc attributes on each slide are now displayed
below the slideshow, as shown in the following screenshot:

Agua Azul
Tumbala, Chiapas, Mexico

@

. Next, we need to style that text. Just like last time, we want to specify a different bit
of HTML to be used to mark up that text because the default markup is a bit

challenging to style with CSS. We’ll pass the data-cycle-overlay-template
attribute with the HTML we want to use:

<div class="cycle-slideshow"

data-cycle-slides="> div"

data-cycle-timeout="0"

data-cycle-overlay="#overlay"

data-cycle-overlay-template="<div class='headline'><h2>{{title}}</h2>
<p>{{desc}}</p></div>">

Then, we’ll jump back over to styles.css and add some CSS to style that overlay:

.cycle-overlay {
bottom: 0;
left: 0,
position: absolute;
right: 0;
z-index: 101;

}

.headline {
background: rgba(0,0,0,0.6);
color: white;
margin: O 4em;
padding: lem;
}

.headline h2 {
color: white;
font-size: 2em;
line-height: 1.125;
}

.headline p {
font-style: italic;
line-height: 1.5;

}

Now, if you refresh the page in the browser, you can see that the overlay is close to
the final position we want, but it seems just a bit off:

Waterfalls of the World

Agua Azul

Tumbald, Chiapas, Mexico
e
1
£%
-

This is happening because our image isn’t centered inside the stage area of the
slideshow. Let’s take a look at how we can fix that.

. Cycle2 has a Center plugin that will allow us to center content vertically,
horizontally, or both inside the slideshow area. This can be one method of nicely
handling slides that are of different sizes or aspect ratios. In this case, we want to
bump the images of the slideshow over so that they’re centered. Head to the Cycle2
downloads page (http://jquery.malsup.com/cycle2/download/) and download the
Production version of the Center plugin and save it to your scripts folder. Then,
attach it at the bottom of index.html:

<script src="scripts/jquery.js"></script>

<script src="scripts/jquery.cycle2.min.js"></script>

<script src="scripts/jquery.cycle2.carousel.min.js"></script>
<script src="scripts/jquery.cycle2.center.min.js"></script>
<script src="scripts/scripts.js"></script>

</body>

</html>

Now, we just have to add a data attribute to the slideshow to tell Cycle2 that we want
to horizontally center the slides:

<div class="cycle-slideshow"

data-cycle-slides="> div"

data-cycle-timeout="0"

data-cycle-overlay="#overlay"

data-cycle-overlay-template="<div class='headline'><h2>{{title}}</h2>
<p>{{desc}}</p></div>"

data-cycle-center-horz="true">

http://jquery.malsup.com/cycle2/download/

If you refresh the page in the browser, you’ll see that the overlay now matches up
with our slides because our slides are properly centered in the stage area.

Waterfalls of the World

¥l - T A =

f e

Agua Azul

Tumbals, Chiapas, Mexico

Now, our slideshow and our carousel look good; the only thing left to do is get them
talking to each other.

Connecting the carousel and the slider

In this final section, we’ll take a look at how to connect the carousel with the slider so that
clicking on a thumbnail in the carousel loads up the full-size version of the image in the
slideshow. Once that’s finished, we’ll make some final adjustments that will add some

nice touches.

Time for action — connecting the carousel
and the slider

Follow these steps to connect the carousel and the slider:

1. We’ve done a lot so far with Cycle2 without writing much jQuery to make it all
happen. We’ve finally found something we want to do with Cycle2 that will require
us to write a few lines of jQuery. We want to load the full-size image in the slideshow
when our site visitor clicks on the thumbnail in the carousel. So we’ll get started with
scripts.js by selecting all the slides in the carousel. Add the code to select those
inside the document ready method, after the bit of code that we’re using to change
the <body> class:

$(document).ready(function(){
$('body').removeClass('jsOff').addClass('jsOn');

$('#carousel .cycle-slide');

1),

This little bit of code won’t change anything on our page, but now we’ve got all the
thumbnails in the carousel and we can work with them. The cycle-slide class is
added to each individual slide in a slideshow by the Cycle2 plugin.

2. We want the slides in the slideshow to change when the site visitor clicks on those
thumbnails in the carousel, so we need to add a click event to those thumbnails:

$(document).ready(function(){
$('body').removeClass('jsOoff').addClass('json');

$('#carousel .cycle-slide').on('click', function()({
// here's what happens when we click on a thumbnail

});
1)
Now, we’re all set to take some action when our site visitor clicks on a thumbnail, so
let’s think about what we need to do.

3. Each of our thumbnails is wrapped in a link to the full-size image, but we don’t want
to send people off to that link if they have JavaScript enabled. The first thing we’ll do
is cancel this default action:

$('#carousel .cycle-slide').on('click', function(e){
e.preventDefault();

3);

Notice that we made a change at the end of the first line. We added an e argument
inside the parentheses after my function. Recall that this is the event that we’re
working with.

Then, inside the function, we can call a method of that event to change what happens.
We’re calling a method called preventDefault () that cancels the default action. In

this case, it will prevent the opening of the full-size image in the browser window.
We want to write our own action that will happen when a site visitor clicks, so we
don’t want that default action to happen.

If you refresh the page in the browser now and click on one of the thumbnails in the
carousel, you’ll see that nothing happens. Let’s write a new action.

. When a site visitor clicks on one of the carousel thumbnails, the first thing we need to
do is figure out the index of the thumbnail. Remember earlier we talked about how
there are eight slides in the carousel and eight slides in the slideshow? When we click
on the third thumbnail, we want to show the third image in the slideshow. In order to
be able to that, we need to know what is the number of the thumbnail the site visitor
clicked. This number is called the index.

So, the next step of our action is figuring out the index of the thumbnail that the site
visitor clicked. We’ll set up a variable for that and call it index:

$('#carousel .cycle-slide').on('click', function(e){
e.preventDefault();
var index;

1)

Remember, a variable is just an empty container. We’ve created an empty container
named index. Now, let’s figure out how to put the index of the thumbnail into that
container.

. The Cycle2 plugin actually gives us a pretty nice way to figure out which thumbnail
was clicked. The thumbnail gets stored as data attached to the carousel container. So,
the first thing we’ll do is select the carousel container:

$('#carousel .cycle-slide').on('click', function(e){
e.preventDefault();
var index = $('#carousel .cycle-slideshow');

1)

. Now that we’ve got that container, we just need to access the data that’s attached to
it. To do that, we’ll use jQuery’s data() method, and we’ll use cycle.API that the
Cycle2 plugin has provided us:

$('#carousel .cycle-slide').on('click', function(e){
e.preventDefault();
var index = $('#carousel .cycle-slideshow').data('cycle.API');

1)

The cycle.API is just a programmer-speak for some handy bits of information that

the Cycle2 plugin makes available to us. This is also the information that Cycle2 and
the Cycle2 plugins themselves use to make the magic happen. You can take a look at
the assorted information available to us by looking at the Cycle2 API documentation

page at http://jquery.malsup.com/cycle2/api/advanced.php

Now, chances are that there’s going to be a lot of information there that you don’t
understand—that’s okay. We’ll just need to understand some of it to get the

http://jquery.malsup.com/cycle2/api/advanced.php

10.

functionality we want.

In this case, the bit of information we’d like to get from Cycle2 is the index of the
thumbnail that was clicked. We’ll ask for that with the getSlideIndex() method:

$('#carousel .cycle-slide').on('click', function(e){
e.preventDefault();
var index = $('#carousel .cycle-
slideshow').data('cycle.API').getSlideIndex(this);

1),

It’s not terribly important to understand exactly how this works. Just know that when
a thumbnail in the carousel is clicked, we now know exactly which slide it was.

Now that we’ve got the index of the clicked thumbnail, we have to figure out how to
tell the slideshow to show that slide. We also have to tell the carousel that we want
that thumbnail to be moved to the prime position. That is refreshingly easy. We’ll get
started by selecting the slideshows:

$('#carousel .cycle-slide').on('click', function(e){
e.preventDefault();
var index = $('#carousel .cycle-

slideshow').data('cycle.API').getSlideIndex(this);
$('.cycle-slideshow');

1)

Now, we can call the cycle() method and tell it what we’d like to do. In this case,
we want to tell the slideshow to go to the slide that matches the index:

$('#carousel .cycle-slide').on('click', function(e)({
e.preventDefault();
var index = $('#carousel .cycle-
slideshow').data('cycle.API').getSlideIndex(this);
$('.cycle-slideshow').cycle('goto', index);
3);
That’s it, just a couple of lines of code. If you refresh the page in the browser, you’ll
see that when you click on one of the thumbnails, it loads up the full-size version of
that image in the slideshow and also moves that thumbnail to the first position as long

as we’re not too close to the end.

Now, let’s take a look at a few things we can do to make the experience of using our
slideshow/carousel combo even better.

It’s not terribly clear which thumbnail in the carousel represents the currently
selected thumbnail. We can fix that with a bit of CSS. Open styles.css and add a
few lines to style the thumbnails:

#carousel .cycle-slide img {
border: 2px solid transparent;
display: block;
opacity: 0.7;

}

#carousel .cycle-slide-active img {

11.

border-color: #38AFDA;

opacity: 1;
¥
In this case, we are fading out the thumbnails that aren’t selected and then showing
the selected thumbnail at full opacity and with a blue border. By assigning a 2px
transparent border to the unselected thumbnails, we assure that there won’t be any
awkward 2px jumping when the border is applied. Rather than adding and removing
the border, we’re just changing the color of the border.

And where does that cycle-slide-active class come from? It’s added for us by the
Cycle2 plugin. Refresh the page, and your slideshow should look like the following
screenshot:

B

Agua Azul

Tumbald, Chiapas, Mexico

Now, it’s easy to identify at a glance which thumbnail is selected.

Remember how we removed the infinite looping of the carousel? We had to do that in
order to make the carousel work as a controller for the slideshow, but we’re not doing
a very good job of communicating to our site visitor that they’ve reached the end of
the carousel and further clicking isn’t going to advance them any further.

We can fix that by adding some CSS styles for disabled carousel buttons. In
styles.css, add an alternate style for the buttons if they’re disabled:

.cycle-button.disabled {
opacity: 0.5;
¥

In this case, we’ll to fade those out to communicate that they’re no longer active. The

12.

disabled class is added to those buttons for us by the Cycle2 plugin.

Finally, our slideshow/carousel combo doesn’t currently behave very nicely when we
have a narrower window, like our site visitors might have on a tablet or a mobile
phone. Let’s shrink the images nicely to fit in the space available:

In styles.css, add this bit of code:

.cycle-slideshow img {
height: auto;
max-width: 100%;

}

Refresh the page in the browser and make the window narrower. You’ll see that our
slideshow now behaves pretty nicely and fits inside the screen.

Phew! That was quite a lot of work and it was pretty involved! But you made it
through. Thanks for sticking with me.

Summary

In this chapter, we took a look at five different ways in which we can deal with slideshows
and sliders on websites. We started off by building a simple crossfading slideshow from
scratch without using a plugin. Next, we took a look at implementing the Basic Slider,
which while being basic, has enough options and the ability to change its appearance via
CSS, making it a great fit for many different types of projects.

For those projects that require fancy transition effects and even more options, we worked
through three different types of sliders that we can build with the Cycle2 plugin. This
flexible and extensible plugin will come in handy for many different types of slideshows
on many different projects.

Next, we’ll take a look at some techniques to use when working with responsive designs.

Chapter 7. Working with Responsive
Designs

The last couple of years have seen a rise in the popularity of an approach to designing
websites called responsive design. Coined by Ethan Marcotte, the term refers to websites
that respond to the viewport size of your website visitor. You can learn more about
responsive design in Marcotte’s article at http://alistapart.com/article/responsive-web-
design. Whether site visitors are viewing your website on a mobile device, a tablet, a
netbook, or a huge desktop screen, the website detects the viewport size and responds by
adjusting layouts, font sizes, image sizes, and more to optimize the website for that
particular viewport size.

While most of the magic of responsive design happens with media queries and other CSS,
JavaScript can help to enhance the experience even further for our website visitors. Some
elements and layouts aren’t easily adapted to the viewport size with just CSS. JavaScript
can fill in and help us take our responsive designs to the next level.

In this chapter, we’ll cover the following topics:

e Using the FitVids plugin to fit video players to the viewport
e Turning a drop-down menu into a responsive menu
e Building a tiled layout to display image galleries in responsive designs

http://alistapart.com/article/responsive-web-design

Using FitVids for responsive videos

Video players are one of the handful of elements on a website that don’t readily respond to
being resized easily with just CSS. However, video players are so popular that we need a
way to fit those into our responsive designs.

jQuery and the FitVids plugin come to the rescue. This simple little script automatically
sizes your videos to fit inside any container, whether that’s a page or a column on your
site.

Time for action — resizing videos

Perform the following steps to make your videos respond to the viewport size:

1. We’ll get started as we usually do by creating a basic HTML document and the
associated files and folders just like we did in Chapter 1, Designer, Meet jQuery. In
the body of the HTML document, we’ll create a few sections. In each section, we’ll
include a place to put a video, a title, and a short description, as shown in the
following code:

<div class="content">
<hi1>Favorite Videos</hi1>
<section>
<div class="video">
</div>
<div class="description">
<hi>Maru Being Maru</h1>
<p>A video of Maru, the cutest cat in Japan, playing with a box.
</p>
</div>
</section>
<section>
<div class="video">
</div>
<div class="description">
<hi1>Candy apple shaped soft candy</h1>
<p>RRCherryPie demonstrates how to use a candy kit to make
adorable candy that looks like miniature candy apples.</p>
</div>
</section>
</div>

2. Next, we want to add our videos. I’m going to choose one video from Vimeo and one
video from YouTube. Feel free to select your favorite videos to use for this example.
Each video service offers a way to embed videos by copying and pasting a short bit
of code. Just copy the following code to embed your selected video into the <div>
element with class of video:

<div class="video">

<iframe src="//player.vimeo.com/video/5056857" width="500"
height="333" frameborder="0" webkitallowfullscreen mozallowfullscreen
allowfullscreen></iframe>
</div>
<div class="description">

<h1>Maru Being Maru</hi1>

<p>A video of Maru, the cutest cat in Japan, playing with a box.</p>
</div>

Tip
If you want to view your videos while working on files on your own computer, you’ll

have to make a small adjustment to the provided embed code for both Vimeo and
YouTube. Both services remove the http: protocol from the beginning of the src

attribute to ensure that their videos can be embedded without any issues on both
secure (https) and unsecure (http) websites. To view your videos on local files, you
just have to restore http: as follows:

<iframe src="http://player.vimeo.com/video/5056857" width="500"
height="333" frameborder="0" webkitallowfullscreen mozallowfullscreen
allowfullscreen></iframe>

This will enable you to view the videos while looking at your local files.

. Next, let’s add some styles to nicely display our videos and descriptions. As we’ll be
making our videos responsive, let’s go ahead and style the layout to be responsive,
starting with the mobile layout first. At narrow screen widths, we’ll want the
description to be displayed below the video. Open your styles.css file and add the
few lines shown in the following code snippet to style your section elements:

.content section {
margin: lem O;

}

.content section h1l {
font-size: 1.5em;
margin: @ @ 0.5em 0;

}

section .video {
box-sizing: border-box;

}

section .description {
box-sizing: border-box;
padding: 0.5em 0 0 0O;

}

We’re going to add just a bit of space around each section by adding a top and bottom
margin. Then, we’ll include some simple styles for the video title and description.
Now, view the page in the browser and make the browser window narrow to test your
layout. You should see something like the following screenshot:

Favorite
Videos

o

; g
-

TR

Maru Being Maru

A video of Maru, the cutest cat in
Japan, playing with a box.

Coris #6 - Candy Apple shaped soft candy

[ENS

Our text is doing just what we wanted and is wrapping to fit within the browser
window. The videos aren’t resizing correctly though. That’s okay—we’ll take care of
those later after we’ve set up our responsive layout in CSS only.

. Next, we’ll add some media queries to the CSS files so that when the screen gets
wider, the text will appear next to the videos rather than underneath them. In your
styles.css file, add the following styles:

@media (min-width: 24em) {
section .video {
float: left;
width: 50%;
}

section .description {

float: right;
padding: 0 0 0 1lem;
width: 50%;
}
}

@media (min-width: 36em) {
section .video {
width: 75%;
}

section .description {
width: 25%;
}
}

When the screen is at least 24 em wide, we’ll divide the screen in two equal-width
(50%) columns—one column will hold our video and another column will hold the
title and description for the video. We’re working with ems rather than pixels because
we need a flexible unit when working with responsive designs. Ems or rems are
better suited to responsive designs than pixel measurements.

When the screen is even wider, at least 36 em wide, we’ll let the video take up 75
percent of the width and leave 25 percent for the title and description.

The only thing we need to do to our CSS code now is to make sure that we’re
containing the floats inside each section. That’s easy enough to do—just add the
following code snippet to your styles.css file:

.content section:after {
clear: both;
content: '';
display: table;

}

Now if you open the page in a browser and adjust the width from narrow to wide,
you’ll see the layout adjusted as shown in the following screenshot:

Favorite Videos

Maru Being
Maru

A video of Maru, the
cutest cat in Japan,
playing with a box.

Candy apple
shaped soft
candy

RRCherryPie
demonstrates how to
use a candy kit to make
adorable candy that
looks like miniature
candy apples.

However, our videos aren’t adjusting correctly, which is frustrating. In fact, the
videos are often covering up the text because they’re too wide for the layout.

. We’ll use the FitVids jQuery plugin to resize the videos so that they fit correctly
inside our responsive layout. First of all, we need to download the plugin. You won’t
find FitVids inside the jQuery plugin repository, but it is hosted on GitHub. There’s a
brief page with some demos at http://fitvidsjs.com; scroll down the page to find the
link to download the plugin from GitHub. Follow that link, then click on the
Download Zip button.

. Unzip the folder and take a look at the files inside. The following screenshot shows
the contents of the folder:

http://fitvidsjs.com

® 00 (] FitVids.js-master

Name & Date Modified Size Kind
| bower.json Feb 28, 2014, 12:34 PM 543 bytes JSON
= CONTRIBUTING.md Feb 28, 2014, 12:34 PM 913 bytes Markdown
B jguery.fitvids.js Feb 28, 2014, 12:34 PM 3 KB Javascript
= README.md Feb 28, 2014, 12:34 PM 2 KB Markdown
& gests.html Feb 28, 2014, 12:34 PM 3 KB HTML

This is a pretty simple plugin, so there’s not a whole lot here. We’ve already seen the
bower . js file in other plugins and know that we can safely ignore that. There’s a
README file with some information about the plugin. The CONTRIBUTING file has some
information for developers who might want to contribute towards making the plugin
better. That leaves us with the tests.html file and jquery.fitvids.js. The HTML
file, as you can probably guess, is just a file with several different videos embedded
from different video services to show them working inside a responsive design. The
JavaScript file is our plugin. Copy jquery.fitvids.js to your own scripts folder.

. Next, we’ll attach the plugin to our HTML page. At the bottom of the file, add a

<script> tag to include the plugin after jQuery, but before your own scripts.js
file:

<script src="scripts/jquery.js'"></script>

<script src="scripts/jquery.fitvids.js"></script>
<script src="scripts/scripts.js"></script>
</body>

</html>

. Finally, we have to write a bit of JavaScript to tell FitVids to resize our videos
correctly. Open your scripts. js file and add the document ready statement:

$(document).ready(function(){
// Our code will go here

1),

. A quick look at the documentation for the video shows us that we need to select
whatever HTML element it is that contains our video or videos and then call the
fitvids() method. We’ve wrapped each of our videos in a div element with class
of video, so this is what we’ll select. Use the following code to select the correct
element and call the fitvids() method:

$(document).ready(function(){
$('.video').fitvids();
3);
Now, if you refresh the page in the browser and try resizing the window to different
widths, you’ll see that the videos resize correctly to fit within the responsive layout

that we’ve created, as shown in the following screenshot:

ngorite Favorite Videos Favorite Videos
VIdEOS : Maru Being Maru MARU BEING MARU w | Maru Being

| Maru
A video of Mary, the cutest cat

@
in Japan, playing with a box. _‘ A video of Mary, the
a

cutest cat in Japan,
playing with a box.

< Candy apple shaped
soft candy

Maru Being Maru - 8 RAChemyPie demorstrates how
i

A video of Mary, the cutest cat in

Japan, playing with
pan, playing with miniature candy ap

What just happened?

We used the FitVids jQuery plugin to resize videos embedded from Vimeo and YouTube
to fit within a responsive layout. Now, no matter what width our screen is, the videos
display at the perfect size, and the plugin is both small and easy to use. After setting up a
responsive layout, include the plugin file, select the HTML element that contains your
videos, and then call the fitvids() method. The plugin takes care of everything else to
make the videos resize fluidly to fit within a responsive layout.

Pop quiz — choosing breakpoints for responsive
design

Q1. Which of the following is the best approach to choosing breakpoints for a responsive
design?

1. Set breakpoints to the pixel widths of the most popular devices.

2. Always use the same three breakpoints for consistency across websites.
3. Set breakpoints where your content starts to look and feel awkward.

4. Choose breakpoints at random.

Responsive menus

In Chapter 4, Building an Interactive Navigation Menu, we made great use of the
Superfish plugin to create animated drop-down and fly-out menus. The gorgeous menus
we can create with Superfish are nice, but they’re not going to work very nicely for us if
we’re making a responsive design. On wider screen sizes, the menus will work great, but
as we start to use smaller screens like those found on mobile devices, we’ll lose all the
benefits of the Superfish plugin.

A convention is quickly being established for responsive menus: on screen sizes too small
to display a full menu bar, the menu is collapsed to a single three-line character (=),
sometimes accompanied by the word Menu. This character is most often referred to as a
hamburger, but might also be called a same-o or navigation drawer. When the
hamburger is clicked, the menu opens and is available for exploration to our site visitor.

We’ll take a look at how we can combine the MeanMenu jQuery plugin with Superfish to
create a menu that works well, no matter what screen size our site visitors are using.

Time for action — making our menu
responsive

We’ll get started with the custom-designed menu we created in the section The hoverlIntent
plugin of Chapter 4, Building an Interactive Navigation Menu. Then, we’ll perform the
following steps to make that menu work for responsive designs:

1. We’re going to use the MeanMenu plugin from MeanThemes to make our menu
responsive. The MeanMenu plugin is available from GitHub at
https://github.com/weare2ndfloor/meanMenu. Head over there and find the
Download Zip button in the right-hand side column to download a ZIP file of all the
files we’ll need to get the MeanMenu working.

2. Now that we’ve downloaded that ZIP file, let’s open it up and take a look at what’s
inside:

Mame a
demo.html

gpl.txt
jguery.meanmenu.js
jguery.meanmenu.min.js
Meanmenu.css
meanmenu.min.css
README.md

CcH I

This is pretty straightforward. We have a demo HTML file to show us the MeanMenu
plugin in action. There’s a copy of the GPL license. There are the JavaScript and CSS
files for the menu, along with a minified copy of each. And finally, there’s a README
file with some documentation.

3. First of all, we’ll get the JavaScript we need copied to our own project and attached
to our HTML file. Copy jquery.meanmenu.min.js to your own scripts folder, then
attach it at the bottom of your HTML file before your own scripts. js file, as
follows:

<script src="scripts/jquery.js"></script>

<script src="scripts/hoverIntent.js"></script>

<script src="scripts/superfish.js"></script>

<script src="scripts/jquery.meanmenu.min.js"></script>
<script src="scripts/scripts.js"></script>

</body>

</html>

4. Next, we need some CSS code to style the menu. We’re going to end up with three
different types of CSS code:

o The first one is CSS that applies to our menu items at all times. These items are
things such as font-family, background-color, color, and so on. Our menu is

https://github.com/weare2ndfloor/meanMenu

going to have the . sf-menu class at all times, so we can use that to prepend our
selectors for CSS that should always apply.

o Then, we have CSS that only applies to our menu on smaller screens where the
menu is collapsed to a hamburger. The MeanMenu plugin adds a class of mean-
container to the <body> tag when the MeanMenu is displayed. We can use that
class to prepend our selectors for CSS that should only apply to the collapsed
menu.

o And lastly, we have CSS that only applies to our menu on larger screens where
the full menu bar is visible. We can add a CSS class of super-nav to the <nav>
tag that wraps our menu. Then we can use this class to prepend our CSS
selectors for the full menu to be sure they only apply when the full menu is
visible. This is achieved as follows:

<nav class="super-nav'">
<ul id="sfNav" class="sf-menu">
Papilionidae
</1i>

</nav>

5. Let’s get started by taking the styles we’ve already written for our menu and dividing
them up into universal navigation styles and styles used only for wider screens where
the full menu is visible. These styles will replace the styles we’ve already written in
our CSS file to style our menu. The following styles are the universal styles for the
menu:

.sf-menu {
background: white;

}

.sf-menu:after {
clear: both;
content: '';
display: table;

}

Next, we have some universal styles for the first level of the menu:

.sf-menu 1i {
position: relative;

}

.sf-menu li:hover {
background: #a0d468;

}

.sf-menu a {
color: #444,
display: block;
padding: 1.5em lem;
position: relative;
text-decoration: none;

}

.sf-menu a:hover {
background: #a0d468;
color: white;

}

The following are some universal styles for the second level of the menu:

.sf-menu ul {
background: #a0d468;
z-index: 99;

}

.sf-menu ul li:hover {
background: #8cc152;

}

.sf-menu ul a:hover {
background: #8cc152;

}

.sf-menu li:hover > ul {
display: block;
}

Finally, we have some universal styles for the third level of the menu:

.sf-menu ul ul {
background: #8cc152;

}

.sf-menu ul ul li:hover {
background: #7bb140;

}

.sf-menu ul ul a:hover {
background: #7bb140;

}

. Next up, we’ll get those styles that apply just to the large-screen version of our menu.
We’ll start off with general menu styles, as follows:

nav.super-nav {
margin: 2em lem;

}

.super-nav .sf-menu {
border-radius: 7px;

}

Then, we’ll write some styles for the first level of the navigation. Notice how each
selector includes the . super-nav class at the beginning to make sure these styles only
apply when the full menu is visible:

.super-nav .sf-menu 1li {
white-space: nowrap;

}

.super-nav .sf-menu > 1li:first-child,

.super-nav .sf-menu > li:first-child a {
border-top-left-radius: 7px;

}

.super-nav .sf-menu > 1i {
float: left;

}

Next up, we have some styles for the second level of the navigation:

.super-nav .sf-menu ul {
border-bottom-right-radius: 7px;
border-bottom-left-radius: 7px;
display: none;
left: 0;
min-width: 12em;
position: absolute;
top: 100%;

}

.super-nav .sf-menu ul > li:last-child,

.super-nav .sf-menu ul > li:last-child a {
border-bottom-left-radius: 7px;
border-bottom-right-radius: 7px;

}

Then, we have some styles for the third level:

.super-nav .sf-menu ul ul {
border-top-right-radius: 7px;
top: O,
left: 100%;

}

.super-nav .sf-menu ul ul > li:first-child,
.super-nav .sf-menu ul ul > li:first-child a {
border-top-right-radius: 7px;

}

.super-nav .sf-menu ul ul > li:last-child,
.super-nav .sf-menu ul ul > li:last-child a {
border-bottom-right-radius: 7px;

}

Finally, we have some styles for the extras—mainly the arrows that show whether a
menu item is hiding a submenu:

.super-nav .sf-arrows .sf-with-ul {
padding-right: 2.5em;
}

.super-nav .sf-arrows .sf-with-ul:after {
border: 5px solid transparent;
border-top-color: #444;

content: '';
height: 0;
margin-top: -3px;
position: absolute;

right: lem;
top: 50%;
width: 0;

}

.super-nav .sf-arrows > 1i > .sf-with-ul:focus:after,
.super-nav .sf-arrows > li:hover > .sf-with-ul:after {
border-top-color: white;

}

.super-nav .sf-arrows ul .sf-with-ul:after {
margin-top: -5px;
margin-right: -3px;
border-color: transparent;
border-left-color: #e7f2dc;

}

.super-nav .sf-arrows ul 1i > .sf-with-ul:focus:after,
.super-nav .sf-arrows ul li:hover > .sf-with-ul:after {
border-left-color: white;

}

7. Now, the only thing left to style is the collapsed menu that will be visible only on
narrower screens. For that, we can use the CSS code that was supplied with the
MeanMenu plugin as a template and just customize it to suit our needs.

As we’re going to change the styles quite a lot to fit our design, we’ll copy the
MeanMenu CSS code to our own styles.css file, and then modify it to suit our
needs. Starting from the CSS code provided with a jQuery plugin is a great way to
customize the appearance without having to do all the legwork of figuring out what
styles are needed on your own. We’ll start by writing some general styles for the
MeanMenu container, as follows:

a.meanmenu-reveal {
display: none;

}

.mean-container .mean-bar {
background: white;
padding: 0.222em 0;
min-height: 2.531em;
position: relative;
width: 100%;
z-index: 999999,

}

We’ll hide the button to reveal the menu and then use JavaScript later to only show it
when we need it.

8. Now we’ll style the reveal button to look just the way we’d like:

.mean-container a.meanmenu-reveal {
color: #444;
cursor: pointer;
display: block;
font-size: 18px;
height: 1.5em;
line-height: 1.5;
padding: 13px 13px 11px 13px;
position: absolute;
right: 0;
text-decoration: none;
text-indent: -9999em;
top: O,
width: 1.5em;
}

.mean-container a.meanmenu-reveal span {
background: #444;
display: block;
height: 0.198em;
margin-top: 0.198em;
width: 100%;
}

9. Next, we’ll write some styles for the different levels of the menu, when the mobile
version is visible:

.mean-container .mean-nav {
background: white;
margin-top: 2.25em;
width: 100%;

}

.mean-container .mean-nav ul {
width: 100%;
}

.mean-container .mean-nav ul 1i {
position: relative;
width: 100%;

}

.mean-container .mean-nav ul li:after {
clear: both;
content: '';
display: table;

}

.mean-container .mean-nav ul 1i a {
border-bottom: 1px solid rgba(160, 212, 104, 0.3);
color: #444,
display: block;
padding: lem 5%;
text-align: left;
text-decoration: none;
width: 90%;

}

.mean-container .mean-nav ul li:hover a,
.mean-container .mean-nav ul 1i a:hover {
color: white;

}

.mean-container .mean-nav ul 1i 1i a {
border-bottom: 1px solid rgba(255, 255,255,0.5);
padding: lem 10%;
width: 80%;

}

.mean-container .mean-nav ul li.mean-last a {
border-bottom: none;
margin-bottom: O;

}

.mean-container .mean-nav ul 1i 1i 1i a {
width: 70%;
padding: lem 15%;

}

.mean-container .mean-nav ul 1i 1i 1i 1i a {
width: 60%;
padding: lem 20%;

}

.mean-container .mean-nav ul 1i 1i 1i 1i 1i a {
width: 50%;
padding: lem 25%;

}

10. Now, we can write some styles for the reveal and hide buttons for the menu:

.mean-container .mean-nav ul 1i a.mean-expand {
border: none;
height: 1.688em;
padding: 0.75em;
position: absolute;
right: 0;
text-align: center;
top: O,
width: 1.688em;
z-index: 2;

}

.mean-container .mean-nav ul 1li a.mean-expand:hover {
background: none;

}

.mean-container .mean-push {
clear: both;
float: left;
width: 100%;

}

11.

12.

Finally, we’ll finish up with some general styles for the mobile menu:

.mean-nav .wrapper {
width: 100%;
}

.mean-container .mean-bar, .mean-container .mean-bar * {

box-sizing: content-box;
}
Phew! That was a lot of CSS, but really these plugins do their job so well, most of the
work in getting these menus to work is getting all the CSS code properly sorted out.
Now that we’ve got that out of the way, let’s open up our scripts.js file and add a
line to call the meanmenu() method for our menu, as follows:

$(document).ready(function(){
$('#sfNav').superfish({
animation: {
height: 'show'

}
i3F

$('nav').meanmenu();
1);
Now, if you refresh the page in the browser and make the window narrow, you’ll see
that the Superfish navigation bar disappears and is replaced by a hamburger menu, as
shown in the following screenshot:

.j Chapter 4: jQuery for Desl =

&« C A [file:///Users/natalie... 5.7

Clicking on the hamburger opens up the menu for further exploration, as follows:

| | Chapter 4: jQuery for Des %

< c f B ﬁlE:H!Users;’nataI.ie... ol X .E

X
Papilionidae +
Pieridae +
Riodinidae +
Nymphalidae -
Hesperiidae +

fUsers/natalie/Desktop/j04D 2ed/Chapter 7/code/ ... J/index.html

13. Now, let’s take a look at how we can use some of the options supplied with the
MeanMenu plugin to adjust our menu to work just the way we’d like.

First of all, let’s figure out how narrow the screen will look when the MeanMenu
plugin kicks in. By default, MeanMenu will replace the full navigation when the
screen is 480 pixels wide or less. However, our menu is pretty wide and starts to wrap
to a new line way before that. Testing out the menu by adjusting the browser width,
we can see that we’ll need MeanMenu to replace the full navigation bar for screens
that are about 880 pixels or narrower.

Tip
Each navigation bar is unique, so it’s important to test your navigation bar, and in
fact, all of your content, to see at which screen widths it starts to look or feel

awkward. Rather than setting breakpoints at the widths of specific devices that
happen to be popular right now, use your design and content to determine where the

14.

15.

breakpoints should be placed. This way, your design will remain fresh, relevant, and
usable no matter which devices and screen sizes are popular in the following year or
in the next five years.

To adjust the width for MeanMenu, we’ll use the meanScreenwidth option, as
follows:

$('nav').meanmenu({
meanScreenWidth: '880'

1),

Next up, the MeanMenu plugin uses a hamburger as the symbol that will open the
menu, and then a letter X as the character that will close the menu. The multiplication
symbol (x) is more aesthetically pleasing, so let’s switch the close symbol. We can
use the meanMenuClose option to set the close symbol to whatever character we’d
like, as shown in the following code:

$('nav').meanmenu({
meanScreenwWidth: '880"',
meanMenuClose: '\xD7'

1),

Wait, \xd7? What is that? It’s a peculiar JavaScript way of writing special characters
such as the multiplication sign. How are you supposed to know what that special
code is? Head on over to http://www.charbase.com/ and do a quick search for the
character you’re looking for. A search for multiplication easily turns up our
multiplication sign and you can see that a JavaScript Escape value is listed. You just
have to copy and paste it into your JavaScript to produce the special character.

X s

Pieridae + Pieridae +

On the left, you can see the menu with the letter X as the close symbol, and on the
right with the multiplication sign. The difference is subtle, but the multiplication
symbol feels more like a close button.

Finally, as the hyphen (-) character used to collapse submenu items is a bit too small,
let’s replace it with an em dash to make it a larger and more noticeable target. We can
use the meanContract option to set this:

$('nav').meanmenu({
meanScreenwWidth: '880',
meanMenuClose: '\xD7',
meanContract: '\u2014'

1),

http://www.charbase.com/

Again, we’re using the special JavaScript Escape for that character. The following
screenshot shows the difference between using a hyphen (-) and an em dash (—):

Papilionidae

Common Yellow Swallowtail Common Yellow Swallowtail

You can see that the em dash is significantly larger than the hyphen, and makes it
easier to tap or click on the character to collapse the submenus again. Now the menus
work well for all site visitors, no matter what screen size they happen to be using.

What just happened?

We took our custom, animated drop-down menu that we created in Chapter 4, Building an
Interactive Navigation Menu, and updated it to make it ideal for use in responsive designs.
We used the MeanMenu plugin to help us handle the transition between the full menu and
the responsive menu. The responsive menu is replaced with a hamburger icon, which

when clicked or tapped opens the full menu.

Have a go hero — create a custom menu

Now that you’ve seen how to work with MeanMenu and Superfish, design and build your
own custom menu. Customize the appearance, the animations, the size at which it
collapses to the mobile menu, and so on.

Creating a tiled layout

In a tiled layout, or a masonry layout, HTML elements are fit together like bricks in a wall
rather than the strict grid layouts we can create with just CSS. With CSS, we’re limited to
layouts as shown in the following figure:

55 Grid Layout: Items of Identical Widths £35 Grid Layout: Items of Different Widths

This is a perfectly acceptable way to lay out our content; our site visitors can view all of
the content without a problem. However, if we add JavaScript to the mix, we can improve
those layouts a bit by making them fit together as shown in the following figure:

Masonry Layout: Items of kdentical Widths Masonry Layout: items of Different Widths

Tiled layouts or masonry layouts can help to close up gaps left by items of different
heights. Tiled layouts are great for situations where our site visitors are browsing through
lots of graphical content—such as a photo gallery. They’re less ideal for situations where
site visitors might be looking for something specific or where the content is less graphical
—such as a list of search results.

To accomplish our tiled layout, we’ll be using the excellent Masonry library by David
DeSandro.

Time for action — creating a masonry
layout

Perform the following steps to create a tiled layout:

1. We’ll get started by creating a basic HTML document and the associated files and
folders just like we did in Chapter 1, Designer, Meet jQuery. In the body of the
HTML document, we’ll set up a container with a series of repeating elements inside.
We’ll use a list () as the container and individual list items (<1i>) inside for the
repeating elements. Inside each list item, we’ll place an image and some text that
describes that image, as follows:

<div class="content">
<hl1>Cats of the World</hi1>
</div>

<ul class="container">

<li class="cat">
<figure>

<figcaption>
<h2>Siamese</h2>
</figcaption>
</figure>
<div class="info">
<div class="traits'">
<dl>
<dt>Country</dt>
<dd>Thailand</dd>
</dl>
<dl>
<dt>Coat</dt>
<dd>Short</dd>
</dl>
<dl>
<dt>Pattern</dt>
<dd>Colorpoint</dd>
</dl>
</div>
</div>
</1i>

</Qi;
We’re using an HTML5 <figure> element to hold the image itself and a caption for

the image inside a <figcaption> element. Next, we created an area where we can
share some more details about the image.

Create at least a dozen similar list items inside the container so that you’ll be able to
see the difference made once we apply the Masonry script.

2. Next, we’ll style our list items. Open up your styles.css file and add the following
lines:

.cat {
background: white;
border-radius: 5px;
color: #434a54;
margin: 5% 0;
vertical-align: top;
width: 100%;

}

We’re going to style our layout responsively, starting with mobile layout first. At
small screen sizes, we want each list item to fill the width of the screen.

3. Next, we’ll add a media query to display the items in two columns for slightly wider
screens. Add the following code snippet to your styles.css file:

@media (min-width:30em) {
.container {
font-size: 0.75em;

}
.cat {

display: inline-block;
margin: 3% 1%;
width: 44%;
}
}

First, we’ll make the font size a bit smaller to make sure that our text fits into the

narrow columns. Next, we set our individual items to display: inline-block,
which lines them up, add a bit of a margin, and set a width.

4. Next, let’s create a three-column layout for wider screens. Add the following code
snippet to your styles.css file:

@media (min-width:45em) {
.cat {
margin: 2% 1%;
width: 30%;
¥
}

Since the display: inline-block declaration will still apply at this width, all we
have to do is adjust the width and margins of our individual items.

5. Finally, if the screen is wide enough, we can set the font size back to full size. Add
the following code snippet to your styles.css file:

@media (min-width:60em) {
.container {
font-size: lem;
}
}

Now, if you view your page in the browser and change the width of the window,

you’ll see the layout changes from one column, at narrow widths, to two columns, as
the window gets wider, to three columns, as it gets even wider. Have a look at the
following screenshot:

Cats of the World

Cats of the Cats of the World
World

However, our images are overflowing their containers and the text isn’t very
readable. Let’s style those items next.

6. We’re going to position the image caption over the image and ensure that the images
don’t overflow their containers. Add the following code snippet to your styles.css
file:

.cat img {
border-radius: 5px 5px 0 0;
height: auto;
width: 100%;

}

.cat figure {
position: relative;

}

.cat figcaption {

background: linear-gradient(to bottom, rgba(0,0,0,0.65)
0%, rgha(0,0,0,0) 100%);

border-radius: 5px 5px 0 0;

position: absolute;

top: O,

width: 100%;
¥

.cat figcaption h2 {
color: white;
font-size: 2.25em;
margin: O;
padding: 0.25em;

b

As we can’t be sure that all the images will be dark enough at the top for a white

headline to be visible, we’ll add a dark gradient as a background on the
<figcaption> element to make sure the text is visible. Then, we’ll position the
caption at the top of each image. If you refresh the page in a browser now, the layout
is easier to see:

Cats of the World Cats of the World

Maine Coon Siamese. w40 Maing Coon Himalayan

Cats of the
World

Himalayan Mekor} Bobtail Brazilian
\ i A re Shorthair

Maine Coon
L W

. Next up, let’s style the text underneath each image. To make sure it’s flexible, we’ll
use a table-like layout. Add the following code snippet to your styles.css file:

.cat .info {
display: table;
width: 100%;

3

.cat .traits {
display: table-row;
¥

.cat .traits dl {
display: table-cell;
line-height: 1.125;
padding: lem 0.5em;
text-align: center;
vertical-align: top;
width: 33%;

¥

.cat .traits dt {
color: #aab2bd;
font-size: 0.75em;

}

.cat .traits dd {
font-size: 1.125em;

}

This lines up our three bits of information about each image in a neat row under the
image, as shown in the following screenshot:

Thailand Colorpoint

Because we’ve set the widths in percentages, this row of text will flex with our layout
and always fit nicely into three columns beneath the image.

At this point, we have a responsive grid layout that’s perfectly acceptable for our site
visitors who may not have JavaScript enabled. Next, let’s take a look at using
JavaScript to switch this to a tiled layout for those site visitors who do have
JavaScript enabled.

8. We’re going to use the Masonry library. Masonry is not a jQuery plugin—it will
work with or without jQuery. In our case, we’re going to use jQuery because it makes
it just a bit easier to work with. First of all, head over to
http://masonry.desandro.com/ to get the documentation and download for Masonry.
To download the file we need, click on the Download masonry.pkgd.min.js button.

This opens the JavaScript file right in your browser window. You can right-click on it
and then click on Save As or from the File menu, click on Save to save the file to
your own scripts folder.

9. Next, we need to attach the Masonry file to our HTML file. At the bottom of the
document, add the file between jQuery and your own scripts. js file, using the
following highlighted line of code:

<script src="scripts/jquery.js"></script>
<script src="scripts/masonry.pkgd.min.js"></script>
<script src="scripts/scripts.js"></script>

10. Now open your scripts. js file and add the document ready statement, as follows:

http://masonry.desandro.com/

11.

12.

13.

14.

$(document) .ready(function(){
// Our code will go here

1),

When we use Masonry with jQuery, it can work just like a jQuery plugin—we can
select an element, then call the masonry() method on that element. The element we
select is the container of all of our items. In our case, it’s the element with a
class selector of container. Select that element and call the masonry() method, as
follows:

$(document).ready(function(){
$('.container').masonry();

1),

While that’s technically all we need to get a tiled layout to work, David DeSandro,
Masonry’s author, recommends that we always set two options that will help
Masonry perform better. These two options are columnwidth and itemSelector. The
columnwidth option sets a width for the columns in the layout and itemSelector
helps Masonry identify which items we want to tile in our layout. The itemSelector
option is easy enough—we want to use the list items inside our container, to which
we’ve assigned a class selector of cat. Add this option to your scripts. js file, as
follows:

$(document).ready(function(){
$('.container').masonry({
itemSelector: '.cat'

1);
1);
However, this columnwidth option is a little more problematic as we’re using a
responsive layout—we don’t want to set a fixed width for our items. Luckily,
Masonry makes this easy too. We can use an item inside our list to set the
columnwidth option—Masonry will then calculate the width of all items based on
whatever width our selected item is. Go back to your list of items in the HTML file
and select a list item—the first item is as good as any; as in this case, all of our items
are of the same width. Now, add a class of gridsize to that item, as follows:

<ul class="container">
<li class="cat gridsize">

</1li>

Now, we can tell Masonry to use the width of that item to calculate our columnwidth
option:

$(document).ready(function(){
$('.container').masonry({

columnwidth: '.gridsize',
itemSelector: '.cat'
1)

1),

Now if you refresh the page in the browser, you’ll see that the grid layout has been

transformed into a responsive tiled layout:

Cats of the World

Maine Coon Himalayan
Kingdom

Cats of the Cats of the World
World iamese G Maine Coon

United Long
States

Brazilian
Shorthair

Himalayan Mekong Bobtail
il

Colorpeint

Thailand Short
T [

What’s more, Masonry has a lovely transition animation that floats the items to their
new positions after we resize the browser window.

What just happened?

We took an ordinary CSS grid layout and transformed it into a tiled layout with the help of
the Masonry JavaScript library. Items now move upward to fill in vertical gaps, which
helps to make a grid of items of different heights appear more pleasing to the eye. The
Masonry library makes creating these layouts super-simple, especially when we pair it
with the jQuery library. For site visitors without JavaScript enabled, the items will appear

in a usable CSS grid layout.

Creating a tiled layout with items of different
widths

The tiled layout we created works well as long as all of our items have the same width, but
what if our elements have different widths? Let’s take a look at how we’d go about setting

up such a layout.

We’re going to keep working with the tiled layout example we set up in the section Time
for action — creating a masonry layout.

Time for action — creating a tiled layout
with different width items

Perform the following steps to take the tiled layout we’ve already created and to make it
work for items with different widths:

1. First, we need to create items of different widths. A few of the items in the layout
have images that are landscape rather than portrait orientation, which means those
items appear particularly small in the layout. Let’s make those the width of two
columns so they stand out more. Go back to the HTML file for the list of items and
add a class of w2 to each item that will now be two columns wide:

<li class="cat w2">
<figure>

<figcaption>
<h2>Himalayan</h2>
</figcaption>
</figure>
<div class="info">
</div>
</1li>

2. Next, open your styles.css file and style these items with a wider width. As all
items are of full width at narrow screen sizes, we only have to add the new width for
wider screens inside our media queries as follows:

@media (min-width:30em) {
.container {
font-size: 0.75em;

}

.cat {
display: inline-block;
margin: 3% 1%;
width: 44%;

}

.cat.w2 {
width: 89%;

}

}

Where did we get that value of 89%? We want our block to be as wide as two
columns. Each of our columns is 44 percent wide, so two of them would be 88
percent wide. However, there is also a 1 percent margin between the single width
images, so 44 percent + 1 percent + 44 percent = 89 percent. For the widest screens,
have a look at the following code:

@media (min-width:45em) {
.cat {
margin: 2% 1%;

width: 30%;

}
.cat.w2 {

width: 61%;
}
}

Again, we’re making the width double and accounting for the 1 percent margin, so 30
percent + 1 percent + 30 percent = 61 percent.

. Finally, we just have to make sure that the item we’re using to define the
columnwidth option is a single-column item rather than one of the new two-column
wide items. Make sure that you’ve selected an item that doesn’t have the w2 class to
have the gridsize class, as follows:

<li class="cat gridsize">

<1i class="cat w2">

</1li>
Now, if you refresh the page in the browser, you’ll see that a handful items are two
columns wide rather than one at wider screen sizes:

Mai —— . _
aine CO%Q Siamese . Maine ngn MekoF Bobtail

Himalayan

What just happened?

We took the tiled layout that we already created and modified it so that not all of our items
share the same width. Now we can see how Masonry fills in gaps and creates a pleasing
layout even if our items share different widths as well as different heights. All we needed
to do was select a handful of our items and modify their width in the CSS code—Masonry

takes care of the rest.

Summary

In this chapter, we took a look at some jQuery plugins and one JavaScript library that can
make it just a little bit better to work with responsive designs. First, we took a look at how
we can use the FitVids jQuery plugin to make the videos resize correctly inside responsive
designs. Then we took our animated drop-down menu originally created in Chapter 4,
Building an Interactive Navigation Menu, and made it work inside responsive designs
with the help of the MeanMenu plugin. Finally, we took at look at how to build responsive
tiled layouts with the help of the Masonry JavaScript library.

Next up, we’ll look at some different ways that jQuery can help us work with images in a
better way, including images inside responsive layouts.

Chapter 8. Getting the Most from Images

Working with images in a responsive design world has presented a whole new set of
challenges and opportunities. We need to balance optimizing performance along with
taking advantage of new capabilities and gorgeous image display on retina screens with
minimizing bandwidth for those on slower connections. It’s a great idea to have several
tools in your toolbox that will help you work with images in a robust and flexible way.
We’ll be looking at a few tools to deal with images.

In this chapter, we’ll cover the following topics:

e Using lazy loading of images so that images are only downloaded if they’re scrolled
into view

e Using image zoom to allow site visitors to enlarge the part of an image they’re most
interested in

e Using fullscreen background images and slideshows

Lazy loading images

Imagine you want to build a responsive page with many big, gorgeous images. What are
the things you need to consider to be sure that the page is as flexible and optimized as
possible? First, it would be nice if we only loaded the images when needed; if a page has
twenty large images but a site visitor never scrolls down the page to see more than the first
two or three of them, why load all twenty? Second, it would be great if we could load
high-resolution images for those who use retina displays to ensure that the images look as
clear and crisp as possible.

There are a few proposals in the works within the upcoming HTMLS5 specification that
will build some of this functionality into HTML. At the time of writing this book, nothing
has been decided for sure, though many different solutions have been proposed. In the
meantime, we can build websites that address these issues with jQuery, using the Unveil
plugin from Luis Almeida.

Tip

It’s important that this is one case where we cannot use progressive enhancement. If we
create a page with several image tags, we can’t prevent those images from loading with
jQuery—all the images will load no matter what. So for this example, we’re going to use

the principle of graceful degradation. The page will still work for users with JavaScript
disabled—when they view the page, we’ll load the regular resolution of each image.

Time for action — lazy loading images

Perform the following steps to create a page of images that load the correct resolution only
when needed:

1. We’ll get started by creating a basic HTML document and associated files and folders
just like we did in Chapter 1, Designer, Meet jQuery. Inside the body of the HTML
document, we’ll add a series of images using the new HTML5 figure and
figcaption elements, as shown in the following code:

<figure>

<figcaption>

<a href="http://www.public-domain-image.com/wallpapers-public-
domain-images-pictures/a-bench-for-resting.jpg.html" title="A bench for
resting">A bench for resting by Steve Hillebrand, U.S. Fish and
wildlife Service
</figcaption>
</figure>

Note that we’ve used a small, animated .gif image as a placeholder rather than the
image we actually want to display. We’ll be replacing this later with the actual image.
You’ll want to add at least four or five images to the page to appreciate the effect that
Unveil makes possible.

2. Next, we need to add some information about the paths to the regular resolution and
high-resolution images. We’ll use the new HTML5 data attributes to add this data to
our placeholder image, as follows:

<figure>
<img src="images/loading.gif" data-src="images/bench.jpg" data-src-
retina="images/bench-2x.jpg" />

</figure>
Add a data-src attribute that contains the path to the regular resolution image. If you
also have a high-resolution image suitable for retina displays, you can add the path to

this image inside a data-src-retina attribute. Note that the high-resolution image is
optional—Unveil will work just fine if you exclude high-resolution images.

3. Now, we can add a bit of CSS to style our images. Open up your styles.css file and
add the following styles:

figure {
margin: 2.531em auto;
max-width: 800px;
text-align: center;

}

figcaption {
line-height: 1.125;
padding: 0.75em O 1.5em O;
}

figure img {

border-radius: 5px;

display: inline-block;

height: auto;

max-width: 100%;
3
This bit of code just centers the list of images on the page and adds some spacing
between each image and caption pair. If you look at the page in a browser at this
point, you’ll just see the loading image repeated down the page, each with a caption
beneath, as shown in the following screenshot:

'\

A bench for resting by Steve Hillebrand, U.5. Fish and Wildlife Service

™~

Floral wallpaper by Leon Brooks

"~
Lee F'.‘_|_-1_|:_._J_':_f national L:;:j!_L: SCEMIC bj‘ Steve Hillebrand. LS. Fish and Wildlife Service

"~
Building and pond with line of stormy clouds above by Ryan Hagerty, L.S. Fish and Wildlife Service

"™

Sunrise desktop wallpaper on Public Domain Images

4. Now, we need to add the jQuery plugin and the code that will replace these .gif
images with the actual images. The Unveil plugin is hosted on GitHub at
https://github.com/luis-almeida/unveil—just as we’ve done before with plugins
hosted on GitHub, click on the Download ZIP button in the right-hand side column.

Unzip the folder and take a look inside it. You should recognize what’s inside by now
—bower . json for those using Bower, an img directory and index.html file to demo
the plugin at work, a jQuery file, a README . md file with information about the plugin,
and then the development and production versions of the Unveil plugin , as shown in
the following screenshot:

https://github.com/luis-almeida/unveil

Name

bower.json
i img
& index.htmi
® jquery-1.9.1.min.js

& jguery.unveil.min.js
& README.md

Date Modified

Sef

p 22,2013, 12:20 PM

A
|

B jquery.unveil s Se 1KB JavaScript

Tip

jQuery and jQuery plugins are being updated all the time. As new browsers are
released with new support and capabilities, and as JavaScript, HTML, and CSS are
further developed, new versions of jQuery and plugins are released to keep pace with
the change. On one hand, this is a great news—jQuery and accompanying plugins get
faster and more powerful all the time. On the other hand, it can be tough to keep up
with all the changes. All versions of the plugins referenced were current at the time
of writing the book, but you might find some differences when you work through the
exercises. Plugin developers are usually very good at documenting the changes and
updates, so don’t be afraid to read through the documentation so you can understand
what’s changed and what adjustments you might need to make.

. Copy jquery.unveil.js to your own scripts folder. Then, attach it in your HTML
file at the bottom, between jQuery and your own scripts. js file, as follows:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.unveil.js"></script>
<script src="scripts/scripts.js"></script>

. Now, we’re ready to put the script into action. Open your scripts. js file and add
the document ready statement:

$(document).ready(function(){
// Our code will go here

1);

. Inside the document ready statement, add the following line of code to select the
images and call the unveil() method:

$(document).ready(function(){

$('img').unveil();
3);
In this case, our page is very simple and we want to select all the images on the page.
You might find yourself in situations where you want to select just the images inside
a certain container, or images with a certain class assigned to them. Just adjust your
selector accordingly.

If you refresh the page at this point, you’ll see that the loading animations are
replaced with either the regular or high-resolution images, depending on whether

you’re currently using a retina display, as shown in the following screenshot:

R Rk | ST

g by Steve Hillebrand, U.S. Fish and Wildlife Service

. So far, our page appears to be working pretty well, but there are a few things we can
do to make it even better. First, what about the users who have JavaScript disabled?
The way the page is set up now, they’ll only see the loading animations. Let’s get that
fixed so that it gracefully degrades.

After each image, add a <noscript> element. Inside the tags, we’ll add a regular old
HTML image tag, as follows:

<figure>

<img src="images/loading.gif" data-src="images/bench.jpg" data-src-
retina="images/bench-2x.jpg" />

<noscript></noscript>
</figure>
Now, visitors who have JavaScript disabled can see our images, but they’ll also see
the loading .gif image above each one. Let’s hide these images for them.

. Inside the HTML document, add a class selector of jsoff to the body tag, using the
following line of code:

<body class="jsOff">

Then, in the styles.css file, add a bit of CSS to hide those loading .gif images if
the body has the jsoff class, as shown in the following code:

10.

.jsOff figure > img {
display: none;
3
Finally, inside the scripts.js file, add a bit of code to remove this class from the
body—the code in the class will only run if JavaScript is enabled:

$(document).ready(function(){

$('body').removeClass('jsoff');

$('img').unveil();
});
Now, our page degrades gracefully for those site visitors who don’t have JavaScript
enabled—they’ll see the list of images just fine. The majority of users will benefit
from having the correct resolution of image loaded and improved performance from
the images only loaded when and as needed, but those without JavaScript will never
know what they’re missing. For them, the experience will seem complete.

We can also take the effect one step further for those site visitors who have JavaScript
enabled. We can fade in the image rather than just popping them onto the page. The
unveil() method will let us set some options.

First, we can set a threshold option—how far from appearing on the screen should an
image be before we start the process of downloading and displaying it? Let’s set a
threshold of 200 pixels—when an image is 200 pixels from appearing on the screen,
we’ll start loading it:

$('img').unveil(200);

Next, we can write a function to be called when it’s time to unveil or load an image.
The following code shows what we’ll do to fade an image in:

$('img').unveil (200, function(){
$(this).hide().fadeIn();
1);

This bit of code will select the image tag and hide it, then fade in the real image as
soon as it’s loaded. If you refresh the page in the browser now, you’ll see the images
fade on to the page rather than just appear.

What just happened?

We set up a page with many large images so that it only loaded the images when needed,
thereby helping to improve performance and reduce the load on our server. We are also
loading a high-resolution version of our image for those site visitors who might be using a
retina display capable of displaying our images at a higher resolution. We used the Unveil
plugin by Luis Almeida to accomplish all of that in just a few lines of code. Note that the
images load very quickly, even if they’re large, when you’re viewing a page on your own
computer. To get a real feel for the difference this plugin makes, you might want to try
uploading your page to a server and accessing it via the Web.

Pop quiz — building accessible pages

Q1. We’ve learned about both progressive enhancement and graceful degradation. Why
are these principles important when working with JavaScript?

1.
2. They allow search engines to correctly index the pages we build.

3.

4. They allow site visitors with JavaScript disabled to access and use the pages we

They allow site visitors with disabilities to access and use the pages we build.
They allow site visitors on less-capable devices to use the pages we build.

build.
All of the above.

Creating zoomable images

Sometimes, we include a small image to maintain a nice layout and fit more content on the
screen, but our site visitors might want to see a larger image to see more details. One way
of handling this is showing the full-size image in a lightbox, like we did in Chapter 5,
Showing Content in Lightboxes. However, another option we have is to zoom in on the
image right where it is. Our site visitor can move their mouse to move around the image to
see the details. On touch screens, they can use their finger to drag over the image and
zoom in.

To accomplish this, we’ll use the jQuery Zoom plugin by Jack Moore. You might
recognize Jack Moore’s name; he is also the author of the Colorbox plugin we used in
Chapter 5, Showing Content in Lightboxes.

Time for action — creating zoomable
images
Perform the following steps to create zoomable images on your HTML pages:

1. We’ll get started by creating a basic HTML document and the associated files and
folders just like we did in Chapter 1, Designer, Meet jQuery. You’ll need two sizes of
the same image—1I’ve found that if the smaller image is approximately one-third the
size of the larger image, the zoom functionality works very well. Inside the body of
the HTML document, we’ll add an image and some information about the image, as
follows:

<article>
<figure>

</figure>
<div class="flower-info'">
<h2>Aster</h2>
<p>Aster 1is a genus of flowering plants in the family Asteraceae.
Its circumscription has been narrowed, and it now encompasses around
180 species, all but one of which are restricted to Eurasia; many
species formerly in Aster are now in other genera of the tribe
Astereae.</p>
</div>
</article>

2. Next, we’ll style this HTML document. For small screens, we’ll show the image with
the information underneath. For wide screens, we’ll show the image on the left-hand
side and the text on the right-hand side of the screen. Open your styles.css file and
add the following styles:

article {
margin: 2.25em O;

}

article:after {
clear: both;

content: '';
display: table;
}
figure {

margin: @ @ lem O;
max-width: 100%;
}

figure img {
height: auto;
max-width: 100%;
}

@media (min-width:36rem) {

figure {
float: left;
margin: 0 2.25em 0 0O;
max-width: 50%;
}
3

.flower-info {
overflow: hidden;

}

article h2 {
font-size: 2.25em;
line-height: 1.125;
margin: @ 0 0.75em 0;
}

article p {
line-height: 1.5;
margin: @ @ 1.5em 0;
3

Now, if you view the page in the browser, you’ll see the images and accompanying
text are nicely styled and the layout adjusts nicely to the width of the screen, as
shown in the following screenshot:

Aster

Aster is a genus of flowering plants
in the family Asteraceae. Its
circumscription has been narrowed,
and it now encompasses around

180 species, all but one of which
are restricted to Eurasia; many
species formerly in Aster are now

Aster N in other genera of the tribe
Astereae,

Asgter is a genus of flowering plants in the
family Asteraceaes. Hs circumscription has been
narrowed, and it now encompasses around 180
species, all but one of which ane restricted to
Eurasia; many species formerly in Aster are now
in other genera of the tribe Astereac

3. Next, we need to get the Zoom plugin. Head over to
http://www.jacklmoore.com/zoom/ where you’ll find the download as well as the
documentation for the plugin. Click on the Download link under the two sample
zoomable images to download the ZIP file.

4. Unzip the file. Inside it, you’ll find all the usual files—a README .md file, some

samples, and so on. Look for jquery.zoom.min. js and copy it to your own scripts
folder.

http://www.jacklmoore.com/zoom/

. Now, we need to attach the Zoom plugin file to our HTML file. At the bottom of the
file, between jQuery and your own scripts. js file, add the plugin file as follows:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.zoom.min.js"></script>
<script src="scripts/scripts.js"></script>

. Next, we’ll jump into our scripts. js file and add a bit of code to get the zoom
working for the image. Get started by adding the document ready statement:

$(document).ready(function(){
// Our code will go here

1),

. To get the zoom working, we need to select the element that actually wraps our
image, rather than the image itself. In our case, we’ve wrapped our image in a
<figure> element, so this is what we’ll select. Then, we’ll call the zoom() method, as
follows:

$(document).ready(function(){

$('figure').zoom();
1);
. Now, there’s just one thing that the Zoom plugin needs to know from us in order to
work—we have to tell Zoom the path to the larger version of our image. We can do
that by passing in a url option as follows:

$(document).ready(function(){

$('figure').zoom({

url: 'images/lg-aster.jpg'

3
1);
If you refresh the page in the browser now and move your mouse over the image,
you’ll see the zoom in effect. As you move your mouse over the image, the zoom
effect moves over different areas of the image, allowing you to see the details in all
parts of the image.

. It feels a bit strange that as we move the mouse cursor over the image, we’re just
seeing the default cursor. A few browsers have started supporting some new cursors,
including the zoom-in cursor. Let’s add a few lines of CSS to show this cursor instead
of the default for the browsers that have this capability. Inside your styles.css file,
add the following styles for the img element:

figure img {
cursor: -webkit-zoom-in;
cursor: -moz-zoom-in;
cursor: zoom-in;
height: auto;
max-width: 100%;

}

Now, if you’re using a browser with support for this new cursor, when you move
your mouse over the image, you’ll see a magnifying glass icon instead of the default

cursor:

What just happened?

We created a zoomable image using the Zoom plugin by Jack Moore. We created a page
with a smaller version of the image along with some text that describes the image. Then,

we added the plugin and a few lines of code. Now, when we move our mouse over the
image, you’ll see the larger version of the image appear.

Zooming in on multiple images

While the Zoom plugin was simple and easy to use, the plugin will only work as long as
we have just one image that’s zoomable. If we want to have multiple images on a single
page, then we have to make some modifications.

Remember when we passed the url option to the zoom() method? We added a url option
that points to the larger version of the image—this image name is now hardcoded in our
JavaScript. If you add a second image to the page, you’ll find that when you try to zoom
in on it, you’ll see the first image rather than the second.

Let’s take a look at how we can address this issue and also make our JavaScript more
portable and flexible.

Time for action — creating multiple
zoomable images

We’ll keep working with the files we created in the example to create zoomable images—
with just a few modifications; we’ll be able to place as many zoomable images on the
page as we like. Perform the following steps to create multiple zoomable images:

1. Inside the HTML file, add a few more images and accompanying text. The CSS code
we wrote earlier is flexible enough to handle multiple blocks of code. We’re going to
make just one small change to the HTML file. In the element, we’ll add an
HTMLS5 data attribute that contains the path to the larger version of the image, as
shown in the following code:

<article>
<figure>
<img src="images/chamomile.jpg" height="879" width="1024"
alt="Chamomile" data-lgsrc="images/lg-chamomile.jpg">
</figure>
<div class="flower-info">
<h2>Chamomile</h2>
<p>...</p>
</div>
</article>

2. Next, we need to modify the JavaScript that we wrote earlier so that it’s a bit more
flexible. Inside the document ready statement, remove the code we wrote earlier so
that your scripts. js file looks like the following code snippet:

$(document).ready(function(){

1)

3. Each individual image has its own accompanying larger image that should be shown
when we zoom in. We’ll need to step through each image, one at a time, and collect
the appropriate image path. To do this, we’ll use the jQuery’s each() method. This
gets started as follows:

$(document).ready(function(){
$('figure').each();
3);

4. Inside the each() method, we’ll run a function that will find the unique file path and
then assign it inside the zoom() method. This just means that we’re going to go
through each image on the page and tell the Zoom plugin which big image to show
when we zoom in. Add a function inside each(), as follows:

$(document).ready(function(){
$('figure').each(function(){
});

3);

5. The first thing we’ll do inside the function is get the path to the larger image. We’ll
create a variable to hold the path. Remember that a variable is just an empty
container. We’re creating a convenient place to store the file path, as follows:

$(document) .ready(function(){
$('figure').each(function(){
var filePath;

1)
1),

6. Now, we need to get the file path to the larger image and store it in the variable.
Recall that we added a data attribute to the element. As we’re working with
the <figure> element that wraps the element, we’ll have to find the image.
This is achieved by adding a line of code as follows:

$(document).ready(function(){
$('figure').each(function(){
var filePath = $(this).find('img');
37
});

7. Now that we have the image, we can use the handy jQuery data() method to get the
value of that data attribute we added to our HTML file:

$(document) .ready(function(){
$('figure').each(function(){
var filePath = $(this).find('img').data('lgsrc');
3);
1)

8. Now that we’ve got the path to the large file, we can call the zoom() method for each

image and use our filePath variable for the path to the large image, as shown in the
following code:

$(document).ready(function(){
$('figure').each(function(){
var filePath = $(this).find('img').data('lgsrc');
$(this).zoom({
url: filePath
});
1)
3);

This is the same function we wrote earlier in the example with just one image. The
only difference is that we’re using this variable to pass in the correct large image for

each image on the page. If you refresh the page now, you’ll see that multiple images
each zoom into the correct larger image when you move your mouse over.

What just happened?

We made some modifications to our earlier code so that we can create multiple zoomable
images on each page. First, we added the path to the larger image as a data attribute in the
HTML. Then, we modified our JavaScript to loop through each image individually and
assign the correct larger image to be used for the zooming effect. Now, our page can work
with one image or with a dozen images or even with 100 images. We’ve structured our
JavaScript in a flexible way that’s not dependent on the number of images we have on the
page. This gives us the ability to edit the HTML file to add or remove images without
having to rewrite the JavaScript.

Using fullscreen backgrounds

For websites where we’re emphasizing imagery, using a single image as a fullscreen
background image is a great way to create a visual punch. However, there are a few
challenges we have to overcome, which are as follows:

e We need to fill the entire background of the page, no matter what screen size or
device our site visitor uses, without gaps or repetition

e We need to minimize the file size of the images to increase speed and performance

e We need to maintain the proportions of the image without distorting it, while still
scaling it to best fit the current window size

e We need the image to appear at an acceptable quality level, without visible
degradation

CSS3 has introduced the background-size property, which we can use to proportionally
scale an image to the window size. This works pretty well in the browsers that have
support for this new property (check http://caniuse.com/#search=background-size for the
latest information on support) but even in browsers with support, we’ll see a JPG
background image load progressively. Let’s take a look at how we can use jQuery to
support more browsers, scale the images perfectly, and also include a lovely fade-in effect
for the image once it’s completely loaded.

We’ll be using Jay Salvat’s Vegas Background plugin, which has a variety of features that
make it flexible and easy to work with.

Tip
Reducing image file sizes

When using large, fullscreen images, there are a couple of nifty techniques you can use to
get the smallest file size possible. First, in your image editing program, increase the size of
the images to at least twice their normal size (some developers use three or four times
their normal size), then save for Web as a JPG file with zero percent image quality. This
produces a very large, low-quality image that will be scaled down for nearly all browsers
and will appear crisp, clean, and indistinguishable from a high-quality image for most of
your site visitors. Best of all, the file size will be very small.

Also, before using your images on the Web, use an image compression tool such as
ImageOptim (http://imageoptim.com/), JPEGmini (http://www.jpegmini.com/), or RIOT
(http://luci.criosweb.ro/riot/) to compress them as much as possible without affecting the
quality.

http://caniuse.com/#search=background-size
http://imageoptim.com/
http://www.jpegmini.com/
http://luci.criosweb.ro/riot/

Time for action — creating a fullscreen
background image

Perform the following steps to create a page with a fullscreen background image:

1. We’ll get started by creating a basic HTML document and the associated files and
folders just like we created in Chapter 1, Designer, Meet jQuery. Inside the HTML
document, we’ll add just a few lines of text, as shown in the following code:

<div class="content">

<h1>Seychelles</h1>

<p>Seychelles, officially the Republic of Seychelles, is a 155-island
country (as per the Constitution) spanning an archipelago in the Indian
Ocean, whose capital, Victoria, lies some 1,500 kilometres (932 mi)
east of mainland Southeast Africa, northeast of the island of
Madagascar .</p>
</div>

2. Next, we’ll add a few styles for this text. To make sure it’s readable over the photo

background, let’s add a transparent black background to the div element with a class
selector of content, as shown in the following code:

.content {

background: black;

background: rgba(0,0,0,0.5);

margin-top: 4em;

padding: 2em;
b

3. As our page is so simple, it’s already time to start working with our JavaScript. Head

over to http://vegas.jaysalvat.com/ where you can find the download and
documentation for the Vegas plugin. To download it, click on the DOWNLOAD
VEGAS link near the bottom-right corner of the screen. Unzip the folder and take a
look inside the folder; you will see the contents as shown in the following screenshot:

Name

P [images
E jguery.vegas.css
& jguery.vegas.js
= jguery.vegas.min.css
5 jguery.vegas.min.js
| metadata.json

b+ [overlays

Note that this plugin doesn’t contain a sample HTML file like most of the plugins
we’ve worked with so far—just the files we’ll need to get the plugin working. Inside
the images folder, you’ll find a loading.gif file. Copy this file to your own images
folder. Copy the entire overlays folder to your own project directory. Then, copy

http://vegas.jaysalvat.com/

jquery.vegas.min.css to your own styles folder and copy jquery.vegas.min.js
to your own scripts folder.

When you’re finished, your own project directory should look like the following
screenshot:

Mame
¥ [images
2 loading.gif
seychelles.jpg
seychelles2.jpg
B seychelles3.jpg
= index.html
b [overlays
¥ [l scripts
B jquery.js
5 jguery.vegas.min.js
5 scripts.js
¥ [l styles
= jguery.vegas.min.css
B styles.css

BB (®

The images folder contains both the loading.gif file copied from the Vegas
download folder, along with any images that you’ll be working with to create
fullscreen backgrounds.

. Next, attach the Vegas style sheet at the top of the HTML file, after your own style
sheet, as shown in the following code:

<head>

<title>Chapter 8: Fullscreen Background</title>

<link rel="stylesheet" href="styles/styles.css'">

<link rel="stylesheet" href="styles/jquery.vegas.min.css">
</head>

. Attach the Vegas plugin file at the bottom of the HTML file, after jQuery but before
your own scripts. js file:

<script src="scripts/jquery.js'"></script>

<script src="scripts/jquery.vegas.min.js"></script>
<script src="scripts/scripts.js"></script>

</body>

</html>

. Now, it’s time to open up the scripts. js file to write some JavaScript. Get started
with the document ready statement, as follows:

$(document).ready(function(){
// Our code will go here

1),

. Next, we’ll call the Vegas plugin. Vegas works just a bit differently from many of the
other plugins we’ve seen so far. We don’t have to select an element in our document

that we want to work with. The following code shows how to call the vegas()
method:

$(document).ready(function(){
$.vegas();
});

8. Then, we just have to pass in some options. First, we’ll use the src option to tell
Vegas which image to use as the background:

$(document).ready(function(){

$.vegas({
src: 'images/seychelles.jpg'
1)
1)

Note that the path to the image is relative to the HTML file, not to the scripts.js
file where we’re writing this code.

9. We want the image to fade on to the page rather than progressively downloading as
the JPG files usually do, so we’ll pass another option, fade:

$(document) .ready(function(){

$.vegas({
src: 'images/seychelles.jpg',
fade: 2000
1)
1)

The number we pass to the fade option should be the number of milliseconds the
fading action will take—2000 milliseconds is 2 seconds. If you refresh the page in
the browser, you’ll see a solid background color until the image fades in for 2
seconds. If you try resizing the browser window, you’ll see that the image responds
just as we’d like; it scales to best fit the window without distorting and stays
centered.

| Seychelles i Seychelles

_ Seychelles, officially the Republic of icially the Republic of Seychelles, is a 155-island country K rych epublic of Seychelles, is a 155-island country (as per the Constitution) spanning an
lles, is a 155-island (as per itution) spanning an archipelago in the Indian Ocean, Pt archipel cean, whose capital, Victoria, fies some 1,500 kilometres (932 mi) east of mainland

some 1,500 kilometres (932 mi) east of
northeast of the island of Madagascar.

10. The Vegas plugin has an additional handy option available that is tremendously
helpful when we’re using images as fullscreen backgrounds—overlays. Inside the
overlays folder, you’ll find 15 different PNG files—each one creates a different

pattern when used to fill an area—dots, stripes, checks, grids, and so on. By laying
one of these patterns over our background images, we can help disguise or hide any
image degradation that might be visible when our images are stretched to fill larger
screens. These overlay patterns also help darken our background images, to make the
text content on top just a bit easier to read. To add an overlay to our background
image, we’ll just chain the overlay options, as follows:

$(document).ready(function(){

$.vegas({
src: 'images/seychelles.jpg',
fade: 2000

})('overlay', {
src: 'overlays/03.png'

1),
1),

Just like the background image itself, we have an src option for the overlay. Again,
the path to the overlay is relative to the HTML document, not the JavaScript
document where you’re writing this code. I’ve selected 03.png as my overlay of
choice, but feel free to experiment with all the 15 options provided with the plugin or
to create one of your own.

Now, if you refresh the page in the browser, you’ll see the subtle overlay pattern on
the image.

Seychelles U

Seychelles, officially the Republic of Seychelles, is a 155-island country (as per the Constitution) spanning an
archipelago in the Indian Ocean, whose capital, Victoria, lies some 1,500 kilometres (932 mi) east of mainland
Southeast Africa, northeast of the island of Madagascar.

; .: | ["Ii‘ | :
B 11 g
i "I“ |

| H' | \""';" ' 'H WM\Nh

What just happened?

We used the Vegas plugin to create a flexible, scalable fullscreen background image for
our HTML page. We added options for the image to fade in for 2 seconds and also added
an overlay to the image that helps to darken it just a bit and also to hide any image
degradation that might happen, particularly on large screens. When we resize the window,
the image resizes while remaining centered and doesn’t distort.

Creating a fullscreen slideshow

In addition to creating perfectly responsive fullscreen background images, the Vegas
plugin will also allow us to create fullscreen background slideshows. Let’s take a look at
how we can take this same HTML file and create a fullscreen slideshow behind the text

rather than just a single fullscreen image.

Time for action — creating a fullscreen
slideshow

We’ll keep working with the files that we created in the Time for action — creating a
fullscreen background image section. The only change we’ll need to make to create a
slideshow rather than a single fullscreen background image is to our scripts. js file. To
do so, perform the following steps:

1. Open scripts.js and remove the src and fade options from the vegas() method, as
shown in the following code:

$(document).ready(function(){
$.vegas({

})('overlay', {
src: 'overlays/03.png'

1)
1),

2. Next, we need to tell Vegas that we want to use a slideshow. Before we pass in the
options object, tell Vegas to use a slideshow, as shown in the code:

$(document).ready(function(){
$.vegas('slideshow', {

})('overlay', {
src: 'overlays/03.png'

1)
1)

Note that this slideshow option is outside the curly braces.

3. We’ll pass in the slideshow options we want to use, inside the curly braces. First, let’s
add delay. This tells Vegas how long to display each image in the slideshow. As the
slideshow takes up the entire screen, it works best if the slideshow is slow. We’ll let
each image be displayed for 5 seconds or 5000 milliseconds, as shown in the code:

$(document).ready(function(){
$.vegas('slideshow', {
delay: 5000
})('overlay', {
src: 'overlays/03.png'
37
3);

4. We’ll tell Vegas which images we want to use in our slideshow. We’ll do that with the
backgrounds option, as shown in the following code:

$(document).ready(function(){
$.vegas('slideshow', {
delay: 5000,
backgrounds: []

})('overlay', {
src: 'overlays/03.png'

1);
});
Don’t forget to add a comma after the delay option to separate it from the
backgrounds option. We’ve added a pair of square brackets as the value for the
backgrounds option. Square brackets denote an array—an array is just a collection
of values instead of a single value. As our slideshow is going to contain multiple
background images, we’ll use an array to make sure Vegas knows about each one.

. Inside the array, we’ll pass some information about each of our images inside curly
braces. We need the path to each image, along with how long the animation for each
image will be:

$(document).ready(function(){
$.vegas('slideshow', {
delay: 5000,
backgrounds: [
{ src: 'images/seychelles.jpg',6 fade: 2000 },
{ src: 'images/seychelles2.jpg', fade: 2000 },
{ src: 'images/seychelles3.jpg', fade: 2000 }
]
})('overlay', {
src: 'overlays/03.png'
1)
1)

Again, because the slideshow is occupying the entire page, it’s best if the transition
between the images is slow—here, we allow 2 full seconds for the image to change.

Now if you refresh the page in the browser, you’ll see that our single fullscreen
background image has been replaced by a fullscreen slideshow. Experiment with the
delay, fade, and overlay options to find the combination that works best for the
images that you’re using.

What just happened?

We modified the settings of the Vegas plugin to create a fullscreen slideshow on our
page’s background rather than just a single fullscreen background image. Just like the
single background image, the slideshow is responsive and resizes flawlessly as we resize
our browser window. We were able to set the amount of time each image in the slideshow
should be visible for, and we were also able to pass in an array of images to use in the
slideshow along with the duration of the transition animation for each one.

Summary

In this chapter, we took a look at few techniques for working with images in responsive
designs. First, we set up lazy loading so that images will only be loaded if and when they
are required. Then, we took a look at adding the ability to zoom in images to get more
detail. Finally, we looked at how to create both fullscreen background images and
fullscreen background slideshows. Armed with this knowledge, we can create even more
flexible and more full-featured responsive pages. Next, we’ll take a look at ways to make
our typography just as flexible and responsive.

Chapter 9. Improving Typography

A lot of the responsive design tutorials that you’ll find on the Web tend to be very focused
around images, videos, and column layouts. But the backbone of most websites is the text
content—this is where having some knowledge and skills around typography and making

typography more responsive is especially useful. If you can make the content on a website
a visual delight and a pleasure to read, you’re more likely to draw in regular readers than
if your text content is poorly set and difficult to read.

In this chapter, you’ll learn:

e How to use the FitText plugin to size headlines responsively according to the width
of the browser window

e How to use the SlabText plugin to create perfectly-sized multiline blocks of text

e How to use the Lettering.js plugin to fine-tune kerning and apply special text effects

e How to use the ArcText plugin to set text on a curve

Sizing headlines perfectly

With the recent rise in the popularity of responsive design, some designers have pointed
out that the Web is responsive by default—we’ve made the Web unresponsive by setting
fixed widths in layouts. That’s partially true. Text on the Web will automatically flow to
best fit its container, but that can sometimes lead to awkward line breaks and line lengths
(or measures) that make reading difficult.

While we can use CSS and media queries to fix some of these issues, adding a little bit of
JavaScript magic into the mix can allow us to accomplish things that we wouldn’t be able
to accomplish with CSS alone. Let’s take a look at resizing headlines to accommodate the
width of the screen. This can be really helpful to prevent awkward line breaks in headings.

Tip
Modular scale

To create visual harmony and text that’s set with precision, give the modular scale a try. A
modular scale is a mathematical scale of numbers that share the same relation to one
another. When you choose numbers from the scale to set your font sizes, line heights,
column widths, margins, and padding, you’ll create typography that’s more professional
and aesthetically pleasing. Tim Brown, the type manager at TypeKit, has produced
http://modularscale.com—a tool that enables anyone to calculate a scale and produce
gorgeous typography. Links to several articles on http://modularscale.com will help you
understand and use a modular scale more effectively for setting your typography.

http://modularscale.com
http://modularscale.com

Time for action - sizing headlines to the
screen width

Perform the following steps to create headlines that resize according to the width of the
browser window:

1. We’ll get started by creating a basic HTML document and associated files and folders
just like we did in Chapter 1, Designer, Meet jQuery. Inside the HTML document,
we’re going to create a bit of text with a headline, as follows:

<div class="content">
<hi1>What is Typography?</hi>
<p>Typography is the art..</p>
</div>

2. Inside styles.css, some basic CSS that is applied helps to set the size of the
heading, the paragraph, and padding and margin around both elements. If you take a
look at the sample code included with the book, you’ll see the following bit of CSS
that styles basic text elements:

.content p {
line-height: 1.5;
margin: 1.125em 0;

}

.content hl {
font-size: 3.375em;
line-height: 1.125;
margin: 1.125em 0 0.5em 0;
}

For our site visitors without JavaScript, this bit of text is perfectly acceptable, no
matter what their screen width happens to be. The text of both the paragraph and the
headline simply reflows as the browser window resizes, as shown in the following
screenshot:

What is What is Typography? What is Typography?
Typography? et - _ ;

However, by using in the FitText plugin, we gain a little more control over the
headline, and we can resize it fluidly so that it will fill the width of the screen.

. You’ll find documentation and download links for FitText at http://fittextjs.com/. Just
click on the Download on GitHub link to be redirected to GitHub. Once you’re on
GitHub, just click on the Download ZIP button as we’ve done with other plugins
that we’ve downloaded from GitHub.

. Unzip and open the ZIP file. Look for jquery.fittext.js and copy it to your own
scripts folder. Then, in the HTML file, add the FitText file at the bottom, after
jQuery but before your own scripts.js, as follows:

<script src="scripts/jquery.js"></script>

<script src="scripts/jquery.fittext.js"></script>
<script src="scripts/scripts.js"></script>
</body>

</html>

. Open your scripts.js file and get started by adding the document ready statement,
as follows:

$(document).ready(function(){
// Our code will go here

1),

. Next, we’ll select the element we’d like to resize and then call the fitText()
method. Make sure you pay careful attention to the letter T in the middle of the
method name—it won’t work if you forget that:

$(document).ready(function(){

$('h1').fitText();
1);
. Now, if you refresh the page in the browser, you’ll see that the headline resizes
according to the browser window’s width, but it’s not working exactly the way we
want, as shown in the following screenshot:

fyhat e What is
Typography?

Typography?

While the text is resizing with the browser window, it’s a little too big and is spread
over two lines. Let’s take a look at how we can fine-tune FitText and gain a bit more
control over the resizing of text.

. FitText includes what the developers of the plugin call “the compressor.” It’s
basically the ability to control how aggressive FitText is about resizing the text. The
default value is 1, but we can pass a new value to the fitText () method. Often, it’s a
matter of trying out a few different values to find the one that works best for your

http://fittextjs.com/

particular situation:

$(document) .ready(function(){

$('h1').fitText(1.1);
3);
. In addition to the control we gain from passing values for the compressor, we can
also set minimum and maximum font sizes for the text. In this example, our body text
is set to the browser’s default font size, and we’d like our heading to always be just a
tad larger than the body text so that we don’t end up with a headline that’s actually
smaller than the body text. After the compressor, we can pass the fitText () method
a settings object to set the minimum font size to 1.2em:

$(document).ready(function(){
$('h1').fitText(1.1, {minFontSize: '1.2em'});

1),

Now, even if our screen were to get very narrow, the heading’s font size would
always be 20 percent larger than that of the body text, even if it means that the text
will wrap onto a second (or even third) line. FitText also includes a maxFontSize
setting, but we won’t need to use it in this example.

If you refresh the page in the browser, you’ll see that the headline now appears on a
single line and the font resizes to best fit the current width of the browser window,
while never going below 1.2 em:

What just happened?

We used the FitText plugin to resize our headline so that it always fits neatly on one single
line. We learned how to adjust the Compressor for more control over the resizing and also
learned how to set minimum and maximum font sizes for the headline to make sure that it
stays within the boundaries that we set. In this example, we set a minimum font size of On
one line please to ensure that the headline is always larger than the body text. FitText is
only intended to be used for headlines—it will significantly impact the performance of
your website if you attempt to use it for your body text or for all the text on the page. Stick
to using FitText to create impactful, bold headlines.

Creating bold text blocks

FitText is ideal for situations where we want to resize a headline to best fit the screen size,
but what if want to take this a step further and create blocks of perfectly-sized text, as

shown in the following screenshot:

FOR ONE NIGHT ONLY
JACKIE MITTQO

WITH SPECIAL STUDIO ONE GUESTS
DILLINGER & LONE RANGER

We could wrap bits of our headline in some tags and then set individual font sizes
for each one, but handling the rewrapping of the text at different font sizes would be
difficult, if not impossible. That’s where the fabulous SlabText plugin comes in. SlabText
will automatically calculate the best places to insert line breaks and then resize the text to
perfectly fill each line. Let’s take a look at how it works.

Time for action — creating a bold text
block with SlabText

Perform the following steps to break a headline into multiple lines, all resized to fit the
width perfectly:

1. We’ll get started by creating a basic HTML document and associated files and folders
just like we did in Chapter 1, Designer, Meet jQuery. Inside the HTML document,
we’re going to place a headline as follows:

<header>
<hi1>Pride & Prejudice</h1>
</header>

2. Next, we’ll add some styles to style our headline the way we’d like. Open your
styles.css file and add the following lines:

header {
margin: 5.063em 0;

}

header hl {
line-height: 1.125;
margin: O;
padding: 0;
text-transform: uppercase;

}

hl {
font-size: 3.375em;

}

We’ve removed any default margins or padding from the <h1> element. We’ll use the
<header> element to add white space around our headline instead. Also, note that we
used a unitless number for our line-height value. Unitless line heights allow these
values to cascade down the DOM in a more elegant and useful manner.

We’ve set text-transform to uppercase since the SlabText effect is more visually
impactful if we’re using uppercase letters.

3. Next, we need to download the SlabText plugin and get it attached to our HTML
page. You’ll find the SlabText plugin in the jQuery plugins repository at
http://plugins.jquery.com/slabtext/. Just click on the big orange Download now
button to download the ZIP file. Unzip it, locate the jquery.slabtext.min.js file
inside the js folder, and copy it to your own scripts folder.

Now, at the bottom of your HTML file, add the <script> tag to include the file after
jQuery, but before your own scripts. js file, as shown in the code:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.slabtext.min.js"></script>

http://plugins.jquery.com/slabtext/

<script src="scripts/scripts.js"></script>

4. The SlabText plugin also includes some CSS that we’ll need for the plugin to work as
expected. You’ll find a slabtext.css file inside the css folder. We could copy this
file to our own project and attach the file to our HTML page, but it’s only a few lines.
We’ll get better performance on our pages if we reduce the number of external files
we include, so instead, let’s open up that CSS file, copy the code that’s there, and add
it to our own styles.css file as shown in the code:

.slabtexted .slabtext {
display: -moz-inline-box;
display: inline-block;
white-space: nowrap

}

.slabtextinactive .slabtext {
display: inline;
font-size: lem !important;
letter-spacing: inherit !important;
*letter-spacing: O !important;
white-space: normal;
word-spacing: inherit !important;
*word-spacing:0 !important;

}

.slabtextdone .slabtext {
display: block;
line-height: 0.9;

}

5. Now, open your scripts. js file and add the document ready statement as follows:

$(document).ready(function(){
// Our code will go here

3);
6. SlabText works like most other jQuery plugins; we select an element and then call the
slabText () method. In this case, we want to work with the <h1> element:

$(document).ready(function(){
$('h1').slabText();

3);

If you refresh the page in the browser, you’ll see that the text now expands to fill the
horizontal space. If you resize the browser window, you’ll see that the text size is
recalculated and at narrower widths, even broken into two lines, each of equal length,
as shown in the following screenshot:

PRIDE &
bax G SN PRIDE & PREJUDICE

7. Many typography experts recommend using the best ampersand (&) you possibly can
—and the ampersand that’s included with the font we’re using here (Geneva) is a bit
flat and boring. The SlabText plugin automatically wraps ampersands in a
element with an amp class. We can use this class to style the ampersand in a nicer
style. In your styles.css file, add the following lines of code:

.amp {
font-family: Baskerville, 'Goudy 0ld Style', Palatino, 'Book

Antiqua', serif;
font-size: 1.125em;
font-style: italic;
font-weight: normal;

}

This is the font style that is recommended by Dan Cederholm to style ampersands on
the Web. If you refresh the page in the browser now, you’ll see our ampersand
replaced by a much nicer and more visually interesting ampersand, as shown in the
following screenshot:

PRIDE &
PREJUDICE

8. We’ve created a nice text effect, but this bit of text is rather short. Let’s take a look at
how this effect might work with a longer bit of text. Open your index.html file and
add another headline:

<header>

<h1>The Importance of Being Earnest: A Trivial Comedy for Serious
People by Oscar Wilde</h1>
</header>

If you refresh the page in the browser now, you’ll see that this headline breaks into
multiple lines, all of which fill the width of the page. However, the line breaks are a
bit awkward, and the resizing of text feels random and strange, as shown in the
following screenshot:

I H E THE IMPORTANCE

ORTANC
OF SENG Ot e
EARNEST: TR|V|AL
A TRIVIAL
COMEDY COMEDY FOR
FOR SERIOUS SERIOUS

PEOPLE BEPEOPLE BY

BY OSCAR OSCAR WILDE

WILDE

B IMPORTANCE OF W THE IMPORTANCE OF BEING

: A EARNEST: A TRIVIAL
SRR PR 98 B COMEDY FOR SERIOUS

OSCAR WILDE R PEOPLE BY OSCAR WILDE

9. Luckily, the SlabText plugin provides a way for us to have control over where the
text is broken into lines. We can do that by just wrapping each line in a
element with the class selector of slabtext. Inside index.html, add some
tags around the text as follows:

<header>
<h1>
The Importance of Being
Earnest:
A Trivial Comedy for Serious People
by Oscar Wilde
</h1>
</header>

Now, if you refresh the page in the browser, you can see that our line breaks make
more visual sense, as shown in the following screenshot:

THE IMPORTANCE OF BEING

EARNEST:

A TRIVIAL COMEDY FOR SERIOUS PEOPLE

BY OSCAR WILDE

The line breaks are the same, no matter how wide or narrow the browser window is.

10. Wrapping each line in its own tag also gives us the opportunity to style each
line a bit differently. Inside the index.html file, add classes for the line numbers to

11.

12.

each element:

<header>
<h1>
The Importance of Being
Earnest:
A Trivial Comedy for Serious
People
by Oscar Wilde
</h1>
</header>

We can use these new classes to add some additional styles to the lines of text. For
example, let’s take the first and third lines and make them green and set them in the
same font-family style that we used for the ampersand earlier. In the styles.css
file, add the following styles:

.1linel, .line3 {
color: #ald36e;
font-family: Baskerville, "Times, Times New Roman", serif;

}

Refresh the page in the browser, and you’ll see that the first and third lines of text are
green and are in a serif typeface:

THE IMPORTANCE OF BEING

EARNEST:

A TRIVIAL COMEDY FOR SERIOUS PEOPLE

BY OSCAR WILDE

All lines of text still resize correctly to fill the width of the screen.

So far, we’ve tried a few different techniques. What if we have a case where we want
to control just one line break in the text and allow the others to happen naturally? If
we add the author to our first example headline, our code will look as follows:

<header>
<h1>Pride & Prejudice by Jane Austen</hi1>
</header>

We’d always want to have a line break between the title and the author, but within the
title and within the author, we’d want the line breaks to happen naturally.

If we wrap the title and the author each in a element, like we did in the
previous example, each of those lines will resize to always fill the screen width.
Pride & Prejudice won’t wrap to two lines at narrow screen widths.

13.

14.

The solution is to wrap each bit of text in its own tag and then call the slabText ()
method on both elements. Change the HTML markup as follows:

<header>
<h1>Pride & Prejudice</h1>
<h2>by Jane Austen</h2>
</header>

Next, we need to add a few new styles to styles.css to account for the <h2>
element:

header hi1, header h2 {
line-height: 1.125;
margin: 0O;

padding: 0;
text-transform: uppercase;
}
h2 {
font-size: 2.25em;
}

The last thing to do is to modify the scripts. js file to call slabText () on both
levels of heading:

$(document).ready(function(){
$('h1, h2').slabText();

1)

Refresh the page in the browser and try changing the window width. You’ll see that
both the title and the author name resize themselves to fit the width, and each of them
wraps to a new line when it seems best to do so.

PRIDE YPRIDE & PREJUDICE
PREJUDICEIBY JANE AUSTEN

BY JANE AUSTEN

What just happened?

We took a look at using the SlabText plugin to create large blocky headlines. We saw how
to control the line breaks in the headline by using tags inserted in the headline or
by using multiple HTML elements. SlabText takes care of recalculating the correct font
size for each line of the headline so that it fills the width of the container. We use the
SlabText plugin by selecting the elements we want to work with and calling the

slabText () method.

Pop quiz — sizing text in responsive designs

Q1. When we’re using plugins such as FitText and SlabText to resize text, it’s best to use
this functionality on which types of text?

1. The entire text on the page—everything should be sized together for consistency.
2. Just the text in the main content area.

3. Headlines and other short, important bits of text such as pull quotes.

4. Just the text in the footer.

Styling individual letters

Next, we’ll take a look at the Lettering.js plugin, which gives us fine-tuned control over
individual characters. Just like the FitText and SlabText plugins, we’ll reserve the power
of Lettering.js for headlines. Our webpage would suffer some pretty serious performance
issues if we tried to use it for all the text on the page. Stick to applying these text effects to
text that deserves extra attention—items such as headlines and pull quotes.

Time for action — using Lettering.js to
style letters

Perform the following steps to use the Lettering.js plugin:

1.

We’ll get started by creating a basic HTML document and associated files and
folders, just like we did in Chapter 1, Designer, Meet jQuery. Inside the HTML
document, we need a headline to work with. It’s nice to also have at least a bit of text
on the page as well in order to really understand how our headline will look with
other text on the page:

<div class="content">
<hl1>Alice’s Adventures in Wonderland</hi1>

<section>
<h2>CHAPTER I. Down the Rabbit-Hole</h2>
<p>Alice was beginning to get very tired of sitting by her sister
on the bank, and of having nothing to do: once or twice she had peeped
into the book her sister was reading, but it had no pictures or
conversations in it, ‘and what is the use of a book, ’
thought Alice ‘without pictures or conversations?’</p>
</section>
</div>

Note that we’ve used a typographically correct apostrophe in the headline. As we’re
paying close attention to typography in this chapter, we’ll try to use all the correct
characters instead of the shortcuts that so often get used on the Web.

We’ve already got default styles set for content in our default style sheet, so we don’t
have to write any special styles just yet. We can head over to http://letteringjs.com/ to
get the download file and documentation for the Lettering.js plugin. Follow the
DOWNLOAD ON GITHUB link and then click on Download ZIP to get the files
you’ll need.

Unzip the file, find jquery.lettering.js inside, and copy it to your own scripts
folder. Then, at the bottom of the HTML file, attach the Lettering.js plugin after
jQuery, but before your own scripts. js file, as follows:

<script src="scripts/jquery.js'"></script>
<script src="scripts/jquery.lettering.js"></script>
<script src="scripts/scripts.js"></script>

Open scripts.js and add the document ready statement, as follows:

$(document).ready(function(){
// Our code will go here

1),

Next, we need to call the lettering() method. We want to add the capabilities of
Lettering.js to our header, so we’ll select the <h1> element:

$(document).ready(function(){

http://letteringjs.com/

$('h1').lettering();
1);

If you refresh the page in the browser, you’ll see that it appears as though nothing has
changed on the page. However, if you open the Inspector tools in Safari or Chrome,
or Firebug in Firefox, you’ll see that each individual character in the heading is now
wrapped in a tag with a numbered class, as shown in the following
screenshot:

¥ <div class="content">
¥ <hl=>
=span class="charl"=A=
=span class="char2"=1l
=span class="char3"=i
=span class="chard"=c
=span class="char5"=e
"
=span class="char7"=s
=span class="charB">
=span class="char®"=A=/span>
=span class="charl@"=d=/span=>
=span class="charll"=v=/span>
=span class="charl2"=e
=span class="charl3"=n</span=
=span class="charld"=t</span=>
=span class="charld"=u=/span=>
<span class="charlb"=r
=span class="charl7?"=e
=span class="charlB"=s</span=>
=span class="charl®"=
=span class="charZ@"=i
=span class="char2l"=n</span=
=span class="char22">
=span class="char23"=W
=span class="char24"=o
=span class="char2b"=n</span=
=span class="char2b"=d=/span=>
=span class="char27"=e
=span class="charZB"=r
=span class="char29"=1</span=>
<span class="char3@"sa
=span class="char3l"=n=
=span class="char32"=d</span=>
=/hl=
P <section=.</section>
</div>

This is all that the Lettering.js plugin does. By wrapping each character in a span and
giving each a unique class, it enables us to write CSS to style each character
individually. But how can that be useful?

First up, it allows us to fine-tune kerning. For example, the gap between the letter W
and the letter o in Wonderland is too large in many typefaces. We can close that up
by selecting o (char24) and applying a negative left margin. In your styles.css file,
add the following lines of code:

.char24 {
margin-left: -0.05em;
}

Have a look at the following screenshot and find the difference in the words:

Wonderland

Wonderland

You can see in the bottom Wonderland text that the gap between W and o is smaller
and the spacing between W and o feels consistent with the spacing between the
remaining letters.

. Another possibility is to add individual styles to each letter. We can add individual
colors, background colors, background images, padding, margins, and so on. We can
also use the new CSS3 capabilities to add box shadows, text shadows, transforms,
transitions, gradients, and so on. Let’s take a look at adding a bit of whimsy to the
first word (ALICE’S) in our title. We’ll get started by adding some styles that will
apply to all the letters in that word in the styles.css file, as shown in the following
code:

.charl1, .char2, .char3, .char4, .char5, .char6, .char7 {
border-radius: 50%;
cursor: pointer;
display: inline-block;
margin: 0 0.125em;
padding: 0.125em 0.25em;
text-align: center;
text-transform: uppercase;
transition: all 300ms;
width: 1em;

}

. Next, we’ll add some individual styles for each of those letters, as follows:

.charl {

background: #fa6f57;
-webkit-transform: rotate(7deg);
}

.char2 {

background: #42b0d8;
-webkit-transform: rotate(-5deg);
b

.char3 {

background: #ald36e;
-webkit-transform: rotate(12deg);
}

.char4d {

background: #967dd9;
-webkit-transform: rotate(-10deg);

}
.char5 {

background: #e75845;
-webkit-transform: rotate(-5deg);
k

.charé {

background: #55cle7;
-webkit-transform: rotate(4deg);
3

.char7 {

background: #ac94e9;
-webkit-transform: rotate(13deg);

}

We’ll also style the :hover pseudoclass for each letter to add a bit of interactivity.
When our site visitor moves their mouse over the letters, they’ll see a subtle
animation:

.charil:hover {

background: #ald36e;
-webkit-transform: rotate(-8degqg);
}

.char2:hover {

background: #967dd9;
-webkit-transform: rotate(10deg);
}

.char3:hover {

background: #e75845;
-webkit-transform: rotate(-3deg);
}

.char4:hover {

background: #55cle7;
-webkit-transform: rotate(5deg);
}

.char5:hover {

background: #ac94e9;
-webkit-transform: rotate(10deg);
Improving Typography

}

.char6:hover {

background: #fa6f57;
-webkit-transform: rotate(-9deg);
}

.char7:hover {

background: #42b0d8;
-webkit-transform: rotate(-2deg);

}

Refresh the page in the browser and you’ll see that the letters are encapsulated in
differently colored circles and tilted in different directions:

Adventures in Wonderland

When you move your mouse over each letter, they rotate and change background
colors. Feel free to add your own styles and colors to each letter—the only limit to
what you can accomplish is your own imagination.

What just happened?

We applied the Lettering.js plugin to our headline. While the jQuery plugin itself doesn’t
actually make any changes to the appearance of the page, it does make it possible for us to
style each individual letter with CSS. This allows us to fine-tune kerning and apply
creative styles. Take a look through the gallery on http://letteringjs.com/ to get a feel for
what’s possible. The plugin itself is very simple to use—just one line of JavaScript gets
you up and running. After that, the remainder of the work is CSS.

http://letteringjs.com/

Have a go hero — creating fancy effects with
Lettering.js

Take a look through the gallery for Lettering.js (http://letteringjs.com) and see whether
you can recreate the effect of your choosing, or design your own special lettering effect
and put the Lettering.js plugin to work to create your design. Use gradients, transforms,
3D transforms, box shadows, text shadows, border radii, or CSS animations to create your
custom appearance.

http://letteringjs.com

Setting text on a curve

Using CSS3 transforms, it would technically be possible to set text on a curve using the
Lettering.js plugin. It would, however, require us to do quite a lot of calculations to get the
letters arranged just so.

Thankfully, Pedro Botelho, author of the ArcText plugin, has figured out a way to let
JavaScript do all the math for us. He started from the Lettering.js plugin, but then added
the ability to set text perfectly to a curve of your choosing. The result is the ArcText
plugin, which allows us to set any text on a curve of any radius.

Time for action — setting text on a curve
with the ArcText plugin

Perform the following steps to set text on a curve:

1. We’ll get started by creating a basic HTML document and associated files and
folders, just like we did in Chapter 1, Designer, Meet jQuery. Inside the HTML
document, we’ll add a heading, as follows:

<div class="content">
<header id="ex1'">
<h1>A Tale of Two Cities</h1>
</header>
</div>

2. Next, we’ll download the ArcText plugin. The plugin is available through a tutorial
on the Codrops blog by Tympanus. Head over to

http://tympanus.net/codrops/2012/01/24/arctext-js-curving-text-with-css3-and-jquery/
and click on the DOWNLOAD SOURCE button to get the ZIP file.

Unzip the file. Inside the js folder, you’ll find the jquery.arctext.js file—copy
this file to your own scripts folder.

3. At the bottom of the HTML file, attach the ArcText plugin, after jQuery but before
your own scripts. js file, as follows:

<script src="scripts/jquery.js"></script>

<script src="scripts/jquery.arctext.js"></script>
<script src="scripts/scripts.js"></script>
</body>

</html>

4. Open the scripts. js file and add the document ready statement, as follows:

$(document).ready(function(){
// Our code will go here

1);
5. Next, we’ll need to call the arctext () method. Select the headline and call the
arctext () method, as follows:

$(document).ready(function(){
$('h1').arctext();

1),

Refresh the page in the browser and you’ll see that the headline is now curved.

http://tympanus.net/codrops/2012/01/24/arctext-js-curving-text-with-css3-and-jquery/

6. The curve we get by default might not be exactly what we wanted, so let’s take a look
at the options we have in the ArcText plugin. First, we have control over the radius
document ready of the circle used to set the text. Let’s try setting that to 500, as
shown in the following code:

$('h1').arctext({
radius: 500

1)

The following screenshot shows the change in the arc:

This gives us a much more gentle arc and is generally more readable. Feel free to
experiment with different values to get the effect you’d like.

7. Next, we can control the direction of the arc. By default, the text arcs up, but we can
also make it arc down. We use the dir option—if set to 1, the curve bends upwards,
and if set to -1, the curve bends downwards:

$('h1i").arctext({
radius: 500,
dir: -1

1)

Don’t forget to include a comma between different options but no comma after the
last option. The following screenshot shows the change in the arc:

8. By default, ArcText will rotate our letters to the curve. But we can turn that off if we
wish to with the rotate option. If we set it to false, as follows, each letter remains
vertical:

$('h1').arctext({
radius: 500,
rotate: false

1),

The following screenshot shows the change in the letters on setting the rotation of
letters to false:

9. The final option we have is one you’re already familiar with. ArcText will optionally
resize the arced text to best fit the width of its container. To use this option, just set
fitText to true, as follows:

$('h1").arctext({
radius: 500,
fitText: true

1),

Now, as you resize the browser window, the text will automatically resize to best fit
into the available space.

pTale of Two Citigg

Note that as the text gets larger, the arc’s radius increases.

10. The arced headline looks just fine, but if we try to add other text to the page, we’ll
find that it overlaps with the arced text, as shown in the following screenshot:

de of Two

It was the imes, it was the worst of times, it was the age of wisdom, |‘t

hness, it was the epoch of belief, it was the epoch of incredulity, it was the
Lj%wzs the season of Darkness, it was the spring of hope, it was the winter of d
erything before us, we had nothing before us, we were all going direct to Heaven,
were all going direct the other way—in short, the period was so far like the present period, that

some of its noisiest authorities insisted on its being received, for good or for evil, in the
superlative degree of comparison only.

It’s simple enough to correct this issue by adding a margin to the headline that
contains the arced text. Inside styles.css, add the following style:

.content h1 {
margin-bottom: 3em;
text-align: center;

}

Now, if you refresh the page in the browser, you’ll see that the body text added after
the headline no longer overlaps, as shown in the following screenshot:

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of
foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of
Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we
had everything before us, we had nothing before us, we were all going direct to Heaven, we
were all going direct the other way—in short, the period was so far like the present period, that
some of its noisiest authorities insisted on its being received, for good or for evil, in the
superlative degree of comparison only.

You can experiment with the margin value to find the value that best works for your

text. Note that if you are using the fitText option, you’ll want to set the margin in
ems so that it will adjust in proportion to the font size at different screen widths.

What just happened?

We used the ArcText plugin to set our text on a curve. The ArcText plugin automatically
calculates the rotation and position of each letter in the headline for us to set it on a perfect
arc. The options that are included allow us to control the direction of the arc and the radius
of the arc, whether or not the letters are rotated, and whether or not the arced text is
resized to best fit the screen. We gave all of these options a try. We also saw how we can
adjust the margin of the arced text to avoid any subsequent text from overlapping.

Summary

In this chapter, we took at look at several options we have to work with text inside
responsive designs. We saw how we can make headlines resize automatically to fill the
available space using the FitText plugin. We learned how to use the SlabText plugin to
create blocky chunks of text. We tried using the Lettering.js plugin to fine-tune kerning
and apply styles to individual letters. Finally, we learned how to set text on an arc using
the ArcText plugin. Next, we’ll explore some ways to present data beautifully in our
designs with interactive data grids, graphs, and charts.

Chapter 10. Displaying Data Beautifully

While you might not consider displaying data to be all that exciting, it is often crucial to
present large amounts of data to site visitors in a way that makes it easy for them to
understand, explore, and interact with in new ways. Finding new and better ways to
display data helps to communicate complex principles effectively. Allowing site visitors to
interact with data enables them to make their own discoveries. As we are presented with
more and more data everyday, the field of data visualization grows. Let’s take a look at
some simple things we can do when working with large amounts of data to make it easier
for our site visitors to consume and understand.

In this chapter, we’ll learn:

e How to turn an ordinary table into an interactive data grid using the DataTables
jQuery plugin by Allan Jardine

e How to customize the appearance and behavior of the data grid using the jQuery Ul
ThemeRoller plugin

e How to use the jQuery Visualize plugin to use tables of data to create charts and

graphs

A basic data grid

We’ll get started by using the DataTables plugin to create a basic data grid, keeping the
default settings and the styles provided with the data grid. Data grids are most helpful
when we have large amounts of data to present, and the site visitors might want to filter
and sort the data in different ways to find the information they are looking for. Think, for
example, of a list of flights; one site visitor might be interested in sorting the flights by the
departure time to find the earliest possible departure, while another site visitor might want
to sort the flights by duration of the flight to find the shortest possible flight. Presenting
the data in an interactive data grid allows each site visitor to quickly and easily find just
the information they’re looking for in a sea of information. For site visitors with
JavaScript disabled, they’ll simply see a large table of data and will never know that
they’re missing out on the interactive features. All of the information will still be available
to them.

Time for action — creating a basic data
grid

Let’s take a look at how to turn a basic HTML table into an interactive data grid, as
follows:

1. We’ll get started as usual with our basic HTML file and associated files and folders,
just like we did in Chapter 1, Designer, Meet jQuery. We’ll fill the <body> element of
our HTML document with the HTML markup for a large table of data. The
DataTables plugin requires us to be careful and correct with our table markup,
otherwise the DataTables features may not work as expected. We’ll need to ensure
that we use a <thead> element for the table’s header, and a <tbody> element for the
table’s body. A <tfoot> element for the table’s footer is optional. The following code
is an abbreviated sample of the HTML markup for a table of the all-time best-selling
books:

<table id="book-grid">
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>0Original Language</th>
<th>First Published</th>
<th>Approximate Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Tale of Two Cities</td>
<td>Charles Dickens</td>
<td>English</td>
<td>1859</td>
<td>200 million</td>
</tr>
<tr>
<td>The Lord of the Rings</td>
<td>J. R. R. Tolkien</td>
<td>English</td>
<td>1955</td>
<td>150 million</td>
</tr>
</tbody>
</table>

In the sample code for the book, you’ll find that the table contains a total of 127
books, each marked up just as these are. Note that we’ve added an id value (book-
grid) to the table element, we have used the <th> elements for the heading of each
column, and we’ve enclosed these elements in a <thead> element. We’ve also used a
<tbody> element to wrap all the rows in the table’s body.

. Next, we’ll download the DataTables plugin. Head over to http://datatables.net,
where you’ll find the plugin’s downloads, documentation, and examples. Click on the
Download link in the menu to go to the download page. Then, click on the
Download DataTables button to download a ZIP file.

. Unzip the file and take a look inside the folder. There’s a folder of examples with
several different examples of the DataTables plugin in action. There’s folder that
provides extra functionality for advanced data tables—we won’t be using any of
those here. There’s a media folder that contains images, css, and js resources. Next,
a Readme . md file contains information on the plugin’s creator, information for where
to find the documentation, and so on. Finally, you’ll find the license for the plugin
and a few other files we’ve seen before and can safely ignore for now.

. We’re going to be setting up a basic example, so we’ll just need a couple of things for
our own project. First, copy the contents of the images folder from the downloaded
folder to your own images folder. Open the css folder and copy
jquery.dataTables.min.css to your own styles folder. Finally, in the js folder,
find the minified version of the plugin, jgquery.dataTables.min. js, and copy it to
your own scripts folder.

. Next, we’ll get all the necessary files attached to our HTML page that contains our
table. In the <head> section of the document, attach the CSS file before your own
styles.css file, as follows:

<link rel="stylesheet" href="styles/jquery.dataTables.min.css"/>
<link rel="stylesheet" href="styles/styles.css'"/>

. Inside styles.css, we have to add just one style for our table to make sure it fills the
available width, and to adjust the text color for the table contents. The style is as
shown in the following code:

table {
color: #333;
width: 100%;
}

. Next, at the bottom of the HTML document, attach the DataTables plugin in between
the jQuery file and your own scripts. js file, as shown in the following code:

<script src="scripts/jquery.js"></script>

<script src="scripts/jquery.dataTables.min.js"></script>
<script src="scripts/scripts.js"></script>

</body>

</html>

. Next, open your scripts. js file, and inside a document ready statement, select the
table and call the dataTable() method, as follows:

$(document).ready(function(){
$('#book-grid').dataTable();

1),

Now, if you refresh the page in the browser, you’ll see that your table has been
transformed into a data grid. You can select the number of items to view at one time,

http://datatables.net

type into the search box to find specific table entries, and use the pagination controls
at the bottom-right corner of the table to page through the data table’s rows.

MR /#% (Dream of the Red Chamber)
FEM (Wolf Totem)

thiEs o R E AR gprublems in
China's Socialist Econamy

FA4 (i¢iFE) 048 (Confucius from the Heart)

Osudy dobrého vojika Svejka za svétové
valky (The Good Soldier Svejk)

Het Achterhuis {The Diary of a Young Girl,
The Diary of Anne Frank)

And Then There Were None
The Joy of Sex
The Lovely Bones

Black Beauty: His Grooms and Companions:
The autobiography of a horse

Cao Xuegin
Jiang Rong

Xue Mugiao

Yu Dan

Jaroslav Hasek
Anne Frank

Agatha Christie
Alex Comfort
Alice Sebold

Anna Sewell

Chinese
Chinese

Chinese

Chinese

Czech
Dutch

English
English
English
English

100 million
20 million

10 million

10 million

20 million

30 million

100 million
10 million
10 million

50 million

What just happened?

We set up a basic HTML table and turned it into an interactive data grid by attaching a
CSS file and the DataTables plugin. We selected the table and called the dataTable()
method to activate the DataTables plugin.

That was pretty easy, wasn’t it? Of course, chances are that this lavender design doesn’t fit
the design of your site, so let’s take a look at how we can customize the appearance of the

data table.

A customized data grid

The DataTables plugin is the first plugin we’ve used that has support for the jQuery Ul
ThemeRoller plugin. jQuery Ul is a collection of widgets and interactions that make
building complex applications easier and faster. Learning jQuery Ul itself is beyond the
scope of this book, but we’ll take a look at how to use the jQuery UI ThemeRoller to
create a custom theme for our data table. This same theme would apply to any jQuery UI
widgets used on our page, as well as any jQuery plugins being used that include support
for the jQuery UI ThemeRoller.

Time for action — customizing the data
grid
We’ll pick up right from where we left off with our data table. If you’d like to save your

basic data grid example, just save a copy of the files we created. Then, perform the
following steps to customize the appearance of your data grid:

1. Head over to http://jqueryui.com/themeroller where we’ll take a look at the
ThemeRoller plugin. Take a look at the following screenshot to see the page. In the
left-hand side column, you’ll find the controls for selecting a predefined theme or
creating a custom theme, and the right-hand side wide column contains samples of
several different types of widgets.

ThemeRoller

Accordion Button

ThemeRoller =y

= Section 1 A button element

a Choice 1 Choice 2 Choice 3

Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam. Integer ut neque.

Vivamus nisi metus, molestie vel, gravida in, condimentum sit amet, nunc. Nam

a nibh. Denec suscipit eros. Nam mi. Proin viverra leo ut edie. Curabitur Autocomplete
malesuada. Vestibulum a velit eu ante scelerisque vulputate.

n Spinner
Don
Slider
Tabs
Fir econd I
Datepicker
strud 1] March 2014 [+]

Reverse page background color

Su Mo Tu We Th Fr Sa

Dialog

2. Click on the Gallery tab in the left-hand side column, and you’ll see that you have
dozens of choices of prebuilt ThemeRoller themes to choose from. As you click on
different samples, you’ll see the sample widgets in the right-hand side column update
to reflect that style. I usually like to get started by selecting a prebuilt theme that’s
reasonably close to the color scheme or appearance that I want, and then I flip to the
Roll Your Own tab to tweak it to suit my needs. For this example, I’'m going to start
with the Cupertino style.

After flipping to the Roll Your Own tab, you’ll see that there are settings for fonts,
colors, corners, headers, and so on. Make the adjustments you’d like in order to get
the theme to look just the way you’d like. Feel free to play and experiment. If you go
too far and get to something you don’t like, it’s easy to flip back to the Gallery tab

http://jqueryui.com/themeroller

and select the prebuilt theme again, stripped of any of your customizations, and then
start again.

Tip
Any of your customizations will be lost if you reselect a prebuilt theme. Once you get
something you like, be sure to move on to step 3 to save it.

. Once you’ve got your theme set up just the way you’d like, click on the Download
theme button.

You’ll find yourself on the Download Builder page, which might seem a little
confusing. See, jQuery Ul is so large and has so many different features to offer that
the developers realize that forcing everyone to download the entire thing would be
overkill. If you only wanted to use one widget, there’d be no need to download all the
other widgets and effects. This page lets you pick and choose different components of
jQuery UI so that you don’t have to download more than you need.

In the Version section, go ahead and leave the version set to the default. Since we’re
just getting a theme, we’ll just use the latest stable version.

Uncheck the Toggle All checkbox in the Components section. We won’t need to
download any of these components because we just want a theme.

Then, we’ll leave the Theme settings at the bottom of the page at their defaults and
click on the Download button to download a ZIP file.

. Unzip the file and take a look inside. You’ll see that even though we got the simplest
download we could, we still have quite a few files shown in the following screenshot:

MName

F [] external
» [images

= index.html
jquery-ui.css
jquery-ui.js
jquery-ui.min.css
jquery-ui.min.js
jquery-ui.structure.css
jquery-ui.structure.min.css
jquery-ui.theme.css
Jjquery-ui.theme.min.css

[

We’ve got an external folder that contains the jQuery library, an images folder that
contains the images we’ll need, and then several . js and .css files.

The only items we need are the images folder and the CSS for the theme you
selected, which is contained in a file named jquery-ui.theme.min.css. Copy the
CSS file to your styles folder and copy the images folder to your own styles
folder. This is important—please be sure to nest the jQuery Ul images folder inside

your own styles folder.

. Next, we’ll attach our theme’s CSS file to our HTML file. Inside the <head> section,
attach your theme’s CSS file before the jquery.dataTables.min.css file we
attached in the example of basic data grid, as follows:

<link rel="stylesheet" href="styles/jquery.dataTables_themeroller.css">
<link rel="stylesheet" href="styles/jquery.dataTables.min.css">

. Now, unfortunately, our theme’s CSS file doesn’t quite have all the styles we’ll need
for a nicely-styled data grid. After all, the jQuery UI developers have no way of
knowing all the different types of widgets and plugins people will want to use, so
there’s no possible way they could cover every single case. Luckily, the DataTables
plugin author, Allan Jardine, has already done some nice work for us in this area and
has provided a CSS file with the styles we’ll need to get our themed data grid to look
its best.

You can read up on styling the DataTables plugin in the documentation that Allan
Jardine has made available at http://datatables.net/styling/.

Back inside the DataTables plugin files, look inside the css folder that is inside the
media folder to find the jquery.dataTables_themeroller.css file. Copy it to your
own styles folder and update your <link> tag to link to point to this new CSS file
instead of jquery.dataTables.min.css, as follows:

<link rel="stylesheet" href="styles/jquery-ui.theme.min.css">
<link rel="stylesheet" href="styles/jquery.dataTables_themeroller.css">

. Now, we just have to make a small update to our JavaScript code. We have to tell the
dataTable() method that we want to use jQuery UI. Head back into your
scripts.js file and we’ll add a pair of curly brackets and pass a key/value pair to
enable jQuery UI styling for our data table, as follows:

$(document).ready(function(){
$('#book-grid').dataTable({
'jQueryUI': true
37
3);

If you refresh the page in the browser now, you’ll see that the data grid is now using a
style that’s consistent with the widgets we saw on the jQuery UI ThemeRoller page.
Take a look at the following screenshot:

http://datatables.net/styling/

8.

10.

Show | 10 : | entries

Title

A Brief History of Time

A Message to Garcia

A Tale of Two Cities

A Wrinkle in Time

And Then There Were None
Angels & Demons

Anne of Green Gables

Author(s)

Stephen Hawking
Elbert Hubbard
Charles Dickens
Madeleine L'Engle
Agatha Christie
Dan Brown

Lucy Maud

Original ..
Language

English
English
English
English
English
English

Search:

First

Published *

1988
1899
1859
1962
1939
2000
1908

Approximate .
Sales

10 million
40 million
200 million
10 millian
100 million
39 million
50 million

English
Montgomery
1877 50 million

Black Beauty: His Grooms and Companions: Anna Sewell

The autobiography of a horse
Catch-22

English

1961
1964

Joseph Heller 10 million

Roald Dahl

English

13 million

Charlie and the Chocolate Factory

English

Showing 1 to 10 of 127 entries 2 3 4 5 ..13 HNext

Let’s make some adjustments to Open styles.css and add some styles to add zebra-
striping to the table as follows:

tr.odd td {
background-color: #f5fbfo;

}

tr.even td {
background-color: white;

}

I’m going with a pale green for odd rows and white for even rows to match the
customized Cupertino style I selected earlier. Feel free to choose colors that match
your own chosen theme.

Next, we’ll change the color scheme for the currently sorted row. Add a style for this
to styles.css. I’m going to change mine to a medium green, as follows:

tr.odd td.sorting_1 {
background-color: #d4ebbc;
}

Finally, we can add the CSS code for the sorted even row in styles.css. I’m going
to change this to a light green, as follows:

tr.even td.sorting_1 {
background-color: #e5f3d6;

}

You can select your own colors that coordinate with your own chosen theme.

Now, if you refresh the page in the browser, you’ll see that the zebra-striping pattern
of the table fits with our ThemeRoller theme, as shown in the following screenshot:

11. Our table could use a bit of help style-wise, so let’s add a few more of our own
custom styles to styles.css to get things to look a bit nicer, as shown in the

Show [10 : | entries Search:

Title Author(s) Original . First . Approximate .

Language ~ Published ~ Sales -
A Brief History of Time Stephen Hawking English 1984 10 million
A Message to Garcia Elbert Hubbard English 1899 40 million
A Tale of Two Cities Charles Dickens English 1859 200 million
A Wrinkle in Time Madeleine L'Engle English 1862 10 million
And Then There Were None Agatha Christie English 1939 100 million
Angels & Demons Dan Brown English 2000 39 million
Anne of Green Gables Lucy Maud English 1808 50 million
Montgomery

Black Beauty: His Grooms and Companions: Anna Sewell English 1877 50 million
The autobiography of a horse
Catch-22 Joseph Heller English 1961 10 million
Charlie and the Chocolate Factory Roald Dahl English 1964 13 million
Showing 1 to 10 of 127 entries 2 3 4 5..13 Naxt

following code:

th {
cursor: pointer;
vertical-align: middle;
3
th, td {
padding: 0.5em;
3
td {
border-bottom: 1px solid #c3e3a2;
3

These styles help to add a bit of space inside the table cells, a subtle border between
rows, and help to fix the alignment of the table headers. The result is a much more
readable table. Have a look at the following screenshot:

12.

13.

Show | 10 : | entries Search:

Original . First . Approximate .
Language ™ Published Sales

Titlae Author(s) G
A Brief History of Time Stephen Hawking English 1988 10 million
A Message to Garcia Elbert Hubbard English 1899 40 million
A Tale of Two Cities Charles Dickens English 1859 200 million
A Wrinkle in Time Madeleine L'Engle English 1962 10 million
And Then There Were None Agatha Christie English 1839 100 million
Angels & Demons Dan Brown English 2000 39 million

Anne of Green Gables Lucy Maud English 1908 50 million
Montgomery

Black Beauty: His Grooms and Companions: Anna Sewell English 1877 50 million
The autobiography of a horse

Catch-22 Joseph Heller English 1961 10 million

Charlie and the Chocolate Factory Rozld Dahl English 1 13 millicn

Showing 1 to 10 of 127 entries we 13 Maxt

We might decide that for this particular data table, the search function doesn’t make
sense. The DataTables plugin offers a way for us to disable individual features. To
disable the search box filtering, we’ll pass another key/value pair, as follows:

$(document) .ready(function(){
$('#book-grid').dataTable({
"jQueryUI': true,
'searching': false
3);
3);

Refresh the page in the browser and you’ll see that the search box has disappeared, as
shown in the following screenshot:

Show | 10 : | entries

P N e » | Original . First . Approximate,
Title Author(s) * | Language =~ Published ™ Sales i
A Brief History of Time Stephen Hawking English 1988 10 million

You’ve probably noticed that by default, DataTables is sorting our table by the first
column in the ascending order, from A to Z. This might be fine in some cases, but in
this case, since we’re listing the all-time bestselling books, we probably want to sort
the table to show the books with the highest sales first. We’ll pass in a new key/value
pair to specify which column should be used for the default sort and which direction
the sort should go, as follows:

$(document).ready(function(){
$('#book-grid').dataTable({
'jQueryUI': true,
'searching': false,
'order': [[4, 'desc']]
1)

1),

The key we’re using is called order, and the value is the column number and sort
direction inside two sets of square brackets. Don’t forget that JavaScript starts
counting at zero, not one. So the fifth column in our table is actually column 4. Then,
we want the highest number at the top, so we pass desc for the descending order.

Refresh the page in the browser and you’ll see that the books are now in order from
the highest sales to lowest sales. Also, note that this default sort order doesn’t affect
your site visitor’s ability to sort the table by any of the other columns in any order
they’d like. The site visitor can still interact with your table. We’re just redefining the
default view in a way that makes the most sense for the data we’re presenting.

What just happened?

We took our basic data grid and took it a step further by customizing the appearance and
behavior of the plugin. We learned how to use the jQuery UI ThemeRoller to create a
custom theme for our data grid. Then, we learned how to disable searching the table and

how to set a default sort for the data grid.

Pop quiz — building correct tables

Q1. What is the correct order of elements in a table?

1. thead, tbody, tfoot.
2. tbody, thead, tfoot.
3. thead, tfoot, tbody.
4. tfoot, thead, thody.

Showing graphs and charts

In some cases, a table is the ideal way of presenting a set of data. At other times, it would
be more helpful to see that data visualized as a chart or a graph. Unfortunately, charts and
graphs can be challenging to present in HTML. Without the help of JavaScript, we are
stuck using static images to present graphs, which can then be difficult to update when the
data changes.

This is when jQuery comes to the rescue. In this section, we’ll take a look at using the
Visualize plugin to turn tables of data into graphs and charts. The best part is that site
visitors without JavaScript enabled will still have access to the data in the form of an
HTML table, so nobody misses out on what we’re trying to share. The data also remains
accessible for those who visit our page and who might have visual impairment or other
disabilities that would prevent them from consuming the data if it were presented in a
static image.

Time for action — showing data in graphs
and charts

Perform the following steps to create graphs and charts from HTML tables:

1. We’ll get started as usual with our basic HTML file and associated files and folders,
just like we did in Chapter 1, Designer, Meet jQuery. Inside the <body> element of
the HTML document, we’ll include a heading and a table with some numerical data,
as follows:

<div class="content">
<h1>A Mad Tea-Party</h1>
</div>

<table id="menu'">
<caption>Menu Items</caption>
<thead>
<tr>
<td>Title</td>
<th scope="col">Total Items</th>
</tr>
</thead>
<tbody>
<tr>
<th scope="row">Scones</th>
<td>23</td>
</tr>
<tr>
<th scope="row'">Tea Sandwiches</th>
<td>18</td>
</tr>
<tr>
<th scope="row'">Pastries</th>
<td>19</td>
</tr>
<tr>
<th scope="row'">Tea</th>
<td>28</td>
</tr>
</tbody>
</table>

Note that just as with the data table example, we’re careful to use the correct markup
for our table, wrapping the header row in a <thead> element, and the body of the
table in a <tbody> element. Additionally, we’ve included the scope attribute on all
the <th> elements to specify whether they apply to the column or the row in which
they are placed. Notice also that we included an id attribute for the table to make it
easy to select with jQuery later.

2. Next, we’ll include some CSS to style the table. Open your styles.css file and add

the following lines of code:

table {
border-collapse: collapse;
margin: 2.531em 0;

}

td, th {
background: white;
border: 1px solid #ddd;
color: #444;
padding: 0.5em lem;
text-align: left;

}

thead th, thead td {
background-color: #ald36e;
border-color: #8dc059;

}
caption {
margin: @ © 0.5em 0O;
}
caption {
font-size: 1.5em;
3

Feel free to adjust these styles to suit your own tastes. Now, if we view the page in a
browser, we see a nicely styled table, as shown in the following screenshot:

A Mad Tea-Party

Menu ltems

Title Total ltems

Scones 23
Tea Sandwiches 18
Pastries 19

Tea 28

This table effectively communicates our data, and is accessible to anyone who might
visit the page, no matter what their abilities or the capabilities of their device and
browser are. However, we can progressively enhance the experience.

. The files for the jQuery Visualize plugin itself are available on GitHub at
https://github.com/filamentgroup/jQuery-Visualize. Click on the Download ZIP
button to grab a copy of the files.

Tip
While the Visualize plugin and the examples are available for download at GitHub,
the documentation for the plugin can be found on the Filament Group’s website at

http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_htn

. Unzip the downloaded file. Inside, you’ll find some example files, images, CSS, and
the necessary JavaScript files.

Inside the js folder, find the visualize.jQuery.js file and copy and paste it to your
own scripts folder. Inside the css folder, find the visualize.css file and copy that
to your own styles folder. In addition to this CSS file, which includes the basic
styles needed to display the charts and graphs, you’ll also need to choose one of the
color scheme files. Visualize comes with both a dark and light color scheme. We’ll go
with the light color scheme for this example, so also copy visualize-light.css to
your own styles folder.

. In your index.html file, attach the visualize.jQuery. js file at the bottom after
jQuery but before your own scripts. js file, as follows:

<script src="scripts/jquery.js"></script>

<script src="scripts/visualize.jQuery.js"></script>
<script src="scripts/scripts.js"></script>

</body>

</html>

In the <head> section of the document, attach the visualize.css file as well as our
color scheme styles, before your own styles.css file, as shown in the following
code:

<title>Chapter 10: Charts and Graphs</title>
<link rel="stylesheet" href="styles/visualize.css">
<link rel="stylesheet" href="styles/visualize-light.css">
<link rel="stylesheet" href="styles/styles.css'">
</head>

. Next, open your scripts. js file so we can write some JavaScript. Get started by
adding the document ready statement, as follows:

$(document).ready(function(){
// Our code will go here

1),

. Select the table element that contains our data, and call the visualize() method:

$(document).ready(function(){
$('#menu').visualize();

1),

Refresh the page in the browser, and you’ll see that a graph has been inserted after

https://github.com/filamentgroup/jQuery-Visualize
http://filamentgroup.com/lab/update_to_jquery_visualize_accessible_charts_with_html5_from_designing_with/

the table in the document, as shown in the following screenshot:

A Mad Tea-Party

Menu lkems

Title Total Items
Scones 23

Tea Sandwiches 18
Pastries 12

Tea 28

Menu Items

28
24

Total ltems

B Scones m Tea Sandwiches Pastries = Tea

The <caption> tag for the table is repurposed as the title of the graph. The text we
included in the table’s <th> elements are used as labels for the data in the graph.

The chart works and accurately represents our data, but it doesn’t fit our design very
well. Let’s take a look at how we can customize the appearance of the chart.

. Just like several other jQuery plugins we’ve used so far, the Visualize plugin includes
several options we can use to customize the charts and graphs it creates. First up, we
can specify a set width and height for the graph:

$('#menu').visualize({
width: '460px’,
height: '205px'

3);

. Next, we can specify what colors should be used for each of the bars in our chart with
the colors option. The colors option accepts an array of colors. Remember that an

10.

11.

array is just a collection. Specifying an array of colors looks like this:

$('#menu').visualize({

width: '460px"',

height: '205px’,

colors: ['#e75845', '#967dd9', '#8dc059', '#42b0d8"]
3);

We’ll wrap the array, or collection of colors, in square brackets [. ..]. Each color
value is wrapped in quotes and a comma separates each color value.

We can also specify the amount of space between each bar in the chart with the
barMargin option. Let’s add some extra white space around each bar in the chart, as
follows:

$('#menu').visualize({
width: '460px"',
height: '205px’,
colors: ['#e75845', '#967dd9', '#8dc059', '#42b0d8"'],
barMargin: 20

1),

Now, refresh the page in the browser and you’ll see our customizations take effect, as
shown in the following screenshot:

Menu Items

Total ltems

® Scones ®m Tea Sandwiches : Pastries = Tea

We can customize our graph even further by modifying the CSS code. In the <head>
section of index.html, remove the visualize-light.css file, as follows:

<title>Chapter 10: Charts and Graphs</title>

<link rel="stylesheet" href="styles/visualize.css">

<link rel="stylesheet" href="styles/styles.css'">
</head>

Rather than using the style as provided to us with the plugin, we’ll write our own
CSS file. This is often an option with jQuery plugins. Just use the provided CSS file
as a guide for creating your own.

12.

13.

14.

Open your styles.css file. We’ll get started with some general styles for the graph
container. Add the following styles:

.visualize {
margin: 3.797em 0;
padding: 3.797em 2.531em 5.695em;
background: white;
-moz-border-radius: 3px;
-webkit-border-radius: 3px;
border-radius: 3px;

}

.visualize canvas {
border: 1px solid #aaa;
margin: -1px;
background: #fff;

}

Next up, we’ll add some custom styles for the labels that appear on the graph, as
follows:

.visualize-labels-Xx,
.visualize-labels-y {
font-size: 0.75em;

left: 30px;
top: 70px;
z-index: 100;

}

.visualize-pie .visualize-labels {
left: 40px;
position: absolute;
top: 70px;

}

.visualize-labels-x 1li span.label,
.visualize-labels-y 1i span.label {
color: #444,
padding-right: 5px;
}

Now, we’ll add some styles for the lines, graph information, and the graph title, as
follows:

.visualize-labels-y 1li span.line {
border-style: solid;
opacity: .7;

b

.visualize .visualize-info {
background: none;
border: 0;
opacity: 1;
position: static;

}

.visualize .visualize-title {
color: #333;
font-size: 1.688em;
font-weight: bold;
left: 20px;
margin-bottom: 0O;
position: absolute;
right: 20px;
text-align: center;
top: 20px;

}

15. Finally, we’ll add some styles for the key:

.visualize ul.visualize-key {
background: #efefef;
bottom: l1em;
color: #aaa;
left: 0;
padding: 0.75em;
position: absolute;
right: 0;
z-index: 10;

}

.visualize ul.visualize-key 1i {
float: left;

}

.visualize ul.visualize-key .visualize-key-color {
display: inline-block;
height: 1em;
margin: 0 0.25em 0 0;
position: static;
vertical-align: baseline;
width: 1em;

}

.visualize ul.visualize-key .visualize-key-label {
color: #333;

}

Now, refresh the page in the browser, and you’ll see that our graph is completely
customized and matches the design of our page perfectly. Have a look at the
following screenshot:

Menu ltems

Tatal leems

B scones M Tea Sandwiches M Pastries M Tea

What just happened?

We used the jQuery Visualize plugin to take data in an HTML table and present it as a
graph on the page. The <caption> tag for the table is repurposed as the title of the graph,
and the table headings that we included in the table’s <th> elements repurposed for the
labels of the data points in the graph. We saw how we could customize various options in
the graph and how we could further customize the graph by writing our own CSS code to
style the assorted components of the graph. Now, let’s take a look at how we can do even
more with the charts and graphs generated by the Visualize plugin.

Creating pie charts

We’ve already taken a look at some of the options available to us with the jQuery
Visualize plugin, but there’s even more we can do. In this section, we’ll take a look at how

we can use the plugin to create pie charts.

Time for action — creating a pie chart

We’ll keep working with the files we set up in the previous section. Perform the following
steps to create a pie chart with the Visualize plugin:

1. Inside the HTML file, add a second HTML table that contains some data, as shown in
the following code:

<table id="eaten">
<caption>Who had what?</caption>
<thead>
<tr>
<td> </td>
<th scope="col">Scones</th>
<th scope="col">Tea Sandwiches</th>
<th scope="col">Pastries</th>
<th scope="col">Tea</th>
</tr>
</thead>
<tbody>
<tr>
<th scope="row">Alice</th>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<th scope="row">Mad Hatter</th>
<td>0</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<th scope="row">Dormouse</th>
<td>1</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<th scope="row">March Hare</th>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Just like last time, we’ve been careful to use appropriate table markup, and have
included <thead>, <tbody>, and <th> elements where appropriate. This time, our
dataset is a bit more complex, including multiple columns as well as rows of data.

Refresh the page in the browser to view the new table, as shown in the following
screenshot:

Who had what?

Tea Sandwiches Pastries

Alice 1
Mad Hatter 0
Dormouse 1

March Hare 2

2. Next, open your scripts.js file. Inside the document ready statement, select the
new table and call the visualize() method, as follows:

$(document).ready(function(){
$('"#menu').visualize({

i

$('#eaten').visualize();

1)

3. Now, we’ll pass some options to the new chart, as shown in the following code. First
up, let’s specify that we want to work with a pie chart this time, rather than a bar
graph.

$('#eaten').visualize({
type: 'pie'
1);
The Visualize plugin includes four options for graph and chart types: bar, pie, line,
and area.

4. We’ll set a width and height for the pie chart, and include a set of colors to be used
for the segments of the pie, as follows:

$('#eaten').visualize({

type: 'pie',

width: '460px',

height: '205px"',

colors: ['#e75845', '#967dd9', '#8dc059', '#42b0d8"']
3);

Refresh the page in the browser, and you’ll see our pie chart displayed after the
second table, as shown in the following screenshot:

Who had what?
Tea Sandwiches Pastries
Alice | 1 | 2 | |
Mad Hatter O

6
Dormouse 1 6
3

March Hare 2

Who had what?

20%

M Alice M Mad Hatter ™ Dormouse M March Hare

5. However, what if we don’t want to display both the table and the chart? If our site
visitor has JavaScript enabled, then we want to hide the table and display just the
chart. Site visitors without JavaScript enabled will just see the table. The following
code shows how we can do that:

$('#eaten').addClass('accessHide').visualize({
type: 'pie',
width: '460px',
height: '205px"',
colors: ['#e75845', '#967dd9', '#8dc059', '#42b0d8"']
3);

We just add another method to our chain. The CSS file included with the Visualize
plugin includes a CSS class called accessHide, which positions our table off the
screen. The data included in the table is still accessible to screen readers, but won’t
be seen within the page. Refresh the page in the browser and you’ll see that the table
is no longer visible—we just see the pie chart, as shown in the following screenshot:

Who had what?

M Alice M Mad Hatter ™ Dormouse M March Hare

6. Our pie chart looks nice, but it’s a wee bit on the small side. Let’s decrease the white
space around the pie chart. We can do that using the pieMargin option, as shown in
the following code:

$('#eaten').addClass('accessHide').visualize({
type: 'pie',
width: '460px"',
height: '205px"',
colors: ['#e75845', '#967dd9', '#8dc059', '#42b0d8'],
pieMargin: 10
1);

Now, refresh the page in the browser and you’ll see that the white space around the
pie chart is reduced. Take a look at the following screenshot:

Who had what?

M Alice M Mad Hatter Dormouse ™ March Hare

This helps our pie chart to appear a tad bigger. The default setting is 20 pixels, so
we’ve cut that in half by setting it to 10.

. So far, we’ve only placed our chart either directly after or in place of our table.
However, we can also move the chart around the page, and display it wherever we
wish. Let’s add a few paragraphs of text beneath the HTML tables in the index.html
file:

<div class="content">
<p>
There was a table set out under a tree in front of the house, and
the March Hare and the Hatter were having tea at it: a Dormouse was
sitting between them, fast asleep, and the other two were using it as a
cushion, resting their elbows on it, and talking over 1its head.
‘Very uncomfortable for the Dormouse,’ thought Alice;
‘only, as it's asleep, I suppose it doesn't
mind.’
</p>
<p>
The table was a large one, but the three were all crowded together
at one corner of it: ‘No room! No room!’ they cried out
when they saw Alice coming. ‘There's PLENTY of room!’
said Alice indignantly, and she sat down in a large arm-chair at one
end of the table.</p>

</div>
. Somewhere inside the block of text, we’ll place a <div> element that will act as a

placeholder for our chart, as follows:

<div class="content">
<p>

10.

There was a..
</p>
<div id="pie-container" class='"chart left"></div>
<p>

The table was..</p>

</div>
We’d like to display our pie chart inside this <div> element. If the <div> element has

no content, then it collapses to zero width and zero height, taking up no space in our
HTML document.

Next, open your styles.css file and add some styles for the newly created <div>
element, as follows:

.chart.left {
float: left;
margin: @ lem 0.5em O;

}

.Chart.right {
float: right;
margin: 0@ O 0.5em lem;

}

Now, inside the scripts. js file, we’ll use jQuery’s appendTo() method to move the
newly generated pie chart to the <div> element we just created, as shown in the
following code. After moving the chart, we do have to trigger a refresh.

$('#eaten').addClass('accessHide').visualize({
type: 'pie',
width: '460px',
height: '205px"',
colors: ['#e75845', '#967dd9', '#8dc059', '#42b0d8'],
pieMargin: 10
}) .appendTo('#pie-container').trigger('visualizeRefresh');
We’ve selected the id attribute of the <div> element to move our chart there. Then,
we used the trigger () method and passed it visualRefresh to ensure that our chart

displays correctly.

Refresh the page in the browser, and you’ll see that rather than appearing at the top of
the document, the pie chart is now displayed inside our text block, as shown in the
following screenshot:

11.

12.

There was a table set out under a tree in front of the house, and the March Hare and the Hatter were having tea at it: a
Dormouse was sitting between them, fast asleep, and the other two were using it as a cushion, resting their elbows on it,
and talking over its head. ‘Very uncomfortable for the Dormouse,” thought Alice; ‘only, as it's asleep, | suppose it
doesn't mind.'

The table was a large one, but the three were
all crowded together at one comer of it: ‘No
room! Mo room!' they cried out when they saw
i ing. ; I" said
2 Alice coming. ‘There's PLENTY of room!' sai
Whﬂ had What ' Alice indignantly, and she sat down in in a large
arm-chair at one end of the table.

‘Have some wine,’ the March Hare said in an
encouraging tone.

Alice looked all round the table, but there was
nothing on it but tea. ‘I don't see any wine,’ she
remarked.

WAlice M Mad Hatter Dormouse ‘There isn't any,’ said the March Hare.
B March Hare

"Then it wasn't very civil of you to offer it,' said
Alice angrily.

"It wasn't very civil of you to sit down without
being invited,’ said the March Hare.

‘| didn't know it was YOUR table,’ said Alice; ‘it's laid for a great many more than three.’

“Your hair wants cutting,’ said the Hatter. He had been looking at Alice for some time with great curiosity, and this was
his first speech.

We’re getting closer, but our pie chart needs a bit of style adjustment. Now that we’re
trying to include it inside a text area, the large margins we specified above and below
the chart don’t work. Also, the style of the key and labels seems a bit off.

Open up styles.css. First, we’ll add a bit of CSS to remove those large top and
bottom margins if the pie chart appears inside a block of text:

.chart .visualize {

margin: O;
¥
The misalignment of the pie chart’s labels and key are because of some styles set for
our text block that are interfering with the styles set for the pie chart. Just add a bit of
CSS code to override those, as shown in the following code snippet:

.chart .visualize ul {
margin: O;
¥
Now, if you refresh the page in the browser, you’ll see that the pie chart is displayed
as expected, and is seamlessly integrated into our block of text:

There was a table set out under a tree in front of the house, and the March Hare and the Hatter were having tea at it: a
Dormouse was sitting between them, fast asleep, and the other two were using it as a cushion, resting their elbows on it,
and talking over its head. ‘Very uncomfortable for the Dormouse,’ thought Alice; ‘only, as it's asleep, | suppose it

doesn't mind.’

Who had what?

M Alice M Mad Hatter | Dormouse

Alice angrily.

M March Hare

The table was a large one, but the three were
all crowded together at one comer of it: "No
room! Mo rooml’ they cried out when they saw
Alice coming. ‘There's PLENTY of room!’ said
Alice indignantly, and she sat down in in a large
arm-chair at one end of the table.

‘Have some wine,' the March Hare said in an
encouraging tone.

Alice looked all round the table, but there was
nothing on it but tea. ‘| don't see any wine,’ she
remarked.

‘There isn't any,’ said the March Hare.

‘Then it wasn't very civil of you to offer it,’ said

Using charts and graphs in responsive designs

We’ve learned how to create charts and graphs to represent tabular data, but if you’ve tried
resizing your browser window, you would have likely noticed that the size of the charts
and graphs remains fixed, making them less than ideal for use in responsive designs.
While we can’t make the charts and graphs completely fluid, we can detect the ideal width
and height based on our browser window’s width, and adjust accordingly.

Time for action — calculating the ideal size
for charts and graphs

We’ll keep working with the files we created in the previous section. Perform the
following steps to dynamically set the width and height of our charts and graphs according
to the width of the browser window:

1. Open your scripts. js file. We’ll want to add a few quick calculations. First up, let’s
set a preferred width for our graphs and charts, as follows:

$(document).ready(function(){
var preferredwWwidth = 450;

$('"#menu').visualize({

Y

$('#eaten').addClass('accessHide').visualize({
}) .appendTo('#pie-container').trigger('visualizeRefresh');

1)

We created a variable named preferredwidth. Recall that a variable is just a
container—in this case, the variable contains the size in pixels that we’d like our
charts and graphs to appear by default.

2. Next, we need to get the actual width of the available content area on our page. As
our CSS code is fluid, this will change depending on the width of the browser
window. The exact element you use to calculate this will change depending on what
your HTML markup looks like. In this case, we can use the width of the paragraphs
inside the text block, as shown in the following code:

$(document).ready(function(){
var preferredwidth = 450,
contentWidth = $('.content p:first').width() - 83;

$("#menu').visualize({

b

$('#eaten').addClass('accessHide').visualize({

}):éépendTo('#pie—container‘).trigger('visualizeRefresh');
1)
We’re selecting the first paragraph in the text block, and getting its width. Then,
because the graphs have a considerable amount of padding around them, we’re
subtracting 83 pixels from that width to allow for the padding.

3. Now that we’ve got both the preferredwidth variable and the actual content width,
it’s just a simple matter of comparing the two to calculate the correct width. Take a
look at the following code:

$(document) .ready(function(){
var preferredwidth = 450,
contentWidth = $('.content p:first').width() - 83,
finalwidth = (preferredWwidth > contentWidth) ? contentWidth :
preferredwidth;

$("#menu').visualize({

Y

$('#eaten').addClass('accessHide').visualize({

}) .appendTo('#pie-container').trigger('visualizeRefresh');
3);
We’ve seen this type of statement before. Recall that this is called a ternary
operator. First, we’re comparing our preferredwidth variable with our
contentwidth variable to see which is wider. If the preferredwidth variable is
wider, then we want to set the finalwidth variable equal to contentwWidth—as
preferredwidth is too wide for our page. Otherwise, we can use our
preferredwidth.

4. Next, we need to calculate the height of the charts and graphs. We’ll make it half the
width, as follows:

$(document).ready(function(){
var preferredwidth = 450,
contentWidth = $('.content p:first').width() - 83,
finalwidth = (preferredwidth > contentWidth) ? contentWidth
preferredwidth,
finalHeight = finalwidth/2 + 'px';

$('"#menu').visualize({

D

$('#eaten').addClass('accessHide').visualize({

}) .appendTo('#pie-container').trigger('visualizeRefresh');
1);
5. We just have to add the measurement to the end of the finalwidth variable, as
follows:

$(document).ready(function(){
var preferredwidth = 450,
contentWidth = $('.content p:first').width() - 83,
finalwidth = (preferredwidth > contentwWidth) ? contentWidth

preferredwidth,
finalHeight = finalwWidth/2 + 'px',
finalwidth += 'px';

$('#menu').visualize({

Y

$('#eaten').addClass('accessHide').visualize({

}) .appendTo('#pie-container').trigger('visualizeRefresh');

1),

Now that we’ve calculated the best possible value for the width and height of our
charts, we just have to insert those values as the width and height options inside
each visualize() method:

$('#menu').visualize({
width: finalwidth,
height: finalHeight,
colors: ['#e75845','#967dd9', '#8dc059', '#42b0d8'],
barMargin: 20

1)

$('#eaten').addClass('accessHide').visualize({
type: 'pie',
width: finalwidth,
height: finalHeight,
colors: ['#e75845', '#967dd9', '#8dc059', '#42b0d8'],
pieMargin: 10
}) .appendTo('#pie-container').trigger('visualizeRefresh');

If you refresh the page in the browser, you’ll see that the charts and graphs resize to
best fit in the available area, as shown in the following screenshot:

There was a table set out under a tree in front There was a table set out under a tree in front of the
of the house, anld the Marcfh Hare and the hﬂll-BE, and the March Hlan.a and the Hatter were having tea were having tea at it: a Dormouse was sitting between them, fast asleep, and the other two
H-at.ter were having tea at it: a Dormouse was &l e Boutau s s s'm."g l.Jetween th?m’ fost .asleep,. were using it as a cushion, resting their elbows on it, and talking over its head. ‘Very

sitting between them, fast asleep, and the and the other two were using it as a cushion, resting their uncomfortable for the Dormouse,’ thought Alice; ‘only, as it's asleep, | suppase it doesn't
other two were using it as a cushion, resting elbows oniit, and talking over its head. ‘Very mind.’

their elbows on it, and talking over its head. uncomfortable for the Dormouse,’ thought Alice; ‘only, as

‘Very uncomfortable for the Dormouse,’ it's asleep, | suppose it doesn't mind.’ The table was a large
thought Alice; ‘only, as it's asleep, | suppose it W h 0 h ad what? one, but the three were

doesn't mind.’ D i e e e
Who had what? — all cro ogether a
: room! No room!” they

Who had what? T Y 22065 cried out when they saw
4 . Alice coming. ‘There's

There was a table set out under a tree in front of the house, and the March Hare and the Hatter

one corner of it: ‘No

— PLENTY of room!” said
" % ¥ Alice indignantly, and
|\ 28.57% \28.57% ’ she sat downinina
y 3 . L large arm-chair at one
b] end of the table.

BAlice B Mad Hatter M alice M Mad Hatter Dormouse MAalice MMad Hatter | Dormouse

‘Have some wine,’ the
March Hare said in an
encouraging tone.

_ il -
Dormouse W March Hare MiMarch Hare I March Hare

The table was a large one, but the three were all crowded

e Ctmude o e together at one corner of it: ‘No room! No room!" they
roomi No rooml® they cried out when th-ey bt cried out when they saw Alice coming. ‘There's PLENTY of

Alice coming. ‘There's PLENTY of raom!” said room!’ said Alice indignantly, and she sat downinin a “There isn't any, said the March Hare.

The table was a large one, but the three were Alice looked all round the table, but there was nothing on it but tea. ‘l don't see any wine,’ she

remarked.

If you resize the browser window, you’ll have to refresh the page in order for the
charts and graphs to recalculate their sizes. It’s not quite as fluid as responsive

designs typically are, but it’s much nicer than just allowing the charts and graphs to
always appear the same size.

What just happened?

While we can’t make our charts and graphs as fluid as other elements on the page in a
responsive design, we can improve the experience a bit by calculating the best possible
size for the charts and graphs when the page is first loaded into the browser. We learned
how to compare our preferred width with the actual width available for displaying the
charts and graphs and set the correct value for both the width and height accordingly. It’s
not a perfect solution to displaying charts and graphs in a responsive design, but it’s a big
improvement over always displaying the charts and graphs at a single fixed size,
regardless of the window width.

Summary

In this chapter, we learned how to turn an ordinary HTML table into an interactive data
grid. Our site visitors can now take advantage of sorting different columns of the table to
view the data in different ways. Site visitors with JavaScript disabled simply see an
ordinary HTML table that contains all of the data. Data grids aren’t terribly exciting, but
they can make dealing with large amounts of data worlds easier for your site visitors. We
also took a look at how to display numerical tabular data in charts and graphs, adding
visual interest to our pages. Next up, we’ll take a look at using scrolling effects in our
pages, including parallax effects.

Chapter 11. Reacting to Scrolling

We can create some fun effects by reacting to our site visitors when they scroll up/down
through our pages. As they scroll down the page, we can create parallax effects, animate
various elements on the page, and trigger other changes on the page as well. This helps
our pages to feel dynamic and alive—we can turn the simple act of scrolling through a
page to read the content into an interactive one.

In this chapter, we will:

Set up an HTML document (page) divided into sections

Create a parallax effect in one of the sections on the page

Trigger an animation in one of the sections on the page

Add and activate navigation for the page that also reacts to scrolling

Setting up the document

The first step in creating a page with scrolling effects is to plan an HTML page divided
into clear sections. In this example, we’re going to set up a weather forecast—each day or
night will be one block with its own icon, text, and background.

Time for action — setting up the HTML
file

Perform the following steps to set up an HTML document that is ideal for adding the
scrolling effects:

1. We’ll get started as usual with our basic HTML file and associated files and folders,
just like we did in Chapter 1, Designer, Meet jQuery. Note that because we’re going
to be creating several full-width sections, the CSS file for this chapter is slightly
modified from the starting CSS file we used in the previous chapters. You’ll find the
correct version of the CSS file in the code samples for the book.

Inside the HTML document, we’ll create a series of the <section> elements, each of
which will contain the day or night, an icon, and a short weather forecast. To do this,
take a look at the following code:

<section class="scrollblock" id="monday">

<div class="day">Monday</div>

<div class="forecast">72° Sunny</div>

<div class="icon'"><img src="images/Sun.svg" alt="Sunny" width="300"
height="300"></div>
</section>

<section class="scrollblock" id="moneve">

<div class="day'">Monday evening</div>

<div class="forecast">62° Clear</div>

<div class="icon'"><img src="images/Moon.svg" alt="Clear" width="300"
height="300"></div>
</section>

<section class="scrollblock" id="tueday">

<div class="day'">Tuesday</div>

<div class="forecast">67° Cloudy</div>

<div class="icon'"><img src="images/Cloud.svg" alt="Cloudy"
width="300" height="300"></div>
</section>

<section class="scrollblock" id="tueeve'>

<div class="day'">Tuesday evening</div>

<div class="forecast">58° Rainy</div>

<div class="icon'"><img src="images/Cloud-Drizzle-Moon.svg" alt="Rainy
Night" width="300" height="300"></div>
</section>

<section class="scrollblock" id="wedday">

<div class="day">Wednesday</div>

<div class="forecast">69° Windy</div>

<div class="icon" id="wind"><img src="images/Cloud-Wind.svg"
alt="Cloudy Windy" width="300" height="300"></div>
</section>

<section class="scrollblock" id="wedeve">

<div class="day'">Wednesday evening</div>

<div class="forecast">57° Clearing</div>

<div class="icon"><img src="images/Cloud-Fog-Moon.svg" alt="Clearing"
width="300" height="300"></div>
</section>

Note that every <section> element has the class scrollblock, but every element
also has a unique id attribute, which will help us to target just the block with either
JavaScript or CSS.

The code samples provided with the book use the excellent Climacons from Adam
Whitcroft, which are available for download at http://adamwhitcroft.com/climacons/.
I’m using the .svg format in this tutorial—if your browser doesn’t yet support SVG
images, you’ll need to use the source files provided by Adam Whitcroft to create
.png files.

. Next, we’ll add some styles. Open your styles.css file and get started by adding
some general styles for the page and for each of our forecast blocks, as follows:

html, body {
height: 100%;
}

.scrollblock {
left: 0;
min-height: 28.833em;
position: relative;
right: 0;

}

.day {
font-size: 2.25em;

left: dem;
position: absolute;
top: 1em;

}

.forecast {
bottom: 1em;
font-size: 2.25em;
position: absolute;
right: lem;

}

.icon {
left: 50%;
position: absolute;
top: 50%;

}

.icon img {
margin: -50% 0 0 -50%;
}
These styles set up a minimum height for each block, then position the day, icon, and
forecast within each block. If you look at our page in the browser, you’ll see that the

http://adamwhitcroft.com/climacons/

elements are in place, as shown in the following screenshot:

72° Sunny

The page is shaping up, but we don’t have any visual divide between the different
sections on the page. Let’s take care of that in the next steps.

. In styles.css, let’s add a different background color to each section of the forecast,
as follows:

#monday {

background: #7ecOee;
}
#moneve {

background: #003366;
3
#tueday {

background: #999;
¥
#tueeve {

background: #333;
b
#wedday {

background: #6a93b1l;
b
#wedeve {

background: #003366;
3

Now, it’s easier to see the separation between the blocks as you scroll down through
the page.

. In addition to the background colors, let’s also add background images to some of the
blocks, as follows:

#moneve {
background: #003366 url(../images/starrysky.jpg) 50% 50% / cover
fixed no-repeat;

}

#tueday {
background: #999 url(../images/cloudysky.jpg) 50% 50% / cover fixed
no-repeat,;

}

#wedeve {

background: #003366 url(../images/sunset.jpg) 50% 50% / cover fixed
no-repeat;
}
We’re using the shorthand for backgrounds here. Recall that writing out all the
background values on one line is just a shorthand way of writing them out
individually, as shown in the following code snippet:

#moneve {
background-color: #003366;
background-image: url(../images/starrysky.jpg);
background-position: 50% 50%;
background-size: cover;
background-attachment: fixed;
background-repeat: no-repeat;

}

There is one new property that you might not recognize: background-size. This is a
newly-provided background property introduced by CSS3. We can specify either a

fixed size for our background image, such as 160px, or we can use cover to indicate
that the background image should cover the entire area. You can read up on the new

background-size property at CSS3.info (http://www.css3.info/preview/background-
size/).

If you refresh the page in the browser, you’ll see that every section is nicely separated
from the others by its background color or image, and the images have a nice effect
as we scroll down the page—thanks to the combination of background-size: cover
with background-attachment: fixed.

http://www.css3.info/preview/background-size/

s

Monday evening .

L]

What just happened?

We set up our HTML document and got it ready to add some snazzy scrolling effects. We
added a different background color or image to each block of our weather forecast and
used the new CSS background-size: cover property along with background-
attachment: fixed to create a nice background scrolling effect even for those site
visitors who have JavaScript disabled. Next, we’ll look at adding a parallax scrolling
effect to one of the sections on the page.

Setting up HTML for scrolling animations

Now that we have our HTML set up, it’s time to start getting things ready to add
animations. We’ll be using the Scrollorama plugin from John Polacek. We just have some

preliminary work to do before we get ready to add in our fancy effects.

Time for action — setting up HTML for
Scrollorama

Perform the following steps to get the page set up to add scrolling animations:

1.

Head over to http://johnpolacek.github.io/scrollorama/. You’ll find a link to
download a ZIP file right near the top of the page, but feel free to take a moment to
scroll down the page to see demos of the different types of animations that are
possible. When you’re done, go ahead and download the file and unzip it.

Inside, you’ll find a couple of sample CSS style sheets, a sample index.html file, a
README file, a . json file, and some JavaScripts. The JavaScripts include jQuery itself,
the Scrollorama plugin, and the Lettering.js plugin. Yep, this is the same Lettering.js
plugin that we used in Chapter 9, Improving Typography. In this case, the plugin’s
author, John Polacek, used it to create animations on individual letters in the samples
provided with the plugin.

The only file we’ll need here is jquery.scrollorama.js. Go ahead and copy it to
your own scripts folder.

Next, at the bottom of your HTML file, attach the Scrollorama plugin after jQuery
but before your own scripts. js file, as follows:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.scrollorama.js'"></script>
<script src="scripts/scripts.js"></script>

We’ll implement our reliable class-switching trick to apply different CSS to the page,
whether or not JavaScript is enabled. In the HTML file, add a class attribute of
jsOff to the <html> element, as shown in the following code:

<!DOCTYPE html>
<html class="jsOff">
<head>

Then, in your scripts. js file, add the document ready statement:

$(document).ready(function() {
// Our code goes here

1),

Inside the document ready statement, remove the jsoff class and add a json class
instead, as follows:

$(document).ready(function() {

/* CSS classes for JS state */
$('html').removeClass('jsOoff').addClass('jsoOn');

1),

Notice that we’ve included a comment before the line of text we just added. Our

http://johnpolacek.github.io/scrollorama/

JavaScript file will ultimately contain quite a bit of code, so we need to write little
notes to ourselves or to any other developer who might work on this file about what
each bit of the code does.

. Next, we’ll make each block of our weather forecast the same height as the window.
If our site visitor has a large screen, we should take advantage of it to really showcase
our animations. If they have a smaller screen, we’ll want to adjust to ensure that the
forecast fits nicely without a lot of extra scrolling required. First, we have to calculate
the height of the window. Later on, we’ll also need the width of the window, so we’ll
go ahead and measure it now, as shown in the following code:

/* CSS classes for JS state */
$('html').removeClass('jsOff').addClass('jsOn');

/* Vars that we'll need */
var win = $(window),
winHeight = win.height(),
winwWidth = win.width():
If we’re setting up more than one variable, then we can just separate them with
commas, and we don’t have to keep typing var repeatedly.

First, we set up a variable for the window since we’re using it twice—once to get the
width and once to get the height. Next, we use jQuery’s height () method to quickly
grab the window’s height and jQuery’s width() method to grab the width. Now, we
have these values safely stored away for easy use later on in our code.

. We’ll select each block of our weather forecast and set its height to the height of the
window, as follows:

/* Vars that we'll need */

var win = $(window),
winHeight = win.height(),
winwWidth = win.width();

/* Set each block to window height */
$('.scrollblock').css('height', winHeight);

Each block has a class of scrollblock, so we use this to select the all the blocks.
Then, we use jQuery’s css() method to set the height of each block.

What just happened?

We downloaded the Scrollorama plugin and attached it to our page. Then, we did some
initial setting up of our document and JavaScript in order to get ready to add animation
effects. We used our handy class-switching trick to enable us to style the page with
different CSS, depending on whether or not JavaScript is enabled. Then, we selected each
block of our weather forecast and set the height to the height of the window. If you scroll
through the page now, you’ll see that each block is equal to the height of the window.

Adding a parallax effect

If you look out of the window while riding in a car or a train, you’ll notice that the grass
and trees that are closer to you seem to go by much faster than the trees or mountains that
are further away from you. There’s a complex body of geometry that explains this effect,
but luckily, we don’t have to dig into that in great detail to be able to recreate this effect on
our web pages.

As we scroll down the page, the elements on the page will go by at the speed that our site
visitor is scrolling. We can then react to that scrolling action to make other elements on the
page appear to go by faster or slower than the page elements that are simply moving with
the scroll.

This sounds complicated, but it’s as simple as shifting the vertical position of elements
within their container while scrolling. For example, if an element starts at the top of its
container and then moves towards the bottom of the container while I scroll by, it will
appear to be moving more slowly than the other elements on the page. Vice versa, if it
moves from near the bottom to near the top, it will appear to go by more quickly than the
other elements on the page.

The circle will move with the page when it’s scrolled as expected. The square will be
animated towards the top of the page.

As we scroll by, we’ll animate the position of the square so that it moves towards the top

of the page. The square appears to move more quickly than the circle as we scroll.

We’ll take advantage of this optical illusion to create three layers of clouds that will move
by at different speeds as we scroll past our cloudy weather forecast on Tuesday. We’ll
reuse the same cloud icon that we used in the forecast—our site visitors will already have
that asset loaded into their browser cache, so there’s no extra download. Also, since we’re
using SVG, we can easily resize the icon to any size and it will remain crisp and clear.

Time for action — creating a parallax
effect

Perform the following steps to add a parallax effect to the cloudy weather forecast:

1. We’ll get started by adding the layer of clouds that will appear to be furthest away.
Inside the section of the cloudy forecast, add a <div> element and place several cloud
icons inside it, as shown in the following code:

<section class="scrollblock" id="tueday">

<div class="day'">Tuesday</div>

<div class="forecast">67° Cloudy</div>

<div class="icon"><img src="images/Cloud.svg" alt="Cloudy"
width="300" height="300"></div>

<div class="cloud-layer" id="cloud-layer-back">
<img src="images/Cloud.svg" alt="Cloudy" width="100" height="100"
id="bcloud1">
<img src="images/Cloud.svg" alt="Cloudy" width="150" height="150"
id="bcloud2">
<img src="images/Cloud.svg" alt="Cloudy" width="125" height="125"
id="bcloud3">
<img src="images/Cloud.svg" alt="Cloudy" width="112" height="112"
id="bcloud4">
<img src="images/Cloud.svg" alt="Cloudy" width="75" height="75"
id="bcloud5">
<img src="images/Cloud.svg" alt="Cloudy" width="140" height="140"
id="bcloud6">
</div>

</section>

2. In styles.css, add some styles to position the clouds so that they’re scattered over
the forecast block, as follows:

.cloud-layer {
height: 100%;

left: 0,

position: absolute;
top: O,

width: 100%;

}

.cloud-layer img {
position: absolute;

b
#cloud-layer-back { opacity: .1; }

#bcloudl { top: 98%; left: 10%; }

#bcloud2 { top: 40%; left: 85%; }

#bcloud3 { top: 60%; left: 30%; }

#bcloud4 { top: 0%; left: 45%; }

#bcloud5 { top: 15%; left: 5%; }
{

#bcloud6 top: 5%; left: 65%; }

First, we absolutely position the .cloud-1layer class and make it the same width and
height as that of its parent. Next, we absolutely position all the images. Then, we
select the entire back cloud layer and set the opacity to .1. Since these clouds are
furthest away, it makes sense that they would be the smallest and faintest. Then, we
specify percentage positions for each of the clouds inside the layer. We’re using
percentages because we’re keeping responsive design in mind.

If you refresh the page in the browser, you’ll see several faint and small cloud icons
scattered over the forecast block, as shown in the following screenshot:

Tuesday

67° Cloudy

3. Next, we’ll add a middle layer. To do this, first add the block of HTML to add several
cloud icons inside the cloudy forecast block, as follows:

<section class="scrollblock" id="tueday">

<div class="day">Tuesday</div>

<div class="forecast">67° Cloudy</div>

<div class="icon'"><img src="images/Cloud.svg" alt="Cloudy"
width="300" height="300"></div>

<div class="cloud-layer" id="cloud-layer-back">
</div>
<div class="cloud-layer" id="cloud-layer-mid">
<img src="images/Cloud.svg" alt="Cloudy" width="150" height="150"
id="mcloud1">

<img src="images/Cloud.svg" alt="Cloudy" width="225" height="225"
id="mcloud2">

<img src="images/Cloud.

id="mcloud3">

<img src="images/Cloud.

id="mcloud4'">

<img src="images/Cloud.

id="mcloud5">

<img src="images/Cloud.

id="mcloud6">
</div>

</section>

svg" alt="Cloudy" width="188" height="188"
svg" alt="Cloudy" width="169" height="169"
svg" alt="Cloudy" width="113" height="113"

svg" alt="Cloudy" width="207" height="207"

Note that we’re making these cloud icons just a bit bigger than the back layer. Since
they’re a bit closer, it makes sense that they’d appear to be a little larger.

. Next, open up styles.css and add the styles to position these cloud icons:

#cloud-layer-mid

#mcloudl { top:
#mcloud2 { top:
#mcloud3 { top:
#mcloud4 { top:
#mcloud5 { top:
#mcloud6 { top:

{ opacity: .5; }

2%; left: 15%; }
60%; left: 35%; }
40%; left: 70%; }
90%; left: 65%; }
80%; left: 80%; }
40%; left: 5%; }

We’re setting the opacity of this layer to .5 so that these clouds appear a bit brighter
than the back layer. If you refresh the page in the browser, you’ll see this new layer
of clouds appear over the one we placed previously, as shown in the following

screenshot:

Tuesday.

b
o
3\

"

O

67° Clga)dy

Even though we haven’t introduced any animation yet, you can still see how
displaying the icons at different sizes and opacities lend a visual effect of depth.

. Now, we’ll add the final layer, the front layer of clouds. Add a block of HTML to
your index.html file to display another set of cloud icons, as shown in the following
code:

<section class="scrollblock" id="tueday">

<div class="day">Tuesday</div>

<div class="forecast">67° Cloudy</div>

<div class="icon"><img src="images/Cloud.svg" alt="Cloudy"
width="300" height="300"></div>

<div class="cloud-layer" id="cloud-layer-back">
</div>
<div class="cloud-layer" id="cloud-layer-mid">
</div>
<div class="cloud-layer" id="cloud-layer-front">
<img src="images/Cloud.svg" alt="Cloudy" width="200" height="200"
id="fcloud1">
<img src="images/Cloud.svg" alt="Cloudy" width ="300"
height="300" id="fcloud2">
<img src="images/Cloud.svg" alt="Cloudy" width="250" height="250"
id="fcloud3">
<img src="images/Cloud.svg" alt="Cloudy" width="225" height="225"
id="fcloud4">
<img src="images/Cloud.svg" alt="Cloudy" width="150" height="150"
id="fcloud5">
<img src="images/Cloud.svg" alt="Cloudy" width="275" height="275"
id="fcloud6">

</div>
</section>

As this layer of clouds will appear to be closest, we’ve made these even larger than
the middle layer.

. Next, open styles.css and position the cloud icons on this layer, as follows:

#cloud-layer-front { opacity: .9; }

#fcloudl { top: 50%; left: 60%; }
#fcloud2 { top: 10%; left: 5%; }

#fcloud3 { top: 0O; left: 85%; }
#fcloud4 { top: 5%; left: 30%; }
#fcloud5 { top: 60%; left: 20%; }
#fcloud6 { top: 90%; left: 40%; }

As these clouds are closest, we’ve set the opacity to .9 to make these the brightest
clouds. Refresh the page in the browser to see the effect of all three layers of clouds,
as shown in the following screenshot:

67° Cloudy

Now that we’ve got a very nice cloud effect that has a visual depth to it, let’s make
those clouds move.

. Open your scripts. js file. First, we have to tell Scrollorama that we want to use it
and what our blocks of content are called. Inside the document ready statement, after
the code we’ve added so far, add the following bit of code:

$(document).ready(function() {

/* Scrollorama setup */
var weather = $.scrollorama({
blocks:'.scrollblock'

1)

1)

First, we create a new variable and call it weather as we’re presenting a weather
forecast. Then, we call the scrollorama() method. We pass the scrollorama()
method the selector for our blocks of content. As each block has a class of
scrollblock, this is the selector we pass.

Now, Scrollorama is all set up and ready for us to use. Let’s take a look at how to
animate the movement of our cloud layers.

. Now that we’ve got Scrollorama set up, we can use that weather variable to tell
Scrollorama what to animate. The following code shows how we animate the back
layer of clouds:

/* Scrollorama setup */
var weather = $.scrollorama({
blocks:'.scrollblock'

1),

/* Parallax cloud animation */
weather
.animate('#cloud-layer-back', {
duration: 1000,
property: ‘'top',
start: 100,
end: -100

1)

Let’s take a moment to step through this. We’ve broken this out onto separate lines to
make it easier to read and understand, but this is all actually one line of code. We
start with weather, then we call the animate () method. We want to animate this
layer of clouds with the scroll, so that makes sense.

Next, we pass in a selector of what we want to animate. We gave that back layer of
clouds an id attribute of cloud-layer-back, so we can use that now to select this
layer for animation.

Then, we tell Scrollorama exactly how that animation should work by passing in a set
of key/value pairs. We use the duration key to specify how many pixels of scrolling
the animation should last. Here, we’ve set up a long animation—we’ll see the clouds
moving for 1000 pixels of scrolling.

We use the property key to tell Scrollorama which CSS property to animate. Just
like with regular old jQuery animations, we can select any numeric CSS property.
We’ve selected top since we want to move the entire cloud layer up and down.

We use the start key to specify what the starting value for the selected property
should be. Here, we’re working with top. So at the start of our animation, it will be
like assigning this CSS style to the back cloud layer:

#cloud-layer-back { top: 100px; }

That’s where our cloud layer will start off as we scroll by. We use the end key to
specify where the cloud layer will end up after the animation completes. It’s like
assigning this CSS style to the back cloud layer:

#cloud-layer-back { top: -100px; }

We’re moving the cloud layer 200 pixels in total, from 100 pixels to -100 pixels. This
will make it appear to move just a bit faster than the rest of the content going by as
we scroll.

. If you refresh the page in the browser at this point, you’ll notice that the back cloud
layer moves when you scroll up and down past the cloudy weather forecast.
However, specifying the duration, start, and end values in pixels can be problematic
in responsive designs. With so many different screen sizes, how can we possibly
know or set exact pixel values for the cloud animation? We might want those to move

10.

only 50 pixels on smaller screens, but we might want them to move 400 pixels or
more on larger screens to make the parallax effect really work.

However, Scrollorama doesn’t accept percentage values. We can’t tell Scrollorama to
move the cloud layer from 10 percent to -10 percent. So we have to get a little more
resourceful.

Luckily, JavaScript is really good at doing math. Remember how we grabbed the
width and height of the browser window earlier? We can now use those values to
calculate pixel values for the duration, start, and end, based on the size of the browser
window. Here’s how we can do that. Go back to the code we added in step 8 and edit
it so that it looks like the following code:

/* Parallax cloud animation */
weather
.animate('#cloud-layer-back', {
duration: winHeight * 2,

property: "top',

start: winHeight * .1,

end: -winHeight * .1
37

Now, we’re letting JavaScript do all the hard work of calculating the values for us,
based on our site visitor’s screen size. For example, if our site visitor’s browser
window is 400 pixels tall, the duration of the animation will be 800 pixels, and the
clouds will start at 40 pixels and move to -40 pixels.

If, on the other hand, our site visitor’s screen is 1,600 pixels tall, then the duration
will be 3200 pixels, with the clouds moving from 160 pixels to -160 pixels. Just like
magic, our animation adjusts to our site visitor’s browser window size.

Now that we’ve got animating a cloud layer all figured out, let’s go ahead and add the
code to animate the middle and front cloud layers to scripts.js as follows:

weather

.animate('#cloud-layer-back', {
duration: winHeight * 2,
property: ‘'top',
start: winHeight * .1,
end: -winHeight * .1

1)

.animate('#cloud-layer-mid', {
duration: winHeight * 2,
property: ‘'top',
start: winHeight * .25,
end: -winHeight * .25

1)

.animate('#cloud-layer-front', {
duration: winHeight * 2,
property: ‘'top',
start: winHeight * .5,
end: -winHeight * .5

1)

First up, notice that we’re taking advantage of jQuery’s chaining feature—this is just
one line of code! But that would not be very easy to read, so we’ve broken it up to
make it easier for us to read, understand, and edit. Also, be very careful with the
placement of semicolons—because this is all one line, we don’t need to place a
semicolon until the very end of the statement

Next, notice that we’re increasing the position for the animation for each layer. For
the first layer, we just moved the clouds from 10 percent to -10 percent. However, for
the middle layer, we’re moving from 25 percent to -25 percent, and for the top-most
layer, we’re moving from 50 percent to -50 percent. The clouds that appear closer
will move much more quickly as we scroll past. Refresh the page in the browser and
scroll past the cloudy weather forecast a few times to see the effect of the moving
clouds. Nice, right?

What just happened?

We created three layers of clouds and then animated them at different speeds to give the
illusion of depth. As we scroll by the cloudy weather forecast, the clouds move by at
different speeds, all moving faster than the rest of the content as we scroll.

While the Scrollorama plugin is limited to accepting pixel values, we were able to use the
magic of JavaScript to dynamically calculate the values for our animation, which allows
our design and animation to adjust better to different screen sizes, making it ideal for use
in responsive designs.

Creating other animations

Parallax scrolling effects are nice, but we can also create other types of animations with
the Scrollorama plugin. Let’s take a look at how we can emphasize the windy weather
forecast by animating the cloud that is blowing across the screen as we scroll by.

Time for action — creating a horizontal
animation

Perform the following steps to create a horizontal animation in the windy weather
forecast.

1. Inside index.html, the only change we’ll make is to add an id attribute of wind to
the <div> element that contains the weather icon, as follows:

<section class="scrollblock" id="wedday">
<div class="day">Wednesday</div>
<div class="forecast">69° Windy</div>

<div class="icon" id="wind"><img src ="images/Cloud-Wind.svg"
alt="Cloudy Windy" width="300" height="300"></div>
</section>

Technically, this isn’t strictly necessary as we have other available ways to select that
item for animation, but selecting an item by id is the quickest and most efficient way.
By working directly with id, we can get a little performance boost from our code.

2. Next, we can open up scripts.js and add the details of the animation we’d like to
create. Add the following code just below the animation block we added to create the
parallax animations, still inside the document ready statement:

/* Animate wind */
weather
.animate('#wind', {
duration: winHeight * 1.7,
property: 'left',

start: winwWidth * .7,
end: winwidth * .3
1)

This should look pretty familiar. We’re using the same winHeight and winwidth
values we calculated back at the beginning of the chapter. In this case, we want the
animation to last 170 percent of the window height—I arrived at that value through
experimentation. I just tried out different values until I found one that looked the way
I wanted.

Since we’re animating the cloud horizontally rather than vertically, we’re using
winwidth rather than winHeight to calculate the values. We’ll move the cloud from a
left value of 70 percent to a left value of 30 percent.

Also note that we could have just chained this function onto the functions we wrote
to create the parallax cloud animations we coded in the section Adding a parallax
effect. It would have worked just fine, but in this case, I decided to make my code
just a bit longer in the interest of keeping it readable.

Refresh the page in the browser window and scroll past the windy forecast. You’ll see
the cloud blow across the screen as you scroll by.

What just happened?

We used Scrollorama to create a horizontal animation as we scroll by. We can animate any
numeric CSS property. This leaves a lot of possibilities open: we can move items
horizontally, vertically, and diagonally; we can adjust the opacity to fade items in and out;
and we can adjust the font size, width, height, padding, margins, border width, rotation,

and so on.

Have a go hero — add custom animations

The only limit to what you can animate with the Scrollorama plugin is your imagination.
Take a look through the weather forecasts and see what else you might like to animate.
Can you fade in the day of the week headers in each block? Can you add animations to the
other weather icons?

Adding navigation

Now, let’s make it easier both to navigate through the weather forecast days and to
understand where we are on the page. We’ll use JavaScript to dynamically create a
navigation bar. Our site visitors will be able to use the navigation bar to move directly to
the different days in the forecast. Additionally, as our site visitor scrolls down the page
through the different days in the forecast, we’ll update the highlighted item in the
navigation to show them where they are.

Time for action — adding navigation to
sections of the page

Perform the following steps to add navigation to our weather forecast:

1. Open up scripts. js. The first thing we want to do is create an unordered list to hold
our navigation. After the animation code we wrote earlier, but still inside the
document ready statement, add the following bit of code:

var dotnav = $('<ul id="dotnav'">");

First, we create a variable, dotnav. Recall that a variable is just a container. Inside
this container, we’re going to create a jQuery object that holds an unordered list with
the id attribute of dotnav.

2. Now that we’ve got our unordered list, the next thing we’ll do is add it to our
document. That’s easy enough, just one short line of code:

var dotnav = $('<ul id="dotnav'">");

$('body').append(dotnav);

We’re selecting the <body> element of the document and appending our navigation to
the end of the body using jQuery’s append() method.

3. Next, we need to fill the navigation with links to the various parts of the document.
We know that each block of our weather forecast is wrapped in a <section> element
with the class scrollblock. We can use those sections to create just the right links in
our navigation as follows:

var dotnav = $('<ul id="dotnav'">");
$('body').append(dotnav);
$('.scrollblock').each(function(){

var id = this.id;

dotnav.append('</1i>"');

1)

Let’s step through that to make sure we understand. First, we select all the <section>
elements with a class of scrollblock. Then, we use jQuery’s each() method to loop
through each block, one at a time.

Inside the each() method, we write a function. The function first gets the id attribute
of the current section and stores it in a variable.

Finally, we get our navigation, which we’ve stored in the variable called dotnav, and
append a new list item and link. We add an href attribute that points us to the id
attribute for each section. For example, for the Monday forecast, this bit of code will
add a list item and a link that looks like this:

</1i>

That’s pretty easy to understand. If we had created the navigation in HTML, that’s

how we would have linked to the different sections on the page. If you refresh the
page in the browser, you won’t see anything new on the page—without CSS, our new
element is invisible. However, if you use the web developer tools to take a look at the
code on the page, you’ll see the new navigation element at the end of the document,
as shown in the following screenshot:

Q, | Elements | Network Sources Timeline Profiles Resources Audits

FeSTLLIUIT T Ta535— SLTULLTOLULR LU= Wouoay S Ly L= TIEIUITL .
2589px;: position: absolute; top: 1B45.25px;"=.=</section>
k<=section class="scrollblock" id="wedewve" style="height:
259px; position: absolute; top: 23B6.5625px;"=.</section=
k<section class="scrollblock" id="credits" style="height:
259px; position: absolute; top: 2BB3.B75px;"=.</section=
<script src="scripts/iquery.js"==/script=
<script src="scripts/jquery.scrollorama.js"=></script>
<script src="scripts/scripts.js"==</script=
Y<li=
=a href="#monday"></a=
=f1i=
v<li=
</a=
=f1i=
Y<li=
<a href="#tueday"=</a=
=f1i=
r<lis
=a href="#tueeve'>=/a>
<f1li=
Y<li=

<f1i=
v<li=
</a=
=f1i=
v<li=

=f1i=
= ful=
=/body=
</html=

4. Now, let’s use a bit of CSS to style our navigation. Open up styles.css and add the
following styles for the navigation:

#dotnav {
position: fixed;
right: lem;
top: 50%;

¥

#dotnav 11 {
background: rgba(255, 255,255,0.8);
box-shadow: © 0 5px rgba(0,0,0,0.2);
border-radius: 50%;
display: block;
height: 0.8em;
margin: 0.333em 0;
padding: 0.2em;
width: 0.8em;

#dotnav a {
background: transparent;
border-radius: 50%;
display: block;
height: 0.8em;
transition: background 200ms;
width: 0.8em;

}

Now, if you refresh the page in the browser, you’ll see the navigation appear
vertically along the right-hand side of the page, as shown in the following screenshot:

5. We’re making progress, but the navigation is a bit too low. Let’s use our trusted
winHeight measurement to bump that up into the right position. In scripts. js, add
the following bit of code:

var dotnav = $('<ul id="dotnav">"');
$('body').append(dotnav);
$('.scrollblock').each(function(){

b

var navHeight = dotnav.height();
dotnav.css('top', (winHeight/2 - navHeight/2));

First, we get the height of our navigation bar itself, and store it in a variable named
navHeight. Next, we need to calculate what the appropriate top value of the
navigation should be. We divide the winHeight value in half, then subtract the
navHeight value divided in half to get the proper value for the top of the navigation
bar. We use jQuery’s css() method to set that value and position the navigation right
in the middle of the screen.

Refresh the page in the browser and you’ll see that the navigation is now positioned
correctly, as shown in the following screenshot:

6. If you click on the dots in the navigation, you’ll see that they work—the page jumps
to the different days in the weather forecast. However, it jumps so quickly that we
don’t get to see our fancy animations. Let’s modify the jumping so we can appreciate
all the hard work we’ve done so far. First, we need to select the elements we want to
work with—the links inside the navigation bar—and attach a click event, as follows:

dotnav.css('top', (winHeight/2 - navHeight/2));

dotnav.find('a').on('click', function(e){
// Our code will go here

1)

In plain English, the highlighted code says “Get all the links inside the navigation and
do something special when they’re clicked on.” Now, we have to write the code to
say what should happen.

7. The first thing we want to do inside this function is to stop the immediate jumping to
each section of the page. We can do this as follows:

dotnav.find('a').on('click', function(e){
e.preventDefault();

1),

We use the preventDefault () method to stop the default action. By default, the
browser jumps immediately to a section. We don’t want that to happen, so we prevent
it with this bit of code. If you refresh the page in the browser and try clicking on the
navigation, you’ll see that nothing happens. We canceled the default action, but we
haven’t said what to do instead.

8. When we click on one of the navigation links, we want to animate scrolling for that
section. To animate scrolling, we’ll animate the <html1> and <body> elements. Let’s
select those elements and call jQuery’s animate () method, as follows:

dotnav.find('a').on('click', function(e){

10.

e.preventDefault();
$('html, body').animate();

1),

Now that we’re ready to animate the scrolling, we just have to tell the animate()
method what to animate.

The first thing the animate () method needs to know is what property we want to
animate. Since we’re animating the scrolling, the property we’ll be working with is
scrollTop. Thus, add it to the scripts. js file as shown in the following code:

dotnav.find('a').on('click', function(e){
e.preventDefault();
$('html, body').animate({
scrollTop:

1);
});
We want to scroll to the top of the block of the weather forecast that we’re navigating
to, but the animate () method is expecting a pixel value—how many pixels down the
page should we scroll? Luckily, it’s pretty easy to calculate how many pixels down
the page each of our weather forecast blocks are using jQuery’s offset () method.
Let’s say we wanted to find out how far down the page the Tuesday evening weather
forecast was. We’d find out as follows:

$('#tueeve').offset().top;

We’d just select the element, then call the offset () method. After that, we can get
either the top or the left properties.

That seems easy enough, but in this case, we’re clicking on a link and we want to
scroll to the matching weather forecast. How do we select the right forecast? We set
up our links to point at the right sections. All the information we need is stored right
in the href attribute of each link. We can select the right forecast block as follows:

$(this.hash);

The following code shows how this all looks in our function that handles what
happens when we click on a navigation link:

dotnav.find('a').on('click', function(e){
e.preventDefault();
$('html, body').animate({
scrollTop: $(this.hash).offset().top + 1

3
3);
In this case, we’re adding one more pixel to the value to make sure the navigation
interacts nicely with Scrollorama.

If you refresh the page in the browser, you’ll see that clicking on the navigation links
now scrolls you smoothly to each weather forecast block. However, the page sure
does go by quickly. We don’t even get a chance to enjoy the animations going by.

11.

12.

13.

By default, any animations we set up with jQuery’s animate () method happen in 400
milliseconds—Iess than half a second. That’s really fast. Let’s slow that down a bit
maybe to a full second:

dotnav.find('a').on('click', function(e){
e.preventDefault();
$('html, body').animate({
scrollTop: $(this.hash).offset().top + 1
}, 1000);

1),

We just pass in a second value to the animate () method—the number of
milliseconds the animation should take to complete.

If you refresh the page in the browser now and try clicking on the navigation links,
you’ll see the scrolling is much slower. You might want to experiment with different
values. Where can you best see the animations going by without delaying the site
visitors from reaching their destination too much?

Now that we’ve got the navigation and animation working, wouldn’t it be nice if we
could see exactly where we were on the page by highlighting the current weather
forecast block in the navigation?

We could add some code to our click function to just add a class to each link that is
clicked. But what about the times that our site visitors just scroll down the page and
don’t click on the links at all? We still want to show them how far down the page
they are and how many sections are left.

Luckily, Scrollorama gives us a way to detect when we’re seeing a new block of our
page and to trigger other changes on the page. Let’s take a look at how we can
highlight the right item in the navigation depending on how far down the page we’ve
scrolled. We can do that with the onBlockChange () method.

But first, let’s set up the .active style for the navigation links in styles.css, as
follows:

#dotnav a.active {
background: #e75845;

}

We’ll change the background color of the link to a bright orange color when it’s the
current link.

Now, we’ll jump back into scripts.js and set up a function that will run each time
we scroll to a new block. After the click function that we wrote, but still inside the
document ready method, add the following lines to set up our new function:

/* Update dotnav while scrolling */
weather.onBlockChange(function() {
// Our code will go here

1),

We’re still leaving little notes for ourselves or for any other developer who comes

14.

15.

16.

17.

along to work on our code about what each bit of code does. We select our weather
variable and then call the onBlockChange () method. We pass an empty function to
the method.

The first thing we need to do inside that function is figure out which block we can see
in the window. Scrollorama makes that easy for us with the blockIndex property, as
shown in the following code:

weather.onBlockChange(function() {
var i = weather.blockIndex;

1),

Now, the i variable contains the index of the current block. When we’re looking at
the first block, i will be equal to e—don’t forget that JavaScript starts counting at ©
and not at 1.

Now that we know which block is currently visible, we just have to select the
matching link in the navigation. That’s easy enough—if we’re on the second block,
we’ll just select the second link. The following code shows how we can do that:

weather.onBlockChange(function() {

var 1 = weather.blockIndex;

dotnav.find('a').eq(1i);
1)
Here, we get our dotnav variable, which contains the navigation, and then we find all
the links. Then, we use jQuery’s eq() method to select the link that matches the
currently visible block.

Now, we just have to add the active CSS class to the link:

weather.onBlockChange(function() {
var i = weather.blockIndex;
dotnav.find('a').eq(i).addClass('active');

1)

That’s easy enough, right? However, scroll down through the page and you’ll see that
very quickly every link in the navigation is highlighted. This is handy if we just want
to keep track of where we’ve been, but not very handy for telling us where we
currently are.

After a block isn’t visible any more, we need to remove the active class from its
matching link. We can do that pretty easily by just removing the active class from
all the links before we add it to the matching one, as follows:

weather.onBlockChange(function() {
var i = weather.blockIndex;
dotnav.find('a').removeClass('active').eq(1i).addClass('active');

1),

Now, if you refresh the page in the browser, and scroll down, you’ll see that the
navigation changes to reflect your current position on the page. The navigation also
updates if you click on the links—since those links scroll the page, the

onBlockChange() event is still fired. We don’t have to write separate code to
highlight the links while clicking on them and highlighting the links while scrolling.
Just one bit of code handles both nicely.

What just happened?

We used jQuery to create a navigation bar for our blocks of weather forecast. Then, we
animated the scroll to each of those blocks when the navigation links were clicked.
Finally, we used the onBlockChange () method provided by Scrollorama to change the
CSS classes on the links to make it obvious where we were on the page.

Pop quiz — using Scrollorama in responsive design

Q1. How can we use Scrollorama effectively in responsive designs?

1. Use percentage values for animation duration, animation start, and animation stop.
2. There’s no need to do anything special—Scrollorama is responsive by default.

3. Use JavaScript to calculate appropriate values based on the current screen size.

4. Scrollorama cannot be used in responsive design.

Summary

In this chapter, we looked at a few different ways of reacting to our site visitors who scroll
down the page. We created a parallax effect by animating the position of layers of content
at different speeds as we scroll down the page. We created a horizontal animation that
reacts to scrolling. Finally, we created a navigation bar that not only updates as we scroll
down the page but also allows us to easily move to the different areas of the page. Not too
shabby. Next up, we’ll look at some ways to make forms nicer-looking as well as easier
for our site visitors to work with.

Chapter 12. Improving Forms

If you’ve ever tried to work with web forms, you know how complex they can be. Luckily,
the authors of HTML5 are working hard to ensure that the experience improves for
designers, developers, and web site visitors alike. Browser support for the new HTML5
form elements and attributes is coming along really nicely, and even in browsers that don’t
have support, the new elements and attributes are backward compatible.

In this chapter, you’ll learn:

How to mark up a form with some of the new HTMLS5 attributes

How to place the cursor in the first form field automatically

How to validate your site visitors’ form entries

How to style stubborn form elements such as file uploads and select dropdowns

An HTML5 web form

We’ll get started by taking advantage of some of the new attributes made available to us in
HTML5. The great thing about these additions is that they are completely backward
compatible—browsers that don’t know how to handle them will either ignore them or
default to a simple text input, and our site visitors on older browsers will be able to use our
forms without even knowing what they’re missing.

First, a word of caution about web forms. A web form doesn’t work by itself—it needs to
have some fancy backend programming on a server somewhere to collect the form entries
and process them, which could mean writing fields to the database or sending the form
information via an e-mail. Because of this, the forms we build in this chapter won’t
actually function—nothing will happen after clicking on the Submit button on the form. If
you want to add a functioning web form to a project, you have a few options, which are as
follows:

¢ You can learn to do server-side programming to handle your form, but server-side
programming is well beyond the scope of this book.

* You can use a CMS that will most likely include form handling either in its core
functionality or as an add-on. Good candidates include Drupal, WordPress, and
Joomla.

¢ You can hire a server-side developer to get your form working, or befriend one and
barter your design skills for their coding skills.

¢ You can use a web form service to handle all the server-side processing of your form.
My personal favorite is WuFoo (http://wufoo.com), which I have used for years
without a single hiccup.

Any of these methods will help you create a working web form to be included in your
project. However, let’s take a look at how we can make the frontend of our form the best it
can be.

http://wufoo.com

Time for action — setting up an HTML5
web form

Perform the following steps to set up a form using the new HTMLS5 elements and
attributes:

1. We’ll get started with a simple HTML document and the associated files and folders,
just like we set up in Chapter 1, Designer, Meet jQuery. Inside the <body> tag, open
up a <form> tag as shown in the following code:

<form action="#" id="account-form'">
</form>

The form tag needs an action attribute in order to appear correctly on our page.
Since our forms are just dummy forms used for scripting and styling purposes, we’ll
just use # as the value for this attribute. The value of the action attribute is usually a
URL—the place on the server where we’re going to send our form data for
processing. We also added an id attribute to make it easy to select the form for CSS
and JavaScript purposes later.

2. Next up, we’ll create a section for our site visitor to create the Username and
Password fields. We’ll wrap these two fields in a <fieldset> element with a
<legend> element to group them together, as follows:

<form action="#" id="account-form">
<fieldset>
<legend>My Account</legend>
<p>
<label for="username">Username</label>
<input type="text" name="username" id="username"
placeholder="Choose a username…">
</p>
<p>
<label for="password">Password</label>
<input type="text" name="password" id="password"
placeholder="Choose a secure password…">
</p>
</fieldset>
</form>

Here, we’ve wrapped each field and its associated label in a paragraph tag (<p>).
There is a world of opinions out there on the best tags to use to mark up your form
fields. Some developers swear by simple <div> elements, while others like to make
the form a list () with each field a list item (<1i>). Some others like to use a
definition list (<d1>) and place the labels inside the <dt> tags and the form fields
inside the <dd> tags. Pragmatically speaking, any of these will do just fine and your
form will work as expected for your site visitors. Use the tags that you personally
prefer.

Look carefully at the HTML markup we’ve written so far for our form. There are a

few important things to note, which are as follows:

o Each <input> tag has a type attribute that is relevant to its purpose. The
username field has a text type, and the password field has a password type.

o Each <input> tag has a unique id attribute. Remember that each id must to be
unique on the page, so select the id attributes of your form inputs carefully.

o Each <input> tag has a name attribute. This is passed to the code that is handling
your form on the server side. It’s a common practice to use the same value for
the name and id attributes of a form element, but it’s not compulsory. You can
easily select a different value for the id value anytime you like, but if you’d like
to change the name value, you should first check with your server-side developer
to ensure that the code they have written will continue to work.

o Each <input> tag has a placeholder attribute. This new attribute, introduced in
HTML5, currently has very good browser support. The value of this attribute is
displayed as grayed-out text in each field until the site visitor starts typing. It can
be useful to give additional instructions for a field or to give an example of the
type of information the site visitor should enter.

o Each <label> tag has a for attribute that associates it with a particular form
element. The value in the for attribute is equal to the id value of the form
element with which it is associated (not the name attribute). This makes some
nice functionality available to our site visitors—clicking on a label will bring
focus to the associated form element. This behavior is especially useful for
checkbox and radio button inputs, which are small and can be difficult to click.

Each browser has its own default way of styling form elements. For example, with no
CSS attached to the preceding HTML markup, the following screenshot shows what
the form element looks like in Google Chrome on Mac OS X:

— My Account

Username

Password

Note that the default CSS code we use with the example code in this book removes
(or resets) most of these default styles. The following screenshot shows how the form
appears after attaching our CSS file:

My Account

Username
Password

3. Next up, we’ll create an About Me section for our form, as follows:

<fieldset>
<legend>About Me</legend>
<p>
<label for="name">Name</label>
<input type="text" id="name" name="name" placeholder="First Last">
</p>
<p>
<label for="email">Email address</label>
<input type="email" id="email" name="email"
placeholder="you@example.com">
</p>
<p>
<label for="website">Website</label>
<input type="url" id="website" name="website" placeholder="Don't
forget the http://…">
</p>
<p>
<label for="birthdate">Birth date</label>
<input type="date" id="birthdate" name="birthdate">
</p>
</fieldset>

Again, the text type was used for the Name field, as names are strings. However,
take a look at the type attribute for the Email address, Website, and Birth date
fields. We’re using the new HTML5 input types here. In browsers where these input
types are not supported, these fields will look and work just like inputs with a type
attribute of text. However, in browsers where these input types are recognized,
they’ll behave in a slightly different way. The browser will automatically validate the
user input. For example, if a site visitor types an invalid e-mail address into an input
with the type email, the browser will warn them that they’ve entered an invalid e-
mail address. Also, on devices with soft keyboards, the keyboard keys will be altered
to reflect the characters necessary for entering that data type. For example, an input
with a type of email will open a keyboard with the . key and the @ key showing on
an iPhone or an iPad, making it easier for your site visitors on these devices to
complete the required information.

About Me
Name ETESEN
Email address |

Website E RS
Birth date

. The next section in the form will be a section about beverage preferences. We want
the site visitor to select their favorite beverages from a list and then answer a question
about how many days per year they drink a beverage. The following code is a sample
of what the list looks like:

<fieldset>
<legend>Beverage Info</legend>

<fieldset>
<legend>Select your favorite beverage(s)</legend>
<p>Please select at least three but no more than six beverages.</p>

<input type="checkbox" name="favorites[]" id="bev-water"
value="bev-water">
<label for="bev-water'">Water</label>
</1li>

<input type="checkbox" name="favorites[]" id="bev-juice"
value="bev-juice">
<label for="bev-juice">Juice</label>
</1li>

</fieldset>
<p>
<label for="days">How many days of the year do you drink a
beverage?</label>
<input type="number" id="days" name="days" placeholder="How many
days?'">
</p>
</fieldset>

Now, when you refresh the page, you’ll see the list as shown in the following
screenshot:

Beverage Info
Select your favorite bevera%el:s)
ut no more than six beverages.

Please select at least three
@ Water

m Juice

@ Cider

@ Soda

s Milk

m Coffee

@ Tea

® Hot Chocolate

m Beer

e Wine

How many days of the year do you drink a beverage? [EEEEREINE

A few new things to note about the HTML that we’ve used to mark up this section:

o Fieldsets can be nested. A fieldset is an excellent way to group a set of
checkboxes or radio buttons together, and we can use the legend tag of the
fieldset element to create a header for our radio or checkbox group.

o A set of checkboxes are identified as such because they will all share the same
name. Because a site visitor can select more than one item in a set of
checkboxes, we add square brackets ([]) at the end of the name so that the
server will collect all of the answers into an array.

o Each checkbox in the set has its own unique id and value attributes. The id and

value attributes do not necessarily have to match, but it’s often easy to make
them the same.

o Finally, the number of days per year is given an input type number, as only a
number would be acceptable here. Be careful with this input type. It is very
strict and will not accept any nonnumeric characters. Some bits of data appear to
be numbers but are actually strings, for example, telephone numbers and credit
card numbers. If you wouldn’t do some sort of math with your number, then it
shouldn’t be the number input type.

5. The next section we’ll add to our form is a payment information section, which is
shown in the following code:

<fieldset>
<legend>Payment Info</legend>
<fieldset>
<legend>Credit Card Type</legend>

<input type="radio" name="cc-type" id="cc-visa" value='"cc-
visa'">
<label for="cc-visa">Visa</label>
</1li>

<input type='"radio" name="cc-type" id="cc-mastercard"
value="cc-mastercard">
<label for="cc-mastercard">Mastercard</label>
</1i>
<1li>
<input type='"radio" name="cc-type" id="cc-amex" value='"cc-
amex">
<label for="cc-amex">American Express</label>
</1i>
<1li>
<input type="radio" name="cc-type" id="cc-discover" value="cc-
discover">
<label for="cc-discover">Discover</label>
</1i>

</fieldset>
<p>
<label for="cc-number">Credit card number</label>
<input type="text" name="cc-number" id="cc-number"
placeholder="xxxx XXXX XXXX XXXX'">
</p>
</fieldset>

Much like the checkboxes, we’ve grouped a set of radio controls inside a fieldset
with the legend tag acting as the header for this section. Just like checkboxes, all the
radio buttons in the set of radio buttons share the same name, but each has its own

unique id and value attributes. However, in the case of radio buttons, only one can
be selected at a time, so there is no need to mark them as an array.

We’ve also added a field for collecting our site visitor’s credit card number. Note that

we’ve assigned an input type of text to this field. Even though a credit card number
appears to be a number, we want to store it just as it is, and won’t ever be performing
calculations with this number. The following screenshot shows the payment
information section:

Payment Info
Credit Card Type
@ Visa

® Mastercard

® American Express
@ Discover

Credit card number R

6. Finally, we’ll add a checkbox for our site visitor to accept our terms of service, and a
Submit button for them to submit the form information to us, as follows:

<fieldset>

<input type="checkbox" name="tos" id="tos" value="tos"/>
<label for="tos">Click here to accept our terms of
service</label>
</1li>

<p>
<input type="submit" value="Sign me up!"/>
</p>
</fieldset>

The only new thing here is the Submit button. By default, the input tag with a type
attribute of submit will read Submit. We can change the text by adding a value

attribute with the text we’d like to display on the button. The following screenshot
shows the text that we used; in our case, it is Sign me up!:

@ Click here to accept our terms of service

7. The only thing left to do is to style our form with a bit of CSS. The following code
shows the CSS used for this simple form in the sample code for the book:

fieldset {
background: white;
border-radius: 5px;
color: #656d78;
margin: lem O;
padding: 1lem;
width: 80%;

legend {
background: #fa6f57;
border-radius: 5px;
color: white;
font-size: 1.125em;
padding: 0.333em lem;

}

fieldset fieldset legend {
background: transparent;
color: #42b0ds;
padding: 0;

}

fieldset p {
line-height: 1.5em;
margin: lem O;

}

fieldset label {
display: inline-block;
width: 20%;

}

fieldset 1i {
line-height: 1.5;
margin: 0.5em 0;

}

fieldset ul label {
display: inline;
width: auto;

}

input[type="'text'],
input[type="'password'],
input[type='email'],
input[type='url'],
input[type='email'],
input[type='date'],
input[type="number'] {
border: 1px solid #ccd1d9;
border-radius: 5px;
color: #656d78;
font-family: inherit;
font-size: inherit;
padding: 0.222em;
transition: border 300ms;

}

input[type="'text']:focus,
input[type="'password']:focus,
input[type='email']:focus,
input[type='url']:focus,
input[type='email']:focus,
input[type='date']:focus,

input[type="number']:focus {
border-color: #656d78;
outline: none;

}

Note that the type attribute of our inputs can be used to select them for styling. In
this case, we’ve styled them all identically, but it would also be possible to give each
one its own set of styles if desired.

The following screenshot shows how the form looks with this CSS. Feel free to get
creative and write your own styles for the form.

Username Choose a username...

Password Choose a secure password.

Name First Last
Email address you@example.com
Website Don't forget the http://...

Birth date mm/dd/yyyy

Select your favorite beverage(s)

Please select at least three but no more than six beverages.

Water

o

Juice
Cider
Soda
Milk
Coffee

B @

(]
@

i A

Tea

Hot Chocolate

B @

Beer

Wine

]

How many days of
the year do you
drink a beverage? |How many days?

Credit Card Type

> Visa
© Mastercard
> American Express

> Discover

Credit card number | 3000 30000 X000 00X

o Click here to accept our terms of service

Sign me upl |

What just happened?

We took a look at some of the new HTMLS5 input types and how to use them properly to
put together a web form. We saw how to use the fieldset and legend tags to group fields
together under a heading and how to associate labels with form elements. We learned the
proper use of the text, password, email, url, date, checkbox, radio, and number input

types.

Pop quiz — working with HTML5 form elements

Q1. HTMLS5 provides several new types of <input> elements for us to work with (url,
email, number, and so on). What happens to these form elements in older browsers that
don’t have explicit support for them?

—

. They appear and function as though they were of type text.
2. They aren’t visible on the page.

3. They appear as checkboxes.

4. They cause an error and render the form unusable.

Setting focus

If you head over to http://google.com, you’ll see that they’ve made it really easy for you to
conduct a web search—as soon as the page is loaded in the browser, the cursor is blinking
in the search field. There are other sites on the Web that behave this way too, making it
quick and easy to get started with filling in a form.

Any time you have a page where the site visitor’s main task will be to complete a form,
you can make things easy for your site visitor by placing the cursor into the first form field
so they can just start typing. And it’s wicked easy with jQuery. Here’s how to do it.

http://google.com

Time for action — setting focus to the first
field

We’ll keep working with the sample form we set up in the previous example. Perform the
following steps to set the focus to the first field in the form.

1. Open up your empty scripts.js file and add a document ready statement, as
follows:

$(document).ready(function(){
// 0Our code goes here

1),

2. Next up, we want to select the first field in our form. There are many different ways
to go about this. While we could use the id attribute of the first field, this is not very
flexible. If we update our form later to add a new field at the beginning, we’d also
have to remember to update our JavaScript. Instead, let’s just find the first input
element, as follows:

$(document) .ready(function(){

$('input').first();
1)
This works pretty well, but there are several cases where we would not like to set the
focus on the first input element, for example, if the first element is disabled, or if it’s
a button, a checkbox, or a radio button. Let’s add a filter to remove these, as follows:

$('input').first().not(':radio, :checkbox, :button, :disabled, :file, :image
, ireset, :submit');

We won’t bother setting the focus to radio buttons, checkboxes, buttons, disabled
form elements, file inputs, image inputs, reset buttons, or submit buttons.

3. All that’s left to do is to call the focus() method for the selected element, as follows:

$('input').first().not(':radio, :checkbox, :button, :disabled, :file, :image
, 'reset, :submit').focus();

Now, if you refresh the page in the browser, you’ll see that the cursor is blinking in
the Username field of the form—the very first field.

What just happened?

We used a couple of lines of jQuery to move the focus to the first field in our form to
make it easy for our site visitors to jump right in to completing our form. It was as simple
as selecting the first form element and then calling the focus() method for that element.

Validating site visitor entry

Sometimes, it can feel frustrating for a site visitor when they have to submit a form several
times over, correcting errors that they’ve made while filling it out. Without JavaScript, the
only way to validate the information that the site visitor has entered is to wait for them to
submit the form, then identify the issues on the server, and send back a page that contains
the form along with any error messages that might help the site visitor correct the
problem.

Showing errors as soon as they occur goes a long way towards making your form feel
snappy and responsive and helping your site visitors submit the form correctly on the first
try. In this section, we’ll learn how to use the Validation plugin from Jorn Zaefferer. This
plugin is powerful and flexible and can handle validation in several different ways. We’ll
take a look at the most straightforward way of adding client-side validation to your form.

Time for action — validating form values
on the fly

We’ll continue working with the form we’ve been creating through the last three sections.
Perform the following steps to validate user entry into the form:

1. The first thing we’ll do is download the Validation plugin and get it attached to our
page.

Head over to http://jqueryvalidation.org/ and click on the Download button in the
Files section to download a ZIP file.

2. Open up the ZIP file and take a look at what we’ve got.

There’s a lot going on here—there are several different JavaScript files, some demos,
a change log, and so on. Remember how I said this plugin is powerful and can handle
lots of different approaches to validation? That’s what all this is for—handling form
validation in just about any old crazy situation you might find yourself in.

Luckily, though, our situation is pretty simple, so we don’t have to do anything
complicated.

3. Inside the dist folder, find jquery.validate.min.js and copy it to your own
scripts folder. Then, attach it to your HTML page, as follows:

<script src="scripts/jquery.js"></script>
<script src="scripts/jquery.validate.min.js"></script>
<script src="scripts/scripts.js"></script>

4. Next, we’re going to go back to our form and add some information that the
Validation plugin will use. Let’s start with the Username field:
<p>
<label for="username">Username</label>
<input type="text" name="username" id="username" placeholder
="At least 5 characters long" minlength="5" maxlength
="20" required/>
</p>
This is a required field—any site visitor who completes this form must select a
username, so we’ll simply add an attribute called required. This attribute is for form
validation purposes, but we could also use it to create a special style in our CSS for
the required fields in the form.

All usernames must be between five and 20 characters long. So we’ve added the
minlength and maxlength attributes.

5. Next up is the Password field, which is also a required field. So let’s add the
required attribute, as follows:

<p>
<label for="password">Password</label>

http://jqueryvalidation.org/

<input type="password" name="password" id
="password" required placeholder
="Choose a secure password"/>

</p>

While we’re at it, let’s add the required attribute to the e-mail field too:

<p>
<label for="email">Email address</label>
<input type="email" name="email" id="email" placeholder
="you@example.com" required/>
</p>
. Next, let’s take a look at that list of favorite beverages. Remember we included a note
in the fieldset to indicate that the site visitor was to select at least three but not more
than six beverages? We can actually enforce that with the Validation plugin. Go to the
first checkbox in the series and add the minlength and maxlength attributes as
follows:

<input type="checkbox" name="favorites[]" id
="bev-water" value="bev-water" maxlength="6" minlength
="3" required/>
<label for="bev-water'">Water</label>
</1li>

We only have to add this on the first checkbox and not on all of them. Validation is
smart enough to figure out that we’re referring to the entire set of checkboxes.

. Now, let’s take a look at the field where we ask the site visitor how many days per
year they drink a beverage. Obviously, as there are only 365 days in a year, it’s the
highest number they could enter in this field. So we’ll add a max attribute to specify
the highest possible number:

<p>

<label for="days'">How many days per year do you drink a beverage?
</label>

<input type="number" name="days" id="days" max="365"/>
</p>
. This brings us to the payment section. Whatever we’re selling, it’s not free, so we’re
going to require both the credit card type and credit card number. To require entry for
radio buttons, we just have to add the required attribute to the first radio button in
the set, as follows:

<input type="radio" name="cc-type" id="cc-visa" value

="cc-visa" required/>

<label for="cc-visa">Visa</label>
</1i>

We don’t have to make any other changes to the radio button series.

. Now, let’s handle the credit card number itself. We need to add the required
attribute, as shown in the following code. We also need to add a creditcard class to

10.

11.

12.

validate that the number entered is, in fact, a valid credit card number:

<p>
<label for="cc-number">Credit card number</label>
<input type="text" name="cc-number" id
="cc-number" placeholder="XXXXXXXXXXXXXXXX" class
="creditcard" required/>
</p>
At the bottom of our form, we have a checkbox to accept the terms of service. This is
required too, so we’ll add the required attribute, as follows:

<input type="checkbox" name="tos" id
="tos" required value="tos"/>
<label for="tos">Click here to accept our terms of service</label>
</1i>
Now, we just need to call the validate() method that Validation makes available to
us. In scripts. js, inside the document ready statement, select the form and call the
validate() method, as shown in the following code:

$(document) .ready(function(){

$('input').first().not(':radio, :checkbox, :button, :disabled, :file, : image
, ireset, :submit').focus();

$('#account-form').validate();

1)

Now, if you refresh the page in the browser, you’ll see that you can’t submit the form
without filling anything in—the required fields will be marked with an error message
that says the field is required. If you try to type an invalid URL or e-mail address into
the Website or Email address fields, you’ll get an error message that will let you
know there’s a problem to be corrected. However, those error messages are in a weird
place for our checkboxes and radio buttons, as shown in the following screenshot:

This field is required. Visa
Mastercard
American Express

Discover

This doesn’t really help people understand exactly what’s going on. Luckily,
Validation allows us to add our own error messages to the page wherever we’d like
them to display.

13.

We’re going to add an error message before the list of credit card type radio buttons:

<fieldset>
<legend>Payment Info</legend>
<fieldset>
<legend>Credit Card Type</legend>
<label for="cc-type" class="error"></label>

</fieldset>
</fieldset>

We’ll add a <label> element to the document where we’d like the error message to
show. The for attribute will refer to the name of the field—in this case, all the radio
buttons share the cc-type name. We’ll add a class attribute of error.

Tip
In this case, the for attribute of our label is referring to the name attribute of the field
rather than the id attribute. This is a special case created by the Validation plugin. If

you’re not using custom error messages with the Validation plugin, then your label’s
for attribute should always reference the id attribute of the form element.

Next, we don’t want any error messages showing up on the page unless they’re
needed. We’d also like them to display in red so that they stick out and are easy to
find. Open your styles.css file and add some styles for the error messages, as
shown in the following code:

fieldset label.error {
color: #e75845;
display: none;
margin-left: 0.5em;
width: auto;

}

We’re adding a width value as we’ve set the other labels to a width of 20 percent.
We’re also adding a little margin for some space between the error message and the
field it’s referring to.

Now, if you refresh the browser and try to submit the form without selecting a credit
card type, you’ll get the error message in a much better place, as shown in the
following screenshot:

14.

15.

This field is required.
Visa
Mastercard
American Express

Discover

Next, we need to do the same thing for our favorite beverages and our Terms of
Service checkbox. The following code shows what we’ll add as our favorite
beverages:

<fieldset>
<legend>Beverage Info</legend>
<fieldset>
<legend>Select your favorite beverage(s)</legend>
<p>Please select at least three but no more than six beverages.</p>
<label for="favorites[]" class="error'"></label>

</fieldset>
</fieldset>
The following code is what we’ll add to the terms of service checkbox:

<fieldset>

<label for="tos" class="error'"></label>
</fieldset>

Now, if you refresh the page in the browser and try to submit the form without
completing the required fields or try to enter invalid information in the form, you’ll
get error messages in the appropriate places.

While our error messages are now showing up in better spots on the page, they’re not
always very helpful. For example, if we only select two beverages, the error message
reads Please enter at least 3 characters.

The default error messages work in many cases, but not in all cases. Luckily, it’s easy
to customize the error messages. All we have to do is add a title attribute to the
form element with the error message we’d like to show. Add this title attribute to
the first <input> element in beverages, as shown in the following code:

<input type="checkbox" name="favorites[]" id="bev-water" value="bev-
water" minlength="3" maxlength="6" required title="You must select at
least three but not more than six beverages">

Now, the error message makes more sense for our site visitors. You can add a title
attribute that contains an error message specific to that field to any of the form
elements in the form.

What just happened?

We used the Validation plugin to add some simple client-side validation to our form. The
simplest way to use the Validation plugin is to simply add some class names and attributes
to your form elements. Validation will take care of the rest—it’s smart enough to
recognize the HTMLS5 input types and validate them, and it offers some other useful
validation rules such as required fields, a maximum number value, minimum and
maximum lengths, and credit card numbers. We dropped in a bit of CSS to style the error
messages the way we wanted.

Improving the appearance

If you’ve tried styling web forms with CSS, then you’ve probably discovered that some
form elements, such as text inputs and buttons, are pretty easy to style. There are a few
quirks, but once you get those figured out, you can get those form elements to look just
about any way you’d like. Other form elements, however, are much more stubborn and
don’t respond much, if at all, to CSS styles. It’s so frustrating to design a lovely form only
to realize that it’s technically impossible.

These troublesome form elements are as follows:

<select>

<input type="file">
<input type="checkbox">
<input type="radio">

Not only are these four form elements impossible to style with CSS, but they also look
radically different in different browsers and operating systems, leaving us with little
control over the appearance of our form. Let’s see how Lutrasoft’s Fancyform plugin can
help us out.

Time for action — improving form
appearance

Perform the following steps to take advantage of the styling options made possible by the
Fancyform plugin:

1. We’ll get started with a basic HTML file and associated files and folders, just like we
set up in Chapter 1, Designer, Meet jQuery. We’ll work with a new HTML file, but
let’s keep using the styles we set up for the earlier forms. Open your styles.css file
and paste in the styles we used for our forms in the previous sections.

2. For this example, in the body of the HTML document, we’re going to set up a simple
form with examples of each type of hard-to-style form element. Get started with a
<form> tag, as follows:

<form id="pretty-form" action="#">
</form>

3. Then, inside our form, we’ll add our form elements. We’ll start off with a select
drop-down option, as follows:

<fieldset>
<legend>Select your favorite juice</legend>
<p>
<label for="juice">Favorite Juice</label>
<select id="juice" name="juice">
<option>Select one</option>
<option value="orange">0Orange Juice</option>
<option value=''grape'">Grape Juice</option>
<option value="grapefruit">Grapefruit Juice</option>
<option value="cranberry">Cranberry Juice</option>
<option value="tomato">Tomato Juice</option>
<option value="pineapple">Pineapple Juice</option>
<option value="apple">Apple Juice</option>
</select>
</p>
</fieldset>

We’re following the same rules we followed for the previous form, making sure the
form works properly and is accessible.

Exactly what this <select> element looks like will depend on your browser and
operating system, but the following screenshot shows how mine looks in Google
Chrome on Mac OS X:

Favorite Juice Select one

4. Next, we’ll add a file input, as shown in the following code:

<fieldset>
<legend>Fruit Picture</legend>
<p>
<label for="fruit-photo">Upload a photo of your favorite
fruit</label>
<input type="file" id="fruit-photo" name="fruit-photo"/>
</p>
</fieldset>

It’s hard to believe that this innocent-looking little tag could be the source of so much
styling headache, but there you are. The following screenshot shows how it looks in
Google Chrome on Mac OS X:

Upload a photo of
your favorite fruit Choose File | Mo file chosen

. Next up, let’s add a few checkboxes, as follows:

<fieldset>
<legend>Which hot beverages do you enjoy?</legend>

 <input type="checkbox" name="hot-bevs[]" id="hot-
coffee">
<label for="hot-coffee">Coffee</label>
</1li>

<input type="checkbox" name="hot-bevs[]" id="hot-chocolate'">
<label for="hot-chocolate">Hot Chocolate</label>
</1i>

<input type="checkbox" name="hot-bevs[]" id="hot-tea">
<label for="hot-tea'">Tea</label>
</1i>

</fieldset>

If you refresh the page in the browser, the checkboxes will appear as shown in the
following screenshot:

| Coffee
Hot Chocolate

Tea

. Then, let’s add some radio buttons, as follows:

<fieldset>
<legend>Select your favorite soft drink</legend>

<input type="radio" name="soft-drinks" id="soda"/>
<label for="soda'">Soda</label>

</1i>

<input type="radio" name="soft-drinks" id="sparkling-water"/>
<label for="sparkling-water'">Sparkling water</label>

</1i>

<input type="radio" name="soft-drinks" id="iced-tea"/>
<label for="iced-tea">Iced Tea</label>

</1i>

<input type="radio" name="soft-drinks" id="lemonade"/>
<label for="lemonade">Lemonade</label>

</1i>

</fieldset>

If you refresh the page in the browser, the radio buttons will appear as shown in the
following screenshot:

Soda
Sparkling water
lced Tea

Lemonade

. Finally, the last thing that we’ll do is add a few elements to our form that are easy to
style, so that we can learn how to style these to match our custom styles:

<fieldset>
<legend>Some other stuff about me</legend>
<p>
<label for="name">My name</label>
<input type="text" id="name" name='"name"/>
</p>
<p>
<label for="about-me">About me</label>
<textarea rows="10" cols="40" id="about-me" name="about-me">
</textarea>
</p>
</fieldset>
<p class="buttons">
<input type="submit"/>
<input type="reset"/>
</p>

About me

We’ve already written CSS to style the fieldset, legend, text input, and submit input.
We haven’t yet styled the text area or the reset input. We’ll tackle these in a bit.

What just happened?

Now, we’ve got our unstyled form set up. Exactly what our form looks like will depend on
your browser and operating system. We followed all the rules established earlier in this
chapter for setting up a correct and accessible form. Except that this time, we’ve included
some difficult-to-style form elements. Let’s take a look now at how we can use the
Fancyform plugin to get our form to look better and uniform across as many browsers as

possible.

Styling the unstyleable

If you want to take a little time out and try writing some CSS to style these form elements,
you’ll see that there’s not much that touches them. Some of them don’t seem to be affected
by CSS at all, and when they are, it’s not always in the way that you’d expect. No wonder

these form fields give everyone so much trouble. This is when jQuery comes to the rescue.

Time for action — adding Fancyform to
style the unstyleable

Perform the following steps to use the Fancyform plugin to gain styling control over your
form elements:

1. Let’s get the Fancyform plugin and take a look at how it works. Head over to
https://github.com/Lutrasoft/Fancyform and click on the Download ZIP button.
2. Unzip the file and take a look inside the folder.

This is pretty straightforward, right? We’ve got a demo folder, a README file, the
Fancyform JavaScript, and some other associated scripts—we’ve seen this all before.
We also see a v2 folder—the developer is starting on the next version of the plugin. If
you read the notes in GitHub carefully, you’ll see that v2 isn’t quite ready for prime
time yet, so we’ll just ignore that for now.

3. Next, we need to add the Fancyform script to our own project and attach it to our
HTML page. Copy jquery.fancyform.js to your own scripts folder and attach the
Fancyform script between jQuery and your own scripts. js file, as follows:

<script src="scripts/jquery.js"></script>

<script src="scripts/jquery.fancyform.js"></script>
<script src="scripts/scripts.js"></script>

</body>

</html>

4. Open your scripts.js file and add the document ready statement, as follows:

$(document).ready(function(){
// Our code will go here

1)

5. Next, select all the <select> elements and call the transformSelect () method, as
follows:

$(document).ready(function(){
$('select').transformSelect();

1)

If you refresh the page in the browser now, you’ll see that the <select> element is
replaced by a bit of text. Clicking on the text opens up a list of options. Then,
clicking on one of the options changes the bit of text to the option we clicked. The
following screenshot shows what happens:

https://github.com/Lutrasoft/Fancyform

The basic functionality is present; we just have to style everything with CSS to look
the way we’d like.

6. Let’s get started with the styles by styling the select box itself. Open your
styles.css file and add the following styles:

.transformSelect {
display: inline-block;
vertical-align: middle;
width: 200px;

}

.transformSelect 1i {
margin: O;
position: relative;

}

.transformSelect > 1i > span {
background: white;
border: 1px solid #ccd1d9;
border-radius: 5px;
color: #656d78;
cursor: pointer;
display: block;
left: 0;
line-height: 20px;
margin: O;
overflow: hidden;
padding: 3px 5pXx;
text-overflow: ellipsis;
top: O;
white-space: nowrap;

}

Refresh the page in the browser and you’ll see that the select box is placed correctly
and has a border and border radius that match the styles we’ve created so far for our
forms.

7. Now, we’ll create the arrow on the right-hand side of the drop-down box:

.transformSelect > 1i > span:before {
border-left: 1px solid #ccd1d9;
bottom: 4px;
content: '';
position: absolute;
right: 2em;
top: 4px;

}

.transformSelect > 1i > span:after {
border-left: 7px solid transparent;
border-right: 7px solid transparent;
border-top: 10px solid #ccd1d9;
content: '';
height: 0;
margin-top: -4px;
position: absolute;
right: 10px;
top: 50%;
width: 0;

}

This is the CSS triangle technique we’ve used many times already. Refresh the page
in the browser and you’ll see that our select box is looking pretty good, as shown in
the following screenshot:

Favorite Juice Select one...

8. Now, let’s tackle the list of options that appears after we click on our styled select
drop-down menu, as follows:

.transformSelect li.open > span {
border-radius: 5px 5px 0 0;

}

.transformSelectDropdown {
background: white;
border: 1px solid #ccd1d9;
border-radius: 0 0 5px 5px;
border-top: 0O;
box-shadow: 5px 5px 10px rgba(0,0,0,0.2);
position: absolute;
width: 198px;
b

.transformSelectDropdown span {
cursor: pointer;
display: block;
padding: 0.222em 0.5em;

}

.transformSelectDropdown span:hover {
background: #ccecf8;

}

.transformSelectDropdown li:last-child span {
border-radius: 0 @ 5px 5px;

}

This is all pretty straightforward—no magic tricks here. Refresh the page in the
browser and you’ll see that we’ve got a perfectly styled drop-down form element, as
shown in the following screenshot:

Orange Juice

Grape Juice

: Grapefruit Juice
Upload a photo of

" o N L .
your favorite fruit “ranberry Juice
Tomato Juice

Pineapple Juice

el Apple Juice

. Next up, let’s tackle that file input. This is one of the toughest elements to style as it
looks wildly different in different browsers. In your scripts. js file, select all file
inputs and call the transformFile() method, as follows:

$(document).ready(function(){
$('select').transformSelect();
$(':file').transformFile();

1),

What does : file mean? That’s one of the shortcut selectors that jQuery makes
available for us. Using the : file selector is the same as using the following line of
code:

input[type='file']
However, it requires a lot less typing.

Refresh the page in the browser, and you’ll see that the file input is now replaced by a
bit of text, as shown in the following screenshot:

10.

11.

Clicking on the text opens up your system file dialog to allow you to browse and find
a file to upload. Just like with the select drop-down box, we’ve got the functionality
down; we just have to write some CSS to make it look the way we’d like.

First, we’ll style the wrapper element that contains our styleable version of the file
input. Add the following lines to styles.css:

.customInput {
cursor: pointer;
display: inline-block;
vertical-align: middle;

}

.customInput:after {
clear: both;
content: '';
display: table;

}

See how we’ve styled the :after pseudoclass? This is just a way of clearing floats—
we’re going to be floating the elements inside this container, and we want to make
sure they are cleared.

Next, we’ll style the element that will show the path to the file we’ve selected. In
styles.css, add the following lines:

.inputPath {
border: 1px solid #ccd1d9;
border-right: © none;
border-radius: 5px 0 0 5px;
color: #656d78;
cursor: pointer;
display: block;
float: left;
padding: 0.222em;
width: 188px;

b

.customInputMouseOver .inputPath {
border-color: #addf7a;

}

Refresh the page in the browser and you’ll see that we’re getting there—our file input
looks half-styled, as shown in the following screenshot:

Upload a photo of

your favorite fruit

12. Now, we’ll style the button part of the element. Add the following lines to
styles.css:

.inputButton {
background: #ald36e;
border: 1px solid #ald36e;
border-radius: 0 5px 5px 0;
color: white;
cursor: pointer;
display: block;
float: left;
padding: 0.222em 0.75em;
-webkit-transition: background 300ms;
-moz-transition: background 300ms;
-ms-transition: background 300ms;
-o-transition: background 300ms;
transition: background 300ms;

}

.custonInputMouseOver .inputButton {
background: #addf7a;

}

Now, if you refresh the page in the browser, you’ll see that our file input is styled
consistently with our other form elements, and even better, has a consistent style
when viewed in different browsers.

Upload a photo of

your favorite fruit

That wasn’t so hard, right? Let’s keep going.

13. Let’s take a look at the checkboxes. Just like with the other elements, our first step in
customizing their appearance is to open up our scripts.js file, select the elements
we want to work with, and call the right transform method. Inside the document
ready statement, add the following bit of code:

$(':checkbox').transformCheckbox({
base: 'class',

trigger: 'parent'

1),

Once again, we’ve used jQuery’s shortcut selector (: checkbox) to select all the
checkboxes on the page. Then, we called the transformCheckbox() method, but this
time, we passed a few options to the method.

First, the transformCheckbox() method requires us to specify a base option. This
option has two possible values: class or image. If we choose the class option, then
the Fancyform plugin adds a element with a class to our document, and we
can style that with CSS to our heart’s content. If we choose the image option, then
Fancyform will replace our checkboxes with an image. We’d then have to set a few
more options—one for the image path for a checked checkbox and one for an
unchecked checkbox.

The image option is a lot less flexible, and it requires loading up at least two
additional resources on our page. With the power of CSS3 on our side, there’s not
much we can’t accomplish if we choose the class option.

Second, the trigger option also has two possible values: self or parent. With the
self option, clicking only on the checkbox itself will result in the checkbox being
checked. With the parent option, clicking anywhere on the parent element will check
the checkbox. That’s a lot easier for our site visitors, so we’ll go with the parent
option.

If you refresh the page in the browser, you’ll see that the checkboxes have simply
disappeared, as shown in the following screenshot:

While not visible, our checkboxes have been replaced by elements. Now, we
just have to write a bit of CSS to style them.

14. In styles.css, add the following lines to style the elements:

.trans-element-checkbox {
border: 1px solid #ccd1d9;
border-radius: 3px;
display: inline-block;
height: 1em;
margin: @ 0.5em 0 0;
position: relative;
vertical-align: text-bottom;
width: 1em;

15.

16.

.trans-element-checkbox.checked {
background-color: #ccecf8;
border-color: #55cle7;

}

Refresh the page in the browser, and you’ll see our empty checkboxes appear. Click
on the checkbox or the text next to it, and you’ll see that the box turns blue with a
blue border, as shown in the following screenshot:

Coffee

Hot Chocolate

Toar
1ea

At least it’s an indicator that a box has been clicked, but our site visitors will no
doubt be accustomed to seeing a tick mark appear in the checkboxes.

We’ll use a well-known icon font, Font Awesome, to create the tick marks in our
checkboxes. Head over to http://fortawesome.github.io/Font-Awesome/ and click on
the Download button to grab a ZIP file.

Unzip the file. Copy the fonts folder to your own project file, where it will sit
alongside your styles and scripts folders. Then, open the css folder and copy
font-awesome.css to your own styles folder. Now, your project files should look
like those shown in the following screenshot:

Name

v [fonts
M fontawesome-webfont.eot
T fontawesome-webfont.svg
+ fontawesome-webfont.ttf
M fontawesome-webfont.woff
| FontAwesome.otf

b [images

= index.html
b [l scripts
v [styles

B styles.css

In the head section of the HTML document, add the Font Awesome style sheet,
before your own styles.css file:

<head>
<title>Chapter 12: jQuery for Designers</title>
<link rel="stylesheet" href="styles/font-awesome.css">

http://fortawesome.github.io/Font-Awesome/

17.

18.

19.

<link rel="stylesheet" href="styles/styles.css'">
</head>

Now, the Font Awesome icon font is all loaded up on our page and ready to use.

Now, head back into styles.css and we’ll add a bit of code to show tick marks in
the checkboxes, as follows:

.trans-element-checkbox.checked:before {
content: '\f00Oc';
font-family: 'FontAwesome';
height: 1em;
left: 50%;
margin: -0.7em 0 0 -0.5em;
position: absolute;
top: 50%;
width: 1em;
}

Now, if you refresh the page in the browser, you’ll see that clicking on the
checkboxes turns them blue and shows a tick mark, as shown in the following
screenshot:

Perfect! Just what our site visitors will expect. The good news is that as we’re using
CSS and an icon font to create our checkboxes, we can make them any size, and
they’ll appear on the page crisp and clear, even on retina displays.

Now, let’s tackle those radio buttons. They function and are styled very similarly to
the checkboxes. First, in the scripts. js file, add the following bit of code inside the
document ready statement to replace the radio buttons with spans that we can style:

$(':radio').transformRadio({
base: 'class',
trigger: 'parent'

1);

This is very similar to the code we used for checkboxes.

Next, let’s add some styles for the radio buttons. In styles.css, add the following
lines of code:

.trans-element-radio {
border: 1px solid #ccd1d9;
border-radius: 50%;
display: inline-block;

20.

height: 1em;
margin: @ 0.5em 0 O;
position: relative;
vertical-align: text-bottom;
width: 1lem;

}

.trans-element-radio.checked {
border-color: #55cle7;

}

.trans-element-radio.checked:before {
color: #55cle7;
content: '\f111';
font-family: 'FontAwesome';
font-size: 0.8em;
height: 1em;
left: 50%;
line-height: 1;
margin: -0.45em 0@ @ -0.5em;
position: absolute;
text-align: center;
top: 50%;
width: lem;

}

Once again, there are a lot of similarities between this CSS code and the CSS we
used for checkboxes. We used a 50 percent border radius for the radio buttons as they
are usually circular rather than squared. We also used a different icon from Font
Awesome for the checked state of the radio buttons. Refresh the page in the browser,
and you’ll see that the radio buttons behave as expected when we click on them, as
shown in the following screenshot:

Soda

Sparkling water

lced Tea

Lemonade

Just like with the checkboxes, we can easily resize the radio buttons to any size we
might like. We are also free to experiment with border colors, sizes or colors,
background colors or gradients, box shadows, and so on to get just the appearance we
need for our design, and the design will appear consistently across different browsers.

Now, the only thing left to style is the text area and the reset button that weren’t
styled earlier. Inside styles.css, add the following lines to style these elements:

textarea {
border: 1px solid #ccd1d9;
border-radius: 5px;
color: #656d78;
font-family: inherit;
font-size: inherit;
padding: 0.333em;
transition: border 300ms;

}

textarea:focus {
border-color: #656d78;
outline: none;

}

input[type='reset'] {
background: #ccdi1d9;
border: O none;
border-radius: 5px;
color: white;
cursor: pointer;
font-family: inherit;
font-size: inherit;
padding: 0.333em lem;
transition: background 300ms;

}

input[type='reset']:hover {
background: #abaebc;

}

Now, if you refresh the page in the browser, you’ll see that all of our form elements
are styled consistently and appear the same across browsers, as shown in the
following screenshot. Great work!

My name

About me

Have a go hero — a fully custom form

Combine what you’ve learned about form validation with the Validation plugin and what
you’ve learned about customizing form elements with the Fancyform plugin to create a
new form. Design a custom style for all elements in the form (be sure to use some of the
unstyleable form elements) and also make custom validation rules for the fields in the
form.

Summary

Well, this wraps up the chapter on forms. We learned how to properly use the new
HTML5 form elements to create a form that functions perfectly and is accessible to boot.
We learned how to focus the first field in the form, validate our site visitor’s form input,
and style those stubborn and notoriously unstyleable form elements. Now, you’ve got an
arsenal of tools on your side to create gorgeous-looking forms that enhance your site
visitors’ experience on your site. And the best of all, they all degrade gracefully for users
with JavaScript disabled as we approached our forms with the progressive enhancement
mindset—by first building a working form, and then layering in enhancements for site
visitors whose browsers support them.

I know that JavaScript can be a scary subject for designers. Kudos to you for sticking with
me to the end of the book! I hope that you now have a basic understanding of jQuery and
feel sure that you’ll be able to tackle your next JavaScript challenge with confidence. You
know how to put the jQuery library to good use to enhance your sites. You know how to
find good plugins to make coding interactions quick and easy. You know how CSS and
JavaScript can work together to enhance the site visitor’s experience on your site. You also
know that there is no shortage of online tutorials, resources, help forums, articles, and
discussions to help you along if you get stuck.

For its part, jQuery gets better with every release—sleeker, faster, and more capable. The
jQuery team is careful to keep the documentation updated, so you’ll always be able to
figure out just how to use each method. The jQuery team is smart and quick, and new
jQuery updates are being announced on a regular schedule. All of this points to a lively
and useful library that will only continue to grow in popularity across the Web. It’s a
favorite of many coders, from experienced hackers to beginners like you.

I hope that you’ve enjoyed this book and that it’s given you many new ideas to design and
build interactive elements for your sites. Be sure to stay connected to the jQuery
community—it will be your best resource moving forward while further improving and
growing your JavaScript skills.

Appendix A. Pop Quiz Answers

Chapter 1, Designer, Meet jQuery

Pop quiz — setting up a new project

Chapter 2, Enhancing Links

Pop quiz — working with events

a
Bl

Chapter 4, Building an Interactive
Navigation Menu

Pop quiz — understanding the cascade in CSS

Chapter 5, Showing Content in
Lightboxes

Pop quiz — loading content into Colorbox

Chapter 6, Creating Slideshows and
Sliders

Pop quiz — working with jQuery chaining

Chapter 7, Working with Responsive
Designs

Pop quiz — choosing breakpoints for responsive
design

Chapter 8, Getting the Most from Images

Pop quiz — building accessible pages

Chapter 9, Improving Typography

Pop quiz — sizing text in responsive designs

Chapter 10, Displaying Data Beautifully

Pop quiz — building correct tables

Chapter 11, Reacting to Scrolling

Pop quiz — using Scrollorama in responsive design

Chapter 12, Improving Forms

Pop quiz — working with HTML5 form elements

Index
A

accessHide class / Time for action — creating a pie chart

action attribute / Time for action — setting up an HTML5 web form
addClass method / Time for action — adding some final touches
AJAX / Video player

alt option / Time for action — customizing PowerTip

amp class / Time for action — creating a bold text block with SlabText
animations

o horizontal animation, creating / Creating other animations, What just happened?
e appendTo() method / Time for action — creating a simple crossfade slideshow, Time
for action — creating a pie chart

¢ arctext() method / Time for action — setting text on a curve with the ArcText plugin
e ArcText plugin

o text, setting on curve with / Time for action — setting text on a curve with the

ArcText plugin

o URL / Time for action — setting text on a curve with the ArcText plugin
e argument / Objects

background-size property / Using fullscreen backgrounds
o URL, for information / Time for action — setting up the HTML file

barMargin option / Time for action — showing data in graphs and charts
Basic Slider plugin
o downloading, URL / Using the Basic Slider plugin
o about / Using the Basic Slider plugin
o used, for creating slider / Time for action — building a Basic Slider, What just

happened?
behavior, Colorbox

o customizing / Customizing Colorbox’s behavior
bold text block

o creating, with SlabText / Creating bold text blocks, Time for action — creating a
bold text block with SlabText

branches / Time for action — downloading and attaching jQuery

Caption2 option, Cycle2 plugin / Time for action — building a slideshow with Cycle2
carousel

o creating, with Cycle2 plugin / Time for action — building a Cycle2 carousel

o combining, with Cycle2 slideshow / Combining a carousel with a slideshow

o connecting, with slider / Time for action — connecting the carousel and the slider
CDN

o about / Another option for using jQuery
chaining / Time for action — showing custom content in tooltips
charts

o creating, from HTML tables / Time for action — showing data in graphs and
charts, What just happened?
o height, setting / Time for action — calculating the ideal size for charts and graphs
o width, setting / Time for action — calculating the ideal size for charts and graphs
checkbox
o adding / Time for action — improving form appearance
class attribute / Time for action — validating form values on the fly
cloudy weather forecast

o parallax effect, adding to / Time for action — creating a parallax effect, What just
happened?
Colorbox
URL / Time for action — setting up a simple photo gallery
o behavior, customizing / Customizing Colorbox’s behavior
o custom transition, creating / Time for action — using a custom transition

o fixed size, setting for / Time for action — setting a fixed size
colorbox() method / Time for action — setting up a simple photo gallery

Colorbox plugin
o used, for creating simple photo gallery / Time for action — setting up a simple
photo gallery
columnWidth option / Time for action — creating a masonry layout, Time for action —
creating a tiled layout with different width items
content / Content
creditcard class / Time for action — validating form values on the fly
crossfade slideshow
o about / A simple crossfade slideshow
o creating, from scratch / Time for action — creating a simple crossfade slideshow,
What just happened?
curve
o ArcText plugin used, for setting text on / Time for action — setting text on a
curve with the ArcText plugin
custom Colorbox
o creating / Have a go hero — create a custom Colorbox
custom content

(e]

o loading, in tooltips / Time for action — showing custom content in tooltips
e custom tooltips

o about / Simple custom tooltips

o creating / Time for action — simple custom tooltips, What just happened?

o used, for navigation bar enhancing / Time for action — building a fancy

navigation bar, What just happened?
o content, loading in / Showing other content in tooltips, Time for action —

showing custom content in tooltips
e Cycle2 carousel controller
o creating / Time for action — creating the carousel controller
e Cycle2 plugin
o about / Creating a Cycle2 slideshow
o used, for building slideshow / Time for action — building a slideshow with

Cycle2
o URL / Time for action — building a slideshow with Cycle2, Time for action —

building a Cycle2 carousel

o download, URL / Time for action — building a slideshow with Cycle2

o used, for building carousel / The Cycle2 carousel, Time for action — building a
Cycle2 carousel

o documentation, URL / Time for action — building a Cycle2 carousel

e Cycle2 slideshow

o building, points / Planning a slideshow or slider

o building, with Cycle2 plugin / Time for action — building a slideshow with
Cycle?

o customizing / Time for action — building a slideshow with Cycle2

o carousel, combining with / Combining a carousel with a slideshow, Setting up
the carousel

D

e data grid

o about / A basic data grid

o creating / Time for action — creating a basic data grid

o customizing / Time for action — customizing the data grid
e DataTables plugin

o URL / Time for action — creating a basic data grid

o about / Time for action — customizing the data grid
e DesktopServer

o about / Video player
o URL, for downloading / Video player

eat method / Objects
end() method / Time for action — creating a simple crossfade slideshow

event / Time for action — creating simple tabs
event handler / Time for action — creating simple tabs

*focus pseudoclass

o styling / Styling the :focus pseudoclass

o Superfish menus, customizing / Time for action — customizing Superfish menus
-file selector

o about / Time for action — adding Fancyform to style the unstyleable
<figure> element

o using / Time for action — creating a masonry layout
fadeIn() method / Time for action — creating a simple crossfade slideshow
fadeOut() method / Time for action — creating a simple crossfade slideshow
fancy effects

o creating, with Lettering.js / Have a go hero — creating fancy effects with

Lettering.js

Fancyform plugin

o using / Time for action — adding Fancyform to style the unstyleable

o URL / Time for action — adding Fancyform to style the unstyleable
fancy login form

o creating, in lightbox / Time for action — creating a fancy login form
FAQ page

o HTML file, setting up / Time for action — setting up the HTML file, What just

happened?
o HTML document, moving around / Time for action — moving around an HTML

document

o new features, adding / Sprucing up our FAQ page, Time for action — making it

fancy
o finishing touches, adding / Time for action — adding some final touches, What

just happened?

fieldset

o about / Time for action — setting up an HTML5 web form
fieldset tag

o about / Time for action — setting up an HTML5 web form
file input

o adding / Time for action — improving form appearance
filter method / Time for action — creating simple tabs
first field

o selecting, in form / Setting focus, Time for action — setting focus to the first field
FitText

o URL / Time for action — sizing headlines to the screen width
fitText() method / Time for action — sizing headlines to the screen width
fitText option / Time for action — setting text on a curve with the ArcText plugin
FitVids

o used, for fitting videos in responsive designs / Using FitVids for responsive

videos, Time for action — resizing videos, What just happened?

o URL / Time for action — resizing videos
fitVids() method / What just happened?

fixed size
o setting, for Colorbox / Time for action — setting a fixed size
focus() method / Time for action — setting focus to the first field
Font Awesome
o URL / Time for action — adding Fancyform to style the unstyleable
for attribute / Time for action — setting up an HTML5 web form, Time for action —
validating form values on the fly
form
o first field, selecting / Setting focus, Time for action — setting focus to the first
field
o user entry, validating / Validating site visitor entry, Time for action — validating
form values on the fly, What just happened?
form appearance

o improving / Improving the appearance, Time for action — improving form
appearance, What just happened?
o Fancyform plugin, using / Styling the unstyleable, Time for action — adding
Fancyform to style the unstyleable
form elements

o about / Improving the appearance
fullscreen background image
o creating / Using fullscreen backgrounds, Time for action — creating a fullscreen
background image

o challenges / Using fullscreen backgrounds
fullscreen slideshow

o creating / Creating a fullscreen slideshow, Time for action — creating a
fullscreen slideshow
function, JavaScript / Functions

G

e GitHub
o URL / Time for action — simple custom tooltips
e graceful degradation / Progressive enhancement and graceful degradation
e graphs
o creating, from HTML tables / Time for action — showing data in graphs and
charts, What just happened?
o width, setting / Time for action — calculating the ideal size for charts and graphs
o height, setting / Time for action — calculating the ideal size for charts and graphs

*hover pseudoclass / :hover and .sfHover
<header> element / Time for action — creating a bold text block with SlabText

hamburger
o about / Responsive menus
headlines

o sizing, to screen width / Sizing headlines perfectly, Time for action — sizing
headlines to the screen width, What just happened?

horizontal animation
o creating, in windy weather forecast / Time for action — creating a horizontal
animation, What just happened?
horizontal drop-down menu
o about / The horizontal drop-down menu

o creating / Time for action — creating a horizontal drop-down menu
hoverlIntent plugin

o about / The hoverIntent plugin
HTML
o setting up, for Scrollorama / Time for action — setting up HTML for
Scrollorama, What just happened?
HTMLS5 specs
o URL / What just happened?
HTML5 web form
o about / An HTML5 web form

o setting up / Time for action — setting up an HTML5 web form, What just

happened?
o pop quiz / Pop quiz — working with HTML5 form elements

HTML document

o setting up, for adding scrolling effect / Setting up the document, Time for action

— setting up the HTML file, What just happened?
HTML file, FAQ page
o setting up / Time for action — setting up the HTML file
HTML tables
o graphs, creating from / Time for action — showing data in graphs and charts
o charts, creating from / Time for action — showing data in graphs and charts

<input> tag / Time for action — setting up an HTML5 web form
id attribute / Time for action — setting up an HTML5 web form
ImageOptim
o URL / Using fullscreen backgrounds
image option
o about / Time for action — adding Fancyform to style the unstyleable
images
o transition, modifying between / Time for action — using a custom transition
o lazy loading images / Lazy loading images
o zoomable images, creating / Creating zoomable images
fullscreen backgrounds, using / Using fullscreen backgrounds
initialHeight setting / What just happened?
initialWidth setting / What just happened?
innerHeight setting / What just happened?
innerWidth setting / What just happened?

Internet Explorer (IE) / Time for action — downloading and attaching jQuery
itemSelector option / Time for action — creating a masonry layout

(e]

JavaScript

o basics / JavaScript basics

about / Designer, Meet JavaScript
variables / Variables

objects / Objects

function / Functions

moving, from one element to other / Time for action — moving around an HTML
document

JavaScript basics

o progressive enhancement / Progressive enhancement and graceful degradation

o graceful degradation / Progressive enhancement and graceful degradation
o web pages, content / Content

o web pages, presentation layer / Presentation
o web pages, behavior / Behavior

O O O O O

JPEGmini
o URL / Using fullscreen backgrounds
JQuery

o about / What is jQuery?
o features / Why is jQuery awesome for designers?
o downloading / Time for action — downloading and attaching jQuery
o URL / Time for action — downloading and attaching jQuery, Another option for
using jQuer
o using, option / Another option for using jQuery
o plugin / Choosing a plugin
jQuery, features
o CSS selectors / It uses CSS selectors you already know
o HTML markup / It uses HTML markup you already know
o effects / Impressive effects in just a few lines of code
o plugin library / Huge plugin library available
o community support / Great community support
jQuery function / What just happened?
jQuery plugins
o URL / Designer, meet plugins
jQuery script
o starting with / Time for action — getting ready for jQuery, What just happened?
jQuery UI / A customized data grid
jQuery Visualize plugin
o on GitHub, URL / Time for action — showing data in graphs and charts

<label> tag / Time for action — setting up an HTML5 web form, Time for action —
validating form values on the fly
lazy loading images

o about / Lazy loading images

o page of images, setting up / Time for action — lazy loading images
legend tag

o about / Time for action — setting up an HTML5 web form
lettering() method / Time for action — using Lettering.js to style letters
Lettering.js
o used, to style letters / Styling individual letters, Time for action — using
Lettering.js to style letters, What just happened?
o URL / Time for action — using Lettering.js to style letters
o fancy effects, creating with / Have a go hero — creating fancy effects with
Lettering.js
letters
o styling, Lettering.js used / Time for action — using Lettering.js to style letters,
What just happened?
lightbox
o fancy login form, creating in / Time for action — creating a fancy login form,
What just happened?
o video, setting up in / Time for action — showing a video in a lightbox, What just
happened?
lightbox image gallery
o turning, into slideshow / Time for action — creating a slideshow, What just
happened?

masonry() method / Time for action — creating a masonry layout
Masonry library
o used, for creating tiled layouts / Time for action — creating a masonry layout,
What just happened?
o URL / Time for action — creating a masonry layout
max attribute / Time for action — validating form values on the fly
maxHeight setting / What just happened?
maxWidth setting / What just happened?
MeanMenu plugin, GitHub
o used, for making menus responsive / Time for action — making our menu

responsive, What just happened?
o URL / Time for action — making our menu responsive
menus, responsive design
o creating / Responsive menus, Time for action — making our menu responsive,
What just happened?
modular scale
o about / Sizing headlines perfectly
o URL / Sizing headlines perfectly

name attribute / Time for action — setting up an HTML5 web form
navigation
o adding / Adding navigation
o adding, to page sections / Time for action — adding navigation to sections of the
page, What just happened?
o adding, to weather forecast / Time for action — adding navigation to sections of

the page, What just happened?
navigation bar

o enhancing, with custom tooltips / Enhancing navigation with tooltips, Time for

action — building a fancy navigation bar, What just happened?
navigation menu

o customizing / Customizing the navigation menu

o *hover pseudoclass, using / :hover and .sfHover

o .sfHover class, using / :hover and .sfHover

inherited styles, cascading / Cascading inherited styles

next() method / Time for action — creating a simple crossfade slideshow

(¢]

O

e objects, JavaScript / Objects
e one-page web gallery
o about/ A one-page web gallery
o creating / Time for action — creating a one-page web gallery, What just
happened?
e onOpen tag / Time for action — creating a fancy login form

page sections
o navigation, adding to / Time for action — adding navigation to sections of the
page, What just happened?
paragraph
o adding / Time for action — adding a new paragraph, Have a go hero — adding
more content
parallax effect

o adding / Adding a parallax effect
o adding, to cloudy weather forecast / Time for action — creating a parallax effect,

What just happened?
parameter / Functions

pie chart

o creating / Time for action — creating a pie chart
placeholder attribute / Time for action — setting up an HTML5 web form
plugin

o about / Designer, meet plugins

o choosing / Choosing a plugin
o choosing, important points / Choosing a plugin

powerTip method / What just happened?
PowerTip plugin

o about / Customizing PowerTip’s appearance
o customizing / Time for action — customizing PowerTip
presentation layer / Presentation
progressive enhancement / Progressive enhancement and graceful degradation
property / Objects
pseudoclass selectors / Time for action — creating simple tabs

radio buttons
o adding / Time for action — improving form appearance
ready() method / Time for action — creating a simple crossfade slideshow
removeClass method / Time for action — adding some final touches
required attribute / Time for action — validating form values on the fly
responsive design
o FitVids, used for fitting in videos / Using FitVids for responsive videos, Time
for action — resizing videos, What just happened?
RIOT
o URL / Using fullscreen backgrounds
rotate option / Time for action — setting text on a curve with the ArcText plugin

.sfHover class / :hover and .sfHover
<script> tag / Time for action — creating a bold text block with SlabText
 tag / Time for action — creating a bold text block with SlabText
screen width
o headlines, sizing to / Sizing headlines perfectly, Time for action — sizing
headlines to the screen width, What just happened?
scrolling effect
o HTML documents, setting up for / Setting up the document, Time for action —
setting up the HTML file, What just happened?
Scrollorama
o HTML, setting up for / Time for action — setting up HTML for Scrollorama,
What just happened?
ServerPress
o about/ Video player

setInterval() method / Time for action — creating a simple crossfade slideshow
settings, Colorbox

o innerWidth / What just happened?

innerHeight / What just happened?
initialWidth / What just happened?
initialHeight / What just happened?

maxHeight / What just happened?
o maxWidth / What just happened?

simple photo gallery
o about / A simple photo gallery
o creating, with Colorbox plugin / Time for action — setting up a simple photo
gallery
SlabText
o bold text block, creating with / Creating bold text blocks, Time for action —
creating a bold text block with SlabText
o URL / Time for action — creating a bold text block with SlabText
slabText() method / What just happened?
slider
o building, points / Planning a slideshow or slider
o creating, with Basic Slider plugin / Time for action — building a Basic Slider,
What just happened?
o connecting, with carousel / Time for action — connecting the carousel and the
slider
slideshow
o lightbox image gallery, turning into / Time for action — creating a slideshow,
What just happened?, Time for action — creating a fancy login form, What just

happened?
o building, points / Planning a slideshow or slider

O O O O

slideshow component

o setting up / Time for action — adding the slideshow
slideshow function / Time for action — creating a simple crossfade slideshow
sliding animation

o incorporating / Time for action — incorporating custom animations
string / Variables
Superfish menu

o customizing / Have a go hero — further customizing the Superfish menu
Superfish menus

o customizing / Time for action — customizing Superfish menus
Superfish plugin
o used, for enhancing horizontal drop-down menu / Time for action — creating a
horizontal drop-down menu
o URL / Time for action — creating a horizontal drop-down menu

tabs
o about/ Simple tabs

o creating / Time for action — creating simple tabs, What just happened?
Tabs echo / Simple tabs

ternary operator / Time for action — calculating the ideal size for charts and graphs
text

o setting, on curve with ArcText plugin / Time for action — setting text on a curve

with the ArcText plugin

tiled layouts

o creating / Creating a tiled layout, Time for action — creating a masonry layout,
What just happened?
basic HTML document, creating / Time for action — creating a masonry layout
list items, styling / Time for action — creating a masonry layout
media query, adding / Time for action — creating a masonry layout
three-column layout, creating / Time for action — creating a masonry layout
font size, setting to full size / Time for action — creating a masonry layout
creating, with different width items / Creating a tiled layout with items of
different widths, Time for action — creating a tiled layout with different width
items, What just happened?
title attribute / Time for action — validating form values on the fly
transition

o modifying, between images / Time for action — using a custom transition
traversing the DOM / Time for action — moving around an HTML document
trigger option

o about / Time for action — adding Fancyform to style the unstyleable
type attribute / Time for action — setting up an HTML5 web form

O O O O O O

U

¢ unveil() method / Time for action — lazy loading images
e Unveil plugin
o URL / Time for action — lazy loading images
® user entry
o validating, in form / Validating site visitor entry, Time for action — validating
form values on the fly, What just happened?

*visible pseudoclass / Time for action — creating simple tabs
validate() method / Time for action — validating form values on the fly
Validation plugin
o downloading / Time for action — validating form values on the fly
o URL / Time for action — validating form values on the fly
value attribute / Time for action — setting up an HTML5 web form
variables, JavaScript / Variables
Vegas plugin
o URL / Time for action — creating a fullscreen background image
vertical fly-out menu
o creating / Time for action — creating a vertical fly-out menu, What just
happened?
video
o displaying, in lightbox / Time for action — showing a video in a lightbox, What
just happened?
video player
o about/ Video player
videos
o fitting, in responsive designs with FitVids / Using FitVids for responsive videos,

Time for action — resizing videos, What just happened?
o resizing / Time for action — resizing videos
Visualize plugin
o used, for creating pie chart / Time for action — creating a pie chart

W

e web form

o about / An HTML5 web form
e WuFoo

o URL/An HTML5 web form

Z

e zoomable images
o creating / Creating zoomable images, Time for action — creating zoomable
images

o multiple zoomable images, creating / Time for action — creating multiple
zoomable images

e Zoom plugin

o URL / Time for action — creating zoomable images

	jQuery for Designers Beginner's Guide Second Edition
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Time for action – heading
	What just happened?
	Pop quiz – heading
	Have a go hero – heading
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Designer, Meet jQuery
	What is jQuery?
	Why is jQuery awesome for designers?
	It uses CSS selectors you already know
	It uses HTML markup you already know
	Impressive effects in just a few lines of code
	Huge plugin library available
	Great community support
	JavaScript basics
	Progressive enhancement and graceful degradation
	Gotta keep 'em separated
	Content
	Presentation
	Behavior
	Designer, Meet JavaScript
	Variables
	Objects
	Functions
	Downloading jQuery and getting set up
	Time for action – downloading and attaching jQuery
	What just happened?
	Pop quiz – setting up a new project
	Another option for using jQuery
	Your first jQuery script
	Time for action – getting ready for jQuery
	What just happened?
	Adding a paragraph
	Time for action – adding a new paragraph
	What just happened?
	Have a go hero – adding more content
	Summary
	2. Enhancing Links
	Simple tabs
	Time for action – creating simple tabs
	What just happened?
	Pop quiz – working with events
	Designer, meet plugins
	Choosing a plugin
	Simple custom tooltips
	Time for action – simple custom tooltips
	What just happened?
	Customizing PowerTip's appearance
	Time for action – customizing PowerTip
	What just happened?
	Enhancing navigation with tooltips
	Time for action – building a fancy navigation bar
	What just happened?
	Showing other content in tooltips
	Time for action – showing custom content in tooltips
	What just happened?
	Have a go hero – create clickable tooltips for an image gallery
	Summary
	3. Making a Better FAQ Page
	Marking up the FAQ page
	Time for action – setting up the HTML file
	What just happened?
	Time for action – moving around an HTML document
	What just happened?
	Sprucing up our FAQ page
	Time for action – making it fancy
	What just happened?
	We're almost there!
	Time for action – adding some final touches
	What just happened?
	Summary
	4. Building an Interactive Navigation Menu
	The horizontal drop-down menu
	Time for action – creating a horizontal drop-down menu
	What just happened?
	The vertical fly-out menu
	Time for action – creating a vertical fly-out menu
	What just happened?
	Customizing the navigation menu
	:hover and .sfHover
	Cascading inherited styles
	Pop quiz – understanding the cascade in CSS
	Styling the :focus pseudoclass
	Time for action – customizing Superfish menus
	What just happened?
	The hoverIntent plugin
	Time for action – incorporating custom animations
	What just happened?
	Have a go hero – further customizing the Superfish menu
	Summary
	5. Showing Content in Lightboxes
	A simple photo gallery
	Time for action – setting up a simple photo gallery
	What just happened?
	Customizing Colorbox's behavior
	Transition
	Time for action – using a custom transition
	What just happened?
	Fixed size
	Time for action – setting a fixed size
	What just happened?
	Creating a slideshow
	Time for action – creating a slideshow
	What just happened?
	Fancy login
	Time for action – creating a fancy login form
	What just happened?
	Video player
	Time for action – showing a video in a lightbox
	What just happened?
	Pop quiz – loading content into Colorbox
	A one-page web gallery
	Time for action – creating a one-page web gallery
	What just happened?
	Have a go hero – create a custom Colorbox
	Summary
	6. Creating Slideshows and Sliders
	Planning a slideshow or slider
	A simple crossfade slideshow
	Time for action – creating a simple crossfade slideshow
	What just happened?
	Pop quiz – working with jQuery chaining
	Using the Basic Slider plugin
	Time for action – building a Basic Slider
	What just happened?
	Have a go hero – customize the Basic Slider
	Creating a Cycle2 slideshow
	Time for action – building a slideshow with Cycle2
	The Cycle2 carousel
	Time for action – building a Cycle2 carousel
	Combining a carousel with a slideshow
	Setting up the carousel
	Time for action – creating the carousel controller
	Adding the slideshow
	Time for action – adding the slideshow
	Connecting the carousel and the slider
	Time for action – connecting the carousel and the slider
	Summary
	7. Working with Responsive Designs
	Using FitVids for responsive videos
	Time for action – resizing videos
	What just happened?
	Pop quiz – choosing breakpoints for responsive design
	Responsive menus
	Time for action – making our menu responsive
	What just happened?
	Have a go hero – create a custom menu
	Creating a tiled layout
	Time for action – creating a masonry layout
	What just happened?
	Creating a tiled layout with items of different widths
	Time for action – creating a tiled layout with different width items
	What just happened?
	Summary
	8. Getting the Most from Images
	Lazy loading images
	Time for action – lazy loading images
	What just happened?
	Pop quiz – building accessible pages
	Creating zoomable images
	Time for action – creating zoomable images
	What just happened?
	Zooming in on multiple images
	Time for action – creating multiple zoomable images
	What just happened?
	Using fullscreen backgrounds
	Time for action – creating a fullscreen background image
	What just happened?
	Creating a fullscreen slideshow
	Time for action – creating a fullscreen slideshow
	What just happened?
	Summary
	9. Improving Typography
	Sizing headlines perfectly
	Time for action – sizing headlines to the screen width
	What just happened?
	Creating bold text blocks
	Time for action – creating a bold text block with SlabText
	What just happened?
	Pop quiz – sizing text in responsive designs
	Styling individual letters
	Time for action – using Lettering.js to style letters
	What just happened?
	Have a go hero – creating fancy effects with Lettering.js
	Setting text on a curve
	Time for action – setting text on a curve with the ArcText plugin
	What just happened?
	Summary
	10. Displaying Data Beautifully
	A basic data grid
	Time for action – creating a basic data grid
	What just happened?
	A customized data grid
	Time for action – customizing the data grid
	What just happened?
	Pop quiz – building correct tables
	Showing graphs and charts
	Time for action – showing data in graphs and charts
	What just happened?
	Creating pie charts
	Time for action – creating a pie chart
	Using charts and graphs in responsive designs
	Time for action – calculating the ideal size for charts and graphs
	What just happened?
	Summary
	11. Reacting to Scrolling
	Setting up the document
	Time for action – setting up the HTML file
	What just happened?
	Setting up HTML for scrolling animations
	Time for action – setting up HTML for Scrollorama
	What just happened?
	Adding a parallax effect
	Time for action – creating a parallax effect
	What just happened?
	Creating other animations
	Time for action – creating a horizontal animation
	What just happened?
	Have a go hero – add custom animations
	Adding navigation
	Time for action – adding navigation to sections of the page
	What just happened?
	Pop quiz – using Scrollorama in responsive design
	Summary
	12. Improving Forms
	An HTML5 web form
	Time for action – setting up an HTML5 web form
	What just happened?
	Pop quiz – working with HTML5 form elements
	Setting focus
	Time for action – setting focus to the first field
	What just happened?
	Validating site visitor entry
	Time for action – validating form values on the fly
	What just happened?
	Improving the appearance
	Time for action – improving form appearance
	What just happened?
	Styling the unstyleable
	Time for action – adding Fancyform to style the unstyleable
	Have a go hero – a fully custom form
	Summary
	A. Pop Quiz Answers
	Chapter 1, Designer, Meet jQuery
	Pop quiz – setting up a new project
	Chapter 2, Enhancing Links
	Pop quiz – working with events
	Chapter 4, Building an Interactive Navigation Menu
	Pop quiz – understanding the cascade in CSS
	Chapter 5, Showing Content in Lightboxes
	Pop quiz – loading content into Colorbox
	Chapter 6, Creating Slideshows and Sliders
	Pop quiz – working with jQuery chaining
	Chapter 7, Working with Responsive Designs
	Pop quiz – choosing breakpoints for responsive design
	Chapter 8, Getting the Most from Images
	Pop quiz – building accessible pages
	Chapter 9, Improving Typography
	Pop quiz – sizing text in responsive designs
	Chapter 10, Displaying Data Beautifully
	Pop quiz – building correct tables
	Chapter 11, Reacting to Scrolling
	Pop quiz – using Scrollorama in responsive design
	Chapter 12, Improving Forms
	Pop quiz – working with HTML5 form elements
	Index

