Join the discussion @ p2p.wrox.com @ Wrox Programmer to Programmer™

Web Development
with jQuery

Richard York

WEB DEVELOPMENT WITH JQUERY®

INTRODUCTION . .. ittt ittt ettt e e e Xix
» PARTI THE JQUERY API

CHAPTER 1 Introduction to JQUeryvinin i 3
CHAPTER 2 Selectingand Filtering. i 27
CHAPTER 3 Events.t e 63
CHAPTER 4 Manipulating Content and Attributes 89
CHAPTER 5 Iteration of Arraysand Objects 135
CHAPTER 6 CSS . . e e 165
CHAPTER 7 AJAX. o e 177
CHAPTER 8 Animation and Easing Effects 223
CHAPTER 9 Plugins e 243
CHAPTER 10 Scrollbars oo e 267
CHAPTER 11 HTML5Dragand Drop.covin e 279
» PART Il JQUERY Ul

CHAPTER 12 Draggable and Droppable. 323
CHAPTER 13 Sortable 339
CHAPTER 14 Selectable. i 361
CHAPTER 15 Accordion....... 373
CHAPTER 16 Datepicker e 383
CHAPTER 17 Dialog . ..o ottt e e e 399
CHAPTER 18 Tabs. ...t e 417
» PART Il POPULAR THIRD-PARTY JQUERY PLUGINS

CHAPTER 19 Tablesorter. e 433
CHAPTER 20 Creating an Interactive Slideshow 443
CHAPTER 21 Working with HTML5 Audioand Video. 459
CHAPTER 22 Creating a Simple WYSIWYG Editor 467

» PART IV
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H
APPENDIX |

APPENDIX J
APPENDIX K
APPENDIX L
APPENDIX M
APPENDIX N
APPENDIX O
APPENDIX P
APPENDIX Q
APPENDIX R
APPENDIX S
APPENDIX T
APPENDIX U

APPENDICES

Exercise ANSwWers.o e 483
jQuery Selectorst 493
Selecting, Traversing, and Filtering. 501
Events.o 509
Manipulating Content, Attributes, and Custom Data 523
More Content Manipulation 527
AJAXMethods. 533
CSS i e 543
Utilities . .. oo e 547
Draggable and Droppable. oL 551
Sortable L 561
Selectable. 571
Animation and Easing Effects. 573
Accordion. 585
Datepicker o 589
Dialog . . ot e 599
Tabs. . .o 605
Resizable. 611
Slider. . o 615
Tablesorter. 619
MediaElement 623
... 627

Web Development with jQuery®

Web Development with jQuery®

Richard York

AN

WFroX

A Wiley Brand

Web Development with jQuery®

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-86607-8
ISBN: 978-1-118-86599-6 (ebk)
ISBN: 978-1-118-86600-9 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author
or the publisher endorses the information the organization or Web site may provide or recommendations it may make.
Further, readers should be aware that Internet Web sites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://book
support.wiley.com. For more information about Wiley products, visit www.wiTley.com.

Library of Congress Control Number: 2014948560

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. jQuery is a registered trademark of Software Freedom Conservancy. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product
or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

ABOUT THE AUTHOR

RICHARD YORK has written four previous Wrox books, including Beginning JavaScript and CSS
Development with jQuery (2009).

ABOUT THE CONTRIBUTOR AND
TECHNICAL EDITOR

PETER HENDRICKSON has been developing software as a hobby since 1989 and professionally since
2001. He is currently a Manager of Software Engineering at salesforce.com, where he has developed
both user interface and middle-tier components for the Salesforce Marketing Cloud. In addition to

his work technical editing many chapters of the book, Peter contributed by writing several chapters.

ABOUT THE TECHNICAL EDITOR

NIK DEVEREAUX joined ViaSat in 2003 and is currently a program director for ViaSat’s Central
Engineering department. He manages the Software Engineering Office and University Partnerships &
Recruiting programs. In this role, Nik’s primary goal is to grow the size, skill set, and strategic alignment
of the entire software engineering community across all business areas and office locations. He received
his bachelor’s and master’s degrees from UC San Diego.

CREDITS

PROJECT EDITOR BUSINESS MANAGER
John Sleeva Amy Knies
TECHNICAL EDITOR ASSOCIATE PUBLISHER
Peter Hendrickson Jim Minatel

Nik Devereaux

PROJECT COORDINATOR, COVER
PRODUCTION MANAGER Patrick Redmond
Kathleen Wisor

PROOFREADER
COPY EDITOR Amy Schneider
San Dee Phillips
INDEXER
MANAGER OF CONTENT DEVELOPMENT & Johnna VanHoose Dinse
ASSEMBLY
Mary Beth Wakefield COVER DESIGNER
Wiley

MARKETING DIRECTOR

David Mayhew COVER IMAGE
©iStock.com/George Pchemyan

MARKETING MANAGER

Carrie Sherrill

PROFESSIONAL TECHNOLOGY &
STRATEGY DIRECTOR
Barry Pruett

CONTENTS

INTRODUCTION Xix
CHAPTER 1: INTRODUCTION TO JQUERY 3
What jQuery Can Do for You 5
Who Develops jQuery? 7
Obtaining jQuery 7
Installing jQuery 7
Programming Conventions 10
Markup and CSS Conventions 10
JavaScript Conventions 15
Summary 26
CHAPTER 2: SELECTING AND FILTERING 27
The Origin of the Selectors API 28
Using the Selectors API 29
Filtering a Selection 33
Working Within the Context of a Selection 34
Working with an Element’s Relatives 45
Slicing a Selection 58
Adding to a Selection 59
Summary 60
CHAPTER 3: EVENTS 63
The Various Event Wrapper Methods 63
Attaching Other Events 68
Attaching Persistent Event Handlers 69
Removing Event Handlers 75
Creating Custom Events 80
Summary 86
CHAPTER 4: MANIPULATING CONTENT AND ATTRIBUTES 89
Setting, Retrieving, and Removing Attributes 89
Setting Multiple Attributes 96
Manipulating Class Names 97

CONTENTS

Manipulating HTML and Text Content 102
Getting, Setting, and Removing Content 103
Appending and Prepending Content 108
Inserting Beside Content M
Inserting Beside Content via a Selection 112
Wrapping Content 117

Replacing Elements 123

Removing Content 126

Cloning Content 130

Summary 133

CHAPTER 5: ITERATION OF ARRAYS AND OBJECTS 135

Enumerating Arrays 135
Enumerating Objects 139
Iterating a Selection 141

Filtering Selections and Arrays 143
Filtering a Selection 143
Filtering a Selection with a Callback Function 146
Filtering an Array 147

Mapping a Selection or an Array 151
Mapping a Selection 151
Mapping an Array 153

Array Utility Methods 156
Making an Array 157
Finding a Value Within an Array 158
Merging Two Arrays 160

Summary 162

CHAPTER 6: CSS 165

Working with CSS Properties 165

jQuery’s Pseudo-Classes 167

Obtaining Outer Dimensions 167

Summary 174

CHAPTER 7: AJAX 177

Making a Server Request 178
What's the Difference Between GET and POST? 179
RESTful Requests 180
Formats Used to Transport Data with an AJAX Request 180
Making a GET Request with jQuery 181

xii

CONTENTS

Loading HTML Snippets from the Server 195
Dynamically Loading JavaScript 200
AJAX Events 205
Using AJAX Event Methods 210
Attaching AJAX Events to Individual Requests 211
Sending a REST Request 213
Summary 220
CHAPTER 8: ANIMATION AND EASING EFFECTS 223
Showing and Hiding Elements 223
Sliding Elements 231
Fading Elements 234
Custom Animation 237
Animation Options 241
Summary 242
CHAPTER 9: PLUGINS 243
Writing a Plugin 243
Writing a Simple jQuery Plugin 243
Inspecting the Document Object Model 248
Writing a Context Menu jQuery Plugin 250
Good Practice for jQuery Plugin Development 265
Summary 265
CHAPTER 10: SCROLLBARS 267
Getting the Position of a Scrollbar 267
Scrolling to a Particular Element
within a Scrolling <div> 272
Scrolling to the Top 276
Summary 277
CHAPTER 11: HTMLS5 DRAG AND DROP 279
Implementing Drag and Drop 279
Prerequisite Plugins 286
Event Setup 289
Implementing Drag-and-Drop File Uploads 294
Adding the File Information Data Object 309
Using a Custom XMLHttpRequest Object 313
Additional Utilities 316
Summary 319

xiii

CONTENTS

CHAPTER 12: DRAGGABLE AND DROPPABLE 323
Making Elements Draggable 324
Delegating Drop Zones for Draggable Elements 331
Summary 337

CHAPTER 13: SORTABLE 339
Making a List Sortable 339
Customizing Sortable 347
Saving the State of Sorted Lists 354
Summary 359

CHAPTER 14: SELECTABLE 361
Introducing the Selectable Plugin 361
Summary 372

CHAPTER 15: ACCORDION 373
Building an Accordion Ul 373
Changing the Default Pane 376
Changing the Accordion Event 379
Setting the Header Elements 380
Summary 382

CHAPTER 16: DATEPICKER 383
Implementing a Datepicker 383

Custom Styling the Datepicker 385
Setting the Range of Allowed Dates 392
Localizing the Datepicker 395
Setting the Date Format 395
Localizing Datepicker Text 395
Changing the Starting Weekday 397
Summary 398

CHAPTER 17: DIALOG 399
Implementing a Dialog 399
Styling a Dialog 401
Making a Modal Dialog 407

Auto-Opening the Dialog 409

Xiv

CONTENTS

Controlling Dynamic Interaction 411
Animating the Dialog 412
Working with Dialog Events 413
Summary 414
CHAPTER 18: TABS 417
Implementing Tabs 417
Styling the Tabbed User Interface 420
Loading Remote Content via AJAX 425
Animating Tab Transitions 428
Summary 429
CHAPTER 19: TABLESORTER 433
Sorting a Table 433
Summary 441
CHAPTER 20: CREATING AN INTERACTIVE SLIDESHOW 443
Creating a Slideshow 443
Summary 457
CHAPTER 21: WORKING WITH HTMLS5 AUDIO
AND VIDEO 459
Downloading the MediaElement Plugin 459
Configuring the MediaElement Plugin 459
Creating an HTML Structure That Enables Fallback Video/Audio
Plugins for Older Browsers 461
Implementing h.264 Video Content 462
Customizing Player Controls 463
Controlling When the Download of Media Begins 463
Summary 464
CHAPTER 22: CREATING A SIMPLE WYSIWYG EDITOR 467
Making an Element Editable with the
contenteditable Attribute 467
Creating Buttons to Apply Bold, Italic, Underline,
Font, and Font Size 469
Creating a Selection 473
Storing a Selection 478

XV

CONTENTS

Restoring a Selection 479

Summary 480
APPENDIX A: EXERCISE ANSWERS 483
APPENDIX B: JQUERY SELECTORS 493
APPENDIX C: SELECTING, TRAVERSING, AND FILTERING 501
APPENDIX D: EVENTS 509

APPENDIX E: MANIPULATING CONTENT, ATTRIBUTES,

AND CUSTOM DATA 523
APPENDIX F: MORE CONTENT MANIPULATION 527
APPENDIX G: AJAX METHODS 533
APPENDIX H: CSS 543
APPENDIX I: UTILITIES 547
APPENDIX J: DRAGGABLE AND DROPPABLE 551
APPENDIX K: SORTABLE 561
APPENDIX L: SELECTABLE 569
APPENDIX M: ANIMATION AND EASING EFFECTS 573
APPENDIX N: ACCORDION 585

APPENDIX O: DATEPICKER 589

XVi

CONTENTS

APPENDIX P: DIALOG 599
APPENDIX Q: TABS 605
APPENDIX R: RESIZABLE 611
APPENDIX S: SLIDER 615
APPENDIX T: TABLESORTER 619
APPENDIX U: MEDIAELEMENT 623

INDEX

627

xvii

INTRODUCTION

JQUERY HAS BECOME ESSENTIAL in the world of web development. jQuery’s mission as a JavaScript
library is simple: It strives to make the lives of web developers easier by making many tasks much
easier. jQuery began as a library to patch cross-browser inconsistencies, to make developing in
JavaScript easier, while it still provides a lot of cross-browser normalization. As browsers have
advanced and filled in holes in compatibility, jQuery has become leaner, more efficient, and better at
fulfilling the task of providing an API that makes developing JavaScript easier.

jQuery has the proven capability to reduce many lines of ordinary JavaScript to just a few lines,
and, in many cases, just a single line of jQuery-enabled JavaScript. The trade-off is including the
additional size and complexity of the jQuery library (and possibly additional related downloads) in
the materials your users need to obtain to use your website or application. This is less of a trade-off
today as more and more people have access to high-speed Internet. High-speed internet, although
still pathetic in the United States when compared to some other nations, has inched up in overall
speed. So, the additional download isn’t all that much when you consider the big picture.

jQuery strives to remove barriers in JavaScript development by removing redundancy wherever
possible. jQuery 1.9 and earlier focus more on normalizing cross-browser JavaScript development

in key areas where browsers would otherwise differ, such as Microsoft’s Event API and the W3C
Event API, and other, more remedial tasks such as getting the mouse cursor’s position when an event
has taken place. With the normalization efforts taking place in the browsers, jQuery 2.0 can shed

a great deal of legacy baggage that focused on bridging things such as event compatibility between
Internet Explorer and everyone else. Now, the latest version of Internet Explorer has the stan-

dard event API in strict standards rendering mode, so when you include the right Document Type
Declaration, there is no need to bridge event support.

jQuery 1.9 should be used if you need to work with older versions of Internet Explorer, such as IES.
Both jQuery 1.9 and jQuery 2.0 work with all the modern browsers, including the latest versions of
Safari, Firefox, Google Chrome, and Internet Explorer.

Getting started with jQuery is easy—all you need to do is include a single script in your HTML or
XHTML documents to include the base jQuery JavaScript library. Throughout this book, jQuery’s
API (Application Programming Interface) components are demonstrated in detail and show you how
everything within this framework comes together to enable you to rapidly develop web applications.

This book also covers the jQuery Ul library, which makes redundant user interface (UI) tasks on
the client side easier and more accessible to everyday web developers who might not have much
JavaScript programming expertise. The jQuery UI library includes widgets such as dialogs, tabs,
accordions, and a datepicker; for a complete demonstration, view the examples available at
http://www.jqueryui.com.

A large, thriving community of jQuery plugins is available for free, and a few of the most popular
are covered. In addition, you learn how to create your own jQuery plugins, from simple to complex.

http://www.jqueryui.com

INTRODUCTION

WHO THIS BOOK IS FOR

This book is for anyone interested in doing more with less JavaScript. You should have an under-
standing of JavaScript, as this book doesn’t go into detail about JavaScript itself. You need to under-
stand the Document Object Model (DOM) and JavaScript programming syntax. In addition, you
need to know your way around CSS and HTMLS5 or XHTMLS, as knowledge of those technologies
is also assumed. This book covers primarily programming in JavaScript with jQuery.

A complete beginner might grasp what is taking place in the examples in this book but might not
understand certain terminology and programming concepts that would be presented in a beginner’s
JavaScript guide. So, if you are a beginner and insist with pressing forward, you should do so with
a beginning JavaScript book on hand as well. Specifically, consider the following Wrox books for
more help with the basics:

> Beginning HTML, XHTML, CSS, and JavaScript (2009), by Jon Duckett

> Beginning CSS: Cascading Style Sheets for Web Design, 3rd Edition (2011), by Ian Pouncey
and Richard York

> Beginning JavaScript, 4th Edition (2009), by Paul Wilton and Jeremy McPeak

For further knowledge of JavaScript beyond what is covered in this book, check out Professional
JavaScript for Web Developers, 3rd Edition (2012), by Nicholas C. Zakas.

WHAT THIS BOOK COVERS

XX

This book covers the jQuery JavaScript framework and the jQuery Ul JavaScript framework, in
addition to some popular third-party plugins and how to write and use your own third-party
plugins. It covers each method exposed by jQuery’s API, which contains methods to make com-
mon, redundant tasks go more quickly in less code. Some examples are methods that help you to
select elements from a markup document through the DOM and methods that help you to traverse
through those selections and filter them using jQuery’s fine-grained controls. This makes working
with the DOM easier and more effortless. It also covers jQuery’s event model, which both wraps
around the normal W3C event API and provides an API that when used correctly can heavily opti-
mize and reduce complexity in your applications.

Later in the book, you see how to leverage the jQuery Ul library to make user interface (UI) widgets.
jQuery gives you the ability to break up content among multiple tabs in the same page. You have the
ability to customize the look and feel of the tabs, and even to create a polished look and feel by pro-
viding different effects when you mouse over tabs and click them. The jQuery UI library also makes
it easy to create accordion sidebars. These sidebars have two or more panels, and when you mouse
over an item, one pane transitions to another via a smooth, seamless animation wherein the preced-
ing pane collapses and the proceeding pane expands.

INTRODUCTION

The jQuery Ul library also gives you the ability to make any element draggable with the mouse
cursor; by clicking, holding and moving the mouse, you can move elements around a page to any
position you like. It also makes it easy to create drag-and-drop user interfaces. You can use jQuery
UI to make droppable zones, where you take elements from other parts of a page and drop them on
another, similarly to how you might interact with your operating system’s file manager when you
want to move a folder from one place to another. You can also make lists that are sortable via drag-
and-drop, rearranging elements based on where you drop them. You can have a user interface where
you drag the mouse cursor to make a selection, as you would in your operating system’s file man-
ager when you want to select more than one file or folder. jQuery Ul exposes the ability to resize
elements on a page using the mouse. All the things that you can imagine doing on your computer’s
desktop, or within an application, you can do in a web browser with jQuery Ul

jQuery UT also provides a widget for entering a date into a field using a nice, accessible JavaScript-
driven calendar that pops up when you click on an input field.

You can make custom pop-up dialogs that are like virtual pop-up windows, except they don’t open
a separate browser window—they display using markup, CSS, and JavaScript.

Another widget that jQuery Ul provides is a graphical slider bar, similar to your media player’s
volume control.

As jQuery has done for JavaScript programming in general, jQuery Ul strives to do for redundant
graphical user interface (GUI) tasks. jQuery Ul gives you the ability to make professional user-inter-
face widgets with much less development effort.

If you're interested in reading news about jQuery, how it’s evolving, and topics related to web devel-
opment, you may be interested in reading the official jQuery blog at blog.jquery.com or jQuery’s
creator John Resig’s blog at ww.ejohn.org.

If you need help, you can participate in programming discussions at p2p.wrox.com, which you can
join for free, to ask programming questions in moderated forums. There are also programming
forums provided by the jQuery community, which you can learn more about at http://docs.jquery.
com/Discussion.

HOW THIS BOOK IS STRUCTURED

This book is divided into four parts: The first covers the basic API exposed by the jQuery library;
the second covers the jQuery Ul library; and the third covers a few popular jQuery plugins, as
well as how to make a more advanced jQuery plugin. Finally, the appendices contain useful
reference material.

Part 1: The jQuery API

> Chapter 1: Introduction to jQuery—This chapter discusses where jQuery came from and why
it is needed. It includes some good programming practices and the specific programming con-
ventions used in this book. The chapter ends with a walkthrough of downloading your first
jQuery-enabled JavaScript.

Xxi

http://www.ejohn.org
http://docs.jquery

INTRODUCTION

XXii

Chapter 2: Selecting and Filtering—This chapter introduces jQuery’s selector engine, which
uses selectors like you have used with CSS to make selections from the DOM. It discusses the
various methods that jQuery exposes for working with a selection to give you fine-grained
control over what elements you’re working with from the DOM. It talks about methods that
enable you to select ancestor elements, parent elements, sibling elements, and descendant
elements; how to remove elements from a selection, how to add elements to a selection, and
how to reduce a selection to a specific subset of elements.

Chapter 3: Events—This chapter discusses jQuery’s event wrapper methods, how to attach
event handlers that don’t have built-in wrapper methods, how to remove event handlers, how
to attach persistent event handlers, how to create custom events, and how to namespace your
events for easier reference.

Chapter 4: Manipulating Content and Attributes—You learn how to use the methods that
jQuery exposes for working with content, text, and HTML, and element attributes. jQuery
provides methods for doing just about everything you’ll want to do to an element.

Chapter 5: Iteration of Arrays and Objects—This is about how you can enumerate over a
selection of elements or an array using jQuery. As with everything else, jQuery provides an
easier way that requires fewer lines of code to loop over the contents of an array or a selec-
tion of elements from the DOM.

Chapter 6: CSS—You learn about the methods that jQuery exposes for working with CSS
properties and declarations. jQuery provides intuitive and versatile methods that enable you
to manipulate CSS in a variety of ways.

Chapter 7: AJAX—An elaboration on the methods that jQuery exposes for making

AJAX requests from a server, which enable you to request server content without working
directly with the XMLHttpRequest object and supports handling server responses in a variety
of formats.

Chapter 8: Animation and Easing Effects—This covers the methods jQuery provides for ani-
mating elements, including showing and hiding via a simple animation, fading in and fading

out, sliding up and sliding down, using completely custom animation, and a variety of easing
effects that you can use to control the flow of time in an animation.

Chapter 9: Plugins—How to make your own jQuery plugins.

Chapter 10: Scrollbars—An explanation of making containers scrollable, including getting
and setting the scroll position.

Chapter 11: HTMLS Drag and Drop—The official W3C drag-and drop API for dragging
and dropping elements within a browser window. This API is considerably different from

the Draggable and Droppable jQuery Ul plugins because it enables drag and drop between
completely different browser windows or applications. Also introduced is the W3C drag-and-
drop file upload specification.

INTRODUCTION

Part Il: jQuery Ul

>

Chapter 12: Draggable and Droppable—You learn how to implement the Draggable and
the Droppable jQuery UI plugins to create drag-and-drop API, an alternative to the HTMLS
drag-and-drop API introduced in Chapter 11.

Chapter 13: Sortable—How you can make lists sortable using drag-and-drop.

Chapter 14: Selectable—Learn about the portion of the jQuery UI library that enables you to
make a selection by drawing a box with your mouse, just like you might do in your OS’s file
management application.

Chapter 15: Accordion—See how to make a polished-looking sidebar that has panes that
transition like an accordion. When you mouse over an element, one pane collapses via an
animation, and another one expands, also via an animation.

Chapter 16: Datepicker—You make a standard form input field into a Datepicker using
jQuery’s Datepicker widget.

Chapter 17: Dialog—You create virtual pop-up windows, using the jQuery UI library, that
look and act like real pop-up windows but are entirely contained in the same web page that
launches them and are built using pure markup, CSS, and JavaScript.

Chapter 18: Tabs—The jQuery UI tab component, which enables you to take a document
and split it into several tabs and navigate between those tabs without needing to load
another page.

Part lll: Popular Third-Party jQuery Plugins

>

Chapter 19: Tablesorter—An introduction to a third-party jQuery plugin used for sorting
HTML tables by one or more columns.

Chapter 20: Creating an Interactive Slideshow—You set up a slideshow plugin, a more com-
plicated example of creating a jQuery plugin, which you can then expand on.

Chapter 21: Working with HTMLS5 Audio and Video—Covers the MediaElement plugin,
which bridges audio and video support across desktop and mobile platforms for various
popular media formats, such as H.264 and MP3 audio.

Chapter 22: Creating a Simple WYSIWYG Editor—Discusses the contenteditable attribute
and the various components needed to make a text editor inside the browser.

Part IV: Appendices

>

>

Appendix A—This appendix contains the answers to chapter exercises.

Appendix B-U—These appendices contain reference materials for jQuery and jQuery UL

Xxiii

INTRODUCTION

WHAT YOU NEED TO USE THIS BOOK

To make use of the examples in this book, you need the following:
> Several Internet browsers to test your web pages
> Text-editing software or your favorite IDE

Designing content for websites requires reaching more than one type of audience. Some of your
audience may use different operating systems or different browsers other than those you installed on
your computer. This book focuses on the most popular browsers available at the time of

this writing:

> Microsoft Internet Explorer 10 or newer for Windows
> Safari 7 or newer for Mac OS X

» Firefox 30 or newer for Mac OS X, Windows, or Linux
>

Google Chrome 36 or newer for Mac OS X, Windows, or Linux

It is likely that some or most of the examples will work in older versions of these browsers, but that
has not been tested.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, you can find a number
of conventions throughout the book.

WARNING Boxes such as this one hold important, not-to-be forgotten informa-
tion that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, and asides to the current discussion are offset
and placed in italics like this.

As for styles in the text:
> We highlight with italics new terms and important words when we introduce them.

> We show keyboard strokes like this: Ctrl+A.

XXiv

INTRODUCTION

» We show URLs and code within the text like so: persistence.properties.

> We present code in the following way:

We use a monofont type with no highlighting for most code examples.

SOURCE CODE

As you work through the examples, you may choose either to type in all the code manually or to use
the source code files that accompany the book. All the source code used in this book is available for
download at www.wrox.com/go/webdevwithjquery. Click the Download Code link on the book’s detail
page to obtain all the source code for the book.

NOTE Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-1-118-86607-8.

After you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake
or faulty piece of code, we would be grateful for your feedback. By sending in errata you may

save another reader hours of frustration, and at the same time, you can help us provide even
higher-quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the Book Search Results page, click the Errata link. On this page, you
can view all errata that have been submitted for this book and posted by Wrox editors.

NOTE A complete book list including links to errata is also available at
www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Errata page, click the Errata Form link and complete the form
to send us the error you have found. We’ll check the information and, if appropriate, post a message
to the book’s Errata page and fix the problem in subsequent editions of the book.

XXV

http://www.wrox.com/go/webdevwithjquery
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml

INTRODUCTION

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you can find several different forums to help you not only as you read this
book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you want to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but to post
your own messages, You must join.

After you join, you can post new messages and respond to messages other users post. You can
read messages at any time on the web. If you want to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXVi

http://p2p.wrox.com

Web Development with jQuery®

PART 1
The jQuery API

» CHAPTER 1: Draggable and Droppable
» CHAPTER 2: Sortable

» CHAPTER 3: Selectable

» CHAPTER 4: Accordion

» CHAPTER 5: Datepicker

» CHAPTER 6: Dialog

» CHAPTER 7: Tabs

» CHAPTER 8: Tablesorter

» CHAPTER 9: Tablesorter

» CHAPTER 10: Tablesorter

» CHAPTER 11: Tablesorter

Introduction to jQuery

JavaScript frameworks have arisen as necessary and useful companions for client-side web
development. Just a few years ago, JavaScript frameworks were needed to pave over the many
inconsistencies present with cross-platform web development. Before Microsoft got its act
together and gave us IE with vastly improved standards support, there was more often than
not the IE way and the standard way. Frameworks like jQuery helped immensely to fill in the
holes between standard and nonstandard. Today jQuery is a phenomenally popular, leading
JavaScript framework and application development platform. It is leaner; it is faster loading;
and it comes loaded with features that make the life of a JavaScript application developer
much easier. No longer is JavaScript an afterthought, grafted onto stateless HTML. It is used
more and more to be the foundation and the primary driving force of not only web develop-
ment but also application development, from desktop to tablets and smartphones.

Thanks to renewed vigor in the browser and platform wars of the big tech giants, JavaScript
has also become much leaner and faster. Today, the leading browser makers are deliver-

ing JavaScript capabilities that take the good ole reliable, interpreted language of JavaScript
and instantly transform it into cached machine byte code that can be executed blazingly
fast. Because of the collective advances and one-upmanship of Apple, Google, Mozilla, and
Microsoft, today we have JavaScript that has never performed better.

When this book was first written in 2009, jQuery was emerging as the de facto standard
JavaScript framework and application platform. Today jQuery sits atop the heap as a global
leader facilitating cutting-edge web and application development from mom-and-pop shops to
Fortune 500 companies. It is baked into iOS and Android apps and mobile websites both with
and without the popular jQuery Mobile framework add-on, and it runs the websites of some
of the world’s biggest companies, such as Amazon, Apple, The New York Times, Google,
BBC, Twitter, and IBM.

For years JavaScript frameworks have paved over the craters and inconsistencies of cross-
browser web development to create a seamless, enjoyable client-side programming experience.
Today, with Internet Explorer 11 and its underlying Trident engine, Microsoft finally has a
world-class standards-compliant web browser that’s caught up with competing offerings from
Apple’s Safari and world-leading, underlying, open-source WebKit, Google’s Chrome browser

4 | CHAPTER1 INTRODUCTION TO JQUERY

and newly forked from WebKit Blink engine, and Mozilla’s Firefox powered by the Gecko engine.
Web developers have never had better platforms on which to build modern, fully standards-compli-
ant applications.

One of jQuery’s biggest innovations was its fantastic DOM querying tool using familiar CSS selec-
tor syntax. This component, now called Sizzle, is now a separate open-source component included
within the larger open-source jQuery framework. It contains jQuery’s added on CSS pseudo-class
selectors and the full DOM querying CSS selector engine that works in browsers as old as IE6 as
well as new browsers. It uses the native JavaScript document, querySelectorA11() function call,
which makes DOM queries using CSS selectors fast, when it is available. Sizzle is one of the biggest
driving forces that makes jQuery web development super easy and has thus attracted a large number
of developers to the jQuery world.

Another feature that makes jQuery web development very easy and attractive is its support for
chained method calls. Where the API supports it, you can call one method after another by chain-
ing method calls on the backs of one another. This is what a chained method call looks like using

jQuery:
$('<div/>")
.addClass('selected')
Lattr({
id : 'body',

title : 'Welcome to jQuery'

b
.text("Hello, World!");

In the preceding example, a <div> element is created with jQuery. jQuery is contained within the
dollar sign variable, $, which is a JavaScript variable just one character long. This variable contains
the entire jQuery framework and is the starting point for everything that you can do with jQuery.
The statement $('<div/>") creates the <div> element, and then you see multiple method calls follow-
ing that statement. .addClass('selected') adds the class attribute to the <div> element. Then there
is a call to .attr(), which adds two additional attributes to the <div> element, an id attribute and

a title attribute, and then the call to .text() fills the <div> element with plain text content. With
this little snippet of code, you have four separate method calls all strung together to form a single
expression spanning multiple lines. This brief sample of what jQuery can do results in the creation
of a <div> element that can be inserted into the DOM that looks like this:

<div class="selected" id="body" title="Welcome to jQuery'">Hello, World</
div>

jQuery packs a powerful punch; it helps you develop better JavaScript applications by facilitat-

ing powerful DOM interaction and manipulation with less code than you would use with a pure
JavaScript approach. This is what is meant by jQuery’s motto, “Write less, do more.” Compare the
snippet of jQuery that I presented with the following, which creates the same <div> element with
pure JavaScript:

var div = document.createElement('div');

div.className = 'selected’;
div.id = "body"';

What jQuery Can Do for You | 5

div.title = '"Welcome to jQuery';
var text = document.createTextNode ("Hello, World!");

div.appendChild(div);

As you can see, jQuery is much less verbose. It wraps around traditional, native JavaScript APIs to
help you as a developer get more done with JavaScript using less code, allowing application develop-
ment to go more quickly.

In this chapter I present the following information:
> What jQuery can do for you
Who develops jQuery?
Where and how to get jQuery
How to install and use jQuery for the first time

XHTML and CSS programming conventions

Y Y Y Y Y

JavaScript programming conventions

WHAT JQUERY CAN DO FOR YOU

As presented in the last section, jQuery makes many tasks easier. Its simplistic, chainable, and com-
prehensive API has the capability to completely change the way you write JavaScript. With the goals
of doing more with less code, jQuery really shines in the following areas:

> jQuery makes iterating and traversing the DOM much easier via its various built-in methods.

> jQuery makes selecting items from the DOM easier via its sophisticated, built-in, and ubiqui-
tous capability to use selectors, just like you would use in CSS.

> jQuery makes it easy to add your own custom methods via its simple-to-understand plug-in
architecture.

> jQuery helps reduce redundancy in navigation and UI functionality, like tabs, CSS, and
markup-based pop-up dialogs, animations, and transitions, and lots of other things.

Is jQuery the only JavaScript framework? No, certainly not. You can pick from several JavaScript
frameworks: Yahoo UI, Prototype, SproutCore, Dojo, and so on. I like jQuery because I enjoy its
simplicity and lack of verbosity. However, among the other frameworks, you’ll find that there is a
lot of similarity, and each provides its own advantages in terms of unifying Event APIs, providing
sophisticated selector and traversal implementations, and providing simple interfaces for redundant
JavaScript-driven UI tasks. Across the entire web, including websites that don’t use any JavaScript
frameworks, jQuery can be found on as many as half of all websites. So, jQuery definitely has the
benefit of a ubiquitous, de facto standard. Based on its popularity, you’re extremely likely to run into
other developers who have experience with and know how to use jQuery.

6

CHAPTER 1 INTRODUCTION TO JQUERY

Another aspect of jQuery programming I enjoy is that jQuery doesn’t seek to impose its own
opinions about programming onto you, its user. Some frameworks, ExtJS in particular, seek to
completely circumvent traditional JavaScript, HTML, and CSS web development with complicated
Model-View—Controller (MVC) implementations that seek to auto-generate the HTML and CSS
portions for you, which is perfectly fine, if that’s how you like to program. jQuery does not impose
any kind of programming paradigm on you, the user. Combined with tools that are designed to
work well with it, such as Mustache.js and Backbone.js, a more reasonable programming paradigm
can be achieved alongside the popular MVC-based programming pattern, in which you still have
control over the HTML and CSS that you create and use.

In past years, what initially drew developers to jQuery-based web development was its incredibly
simple way of erasing the lines between browsers. It presented a unified API for event handling,
whereas before JavaScript frameworks came along, you had a clumsy fragmented approach in which
Microsoft had one way for IE and the other browsers had the standard way. jQuery made cross-
browser web development easy and seamless. Today, developers continue to flock to jQuery, no lon-
ger because of fragmentation because those issues have been slowly resolved over the last four years,
but simply because it is leaner and easier to understand and use than native JavaScript program-
ming. Finally, Microsoft has implemented the standard event-handling model in Internet Explorer
that everyone else has been using for more than a decade. The latest version of jQuery, version 2.0,
sheds the legacy baggage that facilitated that cross-browser web development, allowing jQuery to
become leaner and faster.

That’s not to say that there are no more cross-browser issues. There are still areas of JavaScript
development in which there are multiple approaches. Thankfully, these areas are becoming fewer
and fewer. Cross-browser issues exist more today in cutting-edge CSS where browsers make brand-
new, experimental features available using vendor-prefixed CSS properties. One of the most frus-
trating examples is that of gradients in CSS, where to implement the feature correctly in modern and
legacy browsers, you have up to seven different ways of writing the same gradient:

> WebKit’s extremely syntactically verbose first stab at CSS gradients: -webkit-gradient

> WebKit’s implementation of the revised standard: -webkit-T1inear-gradient and
-webkit-radial-gradient

The current W3C CSS3 standard: Tinear-gradient and radial-gradient

Microsoft’s vendor-prefixed standards-compliant implementation of the W3C standard: -ms-
linear-gradient and -ms-radial-gradient

> Microsoft’s proprietary implementation of gradients found in the old filter and -ms-filter
properties

> Mouzilla’s implementation: -moz-1inear-gradient and -moz-radial-gradient

> Opera’s implementation previous to their adoption of Google’s WebKit fork (now Blink)
engine: -o-1inear-gradient and -o-radial-gradient

As you can see, the situation with using cutting-edge CSS that is still working its way through the
standardization process is not pleasant for web developers. Unfortunately, rather than adopting

a comprehensive approach, most web developers stop with the -webkit- variants, and they don’t
bother implementing the variants supported by other browsers. This, in part, is what persuaded
Opera to discontinue development of its own Presto engine in favor of Google’s Blink fork

Installing jQuery | 7

of WebKit. This used to be the kind of thing developers needed a framework like jQuery to solve.
This particular situation is solved, by the way, by using server-side dynamically generated CSS tem-
plate solutions, or even a client-side jQuery plugin.

The beauty of jQuery is that it can solve problems like vendor-specific CSS gradients as well as the
remaining cross-browser issues that exist in JavaScript through its comprehensive and easy-to-use
plugin ecosystem. Several great third-party jQuery plugins are presented later in this book.

WHO DEVELOPS JQUERY?

I won’t spend a lot of time talking about the history of JavaScript frameworks, why they exist, and
so on. I prefer to get straight to the point. That said, a brief mention of the people involved with
developing jQuery is in order.

jQuery’s original creator is John Resig, whose website is located at ww.ejohn.org. John resides in
Brooklyn, New York, and is presently the Dean of Computer Science at Khan Academy. John still
helps with defining the direction and goals of the jQuery project, but jQuery has largely been transi-
tioned to a large team of people. You can learn more about these people and what roles they played
in jQuery’s development at https://jquery.org/team/.

OBTAINING JQUERY

jQuery is a free, Open Source JavaScript Framework. The current stable, production release version,
as of this writing, is 1.10.2 and 2.0.3. The difference in these two versions of jQuery largely revolve
around legacy browser support; the 2.0 release of jQuery dispenses with the huge amount of legacy

baggage it needed to facilitate support with older versions of Internet Explorer.

I use version 1.10.2 throughout the course of this book, for maximum browser compatibil-

ity. Getting jQuery is extremely easy—all you have to do is go to www.jquery.com and click the
Download jQuery link. You’ll see two options for downloading either the 1.x version or the 2.x
version:

> A compressed production version

> An uncompressed development version

The uncompressed development version is recommended for use while you are developing. This
version can facilitate doing back traces with web developer tools in any of the major browsers. You
can walk through the JavaScript chain of execution and see what code is executing in nice, human-
readable code. The compressed production version is recommended for use on production websites
where size is a huge consideration; the file is compressed to remove all the extra whitespace so that it
downloads quickly.

INSTALLING JQUERY

Throughout this book, I will refer to the jQuery script as though it is installed at the following path:
www.example.com/jQuery/jQuery.js.

http://www.ejohn.org
https://jquery.org/team
http://www.jquery.com
http://www.example.com/jQuery/jQuery.js

8 | CHAPTER1 INTRODUCTION TO JQUERY

Therefore, if I were using the domain example.com, jQuery would have this path from the document
root, /jQuery/jQuery.js. You do not have to install jQuery at this exact path. You can move jQuery
wherever you like, but don’t forget to update the path.

HELLO, WORLD IN JQUERY

In the following example you learn how to install jQuery and execute a remedial
“Hello, World” jQuery-based JavaScript application. To start, follow these steps:

1. Download the jQuery script from www. jquery.com. Alternatively, I have also
provided the jQuery script in this book’s source code download materials
available for free from www.wrox.com/go/webdevwithjquery.

2. Enter the following XHTML document, and save the document as Example
1-1.html. Adjust your path to jQuery appropriately; the path that I use reflects
the path needed for the example to work when opened in a browser via the
source code materials download made available for this book.

<!DOCTYPE HTML>
<htm1 xmins="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="content-type"
content="application/xhtml+xml; charset=utf-8" />
<meta http-equiv="content-language" content="en-us" />
<title>Hello, World</title>
<script type='text/javascript' src="../jQuery.js'></
script>
<script type='text/javascript' src='Example 1-1.js'>
</script>
<link type='text/css' href='Example 1-1.css'
rel="'stylesheet' />
</head>
<body>

</body>
</html>

3. Enter the following JavaScript document, and save the document as Example
1-1.js:

$(document) . ready (
function()

$('body") .append(

$('<div/>")
.addClass('selected")

http://www.jquery.com
http://www.wrox.com/go/webdevwithjquery
http://www.w3.org/1999/xhtml

Installing jQuery

9

.attr({
id : 'body',
title : 'Welcome to jQuery'
D)
.text(
"Hello, World!"
)
);
}
);
4. Enter the following CSS document, and save the document as Example 1-1.css:
body {
margin: 0;

padding: 20px;

font: 14px Helvetica, Arial, sans-serif;
b
div.selected {

background: blue;

color: white;

padding: 5px;

display: inline-block;

}

The preceding code results in the screen shot that you see in Figure 1-1 if the instal-

lation were unsuccessful. If installation were not successful, the page appears
blank.

e 0o Hello, World
<> | [2] [fite:///volumesrichard /Documents/8ooks/jc_&

Hello, World!

FIGURE 1-1

In the preceding example, you installed and tested your installation of the jQuery framework.

The JavaScript that you included is executed when the document’s onready event is fired, which is
executed as soon as the DOM is fully loaded: all markup, JavaScript, and CSS, but not images. The
callback function attached to the onready event then creates a <div> element with the selected class
name and contains the text Hello, World!

You have now used jQuery for the first time.

10 | CHAPTER1 INTRODUCTION TO JQUERY

PROGRAMMING CONVENTIONS

In web development, it’s common for professional software engineers, web designers, and web
developers—and anyone with a job title whose day-to-day activities encompass the maintenance of
source code—to adopt standards and conventions with regard to how the source code is written.
Standardization bodies like the W3C, which define the languages that you use to create websites,
already decide on some standards for you. Some standards are not written but are rather de facto
standards. De facto standards are standards that have become accepted throughout the industry,
despite not appearing in any official document developed by a standards organization.

Throughout this book, I talk about standards, de facto and official, and how to develop and design
web-based documents and even web-based applications that take those standards into account. For
example, I talk extensively about how to separate behavior (JavaScript) from presentation (CSS)

and structure (XHTML). JavaScript written in this way is commonly referred to as nonintrusive
JavaScript—it’s nonintrusive because it supplements the content of a web document, and, were it
turned off, the document would still be functional. CSS is used to handle all the presentational
aspects of the document. And the structure of the document lives in semantically written XHTML.
XHTML that is semantically written is organized meaningfully with the right markup elements and
contains little, if any, presentational components directly in the markup.

In addition to standards, I discuss how to develop web-based documents, taking into account differ-
ent browser inconsistencies, discrepancies, and idiosyncrasies. There is some interactive functional-
ity that nearly every browser handles differently; in those situations, other web professionals have
already pioneered de facto standards that are used to bring all browsers into accord. The idea of a
JavaScript foundational framework has become more popular and increasingly a dependency for
HTMLS applications, like the ones you’ll learn to develop using the jQuery framework.

Before I begin the discussion of how to use jQuery, the coming sections provide a generalized over-
view of programming conventions and good practice that you should follow.

Markup and CSS Conventions

It’s important that your web documents be well organized, cleanly written, and appropriately
named and stored. This requires discipline and even an obsessive attention to the tiniest of details.

The following is a list of rules to abide by when creating XHTML and CSS documents:

> When selecting id and class names, make sure that they are descriptive and are contained in
a namespace. You never know when you might need to combine one project with another—
namespaces help you to prevent conflicts.

> When defining CSS, avoid using generic type selectors. Make your CSS more specific. This
can also help with preventing conflicts.

> Organize your files in a coherent manner. Group files from the same project in the same
folder; separate multiple projects with multiple folders. Avoid creating huge file dumps that
make it difficult to locate and associate files.

Programming Conventions | 11

> Avoid inaccessible markup. Stay away from frames, where possible. Organize your markup
using semantically appropriate elements. Place paragraphs in <p> elements. Place lists in <ul1>
or <o1> elements. Use <h1> through <h6> for headings, and so on.

> 1If you can, also consider the loading efficiency of your documents. For development, use
small, modularized files organized by the component; combine and compress those modular-
ized files for a live production site.

Id and Class Naming Conventions

Most web developers don’t think too much about the topics of namespacing and naming conven-
tions. Naming conventions are just as important in your markup id and class names as namespacing
is important in programming languages.

First, what is namespacing, and why do you need to do it? Namespacing is the concept of making
your programs, source code, and so on tailored to a particular naming convention, in an effort to
make your programs more portable and more capable of living in diverse, foreign programming
environments. In other words, if you want to directly insert a web application into your document,
you want to be sure that the class and id names, style sheets and script, and all the bits that make
your web application what it is do not conflict with any applications that are already present in the
document. Your applications should be fully self-contained and self-sufficient and not collide or
conflict with any elements already present in a document.

What are some common id names that people use in style sheets? Think first about what the typi-
cal components of a web application are. There’s a body. There may be one or more columns. There
may be a header and a footer, and there are lots of components that can potentially be identified as
generic, redundant pieces that all web applications may have. Then, it stands to reason that plenty
of websites are probably using id and class names like body, header, footer, column, left, right, and
so on. If you name an element with the id or class name body, you have a good chance of conflict-
ing with an overwhelming majority of websites in existence today. To avoid this type of conflict, it’s
considered good practice to prefix id and class names within a web application to avoid conflicts
and namespace collisions. If you write an application called tagger, you might namespace that appli-
cation by prefixing all your id and class names with the word tagger. For example, you might have
taggerBody, taggerHeader, taggerFooter, and so on. It may be possible, however, that someone has
already written an application called tagger. To be safe, you might do a web search on the name
you’ve chosen for your application to make sure that no one’s already using that name. Typically,
simply prefixing your id and class names with your application’s name is enough.

In addition, it also helps to prefix id and class names with type selectors in style sheets. Type selec-
tors help you narrow down what to look for when modifying or maintaining a document. For exam-
ple, the id selector #thisId is ambiguous. You don’t know what kind of element thisId is, and thus
would likely have to scan the entire document to find it. But div#thisId is more specific. By includ-
ing the div in the selector, you instantly know you’re looking for a <div> element. Including the type
in the selector also helps you in another way: When dealing with class names, you can have the same
class name applied to different types of elements. Although I may not condone that as good practice,

12

CHAPTER 1 INTRODUCTION TO JQUERY

at least in the style sheet, you can control which element gets which style. span.someClass and div.
someClass are selectors that differentiate style based on the type of element, whereas .someClass is
more ambiguous and applies to any element.

Id and class names should also be descriptive of their purpose in a semantically meaningful way.
Keep in mind that an id name can potentially be used in a URL as an HTML anchor. Which is bet-
ter: www.example.com/index.html#left or www.example.com/index.html#exampleRelatedDocuments?
The latter id anchor is namespaced example for example.com, and RelatedDocuments is the name of
the element; thus, the latter URL includes more information about what purpose the element serves
and greatly increases the maintainability of the document in a very intuitive way. In addition, the
latter has more benefit in terms of search engine optimization (SEO). The former is too ambiguous
and won’t provide much in the way of SEO. Think of each of your id and class names as though it is
part of the URL of your document. Give each id and class name that you create semantic names that
convey meaning and purpose.

Generic Type Selectors

Generic type selectors are style-sheet rules that look something like this:

a {
color: #29629E;

In the preceding style-sheet rule, you see what’s probably a pretty common scenario, changing the
color of every link in a document via a generic type selector that refers to all <a> elements. Generic
type selectors should be avoided for the same reason that it is good to namespace id and class names
within a document, avoiding conflicts when multiple scripts or style sheets are combined in the same
document. Instead, it’s best practice to apply id or class names to these elements, or at the very least
place them in a container that has an id or class name, and only use descendant selectors when refer-
encing those elements via a style sheet.

div#exampleBanner a {
color: #29629E;
3

The preceding example avoids the pitfalls introduced by using a blanket, generic selector style-
sheet rule by limiting the scope of the style-sheet rule’s application. Now, only <a> elements that are
descendants of a <div> with the id name exampleBanner receive the declaration color: #29629E;.

Storing and Organizing Files

How files are organized and stored is important to the maintainability of a document. You should
maintain your documents in an easy-to-understand, easy-to-learn directory hierarchy. Different
people have different approaches to storing and organizing files, obviously. What matters is that
there is an organization scheme, rather than none at all. Some choose to store documents by type
and then separate them by application, whereas others prefer to separate by application first and
then sort by type.

http://www.example.com/index.html#left
http://www.example.com/index.html#exampleRelatedDocuments?

Programming Conventions | 13

Avoid Making Documents Inaccessible

Accessibility is also an important factor to consider in the design of a web document. You should do
your best to make your JavaScript nonintrusive, but also avoid taking away a document’s accessibil-
ity by either script or markup.

> Avoid using frames.

> Limit the number of images to those that actually contribute to the content of a document.
With the CSS3, Data URIs and SVG standards, much more of what used to be required
image content for the design of a site no longer has to be included in images and can be pro-
grammed with either CSS3 or SVG (for example, gradients or inner or drop shadows). When
you have to use images, try to contain as much of the design as possible in CSS background
images. Make available double-resolution images for retina or high-resolution devices. And
keep images that directly contribute to the content in elements. Be sure to include a1t
attributes that describe the image for each element.

> Place content in semantically appropriate markup containers—use <p> for paragraphs, <h1>
through <h6> for headings. Use the new HTMLS/XHTMLS elements designed to make
semantic content more semantic: <heading>, <article>, <aside>, <summary>, to name just a
few.

> Make the design high contrast when possible. Imagine what the document would look like
through the eyes of someone with poor vision. Can you easily read the content?

> Avoid wandering too far away from established user-interface conventions. Can you distin-
guish hyperlinks from normal content?

> Consider making the content keyboard-accessible. Can you navigate without a pointing
device?

> Make the content more unobtrusive. Can you use the website without Flash and JavaScript
functionality? JavaScript and Flash should enhance web content in a complementary way,
not be a requirement.

> Avoid placing a large number of links at the beginning of every document. If you were listen-
ing to the content being read to you, rather than seeing it visually, would the experience be
enjoyable?

Accessibility should be practiced to the point of becoming an automatic reflex. It should be
cemented in your development practices in a fundamental way in the same way that namespacing
and file organization are. Although other best practices can become second nature easily, it’s also
easy to get into the habit of ignoring accessibility, so a conscious effort must be made to periodically
review accessibility and ingrain accessibility in the development process.

Efficiency in Markup and CSS

Markup and CSS in a complex website can easily become large and bloated and drag down over-
all loading and execution times more and more. This can become particularly troublesome as the

14

CHAPTER 1 INTRODUCTION TO JQUERY

overall popularity of a site increases. As the complexity of a website increases, it becomes necessary
to look into ways of streamlining the content. It’s best to limit the number of external files being
loaded, but all CSS and JavaScript should be included in at least one external file. Were JavaScript
and CSS included directly in a document, the initial loading time would improve, but you’d also lose
the advantage of separately caching JavaScript and CSS on the client side.

For the best of the best in efficiency, combine the following concepts:

> Server-side gzip compression. You should test your website with this feature enabled and dis-
abled because it has some trade-offs involved. See if gzip compression is right for you. In my
experience gzip may make files load more quickly, but it can also delay when you see content
because it prevents incremental rendering from occurring. It is usually more important that
your users see content as quickly as possible.

Aggressive client-side caching; this makes subsequent page loads much faster.

Automatic compression of markup content by removing excess whitespace and comments
from the markup source.

> Automatic compression and consolidation of multiple CSS and JavaScript files by removing
all excess whitespace and comments from each file. Appropriately combining files further
decreases load times by reducing HTTP latency.

When the preceding items are combined, you make the loading times of a web document the best
possible; however, there are some caveats to consider that may at first seem contradictory:

> Maintainable markup should be written in a neat and organized manner. It should be well
spaced and indented and contain line breaks where appropriate.

> Good programming practice means modularized development, so break up your CSS and
JavaScript by component and application. Make small, easy-to-digest chunks. This will speed
up your ability to maintain and extend projects.

> (lient-side caching can lead to headaches when updates are made to CSS or script files.
Browsers will continue to use the old version of the CSS and script files after an update is
made, when caching is working correctly.

The good news is that all the preceding caveats can be overcome. The bad news is that it’s not par-
ticularly easy to overcome them.

The best way to implement efficiency in markup, JavaScript, and CSS documents is to make the
efficiency automatic. That is to say, write server-side applications that handle efficiency tasks for
you. A well-designed, professional content management system can work out those bits for you. It
can allow you to make your JavaScript, markup, and CSS documents modularized and separate
them based on the task each is designed to perform but automatically combine and compress those
documents for you.

Unfortunately, not everyone can use a professional content management system to serve their con-
tent. For those individuals, there are some compromises to be made:

> JavaScript and CSS can be hand-compressed using a web-based utility like Dean Edwards’s
packer, http://dean.edwards.name/packer. Development can continue to be modularized,

http://dean.edwards.name/packer

Programming Conventions | 15

and the compression and consolidation portion of development simply becomes a manual
task.

> You can limit the amount of whitespace you use in a document. Indent content with two
spaces instead of four.

Overcoming the headaches with document caching, however, is a much easier task. You can force a
browser to update a document by changing its path. For example, say you have the following script
included in your markup:

<script src="/script/my.js' type='text/javascript's></script>

You change the path from /script/my.js to /script/my.js?lastModified=09/16/07. The latter ref-
erences the same, my. js, but is technically a different path to the browser, and the browser, con-
sequently, will force refreshing of its cached copy of the document. The 2lastModified=09/16/07
portion of the path is the query string portion of the path. The query string begins with a question
mark and then contains one or more query string variables. Query string variables are used by a
server-side programming language or client-side JavaScript to pass information from one document
to another. In this example, there is no information being passed per se. You’re including the time
of the last modification, although I could have just as easily included the revision, or even a random
string of characters. The inclusion of a query string in this example has only one purpose: to force
the browser into refreshing the cached version of the document.

The same can be done with CSS:

<link type='text/css' rel="stylesheet' href='/styles/
my.css?lastModified=09/16/07" />

In the preceding snippet of markup that includes an external CSS document, the query string is used
to force a refresh of the browser’s cached copy of the style sheet my.css.

The next section talks about some conventions specific to JavaScript.

JavaScript Conventions
In JavaScript, several things should be considered bad practice and avoided:

> Include all script in external documents—JavaScript code should be included only in exter-
nal script files. Script should not be embedded in markup documents or be included inline,
directly on markup elements.

> Write clean, consistent code—]JavaScript code should be neatly formatted and organized in a
consistent, predicable way.

> Namespace JavaScript code—JavaScript variables, functions, objects, and the like should be
namespaced to minimize potential namespace conflicts and collisions with other JavaScript
applications.

> Avoid browser detection—Browser detection should be avoided where possible. Instead,
detect specific browser features.

The next sections present cursory, generalized overviews of each of the preceding concepts.

16 | CHAPTER1 INTRODUCTION TO JQUERY

Include All Script in External Documents

Part of making JavaScript nonobtrusive means making JavaScript complementary and supplemental,
rather than required and mandatory. This concept is explored in detail throughout this book; how-
ever, it should be noted why this is the best approach.

Consider the following code example:

<!DOCTYPE HTML>
<html xmins="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="content-type"
content="application/xhtml+xml; charset=utf-8" />
<meta http-equiv="content-language" content="en-us" />
<title>Hello, World</title>
<Tink type='text/css' href="Example 1-2.css' rel='stylesheet' />

</head>
<body>
<p>

<a href="javascript:void(0);"
onclick="window.open(
"pumpkin.jpg’,
'picture’,
'scrollbars=no,width=300,height=280,resizable=yes');">
Open Picture

</p>
</body>
</html1>

Combine the preceding markup with the following style sheet:

img {
display: block;
margin: 10px auto;
width: 100px;
border: 1px solid rgb(128, 128, 128);

3
body {
font: 14px sans-serif;
3
p {
width: 150px;
text-align: center;
3

The preceding code gives you something like what you see in Figure 1-2.

In Figure 1-2, you see what is probably a common scenario: You have a thumbnail, and you can
click to see a bigger version of the thumbnail. This is the kind of thing that JavaScript works well
for—giving you the bigger version in a separate pop-up window that doesn’t have any controls.

Now examine why what I did in Figure 1-2 was the wrong way to go about adding this
functionality.

http://www.w3.org/1999/xhtml

Programming Conventions | 17

800 Pumpkin Head el
[4 |2] @] |e file:/f /Volumes frichard /Documents /Books /jQuery/2nd¥20Ed & | “eace J @

Open Picture

FIGURE 1-2

Here are the problems with this approach:
> 1If JavaScript is disabled, viewing the larger picture doesn’t work.
> JavaScript can be disabled out of personal preference.
> JavaScript can be disabled because of company policy.

> Placing the JavaScript directly in the markup document adds unnecessary bloat and complex-
ity to the markup document.

The overwhelming point in all this is that inline JavaScript is a bad way to approach adding comple-
mentary, interactive functionality to a web document.

Here is a better approach to the application presented in Figure 1-2. First, take the inline JavaScript
out of the markup and replace it with a reference to an externally loaded JavaScript. The following
example names the externally loaded JavaScript Example 1-3.js:

<!DOCTYPE HTML>
<htm1 xmlns="http://www.w3.0rg/1999/xhtm1">
<head>
<meta http-equiv="content-type"
content="application/xhtml+xml; charset=utf-8" />
<meta http-equiv="content-Tlanguage" content="en-us" />
<title>Pumpkin Head</title>
<script type='text/javascript' src="../jQuery.js'></script>
<script type='text/javascript' src='Example 1-3.js'></script>
<link type='text/css' href="Example 1-3.css' rel="'stylesheet' />
</head>
<body>
<p>

http://www.w3.org/1999/xhtml

18 | CHAPTER1 INTRODUCTION TO JQUERY

Open Picture

</p>
</body>
</html1>

Then in the externally loaded JavaScript you do something like the following:

$(document) . ready (
function()

$("a#examplePumpkin').click(
function(event)

{

event.preventDefault();

window.open(

"pumpkin.jpg',

'Pumpkin',

'scrollbars=no,width=300,height=280, resizable=yes’
);

);

With the preceding bits of code, you get the results that you see in Figure 1-3.

800 Pumpkin Head ol
[< | >] @ [B file:// /Volumas /richard/Documents/Books/jQuery/2nd%20Ed ¢ | feadar J @

Cpen Picture

FIGURE 1-3

Programming Conventions | 19

This is an example of nonobtrusive JavaScript. Nonobtrusive JavaScript provides extended, inter-
active functionality within a web document, but does not do so in a way that obstructs using the
document in a plain-vanilla manner. That is to say, with JavaScript disabled, you can still use the
website and get what you need from it.

In the preceding example, the JavaScript is moved to an external document called Example 1-3.js.
Within Example 1-3.js jQuery is used to call upon an <a> element with the id name example Pump-
kin, and this in turn opens the pop-up window. If JavaScript is disabled, the picture is still opened
in another window, but if JavaScript is disabled, you just can’t control the size of the window or
whether it has controls.

So far, the user clicks an <a> element and gets a pop-up window. You want the window to pop
up instead of initiating the default action that occurs when a user clicks a link, which instead of
doing nothing, is now for the browser to navigate to the document defined in the href attribute
of the <a> element, also in a new window. This default action is prevented with the call to event.
preventDefault().

In this simple example, you’ve seen how a simple example can become something a little more com-
plex, but not much more complex. With a little further thought and attention to detail, a simple
enhancement can continue to function if the user has disabled script in his browser.

Write Clean, Consistent Code

It’s important to follow some predetermined criteria for producing clean, consistent, well-organized
code. In the professional world, most programmers have a particular way they like to see their code
formatted. Earlier in this section, I talked about how indenting and spacing markup and CSS docu-
ments can help you more easily catch errors in those documents and make those documents more
maintainable. Well, the same can be applied to JavaScript. Here I talk about each of the program-
ming conventions that I follow for writing JavaScript source code.

Indenting and Line Length

It’s a good idea to indent your code so that it’s easier to read and maintain. Take the following, for
example:

window.onload=function(){var nodes=document.getElementsByTagName('a');
for(var i = 0,length=nodes.length;i<length;i++){nodes[i].onclick=
function(event) {window.open(this.href, "picture",
"scrollbars=no,width=300,height=280,resizable=yes");

event? event.preventDefault(): (window.event.returnValue=false);};}};

In the preceding block of code, you see the contents of Example 1-3.js presented above in this sec-
tion, formatted without any indenting or spacing. Now, imagine that the preceding code is 10,000
lines of code spread out over many files, all formatted the same way. It’s not a bad idea to reduce
spacing for a live, production script; in fact, many professionals use compression routines specifi-
cally for this. But those same professionals don’t maintain their scripts in the compressed format
and often have a rigid programming standard to which every script they produce must conform.

A common, fairly universal programming standard is setting the size of an indentation to four
spaces, although some use just two spaces or other values. This is in addition to setting a blanket

20 | CHAPTER1 INTRODUCTION TO JQUERY

rule that tabs cannot be used in place of individual spaces, even though, technically, a tab character
results in less bytes added to a file when compared to four individual space characters. The “no tab”
rule exists because of the wide variance in the interpretation of what a tab character is in text appli-
cations. Some text applications say that a tab character is equal to eight individual spaces. Some
text applications say that a tab character is equal to four individual spaces, whereas others still let
you explicitly define how big a tab character is. These variances have led to the tab character being
unreliable for spacing purposes in code. Most professional integrated developer environments (IDEs)
let you define the [Tab] key on a keyboard as individual spaces, in addition to letting you define how
many spaces to insert.

Some examples of IDEs are Coda, Adobe Dreamweaver, Eclipse, Zend Studio, and Microsoft Visual
Studio: These are all development environments for either directly writing or generating source
code. In addition, most IDEs try to guess what you mean when writing a source document by intel-
ligently adjusting the number of spaces. For example, when you press [Return]| to begin a new line in
your source code document, the IDE can indent the new line with at least as much space as the pre-
ceding line. Most IDEs behave this way by default. Dreamweaver automatically inserts two spaces
when you press the [Tab] key. Coda, Eclipse, and Zend Studio can all be configured to insert spaces
instead of tab characters when you press the [Tab] key.

Throughout this book, I use four spaces for a [Tab] key, although limited space may sometimes
require that T use two characters. Generally, the professional standard for client-side source code is
two characters because four characters makes file sizes much larger. I’ve stuck with four because
concerns about file size and bandwidth usage can be addressed by compressing your source code
when it’s used on a production website.

Control Structures

Control structures include programming statements that begin with the keywords 1f, else, switch,
case, for, while, try, catch, and so on. Control structure programming statements are the building
blocks of any programming language. Now see how control structure statements should be format-
ted with regard to popular programming standards and guidelines.

Although, ultimately, different people have different preferences for how to write source code, there
are two prevailing methods for formatting control structures in use by the majority of the profes-
sional programming community.

The following convention, which is formally called K& R Style, is included in Sun’s Coding
Standards Guidelines for Java:

if (condition) {
something = 1;

} else if (another) {
something = 2;

} else {
something = 3;

3

In the preceding code example, you see that the curly braces and the parentheses are used as
markers for indention.

Programming Conventions | 21

Compare the preceding to the next convention, which is known as Allman Style, which is the default
in Microsoft Visual Studio:

if (condition)
{

something = 1;

else if (another)

{

something = 2;
}
else
{

something = 3;
}

In Allman Style, all the curly braces line up in the source code, which makes it easier to detect when
one is missing, in addition to preventing typos like missing curly braces from occurring in the first
place because you have a visual aid for their placement. It also lends itself nicely to having more
space between lines of code, making things easier to read.

When function calls, like window.open in the example, are long, sometimes the function call is bro-
ken up over multiple lines to make it easier to read. To the browser,

window.open(
this.href,
"picture",
"scrollbars=no,width=300,height=280,resizable=yes"
);

and

window.open(this.href, "picture", "scrollbars=no,width=300,height=280,resizable=
yes");

are exactly the same. The former example just makes it easier for humans to parse the arguments
present in the function call.

Sometimes these two conventions are mixed to form a third convention, which is known as the One
True Brace convention. This convention is defined in the Coding Standards Guidelines for PHP’s
PEAR repository.

window.onload = function()

{

var nodes = document.getElementsByTagName('a');

for (var counter = 0, Tength = nodes.length; counter < length; counter++) {
nodes[counter].onclick = function(event) {
window. open(
this.href,
"picture",
"scrollbars=no,width=300,height=280,resizable=yes"
);

22 | CHAPTER1 INTRODUCTION TO JQUERY

event? event.preventDefault() : (window.event.returnValue = false);

¥
b
In the One True Brace convention, the function assigned to window.onload follows the Allman Style,
while the code within it follows K&R Style.

When I write JavaScript code, I prefer a mixture of Allman Style and K&R Style. I use Allman Style
for all function and class definitions as well as control structures, and I use K&R Style for array and
object definitions (JSON), and function calls. In practice this looks something like this:

$(document) . ready (

function()
{
$("a#texamplePumpkin').click(
function(event)
{

event.preventDefault();

window.open(

"pumpkin.jpg’',

'Pumpkin',

'scrollbars=no,width=300,height=280, resizable=yes’
);

);

Which programming convention you use is, of course, a matter of personal taste. Often which
convention to use can lead to endless battles among programming teams; sometimes people have
different tastes. How you indent your code can be a touchy and personal topic. You should use
whichever convention makes the most sense for you. Although the methods I’ve showcased are the
most popular, there are a multitude of variations that exist out there in the real world. You can find
more information about programming indention styles on Wikipedia at http://en.wikipedia.org/
wiki/Indent_style.

Optional Curly Braces and Semicolons

In the previous conventions, you’ll note that there is always a single space between the keyword that
begins the control structure, like if and the opening parenthesis. The following is a switch control
structure using the first convention:

switch (variable) {

case 1:
condition = 'this';
break;

case 2:
condition = 'that';

http://en.wikipedia.org

Programming Conventions | 23

break;

default:
condition = 'those';

Note in the preceding that no break statement appears in the default case. As the default, a break is
implied, and it is not necessary to include the break statement. I tend to deviate from the norm with
how I prefer switch control structures to be written.

switch (variable)

{
case 1:
{
condition = 'this';
break;
};
case 2:
{
condition = 'that';
break;
3
default:
{
condition = 'those';
};
}

I like to add curly braces around each case in the switch statement; I do this because I believe it
makes the switch statement easier to read and flow better to my eyes; however, ultimately, these
are not necessary. Concerning optional curly braces, I always include them, even if they’re techni-
cally optional. The same goes for semicolons. Terminating each line with a semicolon is technically
optional in JavaScript, although there are some circumstances in which you won’t be able to omit
it. I include all optional semicolons and curly braces, as I think that this not only makes the code
cleaner, more organized, and consistent, but also gives you a technical benefit. If you want to com-
press your code to remove all additional white space, comments, and so on, these optional bits sud-
denly are no longer optional, but needed to keep the program functional after it’s been compressed.
In the following example, you can see what [mean by optional components:
if (condition)
something = 1
else if (another)
something = 2
else
something = 3

In JavaScript, the preceding code is perfectly valid. The semicolon is implied where there is a line
break. And as long as there is only a single statement being executed, technically you don’t have to
include curly braces. However, the above fails when it is compressed:

if (condition) something = 1 else if (another) something = 2 else something = 3

24 | CHAPTER1 INTRODUCTION TO JQUERY

The preceding fails with a syntax error when you try to execute it. It fails because the script inter-
preter has no idea where you intend one statement to end and the next to begin. The language could
probably be extended to guess in some circumstances, but it’s better to just be as explicit as possible.
Some combination and compression tools such as require.js do their best to fill missing bits and are
actually very good at it.

Something else that you might think is odd is the inclusion of a semicolon after some function defi-
nitions. You’ll see this in JavaScript because a function can be a type of data, just like a number is a
type of data or a string is a type of data. In JavaScript, it’s possible to pass a function around as you
would a number or a string. You can assign a function to a variable and execute the function later.
You’ve already seen an example of this, and here it is again in the following code:

window.onload = function()

{
var nodes = document.getElementsByTagName('a');
for (var counter = 0, Tength = nodes.length; counter < length; counter++) {
nodes[counter].onclick = function(event) {
window. open(
this.href,
"picture",
"scrollbars=no,width=300,height=280,resizable=yes"
);
event? event.preventDefault() : (window.event.returnValue = false);
};
}
};

In the preceding code, you can see that a function is assigned to the onload event of the window
object. The function definition is terminated with a semicolon. Again, that semicolon is technically
optional in this example, but I include it because I want the code to work if it gets compressed, and I
think that it makes the code more consistent, organized, and easier to follow.

Naming Variables, Functions, Objects

Variable naming is also accounted for in the coding standards I follow throughout this book. I
always use the camelCase convention when naming variables, functions, objects, or anything that I
can potentially invent a name for. This is contrasted with underscore naming conventions, for
example, underscores_separate_words.

Namespace JavaScript Code

It’s important to think about the big picture when writing an application. Whether you’re writ-

ing an application for your own use or writing an application that will be deployed in varying
environments that you have no control over, you’re likely to run into one problem at some point

in your career: naming conflicts. I touched on this topic when I talked about namespacing class
and id names in your CSS and markup. The same principles are also applicable to JavaScript. Your
script applications need to run without invading the global namespace too much. I say “too much”
because you need to invade it somewhat, but you need to do so in a controlled and intelligent way.
As you may have done for your markup and CSS, namespacing your JavaScript may be as simple as

Programming Conventions | 25

sticking to object-oriented code, wrapping all your programs in just one or a handful of objects and
then naming those objects in the global namespace in a noninvasive way. A common approach is

to namespace those objects with a prefix of some kind that doesn’t infringe on some other existing
project. One example is how the jQuery JavaScript framework is namespaced. jQuery does a lot,
but for all the code that’s included in jQuery, there are precious few intrusions made on the global
namespace, the “jQuery” object, and the dollar sign method the jQuery object is aliased to. All the
functionality that jQuery provides is provided through those objects, and one of those two, the dol-
lar sign variable can be turned off. (As it turns out this is a common thing for frameworks to do, to
bind to a variable named $, so the ability of turning it off allows jQuery to be installed alongside
other JavaScript frameworks.)

Without a well-thought-out approach to the namespacing problem, it’s possible that your applica-
tion may cause conflicts with others. It’s best to just assume that everything you place in the global
namespace will cause a conflict, and thus set out to make as minimal as possible an intrusion into
the global namespace.

Avoid Browser Detection

Browser detection can be a real annoyance. You’re surfing the web using your favorite browser, and
you hit a website that locks you out—not because your web browser is technically incapable, but
because it didn’t match what the website’s creators presupposed would be capable. So, I propose the
following:

> Make no assumptions about the capabilities of a visitor’s browser.
> Test for feature compatibility, rather than a browser name or browser version.

» Account for the official standards and the de facto standards. (Official standards should take
precedence—de facto standards will either become or be replaced by the former.)

> The world is always changing—what’s most popular today may not remain the most popular
in the months and years to come.

> It may be time to turn to a framework for some compatibility bridging.

Anyone remember a company called Netscape? At one time, Netscape was the dominant, de facto
standard. Now Netscape holds virtually nothing of the world market share, and Chrome, Firefox,
Safari, and Internet Explorer are dominant. Another great example: At its most popular, IE held
more than 90 percent of the market. Now IE holds 50 percent or less, and other browsers all hold
the remaining 50 percent. On mobile, Safari and Chrome are the overwhelming dominant market
leaders because they power the browsers on iOS and Android platforms. The browser market can
and does fluctuate and change. In the real world, there are a lot of people who use less popular
browsers. Some browsers hold 2 percent or less. Two percent may sound small at first glance, but
keep in mind that can be 2 percent of a very large number, and thus itself be a very large number.
According to www.internetworldstats.com, in 2013, as I write this, there are just more than 2.4
billion Internet users worldwide, which is 34.3 percent of the world’s population. Therefore, the
so-called less popular browsers aren’t really doing too shabby in the grand scheme of things, and
although 2 percent sounds small, it’s actually a pretty large base of users. Throughout this book 1
present numerous examples to you of how to avoid using browser detection and use feature
detection instead.

http://www.internetworldstats.com

26

CHAPTER 1 INTRODUCTION TO JQUERY

SUMMARY

jQuery takes what would otherwise be a more complex or verbose task in traditional JavaScript, and
it makes it much easier, sometimes reducing many lines to one or a few. Throughout this book, you
will learn about what jQuery has to offer and how to use its simple, easy-to-understand API to write
spectacular, professional-appearing web applications.

In this chapter, I talked a little about what jQuery is, where it comes from, and who develops and
maintains it, and I showed you how to install it and begin using it. In the next chapter, you get right
down to business, learning about jQuery’s powerful implementation of the Selectors API and its
world-class Event API.

If you are interested in learning more about jQuery’s origins, visit www.jquery.com and www.ejohn.
org.

This chapter also covered some things that a good programmer will want to get into the habit of
doing, such as adopting a formal programming convention and avoiding conflicts with others’ code
through using a namespace of some sort (whether that be via a feature provided by the language, or
through prefixing the names that you use that make an impact on the global namespace). I’'ve shown
a few of the practices that I have adopted for myself; although I should emphasize that it doesn’t
matter what programming convention you adopt, but rather that you adopt one. The premise of a
programming convention is that you have a set of rules that you can follow to format your code so
that it is neat, organized, and easy to follow. My conventions might not be what you want, but there
are many others to choose from.

You should avoid detecting the user’s browser, especially when it may lead to one group or another
being locked out from functionality.

Your code should take advantage of client-side caching and the increase in performance it provides.

In my opinion, it is better to write code in neatly organized modules and combine those into a larger
script later using server-side programming.

Finally, it is also important that you adopt standards for the presentation and maintenance of
client-side markup and CSS. Choose either XHTMLS or HTMLS, both of which are accepted
standards. I prefer XHTML, although it may be too strict for your taste.

http://www.jquery.com
http://www.ejohn

Selecting and Filtering

This chapter talks about jQuery’s sophisticated implementation of the Selectors API, which
provides the ability to select elements in the DOM using CSS selectors. jQuery’s Selectors API
allows you to select one or more elements from the DOM using a selector; then either you can
use that result set, or you can pass those elements on to be filtered down to a more specific
result set.

If you’ve never heard of a selector before, then I recommend that you have a look at my book
Beginning CSS: Cascading Style Sheets for Web Design, 3rd Edition, which has extensive
coverage of selectors.

In CSS, you can apply style to one or more elements by writing a style sheet. You choose which
elements to style based on the syntax that appears in the first part of a CSS rule, before the
first curly brace, which is known as the selector. Here is a sample CSS selector:

div#exampleFormWrapper form#exampleSummaryDialog {
display: block;
position: absolute;
z-index: 1;

top: 22px;
Teft: 301px;
right: 0;

bottom: 24px;

width: auto;

margin: 0;

border: none;

border-bottom: 1lpx solid rgb(180, 180, 180);
3

Using markup and CSS, you can assign id and class names to elements, and you can control
the presentational aspects of elements specifically using selectors. In jQuery, the concept of
selectors as applied to CSS is also applied to the concept of the Document Object Model
(DOM). In the DOM, you have available to you every element that exists in the markup of
your document, and you can traverse the DOM and select the elements you want to work with
using selectors, just like you use in your CSS style sheets.

28

CHAPTER 2 SELECTING AND FILTERING

After you select elements from the DOM, you can apply behavior to them. You can listen to events
and make something happen when a user clicks an element, for example. You can make something
happen when the user’s mouse cursor comes over or leaves an element. Basically, you can make your
web documents look and behave more like desktop applications. You are no longer limited to static
content as you are with markup and CSS alone—you can apply behavior as well.

This chapter describes how to use jQuery’s Selectors API to retrieve elements from a document, in
addition to providing some practical examples of usage. It also describes how you can chain calls
in jQuery. One use for this is filtering a selection, which you would do to reduce a larger selection
of elements down to a smaller selection. Finally, it discusses how jQuery’s Event API works in rela-
tion to the W3C’s Event API and Microsoft’s event model as it was implemented up to IE8. IE9 and
newer all have support for the standard W3C event model, in addition to Microsoft’s older, propri-
etary event model.

THE ORIGIN OF THE SELECTORS API

The concept of a Selectors API was first dreamed up by Dean Edwards, a JavaScript guru who first
created a Selectors API in JavaScript in a free, open-source package he called cssQuery. Not long
after Dean pioneered the idea and produced a working, proof-of-concept implementation of that
idea, it was taken up and expanded upon by John Resig (and other JavaScript framework authors,
mutually exclusive to John’s efforts) and implemented in his jQuery framework. This led to some
back-and-forth collaboration and competition between Dean, John, and other JavaScript framework
authors, which resulted in much-needed performance boosts in these ad-hoc implementations, which
at their conception were quite slow in some scenarios.

Not long after Dean came up with the concept of a Selectors API, W3C members and editors Anne
van Kesteren and Lachlan Hunt drafted it into a specification for the W3C. The official W3C
Selectors API involves two methods, one for selecting a single element called document.querySelec-
tor() and one for selecting multiple elements called document.querySelectorA11().

NOTE The names for the official API were under considerable debate for quite
some time because no browser makers could agree on the names used. The
names were finally put to a vote, with these names being the ones decided on.
The controversy surrounding the names was not without merit, as this API is
quite possibly the most important change to JavaScript that will have a lasting
impact for years to come. It’s important in that, in one fell swoop, it replaces
methods like document.getElementById, document.all, and document.getElements-
ByTagName, which are no longer needed—because these methods let you use selec-
tor syntax, you can select by id, by tag name, by class name, or by context, via
whatever selectors the browser already supports for CSS.

document.querySelector and document.querySelectorAll are both implemented natively in Chrome,
Safari, Firefox, and IE (back to IES).

Using the Selectors APl | 29

The great thing about jQuery and other JavaScript frameworks is that they had their own versions
of the Selectors API already implemented prior to its native inclusion in browsers, which allows
them to use the native implementation, if it is available. Using the native implementation makes
selecting elements screamingly fast. Otherwise, if the user has an older browser, the framework
can fall back on its own, slower, JavaScript-based implementation. This means that when using a
JavaScript framework like jQuery, the Selectors API is ubiquitously available across all platforms

it supports. jQuery 1.9 supports IE back to version 6 and should be used if you need compatibility
with the older versions of IE, in addition to all other popular browsers, of course. jQuery 2.0 drops
support for the older versions of Internet Explorer and supports only IE9 onward. jQuery 1.9 keeps
support for those legacy browsers and the way legacy browsers do things. jQuery 2.0 is a clean
break with the past and supports only the newer versions of browsers with excellent support for
standards.

USING THE SELECTORS API

Using the Selectors API in jQuery is easy. As explained in Chapter 1, “Introduction to jQuery,”
everything that you want to do with jQuery originates from a single, simply named object called $
(a single dollar sign). You can also use “jQuery” in place of the dollar sign, but from here on
throughout this book, I will use only the dollar sign, and I will refer to it either as “the dollar sign
object” or “the dollar sign method,” depending on context, because it is really both a method and
an object at the same time.

The dollar sign is both a method and an object because it can be used like a function call, but it also
has member properties and methods that you can call. The dollar sign is named after a single dollar
sign for one reason only, and that is to reduce the amount of code that you have to write.

Here’s a simple example of how you would use this method with a selector to add a click behavior
to a collection of links. Basically, the object of the following code is to force the links to open in a
new window, instead of using the target attribute, which can sometimes be left out when content is
managed, and because of this it’s easy to abstract away its use by putting in a little JavaScript that
follows a few rules that most companies tend to want when it comes to the question of when to open
a link in a new window.

Say that you have a markup document that looks like this. (You can try this example for yourself;
it’s available as Example 2-1 in the book’s download materials.)

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtm1">
<head>
<meta http-equiv="content-type"
content="application/xhtml+xml; charset=utf-8" />
<meta http-equiv="content-Tlanguage" content="en-us" />
<title>Links</title>
<script type='text/javascript' src="'../jQuery.js'></script>
<script type='text/javascript' src="Example 2-1.js'></script>
<link type='text/css' href="Example 2-1.css' rel="stylesheet' />
</head>
<body>
<ul id="exampleFavoritelinks">

http://www.w3.org/1999/xhtml

30 | CHAPTER2 SELECTING AND FILTERING

Wrox</11>
Daring Fireball</11>
Apple</Ti>
jQuery</1i>
Example 2-2</1i>
Example 2-3</1i>

</body>
</html>

In the preceding markup document, you have a simple unordered list that contains six links. You
take that markup and put it with the following CSS:

body {
font: 16px Helvetica, Arial, sans-serif;

}
ul {
Tist-style: none;
margin: 10px;
padding: 10px;
border: 1lpx solid green;
}
a{
text-decoration: none;
color: green;
}
a:hover {
text-decoration: underline;
}

The preceding CSS document does little more than make that list look a little prettier—it neither
adds to or takes away from the example.

Finally, you add the following JavaScript document to the markup:

$(document) . ready (

function()
{
$('a").click(
function(event)
{

var node = $(this);

var target = node.attr('target');
var href = node.attr('href');

if (target === undefined && href !== undefined)

switch (true)
{
case href.indexOf("http://') !== -1:
case href.indexOf("https://"') !== -1:
case href.index0f('.pdf') !== -1:
{
node.attr('target', '_bTlank")

http://www.wrox.com
http://www.daringfireball.com
http://www.apple.com
http://www.jquery.com

Using the Selectors APl | 31

.addClass('exampTlelLinkAutoTarget');

break;

);
The preceding code, all put together, should look something like what you see in Figure 2-1.

Links
=[S 2| | 4 @ file:// Users/richard/Documents/Books/jQuery < |

o

Wrox
Daring Fireball
Apple
jQuery
Example 2-2
Example 2-3 |
8n0e6 jQuery "
< | p @[+|'\quuen«.mm ¢ [eReade J@
\ jQUE’V .appendTof) Virtual Training
write less, do more. |m-| Nov. 12 - 14, 2013
Online
Download APl Documentation Blog Plugins Browser Support Search
_Download
jQuery
v1.10.2 orv2.0.3
Lightweight Css3 Cross-Browser
Footprint Compliant
FIGURE 2-1

When you click a link to an external website in the example, you see those links open in a new win-
dow or tab, depending on how you have your browser’s preferences set up to handle new windows.

In the preceding example, you use JavaScript to force the links in the <u1> element with the id name
exampleFavoritelinks to open in a new window or tab. To do this, in the JavaScript, you wrote a bit
of jQuery that is executed at the document ready event.

$(document) . ready(
function()

{

32 | CHAPTER2 SELECTING AND FILTERING

As I touched on briefly in Chapter 1, jQuery provides its own event called ready, which is fired as
soon as the DOM has finished loading, which is different from the onload or 1oad event in that
with the Toad event, you have to wait for all the images to load too before that event will fire. Most
of the time, you don’t need to wait so long; you just want to start working with the document and
adding behavior as soon as the DOM has finished loading. That’s what the first line of code does.

Now that the DOM is loaded, you want to add behaviors to the document using script. The first
item is an example of jQuery’s Selectors API in action: it is a function call to the dollar sign method
that uses a selector that picks up all <a> elements.

$('a")

When those <a> elements are selected, you more than likely want to do something with them. In
this example, you add a click event to each of the <a> elements that you selected. The click event is
added via a c1ick method that is unique to jQuery:
$C'a').click(
function(event)

{

What you see here is an example of how jQuery lets you chain methods together. First, you selected
a bunch of <a> elements; now, you’re applying a c1ick event directly to each of those <a> elements
via a new method called c1ick() that’s chained to the end of your selection.

Within the c1ick() method, you are passing a single anonymous (that is, nameless) function (these
are also called closures or lambda functions) that contains the instructions that you want to be
executed when each <a> element is clicked by a user.

function(event)
{

var node = $(this);

var target = node.attr('target');
var href = node.attr('href');

if (target === undefined && href !== undefined)

switch (true)

{
case href.indexOf("http://') !== -1:
case href.indexOf('https://"') !== -1:
case href.indexOf('.pdf') !== -1:
{
node.attr('target', '_blank')
.addClass('exampTleLinkAutoTarget');
break;
3
}

}

The anonymous function contains one argument, event, which represents the event object. The
event object is just like what you would use with the standard W3C Event API, and Internet

Filtering a Selection | 33

Explorer 8 and earlier using jQuery 1.9; this event object is automatically patched by jQuery so that
older versions of IE support the same standard event model that all the other browsers do. IE9 and
later have all this functionality built in and no longer need the patches.

The next line takes this and wraps it in a call to jQuery. By default, events are set up so that this
references the element the event is attached to. When an event occurs, jQuery leaves this default
behavior in place, so by default, you’re working with traditional JavaScript within the event callback
function. To work with jQuery again, you have to explicitly say that you want to work with jQuery,
and one way to do that is to simply wrap this in a call to jQuery.

var node = $(this);

If you had not wrapped this in a call to jQuery, the subsequent call to attr(), a jQuery function,
would have failed.

The next line verifies whether the <a> element has a target attribute or an href attribute. If no target
attribute is set, the call to attr('target') will return undefined, and likewise for the href attribute.

if (target === undefined && href !== undefined)

Next, after it is determined that there is no target attribute and there is an href attribute, the value
of the href attribute is examined to see whether a new window should be opened when the link is
clicked. This is done with a switch statement. Switching on true will cause the program to execute
the first case statement where the expression placed beside the case statement evaluates true, and
that is the case if the value of href contains the following:

> http://, a non-secure web link to a third-party website

> https://, a secure web link to a third-party website

Or if the link contains the .pdf document extension.

With these rules and some additional logic put in place throughout your website, it becomes possible
to fish out links to third-party websites and to PDF documents and to make those particular links
open in a new window. This works if all the links on your website are written as relative or absolute
links without the host name portion of the URL—for example http://www.example.com/, which is
the hostname portion of the URL. If some links might contain your own hostname, then you would
need to rewrite the logic presented here to filter out those links so that links within your website
won’t trigger false positives and open in a new window. You learn how to do that in the next section.

This is a simple but practical explanation of one possible way to use the Selectors API, to select all
the links on a given page. But what if you want to filter out some of the selected elements based on
other criteria, or what if you want to narrow a selection based on elements further down the tree?
This is discussed in the next section.

FILTERING A SELECTION

jQuery is innovative in the way that it returns itself, by default, for every method call to it where it
makes sense. After you make a selection, that selection is returned as the context of an object that
can call upon any other jQuery method and that jQuery method can take the previous selection and

http://www.example.com

34 | CHAPTER2 SELECTING AND FILTERING

do something more with it. You can do this with virtually any language, which is to say, create an
object and have the methods of that object return the object itself.

In this section you take a look at the various methods that jQuery provides for modifying a selection
in the context of another selection.

Working Within the Context of a Selection

This section introduces a few of jQuery’s methods: find(), eachQ), is(), and val(). This discussion
begins with a method used to search for other elements in the context of an existing selection called
find(). As I present to you an example of one way you might use the find() method, you also see
in the same example each(), s, and va1Q. I provide you with a detailed introduction to eachQ),
isQ, and valQ later in this section in the context of the explanation for Example 2-2 because |
could not begin a discussion about find() without also introducing these other methods. However,
to start this leg of your journey into jQuery, you have a look at the find() method, how you might
use it, and more important, some techniques you’ll want to employ and some behavior you’ll want
to avoid when you make use of it.

jQuery’s find() method enables you to perform a selection within a selection. Another way of say-
ing this is that it lets you search within the context of a selection. A selection, as you have already
seen, can contain one element or many elements. Most of the methods that jQuery provides are
done with the consistent assumption that a selection can contain just one or many elements. find()
is no different; it can be used with a selection containing one or more elements, and it operates to
search within the context of every element present in a selection. So, if you have a selection contain-
ing just one <form> element, and you use find() on that selection, you’ll be looking within just that
one <form> element. If you have a selection containing multiple <form> elements, and you use find(Q),
find () will be carried out in the context of each of the <form> elements present in the original selec-
tion. So, the first takeaway from using find() is that it can be carried out with selections large and
small, and using it can become large and unwieldy quickly.

You use find() if you know that an element (or a collection of elements) contains another element
(or collection of elements) somewhere down the DOM tree starting with the pivot of that initial
selection. The key thing to remember when turning to find() in your toolbox is that you don’t know
how far down the tree this additional element or collection of elements might be. For example, if you
know that your second selection will be children or siblings of your initial selection, you’re better off
using the jQuery methods children() or siblings() because they’re faster for that situation.

find(Q is a bit of a blunt instrument; it works well and can even be fairly efficient to very efficient
depending on the scenario in which it is used, but it is one of the most general-purpose methods of
filtering a selection that jQuery provides. Because the DOM can be either large and very complex, or
very small and simple, when selecting elements using the jQuery Selectors API in general, without yet
even contemplating the best uses of the find() method, it is best to take a step back and remember

a few basic things to keep your scripts fast, optimized, and ready to deal with any scenario. First,
remember to construct your documents with appropriate and strategically placed unique id names.
Id names are meant to be unique; class names are not meant to be unique. Because id names are
meant to be unique, if you create a document with unique id names, the browser can use an efficient
index to look up any element by the id name in the DOM. Therefore, when you do a selection using
jQuery, the fastest possible selection that you can make is one that involves the use of an id name.

Filtering a Selection | 35

Of course, the concept of having unique id names is not something the browser can enforce; you
must enforce this when you create your documents. If you don’t consciously consider this, the
browser will happily allow you to create multiple elements with the same id name. If you do create
multiple elements with the same id name, you miss out on the benefits of optimizations that involve
narrowing the scope of possible elements in a selection by using the id name as an initial selector. If
you use unique id names, then similarly to a database, the browser can build a fast index to access
those elements in the DOM. Because it can find those elements quickly, applications built on top of
optimizations using id names can also be much quicker.

Think of the DOM like a database table. Even if you aren’t familiar with relational databases (like
MySQL, SQL Lite, Postgres SQL, or Microsoft SQL Server), the analogy is helpful to understand a
little something about how computers organize information for efficient lookup. Like this book, if you
want to locate information about a particular topic quickly, your best bet is going to be the book’s
index section. It has information broken down by topics and phrases, sorted alphabetically, and pro-
vides a listing of pages those topics or phrases appear on. Relational databases work much the same
way; they contain a warehouse of information, but they need indexes of their own to find information
quickly. A relational database has a collection of physical locations on the hard disk, and indexes,

just like with physical books, help provide a way of looking up that information quickly. The docu-
ment object model is no different. It is a collection of HTML elements, and those elements each have
attributes that can be used to organize that data. The DOM is also organized like a tree; it has a root
element, <htm1>, and from there it branches, adding children and children of children until the entire
DOM is mapped. So, when you provide extra metadata like id and class names, you are providing a
way to identify those elements in the DOM, using both JavaScript and CSS. Of course, you don’t have
to always use id or class names. Sometimes you can use just the name of the element itself to identify
the element, and sometimes you need only a handful of class or id names to meaningfully organize
your document in a way that makes it easy to style with CSS or program with JavaScript. You can also
identify elements using HTML attributes, which is more common in my experience, with elements
such as <input> elements, where you might want to apply style based on whether an element is a text
input or a password input. And now with HTMLS, we have a dozen or so possible types of inputs.

When it comes to the DOM, however, it is best to design your dynamic, interactive applications

in the most efficient way possible, and more often than not, that starts with a selection involving an
id name. The second most efficient way to select an element will be using class names. Class names
differ from id names in that class names can be applied to many elements. Elements with the same
class name should share some common characteristics. You should be essentially saying that ele-
ments with the same class name are the same, but they appear multiple times in your document.
One example might be a class name that applies to an element that serves as a container for labels
for input elements. You might have many such labels in your document, and each label will have the
same characteristics in terms of its look and feel. You might have a few variations on the look and
feel to accommodate edge cases in the visual layout. For those edge cases you might invent a few
new class names that can modify the base look and feel for those situations.

Whatever the situation you are creating an application to accommodate, your id and class names
should be designed to aid in both efficient styling with CSS and efficient lookup using the DOM in
JavaScript. You want your application to find these elements as quickly as possible, using the least
amount of additional metadata that is necessary. This will feel like a statement that is at odds with
itself, and in some ways it is. You don’t want to be too liberal in creating and assigning id and class
names because that will make your document more bulky. When it comes to bandwidth, you want

36 | CHAPTER2 SELECTING AND FILTERING

to create a document that is the smallest it can be, while also being as programmatically efficient
and optimized as it can be. jQuery is just a tool that enables you to access the DOM, and it allows
you lots of ways to interact with the DOM. However, it is up to you as the program’s architect to
make that application efficient, organized, and well designed so that it loads and executes as quickly
as possible. In terms of web applications, it is always important to show the user some content as
fast as possible. A few seconds can mean the difference between users delighting in and using your
website and web applications, or users pressing the back button and taking their attention elsewhere.

The first of many filtering and traversal methods that you examine in this chapter is a method called
find Q. Its purpose is to look within an existing selection to find other elements in that selection.
Those elements can be children of the element, or elements, that you selected or far-off descendants
deep down the DOM tree from that initial selection. The initial selection can be one or many elements,
and find(will look inside each of them to locate the additional element or elements that you are
looking for. As mentioned in the opening for this section, a great thing about jQuery is that it never
assumes (whenever practical and possible) that you want to work with only a single element. If you
select several elements, it will work with several elements at once. If you select a single element, it will
work with only that one element, but it will treat that one element as an array containing one element.

If you examine the object that a jQuery selection returns, you’ll always see an array, and that is
always the case for jQuery methods that are meant to return something related to a selection. When
you aren’t working with a selection, but are instead using a method that is meant to return a string
or some other data, for example, the HTML source or text source of an element, or the value of an
attribute—in those situations, jQuery takes the first element of the selection, if the selection contains
multiple elements, and it gives you what you are asking for in the context of that first element. So,
you must be proactive and take into account what a selection might return and assume that most of
the time, your selection could possibly return multiple elements.

As already stated, it is best to start with a selection that is as narrow as possible so that the browser can
quickly locate that element in the DOM. Example 2-2 presents you with a simplified and to-the-point
overview of one way you might use find() to locate elements within the context of an existing selection.
As with most of the examples present in this book, you can try out the example by manually typing it
into a text editor, or you can obtain the example’s source code with the book’s free downloadable materi-
als available from www.wrox.com/go/webdevwithjquery. This example begins with Example 2-2.html:

<!DOCTYPE HTML>
<htm1 xmlns="http://www.w3.0rg/1999/xhtm1">
<head>
<meta http-equiv="content-type"
content="application/xhtml+xml; charset=utf-8" />
<meta http-equiv="content-language" content="en-us" />
<title>Contact Form</title>
<script type='text/javascript' src="../jQuery.js'></script>
<script type='text/javascript' src="Example 2-2.js'></script>
<link type='text/css' href="Example 2-2.css' rel="'stylesheet' />
</head>
<body>
<form 1id="contactNewsTetterForm' method="'get'
action="Example 2-2 Submitted.html]'>
<div>
<label for='contactFirstName'>First Name:</label>
<input type='text'

http://www.wrox.com/go/webdevwithjquery
http://www.w3.org/1999/xhtml

Filtering a Selection | 37

id="contactFirstName'
name="contactFirstName'
size='25"
maxlength="50"
required="required' />
</div>
<div>
<label for='contactLastName'>Last Name:</Tlabel>
<input type='text'
id="contactLastName'
name="contactlLastName'
size="25"
maxlength="50"
required="required' />
</div>
<div>
<input type='checkbox'
id="contactNewsletter'
name="contactNewsletter'
value="1" />
<label for='contactNewsletter's>
Subscribe to newsletter?
</Tabel>
</div>
<div>
<input type='submit'
id="contactNewsletterFormSubmit'
name="contactNewsletterFormSubmit'
value="Go' />
</div>
</form>
</body>
</html>

The preceding markup contains a simple newsletter sign-up form. It is combined with the following

CSS, Example 2-2.css:

body {
font: 16px Helvetica, Arial, sans-serif;
}

form#contactNewsTetterForm {
margin: 10px;
padding: 10px;
border: Ipx solid black;
background: yelTlow;

}

form#contactNewsTetterForm div {
padding: 5px;

}

The following JavaScript, Example 2-2.js, is used to validate that required input has been provided
in the text input fields, and it disables the submit button upon pressing it, which prevents the user
from pressing the submit button multiple times in the event that the action of submitting the form
takes longer than desired.

38 | CHAPTER2 SELECTING AND FILTERING

var contactNewsletterForm = {

ready : function()

{
$("input#contactNewsletterFormSubmit').click(
function(event)
{
var input = §(this);
input.attr('disabled', true);
if (!contactNewsletterForm.validate())
{
alert("Please provide both your first and last name");
input.removeAttr('disabled');
event.preventDefault();
}
else
$('form#contactNewsTetterForm').submit();
}
3
);
3,
validate : function()
{
var hasRequiredValues = true;
$(' form#contactNewsletterForm').find('input, select, textarea').each(
function()
{
var node = $(this);
if (node.is('[required]'))
{
var value = node.val();
if (lvalue)
{
hasRequiredvValues = false;
return false;
}
}
}
);
return hasRequiredValues;
3

};

$(document) . ready (
function()

{

Filtering a Selection | 39

contactNewsletterForm.ready();
);

This form is then submitted to the following HTML page, called Example 2-2 Submitted.html,
which just confirms that the form was submitted. In the real world, this HTML form would more
than likely go to a server-side program that would also validate input and actually perform the
action of signing up the user for the newsletter. For this simplified example, you omit that part of
the process and focus only on the client-side components.

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtm1">
<head>
<meta http-equiv="content-type"
content="application/xhtml+xml; charset=utf-8" />
<meta http-equiv="content-Tlanguage" content="en-us" />
<title>Contact Form</title>
<script type='text/javascript' src="'../jQuery.js'></script>
<script type='text/javascript' src='Example 2-2.js'></script>
<link type='text/css' href="Example 2-2.css' rel="stylesheet' />
</head>
<body>
<p>
Thank you for submitting the form.
</p>
</body>
</html>

The source code in the preceding examples results in the output that you see in Figure 2-2.

Contact Form

« L + € file:///Volumes [richard /Documents/Books/jQueryf2n ¢ (5]

Thank-you for submitting the form.

Contact Form

= AL + _B file:///Volumes richard/Documents/Books/jQuery/2n & | Q

First Name: ! !

aee Contact Form e

Last N 5
g [4|] [et |B file:// /Volumes /richard/ Documents/Books/jQuery/2n ¢ | Geade } @

[~ Subscribe to newsletter?

|G| First Name: Richard

Last Name: |

"] Subscribe to newsletter?

G0

a

; JavaScript
@ Please provide both your first and last name

ok)

FIGURE 2-2

http://www.w3.org/1999/xhtml

40

CHAPTER 2 SELECTING AND FILTERING

In Example 2-2, you see one way you might use the find() method, to validate input for a simple
newsletter sign-up form. The text inputs in the HTML form use the HTMLS required attribute to
indicate that they are required fields; some browsers with support for HTMLS fields and attributes
will already prevent the user from submitting the form without required input. The JavaScript that
you implement with this example provides a little more functionality; however, it also prevents the
form from being submitted multiple times. In Example 2-2.js, you create a simple JavaScript object
literal; this is one way of creating a simple JavaScript custom object. An object called contactNews-
letterForm is created, which contains the logic necessary for your newsletter sign-up form. It con-
tains two methods, one called ready() and one called validate(). The ready() method is executed
when the document’s DOMContentLoaded event has fired, which as you already know is mapped to the
jQuery event with the much simpler name of ready. So, as soon as the DOM has loaded, this event
will be called, and you can do things with the DOM. contactNewsletterForm.ready() attaches a
single event to the submit button. It does this by first selecting the <input> with an id selector,
input#contactNewsletterFormSubmit, and then it calls the method c1ick() to attach an onclick
event to that <input> element. This allows you to intercept and control what happens when the user
clicks the submit button.

ready : function()
{
$("input#contactNewsletterFormSubmit').click(
function(event)

{
var input = $(this);

input.attr('disabled', true);

if (!'contactNewsletterForm.validate())

{

alert("Please provide both your first and last name");
input.removeAttr('disabled');

event.preventDefault();

}

else

$(' form#contactNewsTetterForm').submit();

);
}1

Within the function that is attached to the click event of the submit button, the first thing you
do is create a variable called input with a call to jQuery with the special this keyword as its first
and only argument. As mentioned earlier in this chapter, when an event is called, this refers to
the element the event occurred on, but this is not jQuery-enabled. To make it jQuery-capable,
all you have to do is to call jQuery with this as the argument. This is how you enable any ele-
ment in the JavaScript DOM to be jQuery-enabled, not just the special this keyword in the con-
text of events.

var input = $(this);

Filtering a Selection | 41

Next, you disable the submit button so that the user cannot become impatient and click it
repeatedly, sending multiple requests to join your newsletter to your server.

input.attr('disabled', true);

Another way of setting the disabled attribute is to call the attr() method like this:
input.attr('disabled', 'disabled');

And you might prefer this method because it is also technically the way that XHTML says that
boolean HTML attributes should be done. But jQuery supports doing this either way, by passing a
boolean true or false or by passing the value disabled. Likewise, to disable the disabled attribute,
you can either pass false in a call, such as attr('disabled', false), or you can remove the attribute
all together by calling removeAttr('disabled").

In the next line you make a call to contactNewsletterForm.validate() to see if the form validates.
This method returns a boolean value that indicates either yes, all the required fields have been
provided, or no, there is missing data.

if (!contactNewsletterForm.validate())

{

If all the required data has not been provided, then users sees an alert() message, asking them to
provide both their first and last names.

alert("Please provide both your first and last name");

Then the submit button is re-enabled so that users can attempt to submit the form again.

input.removeAttr('disabled');

I do this by removing the disabled attribute, but as mentioned before you can also call
attr('disabled', false) and this provides the same functionality. Finally, the preventDefault()
method is called on the event object to prevent the default action of the submit button, which is to
submit the form.

event.preventDefault();

If, however, all the data has been provided, then the form is submitted by calling submit() on the
<form> element. You might wonder why this is necessary. Because event.preventDefault() is supposed
to prevent the default action, wouldn’t not calling it allow the default action? In this case, it would not
because the default action is also prevented by disabling the submit button by enabling the disabled
attribute, and because the button has been disabled, you now have to explicitly submit the form.

3

else
$('form#contactNewsTetterForm').submit();

3

Next, you examine what happens inside the validate() method. First, you set up a variable that
keeps track of whether the required fields have been provided. You start off by assuming that the

42

CHAPTER 2 SELECTING AND FILTERING

user did provide every required field by assigning true to the variable hasRequiredvalues. Then you
make a selection, and you select the <form> element with the id name contactNewsletterForm. As
presented earlier in this section, it’s good to establish a context for your selections, as this can speed
up selections tremendously. In this case, this newsletter sign-up form could be part of a much larger
document. You don’t want to make the mistake of assuming that your code will or will not be part
of a much larger document; it’s better to always plan for the most flexible approach possible. Your
client or employer might change its mind and decide that it wants to move a form, or include a form,
to or within places that you hadn’t anticipated when you first built your form. In these situations,
it’s best to have flexible programming that can adapt to changes quickly and seamlessly. Part of
providing the best foundation for flexible (and reusable) programming like this is to establish good
naming conventions, as discussed back in Chapter 1. Don’t choose names that are too simple and
could easily conflict with other features. You may be annoyed by the verbosity of the names, but you
will be pleased with the ease with which you can move and integrate features within your website or
web-based application.

validate : function()

{
var hasRequiredValues = true;
$('form#contactNewsTletterForm').find('input, select, textarea').each(
function()
{
var node = $(this);
if (node.is('[required]"))
{
var value = node.val();
if (!value)
{
hasRequiredvalues = false;
return false;
b
}
3
);
return hasRequiredValues;
}

};

So, begin by selecting the form because it has an established id name; it is a pivot point for quickly
making other selections. You look inside your <form> element for other elements. In this case you
search for <input>, <select>, or <textarea> elements; these are all the possible elements that can be
contained inside a form where the user can provide or select data (setting aside, of course, the potential
for custom input elements). You might notice that your newsletter form has no <textarea> or <select>
elements, and you might be asking yourself, why do I need to look for elements that don’t exist? In this
case, you’re being proactive and simply planning ahead for potential future changes to the form. In
addition, your form needs may grow and you might need to rework or adapt this programming logic
so that it handles validation for any form you might create by creating a new, reusable form valida-
tion component. One way you can plan ahead is to think about how your validation script might be
applied, and that includes planning for fields that might not be there yet.

Filtering a Selection | 43

Iterating a Selection with each() and Testing for a Condition with is()

Now that you have selected the various input fields in the context of the <form> element, you use the
each() method to iterate over all the elements matching the selection that you made with find Q.
each() is similar to writing a for loop, or a while loop; it’s used to iterate over an array or object. In
the context of this example, each() is used to iterate over a selection. In this example, you first select
a <form> element, and then you select four <input> elements using the find() method. Now you need
to examine each <input> element individually and see whether the user provided data to the input
elements that you have designated as required elements. each() is what you use to examine each
element, individually. It executes a callback function for each element in the selection. In the context
of this example, that means that the function provided to each() is executed four times, one for each
of the four <input> elements matched in the call to findQ).

$(' form#contactNewsletterForm').find('input, select, textarea').each(

Like events, elements are passed to each() in the form of the JavaScript keyword: this. In addition
to the keyword this, there is also an alternative way that you can access an element within the func-
tion that you provide to each(), and that is by specifying two arguments for the function. The first
argument tells you where you are in the collection; it’s a counter offset from zero. The second argu-
ment is the value or object that you’re working with, and it provides the same data that is provided
in this. The following code snippet modifies Example 2-2 so that it specifies these two optional
arguments:

$ (' form#contactNewsletterForm').find("input, select, textarea').each(

function(counter, element)

{

Also like events, the elements passed to each() in the form of this are not jQuery-enabled by
default. So, the first thing you do inside the anonymous function that is executed for each element
matched via the each() method is to create a variable with a reference to the element that is jQuery-
enabled. In this case you create a variable called node, which is an easy generic name to use. You
could have just as easily called the variable input, or something else more specific.

var node = $(this);

Now that you have a jQuery-enabled reference to the element, you look for the presence of the
HTMLS required attribute to see if the field is required, and you do that with a call to the jQuery
method isQ). In the context of any jQuery selection, is(Q) tells you whether any of the elements in
the selection match a selector that you provide to is(). In the context of this selection, you have a
single element in that selection, thanks to each(), and that selection is assigned to the variable node.
The selection will be one of the four matched <input> elements, going from top to bottom. So the
first element each() that comes across is the <input> with the id name contactFirstName, the second
element will be the <input> with the id name contactLastName, the third will be the check box, and
the last element that each() will operate on is the submit button. The call to is() contains an attri-
bute selector: [required]. Using is(), you are asking, does the element match this selector? Another
way of asking this question is does the element match the selector: input[required="required"]

(if the element is an <input> element, of course). And is() will return a boolean value telling you
whether the element matches the selector you’ve provided.

44 | CHAPTER2 SELECTING AND FILTERING

if (node.is('[required]'))
{

In the context of this example, you just want to know whether the element is required, and that

is done by using is() to ask whether the element has the required attribute. Because the required
attribute is a boolean attribute and its only possible value is required, or to not exist at all, then the
simplest way of asking if the element is required is by using the attribute selector [required].

is() can be used to ask any question of an element or collection of elements that can be expressed as
a selector. When it comes to multiple elements being present in a selection, the question that you ask
using is(Q) is true if it matches any of the elements in the selection. If the selector matches only a sin-
gle element, but not the other elements, the result is still true. The result is only false if it matches
none of the elements present in the selection.

If the element has the required attribute, the expression node.is(' [required']) will return true, and
the program will then examine the value of the input. The value of the input is retrieved with a call
to val(Q), another jQuery method that does some behind-the-scenes work to make it a lot easier to
fetch the value of a field, automatically adjusting its logic based on the type of input field that you
are working with. It returns the value of the value attribute in the case of an <input> element (no
matter the type); it retrieves the selected <option>’s value attribute in the case of a <select> element;
and it retrieves the text content of a <textarea> element.

if (node.is('[required]"))
{
var value = node.val(Q);

if (!value)

{
hasRequiredvalues = false;
return false;

Next, you do a simple boolean expression on the value to determine whether there is one. If the
expression evaluates to false, there is no value, and the variable you set up to keep track of whether
all the provided values were provided, hasRequiredvalues, is assigned the value false, and then you
return false to break out of subsequent each() iterations.

Within the function that you provide to each(), returning true is the same as writing the keyword
continue; iteration proceeds to the next element or item, so if you were on the first element, itera-
tion immediately proceeds to the second element. And returning false from the function is the same
as writing the break keyword in a for, while, or switch loop, and iteration stops completely. In the
context of this example, if you’re on the first <input> element when this happens, then the function
is never executed for the second, third, or fourth elements.

Finally, after you have examined each <input> element, the function validate() returns the value of
the hasRequiredvalues variable, letting your click event know definitively whether all the required
values have been provided.

return hasRequiredValues;

Filtering a Selection | 45

In this section, you got to know jQuery a little better with some in-depth explanations of and an
example using the methods find (), each(), isQ, and val(Q). The next section continues along the
lines of examples of how to traverse the DOM using jQuery with an introduction to the jQuery
methods that allow you to move about the DOM.

Working with an Element’s Relatives

jQuery provides you with a comprehensive DOM traversal package. You can easily move from

an element to its siblings, its parent or ancestors and as its children and its descendants. In this
section, you see an example that introduces how to do all this, as well as how to limit a selection to
an element based on its numeric offset position in the selection and how to limit a selection’s scope
by providing a selector that filters your selection based on what you don’t want in the selection. The
discussion presented in this section encompasses the following methods of jQuery’s API:

> parent() and parents() are used to select an element’s parent or ancestors.
children() is used to select an element’s immediate children.

siblings Q) is used to select all of an element’s surrounding sibling elements.
prev() is used to select an element’s immediate preceding sibling.

next() is used to select an element’s immediate following sibling.

prevA11() is used to select all siblings coming before an element.

nextA11() is used to select all siblings coming after an element.

not() is used to remove elements from a selection using a selector.

Y Y Y VY Y VY VY

eq() is used to zero in on a single element in a selection by providing its offset position within
the selection offset from zero.

You can also go up the DOM tree and select parent or ancestor elements. When programming, the
need to go up the DOM tree typically arises because you are in a situation in which you have multiples
of something in an application. For example, say you have multiple calendars in an application. This
could happen because you provide navigation to move from month to month, and instead of deleting
each month and building a new one, you keep each month in the application and move between them
as needed. If you click on a day within a month, you might also need to know which month that click
occurred in which, so you travel up the DOM from the selected day to discover which month the click
occurred on. This isn’t the only scenario you might want to select a parent or ancestor. You might also
run into this situation when you receive an event on an ambiguous or generic element, and you want
to get to an element that provides more meta information, class, id name, or other data.

The need to select children() is usually similar to the need to use the find() method introduced
earlier in this chapter. The decision of which to use is based on whether you know if an element is a
child, or if it is further down the DOM tree. Using children() if an element is a child provides you
with some performance benefits. If the browser knows that you want to look only in the pool of
immediate children, then that makes finding that element fast. However, using find(), you’re poten-
tially asking the browser to examine every descendant element.

46 | CHAPTER2 SELECTING AND FILTERING

jQuery provides no less than five methods for discovering and working with an element’s siblings.
Whether you need to move to the next sibling element, previous sibling element, find all preceding or
all succeeding sibling elements, or all siblings all together, there’s a method that matches the situation.

All jQuery’s traversal methods share the characteristic of providing a selector to a traversal method
to limit traversal to elements that match the provided selector.

Each of the methods introduced here are presented in the following example. If you have down-
loaded the book’s supplemental materials, you’ll find this example in the Chapter 2 folder named
Example 2-3.

<!DOCTYPE HTML>
<htm1 xmlns="http://www.w3.0rg/1999/xhtm1">

td>

<head>
<meta http-equiv="content-type"
content="application/xhtml+xml; charset=utf-8" />
<meta http-equiv="content-language" content="en-us" />
<title>November 2013</title>
<script type='text/javascript' src="../jQuery.js'></script>
<script type='text/javascript' src="Example 2-3.js'></script>
<link type='text/css' href="Example 2-3.css' rel="'stylesheet' />
</head>

<body>
<table class="calendarMonth" data-year="2013" data-month="11">
<thead>
<tr class="calendarHeading">
<th colspan="7">
November

2013
</th>
</tr>
<tr class="calendarlWeekdays">
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td class="calendarLastMonth'>27</td>
<td class="calendarLastMonth">28</td>
<td class="calendarlLastMonth'>29</td>
<td class="calendarlLastMonth'>30</td>
<td class="calendarLastMonth calendarLastMonthLastDay">31</
<td class="calendarFirstDay">1</td>
<td>2</td>
</tr>

<tr>

http://www.w3.org/1999/xhtml

Filtering a Selection | 47

<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>

</tr>

<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>

</tr>

<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td class="calendarToday'>20</td>
<td>21</td>
<td>22</td>
<td>23</td>

</tr>

<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td class="calendarLastDay">30</td>

</tr>

<tr>
<td colspan="7" class="calendarEmptyWeek"></td>

</tr>

</tbody>
</table>
</body>
</html>

The preceding HTML joins up with the following style sheet:

htm1,

body {
width: 100%;
height: 100%;

}

body {
font: 14px Helvetica, Arial, sans-serif;
margin: 0;
padding: 0;

color: rgbh(128, 128, 128);

48 | CHAPTER2 SELECTING AND FILTERING

table.calendarMonth {
table-Tayout: fixed;
width: 100%;
height: 100%;
border-collapse: collapse;
empty-cells: show;

table.calendarMonth tbody {
user-select: none;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;

table.calendarMonth th {
font-weight: 200;
border: 1px solid rgb(224, 224, 224);
padding: 10px;
}
tr.calendarHeading th {
font: 24px Helvetica, Arial, sans-serif;

table.calendarMonth td {
border: 1px solid rgb(224, 224, 224);
vertical-align: top;
padding: 10px;

td.calendarLastMonth,
td.calendarNextMonth {
color: rgb (204, 204, 204);
background: rgb (244, 244, 244);

td.calendarDaySelected {
background: yellow;

tr.calendarWeekSeTlected {
background: Tightyellow;

td.calendarToday {
background: gold;
}

Finally, you apply the following JavaScript, which provides you with an introduction to some of
jQuery’s various methods that allow you to traverse the DOM, as well as change and manipulate
selections.

$(document) . ready (
function()
{
var today = $('td.calendarToday');

var setUpThisWeek = function()

$('table.calendarMonth td').removeClass(

v

'calendarYesterday ' +

'calendarTomorrow ' +

Filtering a Selection | 49

'calendarEarlierThisWeek ' +
'calendarLaterThisWeek ' +
'calendarThisWeek'

)5
var yesterday = today.prev('td');
// If today occurs at the beginning of the week, Took in the

// preceding row for yesterday.
if (lyesterday.length)

{ var lastWeek = today.parent('tr').prev('tr');
if (lastWeek.length)
t yesterday = lastWeek.children('td').eq(6);
) }

// If today occurs in the first cell of the first row of the
// calendar, yesterday won't be present in this month.

if (yesterday.length)

{

yesterday.addClass('calendarYesterday');
}

var tomorrow = today.next('td');
// If today occurs at the end of the week, look in the

// proceeding row for tommorrow.
if (!tomorrow.Tength)

{ var nextWeek = today.parent('tr').next('tr');
if (nextWeek.length)
t tomorrow = nextWeek.children('td"').eq(0);
) }

// If today occurs in the last cell of the last row of
// the calendar, tomorrow won't be present in this month.
if (tomorrow.length)

{

}

var TlaterThisWeek = today.nextA11('td");

tomorrow.addClass('calendarTommorow');

if (laterThisWeek.length)
{

}

TlaterThisWeek.addClass('calendarLaterThisWeek');

var earlierThisWeek = today.prevAll('td');

50 | CHAPTER2 SELECTING AND FILTERING

if (earlierThisWeek.length)
{

}

earlierThisWeek.addClass('calendarEarlierThisWeek');

today.siblings('td")
.addClass('calendarThisWeek');
};
var selectedDay = null;
$('table.calendarMonth td')
.not('td.calendarLastMonth, td.calendarNextMonth')
.click(
function()

if (selectedDay && selectedDay.length)

{
selectedDay
.removeClass('calendarDaySelected')
.parent('tr'")
.removeClass('calendarWeekSelected');
}

var day = $(this);
selectedDay = day;

selectedDay
.addClass('calendarDaySelected")

.parent('tr")
.addClass('calendarWeekSelected");
day.parents('table.calendarMonth")
.find('span.calendarDay"')

.text(day.text() + ', ');

}

)
.dbTcTick(

function()

{
today.removeClass('calendarToday');
today = $(this);
today.addClass('calendarToday');
setUpThisWeek();

}

);
setUpThisWeek();

);

When you load the calendar that you created in Example 2-3 into a browser, you get the results that
you see in Figure 2-3.

Filtering a Selection | 51

eno November 2013)
4 € file:///Volumes richard/Documents/Books/jQuery/2nd%20Edition/Examples/Chapt & Jeadec

November 14, 2013

Monday Tuesday Wednesday Thursday Friday Saturday

FIGURE 2-3

Example 2-3 packs several concepts together to provide a more realistic example of how you might
use jQuery’s traversal methods. Like all previous examples, you start with the DOMContentReady event.

$(document) . ready(
function()

{

The first thing you do when the document is ready is set up a variable to contain a reference to
today, which contains the <td> element with the class name calendarToday.

var today = $('td.calendarToday');

This example uses all class names because the calendar concept is one in which you might expect to
have multiple months loaded into the same document at once.

52

CHAPTER 2 SELECTING AND FILTERING

Next, you create a reusable function that sets up some metadata, mostly as an intellectual exercise.
The metadata that you create provides a demonstration of jQuery’s various methods for working
with siblings as well as children, and the eq() method, which allows you to narrow a selection to

a single element based on its position offset from zero. Because the method is created inside the
function that executes when the document is ready, this method is available from within all the
other functions that you create inside the ready () function. The same is true of the variable you
created just previous to this called today.

var setUpThisWeek = function()

{

The first thing you do in the function setUpThisWeek is to remove all the class names that are applied
later in this same function. You do this by selecting the <td> elements inside of the <table> with
class name calendarMonth, and then calling jQuery’s removeClass() method. removeClass() can take
a single class name or several. If you provide more than one, you simply separate each individual
class name with a single space, just as you would if you were specifying class names using the
HTML class attribute. This, in turn, removes any of the specified class names if they are present.

$('table.calendarMonth td').removeClass(

'calendarYesterday ' +

'calendarTomorrow ' +
'calendarEarTlierThisWeek ' +

'calendarLaterThisWeek ' +
'calendarThisWeek'

)

Next, you create a variable that will contain a reference to yesterday, and that variable is called
yesterday. To capture which day is considered yesterday, you start with the day considered today,
which you captured previously. Then you move backward a single table cell to the previous day
using jQuery’s prev() method, which selects the element immediately preceding the element

(or elements) referenced by the current selection. In this case, you are working only with a single
element, but as with everything else jQuery can do, it will happily allow you to work with multiple
elements at the same time. If the selection had contained multiple elements, prev() would work on
them all, and it would provide you with a new selection that would provide all preceding adjacent
elements. You also provide a selector to prev(), which would limit the adjacent preceding element
to a <td> element. In the context of this example, you could easily have left off that selector and you
would have the same result. I have included it for two reasons: the first to provide an example of
what it means to provide a selector to these methods, the second to make the code a little more intu-
itive and easier to follow. Because 'td" is specified as the selector, that gives you as a programmer a
cue about what the code is doing and what it’s operating on.

var yesterday = today.prev('td');

If you’re writing a real calendar application, you need to take into account every possible situation
regarding where today might occur. It could happen at the beginning of a row or the end of a row.
If today occurs at the beginning of a row, then there will be no adjacent <td> element preceding the
<td> element representing today. In this case the previous assignment to yesterday will be an empty
array, and it will have no Tength. This is how you check for the existence of a selection in jQuery.

Filtering a Selection | 53

If a selection results in nothing, jQuery will return an empty array, and you can then check the
length property to see if anything were selected.

if (lyesterday.length)
{

If there were no adjacent preceding element, you need to move to the previous row. To do that, you
start with the <td> representing today, and then you move up the DOM from there to that element’s
parent element using jQuery’s parent() method, which will be a <tr> element. When you arrive at
the <tr> element, you move backward in the DOM to the preceding <tr> element. You then look at
that <tr> element’s children elements using jQuery’s children() method, which will, of course, all
be <td> elements. You then limit the selection of <td> elements to the very last one using the eq()
method. Because we’re counting from zero, and there are 7 days in a week, that will make the last
<td> element the sixth in the selection. Like last time, you provide selectors to the parent(), chil-
dren(), and prev() methods just to provide more context and information in your programming.

var lastWeek = today.parent('tr').prev('tr');

if (lastWeek.length)
{

}

yesterday = lastWeek.children('td').eq(6);

}

It is still possible that there is no <td> element representing yesterday because today could be the first
of the month and thus could occur as the first child of the first <tr> element. So, another check for
length ensures that a <td> element has been selected to represent yesterday. When it is determined
that a <td> element for yesterday exists, it is assigned the class name calendarYesterday.

if (yesterday.length)
{

yesterday.addClass('calendarYesterday');

Now that you have figured out which, if any, <td> element will represent yesterday, the next step

is figuring out which <td> element will represent tomorrow. This time you move forward a <td>
element by using jQuery’s next () method on the selection representing today, and this will reference
the adjacent following <td> element. Any selection is assigned to a variable called tomorrow.

var tomorrow = today.next('td');

As with yesterday, you are not certain that there is a <td> element that is adjacent and following
the <td> element representing today, so again you check the Tength property to see if a selection
were made.

if (!tomorrow.Tength)

{

If there is no <td> element, you again move up the DOM to the parent <tr> element from the <td>
element representing today, and you proceed to the next <tr> element using next (). Then you look
at that <tr> element’s children via children() (if there is a next row in the first place), and you limit

54 | CHAPTER2 SELECTING AND FILTERING

the selection to the first <td> element of that row by calling eq(0). Zero, this time, represents the
first child <td> element.

var nextWeek = today.parent('tr').next('tr');

if (nextWeek.length)
{

}

tomorrow = nextWeek.children('td').eq(0);
}

When you have determined which element, if any, represents tomorrow, you check to see if you have
a selection, and if you do, you add the class name calendarTomorrow to that <td> element.

if (tomorrow.length)
{

}

tomorrow.addClass('calendarTommorow');

The next exercise is to identify all days after today, which will represent later this week. That is
done by calling nextA11() on the selection representing today, which brings back a selection of <td>
elements, all of which are siblings to the <td> element representing today, but all occur after today.

var laterThisWeek = today.nextA11('td');

if (laterThisWeek.length)
{

If there is a selection of <td> elements, those <td> elements all receive the class name
calendarLaterThisWeek.

TaterThisWeek.addClass('calendarLaterThisWeek');
3

Then, you do the same thing to identify <td> elements that will qualify for the phrase earlier this
week. To identify those elements, you call prevA11(0) on today to select all <td> elements preceding
the <td> element representing today.

var earlierThisWeek = today.prevAll1('td');

if (earlierThisWeek.length)
{

If there are <td> elements assigned to the variable ear1ierThiswWeek, those <td> elements each receive
the class name calendarEarlierThisWeek.

earlierThisWeek.addClass('calendarEarlierThisWeek');

}

Finally, you identify all sibling elements of the <td> element representing today using jQuery’s
siblings () method, and those elements are all given the class name calendarThisWeek.

today.siblings('td")

Filtering a Selection | 55

.addClass('calendarThisWeek');
};

The exercise of sibling discovery that you underwent with the method setUpThisWeek() can be
explored using a tool like Web Inspector in Safari or Chrome, Firebug in Firefox, and Developer
Tools in IE. Pictured in Figure 2-4 is Web Inspector in Safari, which shows the class names that you
assigned for each <td> element representing a day or collection of days in the week surrounding the
<td> element that represents today.

8ene Web Inspector — Example 2-3.html| BO
® o | Ak ©2ems
! s Timelines ger ole

Example 2-3.html DOM Tree &
<!DOCTYPE html>
v<html xmins="http://www.w3.0rg/1999/xhtml">
» =head>..=/head>
¥ <body style>
v<table class="calendarMonth" data-year="2013" data-month="11">
» <thead>.</thead>
¥ <tbody>
b <treae/tr>

B <trm.e/tr
b <t rmae/tre
v<tr class="calendarWeekSelected">
<td class="calendarEarlierThisWeek calendarThisWeek">17</td>
«td class="calendarEarlierThisWeek calendarThisWeek">18</td>
lendarYesterday calendarEarlierThisWeek calendarThisWeek!'>19</td>
lendarToday calendarDaySelected">28</td>
lendarTommorow calendarlaterThisWeek calendarThisWeek'=21</td>
<td class="calendarlaterThisWeek calendarThisWeek">22</td>
<td class="calendarlLaterThisWeek calendarThisWeek">23</td>
</tr=
b <treae/trs
> <treae/tr
</ thody>
</table>
</body=
</html>

>

FIGURE 2-4

The next hunk of code defines some interactivity with the calendar:
> Selecting a day in the calendar
> Selecting the week that day occurs within
> Setting the selected day in date format in the calendar heading
> Changing the day that represents today
The first thing you do is to create a new variable that will keep track of the selected day. This vari-

able is created outside the function that fires when you click each day, so that it can persist and
remain present between click events. And that variable is called selectedDay.

var selectedDay = null;

You then make a selection that starts out with all the <td> elements that are present in the <table>
representing the month.

$('table.calendarMonth td")

56 | CHAPTER2 SELECTING AND FILTERING

That selection is then narrowed to exclude the <td> elements that represent the remaining days of
last month, or the beginning days of next month, even though this particular example has none of
the days of the following month included because it ends evenly, filling all seven of the child spots
within the last <tr> element. These <td> elements are excluded from the selection by using jQue-
ry’s not) method. The not) method takes an existing selection and subtracts from it using

a selector.

The not) method can also take the results of another jQuery selection, such as

.not($('td.calendarLastMonth, td.calendarNextMonth'))

It can also use direct DOM element objects, such as those returned from JavaScript methods such as
document.getElementById(). Finally, you can also use a callback function, which would return one
of the preceding, a jQuery selection, or a direct DOM element object reference. This same thing is
true of many jQuery API methods; where it makes sense and is possible, you can often use a jQuery
selection, which is an array of elements returned from jQuery, a direct DOM object reference, or a
callback function.

.not('td.calendarLastMonth, td.calendarNextMonth')

Having now excluded the elements you don’t want selectable in the current month, the remaining
<td> elements each receive an onclick event via click() and jQuery’s event API, which I cover in
more detail in Chapter 3, “Events.”
.click(
function()

{

When a click occurs, the first thing that you do is to use the selectedDay variable that you created to
keep track of the selected day. You first see if you have stored a selection in this variable by checking
the 1ength property. If you have stored a selection, that selection is used to remove the class name
calendarDaySelected from the last <td> element that was given this class name, and you remove the
class name calendarWeekSelected from the last <tr> element to have received that class name. This
ensures that only one <td> element has that class name with any given click, and is the only selected
day, and that element’s parent <tr> element is the only <tr> element to be the selected week. Sans
this logic, you would potentially be selecting many <td> and many <tr> elements as the selected day
and week, respectively.

if (selectedDay && selectedDay.length)

{
selectedDay
.removeClass('calendarDaySelected')
.parent('tr")
.removeClass('calendarWeekSelected');
}

Following the selected day logic, you assign a variable called day with $(this), which is the element
currently experiencing the click event made jQuery-able.

var day = $(this);

Filtering a Selection | 57

The day is then assigned to selectedDay, where it will persist and remain until the next click
event occurs.

selectedDay = day;

The selected day then receives the class name calendarDaySelected, and then its parent <tr> element
also receives the class name calendarWeekSelected.

selectedDay
.addClass('calendarDaySelected")
.parent('tr')
.addClass('calendarWeekSelected');

Then you travel up the DOM from the selected day all the way to the <td> element’s ancestor
<table> element. You go from there to find the with class name calendarDay, which is then
assigned text content. That in turn places the selected day in the calendar header in date format,
for example, November 23, 2013. The call to day.text() returns the text content of the selected
day; in this case this is the number representing the day of the month, and that is appended to a
string containing a comma and a space. The parents() method is used to go from an element to
that element’s parent or ancestor, allowing you to go all the way up the DOM tree to the root <htm1>
element. The selector that you provide to parents() tells the parents() method what element or
elements you want to include as you travel up the DOM tree. If you were to also include the jQuery
proprietary : first pseudo-class in that selector, such as, table.calendarMonth: first, this would
also trigger the parents() method to halt the search when it comes to the first element that matches
the provided selector, and it would therefore also provide you with better performance than the
selector that I used, which causes jQuery to examine the entire DOM ancestry so that it is sure it
has matched every possible element.

day.parents('table.calendarMonth')

.find('span.calendarDay')
.text(day.text() + ', ');

The next event that you create is a double-click event using jQuery’s db1c1ick() method. Creating
this event enables you to change the day that is considered to be today.

.db1cTick(
function()

{

To change the element considered to be today, you first remove the class name calendarToday from
the present <td> element with that moniker. You assign the double-clicked <td> element to today.
You add the class name calendarToday to the new element.

today.removeClass('calendarToday');
today = $(this);
today.addClass('calendarToday');

Then you call setUpThisWeek() again to recalculate which days are considered yesterday, tomorrow,
earlier this week, later this week, and this week.

58 | CHAPTER2 SELECTING AND FILTERING

setUpThisWeek();
);

Finally, the last thing that you do within the anonymous function assigned to the ready () event is
to call setUpThisWeek), which sets up the week relative to the element considered today when the
document is initially loaded.

setUpThisWeek();

The last concepts presented in this chapter are just some notes about two additional methods that
jQuery provides. In my own experience, I haven’t had a cause to use these methods often, but they
may be useful to you. Those two methods are s1ice() and addQ.

SLICING A SELECTION

The s1ice() method is similar to the eq() method; it selects a subset of a selection based on the off-
set position of elements in a selection. It does this using one or two arguments. If you provide just

one argument, you provide the starting point for the slice. Take the following example of the places
of Middle Earth:

<!DOCTYPE HTML>
<html xmIns="http://www.w3.0rg/1999/xhtm1">
<head>
<meta http-equiv="content-type"
content="application/xhtmi+xml; charset=utf-8" />
<meta http-equiv="content-language" content="en-us" />
<title>Places in Middle-Earth</title>
</head>
<body>

<T1i>The Shire</1i>
<1li>Fangorn Forest</T1i>
<Ti>Rohan</1i>
<Ti>Gondor</Ti>
<Ti>Mordor</Ti>

</body>
</html>

Using $('19").s1ice(1), the argument 1 indicates where the slice begins, so s1ice(1) would include
all elements from <1i>Fangorn Forest</1i> to <Ti>Mordor</1i>. Therefore, using a single argument,
counting from zero, your selection includes that element onward.

When supplying two arguments, the first argument is the offset position of the first element you’d
like to include in the resulting selection counting from zero, and the second argument is the offset
position of the last element you’d like to include in the resulting selection, also offset from zero.
This creates a new selection where the elements in that selection include a range of elements start-
ing with that first element and ending with the last element. So, s1ice(0, 2) would start with
element number zero and end with element number 1. The selection goes from 0-2, but it does

http://www.w3.org/1999/xhtml

Adding to a Selection | 59

not include element #2 itself. So, this selection will include <1i>The Shire</1i> and <1i>Fangorn
Forest</Ti>.

ADDING TO A SELECTION

Finally, I introduce you to the add() method. The add() method is the inverse to the not () method,
and it is used to add to an existing selection. The following HTML, again, represents places in

Middle Earth:

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="content-type"
content="application/xhtml+xml; charset=utf-8" />
<meta http-equiv="content-language" content="en-us" />
<title>Places in Middle-Earth</title>
</head>
<body>
<ul id="middleEarthPlaces'>
<1i>The Shire</1i>
<1li>Fangorn Forest</1i>
<1i>Rohan</T1i>
<1i>Gondor</11i>
<Ti>Mordor</1i>

<ul id="middleEarthMorePlaces'>
<1i>0sgiliath</1i>
<1i>Minas Tirith</1i>
<Ti>Mirkwood Forest</1i>

</body>
</htm1>

A simple demonstration of the add() method is to make an initial selection, such as
$('ul#middleEarthPlaces 1i'), which selects all the <1i> elements in the first <u1> element. Then
you can add to that selection with a class like this:

$('ul#middleEarthPlaces 1i').add('ul#middleEarthMorePlaces 1i');

The resulting selection now includes all the <1i> elements present in the document because you first
selected the <11> elements in the first <u1> element, and then you added to that selection the <11>
elements of the second <u1> element.

Like the not () method, you can add elements to a selection using the result of a jQuery selection,
just like this:

$('ul#middleEarthPlaces 1i').add($('ul#middleEarthMorePlaces 1i'));

You can also use direct DOM object references, like this:

http://www.w3.org/1999/xhtml

60 | CHAPTER2 SELECTING AND FILTERING

$('ul#middleEarthPTaces 1i').add(
document.getETementById('middleEarthMorePlaces').childNodes
);

And you can use callback functions that return either jQuery selections or direct DOM object
references:

$C'ul#middleEarthPlaces 1i'").add(
function()

{
}

return document.getElementById('middleEarthMorePlaces").childNodes;
)3

The add() method allows you to add elements to a selection using any of these methods. In Chapter 4,
“Manipulating Content and Attributes,” you’ll learn how you can even use a string containing HTML
to add to a selection.

NOTE Appendix C, “Selecting, Traversing, and Filtering,” provides a reference
for all jQuery’s selection and filtering methods.

SUMMARY

In this chapter, you’ve seen some examples that give you a comprehensive overview of jQuery’s selec-
tion and filtering abilities. You learned how jQuery provides ridiculously fine-grained control over
selecting elements from the DOM, so fine-grained that you’ll often find that there are multiple ways
to achieve the same results.

jQuery’s selection and filtering methods go much further than what you get with JavaScript alone,
which more often than not would take several lines of code to come to the same level of control over
a selection.

jQuery harnesses the power, ease, familiarity, and convenience of selectors to help you get any-
where in the DOM you want to go. The selector syntax, you’ll find, is the same as what you’re used
to using with CSS; jQuery even supports a few extensions of its own. See Appendix B, “jQuery
Selectors,” for a full listing of selector syntax supported by jQuery.

jQuery’s filtering methods let you select descendants using the find() method, ancestors using the
parents () method, and siblings using the siblings (), prev(), prevA110), next(), and nextA11Q)
methods. You can add elements using the add() method or exclude elements using the not() method.
And you can also get even more specific using the sTice() and eq() methods. See Appendix C for a
full list of methods related to selection and filtering.

Summary | 61

EXERCISES

1.

What other client-side technology does jQuery have a lot in common with in terms of its fine-
grained control over the selection of elements from the markup source?

If you wanted to select an element from the DOM using jQuery based on an ancestral relation-
ship, which method would you use?

If you want to swap an element’s position in the DOM with its preceding sibling, what jQuery
method would help with that application?

If you have selected an element and want to select one of that element’s descendants from
the DOM, what methods does jQuery provide that would give you the results you seek?

If you made a selection but later wanted to remove one or more elements from that selection,
what jQuery method would you use?

If you wanted to select only a single element from a broader selection, what jQuery method
would you use?

List all the methods that jQuery provides for working with sibling elements.

How would you add elements to a selection using jQuery?

Events

jQuery offers a powerful and comprehensive event APIL. jQuery’s event API provides wrap-
per methods that accommodate most events in JavaScript. jQuery’s event API also provides
the capability to attach events it doesn’t explicitly support via its event methods. The jQuery
event API even has the capability to apply events to elements that might not even exist in the
document yet. Events can be neatly organized and namespaced within jQuery, another fea-
ture it offers above and beyond the baseline provided by JavaScript. Your events can be neatly
organized into named categories, which make it a lot easier to manage events. Having named
events also makes it possible to easily remove them.

In this chapter, you learn everything you need to know to work with jQuery’s event APIL. You
learn how to use jQuery’s event wrapper methods such as c1ick() or hover(). You also learn
how to use methods such as on() and off(). You can use the on() and off() methods to attach
an event handler function to any event, whether it is a native JavaScript event or a custom
event that you’ve created. The on() and off() methods can also attach events to elements that
might not even exist in the document yet. In addition, on() and off() can name and organize
events, which is useful if you need to manage or remove events as easily as creating them. You
also learn how to create completely custom events for your applications by virtue of the trig-
ger () method as well as the on() and off() methods. Custom events can make your own appli-
cations highly extensible and flexible.

THE VARIOUS EVENT WRAPPER METHODS

jQuery’s event API started with the goal of providing a bridge between the different browsers’
disparate methods for dealing with event attachment. There was a time in the not-so-distant
past that there was the Microsoft way of dealing with events, and then there was the standard-
ized way of dealing with events. Because of Microsoft’s work on Internet Explorer, this is no
longer an issue, and you have to worry about this only if you need to support those older ver-
sions of Internet Explorer that don’t support the standard way of attaching events. Thankfully,
jQuery already deals with the browser differences for you. The jQuery 1.x branch provides
legacy support for versions of Internet Explorer that don’t support the standardized way.

64 | CHAPTER3 EVENTS

The jQuery 2.x branch does away with things such as legacy support for older versions of Internet
Explorer, so the 2.x branch will not provide universal event support.

With the differences in browser support safely behind us for the most part, the jQuery event API has
taken up the task of making it easier to work with events in JavaScript in general, and it succeeds
well at doing so. The first collection of methods you take a look at in this chapter are a collection of
methods that provide API wrappers around the most-used events in JavaScript. These methods make
it possible to do two things:

> To easily attach a callback function to an event
> To easily trigger an event
You can find a comprehensive list of event methods in Appendix D, “Events.”

The following example demonstrates the jQuery event wrapper method, c1ick(). Remember, this and
all examples are available for free with the book’s source code download materials from www.wrox. com/
go/webdevwithjquery. This example is available in the accompanying materials as Example 3-1.html.

<!DOCTYPE HTML>
<html Tang='en'>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="utf-8' />
<title>Finder</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 3-1.js'></script>
<Tlink href="Example 3-1.css' rel="'stylesheet' />
</head>
<body>
<div id="finderFiles'>
<div class="finderDirectory' data-path='/Applications'>
<div class="'finderIcon'></div>
<div class='finderDirectoryName'>
Applications
</div>
</div>
<div class="'finderDirectory' data-path='/Library'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Library
</div>
</div>
<div class="finderDirectory' data-path='/Network'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Network
</div>
</div>
<div class="finderDirectory' data-path='/Sites'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Sites

http://www.wrox.com

The Various Event Wrapper Methods | 65

</div>
</div>
<div class="finderDirectory' data-path="'/System'>
<div class="finderIcon'></div>
<div class="finderDirectoryName'>
System
</div>
</div>
<div class="finderDirectory' data-path="'/Users'>
<div class="finderIcon'></div>
<div class="finderDirectoryName'>
Users
</div>
</div>
</div>
</body>
</html>

The preceding HTML is styled with the following style sheet, Example 3-1.css.

html,

body {
width: 100%;
height: 100%;

}
body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: rgb(189, 189, 189) url('images/Bottom.png') repeat-x bottom;
color: rgb(50, 50, 50);
margin: 0;
padding: 0;
}

div#finderFiles {
border-bottom: 1px solid rgb(64, 64, 64);
background: #fff;
position: absolute;
top: 0;
right: 0;
bottom: 23px;
left: 0;
overflow: auto;
user-select: none;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;

}

div. finderDirectory {
float: Teft;
width: 150px;
height: 100px;
overflow: hidden;

}

div. finderIcon {
background: url('images/Folder 48x48.png') no-repeat center;

66 | CHAPTER3 EVENTS

background-size: 48px 48px;
height: 56px;

width: 54px;

margin: 10px auto 3px auto;

}

div. finderIconSelected {
background-color: rgb(204, 204, 204);
border-radius: 5px;

}

div. finderDirectoryName {
text-align: center;

}

span. finderDirectoryNameSelected {
background: rgb(56, 117, 215);
border-radius: 8px;
color: white;
padding: 1px 7px;

3

Finally, the JavaScript in Example 3-1.js adds some selection functionality to the folders that you
created.

$(document) . ready(
function()

$('div.finderDirectory, div.finderFile').click(
function(event)

$('div.finderIconSelected')
.removeClass('finderIconSelected');

$('span.finderDirectoryNameSelected')
.removeClass('finderDirectoryNameSelected');

$(this).find('div.finderIcon')
.addClass('finderIconSelected');

$(this).find('div.finderDirectoryName span')
.addClass('finderDirectoryNameSelected');
}
);

$('div.finderDirectory, div.finderFile')

filter(':first")
.click(Q;

);

The collection of files that make up Example 3-1 results in what you see in Figure 3-1, when the file
is loaded into Safari.

The Various Event Wrapper Methods | 67

8006 Finder =
@_ @ [-+ |B file: /{ /Users/richard (Documents /Books/JQuery/2t & | feader] @
F— o — P— p—
—_— — — —
Library Network Sites
P (—
System Users
FIGURE 3-1

Example 3-1 demonstrates a simple use of the c1ick() method both to attach a callback method and
to trigger the event. Most of jQuery’s event wrapper methods work exactly like this, with just a few
exceptions, which are events such as hover(), which accept multiple callback methods: one for the
mouseover event and one for the mouseout event.

The document ready() event method is also an example of a wrapper event method, which jQuery
creates for the DOMContentLoaded event.

In the example, you attach the callback function. You start by selecting all the <div> elements in the
document with the class names finderDirectory and finderFile.

$('div.finderDirectory, div.finderFile').click(
function(event)

{
$('div.finderIconSelected')
.removeClass('finderIconSelected');

$('span.finderDirectoryNameSelected')
.removeClass('finderDirectoryNameSelected');

$(this).find('div.finderIcon')
.addClass('finderIconSelected');

$(this).find('div.finderDirectoryName span')
.addClass('finderDirectoryNameSelected');

);

When a click event fires and the callback function is executed, there is a bit of logic that handles
visually selecting a file or a folder. You start by removing a selection, which is to say you select the

68 | CHAPTER3 EVENTS

<div> element with class name finderIconSelected, and then you remove the finderIconSelected
class name from it. You then do the same thing with the element with class name finder-
DirectoryNameSelected. Then the function selects and adds those same class names, finderIconSe-
lected and finderDirectoryNameSelected, to elements that exist inside the element that the event
fires on. That element, the element the event fires on, is made available within the callback function
within the object stored in the this keyword.

ATTACHING OTHER EVENTS

jQuery’s event API provides wrapper methods for most events, but there are some events that there
are no methods for. Which events, you might ask? Events like those found in the HTMLS5 drag-and-
drop API, for example. There are no jQuery-provided dragstart() or drop() methods like there are
jQuery-provided click() or mouseover() methods.

For those events, you need to use the on() and off() methods, which attach event handlers to any
named event. The following example takes the script in Example 3-1.js and rewrites it to use the
on(), off(), and trigger() methods instead of the respective built-in methods for each of the events.

$(document) .on(

'DOMContentLoaded',
function()
{
$('div.finderDirectory, div.finderFile').on(
'click',
function(event)
{
$('div.finderIconSelected')
.removeClass('finderIconSelected');
$('span.finderDirectoryNameSelected')
.removeClass('finderDirectoryNameSelected');
$(this).find('div.finderIcon')
.addClass('finderIconSelected');
$(this).find('div.finderDirectoryName span')
.addClass('finderDirectoryNameSelected');
3

);
$('div.finderDirectory, div.finderFile'")

filter(':first")
.trigger('click");

);
This example is identical in functionality to Example 3-1; you can find it in the source materials as
Example 3-2.

Instead of $(document) .ready(), $(document).on('DOMContentLoaded') provides identical function-
ality. You can think of jQuery’s on() method as being close to the standard addEventListener()

Attaching Persistent Event Handlers | 69

method that you'd use in JavaScript if you weren’t working with a JavaScript framework. It simply
has more features built into it to make working with events a lot easier.

Instead of $('div.finderDirectory, div.finderFile').click(), you use $('div.finderDirectory,
div.finderFile').on('click"). Finally, to trigger an event to be fired, instead of just calling the
event method, like c1ick(), you call the trigger() method with the event name as its argument,
such as, trigger('click").

ATTACHING PERSISTENT EVENT HANDLERS

A convenient and cool feature of jQuery’s on() and off() methods is the concept of attaching events
to nodes in the DOM that might not even exist when you create the event handler. Internally, this
feature works by attaching an event to a node that is higher up the DOM tree and thus does exist at
the time the event handler is processed and attached.

For example, you might attach a click event to the document object. Then, by providing a selector
to the second argument of the on() method, you create a persistent event handler that applies to
only the nodes described by the selector. Those nodes described by the selector can exist or not exist
at the time the event handler is created; the only catch is the nodes must exist inside the object the
event handler is attached to.

Then using event propagation, the event takes place and bubbles up the DOM tree to the element
the event handler is attached to. jQuery continuously looks at the event.target property to see if the
node that received the event is described by the selector that you provide. If it is, then it applies the
event handler.

The following example, which can be found in the source materials as Example 3-3, takes the
previous two examples and implements the concept of persistent events. (jQuery’s documentation
has also referred to this concept as live events.) You begin with modifying the HTML so that some
files can be added after the event handler is created.

<!DOCTYPE HTML>
<html Tang="'en's>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="utf-8' />
<title>Finder</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 3-3.js'></script>
<Tlink href="Example 3-3.css' rel="'stylesheet' />
</head>
<body>
<div id="'finderFiles'>
<div class="'finderDirectory finderNode' data-path='/Applications'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Applications
</div>
</div>
<div class='finderDirectory finderNode' data-path='/Library'>

70 | CHAPTER3 EVENTS

<div class="finderIcon'></div>
<div class="'finderDirectoryName'>
Library
</div>
</div>
<div class="finderDirectory finderNode' data-path="'/Network'>
<div class="finderIcon'></div>
<div class="'finderDirectoryName '>
Network
</div>
</div>
<div class="finderDirectory finderNode' data-path='/Sites'>
<div class="finderIcon'></div>
<div class="'finderDirectoryName'>
Sites
</div>
</div>
<div class='finderDirectory finderNode' data-path="'/System'>
<div class="finderIcon'></div>
<div class="'finderDirectoryName'>
System
</div>
</div>
<div class="'finderDirectory finderNode' data-path="'/Users's>
<div class="finderIcon'></div>
<div class="'finderDirectoryName'>
Users
</div>
</div>
</div>
<div id="finderAdditionalFiles'>
<div class="finderFile finderNode' data-path="'/index.html'>
<div class="'finderIcon'></div>
<div class="finderFileName'>
index.html
</div>
</div>
<div class="'finderFile finderNode' data-path="'/Departments.html'>
<div class="'finderIcon'></div>
<div class="finderFileName'>
Departments.html
</div>
</div>
<div class="finderFile finderNode' data-path="'/Documents.html'>
<div class="'finderIcon'></div>
<div class="finderFileName'>
Documents.html
</div>
</div>
</div>
</body>
</html1>

Attaching Persistent Event Handlers | 71

The style sheet that you used for the previous two examples is modified a bit as well to add class
names for file nodes and directory nodes.

html,

body {
width: 100%;
height: 100%;

3
body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: rgb(189, 189, 189) url('images/Bottom.png') repeat-x bottom;
color: rgb(50, 50, 50);
margin: 0;
padding: 0;
3

div#finderFiles {
border-bottom: Ipx solid rgb(64, 64, 64);
background: #fff;
position: absolute;
top: 0;
right: 0;
bottom: 23px;
left: 0;
overflow: auto;
user-select: none;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;

}

div#finderAdditionalFiles {
display: none;

}

div. finderDirectory,
div. finderFile {
float: Teft;
width: 150px;
height: 100px;
overflow: hidden;
}
div. finderIcon {
background: url('images/Folder 48x48.png') no-repeat center;
background-size: 48px 48px;
height: 56px;
width: 54px;
margin: 10px auto 3px auto;
}
div.finderFile div.finderIcon {
background-image: url('images/Safari Document.png');
}

div. finderIconSelected {
background-color: rgb(204, 204, 204);

72 | CHAPTER3 EVENTS

border-radius: 5px;

}

div. finderDirectoryName,
div. finderFileName {

text-align: center;
}

span.finderDirectoryNameSelected,
span. finderFileNameSelected {
background: rgb(56, 117, 215);
border-radius: 8px;
color: white;
padding: Ipx 7px;

And finally, the JavaScript is modified to use a persistent event, as well as to add some new files
when you double-click anywhere on the document to test the concept of a persistent event handler.

$ (document) .on(
'DOMContentLoaded"',
function()

$("div#finderFiles').on(
"click',
'div.finderDirectory, div.finderFile',
function(event)

$('div.finderIconSelected")
.removeClass('finderIconSelected');

$('span.finderDirectoryNameSelected')
.removeClass('finderDirectoryNameSelected');

$('span.finderFileNameSelected")
.removeClass('finderFileNameSelected');

$(this).find('div.finderIcon')
.addClass('finderIconSelected');

$(this).find('div.finderDirectoryName span')
.addClass('finderDirectoryNameSelected');

$(this).find('div.finderFileName span')
.addClass('finderFileNameSelected');

);

$('div#finderFiles div.finderNode:first')
.trigger('click");

var addedAdditionalFiles = false;

$("body"').dblcTick(
function()

if (addedAdditionalFiles)

Attaching Persistent Event Handlers | 73

{
return;
3
$('div#finderAdditionalFiles > div.finderFile').each(
function()
$('div#finderFiles").append(
$(this).clone()
);
}
);

addedAdditionalFiles = true;

);

When the code is loaded into a browser and a db1cTick event is dispatched, you can see results simi-
lar to Figure 3-2.

Finder el
Lt |B file:/{ /Users/richard fDocumentsBooks/jQuery/ 2nd%2 0Edition/Examples/Chz (3| feadec |

- — — -

Applications Library Network Sites System
— @ @ ®
Users index.htm| Departments.html

FIGURE 3-2

This example rewrites Example 3-2 to include a persistent event handler and some additional
HTML to test that persistent event handler. The click event handler is attached to the <div> element
with the id name finderFiles. This is done because that <div> element will always exist. The second
argument, the selector 'div.finderDirectory, div.finderFile', sets up the persistent event handler.
The event is attached to the <div> with the id name finderFiles, but the selector argument keeps the
event handler from being executed unless the event originates on an element matching the selector.
$('div#finderFiles"').on(

'click',

'div.finderDirectory, div.finderFile',

function(event)

$('div.finderIconSelected')

74 | CHAPTER3 EVENTS

.removeClass('finderIconSelected');

$('span.finderDirectoryNameSelected')
.removeClass('finderDirectoryNameSelected');

$('span.finderFileNameSelected")
.removeClass('finderFileNameSelected');

$(this).find('div.finderIcon')
.addClass('finderIconSelected');

$(this).find('div.finderDirectoryName span')
.addClass('finderDirectoryNameSelected');

$(this).find('div.finderFileName span')
.addClass('finderFileNameSelected');

);
The event handler is given some new code to deal with the semantics of having files in addition to
directories.
$('div#finderFiles div.finderNode:first")
.trigger('click");

The event is triggered on the first <div> element with the class name finderNode.

Next, you set up a variable to keep track of whether the additional files have been added to the
entire collection of files and folders, which tests whether an element has to exist for a persistent
event handler to get applied.

var addedAdditionalFiles = false;

Technically, these new elements do exist in the DOM, but they do not exist within the <div> element
that acts as a container for directory and file nodes, and thus, the requisite events associated with
file and directory nodes are not yet applied.

$("body ') .dblcTlick(
function()

if (addedAdditionalFiles)

{
return;

}

$('div#finderAdditionalFiles > div.finderFile').each(
function()

$('div#finderFiles').append(
$(this).clone()
);

Removing Event Handlers | 75

addedAdditionalFiles = true;
);

First, you check the variable addedAdditionalFiles; if that variable is true, then execution of the
db1click handler returns. If addedAdditionalFiles is false, then you look inside the <div> with the
id name finderAdditionalFiles for some extra <div> elements with class names finderFile, and
each of those are added to the other <div> element with the id name finderFiles.

When you click one of the new <div> elements, you notice that selection happens without any addi-
tional effort. This is what it means to use a persistent event handler; the event continues to work
when new elements are added that match the selector argument. Still using the file manager meta-
phor, this makes it possible to attach just one event handler for many files or folders, instead of an
event handler for each file and folder. If you have a lot of files and folders in the DOM, this also has
the advantage of substantially increasing performance. So, persistent event handlers benefit you in
two key ways.

1. The element does not have to exist when the event handler is created. The element can be
created later; it just has to match the selector that you provide to the on() method.

2. Client-side browser performance can be substantially boosted because you can reduce the
number of event handlers that you need for a given event to just one from potentially many.

REMOVING EVENT HANDLERS

The on() method has a companion method called off(), which removes event handlers from a docu-
ment. jQuery also provides a useful way of discerning which events should be removed by virtue of
its capability to namespace event handlers.

Within a more complicated client-side application, you can quickly lose track of which scripts create
which event handlers. This is easily remedied by the introduction of named events by jQuery.

The syntax used to name an event is simple: In the argument where you name the event, you add a
dot and then the name that you want to use. The syntax works similarly to class names. And like
class names, using multiple dots will allow you to refer to multiple names. And referring to any one
name refers to any event using that name (even if that event has multiple names attached to it).

The following example, which can be found in the source materials as Example 3-4, demonstrates
how to work with named events, as well as how to dynamically apply and remove an event handler.
You begin with the same HTML that you worked with in preceding examples; you add two new
buttons to dynamically apply and remove events.

<!DOCTYPE HTML>
<html Tang='en'>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="'utf-8' />
<title>Finder</title>

76 | CHAPTER3 EVENTS

<script src="../jQuery.js'></script>
<script src="../jQueryUI.js"'></script>
<script src="Example 3-4.js'></script>
<Tlink href="Example 3-4.css' rel="'stylesheet' />
</head>
<body>
<div id="finderFiles'>
<div class="finderDirectory finderNode' data-path="'/Applications'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Applications
</div>
</div>
<div class="finderDirectory finderNode' data-path='/Library'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Library
</div>
</div>
<div class="finderDirectory finderNode' data-path="'/Network'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Network
</div>
</div>
<div class="'finderDirectory finderNode' data-path="'/Sites'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Sites
</div>
</div>
<div class="finderDirectory finderNode' data-path="'/System'>
<div class="'finderIcon'></div>
<div class='finderDirectoryName'>
System
</div>
</div>
<div class="'finderDirectory finderNode' data-path="'/Users's
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Users
</div>
</div>
<div class="finderFile finderNode' data-path="'/index.html'>
<div class="'finderIcon'></div>
<div class="finderFileName'>
index.html
</div>
</div>
<div class="'finderFile finderNode' data-path="'/Departments.html'>
<div class="'finderIcon'></div>
<div class="finderFileName'>
Departments.htmli

Removing Event Handlers | 77

</div>
</div>
<div class="'finderFile finderNode' data-path="'/Documents.html'>
<div class="finderIcon'></div>
<div class="finderFileName'>
Documents.html
</div>
</div>
</div>
<div 1id="'finderActions'>
<button id="'finderApplyEventHandler'>
Apply Event Handler
</button>
<button id='finderRemoveEventHandler'>
Remove Event Handler
</button>
</div>
</body>
</html>

The following CSS is applied to the HTML document; it adds some new CSS:

html,

body {
width: 100%;
height: 100%;

}
body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: rgb(189, 189, 189) url('images/Bottom.png') repeat-x bottom;
color: rgb(50, 50, 50);
margin: 0;
padding: 0;
}

div#finderFiles {
border-bottom: 1px solid rgb(64, 64, 64);
background: #fff;
position: absolute;
z-index: 1I;
top: 0;
right: 0;
bottom: 23px;
left: 0;
overflow: auto;
user-select: none;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;

}

div#finderAdditionalFiles {
display: none;

3

div. finderDirectory,

78 | CHAPTER

3 EVENTS

div.

div.

div.

div.

3
div.
div.

}

finderFile {
float: Teft;
width: 150px;
height: 100px;
overflow: hidden;

finderIcon {

background: url('images/Folder 48x48.png') no-repeat
background-size: 48px 48px;

height: 56px;

width: 54px;

margin: 10px auto 3px auto;

finderFile div. finderIcon {
background-image: url('images/Safari Document.png');

finderIconSelected {
background-color: rgb(204, 204, 204);
border-radius: 5px;

finderDirectoryName,
finderFileName {
text-align: center;

span. finderDirectoryNameSelected,
span. finderFileNameSelected {

background: rgb(56, 117, 215);
border-radius: 8px;

color: white;

padding: Ipx 7px;

div#finderActions {

}

position: absolute;
bottom: Ipx;
right: 10px;
z-index: 2;

center;

The following JavaScript demonstrates how to apply and remove event handlers at will:

$(do

cument) .on(
'DOMContentLoaded"',
function()

{

var eventHandlerActive = false;

function applyEventHandler()

{
if (eventHandlerActive)
{
return;
3

$('div#finderFiles').on(

Removing Event Handlers | 79

'click.finder',
'div.finderDirectory, div.finderFile',
function(event)

$('div.finderIconSelected"')
.removeClass('finderIconSelected');

$('span.finderDirectoryNameSelected"')
.removeClass('finderDirectoryNameSelected');

$('span.finderFileNameSelected')
.removeClass('finderFileNameSelected');

$(this).find('div.finderIcon')
.addClass('finderIconSelected');

$(this).find('div.finderDirectoryName span')
.addClass('finderDirectoryNameSelected');

$(this).find('div.finderFileName span')
.addClass('finderFileNameSelected');
3
);

eventHandlerActive = true;

}
function removeEventHandler()
$('div#finderFiles').off('click.finder');

eventHandlerActive = false;

}

$('div#finderFiles div.finderNode:first"')
.trigger('click');

applyEventHandler();
$("button#finderApplyEventHandler').click(
function()
{
applyEventHandler();
}
);
$("button#finderRemoveEventHandler').click(
function()
{
removeEventHandler();
3
);

80 | CHAPTER3 EVENTS

The preceding example adds two new buttons to the window, which you can see as shown in
Figure 3-3.

8006 Finder =
| P @ @ [+ |@ file:///Users/richard/Documents/Books/jQuery/2nd%20Edition/Examples/C & i Readec } @
Applications Library Network Sites System

- @ @ @

Users index.html Departments.html
Apply Event Handler Remove Event Handler
FIGURE 3-3

In Example 3-4, the click event handler is applied using the applyEventHandTer method, which uses
jQuery’s on() method with a named event handler click.finder. The event is specified as usual, and
then a dot is inserted, and any name you like is added after the dot (any name following the same
naming conventions as class or id names). You can also use multiple names if you like; in this exam-
ple, you could have also used click.finder.selection.

The example also adds a button and a method to remove the click event handler. The off() method
is called with the same event and event name as was used in the call to the on() method. $('div.
finderFiles').off('click.finder') completely removes the event handler.

CREATING CUSTOM EVENTS

Custom events are created using the same methods that you use to attach standard events: onQ,
off(), and trigger(). The only difference is that custom events require custom names. Custom
names should simply require whatever you intend the event to provide.

Following are some examples of custom events from the context of a file manager application:

> An upload event can be created and used to execute a callback handler after a file upload has
been completed.

> A folderUpdate event can be created and used to execute a callback handler when the files
and folders displayed in the file manager are changed.

> A fileRename event can be created and used to execute a callback handler when a file is
renamed.

Creating Custom Events | 81

Custom events exist to fulfill the need of providing more flexibility and extensibility in your appli-
cations. This, in turn, makes it possible to drop your application into the page where the user can
attach custom event handlers to accommodate their imagined uses for your application. Custom
events are demonstrated in the following example, which can be found as Example 3-5 in the source

materials:

<!DOCTYPE HTML>

<html Tang=

<head>

'en'>

<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset='utf-8' />
<title>Finder</title>

<script src="../jQuery.js'></script>
<script src="../jQueryUI.js"'></script>
<script src="Example 3-5.js'></script>
<link href="Example 3-5.css' rel="'stylesheet' />

</head>
<body>

<div id="'finderFiles'>
<div class="'finderDirectory finderNode' data-path="'/Applications'>

<div class="'finderIcon'></div>
<div class="finderDirectoryName'>
Applications
</div>
</div>

<div class="'finderDirectory finderNode' data-path="'/Library'>

<div class="'finderIcon'></div>
<div class="finderDirectoryName'>
Library
</div>
</div>

<div class="'finderDirectory finderNode' data-path="'/Network'>

<div class="'finderIcon'></div>
<div class="finderDirectoryName'>
Network
</div>
</div>

<div class="finderDirectory finderNode' data-path="'/Sites'>

<div class="'finderIcon'></div>
<div class="finderDirectoryName'>
Sites
</div>
</div>

<div class="finderDirectory finderNode' data-path="'/System'>

<div class="'finderIcon'></div>
<div class="finderDirectoryName'>
System
</div>
</div>

<div class="finderDirectory finderNode' data-path="'/Users'>

<div class="'finderIcon'></div>

82 | CHAPTER3 EVENTS

<div class="'finderDirectoryName'>
Users
</div>
</div>
</div>
<div id="finderAdditionalFiles'>
<div class="finderFile finderNode' data-path='/index.html'>
<div class="'finderIcon'></div>
<div class='finderFileName'>
index.html
</div>
</div>
<div class="'finderFile finderNode' data-path="'/Departments.htm]'>
<div class="'finderIcon'></div>
<div class="'finderFileName'>
Departments.html
</div>
</div>
<div class="finderFile finderNode' data-path='/Documents.html'>
<div class="'finderIcon'></div>
<div class="'finderFileName'>
Documents.html
</div>
</div>
</div>
</body>
</html>

The preceding HTML is joined by the following style sheet:

html,

body {
width: 100%;
height: 100%;

3
body {
font: 12px "Lucida Grande'", Arial, sans-serif;
background: rgb(189, 189, 189) url('images/Bottom.png') repeat-x bottom;
color: rgb(50, 50, 50);
margin: 0;
padding: 0;
}

div#finderFiles {
border-bottom: Ipx solid rgb(64, 64, 64);
background: #fff;
position: absolute;
top: 0;
right: 0;
bottom: 23px;
left: 0;
overflow: auto;
user-select: none;
-webkit-user-select: none;
-moz-user-select: none;

Creating Custom Events | 83

-ms-user-select: none;
3
div#finderAdditionalFiles {
display: none;
3

div. finderDirectory,
div.finderFile {
float: Teft;
width: 150px;
height: 100px;
overflow: hidden;
}
div. finderIcon {
background: url('images/Folder 48x48.png') no-repeat center;
background-size: 48px 48px;
height: 56px;
width: 54px;
margin: 10px auto 3px auto;
}
div. finderFile div. finderIcon {
background-image: url('images/Safari Document.png');
}

div. finderIconSelected {
background-color: rgb(204, 204, 204);
border-radius: 5px;

3

div. finderDirectoryName,

div. finderFileName {
text-align: center;

}

span. finderDirectoryNameSelected,
span. finderFileNameSelected {
background: rgb(56, 117, 215);
border-radius: 8px;
color: white;
padding: 1px 7px;
i

And finally, this example is topped off with the following JavaScript, which implements a custom
event handler and a trigger for that event handler.

$(document) .on(
'DOMContentLoaded"',
function()

$('div#finderFiles')
.on(
'click.finder",
'div.finderDirectory, div.finderFile',
function(event)

$('div.finderIconSelected"')
.removeClass('finderIconSelected');

84 | CHAPTER3 EVENTS

$('span.finderDirectoryNameSelected')
.removeClass('finderDirectoryNameSelected');

$('span.finderFileNameSelected')
.removeClass('finderFileNameSelected');

$(this).find('div.finderIcon')
.addClass('finderIconSelected');

$(this).find('div.finderDirectoryName span')
.addClass('finderDirectoryNameSelected');

$(this).find('div.finderFileName span')
.addClass('finderFileNameSelected');

}
)
.on(
'appendFile.finder"',
'div.finderDirectory, div.finderFile',
function(event, file)
{
console.log(file.path);
console.log($(this));
}
);

$('div#finderFiles div.finderNode:first')
.trigger('click.finder');

var addedAdditionalFiles = false;

$("body ') .dblcTlick(
function()

if (addedAdditionalFiles)

{
return;
}
$('div#finderAdditionalFiles > div.finderFile').each(
function()
{

var file = $(this).clone();
$("div#finderFiles').append(file);
file.trigger(
'appendFile.finder', {
path : file.data('path'")
}

s

Creating Custom Events

addedAdditionalFiles = true;

);
The preceding example’s results are shown in Figure 3-4.

000 Finder o

- — —
Applications Library Network Sites System

Users index.html Departments.htm| Documents.html

e n0e Web Inspector — Example 3-5.htm|

De A72kB (D 188ms (=1 Bo

< p |[Z]Conscle 3 g _7_, Errors Warnings Logs | T | %
v B Example 3-5.html 2

E‘] Bottom.png
@ Folder 4Bx48.png
& Safari Document.png
if! Example 3-5.js
i1 jQuery.js
i jQueryULjs
@ Example 3-5.css

EH Local Storage

Session Storage

/index.html Example 3-5.js5:35
[»<div class="finderFile finderNode" data-path="/index.html">.</div>] Example 3-5.i5:36
/Departments. html Example 3-5.§5:35
[»<div class="finderFile finderNode" data-path="/Departments.html">.</div>] Example 3-5.js:36
/Documents. html Example 3-5.js:35
[k <div class="finderFile finderNode" data-path="/Documents.html">.</div= 1 Example 3-5.75:36

® Filter Resource List

FIGURE 3-4

In Example 3-5, you begin by adding a custom event handler. That custom event handler is repro-
duced here.

.on(
'appendFile.finder',
'div.finderDirectory, div.finderFile',
function(event, file)
{
console.log(file.path);
console.log($(this));

86 | CHAPTER3 EVENTS

The new custom event handler creates the appendFile.finder event on <div> elements with class
names finderDirectory or finderFile. The custom event is namespaced to finder so that the
appendFile event name can be applied to other things, if necessary.

And then when a dblclick event is dispatched on the file management window, and the additional
files are appended to the document, for each of those files or folders, the appendFile event is fired
with a call to trigger().

$('div#finderAdditionalFiles > div.finderFile').each(
function()

{
var file = $(this).clone();

$('div#finderFiles').append(file);

file.trigger(
'appendFile.finder', {
path : file.data('path')
}

)
)

When the appendFile.finder event is fired off, you can pass data into the event by passing an object
literal to the second argument. This data is then passed back to the event handler in its second
argument. The contents of the second argument and this are printed to the JavaScript console so
that you can observe that custom events work similarly to native ones and allow custom data to be
passed back to the handler.

SUMMARY

jQuery events are a flexible and simple way of using JavaScript events. jQuery’s APIs provide both
wrapper methods for common JavaScript events, as well as more detailed APIs in the on(), offQ,
and trigger() methods.

If you want to use a browser event that jQuery does not provide a wrapper for, you must use on(Q,
off(), or trigger() to use one of those events, for example, the HTMLS drag-and-drop API (which
is discussed in Chapter 11, “HTMLS Drag and Drop”).

If you provide a selector to the on() method, you can create persistent or live event handlers. It
becomes possible to apply event handlers for elements that don’t exist yet. It also becomes possible
to greatly reduce the number of event handlers applied within an application because with live or
persistent events, events can be applied to just a single element further up the DOM tree.

Event handlers can be namespaced by adding a dot and name to the name of the event. Events
can be given multiple names, if you like, and this works similarly to how class names work in
CSS selectors.

Summary | 87

Event handlers can be absolutely controlled, added, and removed at will. The off() method provides
the mechanism to remove an event. Removing an event requires calling the off() method with the
name of the event or the event namespace, or both.

Calling an event wrapper method with no arguments, for example calling c1ick() as well as calling
trigger(), can trigger an event handler.

Custom events can be created and used with the standard jQuery event APIL. The on(), off(), and
trigger() methods can all create custom events. You also saw some examples in this chapter of
some custom events you might apply to a file manager application.

EXERCISES

1.

¢

© ® N o

Name all the methods you can use to attach a mouseover event using jQuery.

Extra Credit: How would you attach both a mouseover and mouseout event using the same
method? Hint: This answer can be found in Appendix D.

What method would you use to attach any browser event not already provided as a wrapper
method?

What event property is used as the basis for determining what element has received an event
using jQuery’s persistent or live events? Explain what happens.

How do you use a persistent or live event to create an event handler?

How do you name an instance of an event handler? How do you apply multiple names to an
instance of an event handler?

What method is used to remove an event handler?
Can an event handler be removed by virtue of its named instance only?
Name two ways to fire a click event handler using script.

How do you create a custom event handler? How do you send data to a custom event
handler?

Manipulating Content
and Attributes

jQuery is thorough; it provides everything you can imagine for working with content in the
DOM. In Chapter 2, “Selecting and Filtering,” you saw how jQuery made it easy to fetch
elements from the DOM via its fine-grained support for selecting and filtering selections.
Then in Chapter 3, “Events,” you saw how jQuery wraps and extends the W3C event model
to make it less verbose while also providing vastly more functionality. This chapter continues
the discussion of jQuery’s API components with an in-depth look at the methods that jQuery
makes available for manipulating content and attributes. No longer do you have to worry
about whether a browser supports the innerText or textContent properties, or the outerHTML
property, or what the standard DOM method of removing an element from a document is.
(You should know how to do those things anyway.) jQuery paves right over these verbose and
sometimes fragmented methods with a rock-solid API that just works.

This chapter covers how you can shuffle DOM content around, doing things like replacing one
element with another, inserting new text or HTML, appending or prepending content, cloning
content, and getting rid of content.

It also covers how you manipulate attributes using jQuery, another area that jQuery makes
smooth and easy by providing all the methods you’d need to use in the library. Or maybe
you’ve had an occasion to want to save custom data with an element; jQuery provides this, too.

SETTING, RETRIEVING, AND REMOVING ATTRIBUTES

Working with attributes is easy with jQuery. Like everything you do with jQuery, first you
make a selection, and then after you’ve made a selection, you can do something with that
selection, like setting or accessing attributes. Setting attributes on a selection sets those attri-
butes on every element that you’ve selected. You can set the value of one or more attributes on

90 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

one or more elements, simultaneously. Retrieving an attribute’s value is also easy; after you’ve made
a selection, accessing an attribute’s value provides you with the attribute value of the first element in
the selection. Finally, removing attributes is just as straightforward: When you remove an

attribute, it removes that attribute from each element in the selection. If you attempt to retrieve

an attribute after removing it, it returns undefined.

The following document, which appears in the source code download from www.wrox.com/go/
webdevwithjquery as Example 4-1, demonstrates these concepts:

<!DOCTYPE HTML>
<html Tang="'en'>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="'utf-8' />
<title>The Marx Brothers</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 4-1.js'></script>
<link href='"Example 4-1.css' rel="stylesheet' />
</head>
<body 1id="documentAttributes'>
<form action="'javascript:void(0);

[

method="get '>

<1i>
<input type='radio'
name="documentAttributeMarx'
id="documentAttributeGrouchoMarx"
value="'Groucho' />
<label for='"documentAttributeGrouchoMarx'>
Groucho
</Tabel>
</Ti>
<1i>
<input type='radio'
name="documentAttributeMarx'
id="documentAttributeChicoMarx'
value="Chico' />
<label for="documentAttributeChicoMarx'>
Chico
</Tabel>
</Ti>
<1i>
<input type='radio'
name="documentAttributeMarx'
id="documentAttributeHarpoMarx'
value="Harpo' />
<label for='documentAttributeHarpoMarx'>
Harpo
</Tabel>
</Ti>
<1i>

<input type='radio'
name="documentAttributeMarx'

http://www.wrox.com/go

Setting, Retrieving, and Removing Attributes | 91

id="documentAttributeZeppoMarx'
value="Zeppo' />
<label for='documentAttributeZeppoMarx'>
Zeppo
</label>
</1i>

<p>
<button 1id="documentSetAttribute'>
Set Attribute
</button>
<button 1id="documentRetrieveAttribute'>
Retrieve Attribute
</button>
<button 1id="documentRemoveAttribute'>
Remove Attribute
</button>
</p>
</form>
</body>
</html>

The following style sheet is linked to the preceding document:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 15px;

body#documentAttributes ul {
Tist-style: none;
margin: 0;
padding: 0;
3
body#documentAttributes ul Ti.disabled Tabel {
opacity: 0.5;
}

And the following JavaScript is also linked to the preceding document:

$(document) . ready(
function()

{

var getCheckbox = function()

{

var input = $("input[name="documentAttributeMarx"]:checked');

if (input && input.length)
{

}

return input;

92 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

$("input[name="documentAttributeMarx"]:first')
.attr('checked', true);

return getCheckbox();

};
$('button#documentSetAttribute').click(
function(event)
{

event.preventDefault();
var input = getCheckbox();

input
.attr('disabled', true)
.parent('1i")
.addClass('disabled');

}
);
$("button#documentRetrieveAttribute').click(
function(event)
{

event.preventDefault();
var input = getCheckbox();

alert('Disabled: ' + input.attr('disabled'));

3
);
$("button#documentRemoveAttribute').click(
function(event)
{

event.preventDefault();
var input = getCheckbox();

input
.removeAttr('disabled')
.parent('1i")
.removeClass('disabled');

);
The preceding example demonstrates how you use jQuery’s attr() and removeAttr() methods to set

the disabled attribute on the selected radio <input> element. The preceding example produces some-
thing similar to what you see in Figure 4-1, upon clicking the Set Attribute button.

Setting, Retrieving, and Removing Attributes | 93

e oo The Marx Brothers)

@ [+ |@ file:// fUsers/richard /Documents/Book & | eace] @

() Groucho

|7SVerl Attribute | IrRret'r]eve Attribute | IVRechE Ak;(;lbutérl

FIGURE 4-1

In the JavaScript source code, the first thing you do is set up a reusable method to retrieve the cor-
rect check box element. This method is aptly named getCheckbox ().

var getCheckbox = function()

{
var input = $("input[name="documentAttributeMarx"]:checked');
if (input && input.length)
return input;
}
return $('input[name="documentAttributeMarx"]:first")
.attr('checked', true);
};

First, you use a selector to find the right set of check boxes, which is done with an attribute selector,
input[name="documentAttributeMarx"], and then is further narrowed down using jQuery’s : checked
pseudo-class. The attribute selector selects all four radio <input> elements, and then the selection is
immediately narrowed to include only those with the checked="checked" attribute, indicating a user
selection. The function makes sure that an element was found with the line input & input.length;
if there is an <input> element, it is returned. If there is no <input> element, the check box collection
is selected again and this time is narrowed to the first item present in the selection using jQuery’s
:first pseudo-class. The first item is explicitly checked with attr('checked', true). You can also
use attr('checked', 'checked"), if you like; both methods result in the check box being checked.
The method then returns the first <input> element, ensuring that the method works whether an
<input> element is checked.

The next block of code handles what happens when you click the button labeled Set Attribute:

94 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

$('button#documentSetAttribute').click(
function(event)

{

event.preventDefault();
var input = getCheckbox();

input
.attr('disabled', true)
.parent('1i")
.addClass('disabled');

);

The Set Attribute button disables the selected radio box with the disabled="disabled" attribute and
then adds the disabled class name to its parent <1i> element. Adding the disabled class name to

the parent <1i> element allows the opacity of the <1abel> to be manipulated to further provide the
impression of the item being disabled.

The second button, labeled Retrieve Attribute, retrieves the current value of the disabled attribute.
Because this is a boolean attribute, its possible values are either “disabled" or undefined. Figure 4-2
shows retrieval with the disabled attribute applied.

68686 The Marx Brothers =

_ @ [_+ |B file:///Users/richard/Documents/Book C i Beadec } @

(_) Groucho
() Chico
*) Harpo
() Zeppo

| set Attribute | w | Remove Attribute |

JavaScript
Disabled: disabled

FIGURE 4-2

Retrieving the attribute is as simple as calling attr('disabled"') on the selection.

$("button#documentRetrieveAttribute').click(
function(event)
{

event.preventDefault();

Setting, Retrieving, and Removing Attributes | 95

var input = getCheckbox();

alert('Disabled: ' + input.attr('disabled"));
);

The third block of code removes the disabled attribute with the removeAttr() method.

$("button#documentRemoveAttribute').click(
function(event)

{

event.preventDefault();
var input = getCheckbox();

input
.removeAttr('disabled")
.parent('1i")
.removeClass('disabled");

);

The removeAttr('disabled') method completely removes the disabled attribute from the DOM.
When working with boolean HTML attributes, jQuery also allows setting a boolean value using
the attr() method, so attr('disabled', false) is functionally the same as removeAttr('disabled").
After removing the disabled attribute, you have the result in Figure 4-3.

eno The Marx Brothers %

.- @ @ [+ |B file:// /Users/richard/Documents/Book ¢ | Reader]@

() Groucho
() Chico
(=) Harpo
() Zeppo

|_§;!l Attribute | | Retrieve Attribute | I_iemwe Anribute |

FIGURE 4-3

When you attempt to retrieve the value of the disabled attribute after using either
removeAttr('disabled') or attr('disabled', false), you get a result of undefined, as shown in

Figure 4-4.

96 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

68686 The Marx Brothers =

@ [+ |G file:///Users/richard/Documents/Book C | feace } @

() Groucho
() Chico
(=) Harpo
() Zeppo

| Set Atribute | [[Retrieve Attribute]| | Remove Attribute |

JavaScript

Disabled: undefined

FIGURE 4-4

SETTING MULTIPLE ATTRIBUTES

Setting multiple attributes is done by providing a JavaScript Object Literal to the attr() method,
which is demonstrated in the following example:

var input = $('<input/>"').attr({
type : 'radio',

name : 'documentAttributeMarx',
id : 'documentAttributeGrouchoMarx',
value : 'Groucho'

1);

The preceding example creates a new <input> element using jQuery identical to this one in HTML:

<input type='radio'
name= "documentAttributeMarx'
id="documentAttributeGrouchoMarx'
value="Groucho' />

Passing a string such as '<input/>' tells jQuery to create a new element by parsing the snippet
of HTML you’ve passed to it. In this example, you create a single new element, which can then
be manipulated using jQuery’s various API methods: You call the attr() method and pass an
object containing the type, name, id, and value attributes and their corresponding values.

The resulting element assigned to the variable named input can then be further operated on with
other API methods or inserted into the document using the various methods you learn about later in
this chapter, such as htm1(), prepend(), append(), and so on.

Manipulating Class Names | 97

MANIPULATING CLASS NAMES

In earlier chapters, you’ve seen examples of the addClass(), hasClass(), removeClass(), and
toggleClass() methods that jQuery uses to manipulate class names.

It is considered best practice in client-side web development to avoid placing style declarations
directly in your JavaScript code and instead maintain a separation of behavior and presentation

by placing styles in CSS and manipulating the class names of elements for situations in which you
require a dynamic change of style. This is considered best practice for a reason: It keeps things
neatly organized and obvious; you don’t need to search for style changes in JavaScript or HTML,
only in the style sheets. Because all your presentation is neatly contained in CSS, your behaviors

in JavaScript, and your structure in HTML, your documents become easier to manage because it’s
more predictable where to look to make a modification. If your styles are scattered inline in HTML,
in the JavaScript, and in style sheets, then it becomes an order of magnitude more difficult to change
the presentation of a document because now you have to track down which document contains the
change. No big deal for a small web page, but when you scale up to a large website or application,
those conventions come into play.

The following example demonstrates the four methods jQuery provides to manipulate and check for
the existence of one or more class names. This example appears in the source code download mate-
rials from www.wrox.com/go/webdevwithjquery as Example 4-2.

<!DOCTYPE HTML>
<html Tang='en's>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset='utf-8' />
<title>John Lennon Albums</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 4-2.js'></script>
<1link href="Example 4-2.css' rel="'stylesheet' />
</head>
<body>
<form action="'javascript:void(0);
<h4>John Lennon Albums</h4>
<tabTle>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Lennon/Plastic Ono Band</td>
<td>1970</td>
</tr>
<tr>
<td>Imagine</td>
<td>1971</td>

’

method="get '>

http://www.wrox.com/go/webdevwithjquery

98 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

</tr>
<tr>
<td>Some Time in New York City</td>
<td>1972</td>
</tr>
<tr>
<td>Mind Games</td>
<td>1973</td>
</tr>
<tr>
<td>Walls and Bridges</td>
<td>1974</td>
</tr>
<tr>
<td>Rock 'n Roll</td>
<td>1975</td>
</tr>
<tr>
<td>Double Fantasy</td>
<td>1980</td>
</tr>
</tbhody>
</table>
<p>
<button 1id="documentAddClass'>
Add Class
</button>
<button 1id="documentHasClass'>
Has Class
</button>

<button 1id="documentRemoveClass '>
Remove Class
</button>
<button 1id="documentToggleClass'>
Toggle Class
</button>
</p>
</form>
</body>
</html1>

The preceding HTML is styled with the following style sheet:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 15px;

table. johnLennonATlbums {
table-Tayout: fixed;
width: 500px;
border: 1px solid black;
border-collapse: collapse;

table. johnLennonAlbums th,

Manipulating Class Names | 99

table. johnLennonATbums td {
padding: 3px;
border: 1px solid black;

table. johnLennonAlbums th {
text-align: Teft;
background: Tightgreen;

table. johnLennonAlbums tbody tr:hover {
background: Tightblue;
}

The various jQuery methods for working with class names are demonstrated in the following script:

$(document) . ready(
function()

$("button#documentAddClass').click(
function(event)

{

event.preventDefault();

$('tabTle').addClass("'johnLennonATbums');

}
);
$("button#documentHasClass"').click(
function(event)
{

event.preventDefault();

if ($('table').hasClass('johnLennonAlbums'))

{
alert('The <table> has the class johnLennonAlbums');
}
else
{

alert('The <table> does not have the class
johnLennonAlbums');

3
b
J;
$("'button#documentRemoveClass"').click(
function(event)
{

event.preventDefault();

$('table").removeClass('johnLennonATbums');

b
);
$("button#documentToggleClass').click(
function(event)
{

event.preventDefault();

100 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

$("table').toggleClass('johnLennonAlbums');

);

Figure 4-5 shows the preceding example in Safari on a Mac.

John Lennon Albums

Title Year
John Lennon/Plastic Ono Band 1970
Imagine 1971
Some Time in New York City 1972
Mind Games 1973

‘Walls and Bridges 1974
Rock 'n Roll 1975
Double Fantasy 1980

| Add Class | | Has Class | | Remove Class] | Toggle Class ‘

FIGURE 4-5

Clicking the Add Class button provides a styled table, as shown in Figure 4-6.

John Lennon Albums

Title | Year
John Lennon/Plastic Ono Band 1970
Imagine 1971
Some Time in New York City 1972
Mind Games 1873

Walls and Bridges 1974

Rock 'n Roll 1975

Double Fantasy 1980

| Add Class | | Has Class | | Remove Class | | Toggle Class |

FIGURE 4-6

Manipulating Class Names | 101

In the JavaScript created for Example 4-2, you attach four events to each of the four <button> ele-
ments present in the HTML document. The first event adds the class name johnLennonAlbums to the
<table> element. jQuery adds only this class name once; if it is already present, nothing happens.
The addClass() method can take one or more class names. If you want to add multiple class names,
a space character should separate each class name.

$("button#documentAddClass').click(
function(event)

{

event.preventDefault();

$('tabTle').addClass("'johnLennonATbums');
);

The hasClass() method, demonstrated by the event attached to the second <button> element, checks
for the existence of one or more class names. If the class is present, the method returns true. If the
class is missing, the method returns false. In Example 4-2, an alert() message is displayed for each
boolean condition. The hasClass() method is the only class method jQuery provides that does not
accept multiple class names.

$("'button#documentHasClass"').click(
function(event)

{

event.preventDefault();

if ($('table').hasClass('johnLennonAlbums'))

{
alert('The <table> has the class johnLennonAlbums');
3
else
{

alert('The <table> does not have the class
johnLennonAlbums');
3
}
);

Figure 4-7 shows the alert message displayed when the class is present.

The removeClass() method is demonstrated by pressing the third <button> element; it removes a
class if it has been added. If the class does not exist, nothing happens. Like the addClass() method,
the removeClass() method can accept multiple class names, and also like the addClass () method,
you separate multiple class names with a space character. When the class is removed, you see the
same table shown in Figure 4-5.

$('button#documentRemoveClass').cTick(
function(event)

{

event.preventDefault();

$("tabTle').removeClass('johnLennonAlbums');

102 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

86e8 John Lennon Albums e
@ @ m@ file:///Users/richard/Documents/Books/jQL & | feacde J @

John Lennon Albums

Title Year

John Lennon/Plastic Ono Band 1970

Imagine 1971

Some Time in New York City 1972

Mind Games 1873

Walls and Bridges 1974

Rock 'n Roll 1975

Double Fantasy 1980

| Add Class | @ | Remove Classrl | Togale Class |

e JavaScript
@ The <table> has the class johnLennonAlbums

FIGURE 4-7

The toggleClass() method is demonstrated by pressing the fourth and final <button> element. If
the class is present, it is removed. If the class is missing, then it is added. Like the addClass() and
removeClass() methods, the toggleClass() method can accept one or more class names; a space
character separates multiple class names.

$('button#documentToggleClass').click(
function(event)

{

event.preventDefault();
$('tabTle').toggleClass('johnLennonAlbums');

);

MANIPULATING HTML AND TEXT CONTENT

jQuery provides a method for just about everything. Its unique, innovative approach to JavaScript
reinvents how you program JavaScript. This reinvention is required because jQuery methods define
some ground rules that can be expected to be universal among all its methods. For example, one
ground rule that becomes more obvious as you learn more about how jQuery works is how wherever
it is possible, its methods work on one or more elements. You never have to distinguish between
whether you want to work with just one or a lot of elements, because jQuery always assumes the
possibility of an array.

Manipulating HTML and Text Content | 103

Because jQuery always assumes the possibility of an array, it eliminates redundant code that has
historically always been required to iterate over an array or list of several elements. You can chain
methods onto one another, and you can perform complex operations on just one or many elements
at the same time. One thing you may ask yourself while working with jQuery is, how do I access
standard or de facto standard DOM methods and properties? In many cases, you don’t need to
directly access DOM properties or methods because jQuery provides equivalent and, in most cases,
less verbose methods that are designed to work seamlessly with jQuery’s chainable model of pro-
gramming. And not only are jQuery’s methods less verbose, they also attempt to fix as many cross-
browser stability and reliability issues as possible.

One such property that jQuery replaces is the de facto standard innerHTML property. The innerHTML
property and many of Microsoft’s extensions to the DOM are on their way to standardization in the
HTMLS specification. The innerHTML property is one of the few Microsoft extensions to the DOM
that has been ubiquitously adopted among browser makers.

Rather than relying exclusively on the implementation of Microsoft’s de facto standard
innerHTML property and similar properties, jQuery provides a variety of methods that assist you
in manipulating HTML and text content. This section discusses the following methods offered
in jQuery’s API:

The htm1 () method sets or gets the HTML content of one or more elements.
The text() method gets or sets the text content for one or more elements.

The append() and prepend() methods let you append or prepend content. You will learn
about how these methods are actually better than the native de facto standard alternative,
innerHTML.

> The after() and before() methods let you place content beside other elements (as opposed
to appending or prepending the content inside those elements).

> insertAfter() and insertBefore() methods let you modify a document by taking
one selection of elements and inserting those elements beside another selection of
elements.

> The wrap(), wrapA11Q), and wrapInner() methods give you the ability to wrap one or more
elements with other elements.

> The unwrap() method removes a parent element, leaving its descendant elements in place of

the parent.

The following sections describe and demonstrate how the preceding methods work, to give you
expertise in understanding how content manipulation in jQuery works.

Getting, Setting, and Removing Content

The simplest methods that jQuery provides for content manipulation are the htm1() and text(
methods. If you make a selection and call one of these methods without any arguments, jQuery

104 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

simply returns the text or HTML content of the first matched element in a jQuery selection. The
following example, Example 4-3, demonstrates how this works:

<!DOCTYPE HTML>
<htm1 lang='en'>
<head>
<meta http-equiv="'X-UA-Compatible' content='IE=Edge' />
<meta charset='utf-8' />
<title>Groucho Marx Quote</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 4-3.js'></script>
<link href="Example 4-3.css' rel='stylesheet' />
</head>
<body>
<p>
Before I speak, I have something important to say. <i>- Groucho Marx</i>
</p>
</body>
</html>

The preceding document is linked to the following style sheet:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 15px;
}

The following script demonstrates how you can use the htm1() and text() methods and what to
expect in the output that you get back:

$(document) . ready (
function()
{
console.log('HTML: '

+ htm1 Q)
console.log('Text: ' +

('p")
("p").text());

o

)

Figure 4-8 shows that the htm1() method has returned the <i> element in the results, but the text()
method has left that out. In this sense, you find that the htm1() method is similar to the innerHTML
property, and the text() method is similar to the innerText or textContent properties.

Setting Text or HTML Content

Setting content works similarly: All you have to do is provide the content that you want to set

as the value for the element (or elements) in the first argument to the text() or htm1() method.
Which method you use, of course, depends on whether you want HTML tags to be expanded

as HTML. The following example, Example 4-4, demonstrates how to set text or HTML content:

Manipulating HTML and Text Content | 105

)
)
o

Croucho Marx Quote

\El | + | @ file:///Users/richard/Documents/Books/jQ &

"

o

Before | speak, | have something important to say. — Groucho Marx

eoe Web Inspector — Example 4-3.html

))= | 05 A @ 82 ©o Ao

< » |[EConsole Q- Filter Console Log) i-':E;- Errors ~ Warnings Logs |
v B Example 4-3.html oy
i Example 4-3.js
| jQuery.js
¥ jQuerylLjs
@ Example 4-3.cs5
Local Storage
[session Storage

Example 4-3.js:4
Before I speak, I have something important to say. <iz— Groucho Marx</i=>

Example 4-3.7s5:5
Before I speak, I have something important to say. — Groucho Marx

@ Filter Resource List

FIGURE 4-8

<!DOCTYPE HTML>
<html lang='en'>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset='utf-8' />
<titTe>Groucho Marx Quotes</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 4-4.js'></script>
<link href='Example 4-4.css' rel='stylesheet' />
</head>
<body>
<p>
Before I speak, I have something important to say. <i>- Groucho Marx</i>
</p>
<p id="grouchoQuotel'></p>
<p 1id="grouchoQuote2'></p>
</body>
</html>

The following style sheet is applied to the preceding HTML document:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);

106 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

margin: 0;
padding: 15px;

The following script demonstrates setting element content via jQuery’s text() and htm1() methods:

$(document) . ready(
function()
{
$('p#grouchoQuotel').text(
'Getting older 1is no problem. You just have to ' +
'lTive long enough. <i>- Groucho Marx</i>'

);

$('p#grouchoQuote2') .html(
'T have had a perfectly wonderful evening, but ' +
'this wasn’t it. <i>- Groucho Marx</i>'

);
)

Figure 4-9 shows how the content applied via the text() method results in the HTML tags being
ignored and showing through in the rendered output of the <p> element with id name grouchoQuotel.
It also shows how the HTML tags are expanded in the content of the <p> element with id name
grouchoQuote2, which is applied using jQuery’s htm1() method.

800 Groucho Marx Quotes =l

@ [+ |0 file:///Users/richard/Documents/Books/jQ ¢ | fezce } @

Before | speak, | have something important to say. - Groucho Marx
Getting older s no problem. You just have to live long enough. <i>- Groucho Marx</i>

| have had a perfectly wonderful evening, but this wasn't it. - Groucho Marx

FIGURE 4-9

Setting Text or HTML Content for Multiple Items

Although you probably usually think about text or HTML content being applied only to a single
element at a time, jQuery’s text() and htm1() methods will apply that text or HTML content to
one or more elements. The following example, Example 4-5, demonstrates what happens when you
apply HTML content to a selection that includes multiple elements:

<!DOCTYPE HTML>
<htm1 Tlang='"en'>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />

Manipulating HTML and Text Content | 107

<meta charset="utf-8"' />
<title>Groucho Marx Quotes</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 4-5.js'></script>
<link href="Example 4-5.css' rel='stylesheet' />
</head>
<body>
<p>
Before I speak, I have something important to say. <i>- Groucho Marx</i>
</p>
<p 1id='"grouchoQuotel'></p>
<p 1id="grouchoQuote2'></p>
</body>
</html>

The following CSS is linked to the preceding HTML document:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 15px;

The following script applies HTML content to all the <p> elements in the document:

$(document) . ready(
function()

$C'p") .html(
'Quote me as saying I was mis-quoted. ' +
'<i>- Groucho Marx</i>'

)
)

Figure 4-10 shows a screen shot of the output. You see that the quote applied in the script has been
applied to all three <p> elements, replacing whatever content was present previously, if any.

8006 Groucho Marx Quotes =

Quote me as saying | was mis-quoted. - Groucho Marx
Quote me as saying | was mis-quoted. - Groucho Marx

Quote me as saying | was mis-quoted. — Groucho Marx

FIGURE 4-10

108 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

As you can see in Figure 4-10, jQuery applies the HTML content depending on your selection.

If you've selected several elements, the content modification has been applied to several elements,
and if you’ve selected only a single element, your content modifications have been applied to only a
single element.

Removing Content

Removing content can also be done with jQuery’s text() and htm1() elements. All you have to do to
remove an element is to call either method with an empty string, that is, text('') or htm1('"). That
isn’t the only way to remove content from a document, however, and you’ll see alternative methods
for doing this later in this chapter.

Appending and Prepending Content

The word prepend is a term more or less invented by the technical programming world. (It does
have some use outside that world.) It means to prefix or add some content to the beginning of some-
thing else. In fact, you won’t find the word prepend in many dictionaries, and if you do, you’ll find
that the definition offers: “(transitive) To premeditate; to weigh up mentally.” This doesn’t match up
with the way it’s used in the technical programming community, in which this word is meant to be
the opposite of append, which, of course, means “to add to the end of something.”

This term has come out of the technical programming world by virtue of the flexible nature of
computing when compared to the world of print. In the print world, modifying a hard-copy body
of work is difficult to do. You have to renumber pages, possibly renumber chapters, and rewrite the
table of contents and the index. Without a computer, that’s an enormous amount of work. So in the
print world, it’s easier to add to a printed body of work by appending, or tacking on new content

to the end. It’s not always done that way, but it’s one possible explanation for why the world never
actually needed a word like prepend until the existence of computers made the action a necessity. In
the technical world, it’s easy to glue something onto the beginning of something else, so we made a
new word to describe that action.

The following example, Example 4-6, demonstrates jQuery’s append() and prepend() methods:

<!DOCTYPE HTML>
<htm1 Tang='en'>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset='utf-8' />
<title>John Lennon Albums</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 4-6.js'></script>
<1link href='"Example 4-6.css' rel="stylesheet' />
</head>
<body>
<form action="'javascript:void(0);
<h4>John Lennon Albums</h4>
<table class="'johnLennonATbums'>
<thead>
<tr>
<th>Title</th>

[

method="get '>

Manipulating HTML and Text Content | 109

<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagine</td>
<td>1971</td>
</tr>
<tr>
<td>Some Time in New York City</td>
<td>1972</td>
</tr>
<tr>
<td>Mind Games</td>
<td>1973</td>
</tr>
<tr>
<td>Walls and Bridges</td>
<td>1974</td>
</tr>
<tr>
<td>Rock 'n Roll</td>
<td>1975</td>
</tr>
</tbody>
</table>
<p>
<button 1id="documentAppend'>
Append
</button>
<button 1id="documentPrepend'>
Prepend
</button>
</p>
</form>
</body>
</html>

The preceding code is linked to the following style sheet:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 15px;

table. johnLennonAlbums {
table-Tayout: fixed;
width: 500px;
border: 1px solid black;
border-collapse: collapse;
}
table. johnLennonAlbums th,
table. johnLennonATbums td {
padding: 3px;

110 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

border: 1px solid black;

}

table. johnLennonAlbums th {
text-align: Teft;
background: Tightgreen;

table. johnLennonAlbums tbody tr:hover {
background: Tightblue;
}

The following script demonstrates the prepend() and append() methods:

$(document) . ready (

function()
{
$("'button#documentAppend').click(
function(event)
{

event.preventDefault();
if (1$(C'tr#johnLennonDoubleFantasy').Tlength)

$('table tbody').append(
"<tr id='johnLennonDoubleFantasy'>\n" +
"<td>DoubTle Fantasy</td>\n" +
"<td>1980</td>\n" +

"</tr>\n"
);
}

}
);
$("button#documentPrepend').click(

function(event)

{

event.preventDefault();
if (1$C'tr#johnLennonPlasticOnoBand').length)

$('table tbody').prepend(

"<tr id='johnLennonPlasticOnoBand'>\n" +
"<td>John Lennon/Plastic Ono Band</td>\n" +
"<td>1970</td>\n" +

"</tr>\n"

);

);

In the preceding example, to append HTML content to the <tbody> element, you use jQuery’s
append() method, which adds the Double Fantasy album’s entry to the <tbody> element when you

Manipulating HTML and Text Content | 111

click the Append button. In addition, when you tap the Prepend button, the John Lennon/Plastic
Ono Band entry is added to the beginning of the <tbody> element. Figure 4-11 shows the example at
page load, minus the additional entries.

eno John Lennon Albums =)

@ [+ |B file:///Users/richard/Documents/Books/jQ & @ oo] @

John Lennon Albums

Title Year
Imagine 1971
Some Time in New York City 1972
Mind Games 1973
Walls and Bridges 1974
Rock 'n Roll 1975

| Append | | Prepend-l

FIGURE 4-11

Inserting Beside Content

With the append() and prepend() methods, you’re adding to content within an element. With the
before() and after() methods, you are inserting content beside an element. The before() and
after() methods are demonstrated in the following document (Example 4-7):

<!DOCTYPE HTML>
<html Tang='en's>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="utf-8' />
<titTe>Groucho Marx Quote</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 4-7.js'></script>
<link href="Example 4-7.css' rel='stylesheet' />
</head>
<body>
<p>
Why, I'd horse-whip you, if I had a horse.
</p>
</body>
</html1>

The following style sheet is applied to the preceding document:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: O;

112 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

padding: 15px;
}
p.quoteAttribution {
font-style: italic;
}

The following JavaScript demonstrates how content can be inserted before and after the <p> element,
via the respective before() and after() methods:

$(document) . ready (
function()

$("'p").before(
'<h4>Quote</h4>"

);

$('p').after(
"<p class="quoteAttribution'>\n" +

" - Groucho Marx\n" +
"</p>\nll
);

);
Figure 4-12 shows what happens when you load the preceding document in a browser.

800 Groucho Marx Quote =l

_ @ [+ |B file:///Users/richard/Documents/Books/jQ ¢ | fezce } @

Quote
Why, I'd horse-whip you, if | had a horse.

- Groucho Marx

FIGURE 4-12

The content passed to the before() method is inserted before the <p> element, and the content
passed to the after() method is inserted after the <p> element.

Inserting Beside Content via a Selection

The before() and after() methods are used to insert content beside elements. The insertBefore()
and insertAfter() methods do the same function, but instead of passing content directly to these

Manipulating HTML and Text Content | 113

methods, as you did with the before() and after() methods, you use a selector to reference another
element in your document that you want inserted beside another element. In addition, the logic is
reversed in how you write the script that does the insert beside action. The following document,
which can be found as Example 4-8 in the source materials, demonstrates how you might use the
insertBefore() and insertAfter() methods:

<!DOCTYPE HTML>
<html Tang="'en'>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset='utf-8' />
<title>John Lennon and Paul McCartney Albums</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js"'></script>
<script src="Example 4-8.js'></script>
<link href="Example 4-8.css' rel="'stylesheet' />

</head>
<body>
<!-- Template Items -->
<table 1id='seventiesAlbumsTemplate'>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tfoot>
<tr>
<th>Title</th>
<th>Year</th>
</tr>
</tfoot>
</table>
<!-- Main Content -->

<h4>John Lennon &1squo;70s Albums</h4>
<table class='seventiesAlbums'>
<tbody>

<tr>
<td>John Lennon/Plastic Ono Band</td>
<td>1970</td>

</tr>

<tr>
<td>Imagine</td>
<td>1971</td>

</tr>

<tr>
<td>Some Time in New York City</td>
<td>1972</td>

</tr>

<tr>
<td>Mind Games</td>
<td>1973</td>

</tr>

<tr>
<td>Walls and Bridges</td>

114 | CHAPTER4

MANIPULATING CONTENT AND ATTRIBUTES

<td>1974</td>
</tr>
<tr>
<td>Rock 'n Roll</td>
<td>1975</td>
</tr>
</tbody>
</table>
<h4>Paul McCartney ‘70s Albums</h4>
<table class='seventiesAlbums'>
<tbody>
<tr>
<td>McCartney</td>
<td>1970</td>
</tr>
<tr>
<td>RAM</td>
<td>1971</td>
</tr>
<tr>
<td>Wild Life</td>
<td>1971</td>
</tr>
<tr>
<td>Red Rose Speedway</td>
<td>1973</td>
</tr>
<tr>
<td>Band on the Run</td>
<td>1973</td>
</tr>
<tr>
<td>Venus and Mars</td>
<td>1975</td>
</tr>
<tr>
<td>At the Speed of Sound</td>
<td>1976</td>
</tr>
<tr>
<td>Thrillington (As Percy Thrillington)</td>
<td>1977</td>
</tr>
<tr>
<td>Londontown</td>
<td>1978</td>
</tr>
<tr>
<td>Wings Greatest</td>
<td>1978</td>
</tr>
<tr>

Manipulating HTML and Text Content | 115

<td>Back To The Egg</td>
<td>1979</td>
</tr>
</tbody>
</table>
</body>
</html>

The following style sheet is applied to the preceding markup document:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 15px;

}

table.seventiesAlbums {
table-Tayout: fixed;
width: 500px;
border: 1px solid black;
border-collapse: collapse;

}

table.seventiesAlbums th,

table.seventiesAlbums td {
padding: 3px;
border: 1px solid black;

}

table.seventiesAlbums th {
text-align: Teft;
background: Tightgreen;

}

table.seventiesAlbums tbody tr:hover {
background: Tightblue;

}

table#seventiesAlbumsTemplate {
display: none;
}

The following script demonstrates how you use the insertBefore() and insertAfter() methods with
selectors to duplicate content in a document:

$(document) . ready(
function()

$('table#seventiesAlbumsTemplate thead')
.insertBefore('table.seventiesAlbums tbody');

$('table#seventiesAlbumsTemplate tfoot')
.insertAfter('table.seventiesAlbums tbody');

)

Figure 4-13 shows the results of the preceding document in Safari.

116 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

k]

8eo0e John Lennon and Paul McCartney Albums IS

| P | @] E + 3 fﬂe:ji}User;.fncha!d,fDj)cuinenmeooks!jO 9 Reade

E.

John Lennon ‘70s Albums

Title Year
John Lennon/Plastic Ono Band 1870
Imagine 1971
Some Time in New York City 1972
Mind Games 1973
Walls and Bridges 1974
Rock 'n Roll 1975
Title Year

Paul McCartney ‘70s Albums

Title Year
MeCartney 1970
RAM 1971
Wild Life 1971
Red Rose Speedway 1973
Band on the Run 1973
Venus and Mars 1875
At the Speed of Sound 1976
Thrillington (As Percy Thrillington) 1977
Lendontown 1978
Wings Greatest 1878
Back To The Egg 1979
Title Year

FIGURE 4-13

In the preceding example, you can see that the <thead> and <tfoot> elements contained

within the hidden (using the display: none; CSS declaration) <table> element with id name
seventiesAlbumsTemplate are duplicated to the other two <table> elements using jQuery. You
start the script with the logic reversed; that is to say, you do the opposite of what you did with the
before() and after() methods, where you first selected the element that you wanted to insert con-
tent beside and then provided the content to be inserted beside the selected element(s) within the
before() or after() methods. This time, you begin with a selection of existing content within the
document that you want to insert beside another element. In the script, you have the following:

$('tabTle#seventiesAlbumsTemplate thead')
.insertBefore('table.seventiesAlbums tbody');

The preceding line begins with selecting the <thead> element contained in the <table> with id name
seventiesAlbumsTemplate. You want to duplicate that <thead> element to the other two tables and
use that content as a template. To do that, you call the insertBefore() method and then pass a selec-
tor to that method. The selector that you pass is the element before which you want the original
selection, <thead>, to be inserted. The selector first references <table> elements with the class name

Manipulating HTML and Text Content | 117

seventiesAlbums and then selects the descendant <tbody> element. So, in plain English, the script
says, “Take the <thead> element in the hidden table and duplicate and insert that <thead> element
before the <tbody> elements of the other two tables containing discography information for 1970s
era albums of two former Beatles.” The other line does the same thing:

$('table#seventiesAlbumsTemplate tfoot')
.insertAfter('table.seventiesAlbums tbody');

However this time, you take the <tfoot> element from the hidden table and duplicate and insert that
element after the <tbody> element of the other two tables. Essentially, the insertBefore() and
insertAfter() methods make it easier to do templating.

Wrapping Content

In jQuery, wrapping an element means creating a new element and placing an existing element
within a document inside that new element.

jQuery provides a few methods for wrapping content, that is to say, methods that take one or more
elements and place those elements within container elements to change the structural hierarchy of a
document. The methods that jQuery provides that enable you to wrap content are wrap(), wrapA11(),
and wrapInner(). jQuery provides a single method to do the reverse to unwrap an element, and that
method is called unwrap(). The following sections demonstrate how to use these methods.

Wrapping a Selection of Elements Individually

jQuery’s wrap() method wraps each element matched in a selection individually. That is, if your
selection matches five different elements, jQuery’s wrap() method makes five separate wrappers. To
better illustrate how this works, the following code, Example 4-9, demonstrates how the wrap()
method wraps three <p> elements within <div> elements:

<!DOCTYPE HTML>
<html Tang='en's>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="utf-8' />
<title>Mitch Hedberg Quotes</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 4-9.js'></script>
<link href="Example 4-9.css' rel="'stylesheet' />
</head>
<body>
<h4>Mitch Hedberg Quotes</h4>
<p>
Dogs are forever in the push up position.
</p>
<p>
I haven’t slept for ten days, because that would be too Tong.
</p>
<p>
I once saw a forklift 1ift a crate of forks. And it was way
too literal for me.

118 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

</p>
</body>
</html>

The following style sheet is applied to the preceding markup document:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 15px;

}

div {
padding: 5px;
border: 1px dashed black;
background: orange;
margin: 5px 0;

}
div p {

margin: 5px;
}

The following script demonstrates jQuery’s wrap method:

$(document) . ready(
function()

$C'p").wrap('<div/>");
);
In Figure 4-14, you see that each <p> element is wrapped in a <div> element, which is made obvious

by the styles applied in the style sheet. Each <div> has a distinct border, margin, and background
color applied to make it obvious that a <div> exists.

Mitch Hedberg Quotes
- | €3 file:/f/Users/richard/Documents/Books/jQ | Aeade

FIGURE 4-14

Manipulating HTML and Text Content | 119

The preceding example makes it obvious that jQuery’s wrap() method is used to wrap each element
present in a selection individually.

Wrapping a Collection of Elements

Whereas the wrap() method wraps each item present in a selection individually, jQuery’s wrapA11()
method wraps all items present in a selection within a single wrapper. The following document
presents the same markup and style sheet as you saw in the last section for the demonstration of the
wrap() method. The only item that is changed is that the wrapA11() method is used instead of the
wrap() method.

In the following script, Example 4-10, which uses the same markup and style sheet as Example 4-9,
you see that the wrap() method has been swapped for the wrapA11() method:

$(document) . ready(
function()

$C'p") .wrapAl11('<div/>");

);

Figure 4-15 shows that instead of each <p> element being individually wrapped in a <div> element,
you find that all three <p> elements are wrapped with a single <div> element, as made obvious again
by the styles used in your style sheet.

Mitch Hedberg Quotes e
| + |BﬁIe:f.isters,'rIchardfDocuments.iBooksij C| 5eadr | &2

Mitch Hedberg Quotes

FIGURE 4-15

As you can see in the preceding example, the wrapA11() method takes a selection of elements and
collectively wraps the whole selection with a single wrapper element.

Wrapping an Element’s Contents

The last wrapper method demonstrates the wrapInner() method, which wraps an element’s contents.
This method works similarly to the wrap() method in that a wrapper is applied to each item in a

120 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

selection, but instead of the selected element being placed in a wrapper, its contents are placed in a
wrapper. The following document, Example 4-11, which is the same document you saw in the last
two examples, demonstrates how the wrapInner() method compares and contrasts with the wrap(
and wrapA11() methods:

<!DOCTYPE HTML>
<html Tang="en'>

<head>

<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="'utf-8' />

<title>Mitch Hedberg Quotes</title>

<script src="../jQuery.js'></script>

<script src="../jQueryUI.js'></script>

<script src="Example 4-11.3js'></script>

<link href='"Example 4-11.css' rel="stylesheet' />

</head>
<body>

<h4>Mitch Hedberg Quotes</h4>
<p>
Dogs are forever in the push up position.
</p>
<p>
I haven’t slept for ten days, because that would be too Tong.
</p>

<p>
I once saw a forklift 1ift a crate of forks. And it was way
too literal for me.

</p>

</body>
</html>

The following style sheet is applied to the preceding markup document:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 15px;

}

span {
background: yelTlow;

}

p{
margin: 5px;

}

In the following script, you see that the only change from the preceding two examples is that the
wrapInner() method is used instead of the wrap() or wrapA11() methods:

$(document) . ready (

Manipulating HTML and Text Content | 121

function()
{
$('p').wrapInner('");

);

In Figure 4-16, you see that the contents of all three <p> elements are each wrapped with

tags, making the contents of each <p> element styled with yellow backgrounds, appearing to high-
light the content of all three paragraphs.

8006 Mitch Hedberg Quotes =)

| p | @ @ [+ |B file:// fUsers/richard/Documents/Books/iQ C' Reader] @

Mitch Hedberg Quotes

Dogs are forever in the push up position.
| haven't slept for ten days, because that would be too long.
| once saw a forklift lift a crate of forks. And it was way too literal for me.

FIGURE 4-16

As demonstrated by what you see in Figure 4-16, the wrapInner () method takes the contents of each
individual element present in a selection and places that content in a wrapper.

Unwrapping Elements

Unwrapping elements using the unwrap() method means removing the parent element from one or
more elements and placing those element(s) in its place. The following example, Example 4-12, dem-

onstrates jQuery’s unwrap() method in the context of the preceding wrapping examples that have
been presented thus far.

<!DOCTYPE HTML>
<html lang="'en'>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="utf-8' />
<title>Mitch Hedberg Quotes</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 4-12.js'></script>
<link href="Example 4-12.css' rel='stylesheet' />
</head>

122 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

<body>
<h4>Mitch Hedberg Quotes</h4>
<div>
<p>
Dogs are forever in the push up position.
</p>
</div>
<div>
<p>
I haven’t slept for ten days, because that would be too long.
</p>
</div>
<div>
<p>
I once saw a forklift 1ift a crate of forks. And it was way
too literal for me.
</p>
</div>
</body>
</html>

The HTML document is joined with the following style sheet:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 15px;

}

div {
padding: 5px;
border: 1px dashed black;
background: orange;
margin: 5px 0;

}

p {
margin: 5px;

}

Then, the following JavaScript unwraps each <p> element from its parent <div> element.

$(document) . ready (
function()

$C'p").unwrap(Q;
);

The JavaScript removes each <div> element from the document, which results in the HTML struc-
ture shown in Figure 4-17.

Replacing Elements | 123

Mitch Hedberg Quotes
alr Q "" 5o _B file://Users/richard/Documents/Books/jQ & | Q

Mitch Hedberg Quotes

Dogs are forever in the push up position.
| haven't slept for ten days, because that would be too long.

| once saw a forklift lift a crate of forks. And it was way too literal for me. l
8006 Web Inspector — Example 4-12.html
— -
B © W™ > |eo: - =200
s Timelines Debugger Comsole Ui Sl e Ul L

< <5 Example 4-12.htm! © [DOM Tree ¢ - [html [$ 0k

¥ <html lang="en"=>
» <head=..</head=
¥ <body styles
<hd4=Mitch Hedberg Quotes</hd=
<p> Dogs are forever in the push up position. =/p=
v <p>
" I haven't slept for ten days, because that would be too long. "
=/p>
v <>
" 1 once saw a forklift lift a crate of forks. And it was way too literal for me. "
=/p=
</body>=
</html=

-

FIGURE 4-17

REPLACING ELEMENTS

This section discusses two methods, jQuery’s replacewith() and replaceA11(). The jQuery’s
replaceWith() method replaces a selection with whatever HTML content you specify. This works
similarly to jQuery’s htm1() method, but whereas the htm1() method sets an element’s contents,
jQuery’s replacewith() method replaces the element and its content. This can be thought to be simi-
lar to Microsoft’s (now de facto standard) outerHTML property, for the portion of the outerHTML prop-
erty that can set or replace content.

The replaceA11() method is similar to the insertBefore() and insertAfter() methods that you
observed earlier in this chapter; it reverses the logic and is intended to be used with HTML content
already in the document, such as HTML you might reuse as a template.

The following document, Example 4-13, demonstrates how jQuery’s replacewith() and repla-
ceA11() methods work:

<!DOCTYPE HTML>
<html lang='en'>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset='utf-8' />

124 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

<title>Mitch Hedberg Quotes</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 4-13.js'></script>
<1link href="Example 4-13.css' rel="stylesheet' />
</head>
<body>
<div id='"mitchHedbergQuoteTemplate '>
<p 1id='"mitchHedbergQuote3'>
I’m sick of following my dreams. I’m just going
to ask them where they’re goin’, and hook up with
them Tater.
</p>
<p id="mitchHedbergQuote4'>
My fake plants died because I did not pretend to water them.

</p>
</div>
<h4>Mitch Hedberg Quotes</h4>
<p>
<input type='submit' id='mitchHedbergQuoteReveall' value='View Quote'
/>
</p>
<p>
<input type='submit' id='mitchHedbergQuoteReveal2' value='View Quote'
/>
</p>
<p>
<input type='submit' id='mitchHedbergQuoteReveal3' value='View Quote'
/>
</p>
<p>
<input type='submit' id='mitchHedbergQuoteReveal4' value='View Quote'
/>
</p>
</body>
</html>

The following style sheet is applied to the preceding HTML.:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 15px;
3
div#mitchHedbergQuoteTemplate {
display: none;
3

p{
}

margin: 5px;

Replacing Elements | 125

The following script demonstrates how jQuery’s replaceWith() and replaceAl1() methods are used
to replace elements:

$(document) . ready(

function()
{
$("input#mitchHedbergQuoteReveall').click(
function(event)
{

event.preventDefault();

$(this).replaceWith(

"<p>\n" +

" I would imagine that if you could understand \n" +
Morse code, a tap dancer would drive you crazy.\n" +

n

"</p>\n"
);
}
);
$("input#mitchHedbergQuoteReveal2').click(
function(event)
{

event.preventDefault();

$(this).replaceWith(
"<p>\n" +
" I’d like to get four people who do cart wheels

\n" +
" very good, and make a cart.\n" +
" /p>\n"
}
);
$("input#mitchHedbergQuoteReveal3').click(
function(event)
{
$('p#mitchHedbergQuote3').replaceAll(this);
}
);
$("input#mitchHedbergQuoteReveal4"').click(
function(event)
$('p#mitchHedbergQuote4').replaceAll(this);
}
);
}

126 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

Figure 4-18 shows the results of the preceding example. When you click any of the buttons, you see
that the button is replaced with a quote.

Mitch Hedberg Quotes
e o) e | + G file:// /Users/richard/Documents /Books/jQ G_ (+]

Mitch Hedberg Quotes

[View Quote |
L
eno6 Mitch Hedberg Quotes "l
|l | (] [=] | + |8 file:// /Users/richard/Documents/Books/jQ & | “eade: | [@

| Wiew Quote |

Mitch Hedberg Quotes
| would imagine that if you could understand Morse code, a tap dancer would drive you
crazy.
I'd like to get four people who do cart wheels very good, and make a cart.

1 I'm sick of following my dreams. I'm just going to ask them where they’re goin’, and hook

up with them later.
My fake plants died because | did not pretend to water them.

FIGURE 4-18

In the preceding example, you see that a click event is attached to each button, and upon click-
ing any button, the button is replaced with a quote. For the first two buttons, you make a call to
$(this).replaceWith(), which causes the <input> element to be replaced with the HTML content
passed to the replacewith() method.

For the second two buttons, the content you want to use for replacement is selected instead of
directly provided, as p#mitchHedbergQuote3, for example, then the replaceA11() method is called,
and you provide the item you want to replace as an argument to that method. In the preceding
example, you pass the this keyword, but you can also use a selector. Essentially, you find that the
logic is reversed from the replaceWith() method demonstrated earlier in this section.

REMOVING CONTENT

Removing content can be done in a variety of ways. You can, for example, use the replacewith() or
htm1 () methods in conjunction with an empty string. But jQuery also provides methods that are spe-
cifically designated for the removal of content, the empty () and the remove() methods. The following
document, Example 4-14, demonstrates how both of these methods are used:

<!DOCTYPE HTML>
<html Tang='en's>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />

Removing Content | 127

<meta charset="utf-8' />
<titTe>John Lennon Albums</title>
<script src="../jQuery.js ' '></script>
<script src="../jQueryUI.js'></script>
<script src="Example 4-14.3js'></script>
<link href="Example 4-14.css' rel="stylesheet' />
</head>
<body>
<form action="'javascript:void(0);
<h4>John Lennon Albums</h4>
<table class='johnLennonATlbums'>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Lennon/Plastic Ono Band</td>
<td>1970</td>
</tr>
<tr>
<td>Imagine</td>
<td>1971</td>
</tr>
<tr>
<td>Some Time in New York City</td>
<td>1972</td>
</tr>
<tr>
<td>Mind Games</td>
<td>1973</td>
</tr>
<tr>
<td>Walls and Bridges</td>
<td>1974</td>
</tr>
<tr>
<td>Rock 'n Roll</td>
<td>1975</td>
</tr>
<tr>
<td>Double Fantasy</td>
<td>1980</td>
</tr>
</tbhody>
</table>
<p>

’

method="get '>

<button 1id="documentEmpty'>
Empty Data

</button>

<button 1id="documentRemove '>
Remove Content

128 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

</button>
</p>
</form>
</body>
</html>

The following style sheet is applied to the preceding markup document:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 15px;

table. johnLennonAlbums {
table-Tayout: fixed;
width: 500px;
border: Ipx solid black;
border-collapse: collapse;

table. johnLennonAlbums th,
table. johnLennonAlbums td {
padding: 3px;
border: Ipx solid black;
}
table. johnLennonAlbums th {
text-align: Teft;
background: Tightgreen;

table. johnLennonAlbums tbody tr:hover {
background: Tightblue;
3

The following script demonstrates both the empty () and the remove () methods:

$(document) . ready(
function()

$('button#documentEmpty').click(
function(event)

{

event.preventDefault();

$C'td") .emptyQ);

}
);
$("button#documentRemove').click(
function(event)
{

event.preventDefault();

Removing Content | 129

$('h4, table').remove(Q);

);

Figure 4-19 shows the result of the preceding example.

John Lennon Albums

4 [B |+ _8 file:// /Users/richard/Documents/Books/iQ & | (3]
John Lennon Albums
Title |Yur ‘
John Lennon/Plastic Ono Band | 1570 ‘
Imagine John Lennon Albums
Some Time in New York City e % 4+ €3 file:f//Users/richard/Documents/Books/jQ <
Mind Games I . . .
Walls and Bridges
9 - John Lennon Albums
Rock 'n Roll
Double Fantasy Title Year
| Empty Data | | Remove Content |
| Empty Data | | Remove Content |
|
8enn John Lennon Albums e
[[+ |O file:// fUsers/richard/Documents/Books/jQ & eade] (=)

| Empty Data | | Remove Content |

FIGURE 4-19

The preceding example shows what happens when you use jQuery’s empty () method. This is essen-
tially the same as passing an empty string to the htm1() method—all the element’s children elements,

whether HTML elements or text, are removed.

The preceding example also demonstrates jQuery’s remove () method, which deletes the items specified
in the selection. It should be noted, however, that those items still exist within jQuery, and you can
continue to work with those items by chaining subsequent jQuery methods to the remove () method.
You can also pass a selector to the remove () method, which acts as a filter. Any items specified in a
selector provided to the remove) method are preserved and are not removed from the document.

130 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

CLONING CONTENT

jQuery provides a method called clone() for cloning (copying) content. jQuery’s clone() method,
unlike the DOM cloneNode () method, automatically assumes that you want to copy the element
and all its descendants, so you don’t have to worry about specifying whether you want to clone
descendant elements. Also unlike the DOM cloneNode () method, you have the option of cloning
the element’s event handlers (as well as those of descendant elements), which cannot be done with
JavaScript’s DOM manipulation methods. If you want to clone the element’s event handlers, all you
have to do is specify boolean true as the first argument to jQuery’s clone() method. The following
document, Example 4-15, demonstrates jQuery’s clone() method:

<!DOCTYPE HTML>
<html Tang='en's>

<head>

<meta http-equiv='X-UA-Compatible' content='IE=Edge' />

<meta charset='utf-8' />
<title>John Lennon Albums</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js " '></script>
<script src="Example 4-15.js'></script>
<link href="Example 4-15.css' rel="'stylesheet' />
</head>
<body>
<form action="'javascript:void(0);
<h4>John Lennon Albums</h4>
<table class='johnLennonATlbums'>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr id='johnLennonAlbumTemplate'>
<td contenteditable="true'></td>
<td contenteditable="'true'></td>
</tr>
<tr>
<td>John Lennon/Plastic Ono Band</td>
<td>1970</td>
</tr>
<tr>
<td>Imagine</td>
<td>1971</td>
</tr>
<tr>
<td>Some Time in New York City</td>
<td>1972</td>
</tr>
<tr>
<td>Mind Games</td>
<td>1973</td>
</tr>

[

method="get '>

Cloning Content | 131

<tr>
<td>Walls and Bridges</td>
<td>1974</td>
</tr>
</tbhody>
</table>
<p>
<button 1id="documentAddRow'>
Add a Row
</button>
</p>
</form>
</body>
</html>

The following style sheet is linked to the preceding document:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 15px;

table. johnLennonATlbums {
table-Tayout: fixed;
width: 500px;
border: 1px solid black;
border-collapse: collapse;

table. johnLennonAlbums th,
table. johnLennonATbums td {
padding: 3px;
border: 1px solid black;
}
table. johnLennonAlbums th {
text-align: Teft;
background: Tightgreen;

table. johnLennonATbums tbody tr:hover {
background: Tightblue;

tr#johnLennonAlbumTemplate {
display: none;

}

The following script demonstrates jQuery’s clone() method:

$(document) . ready(
function()

$('button#documentAddRow').click(
function(event)

{

event.preventDefault();

132 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

var tr = $('tr#johnLennonATbumTemplate').clone(true);

tr.removeAttr('id');
$('tabTle.johnLennonAlbums tbody').append(tr);

tr.children('td:first').focus(Q);

);

Figure 4-20 shows the preceding example. When you click the Add a Row button, a new row is
added to the table to input a new John Lennon album.

[HaNGs) John Lennon Albums =

@ [+ |G file:///Users/richard/Documents/Books/jQ & | “eoc-r } @

John Lennon Albums

Title Year
John Lennon/Plastic Ono Band 1870
Imagine 1871
Some Time in New York City 1972
Mind Cames 1973
Walls and Bridges 1974
| -

| Add a Row |

FIGURE 4-20

The following line clones the template <tr> element, with id name johnLennonAlbumTemplate.

var tr = $('tr#johnLennonATbumTemplate').clone(true);

If any event handlers are attached to the <tr>, or the <td> elements it contains, those event han-

dlers are carried over to the new duplicated <tr> element because the first argument provided to the
clone() method is set to true.

The id attribute is removed so that the new <tr> element isn’t treated like the template <tr> element,
which is not displayed in the document.

tr.removeAttr('id');

The new <tr> element is appended to the <tbody> element using the append() method.

$('tabTle.johnLennonAlbums tbody').append(tr);

Summary | 133

Finally, the first <td> element is set to focus automatically, so you don’t have to click it to enter the
new album’s data.

tr.children('td:first').focus(Q);

SUMMARY

In this chapter, you learned about a variety of jQuery’s manipulative capabilities. The content dis-
cussed in this chapter is documented in detail in Appendix E, “Manipulating Content, Attributes,
and Custom Data,” and Appendix F, “More Content Manipulation.” You began this chapter by
learning about jQuery’s attribute manipulation method attr(), which enables you to specify attri-
butes in a variety of ways, with the attribute as the first argument, and the value as the second, or
via an object literal specifying arguments in key-value pairs, and also by using callback functions.
jQuery’s removeAttr() method can be used to remove attributes completely.

You also learned how jQuery helps you immensely with manipulating class names. jQuery’s
addClass () method can add a class name to an element. Its hasClass() method can determine
whether a class name is present. Its removeClass() method can remove a class name. And its
toggleClass() method can toggle a class name on and off.

You learned about various jQuery methods used to manipulate text and HTML content. You can
get or set text or HTML content for elements using jQuery’s text() and htm1() methods. You can
append or prepend HTML content to other elements using jQuery’s append() or prepend() methods.
jQuery’s after(), before(), insertAfter(), and insertBefore() methods can all insert content beside
other content. And jQuery’s wrap(), wrapA11(), and wrapInner() methods can wrap elements with
wrapper elements. In addition, the unwrap() method can remove a parent element.

jQuery’s replacewith() and replaceA11() methods can completely replace one or more elements
with other content. Its empty () method can completely remove an element’s children and descen-
dants. Its remove () methods can remove an element and all its contents from the document. And its
clone() method can duplicate content, and optionally, event handlers that exist within that content.

EXERCISES

1. Write sample code that might be used to set both the value and the class attributes of an
<input> element.

2. If you want to set the href attribute for an <a> element to www.example.com using jQuery, what
might the JavaScript look like?

3. What jQuery method is used to completely remove attributes from elements?

4. What jQuery method would you use to determine whether a class name is present for an
element?

http://www.example.com

134 | CHAPTER4 MANIPULATING CONTENT AND ATTRIBUTES

10.

1.
12.

13.

If an element contains HTM content and you retrieve the content of that element using
jQuery’s text() method, will the HTML tags be present in the returned value?

If you set an element’s content using jQuery’s text() method and that content contains
HTML tags, will the HTML tags be visible in the rendered output displayed in your browser’s

viewport?

Describe one bug that jQuery’s append() and prepend() methods work around in |E when
compared to innerHTML.

Describe one bug that jQuery’s append() and prepend() methods work around in Firefox when
compared to innerHTML.

If you want to insert existing content within a document before other existing content within
a document, what jQuery method might be best suited for this task?

What jQuery method might you use if you needed to wrap multiple items in a document in
a single element?

jQuery’s replacewith() method is most similar to what de facto standard JavaScript property?

What jQuery method would you use if you want to completely remove an item and all its
children from your document?

What jQuery function call would you make if you want to duplicate an element and its event
handlers and insert the duplicate element elsewhere in the document?

lteration of Arrays and Obijects

This chapter discusses the methods jQuery provides to help you work with looking at the
contents of arrays and objects. Historically, working with arrays or objects in JavaScript often
required you to come up with your own helper methods and to deal with writing tedious
redundant code every time you wanted to enumerate over the contents of an array—for exam-
ple, creating a counter variable each time you wanted to enumerate over the content of

an array.

As you saw in Chapter 4, “Manipulating Content and Attributes,” jQuery provides a rich,
robust, and helpful API for various tasks associated with manipulating the content in a docu-
ment. In this chapter, you see that jQuery also does not leave much to be desired in what it
offers for dealing with arrays or objects.

ENUMERATING ARRAYS

In this section, you learn how to approach the task of enumerating or iterating over an array
of values using jQuery’s $.each() method, by calling each() via jQuery and each() directly.
The term enumerate means to examine items one by one, and the term iterate means to do
something repeatedly. These terms are often used interchangeably to describe the process of
looking at the contents of an array, list, or object. Up to now, when looking at each individual
value contained within an array, you might be used to dealing with a loop that looks some-
thing like this, which is the way it was been done in JavaScript before frameworks such as
jQuery became ubiquitous:

var divs = document.getElementsByTagName('div');

for (var counter = 0; counter < divs.length; counter++)
{
// Do something with each item
console.log(divs[counter].innerHTML);

136 | CHAPTER5 ITERATION OF ARRAYS AND OBJECTS

You have an array of items, a static node list, a live node list, or possibly an object. (By the way, in

JavaScript, all arrays are objects, but not all objects are arrays.) Then you make a for loop, define a
counter, and proceed to iterate over the contents of your array or list. If instead you want to iterate
over an object, you'd instead use a for/in construct to look at the properties of the object.

jQuery makes creating a for construct unnecessary by providing a way to iterate over an array

or list using a function call instead of a for loop and a callback function that’s called for each
individual item present in the array or object. Inside that callback function, you can do something
with each individual item contained in the array, object, or list.

jQuery provides multiple functions for enumeration, which are covered in this chapter. The function
that jQuery provides for basic enumeration is called each(), and it is demonstrated via two possible
ways of application, in the following example, Example 5-1:

<!DOCTYPE HTML>
<html Tang="'en'>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="'utf-8' />
<title>The Beatles Discography</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js ' '></script>
<script src="Example 5-1.js'></script>
<link href='"Example 5-1.css' rel='stylesheet' />
</head>
<body>
<h4>The Beatles</h4>
<ul 1id="beatles'>

<h4>Discography</h4>
<ul id="beatlesAlbums'>

</body>
</html>

The preceding markup document is linked to the following style sheet:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 0 10px;

}

body ul {
Tist-style: none;
margin: 0 0 10px 0;
padding: 10px;
background: yelTlow;
width: 250px;

Enumerating Arrays | 137

h4 {
margin: 10px 0;
}

The following script demonstrates jQuery’s each() method called both via jQuery and directly.

$(document) . ready(
function()
{
var beatles = [

'John Lennon',
'Paul McCartney',
'George Harrison',
'Ringo Starr'

1;
var ul = $('ul#beatles');
// each() called via jQuery
$(beatles).each(
function()

{
}

ul.append('<Ti>" + this + '</Ti>");
);

var albums = [
'Please Please Me',
'With the Beatles',
'A Hard Day\'s Night',
'Beatles for Sale',
'"Help!"',
'Rubber Soul',
'Revolver',
'Sgt. Pepper\'s Lonely Hearts Club Band',
'Magical Mystery Tour',
'The Beatles',
'Yellow Submarine',
'Abbey Road',
'Let It Be'

1;

ul = $('ul#beatlesATbums');

// each() called directly.

$.each(
albums,
function()
{
ul.append('<Ti>" + this + '</Ti>");
}
);

138 | CHAPTER5 ITERATION OF ARRAYS AND OBJECTS

In the preceding script, you create a couple of arrays, one for beatles and one for albums. In the first
iteration, the variable beatles is passed to jQuery’s dollar sign method, and then jQuery’s each()
method is chained onto that. You pass a callback function to jQuery’s each() method, which is exe-
cuted once for each item in the array; upon each execution, the current item is passed to the callback
function; the value is assigned to this. You can also define arguments within the callback function
to get the current key (a numeric offset in the case of an array or list) or the current value, like so:

$(beatles).each(
function(key, value)

{
}

ul.append('<1i>" + value + "</Ti>");
);

For these two arrays, the numeric offset is provided in key, the first argument, and the value is
provided in the second argument, value. The same value is assigned to the special contextual
keyword: this, which is available only within the callback function itself.

Figure 5-1 shows that both <u1> elements are populated with new <11> elements via script.

8 0e Example 5-1.html ol
e} [=F |0 file:// /Users/richard/Documents/Books/jQuery/2nd%20Edition ¢ | feade] @
The Beatles

John Lennon
Paul McCartney
George Harrison
Ringo Starr

Discegraphy

Please Please Me
With the Beatles

A Hard Day's Night
Beatles for Sale

Help!

Rubber Soul

Revolver

Sgt. Pepper's Lonely Hearts Club Band
Magical Mystery Tour
The Beatles

Yellow Submarine
Abbey Road

Let It Be

FIGURE 5-1

In the preceding example, you see how jQuery can eliminate the traditional for construct that you'd
typically use for iterating the contents of an array or list. Instead, you pass an array to jQuery’s dol-
lar sign method so that you have the full power of jQuery at your disposal for use with that array.
Then you chain a call to jQuery using the each() method, which takes a callback function as its
only argument. That callback function then is executed once for each item in the array, eliminating
the need for a counter because the current item is passed to the function with each iteration in the

Enumerating Arrays | 139

this keyword. The current index and value can be accessed optionally by providing two arguments
to the callback function. Alternatively, you can also call each() directly. Calling each() directly
places the array as the first argument and the callback function as the second argument.

Unfortunately, enumerating objects isn’t as flexible as enumerating arrays, which is covered in the
next section.

Enumerating Objects

Enumerating objects with jQuery is done by calling each() directly; when each() is called via
jQuery, jQuery gets confused about what it is supposed to do with the object because jQuery

does other things with objects passed to it this way. The following script takes another look at the
example presented in Example 5-1, but this time both of the arrays are rewritten as plain objects,

so you can observe the differences between enumerating an array and enumerating an object. The
same HTML and CSS are used as in Example 5-1; you can access this example in the free download
materials from www.wrox.com/go/webdevwithjquery. This example is named Example 5-2.

$(document).ready(
function()
{
var beatles = {

john : 'John Lennon',
paul : 'Paul McCartney',
george : 'George Harrison',
ringo : 'Ringo Starr'

I
var ul = $('ul#beatles');
// each() called via jQuery
$(beatles).each(
function()

{
}

ul.append('<Ti>" + this + '</Ti>");
);

var albums = {
1 : "Please Please Me',
: '"With the Beatles',
3 'A Hard Day\'s Night',
4 'Beatles for Sale',
5 : "Help!"',
6 : 'Rubber Soul',
7 : 'Revolver',
8 'Sgt. Pepper\'s Lonely Hearts Club Band',
9 : 'Magical Mystery Tour',
10 : 'The Beatles',
11 : 'Yellow Submarine',
12 : 'Abbey Road',
13 : 'Let It Be'

http://www.wrox.com/go/webdevwithjquery

140 | CHAPTERS5 ITERATION OF ARRAYS AND OBJECTS

ul = $('ul#beatlesAlbums');

if (albums instanceof Array)

{
console.log("Albums is an array.");
3
else
{
console.log("Albums is a plain object.");
h
// each() called directly.
$.each(
albums,
function()
{
ul.append('<1i>" + this + '</1i>");
3
);

)

In the preceding example you pass an object to jQuery directly and then try to enumerate the object
with a call to eachQ). In Figure 5-2, you can see that the enumeration is not successful. You find that
only one item called [object Object]. This means that jQuery passed an object to eachQ), instead of

looking at each of the four properties attached to the object.

8en0e The Beatles Discography ol
@_ @[+ |e file:// /Users/richard/Documents/Books/jQuery /2nd%20Edition & | Readec J
The Beatles

[object Object]
Discography

Please Please Me
With the Beatles

A Hard Day's Night
Beatles for Sale

Help!

Rubber Soul

Revolver

Sat. Pepper's Lonely Hearts Club Band
Magical Mystery Tour
The Beatles

Yellow Submarine
Abbey Road

Let It Be

FIGURE 5-2

jQuery can enumerate objects, however, as you can see that the second object is enumerated success-
fully when the object is passed directly to the each() method as its first argument. If an object is an

Enumerating Arrays | 141

array, you’ll find that the expression (variable instanceof Array) evaluates to true. In this case, the
object is not an instanceof Array, so the expression evaluates to false, and the text "Albums is a
plain object." is written to the JavaScript console.

NOTE Emulating the functionality of the break and continue keywords using
jQuery’s each() method is handled in a very intuitive way. All you have to do is
write a return statement in your callback function. Returning false from your
callback function stops iteration, just like using a break keyword in a normal
loop, and returning true continues iteration to the next item immediately, just
like using a continue keyword.

Iterating a Selection

jQuery’s each() method doesn’t have to be applied to an array or object, however; it can also be
applied to a selection of elements. The following document, Example 5-3, demonstrates how each()
can be used to iterate over a selection of elements:

<!DOCTYPE HTML>
<html Tang='en's>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="utf-8' />
<titTe>Rubber Soul</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 5-3.js'></script>
<link href="Example 5-3.css' rel='stylesheet' />
</head>
<body>
<h4>Rubber Soul</h4>
<ul id="rubberSoul'>
<Ti>Drive My Car</1i>
<Ti>Norwegian Wood (This Bird Has Flown)</T1i>
<1li>You Won't See Me</Ti>
<1i>Nowhere Man</11i>
<1i>Think for Yourself</1i>
<T1i>The Word</Ti>
<1i>Michelle</1i>
<Ti>What Goes On</Ti>
<1i>Girl</11i>
<1i>I'm Looking Through You</Ti>
<1i>In My Life</1i>
Wait</1i>
<1i>If I Needed Someone</11i>
<Ti>Run for Your Life</1i>

</body>
</html>

142 | CHAPTER5 ITERATION OF ARRAYS AND OBJECTS

The following style sheet is applied to the preceding markup document:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 0 10px;

ul {
Tist-style: none;
margin: 0 0 10px 0;
padding: 10px;
background: yelTlow;
width: 250px;

}
ul 14 {

padding: 3px;
}
h4 {

margin: 10px 0;
}

14i.rubberSoulEven {
background: Tightyellow;
}

In the following script, you see that jQuery’s each() method can be chained onto a selection like any
other method, and you can iterate over the items of the selection:

$(document) . ready(
function()

$("uT#rubberSoul 11i'").each(
function(key)

if (key & 1)
{

$(this).addClass('rubberSoulEven');

);

Iterating a selection is essentially the same as iterating an array, only this time when you’re working
with the callback function, the this keyword contains an individual element from the selection. If
you want to use jQuery methods within the callback function, you’ll have to wrap the this keyword
with a call to the dollar sign method. In the example, each <11> element is selected, iterated using
the each() method, and then the even numbered ones are given the class name rubberSoulEven.
Figure 5-3 shows the preceding example in a browser.

Filtering Selections and Arrays | 143

800 Rubber Soul

@ [e |8 file:// /Users/richard/Documents/Boo & Reade|] @ 1

Rubber Soul

Drive My Car

Norwegian Wood (This Bird Has Flown)
You Won't See Me
Nowhere Man

Think for Yourself

The Word

Michelle

What Goes On

Girl

I'm Looking Through You
In My Life

Wait

If | Needed Someone

Run for Your Life

FIGURE 5-3

FILTERING SELECTIONS AND ARRAYS

Two methods can be associated with filtering an array or a selection in jQuery’s API. One method
is called filter(), and it is used for filtering items from a selection exclusively. The other method is
called grep(Q), and it is used for filtering items from an array exclusively.

Filtering a Selection

The filter(Ymethod removes items from a selection using a selector or a callback function. The
following document, Example 5-4, demonstrates how filter() can use a selector to reduce items in
a selection, and how the end() method can remove a previously used filter:

<!DOCTYPE HTML>
<html Tang='en'>
<head>

<meta http-equiv='X-UA-Compatible' content='IE=Edge' />

<meta charset="utf-8' />

<titTe>Rubber Soul</title>

<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 5-4.js'></script>

<link href="Example 5-4.css' rel='stylesheet' />

</head>

144 | CHAPTERS5 ITERATION OF ARRAYS AND OBJECTS

<body>

<h4>Rubber Soul</h4>

<ul id="rubberSoul'>
<T1i class="Paul'>Drive My Car</Ti>
<Ti cTlass="John'>Norwegian Wood (This Bird Has Flown)</1i>
<11 class="Paul'>You Won't See Me</11>
<14 class="John'>Nowhere Man</Ti>
<1i class="George '>Think for Yourself</1i>
<1i class="John'>The Word</T1i>
<T1i class="Paul'>Michelle</Ti>
<Ti class="John'>What Goes On</11i>
<1i class="John'>Girl</Ti>
<1i class="Paul'>I'm Looking Through You</T1i>
<1i class="John'>In My Life</1i>
<1i class="John'>Wait</Ti>
<1i class="George '>If I Needed Someone</T1i>
<11 class="John'>Run for Your Life</Ti>

</body>
</html>

The preceding markup document includes the following style sheet:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 0 10px;

ul {
Tist-style: none;
margin: 0 0 10px 0;
padding: 10px;
background: yelTlow;
width: 250px;

}
ul T1i {
padding: 3px;
}
h4 {
margin: 10px 0;
}

14i.rubberSoulJohn {
background: Tightblue;
}

T14i. rubberSoulPaul {
background: Tightgreen;
}

14 . rubberSoulGeorge {
background: Tightyellow;
}

Filtering Selections and Arrays | 145

The following script demonstrates how the filter() method uses a selector to indicate which items
should be in the selection:

$(document) . ready(
function()

$("ul#rubberSoul 1i")

.filter('1i.George")
.addClass (' rubberSoulGeorge')
.end()

.filter('1i.John")
.addClass (' rubberSoullohn")
.end()

filter('1i.Paul')
.addClass (' rubberSoulPaul")
.end();

);

In the preceding script, the selector 1i.George reduces the selection to include only the <1i>
elements that have a class name of George; then the class name rubberSoulGeorge is added to each of
those <11> elements, and the same happens for Paul and John. Just before the time a new filter(Q)
is attempted, a call to end() removes the last filter applied to the selection. Figure 5-4 shows this
example in Safari.

800 Rubber Soul ol
@ @ @ [e |8 file:// /Users/richard/Documents/Boo & | Reader] @
Rubber Soul

Drive My Car

Norwegian Wood (This Bird Has Flown)

You Won't See Me

Nowhere Man

Think for Yourself
The Word

Michelle

What Goes On

Girl

I'm Looking Through You
In My Life

Wait

If | Needed Someone
Run for Your Life

FIGURE 5-4

146 | CHAPTERS5 ITERATION OF ARRAYS AND OBJECTS

Filtering a Selection with a Callback Function

Like eachQ), the filter() method can be used with a callback function. When it is used in this way,
filter() is similar to eachQ), in that it allows a callback function to be specified that is subsequently
executed once for every item present in a selection.

With the each() method, you learned that returning a boolean value simulates continue and break
statements. With the filter() method, returning a boolean value decides whether an item should
be kept or removed from the selection. Returning true keeps the item in the selection, and returning
false removes the item from the selection. Using filter() with a callback function is demonstrated
in the following document, Example 5-5:

<!DOCTYPE HTML>
<html Tang='en's>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset='utf-8' />
<title>Rubber Soul</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js ' '></script>
<script src="Example 5-5.js'></script>
<link href="Example 5-5.css' rel='stylesheet' />
</head>
<body>
<h4>Rubber Soul</h4>
<ul id="rubberSoul'>
<11 class="Paul'>Drive My Car</T1i>
<Ti cTlass="John'>Norwegian Wood (This Bird Has Flown)</1i>
<11 class="Paul'>You Won't See Me</1i>
<11 class="John'>Nowhere Man</11i>
<1i class="George '>Think for Yourself</11i>
<11 class="John'>The Word</Ti>
<T1i class="Paul'>Michelle</Ti>
<Ti class="John'>What Goes On</Ti>
<11 class="John'>Girl</Ti>
<11 class="Paul'>I'm Looking Through You</1i>
<1i class="John'>In My Life</1i>
<11 class="John'>Wait</Ti>
<11 class="'George '>If I Needed Someone</T1i>
<11 class="John'>Run for Your Life</Ti>

</body>
</html>

The preceding markup document links to the following style sheet:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 0 10px;

ul {
list-style: none;
margin: 0 0 10px 0;

Filtering Selections and Arrays | 147

padding: 10px;
background: yelTlow;
width: 250px;

}
ul T14i {

padding: 3px;
}
h4 {

margin: 10px 0;
}

14. rubberSoulJohnAndPaul {
background: Tightblue;
}

The following script demonstrates how jQuery’s filter() method can use a callback function to
reduce items present in a selection:

$(document) . ready(
function()

$('ul#rubberSoul 1i")
filter(
function()

{
}

)
.addClass (' rubberSoulJohnAndPaul');

return $(this).hasClass('John') || $(this).hasClass('Paul");

);

In the preceding script, the filter() method iterates over each item present in the original selection.
It looks at each individual <1i> element and checks to see if the <1i> element has a class name of
John or a class name of Paul; if either class name is present, the callback function returns true, indi-
cating that the item should be kept in the selection. Each item kept in the selection then receives a
class name of rubberSoulJohnAndPaul. Figure 5-5 shows a screenshot of this example in Safari. Each
song written primarily by John or Paul has a 1ightblue background.

Filtering an Array

As indicated previously, arrays are filtered using a different method called grep(), which can be
called only directly, which is to say, you may call it only as $.grep() or jQuery.grep(). Wrapping

an array in the dollar sign method and then calling grep() doesn’t work for this utility method. The
grep() method would typically be used to directly filter some arbitrary array of items in code, rather
than a selection from the DOM because the filter() method already exists explicitly for filtering
selections. The following example, Example 5-6, demonstrates how grep() is used to filter arrays by
creating an array of items from a selection; this is done simply to demonstrate how grep() works:

<!DOCTYPE HTML>
<html Tang='en'>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="utf-8' />

148 | CHAPTERS5 ITERATION OF ARRAYS AND OBJECTS

<title>Rubber Soul</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 5-6.js'></script>
<link href="Example 5-6.css' rel='stylesheet' />
</head>
<body>
<h4>Rubber Soul</h4>
<ul 1id="rubberSoul'>
<1i class="Paul'>Drive My Car</Ti>
<11 class="John'>Norwegian Wood (This Bird Has Flown)</Ti>
<11 class="Paul'>You Won't See Me</1i>
<11 class="John '>Nowhere Man</11i>
<11 class="'George '>Think for Yourself</1i>
<11 class="John'>The Word</Ti>
<T1i class="Paul'>Michelle</Ti>
<11 class="John'>What Goes On</Ti>
<1i class="John'>Girl</Ti>
<1i class="Paul'>I'm Looking Through You</T1i>
<1i class="John'>In My Life</1i>
<11 class="John'>Wait</Ti>
<1i class="'George '>If I Needed Someone</T1i>
<11 class="John'>Run for Your Life</Ti>

<ul id="rubberSoulFiltered'>

</body>
</html>

800 Rubber Soul =)
_ @I_ + |_6 file:///Users/richard/Documents/Boo (_’;| Beader } @:

Rubber Soul

Drive My Car
Norwegian Woaed (This Bird Has Flown)
You Won't See Me

Nowhere Man

Think for Yourself

The Word

Michelle

What Goes On

Girl

I'm Looking Through You

In My Life

Wait

If | Needed Someone

Run for Your Life

FIGURE 5-5

Filtering Selections and Arrays | 149

The preceding markup document is linked to the following style sheet:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 0 10px;

ul {
Tist-style: none;
margin: 0 0 10px O0;
padding: 10px;
background: yelTow;
width: 250px;

}
ul 14 {
padding: 3px;
}
h4 {
margin: 10px O0;
}

14 . rubberSoulJohnAndPaul {
background: Tightblue;

}
ul#rubberSoulFiltered {
display: none;

The following script demonstrates the grep() method:

$(document) . ready(
function()

{

var songs = [];

$("ul#rubberSoul 1i'").each(
function()
{
songs.push(
$(this).text()

);
}
);
var filteredSongs = $.grep(
songs,
function(value, key)
{
return value.indexOf('You') != -1;
}

);

var ul = $('ul#rubberSoulFiltered');

150 | CHAPTER5 ITERATION OF ARRAYS AND OBJECTS

$("uT#rubberSoul').hide();
ul.show();

$(filteredSongs).each(
function()

{
}

ul.append('<1i>" + this + "'</1i>");
);
);

The preceding script begins by creating a new array and assigning that array to the variable songs.
The script then selects all <1i> elements within the <u1> element with id name rubberSoul and
assigns the text of each <1i> element as a new item in the songs array using push(). The end result is
that the songs array contains the titles for all the songs on Rubber Soul.

Then, a new variable is created called filteredSongs, which contains a filtered array. The grep(
method is called directly as $.grep(), with the songs array as the first argument and a callback
function as the second argument. In the callback function, you return a boolean value to indicate
whether each item should be kept in the array or removed. Returning true indicates that the value
should be kept; returning false indicates that the item should be discarded. You can also change the
value being kept as well—simply return the replacement value you want to use, and it replaces any
previous value.

In the example, the callback function checks to see if each song title contains the word You, using
JavaScript’s index0f () method. If it does, the song title is kept; if not, the song title is discarded.

The <u1> element with id name rubberSoul is hidden by selecting it and then making a call to jQue-
ry’s hide() method.

Finally, the script iterates over the new filteredSongs array using each(), and the four song titles
containing the word you are appended as new <1i> elements to the element with id name
rubberSoulFiltered. Figure 5-6 shows the results of the preceding example in a browser.

800 Rubber Soul @
@ [+ |G file:///Users/richard/Documents/Books/jQuery/2n | Reade } @
Rubber Soul

You Won't See Me

Think for Yourself

I'm Looking Through You
Run for Your Life

FIGURE 5-6

Mapping a Selection or an Array | 151

The grep() method also allows an optional third argument called invert to be specified; if it is set to
true, the values of the filtered array are reversed.

NOTE The arguments provided to the $.grepQ) callback function are reversed;
value is the first argument and key is the second. In addition, the value argument
is not also provided within this when using $.grepQ.

MAPPING A SELECTION OR AN ARRAY

As was the case with filtering, there are two different contexts in which you can map one collec-
tion of items to another, in a selection or with an arbitrary array of items. This time, however, both
contexts use a function that goes by the same name, map(Q). In the following sections, you learn more
about the map() method as applied within either context.

Mapping a Selection

The concept of mapping is taking one set of values and modifying one or more of those values to
create a new set of values. No items are removed from the set during a mapping, so it’s expected
that you’ll have a set of values of the same length when you finish mapping as when you started—
the idea being more or less that you can arbitrarily replace values as needed with new ones that
have redundant modifications that must be made to some or all values. The following document,
Example 5-7, demonstrates how you map a selection with jQuery:

<!DOCTYPE HTML>
<html Tang="'en's>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="utf-8' />
<titTe>Rubber Soul</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 5-7.js'></script>
<link href="Example 5-7.css' rel='stylesheet' />
</head>
<body>
<h4>Rubber Soul</h4>
<ul id="rubberSoul'>
<11 class="Paul'>Drive My Car</Ti>
<11 class="John'>Norwegian Wood (This Bird Has Flown)</Ti>
<11 class="Paul'>You Won't See Me</11i>
<11 class="John ">Nowhere Man</11i>
<11 class="George '>Think for Yourself</1i>
<11 class="John'>The Word</T1i>
<11 class="Paul'>Michelle</11i>
<11 class="John'>What Goes On</11i>
<11 class="John'>Girl</Ti>
<11 class="Paul'>I'm Looking Through You</1i>
<11 class="John'>In My Life</Ti>

152 | CHAPTER5 ITERATION OF ARRAYS AND OBJECTS

<11 class="John'>Wait</Ti>
<1i class="'George'>If I Needed Someone</T1i>
<11 class="John'>Run for Your Life</Ti>

<ul id="rubberSoulMapped'>

</body>
</html>

The preceding markup document is styled with the following style sheet:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: O;
padding: 0 10px;

ul {
Tist-style: none;
margin: 0 0 10px 0;
padding: 10px;
background: yelTlow;
width: 350px;

}

ul 14 {
padding: 3px;

}
h4 {
margin: 10px 0;

}
ul#rubberSoulMapped {
display: none;

}

The following script demonstrates how a selection is mapped to a new array:

$(document) . ready (

function()
{
var mappedSongs = $('ul#rubberSoul 1i').map(
function(key)
{

if ($(this).hasClass('John"))
{

return $(this).text() + ' <i>John Lennon</i>"';

}
if ($(this).hasClass('Paul'))
{

return $(this).text() + ' <i>Paul McCartney</i>";

}
if ($(this).hasClass('George'))
{

return $(this).text() + ' <i>George Harrison</i>';

Mapping a Selection or an Array | 153

);
$('ul#rubberSoul').hide();

var ul = $('ul#rubberSoulMapped');
ul.show();

$ (mappedSongs) .each(
function()

{

ul.append('<1i>" + this + "</Ti>");

);

The preceding script begins by selecting all <1i> elements in the document. Then a call to the map(
method is chained onto that selection, and a callback function is provided as the first argument to
the map() method.

The callback function provided to the map() method, as with the other methods you’ve observed in
this chapter, passes each item to its callback function in the this keyword. If you need to reference
it, the index or key or counter (whatever you choose to call it) is accessible in the first argument that
you provide to your callback function. Each item is numbered offset from zero, and that counter is
accessible in that first argument. In the preceding example, the first argument is named key.

Inside the callback function, a few expressions look to see what class name each <1i> element has.

If the <1i> element has a class name of John, for example, the callback function returns the name of
the song with the HTML <i>John Lennon</i> appended to the end. The callback function attaches
the name of the more prominent writer of each song for each song present, building a new array that
is assigned to the variable mappedSongs.

The first list with id name rubberSoul is hidden by selecting it and making a call to jQuery’s
hide() method and the <u1> with id name rubberSoulMapped is displayed with a call to show().

The each() method is then used to iterate the contents of the mappedSongs variable, appending each
mapped value to the second element with the id name rubberSoulMapped. Figure 5-7 shows the
final product.

Mapping an Array

Mapping an array basically employs the same logic that you observed in Example 5-7 with map-
ping a selection—you just use an array instead of a selection. So, you can call jQuery’s map() method
with an array the same way that you called the each() method, by either passing an array to the
dollar sign method or by calling the map() method directly, with an array as its first argument and a
callback function as its second argument. The following document, Example 5-8, shows an example
of the map() method as it is applied to an array:

<!DOCTYPE HTML>

<html Tang="'en'>
<head>

154 | CHAPTER5 ITERATION OF ARRAYS AND OBJECTS

<meta http-equiv='X-UA-Compatible' content='IE=Edge' />

<meta charset="utf-8' />

<title>Revolver</title>

<script src="../jQuery.js'></script>

<script src="../jQueryUI.js'></script>

<script src="Example 5-8.js'></script>

<Tink href="Example 5-8.css' rel="'stylesheet' />
</head>
<body>

<h4>Revolver</h4>

<ul id="revolver's>

</body>
</html1>

Rubber Soul

Rubber Soul

Drive My Car Paul McCartney

Norwegian Wood (This Bird Has Flown) fohn Lennon
You Won't See Me Paul McCartney
Nowhere Man John Lennon

Think for Yourself George Harrison

The Word John Lennon

Michelle Paul McCartney

What Goes On john Lennon

Girl Jjohn Lennon

I'm Looking Through You Paul McCartney
In My Life fohn Lennon

‘Wait John Lennon

If | Needed Someone George Harrison
Run for Your Life John Lennon

FIGURE 5-7

The following style sheet is applied to the preceding markup:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 0 10px;

ul {
list-style: none;
margin: 0 0 10px O;
padding: 10px;
background: yellow;

Mapping a Selection or an Array | 155

width: 350px;

3
ul 14 {
padding: 3px;
3
h4 {
margin: 10px 0;
3

The following script demonstrates how jQuery’s map() method is used with an array instead of a
selection:

$(document) . ready(
function()
{
var songs = [

'Taxman',
'ETeanor Rigby',
'I\'m Only Sleeping',
'Love You To',
'Here, There and Everywhere',
'Yellow Submarine',
'She Said, She Said',
'Good Day Sunshine',
'And Your Bird Can Sing',
'For No One',
'Doctor Robert',
'T Want to Tell You',
'Got to Get You into My Life',
'Tomorrow Never Knows'

1;

var mappedSongs = $(songs) .map(
function(key)
{

var track = key + 1;

return (track < 10? '0' + track : track) + + this;

);

$ (mappedSongs) .each(
function()

$("uT#revolver').append('<1i>" + this + '</Ti>");
3
);

In the preceding script, a collection of song titles of the Beatles” album Revolver is placed in an
array and assigned to the variable songs.

The songs variable is then passed to a call to the dollar sign method, and the map() method is called.

156 | CHAPTER5 ITERATION OF ARRAYS AND OBJECTS

In the callback function passed to the map() method, a variable called track is created by increment-
ing the key’s value by one; it’s used as a counter for the track number. The callback function then
checks to see if track is less than 10 using a ternary expression. If it is, a leading zero is prepended
to the value; otherwise, no leading zero is prepended. This portion becomes the track number.

A single space is inserted between the track number and the song title, and the new array containing
song titles with track numbers prefixed is assigned to the variable mappedSongs.

Finally, the array assigned to the mappedSongs variable is iterated using the each() method, and the
modified song titles with track name prefixes are appended as <1i> elements to the element in
the document. The result of the preceding example appears in Figure 5-8.

eno Revolver ol

@ [+ |G file:///Users/richard/Documents/Books/jQuery/2n | Reade } @

Revolver

01 Taxman

02 Eleanor Rigby

03 I'm Only Sleeping

04 Love You To

05 Here, There and Everywhere
06 Yellow Submarine

07 She Said, She Said

08 Good Day Sunshine

09 And Your Bird Can Sing

10 For No One

11 Doctor Robert

12 | Want to Tell You

13 Got to Get You into My Life
14 Tomorrow Never Knows

FIGURE 5-8

ARRAY UTILITY METHODS

jQuery also provides a few utility methods that are useful for probing information from an array.
The following sections briefly cover each of jQuery’s utility methods:

> $.makeArray(data)—Transforms any data into a true array

> $.inArray(needle, haystack)—Finds the index associated with the first occurrence of needle
within the haystack

> $.merge(first, second)—Merges two arrays together

Most of jQuery’s array utility methods must be called directly, using the dollar sign dot function
name, as you see documented in the preceding list. All the methods covered in this chapter are

Array Utility Methods | 157

documented in the Quick Reference that appears in Appendix I, “Utilities,” as well as Appendix C,
“Selecting, Traversing, and Filtering.” Appendix I contains utility methods, and Appendix C con-
tains jQuery methods that exist for filtering or traversing a selection.

Making an Array

jQuery’s makeArray() method does just what the name implies; it takes any data and transforms it
into a true array. The following example, Example 5-9, shows how a string, an object, or a number
can be made into an array using this method:

<!DOCTYPE HTML>
<html Tang="'en's>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="utf-8' />
<title>$.makeArray(Q</title>
<script src="../jQuery.js"'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 5-9.js'></script>
</head>
<body>

</body>
</html>

The following JavaScript is included in the preceding markup document.

$(document) . ready(
function()

{

var name = 'The Beatles';
var madeArray = $.makeArray(name);

console.log('Transforming a string.');

console.log('Type: ' + typeof(madeArray));

console.log('Is Array? ' + (madeArray instanceof Array? 'yes' : 'no'));
console.log(madeArray) ;

var madeArray = {
bandl : "The Beatles",
band2 : "Electric Light Orchestra",
band3 : "The Moody Blues",
band4 : "Radiohead"
};

madeArray = $.makeArray(madeArray);

console.log('Transforming an object.');

console.log('Type: ' + typeof(madeArray));

console.log('Is Array? ' + (madeArray instanceof Array? 'yes' : 'no'));
console.log(madeArray);

158 | CHAPTERS5 ITERATION OF ARRAYS AND OBJECTS

var madeArray = 1;
madeArray = $.makeArray(madeArray);
console.log('Transforming a number.');
console.log('Type: ' + typeof(madeArray));
console.log('Is Array? ' + (madeArray instanceof Array? 'yes' : 'no'));
console.log(madeArray);
);

The preceding code writes data to the JavaScript console like that shown in Figure 5-9.

S.makeArray()

‘ 63_ 'f LG file://{Users/richard/Documents/Books/jQuery/2n & - _@ |
i 1
806 Web Inspector — Example 5-9.html
® -m-)E ‘ D4 Aeske (@13ms B2 ‘ -$-

4 » |[E Conscle (Q Filter Console Log) [(All) Errors Warnings Logs |W | %
Transforming a string. Example 5-9.7s5:8
Type: object Example 5-9.js:9
Is Array? yes Example 5-0.js:18
["The Beatles"] Example 5-8.is:11
Transforming an object. Example 5-0.i5:22
Type: object Example 5-8.7s5:23
Is Array? yes Example 5-0.i5:24
[+ Object 1 Example 5-9.75:25
Transforming a number. Example 5-8.js5:31
Type: object Example 5-8.7s5:32
Is Array? yes Example 5-9.js5:33
(11 Example 5-9.i5:34

>
FIGURE 5-9

In the script, the string The Beatles is assigned to the variable name. The variable name is passed

to makeArray(), and the result is assigned to the variable madeArray. Then, you check the typeof

of the object madeArray, which will be object now instead of string. The expression madeArray
instanceof Array will also report true, and then the content of madeArray is dumped to the console
for visual inspection.

The process is repeated for an object and a number, each time resulting in an array.

Finding a Value Within an Array

jQuery’s inArray () method works just like JavaScript’s index0f () method. It returns the position of
an item within an array. If it is present, offset from zero, and if the item is not present, the function

Array Utility Methods | 159

returns -1 (minus one). The following example, Example 5-10, demonstrates how jQuery’s inAr-
ray () method works:

<!DOCTYPE HTML>
<html Tang="'en'>

<head>

<meta http-equiv='X-UA-Compatible' content='IE=Edge' />

<meta charset="utf-8' />
<title>$.inArray(O</title>

<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 5-10.js'></script>

</head>
<body>

</body>
</html>

The following JavaScript demonstrates $.inArrayQ:

$(document) . ready(

function()

var songs = [
'Taxman',
'Eleanor Righy',
'I\'m Only Sleeping',
'Love You To',
'Here, There and Everywhere',
'Yellow Submarine',
'She Said, She Said',
'Good Day Sunshine',
'And Your Bird Can Sing',
'For No One',
'Doctor Robert',
'T Want to Tell You',
'Got to Get You into My Life',
'Tomorrow Never Knows'

1;

console.log(
'"Love You To: ' + (
$.inArray('Love You To', songs)
)

)

console.log(
'Strawberry Fields Forever: ' + (

$.inArray('Strawberry Fields Forever', songs)

)
)

160 | CHAPTERS ITERATION OF ARRAYS AND OBJECTS

The preceding script outputs the messages to the console, as shown in Figure 5-10.

S.inArray()
Ll |9| |E| |+ Ie file:///Users/richard/Documents/Books/jQuery/2n &

= F B
806 Web Inspector — Example 5-10.html

< » |[E] Console (Q Filter Console Log) (Al | Errors Warnings Logs | | ¥

Love You To: 3 Example 5-18.j5:21
Strawberry Fields Forever: Example 5-1@.js:27
Al

FIGURE 5-10

Merging Two Arrays

jQuery’s $.merge() method can glue two arrays together to make a single array. The following
example, Example 5-11, demonstrates how this works:

<!DOCTYPE HTML>
<html Tang='en's>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="'utf-8' />
<title>$.merge()</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 5-11.js'></script>
</head>
<body>

</body>
</html1>

Array Utility Methods | 161

The following script is included in the preceding markup:

$(document) . ready(
function()
{
var rubberSoul = [

'Drive My Car',
'"Norwegian Wood (This Bird Has Flown)',
'You Won\'t See Me',
'Nowhere Man',
'"Think for Yourself',
'The Word"',
'"Michelle"',
'What Goes On',
'Girl",
"I\'m Looking Through You',
'In My Life',
'Wait',
'If I Needed Someone',
'Run for Your Life'

var revolver = [
'Taxman',
'Eleanor Rigby',
'I\'m Only Sleeping',
'Love You To',
'Here, There and Everywhere',
'Yellow Submarine',
'She Said, She Said',
'Good Day Sunshine',
'And Your Bird Can Sing',
'For No One',
'Doctor Robert',
'TI Want to Tell You',
'Got to Get You into My Life',
'Tomorrow Never Knows'

1;
var songs = $.merge(rubberSoul, revolver);

console.log('Songs :', songs);

);

The preceding script results in the console output that you see in Figure 5-11.

162 | CHAPTER5 ITERATION OF ARRAYS AND OBJECTS

S.merge()
8 || 4 @D file:f/ jUsers/richard /Documents/Books/jQuery/2n & | |
Lo—— — — —— ——C_J
x 1
806 Web Inspector — Example 5-11.html
—
® ™ = o 8 &
| R Timeli Debus Console Inspect
< p» |[E] Console (Qr Filter Console Log)| :Q_II Errors Warnings Logs | | ¥
Songs : ["Drive My Car", "Norwegian Wood (This Bird Has Flown)™, "You Won't See Me", “Now Example 5-11.js:48
here Man", "Think for Yourself", "The Word", "Michelle", "What Goes On", "Girl®, "I'm Looking Through You",
“In My Life", "Wait", "If I Needed Someone", "Run for Your Life", "Taxman®, “Eleanor Rigby", "I'm Only Sleep
ing", "Love You To", "Here, There and Everywhere", "Yellow Submarine", "She Said, She Said", "Good Day Sunsh
ine”, "And Your Bird Can Sing", "For No One", "Doctor Robert", "I Want to Tell You", "Got to Get You into My
Life", "Tomorrow Never Knows"]
|

FIGURE 5-11

As you can see, jQuery’s merge() method is pretty straightforward, appending the contents of the
second array argument to the contents of the first array argument.

SUMMARY

This chapter presented several methods associated with iterating and working with arrays
and selections.

You learned how jQuery’s each() method is a less-verbose, easier-to-use alternative for iterating
over an array, object, or selection when compared to using a for construct and a counter, or a for/
in construct for objects. You learned how to emulate break and continue keywords with the each()
method by returning a boolean value. You learned that jQuery’s each() method can be called
directly or chained to a selection or an array that’s wrapped in a call to the dollar sign method.

You learned how a selection is filtered using jQuery’s filter() method using either a selector
or a callback function. An array can be filtered using jQuery’s grep() method, which must be
called directly.

You learned how one array can be mapped to another array and how one selection can be mapped
to an array using jQuery’s map() method, which exists to translate one set of values to another set
of values.

Finally, you learned about jQuery’s various array utility methods. $.makeArray() can turn any data
into a true array. $.inArray() can find the position of a value within an array, offset from zero, and
works just like JavaScript’s index0f() method, with —1 (minus one) indicating that a value is not
present within the array. $.merge() glues two separate arrays together into just one array.

Summary | 163

EXERCISES

1.

What might the JavaScript code look like if you want to iterate over the following collection of
elements using jQuery’s each() method?

nodes = document.getElementsByTagName('div');

What statement would you write inside a callback function provided to jQuery’s each()
method if you want to simulate a break statement?

When filtering a selection using filter(), what does providing a selector to the filter(
method do?

When filtering a selection using filter() with a callback function, what does returning
true do?

What value does a callback function provided to jQuery’s grep() method have to return to
keep an item in the array?

What happens to the value returned by a callback function provided to jQuery’s map()
method?

What does -1 (minus one) mean when returned by jQuery’s $.inArray() method?

CSS

When working with CSS from JavaScript, a few minor points of verbosity and inconsistency
exist where jQuery can lend a helping hand. jQuery makes it easier to manipulate CSS from
JavaScript. jQuery’s approach enables you to define styles for multiple CSS properties at once,
or one CSS property at a time. But instead of setting CSS properties one element at a time, you
can set the style on one or many elements at once.

As mentioned in Chapter 4, “Manipulating Content and Attributes,” and in Chapter 1,
“Introduction to jQuery,” it’s generally good practice to avoid mixing style (CSS) with behav-
ior (JavaScript) and structure (HTML). You want to keep CSS, JavaScript, and HTML parti-
tioned as cleanly as possible into their respective documents.

In some cases, however, it is unavoidable to bring presentation into your JavaScript program-
ming; for example, it may have already been done the wrong or more-difficult-to-maintain
way long before you ever arrived. In these cases, the style changes dynamically in such a way
that it is impractical and unreasonable to keep CSS only in a style sheet and not directly
modify style with JavaScript programming. This chapter covers the methods that jQuery
exposes that enable you to work with style-sheet properties and values.

WORKING WITH CSS PROPERTIES

Instead of messing around with the style property as you may be used to doing with tradi-
tional JavaScript, when you want to access style information or modify style information with
jQuery, you use jQuery’s css() method. You can use the css() method in three different ways:

> To return a property’s value from the first element matched in a selection
> To set a property’s value on one or more elements
> To set multiple properties on one or more elements

When you simply want to get a property’s value for an element, this is what you do:

var backgroundColor = $('div"').css('backgroundColor');

166 | CHAPTER6 CSS

Note that because you are accessing the property through JavaScript as a string, you have the option
of either using camelCase or specifying the property name with a hyphen, as it is done in a style
sheet. This is also valid:

var backgroundColor = $('div').css("'background-color');

After you make a selection, you call the css() method chained to the selection with the property
that you want the value for. The snippet of code here returns the backgroundColor for the first <div>
element of the selection, so if there are five <div> elements present in a document, the preceding code
would return the background-color for the first one.

If you want to retrieve multiple properties, you specify an array of properties to retrieve, and an
object of property/value pairs are retrieved from the element.
var properties = $('div').css([
'background-color"',
'color',
'padding’',
'box-shadow'

1;

The preceding example returns an object containing the specified properties. Remember, you can
always dump the content of a variable to the JavaScript console using the console.log() method, if
you want to know what value a variable contains.

If you want to set the value of a single property, that’s done like this:

$('div').css("background-color', 'lightblue');

In the preceding example, the background-color of all <div> elements in the document is set to
Tightblue.

Setting multiple properties for multiple elements can be done like this:

$('div').css({
backgroundColor : 'Tightblue’,
border : 'lpx solid lightgrey',
padding : '5px'

D
Or this:
$C'div').css({
'background-color' : 'lightblue',
border : 'lpx solid lightgrey',
padding : '5px'
D

An object literal with key, value pairs is passed to the css() method. In the preceding example, the
background-color is set to Tightblue, the border is set to 1px solid lightgrey, and the padding is set
to Spx for all the <div> elements in the document. You can use hyphenated property names like this
as well, but you must place quotes around any property names that contain hyphens.

Obtaining Outer Dimensions | 167

JQUERY'S PSEUDO-CLASSES

In CSS the pseudo-class marks a condition or state. For example, the :hover pseudo-class is for styling
an element when the mouse cursor comes over the element. The styles that you specify for the :hover
state are only in effect while the mouse cursor resides above an element. jQuery adds a few pseudo-
classes that make more sense in the JavaScript world than in the CSS world.

Some pseudo-classes that jQuery provides are not feasible in CSS. For example, jQuery’s :parent
pseudo-class moves a selection from one or more elements to the parent element(s) of that/those
element(s). This cannot be done in CSS because of the incremental rendering rule. A style sheet

must be applied as it is downloaded to a DOM that is being created as it may also be downloading.
Because of the incremental rendering rule, which is part of what can make a browser appear to load
a page blazingly fast, having to step backward in the DOM poses a technical challenge similar to
reversing the flow of a river. If everything is built to flow in one direction, from the bottom up, going
from the top to the bottom introduces hurdles, obstacles, and potential glitches. For this reason, the
W3C’s CSS working group has been resistant to introduce any type of parent or ancestor selector.

In JavaScript, however, there are no such limitations. You’re most likely already waiting for the
DOM and, by extension, the associated style sheets to be loaded before you do things with the
document.

NOTE All of jQuery’s pseudo-class extensions, in addition to the various types
of standard selectors supported by jQuery, are documented in Appendix B,
“CSS Selectors Supported by jQuery.”

OBTAINING OUTER DIMENSIONS

In traditional JavaScript, when you want to get the width of an element—which includes the CSS
width, in addition to border width and padding width—you use the property offsetWidth. Using
jQuery, this information is available when you call the method outerWidth(), which provides the
offsetWidth of the first element in a selection. This gives you a pixel measurement including width,
border, and padding. Likewise, the outerHeight() method does the same with height; it includes CSS
height, padding height, and border height.

NOTE You can also ask for margin length to be included in the return value by
setting the first argument to outerWidth() or outerHeight() o true.

To demonstrate how you would use the css(), outerwidth(), and outerHeight() methods, the fol-
lowing example, Example 6-1, shows you how to make a custom context menu that leverages these
methods to set a custom context menu’s position within the document. The context menu is the

168 | CHAPTER6 CSS

menu your browser provides when you click the right button on a three-button mouse, use the two-
finger tap gesture on a Mac, or hold down the [Ctrl] key and click also on a Mac. Given the various
operating system differences in producing a context menu, the action of producing a context menu
will hereafter be referred to as a contextual click. This menu pops up at the location of your mouse
cursor. You begin with the following XHTML.

<!DOCTYPE HTML>
<html Tang="'en'>

<head>
<meta http-equiv='X-UA-Compatibile' content='IE=Edge' />
<meta charset="utf-8' />
<title>Context Menu Example</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 6-1.js'></script>
<link href='Example 6-1.css' rel='stylesheet' />
</head>
<body>
<h4>Context Menu Example</h4>
<div id='contextMenu'>

</div>
</body>

</html>

The preceding markup is styled with the following style sheet:
body {

}

font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);

margin: 0;

padding: 0 10px;

div#contextMenu {

}

width: 150px;

height: 150px;
background: yellowgreen;
border: 1px solid gold;
padding: 10px;

position: absolute;
left: 0;

right: 0;

display: none;

The following JavaScript defines the behavior that enables the context menu to function:

$(document) . ready (

function()
{

var contextMenuOn = false;

$(document) .on(
'contextmenu',

Obtaining Outer Dimensions | 169

function(event)

{
event.preventDefault();
var contextMenu = $('div#contextMenu');
contextMenu.show();
// The following bit gets the dimensions of the viewport
// Thanks to quirksmode.org
var vpx, vpy;
if (self.innerHeight)
{
// all except Explorer

vpx = self.innerWidth;
vpy = self.innerHeight;

else if (document.documentETement &&
document.documentElement.clientHeight)
{

// Explorer 6 Strict Mode
vpx = document.documentElement.clientWidth;
vpy = document.documentElement.clientHeight;

else if (document.body)

// other Explorers
vpx = document.body.clientWidth;
vpy = document.body.clientHeight;

// Reset offset values to their defaults
contextMenu.css ({

top : 'auto',

right : 'auto',

bottom : 'auto',

Teft : 'auto'

1);

// If the height or width of the context menu is greater than
// the amount of pixels from the point of click to the right or
// bottom edge of the viewport adjust the offset accordingly
if (contextMenu.outerHeight() > (vpy - event.pageY))

{
contextMenu.css('bottom', (vpy - event.pageY) + 'px');
}
else
{

contextMenu.css('top', event.pageY + 'px');

}

170 | CHAPTER6 CSS

if (contextMenu.outerWidth() > (vpx - event.pageX))

{
contextMenu.css('right', (vpx - event.pageX) + 'px');
}
else
{
contextMenu.css('left', event.pageX + 'px');
}
3
);
$("div#contextMenu') .hover(
function()
{
contextMenuOn = true;
s
function()
{
contextMenuOn = false;
3
);
$ (document) .mousedown (
function()
{

if (!contextMenuOn)

$("div#contextMenu').hide();

);

The preceding example produces output similar to Figure 6-1.

Context Menu Example

)

Context Menu Example

FIGURE 6-1

Obtaining Outer Dimensions | 171

NOTE Remember: You can download all the book’s examples for free from
www . wrox.com/go/webdevwithjquery

Before we explain the concepts in this example, consider this. Although replacing the context menu
that your browser provides can be used to provide useful functionality that can go much further

in making your web-based applications look and feel like desktop applications, you should be cau-
tious about the scenarios that you choose to invoke custom context menu functionality. The context
menu is also heavily used by browser users to do simple things like navigate forward or backward
from their present location, to reload the current page, or to do other useful tasks associated with
using the browser. But if your web application recklessly takes control of the context menu, you risk
alienating or annoying your user base because your application prevents the user from accessing and
interacting with his browser in the way he normally would. In addition, disabling the browser’s
context menu will not prevent users from seeing your application’s source code because you can still
go to the browser’s main menu and click the View Source option.

More savvy users can bypass JavaScript by disabling it or even directly access your source code
through other means, such as via your browser’s cache or by accessing the source code from your
website directly from a command line or script. If you’re considering disabling the context menu

for this purpose, you may want to reconsider publishing your web application for public consump-
tion because this method of preventing access to your website’s source code is ineffective and is sub-
ject to numerous workarounds. Remember, content you place on the web is, by design, made to be
publicly consumed and transportable to browsers of all kinds residing on platforms of all kinds. The
key thing to keep in mind is that rendering your markup and executing your JavaScript is entirely
optional.

That said, the preceding example takes a <div> with perfectly square dimensions that takes the place
of your browser’s default context menu. When you do a contextual click on the document (anywhere
in the browser window), the <div> acting as the replacement context menu appears and is positioned
based on where the click occurred.

First, you set up the event that fires when the user accesses the context menu. This is done using
jQuery’s on() method because jQuery does not provide a contextmenu() method. It should also be
noted that contextmenu events can be disabled in Firefox; they are enabled by default.

The following code thus far disables the browser’s default context menu when the user tries to access
the context menu with the mouse cursor within the document window:
$(document) .on(
'contextmenu',
function(event)

{

event.preventDefault();

Next, the <div> element that acts as the context menu is selected and assigned to the contextMenu
variable, and that <div> element is made visible with jQuery’s show() method.

var contextMenu = $('div#contextMenu');

contextMenu.show();

http://www.wrox.com/go/webdevwithjquery

172

| CHAPTER6 CSS

When you create your own context menu, you want to have the position of your context menu
change depending on where in the browser window the context menu is accessed. If the user
accesses the context menu close to the left and top sides of the window, you want your context menu
to position itself from the left and the top. If the user accesses the context menu from the right and
bottom of the window, then you want the context menu to intelligently reposition from the right and
bottom and do this without any part of the context menu being obstructed.

To make the context menu so that it dynamically repositions itself depending on where it is
accessed, you need to do a little bit of math. The first bits of data that you need to do that math
are the dimensions of the viewport. Use the dimensions of the viewport to help determine how the
context menu should be positioned relative to the place where the user accesses it. Getting the view-
port’s dimensions, unfortunately, is one of those fringe areas in which different browsers implement
different methods of doing the same thing, and jQuery doesn’t provide a neat, unified method of
patching over this particular difference. This is less of a nuisance today because recent versions of
Internet Explorer have come more in line with the defined standards. The following code intelli-
gently obtains the viewport’s dimensions depending on the browser’s implementation:

// The following bit gets the dimensions of the viewport

// Thanks to quirksmode.org
var vpx, vpy;

if (self.innerHeight)
// all except Explorer
vpx = self.innerWidth;

vpy = self.innerHeight;

else if (document.documentElement &&
document.documentElement.clientHeight)

{
// Explorer 6 Strict Mode
vpx = document.documentElement.clientWidth;
vpy = document.documentETement.clientHeight;
}

else if (document.body)

// other Explorers
vpx = document.body.clientWidth;
vpy = document.body.clientHeight;

// Reset offset values to their defaults
contextMenu.css({

top : 'auto',
right : 'auto',
bottom : 'auto',

Teft : 'auto'
;s

Obtaining Outer Dimensions | 173

Before you actually position the context menu, you need to reset your context menu’s offset posi-
tions to the defaults. All four offsets have to be reset because the next portion of code will set at
least two of the offset properties to the correct values, and the two that are set can vary depending
on where the user accesses the context menu. You don’t, for example, want the positions you set the
last time the user accessed the context menu to persist to this time because that may create a con-
flict. To reset each offset position, you use jQuery’s css() method to set the top, right, bottom, and
left offset properties back to each property’s default value, auto.

// Reset offset values to their defaults
contextMenu.css({

top : 'auto',

right : 'auto',

bottom : 'auto',

Teft : 'auto'
;

Now you’re ready to mathematically determine the proper position for the context menu. To get the
right position, you want to know if the outerHeight() of the <div> element you’re using for the menu
exceeds the browser’s viewport height (specified in the vpy variable) minus the vertical point of the
mouse cursor’s position (provided in event.pageY), relative to the document. If the outerHeight ()

is bigger than this calculation, it means that the menu should be positioned from the bottom, rather
than from the top; otherwise, the menu would be clipped.

// If the height or width of the context menu is greater than
// the amount of pixels from the point of click to the right
// or bottom edge of the viewport adjust the offset accordingly
if (contextMenu.outerHeight() > (vpy - event.pageY))

{
contextMenu.css('bottom', (vpy - event.pageY) + 'px');
3
else
{
contextMenu.css('top', event.pageY + 'px');
3

The same calculation is done for the horizontal portion. If the outerWidth() of the menu is greater
than the width of the viewport (specified in the vpx variable) minus the horizontal coordinate of the
mouse cursor’s position (provided in event.pageX), relative to the document, the menu should be
positioned from the right, rather than the Teft; otherwise, the menu would be clipped horizontally.

if (contextMenu.outerWidth() > (vpx - event.pageX))

{
contextMenu.css('right', (vpx - event.pageX) + 'px');
3
else
{

contextMenu.css('left', event.pageX + 'px');

}

174 | CHAPTER6 CSS

That’s all there is to positioning the context menu correctly based on where the user clicks in the
document. The additional code handles revealing and hiding the context menu at the right moments.
At the beginning of the document, you declare the following variable:

var contextMenuOn = false;

The preceding variable is used to track whether the user’s mouse cursor is over the context menu
when it is active. When the user’s mouse cursor leaves the context menu, this variable is set to false;
when the user’s mouse cursor is present, this variable is set to true. This boolean value is then used
to toggle the menu off when the user clicks an area outside the context menu and keeps the menu
active when the user clicks the menu itself.

The following code handles the part that sets the contextMenuOn variable to either true or false via
passing two event handlers to jQuery’s hover () method:
$('div#contextMenu').hover(
function()

{
}!
function()

{
}

contextMenuOn true;

contextMenuOn = false;
);

Then the following code hides the menu when the user clicks anywhere outside the menu because
the variable is false in that case and keeps the menu on when the user actually clicks the menu.

$(document) .mousedown (
function()

{

if (!contextMenuOn)

$("div#contextMenu') .hide();

);

jQuery’s API as it relates to CSS is documented in Appendix B and Appendix H.

SUMMARY

In this chapter, you learned how to get the value of an element’s CSS property using jQuery’s css Q)
method. You also learned how to manipulate an element’s style using the same css() method, which
can be done by passing a property and value to the css() method as two separate strings, or by
passing an object literal with one or more property, value pairs.

jQuery provides the offsetHeight and offsetWidth properties by calling the methods outerHeight()
or outerwWidth(). These methods return an element’s pixel width or height, including padding and
borders. You can also specifically add margin to the value returned by these methods.

Summary | 175

Finally, these methods were reiterated with a real-world-oriented example that shows you how to
replace the browser’s default context menu with your own. In this situation, you want to use jQue-
ry’s css() method to set CSS property values, rather than a style sheet, because the values set are set
dynamically.

EXERCISES

1.

What script would you use if you want to obtain the value of the color property for a <div>
element using jQuery?

If you want to set the background color of a web page using jQuery, what code would
you use?

If you need to set padding, a margin, and a border on a set of <div> elements using jQuery,
what would the code look like?

What is the jQuery method that returns an element’s pixel width including border and padding
dimensions called?

If you wanted to obtain a <div> element’s pixel height including a border, padding, and
margins using jQuery, what would the code look like?

AJAX

AJAX is the technology that enables you to make arbitrary HTTP requests from JavaScript to
obtain new data without the need for reloading a document. AJAX stands for Asynchronous
JavaScript and XML. The name is misleading, though, because you don’t have to use XML,
and your requests don’t have to be asynchronous. You can have synchronous requests (a
request that causes your code to pause execution until the answer is received from the server)
that are in the JSON format. XML is just one of many possible formats that you can use to
transmit data from a server to client-side JavaScript.

Using AJAX you can make web documents behave much less like documents and much more
like completely self-contained desktop applications. With a web-based application, updates are
much easier to propagate because everyone upgrades immediately upon their next visit to the
website. No longer do companies worry about maintaining legacy software and users—with

a web-based application, everyone is pushed to the latest version. It also becomes easier for a
user to access these applications. Because a separate installation is not required on every com-
puter where the application’s use is wanted, all that is required is a capable browser on top of
moderately capable hardware. Browsers strive to blur the line between desktop applications
and web-based applications even more because browsers such as Firefox and Google’s Chrome
browser make it easier to make a web-based application available as a desktop application via
placing an icon on the user’s desktop, dock, start menu, or quick-launch bar. In Firefox’s case,
this functionality is experimental, but in the case of Chrome, the feature is already a reality.
Then there is Adobe’s AIR runtime, which allows you to develop desktop applications using
web standards. Because AIR is built on top of WebKit—which is the rendering engine used in
Safari, and iOS, among others—AIR can make sophisticated, complex desktop applications
using a robust standards-compliant rendering engine. So, if these companies have anything to
say about it, web-based applications will become more popular and increasingly take over cer-
tain tasks that desktop applications once served.

Another advantage of web-based application development, which some people may perceive
as nefarious, is that web-based applications are immune to piracy, at least in the traditional
sense. It’s impossible to obtain a web-based application’s services without payment because a
user can simply be locked out if payment is not made, and use of an application can be limited
to a single login session at a time. Up until now, this aspect hasn’t been much of a problem,

178 | CHAPTER7 AJAX

though, because web-based applications are often supported with advertisements that make
them free.

Then another advantage still is that you can make a web-based application available to many more
operating systems and browsers than you might have otherwise with a self-contained desktop
application. You can target Safari, Chrome, Firefox, Internet Explorer, and Opera and reach more
than 99 percent of your browsing audience easily. Frameworks like jQuery make this even easier
because they eliminate many browser inconsistencies and headaches that might otherwise present as
roadblocks to cross-browser development.

There are some disadvantages to web-based applications, though, and a fair discussion should
include them. Because a web-based application can change so easily, some users will complain, and
some might even refuse to adapt. In addition, the speed of a web-based application has not come
close to the same speed offered by native programming. Speed is an issue because JavaScript is an
interpreted language, even with most browsers rapidly converting JavaScript to machine code and
caching it, which is a huge speed increase. JavaScript (along with (X)HTML and CSS) still has
network latency as an issue and still has a disadvantage in being an interpreted language that is
processed on-the-fly instead of compiled like most of the desktop applications you use every day.
On mobile, the speed issue is still enough of a problem to keep most development from web-based
languages and browsers; instead most mobile development is done with a native compiled language
such as Objective-C, Swift, Java, or .NET. Finally, as a web-based technology, network or server
issues can potentially completely shut down user access to your application, although in some
development scenarios a network outage can be worked around.

Nonetheless, AJAX has become a powerful and increasingly essential component of web devel-
opment; this chapter covers jQuery’s built-in methods for making AJAX requests. As you would
expect, jQuery takes something that is moderately verbose and complex and boils it down into a
much simpler, easier-to-grasp API so that you can start writing AJAX-capable web applications
much more quickly.

MAKING A SERVER REQUEST

As you’re probably already aware, the web works through a protocol called HTTP. When

you navigate to a web page, your browser fires off a request to a remote HTTP server that’s
running Apache, nginx, Microsoft IIS, or some other HTTP server software, using the

HTTP communication protocol. AJAX makes it so that you can fire off those HTTP requests
programmatically without having to reload the entire web page. After your JavaScript makes a
request and receives a response, you can then take that data and manipulate the content that’s in
front of the user based on the response that you receive. Using the HTTP protocol, there are many
ways that you can request data from the server. The most common ways information is transmit-
ted between an HTTP server and client are the GET and POST methods, although there are many
more methods that can be implemented as part of a RESTful service. If your server or application is
configured to support RESTful calls, you will also have methods such as PUT and DELETE, which
I discuss in the section “Sending a REST Request.” Before taking a look at REST, you should first
be familiar with the most common methods of transmitting an HTTP request using a simple GET
or POST request.

Making a Server Request | 179

What's the Difference Between GET and POST?

At face value, the GET and POST methods seem identical: Both allow you to request a web page
and send data along with that request. Most of the time, for AJAX requests, you want to use the
GET method because it is slightly faster from a performance standpoint where AJAX is concerned,
but there are other differences that you should be aware of that address semantic differences
between the two methods, as well as technical and security differences. The following outlines
these differences:

>

The GET method is intended for requests that have no tangible, lasting effect on the state of
anything. (The HTTP specification calls this type of request safe.) For example, when you
make a request and you’re simply retrieving data from a database, GET is properly suited for
this type of request. If a request results in a change to the database via an insertion, update,
or deletion—for example, when managing content or making an order or uploading data—
the POST method is best suited. This difference, however, is merely semantic.

Using the POST method causes a browser to automatically prevent resubmitting a form if the
user navigates back to a submitted form using the browser’s Back button because the POST
method is intended to be used for situations in which data manipulation occurs. This is a
technical difference put in place to prevent resubmission of form data. But this automatic
prevention is ineffective because you still have to design your server-side programs to account
for possible resubmissions . . . anything that can go wrong, will! Users can be impatient and
click the Submit button multiple times or refresh submitted forms, ignoring a browser’s warn-
ings. However, the GET method provides no automatic protection against resubmission. This
difference is mostly inconsequential to AJAX programming because there is no way for a user
to resubmit a POST request without you specifically designing the ability into your program.

The GET method has a much lower limitation on request length imposed than the POST
method. This difference is a technical one that can have an effect on your applications. The
limitation of the length a GET request can be varies among browsers, but RFC 2068 states that
servers should be cautious about depending on URI lengths greater than 255 bytes. Because
GET request data is included as part of the URI (the web page’s address), the GET request is
actually limited by the length of the URI a browser supports. Internet Explorer can support a
URL up to 2,083 characters in length, which is ridiculously long. The POST method, however,
theoretically has no limitation on length other than what your server is configured to accept.
PHP (a server-side language), for example, is configured to accept a POST request that’s § MB
or less in size, by default. This setting and others, such as how long a script can execute and
how much memory it can consume, collectively define how big your POST requests can be in
the context of that server-side language. Other server-side languages, no doubt, have similar
configuration settings; on the client side, however, a POST request has no hard limitation
defined, other than the limits of the client’s hardware, network, and server capabilities.

The POST and GET methods can be encoded differently, again a technical difference. 'm
not going to go into this difference in great detail because it is outside the scope of this book.
This difference applies when you want to upload files via the POST method; I discuss how to
perform a file upload via POST in Chapter 11, “HTMLS Drag and Drop.” As you will see in
Chapter 11, however, when doing a file upload via AJAX APIs provided by the browser, the
browser takes care of encoding for you.

180 | CHAPTER7 AJAX

The distinction between the POST and GET methods is mostly moot when it comes to making a
request originating from an AJAX script. Because the user is not involved with the request, the auto-
matic protection portion becomes unnecessary, which leaves only the semantic differences and the
limitations in length. For the most part, you can get away with making GET requests for everything,
which has been said to have a slight performance advantage over the POST method. Personally,

I tend to honor the semantic differences out of simple habit from years of working with forms in
client-side programming.

NOTE You can find more information about the performance aspect on the
Yahoo Developer website at http://developer.yahoo.com/performance/rules
.html.

RESTful Requests

REST, or Representational State Transfer, makes it possible to distinguish between differing actions
based on the specified HTTP transport method. So far you’ve learned about the GET and POST
HTTP transport methods. As stated in the last section, distinguishing between GET and POST

is mostly semantic because every HTTP server can handle GET and POST. REST is an architec-
tural decision in how you choose to implement your web services. Instead of GET and POST being
merely semantically different, you can choose to enforce technical constraints as well, for example,
a server-side application that behaves and handles data differently based on whether you use the
GET or POST method. In addition to GET and POST, a REST architecture can implement the PUT
and DELETE methods. Finally, in addition to those four methods, some implementations may take
things even further by defining additional methods, for example, PATCH.

The differences within which HTTP transport method you specify (GET, POST, PUT, or DELETE)
can be enforced on the server side. For example, you can send GET, POST, PUT, or DELETE
requests to the same URI location with information specified in the body of the request as JSON,
and then the server-side application routes the request and executes different code based on which
method is specified. Many developers simply use the URL to do the same thing and don’t go beyond
GET or POST. It has become increasingly more in fashion, however, to use HTTP to clearly define
the purpose of a request, as well as to respond to a request using HTTP error codes. Using a REST
approach brings your AJAX applications more into the realm of defined standards by making use of
the features defined in the HTTP protocol that have been mostly ignored.

In the section “Sending a REST Request,” I present an example of how to send and receive data
with jQuery using a REST approach.

Formats Used to Transport Data with an AJAX Request

Although the name implies that you use XML to transport data with an AJAX request, this is
entirely optional. In addition to XML, there are two other common ways that data is transmitted
from the server to a client-side JavaScript application: JSON (or JavaScript Object Notation) and
HTML. You are not limited to these formats, however, because you can conceivably take any data

http://developer.yahoo.com/performance/rules

Making a Server Request | 181

you like from the server and transmit it to the client. These formats are the most popular because
JavaScript provides you with tools for working with these types of data. XML can be easily queried
using DOM tools and methods, as well as with jQuery’s various methods of traversal, filtering, and
retrieval. HTML can be sent in incomplete snippets that can be effortlessly inserted into a document
using jQuery’s htm1() method.

You can also transmit JavaScript from the server, and the JavaScript will be evaluated in the client-
side application, executing it and making whatever variables, functions, objects, and so on available.

The JSON format is a subset of the syntax allowed to create JavaScript object literals, and it is
therefore a subset of JavaScript. It is considered to be its own format for data transmission, however.
Many popular languages have the ability to both read and send JSON-formatted data.

There are potential security issues associated with JSON that you should consider that result from
using eval() to execute JavaScript code from the server. eval) should be used only if you are
certain that the data being evaluated cannot be manipulated and cannot contain malicious code. For
your web application, you should take precautions before using the eval() method to execute any-
thing that has been user-provided because a user can have malicious intentions. Because a portion of
your code is available for all to see on the client-side, any user can discover what methods you use to
transmit and receive data. If you use JSON to transmit user-supplied data that originates from your
input forms, a user can maliciously craft the data submitted in your forms to be executed alongside
your JSON-formatted code. One exploit a malicious user can take advantage of in this way would
be to execute JavaScript that takes other users’ session data and transmits that data back to the
malicious user’s server. This type of exploit is known as an XSS (Cross-Site Scripting) vulnerabil-
ity, alternatively known as Cross-Site Scripting Forgery. Because session data is not tied to a user’s
computer but, instead, relies on long strings of numbers and letters that are mathematically difficult
to reproduce, when a malicious user obtains another user’s session id, that malicious user can then
impersonate other users and steal their sensitive data or log in to your server and obtain privileged
information. So great care and thought must be placed into what code is safe to eval() and what
code is not.

Making a GET Request with jQuery

Having talked about some of the inner workings of what an AJAX request is, the next topic for
discussion is making your first GET request with AJAX using jQuery.

Of course, AJAX is typically used to create dynamic web applications that have a server-side compo-
nent written in something such as PHP, Java, .NET, Ruby, or whatever you like. The server-side
portion of this is outside the scope of this book, so, instead of linking an AJAX request to a server-
side application, I link these requests to local documents that provide the same response every time.
If you’d like to learn more about the server-side components that are involved, Wrox has an excel-
lent selection of books covering just about every language.

That said, jQuery makes a few methods available that initiate a GET request from a server; the
method that you use depends on the data you’re getting. The generic method, which you can use
to make any type of GET request, is called, easily enough, get(). Each method is a member of the
jQuery object, so you'd call the get) method like this: $.get().

182 | CHAPTER7 AJAX

Requesting Data Formatted in XML

The first example I demonstrate shows you how to request data from a server that formats the
response as XML. The following source code demonstrates an input form for an address in which

the country field causes

the state field to be dynamically updated when the country selection is

changed and the country’s flag is changed as well. Each list of states is dynamically fetched from
the server using an AJAX request. However, this happens only for three of the country selections—
the United States, Canada, and the United Kingdom—because the information is fed from static
XML files rather than a database-driven server. If I were to create an XML file for all 239 country
options, I would at least change the flag for that country, even if no administrative subdivision simi-
lar to a state exists for that country. The following is the HTML portion of Example 7-1:

<!DOCTYPE HTML>
<html Tang='en'

<head>

>

<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset='utf-8' />
<title>Context Menu Example</title>

<script
<script
<script

src="../jQuery.js'></script>
src="../jQueryUI.js '></script>
src="Example 7-1.js'></script>

<1link href='"Example 7-1.css' rel='stylesheet' />

</head>
<body>

<form action="'javascript:void(0);

[

method='post'>

<fieldset>

<legend>Address</legend>

<div 1id="addressCountryWrapper'>

<Tabel for=

'addressCountry'>

</Tabel>

<select id=
<option
<option
<option
<option
<option

'addressCountry' size="'1" name="'addressCountry'>
value="'0'>Please select a country</option>
value="1">Afghanistan</option>
value="'2'>Albania</option>
value="'3"'>Algeria</option>

value="4'>American Samoa</option>

<option value='5">Andorra</option>

The long list of countries has been snipped out. The complete file is available as part of this book’s
free source code download materials available from www.wrox. com/go/webdevwithjquery.

<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option

value="222">United Kingdom</option>

value='223" selected="selected'>United States</option>
value="224">United States Minor Outlying Islands</option>
value="'225">Uruguay</option>
value="'226">Uzbekistan</option>
value='227">Vanuatu</option>

value='228"'>Vatican City State (Holy See)</option>
value="'229'>Venezuela</option>
value="230"'>Vietnam</option>

value="'231"'>Virgin Islands (British)</option>
value="'232"'>Virgin Islands (U.S.)</option>
value="233"'>Wallis and Futuna Islands</option>

http://www.wrox.com/go/webdevwithjquery

Making a Server Request | 183

<option value='234">Western Sahara</option>
<option value='235">Yemen</option>
<option value='236"'>Yugoslavia</option>
<option value='237"'>Zaire</option>
<option value='238"'>Zambia</option>
<option value='239'>Zimbabwe</option>
</select>
</div>
<div>
<label for="'addressStreet '>Street Address:</label>
<textarea name='addressStreet'
id="addressStreet'
rows="'2"'
cols="50"></textarea>
</div>
<div>
<label for='addressCity'>City:</Tabel>
<input type='text' name='addressCity' id='addressCity' size='25" />
</div>
<div>
<label for='addressState'>State:</label>
<select name='addressState' id='addressState'>
</select>
</div>
<div>
<label for='addressPostalCode '>Postal Code:</label>
<input type='text'
name="addressPostalCode'
id="addressPostalCode'
size='10" />
</div>
<div id="addressButtonWrapper'>
<input type='submit'
id="addressButton'
name='"addressButton'
value="'Save' />
</div>
</fieldset>
</form>
</body>
</html>

The preceding HTML is styled with the following CSS:

body {
font: 16px sans-serif;

}
fieldset {

background: #93cdf9;

border: 1px solid rgb(200, 200, 200);
}

fieldset div {
padding: 10px;
margin: 5px;

184 | CHAPTER7 AJAX

fieldset Tabel {
float: Teft;
width: 200px;
text-align: right;
padding: 2px 5px 0 0;

div#addressCountryWrapper img {
position: relative;
top: -4px;

}

div#addressButtonWrapper {
text-align: right;

}

Then, the following JavaScript is included in the preceding HTML document:

$(document) . ready (
function()

$('select#addressCountry').click(

function()
{
$.get(
'Example 7-1/' + this.value + ".xml"',
function(xml)
{

// Make the XML query-able with jQuery
xml = $(xm1);

// Get the ISO2 value, that's used for the
// file name of the flag.
var iso2 = xml.find('is02"').text();

// Swap out the flag image
$('div#addressCountryWrapper img').attr({
alt : xml.find("name'),
src : 'flags/' + iso2.tolLowerCase() +

.png
1)

// Remove all of the options
$('select#addressState').empty();

// Set the states...
xml.find('state').each(
function()

$('select#addressState').append(
$('<option/>")
.attr('value', $(this).attr('id"))
.text($(this).text())

Making a Server Request | 185

// Change the Tabel
$('Tabel[for="addressState"]").text(
xml.find('Tabel').text() + ":'

);

}’

"xml'

);
$('select#addressCountry').click();
);

Then for the AJAX requests to succeed, you need to create some XML files for the response content.
When you change the country in the <select> element, an AJAX request is sent via the GET method
for the file Example 7-1/<addressCountry>.xml, where <addressCountry> is the numeric id of the
country selected from the drop-down list. I’ve prepared XML files for three countries with the ids
38,222, and 223, those being the respective ids of Canada, the United Kingdom, and the United
States. Each XML file looks similar to the following, which is Canada’s:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<country>

<name>Canada</name>

<is02>CA</is02>

<is03>CAN</is03>

<label>Province</1abel>

<state id="'0'> </state>

<state id="66">Alberta</state>

<state id="67">British Columbia</state>

<state id="68">Manitoba</state>

<state id="69">Newfoundland</state>

<state id="70">New Brunswick</state>

<state id="71">Nova Scotia</state>

<state id="72">Northwest Territories</state>

<state id="73">Nunavut</state>

<state id="74">0Ontario</state>

<state id="75">Prince Edward Island</state>

<state id="76">Quebec</state>

<state id="77">Saskatchewan</state>

<state id="78">Yukon Territory</state>
</country>

Each XML file is structured identically, providing the country’s name, an ISO2 and ISO3

country code, a label, and the list of administrative subdivisions, which I have simply called states,
even though that’s not always technically correct; Canada’s are called provinces and the United
Kingdom’s are called counties.

The preceding example looks like what you see in Figure 7-1, when you select United Kingdom from
the country drop-down.

186 | CHAPTER7 AJAX

8o0o AJAX GET with XML v

@ @ ll[@ file:// /Users/richard/Documents/Books/jQuery/2nd%20 & @ feade J @

Address
% [United Kingdom E]

Street Address: ‘

City:

County v

Argyll and Bute

Postal Code Ards
Angus
Armagh
Antrim
Aberdeen
Aberdeenshire

Anglesey
Banbridge
Bracknell Forest

Bedfordshire
Belfast

Blaenau Gwent
Brighton and Howve
Birmingham

Save

FIGURE 7-1

In the JavaScript file, things get under way with adding a click event to the <select> element with
id name addressCountry. Within the handler for the c1ick event, you begin your AJAX request using
jQuery’s $.get() method. The first argument specifies the path that you want to request, which is
the XML file, dynamically substituting the country id in the filename. The second argument is a
callback function that you want to execute when your script has received the server’s response, and
the third argument is the type of AJAX request that you want to make. For a complete overview of

the API of the $.get() method, see Appendix G, “AJAX Methods.”

The callback method that you specified has one argument specified, xm1. This variable contains the
XML data that the server has sent back. This data is then made into a jQuery object, which makes
it much easier to extract data from it:

// Make the XML query-able with jQuery
xml = $(xml);

The next thing to do is to fetch the ISO2 code from the XML document, which is used to fetch the
updated flag for the selected country:

// Get the ISO2 value, that's used for the
// file name of the flag.
var iso2 = xml.find('iso02").text();

Just as you would do in a normal HTML document, you can use jQuery’s find() method to locate
the XML element <iso2> and retrieve its text content via jQuery’s text() method. In the context of
the three countries I’ve created XML files for, the iso2 variable would contain CA for Canada, GB
for the United Kingdom, or US for the United States. The next step is to set the alt and src attri-
butes of the element referencing the country flag:

Making a Server Request | 187

// Swap out the flag image
$('div#addressCountryWrapper img').attr({
alt : xml.find('name'),
src : 'flags/' + iso2.tolLowerCase() +

.png
};

The element is located by querying the DOM for a <div> element with an id attribute

having the value addressCountryWrapper and then finding the element within. Then the
element’s src and alt attributes are set using jQuery’s attr() method, and the path for the flag is
defined, taking into account the structure of files in this book’s source code download materials.
Then the filename is appended, and the ISO2 code is converted to lowercase because each flag image
is named using lowercase characters. This may not be a problem for some servers, such as Windows
or some Mac servers that are case-insensitive, but UNIX and Linux servers, including some Mac
servers (depending on how the Macs have been formatted), are case-sensitive, and having the incor-
rect case for the filename would cause the image to fail to load.

The next step is to remove all state options. First, query for the <select> element with the id name
addressState, and then call jQuery’s empty) method to remove all options.

// Remove all of the options
$('select#addressState') .empty();

The next step is to add the administrative subdivisions from the XML file as options. jQuery’s
find() method locates all the <state> elements in the XML file. Then you enumerate over each
<state> element using the each() method.

// Set the states...
xml.find('state').each(
function()

{

Now you create each <option> element and append each element to the <select> element:

$('select#addressState') .append(
$('<option/>")
.attr('value', $(this).attr('id"))
.text($(this).text())
);

Because you’re working within the callback function provided to the each() method, each <state>
element is passed to that callback function as this, just as it is done with (X)HTML. To access
jQuery’s methods, you wrap this in a call to the jQuery object $(this). You set the value attribute
for each <option> element, which will be the unique numeric id passed in each <state> element as
the attribute 1d="0", where zero is the unique id. To get to that id, all you have to do is call jQuery’s
attr() method with the attribute’s name as the first argument. Then all that’s left to do is set the
option’s label, which is done with a simple call to jQuery’s text () method, which retrieves the text
content of the <state> element.

The last item is to set the label for the “state.” Because Canadians use provinces, Britons use coun-
ties, and Americans use states, you need to use the right label, which is provided in the XML file as
the <1abel> element. To find the <1abel> element you want to change, you query the DOM for the

188 | CHAPTER7 AJAX

<label> element with a for attribute having the value addressState. Then you set that <1abel> ele-
ment’s text content to the text content of the <label> element from the XML document.

// Change the Tlabel
$('1abel[for="addressState"]").text(
xml.find('Tabel").text() + ":'

);

As you can see with the preceding example, jQuery does not disappoint with its well-thought-out
AJAX-handling abilities. With traditional JavaScript and DOM methods, the preceding would have
been much more verbose and much more difficult to get working. jQuery’s capability to bind itself
to an XML response makes parsing and working with XML documents just like working with
HTML documents: easy.

NOTE The iTunes-like flags included in the source code download originated
from the following website, where you may also obtain higher-quality images:

www.bartelme.at/journal/archive/flag_button_devkit/

Sending Data Along with a Request

Let’s say in that last example that you were actually working with a database-driven server; in that
case, how you would have constructed the request would be slightly different than in the preceding
example. Instead of dynamically creating the filename of the XML file you want to retrieve using
the country’s id, you would instead need to pass that information separately. jQuery accommodates
passing data in the $.get() method. In the context of the preceding example, you started out mak-
ing a call to the $.get() method that looked like this, with the extra code snipped out to make the
example easier to understand:

$.get(
'Example 7-1/38.xml1",
function(xml)
{
// snip
3,
'xml'
);

The first argument is the path of the file you're requesting—this can be any URL value. Typically, you’ll
want to reference some server-side script that can output data for you. The second argument is the
callback function that the server’s response XML will be passed to, and the third argument is the type
of request being made, which is one of the following strings: 'xm1', 'htm1', 'script', 'json', 'jsonp', or
"text'. This argument is set depending on the type of data that you expect coming back from the server.

When you want to send additional data with the request, another argument is added:

$.get(
'Example 7-1/38.xm1', {

http://www.bartelme.at/journal/archive/flag_button_devkit

Making a Server Request | 189

countryId : 223,
iso2 : 'US',
iso3 : 'USA',
Tabel : 'State'
1,
function(xml)

{
}1

"xml'

// snip

);

The new argument comes after the filename and before the function reference, and this is an object
literal that contains the data you want to pass along in the GET request to the server. In the preced-
ing example, I’ve modified the filename to be simply Example 7-1/38.xml, and I’ve created an object
literal with four properties, countryId, iso2, iso3, and Tabel. So, behind the scenes, this modifica-
tion will cause the request to the server to look like this:

Examp1e%207-1/38.xm1?countryIld=223&is02=US&iso3=USA&label=State

jQuery takes the items in the object literal and builds a GET request from them. Because GET
requests include data as part of the URL that you are calling, that data gets appended to the end
of the URL. The question mark in the URL indicates that what follows is GET request data; then
values are passed in name/value pairs, where each name and value is separated by an equals sign.
Then if there is more than one value, additional values are appended subsequently by appending
an ampersand character to the last name/value pair. Then this data is encoded for transport to the
HTTP server. When at the HTTP server, how this data is accessed depends on the server-side
language that you’re using to read it.

Requesting JSON Formatted Data

This section revisits the example from the last section but this time uses JSON as the format for data
transport instead of XML. I could use the same jQuery method, $.get(), to do this and change the
last argument from 'xm1' to 'json', but jQuery offers another method called $.getISONQ for retriev-
ing JSON-formatted data. This method is just like the $.get() method except that the data format
returned by the server is obviously expected to be JSON.

Using JSON as the data transportation format makes the code even leaner and easier to work
with than XML, in addition to significantly reducing the size of the response from the server. The
following example is the same example that you saw in the last section where when you select
Canada, the United States, or the United Kingdom from the drop-down, the flag, administrative
subdivisions, and administrative subdivision label all swap out, presenting data relevant to the
country you’re looking at. The HTML portion remains the same, and just a few modifications
are made to the JavaScript portion. This example is available in the source code materials as
Example 7-2.

$(document) . ready(
function()

$('select#addressCountry').click(

190 | CHAPTER7 AJAX

function()
{
$.9etISON(
'"Example 7-2/' + this.value + '.json',
function(json)
// Swap out the flag image
$('div#addressCountryWrapper img').attr({
alt : json.name,
src : 'flags/' + json.iso2.tolLowerCase() + '.png'
s
// Remove all of the options
$('select#addressState').empty();
// Set the states...
$.each(
json.states,
function(id, state)
{
$('select#addressState').append(
$('<option/>")
.attr('value', id)
.text(state)
);
}
);
// Change the Tabel
$('1abel[for="addressState"]"').text(
json.label + ":'
);
3
);
3

);
$('select#addressCountry').click();
);

In the preceding JavaScript, things function similarly to the example that you saw in the last sec-
tion where the server response was formatted as XML. However, this time you initiate an AJAX
request using the $.getISONQ) method instead of the $.get() method. Figure 7-2 shows

the results.

These two methods are similar, except that you don’t have to specify the last argument, specify-
ing the format of the server response with the $.getJSONO) method. Another difference is that you
are requesting a file with a .json extension instead of .xm1. Also, like in the last example, the file
requested depends on which country is selected from the drop-down menu. The JSON object is
formatted like so in the file being requested:

Making a Server Request | 191

@00 AJAX GET with JSON >

@ @ [+ ‘@ file:///Users/richard/Documents/Books/jQuery/ 2nd%20 (_';' Reader] @

Address
@ [Canada o
Streer Address: | |
v
City:
Province s
Alberta
Postal Cod British Columnbia
Manitoba
Newfoundland [ﬁ

New Brunswick
Nova Scotia
Northwest Territories

Nunavut
Ontario
Prince Edward Island

Quebec
Saskatchewan
Yukon Territery

FIGURE 7-2
{

"name" : "Canada",

"iso2" : "CA",

"iso3" : "CAN",

"label" : "Province",

"states"
"' o,
"66" : "Alberta",
"67" : "British Columbia",
"68" : "Manitoba",
"69" : "Newfoundland",
"70" : "New Brunswick",
"71" : "Nova Scotia",
"72" : "Northwest Territories",
"73" : "Nunavut",
"74" : "Ontario",
"75" : "Prince Edward Island",
"76" : "Quebec",
"77" : "Saskatchewan",
"78" : "Yukon Territory"

3

}

As you can see, the JSON format uses object literal syntax that you’re already familiar with in

JavaScript. The whole object is wrapped in curly braces but isn’t assigned a name, which makes it
easy for frameworks such as jQuery to take the JSON-formatted data and assign it directly to an
object. In the JavaScript, the preceding JSON was passed to the event handler for the $.getISONO

192 | CHAPTER7 AJAX

method as the json argument. All the data that you see in the JSON-formatted document is avail-
able inside that json variable. You access the ISO2 information as json.iso2, the label as json.label,
and the states array as json.states. Using JSON, you’ve removed a step that would otherwise be
required if you were working with XML data, which is querying the data within the response; with
JSON, the data is fed directly to an object and is available immediately. Also note how much leaner
the JSON file is compared to the verbose XML document.

Like the $.get() method, if you want to pass data to the server, you can provide that data in the
same optional data argument.

$.9etISON(

'"Example 7-2/38.json', {
countryId : 223,

iso2 : 'US',
iso3 : 'USA',
Tabel : 'State'

3,

function(json)

}

);
Making a POST Request

POST requests are identical to GET requests in jQuery, except for the name of the method. Instead
of $.get(), you use $.post(). Because a POST method request is reserved for modifying the state of
the data in some way, you’re probably more often than not going to want to pass some data along
with your POST request, and that data will probably come from a form of some kind. jQuery makes
it easy to grab form data and pass that along to the server. The method jQuery provides for this

is serialize(). The serialize() method takes data for the input elements that you specify (which
encompasses <input>, <textarea>, and <select> elements) and processes the values in those fields
into a query string. If you do not select any elements for serialization, you can instead select a
<form> element and jQuery automatically serializes all <input>, <textarea>, and <select> elements
that it finds within the <form> element. The following (Example 7-3) is what the updated JavaScript
looks like:

$(document) . ready (
function()

$('select#addressCountry').click(
function()

$.9etISON(
'"Example 7-3/' + this.value + '.json',
function(json)

// Swap out the flag image
$('div#addressCountryWrapper img').attr({

alt : json.name,

src : 'flags/' + json.iso2.tolLowerCase() + '.png'

Making a Server Request | 193

D;

// Remove all of the options
$('select#addressState').empty();

// Set the states...
$.each(
json.states,
function(id, state)

$('select#addressState').append(
$('<option/>")
.attr('value', id)
.text(state)
);
3
);

// Change the Tabel

$('Tabel[for="addressState"]").text(
json.label + ":'

);

$('select#addressCountry').click();

$("input#addressButton').click(
function(event)

{

event.preventDefault();

$.post(
'Example 7-3/POST.json',
$('form').serialize(Q),
function(json)

{
if (parseInt(json) > 0)
{

alert('Data posted successfully.');

Make the preceding modifications, load up the new document, and click the Save button. You
should see something like Figure 7-3.

194 | CHAPTER7 AJAX

n06 AJAX POST with JSON "

@ @ [= |B file:// /Users/richard/Documents/Books/jQuery/2nd%20 & | Reade } @

Address
% | United States 4]

JavaScript

Data posted successfully.

FIGURE 7-3

You’ve added a new event to the <input> element with the id name addressButton. When you click
the <input> element, a POST request is initiated using jQuery’s $.post() method. Of course, you
have no HTTP server set up to transmit this data to, so, instead, you simply reference a static JSON
file that lets you know the POST request succeeded at least as far as requesting the specified docu-
ment. In the second argument to the $.post() method, you supply the data that you want to trans-
mit to the server, just like you can do with the $.get() and $.getISON() methods that you saw in the
previous two sections. However, in addition to supporting an object literal, you can also provide a
serialized string of URL-encoded key, value pairs. This is what the serialize() method provides;

it encodes key, value pairs and creates a URL-encoded string from them. It searches within the
<form> element for all <input>, <textarea>, and <select> elements automatically when you select

a <form> element. You can also tell it specifically which <input>, <textarea>, or <select> elements
you want to serialize by explicitly selecting those elements. That selection is then passed to jQuery’s
serialize() method, which finds the right names and values from the various input elements,
formatting that data like so:

addressCountry=223
&addressStreet=123+Main+Street
&addressCity=Springfield
&addressState=23
&addressPostalCode=12345

This data appears as one unbroken line when it is passed to serialize(); some line breaks have been
added here to make the string more readable. This data is now ready to be posted to the server, so
all you have to do is pass this formatted data in the data argument of the $.post() method. This
also works for jQuery’s other AJAX request methods as well, and jQuery is smart enough to know
when you’re passing an object literal, as I demonstrated previously, and when you’re passing a
formatted query string, like you are here. Then, on the server side, all you have to do is access the
posted data as you would normally work with POST request data.

Loading HTML Snippets from the Server | 195

LOADING HTML SNIPPETS FROM THE SERVER

In the previous sections, you’ve seen how to request data from the server using the XML and JSON
data transport formats. The other popular way of transporting data from the server to the client
asynchronously is via HTML snippets. Using this method, you request small chunks of HTML as
you need them without the <htm1>, <head>, and <body> tags.

The following example (Example 7-4) demonstrates how to load snippets of HTML with jQuery’s
Toad() method:

<!DOCTYPE HTML>
<html Tang='en's>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="utf-8' />
<title>Folder Tree</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 7-4.js'></script>
<link href="Example 7-4.css' rel="'stylesheet' />
</head>
<body>
<div id="folderTree'>
<ul class="folderTree'>
<Ti>
<div class="folderTreeDirectory folderTreeRoot'
data-id="1"
title="/">
Macintosh HD
</div>
<ul class="folderTreeDirectoryBranchOn' data-id="'1">
<11 class="folderTreeDirectoryBranch'>
<div class="folderTreeDirectory'
data-id="'5175"
title='/Applications'>
<div class="'folderTreeIcon'></div>
Applications
</div>
<img src="tree/right.png’
class="folderTreeHasChildren'
data-id="'5175"
alt="+"
title="Click to expand.' />
<div class="folderTreeBranchiWrapper'>
</div>
</1i>
<1i class="folderTreeDirectoryBranch folderTreeServer'>
<div class="folderTreeDirectory’
data-id="5198"'
title="/Library'>
<div class="'folderTreeIcon'></div>
Library
</div>
<img src="tree/right.png’

196 | CHAPTER7 AJAX

class="folderTreeHasChildren'
data-id="'5198"'
alt="+"'
title="'Click to expand.' />
<div class="'folderTreeBranchiWrapper'></div>
</1i>
<1i class="'folderTreeDirectoryBranch's>
<div class="'folderTreeDirectory'
data-id="'3667"
title="'/System'>
<div class="'folderTreeIcon'></div>
System
</div>
<img src="tree/right.png’
class="folderTreeHasChildren'
data-id="'5198"'
alt="+"'
title="'Click to expand.' />
<div class="folderTreeBranchWrapper'></div>
</Ti>
<11 class="folderTreeDirectoryBranch's>
<div class="folderTreeDirectory'
data-id="'5185"
title="/Users's>
<div class="folderTreeIcon'></div>
Users
</div>
<img src="tree/right.png’
class="folderTreeHasChildren'
data-id="'5185"
alt="+"'
title="Click to expand.' />
<div class="folderTreeBranchiWrapper'></div>
</1i>

</1i>

</div>
</body>
</html1>

This markup is styled with the following style sheet:

body {
font: 13px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
background: rgb(214, 221, 229);
margin: 0;
padding: 10px;

3

div#folderTree ul {
Tist-style: none;
padding: 0;
margin: 0;

}

div. folderTreeRoot {

Loading HTML Snippets from the Server | 197

height: 28px;
background: url('tree/internal.png') no-repeat left 1px;
padding: 4px 0 0 28px;

1i.folderTreeDirectoryBranch {
position: relative;
padding: 0 0 0 20px;
zoom: 1;

}

img. folderTreeHasChildren {
position: absolute;
top: 3px;
left: 0;

3

div. folderTreeIcon {
background: url('tree/folder.png') no-repeat left;
width: 16px;
height: 16px;
margin: 0 5px 0 0;
float: Tleft;

3

div. folderTreeBranchiWrapper {
display: none;

Then the following JavaScript demonstrates how folders in a tree structure are loaded asynchro-
nously. Each folder is an HTML snippet that loads separately from the server, which makes the
initial download much smaller and the overall application much more efficient.

$(document) . ready(

function()
{
$('img.folderTreeHasChildren').click(
function()
{
var arrow = 'tree/down.png';

if (1$(Cthis).next().children('ul').length)
{

$(this).next().load(
'Examp1e%207-4/"' +
$(this)
.prev()
.data('id') + '.html',
function()

$(this)
.show()
.prev()
.attr('src', arrow);

198 | CHAPTER7 AJAX

$(this).next().toggle();
if ($(this).attr('src').index0f('down') != -1)
{

arrow = 'tree/right.png';

}

$(this).attr('src', arrow);

);

All put together, the preceding code looks like Figure 7-4 when it is tested in a browser.

[NaNs] Folder Tree "

@ [e |G file:// /Users/richard/Documents/Books/jQuery/2nd} ¢ = feace } @

B Macintosh HD

» [Applications
» [Library
v [System
» [Library
v [Users
» (i Shared
» [johnappleseed

FIGURE 7-4

In the preceding script, a click event is attached to each element in the HTML document.
When the user clicks the element, which is a gray arrow, the script first checks to see whether
the folder’s contents have already been requested, which is done by checking to see if the
element’s next sibling, the <div> element with class name folderTreeBranchWrapper, has a child <u1>
element. Whether that <u1> element exists is determined by the following expression:

if (1$(this).next().children('ul').Tength)
{

The next () method traverses the selection from the to the <div> element, and the children()
method looks at the children of the <div> method. Then the 1ength property determines how many
children <u1> elements exist. If there is a <u1> element, that means the folder’s contents have already
been requested from the server and loaded into the document. If there is not a <u1> element, then the
folder’s contents are requests from the server.

Loading directly in the document is done based on a selection. In this script, you select the <div>
element with the class name folderTreeBranchWrapper, which is done with the call to $(this)

Loading HTML Snippets from the Server | 199

.next (). this references the element, and next() causes the next sibling element to be selected,
which is the <div> element. Then the Toad() method is chained directly to that selection. By chaining
the Toad () method to the selection, you’re telling jQuery where you want the HTML snippet to be
inserted in the DOM.

The Toad() method otherwise works similarly to the other AJAX request methods that jQuery
provides: You specify the URL of the document you want to request in the first argument. You can
include an optional second argument that includes data that you want to send to the server via a GET
request, and the third parameter is a callback function that is executed upon success of the request.
Both providing data to send to the server and specifying a callback function are optional—if you
like, you can simply call the Toad() method with only a URL, and that will work just fine as well.

The server responds with a snippet of HTML that is loaded directly into the document. The follow-
ing is what the HTML snippet being loaded looks like:

<ul data-id="31490s">
<11 class="folderTreeDirectoryBranch">
<div class="folderTreeDirectory" data-id="31491s" title="/Users/Shared">
<div class="folderTreeIcon"></div>
Shared
</div>
<img src="tree/right.png"
class="folderTreeHasChildren" data-id="31491s" alt="+"
title="Click to expand." />
<div class="folderTreeBranchiWrapper'></div>
</1i>
<1i class="folderTreeDirectoryBranch folderTreeServer">
<div class="folderTreeDirectory" data-id="698482s" title="/Users/
johnappileseed'>
<div class="folderTreeIcon'"></div>
johnappleseed
</div>
<img src="tree/right.png"
class="folderTreeHasChildren" data-id="698482s" alt="+"
title="Click to expand." />
<div class="folderTreeBranchiWrapper'></div>
</Ti>

The preceding is the HTML snippet that is loaded upon clicking the arrow for the /Users folder. I've
prepared HTML snippets for each of the top-level folders. In the source code download for this book,
each of these is named using a numeric directory id. For example, /Applications has the id 5175, /Library
has the id 5198, and so on. Each of these numeric ids is embedded in the data-id attribute of the <div>
element with class name folderTreeDirectory that is present in the structure for each folder. Upon
requesting the folder contents, the embedded numeric id is extracted with the following:

$(this).prev().data('id")

The preceding starts out at the element, where the click originated, which is the $(this) portion of
the code. Then you navigate to the preceding sibling with the prev() method and access its id attribute
with data('id"). That’s used to construct the filename of the HTML snippet to be loaded, which again
wouldn’t normally be requested as a static HTML file—for this kind of thing, you want a server-side
script to do the heavy lifting. Each HTML snippet is located in a subfolder called Example 7-4.

200 | CHAPTER7 AJAX

After the request is made, the following callback function is executed:

function()
{
$(this)
.show()
.prev()

.attr('src', arrow);

}

The callback function is executed within the context of the <div> element with the class name folder-
TreeBranchWrapper; this refers to that <div> element. By default, all the <div> elements with the class
name folderTreeBranchWrapper are hidden by the inclusion of display: none in the style sheet; calling
jQuery’s show() method makes the <div> visible. Now all that’s left to do is to change the orientation
of the arrow from pointing right to pointing down to indicate that the folder is open, which is what
the second bit of code in the callback function does. It changes the image referenced in the src attri-
bute of the <div> element’s preceding sibling, which is the element housing the arrow.

That leaves what happens if the folder is already loaded:

}
else
{
$(this).next().toggle();
if ($(this).attr('src').index0f('down') != -1)
{
arrow = 'tree/right.png';
}
$(this).attr('src', arrow);
}

If the folder already exists, you want to toggle the display of the folder on and off with each click of
the arrow. The call to $(this).next().toggle() does exactly that: If the <div> element is visible, it’s
made invisible, and vice versa. The second bit of code toggles the orientation of the arrow by
toggling between the right.png and down.png images.

DYNAMICALLY LOADING JAVASCRIPT

Another useful and innovative feature of jQuery is its capability to dynamically and asynchronously
load JavaScript documents using its AJAX API. As covered in Chapter 1, “Introduction to jQuery,”
it is a recommended best practice to split JavaScript development into smaller, easier-to-digest
modules that have narrowly focused tasks. Another technique that goes hand-in-hand with modu-
lar JavaScript development is loading the minimal required JavaScript at the initial page load and
dynamically loading additional JavaScript via AJAX as it is needed to save page load time and to
make applications more responsive.

In addition to modular JavaScript development, another reason you may want to load JavaScript via
AJAX is to have JavaScript that changes dynamically, depending on user actions, or when you need
to load more-complex applications that vary depending on user input or context.

Dynamically Loading JavaScript | 201

Whatever use you find for this functionality, in this section, I walk you through the API that

jQuery provides for loading JavaScript via its AJAX interface using the $.getScript() method. The
following example demonstrates how to load the entire jQuery UI API asynchronously and then uses
that API to produce an animation that transitions between two colors. This is demonstrated in the
following document, Example 7-5:

<!DOCTYPE HTML>
<html Tang="'en'>
<head>
<meta charset='utf-8' />
<title>November 2013</title>
<script type='text/javascript' src="../jQuery.js'></script>
<script type='text/javascript' src="Example 7-5.js'></script>
<Tink type='text/css' href="Example 7-5.css' rel='stylesheet' />
</head>
<body>
<table class="calendarMonth" data-year="2013" data-month="11">
<thead>
<tr class="calendarHeading">
<th colspan="7">
November

2013
</th>
</tr>
<tr class="calendariWeekdays">
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td class="calendarLastMonth">27</td>
<td class="calendarlLastMonth">28</td>
<td class="calendarLastMonth'>29</td>
<td class="calendarLastMonth">30</td>
<td class="calendarLastMonth calendarlLastMonthlLastDay'>31</td>
<td class="calendarFirstDay">1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>

202 | CHAPTER7 AJAX

<tr>

<td>10</td>
<td>11l</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>

</tr>
<tr>

<td>17</td>
<td>18</td>
<td>19</td>

<td class="calendarToday">20</td>

<td>21</td>
<td>22</td>
<td>23</td>

</tr>
<tr>

<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>

<td class="calendarLastDay">30</td>
</tr>
<tr>
<td colspan="7" class="calendarEmptyWeek"></td>
</tr>

</tbhody>

</table>

</body>
</html1>

The preceding HTML is styled with the following style sheet:

html,
body {

width: 100%;
height: 100%;

font: 14px Helvetica, Arial, sans-serif;

}

body {
margin: 0;
padding: 0;

color: rgb(128, 128, 128);

table.calendarMonth {
table-Tayout: fixed;

width: 100%;
height: 100%;

border-collapse: collapse;
empty-cells: show;

table.calendarMonth tbody {

Dynamically Loading JavaScript | 203

user-select: none;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;

table.calendarMonth th {

}

tr.

font-weight: 200;

border: 1px solid rgb(224, 224, 224);

padding: 10px;

calendarHeading th {

font: 24px Helvetica, Arial, sans-serif;

table.calendarMonth td {

td.

td

}

border: 1px solid rgb(224, 224, 224);

vertical-align: top;
padding: 10px;

calendarlLastMonth,

.calendarNextMonth {

color: rgb(204, 204, 204);
background: rgb(244, 244, 244);

.calendarDaySelected {

background: yelTow;

.calendarWeekSelected {

background: Tightyellow;

.calendarToday {

background: gold;

Then the following JavaScript is applied:

$(document) . ready(

function()
{
$.getScript(
'../jQueryUI.js"',
function()

$('table.calendarMonth td:not(td.calendarLastMonth,
td.calendarNextMonth) ') .cTick(

2000 ")

function()
if ($(this).css('background-color') != 'rgbh(200, 200,
$(this).animate({
'background-color' : 'rgb(200, 200, 200)'
1,
1000

);

else

204 | CHAPTER7 AJAX

{
$(this).animate({
'background-color'
3,
1000
);
3

);

'rgb (255, 255, 255)'

The JavaScript demonstrates how an external script is loaded via jQuery’s $.getScript() method.
The $.getScript() method takes two arguments: The path to the script that you want to load, and
like jQuery’s other AJAX request method, it also allows a callback function, which is executed when

the script has been loaded and successfully executed.

Figure 7-5 shows a snapshot after the animation that takes place when you click a day in the calen-
dar. The background-color animates from white to rgb(200, 200, 200) (a shade of gray) and when
clicked again it animates from rgb(200, 200, 200) back to white, or rgb(255, 255, 255).jQuery
animations are covered in more detail in Chapter 8, “Animation and Easing Effects.”

FIGURE 7-5

November 2013
‘L ek | €3 file:///Users/richard/Documents/Books/jQuery, 2nd%20Edition/Exa & ‘ Reader)
November 2013
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

1 2

3 4 5 6 7 8 9

10 1 12 13 14 15 16

1T 18 19 20 21 22 23

24 25 26 27 28 29 30

AJAX Events | 205

The script that you load for the example, jQueryUL,;js, along with the source code for the example, is
available with this book’s source code download materials at www.wrox. com/go/webdevwithjquery.

AJAX EVENTS

This section covers what jQuery calls AJAX events. AJAX events are milestones that occur during
an AJAX request that can give you feedback about the status of your request or allow you to execute
code when each milestone occurs. Examples of milestones are when a request starts, when a request
stops, when a request has been sent, when a request has failed, when a request is completed, and
when a request is completely successful. I don’t go into exhaustive detail about each of these events,
but Appendix G has a full listing of all the AJAX methods, properties, and AJAX events supported

by jQuery.

One example is how to show an activity indicator while some remote content is being fetched. An
activity indicator is an animation that shows the user that something is happening, but it gives the
user an indication to wait for that something to happen. There are three ways to do this. Two meth-
ods enable you to globally set AJAX events for all AJAX requests using jQuery’s AJAX methods,
and there is one way to set AJAX events per individual request using jQuery’s ajax() method. This
section describes how to make a loading message using each of these methods.

Adding jQuery AJAX events globally is easy—all you have to do is call jQuery’s ajaxSetup()
method. First, you need an activity indicator to show that something is taking place. Typically, an
animated GIF is good enough to get the job done. In the following snippet, Example 7-6, from the
folder tree example that I presented previously, I've added an animated GIF to display while activity
is taking place:

<!DOCTYPE HTML>
<html Tang="'en's>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="utf-8' />
<title>Folder Tree</title>
<script src="../jQuery.js"'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 7-6.js'></script>
<Tlink href="Example 7-6.css' rel="stylesheet' />
</head>
<body>
<div id="folderTree'>
<ul class="folderTree'>
<1i>
<div class="folderTreeDirectory folderTreeRoot'
data-id="1"
title="/">
Macintosh HD
</div>
<ul class="folderTreeDirectoryBranchOn' data-id='1">
<11 class="'folderTreeDirectoryBranch's>
<div class="folderTreeDirectory'
data-id="5175"

http://www.wrox.com/go/webdevwithjquery

206 | CHAPTER7 AJAX

title="/Applications'>
<div class="'folderTreeIcon'></div>
Applications
</div>
<img src="tree/right.png’
class="folderTreeHasChildren'
data-id="'5175"
alt="+"'
title="'Click to expand.' />
<div class="'folderTreeBranchWrapper'>
</div>
</1i>
<1i class="'folderTreeDirectoryBranch folderTreeServer'>
<div class="'folderTreeDirectory'
data-id="'5198"
title="/Library'>
<div class="'folderTreeIcon'></div>
Library
</div>
<img src="tree/right.png’
class="folderTreeHasChildren'
data-id="'5198"'
alt="+"'
title="'Click to expand.' />
<div class="folderTreeBranchWrapper'></div>
</Ti>
<11 class="folderTreeDirectoryBranch's>
<div class="folderTreeDirectory'
data-id="3667"'
title="'/System'>
<div class="'folderTreeIcon'></div>
System
</div>
<img src="tree/right.png’
class="folderTreeHasChildren'
data-id="'5198"
alt="+"'
title="Click to expand.' />
<div class="'folderTreeBranchiWrapper'></div>
</1i>
<11 class="folderTreeDirectoryBranch'>
<div class="'folderTreeDirectory'
data-id="'5185"
title="/Users's>
<div class="'folderTreeIcon'></div>
Users
</div>
<img src="tree/right.png’'
class="folderTreeHasChildren'
data-id="'5185"
alt="+"'
title="'Click to expand.' />
<div class="'folderTreeBranchiWrapper'></div>

</1i>

AJAX Events | 207

</T1i>

</div>
<div id="folderActivity'>

</div>

</body>
</html>

Then, some CSS is added to the example to put the activity indicator in the lower-right part of
the window.

body {
font: 13px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
background: rgb(214, 221, 229);
margin: 0;
padding: 10px;

}
div#folderTree ul {
Tist-style: none;
padding: 0;
margin: 0;
}
div.folderTreeRoot {
height: 28px;
background: url('tree/internal.png') no-repeat left lpx;
padding: 4px 0 0 28px;

14.folderTreeDirectoryBranch {
position: relative;
padding: 0 0 0 20px;
zoom: 1;

img. folderTreeHasChildren {
position: absolute;
top: 3px;

Teft: 0;

}

div. folderTreeIcon {
background: url('tree/folder.png') no-repeat left;
width: 16px;
height: 16px;
margin: 0 5px 0 0;
float: Teft;

}

div. folderTreeBranchiWrapper {
display: none;

}

div#folderActivity {
position: absolute;
bottom: 5px;
right: 5px;

208 | CHAPTER7 AJAX

display: none;

}

Then finally, the JavaScript is modified so that the activity indicator is dynamically revealed when
an AJAX request takes place and hidden when the request concludes:

$(document) . ready (
function()

{
$.ajaxSetup({
beforeSend : function(event, request, options)

$('div#folderActivity').show();
3,

success : function(response, status, request)
$("div#folderActivity').hide();
}!

error : function(request, status, error)

$('div#folderActivity').hide(Q);

}
1);
$("img.folderTreeHasChildren').click(
function()
{

var arrow = 'tree/down.png';
if (1$(this).next().children('ul').length)
{

$(this).next().Toad(
'Examp1e%207-6/"' +
$(this)
.prev()
.data('id"') + '.html',
function()

$(this)
.show()
.prev()
.attr('src', arrow);
3
);
}

else
$(this).next().toggle();
if ($(this).attr('src').index0f('down') != -1)
{

arrow = 'tree/right.png';

AJAX Events | 209

}

$(this).attr('src', arrow);

);

This modification looks like what you see in Figure 7-6, when you make an AJAX request. Because
you’re requesting a file from your own local computer, the activity indicator will be revealed and
hidden almost instantaneously. So this technique is obviously better suited for requesting content
from a remote server where there may be some latency.

ene Folder Tree "

@ [+ |@ file:/f /Users/richard/Documents/Books/jQuery/2nd%2DEdition/Exa & | “eode] @

3 Macintosh HD

» [Applications
» [l Library

» [System

» [Users

FIGURE 7-6

In the JavaScript, you make a call to $.ajaxSetup() to define events called beforeSend, success, and
error. Each of these events is defined inside a JavaScript object literal that is passed to the $.ajax-
Setup() method. By attaching a callback function to the beforeSend property, you are telling jQuery
to execute the specified function before every AJAX request. In this case, you cause the activity
indicator to be displayed by calling jQuery’s show() method. Then, after the request has completed
successfully, you hide the activity indicator by attaching a callback function to the success and
error events, which, in turn, is executed upon a successful or failed request. (Another way to do this
is to attach to the AJAX complete event, which executes when a request is completed, whether it was
successful or failed.) These are but a few of the properties that you can specify using this method to
define AJAX defaults globally for jQuery. All the options that can be specified here are outlined in
detail in Appendix G.

You are not, of course, limited to this use of jQuery’s AJAX events. jQuery’s AJAX events can
also modify the HTTP headers that will be used in the request or to do other low-level things with
jQuery’s AJAX API.

210 | CHAPTER7 AJAX

Using AJAX Event Methods

The preceding example defines events globally using the $.ajaxSetup() method. In the following
example, Example 7-7, 1 demonstrate how to do the same using individual jQuery AJAX event
methods. Only the script for the preceding example, Example 7-6, has been modified:

$(document) . ready(

function()
$(document)
.ajaxSend(
function(event, request, options)
{
if (decodeURI(options.url).indexOf('Example 7-7') != -1)
{
$('div#folderActivity').show();
3
}
)
.ajaxSuccess(
function(response, status, request)
{
if (decodeURI(options.url).indexOf('Example 7-7') != -1)
{
$('div#folderActivity').hide(Q);
3
}
)
.ajaxError(
function(request, status, error)
{
if (decodeURI(options.url).indexOf('Example 7-7') != -1)
{
$('div#folderActivity').hide(Q);
3
}
);
$("img.folderTreeHasChildren').click(
function()
{
var arrow = 'tree/down.png';

if (1$(this).next().children('ul').length)
{

$(this).next()

.Toad(
'Examp1e%207-7/" +
$(this)
.prevQ)
.data('id') + '.html',
function()

$(this)

AJAX Events | 211

.show()
.prev()
.attr('src', arrow);
3
);
3
else
{
$(this).next().toggle();
if ($(this).attr('src').index0f('down') != -1)
{
arrow = 'tree/right.png’';
}
$(this).attr('src', arrow);
}

}
);

The preceding modification gives you the same outcome demonstrated by Example 7-6, only this
time the functions that reveal and hide the activity indicator are attached by using jQuery’s AJAX
event methods instead of the $.ajaxSetup() method. This example takes things one step further
by taking a look at the options.url property, decoding URI encoded characters with a call to
decodeURI(), and then limiting the application of the activity indicator based on the URI of the
AJAX request. Things are set up similarly to Example 7-6; otherwise, you moved the callback
function for the beforeSend property to inside the call to the ajaxSend() method, and the callback
function for the success property to inside the call to the ajaxSuccess() method, and finally the
call for the error property to inside the call to the ajaxError() method. And those methods are, of
course, chainable like most of jQuery’s other methods, but these methods must be applied to the
document object and cannot be attached to just any HTML element object.

Attaching AJAX Events to Individual Requests

The last way that you can attach events is via a call to jQuery’s more low-level ajax() method. The
ajax() method is used internally, within jQuery, to construct AJAX requests for jQuery’s other
AJAX request methods, like $.get(), $getISONQ), $.post(), and so on. jQuery’s $.ajax() method
gives you the ability to set as many low-level AJAX request options as you like. Example 7-8 demon-
strates how to use $.ajax() to mimic the same results as the preceding two examples:

$(document) . ready(
function()

$('img.folderTreeHasChildren').click(
function()

{

var arrow = 'tree/down.png';

212 | CHAPTER7 AJAX

if (1$(Cthis).next().children('ul').length)
{

var tree = $(this);

var file = (
$(this)
.prev()
.data('id"') + '.html'
);

$.ajax({
beforeSend : function(event, request, options)

$('div#folderActivity').show();
}1

success : function(response, status, request)
$('div#folderActivity').hide(Q;

tree.attr('src', arrow)
.next()
.html(response)
.show();
}!

error : function(request, status, error)

$('div#folderActivity').hide(Q;

3,
url : "Example%207-8/' + file,

dataType : "html'
s
}

else

{
$(this).next().toggle();

if ($(this).attr('src').index0f('down') != -1)
{

arrow = 'tree/right.png';

}

$(this).attr('src', arrow);

The preceding example is functionally identical to the last two examples that you’ve seen in this
section. Just like those other two examples, you are requesting the contents of each folder with each
AJAX request, and you’re showing an activity indicator that appears while the AJAX request is
taking place and is hidden when it completes. Because the $.ajax() method works by calling that
method of the jQuery object directly, you have to change your approach from using the

AJAX Events | 213

Toad() method. First, because you want to load HTML, you need to remember what element you
want to load that HTML into.

var tree = $(this);

$(this) is assigned to a variable called tree so that you can reference the variable tree from within
the callback functions that you assign to the various options of the $.ajax() method. If you remem-
ber from Example 7-4, this refers to the element containing the arrows that appear beside
each folder. The $.ajax() method takes various options defined as an object literal, which are docu-
mented in Appendix G. You again define the beforeSend, success, and error options that contain
functions that reveal and hide the activity indicator, but this time in the context of the AJAX request
that you’re making instead of globally.

If your request were successful, the rest of the code carries on like the code from Example 7-4. The
 element is contained in the variable tree. The src of the element is changed to 'tree/
down.png'. The response variable in the success method contains the HTML text content of the
response containing the subfolders. If this were an XML request, you’d be working with an XML
object; if it were JSON, you’d be working with a JSON object. The HTML snippet is loaded into the
next sibling <div> element that appears after the element; then that <div> element is made vis-
ible with the show() method.

success : function(response, status, request)
$('div#folderActivity').hide(Q);

tree.attr('src', arrow)
.next()
.htm1(response)
.show();
3,

jQuery’s $.ajax() method allows for a great deal of request customization, which should be used
when the other AJAX methods just don’t provide the options that you need.

Sending a REST Request

The last example of using the $.ajax() method that I present is how to make and send a REST
request. Sending a REST request with jQuery is straightforward; you must configure the type,
contentType, dataType, and data properties to set up the REST call. Otherwise, your server must
also be properly configured to receive calls to a REST service. This will include setting the Access-
Control-Allow-Methods HTTP header on your server, which will allow HTTP request methods other
than GET and POST. Properly setting up and configuring a web server to deliver a REST service is
outside the scope of this book. You can, however, examine what is required on the client side for
such a request utilizing jQuery’s $.ajax() method. This is demonstrated in the following document,
Example 7-9:

<!DOCTYPE HTML>
<html Tang="'en'>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset="utf-8' />

214 |

CHAPTER7 AJAX

<titTe>REST Requests</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 7-9.js'></script>
<link href="Example 7-9.css' rel='stylesheet' />
</head>
<body>
<form action="'javascript:void(0);
<fieldset>
<legend>Address</Tegend>
<div id="addressCountryWrapper'>
<label for='addressCountry'>

</label>
<select id='addressCountry' size='1"' name='addressCountry'>
<option value='0'>Please select a country</option>
<option value="'1'>Afghanistan</option>
<option value='2'>Albania</option>
<option value='3'>Algeria</option>
<option value='4'>American Samoa</option>
<option value="'5">Andorra</option>

r

method="post'>

The long list of countries has been snipped out. The complete file is available as part of this book’s
free source code download materials.

<option value='222">United Kingdom</option>
<option value='223" selected="selected'>United States</option>
<option value='224">United States Minor Outlying Islands</option>
<option value='225">Uruguay</option>
<option value='226">Uzbekistan</option>
<option value='227'>Vanuatu</option>
<option value='228"'>Vatican City State (Holy See)</option>
<option value='229'>Venezuela</option>
<option value='230"'>Vietnam</option>
<option value='231">Virgin Islands (British)</option>
<option value='232"'>Virgin Islands (U.S.)</option>
<option value='233"'>Wallis and Futuna Islands</option>
<option value='234">Western Sahara</option>
<option value='235">Yemen</option>
<option value='236"'>Yugoslavia</option>
<option value='237"'>Zaire</option>
<option value='238'>Zambia</option>
<option value='239'>Zimbabwe</option>
</select>
</div>
<div>
<label for='addressStreet'>Street Address:</labhel>
<textarea name='addressStreet'
id="addressStreet'
rows="'2"
cols="'50"></textarea>
</div>
<div>
<label for='addressCity'>City:</label>
<input type='text' name='addressCity' id='addressCity' size='25" />
</div>

AJAX Events | 215

<div>
<label for='addressState'>State:</label>
<select name='addressState' id='addressState'>
</select>
</div>
<div>
<label for="'addressPostalCode '>Postal Code:</label>
<input type='text'
name="addressPostalCode’
id="addressPostalCode'
size='10" />
</div>
<div id="addressButtonWrapper'>
<input type='submit'
id="addressButton'
name='"addressButton'
value="'Save' />
</div>
</fieldset>
</form>
</body>
</html1>

The preceding markup is combined with the following style sheet:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
color: rgb(50, 50, 50);
margin: 0;
padding: 0 10px;

}
fieldset {
background: orange;
border: 1px solid rgb(200, 200, 200);
b
legend {
position: relative;
top: 13px;
font-size: 16px;
i

fieldset div {
padding: 5px;
margin: 3px;
clear: Tleft;
}
fieldset label {
float: Tleft;
width: 200px;
text-align: right;
padding: 2px 5px 0 0;
}
div#addressCountryWrapper img {
position: relative;
top: -4px;

216 | CHAPTER7 AJAX

div#addressButtonWrapper {
text-align: right;
}

Finally, the following JavaScript demonstrates a REST request using the ADD method:

$(document) . ready(
function()

$('select#addressCountry').click(
function()

$.9etISON(
'"Example 7-9/' + this.value + '.json',
function(json)
{
// Swap out the flag image
$('div#addressCountryWrapper img').attr({
alt : json.name,

src : 'flags/' + json.iso2.tolLowerCase() +

1;

// Remove all of the options
$('select#addressState').empty();

// Set the states...
$.each(
json.states,
function(id, state)

$('select#addressState').append(
$('<option/>")
.attr('value', id)
.text(state)

);

// Change the Tlabel

$('1abel[for="addressState"]").text(
json.label + ':'

);

);
}
)

$('select#addressCountry').click();

$("input#addressButton').click(
function(event)

{

event.preventDefault();

var data = {
country : $('select#addressCountry').val(Q),

AJAX Events | 217

street : $('textarea#addressStreet').val(),
city : $("input#addressCity').val(Q),

state : $('select#addressState').val(),
postalCode : $('"input#addressPostalCode').val()

3
$.ajax({
url : "Exampl1e%207-9/ADD.json',
contentType : "application/json; charset=utf-8",
type : "ADD',
dataType : 'json',
data : JSON.stringify(data),
success : function(json, status, request)
{
if (parseInt(json) > 0)
{
alert('Data added successfully.');
}
s
error : function(request, status)
{
}
3K

}
H
}
);

If you use this example with a properly configured server, you will note that the request is sent to
the server along with a payload of JSON formatted data that can be decoded into an object on the
server side. The screen shot shows submitting data via the ADD method to my own server, which
has been configured with the Access-Control-ATlow-Methods HTTP header, making it possible to
submit REST requests. Figure 7-7 shows the address form.

y E | €3 www.deadmarshes.com/Example®207-9 html

FIGURE 7-7

218 | CHAPTER7 AJAX

Figure 7-8 shows Safari’s web inspector, which shows the request data sent along to the server.

Web Inspector — www.deadmarshes.com — Example 7-9.htm| BD
> =IED W 5]

D-php © [7] Request & {} | ¥ Type

)| <4 » || Example 7-9.h

1 [rcountry”: "2
Streect feity

MIME Type application/json

3 Main
Pstate":"7", "postalCode”:"12345"}
Resource Type XHR

Lstree
“Springfield",

¥ Location

Full URL http:/ [wenw.deadmarshes.comADD.php.

Example 7-9.
@mple 7-9.cs5. g

- Host www.deadmarshes.com
& Cookies — www.deadmarshes.com e

» (-] Bxtension Scripts et AR
EH Local Storage — www.deadmarshes.com

¥ Request & Response

[Session Storage — www.deadmarshes.

Method ADD
Cached Mo

Status OK
Code 200

Encoded 1B
Decoded 18
Transfered 354 8

Compressed No

7 Request Data

MIME Type application/json
Encoding UTF-8

Data 988 ©
¥ Request Headers
Name ¥ Value
X-Requested-With XMLHttpRequest
User-Agent Mzilla/5.0 (Macintosh; Intel Mac 05 X 1094} AppleWebKit/S37.78.2 (KHT
ML like Gecko) Version /7.0.6 Safarif537.78.2
Referer hitp: jwww.deadmarshes.com/Example3207-8.html
Origin bt jwww.deadmarshes.com
ONT 1
Content-Type application json; charset=UTF-8
Accept **: q=0.01
¥ Response Headers
Name ¥ Vaiue
X-Pomered-By PHP/S.4.12
Server Apache/2.2.24 (Unix) DAV/Z PHP/5.4.12 SVN/1.7.8 mod_ss1/2.2.24 Opens
10.9.8y
Keep-Alive timeout=5, max=100
Date Wed, 03 Sep 2014 22:21:25 GMT
Content-Type applicationjson; charset=utf-8
Content-Length 1
Connection Keep-Alive

Access-Contral-Allow-Orgin
Access-Contral-Allow-Methods *

FIGURE 7-8

Figure 7-9 shows a closer look at the web inspector’s detailed view of the HTTP request and the
server’s response.

This example shows you that setting up a REST request on the client side is easy, but you need to
have the right server-side configuration to complete an implementation. Implementing a REST ser-
vice call is as easy as pointing your client-side app to a server configured to handle the additional
request methods that REST provides. You need to set up the request to specify the right method,
such as GET, POST, DELETE, or ADD, which is done using jQuery’s type property with the
$.ajax() method. Then if you intend to pass JSON data between the server and client, you also need
to set the contentType, dataType, and data properties. The contentType tells the server what to expect
in the body of the request. The dataType property tells jQuery what type of data to expect in the

AJAX Events | 219

server’s response, and the data property passes along the data to be placed in the body of the HTTP
request to the server. The data assigned to the data property will then be accessible on the server
side. In this example, the data is passed with JSON formatting. On the server side, you would then
need to decode the JSON formatted data into an object.

¥ Type

MIME Type
Resource Type

application/json
XHR

¥ Location

Full URL

http:/ fwww.deadmarshes.com/ADD.php

Scheme
Host
Path

Filename

http
www.deadmarshes.com
{ADD.php

ADD.php

¥ Request & Response

Method
Cached

ADD
No

Status
Code

OK
200

Encoded
Decoded
Transfered

18
18
354 B

Compressed

No

¥ Request Data

MIME Type
Encoding
Data

application/json
UTF-8
98B @

¥ Request Headers

Content-Type
Accept

Name ¥ | Value

X-Requested-With XMLHttpRequest

User-Agent Mozilla/5.0 (Macintesh; Intel Mac 05 X 10_9_4) AppleWebRit/537.78.2 (KHT
ML, like Gecko) Version/7.0.6 Safari/537.78.2

Referer http:{ fwww.d hes.com/E 207-9.html

Qrigin http:/ fwww.deadmarshes.com

DNT 1

application/jsan; charset=UTF-8
application/json, text/javascript, */*; q=0.01

¥ Response Headers

Content-Type

Name ¥ | Value

X-Powered-By PHP/5.4.12

Server Apache(2.2.24 (Unix) DAV/2 PHP/5.4.12 S5VN/1.7.8 mad_ssl/2.2.24 OpenS
5L/0.9.8y

Keep-Alive timeout=5, max=100

Date ‘Wed, 03 Sep 2014 22:21:25 GMT

application/json; charset=utf-§

Content-Length 1
Connection Keep-Alive
Access-Control-Allow-0rgin *

Access-Control-Allow-Methods *

FIGURE 7-9

220 | CHAPTER7 AJAX

SUMMARY

This chapter took you on a tour of jQuery’s built-in AJAX capabilities. You saw the differences
between a GET and a POST HTTP request, learning that a GET request has a limit on its length, in
addition to being semantically suited for requests that result in no lasting modification or effect on
the server. POST requests, in contrast, should be reserved for requests that shouldn’t be arbitrarily
repeated and do have some kind of lasting impact on the server. In terms of AJAX, GET requests have
a slight performance advantage. In addition, you can take advantage of REST to make your requests
even more semantic, adding method verbs such as ADD or DELETE to the existing GET and POST.

jQuery offers the $.get() method to make GET requests and the $.post() method to make POST
requests. When you work with XML, jQuery makes it super-easy to extract information from an
XML document by giving you full access to jQuery’s various selection methods for querying your
XML responses. The JSON format is easier to work with, but extra care must be taken to ensure
that you don’t make yourself vulnerable to a cross-site forgery. For working with JSON data, jQuery
offers the $.9etISON() method.

You can use the Toad() method to insert HTML snippets requested from the server into elements
that you select with jQuery.

I described how to load script asynchronously with jQuery’s §.getScript() method. This was
demonstrated by loading the jQuery UI API on demand, which was applied to the calendar you
made in Example 7-5, and provided a nifty animated effect when you clicked the various days in
the calendar.

I talked about jQuery’s AJAX events and described the different ways you can use AJAX events
to add an activity indicator to the folder tree example, creating Example 7-6, Example 7-7, and
Example 7-8 demonstrating the different ways that AJAX events can be utilized.

Finally, I demonstrated how to use jQuery’s $.ajax() method to create a request to a server imple-
menting REST services.

EXERCISES

1.

2
3.
4

For an AJAX request, is there any difference between a GET and a POST HTTP request?
What does a REST service provide?
How would you provide extra data with a request using jQuery’s $.get() method?

How would you access a JSON object in a callback function provided to the $.getISONO
method?

Given the following XML, how would you access the contents of the <response> element,
assuming you used jQuery’s $.get() method to request the XML document?

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response>Yes!</response>

Summary | 221

6.

7.

10.

If you wanted to load an HTML snippet into a selection of elements, what jQuery method
would you use?

In the following JavaScript, describe the purpose of each property's callback function:

$.ajaxSetup({

beforeSend : function()

{
}1

success : function()

{
h

error : function()

{
3,
complete : function()

{
}

If you wanted to attach AJAX events to apply only in the context of an individual AJAX
request, rather than globally, what methods does jQuery provide to attach events in this way?

What jQuery method would you use if you wanted to get the value of every input element
within a form?

How would you go about implementing a client-side request to a REST service providing
the DELETE method where you pass a JSON object along to the server within the request?
Describe the configuration you would need to accomplish this and then provide example code.

Animation and Easing Effects

jQuery does a lot to make the life of a developer easier, but jQuery does not stop at making

it easier to traverse the DOM, or manipulate, or iterate, or all the other cool things you’ve
learned about in the preceding chapters. It also gives you the tools to make your documents
look polished, professional, and sophisticated via animation and a plethora of special effects.
This chapter presents how to work with the API that jQuery provides for dealing with effects.

As you’ve seen in examples in previous chapters, jQuery can toggle the display of elements
between hidden and displayed states using its show() and hide() methods. What you may not
have already learned is that those methods also have the ability to animate between hidden
and displayed states via a short animation.

jQuery also gives you the ability to animate an element between hidden and displayed states
by animating an element’s height, in addition to the ability to fade elements on and off via an
animation of an element’s opacity, all with a simple and trivial function call.

Finally, jQuery also has the cability to animate objects in your document between arbitrary
numeric styles, which gives you the ability to create your own, custom animations.

SHOWING AND HIDING ELEMENTS

jQuery provides three methods for showing and hiding elements: show(), hide(), and toggle().
You’ve seen examples of show() and hide() in previous chapters. By default, these three methods
simply make an object visible or invisible by toggling that element’s CSS display property. These
methods make it easier to turn elements on or off. What you haven’t learned about these prop-
erties yet is that you can also supply arguments to these methods that customize an animation
of the transition from visible to invisible or vice versa via easings. Easings are algorithms that
control how an animation progresses over time. For example, an animation may begin quickly,
and as time goes on, the transformation may become slower or faster. An algorithm determines
how time is applied to the animation. Easings may be visualized as a single line on a graph that
represents how time is altered and applied throughout the duration of an animation. Easings
may also alter the animation. For example, an easing that includes bouncing can produce a tran-
sition in which the transformation of an object appears to bounce. When animating the width of

224

| CHAPTER8 ANIMATION AND EASING EFFECTS

an object, a bounce easing is apparent as the width becomes smaller, then snaps larger, and then snaps
smaller again, giving the appearance of bouncing. The easing in this case applies an algorithm that
controls the animation of width over time, with points in time where the animation temporarily goes
backward and then forward again until the duration is met to produce the appearance of bouncing.

These easing effects are all prepackaged into presets that you can utilize in your scripts by calling
a method in jQuery with an argument or option that references the name of the easing preset. Not
all the easing presets are included in the default jQuery download; only 'Tinear' and 'swing' are
included. Additional easings must be downloaded separately from the jQuery UI website at www.
jqueryui.com/download/. The examples in this chapter include jQuery Ul with all optional easings
and UI components included. The jQuery Ul file is included in the source code materials download
for this book available for free from www.wrox.com/go/webdevwithjquery and is named jQueryULjs.

Potential animations include fading, sliding, swinging, and a whole suite of additional effects. In addi-
tion to the animations built in and included with jQuery, you can create your own completely custom
animations using jQuery’s animate() method, as discussed in the section “Custom Animation.”

You can also supply a callback function to any of jQuery’s animation methods, which is executed
when animation completes. And if that doesn’t provide enough flexibility, you can also supply a con-
figuration object that supports a comprehensive list of options that cover additional callback func-
tion scenarios, as well as tweaking all aspects of the animation.

The following example demonstrates how to animate show and hide element transitions using
jQuery’s show(), hide(), and toggle() methods. The toggle() method, as the name implies, encom-
passes both show() and hide() functionality in a single method, switching back and forth depending
on whether the element is visible when animation commences.

<!DOCTYPE HTML>
<htm1 Tlang="en'>
<head>
<meta charset="utf-8' />
<title>Animation and Effects</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 8-1.js'></script>
<link href="Example 8-1.css' rel='stylesheet' />
</head>
<body>
<div id="exampleDialogCanvas'>
<div id="exampleDialog'>
<h4>Integer Feugiat Fringilla</h4>
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Ut vestibulum ornare augue. Fusce non purus vel Tlibero
mattis aliquet. Vivamus interdum consequat risus. Integer
feugiat fringilla est. Vivamus libero. Vestibulum
imperdiet arcu vitae nunc. Nunc est velit, varius sed,
faucibus quis.
</p>
</div>
</div>
<form method="'get' action="#"'>
<fieldset>

http://www.jqueryui.com/download
http://www.jqueryui.com/download
http://www.wrox.com/go/webdevwithjquery

Showing and Hiding Elements | 225

<legend>Animation Options</legend>
<div>

<label for='exampleAnimationEasing'>
Easing:

</label>

<select name='exampleAnimationEasing'

id="exampleAnimationEasing'>

<option value='Tinear'>Tinear</option>
<option value='swing'>swing</option>
<option value='easeInQuad'>easeInQuad</option>
<option value='easeOutQuad'>easeOutQuad</option>
<option value='easeInOutQuad'>easeInOutQuad</option>
<option value='easeInCubic '>easeInCubic</option>
<option value='"easeOutCubic'>easeOutCubic</option>
<option value='easeInOutCubic'>easeInOutCubic</option>
<option value='easeInQuart '>easeInQuart</option>
<option value='easeOutQuart '>easeOutQuart</option>
<option value='easeInOutQuart '>easeInOutQuart</option>
<option value='easeInQuint '>easeInQuint</option>
<option value='easeOutQuint'>easeOutQuint</option>
<option value='easeInOutQuint'>easeInOutQuint</option>
<option value='easeInExpo '>easeInExpo</option>
<option value='easeOutExpo '>easeQutExpo</option>
<option value='easeInOutExpo '>easeInOutExpo</option>
<option value='easeInSine'>easeInSine</option>
<option value='easeOutSine'>easeQutSine</option>
<option value='easeInOutSine'>easeInOutSine</option>
<option value='easeInCirc'>easeInCirc</option>
<option value='easeOutCirc'>easeOQutCirc</option>
<option value='easeInOutCirc'>easeInOutCirc</option>
<option value='easeInElastic'>easelnElastic</option>
<option value='easeOutElastic'>easeOutElastic</option>
<option value='easeInOutETastic'>easeInQutElastic</option>
<option value='easeInBack '>easeInBack</option>
<option value='easeOutBack '>easeQutBack</option>
<option value='easeInOutBack '>easeInOutBack</option>
<option value='easeInBounce '>easeInBounce</option>
<option value='easeOutBounce '>easeQutBounce</option>
<option value='easeInOutBounce '>easeInOQutBounce</option>

</select>
<label for="'exampleAnimationDuration'>
Duration:
</Tabel>
<input type='range'
value="5000"
min="100"
max="10000"
step="'100"

name="exampleAnimationDuration'
id="exampleAnimationDuration' />
<input type='submit'
name="exampleAnimationShow'
id="exampleAnimationShow'
value='Show' />
<input type='submit'

226 | CHAPTER8 ANIMATION AND EASING EFFECTS

name="exampleAnimationHide'
id="exampleAnimationHide'
value="Hide' />
<input type='submit'
name="exampleAnimationToggle'
id="exampleAnimationToggle'
value="'Toggle' />
</div>
</fieldset>
</form>
</body>
</html>

The following style sheet is applied to the preceding markup document:

body {
font: 12px 'Lucida Grande', Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);
}
div#exampleDialogCanvas {
height: 400px;
position: relative;
overflow: hidden;
}
div#exampleDialog {
box-shadow: 0 7px 100px rgba(0, 0, 0, 0.7);
border-radius: 4px;
width: 300px;
height: 200px;
position: absolute;
padding: 10px;

top: 50%;
left: 50%;

z-index: 1;
margin: -110px 0 0 -160px;
background: #fff;

}

div#exampleDialog h4 {
border: 1px solid rgb(50, 50, 50);
background: Tightblue;
border-radius: 4px;
padding: 5px;
margin: 0 0 10px O;

}

div#exampleDialog p {
margin: 10px 0;

}

input#exampleAnimationDuration {
vertical-align: middle;
}

The following script demonstrates the animations provided by jQuery’s show(), hide(), and
toggle() methods:

Showing and Hiding Elements | 227

$(document) . ready (
function()

{

var animating = false;

$("input#exampleAnimationShow').click(
function(event)

{

event.preventDefault();

if (lanimating)

{
animating = true;
var easing = $('select#exampleAnimationEasing').val();
var duration = parseInt($('input#exampleAnimationDuration').val());
$('div#exampleDialog') . show(
duration,
easing,
function()
{
animating = false;
}
);
}
}
);
$("input#exampleAnimationHide').click(
function(event)
{

event.preventDefault();

if (lanimating)

{
animating = true;
var easing = $('select#exampleAnimationEasing').val();
var duration = parseInt($('input#exampleAnimationDuration').val());
$('div#exampleDialog"') .hide(
duration,
easing,
function()
{
animating = false;
}
);
}

228

| CHAPTER 8 ANIMATION AND EASING EFFECTS

$("input#exampleAnimationToggle').click(
function(event)

{

event.preventDefault();

if (lanimating)

{
animating = true;
var easing = $('select#exampleAnimationEasing').val(Q);
var duration = parseInt($('input#exampleAnimationDuration').val());
$("div#exampleDialog').toggle(
duration,
easing,
function()
{
animating = false;
}
);
}
}
);
$("input#exampleAnimationDuration').change(
function()
{

$(this).attr('title', $(this).val());
}
)

)

The preceding example is Example 8-1 in the source code download materials. Figure 8-1 shows the
results of loading up Example 8-1.html in a browser.

In Example 8-1, you created an application that allows you to test the most-used aspects of the show(),
hide(), and toggle() methods. This includes testing every possible type of easing offered in both
default jQuery and the various easing extensions offered as part of jQuery Ul All the easings offered
by jQuery are specified in the <select> element that you created to make it easy to test each easing.

Along with easing, you also provide a duration to each method that is provided by the <input> range
element. The duration argument is specified in milliseconds; 1,000 milliseconds equal 1 second.
Aside from providing an integer value representing the number of milliseconds, you can also provide
a duration-preset string. jQuery offers three duration-preset strings: 'sTow', 'normal’, and 'fast'. If
no duration is specified, the default duration is the "'normal" preset.

The script that you created begins by setting up a variable to keep track of whether an animation

is in progress. The purpose of this variable is to prevent multiple animations from backing up and
occurring one after another by repeatedly clicking any of the buttons while an animation is in prog-
ress. When an animation is initiated, the animating variable is set to true, which prevents additional
animations from occurring while that initial animation is in progress. When an animation com-
pletes, the callback function provided to each method is executed and the animating variable is reset
to false, which allows a new animation to take place.

Showing and Hiding Elements | 229

8006 Animation and Effects "l

[integer Feugiat Fringilla

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Ut vestibulum ornare augue. Fusce
non purus vel libero mattis aliquet. Vivamus
interdum consequat risus, Integer feugiat fringilla
est. Vivamus libero. Vestibulum imperdiet arcu
vitae nunc. Nunc est velit, varius sed, faucibus
quis.

Easing: | linear 4 | DUration: s pe——| Show | I: Hide | | Toggle |

(-An\mation Options

FIGURE 8-1

$(document) . ready(
function()
{

var animating = false;

Next, you set up a click() event on the <input> element with the id name exampleAnimationShow.

$("input#exampleAnimationShow").click(
function(event)
{

event.preventDefault();

if (lanimating)
{

animating = true;

var easing = $('select#exampleAnimationEasing').valQ);
var duration = parseInt($('input#exampleAnimationDuration').val());

$('div#exampleDialog') .show(
duration,
easing,
function()
{

animating = false;

230

| CHAPTER8 ANIMATION AND EASING EFFECTS

}
s

The first thing that happens when a c1ick takes place is the event.preventDefault() method. This
prevents the <form> from submitting to the URL specified in the action attribute.

animating = true;
You then check the animating variable to ensure that an animation is not in progress. If the value of
the animating variable is false, then the next statement dependent on that condition is executed. If
the value of the animating variable is true, then nothing happens and the callback function supplied
to the c1ick() method concludes execution.

var easing = $('select#exampleAnimationEasing').val();

The value of the <select> element with id name exampleAnimationEasing is assigned to the easing
variable, which goes on to be provided in the easing argument of the show() method.

var duration = parseInt($('input#exampleAnimationDuration').val());

Likewise, the value of the <input> element with id name exampleAnimationDuration is converted to
an integer data type with parseInt() and assigned to the duration variable. The duration variable
then goes on to stand in for the duration argument of the show() method.

$("div#exampleDialog').show(
duration,
easing,
function()

{
}

animating = false;
)

The show() method is applied to the <div> with the id name exampleDialog.

All the arguments provided to the show() method are optional. If the show() method is called with no
arguments, no animation takes place and only the CSS display property is set to display the element; for
a <div> element the display property would be set to block. If only the duration argument is specified,
the action of displaying the element is animated via the provided duration with the default easing 'swing'.

The callback function provided to the show() method is executed when the animation has com-
pleted. In this case, the callback function resets the value of the animating variable to false so that
additional animations can take place.

The remainder of the script repeats the logic of the click() event assigned to the <input> element
with the id name exampleAnimationShow on two additional <input> elements. The <input> with id
name exampleAnimationHide receives a similar c1ick() event that swaps out the show() method for
the hide() method. Likewise, the <input> element with id name exampleAnimationToggle receives a
click () event that swaps out the show() method for the toggle() method, which completes this dem-
onstration of the show(), hide(), and toggle() methods.

Sliding Elements | 231

SLIDING ELEMENTS

jQuery also provides the ability to animate an element by sliding. Sliding in jQuery is animating
an element’s height. Sliding down animates an element’s height from nothing to its normal height.
Sliding up animates an element’s height from its normal height to nothing. These two actions are
accomplished using the s1ideDown(), s1ideUp(), and s1ideToggle() methods.

Sliding is another way to reveal and hide elements—you just use a different animation to accomplish
the task. The s1ideDown(), sTideUp(), and sTideToggle() methods are demonstrated in the following
example, which modifies the document created in Example 8-1. This document also appears in the
source code download materials as Example 8-2. To save space, the following example shows only
the differences between Example 8-1 and Example 8-2.

<input type='submit'
name="exampleAnimationShow'
id="exampleAnimationShow'
value="'STide Down' />

<input type='submit'
name="exampleAnimationHide'
id="exampleAnimationHide'
value="'Slide Up' />

<input type='submit'
name="exampleAnimationToggle'
id="exampleAnimationToggle'
value="Toggle Slide' />

</div>
</fieldset>

In the HTML document, only the value attributes of the submit <input> elements are modified to
reflect the updated actions.

The only modification to the style sheet is to the background color of the <h4> element within the dia-
log. This is done so that you can more easily see a difference between Example 8-1 and Example 8-2
when testing the script in a browser.

div#exampleDialog h4 {
border: 1px solid rgb(50, 50, 50);
background: Tightgreen;
border-radius: 4px;
padding: 5px;
margin: 0 0 10px O0;

}

The following script replaces the show(), hide(), and toggle() methods from Example 8-1 with the
s1ideDown(), sTideUp(), and sTideToggle() methods.

$(document) . ready (
function()
{

var animating = false;

$("input#exampleAnimationShow').click(
function(event)

232 | CHAPTER8 ANIMATION AND EASING EFFECTS

{
event.preventDefault();
if (lanimating)
{
animating = true;
var easing = $('select#exampleAnimationEasing').val(Q);
var duration = parseInt($('input#exampleAnimationDuration').val());
$("'div#exampleDialog"').s1ideDown(
duration,
easing,
function()
{
animating = false;
3
);
}
3
);
$("input#exampleAnimationHide").click(
function(event)
{

event.preventDefault();

if (lanimating)

{
animating = true;
var easing = $('select#exampleAnimationEasing').val(Q);
var duration = parseInt($('input#exampleAnimationDuration').val());
$('div#exampleDialog"').slideUp(
duration,
easing,
function()
{
animating = false;
3
);
3
}
);
$("input#exampleAnimationToggle').click(
function(event)
{

event.preventDefault();

if (!animating)
{

animating = true;

Sliding Elements | 233

var easing = $('select#exampleAnimationEasing').val(Q;
var duration = parseInt($('input#exampleAnimationDuration').val());

$('div#exampleDialog').slideToggle(

duration,
easing,
function()
{
animating = false;
}
);
}
}
);
$("input#exampleAnimationDuration').change(
function()
{

$(this).attr('title', $(this).val());
}
);
s

The preceding script results in the document that you see in Figure 8-2.

eo Animation and Effects ."
+ | @ file:///Volumes/richard/Documents/Books/jQuery/2nd%20Ed & | Feade @

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Ut vestibulum ornare augue. Fusce
non purus vel libero mattis aliquet. Vivamus
interdum consequat risus. Integer feugiat fringilla
est. Vivamus libero. Vestibulum imperdiet arcu
vitae nunc. Nunc est velit, varius sed, faucibus
quis.

A Options
[ﬁsing: | linear + | Duration: sy pe——— | Slide Down | [Slide Up | | Toggle Slide |

FIGURE 8-2

234 | CHAPTER8 ANIMATION AND EASING EFFECTS

The preceding example repeats the logic of Example 8-1, swapping out show(), hide(), and toggle()
for s1ideDown(), s1ideUp(), and sTideToggle (). The setup is exactly the same, only the animation

is different. The arguments provided to these three methods are exactly the same as the arguments
provided to show(), hide(), and toggle(). Example 8-2 allows you to test every possible variation of
utilizing the s1ideDown(), s1ideUp(), and s1ideToggle() animations in your own scripts.

Refer to Example 8-1 for a detailed explanation of the logic taking place in Example 8-2. The next
section presents a demonstration of the last trio of built-in jQuery methods that provide animations
for showing and hiding elements: the fadeIn(), fadeOut(), and fadeToggle() methods.

FADING ELEMENTS

Fading elements is another variation that jQuery offers for revealing and hiding elements via an anima-
tion that takes an element from fully opaque to fully transparent or vice versa. After a fade in is started,
or a fade out has been completed, the CSS display property is toggled, so an element that has been faded
out no longer takes up space in the document, or an element that is fading in is visible in the document.

The API is the same as the methods of the preceding two sections; only the names of those
methods and the animation used by those methods are different. jQuery offers three methods for
fading elements: fadeIn(), fadeOut(), and fadeToggle().

The following example demonstrates the trio of fading methods provided by jQuery. Again the
example is the same concept provided in Example 8-1 and Example 8-2, with only a few tweaks

so that you can observe what’s possible using jQuery’s fade animations. The following example is
Example 8-3 in the source code download materials. Only the portions of each document that have
been changed are quoted to conserve space.

<input type='submit'
name="exampleAnimationShow'
id="exampleAnimationShow'
value="'Fade In' />

<input type='submit'
name="exampleAnimationHide'
id="exampleAnimationHide'
value="'Fade Out' />

<input type='submit'
name="exampleAnimationToggle'
id="exampleAnimationToggle'
value='Toggle Fade' />

</div>
</fieldset>

In Example 8-3.html only the value attributes of the submit <input> elements have been changed. These
are given labels that reflect the fade actions that occur when the submit <input> elements are pressed.

The only change to the CSS document is again the background color of the <h4> element within the
dialog; this time the background is set to yellow.

div#exampleDialog h4 {
border: 1px solid rgb(50, 50, 50);

Fading Elements | 235

background: yelTow;

border-radius: 4px;

padding: 5px;

margin: 0 0 10px O0;
3

The following script demonstrates the fadeIn(), fadeOut(), and fadeToggle() methods.

$(document) . ready(
function()
{

var animating = false;

$("input#exampleAnimationShow').click(
function(event)

{

event.preventDefault();

if (!animating)

{
animating = true;
var easing = $('select#exampleAnimationEasing').valQ);
var duration = parseInt($('input#exampleAnimationDuration').val());
$('div#exampleDialog"').fadeIn(
duration,
easing,
function()
{
animating = false;
}
);
}
}
);
$("input#exampleAnimationHide').click(
function(event)
{

event.preventDefault();

if (!animating)
{

animating = true;

var easing = $('select#exampleAnimationEasing').valQ);
var duration = parseInt($('input#exampleAnimationDuration').val());

$('div#exampleDialog') .fadeOut(
duration,
easing,
function()

236 | CHAPTER8 ANIMATION AND EASING EFFECTS

{
animating = false;
3
);
}
}
)5
$("input#exampleAnimationToggle').click(
function(event)
{

event.preventDefault();

if (lanimating)

{
animating = true;
var easing = $('select#exampleAnimationEasing').val(Q);
var duration = parseInt($('input#exampleAnimationDuration').val(Q));
$("div#exampleDialog').fadeToggle(
duration,
easing,
function()
{
animating = false;
}
);
}
3
);
$("input#exampleAnimationDuration').change(
function()
{

$(this).attr('title', $(this).val());
}
)
);

The preceding example results are shown in Figure 8-3.

Custom Animation | 237

eo0o Animation and Effects o
’_ < | P] @ [+ |8 file:/{ /Volumes/richard/Documents/Books/jQuery/2nd%20Ed & ! Reader }

[Integer Feugiat Fringilla

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Ut vestibulum ornare augue. Fusce
non purus vel libero mattis aliquet. Vivamus
interdum consequat risus. Integer feugiat fringilla
est. Vivamus libero. Vestibulum imperdiet arcu
vitae nunc. Nunc est velit, varius sed, faucibus
quis.

(Anlmation Options

Easing: | easelnQuart : | Duration: sy Fade In | | Fade Qut | | Toggle Fade |

FIGURE 8-3

CUSTOM ANIMATION

jQuery also provides an API that facilitates custom animation using the animate() method. jQuery’s
animate() method transitions any CSS properties with numeric values over the specified duration.
This makes it possible to arbitrarily animate width, height, margin, padding, border-width, or any
other property with a numeric value. The animate() method automatically pulls the starting values
from the style properties that are present when animation begins, and those properties are transi-
tioned over the specified duration using the specified easing algorithm.

The following example, Example 8-4, demonstrates how to use the animate() method using the same
example that you used for the previous three examples. As with Example 8-3 and Example 8-2, only
the portions of the HTML document that have been changed from the other examples are provided.

<label for='exampleAnimationDuration's>
Duration:

</Tabel>

<input type='range'

238 | CHAPTER8 ANIMATION AND EASING EFFECTS

value="5000"
min="100"
max="10000"
step="100"
name="exampleAnimationDuration'
id="exampleAnimationDuration' />

<input type='submit'
name="exampleAnimationGrow'
id="exampleAnimationGrow'
value="'Grow' />

<input type='submit'
name="exampleAnimationShrink'
id="exampleAnimationShrink'
value="'Shrink' />

</div>
</fieldset>

The following CSS shows only the portion that changes from Example 8-3.

div#exampleDialog h4 {
border: 1px solid rgb(50, 50, 50);
background: pink;
border-radius: 4px;
padding: 5px;
margin: 0 0 10px O;
}

The following script demonstrates the animate() method.

$(document) . ready(
function()
{

var animating = false;

$("input#exampleAnimationGrow').click(
function(event)

{

event.preventDefault();

if (lanimating)
{

animating = true;

var easing = $('select#exampleAnimationEasing').val(Q);
var duration = parseInt($('input#exampleAnimationDuration').val(Q);

$("div#exampleDialog').animate(
{
width : '400px',
height : '350px’,
marginLeft : '-210px"',
marginTop : '-185px’

Custom Animation | 239

duration,
easing,
function()
{
animating = false;
}
);
}
}
);
$("input#exampleAnimationShrink').click(
function(event)
{

event.preventDefault();

if (lanimating)

{
animating = true;
var easing = $('select#exampleAnimationEasing').val();
var duration = parseInt($('input#exampleAnimationDuration').val());
$('div#exampleDialog').animate(
{
width : '300px"',
height : '200px',
marginLeft : '-160px"',
marginTop : '-110px"'
}7
duration,
easing,
function()
{
animating = false;
}
);
}
}
);
$("input#exampleAnimationDuration').change(
function()
{

$(this).attr('title', $(this).val());
}
)3
)

The preceding example is shown in Figure 8-4, when you click the Grow button.

240 | CHAPTER8 ANIMATION AND EASING EFFECTS

[:NaNs] Animation and Effects)
2] | + | €3 file:// Volumes/richard/Documents/Books/jQuery/2nd%20Editic & L :{eag_g | €] i

[Integer Feugiat Fringilla

Lorem ipsum doler sit amet, consectetuer adipiscing elit. Ut
vestibulum ornare augue. Fusce non purus vel libero mattis aliquet.
Vivamus interdum consequat risus. Integer feugiat fringilla est.
Vivamus libero. Vestibulum imperdiet arcu vitae nunc. Nunc est
velit, varius sed, faucibus quis.

"Anlmation Options

Easing: | linear 3 | DUration; s | Crow | | Shrink |

FIGURE 8-4

When you click the Grow button, the animate() method animates a transition in the <div> with the
id name exampleDialog from the width, height, and margin that are specified in the style sheet.

$("div#exampleDialog').animate(

{
width : "400px"',
height : '"350px',
marginLeft : '-210px',
marginTop : '-185px"'

s

duration,

easing,

function()

{
animating = false;

}

);

The width is animated from 300px to 400px, the height from 200px to 350px, the margin-left

from -160px to -210px, and the margin-top from -110px to -185px. All four of these properties are
animated at the same time, at the same rate determined by the duration and the easing selections.
With the exception of the specification of custom CSS properties to animate, the animate() method
is otherwise similar to the methods introduced in the earlier sections of this chapter.

Animation Options | 241

Although the animate() method is limited to animating numeric CSS properties, jQuery Ul provides
a jQuery Color plugin as part of jQuery Ul for animating transitions between colors as well as
numeric values.

The next section covers the options that you can provide to any of jQuery’s animation methods to
have a more fine-grained control over jQuery animations.

ANIMATION OPTIONS

All jQuery’s animation methods—the animate() method as well as show(), hide(), toggle(Q),
s1ideIn(), s1ideDown(), s1ideToggle(), fadeIn(), fadeOut(), and fadeToggle O—support providing
a simple JavaScript object of key, value pairs in place of the duration, easing, and callback function
arguments, which allows you to fine-tune all aspects of an animation.

The following describes what the method signatures of all these methods look like when using the
options argument instead of the duration, easing, and callback function arguments.

> animate(properties, options)
> show(options), hide(options), toggle(options)
> sTideDown(options), slideUp(options), slideToggle(options)
> fadeIn(options), fadeOut(options), fadeToggle(options)
The options that can be provided in the alternative options argument are as follows:

> duration—The length of the animation. The value will be either an integer representing
milliseconds or one of the following strings: 'sTow', "'normal’, or 'fast'.

> easing—How the transition is animated over time. The value will be a string referencing one
of jQuery’s built-in easing functions.

> queue—A boolean value that indicates whether the animation should be placed in jQuery’s
animation queue. If the value provided to queue is false, the animation is not queued and it
begins immediately. If a string is the value provided, the animation is placed in a queue that
is named after the string provided. If a custom queue name is used, the animation will not be
started automatically; to start a custom queue, call the dequeue (queueName) method.

> specialEasing—Applicable only to the animate () method. An object that maps CSS proper-
ties provided in the properties argument to easings. This makes it possible to animate differ-
ent properties with different easings.

» step function((number) now, (tween) tween—A callback function that is executed once for
each animated property of each animated element, per step of the animation.

> progress function((promise) animation, (number) progress, (number) remainingMillisec-
onds) —A callback function that is executed after each step of the animation but is executed
only once per animated element regardless of the animated properties.

> complete function()—A callback function that is executed when the animation has
completed.

242

| CHAPTER8 ANIMATION AND EASING EFFECTS

> start function((promise) animation) —A callback function that is executed when the
animation starts.

> done function((promise) animation, (Boolean) jumpedToTheEnd) —A callback function that
is executed when the animation has completed and its Promise object has been resolved.

> fail function((promise) animation, (Boolean) jumpedToTheEnd) —A callback function that
is executed when the animation fails to be completed and its Promise object has
been rejected.

> always function((promise) animation, (Boolean) jumpedToTheEnd) —A callback function
that is executed when the animation has been completed or stops without completing and its
Promise object has either been resolved or rejected.

SUMMARY

In this chapter, you learned how jQuery’s animation methods work to hide, display, or transition
elements, either by using jQuery’s various built-in animations or by making a custom animation.

You learned how jQuery’s hide(), show(), and toggle(), as well as all seven additional animation-
related methods, can be provided a duration argument, which can be either a string 'sTlow', 'normal’,
or 'fast', or an integer representing time specified in milliseconds. When used without any
arguments specified, jQuery’s show(), hide(), and toggle() methods simply show and hide an element
by toggling the CSS display property without an animation. Specifying at least the one argument
causes these methods to use an animation to transition between the hidden and displayed states.

jQuery offers some alternative animations that essentially provide the same functions as the show(),

hide(), and toggle() methods. The s1ideDown(), s1ideUp(), and s1ideToggle() methods animate an

element’s height to hide and display an element. The fadeIn(), fadeOut(), and fadeToggle() methods
animate an element’s opacity to hide and display an element.

Finally, you learned how to use the animate() method, which transitions between the styles an ele-
ment already has to styles that you specify in the first argument to the animate() method. The styles
that can be animated are all of the various CSS properties that allow numeric values.

jQuery effects are documented in detail in Appendix M, “Animation and Easing Effects.”

EXERCISES

1.
2.

When specifying the duration of an animation, what values are allowed?
What does jQuery’s s1ideDown() method do?

Which methods would you use to display or hide an element using an animation of that ele-
ment'’s opacity?

What method would you use to create a custom animation?

Which easings are provided with jQuery core?

Plugins

Beyond making many scripting tasks much easier, jQuery also makes itself easy to extend
with new functionality. This is done with an easy-to-understand Plugin API. Using jQuery’s
Plugin API, you can make your own chainable jQuery methods and even write entire complex
client-side applications completely as jQuery plugins.

There are a lot of things you can do with plugins. Some of the more useful and prominent
examples of jQuery plugins are found in the jQuery Ul library, which I discuss in more detail
in Chapter 12, “Draggable and Droppable.” Plugins in the jQuery UI library help you to imple-
ment functionality like drag-and-drop or selecting elements, and a variety of other function-
ality. There is also a thriving third-party development community for jQuery that produces
plugins for just about anything you can think of. You’ll examine a few third-party jQuery
plugins and even write one in Part II, “jQuery UL” of this book. jQuery’s thriving plugin com-
munity exists largely thanks to how ridiculously easy it is to write plugins for jQuery.

This chapter demonstrates how to use jQuery’s Plugin API and covers the basic concepts you
need to understand to start writing plugins of your own. Beyond what you learn about jQuery
plugin basics in this chapter, you also see more examples that use jQuery’s Plugin API later in

the book.

WRITING A PLUGIN

jQuery plugins are easy to implement. All you need to do is pass an object literal containing
the methods you want to extend jQuery with to the $.fn.extend() method.

Writing a Simple jQuery Plugin

Example 9-1 demonstrates how to write a simple jQuery plugin. If you would like to try this
example for yourself, you can find it in the Chapter 9 folder with the rest of the book’s exam-
ples that you can download from www.wrox. com/go/webdevwithjquery.

<!DOCTYPE HTML>

<html xmIns="http://www.w3.0rg/1999/xhtm1">
<head>

http://www.wrox.com/go/webdevwithjquery
http://www.w3.org/1999/xhtml

244 | CHAPTER9 PLUGINS

<meta http-equiv="content-type"
content="application/xhtmi+xml; charset=utf-8" />
<meta http-equiv="content-language" content="en-us" />
<title>John Candy Movies</title>
<script type='text/javascript' src="../jQuery.js'></script>
<script type='text/javascript' src='"Example 9-1.js'></script>
<Tlink type='text/css' href="Example 9-1.css' rel='stylesheet' />
</head>
<body>
<h2>John Candy Movies</h2>
<ul class="movielList'>
<11>The Great Outdoors</11i>
<Ti>Uncle Buck</1i>
<1li>Who’s Harry Crumb?</1i>
<Ti>Canadian Bacon</11i>
<1i>Home Alone</1i>
<Ti>Spaceballs</Ti>
<1i>Planes, Trains, and Automobiles</11i>

<p>
Select All
</p>
</body>
</html>

The following CSS sets up some basic styling for your jQuery plugin-enabled XHTML 5 document
so that you can visually see what happens when you click items in the movie list:

body {
font: 200 16px Helvetica, Arial, sans-serif;

}

h2 {
font: 200 18px Helvetica, Arial, sans-serif;
text-decoration: underline;

}

ul.movielist {
Tist-style: none;
margin: 10px;
padding: 0;

}

ul.movielList 11 {
padding: 3px;

ul.movielList 1i.movieSelected {
background: forestgreen;
color: white;

}

a {
text-decoration: none;
color: green;

3

a:hover {

text-decoration: underline;

}

Writing a Plugin | 245

The following JavaScript provides a simple, to-the-point demonstration of how to use the jQuery
Plugin API to write custom plugins for jQuery:

§.fn.extend({

select : function()

{
// In a jQuery plugin; 'this' is already a jQuery ready object
// Performing an operation Tike addClass() works on one
// or more items, depending on the selection.
return this.addClass('movieSelected');
3,
unselect : function()
{
return this.removeClass('movieSelected');
3

;
var movies = {

ready : function()

{
$("a#movieSelectA11").click(

function(event)

{

event.preventDefault();
$C'ul.movieList 1i').select();
);

$(document) .on(
'click.movielList',
'ul.movielList 17",

function()

if ($(this).hasClass('movieSelected'))
{

$(this).unselect();
3

else

$(this).select();

)
}
};

$(document) . ready(
function()

{

246 | CHAPTER9 PLUGINS

movies.ready();
);

The preceding code results in the screen shot that you see in Figure 9-1 when you click individual
movie titles.

ene John Candy Movies o
John Candy Movies

The Great Outdoors

Uncle Buck

Wha's Harry Crumb?

Canadian Bacon

Home Alone

Spaceballs

Planes, Trains, and Automobiles

Select All

FIGURE 9-1

In the preceding example, you see how jQuery plugins are written using the $.fn.extend()

method. In essence, a jQuery plugin extends what you can do with an object representing an HTML
element. In this case, you’re creating two jQuery plugins, one for selecting an element and one for
unselecting an element. The selection itself is by virtue of applying a class name to one of the <1i>
elements. If the <1i> element is selected, it has the class name movieSelected applied. If the <1i>
element is not selected, then the class name movieSelected is withdrawn. And just so you can visu-
ally see that an item is selected, the movieSelected class name applies a forestgreen background and
makes the text white. This is a really simple example of what can be done using a jQuery plugin;
you take one or more HTML elements and do something directly to those elements. In this example,
you’re doing selection, but you can do much more complicated things with jQuery plugins. You can
have a plugin that adds a calendar to an input element; you can have a plugin that makes an element
a drop zone for drag and drop actions. You’ll see many more examples of jQuery plugins through-
out this book; some are plugins developed by the jQuery Foundation, such as jQuery Ul, and others
are great third-party plugins that add useful functionality, such as the ability to sort a table, which
you’ll take a look at in Chapter 20, “Creating an Interactive Slideshow.”

The Anatomy of a jQuery Plugin

A jQuery plugin’s primary purpose is to do something to an element in the DOM. Within a plugin,
the special keyword this represents the element or elements that you are working with. In Example
9-1, you had two plugins, select() and unselect(). These jQuery plugins can be called on any
HTML element in the DOM through jQuery. The plugin works on one element or many elements.

Writing a Plugin | 247

§.fn.extend({

select : function()

{
// In a jQuery plugin; 'this' is already a jQuery ready object
// Performing an operation Tike addClass() works on one
// or more items, depending on the selection.
return this.addClass('movieSelected');
}!
unselect : function()
{
return this.removeClass('movieSelected');
3

1;

As you’ve been learning throughout the first part of this book, if you have the following jQuery
selection

$('ul.movieList 1i")

what follows that expression can be any method that jQuery supports. You could call addC1ass(),
for example, and add a class name to every <11i> element that selection matches. With jQuery
plugins, in addition to all the methods that jQuery supports, such as find(), addClass(), each(Q,
and so on, you can also extend jQuery any way that you see fit with your own custom plugin. In
Example 9-1, you saw a remedial example, where you’re just adding a class name to every element
in a selection. The keyword this represents an array, and that array contains every element in the
selection. In the example of John Candy movies, this contained an array of seven <1i> elements, so
when the following plugin executed

select : function()

{
// In a jQuery plugin; 'this' is already a jQuery ready object
// Performing an operation like addClass() works on one
// or more items, depending on the selection.
return this.addClass('movieSelected');
3

it did so on this collection of <1i> elements:

<1i>The Great Outdoors</1i>

<Ti>Uncle Buck</1i>

<1li>Who’s Harry Crumb?</Ti>
<Ti>Canadian Bacon</11i>

<1i>Home Alone</Ti>

<1i>Spaceballs</Ti>

<Ti>Planes, Trains, and Automobiles</Ti>

And it added the movieSelected class name to those elements, depending on whether you clicked a
<1i> element directly, or selected them all using the <a> element beneath the list.

248 | CHAPTER9 PLUGINS

Inspecting the Document Object Model

In traditional JavaScript, HTML element objects have always had some built-in properties and
methods. These properties and methods make it possible to interact with and manipulate the DOM.
jQuery sits in the middle, between traditional JavaScript’s built-in DOM and the API it provides

for interacting with that DOM. As you’ve already learned, jQuery simplifies the amount of code
you have to write to query and manipulate the DOM. Most of the methods jQuery provides have
an analogue in the traditional JavaScript DOM API. Some of the methods you’re likely to find in
the traditional DOM are methods like appendChild(), which adds a new child element or text node
just after the last element or text node. Another is getAttribute(), which returns the value of an
attribute. In the context of these two examples, jQuery provides similar methods. Instead of append-
Chi1d(Q), you get a whole spectrum of methods for element placement and DOM manipulation such
as after(), insertAfter(), before(), insertBefore(), and all the other methods I introduced to you
in Chapter 4, “Manipulating Content and Attributes.”

Instead of getAttribute(), setAttribute(), or hasAttributes(), you have attr() and a whole
spectrum of CSS attribute selectors. You’ll note, however, that the concept of a jQuery plugin builds
on the concept of the DOM and the properties and methods that it exposes for working with an
element. jQuery plugins extend what you can do with an element and make it possible to define
completely custom methods.

In Example 9-2, you tweak what you saw in Example 9-1, using traditional JavaScript. You exam-
ine what properties and methods are attached to the <a> element in the HTML document.

You start with this XHTML 5 document:

<!DOCTYPE HTML>
<htm1 xmIns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="content-type"
content="application/xhtml+xml; charset=utf-8" />
<meta http-equiv="content-language" content="en-us" />
<title>John Candy Movies</title>
<script type='text/javascript' src="Example 9-2.js'></script>
<link type='text/css' href='Example 9-2.css' rel='stylesheet' />
</head>
<body>
<h2>John Candy Movies</h2>
<ul class="movielList'>
<1i>The Great Outdoors</11i>
<T1i>Uncle Buck</1i>
<1i>Who’s Harry Crumb?</1i>
<Ti>Canadian Bacon</11i>
<1i>Home Alone</1i>
<Ti>Spaceballs</Ti>
<1i>Planes, Trains, and Automobiles</Ti>

<p>
Select All
</p>
</body>
</html>

http://www.w3.org/1999/xhtml

Writing a Plugin | 249

It might seem redundant, but next I include the same CSS that you saw in Example 9-1 so that you
can see all the components of this document, leaving nothing to mystery.

body {
font: 200 16px Helvetica, Arial, sans-serif;
3

h2 {
font: 200 18px Helvetica, Arial, sans-serif;
text-decoration: underline;

ul.movielist {
Tist-style: none;
margin: 10px;
padding: 0;

ul.movielist 1i {
padding: 3px;

ul.movielist 1i.movieSelected {
background: forestgreen;
color: white;

}
a {
text-decoration: none;
color: green;
}
a:hover {
text-decoration: underline;
B

Finally, we get to the JavaScript document, Example 9-2.js:

document.addEventListener(
'DOMContentLoaded"',
function()

{
var a = document.getETementById('movieSelectAll1');

for (var property 1in a)

console.log(property);

);

In Example 9-2, you cast aside jQuery for a moment for the traditional JavaScript Document Object
Model. You grab an <a> element from the document and then put it inside a for/in loop to examine
what methods and properties are attached to the <a> element.

You can take a look at the structure of jQuery itself by putting something like this (Example 9-3) in
a JavaScript file:

§.fn.extend({

select : function()

250 | CHAPTER9 PLUGINS

{
// In a jQuery plugin; 'this' is already a jQuery ready object
// Performing an operation Tike addClass() works on one
// or more items, depending on the selection.
return this.addClass('movieSelected');
}1
unselect : function()
{
return this.removeClass('movieSelected');
}

1

console.log($.fn);

The call to console.log() allows you to examine the structure of jQuery itself, both built-in
plugins and custom third-party plugins. In Firefox’s web console, when you click the console
entry that represents console.log($.fn), you see a list expand in the right column that is filled
with the names of jQuery plugins, both built-in plugins and custom plugins that have been added
via $.fn.extend().

Writing a Context Menu jQuery Plugin

In Example 9-4, you write a more complicated jQuery plugin with some of the features that you’re
used to seeing in jQuery plugins, such as being self-contained, and the ability to apply behavior to
an element that has been prepared for use with a jQuery plugin through the application of a particu-
lar HTML structure and CSS. In this example, you can see how to transform an unordered list into
a custom context menu. To start, download or type in the following XHTML 5 document:

<!DOCTYPE HTML>
<htm1 xmIns="http://www.w3.0rg/1999/xhtm1">
<head>
<meta http-equiv="content-type"
content="application/xhtml+xml; charset=utf-8" />
<meta http-equiv="content-language" content="en-us" />
<title>Context Menu Plugin</title>
<script type='text/javascript' src="../jQuery.js'></script>
<script type='text/javascript' src="Example 9-4.js'></script>
<Tlink type='text/css' href="Example 9-4.css' rel="'stylesheet' />
</head>
<body class='contextMenuContainer'>
<div id="applicationContainer'>
<p>
jQuery plugins give you the ability to extend jQuery's functionality,
quickly and seamlessly. 1In this example you see how to make a context
menu plugin. It demonstrates some of what you might need to make a
context menu widget as a self-contained jQuery plugin.
</p>
<p class="applicationContextMenuToggles '>
Disable Context Menu</
span>

http://www.w3.org/1999/xhtml

Writing a Plugin | 251

Enable Context Menu</

span>
</p>
<div 1id="applicationContextMenu ">

<Ti>0pen</11i>
<11 class="contextMenuSeparator '><div></div></Ti>
<Tli>Save</Ti>
<Ti>Save As...</11>
<11 class="contextMenuSeparator '><div></div></Ti>
<11 class="'contextMenuDisabled'>Edit</11>

</div>
</div>
</body>
</html>

The preceding XHTML 5 document sets up the necessary markup structure to begin a context
menu plugin. There’s a bit of text, a couple of elements that can toggle whether the context
menu is enabled, and the structure for the context menu itself. This markup is put together with the
following CSS, which styles the context menu to look a lot like a Mac OS X system context menu—
which I did because I can.

html,

body {
padding: 0;
margin: 0;
width: 100%;
height: 100%;

b

body {
font: 12px 'Lucida Grande', Helvetica, Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);
Tine-height: 1.5em;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;

}

div#applicationContainer {
width: 400px;
padding: 20px;

}

div.contextMenu {
display: none;
position: absolute;
z-index: 10;
top: 0;
left: 0;
width: 200px;
font-size: 14px;
background: #fff;
background: rgba(255, 255, 255, 0.95);

252 | CHAPTER9 PLUGINS

border: 1px solid rgb(150, 150, 150);

border: 1px solid rgba(150, 150, 150, 0.95);
padding: 4px 0;

box-shadow: 0 5px 25px rgba(100, 100, 100, 0.9);
border-radius: 5px;

border-radius: 5px;

color: #000;

div.contextMenu ul {
Tist-style: none;
margin: 0;
padding: 0;

div.contextMenu ul 1i {
padding: 2px 0 2px 21px;
margin: 0;
height: 15px;
overflow: hidden;

div.contextMenu ul 1i span {
position: relative;
top: -2px;

div.contextMenu ul 1i.contextMenuSeparator {
padding: 5px 0 8px 0;
font-size: 0;
Tine-height: 0;
height: auto;
}
11 . contextMenuSeparator div {
font-size: 0;
Tine-height: 0;
padding-top: 1px;
background: rgb(200, 200, 200);
margin: 0 1px;
}
body div.contextMenu ul 1i.contextMenuHover {
/* 01d browsers */
background: rgb(82, 117, 243);
/* FF3.6+ */
background: -moz-Tinear-gradient(top, rgb(82, 117, 243) 0%, rgb(3, 57,
242) 100%);
/* Chrome,Safari4+ */
background: -webkit-gradient(
linear, Tleft top, left bottom,
color-stop(0%, rgb(82, 117, 243)),
color-stop(100%, rgb(3, 57, 242))
DH
/* ChromelO+,Safari5.1+ */
background: -webkit-Tinear-gradient(top, rgb(82,117,243) 0%, rgb(3, 57,
242) 100%);
background: -o-Tinear-gradient(top, rgb(82, 117, 243) 0%, rgb(3, 57, 242)
100%);
/* IE10+ */

Writing a Plugin | 253

background: -ms-Tinear-gradient(top, rgb(82, 117, 243) 0%, rgb(3, 57,
242) 100%);

/7‘: W3C 7‘:/

background: Tinear-gradient(to bottom, rgb(82, 117, 243) 0%, rgb(3, 57,
242) 100%);

color: white;
}

1i.contextMenuDisabled {
opacity: 0.5;
}

p.applicationContextMenuToggles {
color: green;
}

p.applicationContextMenuToggles span:hover {
text-decoration: underline;
cursor: pointer;

}

Finally, the following JavaScript ties everything together and breathes life into this once static,
inanimate HTML document.

§.fn.extend({
contextMenu : function()
{ var options = arguments[0] !== undefined ? arguments[0] : {};
var contextMenuIsEnabled = true;

var contextMenu = this;

if (typeof options == 'string')

{
switch (options)
case 'disable':
{
contextMenuIsEnabled = false;
break;
3
}
else if (typeof options == 'object')
// You can pass in an object containing options to
// further customize your context menu.
}

function getViewportDimensions()
{

var x, y;

if (self.innerHeight)

254 | CHAPTER9 PLUGINS

self.innerWidth;
self.innerHeight;

else if (document.documentElement &&
document.documentETement.clientHeight)

{
X = document.documentElement.clientWidth;
y = document.documentElement.clientHeight;
else if (document.body)
{
x = document.body.clientWidth;
y = document.body.clientHeight;
}
return {
X @ X,
y 'y
s
}
if (contextMenuIsEnabled)
{

// If this is attaching a context menu to multiple elements,
// iterate over each of them.
this.find('1i")
.not('11i.contextMenuDisabled, 1i.contextMenuSeparator"')
.bind(
'mouseover.contextMenu',
function()

$(this).addClass('contextMenuHover');
3
)
.bind(

'mouseout.contextMenu’,
function()

$(this).removeClass('contextMenuHover');
);

if (!this.data('contextMenu'))
{
this.data('contextMenu', true)
.addClass('contextMenu')
.bind(
'mouseover.contextMenu',
function()

$(this).data('contextMenu', true);

Writing a Plugin | 255

.bind(
'mouseout.contextMenu',
function()

$(this).data('contextMenu', false);
);

this.parents('.contextMenuContainer:first')
.bind(
'contextmenu.contextMenu',
function(event)
{

event.preventDefault();
var viewport = getViewportDimensions();
contextMenu.show();

contextMenu.css ({
top : 'auto',
right : 'auto',
bottom : 'auto',
Teft : 'auto'
s

if (contextMenu.outerHeight() >
(viewport.y - event.pageY))

{
contextMenu.css(
'bottom',
(viewport.y - event.pageY) + 'px'
);
}
else
{
contextMenu.css(
'top',
event.pageY + 'px'
);
3

if (contextMenu.outerWidth() >
(viewport.x - event.pageX))

{
contextMenu.css(
'right’',
(viewport.x - event.pageX) + 'px'
)5
3
else
{

contextMenu.css(
'"Teft',

256 | CHAPTER9 PLUGINS

event.pageX + 'px'
);

}
);
}

if (1$('body').data('contextMenu'))
$('body').data('contextMenu', true);

$(document) .bind(
'mousedown.contextMenu',

function()

$('div.contextMenu') .each(
function()

if (!$(this).data('contextMenu'))

$(this).hide(Q);

);
}
}

else

this.find('1i")
.not('11i.contextMenuDisabled, 1i.contextMenuSeparator"')
.unbind('mouseover.contextMenu')
.unbind('mouseout.contextMenu');

this.data('contextMenu', false)
.removeClass('contextMenu')
.unbind("'mouseover.contextMenu')
.unbind('mouseout.contextMenu');

this.parents('.contextMenuContainer:first')
.unbind('contextmenu.contextMenu');

$("body').data('contextMenu', false);

$(document) .unbind('mousedown.contextMenu');

}

return this;
}
1;

$(document) . ready(
function()

{

Writing a Plugin | 257

);

$('span#applicationContextMenuDisable').click(
function(event)

{
$("div#applicationContextMenu').contextMenu('disable');
$('div#applicationContextMenu').hide();

);

$('span#applicationContextMenuEnable").click(
function()

$('div#applicationContextMenu').contextMenu();
);

$('div#applicationContextMenu').contextMenu();

With all three documents in place, you get a fine example of jQuery-enabled interactivity when

you load this document into a browser that supports and has enabled the contextmenu event. (By
default, all do except legacy Presto engine-based Opera, although it’s possible to disable this event
in Firefox’s advanced preferences.) The contextMenu event, as you might have guessed, replaces the
menu that comes up by default wherever you might right-click in this web page with a mouse’s right
button or a context menu gesture. On Macs, the context menu gesture brings up the context menu
when you tap with two fingers on an Apple Wireless Trackpad or MacBook Trackpad (assuming
you’ve enabled the gesture in System Preferences &> Trackpad). The result will look something like
what you see in Figure 9-2.

800

@ @ @ [+ ‘8 file:///Volumes/richard /Documents/Books/jQuery/ 2nd%20Edition /Examples/(¢ luReader]

Context Menu Plugin il

FIGURE 9-2

JQuery plugins give you the ability to extend JQuery's functionality,
quickly and seamlessly. In this example you see how to make a
context menu plugin. It demonstrates some of what you might need
1o make a context menu widget as a self-contained jQuery plugin.

Disable Context Menu | Enable Context Menu

Save
Save As...

Edit

258 | CHAPTER9 PLUGINS

If you press Disable Context Menu, you should see the default context menu instead. My default
context menu is shown in Figure 9-3.

Context Menu Plugin

JQuery plugins give you the ability to extend jQuery's functionality,
quickly and seamlessly. In this example you see how to make a
context menu plugin. It demonstrates some of what you might need
to make a context menu widget as a self-contained jQuery plugin.

Disable Context Menu | Enable Context Menu

Back
Reload Page
Open in Dashboard...

Show Page Source
Save Page As...
Print Page...

Inspect Element]

FIGURE 9-3

The remainder of this section picks apart the JavaScript in Example 9-4 line by line and explains
how and why it works.

var options = arguments[0] !== undefined ? arguments[0] : {};
var contextMenuIsEnabled = true;

var contextMenu = this;

if (typeof options == 'string')
switch (options)
{
case 'disable':
{
contextMenuIsEnabled = false;
break;
}
}
else if (typeof options == 'object')

{

// You can pass in an object containing options to
// further customize your context menu.

Writing a Plugin | 259

The first chunk of code (preceding this sentence) provides support for passing in some options. To
disable the context menu, you pass in the string 'disabled’, as in contextMenu('disabled"). To enable
the context menu, you call contextMenu() with no arguments.

If you like, you can expand on this example and add some options of your own. The following is the
function call that gets everything started:

$('div#applicationContextMenu ") .contextMenu();

In the HTML, you set up and structure a <div> element that contains a <u1> element, and this
becomes the context menu:

<div id='"applicationContextMenu '>

<Tli>0pen</Ti>
<Ti class="'contextMenuSeparator'><div></div></Ti>
<Ti>Save</11i>
<Ti>Save As...</11>
<Ti class="'contextMenuSeparator'><div></div></Ti>
<Ti class="'contextMenuDisabled'>Edit</Ti>

</div>

Along with some CSS, this context menu becomes almost indistinguishable from a real Mac OS X
system context menu. Also in the HTML document, you define a boundary for this context menu.
The context menu will occur only within the confines of this element. In our document, that con-
tainer became the <body> element because it was assigned the contextMenuContainer class name. For
this plugin to work, the context menu can be placed in any container, so long as it has a parent or
ancestor with the contextMenuContainer class name. This is all that you need from the standpoint of
the HTML structure, a container element with the contextMenuContainer class name and the <div>
element containing a element. Each <1i> element represents a context menu option.

The next block of code in the JavaScript is a reusable function that gets the dimensions of the view-
port. This is made compatible with older versions of Internet Explorer, which use different ways of
getting the dimensions of the viewport. The method used by most modern, standards-compliant
browsers appears in the first block of code:

function getViewportDimensions()

{

var x, y;

if (self.innerHeight)

{

self.innerWidth;
self.innerHeight;

X
y

else if (document.documentElement &&
document.documentElement.clientHeight)
{

document.documentETement.clientWidth;
document.documentETement.clientHeight;

X
y

else if (document.body)

260 | CHAPTER9 PLUGINS

{
x = document.body.clientWidth;
y = document.body.clientHeight;
}
return {
X 1oX,
y 1y
I

The dimensions of the viewport are needed to reposition the context menu depending on where the
user clicks inside the viewport. If the user clicks on the left side of the viewport, the context menu

is positioned from the left. If the user clicks near the top of the view port, the context menu is posi-
tioned from the top, and if the user clicks near the bottom, the context menu is positioned from

the bottom. Using a little math, you attempt to avoid a situation in which the element used for the
context menu might appear offscreen. Instead, by analyzing where a user clicks and the proximity to
the edges of the viewport, you can reposition based on that data.

if (contextMenuIsEnabled)

{

The preceding block of code detects if contextMenu() is called with no arguments, or in other words,
when the context menu is enabled.

First, you set up some mouseover and mouseout events for the <1i> elements, but only elements that
aren’t disabled or separators.
this.find('1i")
.not('1i.contextMenuDisabled, 11i.contextMenuSeparator')
.bind(
'mouseover.contextMenu',
function()

$(this).addClass('contextMenuHover');
}
)
.bind(

'mouseout.contextMenu’,
function()

$(this).removeClass('contextMenuHover');
);

The call to find('11") finds the <1i> elements inside the element acting as the context menu. These
receive mouseover and mouseout events that are namespaced for our contextMenu plugin. The entire
event is mouseover.contextMenu. The mouseover part is the standard event you are attaching, and the
contextMenu part is the name of this application of the mouseover event. As you’ve learned in all the
chapters preceding this one, naming your events is good practice because it isolates the events that
you apply into namespaces and makes it much easier to selectively enable and disable events, just as
you see here where you bind and unbind events based on the event and the event name. So each <1i>

Writing a Plugin | 261

element, except those with contextMenuDisabled and contextMenuSeparator (filtered out using
not()) class names receives a contextMenuHover class name when the user hovers over those <1i>
elements within the context menu. If you look at the CSS, this causes a CSS gradient to be applied
during mouseover.

if (!this.data('contextMenu'))
{
this.data('contextMenu', true)
.addClass('contextMenu')
.bind(
'mouseover.contextMenu',
function()

$(this).data('contextMenu', true);
}
)
.bind(

'mouseout.contextMenu’,
function()

$(this).data('contextMenu', false);
);
As explained earlier in this chapter, this refers to the element or elements that are selected. In this

case this refers directly to this selection:

$("div#applicationContextMenu')

If you were to do console.log(this) in Safari or Chrome, you’d see the HTML source code of <div
id="applicationContextMenu">.The preceding block of code begins by checking to see if data has
been attached to that <div> element, under the name contextMenu.

if (!this.data('contextMenu'))
{
If no data is found, data is created.

this.data('contextMenu', true)

Invisibly, data is attached to the <div> element, within jQuery.

Then the <div> element is given the class name contextMenu.

.addClass('contextMenu')

That <div> element now looks like this:

<div id="applicationContainer' class='contextMenu'>

And that same <div> element receives mouseover and mouseout events, which themselves set the same
data on the <div> element, which is used to keep track of whether the context menu is active. If the
mouse cursor isn’t over the context menu, then the context menu is considered inactive, and if a

262 | CHAPTER9 PLUGINS

click occurs while the mouse cursor isn’t on top of the context menu, the context menu will

be hidden.

Next, the contextmenu event is applied, and this happens by traveling up the DOM tree from our
<div> element to the first element that has the class name contextMenuContainer.

this.parents('.contextMenuContainer:first')
.bind(
'contextmenu.contextMenu',
function(event)

The preceding code binds the contextmenu event namespaced using our plugin’s name, contextMenu,
to the element with the contextMenuContainer class name. The function provided, of course, exe-
cutes when the contextmenu event fires. In the first line of that function, the default action, display-
ing the default system context menu is canceled. The dimensions of the viewport are retrieved from
our previously defined function. The contextMenu is set to display with a call to show(); then the four
CSS position properties top, right, bottom, and Teft are all reset to their default value, auto. This is
important because your code will set two of the four in pairs, but never all four.

event.preventDefault();
var viewport = getViewportDimensions();
contextMenu.show();

contextMenu.css({

top : 'auto',
right : 'auto',
bottom : 'auto',

Teft : 'auto'
b

The remaining of the contextmenu event callback function defines the position of the context menu
relative to the viewport based on where the user clicked inside that viewport.

if (contextMenu.outerHeight() >
(viewport.y - event.pageY))

{
contextMenu.css(
'bottom',
(viewport.y - event.pageY) + 'px'
);
}
else
{
contextMenu.css(
"top',
event.pageY + 'px'
);
}

if (contextMenu.outerWidth() >
(viewport.x - event.pageX))

Writing a Plugin | 263

{
contextMenu.css(
'right’',
(viewport.x - event.pageX) + 'px'
);
3
else
{

contextMenu.css(
'Teft',
event.pageX + 'px'
);
}

A little bit of math and comparison determines whether it is best to place the context menu from
the left or right, and whether from the top or from the bottom is better. The size of the context
menu is taken into consideration, along with where the mouse click occurs in relation to the edges
of the viewport. The properties event.pageX and event.pageY, obviously provided with all the other
event data, are the x,y coordinates of the mouse click in relation to the document. The properties
viewport.x and viewport.y contain the width and height of the viewport. Finally, outerHeight() is
a jQuery method that gets the height of the context menu including the following CSS properties:

height, padding, border-width, and margin. Likewise, outerwidth() provides similar dimensions
for width.

Next, an event is attached to the document to track clicks that occur outside the context menu.
if (1$('body').data('contextMenu'))
{
$('body').data('contextMenu', true);
$(document) .bind(

'mousedown.contextMenu',
function()

$('div.contextMenu") .each(
function()

if (!$(this).data('contextMenu')

$(this).hide(;

)
}

If the <body> element does not have the data contextMenu, or contextMenu is set to false, then the
event is attached. So that the event cannot be attached multiple times, the contextMenu data is set
to true on the <body> element to indicate that the event has been attached.

$('body ") .data('contextMenu ', true);

264 | CHAPTER9 PLUGINS

A mousedown event, again namespaced with the name contextMenu, is attached to the document.
Whenever a mousedown event occurs, every <div> element with the class name contextMenu is iterated.

$(document) .bind(
'mousedown.contextMenu',
function()

$('div.contextMenu').each(
function()

if (!$(this).data('contextMenu'))

$(this).hideQ;

);

If any of those <div> elements doesn’t have its contextMenu data set to true, then that <div> element
is hidden. Remember earlier in the script that you attached a mouseover and mouseout event to the
context menu to track whether the context menu is active, which was done by setting the data con-
textMenu to a boolean value. This bit of code completes that implementation and makes it possible to
close the context menu just by clicking anywhere but on the context menu.

The last block of code is executed when the context menu is disabled, which is done when you click
the Disable Context Menu option.

$('span#applicationContextMenuDisable').click(
function(event)

{

$('div#applicationContextMenu').contextMenu('disable');
$("'div#applicationContextMenu').hide();

)

The preceding code causes the last block of code, which disables the context menu, to execute.

}
else
{
this.find('1i")
.not('11i.contextMenuDisabled, 1i.contextMenuSeparator')
.unbind('mouseover.contextMenu')
.unbind('mouseout.contextMenu');

this.data('contextMenu', false)
.removeClass('contextMenu')
.unbind('mouseover.contextMenu')
.unbind('mouseout.contextMenu');

this.parents('.contextMenuContainer:first')
.unbind('contextmenu.contextMenu');

$("body').data('contextMenu', false);

Summary | 265

$(document) .unbind("'mousedown.contextMenu');

}

In this block of code, events are removed and data is set to false, reversing all the document changes
that you put in place to enable your context menu. Because your events are namespaced using the
contextMenu name, only the events that you explicitly attached are removed. If other people attached
click or mouseover or other events using other names in other scripts, their events remain untouched
and functional.

GOOD PRACTICE FOR JQUERY PLUGIN DEVELOPMENT

There are just a few things you should keep in mind while developing your own jQuery plugins:

> It’s considered good practice to always expect one or more items to be passed to your plugin
(in the jQuery selection preceding the call to your plugin), and to always return the jQuery
object, whenever it makes sense and is possible to do so, which makes it possible to chain
multiple method calls together.

> If you plan on using third-party jQuery plugins, you’ll want to consider name-spacing your
own plugins in some way so that your naming choices don’t conflict with those of third-party
plugins. Oftentimes this is done by prefixing a name of some sort to your plugin name, like
the name of your company or organization. In the context of your context menu plugin, if
that plugin were developed by your company Example, you might end up calling your plugin
exampleContextMenu().

> Avoid polluting the global namespace. Place all your function calls and variables inside your
jQuery plugin. As an added benefit, this can also make your APIs private and callable only by
you. Preventing other people from using your private APIs gives you the freedom to change
them when you need to because you don’t have to worry about supporting the people using
those APIs.

> If you’re interested in developing official third-party jQuery plugins that follow all the recom-
mended best practices published by jQuery’s developers, see the document located at http://
docs. jquery.com/Plugins/Authoring.

SUMMARY

In this chapter, you learned the basic concepts needed to author your own jQuery plugin. You learned
how jQuery plugins are created by passing an object literal to jQuery’s $.fn.extend() method.

You learned how jQuery plugins expect to have one or more items passed to them, which are always
present in the this keyword.

When you write jQuery plugins, you should return the jQuery object (when it makes sense and is
possible to do so) because this preserves jQuery’s capability to chain method calls onto one another.

You learned how to write a more complicated, more realistic jQuery plugin example by creating a
context menu plugin.

http://docs.jquery.com/Plugins/Authoring
http://docs.jquery.com/Plugins/Authoring

266 | CHAPTER9 PLUGINS

EXERCISES

1.

N o oA w N

What method do you use to add a plugin to jQuery?

How do you list all the plugins in use within jQuery?

How would you create a private API for your own use within your jQuery plugin?
How are items you've selected with jQuery accessed in your custom plugin?

What value should your plugin return?

Why is namespacing your event names a good idea?

Customize the jQuery contextMenu plugin example to provide one or more options:

a. Have your contextMenu plugin execute a callback function when the menu is opened and
positioned.

b. Have your contextMenu plugin provide options for the list of items used in the context
menu itself.

10

Scrollbars

jQuery provides functionality to interact with scrollable DOM elements. As discussed in the
preceding chapter, plugins can extend jQuery with even more capability. Even a quick web
search results in an array of plugins that tout their scrolling merits. Although these plugins can
be useful for specific purposes, jQuery handles most common needs.

This chapter focuses on the interactions provided by the jQuery core framework. These inter-
actions include determining the current scrollbar position of a scrollable element as well as
setting the scrollbar position. As expected, you could accomplish these tasks using a combina-
tion of JavaScript and DOM attributes; however, as usual, jQuery simplifies and standardizes
these items.

GETTING THE POSITION OF A SCROLLBAR

Like most of jQuery’s functionality, getting the position of a scrollbar is simple:

$('div#aScrollableETement').scrol1Top();
$('div#aScrollableETement').scrollLeft();

As demonstrated by the preceding lines of code, scroll position involves two dimensions: verti-
cal and horizontal. Vertical scroll position is measured in pixels from the top, and horizontal
scroll position is measured in pixels from the left.

To showcase the output from these functions, the following example attaches a scroll event
handler that displays the scroll position during scrolling. You begin with the XHTMLS base,
which is presented in the following markup (Example 10-1 in the code downloads at www.
wrox.com/go/webdevwithjquery):

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtml ">
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv='content-language' content='en-us' />
<title>Scrollbar Position</title>

http://www.wrox.com/go/webdevwithjquery):
http://www.wrox.com/go/webdevwithjquery):
http://www.w3.org/1999/xhtml

268 | CHAPTER 10 SCROLLBARS

<script src="../jQuery.js'></script>
<script src="Example 10-1.js'></script>
<link href='Example 10-1.css' rel='stylesheet' />
</head>
<body>
<div id="container'>
<div class="filler'>
Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut Tabore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor 1in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.
</div>
</div>
<div class='status-bar'>

Current Vertical Scrollbar Position:

0
</div>
<div class='status-bar'>

Current Horizontal Scrollbar Position:

0
</div>
</body>
</html>

The following CSS sets up the styling for the scrollbar example:

html,

body {
width: 100%;
height: 100%;

}
body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: rgb(189, 189, 189);
color: rgb(50, 50, 50);
margin: O;
padding: 0;
}

div#container {
border: 1px solid rgb(64, 64, 64);
background: #fff;
padding: 5px;
margin: 0 20px 0 20px;
width: 200px;
height: 100px;
overflow: auto;

Getting the Position of a Scrollbar | 269

}
div.filler {

margin: 10px;

padding: 5px;

width: 400px;

height: 150px;

background: rgb(200, 200, 255);
}
div.status-bar {

margin: 5px 20px 5px 20px;
}

The preceding XHTML and CSS are combined with the following JavaScript:

$(document) . ready(
function()

$('div#container')
.scroll1(
function()
{
$('span#vertical-scroll-value')
.text($(this).scrol1Top());

$('span#horizontal-scroll-value')
.text($(this).scrollLeft());

}
);

The preceding source code results in the document that you see in Figure 10-1.

FIGURE 10-1

In the preceding example, you created a scrollable <div> element with content larger than its
container. When you scroll that container to view its content, the scrollbar positions are retrieved
and displayed on the page.

270

| CHAPTER 10 SCROLLBARS

The markup in this example is straightforward. The scrollable content is contained in the <div>
element with id name container; this container element is needed so that the size of the contents
exceeds the size of the container to allow for scrolling.

<div id="'container'>

Within that container, the <div> element with the class name fi1ler simply contains sample text to
help show movement when the container is scrolled.

<div class="filler'>
Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut Tabore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.

</div>

In addition to the scrollable content, the markup includes two <div> elements with the class name
status-bar for use in displaying the scrollbar position values.

<div class="'status-bar'>

Current Vertical Scrollbar Position:

0
</div>
<div class="'status-bar'>

Current Horizontal Scrollbar Position:

0
</div>

The style sheet presents this markup in such a fashion that the contents of the container require
more space than the container itself so that the browser can provide useful scrollbars for the con-
tainer. The following reviews each rule in the style sheet and explains why each is needed.

The <htm1> and <body> element are each given 100 percent width and height so that these both auto-
matically take up the entire viewport.

html,

body {
width: 100%;
height: 100%;

In the next rule, you give the document a Lucida Grande font, which is a Mac font commonly

used in Mac applications. If that font isn’t available, you can fall back on Arial, which is present

in Windows; otherwise, if that font is not present, you fall back on the generic sans-serif font. The
background is set to a shade of gray. The font color is set to a dark gray, and finally, the default
padding and margin are removed from the <body> element, which is necessary to avoid scrollbars that

Getting the Position of a Scrollbar | 271

would appear on the viewport due to the application of 100 percent width and height with the pre-
ceding stylesheet rule.

body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: rgb(189, 189, 189;
color: rgb(50, 50, 50);
margin: O;
padding: 0;
}

The next rule positions the <div> element with id name container, which contains the scrollable
content. This <div> element is sized to a rather small 200 pixels by 100 pixels, and a small amount
of padding and horizontal margin is applied. The background is set to white; there is a dark gray bor-
der placed around the container; and finally, the overflow: auto; declaration is added so that scroll-
bars appear when this element’s contents exceed its specified dimensions.

div#container {
border: 1px solid rgb(64, 64, 64);
background: #fff;
padding: 5px;
margin: 0 20px 0 20px;
width: 200px;
height: 100px;
overflow: auto;

}

The next rule sets the presentation of the <div> element with the class name filler, setting a small
amount of margin and padding as well as a light blue background. More important, the element is
sized to 400 pixels by 150 pixels so that it is larger than its container.

div.filler {

margin: 10px;

padding: 5px;

width: 400px;

height: 150px;

background: rgb(200, 200, 255);
i

The next rule simply adds a small amount of margin to the <div> elements with the class name
status-bar to add a small amount of space between the elements and to align with the scrollable
container.

div.status-bar {
margin: 5px 20px 5px 20px;
}

The JavaScript for this example is, as usual, succinct. You start by adding a handler function for the
scroll event.

$('div#container')
.scroll1(

272 | CHAPTER 10 SCROLLBARS

Inside the scrol11 event, you write some logic for updating the status bars by getting the scrollbar
positions. First, you get the scro11Top() value from the scrolled element and use its value to set the
innerText of the span#vertical-scroll-value element. Then you similarly get the scrol1Left() value
from the scrolled element and use that value to set the innerText of the span#horizontal-scroll-
value element.

function()
{

$('span#vertical-scroll-value')
.text($(this).scroll1Top());

$('span#horizontal-scroll-value')
.text($(this).scrolllLeft());
}

With this minimal amount of jQuery, you have retrieved the scrollbar position values of a DOM
element while it is being scrolled and updated additional DOM elements to display those values. The
remaining examples in this chapter build upon this structure that you created.

SCROLLING TO A PARTICULAR ELEMENT
WITHIN A SCROLLING <DIV>

As discussed in the introduction to this chapter, and as is typical with jQuery, the same method used
to get the value can also be used to set the value. Therefore, setting the scrollbar positions of a scrol-
lable element is as easy as

$('div#aScrollableElement').scrol1Top(100);
$('div#aScrollableElement').scrollLeft(100);

Again, the values should be specified in pixels when setting the scrollbar positions; as a result, you
must calculate the pixel values if you want to scroll directly to an element within a scrollable con-
tainer. Example 10-2 shows multiple elements within a scrolling <div> element and the code needed
to scroll directly to each:

<!DOCTYPE HTML>
<htm1 xmIns="http://www.w3.0rg/1999/xhtml] ">
<head>
<meta http-equiv='content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv="'content-language' content='en-us' />
<title>Scrollbar Position</title>
<script src="'../jQuery.js'></script>
<script src="Example 10-2.js'></script>
<link href='Example 10-2.css' rel='stylesheet' />
</head>
<body>
<div id="'container'>
<div class="filler'>
Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut Tabore et dolore magna aliqua.

http://www.w3.org/1999/xhtml

Scrolling to a Particular Element within a Scrolling <div> | 273

Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in

culpa qui officia deserunt mollit anim id est Tlaborum.
</div>
<div id="blockl' class="'block'>Block 1</div>
<div id="bTlock2' class="'block '>Block 2</div>
</div>
<div class="button-bar'>
<button class='block-button' data-block="'blockl'>
Go to Block 1
</button>
<button class='block-button' data-block="'block2'>
Go to Block 2
</button>
</div>
<div class="'status-bar'>

Current Vertical Scrollbar Position:

0
</div>
<div class="'status-bar'>

Current Horizontal Scrollbar Position:

0
</div>
</body>
</html>

The preceding HTML is combined with the following CSS:

html,

body {
width: 100%;
height: 100%;

}
body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: rgb(189, 189, 189);
color: rgb(50, 50, 50);
margin: 0;
padding: 0;
}

div#container {
border: Ipx solid rgb(64, 64, 64);
background: #fff;
padding: 5px;
margin: 0 20px 0 20px;
width: 200px;
height: 100px;
overflow: auto;

274 | CHAPTER 10 SCROLLBARS

div.filler {
margin: 10px;
padding: 5px;
width: 400px;
height: 150px;
background: rgb(200, 200, 255);

div.status-bar,
div.button-bar {
margin: 5px 20px 5px 20px;

}
div.block {

margin: 10px;

padding: 5px;

width: 400px;

height: 70px;

background-color: rgb(255, 140, 0);
}

Finally, you apply the following JavaScript, which extends Example 10-1 with new code that
enables the click event handlers to set scrollbar positions.

$(document) . ready(
function()

$('div#container")
.scroll1(
function()
{
$('span#vertical-scroll-value')
.text($(this).scroll1Top());

$('span#horizontal-scroll-value')
.text($(this).scrolllLeft());

}
);
$("button.block-button')
.click(
function()
$('div#container')
.scrol1Top($('div#' + $(this).data().block).offset().top
- $('div#container').offset().top
+ $('div#container').scrol1Top())
.scrollLeft($('div#' + $(this).data().block).offset().left
- $('div#container').offset().left
+ $('div#container').scrollLeft());
}

);

The preceding source code gives you output, as shown in Figure 10-2, in Safari on Mac OS X.

Scrolling to a Particular Element within a Scrolling <div> | 275

FIGURE 10-2

In the preceding example, you added two elements within the scrollable container, added buttons
to reference those new elements, and wired the c1ick event of these buttons to set the scrollbar
positions of the scrollable container.

The two new <div> elements were added within the scrollable container, that is, the <div> element
with id name container.

<div id="'blockl' class="block '>Block 1</div>
<div id="'block2' class="block '>Block 2</div>

The buttons and their containing <div> element were added outside the scrollable container before
the status bars. The data-block attributes of these buttons were used within the c1ick event handlers
to reference the appropriate block for the clicked button.

<div class="button-bar'>
<button class="'block-button' data-bTlock='bTockl'>Go to Block 1</button>
<button class='block-button' data-block='block2'>Go to Block 2</button>
</div>

To set up the document for this example, you added a rule to the style sheet for the new elements. In
addition to size and spacing, the elements are set to a dark orange color to offset the filler text.

div.block {

margin: 10px;

padding: 5px;

width: 400px;

height: 70px;

background-color: rgb(255, 140, 0);
}

In addition, you reused the status-bar style rules for the new button-bar element to maintain
consistency.
div.status-bar,

div.button-bar {
margin: 5px 20px 5px 20px;
}

276 | CHAPTER 10 SCROLLBARS

Next, you added a click event handler for the new buttons to scroll the scrollable container to the
referenced elements within the scrollable container.

$('button.block-button")
.click(
function()

$('div#container")
.scrol1Top($('div#' + $(this).data().block).offset().top
- $('div#container').offset().top
+ $('div#container').scrol1Top())
.scrollLeft($('div#' + $(this).data().block).offset().left
- $('div#container').offset().left
+ $('div#container').scrollLeft());

);

Within this event handler, you set the scro11Top() value for the <div> element with id name
container using calculated values. You began with the value of the top edge of the block element
specified by the button’s data-block attribute (relative to the top of the document).

$('div#' + $(this).data().block).offset().top

From that value, you subtracted the value of the top edge of the scrollable container.

$('div#container').offset().top

Finally, you added back in the current scroll position of the scrollable container, which has an
impact on the first value in this calculation.

$("div#container').scrol1Top()

You followed the same pattern to set the horizontal scrollbar position using scrollLeft().

SCROLLING TO THE TOP

The preceding example demonstrated the functionality of setting the scrollbar positions using
calculated values. Scrolling to the top of a scrollable container is a specialized case in which the
value to be set is zero. To scroll the container to its top leftmost content, you need only one line of
jQuery code:

$('div#aScrollableElement').scrol1Top(0).scrollLeft(0);

jQuery’s scro11Top() and scrollLeft() are fairly tolerant of values outside the logical bounds. This
tolerance can be useful when the values are calculated. For instance, fractional values are truncated;
most values greater than the maximum possible scrollbar position result in the maximum valid
value; and negative or otherwise invalid values result in zero. As a result, the following line also
scrolls the container to its top leftmost content:

$('div#aScrollableElement').scrol1Top('red"').scrollLeft('blue');

Summary | 277

Scrolling a container to its bottom rightmost content can be accomplished by calculating values
larger than the maximum possible values or by simply using a value sufficiently large to be
reasonably sure of exceeding the maximum but sufficiently small to be valid. Both approaches are
demonstrated in the following lines:
$('div#aScrollableElement').scrol1Top($("'div#aScrollableElement')
.prop('scrolTHeight')).scrollLeft($('div#aScrollableETement")

.prop('scrollWidth'));
$('div#aScrollableETement').scrol1Top(999999999).scrol1Left(999999999);

Although the last approach might leave you scratching your head, it is technically more efficient
than selecting elements from the DOM and reading their properties.

SUMMARY

In this chapter, you learned how to retrieve and update the scrollbar positions of scrollable content.

Throughout this chapter, you worked on building a page to display the current scroll positions as
content was scrolled, discovering in the process the event handler you can specify to execute code
during a scrolling operation. You extended the page to set the scroll positions based on elements
within the scrollable content.

Finally, you learned how to scroll a container to the limits of its content, including the most com-
mon case of scrolling to the top, and you became acquainted with some of the nuances of jQuery’s
scrol1Top() and scrollLeft() methods for values outside the expected ranges.

EXERCISES

1.

If you want to retrieve the current scrollbar positions for a scrollable element, which jQuery
functions would you use?

If you want to scroll the top of a particular element into view within its scrollable container,
which three coordinates are needed?

Write the function call that you would use to scroll a scrollable element to its top.
Describe two general approaches to scroll a scrollable element to its bottom.

If an invalid value is specified when setting scro11Top() or scrollLeft(), what value is used by
the function?

11

HTMLS Drag and Drop

In this chapter you learn how to use the HTMLS drag-and-drop specification with jQuery.
The HTMLS drag-and-drop specification gives you a more powerful drag-and-drop imple-
mentation than jQuery Ul’s implementation in the Draggables and Droppables plugins, which
you work with in Chapter 12, “Draggable and Droppable.” The HTMLS drag-and-drop spec-
ification enables you to drag and drop between multiple browser windows, and even

multiple browser windows between completely different browsers. For example, you can initi-
ate a drag in Safari and complete it in Chrome or Firefox. You can also use HTMLS drag and
drop to upload documents from your desktop or file manager. You can drag files from your
desktop, Finder, Windows Explorer, and such to a browser window, and there you can access
the document or documents uploaded through JavaScript and display thumbnails and upload
progress meters.

jQuery has nothing built into it that assists with using the HTMLS drag-and-drop specifica-
tion, but you can use jQuery in an implementation of the HTMLS5 drag-and-drop API to
attach events and manipulate HTML attributes or CSS to enable drag and drop. In the follow-
ing section you learn more about how the drag-and-drop API came about and see an example
implementing it.

IMPLEMENTING DRAG AND DROP

HTMLS drag and drop can be summed up as mostly a collection of JavaScript events. There
are some additional CSS/HTML attributes that enable drag and drop depending on the
browser. The additional CSS/HTML portion is often criticized for the weird and divergent
methods the browser makers have chosen to make it possible to initiate drag and drop. One
such critique is an expletive-laden blog post by Peter-Paul Koch on his quirksmode.org site:
http://www.quirksmode.org/blog/archives/2009/09/the_html15_drag.html.

His rant sums up the problems with the HTMLS5 drag-and-drop API nicely; it basically boils
down to it’s a bit of a kludge because it was reverse-engineered and based on IE’s legacy imple-
mentation. And then, in addition, there is the Safari browser team’s diversion from the specifi-
cation with its addition of CSS to instigate drag-and-drop behavior. However, the Safari team
has since changed its implementation to match the official HTML 5 specification.

http://www.quirksmode.org/blog/archives/2009/09/the_html5_drag.html

280 | CHAPTER 11 HTML5 DRAG AND DROP

The merits of Koch’s rant can be debated, but the frustration he expresses in learning how to use the
drag-and-drop APl is a common experience. What you learn in this chapter, hopefully, can signifi-
cantly mitigate the frustration typically experienced when working with the drag-and-drop API for
the first time.

The drag-and-drop API works in all modern browsers, and even some of the older ones with the
addition of a line or two of legacy-enabling code. The drag-and-drop API originated in IES. The
modern APl is a slight modification of the original IES API. The API was spec’d out by the Web
Hypertext Application Technology Working Group (WHATWG) and later adopted as part of the
formal W3C HTMLS specification, when the W3C took over HTMLS from the WHATWG. The IE
API was adopted with some tweaks so that existing code already in use could be used without

much difficulty.

Following are the drag-and-drop JavaScript events:

>

>

>

dragstart—This event is fired when a drag begins, on the element the drag was initiated on.
dragend—This event is fired when a drag ends, on the element that the drag was initiated on.

dragenter—This event is fired when an element enters the space over the element this event is
attached to; it is used to identify an appropriate drop zone for the drag element.

dragleave—This event is fired when an element leaves the space over the element this event is
attached to; it is also used to identify an appropriate drop zone for the drag element.

dragover—This event is fired continuously while a draggable element is within the space over
the element this event is attached to; this event is also used on the drop side.

drag—This event is fired continuously while the element is dragged, on the element being
dragged.

drop—This event is fired when a draggable element is dropped on the element this event is
attached to.

You need to implement event listeners for most of these events to implement drag and drop in a
document. The following example implements the drag-and-drop API in a browser-based Mac OS
Finder inspired file manager. Remember, you can download this book’s source code for free from
www . wrox . com/go/webdevwithjquery. This example is Example 11-1.html.

<!DOCTYPE HTML>
<html Tang='en'>

<head>

<meta http-equiv='X-UA-Compatible' content='IE=Edge' />

<meta charset='utf-8' />

<title>Finder</title>

<script src="../jQuery.js'></script>

<script src="../jQueryUI.js ' '></script>

<script src="Example 11-1.js'></script>

<link href="Example 11-1.css' rel='stylesheet' />
</head>
<body>

<div id="finderFiles'>

<div class="finderDirectory' data-path='/Applications'>
<div class="finderIcon'></div>

http://www.wrox.com/go/webdevwithjquery

Implementing Drag and Drop | 281

<div class="'"finderDirectoryName'>
Applications
</div>
</div>

<div class="'finderDirectory' data-path='/Library'>

<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Library
</div>
</div>

<div class="'finderDirectory' data-path="'/Network'>

<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Network
</div>
</div>

<div class='finderDirectory' data-path='/Sites'>

<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Sites
</div>
</div>

<div class='finderDirectory' data-path="'/System'>

<div class="'finderIcon'></div>
<div class="finderDirectoryName'>
System
</div>
</div>

<div class="'finderDirectory' data-path='/Users'>

<div class="'finderIcon'></div>
<div class="finderDirectoryName'>
Users
</div>
</div>

</div>

</body>
</html>

The preceding HTML is styled with the following style sheet:

html,
body {

width: 100%;
height: 100%;

}
body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: rgb(189, 189, 189) url('images/Bottom.png') repeat-x bottom;
color: rgb(50, 50, 50);
margin: 0;
padding: 0;
}

div#finderFiles {
border-bottom: Ipx solid rgb(64, 64, 64);
background: #fff;

282 | CHAPTER 11 HTML5 DRAG AND DROP

position: absolute;

top: 0;

right: 0;

bottom: 23px;

left: 0;

overflow: auto;
user-select: none;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;

}
div. finderDirectory {
float: Teft;
width: 150px;
height: 100px;
overflow: hidden;
3
div. finderDirectory:-webkit-drag {
opacity: 0.5;
3

div. finderIcon {
background: url('images/Folder 48x48.png') no-repeat center;
background-size: 48px 48px;
height: 56px;
width: 54px;
margin: 10px auto 3px auto;

div. finderIconSelected,

div. finderDirectoryDrop div.finderIcon {
background-color: rgb(204, 204, 204);
border-radius: 5px;

}

div. finderDirectoryDrop div.finderIcon {
background-image: url('images/Open Folder 48x48.png');

}

div. finderDirectoryName {
text-align: center;

}

span. finderDirectoryNameSelected,

div. finderDirectoryDrop div. finderDirectoryName span {
background: rgb(56, 117, 215);
border-radius: 8px;
color: white;
padding: Ipx 7px;

}

Finally, the following JavaScript brings everything to life:

$.fn.extend({
outerHTML : function()

{
var temporary = $("<div/>").append($(this).clone());
var html = temporary.html();

temporary.remove();

Implementing Drag and Drop | 283

return html;

3,
enableDragAndDrop : function()
{
return this.each(
function()
{
if (typeof this.style.WebkitUserDrag != 'undefined’)
this.style.WebkitUserDrag = 'element’;
}
if (typeof this.draggable != 'undefined’)
{
this.draggable = true;
3
if (typeof this.dragDrop == 'function')
{
this.dragDrop(Q);
}
b
);
}

$(document) . ready(
function()

$(document) .on(
'mousedown . finder"',
'div.finderDirectory, div.finderFile',
function(event)
{
$(th1is).enableDragAndDrop();

$('div.finderIconSelected"')
.removeClass('finderIconSelected');

$('span.finderDirectoryNameSelected')
.removeClass('finderDirectoryNameSelected');

$(this).find('div.finderIcon')
.addClass('finderIconSelected');

$(this).find('div.finderDirectoryName span')
.addClass('finderDirectoryNameSelected');
}
);

$('div.finderDirectory, div.finderFile')
.on(
'dragstart.finder',

284 | CHAPTER 11 HTML5 DRAG AND DROP

function(event)
{
event.stopPropagation();
var html = $(this).outerHTML();
var dataTransfer = event.originalEvent.dataTransfer;
dataTransfer.effectAllowed = 'copyMove';
try
{
dataTransfer.setData('text/html', html);
dataTransfer.setData('text/plain', html);

catch (error)

{
dataTransfer.setData('Text', html);
3
}
)
.on(
'dragend.finder’',
function(event)
if (§('div.finderDirectoryDrop').length)
{
$(this).removeClass('finderDirectoryDrop');
$(this).remove();
}
}
)
.on(
'dragenter.finder',
function(event)
{
event.preventDefault();
event.stopPropagation();
}
)
.on(
'dragover.finder"',
function(event)
{
event.preventDefault();
event.stopPropagation();
if ($(this).is('div.finderDirectory'))
{
$(this).addClass('finderDirectoryDrop');
}
}

Implementing Drag and Drop

| 285

.on(
'dragleave.finder',
function(event)
{
event.preventDefault();
event.stopPropagation();

$(this).removeClass('finderDirectoryDrop');
}
)
.on(
'drop.finder"',
function(event)

{
event.preventDefault();
event.stopPropagation();

var dataTransfer = event.originalEvent.dataTransfer;
try
{

var html = dataTransfer.getData('text/html');

catch (error)

{
}

html = $Chtml);
var drop = $(this);

var html = dataTransfer.getData('Text');

var dontAcceptTheDrop = (
drop.data('path') == html.data('path") ||
drop.is('div.finderFile'")

);

if (dontAcceptTheDrop)

{
// Prevent file from being dragged onto itself
drop.removeClass('finderDirectoryDrop');
return;

}
if (html.hasClass('finderDirectory finderFile'))

// Do something with the dropped file
console.log(html);

}
);

Figure 11-1 shows the preceding example results.

286 | CHAPTER 11 HTML5 DRAG AND DROP

8006 Finder e
J o | » _, [+ ‘6 file:///Volumes/richard/Documents/Books/jQuery/ 2nd%20Edition/Exa ¢ | Reader J @i

— - - -

Applications Library Networlk Sites

—

System

b

FIGURE 11-1

NOTE To run this example in Internet Explorer, you should upload the
documents to a web server.

Prerequisite Plugins

This example begins with the creation of two jQuery plugins, $.outerHTML() and $.enableDragAnd-
Drop(). The $.outerHTMLQ plugin is designed to implement IE’s native outerHTML property as a
jQuery plugin. The purpose of this is to enable easily pasting HTML snippets to the system clip-
board using the drag-and-drop API. Using jQuery’s existing htm1() method would get only the con-
tent of an element, for example:

<div class="finderIcon'></div>
<div class="finderDirectoryName'>
Sites
</div>

Using drag and drop to relocate a complete element, it is instead desirable to have the outer <div>
element as well as its content.

<div class="finderDirectory' data-path="'/Sites'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Sites
</div>
</div>

The $.outerHTMLQ plugin provided here implements the functionality of the IE property in
browsers that haven’t implemented the IE property, such as Safari. These snippets can be taken out
of the DOM and then reinserted when a successful drag-and-drop operation has taken place.

Implementing Drag and Drop | 287

§.fn.extend({
outerHTML : function()

{
var temporary = $("<div/>").append($(this).clone());
var html = temporary.htm1(Q);
temporary.remove();
return html;
}!

The block of code begins with $.fn.extend(), which as you learned in Chapter 9, “Plugins,” is used
to create jQuery plugins. outerHTML : function() begins the first plugin, which implements out-
erHTML functionality. The block of markup that you want to retrieve the outerHTML from is cloned
using $(this).clone() and is inserted inside a temporary <div> element. The temporary <div> is
created using a string "<div/>", which jQuery internally converts to a <div> element object. The
cloned object is inserted within the <div> element using the append() method. Then the newly
inserted object is retrieved from the newly created <div> element using the htm1() method and is
assigned to the variable named htm1. The htm1() method uses the innerHTML property internally,
which is implemented universally, in all browsers. Then the temporary <div> element is cleaned up
from memory with a call to remove(), which deletes it, and the html source is returned as a string.
The HTML snippet that is returned is now portable and can be transported to anywhere that
supports rendering HTML, or as plain text, using your operating system’s drag-and-drop clipboard.
You learn more about the drag-and-drop clipboard later in this section.

The second plugin that you create enables drag and drop using the three different methods that exist
for doing so since the drag and drop API was first created by Microsoft with the release of IES.

enableDragAndDrop : function()

{
return this.each(
function()
{
if (typeof this.style.WebkitUserDrag != 'undefined')
{
this.style.WebkitUserDrag = 'element';
}
if (typeof this.draggable != 'undefined')
{
this.draggable = true;
}
if (typeof this.dragDrop == 'function')
this.dragDrop(Q);
}
}
);
}

This plugin does not assume that you are working with just one element. Because it may be desir-
able to enable drag and drop on many elements at once, it iterates over the potential collection of

288 | CHAPTER 11 HTML5 DRAG AND DROP

elements present in this using each(). jQuery always passes elements to plugins as an
array, never as a single element, to make working with jQuery and writing plugins for
jQuery simpler.

Drag-and-drop functionality is first enabled in older WebKit-based browsers, such as Safari and
Chrome. (It is worth noting that the order in which these methods are used isn’t important, though.)
To enable drag and drop in older WebKit-based browsers, the proprietary CSS property -web-
kit-user-drag is set to the value eTement. But before you set the value, you first test the CSS property
to see if it exists by looking for whether the typeof is undefined. If the property exists, the typeof
will not be undefined, but will instead be string.

if (typeof this.style.WebkitUserDrag != 'undefined')
{

this.style.WebkitUserDrag = 'element';

}

When you set a proprietary CSS property in JavaScript, the hyphens are omitted, and the first letter
is capitalized, so -webkit-user-drag becomes WebkitUserDrag. If it were a property implemented in
Firefox, you’d have -moz-user-drag and MozUserDrag, instead.

Next, you check for the existence of the draggable attribute. The draggable attribute is recom-
mended by the W3C HTML 5 drag-and-drop specification as the official way to enable drag and
drop. This attribute is supported in the latest versions of Safari, Chrome, Firefox, and Internet
Explorer. Like the CSS property, you must check to see if the typeof is not undefined to see if the
attribute is implemented in the browser.

if (typeof this.draggable != 'undefined')
{

this.draggable = true;
}

The draggable attribute is a boolean attribute. Setting it to true enables drag and drop of the ele-
ment, and setting it to false disables drag and drop. The behavior that you get by setting either the
WebkitUserDrag CSS property or draggable attribute is default behavior. Typically, you can move the
element around, but nothing happens when you drop it because that behavior has to be defined with
JavaScript.

The last method of enabling drag and drop is used for older versions of Internet Explorer. Internet
Explorer 9 and later implement the newer HTML 5 drag-and-drop specification and require using
the draggable attribute instead of the legacy method used here. To enable drag and drop in IE8

and earlier, first test for the existence of the dragbrop method. Test to see if the typeof the dragDrop
method is function to find out whether you can use it. (You can also check to see if the typeof is not
undefined like the CSS property and the HTML attribute, if you like.)

if (typeof this.dragDrop == 'function')

this.dragDrop(Q);
}

If the dragbrop method exists, simply calling it on the element enables drag and drop on that element
in IE8 and earlier.

Implementing Drag and Drop | 289

Event Setup

Now that you have defined these two jQuery plugins, you set up the events that you need to imple-
ment the drag-and-drop APIL.

$(document) . ready(
function()

$(document) .on(
'mousedown. finder"',
'div.finderDirectory, div.finderFile',
function(event)

$(th1is).enableDragAndDrop();

$('div.finderIconSelected')
.removeClass('finderIconSelected');

$('span.finderDirectoryNameSelected')
.removeClass('finderDirectoryNameSelected');

$(this).find('div.finderIcon')
.addClass('finderIconSelected');

$(this).find('div.finderDirectoryName span')
.addClass('finderDirectoryNameSelected');

)

The first event that you create is a mousedown event that enables drag-and-drop functionality on

each <div> element with the class names finderDirectory and finderFile. Because it uses the on()
method, it is applied automatically when new <div> elements with those class names are added to
the DOM. You’ll expand on the concept of dynamically applying events to take care of the file or
folders added to the folder you’re viewing later in this chapter in Example 11-2. The mousedown event
is applied with an event namespace, finder, which you learned about in Chapter 3, “Events.” Using
jQuery’s event namespaces allows you more control over binding and unbinding event handlers.
Using the namespace you can unbind only the events in the finder namespace, if wanted, without
affecting events in other namespaces.

The next thing you do is to begin applying drag-and-drop events to each file and folder
<div> element. Along with the CSS property WebkitUserDrag, the HTML attribute draggable,
and the dragbrop() method, the application of these events controls what happens when a
user drags and drops elements. The drag-and-drop events fire in the following order on the
element dragged:

1. dragstart
2. drag
3. dragend

The drag-and-drop events fire in the following order on the drop element:

290 | CHAPTER 11 HTML5 DRAG AND DROP

1. dragenter
2. dragover
3. drop or dragleave

Most of the drag-and-drop events require either event.preventDefault(), or event.stopPropagation(),
or both, to block either the default action or to prevent the event from propagating up the DOM tree.

The dragstart event sets the contents of the operating system’s drag-and-drop clipboard. It also pro-
vides an opportunity to set the effectAllowed property. The effectAllowed property does little more

than change the mouse cursor to give the user an indication of what’s possible when dragging an ele-
ment. Because you’re working with files and folders, the effectAllowed that makes the most sense is

'copyMove'.

$('div.finderDirectory, div.finderFile'")

.on(
'dragstart.finder',
function(event)
{
event.stopPropagation();
var html = $(this).outerHTML();
var dataTransfer = event.originalEvent.dataTransfer;
dataTransfer.effectAllowed = 'copyMove';
try
{
dataTransfer.setData('text/html', html);
dataTransfer.setData('text/plain', html);
catch (error)
{
dataTransfer.setData('Text', html);
}
}
)

The possible values of the effectAllowed property follow:
> none—No operation by drag and drop is permitted.
copy—Only copy by drag and drop is permitted.
move—Only move by drag and drop is permitted.
1ink—Only link by drag and drop is permitted.
copyMove—Both copy and move are permitted.
copyLink—Both copy and link are permitted.

1inkMove—Both link and move are permitted.

Y Y Y Y Y Y Y

a11—Copy, link, and move are all permitted.

Implementing Drag and Drop | 291

When two or more operations are supported by the effectAllowed property, the second or third
operation is typically invoked by holding down a key on the keyboard.

The system drag-and-drop clipboard is also set in the dragstart event. The clipboard is set by first
retrieving the outerHTMLQ of the element. Then the HTML is copied to the clipboard and identi-
fied on the clipboard by the MIME type. In this case, both of the MIME types text/plain and
text/html are set. Setting the MIME types allows other applications on your computer to work
with the data that you copy to the system clipboard. For example, after copying the HTML to

the clipboard in the dragstart event, you can now drag and drop elements outside the browser
window to other applications. Any application that supports text/html or text/plain can work
with the data copied to the clipboard. You can drag and drop from the browser to a text editor,
including editors that only support the text/plain MIME type. You can drag and drop between
completely different browsers.

A try / catch exception differentiates between using the setData() method with Internet Explorer’s
method and the HTMLS standard method. IE supports just two options: 'Text' and "URL'. All the
other browsers use a MIME type. Using an exception automatically switches off to the IE method
when using a MIME type fails and throws an error.

The next event that you attach is the dragend event.

.on(
'dragend.finder',
function(event)

if ($('div.finderDirectoryDrop').length)
{

$(this).removeClass('finderDirectoryDrop');
$(this).remove();

)

The dragend event is fired when the drag has completed, and it is fired on the element that was
dragged. There is an issue with the dragend event that is difficult or outright impossible to work
with. There is no way of knowing when a drag is completed to an acceptable drop zone when a drag
and drop is executed from the browser window to another browser window or an outside applica-
tion. One potential workaround involves sending an AJAX request to the server from the side receiv-
ing the drop and then using web sockets to listen for that drop to occur on the side where the drag
originates. But that approach is way over the top for this simple demonstration of the drag-and-
drop API.

For drag and drops that originate and terminate in the same browser window, the dragend event
looks for the existence of a <div> element with the class name finderDirectoryDrop. If this <div>
element is detected, that is an indication that a drag and drop was completed on an acceptable drop
zone, which means that the element dragged can be removed from the DOM. Because the element

is removed from the DOM, this makes the default action of a drag and drop move. If you were to
implement a copy action, it would then, of course, be desirable to keep the original element. Such an
action might be implemented by holding down the Option (Mac) or Ctrl (Windows) key when doing
a drag and drop. You’d look for the Option/Alt key by checking whether event.altKey evaluates to

292 | CHAPTER 11 HTML5 DRAG AND DROP

true within the dragstart event listener. Other options are the Control key, event.ctrikey, the Shift
key, event.shiftKey, or the Command/Windows key, event.metakey.

The next event attached is the dragenter event:

.on(
'dragenter.finder',
function(event)
{
event.preventDefault();
event.stopPropagation();

The action taken for the dragenter event is simply to prevent the default action and to stop event
propagation. The action taken for the dragover event is similar:

.on(
'dragover.finder',
function(event)
{
event.preventDefault();
event.stopPropagation();
if ($(this).is('div.finderDirectory'))
{
$(this).addClass('finderDirectoryDrop');
}
}
)

The dragover event also requires canceling the default action and stopping event propagation. In
addition, if the element is a <div> element with the classname finderDirectory, the classname fin-
derDirectoryDrop is added, which changes the icon used for the directory from a closed folder to an
open folder.

Likewise, the dragleave event also cancels the default action and stops event propagation:

.on(
'dragleave.finder',
function(event)

{
event.preventDefault();
event.stopPropagation();

$(this).removeClass('finderDirectoryDrop');

Then the classname finderDirectoryDrop is removed from the <div> element, which indicates that
the dragging element is no longer over this element.

Finally, the drop event is applied, and it also begins with preventing the default action and stopping
event propagation:

Implementing Drag and Drop | 293

.on(
'drop.finder"',
function(event)

{
event.preventDefault();
event.stopPropagation();

var dataTransfer = event.originalEvent.dataTransfer;
try
{

var html = dataTransfer.getData('text/html');

catch (error)

{
}

html = $Chtml);
var drop = $(this);

var html = dataTransfer.getData('Text');

var dontAcceptTheDrop = (
drop.data('path') == html.data('path') ||
drop.is('div.finderFile")

);

if (dontAcceptTheDrop)

{
// Prevent file from being dragged onto itself
drop.removeClass('finderDirectoryDrop');
return;

}
if (html.hasClass('finderDirectory finderFile'))

// Do something with the dropped file
console.logChtml);

}
);

The drop event listener continues with assigning the dataTransfer object from event.originalEvent.
dataTransfer to dataTransfer, which is done to keep the code from getting too wide. The HTML
that was copied to the system clipboard under the text/htm1 MIME type during the dragstart event
is retrieved from the system clipboard using the getdata() method and the same MIME type, text/
html. The HTML comes from the clipboard as plain text and is assigned to the htm1 variable. The
htm1 variable is converted into a DOM object that jQuery can work with by passing the HTML
snippet to the jQuery method, $(htm1). This makes it possible to do things with the <div> element
retrieved from the system clipboard using jQuery methods.

Another try / catch exception is used on the getData() method to differentiate between Internet
Explorer’s method of retrieving data from the clipboard and the standard way of retrieving data
from the clipboard. As you did with setData(), IE requires just 'Text' instead of a MIME type to

294 | CHAPTER 11 HTML5 DRAG AND DROP

retrieve data, and using an exception here automatically switches from the MIME type method to
the TE method.

NOTE For security reasons the dataTransfer object can be accessed only from
drag-and-drop event handlers while those drag-and-drop event handlers are
firing. This is done to protect users from unauthorized access to their system’s
clipboard. Access to the dataTransfer object may also be further limited by the
domain name origin (similar to the frame and AJAX cross-domain security
limitations).

Next, the drop element is passed through jQuery, $(this), and assigned to the variable named drop.

The variable dontAcceptTheDrop checks to see that an element isn’t being dropped on itself and that
the drop target is a directory, rather than a file. If dontAcceptTheDrop is true, the finderDirectory
Drop classname is removed, and execution of the event listener terminates with the call to return.

Finally, the <div> object created from the HTML snippet is checked to see that it has either the class-
name finderDirectory or finderFile as a final validation that the HTML snippet is HTML that you
want to work with.

In the next section, you learn how to further extend this example to accept drag-and-drop file
uploads, in addition to implementing drag and drop on the folder window. You extend the example
to dynamically reapply events to a dragged and dropped file or folder.

IMPLEMENTING DRAG-AND-DROP FILE UPLOADS

File uploads by drag and drop have evolved during the past few years—beginning with only allowing
one or more files to be uploaded by drag and drop and then expanding to allowing drag-and-drop
downloads. File uploads then expanded again to allow both files and folders to be uploaded by drag
and drop. Presently, the latest versions of all the major browsers support file upload by drag and drop.
Chrome supports upload of both files and folders, and drag and drop downloads.

In the following example, you build on Example 11-1, adding drag-and-drop upload support to it,
as well as some other tweaks that improve the drag-and-drop experience. Drag-and-drop uploading
is accompanied with thumbnail previews of image files, as well as an upload progress bar. To real-
istically test the following example, you need to add a server-side script into the mix to receive the
uploaded files. The server-side portion of this is not covered by this example, but I have provided a
remedial PHP script that you can use to examine uploaded file metadata. This example is available
in the book’s source code download materials as Example 11-2.

<!DOCTYPE HTML>
<htm1 Tlang="en'>
<head>
<meta http-equiv='X-UA-Compatible' content='IE=Edge' />
<meta charset='utf-8' />
<title>Finder</title>

Implementing Drag-and-Drop File Uploads

| 295

<script src="../jQuery.js'></script>
<script src="../jQueryUI.js ' '></script>
<script src="Example 11-2.js'></script>

<link href="Example 11-2.css' rel='stylesheet' />

</head>
<body>

<div id="finderFiles' data-path="'/">
<div class="finderDirectory' data-path="'/Applications'>
<div class="finderIcon'></div>
<div class='finderDirectoryName'>
Applications

</div>
</div>

<div class="'finderDirectory' data-path='/Library'>
<div class="finderIcon'></div>
<div class='finderDirectoryName'>

Library
</div>
</div>

<div class="finderDirectory' data-path='/Network'>
<div class="finderIcon'></div>
<div class="finderDirectoryName'>

Network
</div>
</div>

<div class="'finderDirectory' data-path='/Sites'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>

Sites
</div>
</div>

<div class="finderDirectory' data-path="'/System'>
<div class="'finderIcon'></div>
<div class='finderDirectoryName'>

System
</div>
</div>

<div class="'finderDirectory' data-path='/Users's>
<div class="finderIcon'></div>
<div class="'finderDirectoryName'>

Users
</div>
</div>
</div>

<div id="'finderDragAndDropDialogue'>
<div id="finderDragAndDropDialoguelWrapper'>

<h4>File Upload Queue</h4>

<div id="'finderDragAndDropDialogueProgress'>

0%
</div>

<img id="'finderDragAndDropDialogueActivity'
src="images/Upload Activity.gif'

alt="Upload Activity'

/>

<div id="'finderDragAndDropDialogueProgressMeter'>

296 | CHAPTER 11 HTML5 DRAG AND DROP

<div></div>
</div>
<div id="finderDragAndDropDialogueFiles'>
<table>
<thead>
<tr>
<th class="finderDragAndDropDialogueFileIcon'>
</th>
<th class="'finderDragAndDropDialogueFile'>
File
</th>
<th class="'finderDragAndDropDialogueFileSize'>
Size
</th>
</tr>
</thead>
<tbody>
<tr class="'finderDragAndDropDialogueTemplate'>
<td class="finderDragAndDropDialogueFileIcon'>
</td>
<td class="'finderDragAndDropDialogueFile'>
</td>
<td class="'finderDragAndDropDialogueFileSize'>
</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</body>
</html>

The preceding file is saved as Example 11-2.html and is styled with the following CSS:

html,

body {
width: 100%;
height: 100%;

}

body {
font: 12px "Lucida Grande", Arial, sans-serif;
background:

rgb(189, 189, 189)
url('images/Bottom.png')
repeat-x bottom;

color: rgb(50, 50, 50);

margin: 0;

padding: 0;

}
div#finderFiles {
border-bottom: Ipx solid rgb(64, 64, 64);
background: #fff;
position: absolute;
top: O;

Implementing Drag-and-Drop File Uploads | 297

right: 0;

bottom: 23px;

left: 0;

overflow: auto;
user-select: none;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;

}
div. finderDirectory {
float: Teft;
width: 150px;
height: 100px;
overflow: hidden;
3
div. finderDirectory:-webkit-drag {
opacity: 0.5;
}
div. finderIcon {
background:
url('images/Folder 48x48.png')
no-repeat center;
background-size: 48px 48px;
height: 56px;
width: 54px;
margin: 10px auto 3px auto;
}

div. finderIconSelected,

div. finderDirectoryDrop > div.finderIcon {
background-color: rgb(204, 204, 204);
border-radius: 5px;

3

div. finderDirectoryDrop > div.finderIcon {
background-image: uril('images/Open Folder 48x48.png');

3

div. finderDirectoryName {
text-align: center;
3

span. finderDirectoryNameSelected,
div. finderDirectoryDrop > div.finderDirectoryName > span {
background: rgb(56, 117, 215);
border-radius: 8px;
color: white;
padding: 1px 7px;
}
div#finderDragAndDropDialogue {
position: fixed;
width: 500px;
height: 500px;

top: 50%;
left: 50%;

margin: -250px 0 0 -250px;
box-shadow: 0 7px 100px rgba(0, 0, 0, 0.6);
background: #fff;

298 | CHAPTER 11 HTML5 DRAG AND DROP

padding: I1px;
border-radius: 4px;
display: none;

div#finderDragAndDropDialogue h4 {
margin: 0;
padding: 10px;

3
img#finderDragAndDropDialogueActivity {
position: absolute;
top: 8px;
right: 50px;
}
div#finderDragAndDropDialogueProgressMeter {
position: absolute;
top: 1lpx;
right: 55px;
width: 210px;
height: 1lpx;
border-radius: 3px;
border: 1px solid rgb(181, 187, 200);
display: none;
3
div#finderDragAndDropDialogueProgressMeter div {
position: absolute;
top: O;
left: 0;
height: 1lpx;
font-size: 0;
Tine-height: 0;
border-top-left-radius: 3px;
border-bottom-left-radius: 3px;
background: rgb(225, 228, 233);
width: 0;
display: none;
}
div#finderDragAndDropDialogueProgress {
position: absolute;
top: 10px;
right: 10px;
3
div#finderDragAndDropDialogueFiles table {
table-Tayout: fixed;
border-collapse: collapse;
margin: 0;
padding: 0;
width: 100%;
height: 100%;
}
div#finderDragAndDropDialogueFiles {
position: absolute;
overflow: auto;
top: 35px;
right: 5px;

Implementing Drag-and-Drop File Uploads | 299

bottom: 5px;
Teft: 5px;
border: 1px solid rgb(222, 222, 222);

}

div#finderDragAndDropDialogueFiles table th {
background: rgb(233, 233, 233);
border: 1px solid rgb(222, 222, 222);
text-align: Teft;
padding: 5px;

}

div#finderDragAndDropDialogueFiles table td {
padding: 5px;
border-left: 1px solid rgb(222, 222, 222);
border-right: 1px solid rgb(222, 222, 222);
overflow: hidden;
text-overflow: ellipsis;
vertical-align: top;

}

td. finderDragAndDropDialogueFileIcon img {
max-height: 100px;

}

The CSS is saved as Example 11-2.css. Finally, the following script and on the following pages com-
pletes the HTML drag-and-drop API demo:

$.fn.extend({

outerHTML : function()

{
var temporary = $("<div/>").append($(this).clone());
var html = temporary.htm1(Q);
temporary.remove();
return html;
1,

enableDragAndDrop : function()
{

return this.each(
function()

{
if (typeof this.style.WebkitUserDrag != 'undefined')

{
}

this.style.WebkitUserDrag = 'element';

if (typeof this.draggable != 'undefined')

this.draggable = true;
}

if (typeof this.dragDrop == 'function')
{
this.dragDropQ);

300 | CHAPTER 11 HTML5 DRAG AND DROP

dragAndDrop = {
path : null,
files : [1],
openProgressDialogue : function(files, path)
! this.path = path;

$('div#finderDragAndDropDialogue')
.fadeIn('fast');

this.files = [];

$(files).each(
function(key, file)
{

}

dragAndDrop.addFileToQueue(file);
)

if (this.files.length)
{

}
else

{
}

this.upload();

this.closeProgressDialogue();

}!

closeProgressDialogue : function()

{
// Uncomment this section to automatically close the
// dialogue after upload

//$('div#finderDragAndDropDialogue’)
// .fadeQut('fast');

//$ (' div#finderDragAndDropDialogue tbody tr')
// .not('tr.finderDragAndDropDialogueTemplate')
// .remove();

},

addFiTeToQueue : function(file)

{
if (!file.name && file.fileName)

Implementing Drag-and-Drop File Uploads | 301

{
file.name = file.fileName;
3
if (Ifile.size && file.fileSize)
{
file.size = file.fileSize;
}

this.files.push(file);

var tr = $('tr.finderDragAndDropDialogueTemplate').clone(true);
tr.removeClass('finderDragAndDropDialogueTemplate');

// Preview image uploads by showing a thumbnail of the image
if (file.type.match(/Aimage\/.*$/) && FileReader)

{ var img = document.createETement('img');

img.file = file;

tr.find('td.finderDragAndDropDialogueFileIcon')
.htm1(img) ;

var reader = new FileReader();

reader.onload = function(event)

{
};

img.src = event.target.result;

reader.readAsDataURL(file);
}

tr.find('td.finderDragAndDropDialogueFile')
.text(file.name);

tr.find('td.finderDragAndDropDialogueFileSize")
.text(this.getFileSize(file.size));

tr.attr('title', file.name);

$('div#finderDragAndDropDialogueFiles tbody').append(tr);
} y

http : null,

upload : function()

{
this.http = new XMLHttpRequest();

if (this.http.upload && this.http.upload.addEventListener)

{
this.http.upload.addEventListener(

302 | CHAPTER 11 HTML5 DRAG AND DROP

'progress’,
function(event)
{
if (event.lengthComputable)
{
$('div#finderDragAndDropDialogueProgressMeter')
.show();
$('div#finderDragAndDropDialogueProgressMeter div')
.show();
var progress = Math.round(
(event.loaded * 100) / event.total
);
$('div#finderDragAndDropDialogueProgress span')
.text(progress);
$('div#finderDragAndDropDialogueProgressMeter div')
.css('width', progress + '%');
}
}!
false
);
this.http.upload.addEventListener(
'load',
function(event)
{
$("div#finderDragAndDropDialogueProgress span')
.text(100);
$("div#finderDragAndDropDialogueProgressMeter div')
.css('width', '100%');
}
);
}
this.http.addEventListener(
'Toad",
function(event)
{

// This event 1is fired when the upload completes and
// the server-side script /file/upload.json sends back
// a response.

dragAndDrop.closeProgressDialogue();

// If the server-side script sends back a JSON response,
// this is how you'd access it and do something with it.
var json = $.parseJSON(dragAndDrop.http.responseText);

} ’

false

)

Implementing Drag-and-Drop File Uploads | 303

if (typeof FormData !== 'undefined')
{

var form = new FormData();

// The form object invoked here is a built-in object, provided
// by the browser; it allows you to specify POST variables

// in the request for the file upload.

form.append('path', this.path);

$(this.files).each(
function(key, file)

{
form.append('file[]', file);
form.append('name[]', file.name);
form.append('replaceFile[]', 1);
}

);

// This sends a POST request to the server at the path

// /file/upload.php. This is the server-side file that will
// handle the file upload.

this.http.open('POST', 'file/upload.json');
this.http.send(form);

}
else
{
console.log(
'This browser does not support HTML 5 ' +
'drag and drop file uploads.'
);
this.closeProgressDialogue();
}

} ’

getFileSize : function(bytes)

{
switch (true)
{
case (bytes < Math.pow(2,10)):
{
return bytes + ' Bytes';
}
case (bytes >= Math.pow(2,10) && bytes < Math.pow(2,20)):
{
return Math.round(
bytes / Math.pow(2,10)
) +' KB';
}
case (bytes >= Math.pow(2,20) && bytes < Math.pow(2,30)):
{

return Math.round(
(bytes / Math.pow(2,20)) * 10
) /10 + ' MB';

304 | CHAPTER 11 HTML5 DRAG AND DROP

3
case (bytes > Math.pow(2,30)):
{
return Math. round(
(bytes / Math.pow(2,30)) * 100
) / 100 + ' GB';
3

}1
applyEvents : function()
var context = null;

if (arguments[0])

{
context = arguments[0];
}
else
{
context = $('div.finderDirectory, div.finderFile');
}
context
.on(
'dragstart.finder',
function(event)
{
event.stopPropagation();
var html = $(this).outerHTML(Q);
var dataTransfer = event.originalEvent.dataTransfer;
dataTransfer.effectAllowed = 'copyMove';
try
{
dataTransfer.setData('text/html', html);
dataTransfer.setData('text/plain', html);
}
catch (error)
{
dataTransfer.setData('Text', html);
}
}
)
.on(
'dragend. finder',
function(event)
{

if ($('div.finderDirectoryDrop').length)
{

$(this).removeClass('finderDirectoryDrop');

Implementing Drag-and-Drop File Uploads | 305

$(this).remove();

}
}
)
.on(
'dragenter.finder’',
function(event)
{
event.preventDefault();
event.stopPropagation();
}
)
.on(
'dragover.finder',
function(event)
{
event.preventDefault();
event.stopPropagation();
if ($(this).is('div.finderDirectory'))
$(this).addClass(' finderDirectoryDrop');
}
}
)
.on(
'dragleave.finder’',
function(event)
{
event.preventDefault();
event.stopPropagation();
$(this).removeClass('finderDirectoryDrop');
}
)
.on(
'drop.finder'
function(event)
{

event.preventDefault();
event.stopPropagation();

var dataTransfer = event.originalEvent.dataTransfer;
var drop = $(this);

if (drop.hasClass('finderDirectory'))
{
if (dataTransfer.files & dataTransfer.files.length)
{
// Files dropped from outside the browser
dragAndDrop.openProgressDialogue(
dataTransfer.files,
node.data('path')
);

306 | CHAPTER 11 HTML5 DRAG AND DROP

}
else
{
try
{
var html = dataTransfer.getData('text/html');
}
catch (error)
{
var html = dataTransfer.getData('Text');
}
html = $Chtml);
var dontAcceptTheDrop = (
html.data('path') == drop.data('path') ||
drop.is('div.finderFile")
);
if (dontAcceptTheDrop)
{
// Prevent file from being dragged onto itself
drop.removeClass('finderDirectoryDrop');
return;
}
if (html.hasClass('finderDirectory finderFile'))
{
// Do something with the dropped file
console.log(html);
}
3
}
}
);
}
I
$(document) . ready(
function()
{

$(document) .on(
'mousedown. finder’,
'div.finderDirectory, div.finderFile',
function(event)
{
$(this).enableDragAndDrop();

§$('div.finderIconSelected')
.removeClass('finderIconSelected');

$('span.finderDirectoryNameSelected')
.removeClass('finderDirectoryNameSelected');

Implementing Drag-and-Drop File Uploads | 307

$(this).find('div.finderIcon")
.addClass('finderIconSelected');

$(this).find('div.finderDirectoryName span')
.addClass('finderDirectoryNameSelected');

)3
dragAndDrop.applyEvents();

$('div#finderFiles')
.on(
'dragenter.finder’',
function(event)
{
event.preventDefault();
event.stopPropagation();
}
)
.on(
'dragover.finder',
function(event)
{
event.preventDefault();
event.stopPropagation();

$(this).addClass(' finderDirectoryDrop');
}
)
.on(
'dragleave.finder’',
function(event)
{
event.preventDefault();
event.stopPropagation();

$(this).removeClass('finderDirectoryDrop');
}
)
.on(
'drop.finder'
function(event)
{
event.preventDefault();
event.stopPropagation();

var dataTransfer = event.originalEvent.dataTransfer;
var drop = $(this);

if (dataTransfer.files && dataTransfer.files.length)
{
dragAndDrop.openProgressDialogue(
dataTransfer.files,
drop.data('path')

308 | CHAPTER 11 HTML5 DRAG AND DROP

);
}
else
{
try
{
var html = dataTransfer.getData('text/html');
}
catch (error)
{
var html = dataTransfer.getData('Text');
3
html = $(html);
if (drop.data('path') == html.data('path'))
{
// Prevent file from being dragged onto itself
drop.removeClass('finderDirectoryDrop');
return;
3
if (!'html.hasClass('finderDirectory finderFile'))
{
return;
}
var fileExists = false;
$('div.finderFile, div.finderDirectory').each(
function()
{
if ($(this).data('path') == html.data('path'))
{
fileExists = true;
return false;
}
}
);
if (!fileExists)
{
dragAndDrop.applyEvents(html);
drop.append(html);
3
}

);

The preceding JavaScript is saved as Example 11-2.js, and loading Example 11-2.html in Safari
produces the screen shot that you see in Figure 11-2 when you drag some files onto the browser
window.

Implementing Drag-and-Drop File Uploads | 309

Applications lslmy M Sites

File Upload Queue [

- Example 9-2.css 412 Bytes

Example 9-2.html 756 Bytes

Hseg Example 9-2.js 228 Bytes

Example 9-2.png 142 KB

Example 9-3.css 412 Bytes
Example 9-3.html 824 Bytes

Example 9-3.js 401 Bytes

Example 9-3.png 219 KB

Example 9-4.css
Example 9-4.html
Example 9-4.js

Eirmtrn 8.1 nnn

FIGURE 11-2

The example presented in Example 11-2 is significantly longer than Example 11-1, but it offers a
more complete implementation of the drag-and-drop API in a web-based file/folder manager para-
digm. The following is an examination of the bits and pieces of Example 11-2 that are new from
Example 11-1.

Adding the File Information Data Object

The first new piece is the creation of a new JavaScript object called dragAndDrop. This new object
holds most of the logic for the implementation of drag-and-drop file uploads. You define two new
properties, path and files, which keep track of the current file path that you’re uploading to and
what files you’re uploading to that location. The first method on the new dragAndDrop object that
you created is called openProgressbDialogue(). (Dialogue is spelled the English way, rather than the
American way, which is simply a personal idiosyncrasy.)

310 | CHAPTER 11 HTML5 DRAG AND DROP

dragAndDrop = {
path : null,
files : [],
openProgressDialogue : function(files, path)
this.path = path;

$('div#finderDragAndDropDialogue')
.fadeIn('fast');

this.files = [];

$(files).each(
function(key, file)

dragAndDrop.addFileToQueue(file);

3
);
if (this.files.length)
{
this.upload();
3
else
{
this.closeProgressDialogue();
}

b

Within the openProgressDialogue() method, you copy the path argument, which indicates the path
you want to upload the files to, to this.path. And you make the progress dialogue visible by calling
the fadeIn('fast') method on the <div> element with the classname finderDragAndDropDialogue.
The files dragged and dropped for upload are passed in the files argument. The files variable is
an array (it remains an array whether one file is uploaded or many), and it is iterated using jQuery’s
each() method. The call to dragAndDrop.addFileToQueue() adds the file to the this.files array and
also adds the file to the progress dialogue’s table so that the user can preview upload progress. If
this.files has a length greater than zero, the method this.upload() is called to execute the file
upload. If this.files has a length of zero, this.closeProgressDialogue() is called to close the prog-
ress dialogue. Logically speaking, the this.closeProgressDialogue() route should be impossible
given that the dialogue is not opened unless one or more files are present to upload. This route is
represented to cover all bases in implementing a reusable file upload API.

The next method implemented in the dragAndDrop object is the closeProgressDialogue () method.

closeProgressDialogue : function()

{
// Uncomment this section to automatically close the
// dialogue after upload

//$ (" div#finderDragAndDropDialogue')

Implementing Drag-and-Drop File Uploads | 311

// .fadeOut('fast');

//$("div#finderDragAndDropDialogue tbody tr')
// .not('tr.finderDragAndDropDialogueTemplate"')
// .remove();

}1

The closeProgressDialogue() method is called automatically when the file upload has completed. It
contains some code that you want to uncomment, upon implementing the server-side portion, which
closes and resets the progress dialogue.

The following method, addFileToQueue(), sets up the <table> in the progress dialogue with a sum-
mary of each file uploaded so that the user can see visual feedback regarding their upload attempt. It
creates thumbnails for any images uploaded and adds the files to the this.files array.

addFileToQueue : function(file)

if (!file.name && file.fileName)

{
file.name = file.fileName;
}
if (Ifile.size && file.fileSize)
{
file.size = file.fileSize;
}

The first section normalizes the file object, moving the file.fileName property to file.name and
the file.fileSize property to file.size in browsers whose makers preferred the longer property
names. Then the file object is added to the this.files array via a call to pushQ).

this.files.push(file);

The next line of code clones the <tr> element with the classname finderDragAndDropDialogueTem-
plate with a call to clone(true), which is ultimately added to the <table> with summary data about
each file uploaded.

var tr = $('tr.finderDragAndDropDialogueTemplate').clone(true);

The finderDragAndDropDialogueTemplate classname is removed from the template. The classname
hides the template from the user and identifies the <tr> element as a template.

tr.removeClass('finderDragAndDropDialogueTemplate');

The next line examines the MIME type of the uploaded file by checking to see if the MIME type
begins with the string 'image/' using a regular expression, and it checks to see if the FileReader
object exists, which is needed to display thumbnails of the uploading image files to the user. At
present it is only possible to display thumbnails of image files.

// Preview image uploads by showing a thumbnail of the image

if (file.type.match(/Aimage\/.*$/) && FileReader)
{

312 | CHAPTER 11 HTML5 DRAG AND DROP

The thumbnail creation begins by creating a new element. The file is assigned to the file
property of the element.

var img = document.createElement('img');

img.file = file;

The element is added to the <td> element with the classname finderDragAndDropDialogue-
FileIcon with a call to htm10).

tr.find('td.finderDragAndDropDialogueFileIcon")
.htm1(img) ;

The FileReader object is instantiated, which plays the critical role of reading the file to display the
image, which is ultimately scaled down to thumbnail size by the style sheet.

var reader = new FileReader();

An onload event is created that assigns the src attribute of the element; each image src
is created using data URIs. The FileReader object provides a base64-encoded data URI representa-
tion of the image, which is assigned to the src attribute, thus making it possible to preview each

image file.
reader.onload = function(event)
{
img.src = event.target.result;
I

reader.readAsDataURL(file);
}

Each filename is placed inside the <td> with the classname finderDragAndDropDialogueFiTe.

tr.find('td.finderDragAndDropDialogueFile')
.text(file.name);

And each file size is converted from bytes to a human-readable number in one of bytes, kilobytes,
megabytes, and such depending on the size of the number by virtue of a call to dragAndDrop.
getFileSize(). The resulting value is placed inside the <td> element with the classname
finderDragAndDropDialogueFileSize.

tr.find('td.finderDragAndDropDialogueFileSize")
.text(this.getFileSize(file.size));
The file.name is assigned to the title attribute of the <tr> element.

tr.attr('title', file.name);

Finally, the completed <tr> template is added to the <tbody> element.

$('div#finderDragAndDropDialogueFiles tbody').append(tr);
3,

Implementing Drag-and-Drop File Uploads | 313

Using a Custom XMLHttpRequest Object

The next property and method provide the data transfer functionality for the uploaded files. This
involves setting up a custom XMLHttpRequest object, which is in turn assigned to this.http.

http : null,

upload : function()

{
this.http = new XMLHttpRequest();

A series of events is set up to monitor upload progress and to watch out for upload completion. First,
you check whether the upToad object exists on the XMLHttpRequest (hereafter, I will simply call the
XMLHttpRequest object just http), and you check to see whether the addEventListener method exists
on the upload object.

if (this.http.upload && this.http.upload.addEventListener)
{

You next set up an event listener for the progress event on the upload object. This event ultimately
tells you the overall progress of the file upload, whether one file is uploaded or many.

this.http.upload.addEventListener(
'progress’,
function(event)

{

The event.lengthComputable property tells you whether there is any progress to report.

if (event.lengthComputable)
{

The <div> with id name finderDragAndDropDialogueProgressMeter is displayed, as well as the <div>
element within that one.

$('div#finderDragAndDropDialogueProgressMeter')
.show();

$('div#finderDragAndDropDialogueProgressMeter div')
.show();

File upload progress is calculated as a rounded percentage from the event.loaded and event.total
properties that are provided in the event object.
var progress = Math.round(

(event.Tloaded * 100) / event.total
);

The resulting progress figure is added to the nested with the <div> element with id name
finderDragAndDropDialogueProgress.

$('div#finderDragAndDropDialogueProgress span')
.text(progress);

314 | CHAPTER 11 HTML5 DRAG AND DROP

Then the <div> nested within the <div> with id name finderDragAndDropDialogueProgressMeter is
given a percentage width, which also indicates the progress.

$('div#finderDragAndDropDialogueProgressMeter div')
.css('width', progress + '%');
}
},

false

);

Next, a Toad event is attached to the upload object to cover what happens when 100 percent upload
progress is reached.

this.http.upload.addEventListener(
'load"',
function(event)

$('div#finderDragAndDropDialogueProgress span')
.text(100);

$('div#finderDragAndDropDialogueProgressMeter div')
.css('width', '100%');

);
}

A Toad event is also attached to the http object, which is fired when the server side has responded to
the upload request.

this.http.addEventListener(
'load"',
function(event)

{
// This event is fired when the upload completes and
// the server-side script /file/upload.json sends back
// a response.

When the upload request is completed, the progress dialogue is closed with a call to dragAndDrop.
closeProgressDialogue().

dragAndDrop.closeProgressDialogue();

// If the server-side script sends back a JSON response,
// this is how you'd access it and do something with it.

If the server-side sends back a JSON response, it can be read and parsed from the http.
responseText property, and the application can respond to data in the JSON response
appropriately.

var json = $.parseJSON(dragAndDrop.http.responseText);
}!

false

);

Implementing Drag-and-Drop File Uploads | 315

Check for the existence of the FormData object to see if a more recent revision of drag-and-drop
upload is supported by your browser. The FormData object is provided by the browser and facilitates
the creation of the HTTP request that will ultimately pass the uploaded file data across the Internet.
In this example, the FormData object creates a POST request with encoding multipart/form-data. In
a traditional file upload, you would have to add multipart/form-data to the <form> element in the
enctype attribute. The FormData object takes care of this for you automatically.

if (typeof FormData !== 'undefined')
{

var form = new FormData();

// The form object invoked here is a built-in object, provided
// by the browser; it allows you to specify POST variables
// 1in the request for the file upload.

You can append arguments to the FormData object by using the append() method. The first argument
appended is the path argument. This creates a POST variable called path on the server side and sig-
nals to the server-side script where you want to upload the files.

form.append('path', this.path);

Each file is iterated by passing the this.files array to the each() method. The file is passed to the
server side in a file[] array. The square brackets are used by PHP to signal the creation of an array.
The syntax used to do this might be different in your server-side language of choice. Some addi-
tional information is passed on to the server in a name[] variable and the replaceFile[] variable.
You can create as many variables as you need.

$(this.files).each(
function(key, file)

{
form.append('file[]', file);
form.append('name[]"', file.name);
form.append('replaceFile[]"', 1);
3

);

Finally, the entire POST request including the uploaded file data is sent on to the server-side script
for processing. file/upload.json provides a canned JSON response in the absence of a real server-
side script.

// This sends a POST request to the server at the path
// /file/upload.php. This is the server-side file that will
// handle the file upload.
this.http.open('POST', 'file/upload.json');
this.http.send(form);

}

If your browser does not support the FormData object, you print a message to the JavaScript console
and close the progress dialogue.

else

{

316 | CHAPTER 11 HTML5 DRAG AND DROP

console.Tog(
'This browser does not support HTML 5 ' +
'drag and drop file uploads.'

);

this.closeProgressDialogue();
}
3,

Additional Utilities

The remaining methods in the JavaScript act as utilities for simplifying the remaining actions of size
calculation, string manipulation, and event application.

The getFileSize() method returns a human-readable representation of file size. The file size in bytes
is fed into the method, and a number representing the file size in bytes, kilobytes (KB), megabytes
(MB), or gigabytes (GB) is returned. This method uses the Math.pow() method, where Math.
pow(2,10) = 1 KB, Math.pow(2,20) = 1 MB, and Math.pow(2,30) = 1 GB.

getFileSize : function(bytes)

{
switch (true)
{
case (bytes < Math.pow(2,10)):
return bytes + ' Bytes';
3
case (bytes >= Math.pow(2,10) && bytes < Math.pow(2,20)):
{
return Math.round(
bytes / Math.pow(2,10)
) +' KB';
3
case (bytes >= Math.pow(2,20) && bytes < Math.pow(2,30)):
{
return Math.round(
(bytes / Math.pow(2,20)) * 10
) /10 + ' MB';
3
case (bytes > Math.pow(2,30)):
{
return Math.round(
(bytes / Math.pow(2,30)) * 100
) / 100 + " GB';
3
}
3,

The applyEvents() method applies all the drag-and-drop events that you first implemented

in Example 11-1. You start the method by creating a context variable, which decides how the
events are applied. If you apply the events to a file or folder object that has been dragged and

dropped from outside the browser window, this method applies each drag-and-drop event to

Implementing Drag-and-Drop File Uploads | 317

the newly moved file or folder object. Otherwise, each event is applied to every file and folder object
that is present.

applyEvents : function()

{ var context = null;
if (arguments[0])
{ context = arguments[0];
i'lse

{
}

context

$('div.finderDirectory, div.finderFile');

context

The dragstart, dragend, dragenter, dragover, and dragleave events remain unchanged from
Example 11-1. The drop event has been modified to accommodate drag-and-drop file uploads as
well as moving around existing files or folders.

.on(
'drop.finder',
function(event)

{
event.preventDefault();
event.stopPropagation();

var dataTransfer = event.originalEvent.dataTransfer;
var drop = $(this);

if (drop.hasClass('finderDirectory'))
{

If the user has dragged and dropped files for upload to the browser window, the files are present in
the dataTransfer.files property, and the files property has a length greater than zero. The files,
along with the path of the folder the files were dropped on, passes along to the openProgressDia-
Togue) method for processing and upload.

if (dataTransfer.files && dataTransfer.files.length)

{
// Files dropped from outside the browser
dragAndDrop.openProgressDialogue(
dataTransfer.files,
node.data('path')
);
}
else
{
try
{

var html = dataTransfer.getData('text/html');

318 | CHAPTER 11 HTML5 DRAG AND DROP

catch (error)

{
}

html = $Chtml);

var html = dataTransfer.getData('Text');

Other than file uploads by drag and drop, the drop event listener works the same as it did in
Example 11-1.

Along with the drag-and-drop events that are applied to each file and folder object, a new collection
of drag-and-drop events are also applied to the <div> element with id name finderFiles, which is
the folder view taking up nearly all the browser window that holds all the file and folder elements.
This <div> element receives dragenter, dragover, and dragleave events that are identical to the
dragenter, dragover, and dragleave events already placed on <div> elements with classnames
finderFile or finderDirectory. This leaves the drop event, which is slightly different.

.on(
'drop.finder',
function(event)

{
event.preventDefault();
event.stopPropagation();

var dataTransfer = event.originalEvent.dataTransfer;
var drop = $(this);

As you did with the other drop event, check that the files property has a Tength greater than zero,
which lets your application know that the user has dropped files onto the browser window.

if (dataTransfer.files && dataTransfer.files.length)

{
dragAndDrop.openProgressDialogue(
dataTransfer.files,
drop.data('path')
);
}
else
{
try
{
var html = dataTransfer.getData('text/html');
}
catch (error)
{
var html = dataTransfer.getData('Text');
3

html = $(html);

You also make sure that the folder isn’t dropped on itself:

if (drop.data('path') == html.data('path'))

Summary | 319

// Prevent file from being dragged onto itself
drop.removeClass('finderDirectoryDrop');
return;

}
You make sure that the dropped HTML has the finderDirectory and finderFile class names:

if (!html.hasClass('finderDirectory finderFile'))
{

}

return;

Finally, check that any file or folder dropped onto the directory doesn’t already exist in the directory
by examining each of the filenames in that directory locally. In this example, the application simply
stops when it detects a duplicate file locally. Another approach is upon detecting a duplicate file, you
ask users if they wants to replace the duplicate file; then you pass that selection onto the server side,
which should also perform validation for existing files or folders. In addition, the same duplicate
filename check should be done for drag-and-drop file uploads. I have removed the extra validation in
the interest of keeping the script shorter and more to the point.

var fileExists = false;

$('div.finderFile, div.finderDirectory').each(

function()
{
if ($(this).data('path') == html.data('path'))
{
fileExists = true;
return false;
}

);

If the file or folder does not already exist, you would do something with the dropped
HTML here.

if (!fileExists)

{
dragAndDrop.applyEvents (html);
drop.append(Chtml);

SUMMARY

In this chapter you learned how to use jQuery to leverage the HTMLS drag-and-drop API. You
implemented the drag-and-drop API using the CSS property -webkit-user-drag, the draggable
HTML attribute, and the legacy dragbrop() method. You also learned how to implement the drag-
and-drop API in JavaScript by virtue of attaching listeners to the following events: dragstart, drag,
dragend, dragenter, dragover, drop, and dragleave.

320 | CHAPTER 11 HTML5 DRAG AND DROP

You also learned how to implement drag-and-drop file uploads using the drag-and-drop API, which
includes looking for the files property on the dataTransfer object. You learned how to preview
thumbnails of uploading image files using the FileReader object. You learned how to monitor upload
progress by attaching progress and load events to the upload property of the XMLHttpRequest object.
Finally, you learned how to customize an HTTP POST request and submit the file upload to the
server side using the XMLHttpRequest and FormData objects.

EXERCISES

1.

Describe how you enable drag-and-drop functionality on an element. Which methods are leg-
acy methods and what browsers do the legacy methods exist for?

List the events in the order that they fire that are used to drag an element.

List the events in the order that they fire that are used to drop an element.

When you implement drag-and-drop file uploads, what property do you look for, and using
which event, to detect that a drag-and-drop file upload has taken place? For extra credit,

what property would you use if you weren't using jQuery?

When implementing a thumbnail preview of image files, what format is used to view
preview images?

When creating a drag-and-drop file upload, what events can monitor file upload progress?
What object do you attach these events to?

Which event properties calculate file upload progress percentages?

Describe how you would create custom POST variables in the HTTP request that is generated
for a drag-and-drop file upload.

How do you know that a file upload was successful?

PART Il

jQuery Ul

» CHAPTER 12:

» CHAPTER 13:

» CHAPTER 14:

» CHAPTER 15:

» CHAPTER 16:

» CHAPTER 17:

» CHAPTER 18:

Draggable and Droppable
Sortable

Selectable

Accordion

Datepicker

Dialog

Tabs

12

Draggable and Droppable

Beginning with this chapter, the discussion shifts to the jQuery Ul library. The jQuery Ul
library is a collection of reusable components that enables you create user-interface function-
ality quickly. The jQuery Ul library handles a variety of tasks, such as making elements in a
document draggable or making a list of items that you can rearrange by dragging and drop-
ping, and many other UI tasks that you learn about in the remaining chapters of this book.

The jQuery Ul library is functionality that exists outside jQuery’s core framework you’ve
been using and learning about throughout the preceding chapters of this book. The jQuery
Ul library is a series of jQuery plugins that handles these different Ul tasks. In the spirit of
jQuery’s AP, the library makes certain Ul tasks much easier to implement.

You can download jQuery Ul library components from http://ui.jquery.com/download. The
website enables you to customize your download based on which UI components you want
to use, and it offers this customization so that you can add the least amount of JavaScript
possible, which, in turn, reduces overhead like file size and bandwidth. The source code
download for this book is available free from www.wrox.com/go/webdevwithjquery and includes
the entire jQuery UI package, which comprises all jQuery Ul library plugins. For testing and
learning purposes, this is fine; however, if you want to use Ul library components in a real,
production website, you should customize your jQuery Ul library download to include only
the components that you will use in your application because the entire library is a sizable file
weighing in at 229.56 KB packed (all white space, comments, and line breaks removed), or
347.82 KB fully unpacked and uncompressed—a fairly large file download.

This chapter begins coverage of the jQuery UI library with the Draggable and Droppable
libraries. This contrasts with the coverage presented in Chapter 11, “HTMLS Drag and
Drop,” which presents how to use HTMLS5’s native drag-and-drop API. The key differences
between the HTMLS drag-and-drop API and the jQuery UI’s Draggable and Droppable API
is that the HTMLS5 API can be used between multiple, independent browser windows (even
different browser windows of completely different browsers), and even between different
applications, assuming the applications in question use a browser component such as WebKit
(Apple, et al.), Blink (Google, et al.), Gecko (Mozilla), or Trident (Microsoft). HTMLS5’s drag-
and-drop API also provides the ability to upload one or more files via drag-and-drop.

http://ui.jquery.com/download
http://www.wrox.com/go/webdevwithjquery

324 | CHAPTER 12 DRAGGABLE AND DROPPABLE

The Draggable and Droppable jQuery Ul libraries provide similar functionality, but this function-
ality is limited to working within one browser window. Its functionality does not allow dragged
content to leave the boundaries of the browser window. Whichever you choose to use depends upon
what your project goals include for functionality.

The Draggable library gives you the ability to make any element on a page draggable. In the most
rudimentary sense, that means you can move elements around in a document with your mouse and
arrange those elements however you like. The next section introduces the Draggable jQuery UI APIL.

MAKING ELEMENTS DRAGGABLE

Making an element draggable is easy: First, you need to include the Ul library that includes the
Draggable plugin; then, after you make a selection with jQuery, you simply chain the method
draggable() to the selection, like so:

$('div#anElementIdLikeToDrag').draggable();

The preceding code makes the <div> element with the id name anElementIdLikeToDrag, a draggable
element, which means that you can move the element anywhere in the document with your mouse.
The ability to make elements draggable gives you more options in terms of how your applications
function, giving you many of the same options that you have developing desktop applications.

The actual code behind the scenes, enabling the drag operation, isn’t complex, but it’s yet another
thing that jQuery allows you to take several lines of code and compress them into little code. In this
case, it’s a simple function call.

To show you just how easy it is to make an element draggable, the following presents an example
in which you create a file manager that looks somewhat like Mac OS X Finder. You begin with the
XHTMLS base, which is presented in the following markup (Example 12-1):

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtml ">
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv="'content-language' content='en-us' />
<title>Finder</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 12-1.js'></script>
<Tlink href="Example 12-1.css' rel="'stylesheet' />
</head>
<body>
<div id="finderFiles'>
<div class="finderDirectory' data-path='/Applications'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Applications
</div>
</div>
<div class="'finderDirectory' data-path='/Library'>

http://www.w3.org/1999/xhtml

Making Elements Draggable | 325

<div class="finderIcon'></div>
<div class="finderDirectoryName'>
Library
</div>
</div>

<div class="'finderDirectory' data-path=

<div class="finderIcon'></div>
<div class="finderDirectoryName'>
Network
</div>
</div>

<div class="'finderDirectory' data-path=

<div class="finderIcon'></div>
<div class="finderDirectoryName'>
Sites
</div>
</div>

<div class="'finderDirectory' data-path=

<div class="finderIcon'></div>
<div class="finderDirectoryName'>
System
</div>
</div>

<div class="'finderDirectory' data-path=

<div class="finderIcon'></div>
<div class="finderDirectoryName'>

'/Network '>

'/Sites'>

'/System'>

'/Users'>

Users
</div>
</div>
</div>
</body>
</html>
The following CSS sets up the styling for the Finder example:
html,
body {
width: 100%;
height: 100%;
b
body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: rgb(189, 189, 189) url('images/Bottom.png') repeat-x bottom;
color: rgb(50, 50, 50);
margin: 0;
padding: 0;
}
div#finderFiles {

border-bottom: Ipx solid rgb(64, 64, 64);
background: #fff;
position: absolute;

top: 0;

right: 0;

bottom:
left: 0;

23px;

326 | CHAPTER 12 DRAGGABLE AND DROPPABLE

overflow: auto;

}

div. finderDirectory {
float: Teft;
width: 150px;
height: 100px;
overflow: hidden;

3

div. finderIcon {
background: url('images/Folder 48x48.png') no-repeat center;
background-size: 48px 48px;
height: 56px;
width: 54px;
margin: 10px auto 3px auto;

div. finderIconSelected {
background-color: rgb(196, 196, 196);
border-radius: 5px;

}

div. finderDirectoryName {
text-align: center;

}

span. finderDirectoryNameSelected {
background: rgb(56, 117, 215);
border-radius: 8px;
color: white;
padding: Ipx 7px;

}

The preceding XHTMUL and CSS are combined with the following JavaScript:
$(document) . ready (

function()
{
$('div.finderDirectory")
.mousedown (
function()

$('div.finderIconSelected')
.removeClass('finderIconSelected');

$('span.finderDirectoryNameSelected")
.removeClass('finderDirectoryNameSelected');

$(this).find('div.finderIcon')
.addClass('finderIconSelected');

$(this).find('div.finderDirectoryName span')
.addClass('finderDirectoryNameSelected');

}
)
.draggable();

Making Elements Draggable | 327

The preceding source code results in the document that you see in Figure 12-1.

8 0o Example 12-1.html| e
[S— — J— [em—
Applications Library Network Sites
[E— I
System Users

FIGURE 12-1

In the preceding example, you created a layout of folders like that found in Mac OS X Finder. The
only difference you’ll notice between browsers is that the rounded-corner effect present on selected
folders comes through only on newer browsers, whereas older versions of IE and Opera show
square corners.

Basically, the gist of this example enables you to select a single folder at a time and drag those fold-
ers around to any position in the window.

To make the elements draggable, you included the jQuery Ul library, which includes all the jQuery
UI plugins, including the Draggable plugin.

<script src="../jQueryUI.js"'></script>

The markup in this example is straightforward. The individual folders are all contained in the <div>
element with the id name finderFiles; this container element is needed to assist in controlling the
presentation of the folders.

<div id="finderFiles'>

Each folder resides in a container <div> element with the class name finderDirectory, with the
path to the directory contained in the data-path attribute, which could then be used to implement
AJAX functionality where the path of the folder is submitted asynchronously to the server and the
server responds with the contents of that folder. Each folder has an icon and a name, so markup is
put in place for each of these. The reasoning behind this specific structure makes more sense after
you examine the style sheet, but you create one <div> element for the icon, which controls the posi-
tion of the icon and sets the dimensions for the highlighted style. Then the name of the folder is
contained in another <div> element, which has the name of the folder nested in a element.
The element is used so that when the folder is highlighted, the background is applied to an
inline element, and the background hugs the text, even if the text takes up multiple lines (refer to
Figure 12-1).

328 | CHAPTER 12 DRAGGABLE AND DROPPABLE

<div class="'finderDirectory' data-path="'/Applications'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Applications
</div>
</div>

The style sheet does all the work of making this raw lump of structural markup into a Finder-
imitating document. The following reviews each rule in the style sheet and explains why each is
needed. The <htm1> and <body> element are each given 100 percent width and height so that these
both automatically take up the entire viewport.

html,
body {
width: 100%;
height: 100%;
3

In the next rule, you give the Finder a Lucida Grande font, which is a Mac font used for most
Apple-created Mac applications. If that font isn’t available, you can use Arial, which is present on
Windows. If that font is not present, use the generic sans-serif font. The background is set to a shade
of gray; then an image is tiled across the bottom of the window so that this document looks a little
more like a real Finder window. The font color is set to a dark gray. Finally, the default padding
and margin are removed from the <body> element, which is necessary to avoid scrollbars that would
appear on the viewport due to the application of 100% width and height with the preceding style
sheet rule.

body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: rgb(189, 189, 189) url('images/Bottom.png') repeat-x bottom;
color: rgb(50, 50, 50);
margin: 0;
padding: 0;
}

The next rule positions the <div> element with the id name finderFiles, which contains all the
folders. This <div> element is positioned absolutely and is set to take up nearly the entire viewport,
except the bottom 23 pixels, and that is done by specifying opposing offset properties, which when
present imply width and height. The background is set to white; there is a dark gray border placed
across the bottom of the container; and finally, the overflow: auto; declaration is added so that
when you have more folders and files than the container can hold, a scrollbar appears so that you
can access folders and files off-screen.

div#finderFiles {
border-bottom: Ipx solid rgb(64, 64, 64);
background: #fff;
position: absolute;
top: O;
right: 0;
bottom: 23px;

Making Elements Draggable | 329

left: 0;
overflow: auto;

}

The remaining style-sheet declarations set up the folders. The next rule puts the folders side by side
and gives each fixed dimensions. The overflow: hidden; declaration prevents long folder names
from extending outside the boundaries of the container.

div. finderDirectory {
float: Tleft;
width: 150px;
height: 100px;
overflow: hidden;

}

The next rule handles the display of the folder icon. The <div> element sets the dimensions of the
icon with the highlighting effect in mind, and the gray background applied to a selected folder is
applied to the <div> element. The background image is sized using the background-size property to
limit it to the actual dimensions of the folder’s icon. The background-position is set to center so that
it is centered both horizontally and vertically within the solid gray background color when the folder
is highlighted. The <div> element is adjusted in position using top and bottom margin, and then it is
centered inside its container <div> element using margin with auto as the value of the left and right
margins. The result is a folder icon that looks more like a real Finder icon in OS X. Although, if

you wanted to mimic Windows Explorer or another file management program, you might choose to
deploy some of the same techniques.

div. finderIcon {
background: url('images/Folder 48x48.png') no-repeat center;
background-size: 48px 48px;
height: 56px;
width: 54px;
margin: 10px auto 3px auto;

}

The following rule defines the style for a selected folder. The class name finderIconSelected is
applied to the <div> element with the class name finderIcon dynamically using jQuery.
div. finderIconSelected {
background-color: rgbh(196, 196, 196);
border-radius: 5px;

}

The next rule centers the name of the folder.

div. finderDirectoryName {
text-align: center;
B

And finally, the last rule sets the style for the selected folder’s name. A blue background, a little
padding, white text, and rounded corners are added to make the folder name look more like the
real Finder.

span. finderDirectoryNameSelected {
background: rgb(56, 117, 215);

330 | CHAPTER 12 DRAGGABLE AND DROPPABLE

border-radius: 8px;
color: white;
padding: Ipx 7px;

And as you’ve no doubt come to expect, the JavaScript portion of this example is simple. You start
with code that’s required to make a folder selectable, which is done by adding a mousedown event. A
mousedown event is used instead of, say, a click event, because you want a selection to take place even
if the user moves the mouse cursor outside the boundaries of the folder while the mouse button is
pressed. If users move the cursor while the button is pressed, that causes the element to be dragged.
Because of that, you want the folder to be selected to show users that the folder they are dragging

is selected.

$('div.finderDirectory")
.mousedown (

Inside the mousedown event, you write some logic for selecting the folder. First, you remove the class
name finderIconSelected from the div.finderIconSelect element.

Then you repeat the selection; you remove the class name finderDirectoryNameSelected from the
span.finderDirectoryNameSelected element.

This series of actions clears any previous selection when a new selection is made.

Now add the class names that you removed to the div.finderIcon and span elements that
are selected.

function()

{
$('div.finderIconSelected')
.removeClass('finderIconSelected');

$('span.finderDirectoryNameSelected')
.removeClass('finderDirectoryNameSelected');

$(this).find('div.finderIcon')
.addClass('finderIconSelected');

$(this).find('div.finderDirectoryName span')
.addClass('finderDirectoryNameSelected');

}

Finally, you make each folder draggable by chaining the method draggable() to the call to
mousedown().

.draggable();

The jQuery Ul draggable() method lets you move the folders in the document to any position you
like, similar to how Mac OS X’s Finder works by default, enabling you to arrange the folders how-
ever you like. But the jQuery Ul draggable() method enables you to do more than this. In the next
section, you learn how to do ghosting and how to add the Droppable API into the mix.

Designating Drop Zones for Draggable Elements | 331

DESIGNATING DROP ZONES FOR DRAGGABLE ELEMENTS

Typically when you implement dragging on elements in your document, you want to designate
somewhere for the elements being dragged to be dropped. jQuery Ul provides another plugin for
handling the drop portion of this; it is called Droppable. The jQuery UI Droppable plugin enables
you to create and manipulate a variety of things associated with dropping one element onto another,
including what happens while you drag one element over a drop zone and what happens when a
drop takes place. jQuery allows you to have precision control over drag-and-drop, which lets you
create a basic drag-and-drop implementation or a polished drag-and-drop implementation.

As you’ve already seen with the Draggable API, jQuery UI provides a concise, easy-to-use API for
handling the drop side. To make an element into a droppable element, all you have to do is make
a selection and call the droppable () method with the appropriate options, just as you did with the
draggable () method. Options are provided via an object literal consisting of key, value pairs. The
following example shows you what a droppable implementation looks like in the context of the
Finder clone you’ve been building throughout this chapter:

$('div.finderDirectory")

.draggable({
helper: 'clone',
opacity: 0.5

1))

.droppable({
accept: 'div.finderDirectory’,
hoverClass: 'finderDirectoryDrop'

1);

In the preceding code, you have a basic example implementation of the Droppable API. Each <div>
element with the class name finderDirectory is made into a drop zone so that any directory can be
dragged and dropped onto any other directory. To make the drop portion function properly, you
pass some options to the droppable() method. The accept option lets you specify a selector that will
be used to match what elements you want to allow to be dropped onto the drop zone. In this case,
you want to allow only <div> elements with the class name finderDirectory to be dropped. Using
this filter, you can add other drag-and-drop functionality within the same document without having
conflict between different drag-and-drop implementations.

The hoverClass option allows you to change the style of the drop zone as a draggable element is
dragged over the droppable element. You simply specify a class name as the value and then set up
the appropriate styles in your style sheet.

In the following example (Example 12-2), you take the basic concept of the Droppable API that was
demonstrated and apply the droppable() method to the Finder clone you’ve been building.

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtml ">
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />

<meta http-equiv='content-language' content='en-us' />
<data-path>Finder</data-path>
<script src="../jQuery.js ' '></script>

http://www.w3.org/1999/xhtml

332 | CHAPTER 12 DRAGGABLE AND DROPPABLE

<script src="../jQueryUI.js"'></script>
<script src="Example 12-2.js'></script>
<link href='Example 12-2.css' rel="stylesheet' />
</head>
<body>
<div id="finderFiles'>
<div class="finderDirectory' data-path="'/Applications'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Applications
</div>
</div>
<div class='finderDirectory' data-path="'/Library'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Library
</div>
</div>
<div class='finderDirectory' data-path="'/Network'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Network
</div>
</div>
<div class='finderDirectory' data-path="'/Sites'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Sites
</div>
</div>
<div class='finderDirectory' data-path="'/System'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
System
</div>
</div>
<div class='finderDirectory' data-path="'/Users'>
<div class="'finderIcon'></div>
<div class="'finderDirectoryName'>
Users
</div>
</div>
</div>
</body>
</html>

The preceding HTML is combined with the following CSS:

html,
body {
width: 100%;
height: 100%;
3
body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: rgb(189, 189, 189) url('images/Bottom.png') repeat-x bottom;

Designating Drop Zones for Draggable Elements | 333

color: rgb(50, 50, 50);
margin: 0;
padding: 0;

div#finderFiles {
border-bottom: Ipx solid rgb(64, 64, 64);
background: #fff;
position: absolute;
top: O;
right: 0;
bottom: 23px;
Teft: 0;
overflow: auto;

div. finderDirectory {
float: Teft;
width: 150px;
height: 100px;
overflow: hidden;

div. finderIcon {
height: 56px;
width: 54px;
background: url('images/Folder 48x48.png') no-repeat center;
background-size: 48px 48px;
margin: 10px auto 3px auto;
}
div. finderIconSelected,
div. finderDirectoryDrop div.finderIcon {
background-color: rgb(204, 204, 204);
border-radius: 5px;
b
div. finderDirectoryDrop div.finderIcon {
background-image: uril('images/Open Folder 48x48.png');
b

div. finderDirectoryName {
text-align: center;
3

span. finderDirectoryNameSelected,
div. finderDirectoryDrop span.finderDirectoryNameSelected {
background: rgb(56, 117, 215);
border-radius: 8px;
color: white;
padding: 1px 7px;
}

Finally, you apply the following JavaScript, which extends the previous example presented in
Example 12-1 with new code that enables the droppable() API:

$(document) . ready(
function()

$('div.finderDirectory')
.mousedown (
function()

{

334 | CHAPTER 12 DRAGGABLE AND DROPPABLE

$('div.finderIconSelected')
.removeClass('finderIconSelected');

$('span.finderDirectoryNameSelected')
.removeClass('finderDirectoryNameSelected');

$(this).find('div.finderIcon')
.addClass('finderIconSelected');

$(this).find('div.finderDirectoryName span')
.addClass('finderDirectoryNameSelected');

}

)
.draggable({
helper : 'clone',
opacity : 0.5
b
.droppable({
accept: 'div.finderDirectory',
hoverClass: 'finderDirectoryDrop',
drop: function(event, ui)
{
var path = ui.draggable.data('path');
// Do something with the path
// For example, make an AJAX call to the server
// where the Tlogic for actually moving the file or folder
// to the new folder would take place

// Remove the element that was dropped.
ui.draggable.remove();

b
);

The preceding source code gives you output in Safari on Mac OS X, as shown in Figure 12-2.

le 12-2.html
Applications Netwark Sites

System

FIGURE 12-2

Designating Drop Zones for Draggable Elements | 335

In the preceding example, you added the jQuery Ul droppable() method to the Finder clone, which
lets you designate areas in which draggable elements can be dropped. The jQuery UI Draggable and
Droppable plugins both work in all modern browsers.

To set up the document for the Droppable library, you added a few rules to the style sheet, which
define what an element looks like while you drag one element over another. From here on, the action
of dragging one element over another element is referred to as the dragover event. jQuery Ul simply
refers to this event as over, but the native drag-and-drop API from Chapter 11 refers to this event

as dragover.

In essence, the style that you use for dragover is simply the same style that you’re already using to
highlight a folder to indicate its selection, with just one difference: You swap out the default folder
icon with an open folder icon. In the JavaScript portion, changing the dragover style in the style
sheet is made possible by the addition of the class name, finderDirectoryDrop. This class name is
added to the <div> element with class name finderDirectory. jQuery dynamically adds or removes
the finderDirectoryDrop class name to or from this <div> element, allowing you to define a different
style upon dragover.

So, you’re reusing the “selected folder style” for folders where the dragover event is taking place,
with the open folder icon being the only difference. Reusing that style is done simply by adding addi-
tional selectors that reference the <div> element with the dragover class name finderDirectoryDrop
to the style sheet.

div. finderIconSelected,

div. finderDirectoryDrop div.finderIcon {
background-color: rgb(204, 204, 204);
border-radius: 5px;

}
div. finderDirectoryDrop div.finderIcon {

background-image: uril('images/Open Folder 48x48.png');
}

div. finderDirectoryName {
text-align: center;
}

span. finderDirectoryNameSelected,
div. finderDirectoryDrop span.finderDirectoryNameSelected {
background: rgb(56, 117, 215);
border-radius: 8px;
color: white;
padding: 1px 7px;
b

The preceding reuses the selected folder style for dragover elements. To replace the default folder
icon with an open folder icon, you use a more specific selector. The following selector is used to add
the default folder icon:

div. finderIcon

The following selector overrides the preceding selector when a dragover event is taking place,
providing an open folder icon instead of the default folder icon:

div. finderDirectoryDrop c.finderIcon

336 | CHAPTER 12 DRAGGABLE AND DROPPABLE

Next, you pass a few customizations to the draggable() method to accomplish two things. The
first is that when a user begins to drag a folder icon, you want to use a duplicate of the icon to refer
to the item that is being dragged. The second is to make the duplicate semitransparent. This is an
effect known as ghosting, which creates a Ul where when an element is dragged across the screen,
a semitransparent duplicate of that element represents what is dragged, which resembles a ghost in

appearance.
.draggable({
helper : 'clone',
opacity : 0.5
1))

The method of passing a JavaScript object literal containing key, value pairs is a common method
used by jQuery plugins to provide customization options. This provides you with fine-grained con-
trol over how a plugin works. In the portion of JavaScript that calls droppable(), you pass options
like accept, which lets you filter which elements can be dropped on the droppable element by virtue
of a selector.

.droppable({
accept: 'div.finderDirectory',

The next option specifies what class name is to be added to the drop element when a dragover event
takes place. This option causes the class name finderDirectoryDrop to be added to the <div> element
with the class name finderDirectory when a dragover event takes place.

hoverClass: 'finderDirectoryDrop',

In the last option passed to the droppable() method, you specify a function that is executed when
the drop event takes place, which occurs when an element has been dragged over a drop zone and
the mouse button released. Within this function is where you want to do whatever it is the act of
dragging and dropping is intended to provide. In this case, you want to remove the folder being
dropped and then make an AJAX call to the server. On the server side, you have code that actually
moves the folder to the new location.

drop: function(event, ui)
{
var path = ui.draggable.data('path');
// Do something with the path
// For example, make an AJAX call to the server
// where the Togic for actually moving the file or folder
// to the new folder would take place

// Remove the element that was dropped.
ui.draggable.remove();
}
s

In the preceding drop event, you can access properties associated with the drag-and-drop opera-
tion by specifying a second argument in the callback function you provide. The second argument is

Summary | 337

named ui; then the ui.draggable object gives you access to the element that has been dragged and

dropped on this element. If you’d like to examine the ui object in its entirety, you can add console.
Tog(ui); to the code, and the ui object will be output to your browser’s debugging console, where

you can examine everything it contains.

In the callback function that you assign to the drop option, you access the data-path attribute of the
element being dragged, which contains the folder’s absolute path. You could then send that path

on to the server, along with the path of the folder that the dragged folder has been dropped on and
actually move that folder to the new location programmatically. The function ends with the dragged
element being deleted with a call to remove (), which would be the final operation that you would do
upon implementing a drag-and-drop folder UL

In the preceding examples, you learned how the jQuery Ul draggable() and droppable() methods
work in a real-life-oriented demonstration of a drag-and-drop implementation. These methods,
combined with what you learned about the native drag-and-drop API in Chapter 11, provide pow-
erful and flexible methods of implementing drag and drop in a browser or application utilizing a
browser component.

NOTE A comprehensive jQuery Ul Draggable and Droppable reference is
available in Appendix |, including all the options that you can pass to both the
draggable() and droppable() methods and the ui object that you can optionally
specify in the second argument to draggable and droppable event handlers.

SUMMARY

In this chapter, you learned how to use the jQuery UI Draggable and Droppable plugins, which you
can download a la carte from www. jquery.com. The jQuery website provides a la carte downloading
for UI components so that you can include only the plugins that you need to use, which, in turn,
helps keep your applications lean and efficient.

Throughout this chapter, you worked on building a file component similar to the one found in Mac
OS X’s Finder and saw how you can make folders into draggable elements as well as drop zones for
draggable elements. You saw how you can control the nuisances of a drag-and-drop implementation
via the options that jQuery Ul allows you to pass to both the draggable() and droppable() methods,
which help you to control what kind of drag operation you want, what the drag element looks like,
what the drop element looks like, and the event handlers you can specify to execute code during spe-
cific events that take place during a drag-and-drop operation.

The next chapter presents another drag-and-drop UI concept that jQuery provides called Sortable.

http://www.jquery.com

338 | CHAPTER 12 DRAGGABLE AND DROPPABLE

EXERCISES

1. If you want to have a Ul that allows users to drag elements around in a document and position
those elements wherever they like, what would you use? (Hint: what function call?)

2. If you want to create draggable elements that work similarly to your operating system’s file
manager, where the original element remains in place, but when a drag operation starts, you
drag around a clone of that element, how would you do that with jQuery UI? Write a sample
program that achieves this.

3. If you want to make an element into a drop zone for draggable elements, what function call
would you use?

4. Write the function call that you would use to add a class name to a drop zone while an
element was being dragged over the top of it.

5. What option would you provide to the droppable() method if you want to limit the drag
elements that can be dropped on the drop element? Also, what type of value would you pro-
vide to that option?

13

Sortable

Chapter 12, “Draggable and Droppable,” introduced how jQuery Ul provides plugins
that make implementing drag-and-drop UI easy to implement. This chapter presents
another jQuery UI plugin, Sortable, which enables you to make items in a list sortable, or
“rearrangeable.”

In website development you might need to often sort items, and you will probably want to
change the order of the items. An example would be the order in which products appear in a
navigation or side menu.

Without drag-and-drop, it’s still possible to give users the ability to tweak the order of items.
You can offer up or down arrows for shifting items in a list, for example, but drag-and-drop
sorting is the fastest, most intuitive way to implement this type of user interface.

MAKING A LIST SORTABLE

As you’ve seen throughout this book, jQuery takes more complex programming tasks and
makes them easier. Sometimes, you can do a lot by adding just one line of code or even chain-
ing one additional function call to a selection. When you experience how easy jQuery makes
common programming tasks, it becomes nearly impossible to return to JavaScript program-
ming without the convenience offered by frameworks like jQuery. In Chapter 12, you saw
how making elements draggable amounts to making a selection and then making a single
function call. Making a list of items sortable via drag-and-drop is just as easy—you make a
selection of elements, and then you make a single function call. The function that you call in
this case is called sortable(). Like the drag-and-drop examples that were presented in Chapter
12, you have the ability to tweak element sortability using fine-grained options that you can
pass to the sortable() method with a JavaScript object literal. Each of the options that jQuery
UI provides for the Sortable plugin is defined in detail in Appendix K, “Sortable.”

All that you need to make this possible is to include the relevant jQuery UI plugin, Sortable,
make a selection with jQuery, and then chain a call to the function sortable() onto that
selection. The Sortable plugin requires that you select a container element, whose immediate
children will be sortable by drag-and-drop. One example of a container is a element, and

340 | CHAPTER 13 SORTABLE

the sortable children are the <11> elements contained within that element. The sortable functionality
offered by the Sortable plugin works in all modern browsers: IE, Firefox, Safari, and Opera.

The following example puts the concept of sortability into context with a real-world-oriented appli-
cation, where you sort files through a GUI interface, which you might use in a Content Management
System (CMS), to control things such as sorting links in a sidebar or drop-down menu, or the order
in which products appear in a catalog. You’ll also return to this example throughout this chapter to
examine other aspects of file sorting that jQuery Ul provides through its Sortable plugin. You begin
with the following HTML, which appears as Example 13-1 in the source materials available at
www.wrox.com/go/webdevwithjquery.

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtml ">
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv="'content-language' content='en-us' />
<title>Sortable</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js"'></script>
<script src="Example 13-1.js'></script>
<link href="Example 13-1.css' rel="stylesheet' />
</head>
<body>
<ul 1id="'finderCategoryFiles'>
<1i class="'finderCategoryFile'>
<div class="finderCategoryFileIcon'></div>
<h5 class="'finderCategoryFileTitle'>
Using CoreImage to Resize and Change Formats on the Fly
</h5>
<div class="finderCategoryFilePath'>

/Blog/apple/CoreImage.html

</div>
</1i>
<1i class="finderCategoryFile'>
<div class="'finderCategoryFileIcon'></div>
<h5 class="'finderCategoryFileTitle'>
Exploring Polymorphism in PHP
</h5>
<div class="'finderCategoryFilePath'>

/Blog/php/Polymorphism.html

</div>
</Ti>
<11 class="'finderCategoryFile'>
<div class="'finderCategoryFileIcon'></div>
<h5 class="finderCategoryFileTitle >
A PHP Shell Script for Backups
</h5>
<div class="'finderCategoryFilePath'>

http://www.wrox.com/go/webdevwithjquery
http://www.w3.org/1999/xhtml

Making a List Sortable | 341

/Blog/php/Backup Script.html

</div>
</1i>
<11 class="finderCategoryFile'>
<div class="finderCategoryFileIcon'></div>
<h5 class="finderCategoryFileTitle'>
HTML 5 DOCTYPE
</h5>
<div class='finderCategoryFilePath'>

/Blog/web/htm15_doctype.html

</div>
</1i>
<11 class="'finderCategoryFile'>
<div class="finderCategoryFileIcon'></div>
<h5 class="finderCategoryFileTitle'>
First Impressions of IE 8 Beta 2
</h5>
<div class='finderCategoryFilePath'>

/Blog/web/ie8_beta2.html

</div>
</1i>

</body>
</html>

The preceding HTML is joined with the following CSS.

html,
body {
width: 100%;
height: 100%;
}
body {
font: 12px 'Lucida Grande', Arial, sans-serif;
background: rgb(189, 189, 189)
url('images/Bottom.png')
repeat-x
bottom;
color: rgb(50, 50, 50);
margin: 0;
padding: 0;

}
ul#finderCategoryFiles {
position: absolute;
top: 0;
bottom: 22px;
left: 0;
width: 300px;
border-bottom: 1px solid rgb(64, 64, 64);
border-right: 1px solid rgb(64, 64, 64);

342 | CHAPTER 13 SORTABLE

}

background: #fff;
Tist-style: none;
margin: 0;
padding: 0;

1i.finderCategoryFile {

}

clear: both;

padding: 5px 5px 10px 5px;
min-height: 48px;

width: 290px;

1i.finderCategoryFile h5 {

}

font: normal 12px 'Lucida Grande', Arial, sans-serif
margin: 0;

div. finderCategoryFileIcon {

}

float: Teft;

width: 48px;

height: 48px;

background: url('images/Safari Document.png')
no-repeat;

h5. finderCategoryFileTit]le,
div. finderCategoryFilePath {

}

padding-Teft: 55px;

1i.finderCategoryFileSelected {

}

background: rgb(24, 67, 243)
url('images/Selected Item.png')
repeat-x
bottom;

color: white;

14i.finderCategoryFileSelected a {

}

color: Tightblue;

Finally, this JavaScript enables sortability.

$(document) . ready (

function()

{
$('1i.finderCategoryFile').mousedown(
function()

$('1i.finderCategoryFile')
.not(this)
.removeClass('finderCategoryFileSelected');

$(this).addClass('finderCategoryFileSelected');

Making a List Sortable | 343

$("ul#finderCategoryFiles').sortable();
);
The preceding example results in the application you see shown in Figure 13-1.

[HsNs] Sortables r:z”
[| p] [-+ |8 file:// /Volumes/richard/Documents/Books/jQuery/ 2nd%20Edition/f & | Reade J 3]

L. Using Corelmage to Resize and Change

@ Formats on the Fly
{Blog/apple/Corelmage.html
. Exploring Polymorphism in PHP
/Blog/php /Polymorphism.html

L. A PHP Shell Script for Backups
@ /Blog/php/Backup Seript.htm

L. HTML 5 DOCTYPE
@ [Blog/web/html5_doctype.htm

.. First Impressions of IE 8 Beta 2
@ Blog/web/ie8 beta2.html

FIGURE 13-1

The preceding example is a demonstration of the jQuery Ul Sortable plugin, an application that pro-
vides file sorting, which can have a variety of applications, as mentioned just prior to presenting this
example.

In this example, you have five files. Each has a file icon, a title, and a clickable link to the file. This is
borrowed from Mac OS X for the look and feel of an application that feels more like a native desk-
top application. If you were to extend this concept, you could also provide alternative templates that
mirror the look and feel of other operating systems as well. A server-side language that can detect
the user’s operating system, combined with different style sheets for each OS, makes that a viable
option, which can make your users feel more at home with your web-based application.

In the markup, you set things up so that the content can be styled with CSS. Each file item is
represented as a <1i> element. Because you work with a list of items, semantically speaking, it makes

the most sense to set up your sortable list as a <u1> element, with each list item, <11>, representing
each file.

The file icon is placed in a <div> element. You use a <div> so that you can provide the icon via the
CSS background property.

The text content is wrapped within an <h5> and a <div> element so that you can control the mar-
gin and padding using block elements instead of inline elements like . You can see how this is

344 | CHAPTER 13 SORTABLE

helpful in the explanation for the style sheet in this example. Then, you also gratuitously give each
element class names, which makes it much easier to apply style or behavior to those specific ele-
ments, in addition to making it easier to identify the purpose of the element from the standpoint of
semantics. Each class name is chosen so that it conveys the exact purpose of the element.

<11 class="'finderCategoryFile'>
<div class="'finderCategoryFileIcon'></div>
<h5 class="finderCategoryFileTitle >
Using CoreImage to Resize and Change Formats on the Fly
</h5>
<div class="'finderCategoryFilePath'>

/Blog/apple/CoreImage.html

</div>
</1i>

The application is designed so that sortable elements are contained in a single column that spans
the left side. The column is created by using the top and bottom offset properties in tandem to
imply height, which, in turn, lets you have a stretchy column that resizes fluidly with the size of the
viewport.

In the style sheet, first, you give the <htm1> and <body> elements 100 percent width and height, and
remove any default margin or padding from the <body> element. (Some browsers apply default margin;
some apply default padding.)

html,

body {
width: 100%;
height: 100%;

}
body {
font: 12px 'Lucida Grande', Arial, sans-serif;
background: rgb(189, 189, 189)
url('images/Bottom.png')
repeat-x
bottom;
color: rgb(50, 50, 50);
margin: 0;
padding: 0;
}

In the next style-sheet rule, you create the left column by styling the <u1> element with the id name
finderCategoryFiles so that it spans the height of the left side of the document. The declaration top:
0; combined with the declaration bottom: 22px; causes the element to span the entire height

of the viewport, except for the bottom 22 pixels, which has a gradient background applied to that
space. The element is given a fixed width of 300 pixels; otherwise, you would have a shrink-to-
fit width because the <u1> element is absolutely positioned.

ul#finderCategoryFiles {
position: absolute;
top: O;
bottom: 22px;

Making a List Sortable | 345

left: 0;
width: 300px;
border-bottom: 1px solid rgb(64, 64, 64);
border-right: 1px solid rgb(64, 64, 64);
background: #fff;
Tist-style: none;
margin: 0;
padding: 0;
}

Each <11> element first has the declaration clear: both applied, which is needed to clear the left
floating of each file icon (the <div> element with class name finderCategoryFileIcon). Without this
declaration, you’d have a jumbled unintelligible mess, as each <1i> element tried to float up to the
right of the icon of the preceding <1i> element, and the <19> element preceding that one float up to
the right of the icon of the <1i> element before that one, and so on. The clear: both declaration
cancels floating so that the icon floats to the left, and only the text content within the <1i> element
floats up to the right of that icon.

Each <11> element is given a fixed width of 290 pixels. You do this because when you drag a <1i>
element, the element loses its width and shrinks. It does that because without an explicit width, each
<1i> element’s width is based on the parent, <u1>, element’s width. When you drag an <11> element,
its parent is no longer the <u1> element but the <body> element. The <1i> element is moved with the
mouse cursor through CSS. It is positioned absolutely, relative to the viewport, and its position is
constantly updated based on where the mouse cursor is going via the jQuery UI Sortable plugin.
Otherwise, as an absolutely positioned element, the <1i> element would have a shrink-to-fit width,
so by giving the <1i> element a fixed width, you allow it to maintain its dimensions as it is dragged
from one point to another. The min-height property keeps the spacing within the <1i> element con-
sistent but also allows each <1i> element to expand vertically to accommodate additional

text content.

14. finderCategoryFile {
clear: both;
padding: 5px 5px 10px 5px;
min-height: 48px;
width: 290px;

}

The next item of interest in the style sheet is the icon, which is defined by the following rule:

div. finderCategoryFileIcon {
float: Teft;
width: 48px;
height: 48px;
background: url('images/Safari Document.png')
no-repeat;

}

In the preceding rule, the <div> element is floated to the left with the declaration float: Tleft;. That
declaration causes the text content to float to the right of the icon, as explained previously. The
clear: both; declaration of the previous rule cancels this declaration on each <1i> element so that
only the text content is affected. The icon is set as the background using the background property,

346

| CHAPTER 13 SORTABLE

and the <div> is given a width and height of 48 pixels, matching the dimensions of the background
image.

The last items of interest in the style sheet define the look for selected files. That’s done in the fol-
lowing two rules:

1i.finderCategoryFileSelected {
background: rgb(24, 67, 243)
url('images/Selected Item.png')
repeat-x
bottom;
color: white;

}

14i.finderCategoryFileSelected a {
color: Tightblue;

}

The preceding two rules are for <1i> elements with the class name finderCategoryFileSelected.
This class name is dynamically added and removed from <1i> elements by jQuery. This addition of
this class name lets your users see which file is currently selected. Beyond providing a visual cue for
selection, this also lets you implement the ability to add a Delete button, which when pressed would
remove the selected item or implement some other functionality that is contingent on the selection of
an element.

The JavaScript for this example is lean and to the point. The JavaScript basically does two things. It
provides the ability to select an <11> element by adding and removing the class name finderCatego-
ryFileSelected as appropriate to indicate selection. And it makes the <11> elements sortable using
the jQuery UI Sortable plugin.

When the DOM is ready, the first task is to attach a mousedown event to each <11> element. You can
use this event to implement an indication of which element is selected.

$('1i.finderCategoryFile').mousedown(
function()

$('14i.finderCategoryFile")
.not(this)
.removeClass('finderCategoryFileSelected');

$(this).addClass('finderCategoryFileSelected');
);

The script selects every <1i> element with class name finderCategoryFile. The class name is added
to the selection, even though as it stands, you could just select every <11> element without a class
name and get the same result so that your application can be easily extended. You might bring in
more functionality that involves adding <1i> elements that are completely unrelated to what you’re
doing here. Adding the class name to the selector makes the selection more specific and gives you the
ability to expand your application’s functionality more effortlessly. So every <1i> element with class
name finderCategoryFile is selected; then the <11> element on which the mousedown event is taking
place is filtered out using .not(this), and the class name finderCategoryFileSelected is removed
from every <1i> element, except the <1i> element on which the mousedown event is taking place.

Customizing Sortable | 347

This is actually not the most efficient way to implement selection, especially if you have a long list.
Selecting every <1i> element is inefficient and can make your script slow if you have a lot of items in
the list. So having shown you the wrong way to do a selection, a better approach is to create a vari-
able, and every time a selection is made, store the currently selected element in that variable. The
following code is what this approach looks like in the context of Example 13-1:
$(document) . ready(
function()

{

var selectedFile;

$('11.finderCategoryFile') .mousedown(
function()

if (selectedFile & selectedFile.Tlength)
{

}

selectedFile = $(this);
selectedFile.addClass (' finderCategoryFileSelected');

selectedFile.removeClass('finderCategoryFileSelected');

);
$('ul#finderCategoryFiles').sortable();
);

The selected item is stored in the variable selectedFile. When the mousedown event fires, the script
first checks to see if there is an element stored in the selectedFile variable. If there is, the finder-
CategoryFileSelected class name is removed from that element because that element is the previ-
ously selected element.

Then the element on which the mousedown event is being fired, referenced by the this keyword, is
made into a jQuery object by wrapping this in a call to the dollar sign function, and the class name
finderCategoryFileSelected is added to the element on which the mousedown event is being fired.
This provides you with a leaner, more efficient selection API.

The last item that happens in the script (and the point of this example) is to make every <11> element
sortable with a call to the sortable() method:

$('ul#finderCategoryFiles').sortable();

The next section introduces some customization into the discussion of the Sortable plugin.

CUSTOMIZING SORTABLE

This section talks about some visual tweaks you can make to sortable lists and how you link one
list to another so that you have sorting between multiple, separate lists. The jQuery Ul sort-
able() method, like draggable() and droppable(), enables you to specify an object literal as its first

348 | CHAPTER 13 SORTABLE

argument, which enables you tweak how sorting works, in addition to providing callback functions
that are executed during specific events that occur as sorting is taking place.

NOTE This section discusses just a few of the options that jQuery Ul exposes
for its Sortable plugin. You can find a complete list of options in Appendix K.

The first option presented is placeholder, which gives you the ability to style the placeholder that
appears within a sortable list as a drag is taking place to indicate where the item will be dropped
if the mouse is released. By default (refer to Figure 13-1) you can see that the placeholder is simply
empty white space, sized relatively to the element being dragged. The placeholder option accepts a
class name as its value, which, in turn, is applied to the placeholder element.

The second option presented describes how you can customize the element being dragged; the pro-
cess for doing this can also be applied to the jQuery Ul draggable() method. By default, jQuery UI
displays the element the user picked for sorting as the element that the user drags, which, of course,
makes sense for most scenarios. You do, however, have the option of using a completely different
element for display as the drag element, if you choose. Customizing the element that’s displayed
during a drag is done with the helper option. In jQuery Ul, helper, as applied to drag-and-drop,
whether in the Sortable plugin or the Draggable plugin, or other plugins, is the term used for the ele-
ment that is displayed while a drag is taking place. The helper option takes two arguments: The first
argument is the event object, and the second argument references the element the user picked for
sorting. Aside from completely replacing the element displayed during the drag event, you can also
use this option to simply tweak the display of the element that the user picked.

In the following example, you extend the file-sorting application that you created in Example 13-1,
with some options, like the placeholder and helper options that you learned about in this section.
You also add another option that gives you the ability to sort elements between multiple lists.

Using Example 13-1.html as the basis, create the following markup document as Example
13-2.htmil:

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtm] ">
<head>
<meta http-equiv="content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv="'content-Tlanguage' content='en-us' />
<title>Sortable</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js ' '></script>
<script src="Example 13-2.js'></script>
<link href="Example 13-2.css' rel='stylesheet' />
</head>
<body>
<div id="finderCategoryFileWrapper'>
<ul 1id="'finderCategoryFiles'>
<11 class="finderCategoryFile'>
<div class="finderCategoryFileIcon'></div>

http://www.w3.org/1999/xhtml

Customizing Sortable | 349

<h5 class="'finderCategoryFileTitle'>
Using CoreImage to Resize and Change Formats on the Fly
</h5>
<div class="finderCategoryFilePath'>

/Blog/apple/CoreImage.html

</div>
</1i>
<11 class="finderCategoryFile'>
<div class="'finderCategoryFileIcon'></div>
<h5 class="'finderCategoryFileTitle'>
Exploring Polymorphism in PHP
</h5>
<div class="finderCategoryFilePath'>

/Blog/php/Polymorphism.html

</div>
</T1i>
<11 class="'finderCategoryFile'>
<div class="'finderCategoryFileIcon'></div>
<h5 class="'finderCategoryFileTitle'>
A PHP Shell Script for Backups
</h5>
<div class='finderCategoryFilePath'>

/Blog/php/Backup Script.html

</div>
</1i>
<11 class="finderCategoryFile'>
<div class="finderCategoryFileIcon'></div>
<h5 class="finderCategoryFileTitle'>
HTML 5 DOCTYPE
</h5>
<div class="finderCategoryFilePath'>

/Blog/web/htm15_doctype.html

</div>
</1i>
<11 class="finderCategoryFile'>
<div class="'finderCategoryFileIcon'></div>
<h5 class="'finderCategoryFileTitle'>
First Impressions of IE 8 Beta 2
</h5>
<div class="finderCategoryFilePath'>

/Blog/web/ie8_beta2.html

</div>
</T1i>

350 | CHAPTER 13 SORTABLE

<ul 1id="finderOtherCategoryFiles'>

</div>
</body>
</html>

Using the style sheet in Example 13-1.css, make the following modifications and save the results in a
new file, as Example 13-2.css:

html,

body {
width: 100%;
height: 100%;

3
body {
font: normal 12px 'Lucida Grande', Arial, sans-serif;
background: rgb(189, 189, 189)
url('images/Bottom.png')
repeat-x
bottom;
color: rgb(50, 50, 50);
margin: 0;
padding: 0;
3

div#finderCategoryFileWrapper {
position: absolute;
top: O;
right: 0;
bottom: 23px;
left: 0;

}
ul#finderCategoryFiles,
ul#finderOtherCategoryFiles {
float: Teft;
height: 100%;
width: 300px;
border-bottom: Ipx solid rgb(64, 64, 64);
border-right: Ipx solid rgb(64, 64, 64);
background: #fff;
Tist-style: none;
margin: 0;
padding: 0;
3
14i.finderCategoryFile {
clear: both;
padding: 5px 5px 10px 5px;
min-height: 48px;
width: 290px;
}
14i.finderCategoryFile h5 {
font: normal 12px 'Lucida Grande', Arial, sans-serif;
margin: 0;
}
div. finderCategoryFileIcon {
float: Teft;

Customizing Sortable | 351

width: 48px;
height: 48px;
background: url('images/Safari Document.png')
no-repeat;
}
h5. finderCategoryFileTitle,
div. finderCategoryFilePath {
padding-Teft: 55px;
}

14i.finderCategoryFileSelected {
background: rgb(24, 67, 243)
url('images/Selected Item.png')
repeat-x
bottom;
color: white;

}

14i.finderCategoryFileSelected a {
color: Tightblue;

}

.finderCategoryFilePlaceholder {
background: rgb(230, 230, 230);
height: 58px;

b

Starting with the JavaScript file you created in Example 13-1.js, make the following modifications
and save the new JavaScript file as Example 13-2.js:

$(document) . ready(
function()

{

var selectedFile;

$('1i.finderCategoryFile').mousedown(
function()

if (selectedFile && selectedFile.length)
{

}

selectedFile = $(this);
selectedFile.addClass (' finderCategoryFileSelected');

selectedFile.removeClass('finderCategoryFileSelected');

);

$('ul#finderCategoryFiles').sortable({
connectWith : 'ul#finderOtherCategoryFiles',
placeholder : 'finderCategoryFilePlaceholder',
opacity : 0.8,
cursor : 'move'

b

$('ul#finderOtherCategoryFiles').sortable({
connectWith : 'ul#finderCategoryFiles',
placeholder : 'finderCategoryFilePlaceholder',

352 | CHAPTER 13 SORTABLE

opacity : 0.8,
cursor : 'move'
;
);

The preceding gives you something similar to what you see in Figure 13-2.

eo0o Sortables .,"

[a|r» J [+ |@ file:/f /Volumaes/richard /Documents/Books/jQuery/2nd¥%20Edition/Examples/Chapter%20 C | Reader J
L. First Impressions of IE 8 Beta 2 _ L. APHP Shell Script for Backups
@ [Blog/web/ie8 beta2.html @ {Blog/php/Backup Script.html

L. Exploring Polymorphism in PHP L. Using Corelmage to Resize and Change
@ Blog/php /Polymorphism.html Formats on the Fly
Blog/apple/Corelmage. htmi

HTML 5 DOCTYPE
/Blog/web/html5 do e.html

FIGURE 13-2

In Example 13-2, you added a few options to the sortable() method and tweaked the presentation
of the document to accommodate multiple lists.

<div id="finderCategoryFileWrapper'>
<ul id="finderCategoryFiles'>

The <div> element contains two elements; each, in turn, is a sortable list. Each <u1> element is
also made into a column that spans the height of the <div> element. The following CSS is used to
prepare the <div> element so that the <u1> elements within it can become columns.

div#finderCategoryFileWrapper {
position: absolute;
top: 0;
right: 0;
bottom: 23px;
Teft: 0;

The <div> element is positioned absolutely, and the four offset properties are used to imply width
and height, causing the <div> element to take up the entire viewport, except the bottom 23 pixels.
Then styles are applied to each <ul1> element. Each <u1> element is floated to the left and given fixed
dimensions. This styling manages to turn both <u1> elements into columns, matching the visual look
and feel that you saw in Example 13-1, but also managing to work around an annoying z-index bug
in old versions of IE.

Customizing Sortable | 353

ul#finderCategoryFiles,
ul#finderOtherCategoryFiles {
float: Teft;
height: 100%;
width: 300px;
border-bottom: 1px solid rgb(64, 64, 64);
border-right: 1px solid rgb(64, 64, 64);
background: #fff;
Tist-style: none;
margin: 0;
padding: 0;
}

Going to the JavaScript, the scripting portion is straightforward. The first portion of the file deals
with selection; as you saw later in the explanation for Example 13-1, a variable called seTectedFile
is used to keep track of which file is selected. The remainder of the script sets up two sortable lists,
one in each column.

$('ul#finderCategoryFiles').sortable({
connectWith : 'ul#finderOtherCategoryFiles',
placeholder : 'finderCategoryFilePlaceholder"',
opacity : 0.8,
cursor : 'move'

s

$('ul#finderOtherCategoryFiles').sortable({
connectWith : 'ul#finderCategoryFiles',
placeholder : 'finderCategoryFilePlaceholder',
opacity : 0.8,
cursor : 'move'

1

The connectWith option accepts a selector as its value and enables you to connect one list to another
so that you have the ability to sort items between multiple lists.

Then, the other options— placeholder, opacity, and cursor— are each used to tweak the presenta-
tion of each sortable list. The placeholder option, as you already learned, enables you to add a
custom class name to the element that acts as a placeholder during sorting. The opacity option is
used to control the opacity of the helper element, and it takes a standard CSS 3 opacity property
value (that works in IE, too). The cursor option is used to change the cursor while the helper is
being dragged, and it takes any value that the CSS cursor property can take.

Also in the preceding snippet of code, the list with the id name finderCategoryFiles is con-
nected to the <u1> list with the id name finderOtherCategoryFiles. The connectWith option speci-
fied for this list sets up a one-way connection from the first <u1> element to the second, which lets
you drag items from the first list to the second, but not vice versa. To have two-way sorting, you
also need to set the connectWith option on the second <ul1> list, which you also see in the preceding
snippet of code. Other than the connectWith option, the second <u1> element has the

same options as the first element.

As mentioned previously, this section discussed only a few of the options for Sortable. All options
for Sortable are documented in Appendix K.

354 | CHAPTER 13 SORTABLE

SAVING THE STATE OF SORTED LISTS

The Sortable API in jQuery Ul wouldn’t be complete without one last detail: saving the state of a
sorted list. This too is covered by the Sortable plugin. In Chapter 7, “AJAX,” you learned about
jQuery’s serialize() method, which automatically takes a selection of input elements for a form and
serializes the data in those input elements into a string of data that you can then submit to a server-
side script with an AJAX request. The Sortable plugin provides a similar mechanism for retrieving
data from a sortable list. But instead of retrieving input form values, the Sortable plugin retrieves a
specific attribute from each sortable element. By default, the Sortable plugin retrieves the value of the
id attribute. In the context of the examples you’ve completed in this chapter, you'd give each <1i>
element an id attribute and then use the Sortable plugin’s mechanism for serializing the data present
in each id attribute into a string that you can pass on to an AJAX request to a server-side script, so
you can save the sort. The following code snippet shows the code you’d use on the JavaScript side:

var data = $('ul').sortable(
'serialize', {
key: 'listItem[]'
}

)

In the preceding code, to serialize the data present in the id attribute of each <1i> element, you call
the sortable() method, with the first argument set to 'serialize'. For the second argument, you
specify an object literal of options, which decide how the serialization will be done. The key option
specifies the name you want to use for each query string argument. The name TistItem[] is used,
which in PHP and some other server-side scripts will cause the query string of sorted items to be
translated into an array or hash.

In the following example you apply the concepts you’ve just learned to the sortable files example
that you’ve been working on throughout this chapter. Using Example 13-2.html as the basis, copy
the contents of that file into a new document, and save that document as Example 13-3.html; then
add a data-path attribute to each <1i> element, as you see in the following markup. Don’t forget to
update each file reference to Example 13-3.

<!DOCTYPE HTML>
<htm1 xmlns="http://www.w3.0rg/1999/xhtml ">
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv="'content-language' content='en-us' />
<title>Sortables</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 13-3.js'></script>
<1link href="Example 13-3.css' rel='stylesheet' />
</head>
<body>
<div id="finderCategoryFileWrapper'>
<ul id="finderCategoryFiles'>
<1i class="'finderCategoryFile'
data-path="'/Blog/apple/CoreImage.html'>
<div class="'finderCategoryFileIcon'></div>
<h5 class="finderCategoryFileTitle'>

http://www.w3.org/1999/xhtml

Saving the State of Sorted Lists | 355

Using CoreImage to Resize and Change Formats on the Fly
</h5>
<div class="finderCategoryFilePath'>

/Blog/apple/CoreImage.html

</div>
</T1i>
<11 class="'finderCategoryFile'
data-path="'/Blog/php/Polymorphism.html'>
<div class="'finderCategoryFileIcon'></div>
<h5 class="'finderCategoryFileTitle'>
Exploring Polymorphism in PHP
</h5>
<div class="finderCategoryFilePath'>

/Blog/php/Polymorphism.html

</div>
</T1i>
<11 class="'finderCategoryFile'
data-path="'/Blog/php/Backup Script.html'>
<div class="'finderCategoryFileIcon'></div>
<h5 class="'finderCategoryFileTitle'>
A PHP Shell Script for Backups
</h5>
<div class="finderCategoryFilePath'>

/Blog/php/Backup Script.html

</div>
</T1i>
<11 class="finderCategoryFile'
data-path="'/Blog/web/htm15_doctype.html'>
<div class="'finderCategoryFileIcon'></div>
<h5 class="'finderCategoryFileTitle'>
HTML 5 DOCTYPE
</h5>
<div class="finderCategoryFilePath'>

/Blog/web/htm15_doctype.html

</div>
</T1i>
<11 class="finderCategoryFile'
data-path="'/Blog/web/ie8 betal.html'>
<div class="'finderCategoryFileIcon'></div>
<h5 class="'finderCategoryFileTitle'>
First Impressions of IE 8 Beta 2
</h5>
<div class="finderCategoryFilePath'>

/Blog/web/ie8_beta2.html

</div>

356 | CHAPTER 13 SORTABLE

</1i>

<ul id="'finderOtherCategoryFiles'>

</div>
</body>
</html1>

The preceding HTML file is combined with the same CSS you used in Example 13-2.css, and then
the following script is applied:

$(document) . ready (
function()
{

var selectedFile;

$('1i.finderCategoryFile').mousedown(
function()

if (selectedFile & selectedFile.length)
{

}

selectedFile = $(this);
selectedFile.addClass('finderCategoryFileSelected');

selectedFile.removeClass('finderCategoryFileSelected');

}
);

$("uT#finderCategoryFiles').sortable({
connectWith : 'ul#finderOtherCategoryFiles',
placeholder : 'finderCategoryFilePlaceholder',

opacity : 0.8,

cursor : 'move',

update : function(event, ui)
{

var data = $(this).sortable(
'serialize', {
attribute : 'data-path',
expression : /A(.*)$/,
key : 'categoryFiles[]'

);

data += '&categoryId=1";

alert(data);

// Here you could go on to make an AJAX request
// to save the sorted data on the server, which
// might look Tike this:

//

// $.get('/path/to/server/file.php', data);

1);

Saving the State of Sorted Lists | 357

$('ul#finderOtherCategoryFiles').sortable({
connectWith : 'ul#finderCategoryFiles',
placeholder : 'finderCategoryFilePlaceholder',
opacity : 0.8,

cursor : 'move',
update : function(event, ui)
{

var data = $(this).sortable(
'serialize’', {
attribute : 'data-path',
expression : /A(.*)$/,
key : 'categoryFiles[]'

)3
data += '&categoryId=2"';
alert(data);
// Here you could go on to make an AJAX request
// to save the sorted data on the server, which
// might Took Tike this:
;j $.get('/path/to/server/file.php', data);
s
);

The preceding document gives you something similar to Figure 13-3.

2o Sortables
| t € file:// {Volumes/richard/Documents/Books/jQuery/2nd%20Edition/ Examples/Chapter¥%2013 /Example%2013-3. c B

_ L. Using Corelmage to Resize and Change
Formats on the Fly

Blog/apple/Corelmage.html

. Exploring Polymorphism in PHP F A PHP Shell Script for Backups
& Bf:, hg P;; m$ hism.html a Blog/php/Backup Script.html

HTML 5 DOCTYPE

First Impressions of IE 8 Beta 2
/Blog/web/ie8 beta?.html

JavaScript

categoryFiles[]=/Blog/apple/
Corelmage.html&categoryFiles[]=/Blog/php/
Polymorphism.html&categoryFiles[]=/Blog/web/
ieB_betaZ.htmi&category=1

FIGURE 13-3

358 | CHAPTER 13 SORTABLE

In Example 13-3, you add some code that retrieves data from each <19> element. However, instead
of getting data from the id attribute, which is what jQuery Ul uses by default, you can get data from
the custom data-path attribute.

$('uT#finderCategoryFiles').sortable({
connectWith : 'ul#finderOtherCategoryFiles',
placeholder : 'finderCategoryFilePlaceholder"',

opacity : 0.8,

cursor : 'move',

update : function(event, ui)
{

var data = $(this).sortable(
'serialize', {
attribute : 'data-path',
expression : /A(.*)$/,
key : 'categoryFiles[]'

)3
data += '&categoryIld=1";
alert(data);

// Here you could go on to make an AJAX request
// to save the sorted data on the server, which
// might Took Tlike this:
//
// $.get('/path/to/server/file.php', data);
}
s

You start this project by defining a new anonymous function that is assigned to the custom update
event of the sortable plugin. The custom sortable update event fires every time you complete a sort,
and it is therefore the most useful method to save the state of sorting as sorting occurs. Within the
anonymous function, you retrieve data from each <1i> element by calling the sortable() method
again but this time with the serialize option specified in the first argument. Then, in the options
you pass in the second argument to the sortable() method, you change the attribute that jQuery
Ul serializes data from by using the attribute option and setting the value of that option to data-
path. The rest is the same: You use the expression option to retrieve the data-path attribute’s entire
value from beginning to end, rather than just a substring within that value. (You can use any regular
expression here.) And the key option is set to categoryFiles[], which is used to name the data in the
serialized string. This results in sending something like the following query string to the server side:
categoryFiles[]=/Blog/apple/CoreImage.html
&categoryFiles[]=/Blog/php/Polymorphism.html

&categoryFiles[]=/Blog/web/ie8_beta2.html
&category=1

On the server side, you have two GET arguments. The first is an array called categoryFiles; the
second is an integer named category. The syntax for creating an array is that used for PHP, and, of
course, you want to adjust this syntax depending on the server-side language you’re actually using.

Summary | 359

SUMMARY

In this chapter, you learned how to make sortable lists with the jQuery UI Sortable plugin. Using
the Sortable plugin, you can offer a drag-and-drop sorting API effortlessly. jQuery Ul provides a
plethora of options that you can use for fine-grained control.

You learned how to use options such as placeholder, cursor, and opacity to control the look and
feel of a sortable list. The placeholder option takes a class name, which enables you to use CSS to
customize the look of the space that’s reserved for a sortable element as sorting is taking place. And
you saw how the opacity and cursor options both take the same values of the CSS opacity and
cursor properties.

You saw how multiple lists can be connected to each other using the connectWith option, which you
provide with a selector that indicates which list you want that sortable list to exchange items with.
The connectWith option creates a one-way link to another list, which means that you can drag items
only to the other list, but not back to the original. To create a two-way link, you can also add the
connectWith option to the other list, with a selector that references the first list.

You’ve also learned how to save the state of sorted lists, which is also done with the sortable()
method. In the first argument, you provide the string 'serialize'. Then in the second argument,
you can provide options that determine how serialization works. For example, you provide the
attribute option if you want to get the value of any attribute other than the id attribute. Another
option you can use is the expression option, which takes a JavaScript regular expression as its value.
Then, the key option is used to name the data that’s serialized.

You also learned how the update option can be provided to sortable lists, which takes a callback
function that executes after a sort is completed.

EXERCISES

1. What method do you use to make a list sortable?

2. What kind of value do you provide to the placeholder option?

3. What is the purpose of the placeholder option?

4. If you want to change the cursor displayed as a sort is taking place, which option would
you use?

5. What is the purpose of the helper option?

6. Which option do you use to connect multiple sortable lists to one another?

7. What kind of value do you provide to the connectwith option?

8. How do you save the state of a sortable list after every sort takes place?

14

Selectable

This chapter presents the jQuery Ul Selectable plugin. The Selectable plugin fills a niche in Ul
functionality, and that niche is the occasion in which you need to make a selection by drawing
a box. And this is a niche because you probably won’t use this functionality very much in your
applications. Making a selection by drawing a box is something you’ve probably done a few
times in your operating system’s file manager or a graphical editor like Photoshop.

Nonetheless, the Selectable plugin can be useful when the need arises, and in this chapter you
see at least one practical application of this plugin: a continuation of the Mac OS X Finder
clone that you started in Chapter 10, “Scrollbars.”

INTRODUCING THE SELECTABLE PLUGIN

The Selectable plugin works similarly to the Sortable plugin presented in Chapter 13,
“Sortable,” and all jQuery UI plugins, as you’ll have recognized by now, share a clean and
consistent API that is implemented similarly from plugin to plugin.

To make elements into Selectable elements, you call the selectable() method on any element.
The following document, which appears as Example 14-1 in the source materials at www.wrox.
com/go/webdevwithjquery, demonstrates the plugin:

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtm1 ">
<head>
<meta http-equiv="content-type'
content="application/xhtmi+xml; charset=utf-8' />
<meta http-equiv="'content-language' content='en-us' />
<title>Finder</title>
<script type='text/javascript' src="../jQuery.js'></script>
<script type='text/javascript' src="../jQueryUI.js'></script>
<script type='text/javascript' src="'Example 14-1.js'></script>
<link type='text/css' href='Example 14-1.css' rel="stylesheet' />
</head>
<body>

http://www.wrox
http://www.w3.org/1999/xhtml

362 | CHAPTER 14 SELECTABLE

<div id="finderFiles'>
<div class="finderDirectory' data-path='/Applications'>
<div class="'finderIcon'><div></div></div>
<div class="'finderDirectoryName'>
Applications
</div>
</div>
<div class="finderDirectory' data-path='/Library's
<div class="'finderIcon'><div></div></div>
<div class="'finderDirectoryName'>
Library
</div>
</div>
<div class="finderDirectory' data-path="'/Network'>
<div class="'finderIcon'><div></div></div>
<div class="'finderDirectoryName'>
Network
</div>
</div>
<div class="finderDirectory' data-path='/Sites'>
<div class="'finderIcon'><div></div></div>
<div class="'finderDirectoryName'>
Sites
</div>
</div>
<div class="finderDirectory' data-path='/System'>
<div class="'finderIcon'><div></div></div>
<div class="'finderDirectoryName'>
System
</div>
</div>
<div class="finderDirectory' data-path='/Users'>
<div class="'finderIcon'><div></div></div>
<div class="'finderDirectoryName'>
Users
</div>
</div>
</div>
</body>
</html1>

The following CSS provides some styling for the finder example and jQuery UI Selectable example.

html,
body {
width: 100%;
height: 100%;
overflow: hidden;
}
body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: rgb(189, 189, 189) url('images/Bottom.png') repeat-x bottom;
color: rgb(50, 50, 50);
margin: 0;
padding: 0;

Introducing the Selectable Plugin | 363

h
div#finderFiles {
border-bottom: Ipx solid rgb(64, 64, 64);
background: #fff;
position: absolute;
top: 0;
right: 0;
bottom: 23px;
Teft: 0;
overflow: auto;

div. finderDirectory {
float: Teft;
width: 150px;
height: 100px;
overflow: hidden;

div.finderIcon {
height: 56px;
width: 54px;
margin: 10px auto 3px auto;

div.finderIcon div {
background: url('images/Folder 48x48.png') no-repeat center;
width: 48px;
height: 48px;
margin: auto;

div.finderSelected div.finderIcon,

div.finderDirectoryDrop div.finderIcon {
background-color: rgh(196, 196, 196);
border-radius: 5px;

div.finderDirectoryDrop div.finderIcon div {
background-image: url('images/Open Folder 48x48.png');

div.finderDirectoryName {
text-align: center;

div.finderSelected div.finderDirectoryName span,
div.finderDirectoryDrop div.finderDirectoryName span {
background: rgb(56, 117, 215);
border-radius: 8px;
color: white;
padding: 1lpx 7px;

div.ui-selectable-helper {
position: absolute;
background: rgb(128, 128, 128);
border: 1lpx solid black;
opacity: 0.25;
-ms-filter:"progid:DXImageTransform.Microsoft.Alpha(Opacity=25)";
filter: alpha(opacity=25);

364 | CHAPTER 14 SELECTABLE

The following JavaScript makes it possible to select multiple files at once by drawing a box.

$.fn.extend({
selectFile : function()
this.addClass('finderSelected');

this.each(
function()

if ($.inArray($(this), finder.selectedFiles) == -1)
{

}

finder.selectedFiles.push($(this));

);

return this;

}7

unselectFile : function()

{

this.removeClass('finderSelected');
var files = this;

if (finder.selectedFiles instanceof Array & finder.selectedFiles.length)
{
finder.selectedFiles = $.grep(
finder.selectedFiTes,
function(file, index)

{
}

return $.inArray(file, files) == -1;

)
}

return this;

}
1

var finder = {
selectingFiles : false,
selectedFiles : [],
Ense]ectSe]ected : function()

if (this.selectedFiles instanceof Array && this.selectedFiles.length)

$(this.selectedFiTles).each(
function()

$(this).unselectFile();

Introducing the Selectable Plugin | 365

}
);
}

this.selectedFiles = [];
}1

ready : function()

$('div.finderDirectory, div.finderFile')
.mousedown (
function()

if (!finder.selectingFiles)

{
finder.unselectSelected();
$(this).selectFile();

}

)

.draggable({
helper : 'clone',
opacity : 0.5

s

$('div.finderDirectory').droppable({
accept : 'div.finderDirectory, div.finderFile',
hoverClass : 'finderDirectoryDrop',
drop : function(event, ui)
{
var path = ui.draggable.data('path');
ui.draggable.remove();
3
D;

$('div#finderFiles').selectable({
appendTo : 'div#finderFiles',

filter : 'div.finderDirectory, div.finderFile',
start : function(event, ui)
{

finder.selectingFiles = true;
finder.unselectSelected();

3,
stop : function(event, ui)
{
finder.selectingFiles = false;
3,

selecting : function(event, ui)

$(ui.selecting).selectFile();
}!
unselecting : function(event, ui)
{

$(ui.unselecting).unselectFile();

366 | CHAPTER 14 SELECTABLE

}
1)
}

};
$(document) . ready(
function()

{

finder.ready(Q);
}
);

The preceding source code comes together to give you the document that you see in Figure 14-1.

806 Finder o)
[a|r] [+ ‘@ file:// /Volumes /richard/Documents/Books/jQuery/2nd%20Edition/Examples/Cha & | Reader l @

=

[——

- -

[

|
|

| |
SN - oy
L Network)

|
—

FIGURE 14-1
While this example teaches you how to draw a selection box, you’ll note that you cannot drag

the selection after it is made, even though you have implemented drag-and-drop on the individual
folders. Although this is possible, it is beyond the scope of this example.

In this example, you applied the Selectable plugin to the Mac OS X Finder Clone example that you
worked on in Chapter 12, “Draggable and Droppable.” This example incorporates some jQuery

functionality that you learned about in previous chapters to demonstrate how you apply jQuery in a

realistic example.

You made a few changes to the style sheet that you created in Chapter 12. You added one additional

rule that gives you the ability to customize the box that’s drawn when a selection is made. jQuery

UD’s default selection box as depicted in the documentation looks like the one used in older operat-
ing systems, like Windows 98, which just provided a dotted box to indicate where the box is being
drawn. In an application like Photoshop, where the selection is oftentimes also animated, this
type of selection is referred to as marching ants because the selection box is made to resemble ants

marching in a line. In this example, you changed the style of that box to look more like the selection

box in Mac OS X.

Introducing the Selectable Plugin | 367

div.ui-selectable-helper {
position: absolute;
background: rgb(128, 128, 128);
border: 1px solid black;
opacity: 0.25;
-ms-filter:"progid:DXImageTransform.Microsoft.Alpha(Opacity=25)";
filter: alpha(opacity=25);

3

The selection box can be customized with the same selector that you see here. jQuery UI does

not provide a mechanism for customizing the style of the selection box via an option within the
JavaScript API. This is by design because it is best practice to keep style separated from behavior. To
customize the styling, you must use CSS. The class name wui-selectable-helper is the class name that
jQuery Ul applies to the selection box, which is also a <div> element, internally, so the customiza-
tion that you see simply exploits that fact. The styling that the Selectable plugin provides is limited
to the necessary CSS properties that actually change as you move your mouse cursor. Those proper-
ties are top, left, width, and height. The rest you must provide for yourself, and in fact, the selec-
tion box will have no styling at all until you apply it, meaning it will be completely invisible until
you provide some styling. You must first position the selection box using position: absolute, and
then a border or background should be applied so that you can see a selection when you create one.
In this example, I’ve chosen to simply imitate OS X, making the styling choice easy.

The style provides a gray background and a black border; then the whole box is made semi-
transparent via the standard opacity property supported by Safari, Chrome, Firefox, and IE9;
Microsoft’s proprietary filter property is supported by IE6 and IE7; and Microsoft’s proprietary
-ms-filter property is supported by IE8 in IE8 standards mode. The IE8 syntax for the -ms-filter
property is the same as previous versions; it just puts quotes around the property’s value and adds
the vendor-specific -ms- prefix. IE9 goes on to eliminate the need for the filter or -ms-filter prop-
erty because IE9 has native support for the opacity property.

Aside from those modifications, the style sheet remains mostly the same as the style sheet you made
in Chapter 12. The brunt of the elbow work in this example occurs in the JavaScript.

In this example, you rewrite the example that you saw in Chapter 12 with a few jQuery plugins, and
you add some functionality that deals with keeping track of selected folders. You begin by creating two
plugin methods, selectFile() and unselectFile(). As you learned in Chapter 9, “Plugins,” you use §$.fn
to create jQuery plugins. There is also more than one way to leverage $. fn to create jQuery plugins. The
method I use most often is jQuery’s extend() method, which allows you to take an object and add to it.
For this example, you add two new methods, which each become a new jQuery plugin.

§.fn.extend({

Within the selectFile() method, you begin by adding the class name finderSelected to each element
that selectFile() is called on, which can be just one file or many files. The class name provides you
with a visual cue to let you see that a file is selected by triggering the following CSS:

div.finderSelected div.finderIcon,

div.finderDirectoryDrop div.finderIcon {
background-color: rgh(196, 196, 196);
border-radius: 5px;

368

| CHAPTER 14 SELECTABLE

In addition to styling the folder icon, the following style is applied to the name of the file or folder:

div.finderSelected div.finderDirectoryName span,
div.finderDirectoryDrop div.finderDirectoryName span {
background: rgb(56, 117, 215);
border-radius: 8px;
color: white;
padding: 1px 7px;
}

Then, for each file object that selectFile() is called on, you see if that file object is already added to
the finder.selectedFiles array. This array keeps track of every file that is selected at a given time by
storing a reference to it. jQuery’s inArray() method is designed to work like JavaScript’s index0f ()
method. The index0f() is used to determine if a string contains another string. If the string is found,
then index0f() returns the offset position of the first occurrence of that string, where counting from
zero, the first character in the string you’re searching is number zero. If index0f() returns an inte-
ger zero or greater, then the string is found within the second string and that number can be used

to identify where in that string the second string exists. If index0f () returns -1, then the string is

not found. jQuery’s inArray () works the same way it applies the same logic using arrays instead of
strings. If a value is found within the array, the offset position of that value is returned. The array

is also numbered starting from zero, so the first item within the array is number zero and each item
is numbered from there. inArray() returns -1 if the value does not exist within the array, otherwise
inArrayQreturns a number zero or greater.

selectFile : function()

{
this.addClass('finderSelected');
this.each(
function()
{
if ($.inArray($(this), finder.selectedFiles) == -1)
{
finder.selectedFiles.push($(this));
}
}
);
return this;
1,

To unselect files, the first thing that you do is to remove the class name finderSelected using the
removeClass() method. Then the elements passed to unselectFile(), which are made available in
the this keyword, are assigned to a new variable called files. This is done to make the elements
available within the anonymous function passed to the grep() method. You then verify that finder.
selectedFiles is an array and contains one or more items. The grep() method is used to filter the
finder.selectedFiles array. The anonymous function provided to grep() is executed once for every
item in the array. If the anonymous function provided to grep() returns true, then the item remains
in the array. If the anonymous function returns false, however, then the item is removed from the
array. In the context of this example, if the file is among the files to be unselected, then file or files
are removed from the finder.selectedFiles array via grep(Q).

Introducing the Selectable Plugin | 369

unselectFile : function()

{
this.removeClass('finderSelected');
var files = this;
if (finder.selectedFiles instanceof Array && finder.selectedFiles.Tlength)
{
finder.selectedFiles = $.grep(
finder.selectedFiles,
function(file, index)
{
return $.inArray(file, files) == -1;
3
);
}
return this;
3

1;

The unselectFile() method then returns the files that were unselected so that you can potentially
chain method calls together.

You next set up a new object called finder.

var finder = {

The property finder.selectingFiles is used to keep track of whether a selection of files is presently
underway using the Selectable plugin. The default value is set to false to indicate that there is no
selection of files underway.

The property finder.selectedFiles contains an empty array by default. As you saw with the jQuery
plugins selectFile() and unselectFile(), when one or more files are selected, a reference to each
selected node is stored in the selectedFiles property.

selectingFiles : false,

selectedFiles : [],

The method unselectSelected() unselects every file node that is presently selected, and then the
property is reset to an empty array. This method is simply a quick and easy way to unselect every file.

unselectSelected : function()
{
if (this.selectedFiles instanceof Array && this.selectedFiles.length)
{
$(this.selectedFiles).each(
function()

$(this).unselectFile();

370 | CHAPTER 14 SELECTABLE

this.selectedFiles = [];
1,

As you have read, the ready() method is executed upon the DOMContentLoaded event.

ready : function()

{

Every directory and every file receives a mousedown event and is made draggable using jQuery UT’s
Draggable plugin. Every directory is also made a drop target using the Droppable plugin.

$('div.finderDirectory, div.finderFile'")

Within the mousedown event, if there is no selection presently underway, which is tracked in the
finder.selectingFiles property, all files are unselected, and then whichever file element is receiving
the mousedown event is selected.

.mousedown (
function()

if (!finder.selectingFiles)

{
finder.unselectSelected();
$(this).selectFile();

)

The Draggable plugin is enabled by calling the draggable() method; the dragged element is set to
clone the file where the drag originated, creating a ghost of the element being dragged. The ghost
element is also set to receive opacity of 50 percent, making it semi-transparent (or semi-opaque,
depending on your view).

.draggable({
helper : 'clone',
opacity : 0.5

;

Even though this example contains only directory objects, you set up the example prepared to deal
with both directory and ordinary file objects. Each directory is distinguished from regular files via
the class name assigned. The finderDirectory class name is given to directories, and the finderFile
class name is given to regular files.

Directory objects are made droppable using the Droppable jQuery UI plugin; a call to the drop-
pable() method enables a directory as a drop target. As you learned in Chapter 12, jQuery Ul is
just one way of implementing drag and drop. The more complicated HTMLS drag-and-drop API is
another option, and it’s the option that I recommend if you need to drag and drop between multiple
browser windows. In the interest of keeping the example simple, I stuck with the simpler jQuery Ul
draggable and droppable plugins.

$('div.finderDirectory').droppable({
accept : 'div.finderDirectory, div.finderFile',
hoverClass : 'finderDirectoryDrop',
drop : function(event, ui)

Introducing the Selectable Plugin | 371

var path = ui.draggable.data('path');
ui.draggable.remove();
h
b;

An example of the Selectable jQuery Ul plugin follows next. The contents of the <div> with id name
finderFiles is made selectable. The option appendTo is provided a selector that tells the selectable()
plugin where to put the <div> element that represents the selection box. The selection box is added
to the <div> element with the id finderFiles.

The option filter is used to tell the selectable() plugin which elements it contains are selectable,
and you do that by providing a selector to it to describe those selectable elements. The selector div.

finderDirectory, div.finderFile makes the <div> elements with class names finderDirectory or
finderFile selectable.

$('div#finderFiles').selectable({
appendTo : 'div#finderFiles"',
filter : 'div.finderDirectory, div.finderFile',

The option start is provided a callback function that fires each time a new selection begins. As you
learned in Chapter 12, each option that specifies a custom UI plugin event accepts two arguments,
one for the event and another for passing additional Ul plugin data. In this example, when selection
begins, the property finder.selectingFiles is set to true, and this is used to prevent the mousedown
event that you created earlier from also selecting files because that would conflict with the selection
taking place using the selectable() plugin. In addition, any file selection that is already in place is
completely cleared by calling finder.unselectSelected().

start : function(event, ui)

{
finder.selectingFiles = true;
finder.unselectSelected();

i

When selection ends, the callback function provided to the option stop is fired. This callback func-
tion sets the property finder.selectingFiles to false so that selection of individual files or directo-
ries using the mousedown event you set up previously can again take place.

stop : function(event, ui)

{
},

finder.selectingFiles = false;

While selection is happening, the callback function provided to the option selecting is continuously
fired. The objects that are experiencing a selection are provided to you and described in the selector
passed in the ui.selecting property. Those items are in turn selected by calling selectFile() on the
individual item or collection of items.

selecting : function(event, ui)

$(ui.selecting).selectFile();
1,

372

| CHAPTER 14 SELECTABLE

While selection is happening, as items are included in a selection, sometimes items are also excluded
from a selection. When items are excluded from a selection in progress, the custom event callback
function assigned to the unselecting option is fired. Like the selecting option, the unselecting
option also receives data in the ui argument. A selector is provided to the ui.unselecting prop-
erty, which contains the file nodes that should be unselected; each file that should be unselected is
unselected using a call to unselectFile(Q).

unselecting : function(event, ui)

{

}
1);

$(ui.unselecting) .unselectFile();

Although it is a niche feature that is not called for often in programming, the jQuery UI Selectable
plugin provides useful functionality that has been with computing since the dawn of the graphical
user interface.

NOTE Complete API documentation for the Selectable plugin is available in
Appendix L.

SUMMARY

In this chapter, you learned about the jQuery UI Selectable plugin, which provides functionality for
making selections by drawing a box with your mouse cursor. You saw how the Selectable plugin can
be applied to the Finder clone that you made in Chapter 12.

The Selectable plugin, like jQuery UD’s other plugins, accepts an object literal of options that are
specified in key, value form. The Selectable plugin lets you specify callback functions for selectable
events. Callback functions provided to the options start and stop are executed when a selection
begins and ends, respectively. Callback functions provided to the options selecting and unselecting
are executed as items are added and removed from a selection while a selection is taking place.

EXERCISES

1.
2.

Which option do you use to execute the callback function when a selection begins?

What options do you use to execute callback functions when items are added to or removed
from a selection (while a selection is taking place)?

When using the selecting and unseTecting options, how do you access each element added to
and removed from the selection?

What selector would you add to a style sheet to customize the look and feel of the
selection box?

15

Accordion

So far you’ve learned about how jQuery makes dragging and dropping easy to implement, and
you’ve learned how jQuery makes it a breeze to select items by drawing a box. You've also
seen how ridiculously easy it is to implement drag-and-drop sorting with jQuery. This chapter
presents another cool jQuery Ul plugin, Accordion.

The jQuery UI Accordion plugin makes it easy to implement content that expands and folds
like your favorite polka instrument, the accordion. Accordion Ul widgets can be seen on popu-
lar websites. If you’d like to see a quick demo of the Accordion UI, look at www.jqueryui.com/
accordion/. The downside of the jQuery UI Accordion plugin is that you can have only one
item open at a time. It’s easy to write some code that sidesteps this limitation.

In this chapter, you find out how to use the jQuery UI Accordion plugin to make your own
Accordion widget and customize its look.

BUILDING AN ACCORDION UlI

This section discusses how to make an Accordion Ul, which is a collection of content panes
that each has its own header, where only one content pane is visible at a time. When you click
the other content panes, a smooth animation transitions the visible pane to closed by animat-
ing its height, leaving only its header visible, animating the other element’s height, expanding
that element until it is fully visible.

Now that we have briefly explained what an Accordion Ul is, the following document, which
can be retrieved from www.wrox.com/go/webdevwithjquery as Example 15-1, begins with a basic
implementation of the jQuery UI Accordion plugin:

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtm1 ">
<head>
<meta http-equiv="content-type'
content="application/xhtmi+xml; charset=utf-8' />
<meta http-equiv="'content-language' content='en-us' />
<title>Accordion Plugin</title>

http://www.jqueryui.com
http://www.wrox.com/go/webdevwithjquery
http://www.w3.org/1999/xhtml

374 | CHAPTER 15 ACCORDION

<script src="../jQuery.js'></script>

<script src="../jQueryUI.js'></script>

<script src="Example 15-1.js'></script>

<Tlink href="Example 15-1.css' rel="'stylesheet' />

</head>
<body>

<h4>The Beatles</h4>

<1i>
John Lennon
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Vestibulum Tluctus rutrum orci. Praesent faucibus tellus
faucibus quam. Aliquam erat volutpat. Nam posuere.
</p>
</Ti>
<1i>
Paul McCartney
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Vestibulum Tuctus rutrum orci. Praesent faucibus tellus
faucibus quam. Aliquam erat volutpat. Nam posuere.
</p>
</Ti>
<1i>
George Harrison
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Vestibulum luctus rutrum orci. Praesent faucibus tellus
faucibus quam. Aliquam erat volutpat. Nam posuere.
</p>
</1i>
<1i>
Ringo Starr
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Vestibulum luctus rutrum orci. Praesent faucibus tellus
faucibus quam. Aliquam erat volutpat. Nam posuere.
</p>
</Ti>

</body>
</htm1>

The following style sheet is applied to the preceding markup document:

body {

font: 12px "Lucida Grande", Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);

margin:
padding
}
h4 {
margin:

}

0;

HH

5px;

Building an Accordion Ul | 375

ul {
Tist-style: none;
margin: 0;
padding: 15px 5px;
14 {
background: gold;
padding: 3px;
width: 244px;
margin: 1px;

The following script makes the <u1> element in the markup document into an accordion with a
simple function call:

$(document) . ready(
function()

$('ul").accordion();
);

Figure 15-1 shows that although the accordion has been created, your work here is not
yet done.

e oo Accordion Plugin "
[+ |6 file:// /Volumes/richard/Documents/ & | geader |35
The Beatles

ohn Lennon

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Vestibulum luctus rutrum
orci. Praesent faucibus tellus faucibus
quam. Aliguam erat volutpat. Nam
posuere.

Paul McCartney
George Harrison
Ringo Starr

FIGURE 15-1

You see the most basic but functioning example of the Accordion plugin possible. By calling the
accordion() method on the element, the element is transformed into accordion UI. When
you click an <a> element, the corresponding text in the sibling <p> element is expanded by a smooth,
animated transition.

Structurally speaking, jQuery’s Accordion plugin wants to be applied to a collection of elements;
like a <u1> element, after the plugin is applied, it automatically recognizes each <a> element as being
the header portion of each content pane. Later this chapter discusses in more detail how to approach
styling an accordion.

376 | CHAPTER 15 ACCORDION

CHANGING THE DEFAULT PANE

At this point, you have a functioning Accordion Ul. This section shows you how to change the
content pane that’s displayed by default. Out-of-the-box, the Accordion plugin displays the first
content pane, but using the active option, you can force a different content pane to be displayed.
The following markup document, which appears as Example 15-2 in the source materials, demon-
strates this concept:

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtml ">
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv="'content-Tlanguage' content='en-us' />
<title>Accordion Plugin</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js"'></script>
<script src="Example 15-2.js'></script>
<link href='Example 15-2.css' rel="'stylesheet' />
</head>
<body>
<h4>The Beatles</h4>

<1i>
John Lennon
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Vestibulum Tluctus rutrum orci. Praesent faucibus tellus
faucibus quam. Aliquam erat volutpat. Nam posuere.
</p>
</1i>
<1i>
Paul McCartney
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Vestibulum luctus rutrum orci. Praesent faucibus tellus
faucibus quam. Aliquam erat volutpat. Nam posuere.
</p>
</Ti>
<Ti>
George Harrison
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Vestibulum Tuctus rutrum orci. Praesent faucibus tellus
faucibus quam. Aliquam erat volutpat. Nam posuere.
</p>
</1i>
<1i>
Ringo Starr
<p>

http://www.w3.org/1999/xhtml

Changing the Default Pane | 377

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Vestibulum luctus rutrum orci. Praesent faucibus tellus
faucibus quam. Aliquam erat volutpat. Nam posuere.
</p>
</T1i>

</body>
</html>

The following style sheet is applied to the preceding markup document:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);

margin: O;
padding: 0;

}

ha {
margin: 5px;

}

ul {
Tist-style: none;
margin: 0;
padding: 15px 5px;

b

14 {
background: gold;
padding: 3px;
width: 244px;
margin: I1px;

}

In the following script, you see that the integer 1 is provided to the active option, which causes the
second <1i> element in the markup document to be used as the default content pane:

$(document) . ready(
function()

$('ul").accordion({
active : 1

s
)

Figure 15-2 shows that the content under Paul McCartney is now the default content. The active
option selects the default content when you provide it a zero offset integer (where zero is the first
item, one is the second item, and so on) that represents the item in the collection that you want to
select by default. In this case, Paul McCartney is the second item, so 1 is provided as the value to the
active option to select that panel.

378 | CHAPTER 15 ACCORDION

8 0e Accordion Plugin)
e of |@ file:// /Volumes/richard /Documents/ C| Readec |39

The Beatles

lohn Lennon
Paul McCartney

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Vestibulum luctus rutrum
‘orci. Praesent faucibus tellus faucibus
quam. Aliquam erat volutpat. Nam
posuere.

George Harrison
Ringo Starr

FIGURE 15-2

You can also set the option active to false, which makes no content open by default. If you set the
active option to false, you must also set the collapsible option to true. This is demonstrated in the
following script:

$(document) . ready (
function()

$('ul").accordion({
collapsible : true,
active : false

1);
);

The preceding script gives you the result of having no pane open by default. This example is avail-
able in the source materials as Example 15-3.

When you have no default pane selected by default, when you open a panel, you may notice that the
content of each pane overlaps the rest of the accordion, as shown in Figure 15-3.

8 0e Accordion Plugin)
e of |@ file:// /Volumes/richard /Documents/ C| Reader |39

The Beatles

lohn Lennon

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Vestibulum luctus rutrum

wahus tellus faucibus
uam. Aliquam erat volutpat. Nam
g8aidstarrison

Ringo Starr.

FIGURE 15-3

Changing the Accordion Event | 379

This problem can be corrected by specifying the heightStyle option. The heightStyle option takes
three possible values: auto, fi11, and content. The auto option sets the height of each panel to the
height of the tallest panel. The problem with this is that because all panels are hidden when the page

is rendered, this makes the height of each panel the height of the header without the additional hidden
content. The fi11 option uses the accordion element’s parent element as the basis for height. In the con-
text of this example, that would set the height of each item based on the height of the <body> element.
The content option sets the height of each panel based on the height of the content that it contains. The
following example reflects changing the script to specify the heightStyle option with the content value:

$(document) . ready(
function()

$C'ul ") .accordion({
collapsible : true,
active : false,
heightStyle : "content”
D;

);

The preceding example is available in the source materials as Example 15-4. With the change in the
preceding script, each item opens without the content overlapping the other headings, as shown in
Figure 15-4.

e oo Accordion Plugin o
+ (;', ﬁIe_:f,r‘_fVoiumes,-’ricllardgoc_uments.f ¢ | Beade .))

The Beatles

John Lennon
Paul McCartney

George Harrison

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Vestibulum
luctus rutrum orci. Praesent faucibus
tellus faucibus quam. Aliguam erat
volutpat. Nam posuere.

Ringo Starr

FIGURE 15-4

In the next section you learn how to change the event that triggers opening each content panel in the
accordion collection.

CHANGING THE ACCORDION EVENT

Upon setup, Accordion content panes are transitioned when you click a header. You have the option
of changing the event that triggers the transition using the event option. The following script shows
you how to change the event to a mouseover event from a click event:

380 | CHAPTER 15 ACCORDION

$(document) . ready(
function()

$C'ul").accordion({
active : 1,
event : 'mouseover'

1);
)

The preceding modification makes no visible change, so you see a document that looks similar to the
one referred to in Figure 15-2. However, when you load it in a browser, you can transition between
content panes using a mouseover event instead of a click event.

The preceding example is available in the source materials as Example 15-5 but is not shown here.

SETTING THE HEADER ELEMENTS

By default, the Accordion uses the <a> element as a header within each <1i> element. However, you
don’t have to use an <a> element as the header; the following example, available in the source mate-
rials as Example 15-6, illustrates how to use an <h4> element instead of an <a> element:

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtml ">
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv="'content-Tlanguage' content='en-us' />
<title>Accordion Plugin</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 15-6.js'></script>
<link href='Example 15-6.css' rel='stylesheet' />

</head>
<body>
<h4>The Beatles</h4>

<1i>
<h4>John Lennon</h4>
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Vestibulum luctus rutrum orci. Praesent faucibus tellus
faucibus quam. Aliquam erat volutpat. Nam posuere.
</p>
</1i>
<1i>
<h4>Paul McCartney</h4>
<p>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Vestibulum Tuctus rutrum orci. Praesent faucibus tellus
faucibus quam. Aliquam erat volutpat. Nam posuere.
</p>
</Ti>

http://www.w3.org/1999/xhtml

Setting the Header Elements | 381

<Ti>
<h4>George Harrison</h4>
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Vestibulum Tuctus rutrum orci. Praesent faucibus tellus
faucibus quam. Aliquam erat volutpat. Nam posuere.
</p>
</T1i>
<1i>
<h4>Ringo Starr</h4>
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Vestibulum Tluctus rutrum orci. Praesent faucibus tellus
faucibus quam. Aliquam erat volutpat. Nam posuere.
</p>
</Ti>

</body>
</html>

The following style sheet is applied to the preceding markup document:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);

margin: 0;
padding: 0;

b

ul {
Tist-style: none;
margin: 0;
padding: 15px 5px;

}

h4,

ul h4,

ul p {
margin: 5px;

}

14 {
background: gold;
padding: 3px;
width: 244px;
margin: 1px;

}

In the following script, you change the element that’s used as the header for each content pane by
providing a selector to the header option, in this case h4, which causes the <h4> element of each <1i>
element to be used as a header, rather than the <a> element:

$(document) . ready(
function()

$('ul").accordion({
active : 1,

382

| CHAPTER 15 ACCORDION

event : 'mouseover',
header : 'h4'
;

);

In the preceding script, take note that you also have to change the selector provided to the header
option because now you want to have a content pane that uses an <h4> header to be open by default.

Figure 15-4 demonstrates that the <h4> element is used instead of an <a> element.

SUMMARY

In this chapter, you learned how to create an Accordion UI and the various options that you can
use to tweak an Accordion Ul implementation. You learned that the Accordion plugin takes a list of
elements, such as a element, and makes the items in that list into smoothly animated content
panes, which transition one to the other by animating the height of each item in the list. By default,
headers for each content pane are provided as <a> elements, but you can change the header element
to something else by supplying a selector to the header option.

The active option can be used to change the default content pane that’s displayed when the page first
loads. You can also have no default content pane by setting the active option to false and the col-
lapsible option to true. If no default content pane is specified, the first element in the list will be used.

The heightStyle option can each be used to tweak how the Accordion plugin defines the height for
each content pane. The auto value takes the highest content and uses that height as the height for all
other content panes, which may not always provide the right look and feel.

Finally, the event option is used to change the event that’s used to trigger a content pane transition;
click is the default event.

NOTE A quick reference of the Accordion plugin and its options appears in
Appendix N, “Accordion.”

EXERCISES

1.
2.

Which option would you provide to the accordion() method to change the default content pane?

Which option and its values would you consider using to change how the accordion() method
handles height?

What option would you use to make the accordion() method trigger a content transition using
a mouseover event instead of a c1ick event?

What option would you use to change the header element to an <h3> element?

16

Datepicker

jQuery UI offers a sophisticated and feature-rich Ul component for inputting dates into a form
field in its Datepicker plugin. The jQuery UI Datepicker plugin provides a graphical calendar
that can be set to pop up anywhere you might need a date keyed into a form. The calendar
can be customized in its look and feel. The date format it produces can be set to mirror local
customs. The text it labels fields with can be swapped out with whatever text you like or trans-
lated into a foreign language, making the plugin fully capable of localization.

This chapter describes how to use and customize the Datepicker plugin.

IMPLEMENTING A DATEPICKER

A barebones implementation of the Datepicker plugin doesn’t look like much; it’s not styled,
but it works, more or less, from the standpoint of functionality.

The following document, which can be downloaded from www.wrox.com/go/webdevwithjquery
as Example 16-1, demonstrates a basic implementation of the jQuery UI Datepicker plugin:

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtm1 ">
<head>
<meta http-equiv="content-type'
content="application/xhtmi+xml; charset=utf-8' />
<meta http-equiv="'content-language' content='en-us' />
<title>Datepicker Plugin</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js ' '></script>
<script src="Example 16-1.js'></script>
<link href="Example 16-1.css' rel='stylesheet' />
</head>
<body>
<form action="'javascript:void(0);
<fieldset>
<legend>Appointment Form</legend>
<div class="exampleDate">
<label for="exampleDate'">Date:</Tabel>

r

method="post '>

http://www.wrox.com/go/webdevwithjquery
http://www.w3.org/1999/xhtml

384 | CHAPTER 16 DATEPICKER

<input type="text" name="exampleDate" id="exampleDate" />

</div>
</fieldset>
</form>
</body>
</html>

The following style sheet provides a little bit of styling for the preceding markup document:

body {
font: 12px 'Lucida Grande', Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);

}
fieldset {
border: none;
}
input {
background: Tightblue;
}

div.exampleDate img {
vertical-align: -5px;
}

In the following script, the datepicker() method is called on the <input> element in the markup
document, which causes a calendar to dynamically pop up for date selection whenever the <input>
element receives focus:
$(document) . ready(
function()

{
}

$("input#exampleDate').datepicker();
);

As you can see in Figure 16-1, the Datepicker plugin provides an unstyled calendar provided each
time the <input> field it is associated with is activated.

eo0e Datepicker Plugin e
)LLP] @ _[_+ ‘@ ﬁIf:;‘fi‘VuE.lrEes,frl'(hard,fDucumems.fBual 4 ! Reader J

Appointment Form

Previext
April 2014

Su Mo Tu We Th Fr Sa
6 7 89 101112
13 14 15 16 17 1B 19

27 28 29 30

FIGURE 16-1

Implementing a Datepicker | 385

Custom Styling the Datepicker

By default, the Datepicker plugin doesn’t provide styling. To style the Datepicker plugin, you can
either use a jQuery UI theme or style it manually. This section presents how to style the Datepicker
calendar manually. Before you can style the Datepicker widget, however, you need to understand
how the widget is structured. A comprehensive list of customization options and a list of class names
appear in Appendix O, “Datepicker.”

In the following example, you examine the markup structure of the Datepicker plugin and apply
some CSS to it. This example is available in this book’s source code download materials available
at ww.wrox.com in Example 16-2.html and Example 16-2.css. This example focuses only on the
markup and CSS portions of the Datepicker plugin and does not include any JavaScript. This is an
example of the markup the Datepicker plugin generates with default options selected. If you provide
custom options to the Datepicker plugin, you need to use something such as WebKit Inspector or
Firebug to examine the markup generated by the plugin for changes.

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtm1 ">
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv='content-Tlanguage' content='en-us' />
<title>Datepicker Plugin</title>
<link href="Example 16-2.css' rel="stylesheet' />
</head>
<body>
<div id="ui-datepicker-div"
class="ui-datepicker
ui-widget
ui-widget-content
ui-helper-clearfix
ui-corner-all">
<div class="ui-datepicker-header
ui-widget-header
ui-helper-clearfix
ui-corner-all">
<a class="ui-datepicker-prev
ui-corner-all”
title="Prev">
<span class="ui-icon
ui-icon-circle-triangle-w'">Prev

<a class="ui-datepicker-next
ui-corner-all”
title="Next">
<span class="ui-icon
ui-icon-circle-triangle-e'>Next

<div class="ui-datepicker-title'">
<select class="ui-datepicker-month">
<option value="0">Jan</option>
<option value="1">Feb</option>
<option value="2">Mar</option>
<option value="3" selected="selected">Apr</option>

http://www.wrox.com
http://www.w3.org/1999/xhtml

386 | CHAPTER 16 DATEPICKER

<option value="4">May</option>
<option value="5">Jun</option>
<option value="6">Jul</option>
<option value="7">Aug</option>
<option value="8">Sep</option>
<option value="9">0ct</option>
<option value="10">Nov</option>
<option value="11">Dec</option>

</select>

<select class="ui-datepicker-year">
<option value="2004">2004</option>
<option value="2005">2005</option>
<option value="2006">2006</option>
<option value="2007">2007</option>
<option value="2008">2008</option>
<option value="2009">2009</option>
<option value="2010">2010</option>
<option value="2011">2011</option>
<option value="2012">2012</option>
<option value="2013">2013</option>
<option value="2014" selected="selected'>2014</option>
<option value="2015">2015</option>
<option value="2016">2016</option>
<option value="2017">2017</option>
<option value="2018">2018</option>
<option value="2019">2019</option>
<option value="2020">2020</option>
<option value="2021">2021</option>
<option value="2022">2022</option>
<option value="2023">2023</option>
<option value="2024">2024</option>

</select>
</div>
</div>
<table class="ui-datepicker-calendar">
<thead>
<tr>

<th class="ui-datepicker-week-end">
S
</th>
<th>
M
</th>
<th>
T
</th>
<th>
W
</th>
<th>
T
</th>
<th>
F

Implementing a Datepicker | 387

</th>
<th class="ui-datepicker-week-end">
S
</th>
</tr>
</thead>
<tbody>
<tr>
<td class="ui-datepicker-week-end
ui-datepicker-other-month
ui-datepicker-unselectable
ui-state-disabled"> </td>
<td class="ui-datepicker-other-month
ui-datepicker-unselectable
ui-state-disabled"> </td>
<td>
1
</td>
<td>
2
</td>
<td>
3
</td>
<td>
4
</td>
<td class="ui-datepicker-week-end">
5
</td>
</tr>
<tr>
<td class="ui-datepicker-week-end">
6
</td>
<td class="ui-datepicker-days-cell-over
ui-datepicker-today'>
<a class="ui-state-default
ui-state-highlight
ui-state-hover" href="#">7
</td>
<td>
8
</td>
<td>
9
</td>
<td>
10
</td>
<td>
11
</td>
<td class="ui-datepicker-week-end">

388 | CHAPTER 16 DATEPICKER

<a class="ui-state-default" href=
</td>
</tr>
<tr>
<td class="ui-datepicker-week-end">
<a class="ui-state-default" href=
</td>
<td>
<a class="ui-state-default" href=
</td>
<td>
<a class="ui-state-default" href=
</td>
<td>
<a class="ui-state-default" href=
</td>
<td>
<a class="ui-state-default" href=
</td>
<td>
<a class="ui-state-default" href=
</td>
<td class="ui-datepicker-week-end">
<a class="ui-state-default" href=
</td>
</tr>
<tr>
<td class="ui-datepicker-week-end">
<a class="ui-state-default" href=
</td>
<td>
<a class="ui-state-default" href=
</td>
<td>
<a class="ui-state-default" href=
</td>
<td>
<a class="ui-state-default" href=
</td>
<td>
<a class="ui-state-default" href=
</td>
<td>
<a class="ui-state-default" href=
</td>
<td class="ui-datepicker-week-end">

<a class="ui-state-default" href=
</td>
</tr>
<tr>

<td class="ui-datepicker-week-end">
<a class="ui-state-default" href=

</td>

<td>

"#'">12

"#'">13

"#'">14

"#'">15

"#">16

"#'"517

"#">18

"#">19

"#">20

"#'">521

"#'">522

"#">23

"#'">24

"#">25

"#">26

"#'"'>527

Implementing a Datepicker | 389

28
</td>
<td>
29
</td>
<td>
30
</td>
<td class="ui-datepicker-other-month
ui-datepicker-unselectable
ui-state-disabled"> </td>
<td class="ui-datepicker-other-month
ui-datepicker-unselectable
ui-state-disabled"> </td>
<td class="ui-datepicker-week-end
ui-datepicker-other-month
ui-datepicker-unselectable
ui-state-disabled"> </td>
</tr>
</tbhody>
</table>
</div>
</body>
</html>

The preceding markup document is styled with the following CSS:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: rgb(255, 255, 255);
color: rgb(50, 50, 50);
margin: 0;
padding: 0;

}

div#ui-datepicker-div {
border: Ipx solid rgb(128, 128, 128);
background: rgb(255, 255, 255);
width: 180px;
margin: 30px;
position: relative;

}

div.ui-datepicker-control div a {
color: rgb(0, 0, 0);

}

div.ui-datepicker-T1inks {
position: relative;
height: 16px;
padding: 0;
background: rgb(255, 255, 255);
text-align: center;

}

div.ui-datepicker-clear,

a.ui-datepicker-prev {
position: absolute;
top: 0;

390 | CHAPTER 16 DATEPICKER

}

left: 0;

div.ui-datepicker-cilose,

a

}

.ui-datepicker-next {

position: absolute;
top: O;
right: 0;

div.ui-datepicker-header {

}
a

QD

[V — — [V

—

padding-top: 16px;

.ui-datepicker-next,
a.

ui-datepicker-prev {
display: block;
text-indent: -10000px;
width: 58px;
height: 16px;
border-Tleft: 1px solid rgb(186, 186, 186);
border-bottom: Ipx solid rgb(186, 186, 186);
background: rgb(233, 233, 233);

.ui-datepicker-next span,
.ui-datepicker-prev span {

display: block;

width: 0;

height: 0;

border-top: 6px solid rgb(77, 77, 77);
border-Teft: 7px solid transparent;
border-right: 7px solid transparent;
position: relative;

top: 4px;

left: 23px;

.ui-datepicker-next:active ,
.ui-datepicker-prev:active {

background: rgb(200, 200, 200);

.ui-datepicker-prev {

border-right: 1px solid rgb(186, 186, 186);
border-Tleft: none;

.ui-datepicker-prev span {

border-top: none;
border-bottom: 6px solid rgb(77, 77, 77);

.ui-datepicker-next:active span,
.ui-datepicker-prev:active span {

border-top-color: rgb(255, 255, 255);

.ui-datepicker-prev:active span {

border-top-color: transparent;
border-bottom-color: rgb(255, 255, 255);

Implementing a Datepicker | 391

h

div.ui-datepicker-title {
margin-top: 5px;
text-align: center;

3

div.ui-datepicker-title select {
margin: 0 3px;

table.ui-datepicker-calendar {
width: 100%;
border-collapse: collapse;
margin: 10px 0 0 0;

table.ui-datepicker-calendar td {
padding: 3px;
text-align: center;
color: rgb(255, 255, 255);
background: rgb(158, 158, 158);
border-bottom: 1px solid rgb(255, 255, 255);
font-size: 1lpx;

table.ui-datepicker-calendar td a {
color: rgb(255, 255, 255);
text-decoration: none;
display: block;

table.ui-datepicker-calendar thead th {
text-align: center;
font-weight: bold;
font-size: 1lpx;
color: rgb(0, 0, 0);

table.ui-datepicker-calendar td.ui-datepicker-today {
background: rgb(230, 230, 230);

table.ui-datepicker-calendar td.ui-datepicker-today a {
color: rgb(0, 0, 0);

}

table.ui-datepicker-calendar td.ui-datepicker-current-day {
background: rgb(0, 0, 0);

table.ui-datepicker-calendar td.ui-datepicker-current-day a {
color: rgb(255, 255, 255);

table.ui-datepicker-calendar td.ui-datepicker-other-month {
background: rgb(230, 230, 230);
border-bottom: 1px solid rgb(255, 255, 255);
font-size: 1lpx;

h

When you load the document in a browser, the preceding example results in something similar to
Figure 16-2.

392 | CHAPTER 16 DATEPICKER

8 0e Datepicker Plugin =l
[| P» J [+ ‘@ file:/f /Volumes/richard/Documents/Books/j¢ & | reader] @

[Apr 3| [2014 3]

5 M T W T F 5§

13 14 15 16 17 18 19
20 21 22 23 24 25 26

27 28 29 30 _

FIGURE 16-2

In the preceding example, you learned how to style the default Datepicker widget without using a
premade jQuery UI theme, which would otherwise style the widget for you. Other aspects of the
Datepicker concerning which dates you are allowed to pick from, how dates are formatted, and
which controls are present in the widget may also be customized. You learn more about these things
in the “Localizing the Datepicker” section later in this chapter.

To style the Datepicker, you can reference the markup provided, using the various id and class
names to create styling for the pop-up calendar.

The styles provided are nothing extraordinary, just run-of-the-mill CSS. In the following sections,
you take a look at how to further customize the Datepicker widget.

Setting the Range of Allowed Dates

By default, the jQuery UI Datepicker plugin allows you to select from a range of dates that goes
10 years into the future and 10 years into the past. You can customize the range of dates that are
allowed by the widget, however, by specifying the range via options that you set upon calling the
datepicker() method:

> minDate and maxDate set the minimum and maximum possible dates a user can enter into the
date field. These options are set by providing a JavaScript Date object.

> changeMonth and changeYear are both boolean options that toggle regardless of whether the
month and year are drop-down menus, which allow the user to jump to a particular date
more quickly.

> yearRange sets the range of years made available in the year drop-down menu. This option
is a string with the beginning and end year separated by a colon. For example, "1900:2000"
would populate a drop-down menu with every year from 1900 to 2000.

The following example is a demonstration of the preceding options and is available in the source
materials as Example 16-3.html, and it uses a style sheet based on the example provided in Example
16-2.css.

<!DOCTYPE HTML>
<htm1 xmIns="http://www.w3.0rg/1999/xhtml] '>

http://www.w3.org/1999/xhtml

Implementing a Datepicker | 393

<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv='content-Tlanguage' content='en-us' />
<title>Datepicker Plugin</title>
<script src="../jQuery.js ' '></script>
<script src="../jQueryUI.js'></script>
<script src="Example 16-3.js'></script>
<1link href="Example 16-3.css' rel='stylesheet' />
</head>
<body>
<form action="'javascript:void(0);
<fieldset>
<legend>Appointment Form</legend>
<div class="exampleDate'>
<Tabel for="exampleDate'">Date:</label>
<input type="text" name="exampleDate" id="exampleDate" />

</div>
</fieldset>
</form>
</body>
</html>

’

method="post '>

The date field in the preceding markup is made into a Datepicker with the following JavaScript:

$(document) . ready(
function()
{
$("input#exampleDate').datepicker({

changeMonth : true,
changeYear : true,
minDate : new Date(1900, 1, 1),
maxDate : new Date(2020, 12, 31),
yearRange : "1900:2020"

s
$('div.exampleDate img').click(
function()
$(this)
.prev("input")
.focus();
}

);
The preceding results are shown in Figure 16-3.

The preceding script sets up five options for the Datepicker. The first two options, changeMonth
and changeYear, toggle whether the month or year, respectively, are <select> inputs in the pop-up
Datepicker. If these options are set to false, as in the following script, which is available in the
source materials as Example 16-4, the month and year become static:

$("input#exampleDate').datepicker({
changeMonth : false,

394 | CHAPTER 16 DATEPICKER

changeYear : false,

minDate : new Date(1900, 1, 1),
maxDate : new Date(2020, 12, 31),
yearRange : "1900:2020"

1)

Datepicker Plugin
- | €3 file:// Vol frichard/Doc /Books/ji &

Appointment Form

S e —

[|
Apr & 2014 =

Su Mo Tu We Th Fr

13 14 15 16 17
20 21 22 23 24 25

27 28 29 30

FIGURE 16-3

Figure 16-4 shows the difference in providing changeMonth with the false versus the true value.

Datepicker Plugin
~ 8ﬁle:;‘f,,’\n‘nlumes,fril:hard,fDncumentsfﬂnnks,fji [+]

April 2014

Su Mo Tu We Th

13 14 15 16 17
20 21 22 23 24

27 28 29]0

FIGURE 16-4

Localizing the Datepicker | 395

It is also possible to make only the month a <select> input or only the year. In the next section you
learn how to localize the Datepicker.

LOCALIZING THE DATEPICKER

The Datepicker plugin has many localization options that allow you to completely change how the
calendar looks, the text that it uses, the date format that it uses, and the weekday the calendar starts
on. The following sections describe how to localize a Datepicker implementation.

Setting the Date Format

You can change the date format displayed as the value of the <input> element to whatever format
you like. The following script, Example-16-5, demonstrates how to change the date format so that
the day is placed before the month, as is done with dates in much of the world:

$(document) . ready(
function()
{
$("input#exampleDate').datepicker({

changeMonth : true,
changeYear : true,
minDate : new Date(1900, 1, 1),
maxDate : new Date(2020, 12, 31),
yearRange : "1900:2020",
dateFormat : "dd/mm/yy"

s
$('div.exampleDate img').click(
function()
$(this)
.prev("input")
.focus();
b
J;

);

In the preceding script, the date format is set using the dateFormat option; in this case, it specifies
the day, month, and year—the day and month with leading zeroes and the year in four-digit format.
A full list of options is available in Appendix O, in the “Format Options” section. Figure 16-5 shows
that the day appears first, then the month, and then the year.

Localizing Datepicker Text

You can use the following options to localize, customize, or translate an implementation of
Datepicker:

> appendText—The text to display after each date field.

> buttonText—The text to display on the button element that triggers the Datepicker.

396 | CHAPTER 16 DATEPICKER

> closeText—The text to display for the close link. The default is "Close".
> currentText—The text to display for the current day link. The default is "Today".

> dayNames—The list of long day names, starting from Sunday, for use as requested via the
dateFormat setting. Day names also appear as pop-up hints when hovering over the corre-
sponding column headings. The default is ["Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"].

> dayNamesMin—The list of minimized day names, starting from Sunday, for use as column
headers within the Datepicker. The default is ["Su™, "Mo"™, "Tu", "We", "Th", "Fr", "Sa"l.

> dayNamesShort—The list of abbreviated day names, starting from Sunday, for use as
requested via the dateFormat setting. The default is ["Sun", "Mon", "Tue", "Wed",
"Thu", "Fri", "Sat"].

> monthNames—The list of full month names, as used in the month header on each Datepicker
and as requested via the dateFormat setting. The default is ["January”, "February", "March",
"April", "May", "June", "July", "August", "September", "October", "November",
"December"].

> monthNamesShort—The list of abbreviated month names, for use as requested via the date-
Format setting. The default is ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug",
"Sep”, "Oct”, "Nov", "Dec"].

> nextText—The text to display for the next month link. The default is "Next".
> prevText—The text to display for the previous month link. The default is "Prev".

> weekHeader—The column header for the week of the year (see showweeks). The default is "wk".

8006 Datepicker Plugin el
[a|r»]@ [+ ‘@ file:///Volumes/richard/Documents/Books/]l ¢ | Seader } @

Appointment Form

Date: |25/04/2014] Eﬂ

- -

|.Apr +|[2014 2|

Mo Tu We Th

14 15 16 17
21 22 23 24

27 28 29 !0

FIGURE 16-5

Localizing the Datepicker | 397

Changing the Starting Weekday

In some places in the world, the calendar begins with Monday and ends with Sunday. Whichever
day you want to use as the starting weekday is also customizable via the firstDay option. The fol-
lowing script, Example 16-6, demonstrates how to change the starting weekday:

$(document) . ready(
function()
{
$("input#exampleDate') .datepicker({

changeMonth : true,
changeYear : true,
minDate : new Date(1900, 1, 1),
maxDate : new Date(2020, 12, 31),
yearRange : "1900:2020",
dateFormat : "dd/mm/yy",

firstDay : 1
D;
$('div.exampleDate img').click(
function()
$(this)
.prev("input')
.focus(Q;
}
);

}
);

In the preceding script, the firstDay option changes the starting calendar day from Sunday (which is
number 0) to Monday (which is number 1). Figure 16-6 shows the result of the change.

800 Datepicker Plugin !
[| B]E] [L |8 file:// /Volumes/richard/Documents/Books/}l & | Reacer J
— — —

Appointment Form

Date: | 09/04/2014 @

- -
[Apr #][2014 2]

Mo Tu We Th Fr Sa Su

14 15 16 18 18
21 zz2 23 25 26

28 29 30

FIGURE 16-6

398 | CHAPTER 16 DATEPICKER

SUMMARY

In this chapter, you learned a little about what the jQuery UI Datepicker plugin offers. This chapter
covered only some of the options allowed because of constraints on resources; however, a compre-
hensive reference containing all the options that you can use with the datepicker() method appears
in Appendix O.

In this chapter, you learned that the Datepicker plugin does not come with much styling, and what-
ever styling you want must be implemented either manually or using one of the premade jQuery

UI themes. You saw how the widget’s markup is structured and a sample style sheet that could be
applied to it.

You learned that the Datepicker can limit the range of selectable dates. To limit what dates the user
can put in the date field, the minDate and maxDate options can be used. To set the range of years

the Datepicker displays, the yearRange option can be used. To toggle whether the month and year
options are drop-down menus, you use the changeMonth and changeYear options.

You learned a little about the options available to you for localizing the Datepicker. You can change
the date format any of the text labels, and the starting weekday displayed in the calendar.

EXERCISES

1. Name the two options that you can potentially use to limit the dates the user can input into
the Datepicker.

2. Which option sets the years populated in the year drop-down menu? What is an
example value?

3. Which options provide the month and year options as drop-down menus?
4. Which option would you use to change the date format?

5. Does the Datepicker plugin give you the ability to translate its text into Spanish? How would
p plugin give y Yy p
you translate the weekday labels into Spanish?

6. Which option would you use to change the starting weekday?

17

Dialog

This chapter presents how to work with the jQuery Ul Dialog plugin, which provides pseudo-
pop-up windows created using markup, CSS, and JavaScript.

Unlike pop-up windows, which require that you open a new document in a separate browser
window that is increasingly saddled with security limitations, such as being unable to hide the
URL of the document and being unable to hide the status bar at the bottom of the window,
dialogs created using markup, CSS, and JavaScript can be styled in any way that you like and
can impose any limitations that you like. For example, you have the ability to make a modal
dialog, which provides a dialog and prevents the user from continuing to interact with the
document until the dialog is closed.

Another difference between pop-up windows and dialogs (as I will now refer to this widget
for the remainder of this chapter—without reiterating the fact that they are generated by
markup, CSS, and JavaScript) is that dialogs cannot leave the browser window in which
they reside. So a dialog cannot be minimized to your operating system’s taskbar, although
you could possibly create your own minimization script so that the dialog can be minimized
within the browser window.

As with many of the things that you learned in this book, jQuery UI again leaves little to be
desired in its implementation of dialogs.

IMPLEMENTING A DIALOG

As with every other jQuery UI plugin, this discussion of the Dialog plugin begins with a
demonstration of what the plugin does in its default state. Example 17-1 demonstrates the
out-of-the-box implementation:

<!DOCTYPE HTML>

<html xmlns="http://www.w3.0rg/1999/xhtml ">
<head>

http://www.w3.org/1999/xhtml

400 | CHAPTER 17 DIALOG

<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />

<meta http-equiv="'content-language' content='en-us' />

<title>Dialog Plugin</title>

<script src="../jQuery.js'></script>

<script src="../jQueryUI.js " '></script>

<script src="Example 17-1.js'></script>

<link href="Example 17-1.css' rel='stylesheet' />

</head>
<body>
<div id="exampleDialog' title="'Lorem Ipsum'>
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
sagittis commodo ipsum. Donec est. Mauris eget arcu. Suspendisse
tincidunt aliquam velit. Maecenas libero. Aliquam dapibus
tincidunt eros. Donec suscipit tincidunt odio. Maecenas congue
tortor non ligula. Phasellus vel elit. Suspendisse potenti. Nunc
odio quam, hendrerit ac, imperdiet sit amet, venenatis sed, enim.
</p>
</div>
</body>
</html1>

The following style sheet is applied to the preceding markup document:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);

}

In the following script, you see how the <div> element with an id name exampleDialog is made into a
dialog by selecting that <div> element and then calling the dialog() method:

$(document) . ready(
function()

$("div#exampleDialog').dialog();
);

In Figure 17-1, you can see that the dialog doesn’t look like much out-of-the-box. The title of the
dialog is set by placing the title in the title attribute of the element that you want to transform into
a dialog. The title of the dialog may also be set by passing a title option to the dialog() method;
either method of setting the title can be used. If both methods are used, the title option to the
dialog() method will be used.

Styling a Dialog | 401

e oo Dialog Plugin "
[a|» ”El [ek |B file:// /Volumes/richard/Documents/Books/jQuery/21 & | ‘ceau:__]
A s al =

Lorem Ipsum| close |

Lorem ipsurm dolor sit amet, consectetuer
adipiscing elit. In sagittis commodo ipsum. Donec
est. Mauris eget arcu. Suspendisse tincidunt
aliquam velit. Maecenas libero. Aliguam dapibus
tincidunt eros. Donec suscipit tincidunt odio.
Maecenas congue tortor non ligula. Phasellus vel
elit. Suspendisse potenti. Nunc odio quam,
hendrerit ac, imperdiet sit amet, venenatis sed,
enim.

FIGURE 17-1

NOTE Lipsum text can be copied and pasted from waw.1ipsum.com.

STYLING A DIALOG

Before you can learn how to style a dialog, you need to see how it is constructed and assembled in
markup. The following markup is the basic structure used for a typical jQuery Ul dialog after the
dialog() method has finished modifying the document:

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtml ">
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv="'content-Tlanguage' content='en-us' />
<title>Dialog Plugin</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<1link href="Example 17-2.css' rel='stylesheet' />
</head>
<body>
<div class="ui-dialog

http://www.lipsum.com
http://www.w3.org/1999/xhtml

402

CHAPTER 17 DIALOG

ui-widget
ui-widget-content
ui-corner-all
ui-front
ui-draggable
ui-resizable"
tabindex="-1"
role="dialog"
aria-describedby="exampleDialog"
aria-Tabelledby="ui-7d-1">
<div class="ui-dialog-titlebar
ui-widget-header
ui-corner-all
ui-helper-clearfix">

Lorem Ipsum

<button type="button"
class="ui-button
ui-widget
ui-state-default
ui-corner-all
ui-button-icon-only
ui-dialog-titiebar-close”
role="button"
aria-disabled="false"
title="close">
<span class="ui-button-icon-primary
ui-icon
ui-icon-closethick">
close

</button>

</div>

<div id="exampleDialog" class="ui-dialog-content ui-widget-content"'>
<p>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
sagittis commodo ipsum. Donec est. Mauris eget arcu.
Suspendisse tincidunt aliquam velit. Maecenas libero.
Aliquam dapibus tincidunt eros. Donec suscipit tincidunt
odio. Maecenas congue tortor non Tigula. Phasellus vel elit.
Suspendisse potenti. Nunc odio quam, hendrerit ac, imperdiet
sit amet, venenatis sed, enim.
</p>
</div>
<div class="ui-resizable-handle
ui-resizable-n">
</div>
<div class="ui-resizable-handle
ui-resizable-e">
</div>
<div class="ui-resizable-handle
ui-resizable-s'>
</div>
<div class="ui-resizable-handle
ui-resizable-w'">
</div>

Styling a Dialog | 403

<div class="ui-resizable-handle
ui-resizable-se
ui-icon
ui-icon-gripsmall-diagonal-se'>

</div>

<div class="ui-resizable-handle
ui-resizable-sw">

</div>

<div class="ui-resizable-handle
ui-resizable-ne">

<div class="ui-resizable-handle
ui-resizable-nw">

</div>

</div>
</body>
</html1>

The preceding markup can be accessed in this book’s source code download materials in the
Example 17-2.html file.

As you can see in the preceding markup, the dialog() method adds a title bar, resize handles, and
a <button> element for closing the dialog. The dialog can also be moved by dragging the dialog
from the title bar, as well as resized from its edges (after the resize handles have been positioned in
place).

Like the Datepicker in Chapter 16, “Datepicker,” you can style a jQuery UI Dialog either by
applying a jQuery UI theme style sheet provided from the jQuery Ul website or by manually styling
the dialog markup. In Example 17-3, you do just that:

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtml ">
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />

<meta http-equiv='content-Tlanguage' content='en-us' />
<title>Dialog Plugin</title>
<script src="../jQuery.js ' '></script>
<script src="../jQueryUI.js"'></script>
<script src="Example 17-3.js'></script>
<link href="Example 17-3.css' rel="stylesheet' />

</head>
<body>
<div id="'exampleDialog' title='Lorem Ipsum'>
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
sagittis commodo ipsum. Donec est. Mauris eget arcu. Suspendisse
tincidunt aliquam velit. Maecenas Tlibero. Aliquam dapibus
tincidunt eros. Donec suscipit tincidunt odio. Maecenas congue
tortor non Tigula. Phasellus vel elit. Suspendisse potenti. Nunc
odio quam, hendrerit ac, imperdiet sit amet, venenatis sed, enim.
</p>
</div>
</body>

</html>

http://www.w3.org/1999/xhtml

404 | CHAPTER 17 DIALOG

The preceding markup document is saved as Example 17-3.html and is styled with the following
style sheet, Example 17-3.css:

body {
font: 12px "Lucida Grande", Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);
}
div.ui-dialog {
box-shadow: 0 7px 100px rgba(0, 0, 0, 0.6);
border-radius: 4px;
outline: none;
position: fixed;
z-index: 1000;
background: #fff;
3
div.ui-dialog-titlebar {
height: 23px;
background: url('images/Titlebar Right.png')
no-repeat
top right,
url('images/Titlebar Left.png')
no-repeat
top left;

position: relative;
z-index: 10;
3
span.ui-dialog-titile {
display: block;
font-size: 13px;
text-align: center;
margin: 0 9px;
padding: 4px 0 0 0;
height: 19px;
background: url('images/Titlebar.png')
repeat-x
top;
position: relative;
z-index: 10;
}
div.ui-dialog-container {
background: #fff
url('images/Titlebar Left.png')
no-repeat
top left;
}
button.ui-dialog-titlebar-close {
position: absolute;
width: 14px;
height: 15px;
top: 5px;

Styling a Dialog | 405

Teft: 10px;
border: none;
background: url('images/Close Off.png')
no-repeat
top left;
z-index: 10;
}
button.ui-dialog-titiebar-close:hover {
background: url('images/Close On.png')
no-repeat
top left;
}
button.ui-dialog-titiebar-close span {
display: none;

button.ui-dialog-titlebar-close:focus {
border: none;
outline: none;

}

div.ui-dialog-content {
padding: 10px;

div.ui-resizable-handile {
border: none;
position: absolute;
z-index: 1;

}
div.ui-resizable-nw {
width: 10px;
height: 10px;
top: -10px;
Teft: -10px;
cursor: nw-resize;
}

div.ui-resizable-n {
height: 10px;

top: -10px;
left: 0;
right: 0;
cursor: n-resize;
3
div.ui-resizable-ne {
width: 10px;
height: 10px;
top: -10px;
right: -10px;
cursor: ne-resize;
}
div.ui-resizable-w {
width: 10px;
Teft: -10px;

top: 0;

406 | CHAPTER 17 DIALOG

bottom: 0;
cursor: w-resize;
3
div.ui-resizable-e {
width: 10px;
right: -10px;
top: O;
bottom: 0;
cursor: e-resize;
}
div.ui-resizable-sw {
width: 10px;
height: 10px;
bottom: -10px;
left: -10px;
cursor: sw-resize;
3

div.ui-resizable-s {
height: 10px;
bottom: -10px;

left: 0;
right: 0;
cursor: s-resize;
3
div.ui-resizable-se {
width: 10px;
height: 10px;
bottom: -10px;
right: -10px;
cursor: se-resize;
}

The preceding style sheet and XHTML are joined with the following JavaScript, Example 17-3.js:

$(document) . ready (
function()

$("div#exampleDialog').dialog({
title : "Example Dialog"
s

);
The preceding styles the jQuery Ul Dialog similar to a Mac OS X application window, as shown in
Figure 17-2.

In the preceding example, you learned how to apply styling to the jQuery UI Dialog plugin, which is
inspired by the look of application windows found on Mac OS X.

The example referred to in Figure 17-2 works great in every modern browser, but there is no drop
shadow in older versions of IE, which cannot render the box-shadow property.

Making a Modal Dialog | 407

e oo Dialog Plugin Pl
[4 |] @ [-+ |@ file:f/ /Volumes/richard/Documents/Books/jQuery/2n ¢ ' Heade] @

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. In sagittis commodo ipsum.
Donec est. Mauris eget arcu. Suspendisse
tincidunt aliguam velit. Maecenas libero.
Aliguam dapibus tincidunt eros. Donec suscipit
tincidunt odie. Maecenas congue tortor non
ligula. Phasellus vel elit. Suspendisse potenti.
MNunc odio quam, hendrerit ac, imperdiet sit
amet, venenatis sed, enim.

FIGURE 17-2

MAKING A MODAL DIALOG

A modal dialog is a dialog that upon activation prevents interaction with the document until the
dialog is closed. Example 17-4 demonstrates how to make a jQuery UI Dialog with modal behavior:

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtml ">
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv='content-Tlanguage' content='en-us' />
<title>Dialog Plugin</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="Example 17-4.js'></script>
<1link href="Example 17-4.css' rel='stylesheet' />
</head>
<body>
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
sagittis commodo ipsum. Donec est. Mauris eget arcu. Suspendisse
tincidunt aliquam velit. Maecenas Tibero. Aliquam dapibus
tincidunt eros. Donec suscipit tincidunt odio. Maecenas congue
tortor non ligula. Phasellus vel elit. Suspendisse potenti. Nunc

http://www.w3.org/1999/xhtml

408 | CHAPTER 17 DIALOG

odio quam, hendrerit ac, imperdiet sit amet, venenatis sed, enim.

</p>
<div id="exampleDialog' title='Lorem Ipsum'>
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
sagittis commodo ipsum. Donec est. Mauris eget arcu. Suspendisse
tincidunt aliquam velit. Maecenas Tibero. Aliquam dapibus
tincidunt eros. Donec suscipit tincidunt odio. Maecenas congue
tortor non ligula. Phasellus vel elit. Suspendisse potenti. Nunc
odio quam, hendrerit ac, imperdiet sit amet, venenatis sed, enim.
</p>
</div>
</body>
</html>

The CSS rule for div.ui-widget-overlay is added to the style sheet that you created in Example

17-3; this

file is available in the source materials as Example 17-4.css:

body {

div.

div.

}

div.

font: 12px "Lucida Grande", Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);

ui-widget-overlay {

background: rgba(255, 255, 255, 0.7);
position: fixed;

top: O;

right: 0;

bottom: 0;

left: 0;

ui-dialog {

box-shadow: 0 7px 100px rgba(0, 0, 0, 0.6);
border-radius: 4px;

outTine: none;

position: fixed;

z-index: 1000;

background: #fff;

ui-dialog-titiebar {

height: 23px;

background: url('images/Titlebar Right.png')
no-repeat

Then the JavaScript file applies the modal option to create a modal dialog:

$(do

cument) . ready(
function()

$('div#exampleDialog').dialog({
title : 'Example Dialog’,
modal : true

1);

Auto-Opening the Dialog | 409

In the preceding script, you turn on the modal option by setting it to true. When you set the modal
option to true along with the application of the div.ui-widget-overlay CSS rule, you disable inter-
action with background content while the dialog is open. Interaction with background content is
disabled because the <div> element with the ui-widget-overlay class name is added dynamically to
the document when the modal option is enabled. This element then blocks access to background con-
tent because it is positioned to take up the entire window and is positioned in front of background
content, but behind the open dialog.

Figure 17-3 shows that the background is draped in a semitransparent white background to indicate
that it is disabled.

8006 Dialog Plugin o
[4 | P] [-+ |@ file:///Volumes/richard/Documents/Book & @ “eade] @

ecie er adig ng eit. 5d s
suspendisse tincidunt aliquam velit. Mae

. 8. Example Dialog

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. In sagittis commodo ipsum.
Donec est. Mauris eget arcu. Suspendisse
tincidunt aliguam velit. Maecenas libero.
Aliquam dapibus tincidunt eros. Donec suscipit
tincidunt odio. Maecenas congue tortor non
ligula. Phasellus vel elit. Suspendisse potenti.
Nunc odio quam, hendrerit ac, imperdiet sit
amet, venenatis sed, enim.

FIGURE 17-3

AUTO-OPENING THE DIALOG

By default, upon calling the dialog() method, the dialog is automatically opened. This behavior can
be controlled by setting the autoOpen option to false. When the autoOpen option is set to false, you
can programmatically open a dialog by calling the dialog() method with the string 'open’ in its first
argument or dialog('open"). Likewise, dialog('close") can be used to close the dialog.

Example 17-5 demonstrates the autoOpen option:

<!DOCTYPE HTML>
<htm1 xmlns="http://www.w3.0rg/1999/xhtml '>
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv="'content-Tlanguage' content='en-us' />
<title>Dialog Plugin</title>
<script src="../jQuery.js'></script>

http://www.w3.org/1999/xhtml

410 | CHAPTER 17 DIALOG

<script src="../jQueryUI.js " '></script>
<script src="Example 17-5.js'></script>
<link href='"Example 17-5.css' rel="'stylesheet' />
</head>
<body>
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
sagittis commodo ipsum. Donec est. Mauris eget arcu. Suspendisse
tincidunt aliquam velit. Maecenas libero. Aliquam dapibus
tincidunt eros. Donec suscipit tincidunt odio. Maecenas congue
tortor non ligula. Phasellus vel elit. Suspendisse potenti. Nunc
odio quam, hendrerit ac, imperdiet sit amet, venenatis sed, enim.
</p>
<input type='submit' id='"exampleDialogOpen' value='Open Dialog' />
<div id="exampleDialog' title='Lorem Ipsum'>
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
sagittis commodo ipsum. Donec est. Mauris eget arcu. Suspendisse
tincidunt aliquam velit. Maecenas Tibero. Aliquam dapibus
tincidunt eros. Donec suscipit tincidunt odio. Maecenas congue
tortor non ligula. Phasellus vel elit. Suspendisse potenti. Nunc
odio quam, hendrerit ac, imperdiet sit amet, venenatis sed, enim.
</p>
</div>
</body>
</html>

The CSS document from Example 17-4 is applied to the preceding markup document, along with
the following script:

$(document) . ready (
function()

$("div#exampleDialog').dialog({
title : '"Example Dialog',
modal : true,
autoOpen : false

s
$("input#exampleDialogOpen').click(
function(event)
{
event.preventDefault();
$('div#exampleDialog')
.dialog('open');
3
);

Controlling Dynamic Interaction | 411

In the preceding script, you prevent the dialog from being opened automatically by setting the
autoOpen option to false. To open the dialog, you attach a click event to the <input> element, and
when that event takes place, you make a call to $('div#exampleDialogOpen').dialog('open’) to open
the dialog programmatically. Figure 17-4 displays the preceding example.

Dialog Plugin
4 _"“’ + _B file:// /Volumes/richard/Documents/Book: & @_

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In sagittis commodo ipsum.
Donec est. Mauris eget arcu. Suspendisse tincidunt aliguam velit. Maecenas libero.
Aliquam dapibus tincidunt eros. Donec suscipit tincidunt odio. Maecenas congue tortor
non ligula. Phasellus vel elit. Suspendisse potenti. Nunc odio quam, hendrerit ac,
imperdiet sit amet, venenatis sed, enim.

["Open Dialog | L
80O Dialog Plugin e
[4 > } g [+ |e file:/ /Volumes/richard/Documents/Book: € | feare] @

arcu. Suspe & tincidunt aliguam wvelit

dunt eros. Donec suscipit tincidunt odio. A

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. In sagittis commodo ipsum.
Donec est. Mauris eget arcu. Suspendisse

‘ tincidunt aliqguam velit. Maecenas libero.
Aliquam dapibus tincidunt eros. Donec suscipit
tincidunt odio. Maecenas congue tortor non
ligula. Phasellus vel elit. Suspendisse potenti.
Nunc odio quam, hendrerit ac, imperdiet sit
amet, venenatis sed, enim.

FIGURE 17-4

CONTROLLING DYNAMIC INTERACTION

By default, the jQuery Ul Dialog plugin enables you to resize and drag the dialog window. Both
types of dynamic interaction with a dialog can be disabled by passing options to the dialog()
method. For example, the draggable option can be set to false to disable dragging the dialog, and
the resizable option can also be set to false to disable resizing a dialog. Disabling these options is
demonstrated in the following script, Example 17-6:

$(document) . ready(
function()

$('div#exampleDialog').dialog({
title : 'Example Dialog',
modal : true,

412 | CHAPTER 17 DIALOG

autoOpen : false,
resizable : false,
draggable : false

D
$("input#exampleDialogOpen').click(
function(event)
{

event.preventDefault();

$('div#exampleDialog')
.dialog('open');

);

ANIMATING THE DIALOG

Opening or closing a dialog can also be animated using one of the effects listed in Appendix M,
“Effects.” Animation can be introduced by providing an effect to the show option.

The following script, Example 17-7, demonstrates how to do this:

$(document) . ready (
function()

$("div#exampleDialog').dialog({
title : '"Example Dialog',
modal : true,
autoOpen : false,
resizable : true,
draggable : true,

show : 'explode'
D
$("input#exampleDialogOpen').click(
function(event)
{

event.preventDefault();

$("div#exampleDialog')
.dialog('open');

);

The preceding script applies an animation upon opening the dialog using the jQuery explode effect.

Figure 17-5 captures the explode effect mid-animation.

Working with Dialog Events | 413

800

Dialog Plugin

;u
2

[a4 | >] @ [+ |@ ﬁl_e:f,!_,anE.lrEesfri(hard,fDncuments,!Bnnk'] ‘ Reader } @

Example Dialog

L)

Lorem ipsum dt
ndiniceinn alit
oLy CiL.
Donec est. Mau
tincidunt aliqua
Aliguam dapibu
tincidunt odio

ligula. Phasellu:
Munc odio quar
amet, venenatis

slor sit amet, con

I e mmittic camme

[ITET T IIER RN
ris eget arcu. Sus
m velit. Maecena:
s tincidunt eros.
Maecenas congue

i vel elit. Suspenc
n, hendrerit ac, in
sed, enim

sectetuer

VRIS EOIII
pendisse

s libero.

Donec suscipit
: tortor non

lisse potentl.
nperdiet sit

FIGURE 17-5

Appendix P, “Dialog,” provides a complete list of options that can be provided to the show option.

WORKING WITH DIALOG EVENTS

The Dialog plugin supports a variety of events. You can set up events that are executed when the
dialog is opened, when the dialog is focused, when the dialog is resized, when the dialog is dragged,
or when the dialog is closed. The following document, Example 17-8, demonstrates attaching close
and open events to the dialog, but a full list of events is available in Appendix P:

$(document) . ready(

function()

$('div#exampleDialog').dialog({
'Example Dialog',

function(event, ui)

alert('Dialog Closed');

title :

modal true,
autoOpen : false,
resizable : true,
draggable : true,
show : 'explode',
close :

{

3,

open

{

function(event, ui)

alert('Dialog Opened');

414 | CHAPTER 17 DIALOG

}
b
$("input#exampleDialogOpen').click(
function(event)
{

event.preventDefault();

$('div#exampleDialog')
.dialog('open');

);

The preceding script demonstrates the attachment of the close and open options to the dialog, which
causes a callback function to be executed when the dialog is opened or closed. The callback function
is executed within the context of the dialog element it is attached to, making that element available
in the this keyword, as shown in Figure 17-6.

B Dialog Plugin
A » __ [+ |6 file:// /Volumes/richard/Documents/Book: & | fe

amet, consectetuer adipiscing elit. In sag
get arcu. Suspendisse tincidunt aliquam vel
idunt eros. Donec suscipit tincidunt odio. Maece

t

Dialog Lorem ipsum dolor sit amet, consectetuer
| adipiscing elit. In sagittis commodo ipsum. -

| |

JavaScript
@ Dialog Closed

FIGURE 17-6

SUMMARY

In this chapter, you learned how to implement a dialog using the jQuery Ul Dialog plugin. The
Dialog plugin doesn’t come with much styling, so you learned how the markup is structured and
implemented your own styling for a dialog. An alternative and easier way of styling a dialog is to
also download and apply a jQuery UI theme from the www.jqueryui.com website.

http://www.jqueryui.com

Summary | 415

You learned how to make a modal dialog using the modal option: You can use the modal option to
prevent interaction with the document in the background when the requisite CSS is added to the
style sheet.

You learned how to disable automatically opening a dialog using the autoOpen option. After auto-
matically opening a dialog has been disabled, you can programmatically open a dialog by calling
dialog('open") or close a dialog by calling dialog('close").

You can disable resizing a dialog or dragging a dialog using the resizable and draggable options.

You can animate opening and closing a dialog by providing an effect (dlocumented in Appendix P) to
the show option.

Finally, there are a variety of events associated with a dialog that you can attach callback functions
to. You saw an example of the close event, but a full list of options is in Appendix P.

EXERCISES

1.

o U A~ w N

What option would you use to disable interaction with the document while a dialog is open?
How do you disable automatically opening a dialog?

How do you open a dialog when automatically opening the dialog is disabled?

How do you close a dialog?

How do you disable resizing and dragging a dialog?

What option would you use to animate opening or closing a dialog?

18

Tabs

This installment of my introduction to jQuery and jQuery Ul presents how to work with the
jQuery UI Tabs plugin, a plugin that makes it easier to implement tabbed functionality, in
which you click a series of tabs that toggles the display of content that either already exists in
the document or is loaded dynamically via an AJAX request.

jQuery Ul provides all the functional aspects that you need to implement a tabbed user inter-
face. For styling the interface, like Dialog and the Datepicker, you can either use a jQuery Ul
theme or create your own style sheet.

Implementing a tabbed user interface, like much of the plugin functionality that jQuery Ul
offers, is easy and straightforward. You need learn about only a few fundamentals, such as
how to structure markup destined to become tabs and, of course, the various options that the
Tabs plugin offers to allow tweaking the implementation to cover the variations in use as well
as callback events.

This chapter covers how to implement and style a tabbed user interface and covers a few of the
options offered by the Tabs plugin that you’re most likely to be interested in using. Like the
other jQuery UI plugins, a comprehensive reference of options, callback events, and arguments
are covered in Appendix Q, “Tabs.”

IMPLEMENTING TABS

To start with your tabbed user interface implementation, here’s a remedial demonstration of
the jQuery UI Tabs plugin without any options or styling. The objective is to present where
you stand using the plugin out-of-the-box, which is the purpose of the following example
(Example 18-1 in the source code download materials at www.wrox.com/go/webdevwithjquery):

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtm1 ">
<head>
<meta http-equiv="content-type'
content="application/xhtmi+xml; charset=utf-8' />
<meta http-equiv="'content-language' content='en-us' />
<title>Tabs Plugin</title>

http://www.wrox.com/go/webdevwithjquery):
http://www.w3.org/1999/xhtml

418 | CHAPTER 18 TABS

<script src="../jQuery.js'></script>

<script src="../jQueryUI.js"'></script>

<script src="Example 18-1.js'></script>

<Tlink href="Example 18-1.css' rel="stylesheet' />

</head>
<body>
<div id="exampleTabs '>

<1i>

First Tab

</T1i>
<Ti>

Second Tab

</1i>
<1i>

Third Tab

</1i>

<div id="exampleTabFirst'>
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Suspendisse id sapien. Suspendisse rutrum libero sit amet dui.
Praesent pede elit, tincidunt pellentesque, condimentum nec,
mollis et, Tacus. Donec nulla ligula, tempor vel, eleifend ut.
</p>
</div>
<div id="'exampleTabSecond'>
<p>
Cras eu metus orci. Nam pretium neque ante. In eu mattis sem,
Ut euismod nulla. Curabitur a diam eget risus vestibulum
mattis et at turpis. Etiam semper, orci sit amet semper
molestie, nibh sem hendrerit est, auctor varius arcu purus ut
enim. Curabitur nisi nunc, ullamcorper a placerat a, faucibus
imperdiet urna. Maecenas cursus ullamcorper dolor, ac viverra
nibh consectetur eget.
</p>
</div>
<div id="exampleTabThird'>
<p>
Mauris sollicitudin, sem non tempor molestie, quam nunc
blandit lectus, quis molestie dui arcu in lectus. In id
fringilla elit. Ut auctor Tectus eget orci malesuada, et
Tacinia Tigula interdum. Pellentesque bibendum, orci eget
euismod scelerisque, nibh nulla posuere mi, quis commodo
purus sem et arcu.
</p>
</div>

</div>

Implementing Tabs | 419

</body>
</html>

The preceding document is styled with the following style sheet:

body {
font: 12px 'Lucida Grande', Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);

}

div#exampleTabFirst {
background: Tightblue;
padding: 5px;

}

div#exampleTabSecond {
background: Tightgreen;
padding: 5px;

div#exampleTabThird {
background: yelTow;
padding: 5px;

The following script demonstrates a call to the jQuery UI’s tabs() method:

$(document) . ready(
function()

$('div#exampleTabs').tabs();
);

Figure 18-1 shows that the preceding actually doesn’t look like much so far, but some groundwork
had been laid in preparation of creating a proper tabbed user interface.

[CHsNG] Tabs Plugin e

[4| »][El [+ |B ﬁle:&!,anumesfrl'(hard,fDEcumentsznnks;‘JQue:v,ﬂ [| Reader l@

A

e FirstTab
« |Second Tab|

» Third Tab

Cras eu metus orci. Nam pretium neque ante. In eu mattis sem, ut euismod nulla. Curabitur a
diam eget risus vestibulum mattis et at turpis. Etiam semper, orci sit amet semper molestie, nibh
sem hendrerit est, auctor varius arcu purus ut enim. Curabitur nisi nunc, ullamcorper a placerat
a, imperdiet urna. CUrsUS. per dolor, ac viverra nibh consectetur eget.

FIGURE 18-1

420 | CHAPTER 18 TABS

STYLING THE TABBED USER INTERFACE

Because the Tabs plugin requires either a theme or a custom style sheet to be applied, you need to
examine the markup document after the tabs () method has been executed to see how the Tabs
plugin modifies the markup. The modified markup document is presented in the following example,
which is Example 8-2 in the source code download materials:

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtml ">
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv="'content-Tlanguage' content='en-us' />
<title>Tabs Plugin</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js ' '></script>
<script src="Example 18-2.js'></script>
<link href='"Example 18-2.css' rel="'stylesheet' />
</head>
<body>
<div id="exampleTabs"
class="ui-tabs
ui-widget
ui-widget-content
ui-corner-all">
<ul class="ui-tabs-nav
ui-helper-reset
ui-helper-clearfix
ui-widget-header
ui-corner-all”
role="tablist">
<1i class="ui-state-default
ui-corner-top"
role="tab"
tabindex="0"
aria-controls="exampleTabFirst"
aria-Tabelledby="ui-7d-1"
aria-selected="true">
<a href="#exampleTabFirst"
class="ui-tabs-anchor"
role="presentation"
tabindex="-1"
id="ui-id-1">
First Tab

</Ti>
<11 class="ui-state-default
ui-corner-top"
role="tab"
tabindex="-1"
aria-controls="exampleTabSecond"
aria-Tabelledby="ui-7d-2"
aria-selected="false">
<a href="#exampleTabSecond"
class="ui-tabs-anchor"

http://www.w3.org/1999/xhtml

Styling the Tabbed User Interface | 421

role="presentation"
tabindex="-1"
id="ui-id-2">
Second Tab

</1i>
<11 class="ui-state-default
ui-corner-top"
role="tab"
tabindex="-1"
aria-controls="exampleTabThird"
aria-labelledby="ui-id-3"
aria-selected="false">
<a href="#exampleTabThird"
class="ui-tabs-anchor"
role="presentation"
tabindex="-1"
id="ui-id-3">
Third Tab

</1i>

<div class="ui-tabs-panel
ui-widget-content
ui-corner-bottom"
id="exampleTabFirst"
aria-Tlabelledby="ui-7d-1"
role="tabpanel"
aria-expanded="true"
aria-hidden="false">
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Suspendisse id sapien. Suspendisse rutrum libero sit amet dui.
Praesent pede elit, tincidunt pellentesque, condimentum nec,
mollis et, lacus. Donec nulla ligula, tempor vel, eleifend ut.
</p>
</div>
<div class="ui-tabs-panel
ui-widget-content
ui-corner-bottom"
id="exampleTabSecond"
aria-Tlabelledby="ui-7d-2"
role="tabpanel"
aria-expanded="false"
aria-hidden="true">
<p>
Cras eu metus orci. Nam pretium neque ante. In eu mattis sem,
Ut euismod nulla. Curabitur a diam eget risus vestibulum
mattis et at turpis. Etiam semper, orci sit amet semper
molestie, nibh sem hendrerit est, auctor varius arcu purus ut
enim. Curabitur nisi nunc, ullamcorper a placerat a, faucibus
imperdiet urna. Maecenas cursus ullamcorper dolor, ac viverra
nibh consectetur eget.
</p>
</div>
<div class="ui-tabs-panel

422 | CHAPTER 18 TABS

ui-widget-content

ui-corner-bottom"
id="exampleTabThird"
aria-labelledby="ui-id-3"
role="tabpanel"
aria-expanded="false"
aria-hidden="true">

<p>
Mauris sollicitudin, sem non tempor molestie, quam nunc
blandit lectus, quis molestie dui arcu in lectus. In id
fringilla elit. Ut auctor Tectus eget orci malesuada, et
Tacinia ligula interdum. Pellentesque bibendum, orci eget
euismod scelerisque, nibh nulla posuere mi, quis commodo
purus sem et arcu.

</p>
</div>
</div>
</body>
</html1>

The preceding markup document contains all the class name and attribute changes that the Tabs
plugin makes to the document. The additional class names and attributes are not necessary to style
the document because these are all automatically added by the Tabs plugin upon calling the tabs
method. I have included the additional class names and attributes to illustrate what happens to the
markup document after the tabs() method has completed execution. The following style sheet is
applied to the preceding example.

body {
font: 12px 'Lucida Grande', Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);
}
div#exampleTabFirst {
background: Tightblue;
padding: 5px;

div#exampleTabSecond {
background: Tightgreen;
padding: 5px;

3

div#exampleTabThird {
background: yelTlow;
padding: 5px;

.ui-tabs-hide {
display: none;

ul.ui-tabs-nav {
Tist-style: none;
padding: 0;
margin: O;
height: 22px;
border-bottom: Ipx solid darkgreen;

Styling the Tabbed User Interface | 423

ul.ui-tabs-nav 1i {
float: Tleft;
height: 17px;
padding: 4px 10px 0 10px;
margin-right: 5px;
border: 1px solid rgb(200, 200, 200);
border-bottom: none;
position: relative;
background: yellowgreen;
h
ul.ui-tabs-nav 11 a {
text-decoration: none;
color: black;
3
ul.ui-tabs-nav 1i.ui-tabs-active {
background: darkgreen;
border-bottom: 1px solid darkgreen;
}
ul.ui-tabs-nav 1i.ui-tabs-active a {
color: white;
outline: none;
}
div {
display: none;

The style sheet and XHTML are joined with the following JavaScript:

$(document) . ready(
function()

$('div#exampleTabs').tabs({
active : 1
13K
);

Figure 18-2 shows the results.

[CHsNG] Tabs Plugin e
4| > , { + |B file:// /Volumes/richard /Documents/Books/jQuery; | Reader l og_E

Second Tab

Cras eu metus orci. Nam pretium neque ante. In eu mattis sem, ut euismod nulla. Curabitur a
diam eget risus vestibulum mattis et at turpis. Etiam semper, orci sit amet semper molestie, nibh
sem hendrerit est, auctor varius arcu purus ut enim. Curabitur nisi nunc, ullamecorper a placerat
a, p urna. cursus meorper dolor, ac viverra nibh consectetur eget.

FIGURE 18-2

424 | CHAPTER 18 TABS

In Figure 18-2, you can see that the tabs are laid out in a manner that’s more consistent with what
you might expect from a tabbed UIL. With the addition of the active option with the value of 1,
the second content panel is visible by default when the page loads. The active option toggles the
selected tab, counting from zero.

The class name ui-state-active references the selected tab. The class name ui-state-hover refer-
ences the tab the mouse cursor is hovering over. Both class names are applied to the <1i> elements
that eventually become tabs.

When you click the labels in the <u1> element, you toggle between the different content panels.
Making tabs requires some structural rules. First, you have a list of items, and in that list you have
hyperlinks to anchors.

<1i>

First Tab

</Ti>
<1li>

Second Tab

</1i>
<Ti>

Third Tab

</Ti>

In the preceding snippet of markup, each hyperlink links to an anchor that appears elsewhere in the
document, by including a pound sign, followed by that element’s id name. Structuring the document
in this way makes your scripting unobtrusive. If scripting is disabled, the user can still navigate the
tabs by clicking a link to an anchor, instead of toggling the display of a content pane.

Following the list, you have three <div> elements, each having an id name that corresponds to the
anchor link, which makes those elements anchors.

<div id="exampleTabFirst'>
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Suspendisse id sapien. Suspendisse rutrum libero sit amet dui.
Praesent pede elit, tincidunt pellentesque, condimentum nec,
mollis et, lacus. Donec nulla ligula, tempor vel, eleifend ut.
</p>
</div>

When you call the tabs() method, jQuery looks at the list and automatically pulls the id names
from the hyperlinks.

Loading Remote Content via AJAX | 425

LOADING REMOTE CONTENT VIA AJAX

Loading remote content instead of local content is easy to do. The following document shows an
example, which is Example 8-3 in the source code download materials, of how to set up a tab that
loads remote content using AJAX, instead of having that content already loaded in your document.

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtml ">
<head>
<meta http-equiv='content-type'

content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv="'content-Tlanguage' content='en-us' />

<title>Tabs Plugin</title>
<script src="../jQuery.js ' '></script>
<script src="../jQueryUI.js"'></script>
<script src="Example 18-3.js'></script>
<link href="Example 18-3.css' rel="stylesheet' />
</head>
<body>
<div id="exampleTabs'>

<Ti>

First Tab

</Ti>
<Ti>

Second Tab

</1i>
<1i>

Third Tab

</Ti>
<Ti>

Fourth Tab

</Ti>

<div id="exampleTabFirst'>
<p>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Suspendisse id sapien. Suspendisse rutrum libero sit amet dui.
Praesent pede elit, tincidunt pellentesque, condimentum nec,
mollis et, lacus. Donec nulla Tligula, tempor vel, eleifend ut.
</p>
</div>
<div id="exampleTabSecond'>
<p>

http://www.w3.org/1999/xhtml

426 | CHAPTER 18 TABS

Cras eu metus orci. Nam pretium neque ante. In eu mattis sem,
Ut euismod nulla. Curabitur a diam eget risus vestibulum
mattis et at turpis. Etiam semper, orci sit amet semper
molestie, nibh sem hendrerit est, auctor varius arcu purus ut
enim. Curabitur nisi nunc, ullamcorper a placerat a, faucibus
imperdiet urna. Maecenas cursus ullamcorper dolor, ac viverra
nibh consectetur eget.
</p>
</div>
<div id="exampleTabThird'>
<p>
Mauris sollicitudin, sem non tempor molestie, quam nunc
blandit lectus, quis molestie dui arcu in lectus. In id
fringilla elit. Ut auctor Tectus eget orci malesuada, et
Tacinia ligula interdum. Pellentesque bibendum, orci eget
euismod scelerisque, nibh nulla posuere mi, quis commodo
purus sem et arcu.
</p>
</div>
</div>
</body>
</html1>

A new markup document is created to contain the content of the fourth tab, and it is called Fourth
Tab.html, which is also referenced in the href attribute of the <a> element for the new tab in the
preceding markup document.

<p>
Quisque tempus euismod justo vitae ultrices. Nam in
Tigula sit amet mi molestie Tuctus. Aenean et
egestas arcu. Mauris dictum tortor sit amet purus
aliquam condimentum. Integer fermentum at odio vitae
sollicitudin.

</p>

The following style sheet is applied to the AJAX-enabled example. This style sheet adds a new rule
for a <div> element with the id name ui-tabs-1.

body {
font: 12px 'Lucida Grande', Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);
}
div#exampleTabFirst {
background: Tightblue;
padding: 5px;

div#exampleTabSecond {
background: Tightgreen;
padding: 5px;

}

div#exampleTabThird {
background: yelTlow;
padding: 5px;

Loading Remote Content via AJAX | 427

}

div#ui-tabs-1 {
background: pink;
padding: 5px;

.ui-tabs-hide {
display: none;
3

ul.ui-tabs-nav {
Tist-style: none;
padding: 0;
margin: 0;
height: 22px;

border-bottom: 1px solid darkgreen;

ul.ui-tabs-nav 1i {
float: Tleft;
height: 17px;
padding: 4px 10px 0 10px;
margin-right: 5px;

border: 1px solid rgb(200, 200, 200);

border-bottom: none;
position: relative;
background: yellowgreen;

ul.ui-tabs-nav 1i a {
text-decoration: none;
color: black;

ul.ui-tabs-nav 1i.ui-tabs-active {
background: darkgreen;

border-bottom: 1px solid darkgreen;

ul.ui-tabs-nav 1i.ui-tabs-active a {
color: white;
outline: none;

}

div.ui-tabs-panel {
display: none;

The JavaScript has no changes from Example 18-2 because the bits that enable AJAX loading occur

entirely in the markup and in the Tabs plugin.

$(document) . ready(
function()

$('div#exampleTabs').tabs({
active : 1
s

}
);

Figure 18-3 shows the results.

428

| CHAPTER 18 TABS

800 Tabs Plugin o
{ﬂ | - J { + |e file:///Volumes/richard/Documents/Book: & | ‘leade] @

FirstTab__ Second Tab _Third Tab

Quisque tempus euismod justo vitae ultrices. Nam in ligula sit amet mi molestie luctus.
Aenean et egestas arcu. Mauris dictum tortor sit amet purus aliquam condimentum.
Integer fermentum at odio vitae sollicitudin.

FIGURE 18-3

In the preceding markup document, there are a few minor modifications made to add a new tab that
has content loaded via AJAX. You set up the tab with the href attribute referencing the document
that you want to load by AJAX. The id attribute is not necessary and is automatically generated by
the Tabs plugin. (It does this for all the tabs if you want to structure your document using automati-
cally generated id names.)

Using a server-side script, you can add logic on the server side that presents content within your
normal template depending on whether scripting is enabled on the client side. To do that, by default,
make the link content.html1?noscript=true. Then, in your JavaScript, automatically remove the
query string portion ?noscript=true at page load, which would then signal your server-side script

to serve only the content, rather than the content within a template. Without this, if scripting is
disabled, your visitors can still see the content; it will simply be plain, unstyled, and unbranded.

Finally, the class name ui-tabs-loading is applied to the <1i> element during the time that the con-
tent is loading from the server up until the time the Tabs plugin loads and displays it.

ANIMATING TAB TRANSITIONS

Most things in jQuery Ul can be customized with any of the animation effects provided by jQuery,
and the Tabs plugin is no exception. Like the Dialog plugin, the Tabs plugin also accepts show

and hide options, which can specify an effect when a tab is opened and when a tab is closed,
respectively.

The following script demonstrates how to animate a tab transition:

$(document) . ready(
function()

$('div#exampTleTabs').tabs({
active : 1,
show : 'explode',

Summary | 429

hide : 'fade'
b
3
);

The preceding script adds an explode effect when tabs are opened and fades out when tabs are
closed. This example is available in this book’s source code materials in Example 18-4.html.
Comprehensive documentation of animation options is provided in Appendix Q.

SUMMARY

Several additional options can also be used with a Tabs implementation. I’'ve covered some of the
more useful options in this chapter, and you can find a full reference of all options available for the
Tabs plugin in Appendix Q.

In this chapter, you learned how to implement a tabbed user interface using the jQuery UI Tabs
plugin. By default, the Tabs plugin offers no presentational styling. You learned how to approach
styling a tabbed user interface so that you can apply your own custom styling. Another option is to
use a jQueryUI theme, which you can download from the jQuery UI website at www.jqueryui.com.

You learned that the Tabs plugin supports loading content remotely using AJAX; you need to add
only a little markup to accomplish this.

And finally, you also learned that the Tabs plugin supports animated transitions between tabs via
the show and hide options.

EXERCISES

1. Which option would you use to change the default tab that is displayed after the tabs()
method has been applied?

2. What class names are used to style the active tab and the hover tab?
3. What do you have to do to load content via an AJAX call?

4. What options can you use to animate tab transitions?

http://www.jqueryui.com

PART lII

Popular Third-Party jQuery
Plugins

» CHAPTER 19: Tablesorter
» CHAPTER 20: Creating an Interactive Slideshow
» CHAPTER 21: Working with HTMLS5 Audio and Video

» CHAPTER 22: Creating a Simple WYSIWYG Editor

19

Tablesorter

The Tablesorter plugin is a popular third-party jQuery plugin available from http:

//waw . tablesorter.com. The plugin does what the name implies; the plugin is attached to any

<table> element that you like, and then it can sort that table’s columns, one or more at a time.
For example, you can sort by name only, by name and then by age, or by name, age, and then
by date. How many columns are sorted is entirely up to you.

The $.tablesorter() plugin allows for some configuration and customization; whatever isn’t
covered in this chapter explicitly is documented both on the Tablesorter website at
http://www.tablesorter.com as well as in Appendix T, “Tablesorter.”

SORTING A TABLE

The $.tablesorter() plugin is straightforward. It functions well out-of-the-box and dropped
in a document; with only a call to the plugin’s method and some styling, you can be off sorting
tables in no time.

The following example (Example 19-1 in the code downloads at www.wrox. com/go/webdevwith-
jquery) sets up the basic, out-of-the-box $.tablesorter() plugin:

<!DOCTYPE HTML>
<html Tang='en'>
<head>
<meta charset='"utf-8' />
<title>Tablesorter</title>

<script src="../jQuery.js'></script>
<script src="../jQueryUI.js'></script>
<script src="../Tablesorter/Tablesorter.js ' '></script>

<script src="Example 19-1.js'></script>
<Tlink href="Example 19-1.css' rel="stylesheet' />
</head>
<body>
<table>
<colgroup>
<col style="width: 100px;" />
<col />

http://www.tablesorter.com
http://www.tablesorter.com
http://www.wrox.com/go/webdevwith-jquery
http://www.wrox.com/go/webdevwith-jquery

434 | CHAPTER 19 TABLESORTER

<col style="width: 150px;" />
</colgroup>
<thead>
<tr>
<th>
Track #
↓
↑
</th>
<th>
Name
↓
↑
</th>
<th>
Album
↓
↑
</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Come Together</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>2</td>
<td>Something</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>3</td>
<td>Maxwell's Silver Hammer</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>4</td>
<td>0h! Darling</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>5</td>
<td>0ctopus's Garden</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>6</td>
<td>I Want You (She's So Heavy)</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>7</td>
<td>Here Comes The Sun</td>
<td>Abbey Road</td>

Sorting a Table | 435

</tr>
<tr>
<td>8</td>
<td>Because</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>9</td>
<td>You Never Give Me Your Money</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>10</td>
<td>Sun King</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>11</td>
<td>Mean Mr. Mustard</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>12</td>
<td>Polythene Pam</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>13</td>
<td>She Came In Through The Bathroom Window</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>14</td>
<td>Golden Slumbers</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>15</td>
<td>Carry That Weight</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>16</td>
<td>The End</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>17</td>
<td>Her Majesty</td>
<td>Abbey Road</td>
</tr>
<tr>
<td>1</td>
<td>Drive My Car</td>
<td>Rubber Soul</td>
</tr>

436 | CHAPTER 19 TABLESORTER

<tr>
<td>2</td>
<td>Norwegian Wood (This Bird Has Flown)</td>
<td>Rubber Soul</td>
</tr>
<tr>
<td>3</td>
<td>You Won't See Me</td>
<td>Rubber Soul</td>
</tr>
<tr>
<td>4</td>
<td>Nowhere Man</td>
<td>Rubber Soul</td>
</tr>
<tr>
<td>5</td>
<td>Think For Yourself</td>
<td>Rubber Soul</td>
</tr>
<tr>
<td>6</td>
<td>The Word</td>
<td>Rubber Soul</td>
</tr>
<tr>
<td>7</td>
<td>Michelle</td>
<td>Rubber Soul</td>
</tr>
<tr>
<td>8</td>
<td>What Goes On</td>
<td>Rubber Soul</td>
</tr>
<tr>
<td>9</td>
<td>Girl</td>
<td>Rubber Soul</td>
</tr>
<tr>
<td>10</td>
<td>I'm Looking Through You</td>
<td>Rubber Soul</td>
</tr>
<tr>
<td>11</td>
<td>In My Life</td>
<td>Rubber Soul</td>
</tr>
<tr>
<td>12</td>
<td>Wait</td>
<td>Rubber Soul</td>
</tr>
<tr>

Sorting a Table | 437

<td>13</td>
<td>If I Needed Someone</td>
<td>Rubber Soul</td>

</tr>

<tr>
<td>14</td>
<td>Run For Your Life</td>
<td>Rubber Soul</td>

</tr>

</tbody>
</table>
</body>
</html>

The preceding HTML is styled with the following CSS:

body {
font: 12px 'Lucida Grande', Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);
padding: 20px;
margin: 0;
}
table {
table-Tayout: fixed;
border: 1px solid rgb(200, 200, 200);
border-collapse: collapse;
padding: 0;
margin: 0;
width: 600px;

}
table th {
text-align: Teft;
background: rgb(244, 244, 244);

table th,

table td {
border: 1px solid rgb(200, 200, 200);
padding: 5px;

span. tableSorterDescending,
span. tableSorterAscending {
display: none;
float: right;

table th.headerSortDown {
background: rgb(150, 150, 150);

}
table th.headerSortUp {
background: rgb(200, 200, 200);

th. headerSortDown span.tableSorterDescending {
display: inline;

th. headerSortUp span.tableSorterAscending {
display: inline;

438 | CHAPTER 19 TABLESORTER

Finally, this example is enabled for table sorting using the following JavaScript.

$(document) . ready (
function()

$('table').tablesorter();

);

The preceding example creates the screen shot that you see in Figure 19-1.

- _Ta_ble;m_er_
- | €4 file:///Users/richard/Documents/Books/jQuery/2nd%20Edition /Examples/Chapter¥%2019/Example%201 ¢

. Album
Come Together Abbey Road
| Something | Abbey Road
| Maxwell's Silver Hammer | Abbey Road
| Oh! Darling | Abbey Road
| Octopus's Garden | Abbey Road
| I'want You (She's So Heavy) | Abbey Road
Here Comes The Sun Abbey Road
| Because | Abbey Road
| You Never Give Me Your Money | Abbey Road
| sun King :Abbey Road
Mean Mr. Mustard Abbey Road
Polythene Pam Abbey Road
| She Came In Through The Bathroom Window | Abbey Road
| Golden Slumbers | Abbey Road
| Carry That Weight | Abbey Road
The End Abbey Road
Her Majesty Abbey Road
| Drive My Car | Rubber Soul
| Norwegian Wood (This Bird Has Flown) | Rubber Soul
: You Won't See Me . Rubber Soul
| Nowhere Man . Rubber Soul
| Think For Yourself | Rubber Soul
The Word Rubber Soul

. Michelle . Rubber Soul

| What Goes On Rubber Soul

[T - T AT - IRV IR S VR i VI e

:Gwl : Rubber Soul

-
o

I'm Looking Through You Rubber Soul

-
=

In My Life Rubber Soul
| wait Rubber Soul

|
W

| If | Needed Someone | Rubber Soul
Run For Your Life Rubber Soul

-
a

FIGURE 19-1

Sorting a Table | 439

Figure 19-2 shows how to sort by multiple columns. To do this, sort the first column by clicking the

column header; then hold down the Shift key to click a second column header.

10

13
11

FIGURE 19-2

Tablesorter

_1— |8 file:// /Users/richard/Documents/Books/jQuery/ 2nd%20Edition/Examples/Chapter%2019/Example201 ¢ |

Because

Carry That Weight
Come Together

Golden Slumbers

Her Majesty

Here Comes The Sun

| Want You {She's So Heavy)

Maxwell's Silver Hammer

Mean Mr. Mustard

Octopus's Garden

Oh! Darling

Polythene Pam

She Came In Through The Bathroom Window

Something

5un King

The End

You Never Give Me Your Money

Drive My Car

Girl

I'm Looking Through You

If | Needed Someone

In My Life
Michelle

MNorwegian Wood (This Bird Has Flown}

Nowhere Man

Run For Your Life

The Word
Think For Yourself
Wait

What Goes On

You Won't See Me

Abbey Road

Abbey Road
Abbey Road
Abbey Road

Abbey Road

Abbey Road

Abbey Road

Abbey Road

Abbey Road

Abbey Road

Abbey Road
Abbey Road
Abbey Road

Abbey Road

Abbey Road
Abbey Road

Abbey Road
Rubber Soul

Rubber Soul
Rubber Soul

Rubber Soul

. Rubber Soul

Rubber Soul

Rubber Soul

Rubber Soul

Rubber Soul
Rubber Soul

Rubber Soul

Rubber Soul

. Rubber Soul
Rubber Soul

This example is primarily about setting up the proper HTML and then styling it with CSS. The
$.tablesorter() plugin’s default functionality provides the rest as soon as it is applied.

You can customize several aspects of $.tablesorter() using the options documented in Appendix T.
For example, you can change which keyboard key you have to press to select a second column for
sorting using the option sortMultiSortKey. The default value is 'shiftKey'; to make it the Option

(Mac) or Alt (Windows) key, you would change the value to 'altKey'.

440 | CHAPTER 19 TABLESORTER

$('table").tablesorter({
sortMultiSortKey : 'altKey'
I3N

You can also change the class names applied to the <th> elements using the options cssHeader,
cssAsc, and cssDesc. The default value of cssHeader is header. The default value of cssAsc is header-
SortUp, and the default value of cssDesc is headerSortDown.

$("tabTle').tablesorter({
sortMultiSortKey : 'altKey',

cssHeader : 'tableSorterHeader',
cssAsc @ 'tableSorterAscending',
cssDesc : 'tableSorterDescending'

1);

Finally, if your table contains additional markup in the table cells, you need to account for the
markup using the textExtraction option. The textExtraction option can be the string 'simple’ or it
can be a callback function. Whatever method you use, it should be as fast and as optimized as pos-
sible. The method provided would be slow because it uses jQuery and the numerous chains of func-
tion calls that entails.

$('table').tablesorter({
sortMultiSortKey : 'altKey',
cssHeader : 'tableSorterHeader',
cssAsc : 'tableSorterAscending',
cssDesc : 'tableSorterDescending',
textExtraction : function(node)

{

}
1)

return $(node).text();

The initial sorting of a table is controlled with the sortList option. This options allows you to
provide an array that describes how a table should be sorted after the $.tablesorter() plugin has
been applied. The default behavior is to not change the sorting of the table until the user explicitly
clicks a header to sort a column. The following example sorts the table by default, the same way
it is sorted in Figure 19-2, which is to say, it is first sorted ascending by Album and then sorted
ascending by Name.

$('table').tablesorter({
sortList : [
[2’ 0]!
[1, 0]
]
1)

Each column is referenced by number, offset from zero. The first column sorted is the third column.
Then you specify ascending or descending by specifying 0 for ascending and 1 for descending. So,
[2, 0] sorts the third column ascending, and [1, 0] sorts the second column ascending after that.

Additional options for customizing a $.tablesorter() plugin implementation are available in
Appendix T.

Summary | 441

SUMMARY

Using the $.tablesorter() plugin is an easy and straightforward experience of adding the plugin’s
code to your document and then enabling $.tablesorter() on whatever <table> elements you would
like to make sortable.

You learned in this chapter that the out-of-the-box experience for sorting tables includes the ability
to sort one or more columns. To do this you need little more than the right HTML structure and
some CSS.

You learned that the hot key for selecting multiple columns can be customized easily using the sort-
MultiSortKey option.

You also learned that the various class names that §.tablesorter() uses for <th> elements can be
customized using the cssHeader, cssAsc, and cssDesc options.

If you have a more complicated table and use markup in your table cells, you can control how text
is extracted from each cell for sorting using the textExtraction option. You can use the 'simple’
method, which just takes the content of the cell wholesale, regardless if it includes markup. You
can also use a callback function that specifies explicitly how you’d like the text to be extracted. For
example, you could walk the DOM vyourself and get the text node using JavaScript APIs directly,
instead of jQuery.

Finally, the sortList option defines how a table should be sorted by default when the $.table-
sorter() plugin is applied.

EXERCISES

1.
2.

How is a table sorted by default?

How would you use the Control key on a Mac or Windows keyboard as the key you press
when selecting a second column to sort?

How would you customize the class names used on the <th> elements by the $.tablesorter()
plugin?

20

Creating an Interactive
Slideshow

Slideshows are a common sight on homepages today. Typically, you have three or more panels
set to transition automatically between the slides, one after another. When the slideshow
finishes, it starts over again. These slideshows are typically used for marketing, displaying
multiple banners.

In this chapter you learn how to use a slideshow plugin that I wrote for my open source PHP
framework, Hot Toddy. It has no options but is a demonstration of how to create a reusable
jQuery plugin that can accommodate multiple instances of the plugin on a single page.

CREATING A SLIDESHOW

In this section, you learn both how to create a slideshow using a plugin and how to code the
plugin itself. The plugin that I’ve created provides only a fade transition between slides. Your
goal in this chapter is to understand how the plugin works well enough to modify it to suit
your needs, which should include how to use a different animation.

The principle of the slideshow is simple: Provide two or more frames that can transition
between one another. The number of slides is variable; you can include as few or as many as
you like, and the plugin automatically numbers them and transitions between them.

This plugin is designed to accommodate the possibility of multiple slideshows on the

same page; each slideshow is called a collection. The code is designed to instantiate a new
instance of the slideshow object for each collection so that they can operate independently of
one another.

Use the following example (Example 20-1 in the source code download materials at www.wrox.
com/go/webdevwithjquery) to start creating a slideshow:

http://www.wrox

444 | CHAPTER 20 CREATING AN INTERACTIVE SLIDESHOW

<!DOCTYPE HTML>
<html Tang='en'>
<head>
<meta charset='"utf-8' />
<title>Slideshow</title>
<script src="../jQuery.js'></script>
<script src="../jQueryUI.js " '></script>
<script src="Example 20-1.js'></script>
<link href="Example 20-1.css' rel='stylesheet' />
</head>
<body>
<div id="sTides' class='slideshow'>
<div class="'slide'>

<img src="images/Faces of Autumn.jpg'
alt="Faces of Autumn" />

</div>
<div class="'slide'>

</div>
<div class="'slide'>

<img src="images/Pencil Drawing.jpg’
alt="Pencil Drawing" />

</div>
</div>
</body>
</html>

The preceding HTML is joined with the following CSS:

body {
font: 12px 'Lucida Grande', Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);

}

div#sTides {
position: relative;
border: 1px solid black;
height: 200px;
width: 500px;

}

div.slide {
position: absolute;
top: O;
left: 0;

width: 500px;
height: 200px;
background: black;
overflow: hidden;
z-index: 1;

Creating a Slideshow | 445

ul.slideshowControls {
Tist-style: none;
padding: 0;
margin: 0;
position: absolute;
z-index: 2;

ul.slideshowControls 11 {
float: Teft;
width: 10px;
height: 10px;
margin: 5px 0 0 5px;
border-radius: 5px;
background: bTlack;
text-indent: -2000000px;
cursor: pointer;
border: 1px solid white;
overflow: hidden;

3

ul.slideshowControls 1i.slideshowControlActive {
background: white;
border: 1px solid black;

3

div#slide-1-1 img {
position: relative;
top: -200px;

}

div#slide-1-2 img {
position: relative;
top: -200px;

3

div#slide-1-3 img {
position: relative;
top: -600px;

}

The preceding style sheet and HTML are accompanied by the following JavaScript, which completes
this example:

var slideshows = [];

§.fn.extend({
slideshow : function()
{
return this.each(
function()
{

var node = $(this);
if (typeof node.data('slideshow') === 'undefined')

var slideCollection = slideshows.length + 1;

446 | CHAPTER 20 CREATING AN INTERACTIVE SLIDESHOW

sTlideshows[sT1ideCollection] =
new slideshow(node, slideCollection);

node.data('sTideshow', slideCollection);

// From John Resig's awesome class instantiation code.
// http://ejohn.org/blog/simple-class-instantiation/
var hot = {

factory : function()

{
return function(args)
if (this instanceof arguments.callee)
{
if (typeof(this.init) == 'function')
{
this.init.apply(this, args && args.callee? args : arguments);
}
}
else
{
return new arguments.callee(arguments);
}
3
}

};
var slideshow = hot.factory();

slideshow.prototype.init = function(node, slideCollection)
{

this.counter = 1;

this.isInterrupted = false;

this.transitioning = false;

this.resumeTimer = null;

if (!'node.find('ul.slideshowControls').length)

! node. prepend(
$('").addClass('sTideshowControls"')

}),

node.find('ul.slideshowControls').htm1('");

var slideInCollection = 1;

node.find('.slide").each(

http://ejohn.org/blog/simple-class-instantiation

Creating a Slideshow | 447

function()

{

this.id = 'slide-' + slideCollection + '-' + slideInCollection;

node.find('ul.slideshowControls"')

.append(
$('<1i/>Y)
.attr(
I_idl,
'sTideshowControl-"' + slideCollection + '-' +
slideInCollection
)
.htm1(
$('").text(slideInCollection)
)
);

slideInCollection++;
}
);

node.find('ul.slideshowControls 1i:first')
.addClass('s1lideshowControlActive');

node.find('ul.slideshowControls 1i")
.hover(
function()

$(this).addClass('s1ideshowControlOn');
}!

function()
$(this).removeClass('slideshowControlOn');
h
)
.click(

function()

{

if (!sTideshows[s1ideCollection].transitioning)

if (slideshows[slideCollection].resumeTimer)

{

clearTimeout(slideshows[s1lideColTlection].resumeTimer);
}
slideshows[s1lideColTlection].transitioning = true;
slideshows[s1lideColTlection].isInterrupted = true;

var 1i = $(this);

node.find('ul.slideshowControls 1i"')
.removeClass('sTideshowControlActive');

node.find('.slide:visible")

448 | CHAPTER 20 CREATING AN INTERACTIVE SLIDESHOW

.fadeOut('sTow');
var slideInCollection = parseInt($(this).text());
var counter = slideInCollection + 1;
var resetCounter = (

(slideInCollection + 1) >
node.find('ul.sTideshowControls 1i').Tlength

);
if (resetCounter)
{
counter = 1;
3
slideshows[s1ideCollection].counter = counter;
$("#slide-" + slideCollection + '-' + sTideInColTlection)
.fadeIn(
'slow',
function()
{

Ti.addClass('s1ideshowControlActive');
slideshows[s1lideCollection].transitioning = false;

sTideshows[sT1ideCollection].resumeTimer = setTimeout(
'sTideshows[' + slideCollection + ']J.resume();',
5000

);

this.resume = function()

{

};

this.isInterrupted = false;
this.transition();

this.transition = function()

{

if (this.isInterrupted)

node.find('.slide:visible")
.fadeOut('sTow');

Creating a Slideshow | 449

node.find('ul.slideshowControls T1i")
.removeClass('sTideshowControlActive');

$('#slide-" + slideCollection + '-' + this.counter).fadelIn(
'sTow',
function()
{
node.find('ul.slideshowControls 1i'").each(
function()
{

if (parseInt($(this).text()) ==
sTideshows[s1ideCollection].counter)

$(this).addClass('s1ideshowControlActive');

}
s

slideshows[sTideCollection].counter++;

var resetCounter = (
slideshows[sTideCollection].counter >
node.find('ul.slideshowControls 1i').length

);

if (resetCounter)

slideshows[sTideCollection].counter = 1;

}

setTimeout(
'sTideshows[' + slideCollection + ']J.transition();"',
5000

);

}
);
1

this.transition();

};

$(document) . ready(
function()

if ($('.sTideshow').length)
{

}

$('.sTideshow').sTideshow();

}
)

The preceding example results are shown in Figure 20-1.

450 | CHAPTER 20 CREATING AN INTERACTIVE SLIDESHOW

800 Slideshow

o,

FIGURE 20-1

The HTML in this example is designed to allow the author to specify as little as possible about the
slideshow. The number of slides is automatically calculated from the plugin, and they are transi-
tioned in the order that they appear in the document. Because each slide is a <div> element, you can
have any HTML you like within each slide, including text for a marketing message. The slideshow
controls are also automatically generated by the plugin.

The remainder of this chapter examines the JavaScript in this example in detail, explaining how
each bit comes together to create the larger plugin.

You begin with a simple global variable declaration.

var slideshows = [];

This variable, s1ideshows, contains each instance of a slideshow object that has been created, mak-
ing it possible to have as many slideshows as you like within the same DOM.

The next section of code creates a jQuery plugin called $.s1ideshow(). Unlike most of the jQuery
plugins you’ve seen so far, this plugin has no option parameters. You could add options for paus-
ing a slideshow, destroying a slideshow, and so on—whatever configurable parameters you want to
add. Doing so would be a simple matter of adding optional arguments for the jQuery $.s1ideshow()
method, and then deciding how those arguments should act upon the correct corresponding
slideshow() object that gets instantiated for each instance of a slideshow on the page.

$.fn.extend({
sTlideshow : function()

{
return this.each(
function()

{

var node = $(this);

if (typeof node.data('slideshow') === 'undefined')

Creating a Slideshow | 451

var slideCollection = slideshows.length + 1;

slideshows[s1ideCollection] =
new slideshow(node, slideCollection);

node.data('sTideshow', slideCollection);

Presently, the $.sTideshow() method is called on each HTML element with a class name of s1ide-
show, and that happens automatically when the DOM is ready. When $.s1ideshow() is called, a
variable called s1ideCollection is created based on the number of slideshows already created. This
variable keeps track of each collection and makes it possible to go back and reference an existing
collection. Each slideshow in the document is numbered offset from one, and this data is stored with
each instance of the slideshow using the jQuery data APIL. If an instance does not have the associated
slideshow data attached to it, then it hasn’t been processed by the plugin. This makes it possible to
call the $.s1ideshow() plugin method as many times as you need to call it to create a slideshow over
the life of a document or application. New slideshows are created and added to the existing
collection of slideshows as needed.

The next bit of code is lifted from the website of John Resig (the creator of jQuery). It provides an

easy-to-reference factory method for creating prototype objects, which is to say a single object that
you can instantiate again and again, creating multiple copies, each with their own properties, tim-
ers, and settings, individually intact.

// From John Resig's awesome class instantiation code.
// http://ejohn.org/blog/simple-class-instantiation/
var hot = {

factory : function()

{
return function(args)
if (this instanceof arguments.callee)
{
if (typeof this.init == 'function')
{
this.init.apply(this, args && args.callee? args : arguments);
3
b
else
{
return new arguments.callee(arguments);
}
}
3

};

var slideshow = hot.factory();

http://ejohn.org/blog/simple-class-instantiation

452

| CHAPTER 20 CREATING AN INTERACTIVE SLIDESHOW

The next section of code begins the s1ideshow.prototype.init function. When the slideshow is
instantiated with new s1ideshow(node, slideCollection), the s1ideshow.prototype.init function is
executed to create a new copy of the s1ideshow object.

The names of the arguments are the same so that you can easily associate new s1ideshow(node,
slideCollection) with sTideshow.prototype.init = function(node, slideCollection). When a new
s1ideshow object is created, some variables are created to keep track of different states.

The this.counter property keeps track of which slide is presently being displayed. The this.isIn-
terrupted property keeps track of whether the slideshow has been interrupted by the user clicking
a slide control. When a slideshow is interrupted, the slideshow pauses for 5 seconds on the slide the
user clicked to see, and then the slideshow automatically resumes.

The this.transitioning property keeps track of whether an animated transition is occurring. This
property prevents multiple animations from stacking up by ignoring any additional animation
requests until the current one has completed.

The this.resumeTimer property keeps a reference to timers created when the user interrupts a slide-
show. This timer occasionally needs to be cleared or created based on what the user does.

slideshow.prototype.init = function(node, slideCollection)

{
this.counter = 1;
this.isInterrupted = false;
this.transitioning = false;
this.resumeTimer = null;

The next line creates the slideshow controls. At this point, the element created is a <u1> element with
the class name s1ideshowControls; it does not yet have any child elements.

if (!'node.find('ul.slideshowControls').length)
{

node. prepend(
$('").addClass('sTideshowControls"')
);

}

If the <u1> with the class name s1ideshowControls does already exist, its children are removed.

Next, you iterate over each element existing within the slideshow container element with the class
name sTlide. This block of code begins with the declaration of a variable, s1ideInCollection, which
is a counter to keep track of which slide in this slideshow is presently under consideration. The
counter creates id names as well as creates the slideshow controls.

var slideInCollection = 1;

node.find('.slide").each(
function()
{

this.id = 'slide-' + slideCollection + '-' + slideInCollection;

node.find('ul.slideshowControls"')
.append(

Creating a Slideshow | 453

$('<1i/>Y)
.attr(
l_idl,
'sTideshowControl-' + slideCollection + '-' +
sTideInCollection

)

Lhtm1(
$('").text(slideInCollection)

)

);
slideInCollection++;

);

First, each element with the s1ide class name is given an id name that identifies the collection’s
offset and the slide’s offset. The <u1> with the class name s1ideshowControls is given a new <1i>
element for each slide. Each <1i> element is populated with a element, which in turn contains
the numbered offset of the slide.

You can find the first <1i> element within the <u1> sTideshowControls with the following code, and
it is given a class name s1ideshowControlActive.

node.find('ul.slideshowControls Ti:first')
.addClass('slideshowControlActive');

Next, each <1i> element within <u1> sTideshowControls is provided with hover and click events.
The hover event simply toggles the presence of the s1ideshowContro10n class name.

node.find('ul.slideshowControls 1i'")
.hover(
function()

$(this).addClass('sTideshowControlOn');

3,

function()
$(this).removeClass('s1lideshowControlOn');

3

)

The click event controls what happens when the user clicks a slideshow control, indicating that the
user wants to see that particular slide again.

Within the callback function to the c1ick event, you can use the existing s1ideshows global variable
to refer to the correct instance of the slideshow object. You can do this in many ways—this is the
method that best illustrates what is happening.

The first statement within this block of code checks whether an animation is in progress using
the transitioning property. If an animation is occurring, then nothing happens and the click
event is ignored.

454 | CHAPTER 20 CREATING AN INTERACTIVE SLIDESHOW

.click(
function()

if (!slideshows[s1lideCollection].transitioning)

{

Next, you check to see if there is a resumeTimer active; the resumeTimer controls the interval between
slide transitions. If a timer is active, it is cleared by calling the native clearTimeout () method.

if (slideshows[slideCollection].resumeTimer)

{
}

clearTimeout(slideshows[s1lideCollection].resumeTimer);

The transitioning property is set to true to indicate that a slide animation is taking place. Then the
isInterrupted property is set to true to indicate that the user clicked a slide control and interrupted
the slideshow.

slideshows[sTideColTlection].transitioning = true;
slideshows[sTideColTlection].isInterrupted = true;

A reference to the <1i> element’s jQuery object is stored in the variable named 11.

var 1i = $(this);

All <1i> elements within the current slideshow s1ideshowControlActive class have that class
removed.

node.find('ul.slideshowControls 1i")
.removeClass('sTideshowControlActive');

The currently visible slide identified with the class name s1ide and the :visible pseudo-class
(proprietary to jQuery) is faded out with an animation.

node.find('.slide:visible")
.fadeOut('sTow');

A reference to the current slide’s offset number is retrieved from the text inside the
current <1i> element.

var slideInCollection = parseInt($(this).text());

A counter variable is created so that when the slideshow resumes, the counter property contains the
correct reference to the correct slide.

var counter = slideInCollection + 1;

If the number contained in sTideInCollection + 1 exceeds the length of slides in the collection,
then the counter is reset to 1. This moves the slideshow forward from the last slide to the first
slide in a loop.

var resetCounter = (

(sTideInCollection + 1) >
node.find('ul.sTideshowControls 1i').Tlength

Creating a Slideshow | 455

);
if (resetCounter)
{

counter = 1;
3

The value of the counter variable is moved to the counter property so that the slideshow can con-
tinue to function properly when it resumes automatically.

sTideshows[s1ideCollection].counter = counter;

Then the slide the user clicked is faded in with an animation. The slide is referenced by its collection
number and its slide number.

$("#sTlide-" + slideCollection + '-' + slideInCollection)
.fadeIn(
'slow',
function()

{

The sTideshowControlActive class name is added to the 1i variable holding a reference to the current
<1i> element’s jQuery object.

T1i.addClass('slideshowControlActive');

Now that the animation has completed, the transitioning property is set to false to indicate that
there is no animation taking place right now.

slideshows[s1ideColTlection].transitioning = false;

Because the animation has completed, the next step is to resume the timer. A call to setTimeout()
triggers a slideshow transition to occur automatically after 5 seconds, as though the slideshow had
never been interrupted. The next slide transition occurs after an additional 5 seconds.

sTideshows[s1ideCollection].resumeTimer = setTimeout(
'slideshows[' + slideCollection + ']J.resume();",
5000

);

);

The next block of code is an API method. It resumes the slideshow if the slideshow has been
interrupted.

this.resume = function()

{
this.isInterrupted = false;
this.transition();

};

456 | CHAPTER 20 CREATING AN INTERACTIVE SLIDESHOW

This method is used only when the user clicks a control to manually flip to a slide. It resets the isIn-
terrupted property to false and then triggers the next transition by calling the transition() method.

The transition() method is used for the normal transition of one slide to the next, repeating display
of all slides on a loop, endlessly.

this.transition = function()

{

If the isInterrupted property is true, the method returns and nothing happens. This means that the
process of interrupting the slideshow has not completed and should not be interfered with.

if (this.isInterrupted)
{

}

return;

Like in the block that handled clicking a slide control, the first thing you do is hide the currently
visible slide with a call to fadeOut(). You can find the slide within the current slideshow by the
class name slide and the :visible pseudo-class.

node.find('.slide:visible")
.fadeQut('sTow');

Then, all the <1i> sTideshowControls within the current slideshow lose the class name
sTideshowControlActive.

node.find('ul.slideshowControls 1i")
.removeClass('sTideshowControlActive');

Finally, the new slide is animated with a call to fadeInQ); it is referenced by its collection number
(sTideCollection) and its slide number (this.counter).

$("#slide-" + slideCollection + '-' + this.counter).fadeIn(
'slow',
function()
{

When the new slide completes the fadeIn() animation, the current slide’s corresponding

<1i> control within s1ideshowControls receives the class name s1ideshowControlActive.

You can find the current control by comparing the text of each <1i> element with the current value
of the counter property.

node.find('ul.slideshowControls T1i'").each(
function()

{
if (parseInt($(this).text()) ==
sTideshows[s1ideCollection].counter)

$(this).addClass('s1ideshowControlActive');

Summary | 457

The counter property is incremented by 1 to prepare for the next slide.

slideshows[s1ideCollection].counter++;

If the counter property’s new value is greater than the total number of slides, it is reset to 1 so
that the counter property goes from referencing the last slide to the first slide, when the last slide
is displayed.
var resetCounter = (
slideshows[sTideCollection].counter >

node.find('ul.slideshowControls 1i').Tength
);

if (resetCounter)

slideshows[sTideCollection].counter = 1;

}
A new timer is created that runs from this transition to the next one.
setTimeout(
'slideshows[' + slideCollection + '].transition();"',
5000
);

);
};
A call to this.transition(); starts the slideshow running:

this.transition();

Finally, at the end of the script, a ready event fires when the DOM is ready. It checks to see whether
there are any items with the class name s1ideshow; if there are, the $.s1ideshow() jQuery plugin
method is called on each of those elements.

$(document) . ready(
function()
if ($('.sTideshow').length)
{
$('.slideshow').sTideshow();

}
);

SUMMARY

In this chapter you learned how to create and use a plugin for creating interactive slideshows, like
those used to display advertising on many websites’ homepages. The plugin that you created can
handle one or more distinct slideshows within a document, each with two or more slides. Using a
prototype style of programming, you can create distinct objects for each slideshow, each with their
own properties and states of being.

458

| CHAPTER 20 CREATING AN INTERACTIVE SLIDESHOW

EXERCISES

1.

What is the purpose of keeping track of whether a slideshow has been interrupted by the user
using the isInterrupted property?

What is the purpose of keeping track of whether a transition is in progress with the transi-
tioning property?

Describe how the plugin automatically creates controls to click a specific slide. What informa-
tion is contained in the id name of each control? What information is available in the text of
each control?

Extra Credit: Create your own version of the slideshow plugin with options to

>

>
>
>

Start, pause, or resume a slideshow.
Destroy a slideshow.
Set a custom amount of time between slide transitions.

Set a custom animation.

21

Working with HTML5 Audio
and Video

From its early days, the true rise of the World Wide Web began when textual information
could be displayed with formatting on the same page as media elements such as graph-

ics. Continuing in this tradition, HTMLS has introduced simple and standard <video> and
<audio> elements for using media of the named types. Unfortunately, support within browsers
is an ongoing struggle.

In this chapter you learn how to use the MediaElement plugin, which harnesses the media
functionality available in today’s browsers and includes several custom plugins to provide sup-
port for older browsers.

DOWNLOADING THE MEDIAELEMENT PLUGIN

The MediaElement plugin is conveniently located at http://www.mediaelementjs.com/. All the
needed materials are available in one download. From the build directory of the download,
obtain the mediaelement-and-player.min.js and mediaelement.min.css files for use in your
project. These files are the minimum required for functionality; additional files that might be
required for your use cases are described later in this chapter in the section “Implementing
h.264 Video Content.”

CONFIGURING THE MEDIAELEMENT PLUGIN

The MediaElement plugin provides nearly two dozen configuration options. Here you focus
on a few of the options; the entire list is available in Appendix U, “MediaElement.” To begin,
create the following markup, from Example 21-1.html in the source materials at www.wrox.
com/go/webdevwithjquery:

<!DOCTYPE HTML>

<htm1 xmlns="http://www.w3.0rg/1999/xhtml1 '>

<head>
<meta http-equiv="content-type'
content="application/xhtml+xml; charset=utf-8' />

http://www.mediaelementjs.com
http://www.wrox
http://www.w3.org/1999/xhtml

460 | CHAPTER21 WORKING WITH HTML5 AUDIO AND VIDEO

<meta http-equiv="content-language' content="'en-us' />
<title>MediaElement Plugin</title>
<script src="../jQuery.js'></script>
<script src="../MediaElement/mediaelement-and-player.min.js'></script>
<script src="Example 21-1.js'></script>
<link href="'../MediaElement/mediaelementplayer.min.css' rel="'stylesheet' />
<Tink href="Example 21-1.css' rel='stylesheet' />

</head>

<body>
<div id="'container'>

<video src="testvideol.mp4' width="320" height='240"'></video>

</div>

</body>

</html>

CSS is referenced, but the rules do not influence the presentation of this example. The following
JavaScript (in Example 21-1.js) is included for configuring and activating the MediaElement plugin:

$(document) . ready(
function()

$('video,audio') .mediaplayerelement(

{
clickToPlayPause: true,
features: ['playpause', 'current', 'progress', 'volume'],
poster: 'images/FilmMarker.jpg'

}

);

The code results are shown in Figure 21-1.

MediaElement Plugin o

FIGURE 21-1

Creating an HTML Structure That Enables Fallback Video/Audio Plugins for Older Browsers | 461

Start by using the HTMLS <video> element to specify the media file and dimensions.
<video src="'testvideol.mp4' width="'320" height='240"'></video>

Then use jQuery to select all <video> and <audio> elements on the page, activating the
MediaElement plugin on them with the c1ickToPlayPause, features, and poster
configuration options.

$('video,audio') .mediaplayerelement(
clickToPlayPause: true,

features: ['playpause', 'current', 'progress', 'volume'],
poster: 'images/FilmMarker.jpg'

);

}

The features option is discussed in the section “Customizing Player Controls.” The c1ickToPlayPause
option is nearly self-explanatory; like the well-known YouTube feature, you can click anywhere on
the video to play or pause the video. The poster option enables you to display an image before the
video starts playing. Without this option, the MediaElement plugin would display the first frame of
the video by default. Common uses include showing a frame from the middle of the video (previously
saved to an image file) or showing a flashy Check Out Our Video marketing graphic.

CREATING AN HTML STRUCTURE THAT ENABLES FALLBACK
VIDEO/AUDIO PLUGINS FOR OLDER BROWSERS

You might have noticed that an h.264 (MP4) video file was used in the last example. The next
section discusses this format, which is one of three formats (h.264, Ogg, and WebM) supported
in the HTMLS video specification. In this discussion, you see one of the best reasons to use the
MediaElement plugin: its capability to display media files in browsers that do not have native
support for those formats, all without losing the capability for newer browsers to natively play the
content. The plugin enables a fallback to supported formats by supplying multiple sources until a
supported one is found. Review the following markup (from Example 21-2.html):

<!DOCTYPE HTML>
<html xmIns="http://www.w3.0rg/1999/xhtml] ">
<head>
<meta http-equiv="content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv='content-Tlanguage' content='en-us' />
<title>MediaElement Plugin</title>

<script src="../jQuery.js'></script>
<script src="../MediaElement/mediaelement-and-player.min.js'></script>
<script src="Example 21-2.js'></script>
<link href="../MediaElement/mediaelementplayer.min.css' rel="'stylesheet' />
<link href="Example 21-2.css' rel='stylesheet' />

</head>

<body>

<div id='container's>
<video width="320" height='240">

http://www.w3.org/1999/xhtml

462 | CHAPTER 21 WORKING WITH HTML5 AUDIO AND VIDEO

<source type='video/mp4' src="testvideol.mp4'></source>

<source type='video/wmv' src='testvideol.wmv'></source>

<object width='320" height="240"

type="application/x-shockwave-flash'
data="'flashmediaelement.swf'>
<param name="'movie' value='flashmediaelement.swf' />
<param name='flashvars'
value='controls=true&file=testvideol.mp4' />
</object>
</video>
</div>
</body>
</html>

Note that the source is no longer specified in the <video> element; instead, you now have multiple
<source> elements. The MediaElement plugin first attempts to load natively supported formats and
then formats supported by the Silverlight plugin. In addition, this example markup includes a fall-
back to the Flash plugin if none of the <source> elements were supported.

IMPLEMENTING H.264 VIDEO CONTENT

The h.264 video format has become the new de facto standard for digital video. It is used by YouTube,
Apple, and over-the-air HDTV providers. It is also one of the encoding standards for Blu-ray discs. In
this section, you learn how to convert and distribute your video content in this format.

Encoding Using Handbrake or QuickTime

The format of your video content depends on whether you obtain or generate the video content

(and from which device the content is generated). If you want to use the h.264 format and need to
convert from another video format, you need to obtain a video conversion utility. Recommended
utilities are Handbrake (https://handbrake.fr/) and QuickTime (https://www.apple.com/quick-
time/). Handbrake is explicitly recommended if you are not using a Mac. In addition, QuickTime
Player (v. 10+) on a Mac enables you to Export from the File menu, but Apple recently (since version
10.3) reduced the available functionality. Each tool contains device presets to produce the expected
video size and quality when targeting users on desktop computers and mobile devices of various
capabilities.

Using the HTML5 <video> Element

The HTMLS5 <video> element specification allows for multiple <source> elements, as shown in the
previous section. In this manner, you can add an element for each of the three supported formats
(h.264, Ogg, and WebM) and be certain of content playback on all modern browsers.

Using the Flash Player Plugin

To avoid encoding your video content in multiple formats, you can instead add fallback markup to
specify that the MediaElement plugin should use Flash to play your h.264 video file:
<object width='320" height="240"

type="'"application/x-shockwave-flash'
data="'flashmediaelement.swf'>

https://handbrake.fr
https://www.apple.com/quick-time
https://www.apple.com/quick-time

Controlling When the Download of Media Begins | 463

<param name='"movie' value='flashmediaelement.swf' />
<param name="'flashvars'
value='controls=true&file=testvideol.mp4' />
</object>

This plugin utilizes the flashmediaelement.swf Flash video to play your content, where your
filename is passed in the flashvars param.

Using Microsoft’s Silverlight Plugin

Although you can include <object> element markup for the Silverlight plugin in a manner similar
to that for the Flash plugin, Silverlight requires many additional parameters that are generally best
created by the MediaElement plugin. Silverlight provides support for formats such as Windows
Media Video in browsers where such formats are not supported.

CUSTOMIZING PLAYER CONTROLS

As previously discussed, the MediaElement plugin provides many configuration options. The
features option customizes which controls display to the user.

features: ['playpause', 'current', 'progress', 'duration', 'volume',
'fullscreen']

Most of the available controls or features are self-explanatory, with the preceding code indicating a
play/pause button and displaying the current position, progress bar, video length, volume control,
and full-screen button, respectively.

Following are common options that can be provided in the features array:

> playpause—A control button to play or pause the media, switching its icon to appropriate
action for the media’s state.

> current—A display of the media’s current position, in typical HH:MM:SS format.

progressbar—A filled bar control to display the current position of the media against its
duration.

duration—A display of the media’s length, in typical HH:MM:SS format.
volume—A control button with an integrated slider for setting the volume.

tracks—A control button to toggle display of captions or subtitles specified by <track>
elements inside the <video> element. It is important to note that browsers have differing
security policies for local text track files.

> speed—A speed control button with options menu for setting the playback speed.

CONTROLLING WHEN THE DOWNLOAD OF MEDIA BEGINS

A few concerns should factor into the decision for when your media content should download (or
buffer) within the user’s browser; among them are the size of the video and the expected probability

464 | CHAPTER 21 WORKING WITH HTML5 AUDIO AND VIDEO

that the user will play the media. The actual control is indicated by the value of the optional preload
attribute of the <video> or <audio> element.

<video src="testvideol.mp4' width="'320" height="'240"
preload="metadata'></video>

Following are the possible values:

» (no preload attribute specified)—Enables the browser to determine whether the media
data should be preloaded.

> none—No media data should be preloaded. A poster image attribute or option for video
content would be recommended unless you prefer that the user sees a solid, black frame until
content playback activates.

> metadata—Metadata for the content should be downloaded, but the media data should not
be preloaded. This value enables the element to display the content’s first frame, duration,
and track information and is a recommended minimum value.

» auto (also a blank value or attribute with no value) —The full media data should be
downloaded.

You might have noticed the word “should” in each value definition. The HTML specification states
that browsers should consider these values as hints instead of requirements. For instance, mobile
device browsers often avoid preloading data regardless of the value.

SUMMARY

In this chapter, you learned about the MediaElement plugin and how to use it to enable consistent
audio and video content in browsers. You learned about the HTML35 <video> and <audio> elements.

You learned about the three video formats supported by the HTMLS <video> element in various
browsers. You learned more about one of these formats, h.264, and wrote code to display this
video format.

You learned about additional MediaElement plugins to support Flash and Silverlight content and
saw how multiple <source> elements enable browser fallback to a supported format.

Finally, you learned about common configuration options for the MediaElement plugin and the
ability to request control of content download timing with the preload attribute.

Summary | 465

EXERCISES

1.
2.

The MediaElement plugin standardizes browser support for which two HTML5 elements?

Which HTMLS5 element can be repeated inside a media element to allow the browser to render
a supported format?

Which three video formats are supported in the HTMLS5 specification?
Name the MediaElement configuration option that enables captions or subtitles.

Which HTMLS attribute specifies when media content should download to the browser?

22

Creating a Simple WYSIWYG
Editor

Many web-based WYSIWYG (what-you-see-is-what-you-get) editors have risen in popularity
only to be later supplanted by editors with better interfaces or more features. Some of these
editors used <textarea> elements or modified the innerHTML of DOM elements when format-
ting features were used.

In this chapter you learn an attribute that changed the face of web-based editors and how you
can use it with jQuery to create a simple WYSIWYG editor in a few steps.

MAKING AN ELEMENT EDITABLE WITH THE
CONTENTEDITABLE ATTRIBUTE

Although those comfortable with HTML editors can find it easy to be underwhelmed

by the HTMLS5 contenteditable attribute, its impact should not be underestimated. It

is another intuitive feature; when added to a DOM element, the content of that element
becomes editable by the user directly in the browser. If you’ve ever used a settings page
to perform an action such as changing the text of a button you commonly use, imagine
instead toggling your web application to editable and then typing the text directly on the
button. This is the type of feature that becomes not only possible but also easy with the
contenteditable attribute.

468 | CHAPTER 22 CREATING A SIMPLE WYSIWYG EDITOR

Start with an HTML example of the attribute (Example 22-1.html):

<!DOCTYPE HTML>
<html xmTns="http://www.w3.0rg/1999/xhtml"'>
<head>
<meta http-equiv='content-type'
content="application/xhtml+xml; charset=utf-8"' />
<meta http-equiv='content-language' content='en-us' />
<meta charset="utf-8' />
<titTe>WYSIWYG Editor 1</title>
<1link href="Example 22-1.css' rel='stylesheet' />
</head>
<body>
<div id="'container' contenteditable="true'>
</div>
</body>
</html>

Add the following CSS for presentation (Example 22-1.css):

body {
font: 12px Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);

3

div#container {
position: absolute;

top: 10%;
left: 10%;

height: 80%;

width: 80%;

padding: 5px;

border: 1px solid black;
border-radius: 3px;

}

That completes the code for the example. Although you can use JavaScript to dynamically toggle
whether an element is editable, you don’t need any JavaScript for the simplest example of the con-
tenteditable attribute. You simply add the attribute to a <div> element.

<div id="container' contenteditable="true'>
The CSS sets some default styles for the <body> and then positions the editable element in the center

of the page with a thin, rounded (in most browsers) border and a little padding to keep the text off
the border.

The preceding code results in the document shown in Figure 22-1.

http://www.w3.org/1999/xhtml

Creating Buttons to Apply Bold, Italic, Underline, Font, and Font Size | 469

8086 WYSIWYG Editor 1 =

FIGURE 22-1

CREATING BUTTONS TO APPLY BOLD, ITALIC, UNDERLINE,
FONT, AND FONT SIZE

So far, you have a text editor; in this section, you learn how to add rich-text features for formatting
the text. You build a toolbar to house these features. Begin with the following HTML (Example
22-2.html):

<!DOCTYPE HTML>
<html xmTns="http://www.w3.0rg/1999/xhtml"'>
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv="'content-Tlanguage' content='en-us' />
<meta charset="utf-8' />
<title>WYSIWYG Editor 2</title>
<link href="Example 22-2.css' rel="stylesheet' />
<script type='text/javascript' src="../jQuery.js'></script>
<script type='text/javascript' src="Example 22-2.js'></script>

http://www.w3.org/1999/xhtml

470 | CHAPTER22 CREATING A SIMPLE WYSIWYG EDITOR

</head>
<body>
<div id="toolbar'>
<button class="toolbar-btn bold' data-format="'bold'>B</button>
<button class="toolbar-btn italic' data-format="italic'>I</button>
<button class='toolbar-btn underiine’
data-format="underline'>U</button>
<select class="toolbar-dd1 fontname' data-format='fontname'>
<option value=''></option>
<option value='Arial '>Arial</option>
<option value='"Courier New'>Courier New</option>
<option value='Times New Roman'>Times New Roman</option>
</select>
<select class="toolbar-dd] fontsize' data-format='fontsize's>
<option value=''></option>
<option value='2"'>Small</option>
<option value='3'>Normal</option>
<option value='4'>Big</option>
<option value='5"'>Bigger</option>

</select>
</div>
<div id="'container' contenteditable="true'>
</div>
</body>

</html1>

Combine the preceding HTML with the following CSS (Example 22-2.css):

body {
font: 16px Arial, sans-serif;
background: #fff;
color: rgb(50, 50, 50);

}

div#container {
position: absolute;

top: 17%;
left: 10%;

height: 75%;

width: 80%;

padding: 5px;

border: 1px solid black;
border-radius: 3px;

}

div#toolbar {
position: absolute;

top: 10%;
left: 10%;

height: 5%;
width: 80%;
padding: 5px;

Creating Buttons to Apply Bold, Italic, Underline, Font, and Font Size | 471

border: 1px solid black;
border-radius: 3px;

}

button.bold {
font-weight: bold;
h

button.italic {
font-style: italic;
3

button.underline {
text-decoration: underline;
}

Finally, include the following JavaScript (Example 22-2.js) for handling the events for the
toolbar buttons:

$(document) . ready(

function()
{
$('button.toolbar-btn").click(
function(Q)
{

var data = this && $(this).data & $(this).dataQ;
if (data && data.format && document.execCommand)

{
document.execCommand(data.format, false, null);
$('div#container').focusQ;
}
}
);
$('select.toolbar-dd1").change(
function(Q)
{
var data = this & $(this).data && $(this).dataQ;
if (data && data.format && document.execCommand)
{
document.execCommand(data.format, false,
this[this.selectedIndex].value);
this.selectedIndex = 0;
$('div#container').focusQ;
}
}
);

}
);

This code results in the document shown in Figure 22-2.

472 | CHAPTER 22 CREATING A SIMPLE WYSIWYG EDITOR

8eno WYSIWYG Editor 2 "

FIGURE 22-2

You added a <div> element for the toolbar and updated the CSS to account for positioning this
toolbar. On the toolbar, you included three <button> elements for the bold, italic, and underline fea-
tures, respectively, along with two <select> elements for the font name and size features. Note the
data-format attribute added to these elements.

<button class="toolbar-btn bold' data-format="'bold'>B</button>

This construction uses the $.data() feature of jQuery, which provides access to the dataset property
mapping of the HTMLS data, attributes for use without requesting attribute values individually.
The toolbar button click event handler starts with some sanity checks:

var data = this & $(this).data && $(this).dataQ;

This line of code uses the JavaScript shortcut of combining logical checks and assignment. The vari-
able data is assigned when this (the clicked button) exists and its wrapped jQuery object $(this)
contains a data member. Unlike other programming languages, the value assigned is not the boolean
(true or false) result of the conditional expression on the right side of the = assignment operator, but
rather the result of the rightmost argument: $(this).data(Q.

if (data && data.format && document.execCommand)

Creating a Selection | 473

Again, you check that the $(this).data() function returned valid information, that it contains

a format member, and finally that the HTML document object supports the execCommand function,
which is a shortcut for JavaScript to tell the browser to handle specific functions using its

native features.

document.execCommand(data.format, false, null);
$('div#container').focusQ;

After these checks pass, you send the format value to the document.execCommand function with the
additional parameters false (no user interface prompt for the user) and nul11 (no value needed for
bold, italic, or underline). Finally, because the button click removed focus from the editable element,
you send the focus back to the editable element.

The <select> element drop-down list event handler differs slightly:

document.execCommand(data.format, false,
this[this.selectedIndex].value);
this.selectedIndex = 0;

For the font name and size, you need to pass those values to the function. The this keyword now
refers to the changed <select> element, so the indicated pattern is used as a shortcut to the selected
item’s value, which is then passed as the data value.

this.selectedIndex = 0;

For the purposes of this simple editor, the blank item at the top of each list is then selected.
Although it does add the inconvenience of not seeing the last selected item, it also prevents some
possible confusion. Without this line, a user might expect that you would detect the font name and
size when you select text in the editable element.

CREATING A SELECTION

While working with the previous examples, you might have noticed the ability to change existing
content by selecting it in the editable element. JavaScript offers the ability to work with selections,
including options for creating a selection programmatically, storing information about a current
selection, and restoring a selection that has been deselected. The next set of example code is fairly
large to account for these cases, but each is discussed in turn.

Begin with the example markup (Example 21-3.html):

<!DOCTYPE HTML>
<html xmlns="http://www.w3.0rg/1999/xhtml"'>
<head>
<meta http-equiv="'content-type'
content="application/xhtml+xml; charset=utf-8' />
<meta http-equiv='content-language' content="'en-us' />
<meta charset='utf-8' />
<titTe>WYSIWYG Editor 3</title>
<link href="Example 22-3.css' rel='stylesheet' />

http://www.w3.org/1999/xhtml

474 | CHAPTER 22 CREATING A SIMPLE WYSIWYG EDITOR

<script type='text/javascript' src="../jQuery.js'></script>
<script type='text/javascript' src='Example 22-3.js'></script>
</head>
<body>
<div id="toolbar'>
<button class="toolbar-btn bold' data-format='bold'>B</button>
<button class="toolbar-btn italic' data-format="italic'>I</button>
<button class="toolbar-btn underline’
data-format="underline'>U</button>
<select class="toolbar-ddil fontname' data-format='fontname'>
<option value="''></option>
<option value='Arial '>Arial</option>
<option value='"Courier New'>Courier New</option>
<option value='Times New Roman'>Times New Roman</option>
</select>
<select class="toolbar-ddl fontsize' data-format='fontsize'>
<option value="''></option>
<option value='2'>Small</option>
<option value='3'>Normal</option>
<option value='4'>Big</option>
<option value='5"'>Bigger</option>
</select>
<button 1id='btnCreateSelection'>Create Selection</button>
<button id="'btnStoreSelection'>Store Selection</button>
<button id="'btnRestoreSelection'>Restore Selection</button>
</div>
<div id="'container' contenteditable="true'>
</div>
</body>
</html>

The CSS remains unchanged from the previous example, so refer to it if needed. The updated
markup is, however, enhanced with the updated JavaScript (Example 22-3.js):

$(document) . ready(
function(Q)
{
$('div#container').focusQ;
$("button.toolbar-btn').click(
function(Q)

{
var data = this & $(this).data && $(this).dataQ;

if (data && data.format && document.execCommand)

{
document.execCommand(data.format, false, null);
$('div#container').focusQ;
}
}
);
$('select.toolbar-dd1").change(
function(Q)
{

var data = this & $(this).data && $(this).dataQ;
if (data && data.format && document.execCommand)

{

Creating a Selection | 475

document.execCommand(data.format, false,

this[this.selectedIndex].value);
this.selectedIndex = 0;

$('div#container').focusQ;

}
);
$('button#btnCreateSelection').click(
function()

{

var container = document.getElementById('container');
container.innerHTML = 'Here is some sample text for selection';

var range = document.createRange(Q);
range.setStart(container.firstChild, 5);
range.setEnd(container.firstChild, 17);
setSelectionRange(range);

}
);
$("'button#btnStoreSelection').click(

function()

{
}

window.selectedRange = getSelectionRange();

);

$('button#btnRestoreSelection').click(
function(Q

if (window.selectedRange)

{
}

setSelectionRange(window.selectedRange);

);

function getSelectionRange()

{

if (window.getSelection)

{
var sel = window.getSelection(Q);
if (sel.getRangeAt && sel.rangeCount)
{

return sel.getRangeAt(0);

}
else // Safari
{

var range = document.createRange();
range.setStart(sel.anchorNode, sel.anchorOffset);

range.setEnd(sel.focusNode, sel.focusOffset);
return range;

}
}

return null;

476 | CHAPTER 22 CREATING A SIMPLE WYSIWYG EDITOR

}
function setSelectionRange(range)
{
if (range && window.getSelection)
var sel = window.getSelection(Q);
sel.removeAlTRanges(Q);
sel.addRange(range);
}
}

This code results in the document shown in Figure 22-3.

806 WYSIWYG Editor 3

B Q" 3 + | | Create Selection Store Selection Restore Selection

FIGURE 22-3

The markup now includes a button for creating a selection within the editable element:

<button 1id='btnCreateSelection'>Create Selection</button>

You added a click event handler for this button to the JavaScript code:

$("button#btnCreateSelection').click(
function()

{

var container = document.getElementById('container');

Creating a Selection | 477

container.innerHTML = 'Here is some sample text for selection';
var range = document.createRange();
range.setStart(container.firstChild, 5);
range.setEnd(container.firstChild, 17);

setSelectionRange(range);

)H

First, you obtain the editable element and place in a variable for ease of use:

var container = document.getElementById('container');

To maintain the simplicity of this example, the handler sets the contents of the editable element
before creating the selection. Although it is fairly easy to select edited and formatted content, it can
become tedious quickly.

container.innerHTML = 'Here is some sample text for selection';

Next, you create a Range object, which corresponds to a selection range.

var range = document.createRange();

You set the bounds of the Range object. In this example, you set the contents of the element; there-
fore, you know the values that would typically be determined or calculated. The start of the Range
is set to the sixth character of the text, and the end is set to the eighteenth character as the offsets
are zero-based.

range.setStart(container.firstChild, 5);
range.setEnd(container.firstChild, 17);

Now that you have a Range object with its bounds set, you can call your first helper function for
selection ranges:

setSelectionRange(range);

The setSelectionRange function was added as a utility method to assist with this section of the
chapter and the “Restoring a Selection” section:

function setSelectionRange(range)

{
if (range && window.getSelection)
var sel = window.getSelection(Q);
sel.removeAl1Ranges(Q);
sel.addRange(range);
}
}

As is good practice, you start with some sanity checks. Ensure that a range was provided and that
the browser supports the modern window.getSelection method:

if (range && window.getSelection)

478 | CHAPTER22 CREATING A SIMPLE WYSIWYG EDITOR

You then obtain the current Selection object.

var sel = window.getSelection(Q);

The Selection object may contain zero to many selection ranges. In general, it contains zero until the
page is clicked and one thereafter. You start by removing any existing selection ranges:

sel.removeAlTRanges(Q);

Finally, you add the programmatically created range to the Selection object, which finally selects the
text “is some samp” within the editable element.

STORING A SELECTION

Within the previous example code, the markup was updated to add a button to the toolbar for
storing the current position of a selection range:

<button 1id='btnStoreSelection'>Store Selection</button>

You updated the JavaScript to add a click event handler for this button. The handler performs the

incredibly simple task of setting a window-level variable to store information about the currently
selected content:

$("button#btnStoreSelection').click(
function(Q)

{
}

window.selectedRange = getSelectionRange(Q);
);

Notice that you used your second helper function:

function getSelectionRange()

{
if (window.getSelection)
{
var sel = window.getSelection(Q);
if (sel.getRangeAt && sel.rangeCount)
return sel.getRangeAt(0);
}
else // Safari
{
var range = document.createRange();
range.setStart(sel.anchorNode, sel.anchorOffset);
range.setEnd(sel.focusNode, sel.focusOffset);
return range;
}
}

return null;

Restoring a Selection | 479

After dispensing with the window.getSelection sanity check (feature detection), you obtain the cur-
rent Selection object as with the other helper function. This time, you access additional information
about the object. In most cases, the Selection object supports the getRangeAt method; you check for
support as well as the existence of selection ranges. If the tests pass, return the first Range object
within the Selection object:

if (sel.getRangeAt && sel.rangeCount)

return sel.getRangeAt(0);
}

If the logic tests fail (as is the case with Safari, which does not support getRangeAt), use familiar
code to create a Range object, this time using bound information from the Selection object to spec-
ify the start and end containers and offsets:

else // Safari

{
var range = document.createRange();
range.setStart(sel.anchorNode, sel.anchorOffset);
range.setEnd(sel.focusNode, sel.focusOffset);
return range;

}

Finally, if basic feature detection indicated a lack of support for the modern Selection object, simply
return nul1 and move on. This is one of those instances in which it might be a good idea to alert the
user that a better experience can be obtained with a newer browser.

return null;

Unless you hit the last case in which the Selection object was not available, you should have stored
enough information about the selected content for later use.

RESTORING A SELECTION

The last button added in the previous code example’s markup enabled the restoration of a previous
selection within the editable element.

<button id='btnRestoreSelection'>Restore Selection</button>

You included one final JavaScript event handler for the click of this button. First, you test for the
existence of the previously stored selection. If it does exist, pass it to the previously discussed helper
function, which deselects any current selections and restores the saved selection.

$('button#btnRestoreSelection').click(
function(Q

if (window.selectedRange)

{
}

setSelectionRange(window.selectedRange);

480 | CHAPTER 22 CREATING A SIMPLE WYSIWYG EDITOR

One caveat of storing and restoring selection information is that the process can be a bit fragile; in
particular, the bound node information is stored. If the element content is changed, that information
could become invalid, even if the content is reset to the exact same state.

SUMMARY

In this chapter, you created a simple WYSIWYG editor in the browser. Along the way, you learned
about the powerful HTMLS contenteditable attribute, which can make nearly any DOM ele-
ment editable. You learned to use the document.execCommand function for processing the formatting
options within your editor.

You learned some of the structure of the current browser selection model and created Range objects
programmatically. Although you might not have created the next giant of word processing software,
you created a stable code base for additional exploration.

EXERCISES

1.
2.

Which HTMLS5 attribute is the basis for most modern web-based WYSIWYG editors?
Which JavaScript command asks the browser to perform actions using native functionality?

Name two options that require additional information when passed to the command described
in Exercise 2.

Describe the structure in which most browsers store information about currently selected
content.

Which jQuery method provides access to HTMLS5 data attributes?

PART IV
Appendices

» APPENDIX A: Exercise Answers

» APPENDIX B: jQuery Selectors

» APPENDIX C: Selecting, Traversing, and Filtering
» APPENDIX D: Events

» APPENDIX E: Manipulating Content, Attributes, and Custom Data
» APPENDIX F: More Content Manipulation

» APPENDIX G: AJAX Methods

» APPENDIX H: CSS

» APPENDIX I: Utilities

» APPENDIX J: Draggable and Droppable

» APPENDIX K: Sortable

» APPENDIX L: Selectable

» APPENDIX M: Animation and Easing Effects
» APPENDIX N: Accordion

» APPENDIX O: Datepicker

» APPENDIX P: Dialog

» APPENDIX Q: Tabs

» APPENDIX R: Resizable

» APPENDIX S: Slider

» APPENDIX T: Tablesorter

» APPENDIX U: MediaElement

Exercise Answers

CHAPTER 2

P wb

© NOo

CSS and XPath are both acceptable answers.
parents()
prev(Q)

children() for immediate descendants and find() for any elements in the descendant
hierarchy

not()
eqO
sibTings(), prev(Q), next(), prevA11(), nextA11()

add(

CHAPTER 3

1.

You can use the mouseover() or on('mouseover') method. If you use deprecated meth-
ods, in addition, you can use bind('mouseover') or Tive('mouseover").

Extra Credit: Use the hover() method.
The on() method.

The event.target property is used to check to see which descendant element has
received the event. The event then bubbles up from that element to the element that the
event handler is attached to.

Provide a selector argument to the on() method describing the element you want the
event to apply to on the parent or container element that contains the elements you
want the event to apply to. This can also be the document object.

484 | APPENDIXA EXERCISE ANSWERS

0 0 N O

Naming an instance of an event handler can be done by applying the event name, a dot, and
then the namespace you want to use. You can apply multiple event names by repeating the
same process.

The off() method.
Yes.
You can use either c1ick() with no arguments or trigger('click').

A custom event handler begins with any event name not already in use in JavaScript; you can
attach a custom event handler using that name using the on() method. The trigger() method
can be used to fire the custom event handler, as well as to send custom data to the event

handler.

CHAPTER 4

1.

10.
1.

N O bk w

One possibility:
$("input').attr(
'value' : 'Some Value'.
'class' : 'someClass'
);
Another possibility:

$("input').addClass('someClass').val('Some Value');

It might look like this:
$('a").attr("href', "http://www.example.com');

removeAttr()

hasClass()

No, HTML tags will not be present in the return value, only the element’s text content.
Yes, HTML tags will be escaped and treated like text content.

One bug that jQuery’s append() and prepend() methods work around in IE is how IE makes
innerHTML Read Only on <table> elements.

One bug that jQuery’s append() and prepend() methods work around in Firefox is how
Firefox occasionally loses form input values when appending or prepending HTML content
using innerHTML.

insertBefore()
wrapAl1Q

outerHTML

http://www.example.com

Chapter 6 | 485

12 remove ()

13 clone(true)

CHAPTER 5

1. It might look like this:

$(nodes) .each(
function() {

}
);
$.each(
nodes,
function() {
);

2. return false;

3. The items referenced by the selector are kept in the selection; items not referenced by the
selector are discarded.

4. Keeps the current item in the selection; returning false removes the current item from the
selection.

5. A value that evaluates to true. Returning false will remove an item from the array.
6. Tt replaces the value of the item passed to the callback function during that iteration.

7. -1 means that the value does not exist within the array; a return value of zero or greater
means that the value exists within the array.

CHAPTER 6

1. $C'div').css('color');

2. Specifying any color in the second argument, the code would look something like this:

$('body").css("'backgroundColor', 'yellow');

$C'div').css({

padding: '5px',

margin: '5px',

border: 'lpx solid grey'
D

4. outerWidth()

5. outerHeight(true)

486 | APPENDIXA EXERCISE ANSWERS

CHAPTER 7

1.

In the context of an AJAX request, the only difference between GET and POST requests is
that a GET request has a concrete limitation on the amount of data you can pass; the actual
limit varies from browser to browser. A GET request can also be slightly more efficient.

A REST service implements more meaning in HTTP requests by providing additional meth-
ods that describe data manipulation, such as ADD or DELETE. In addition, a REST service
may also be implemented to standardize server responses so that they utilize the proper
HTTP error codes.

An optional second argument to the $.get() method allows you to pass data along with the
request, either as a query string or as a JavaScript object literal.

You access the JSON object in the variable that you assign to the first argument of the call-
back function that you specify for the $.getISON() method. This variable can have any name
you like.

Accessing the contents of the <response> element looks something like this:

$.get(
'/url/to/request.xml",
function(xml)

alert($(xml).text());
);

The Toad() method.

In the JavaScript, jQuery sets AJAX events globally via a call to the $.ajaxSetup() method,
which takes a list of options that are formatted as a JavaScript object literal. The before-
Send property specifies a callback function that is executed before every AJAX request. The
success property specifies a callback function that is executed upon every successful AJAX
request. The error property specifies a callback function that is invoked upon encounter-
ing an HTTP error. Finally, the complete callback function is executed when the request has
completed, after the success or error callbacks have been executed, depending on whether
the request was successful.

One method is by using jQuery’s AJAX event methods like ajaxStart() and ajaxSuccessQ;
another is via jQuery’s $.ajax() method.

Select the form elements you want to get the values of; then call the serialize() method.

You use the type property to set the request method to DELETE. You use the contentType
property to set the MIME type of the request to signal to the server that the body of the
request is a JSON object. Then you pass the JSON data to send in the body of the request
within the data property. An example of creating this call using the $.ajax() method follows:
$.ajax({
url : '/Server/Example’,

contentType : "application/json; charset=utf-8",
type : 'DELETE',

Chapter 10 | 487

dataType : 'json',

data : JSON.stringify({
dataForTheServerHere : true

D,

success : function(json, status, request)

{
1

error : function(request, status)

{

}
1;

CHAPTER 8

An integer value in milliseconds or the strings 'slow', 'normal’, or 'fast'.
It animates an element’s height property when displaying an element.

The fadeIn(), fadeOut(), and fadeToggle() methods all animate an element’s opacity to dis-
play or hide an element.

The animate() method.

The linear and swing easings are included in jQuery core.

CHAPTER 9

ok wnN

$.fn.extend() or $.fn.prototype.

console.log($.fn); Then examine the object in Firefox or Chrome.

Define my functions or objects inside the closure used to define my plugin.

They are defined in the keyword this.

It should attempt to return this (the selection in context), or jQuery, if possible.

It allows me to remove my own events explicitly, without touching other people’s or other
projects’ events.

Answers may vary but include any valid code that meets the specified criteria.

CHAPTER 10

1.
2.

3.

scrol1Top() and scrollLeft().

The top (or offset top) of the wanted element, the top (or offset top) of its container, and the
current vertical scrollbar position (or scro11Top).

Any syntactically correct code implementing something similar to the following:

488 | APPENDIXA EXERCISE ANSWERS

4.

5.

$("#myScroller').scrol1Top(0);

Answers will vary but should describe calculating the element’s scrol1Height and using an
arbitrary value expected to be larger than the scrol1Height.

0.

CHAPTER 11

1.

w

Depending on the browser, you use the -webkit-user-drag CSS property with a value of ele-
ment for older versions of Webkit-based browsers such as Safari and Chrome. You use the
draggable HTML attribute, which is the official method sanctioned by the HTMLS specifica-
tion and supported by all modern browsers. Or you can use the dragbDrop() method on the
element’s DOM object, which enables drag and drop in IES through IES.

The drag events in the order that they fire are dragstart, drag, and dragend.
The drop events in the order that they fire are dragenter, dragover, drop, and dragleave.

You look for event.originalEvent.dataTransfer.files within the drop event. Without using
jQuery to attach the event listener, you look for event.dataTransfer.files within the drop
event.

A base64-encoded data URI is assigned to the value of the src attribute of an
element. The data URI can also be used with the CSS background and background-image
properties.

The progress and Toad events can be attached to the upload property of an XMLHttpRequest
object to monitor the upload progress of files.

The event.lengthComputable, event.loaded, and event.total properties.

First, you instantiate the FormData object; the instantiated object is stored in a variable. Then
use the append() method on the instantiated object to create custom POST variables.

You attach a Toad event to the XMLHttpRequest object. This event is fired when the upload is
successful.

CHAPTER 12

draggable()

Any syntactically correct program, which implements the following (or similar enough to the
following):

draggable({
helper : 'clone',
opacity : 0.5

1;

Chapter 15 | 489

3. droppable()

4. Any syntactically correct program implementing something similar to this:

droppable({
hoverClass : 'theHoverClassYouUsed'
b

5. You would use the accept option, and the value that you provide to the accept option would
be a valid selector.

CHAPTER 13

1. The sortable() method.
2. A CSS class name that will be applied to the placeholder.

3. It creates blank space within a sortable list that represents a reservation for the item currently
being dragged during a sort.

4. The cursor option.

5. TItallows you to create a custom drag image for the element being dragged during a sort; this
drag image is also known as the helper.

6. The connectWith option.

N

A selector, a selection, an element, or a callback function that returns an element or selection.

8. By providing a callback function to the update event, which contains logic that sends an
AJAX request to a server-side script.

CHAPTER 14

1. The start option.
2. The selecting and unselecting options.

3. The added elements are accessed from the ui.selecting selector, and the removed elements
are accessed from the ui.unselecting selector.

4, div.ui-selectable-helper

CHAPTER 15

1. The active option.
The heightStyle option with the values auto, fi11, or content.

The event option with the value mouseover.

hwbd

The header option with the value h3.

490 | APPENDIX A EXERCISE ANSWERS

CHAPTER 16

1.

o s w

The minDate and maxDate options.

The yearRange option. Example value: "1900:2020"
The changeMonth and changeYear options.

The dateFormat option.

Yes. By providing an array of the Spanish translated weekdays to the dayNames, dayNamesMin,
or dayNamesShort options.

Use the firstDay option to provide the starting day of the week. Sunday is number 0 and
Saturday is number 6. For example, to change the starting day to Tuesday, you would set
firstDay : 2.

CHAPTER 17

1.

ok whb

The modal option with positioning the <div> with class name ui-widget-overlay. It must be
positioned to take up the entire window in front of the document’s content but behind the
opened dialog.

Set the autoOpen option to false.

By calling dialog('open').

By calling dialog('close').

By setting the draggable and resizing options to false.

The show option with an animation preset such as 'explode"'.

CHAPTER 18

The active tab with a value indicating the tab to display, offset from zero.
The class names are ui-tabs-active and ui-tabs-hover.

Add a new tab that references the content you want to load in the href attribute of the
<a> element. The jQuery Tabs plugin takes care of the rest.

The show and hide options.

CHAPTER 19

1.

2.

No sorting occurs until you explicitly sort by a header unless you specify the sortList option,
which specifies how default sorting should be handled.

You would use the sortMultiSortKey option with the value 'ctrikey'.

You use the cssHeader, cssAsc, and cssDesc options to specify custom class names.

Chapter 22 | 491

CHAPTER 20

1. You must keep track of whether the slideshow has been interrupted to prevent the normal
transition from occurring.

2. The transitioning property prevents multiple animations from occurring simultaneously. It
ensures that only one animation happens at a time.

3. The number of items with the slideshow element with the class name s14de is iterated, and
controls are created for each of these items. The controls are given an id name that contains
a reference to the collection and a reference to the slide. Finally, the slide’s offset number is
made the text of the control.

CHAPTER 21

1. <audio> and <video>

<source>

h.264, Ogg, and WebM

pwbd

The tracks option. (Extra credit for specifying that it displays the text from HTMLS <tracks>
elements.)

5. The preload attribute.

CHAPTER 22

1. contenteditable
2. document.execCommand

3. Any options that require a user interface prompt or data value when used with document.
execCommand, such as fontname or fontsize.

4. Answers will vary but should describe a Selection object that contains a collection of Range
objects, which, in turn, stores information about bounding nodes and positions within them.

5. $(this).dataQ)

jQuery Selectors

The following table contains the selector syntax that you can use with jQuery’s Selector API,
which is implemented using the open source Sizzle engine.

SELECTOR DESCRIPTION

SIMPLE SELECTORS

The following selectors are the most basic, commonly used selectors.

#idName Selects a single element via the id name specified in the
div#idName element’s id attribute.
div Selects one or more elements by the element name—

for example, form, div, input, and so on.

div.className Selects one or more elements via a class name present
_className in the element’s class attribute. Individual elements
may also have multiple class names.

The universal or wildcard selector; selects all elements.

div.body, div.sideColumn, Selects one or more elements by chaining multiple
hil.title selectors together with commas.
HIERARCHY

The following selectors are used based on hierarchical context.

div.outerContainer Selects one or more elements based on an ancestral

table.form relationship.

div#wrapper > hl.title Selects one or more elements based on a parent, child
relationship.

h3 + p Selects the sibling immediately following an element.

h3 ~p Selects any siblings immediately following an element.

494 | APPENDIXB JQUERY SELECTORS

CONTEXT FILTERS

The following selectors are applied based on the context elements that appear in the
document.

:root Selects the root element of the document; in an HTML
document this will be the <html> element. In an XML
document, it will be whatever name is given the root
element.

:first Selects the first element that occurs in the selection.
:last Selects the last element that occurs in the selection.

:not (selector) Reduces a selection by specifying what you want to
exclude from a selection.

zeven Selects only elements falling within even numbering.
jQuery calculates position, offset from zero. ltem one
would be considered number zero, item two would be
considered number one, and so on; so :even matches
numbers 0, 2, 4, and so on.

:odd Selects only elements falling within odd numbering.
jQuery calculates position offset from zero. Item one
would be number 0O, item two would be number 1; so
:odd matches numbers 1, 3, 5, and so on.

:eq (index) Selects a single element based on its offset in the selec-
tion counting from 9; for example, :eq(0) matches the
first item in the selection, :eq (1) matches the second
item in the selection, and so on.

:gt (index) Selects all elements where each element’s offset is
greater than the number specified. Specifying :gt (4)
selects elements with offset 5 or greater, where the
count is offset from 0.

:1t (index) Selects all elements where each element’s offset is less
than the number specified. For example, specifying
:1t (4) would select element’s with offset 0, 1, 2, and
3.

:header Selects all elements that are headers, for example, h1,
h2, h3, h4, h5, or hé.

:animated Selects all elements that are currently animated.

:lang ("en") Selects all elements of the specified language, such as
:lang("en-us") <div id="en"s> or
<div id="en-us">.

Appendix B | 495

:target Selects the element based on the URI fragment, if a
fragment exists. For example, if you have the URL:
http://www.example.com#idName

:target would select the element in the
document with the id name idName.

:contains (text) Selects elements based on whether the text speci-
fied is present in the element’s content. For example,
:contents ("Lorem Ipsum") matches:
<p>Lorem Ipsum</p> and any other element
containing Lorem Ipsum anywhere in its text content.

rempty Selects elements that have no children (including text
nodes). For example, : empty matches <divs</divs,
<a>, or </spans.

:has (selector) Selects elements that match the specified selector. For
example, input:has (' :checked') matches any ele-
ment that has a check box or radio <input> with the
attribute checked="checked".

:parent Selects an element’s parent. Therefore, div:parent
matches all parents that have <div> children.

VISIBILITY FILTERS
The following selectors make selections based on whether an element is visible or invisible.

:hidden Selects all elements that are hidden or <input > ele-
ments that are of type="hidden", depending on the
context of the selection. The concept of hidden applies
to either elements with CSS visibility: hidden; or
display: none;.

:visible Selects all elements that are visible—for example, they
are not hidden with visibility: hidden; or
display: none;.

ATTRIBUTE FILTERS

The following selectors make selections based on attribute presence or strings contained
within attribute values.

[attribute] Selects all elements where the specified attribute is
present. For example, the selector [href] selects all
elements in a document that have an href attribute.

[attribute=value] Selects all elements where the attribute has an
exact match for the specified value. For example,
[href="#"] matches all href="#" attributes in the
document (regardless of what element the attribute is
attached to).

continues

http://www.example.com#idName

496 | APPENDIXB JQUERY SELECTORS

(continued)

[attribute!=valuel]

[attribute®=value]

[attributes$=value]

[attribute*=value]

[attribute~=value]

[href] [title] [class]
[target]

Selects all elements where the attribute does not have
the specified value. For example, given the selector
[src!="about:blank"] all elements with a src attri-
bute that does not contain the value about : blank will
be matched.

Selects all elements where the attribute’s value begins
with the specified string. One example might be the
selector [href”="https://"]1, which would match
all href attributes that reference a secure HTTP
connection.

Selects all elements where the attribute’s value ends
with the specified string. For example, the selector:
[hrefs$=".pdf"] matches all href attributes that link
to pdf documents (assuming there are no query string
parameters or URL fragments).

Selects all elements where the attribute’s value con-
tains the specified string anywhere within the value. If
you were searching for href attributes that might have
query string permanents or URL fragments, you could
use the selector [href*="_pdf"] to find PDF docu-
ments where the string " .pdf" might occur somewhere
within the attribute’s value.

Selects all elements where the attribute’s value con-
tains the specified word. This is useful for situations

like class names where there are multiple values sepa-
rated by spaces. This selector is intended to match one
space-separated value. Take, for example, this selector:
[class~="selected"]; this selector would match the
following attribute:

class="disabled selected bodyContainer".

Selects all elements where the element has each attri-
bute. In this example, any element that contains all four
attributes, href, title, class, and target, would be
matched. Chaining attribute selectors works with any
type of attribute selector mentioned here, so you can
test if an attribute is present, if another attribute con-
tains a particular value, and if another attribute begins
with a value, and so on.

Appendix B | 497

CHILD FILTERS

The following selectors make selections based on the position of children elements relative to

their siblings and their parents.
:nth-child (offset)
:nth-child(even)
:nth-child (odd)

:nth-child(equation)

:nth-last-child(offset)
:nth-last-child(even)
:nth-last-child (odd)
:nth-last-child(equation)

:first-child

:last-child

:only-child

:first-of-type

:last-of-type

:nth-of-type (offset)
:nth-of-type (even)
:nth-of-type (odd)
:nth-of-type (equation)
:nth-last-of-type (offset)
:nth-last-of-type (even)
:nth-last-of-type (odd)

:nth-last-of-
type (equation)

Selects all elements where the element is a certain off-

set counting from zero, or elements that are in even or
odd positions (also determined by counting offset from
zero). You can also provide a mathematical expression

that will be evaluated to determine which elements are
matches.

Similar to nth-child, but elements are selected based
on their offset position counting backward from the last
child of the parent.

Selects all elements where the element is the first child
of its parent.

Selects all elements where the element is a last child of
its parent.

Selects all elements where the element is the only child
of its parent.

Matches the first element of the specified type, wher-
ever it may occur within the context of the selection. If
the selection is within the context of the entire docu-
ment and the selection div:first-of-type is used,
the first occurrence of <divs in relation to its parent
element, wherever it may be, is matched.

Matches the last element of the specified type within
the context of that element’s parent and siblings.

Selects elements in relation to their parent and siblings
counting offset from zero, the first element of the same

type.

Selects elements in relation to their parent and siblings
of the same type, counting from the last element of that

type.

continues

498 | APPENDIXB JQUERY SELECTORS

(continued)

:only-of-type

FORMS ELEMENTS

Selects elements of the specified type that have no sib-
lings of the same type.

The following selectors can be used to select various form input elements.

:input

:text
:password
:radio

: checkbox
:submit
:image
:reset

:button

:file

:hidden

FORM STATE SELECTORS

Selects all <inputs>, <selects, <textareas, and
<buttons> elements.

Selects all <input> elements where type="text".
Selects all <input> elements where type="password".
Selects all <input> elements where type="radio".
Selects all <input> elements where type="checkbox".
Selects all <input> elements where type="submit".
Selects all <input> elements where type="image"
Selects all <input> elements where type="reset".

Selects all <buttons elements and <input> elements
where type="button".

Selects all <input> elements where type="filer".

Selects all elements that are hidden using visibility:
hidden; or display: none; or <input> elements
where type="hidden".

The following selectors are used to select form elements based on their state.

:enabled

:disabled

:checked

:selected

:focus

Selects all elements that are enabled.

Selects all elements that are disabled with the attribute
disabled="disabled".

Selects all elements that are checked, for example,
check box and radio inputs, where the attribute
checked="checked" is present.

Selects all elements that are selected, for example,
options in a select drop-down where the attribute
selected="selected" is present.

Selects whatever element currently has focus.

Appendix B | 499

Note that selectors marked with an asterisk (*) are jQuery extensions to the standard Selector

API, which utilizes the built-in browser Selector API document . querySelector () and

document . querySelectorall () and may not perform as well as natively supported selectors.
Wherever possible, jQuery’s selector engine, Sizzle, transforms these extended features into natively
supported selectors at run time, so in many cases the performance impact is negligible, but there is
still the additional overhead of parsing the selector and transforming the selector into one that the
native selector API understands.

Having said that, to get the best possible performance out of jQuery, it is best to first perform a
selection using a highly efficient selector (the most efficient selector is an id selector), and then filter
the selection from within the context of that selection using filtering methods such as £find (),
filter (), and so on. This is good practice not just for jQuery extensions to the selector API but for
any selection. Id selectors are the most efficient selectors because ids are meant to be unique (you
should never assign the same id name to multiple elements) and, when done correctly, id selections
result in only one possible match within a document.

Selecting, Traversing, and

Filtering

SELECTING
S (selector)

jQuery (selector)

length

get ()

get (index)
index (subject)

TRAVERSING AND FILTERING

add (selector)

add (elements)

DESCRIPTION

Makes a selection from the document.

An alternative name for the preceding dollar
sign method.

The number of selected elements.

Returns all selected elements as an array,
rather than as a jQuery object.

Returns a single element from the selection;
the index argument is the element’s position
in the selection, offset from zero.

Searches the selection for the specified ele-
ment and returns that element’s position in
the selection offset from zero.

Adds one or more elements to the selection
by virtue of an additional selector.

Adds one or more elements to the selec-
tion by virtue of one or more element object
references.

RETURN
VALUE

jQuery
jQuery

Number

Array

Element

Number

jQuery

jQuery

continues

502 | APPENDIX C SELECTING, TRAVERSING, AND FILTERING

(continued)

add (html)

add (selection)

add (selector, context)

addBack ([selector])

andSelf ()

children ([selector])

closest (selector/,
context])

closest (selection)

closest (element)

contents ()

Adds one or more elements to the selection
by virtue of an HTML fragment string that

is parsed and converted into DOM element
object references.

Adds one or more elements to the selection
by virtue of an existing selection reference.

Adds one or more elements to the selection
by virtue of a selector. A context provides
the relative point in the document where the
selector should be carried out.

Adds a set or selection of elements to the
current selection; this can optionally be fil-
tered by a selection.

Adds the previous selection to the current
selection. Deprecated in jQuery 1.8.

Makes a selection within the context of the
matched elements’ children. The selector
argument is optional; to select all children
of all the selected elements, simply omit the
selector argument.

Similar to the parents () method, except this
method begins with the element itself, rather
than its parent, and either matches the ele-
ment itself or travels up the DOM to find the
right ancestor.

If the optional context argument is provided,
it provides a DOM element within which a
matching element can be found.

The closest () method may also use an
existing selection reference.

The closest () method may also use a DOM
element object reference directly.

Gets children elements of each matched ele-
ment, including text and comment nodes,
which are normally excluded from jQuery
method operations.

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

AppendixC | 503

each (function (key,
value))

S (Array) .each (
function (key, value)

)

$.each (Array, function)

$.each(Object, function)

end ()

eq (index)

eq (-index)

filter (selector)

Executes a callback function for every ele-
ment in a selection.

As with most jQuery callback functions,
this refers to the current element within
the callback function, and the callback func-
tion is provided the argument list:

offset, element.

Returning true from the callback function
provides a result similar to a continue state-
ment. Returning false provides a result simi-
lar to a break statement.

Executes a callback function for every ele-
ment in an array.

As with most jQuery callback functions, this
refers to the current item within the callback
function, and the callback function is provided
the argument list: key, value.

Returning true from the callback function
provides a result similar to a continue state-
ment. Returning false provides a result simi-
lar to a break statement.

Ceases any filtering that took place and
returns the current selection to its previous
state.

Reduces a selection to a single element,
where index is the number representing the
element’s position in the selection offset from
zero.

Reduces a selection to a single element,
where index is a negative number represent-
ing the element’s position from the last ele-
ment in the selection.

Removes all elements that do not match the
specified selector.

jQuery

Object

jQuery

jQuery

jQuery

jQuery

continues

504 | APPENDIX C SELECTING, TRAVERSING, AND FILTERING

(continued)

filter (function (index))

filter (element)

filter (selection)

find(selector)

find(selection)

find (element)

first ()

The filter () method may alternatively
accept a function as its first argument, which
works identically to the jQuery $.each ()
method. The function is executed for each
item selected.

The function must return a boolean value,
where true indicates that the element should
remain in the result set, and false indicates
that the element should be removed from the
result set.

As with most jQuery callback functions,
this refers to the current element within
the callback function, and the callback func-
tion is provided the argument list:

offset, element.

Filters the selection based on the JavaScript
node passed in the element argument, ele-
ments that match the node remain in the
selection; elements that do not match the
node are dropped from the selection. One or
more DOM element object references can be
passed in.

Filters the selection based on the jQuery
object passed in the selection object (the
result of a jQuery selection) argument. If
elements in the selection match the jQuery
object, they remain in the selection; if not,
those elements are removed from the
selection.

Makes a selection within the context of
matched elements’ descendants.

Finds element descendants using an existing
selection object to match element descen-
dants against.

Finds element descendants using an existing
DOM element object to match descendants
against.

Removes all elements from the selection,
except the first.

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

Appendix C | 505

has (selector) Reduces a previous selection based on jQuery
whether the selection matches the selector
provided in the selector argument.

has (element) Reduces a selection based on whether the jQuery
selection matches the DOM element pro-
vided in the element argument.

is(selector) Returns true if one or more elements match Boolean
the condition specified in the selector. For
example:

$('input') .is(':checked')

is(function (index)) Returns true if the callback function returns Boolean
true for one or more elements. Returns
false if the callback function returns false
for every item passed to the callback function.

As with most jQuery callback functions,
this refers to the current element within
the callback function, and the callback func-
tion is provided the argument list:

offset, element.

is(selection) Returns true if the selection matches one or Boolean
more items present using an existing jQuery
selection.

is (elements) Returns true if the selection matches any Boolean
of the DOM element object reference(s)
provided.

last () Removes all elements from the selection, jQuery
except the last.

continues

506 | APPENDIX C SELECTING, TRAVERSING, AND FILTERING

(continued)

map (function (index,
element))

S (Array) .map (

function (key, value)

next ([selector])

nextAll ([selector])

Like each (), each matched element is passed
into a callback function. The return value of
each callback function is used to build a new
jQuery object, creating a mapping to a new
array of element references. Returning the
item or array of items includes it in the new
array. Returning null or undefined results in
no item added to the new array.

As with most jQuery callback functions,
this refers to the current element within
the callback function, and the callback func-
tion is provided the argument list:

offset, element.

Returning true from the callback function
provides a result similar to a continue state-
ment. Returning false provides a result simi-
lar to a break statement.

Like each (), each array item is passed into

a callback function. The return value of each
callback function is used to build a new array,
creating a mapping to a new array. Returning
the item or array of items includes it in the
new array. Returning null or undefined
results in no item added to the new array.

As with most jQuery callback functions, this
refers to the current item within the callback
function, and the callback function is provided
the argument list: key, value.

Returning true from the callback function
provides a result similar to a continue state-
ment. Returning false provides a result simi-
lar to a break statement.

Selects the next sibling element; the
selector argument is optional.

Selects all subsequent sibling elements; the
selector argument is optional.

jQuery

Array

jQuery

jQuery

Appendix C | 507

nextUntil ([selector] [, Selects all subsequent sibling elements up to jQuery
filter]) but not including the element matched by the
selector.

If the optional £ilter argument is specified,
the matched elements are further filtered
against the selector you provide to the
filter argument.

nextUntil ([element] [, Selects all subsequent sibling elements up to jQuery
filter]) but not including the element object refer-
ence provided.

If the optional £ilter argument is specified,
the matched elements are further filtered
against the selector you provide to the
filter argument.

not (selector) Removes elements from the selection that jQuery
match the specified selector.

not (elements) Removes elements from the selection that jQuery
match the specified DOM element object
reference(s).

not (function (index)) Removes elements from the selection based jQuery

on the whether the callback function returns
true or false. If the callback function returns
true, the element current is excluded from
the selection; if the callback function returns
false, it is included in the selection.

As with most jQuery callback functions,
this refers to the current element within
the callback function, and the callback func-
tion is provided the argument list:

offset, element.

not (selection) Removes elements from the selection based jQuery
on whether the elements in the selection
match elements in the provided selection
object.

offsetParent () Gets the closest ancestor element that is jQuery
positioned with position absolute,
relative or fixed.

parent ([selector]) Selects all immediate parent elements; the jQuery
selector argument is optional.

continues

508 | APPENDIX C SELECTING, TRAVERSING, AND FILTERING

(continued)

parents ([selector])

parentsUntil ([selector]
[, filter])

parentsUntil ([element] [,
filter])

prev ([selector])

prevAll ([selector])

prevUntil ([selector] [,
filter])

prevUntil ([element] [,
filter])

siblings([selector])

slice(start /[, end])

Selects all ancestor elements; the selector
argument is optional.

Matches parent or ancestor elements up to
but not including the element that matches
the selector.

If the optional £ilter argument is specified,
the matched elements are further filtered via
the selector that you provide in the filter
argument.

Matches parent or ancestor elements up to
but not including the element that matches
the provided DOM element object reference.

If the optional £ilter argument is specified,
the matched elements are further filtered via
the selector that you provide in the filter
argument.

Selects the previous sibling element; the
selector argument is optional.

Selects all preceding sibling elements; the
selector argument is optional.

Selects all preceding sibling elements up to
but not including the element matched by the
selector.

If the optional £ilter argument is specified,
the matched elements are further filtered
against the selector you provide to the
filter argument.

Selects all preceding sibling elements up to
but not including the element object refer-
ence provided.

If the optional £ilter argument is specified,
the matched elements are further filtered
against the selector you provide to the
filter argument.

Selects all sibling elements; the selector
argument is optional.

Selects a subset of the selection, where each
index is a number representing the element’s
position in the selection offset from zero.

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

Events

The following table contains all the event methods supported by jQuery as listed in jQuery’s
official documentation at www.jquery . com.

All the event methods return the jQuery object.

METHOD
PAGE LOAD

ready (function)

function (event)

EVENT HANDLING

bind (events, function)
string events

function (event)

bind(events[, datal
[, function])

string events
object data

function (event)

DESCRIPTION

Attaches a function that is executed when the DOM
is completely loaded; that is, all markup, CSS, and
JavaScript are loaded, but not necessarily images.

Attaches a function that is executed when the event
occurs. Multiple events can be specified in the event
argument; if you specify multiple events, each event must
be separated with a single space.

The on () method is preferred over bind () in jQuery 1.7
or later.

The bind () method accepts an optional data argument.
The data argument is an object that allows you to pass
custom data to the event, which is available in the event
handler, in the event argument as event .data.

The on () method is preferred over bind () in jQuery 1.7
or later.

continues

http://www.jquery.com

510 | APPENDIXD EVENTS

(continued)
bind(events[, datal
[, preventBubble])
string events
object data

boolean preventBubble

bind (events)

object events

delegate(selector,
events, function)

string selector
string events

function (event)

When calling the bind () method with the
preventBubble argument, an event handler is
automatically created, which prevents bubbling, as well
as the default action.
bind (eventName, false) ;
or
bind (eventName) ;
is equivalent to creating the following:
bind (
eventName,
function (event)

event .preventDefault () ;
event .stopPropagation () ;

)i

The on () method is preferred over bind () in jQuery 1.7
or later.

Allows multiple events to be bound by passing an object
where the property is the name of the event and the
value is the callback function. For example:
bind ({
click : function(event)

{
b

mouseover : function (event)

{
b

mouseout : function (event)

{

}
)
The on () method is preferred over bind () in jQuery 1.7
or later.

Provides the same functionality as the on () method in
jQuery 1.4.2 and later. The on () method is preferred over
delegate () in jQuery 1.7 or later.

AppendixD | 511

delegate(selector,
events, data, function)

string selector
string events
object data
function (event)
delegate(selector,
events)

string selector
string events

off (events [, selector] |,
function])

string events
string selector

function (event)

off (events[, selector])
string events

string selector

off ()

on(events[, selector] [,
data], function)

string events

string selector

object data

function (event)

Provides the same functionality as the on () method in
jQuery 1.4.2 and later. The on () method is preferred over
delegate () injQuery 1.7 or later.

Provides the same functionality as the on () method in
jQuery 1.4.2 and later. The on () method is preferred over
delegate () injQuery 1.7 or later.

Removes an event handler.

Removes an event handler.

Removes all event handlers.

Attaches an event handler for the selected elements; the
elements referenced in the selection must exist at the
time on () is called.

If a selector is provided in the second argument, descen-
dant element(s) referenced by the selector will be the
element(s) receiving the event(s), rather than the original
selection. Elements referenced by the selector may or
may not exist when on () is called. If new descendant
elements matching the selector are created after the
attachment of the event(s), those element(s) automatically
receive the event(s) when they exist.

Custom data can be passed in the data argument;, if
custom data is provided, it will be available in the event
handler, in the event argument, as event .data.

continues

| APPENDIXD EVENTS

(continued)

on(events[, selector] /[,
datal)

string events
string selector

object data

one (events, function)
string events
function (event)

one (events [, datal,
function)

string events

object data

function (event)

one (events [, selectorl]|,
data], function)
string events

string selector
object data

function (event)

trigger (events)

string events

Attaches an event handler for the selected elements; the
elements referenced in the selection must exist at the
time on () is called.

If a selector is provided in the second argument, descen-
dant element(s) referenced by the selector will be the
element(s) receiving the event(s), rather than the original
selection. Elements referenced by the selector may or
may not exist when on () is called. If new descendant
elements matching the selector are created after the
attachment of the event(s), those element(s) automatically
receive the event(s) when they exist.

Custom data can be passed in the data argument; if cus-
tom data is provided it will be available in the event han-
dler, in the event argument, as event .data.

Attaches a function to be fired for the specified event.
The function is executed only once. Subsequent events
will not execute the specified function.

The one () method accepts an optional data argument.
The data argument is an object that is passed to the
event object of the attached function as event .data.

Attaches an event handler that is always executed just
once per element and event.

If a selector is provided in the second argument, descen-
dant element(s) referenced by the selector will be the
element(s) receiving the event(s), rather than the original
selection. Elements referenced by the selector may or
may not exist when one () is called. If new descendant
elements matching the selector are created after the
attachment of the event(s), those element(s) automatically
receive the event(s) when they exist.

Custom data can be passed in the data argument; if cus-
tom data is provided, it will be available in the event han-
dler, in the event argument, as event .data.

Triggers the specified event on matched elements.

AppendixD | 513

trigger (events,
parameters)

string events

array parameters

triggerHandler (events)

string events

triggerHandler (events,
parameters)

string events

array parameters

unbind ()

unbind (events)

string events

unbind (events, function)
string events

function (event)

unbind (events, false)

string events

undelegate ()

undelegate (selector,
events)

string selector
string events
undelegate (selector,
events, function)
string selector
string events

function (event)

The trigger () method accepts an optional data argu-
ment. The data argument is an object that is passed to
event object functions being triggered as event .data.

Triggers the specified event on matched elements while
canceling the browser’s default action for any given
event.

The triggerHandler () method accepts an optional
data argument. The data argument is an object that
is passed to event object functions being triggered as
event .data.

Removes all events from the selected element(s).

Removes the specified event from the selected
element(s).

Removes by event and event handler.

Removes the specified events.

Provides the same functionality as the off () method in
jQuery 1.4.2 and later. The off () method is preferred
over undelegate () in jQuery 1.7 or later.

Provides the same functionality as the off () method in
jQuery 1.4.2 and later. The off () method is preferred
over undelegate () in jQuery 1.7 or later.

Provides the same functionality as the off () method in
jQuery 1.4.2 and later. The off () method is preferred
over undelegate () in jQuery 1.7 or later.

continues

514 | APPENDIXD EVENTS

(continued)

undelegate (namespace)

EVENT HELPERS

hover (mouseoverFunction,
mouseoutFunction)
mouseoverFunction (event)

mouseoutFunction (event)

toggle (functionl,
function2[, function3]

R |
functionl (event)
function2 (event)

function3 (event)

EVENT METHODS

blur()

blur ([data,]function)

change ()

change ([data,]function)

click ()

click([data,]function)

dblclick ()

dblclick ([data,]
function)

Provides the same functionality as the of £ () method in
jQuery 1.4.2 and later. The off () method is preferred
over undelegate () in jQuery 1.7 or later.

Attaches a function for mouseover and a function for
mouseout to the same element.

Upon first click, the first function is executed; upon sec-
ond click, the second function is executed; upon third
click, the third function is executed, and so on. A mini-
mum of two functions must be specified; an unlimited
number of total functions may be specified.

The toggle () method was deprecated in jQuery 1.8 and
removed altogether in version 1.9.

Triggers the blur event of each selected element.

Attaches a function to the blur event of each selected
element. Optionally, custom data can be passed if the
data argument is specified, which is available in turn as
event .data.

Triggers the change event of each selected element.

Attaches a function to the change event of each selected
element. Optionally, custom data can be passed if the
data argument is specified, which is available in turn as
event .data.

Triggers the click event of each selected element.

Attaches a function to the click event of each selected
element. Optionally, custom data can be passed if the
data argument is specified, which is available in turn as
event .data.

Triggers the dblclick (double-click) event of each
selected element.

Attaches a function to the dblclick event of each
selected element. Optionally, custom data can be passed
if the data argument is specified, which is available in turn
as event .data.

Appendix D

515

error ()

error ([data,]function)

focus ()

focus ([data,]function)

focusin ()

focusin([data,]
function)

focusout ()

focusout ([data,]
function)

keydown ()

keydown ([data,]
function)

keypress ()

keypress ([data,]
function)

keyup ()

keyup ([data,]function)

Triggers the error event of each selected element.

Attaches a function to the error event of each selected
element. Optionally, custom data can be passed if the
data argument is specified, which is available in turn as
event .data.

Triggers the focus event of each selected element.

Attaches a function to the focus event of each selected
element. Optionally, custom data can be passed if the
data argument is specified, which is available in turn as
event .data.

Triggers the focusin event of each selected element.

Attaches an event handler to the focusin event of each
selected element. Optionally, custom data can be passed
if the data argument is specified, which is available in turn
as event .data.

Triggers the focusout event of each selected element.

Attaches an event handler to the focusout event of each
selected element. Optionally, custom data can be passed
if the data argument is specified, which is available in turn
as event .data.

With no arguments, the keydown event of each selected
element is triggered.

With only a callback function, the callback function is exe-
cuted upon the keydown event of each selected element.
Optionally, custom data can be passed if the data argu-
ment is specified, which is available in turn as event
.data.

Triggers the keypress event of each selected element.

Attaches a keypress event handler to each selected ele-
ment. Optionally, custom data can be passed if the data
argument is specified, which is available in turn as event
.data.

Triggers the keyup event of each selected element.

Attaches a function to the keyup event of each selected
element. Optionally, custom data can be passed if the
data argument is specified, which is available in turn as
event .data.

continues

| APPENDIXD EVENTS

(continued)

load (function)

load ([data,]function)

mousedown ()

mousedown ([data,]
function)

mouseenter ()

mouseenter ([data,]
function)

mouseleave ()

mouseleave ([data,]
function)

mousemove ()

mousemove ([data,]
function)

mouseout ()

mouseout ([data,]
function)

mouseover ()

mouseover ([data,]
function)

mouseup ()

mouseup ([data,]
function)

Attaches a function to the 1oad event of each selected
element. Optionally, custom data can be passed if the
data argument is specified, which is available in turn as
event .data.

Triggers the mousedown event of each selected element.

Attaches a function to the mousedown event of each
selected element. Optionally, custom data can be passed
if the data argument is specified, which is available in turn
as event .data.

Triggers the mouseenter event of each selected element.

Attaches a function to the mouseenter event of each
selected element. Optionally, custom data can be passed
if the data argument is specified, which is available in turn
as event .data.

Triggers the mouseleave event of each selected element.

Attaches a function to the mouseleave event of each
selected element. Optionally, custom data can be passed
if the data argument is specified, which is available in turn
as event .data.

Triggers the mousemove event of each selected element.

Attaches a function to the mousemove event of each
selected element. Optionally, custom data can be passed
if the data argument is specified, which is available in turn
as event .data.

Triggers the mouseout event of each selected element.

Attaches a function to the mouseout event of each
selected element. Optionally, custom data can be passed
if the data argument is specified, which is available in turn
as event .data.

Triggers the mouseover event of each selected element.

Attaches a function to the mouseover event of each
selected element. Optionally, custom data can be passed
if the data argument is specified, which is available in turn
as event .data.

Triggers the mouseup event of each selected element.

Attaches a function to the mouseup event of each
selected element. Optionally, custom data can be passed
if the data argument is specified, which is available in turn
as event .data.

AppendixD | 517

resize() Triggers the resize event of each selected element.

resize ([data,]function) Attaches a function to the resize event of each selected
element. Optionally, custom data can be passed if the
data argument is specified, which is available in turn as
event .data.

scroll () Triggers the scroll event of each selected element.

scroll([data,]function) Attaches a function to the scroll event of each selected
element. Optionally, custom data can be passed if the
data argument is specified, which is available in turn as
event .data.

select () Triggers the select event of each selected element.

select ([data,]function) Attaches a function to the select event of each selected
element. Optionally, custom data can be passed if the
data argument is specified, which is available in turn as
event .data.

submit () Triggers the submit event of each selected element.

submit ([data,]function) Attaches a function to the submit event of each selected
element. Optionally, custom data can be passed if the
data argument is specified, which is available in turn as
event .data.

unload () Triggers the unload event of each selected element.

unload([data,]function) Attaches a function to the unload event of each selected
element. Optionally, custom data can be passed if the
data argument is specified, which is available in turn as
event .data.

EVENT OBJECT

The following table documents event methods and properties supported both by jQuery’s

event object provided to jQuery events and by regular JavaScript events without jQuery. You can
access the regular JavaScript event object from any jQuery event object by using the

event .originalEvent object. If you find a method or property listed below missing from the
jQuery event object, it is likely to be found within the event .originalEvent object.

METHOD/PROPERTY DESCRIPTION

event.altKey Indicates whether the Option key (Mac) or Alt key
boolean (Windows) is being pressed.

event.bubbles Indicates whether the event bubbles up through the DOM.
boolean

continues

518

| APPENDIXD EVENTS

(continued)

event.cancelable

boolean

event.clientX, event.clientY

integer

event .createEvent ()

event.ctrlKey

boolean

event .currentTarget

object

event.data

event .defaultPrevented

boolean

event.detail

integer

event .delegateTarget

event .eventPhase

integer

Indicates whether the event can be canceled.

Provides x, y coordinates, indicating where the mouse cur-
sor is located relative to the window.

Creates a new event, which must be initialized by calling
its init () method.

Indicates whether the Control key is being pressed (Mac
and Windows).

The DOM element that is presently the target of the
event. Usually this refers to the same element as the this
keyword.

An object passed to the function acting as an event han-
dler. See the data argument specified for various methods
under “Event Handling” in the previous table.

Indicates whether the event . preventDefault () method
has been called.

A numeric property that indicates how many times a
mouse has been clicked in the same location. Applies to
the click, dblclick, mousedown, and mouseup events.

A reference to the element the event handler is ultimately
attached to.

A numeric property that indicates the phase of the event
execution process.

event .NONE = 0

event .CAPTURING PHASE = 1

event .AT TARGET = 2

event .BUBBLING PHASE = 3

AppendixD | 519

event.initKeyEvent ()
type

bubbles
cancelable
view

ctrlKey
altKey
shiftKey
metaKey
keyCode
charCode
event .initMouseEvent ()
type
canBubble
cancelable
view

detail
screenX
screenY
clientX
clientyY
ctrlKey
altKey
shiftKey
metaKey
button
relatedTarget
event.initUIEvent ()
type
canBubble
cancelable
view

detail

event .isChar

boolean

The initKeyEvent () method is used to initialize the
value of an event created using document . createEvent.

The initMouseEvent () method initializes the value
of a mouse event when it's been created using
document .createEvent.

The initUIEvent () method initializes a Ul event
when it has been created, for example, through
document .createEvent.

Indicates whether the event produced a keyCode.

continues

520 | APPENDIXD EVENTS

(continued)

event .isDefaultPrevented ()

returns boolean

event .isImmediatePropaga-
tionStopped()

returns boolean

event .isPropagationStopped ()

returns boolean
event . keyCode

integer

event.layerX, event.layerY

integer

event .metaKey

boolean

event .namespace

event .originalEvent

event.originalTarget
event .pageX, event.pageY
integer

event .preventDefault ()

event .relatedTarget

event .result

event.screenX, event.screenY
integer
event .shiftKey

boolean

event

.stopImmediatePropagation ()

Determines whether preventDefault () was ever called
on the event object.

Determines whether stopImmediatePropagation () was
ever called on the event object.

Determines whether stopPropagation () was ever called
on the event object.

The numeric offset representing which key on the key-
board is currently being pressed.

Coordinates of the event relative to the current layer.

Whether the Command key (Mac) or Windows key
(Windows) is pressed.

The namespace specified when the event was triggered.

A copy of the browser's original event object, before
jQuery’s modifications were made to it.

The original target of the event before any retargeting.

The mouse coordinates relative to the document.

Prevents the browser’s default action for a given event, for
example, submitting a form or navigating to the href attri-
bute of an <a> element.

Finds another element involved in the event, if applicable.

The last value returned by an event handler that was trig-
gered by this event, unless the value was undefined.

Returns the horizontal coordinates of the event within the
context of the entire screen.

Whether the Shift key (Mac and Windows) is pressed.

Prevents other attached listeners for the same event from
being called.

Appendix D | 521

event.

event.

event

event

event

event

stopPropagation ()

target

.timeStamp

.type

.view

.which

Stops the propagation of an event from a child or descen-
dent element to its parent or ancestor elements, which
prevents the same event from running on the later ances-
tor elements.

The DOM element that triggered the event.

The difference in milliseconds between the time the
browser created the event and the UNIX epoch (January
1st, 1970, 12:00:00 AM).

Provides the type of event, for example, click,
mouseover, keyup, and so on.

Returns the Window object the event happened in. In non-
browsers, this may be referred to as the AbstractView.

Returns the numeric keyCode of the key pressed, or the
character code, or charCode, for an alphanumeric key that
was pressed.

Manipulating Content,
Attributes, and Custom Data

METHOD/PROPERTY

ATTRIBUTES

attr (name)

attr (object)

attr (key,

attr (key,

value)

function)

DESCRIPTION

Returns the attribute value for the speci-
fied attribute from the first element present
in a selection. If no element is present, the
method returns undefined.

Allows you to set attributes via the specifica-
tion of key, value pairs. For example:

attr ({
id : 'idName',
href : '/example.html',
title : 'Tooltip text.'

I3

Allows you to specify an attribute by pro-
viding the name of the attribute in the
key argument and its value in the value
argument.

Sets an attribute’s value depending on the
return value of the callback function that you
specify. The callback function is executed
within the context of each selected ele-
ment, where each selected element can be
accessed within the function via this.

RETURN
VALUE

String,
Undefined

jQuery

jQuery

jQuery

continues

524 | APPENDIXE MANIPULATING CONTENT, ATTRIBUTES, AND CUSTOM DATA

(continued)

removeAttr (name)

CLASS NAMES

addClass (className)

addClass (function())

hasClass (className)

removeClass ([className])

removeClass (function())

toggleClass (className [,
switch])

toggleClass ([switch])

toggleClass (function() [,
switch])

Removes the specified attribute from the
element(s).

Adds the specified class name to each
selected element. Elements can have one or
more class names.

Adds one or more space separated class
names returned from a callback function.

Returns true if the specified class name
is present on at least one of the selected
elements.

Removes the specified class name from each
selected element. If multiple class names
are provided, each is separated by a single
space.

Removes the specified class name from
each selected element by executing a
callback function to determine whether
the class should be removed. The function
should return one or more class names to
be removed. If multiple class names are
removed, they should be separated by a
single space.

Adds the specified class name if it is not
present, and removes the specified class
name if it is present.

If the switch argument is provided, it explic-
itly tells toggleClass () whether the class
name should be added or removed. true
adds the class, and false removes it.

switch explicitly tells toggleClass ()
whether the class name should be added or
removed. true adds the class, and false
removes it.

If a function is provided, it returns one or
more space separated class names to be
toggled.

If the switch argument is provided, it
explicitly tells toggleclass () whether the
class name should be added or removed.
true adds the class, and false removes it.

jQuery

jQuery

jQuery

Boolean

jQuery

jQuery

jQuery

jQuery

jQuery

Appendix E | 525

HTML

html () Returns the HTML contents, or innerHTML, String
of the first element of the selection. This
method does not work on XML documents
but does work on XHTML documents.

html (htmlString) Sets the HTML contents of every selected jQuery
element.

html (function()) If a function is provided, it returns the HTML jQuery
content to set for each selected element.

As with most jQuery callback functions,
this refers to the current element within
the callback function, and the callback
function is provided the argument list:
offset, oldHTML.

TEXT

text () Returns the text content of each selected String
element.

text (value) Sets the text content of each selected jQuery
element. HTML source code will not be
rendered.

text (function()) If a function is provided, it returns the text jQuery
content to set for each selected element.

As with most jQuery callback functions,
this refers to the current element within
the callback function, and the callback
function is provided the argument list:
offset, oldText.

VALUE

val () Returns the contents of the value attri- String,
bute for the first element of the selection. Number,
For <select> elements with attribute
multiple="multiple", an array of selected
values is returned.

Array

val (value) When providing a single value, this method jQuery
sets the contents of the value attribute for
each selected element.

continues

526

| APPENDIXE MANIPULATING CONTENT, ATTRIBUTES, AND CUSTOM DATA

(continued)

val (valuesArray)

val (function())

CUSTOM DATA ATTRIBUTES

data ()

data (object)

data (key)

data (key, value)

$.data(element, key,
value)

removeData ([name])

removeData ([1ist])

S.removeData (element [,
name])

When providing multiple values, this method
checks or selects radio buttons, check
boxes, or select options that match the set
of values.

If a function is provided, it returns the con-
tent to set as the value for each selected
element.

As with most jQuery callback functions,
this refers to the current element within
the callback function, and the callback
function is provided the argument list:
offset, oldValue.

Returns all custom data attributes set on the
selected element(s) as a simple object.

Sets custom data on all selected elements,
where the key portion is used to name the
data, and the corresponding value sets the
value of that attribute.

Returns data stored for an element by the
specified name for the selected elements.

Stores data with the specified name and
value for each selected element(s).

Associates data by the specified name with
the specified value with the specified DOM
element object reference.

Removes the data by the specified name
from the selected elements. If no name is
specified then all data is removed.

Removes data by specifying an array of data
names to remove, or a space-separated list
of data names to remove. If no list is pro-
vided, all data is removed.

Removes data from the specified DOM ele-
ment object reference going by the speci-
fied name.

jQuery

jQuery

Object

jQuery

Mixed

jQuery

Object

jQuery

jQuery

jQuery

More Content Manipulation

METHOD/PROPERTY

HTML

after (content [, content])

after (function())

append (content [,
content])

DESCRIPTION RETURN
VALUE
Inserts the specified content after each jQuery

selected element. One or more content
items can be specified for inclusion and will
be inserted sequentially. Content items can
be an HTML snippet, a DOM element object
reference, or a jQuery object.

Executes a function that returns content to jQuery
be inserted after the selected element(s). The

content returned by the function can be an

HTML string, a DOM element object refer-

ence, an Array of DOM element object refer-

ences, or a jQuery object.

As with most jQuery callback functions, this
refers to the current element within the call-
back function, and the callback function is
provided with the argument list: offset,
html.

Appends the specified content after any jQuery
existing content for each selected element.

One or more content items can be specified

for inclusion and will be inserted sequentially.

Content items can be an HTML snippet, a

DOM element object reference, or a jQuery

object.

continues

528 | APPENDIXF MORE CONTENT MANIPULATION

(continued)

append (function())

appendTo (selector)

before (content [,
content])

before (function())

clone ([withDataAndEvents])

Executes a function that returns content to
be appended. The content returned by the
function can be an HTML string, a DOM ele-
ment object reference, an Array of DOM ele-
ment object references, or a jQuery object.

As with most jQuery callback functions, this
refers to the current element within the call-
back function, and the callback function is
provided with the argument list: offset,
html.

Appends all the selected elements to the ele-
ments specified by the selector argument.

Inserts the specified content before each
selected element. One or more content
items can be specified for inclusion and will
be inserted sequentially. Content items can
be an HTML snippet, a DOM element object
reference, or a jQuery object.

Executes a function that returns content to
be inserted before the selected element(s).
The content returned by the function can be
an HTML string, a DOM element object refer-
ence, an Array of DOM element object refer-
ences, or a jQuery object.

As with most jQuery callback functions, this
refers to the current element within the call-
back function, and the callback function is
provided with the argument list: offset,
html.

Clones the selected elements; returns the
jQuery object including the clones you cre-
ated. If the optional withDataAndEvents
argument is true, then events and data are
cloned as well.

jQuery

jQuery

jQuery

jQuery

jQuery

Appendix F | 529

clone (Clones the selected elements; returns the jQuery
[withDataAndEvents], jQuery object including the clones you cre-

ated. If the optional withDataAndEvents

argument is true, then events and data are

[deepWithDataAndEvents]
cloned as well.

)
If the optional second argument is provided,

the deepWithDataAndEvents argument
controls whether children elements also have
their events and data cloned. By default, this
argument matches whatever is provided for
the first value. The first value’s default value
is false.

detach ([selector]) Removes the selected elements from the jQuery
DOM. This method keeps jQuery data for the
associated elements around, which can be
useful when it is desired to reinsert the ele-
ments in the DOM at a later time.

empty () Removes all child nodes from the selected jQuery
elements.
insertAfter (selector) Inserts the selected elements after the ele- jQuery

ments specified by the selector argument.

insertBefore (selector) Inserts the selected elements before jQuery
the selectors specified by the selector
argument.
prepend (content [, Prepends the specified content before any jQuery
content]) existing content for each selected element.

One or more content items can be specified
for inclusion and will be inserted sequentially.
Content items can be an HTML snippet, a
DOM element object reference, or a jQuery
object.

prepend (function()) Executes a function that returns content to jQuery
be prepended. The content returned by the
function can be an HTML string, a DOM ele-
ment object reference, an Array of DOM ele-
ment object references, or a jQuery object.

As with most jQuery callback functions, this
refers to the current element within the call-
back function, and the callback function is
provided with the argument list: of fset,
html.

continues

530 | APPENDIXF MORE CONTENT MANIPULATION

(continued)

prependTo (selector)

remove ([selector])

replaceAll (selector)

replaceWith (content)

replaceWith (function())

unwrap ()

wrap (wrappingElement)

Prepends all the selected elements to
the elements specified by the selector
argument.

Removes the selected elements from the
DOM. An optional selector can be provided
to further filter the selection.

Replaces the elements specified in the
selector argument with the selected
elements.

Replaces each selected element(s) with the
specified HTML or DOM element(s). This
method returns the jQuery object, which
includes the element that was replaced.

A callback function that returns content that
will replace the selected elements. The con-
tent returned by the callback function can be
an HTML snippet, a DOM element reference,
an Array of DOM element references, or a
jQuery object.

As with most jQuery callback functions, this
refers to the current element within the call-
back function, and the callback function is
provided with the argument list: offset,
html.

Removes the selected element(s) parent
element.

Wraps each selected element with the speci-
fied element. The element can be a selector
referencing another element, an HTML snip-
pet, a DOM element object reference, or a
jQuery object.

Note the distinction that the element must
be capable of wrapping another element—
for example, you couldn’t use an
element to wrap another element.

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

Appendix F | 531

wrap (function()) A callback function that returns content that jQuery
wraps the selected elements. The content
returned by the callback function can be an
HTML snippet, a DOM element reference, or
a jQuery object.
As with most jQuery callback functions, this
refers to the current element within the call-
back function, and the callback function is
provided with the argument list: offset.

Note the distinction that the element must
be capable of wrapping another element—
for example, you couldn’t use an
element to wrap another element.

wrapAll (wrappingElement) Wraps all the selected elements. The element jQuery
used to wrap each element can be a selector
referencing an element, an HTML snippet, a
DOM element object reference, or a jQuery
object.

Note the distinction that the element must
be capable of wrapping another element—
for example, you couldn’t use an
element to wrap another element.

wrapInner (wrappingElement) Wraps the inner contents of each selected jQuery
element. The element used to wrap each
element can be a selector referencing an
element, an HTML snippet, a DOM element
object reference, or a jQuery object.

Note the distinction that the element must
be capable of wrapping another element—
for example, you couldn’t use an
element to wrap another element.

wrapInner (function()) A callback function that returns content that jQuery
wraps the selected elements. The content
returned by the callback function can be an
HTML snippet, a DOM element reference, or
a jQuery object.
As with most jQuery callback functions, this
refers to the current element within the call-
back function, and the callback function is
provided with the argument list: offset.

Note the distinction that the element must
be capable of wrapping another element—
for example, you couldn’t use an
element to wrap another element.

AJAX Methods

METHOD
AJAX REQUESTS

S.ajax([options])

S.ajax(url/[, options])

ajaxComplete (function())

ajaxError (function())

S.ajaxPrefilter(
[dataTypes],

function ()

DESCRIPTION

Allows you to pass an object lit-
eral specifying various options in

key, value pairs. For the complete

list of options, see the “AJAX
Options” table. This method is
used by jQuery's other AJAX

methods to make AJAX requests.
You should use this method only if

you require finer-grained control

over an AJAX request than is pos-
sible with jQuery’s other methods.

Attaches a function to be exe-
cuted when an AJAX request is
completed.

Attaches a function that is exe-
cuted when an error occurs.

The dataTypes argument is
optional and should contain
one or more space-separated
dataTypes.

The callback function argument
sets default values for future
AJAX requests. Its argument list
is options, originalOptions,
JgXHR.

RETURN VALUE

jQuery
XMLHttpRequest

jQuery

jQuery

Undefined

continues

534 | APPENDIXG AJAXMETHODS

(continued)

ajaxsend (function()) Attaches a function to be exe- jQuery
cuted before an AJAX request is
sent.

$.ajaxSetup (options) Configures the default options for jQuery
AJAX requests. The option argu-
ment is passed as an object literal,
in key, value pairs. See the “"AJAX
Options” table.

ajaxStart (function()) Attaches a function to be exe- jQuery
cuted when the first AJAX request
begins (if not already active).

ajaxStop (function()) Attaches a function to be exe- jQuery
cuted when all AJAX requests
have completed.

ajaxSuccess (function()) Attaches a function to be exe- jQuery
cuted when an AJAX request has
completed successfully.

$.ajaxTransport () Creates the AJAX transport undefined
object used internally to issue
AJAX requests. You should use
this method only if you require
finer-grained control over an
AJAX request than is possible with
jQuery’s other methods.

$.get(Initiates and sends to the server jQuery
url an HTTP GET request. XMLHttpRequest
[, data]
[, onSuccessFunction]
[, dataType]
)
$.getJSON (Initiates and sends an HTTP GET jQuery

url request, in which the response will XMLHttpRequest

[datal be JSON-formatted data.

[, function]
)
$.getScript (url, Loads and executes a new jQuery

[function]) JavaScript file via the GET method XMLHttpRequest
asynchronously.

Appendix G

535

load (
url
[, data]
[,

onCompleteFunction]

)

$S.param(object [,
traditionall])

S .post (
url
[, data]
[, onSuccessFunction]
[, dataTypel]
)

serialize ()

serializeArray ()

AJAX OPTIONS
Option

accepts

Loads HTML from a remote file jQuery
and inserts the HTML inside of
the selected elements. The data
argument (optional) is specified as
an object literal, defining the data
you want to pass to the server in
key, value pairs. The function
argument (also optional) is the
callback method that handles the
data when it is returned from the
server.

Creates a serialized representation ~ String
of an object or an array, which can

then be used in a URL or AJAX

request.

The optional traditional argu-
ment indicates whether serial-
ization should be a traditional
shallow serialization.

Initiates and sends to the server jQuery
an HTTP POST request. XMLHttpRequest
Serializes a set of input elements String

into a string of data.

Serializes all forms and form ele- Array
ments into a JSON structure.

Description Type

The content type sent in the Object
request header to the server

that tells the server what kind of

response the browser can accept

in its response.

The default value depends on
dataType.

continues

536 | APPENDIXG AJAXMETHODS

(continued)

async

beforeSend

cache

complete

contents

By default, jQuery sends all AJAX
requests asynchronously. To send
a synchronous request, set this
property to false.

Default value: true

A callback function that is exe-
cuted before the AJAX request is
sent, which can be used to modify
the jQuery XMLHttpRequest
object, as well as to set custom
headers. The arguments passed
to this function are jgxHR and
settings.

Returning false from this func-
tion cancels the request.

If the value of the cache setting
is set to false, the browser is
forced to not cache the request.

The default value is true, false
for dataType 'script' and

'jsonp'.

A function that is executed when
the AJAX request has completed
after the success or error call-
backs have been executed.

This callback is passed two argu-
ments: jgXHR and status.

The status argument will be
any of the following strings:
‘success', 'notmodified’,
'error', 'timeout', 'abort’',

and'parsererrork

An object of string, regular
expression pairs that determine
how jQuery parses the server's
response, given the specified
dataType.

Boolean

Function

Boolean

Function

Object

Appendix G | 537

contentType

context

converters

crossDomain

The MIME type of data being sent String
to the server.

If a contentType is explicitly set,
then it is always sent to the server.

The character set is defined as
UTF-8 by the W3C specification.
Using a different character set will
not force the browser to change
the encoding sent back to the
server.

Default value:

application/x-www-form-
urlencoded; charset=UTF-8

The object provided to this optionis Object
used to set the context of all AJAX-

related callbacks.

Default value: an object used to call
$.ajaxSettings () merged with

the settings passed to $.ajax () .

An object that specified dataType Object
to dataType conversions. Each

data type references a han-

dler capable of processing that

response.

Default value:

{

"k text"
window.String,

"text html" : true,

"text json"
$.parsedSON

"text xml" : $.parseXML
Used to force or prevent a cross- Boolean
domain request.

The default value is false for
same-domain requests and true
for cross-domain requests.

continues

538

| APPENDIXG AJAXMETHODS

(continued)

data

dataFilter

dataType

The data to be sent to the server Object,
with a GET or POST request. Can
be specified as either a string of
ampersand-delimited arguments
or as an object literal in key, value
pairs. If the value is an Array,
jQuery serializes based on the
value of the traditional option.

String,
Array

Automatic processing of data
can be modified with the
processData option.

A callback function executed to Function
handle the raw response data of

XMLHt tpRequest. This is a prefil-

tering function used to sanitize the

response. You should return the

sanitized data from this callback

function. The function has two

arguments: responseText and

dataType.

function (responseText,
dataType)

// do something

// return the sanitized
// data

return data;

The type of data that you expect String
to receive in your response from

the server. jQuery attempts to

automatically infer the dataType

based on the MIME type of the

data returned by the server.

See the “Data Types” table at the
end of this appendix for a list of
allowed data types.

Default value: Educated Guess

Appendix G | 539

error A callback function that is exe- Function
cuted if the AJAX request fails.

The callback function has the fol-
lowing three arguments: jgXHR,
errorType,and errorThrown.

The errorType argument can
contain any of the following
values: null, 'timeout',
'error', 'abort', and
'parsererror’'.

The errorThrown argument con-
tains the HTTP status if an HTTP
error were thrown, such as "Not
Found" or "Internal Server
Error".

global Whether to trigger the global Boolean
AJAX event handlers for the
request, for example, the handlers
set by the various AJAX Event
methods.

Default value: true

headers An object of additional headers Object
to include in the AJAX request.
Headers should be specified in
key, value pairs where the key is
the name of the header, and the
value is the header’s value.

Default value: {}

ifModified Allows the request to be success- Boolean
ful only if the request has been
modified since the last request.
This is determined by checking
the time specified in the Last -
Modified HTTP header.

Default value: false (ignore the
Last-Modified header).

continues

540

| APPENDIXG AJAXMETHODS

(continued)

isLocal

jsonp

jsonpCallback

mimeType

password

processData

Allows the current environment to
be recognized as a local environ-
ment. The following protocols are
currently recognized by jQuery as
being local: file, *-extension,
and widget.

If this option requires modifica-
tion, jQuery recommends doing
so once in the $.ajaxSetup ()
method.

Overrides the callback function
name in a jsonp request. This
value will be used instead of
'callback' inthe 'callback=2"
part of the query string in the URL
for a GET or POST request. So
{jsonp: 'ondsonPLoad' } would
result in ondsonPLoad=? sent on
to the server as part of the URL.

Used to specify a callback function
for a JSONP request. The name
specified here will be used instead
of the randomly generated name
created by jQuery for this purpose
by default.

A MIME type you want to use to
override the default XHR MIME

type.

A password to use in response
to an HTTP access authentication
request.

By default, data passed in to the
data option will be processed and
transformed into a query string,
fitting to the default content-type
application/x-www-form-
urlencoded; charset=URF-8. If
you want to send DOMDocuments
or other nonprocessed data, set
this option to false.

Default value: true

Boolean

String

String,

Function

String

String

Boolean

Appendix G | 541

scriptCharset For GET requests where the String
dataType is set to script or
jsonp. Forces the request to be
interpreted with the specified
charset. This is needed only if the
charset of local content is different
from the remote content being
loaded.

statusCode An object of numeric HTTP codes Object
and corresponding callback func-
tions that should be called when
that status code is encountered.

$.ajax ({
statusCode : ({

404 : function|()

{

alert ('URL not

success A function that is executed upon Function
success of the AJAX request.

timeout Sets the amount of time in mil- Number
liseconds (ms) to allow before a
timeout occurs.

traditional Determines how parameters for Boolean
GET or POST requests will be
serialized. If set to true, a shallow
traditional serialization is used.

type The type of HTTP request, one of String
GET or POST. You can also specify
PUT or DELETE. However, those
methods are not supported by all
browsers.

url The URL to request. String

continues

| APPENDIXG AJAXMETHODS

(continued)

username

xhr

xhrFields

DATA TYPES

Type

xml

html

script

json

jsonp

text

multiple, space-separated
values

A username to specify in response String
to an HTTP authentication
required request.

Callback for creating the Function
XMLHt tpRequest object. Defaults

to the ActiveXObject when avail-

able (IE), the XMLHt tpRequest

otherwise. Override to provide

your own implementation for

XMLHt tpRequest or enhance-

ments to the factory.

An object of key, value pairs
that should be set on the native
XMLHttpRequest object.

Object

Description

Returns an XML document that can be processed with
jQuery.

Returns HTML as plain text. <script> elements are eval-
uated upon insertion into the DOM.

Evaluates the response as JavaScript and returns the
script as plain text to the callback function. Disables cach-
ing unless the cache option is used. Note: This type of
request will make POST requests into GET requests.

Evaluates the response as JSON and returns a JavaScript
object.

Loads in a JSON block using JSONP. Adds an extra
2callback=? to the end of your URL to specify the
callback.

Returns the server response as a plain text string.

Converts what jQuery received in the Content-Type
header to what you require. For example, to text a text
response and treat it like XML, the value "text xml"
should be used. In addition, it is possible to send a
JSONP request, receive the response as text, and then
interpret the response as XML, which would be done
using the value "jsonp text xml".

CSS

METHOD

CSS

css (property)

css (properties)

css (property, value)

CLASS NAMES

addClass ()

hasClass (className)

DESCRIPTION RETURN
VALUE
Returns the specified CSS property value from String

the first selected element—for example:
$('div') .css ('background-color!')
Sets the specified CSS properties. The jQuery

properties argument is defined as an object
literal of key, value pairs—for example:

$('div') .css ({

backgroundColor : 'red',
marginLeft : '10px'
1)
Sets the specified CSS property value—for jQuery
example:
$('div') .css('background', 'red');

Adds the specified class name(s) to the selected jQuery
element(s). Multiple class names are separated
by spaces.

Determines whether the selected element(s) Boolean
have the specified class name. This method

does not support multiple class names at the

time of this writing.

continues

544 | APPENDIXH CSS

(continued)

removeClass (className)

toggleClass (className)

POSITIONING

offset ()

position()

HEIGHT AND WIDTH

height ()

height (value)

innerHeight ()

innerwidth ()

width ()

width (value)

Removes the class name(s) from the selected
element(s). Multiple class names are separated
by spaces.

Adds or removes one or more class names from
the selected elements. Multiple class names are
separated by spaces.

Returns the offset position of the first selected
element relative to the viewport—for example:

var offset = $('div') .offset () ;

alert ('Left: ' + offset.left);

alert ('Top: ' + offset.top);

Gets the coordinates of the element relative to
the offset parent—for example:

var position = $('div') .position() ;
alert ('Left: ' + position.left);

alert ('Top: ' + position.top);

Returns the pixel height (CSS height, exclud-
ing borders and padding) of the first selected
element.

Sets the height (CSS height) of the first selected
element. If no unit of measurement is provided,
px (pixels) is used.

Gets the inner height of the element, including
padding, but not the border.

Gets the inner width of the element, including
padding, but not the border.

Returns the pixel width (CSS width, exclud-
ing borders and padding) of the first selected
element.

Sets the width (CSS width) of the first selected
element. If no unit of measurement is provided,
px (pixels) is used.

jQuery

jQuery

Object

Object

Integer

jQuery

Integer

Integer

Integer

jQuery

AppendixH | 545

outerHeight (options)

outerWidth (options)

SCROLLING

scrollLeft ()

scrollLeft (position)

scrollTop ()

scrollTop (position)

JQUERY

$.cssHooks

Returns the of fsetHeight (includes the pixel Integer
height, borders, and padding) of the first

selected element. The options argument is

a JavaScript object literal of options. See the

"Options” section for more information.

Returns the of fsetwidth (includes the pixel Integer
width, borders, and padding) of the first

selected element. The options argument is

a JavaScript object literal of options. See the

“Options” section for more information.

Gets the horizontal position of the scrollbar for Integer
the first selected element.

Sets the horizontal position of the scrollbar for jQuery
each selected element.

Gets the vertical position of the scrollbar for the Integer
first selected element.

Sets the vertical position of the scrollbar for jQuery
each selected element.

Used to provide an API for jQuery to describe how a particu-
lar CSS property should be handled internally, by jQuery.

$.cssHooks ['WebkitBorderRadius'] = {

get : function(element, computed, extra)
{

// Code for getting the CSS property
I
set : function(element, value)
{

// Code for setting the CSS property
}

Utilities

METHOD/PROPERTY

$.clearQueue ([queue])

$.contains (
container,

contained

$.dequeue (element

[, queue]

$.extend (
target
[, objectl]
[, . . .1

$.extend (
[deep,]
target
[, objectl]
[, . . .1

$.fn.extend (object)

DESCRIPTION

Removes from the queue all items that
have not yet been executed.

Determines whether a DOM element is a
descendant of another DOM element.

Executes the next function in the queue
for the matched element.

Extends the target object with one or
more specified objects.

Extends the target object with one or
more specified objects. If the optional
deep argument is true, then the objects
are merged recursively (aka deep copy).

Merges an object into jQuery itself. This
is used, for example, to create jQuery

plugins.

RETURN VALUE

jQuery

Boolean

Undefined

Object

Object

Object

continues

548 | APPENDIX | UTILITIES

(continued)

$.globalEval (code)
S.grep (
array,

function()

[, invert]

$.inArray(value, array

[, fromIndex]

$.isArray (array)

$.1sEmptyObject (object)

$.isFunction (object)

$.isNumeric (value)

$.1sPlainObject (object)

$.isWindow (object)

$.isXMLDoc (node)

$.makeArray (object)

$.merge (arrayl,

array?2)

$.noop ()

Executes the specified JavaScript code
in the global scope.

Filters items out of an array using a call-
back function. If the optional invert
argument is false or not provided,
grep returns an array of items where the
callback function has returned true for
each of those items. If the invert argu-
ment is true, it returns an array where
the callback function for each item has
returned false.

Determines whether the specified value
appears in the specified array, option-
ally starting at the offset provided to the
fromIndex argument (counting from
zero).

Determines if the item provided is an
array.

Determines whether the item provided is
an empty object.

Determines whether the item provided is
a function.

Determines whether the item provided
is numeric.

Determines whether the item provided is
a plain object.

Determines whether the item provided is
a Window.

Determines whether the item provided is
an XML document.

Turns anything into an array (instead of
an Object or a StaticNodelList).

Merges two arrays into one.

An empty function, use this function ref-
erence if you want a function that does
nothing.

Undefined

Array

Array

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Array

Array

Undefined

Appendix | | 549

S .now ()

S .parseHTML (html)

S .parsedSON (json)

$.parseXML (xml)

S .proxy (

function(),

context

[, arguments]

S .proxy (
context,
functionName

[, arguments]

$.queue (element
[, queuel)

$. support ()

$.trim(string)

$.type (object)

$.unique (array)

Returns a number representing the cur-
rent time. The number returned is a
shorthand for:

(new Date) .getTime ()

Parses an HTML string into an array of
DOM nodes.

Parses a JSON string and returns the
resulting JavaScript object.

Parses an XML string into an XML
document.

Takes a function and returns a new
one with the provided context. this
becomes what you provide to context.

If the arguments argument is specified,
those

arguments will be sent on to the
function.

Takes a function and returns a new one
with

the provided context. this becomes
what you provide to context.

functionName is a string referencing the
function you want to change the context

of.

If the arguments argument is specified,
those arguments will be sent on to the
function.

Shows the queue of functions to be
executed on the element.

Returns an object containing properties
that describe the browser’s features or
bugs for jQuery’s internal use.

Removes white space (newline charac-
ters, spaces, tabs, and carriage returns)
from the beginning and end of a string.

Determines the internal JavaScript class
of an object.

Removes duplicate values from the
specified array.

Number

Array

Object

XMLDocument

Function

Function

Array

Object

String

String

Array

Draggable and Droppable

DRAGGABLE AND DROPPABLE METHODS

METHOD

draggable (options)

draggable ('destroy')

draggable ('disable!')

draggable ('enable!')

draggable ('option')

draggable ('option',
option)

draggable ('option',
option, value)

draggable ('widget')

DESCRIPTION

Makes the selected element(s) draggable.
Options can be specified by passing an object
literal as the first argument using key, value
pairs. For a complete list of options, see

the “Draggable Options” table later in this
appendix.

Completely removes draggable functionality
from the selected element(s).

Disables draggable functionality on the
selected element(s).

Enables draggable functionality on the
selected element(s).

Returns an object literal containing key, value
pairs representing the value of each currently
set option.

Returns the currently set value of the provided
option name.

Sets the value of provided option to value.

Returns a jQuery object containing the drag-
gable element.

RETURNS

jQuery

jQuery

jQuery

jQuery

Object

Mixed

jQuery

jQuery

continues

552 | APPENDIXJ DRAGGABLE AND DROPPABLE

(continued)

droppable (options)

droppable ('destroy!')

droppable ('disable!')

droppable ('enable')

droppable ('option')

droppable ('option',
option)

droppable ('option',
option, value)

droppable ('widget')

DRAGGABLE OPTIONS
OPTION

addClasses

appendTo

axis

Makes the selected element(s) droppable. Dropset
Options can be specified by passing an object
literal as the first argument using key, value
pairs. For a complete list of options, see the
“Droppable Options” section later in this
appendix.
Completely removes droppable functionality jQuery
from the selected element(s).
Disables droppable functionality on the jQuery
selected element(s).
Enables droppable functionality on the jQuery
selected element(s).
Returns an object literal containing key, value Object
pairs representing the value of each currently
set option.
Returns the currently set value of the provided Mixed
option name.
Sets the value of the provided option to jQuery
value.
Returns a jQuery object containing the drop- jQuery
pable element.

DESCRIPTION TYPE

If set to false, this option prevents the class Boolean

ui-draggable from being added to the
draggable element.

Default value: true

For a draggable with a helper option
specified, the matched element passed to the
appendTo option is used as the helper’s
container. If not specified, the helper is

appended to the same container as the
draggable.

Default value: "parent"

Contains dragging to either the x or y axis.

Default value: false

jQuery, Element,
Selector, String

String, Boolean

AppendixJ | 553

cancel

connectToSortable

containment

cursor

cursorAt

delay

disabled

distance

Prevents dragging, if you start dragging within
elements matching the selector.

Default value: "input, textarea, button,
select, option"

Default value: false

Allows the draggable element to be dropped
on the sortable elements specified in the
provided selector.

Default value: false
Contains dragging within the bounds of the
specified element or selection.

If a string is provided, the possible values are
"window", "document", or "parent".

If an array is provided, the values represent the
four coordinates of the containing box in the
form of [x1, yl, x2, y2].

Default value: false

The CSS cursor to be used during the
operation. Any value suitable for use with the
CSS cursor property may be provided.

Default value: "auto"

Moves the dragging element/helper, so the
cursor always appears to drag from the same
position. Coordinates can be given as an

object literal using the keys: top, left, right,
bottom.

Default value: false
Time in milliseconds (ms) to delay the start of

a drag. This helps prevent unwanted dragging
from occurring when clicking an element.

Default value: 0

Disables the draggable if set to true.

Default value: false

Tolerance in pixels for when dragging should
start. Prevents dragging from taking place until

the mouse cursor has reached the pixel
distance from the point the drag began.

Default value: 1

Selector

Selector,
Boolean

Element,
Selector,
String,
Array,

Boolean

String

Object,

Boolean

Integer

Boolean

Integer

continues

554 | APPENDIXJ DRAGGABLE AND DROPPABLE

(continued)

grid

handle

helper

iframeFix

opacity

refreshPositions

Snaps the dragging element or helper to a grid.

The value is provided in the form of an array
[x, vl.

Default value: false

Restricts the drag start to the specified
element. This lets you make a large element
draggable, but only when a smaller element
within it is used as the “handle.”

Default value: false

Allows for a helper element to be used for
dragging display. The clone option produces a
ghosting effect. Possible values are

original and clone. The default value is
original. If you supply a function, it must
return a valid DOM node.

Default value: "original"

Prevents an <iframe> from capturing mouse
events. When set to true, all <iframe>
elements are covered with a transparent over-
lay while dragging is taking place. If a selec-
tor is provided, only the <iframe> elements
referenced by the selector are covered with a
transparent overlay.

Default value: false

The CSS opacity for the element being
dragged, specified as a float between 0 and 1.

Default value: false

By default, the positions of all droppable
elements are cached and saved for reference
for the best possible performance. Setting this
option to true disables this caching, and the
positions of droppable elements are
recalculated in real time as the mouse moves.

Default value: false

Array,

Boolean

Element,

Selector

String,

Function

Boolean,

Selector

Float,

Boolean

Boolean

AppendixJ | 555

revert

revertDuration

scope

scroll

scrollSensitivity

scrollSpeed

snap

If set to true, the element returns to its start
position when dragging stops.

Also accepts the strings valid and invalid. If
set to invalid, revert occurs only if the
draggable has not been dropped on a droppa-
ble. If set to valid, it's the other way around.

If a function is provided, the function deter-
mines whether the element should be returned
to its starting position. If you use a function, the
function should return a boolean value.

Default value: false

The duration of the revert animation provided
in milliseconds. This option is ignored if the
revert option is false.

Default value: 500

This option is used to group sets of draggable
and droppable items. Used with the accept
option on a droppable element, the scope
option.

Default value: "default"

If set to true, the draggable’s container auto-
scrolls while dragging.

Default value: true

Distance in pixels from the edge of the
viewport after which the viewport should scroll.
Distance is relative to the pointer, not the
draggable.

Default value: 20
The speed at which the window should scroll

when the mouse pointer gets within the
scrollSensitivity distance.

Default value: 20

If set to a selector or to true (same as selector
.ui-draggable), the new draggable snaps to
the edges of the selected elements when
coming to an edge of the element.

Default value: false

Boolean,
String,

Function

Integer

String

Boolean

Integer

Integer

Boolean,

Selector

continues

556 | APPENDIXJ DRAGGABLE AND DROPPABLE

(continued)

snapMode If set, the dragged element snaps only to the String
outer edges or to the inner edges of the element.
Possible values are inner, outer, and both.

Default value: "both™"

snapTolerance The distance in pixels from the snapping Integer
elements before the snapping should occur.
Default value: 20

stack Used for window managers or window manger- Selector,
like applications. This feature controls the z-index Bgglean
of draggable elements that match the provided

selector. This feature ensures that the draggable
element the user clicks on is always on top.

Default value: false

zIndex The z-index value for the helper element, Integer
while it is being dragged.

Default value: false
DRAGGABLE EVENTS

create function(event, ui)

drag A function that is executed while the element function(event, ui)
is being dragged.

start A function that is executed when the element function(event, ui)
begins a drag.

stop A function that is executed when the element’s function(event, ui)
drag ends.

DRAGGABLE Ul OBJECT OPTIONS

The callback functions specified for various draggable options specify a ui object in the second
argument. Following are the properties exposed in the ui object.

OPTION DESCRIPTION TYPE

ui.options Options used to initialize the draggable Object
element.

ui.helper The jQuery object representing the helper Object

being dragged.

AppendixJ | 557

ui.position The current position of the helper as an Object {top, left}
object literal relative to the offset element.

ui.absolutePosition The current absolute position of the helper Object {top, left}
relative to the page.

DROPPABLE OPTIONS

OPTION DESCRIPTION TYPE
accept If a function is provided, the function is executed function(draggable)
each time a draggable is dropped on a Selector

droppable. This lets you filter which
elements can be dropped. The function should
return true if the dragged element should be
accepted and false if it should not.

If a selector is provided, draggables that match
the specified selector will be accepted by the

droppable.
Default value: n*n

activeClass A class name that is added to the droppable String
element while a draggable element is being Boolean
dragged.

Default value: false

addClasses If the value provided is set to false, this feature Boolean
prevents the ui-droppable class name from
being added to droppable elements.

Default value: true

Disabled Disables the droppable element if the value is Boolean
set to true.
Default value: false

greedy If true, this property prevents event Boolean
propagation on nested droppables.
Default value: false

hoverClass A class name that is added to the droppable String,

element while a draggable element is being Boolean
dragged over the droppable element.

Default value: false

continues

558 | APPENDIXJ DRAGGABLE AND DROPPABLE

(continued)

scope

tolerance

DROPPABLE EVENTS

activate

create

deactivate

Drop

Out

Over

Used to group draggable and droppable
elements into sets, with the accept option.
Draggables and droppables can interact only
with other draggables and droppables of the
same scope.

Default value: "default"

Specifies which method to use for determining
whether a draggable element is over a
droppable element. Possible values are fit,
intersect, pointer, or touch.

Default value: "intersect™"

A function that is executed any time an
acceptable draggable element begins a drag.

A function that is executed when a droppable is
created.

A function that is executed any time an
acceptable draggable element’s drag ends.

A function that is executed when an accepted
draggable element is dropped on a droppable
element. ("On" is defined by the tolerance
option.) Within the function, this refers to the
droppable element, and ui .draggable refers
to the draggable element.

A function that is executed when an acceptable
draggable element leaves a droppable element.
“:eave” is defined by the tolerance option.)

A function that is executed when an acceptable
draggable element is dragged over a droppable
element. ("Over” is defined by the tolerance
option.)

String

String

function(event,

function(event,

function(event,

function(event,

function(event,

function(event,

ui)

ui)

ui)

ui)

ui)

ui)

AppendixJ | 559

DROPPABLE Ul OBJECT OPTIONS

The callback functions specified for various droppable options specify a ui object in the second
argument. Following are the properties exposed by the ui object.

OPTION

ui

ui

.options

.position

i .absolutePosition

i .draggable

i .helper

DESCRIPTION

The options used to initialize the droppable
element.

The current position of the draggable helper.

The current absolute position of the draggable
helper.

The current draggable element.

The current draggable helper.

TYPE

Object

Object {top, left}
Object {top, left}

Object
Object

Sortable

SORTABLE METHODS

METHOD

sortable (options)

sortable ('cancel')

sortable ('destroy')
sortable ('disable')
sortable ('enable')
sortable ('option',
optionName)

sortable ('option')

sortable ('option',
optionName,
optionValue)

DESCRIPTION

Makes the selected element(s) sortable.
Options can be specified by passing an
object literal as the first argument using key,
value pairs. For a complete list of options,
see the “Sortable Options” section later in
this appendix.

Cancels a change in the state of a sortable
and reverts it back to what it was prior to
sorting.

Completely removes sortable functionality
from the selected element(s).

Disables sortable functionality on the
selected element(s).

Enables sortable functionality on the selected
element(s).

Returns the value of the specified option.

Returns an object containing all values of all
options.

Sets the specified option to the specified
value.

RETURN
VALUE

jQuery

jQuery

jQuery

jQuery

jQuery

Mixed

Object

jQuery

continues

562

| APPENDIX K SORTABLE

(continued)

sortable ('option',
object)

sortable ('refresh')

sortable

('refreshPositions')

sortable
('serialize’',
options)

sortable ('toArray',
options)

sortable ('widget')

SORTABLE OPTIONS
OPTION

appendTo

axis

cancel

Sets the specified options to the specified
values by providing an object representing
all of the options you'd like to set.

Refreshes the sortable items.

Refreshes the cached positions of sortable
items.

Returns a string of serialized IDs for each
sortable item, which can then be used in an
AJAX request or input form. For a complete
list of options, see the “Serialize Options”
section later in this appendix.

Serializes all the sortable items’ element id
properties into an array.

An object of options can be provided in the
second argument; the only option that can
be customized is changing which attribute is
used.

{

attribute : 'data-custom'
!

Returns a jQuery object that contains the
sortable element.

DESCRIPTION

Defaults to the parent; defines where the
helper that moves with the mouse is being
appended to during the drag (for example,
to resolve overlap/zindex issues).

Default value: 'parent!

If specified, the items can be dragged only
along either the X- or Y-axis. Only allows the
values 'x' or 'y'.

Default value: false

Prevents sorting from the beginning on ele-
ments that match the selector.

Default selector: "input, textarea,
button, select, option"

jQuery

jQuery
jQuery

String

Array

jQuery

TYPE

jQuery
Element
Selector

String

String

Boolean

Selector

AppendixK | 563

connectWith

containment

cursor

cursorAt

delay

disabled

distance

dropOnEmpty

forceHelperSize

A selector that references other sortable
elements you'd like to connect a sortable
with.

Default value: false

Constrains the dragging of sortable
elements within the bounds of the specified
or selected element. If using a string, the

possible values are 'parent', 'document',
and 'window'.

Default value: false

Specifies the cursor that should be shown
while sortable elements are being dragged.

The string provided should be a value
suitable for the CSS cursor property.

Default value: 'auto’
Specifies coordinates for the cursor that

should be shown while sortable elements are
being dragged.

Default value: false
Defines a delay time in milliseconds (ms),
which helps to prevent unwanted drags.

Default value: 0

Whether or not the sortable is disabled.
Default value: false

A tolerance in pixels, for where the
threshold sorting should take place. If this
option is specified, sorting won't take place
until the mouse cursor is dragged beyond
the specified distance.

Default value: 1

If set to true, this option allows a sortable
item to be dropped from a linked selectable.
Default value: true

If the value provided is true, this option
forces the helper element to have a size.

Default value: false

Selector

Boolean

Element
Selector
String

Boolean

String

Object

Integer

Boolean

Integer

Boolean

Boolean

continues

564 | APPENDIXK SORTABLE

(continued)

forcePlaceholderSize

grid

handle

helper

items

opacity

placeholder

revert

If true, this option forces the placeholder for
the sortable to have a size.

Default value: false

Snaps the dragging element/helper to a grid,
every x and y pixels, where x and y are
specified as an Array [x, y].

Default value: false

Restricts sorting from starting unless it
begins on the specified element.

Default value: false

This option allows a helper element to be
displayed while dragging is taking place.
If a callback function is specified, it should
return a valid DOM node that can be used
for display.

Default value: 'original'

Which items sorting should be applied to.

Default value: '> *

Defines the opacity of the helper while
sorting using a CSS opacity value, where 0
is fully transparent, 1 is fully opaque, and
floating points between are semitransparent.
For example, 0.5 would be half-transparent
(or half-opaque).

Default value: 1

Applies a class name to the placeholder
element (which would otherwise be empty
white space).

Default value: false

This option triggers the dragged item to be
reverted back to its original position using
a smooth animation. If the value provided is
true, a default animation is used. If a
number is provided, it represents the
duration in milliseconds.

Default value: true

Boolean

Array

Selector

Element

Element

function
(event,
element)

Selector

Float

String,

Boolean

Boolean,

Number

Appendix K | 565

scroll

scrollSensitivity

scrollSpeed

tolerance

zIndex

EVENTS

activate
bind('sortactivate')

on('sortactivate')

beforeStop
bind ('sortbeforestop!')

on('sortbeforestop')

change

bind ('sortchange')
on ('sortchange')
create
bind('sortcreate')

on('sortcreate')
deactivate

bind ('sortdeactivate!')

on ('sortdeactivate')

This option causes the page to scroll when a
dragged element comes to an edge.

Default value: true

This option defines how close to an edge a
dragged element must be before scrolling
occurs. Measured in pixels.

Default value: 20

This option defines the speed that the
container is scrolled.

Default value: 20

This option defines what mode to use to
determine whether a dragged element is
above another item. The possible values are
'intersect' and 'pointer’.

Default value: 'intersect

The z-index for the drag element.

Default value: 1000

A function that executes when a drag on a
sortable item begins. This function
propagates to all connected lists.

A function that executes when sorting ends,
but while the placeholder or helper is still
available.

A function that executes when a change in
sorting takes place.

A function that executes when a sortable is
created.

A function that executes when sorting ends.
This function propagates to all connected
lists.

Boolean

Number

Number

String

Integer

function
(event, ui)

function
(event, ui)

function
(event, ui)

function
(event, ui)

function
(event, ui)

continues

| APPENDIX K SORTABLE

(continued)

out
bind('sortout')
on('sortout')

over

bind ('sortover!')
on('sortover')
receive
bind('sortreceive')
on('sortreceive')
remove
bind('sortremove')

on('sortremove')

sort

bind('sort')
on('sort!')

start
bind('sortstart!')

on('sortstart!')

stop
bind ('sortstop')

on('sortstop')

update
bind ('sortupdate')

on('sortupdate!')
SERIALIZE OPTIONS
OPTION

attribute

expression

key

A function that executes when a sortable
item is moved out of the boundaries of a
sortable list.

A function that executes when an item is
moved over a connected list.

A function that executes when an item from
this sortable list is dragged to a connected
(separated) sortable list.

A function that executes when an item from
this sortable list is dragged to a connected
(separated) sortable list.

A function that executes while sorting is
taking place.

A function that executes when sorting
begins.

A function that executes when sorting ends.

A function that executes when sorting ends
and the DOM position of the dragged
element has changed.

DESCRIPTION

The attribute value that is retrieved from
each sortable element.

Default: id

A regular expression used to extract a string
from within the attribute value.

Default: / (.+) [-=_1(.+)/

The key in the URL hash. If not specified, it
takes the first result of the expression.

function
(event, ui)

function
(event, ui)

function
(event, ui)

function
(event, ui)

function
(event, ui)

function
(event, ui)

function
(event, ui)

function
(event, ui)

TYPE

String

Regular
Expression

String

Appendix K | 567

Ul OBJECT

PROPERTY

ui

ui.

ui

ui

ui.

.helper

item

.offset

i .position

.originalPosition

sender

i .placeholder

DESCRIPTION

A jQuery object representing the helper for
the element being sorted.

A jQuery object representing the element
being dragged.

The absolute position of the helper element
represented as an object with properties top
and left.

The position of the helper element repre-
sented as an object with the properties top
and left.

The original position of the element repre-
sented as an object with the properties top
and left.

A jQuery object containing the original sort-
able element, if the item is being moved to a
different sortable element.

A jQuery object representing the place-
holder element, if one is in use.

TYPE

jQuery

jQuery

Object

Object

Object

jQuery

jQuery

Selectable

METHOD

SORTABLE METHODS

selectable (options)

selectable ('option')

selectable (optionName)

selectable (optionName,

selectable ('disable')
selectable ('destroy!')
selectable ('enable')
selectable('refresh')

selectable ('widget')

value)

DESCRIPTION

Turns the children of selected
element(s) into selectable elements.
Options can be specified by passing
an object literal as the first argument
using key, value pairs. For a complete
list of options, see the “Selectable

Options” section later in this appendix.

Returns an object containing key value
pairs representing the current
selection of options.

Returns the current value of the
specified option.

Sets the value of the specified option.

Disables selectable functionality on the
selected element(s).

Completely removes the selectable
functionality.

Enables selectable functionality on the
selected element(s).

Refreshes the position and size of each
selected element.

Returns a jQuery object containing the
selectable element.

RETURN
VALUE

jQuery

Object

Mixed

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

570 | APPENDIXL SELECTABLE

SELECTABLE OPTIONS

OPTION

appendTo

autoRefresh

cancel

delay

disabled

distance

filter

DESCRIPTION TYPE

This option determines what element Selector
the selection box will be appended to.

Default selector: "body"

This option determines whether to Boolean
refresh (the cached) the position and

size of each selectable element at the

beginning of a select operation. If you

have experienced performance

degradation (as you would if you have

a lot of selectable elements), you might

want to set this option to false and

refresh positions manually, as needed.

Default value: true

The cancel option provides a Selector
selector of elements that are omitted

from the action of beginning a

selection. If the user clicks and drags

on one of the specified elements, no

selection occurs.

Default selector: "input, textarea,

button, select, option"

Allows you the option of specifying Integer
the number of milliseconds that should

pass before a selection is allowed to

take place. The default is zero

(no delay).

Determines whether the selectable is Boolean
disabled.

Default value: false

Specifies the number of pixels the Number

mouse cursor should move before a
selection begins.

Default value: 0
The matching child elements will be Selector
made into selectable elements.

Default value: * (all child
elements)

Appendix L | 571

tolerance Defines how a selection should occur. String
The two options at the time of this
writing are "fit" and "touch". The
value "£it" means that the selection
box should completely contain the
item being selected before a
selection takes place. The option
"touch" means that merely coming
into contact with the item makes the
item selected.

Default value: "touch”

create This function is executed when the function
bind ('selectablecreate') selectable is created. (event, ui)

on('selectablecreate')

selected This function is executed at the end of function
bind ('selectableselected') a select operation (when the mouse (event, ui)
button has been released), on each

element added to the selection.

Selected elements are available in the

ui argument as ui.selected. The

this keyword refers to the parent

selectable element.

on('selectableselected')

selecting This function is executed as ele- function
bind('selectableselecting') ments are selected during a select (event, ui)
operation (while the selection box

is being drawn). Selected elements

are available in the ui argument as
ui.selecting. The this

keyword refers to the parent

selectable element.

on('selectableselecting')

start This function is executed at the function
bind ('selectablestart') beginning of a select operation (when (event, ui)
the mouse button is first pressed

down). The this keyword refers to the

parent selectable element.

on('selectablestart')

stop This function is executed at the end of function
bind('selectablestop') a select operation (when the mouse (event, ui)
button is released). The this

keyword refers to the parent select-

able element.

on('selectablestop')

continues

572 | APPENDIXL SELECTABLE

(continued)

unselected

bind ('selectableunselected')

on('selectableunselected')

unselecting

bind('selectableunselecting')

on('selectableunselecting')

NOTES

This function is executed at the end of
a select operation (when the mouse
button has been released), for each
element removed from the selection.
The element removed from the
selection is available in the ui
argument as ui.unselected. The
this keyword refers to the parent
selectable element.

This function is executed during a
select operation (while the selection
box is being drawn). Selected
elements are available in the ui argu-
ment as ui.unselecting. The this
keyword refers to the parent
selectable element.

function
(event, ui)

function
(event, ui)

In the ui argument of each of the callback functions documented here, the parent selectable element

is also available as ui.selectable.

The Selectable plugin currently does not provide a way to customize the box being drawn—for

example, by adding a class name to it via a Selectable option. Despite this limitation, you do have
the ability to customize the selection box, and you can do that by adding a rule to your style sheet
that references the selector, div.ui-selectable-helper.

Animation

METHOD

animate (
css
[, duration]
[, easing]

[, function()]

animate (
css,
options
)

clearQueue

([queue])

delay (duration
[, queue])

and Easing Effects

DESCRIPTION

Animates an element’s styles, from the styles an
element begins with, to the styles specified in an
object literal provided to the first argument. At

the time of this writing, only CSS properties with
numeric values are supported. Animating color tran-
sitions is supported with additional plugin support.

The easing argument accepts two possible
values using the default easing library, "1inear"
and "swing". However, you may download and
enable a plethora of additional easing options,
which are documented later in this appendix.

The optional callback function is executed once the
animation has completed. this refers to the
element animated.

Animates an element’s styles, from the styles an
element begins with to the styles specified in an
object literal provided to the first argument. See the
“Animation Options” section later in this appendix.

Removes from the queue all items that have not
been executed yet. If a queue is specified, only that
queue is cleared.

Sets a timer to delay the execution of subsequent
items in the queue. If a queue is specified, the delay
is initiated on that queue item.

RETURN
VALUE

jQuery

jQuery

jQuery

jQuery

continues

| APPENDIXM ANIMATION AND EASING EFFECTS

(continued)

dequeue ([queue])

fadelIn(
[duration]

[, function()]

fadeIn(options)

fadeIn(
[duration]
[, easing]

[, function()

fadeOut (
[duration]

[, function()]

fadeOut (options)

Executes the next function in the queue for the
matched elements. If the optional queue argument
is specified, that queue item is executed.

Fades in (shows) each selected element by adjusting

the element’s opacity. The duration is either a time in
milliseconds or a time preset: "slow", "normal", or

"fast".

The optional callback function is executed when the
animation has completed. this refers to the
element animated.

Fades in (shows) each selected element by adjusting
the element’s opacity. See the “Animation Options”
section later in this appendix.

Fades in (shows) each selected element by adjusting

the element’s opacity. The duration is either a time in
milliseconds or a time preset: "slow", "normal", or

"fast".

The easing can be either default easings "linear"
or "swing", or any easing documented below,
assuming you have installed the requisite additional
easings as part of jQuery Ul.

The optional callback function is executed when
the animation has completed. this refers to the
element.

Fades out (hides) each selected element by adjusting
the element’s opacity. The duration is either a time in
milliseconds or a time preset: "slow", "normal", or

"fast".

The optional callback function is executed when the
animation has completed. this refers to the
element animated.

Fades out (hides) each selected element by
adjusting the element’s opacity. See the “Animation
Options” section later in this appendix.

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

AppendixM | 575

fadeOut (
[duration]
[, easing]

[, function()

fadeTo (
[duration]
[, easing]

[, function()

fadeToggle (
[duration]
[, easing]

[, function/()

fadeToggle
(options)

Fades out (hides) each selected element by jQuery
adjusting the element’s opacity. The duration

is either a time in milliseconds or a time preset:

"slow", "normal", or "fast"

The easing can be either default easings "linear"
or "swing", or any easing documented below,
assuming you have installed the requisite additional
easings as part of jQuery Ul.

The optional callback function is executed when
the animation has completed. this refers to the
element.

Fades in each selected element by adjusting the jQuery
element’s opacity. The duration is either a time in

milliseconds or a time preset: "slow", "normal", or

"fast".

The easing can be either default easings "linear"
or "swing", or any easing documented below,
assuming you have installed the requisite additional
easings as part of jQuery Ul.

The optional callback function is executed after
the animation has completed. this refers to the
element.

Toggles the display of each selected element by jQuery
fading in or out by adjusting the element’s opacity.

The duration is either a time in milliseconds or a

time preset: "slow", "normal™", or "fast".

The easing can be either default easings "linear"
or "swing", or any easing documented below,
assuming you have installed the requisite additional
easings as part of jQuery Ul.

The optional callback function is executed after
the animation has completed. this refers to the
element.

Toggles the display of each selected element by jQuery
fading in or out by adjusting the element’s

opacity using the specified Animation Options.

See the “Animation Options” section later in this

appendix for more information.

continues

576

| APPENDIXM ANIMATION AND EASING EFFECTS

(continued)

finish([queue])

hide ()

hide (
[duration]

[, function()]

hide (options)

hide (
[duration]
[, easing]

[, function()]

$.fx.interval

S.fx.off

queue ([queue])

queue ([queue],
newQueue)

Stop the currently running animation, remove all
queued animations, and complete all animations for
the matched elements.

If the optional queue argument is specified,
animations are stopped, removed, and completed
only for the referenced queue.

Hides each selected element if the element is not
already hidden.

Hides each selected element using an animation.
The duration is either a time in milliseconds or a
time preset: "slow", "normal", or "fast".

An optional callback function can be executed when
hiding has completed. this refers to the element
being hidden within the callback function.

The hide animation is carried out with the specified
object of options. See the “Animation Options”
section later in this appendix.

Hides each selected element using a preset
animation. The duration is either a time in mil-
liseconds or a time preset: "slow", "normal", or
"fast".

The easing can be either default easings "linear"
or "swing", or any easing documented below,
assuming you have installed the requisite additional
easings as part of jQuery Ul.

The optional callback function is executed when
the animation has completed. this refers to the
element.

The rate in milliseconds that specifies how often
animations fire.

Default value: 13 milliseconds
Globally disable all animations.

Shows the queue of functions to be executed on
the matched elements.

Manipulates the queue of functions to be executed,
once for each matched element.

The newQueue argument should contain an array of
functions to replace the current queue contents.

jQuery

jQuery

jQuery

jQuery

jQuery

Number

Boolean

Array

jQuery

AppendixM | 577

queue ([queue],
function())

show ()

show (
[duration]

[, function()]

show (options)

show (
[duration]
[, easing]

[, function()]

slideDown (
[duration]

[, function()]

slideDown (options)

Manipulates the queue of functions to be executed,
once for each matched element.

The function argument refers to the new function
to add to the queue, with a function to call that will
dequeue the next item.

Displays each selected element if the element is
hidden.

Shows each selected element using an animation.
The duration is either a time in milliseconds or a
time preset: "slow", "normal", or "fast".

An optional callback function can be executed when
showing has completed. this refers to the element
being shown within the callback function.

The show animation is carried out with the specified
object of options. See the “Animation Options”
section later in this appendix.

Shows each selected element using a preset
animation. The duration is either a time in mil-
liseconds or a time preset: "slow", "normal", or
"fast".

The easing can be either default easings "linear"
or "swing", or any easing documented below,
assuming you have installed the requisite additional
easings as part of jQuery Ul.

The optional callback function is executed when
the animation has completed. this refers to the
element.

Slides down (shows) each selected element using an
animation. The duration is either a time in
milliseconds or a time preset: "slow", "normal", or
"fast".

An optional callback function can be executed when
sliding has completed. this refers to the element
being slid within the callback function.

The slideDown animation is carried out with the
specified object of options. See the “Animation
Options” section later in this appendix.

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

continues

| APPENDIXM ANIMATION AND EASING EFFECTS

(continued)

slideDown (
[duration]
[, easing]

[, function()]

slideToggle (
[duration]

[, function()]

slideToggle (options)

slideToggle (
[duration]
[, easing]

[, function()]

slideUp (
[duration]

[, function()]

slideUp (options)

Slides down (shows) each selected element using

a preset animation. The duration is either a time in
milliseconds or a time preset: "slow", "normal", or
"fast".

The easing can be either default easings "linear"
or "swing", or any easing documented below,
assuming you have installed the requisite additional
easings as part of jQuery Ul.

The optional callback function is executed when the
animation has completed. this refers to the element.

Toggles each selected element between displayed
and hidden by animating the element’s height.
The duration is either a time in milliseconds or a
time preset: "slow", or "fast". An
optional callback function can be executed when
sliding has completed. This refers to the element
being slid within the callback function.

"normal",

Toggles each selected element between displayed
and hidden by animating each element’s height.
Animation is carried out with the specified object of
options. See the “Animation Options” section later
in this appendix.

Toggles the sliding animation for each selected
element using a preset animation. The duration
is either a time in milliseconds or a time preset:
"slow", "normal", or "fast".

The easing can be either default easings "linear"
or "swing", or any easing documented below,
assuming you have installed the requisite additional
easings as part of jQuery Ul.

The optional callback function is executed when the
animation has completed. this refers to the element.

Slides up (hides) each selected element using an
animation. The duration is either a time in milliseconds
or a time preset: "slow", "normal", or "fast".

An optional callback function can be executed when
sliding has completed. this refers to the element
being slid within the callback function.

The s1ideUp animation is carried out with the
specified object of options. See the “Animation
Options” section later in this appendix.

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

AppendixM | 579

slideUp (
[duration]
[, easing]

[, function()]

stop (
[clearQueue]

L,
JjumpToTheEnd]

)

stop (
[queuel
[, clearQueue]

L
JjumpToTheEnd]

)

toggle ()

toggle (

[duration]

[, function()]

toggle (options)

Slides up (hides) each selected element using a
preset animation. The duration is either a time in

milliseconds or a time preset: "slow", "normal", or

"fast".

The easing can be either default easings "linear"

or "swing", or any easing documented below,

assuming you have installed the requisite additional

easings as part of jQuery Ul.

The optional callback function is executed when the

animation has completed. this refers to the element.

Stops all the currently running animations on all the

specified elements.

If the clearQueue argument is specified, it
indicates whether to remove queued animation as
well. This argument defaults to false.

The jumpToTheEnd argument is a boolean that
indicates whether the current animation should be
completed immediately. This argument defaults to
false.

Stops all the currently running animations on all the

specified elements.

The queue argument specifies which queue to stop

animations within.

If the clearQueue argument is specified, it
indicates whether to remove queued animation as
well. This argument defaults to false.

The jumpToTheEnd argument is a boolean that
indicates whether the current animation should be
completed immediately. This argument defaults to
false.

Toggles each selected element between displayed

and hidden.

Toggles selected element using an animation. The
duration is either a time in milliseconds or a time
preset: "slow", "normal", or "fast".

An optional callback function can be executed when

sliding has completed. this refers to the element
being slid within the callback function.

A toggle animation is carried out with the
specified object of options. See the “Animation
Options” section later in this appendix.

jQuery

jQuery

jQuery

jQuery

jQuery

jQuery

continues

580 | APPENDIXM ANIMATION AND EASING EFFECTS

(continued)

toggle (
[duration]
[, easing]

[, function()]

toggle (showOrHide)

ANIMATION OPTIONS
OPTION

duration

easing

queue

specialEasing

step

progress

complete

Toggles each selected element using a preset
animation. The duration is either a time in
milliseconds or a time preset: "slow", "normal", or
"fast".

The easing can be either default easings "linear"
or "swing", or any easing documented below,
assuming you have installed the requisite additional
easings as part of jQuery Ul.

The optional callback function is executed when
the animation has completed. this refers to the
element.

Toggles each element using the boolean
showOrHide argument to explicitly determine if an
element should be shown or hidden.

DESCRIPTION

Any one of "slow", "normal", "fast", or the time
specified in milliseconds (ms).

The name of the easing effect that you want to
use (plugin required). There are two built-in values,
"linear" and "swing".

Setting this to false makes the animation skip the
queue and begin running immediately.

A map of one or more CSS properties that are
already defined in the css (or properties) argument,
which are each mapped to the easing that should
be used to animate that particular property.

A function that is called for each animated property
of each animated element. This function provides an
opportunity to modify the Tween object.

A function to be called after each step of the
animation, only once per animated element,
regardless of how many properties are animated.

The function provides the following
arguments: animation, progress, and
remainingMilliseconds.

A function that is executed when the animation
completes.

jQuery

jQuery

TYPE

String,
Number

String

Boolean

Object

Function

Function

Function

Appendix M | 581

start A function that is executed when animation starts. Function
The function provides the following argument:
animation.

done A function that is executed when animation Function
completes and its Promise object is resolved.
The function provides the following arguments:
animation and jumpedToTheEnd.

fail A function that is executed when animation fails to Function
complete and its Promise object is rejected.
The function provides the following arguments:

animation and jumpedToTheEnd

always A function that is executed when the animation Function
completes or stops without completing, its Promise
object is either resolved or rejected.

The function provides the following arguments:
animation and jumpedToTheEnd

EASINGS

linear

swing

easeInQuad

easeOutQuad

easeInOutQuad

easeInCubic

NUANRYANANAN

continues

582 | APPENDIXM ANIMATION AND EASING EFFECTS

(continued)

easeOutCubic

easeInOutCubic

easelInQuart

easeOutQuart

easeInOutQuart

easeInQuint

easeOutQuint

easeInOutQuint

easeInExpo

easeOutExpo

easeInOutExpo

easelnSine

AU (N (NN AN

AppendixM | 583

easeOutSine

easeInOutSine

easeInCirc

easeOutCirc

easeInOutCirc

easeInElastic

easeOutElastic

easeInOutElastic

easeInBack

easeOutBack

D TN

continues

584 | APPENDIXM ANIMATION AND EASING EFFECTS

(continued)

easeInOutBack

easelInBounce

easeOutBounce

easeInOutBounce

NI

EEEEG)S!

OPTION DESCRIPTION

Effects that can be used with Show/Hide/Toggle:

blind Blinds the element away or shows it by blinding it in.
clip Clips the element on or off, vertically or horizontally.
drop Drops the element away or shows it by dropping it in.
explode Explodes the element into multiple pieces.

fold Folds the element like a piece of paper.

puff Scale and fade out animations create the puff effect.
slide Slides the element out of the viewport.

scale Shrinks or grows an element by a percentage factor.
size Resizes an element to a specified width and height.
pulsate Pulsates the opacity of the element multiple times.

Effects that can be used only as standalones:

bounce Bounces the element vertically or horizontally n-times.
highlight Highlights the background with a defined color.
shake Shakes the element vertically or horizontally n-times.

transfer Transfers the outline of an element to another.

Accordion

METHOD DESCRIPTION RETURN VALUE

SHOWING AND HIDING

METHODS

accordion (options) Makes the selected elements into accordions jQuery
(see "Accordion Options”).

accordion('destroy') Destroys the selected accordion. jQuery

accordion ('disable') Disables the selected accordion. jQuery

accordion ('enable') Enables the selected accordion. jQuery

accordion ('option') Returns an object containing all the options Object
and their values.

accordion ('refresh') Recalculates accordion panels, headers, and jQuery
heights after modifying an accordion.

accordion ('widget') Returns a jQuery object that contains the jQuery

accordion.

586 | APPENDIXN ACCORDION

ACCORDION OPTIONS
OPTION

active

animate

collapsible

disabled

event

header

heightStyle

DESCRIPTION

Determines which panel is open, if any. If the

value is set to false, all panels are collapsed.

(This requires the collapsible option to be
set true. If the value is set to an integer, it
opens the corresponding panel, offset from
zero.)

Default value: 0

Options for animating the panels. Setting the
value to false disables animation. Setting
the value to a number sets the length of the
animation in milliseconds with the easing
effect. If the value is a string, the string is the
type of easing animation (see Appendix M,
"Effects”). An object can also be provided
with easing and duration properties.

Default value: {}
Whether all the accordion sections can be
closed at once.

Default value: false

Whether the accordion is disabled.

Default value: false

The event used to trigger the accordion.
Default value: click

Selector referencing the element to use for
the header element for each content panel.
Default value: "> 1i > :first-child, s

:not (11) :even"

Determines how the height of each panel is
calculated.

"auto"—The height of each panel will be the

height of the tallest panel.

"£i11"—The height of each panel is deter-
mined by the accordion’s parent element.

"content"—The height of each panel is

determined by the content within each panel.

Default value: "auto"

TYPE

Boolean,
Integer

Boolean,
Number,
String, Object

Boolean

Boolean

String

Selector,
Element,
jQuery

String

Appendix N | 587

icons

ACCORDION EVENTS

activate

beforeActivate

create

Icons to use for headers.
Default value:
"header"
"ui-icon-triangle-1-e",
"activeHeader"

"ui-icon-triangle-1-g"

Triggered once a panel is activated (after the
animation has finished).

Triggered once a panel is opened, before
animation begins. Can be canceled to prevent
a panel from activating.

Triggered when an accordion is created.

ACCORDION Ul OBJECT OPTIONS

The callback functions specified for various accordion events specify a ui object in the second
argument. Following are the properties exposed in the ui object.

OPTION

ui

ui

ui

ui

ui

.header
.newHeader
.newPanel
.0oldHeader
.oldPanel

i .panel

DESCRIPTION

The active header.

The header of the panel about to be activated.
The panel about to be activated.

The header of the panel about to be deactivated.
The panel about to be deactivated.

The active panel.

Object

function
(event, ui)

function
(event, ui)

function
(event, ui)

TYPE

jQuery
jQuery
jQuery
jQuery
jQuery
jQuery

Datepicker

DATEPICKER METHODS
METHOD

datepicker (options)

datepicker ('destroy')

datepicker('dialog', date
[, onSelect] [, settings]
[, pos])

datepicker ('getDate')
datepicker('hide', speed)
datepicker ('isDisabled')
datepicker ('option')

datepicker ('option',
optionName)
datepicker ('option',
optionName, value)

datepicker ('option',
optionObject)

DESCRIPTION

Makes the selected elements into
Datepickers (see “Datepicker
Options”).

Destroys the Datepicker.

Opens a Datepicker in a dialog
box.

Retrieves the current date(s) for a
Datepicker.

Closes a previously open
Datepicker.

Determines whether a Datepicker

field has been disabled.

Returns an object of all options as
key, value pairs.

Returns the specified option.

Sets the specified option to the
specified value.

Sets options using an option
object.

RETURN VALUE

jQuery

jQuery

jQuery

Date

jQuery

Boolea

Object

Mixed

jQuery

jQuery

n

continues

590 | APPENDIX O DATEPICKER

(continued)

datepicker ('setDate', date, Sets the current date(s) for a

endDate)

datepicker ('show')

Datepicker.

Opens a Datepicker.

datepicker ('widget') Returns a jQuery object

DATEPICKER OPTIONS

OPTION

altField

altFormat

appendText

autoSize

beforeShow

beforeShowDay

containing the Datepicker.

DESCRIPTION

The jQuery selector for another field that is to be
updated with the selected date from the Datepicker.
Use the altFormat setting below to change the
format of the date within this field. Leave as blank
for no alternative field.

Default value: '

The dateFormat to be used for the altField
above. This allows one date format to be shown to
the user for selection purposes, whereas a different
format is actually sent behind the scenes.

Default value: '

The text to display after each date field, for
example, to show the required format.

Default value: '

Set to true to automatically resize the input field to
accommodate dates in the current dateFormat.

Default value: false

Can be a function that takes an input field and
current Datepicker instance and returns a settings
(anonymous) object to update the Datepicker with.
It is called just before the Datepicker is displayed.

Default value: null

The function takes a date as a parameter and must
return an array, with [0] equal to true/false
indicating whether this date is selectable, [1] equal
to a CSS class name(s) or ' ' for the default
presentation. It is called for each day in the
Datepicker before it is displayed.

Default value: null

jQuery

jQuery

jQuery

TYPE

String

String

String

Boolean

function
(input,
obj)

function
(date)

Appendix O | 591

buttonImage

buttonImageOnly

buttonText

calculateWeek

changeMonth

changeYear

closeText

constrainInput

currentText

The URL for the pop-up button image. If set,

button text becomes the alt value and is not directly

displayed.

Default value: '

Set to true to place an image after the field to use
as the trigger without it appearing on a button.
Default value: false

The text to display on the trigger button. Use with
showOn equal to 'button' or 'both'.

Default value: .. ."

Performs the week of the year calculation. This
function accepts a Date as a parameter and returns
the number of the corresponding week of the year.
The default implementation uses the ISO 8601
definition of a week: Weeks start on a Monday, and
the first week of the year contains January 4. This
means that up to 3 days from the previous year may
be included in the first week of the current year,

and that up to 3 days from the current year may be
included in the last week of the previous year.

Default value: $.datepicker.iso8601Week
Whether the month should be rendered as a
drop-down instead of as text.

Default value: false

Whether the year should be rendered as a
drop-down instead of as text.

Default is value: false

The text to display for the close link. Use the
showButtonPanel option to display this button.
Default value: 'Done'

true if the input field is constrained to the current
date format.

Default value: true

The text to display for the current day link.

Default value: ' Today'

String

Boolean

String

function ()

Boolean

Boolean

String

Boolean

String

continues

592

| APPENDIX O DATEPICKER

(continued)

dateFormat

dayNames

dayNamesMin

dayNamesShort

defaultDate

duration

firstDay

The format for parsed and displayed dates. For a full
list of the possible formats, see “Format Options.”

Default value: 'mm/dd/yy"

The list of long day names, starting from Sunday, for
use as requested via the dateFormat setting. Day
names also appear as pop-up hints when hovering
over the corresponding column headings.

Default value: ['Sunday', 'Monday',
'Tuesday', 'Wednesday',6 'Thursday',
'Friday', 'Saturday']

The list of minimized day names, starting from
Sunday, for use as column headers within the
Datepicker.

Default value: ['Su', 'Mo', 'Tu', 'We', 'Th',
'Fr! , 1 Sa 1]

The list of abbreviated day names, starting from
Sunday, for use as requested via the dateFormat
setting.

Default value: ['Sun', 'Mon', 'Tue', 'Wed',
"Thu', 'Fri', 'Sat']

Sets the date to display on first opening if the field is
blank. Specifies either an actual date via a Date object,
or relative to today with a number (for example, +7)

or a string of values and periods ('y' for years, 'm"

for months, 'w' for weeks, 'd' for days; for example,
"+1m +7d')or null for today.

Default value: null

Controls the speed at which the Datepicker
appears. It may be a time in milliseconds (ms), a
string representing one of the three predefined
speeds ('slow', 'normal', and 'fast')or '’
for immediately.

Default value: 'normal"

Sets the first day of the week: Sunday is 0, Monday
is 1.

Default value: 0

String

Array

Array

Array

Date,
Number,
String

String,
Number

Integer

Appendix O | 593

gotoCurrent

hideIfNoPrevNext

isRTL

maxDate

minDate

monthNames

monthNamesShort

navigationAs-
DateFormat

If true, the current day link moves to the currently
selected date instead of today.

Default value: false

By default, the previous and next links are disabled
with not applicable; setting this attribute to true
hides them altogether.

Default value: false

true if the current language is drawn from right to

left.

Default value: false

Sets a maximum selectable date via a Date object,
or relative to today with a number (for example, +7)
or a string of values and periods ('y' for years, 'm'
for months, 'w' for weeks, and 'd' for days; for
example, '+1m +1w'), or null for no limit.

Default value: null

Sets a minimum selectable date via a Date object, or
relative to today with a number (for example, +7) or
a string of values and periods ('y' for years, 'm' for
months, 'w' for weeks, 'd' for days; for example,
'-1y -1m'), or null for no limit.

Default value: null
The list of full month names, as used in the month

header on each Datepicker and as requested via the
dateFormat setting.

Default value: ['January', 'February',
'March', 'April', 'May', 'June', 'July’',
'August', 'September', 'October',
'November', 'December']

The list of abbreviated month names, for use as
requested via the dateFormat setting.

Default value: ['Jan', 'Feb', 'Mar', 'Apr',
'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct',
'Nov', 'Dec']

When set to true, the formatDate function is
applied to the prevText, nextText, and
currentText values before display, allowing them
to display the target month names, for example.

Default value: false

Boolean

Boolean

Boolean

Number,
String, Date

Number,
String, Date

Array

Array

Boolean

continues

594 | APPENDIXO DATEPICKER

(continued)

nextText

numberOfMonths

onChangeMonth-
Year

onClose

onSelect

prevText

select-
OtherMonths

The text to display for the next month link.

Default value: 'Next'

Sets how many months to show at once. The value
can be a number, or it can be an array to define the
number of rows and columns to display.

Default value: 1

Allows you to define your own event when the
Datepicker moves to a new month and/or year.

The function receives the date of the first day of the
first displayed month and the Datepicker instance
as parameters. this refers to the associated input

field.

Default value: nul1l

Allows you to define your own event when the

Datepicker is closed, regardless if a date is selected.

The function receives the selected date(s) as a date
or array of dates and the Datepicker instance as

parameters. this refers to the associated input
field.

Default value: null
Allows you to define your own event when the
Datepicker is selected. The function receives the

selected date(s) as text and the Datepicker instance

as parameters. this refers to the associated input
field.

Default value: null

The text to display for the previous month link.

Default value: 'Prev!

Displayed dates in other months shown before or
after the current month are selectable.

Default value: false

String

Number,
Array

function
(year,
month,

inst)

function
(dateText,
inst)

function
(dateText,
inst)

String

Boolean

Appendix O | 595

shortYearCutoff

showAnim

showButtonPanel

showCurrent-
AtPos

showMonth-
AfterYear

showOn

showOptions

Sets the cutoff year for determining the century for a
date (used with dateFormat 'y'). If a numeric value
(0-99) is provided, then this value is used directly.

If a string value is provided, then it is converted to

a number and added to the current year. When the
cutoff year is calculated, any dates entered with a
year value less than or equal to it are considered

to be in the current century, whereas those greater
than it are deemed to be in the previous century.

Default value: '+10"

Sets the name of the animation used to show/hide
the Datepicker. Uses 'show' (the default),
'slideDown', and' fadeIn', or any of the show/
hide jQuery Ul effects.

Default value: 'show'

Whether to display a button pane underneath the
calendar.

Default value: false

When displaying multiple months via the
numberOfMonths option, the showCurrentAtPos

option defines which position to display the current
month in.

Default value: 0

Whether to show the month after the year in the
header.

Default value: false

Has the Datepicker appear automatically when the
field receives focus, 'focus'; appear only when a

button is clicked, 'button’; or appear when either
event takes place, 'both'.

Default value: ' focus'
If using one of the jQuery Ul effects for showAnim,

you can provide additional settings for that
animation via this option.

Default value: {}

String,
Number

String

Boolean

Number

Boolean

String

Options

continues

596 | APPENDIX O DATEPICKER

(continued)

showOtherMonths

showWeek

stepMonths

weekHeader

yearRange

yearSuffix

Whether to display dates in other months
(nonselectable) at the start or end of the current
month. To make these dates selectable use the
selectOtherMonths option.

Default value: false

Displays the week of the year alongside each month.
The column header is specified by the weekHeader
setting. The week number is calculated based on the
first date shown in each row in the Datepicker and
thus may not apply to all days in that row. The
calculateWeek setting allows you to change the
week of the year calculation from the default ISO
8601 implementation.

Default value: false

Sets how many months to move when clicking the
Previous/Next links.

Default value: 1

The column header for the week of the year (see
showWeeks).

Default value: 'wk'

Controls the range of years displayed in the year
drop-down. Sets a range of years relative to the
current year ' -nn:+nn', where n is the number of
years forward or backward; or an arbitrary range of

years 'nnnn:nnnn', where n is the beginning and
ending year.

Default value: 'c-10:c+10"
Additional text to display after the year in the month
headers.

Default value: '

Boolean

Boolean

Number

String

String

String

AppendixO | 597

DATEPICKER UTILITIES

METHOD

$.datepicker
.formatDate (

format,

date,

options
)

$.datepicker
.1s08601Week (date)

$.datepicker
.noWeekends

$.datepicker
.parseDate (

format,
value,
options

)

$.datepicker

.setDefaults (options)

DESCRIPTION

Formats a date into a string value with a
specified format. For the format

argument, see “Format Options.” The
optional options argument can be provided
with an object literal of settings that include
the dayNamesShort, dayNames,
monthNamesShort, or monthNames options.

Determines the week of the year for a given
date: 1 to 53.

Used to set the beforeShowDay function
with a predefined function that excludes
weekends.

Extracts a date from a string value with a
specified format. For the format option, see
“Format Options.” The optional options
argument can be provided with an object
literal that includes the shortYearCutoff,
dayNamesShort, dayNames,
monthNamesShort, or monthNames options.

Changes the default settings for all
Datepickers. For the options argument,
see "Datepicker Options.”

FORMAT OPTIONS FOR $.datepicker.formatDate ()

OPTION

d

dd

o

[e]e]

D

DD

DESCRIPTION

Day of the month with no leading zero

Day of the month with leading zero
Day of the year (no leading zeros)
Day of the year (three digit)

Day name short

Day name long

RETURN
VALUE

String

Number

Function

Date

Datepicker

continues

598 | APPENDIX O DATEPICKER

(continued)

m Month of the year with no leading zero

mm Month of the year with leading zero

M Month name short

MM Month name long

y Two-digit year

vy Four-digit year

@ UNIX timestamp (seconds elapsed since
01/01/1970)
Literal text

" Single quote

Anything else Literal text

ATOM yy-mm-dd (same as RFC 3339/ISO 8601)

COOKIE D, dd Myy

ISO_8601 yy-mm-dd

RFC_822 D,dMy

RFC_850 DD, dd-M-y

RFC_1036 D,dMy

RFC 1123 D,dMyy

RFC_2822 D, dMyy

RSS D,dMy

TICKS !

TIMESTAMP @ (UNIX timestamp; seconds elapsed since
01/01/1970)

W3C yy-mm-dd (same as ISO 8601)

Dialog

DIALOG METHODS
METHOD

dialog(options)

dialog('close')
dialog ('destroy')
dialog('isOpen')

dialog ('moveToTop"')

dialog('open')

dialog('option',
optionName)

dialog ('option',
optionName, value)

dialog ('option!')

dialog('option',
optionObject)

dialog ('widget')

DESCRIPTION

Makes the selected elements into
dialog boxes.

Closes the dialog.
Completely removes the dialog.
Determines if the dialog is open.

Moves the specified dialog on top of
the dialogs stack.

Opens the dialog.

Returns the value of the specified option.

Sets the specified option to the
specified value.

Returns an object of options in key,
value pairs.

Sets the specified options as an object
of key, value pairs.

Returns a jQuery object containing the
dialog.

RETURN VALUE

jQuery

jQuery
jQuery
Boolean

jQuery

jQuery

Mixed

jQuery

Object

jQuery

jQuery

600 | APPENDIXP DIALOG

DIALOG OPTIONS
OPTION

appendTo

autoOpen

buttons

closeOnEscape

closeText

dialogClass

draggable

height

DESCRIPTION

What element the dialog should be
appended to.

Default value: 'body"

When set to true, the dialog opens
automatically when the dialog is called.
If set to false, it stays hidden until
dialog ('open') is called on it.

Default value: true

Specifies which buttons should display
on the dialog. The property key is the
text of the button. The value is the
callback function for when the button
is clicked. The context of the callback is
the dialog element; if you need access

to the button, it is available as the target

of the event object.

Default value: {}

Specifies whether the dialog should

close when the user presses the [Escape]

key.

Default value: true

Specifies the text for the close button.
Default value: 'close

The specified class name(s) will be
added to the dialog, for additional
styling.

Default value: '

When set to true, the resulting dialog

will be draggable. If false, the dialog
will not be draggable.

Default value: true

The height of the dialog, in pixels.

Default value: 200

TYPE

Selector

Boolean

Object, Array

Boolean

String

String

Boolean

Number,
String

Appendix P | 601

hide Whether and how to animate the closing Boolean,
of a dialog. Number,
If a boolean value is provided, false String, Object

indicates no animation, and the dialog
closes immediately. If true is provided,
the dialog fades out with the default
duration and default easing.

If a number is provided, it indicates how
long the fade animation should take
place with the default easing.

If a string is provided, it indicates what
animation or Ul effect to use. For
example, 'slideUp' or 'fold'. This
animation will be applied with default
duration and default easing.

If an object is provided, you may specify
the following properties: effect,

delay, duration, and easing.
Default value: null

maxHeight The maximum height to which the dialog ~ Number
can be resized, in pixels.
Default value: false

maxWidth The maximum width to which the dialog Number
can be resized, in pixels.
Default value: false

minHeight The minimum height to which the dialog Number
can be resized, in pixels.
Default value: 150

minWidth The minimum width to which the dialog Number
can be resized, in pixels.
Default value: 150

modal When modal is set to true, the dialog will Boolean
have modal behavior; other items on the
page will be disabled (that is, cannot be
interacted with). Modal dialogs create an
overlay below the dialog but above other
page elements. Custom style values for the
overlay (for example, changing its color or

opacity) can be set by overriding the styles
for the ui-widget-overlay class.

Default value: false

continues

602

| APPENDIXP DIALOG

(continued)

position

resizable

show

Specifies where the dialog should be
displayed.

If an object is specified, it uses the
jQuery Ul Position Utility (http://api
.jqueryui.com/position/).

If a string is specified, the possible val-
ues are: 'center', 'left', 'right',
'top', and 'bottom'.

If an array is specified, it should contain
a coordinate pair (in pixel offset from
the top, left of viewport) or the possible
string values (for example, ['right',
"top'] for top-right corner).

Default value: {my: 'center', at:
'center', of: 'window'}

Specifies whether the dialog will be
resizable.

Default value: true

Whether and how to animate the
opening of a dialog.

If a boolean value is provided, false
indicates no animation, and the dialog
closes immediately. If true is provided,
the dialog fades out with the default
duration and default easing.

If a number is provided, it indicates how
long the fade animation should take
place with the default easing.

If a string is provided, it indicates what
animation or Ul effect to use,. for
example, 'slideUp' or 'fold'. This
animation will be applied with default
duration and default easing.

If an object is provided, you may specify
the following properties: ef fect,
delay, duration, and easing.

Default value: null

Object,
String, Array

Boolean

Boolean,
Number,
String, Object

http://api.jqueryui.com/position
http://api.jqueryui.com/position

Appendix P | 603

title Specifies the title of the dialog. The title String
can also be specified by the title
attribute on the dialog source element.

Default value: null
width The width of the dialog, in pixels. Number
Default value: 300

DIALOG EVENTS

OPTION DESCRIPTION VALUE
beforeClose A function that's executed before a function
bind ('dialogbeforeclose') dialog is closed. (event, ui)

on('dialogbeforeclose')

close A function that's executed when a function
bind('dialogclose') dialog is closed. (event, ui)

on('dialogclose')

create A function that's executed when a function
bind('dialogcreate') dialog is created. (event, ui)
on('dialogcreate')

drag A function that’s executed while a dialog function
bind('dialogdrag') is dragged. (event, ui)

on('dialogdrag')

dragStart A function that's executed when a function
bind ('dialogdragstart') dialog is at the beginning of a dialog (event, ui)
on('dialogdragstart!') drag.

dragStop A function that's executed when a function
bind ('dialogdragstop') dialog drag ends. (event, ui)
on('dialogdragstop')

focus A function that's executed at the dialog function
bind('dialogfocus') focus event. The function gets passed (event, ui)

two arguments in accordance with the
triggerHandler interface. The data
passed is the focused dialog options
object.

on('dialogfocus')

continues

604 | APPENDIXP DIALOG

(continued)
open
bind('dialogopen')
on('dialogopen')
resize
bind('dialogresize')
on('dialogresize!')
resizeStart
bind('dialogresizestart')

on('dialogresizestart')
resizeStop
bind('dialogresizestop')
on('dialogresizestop')
Ul OBJECT

OPTION

ui.position

ui.offset

ui.originalPosition

ui.originalSize

ui.size

A function that’s executed when a
dialog is opened.

A function that's executed during a
dialog resize.

A function that’s executed when a
dialog resize begins.

A function that's executed when a
dialog resize ends.

DESCRIPTION

The current CSS position of the dialog.

The current offset position of the dialog.

The CSS position of the dialog prior to
being resized.

The size of the dialog prior to being
resized.

The current size of the dialog.

function

(event, ui)

function

(event, ui)

function

(event, ui)

function

(event, ui)

TYPE

Object
Object
Object

Object

Object

Tabs

TAB METHODS
METHOD

tabs (options)

tabs ('destroy')

tabs ('disable')

tabs ('disable', index)

tabs ('enable')

tabs ('enable', index)

tabs ('load', index)

tabs ('option')

tabs ('option',
optionName, value)

DESCRIPTION

Makes the selected elements into tabs
(see "Tab Options”).

Removes the tabs’ functionality
completely from the document.

Disables all tabs.

Disables a tab by offset index. To
disable multiple tabs, use the option
method to set the disabled option with
an Array of tab indices.

Enables all tabs.

Enables a tab by offset index. To
enable multiple tabs, use the option
method to set the disabled option with
an Array of tab indices you wish to
remain disabled.

Loads the content of a tab provided via
AJAX programmatically.

Returns an object of key, value pairs
for every set option.

Sets the specified option to the
specified value.

RETURN VALUE

jQuery

jQuery

jQuery
jQuery

jQuery
jQuery

jQuery

Object

jQuery

continues

606 | APPENDIXQ TABS

(continued)

tabs ('refresh')

tabs ('widget ")

TAB OPTIONS
OPTION

active

collapsible

disabled

event

Refreshes the positions of tabs that
were added or removed from the
DOM.

Returns a jQuery object of the tabs
container.

DESCRIPTION

Determines which tab panel should be
open.

If a boolean value is provided, setting
to false collapses all panels.

If an integer is provided, setting to a
zero-based offset representing the tab
will open that panel. A negative value
selects the active panel counting from
the last tab instead of the beginning.

Default value: 0

When the value is true, the active
panel can be closed (meaning it is
possible to have no active panel at all).

Default value: false

If a boolean is provided, it indicates
whether all tabs are enabled or
disabled.

If an Array is provided, it contains the
position of each tab (zero-based) that
should be disabled upon initialization.

Default value: false

The type of event to be used for
selecting a tab. For example, to
activate a tab when the user’s
mouse enters the tab, use the value

'mouseover'.

Default value: 'click!

jQuery

jQuery

IN(BE

Boolean,
Integer

Boolean

Boolean,
Array

String

Appendix Q

607

heightStyle

hide

Controls how the height of each String
tab and each panel are applied. The
options are:

rauto': All tab panels will be set the
height of the tallest panel.

"£111': Expands the tab widget's
height to fill the height of the parent
element.

'content ': Each tab panel will be only
as tall as the content it contains.

Default value: 'content

Whether and how to animate the Boolean,
closing of a tab panel. Number,
If a boolean value is provided, false String, Object

indicates no animation and the panel
closes immediately. If true is provided,
the panel fades out with the default
duration and default easing.

If a number is provided, it indicates
how long the fade animation should
take place with the default easing.

If a string is provided, it indicates
what animation or Ul effect to use, for
example, 'slideUp' or 'fold'. This
animation will be applied with default
duration and default easing.

If an object is provided, you may
specify the following properties:
effect, delay, duration, and
easing.

Default value: null

continues

608

| APPENDIXQ TABS

(continued)

show

TAB EVENTS
OPTION

activate

bind('tabsactivate')

on ('tabsactivate')
beforeActivate
bind('tabsbeforeactivate')

on('tabsbeforeactivate')

beforeLoad

bind ('tabsbeforeload')

on('tabsbeforeload')

create

bind ('tabscreate')

on('tabscreate!')

load

bind('tabsload"')

on('tabsload')

Whether and how to animate the
opening of a tab panel.

If a boolean value is provided, false
indicates no animation , and the panel
closes immediately. If true is provided,
the panel fades out with the default
duration and default easing.

If a number is provided, it indicates
how long the fade animation should
take place with the default easing.

If a string is provided, it indicates
what animation or Ul effect to use, for
example, 'slideUp' or 'fold'. This
animation will be applied with default
duration and default easing.

If an object is provided, you may
specify the following properties:
effect,delay,duration,and
easing.

Default value: null

DESCRIPTION

A function executed when a tab has
been activated.

A function executed before a tab has
been activated.

A function executed before a tab is
loaded.

A function executed when tabs are
created.

A function executed when a tab has
been loaded.

Boolean,
Number,
String, Object

VALUE

function

(event, ui)

function

(event, ui)

function

(event, ui)

function

(event, ui)

function

(event, ui)

AppendixQ | 609

Ul OBJECT
OPTION

ui.ajaxSettings

ui.jgXHR

ui.newPanel

ui.newTab

ui.oldPanel

ui.oldTab

ui.panel

ui.tab

TAB STYLING
CLASS
ui-tabs-nav

ui-tabs-selected

ui-tabs-unselect

ui-tabs-deselectable

ui-tabs-disabled

ui-tabs-panel

ui-tabs-hide

ELEMENT

DESCRIPTION TYPE

The settings used by jQuery.ajax to Object
request content.

The jQuery AJAX request object thatis jQuery AJAX
requesting content.

The panel that was just activated or jQuery
about to be activated.

The tab that was just activated or jQuery
about to be activated.

The panel that was just deactivated or jQuery
about to be deactivated.

The tab that was just deactivated or jQuery
about to be deactivated.

The panel being loaded or the active jQuery
panel.

The tab being loaded or the active tab. jQuery

DESCRIPTION
This is the whole menu. Use this as a base class.

This is the current tab. It's very important to create a
strong visual indication of which tab is the current one.

This is the class for all the tabs that are not selected but
selectable.

This is the class for all tabs that can be deselected.

For when a tab is disabled. Highly recommended to
appear somewhat transparent or disabled. This is often
done by graying the color.

These are the boxes that will have their visibility toggled.

This class hides the boxes (perhaps the most important
class).

DESCRIPTION

 elements are there to facilitate tricks like
rounded corners and resizable backgrounds.

Resizable

RESIZABLE METHODS
METHOD

resizable (options)

resizable ('destroy')
resizable ('disable')
resizable ('enable')

resizable ('option')

resizable ('option',
optionName)

resizable ('option',
optionName, value)

RESIZABLE OPTIONS
OPTION

alsoResize

animate

DESCRIPTION

Makes the selected elements into resizable
elements (see “Resizable Options”).

Completely removes resizable functionality.
Temporarily disables resizable functionality.
Enables resizable functionality.

Returns an object of all currently set options as
an object of key, value pairs.

Returns the specified option’s value.

Sets the specified option to the specified
value.

DESCRIPTION

One or more elements that should be resizing
simultaneously with the resizable element.

Default value: false

Animates to the final size after resizing.

Default value: false

RETURN VALUE

jQuery

jQuery
jQuery
jQuery
Object

Mixed

jQuery

TYPE

Selector,
jQuery,
Element

Boolean

continues

612 | APPENDIXR RESIZABLE

(continued)

animateDuration

animateEasing

aspectRatio

autoHide

cancel

containment

delay

disabled

distance

Duration time for animating. Accepts the time
in milliseconds (ms), or one of 'slow’,
'normal', or 'fast'

Default value: 'slow’

Easing effect for animation.

Default value: 'swing'

When set to true, resizing is constrained by
the original aspect ratio. If an alternative ratio
is wanted, you can submit a number and then
the aspect ratio will be constrained by height\
width.

Default value: false

When set to true, automatically hides the
handles except when the mouse hovers over
the element.

Default value: false

Prevents resizing if you start on elements
matching the selector.

Default value: 'input, textarea, button,
select, option'

Constrains resizing to within the bounds of the
specified element. This can be a DOM
element, 'parent', 'document ', or a
selector.

Default value: false
Time in milliseconds (ms) to define when

dragging should start. It helps prevent
unwanted drags when clicking an element.

Default value: 0

Disables the resizable if the value is set to
true.

Default value: false

Tolerance in pixels, for when resizing should
start. If specified, resizing will not start until

after the mouse is moved beyond the
specified distance.

Default value: 1

Number,
String

String

Boolean,
Number

Boolean

Selector

Boolean,
Element,
Selector,
String

Number

Boolean

Number

AppendixR | 613

ghost

grid

handles

helper

maxHeight

maxwWidth

minHeight

minWidth

When set to true, a substitute element is
displayed while resizing.

Default value: false

Snaps the resizing element to a grid size, every
x and y pixel.

Default value: false

Customizes handles used for resizing.

If an object is specified the potential keys are
n, e, s, w, ne, se, sw, nw, and all.
Values for these keys should reference an
element, selection, or jQuery object that
should be used to represent that particular
handle.

If a string is provided, the string is a comma
separated list of the following 'n, e, s, w,
ne, se, sw, nw, and all'

Default value: 'e, s, se'
This is the CSS class that will be added to a
proxy element to outline the resize during the

drag of the resize handle. When the resize is
complete, the original element is sized.

Default value: false

This is the maximum height the resizable
should be allowed to resize to.

Default value: nul1

This is the maximum width the resizable
should be allowed to resize to.

Default value: null

This is the minimum height the resizable
should be allowed to resize to.

Default value: 10

This is the minimum width the resizable should
be allowed to resize to.

Default value: 10

Boolean

Array[x, y]

String, Object

Boolean,
String

Number

Number

Number

Number

614 | APPENDIXR RESIZABLE

RESIZABLE EVENTS

OPTION DESCRIPTION VALUE
create A function executed when a resizable element function
bind ('resizecreate') is created. (event, ui)

on('resizecreate')

resize This function is called during the resize, on the function
bind ('resize') drag of any resize handle. (event, ui)
on('resize')

start This function is executed when a resize starts. function
bind('resizestart') (event, ui)
on('resizestart')

stop This function is called at the end of a resize function
bind ('resizestop') operation. (event, ui)

on('resizestop')

Ul OBJECT

OPTION DESCRIPTION TYPE

ui.element A jQuery object representing the resizable jQuery
element.

ui.helper A jQuery object representing the helper that's jQuery
being resized.

ui.originalElement A jQuery object representing the original jQuery
element before it was wrapped with the
resizable plugin.

ui.originalPosition An object representing the original position Object
with the keys 1eft and top.

ui.originalSize An object containing the original width and Object
height, before an element was resized.

ui.position An object containing the current position with Object
the keys left and top.

ui.size An object containing the current size of the Object

resizable element with the keys width and
height.

Slider

Slider Methods
Method

slider (options)

slider ('destroy!')
slider('disable!')
slider ('enable')

slider ('option')

slider ('option',
optionName)

slider ('option',
optionName, value)

slider ('option',
optionObject)

slider ('value')

slider ('value',
value)

slider('values')

slider('values',
index)

Description

Makes the selected elements into slider
elements (see “Slider Options”).

Completely removes the sliding functionality.
Disables the slider.
Enables the slider.

Returns an object of key, value pairs
representing all options presently set for that
instance of the slider plugin.

Returns the value of the specified option.

Sets the value of the specified option to the
specified value.

Sets multiple options using an object of key,
value pairs.

Returns the value of the slider.

Sets the value of the slider.

Returns all values for all handles.

Returns the value for the specified handle.

Return Value

jQuery

jQuery
jQuery
jQuery
Object

Mixed

jQuery

jQuery

Number

jQuery

Array

Number

continues

616

| APPENDIXS SLIDER

(continued)

slider ('values',
index, value)

slider('values',
valuesArray)

slider ('widget")
Slider Options
Option

animate

disabled

max

min

orientation

range

step

Sets the value of the specified handle.

Sets the values of the specified handles using an
array.

Returns a jQuery object containing the slider.

Description
Whether slide handles smoothly when the user
clicks outside the handle on the bar.

Default value: false

Disables the slider if set to true.

Default value: false

The maximum value of the slider. Useful for
tracking values via callback and to set steps.

Default value: 100

The minimum value of the slider.

Default value: 0

Determines whether the slider is moved
horizontally or vertically. The possible values are
horizontal and vertical.

Default value: horizontal

If a boolean is provided and set to true, the
slider will detect if you have two handles and
creates a stylable range element between these
two. You now also have access to ui.range in
your callbacks to get the amount of the range.

If a string is provided the potential values are
min and max.

Default value: false
Determines the interval between each step the

slider takes between min and mx. The full range
should be easily divided by the step.

Default value: 1

jQuery

jQuery

jQuery

Type

Boolean

Boolean

Number

Number

String

Boolean,
String

Number

AppendixS | 617

value

values

SLIDER EVENTS
OPTION

change

create

slide

start

stop

Ul OBJECT
OPTION

ui.handle

ui.value

ui.values

The value of the slider. If multiple handles are
present, this value will be used for the first
handle.

Default value: 0

If multiple handles are desired, an array
containing the value for each handle can be
provided within this option.

Default value: null

DESCRIPTION

A function that is executed when the slider’s
value or values change.

A function executed when a slider is created.

A function executed upon every mouse move
while a slider is being dragged.

A function that gets called when the user starts
sliding.

A function that gets called when the user stops
sliding.

DESCRIPTION

A jQuery object representing the handle being
moved.

The value that the handle will move to if the
event is not canceled.

An array of the current values of a multihandled
slider.

Number

Array

VALUE

function

(event, ui)

function

(event, ui)

function

(event, ui)

function

(event, ui)

function

(event, ui)

TYPE

jQuery

Number

Array

Tablesorter

TABLESORTER OPTIONS
OPTION

cancelSelection

cssAsc

cssDesc

cssHeader

debug

DESCRIPTION

Determines whether text in table header <th> elements

should be selectable.

Default value: true

The class name to apply to a table header <th> that
represents a column sorted ascending.

Default value: 'headerSortUp'

The class name to apply to a table header <th> that
represents a column sorted descending.

Default value: 'headerSortDown'

The class name applied to a table header <th>
representing a column in an unsorted state.

Default value: 'header:

Determines whether additional debugging information
should be displayed, which is useful for development.

Default value: false

TYPE

Boolean

String

String

String

Boolean

continues

620

| APPENDIXT TABLESORTER

(continued)

headers

sortForce

sortList

An object representing options that can be provided
for each column. The object is defined counting each
column offset from zero. The only option allowed at the
time of this writing is indicating whether a column is
sortable.

An example object that disables sorting on the first
column:

headers : ({
0 = {
sorter : false
}
}

Default value: nul1l

This option is used to assist with multicolumn sorting.
For example, it can assist with sorting by name after
sorting by other criteria such as by date or account
balance or other criteria. The value used to specify this

option follows the same pattern as the sortList option.

Default value: null

This option defines an initial sorting for columns. Each
column is defined in an array in order from the column
sorted first to the column sorted last. For example:

sortList : [
[0, 0l,
[2, 1]

]

This setting sorts first by the first column, ascending. The
first column is offset zero with another zero for
ascending [0, 0]. Then the third column is sorted
descending. The third column is offset two followed by
one for descending [2, 1].

Default value: null

Object

Array

Array

Appendix T | 621

sortMultiSortKey This option indicates which keyboard modifier to use to String
select more than one column for sorting.

Default value: 'shiftKey"

textExtraction Defines which method to use to grab text from a table String,
cell for sorting. String options include 'simple' and Function
'complex'. 'simple' does not take into account any
markup that might be present preceding table cell text.
'complex' takes markup into account but can be slow
when dealing with large data sets.
An additional option is to write your own function for
text extraction. This function has a signature like so:

function (node)

{

return $ (node) .text () ;

}

Keep in mind that using jQuery over JavaScript directly
will impact performance on a large table.

Default value: 'simple’
widthFixed Determines whether fixed widths should be used for Boolean
columns.

Note this can also be accomplished with the CSS
table-layout: fixed; declaration applied to the
<tables> element.

Default value: false

MediaElement

MEDIAELEMENT OPTIONS
OPTION

alwaysShowControls

alwaysShowHours

AndroidUseNativeControls

audiowidth

audioHeight

autosizeProgress

DESCRIPTION

Determines whether controls are hidden
when the mouse cursor leaves a video.
Default value: false

Determines whether the hour marker

is present in video time, for example,

HH:MM:SS. This option shows the
HH: portion.

Default value: false

Determines whether native controls are
used on Android devices.

Default value: false

If a value is provided, it overrides the
width of the <audio> element.
Default value: -1

If a value is provided, it overrides the
height of the <audio> element.
Default value: -1

Determines whether the size of the
progress bar should be automatically

calculated based on the size of other
elements.

Default value: true

TYPE

Boolean

Boolean

Boolean

Integer

Integer

Boolean

continues

624 | APPENDIXU MEDIAELEMENT

(continued)

autoRewind

clickToPlayPause

defaultAudioHeight

defaultAudioWidth

defaultSeekBackwardInterval

defaultSeekForwardInterval

defaultvVideoHeight

Returns to the beginning when media
ends.

Default value: true

Determines whether clicking a <video>
element toggles play/pause.

Default value: true

The default height in pixels of an <audio>

player. This value is used if no height is
specified on the element.

Default value: 30
The default width in pixels of an <audio>

player. This value is used if no width is
specified on the element.

Default value: 400

The default amount of time to move
backward when a key is pressed.
The default value is:

function (media)

{

return (media.duration *
0.5);

}

The default amount of time to move
forward when a key is pressed.

The default value is:
function (media)

{

return (media.duration *
0.5);

}

The default height in pixels of a <video>
player. This value is used if no height is
specified on the element.

Default value: 270

Boolean

Boolean

Integer

Integer

Function

Function

Integer

AppendixU | 625

defaultvideoWidth The default width in pixels of a <video> Integer
player. This value is used if no width is
specified on the element.

Default value: 480

enableAutosize Enables Flash and Silverlight players to Boolean
resize to content size.

Default value: true

enableKeyboard Enables and disables keyboard support. Boolean

Default value: true

features The order of controls or plugins on the Array
control bar.

Default value: ['playpause’,
'current', 'progress',
'duration', 'tracks', 'volume',
'fullscreen']

framesPerSecond This option is used when the Integer
showTimecodeFrameCount option is set
to true. It indicates the number of frames
per second.

Default value: 25

hidevideoControlsOnLoad Determines whether video controls should Boolean
hide when a video loads.
Default value: false

iPadUseNativeControls Determines whether to use native Boolean
controls on an iPad.
Default value: false

iPhoneUseNativeControls Determines whether to use native Boolean
controls on an iPhone.

Default value: false

keyActions An array of keyboard commands. Array

The default value is an array that
initializes the following key actions: space
key to play or pause the media; up and
down arrow keys to increase or decrease
the volume; left and right arrows to

seek backward or forward; F to enter or
exit full-screen model and M to mute or
unmute the volume.

continues

626 | APPENDIXU MEDIAELEMENT

(continued)

loop

pauseOtherPlayers

poster

showPosterWhenEnded

showTimecodeFrameCount

startVolume

videoWidth

videoHeight

Determines whether to loop an audio
track.

Default value: false
Determines whether to pause other

players on the page when the player
starts.

Default value: true

URL to a poster image.

Default value: '

Determines whether to show the poster
when the video has ended.

Default value: false

Show the frame rate in the time code.
FF:HH:MM:SS. This option adds the

FF: portion. The framesPerSecond
option determines the value.

Default value: false

The volume level when the player starts.

Default value: 0.8

If a value is provided, it overrides the
width of the <video> element.
Default value: -1

If a value is provided, it overrides the
height of the <video> element.

Default value: -1

Boolean

Boolean

String

Boolean

Boolean

Float

Integer

Integer

INDEX

{ 1 (curly braces), 22-23
$ object, 29
; (semicolon), 22-23

<a> element, 32
Access-Control-Allow-Methods HTTP header,
213-219
accessibility, documents, 13
accordion() method, 375
Accordion Ul
building, 373-375
default pane, 376-379
event changes, 379-380
header elements, 380-382
methods, showing/hiding, 585
options, 586-587
ui object, options, 587
add() method, 59-60
addClass() method, 101
after() method, 103, 111-112
AIR, 177
AJAX (Asynchronous JavaScript and XML),
177-178
event methods, 210-211
events, 205-209
requests and, 211-213
HTML snippets, 195-200

REST requests, sending, 213-219
server requests, 178
data transport formats, 180-181
GET method, 179-180
GET request, 181-194
POST method, 179-180
RESTful requests, 180
ajax() method, 205-209
ajaxError() method, 211
ajaxSend() method, 211
ajaxSetup() method, 205-209
ajaxSuccess() method, 211
Allman Style in code, 21
animate() method, 224, 237-241
animation
callback functions, 224
custom, 237-241
dialogs, 412-413
easings, 223-224, 581-584
effects, 584
fades, 224
fading elements, 234-237
methods, 573-580
options, 241-242, 580-581
slides, 224
sliding down, 231
sliding in, 231
sliding up, 231
swings, 224
Tabs plugin, 428-429

627

APIs (application programming interfaces) — content manipulation

APIs (application programming interfaces)

drag and drop, 279-280

Plugin, 243-247

Selectors, 28-33
append() method, 103, 108-111
appendChild() method, 248
appending content, 108-111
applyEventHandler method, 80
applyEvents() method, 316-317
arrays, 102-103

enumeration, 135-139

filtering, 147-151

inArray() method, 158-160

makeArray() method, 157-158

mapping, 153-156

merging, 160-162

utility methods, 156-162

values, finding, 158-160
attaching events, 68—69
attr() method, 33, 92-93, 96, 248
attributes

custom, methods and, 525-526

disabled, 41, 94

draggable, 288

methods and, 523-524

removing, 89-96

retrieving, 89-96

selectors, 495-496

setting, 89-96

multiple, 96

audio

download control, 463-464

fallback, 461-462

before() method, 103, 111-112
behavior versus presentation, 10

628

bounce easing, 223-224
browser detection, 25

caching, client side, 14

callback functions, filtering selections, 146147

cascading style sheets. See CSS
case keyword, 20
catch keyword, 20
child filters, selectors, 497-498
children() method, 45, 53
Chrome, 3
classes
class names, 11-12, 97-101
addClass() method, 101
hasClass() method, 101
methods and, 524
removeClass() method, 101
toggleClass() method, 102
pseudo-classes, 165
clearTimeout() method, 454
click() event, <input> element, 229
click() method, 32
click() wrapper method, 64-67
client-side caching, 14
clone() method, 130-133
cloning content, 130-133
collections
of elements, wrapping, 119
slideshows, 443
compression, 14-15
require.js, 24
content manipulation, 102-103
appending, 108-111
cloning, 130-133
elements, replacing, 123-126
HTML
setting, 104-106

contenteditable attribute — Datepicker plugin

setting for multiple items, 106-108
inserting, beside elements, 111-117
methods

after(), 103, 111-112

append(), 103, 108-111

before(), 103, 111-112

clone(), 130-133

empty(), 126-129

htm1(), 103, 104-106

insertAfter(), 103, 112-117

insertBefore(), 103, 112-117

prepend(), 103, 108-111

remove(), 126-129

replaceAl1(), 123-126

replacewith(), 123-126

text(), 103, 104-106

unwrap(), 103, 121-123

wrap(), 103, 117-119

wrapA11(), 103, 119

wrapInner(), 103, 119-121
prepending, 108-111
removing, 108, 126-129
text

setting, 104-106

setting for multiple items, 106-108
wrapping

element collection, 119

element contents, 119-121

elements, individual, 117-119

unwrapping elements, 121-123

contenteditable attribute, 467-469
context, selectors, 494-495
context menus, plugin, 250-265
contextual clicks, 166
control structures, 20-22
switch, 23
conventions, 10
CSS (cascading style sheets), 10-15
JavaScript, 15-25

One True Brace, 21
markup, 10-15
namespacing, 11
variable naming, 24
CSS (cascading style sheets), 10
class names, 11-12
conventions, 10-15
dimensions, 165-172
efficiency, 13-15
id names, 11-12
methods
class names, 543-544
height/width, 544-545
jQuery, 545
positioning, 544
scrolling, 545
outerHeight() method, 165, 171-172
outerwidth() method, 165, 171-172
properties, 163-164
Sizzle and, 4
type selectors, 12
css() method, 163-164
cssQuery package, 28
curly braces, 22-23

data transport, AJAX server requests,
180-181
datepicker() method, 384, 392-395
Datepicker plugin, 383-385
customizing, 385-392
date format, 395
date range, 392-395
format options, 597-598
methods, 589-590
options, 590-597
text localization, 395-396

629

dblclick event — elements

utilities, 597
weekday start, 397
dblclick event, 86
dialog() method, 401-407
Dialog plugin
animation, 412-413
auto-opening, 409-411
dragging, 411-412
dynamic interaction, 411-412
events, 413-414, 603-604
implementation, 399-401
methods, 599
modal dialogs, 407-409
options, 600-603
resizing, 411-412
styling, 401-407
ui object, 604
disabled attribute, 41, 94
<div> element, 4, 73-75
draggable, 324-330
scrollbars and, 269-272
scrolling to event, 272-276
slideshows, 450
document accessibility, 13
document.querySelector(), 28
document.querySelectorA11(), 28
dollar sign ($) object, 29-30
DOM (Document Object Model), 4
appendChild() method, 248
getAttribute() method, 248
drag and drop
API, 279-280
HTMLS
event setup, 289-294
events, 280
file uploads, 294-319
implementation, 279-294
plugins, 286-288
dragbrop method, 288

630

dragend event, 317
dragenter event, 317

draggable() method, 330, 348-353, 370

Draggable and Droppable libraries, 323
draggable attribute, 288
draggable elements, 324-330
drop zones, 331-337
draggable methods, 551-552
events, 556
options, 552-556
Draggable plugin, 324-330
dragleave event, 317
dragover event, 317, 325-330
dragstart() method, 68
dragstart event, 317
drop() method, 68

drop zones for draggable elements, 331-337

droppable() method, 324-330, 370
Droppable plugin, 324-330

$.each() method, 135
each() method, 34, 43-45, 135-141,
146-147
easings (animation), 223-224, 581-584
bounces, 223-224
show() method, 229
Edwards, Dean, 28
effects (animation), options, 584
elements
contenteditable attribute, 467-469
contents, wrapping, 119-121
draggable, 324-330
drop zones, 331-337
hiding, 223-230
inserting content beside, 111-112
replacing, 123-126

else keyword - GET method

showing, 223-230
tabs, 609
wrapping
collection, 119
contents, 119-121
individual, 117-119
unwrapping, 121-123
else keyword, 20
empty() method, 126-129
enumeration
arrays, 135-139
objects, 139-141
eq() method, 45, 52
event handlers
persistent, attaching, 69-75
removing, 75-80
Event object, 517-521
events
AJAX, 205-209
methods, 210-211
requests and, 211-213
attaching, 68—69
custom, 80-86
Dialog plugin, 413-414,
603-604
dragover, 325-330
HTMLS drag and drop, 280
setup, 289-294
live, 69
methods, 509-517
draggable, 556
propagation, 69
resizable, 614
scrolling to, 272-276
slider, 617
Sortable plugin, 565-566
tabs, 608
wrapper methods, 63-64
click(), 64-67

hover(), 67
ready(), 67
exercise answers, 483-491

fadeIn() method, 234-237, 456
fadeOut() method, 234-237, 456
fadeToggle() method, 234-237
fading elements (animation), 234-237
fallback video/audio, plugins, 461-462
file uploads

HTMLS drag and drop,

294-319

XMLHttpRequest object, 313-319
fileRename event, 80
files, storage, 12
filter() method, 143-145
filters, 33-34

arrays, 147-151

methods for, 501-508

selections, 143-145

callback function, 146-147

find() method, 34, 36
Firefox, 4
Flash Player, 462-463
folderUpdate event, 80
for keyword, 20
<form> element, 42
forms

elements, selectors, 498

state, selectors, 498
functions. See methods

get() method, 181
GET method, 178, 179-180

631

GET requests (AJAX) — jQuery

GET requests (AJAX), 181

data, sending, 188-189

JSON formatted data, 189-192

XML formatted data, 182-188
getAttribute() method, 248
getFileSize() method, 316
$.getScript() method, 200-205
grep() method, 147-151, 368
gzip, server side, 14

h.264 video, 462-463
hasClass() method, 101
Hello World, 8-9
hide() method, 223-230
hiding elements, 223-230
hierarchy, selectors, 493
hover() wrapper method, 67
HTML
methods and, 525, 527-531
setting, 104-106
multiple items, 106-108
snippets, AJAX and, 195-200
htm1() method, 103
<htm1> element, 35
HTMLS
drag and drop
event setup, 289-294
events, 280
file uploads, 294-319
implementation, 279-294
plugins, 286-288
fallback video/audio, 461-462
MediaElement plugin, 459
HTTP, Access-Control-Allow-Methods,
213-219
Hunt, Lachlan, 28

632

id names, 11-12
taggers, 11
type selectors, 11-12
if keyword, 20
inArray() method, 158-160, 368
indenting, JavaScript, 19-20
index0f() method, 150, 368
<input> element, 42, 43, 93
click() event, 229
insertAfter() method, 103,
112-117
insertBefore() method, 103,
112-117
is() method, 34, 43—-44
iteration, 135-136
selections, 141-143
in selections, 43-45

JavaScript
Allman Style, 21
control structures, 20-22
conventions, 15-25
curly braces, 22-23
external documents, 25
indenting, 19-20
line length, 19-20
loading, dynamically, 200-205
namespaces, 24-25
nonintrusive, 10
One True Brace, 21
semicolons, 22-23
JQuery
benefits, 5-7
developers, 7

JSON (JavaScript Object Notation) — methods

downloading, 7
Hello World, 8-9
history, 3—4
installation, 7-9
overview, 3—4
JSON (JavaScript Object Notation), 180-181
GET requests (AJAX), 189-192

keywords
for, 20
case, 20
catch, 20
else, 20
if, 20
switch, 20
this, 43, 142, 246
try, 20
while, 20

<1i> element, 94
sortable, 339-347
libraries
Draggable and Droppable, 323
Ul library, 323-234
Accordion Ul, 373-382
Datepicker plugin, 383-397
Dialog plugin, 399-414
Draggable and Droppable libraries,
323
Draggable plugin, 324-330
Droppable plugin, 324-330
Selectable plugin, 361-372
Sortable plugin, 339, 347-358
line length, JavaScript, 19-20

lists, sortable, 339-347
state, 354-358

live events, 69

load() method, 195-199

makeArray() method, 157-158
map() method, 151-156
mapping
arrays, 153-156
selections, 151-153
marching ants selections, 366
markup
compression, 14
conventions, 10-15
efficiency, 13-15
organization, 14
MediaElement plugin, 459
configuration, 459-461
controls, 463
download control, 463-464
options, 623-626
$.merge() method, 160-162
merging arrays, 160-162
methods
accordion(), 375
Accordion U, 585
add(), 59-60
addClass(), 101
after(), 103, 111112
AJAX
data types, 542
options, 535-542
requests, 533-535
ajax(), 205-209
ajaxError(), 211
ajaxSend(), 211

633

methods — methods

ajaxSetup(), 205-209
ajaxSuccess(), 211
animate(), 224, 237-241
append(), 103, 108-111
applyEventHandler, 80
applyEvents(), 316-317
attr(), 33, 92-93, 96, 248
attributes and, 523-524

custom, 526
before(), 103, 111-112
children(), 45, 53
class names and, 524
clearTimeout(), 454
click(), 32
clone(), 130-133
CSS, 543-545
css(), 163-164
datepicker(), 384, 392-395
Datepicker plugin, 589-590
dialog(), 401-407
Dialog plugin, 599
dragDrop, 288
draggable, 551-552

events, 556

options, 552-556
draggable(), 330, 348-353, 370
dragstart(), 68
drop(), 68
droppable(), 324-330, 370
$.each(), 135
each(), 34, 43-45, 135-141, 146-147
empty(), 126-129
eq(), 45,52
events, 509-517

AJAX, 210-211
fadeIn(), 234-237, 456
fadeOut(), 234-237, 456
fadeToggle(), 234-237

634

filter(), 143-145

for filtering, 501-508

find(), 34, 36

GET, 178, 179-180

get(), 181

getFileSize(), 316
$.getScript(), 200-205
grep(), 147-151, 368
hasClass(), 101

hide(), 223-230

HTML, 527-531

htm1(), 103, 104-106
HTML and, 525

inArray(), 158-160, 368
index0f(), 150, 368
insertAfter(), 103, 112-117
insertBefore(), 103, 112-117
is(), 34,43-44

Toad(), 195-199
makeArray(), 157-158

map(), 151-156

$.merge(), 160-162

next(), 45, 53, 198
nextA11(), 45

not(), 45, 56, 59-60

off(), 68, 75-80

on(), 68

outerHeight(), 165, 171-172
outerWidth(), 165, 171-172
parent(), 45

parents(), 45

POST, 178, 179-180
prepend(), 103, 108-111
prev(), 45, 52

prevAl1(), 45
preventDefault(), 41
querySelectorA11(), 4
ready(), 40, 52

modal dialogs — persistent event handlers

remove(), 126-129
removeAttr(), 95
removeClass(), 52, 101, 368
replaceAl1(), 123-126
replaceWith(), 123-126
resizable and, 611
scrollLeft(), 276277
scrol1Top(), 276277
select(), 246-247
selectable(), 361-372
selectFile(), 367-368
for selecting, 501
serialize(), 192-194
setUpThisWeek(), 55
show(), 169-170, 209, 223-230
siblings(), 45

slice(), 58-59
slideDown(), 231-234
slider, 615-616
slideToggle(), 231-234
slideUp(), 231-234
sortable(), 339-347, 354-358
Sortable plugin, 561-562
tabs, 605-606

tabs(), 420-424

text(), 103, 104-106
text and, 525

toggle(), 223-230
toggleClass(), 102
transition(), 456

for traversing, 501-508
trigger(), 68

unselect(), 246-247
unselectFile(), 369
unwrap(), 103, 121-123
utilities, 547-549

val(), 34

validate(), 40-41

value and, 525-526
wrap(), 103, 117-119
wrapA11(), 103, 119
wrapInner(), 103, 119-121
wrapper methods, 63-64
click(), 64-67
hover(), 67
ready(), 67
modal dialogs, 407-409
modularization, 14

namespacing

conventions, 11

JavaScript, 24-25
next() method, 45, 53, 198
nextA11() method, 45
nonintrusive JavaScript, 10
not() method, 45, 56, 59-60

objects

enumeration, 139-141

Event, 517-521
off() method, 68, 75-80
on() method, 68
One True Brace convention, 21
outerHeight() method, 165, 171-172
outerwidth() method, 165, 171-172

parent() method, 45
parents() method, 45
persistent event handlers, 69-75

635

Plugin APl — removeAttr() method

Plugin API, 243-247 methods, 569
plugins options, 570-572

best practices, 265 Sortable, 339-347, 354-358

context menu, 250-265 customizing, 347-353

Datepicker, 383-385 events, 565-566
customizing, 385-392 methods, 561-562
date format, 395 options, 562-565
date range, 392-395 serialize options, 566
format options, 597-598 ui object, 567
methods, 589-590 Tablesorter, 433-440, 619-621
options, 590-597 Tabs, 417-419
text localization, 395-396 animation, 428-429
utilities, 597 implementation, 417-419
weekday start, 397 remote content loading, 425-428

Dialog this keyword, 246
animation, 412-413 unselect() method, 246-247
auto-opening, 409-411 writing, 243-247
dragging, 411-412 POST method, 178, 179-180
dynamic interaction, 411-412 POST requests (AJAX), 192-194
events, 413-414, 603-604 prepend() method, 103, 108-111
implementation, 399-401 prepending content, 108-111
methods, 599 presentation versus
modal dialogs, 407-409 behavior, 10
options, 600-603 prev() method, 45, 52
resizing, 411-412 prevA11() method, 45
styling, 401-407 preventDefault() method, 41
ui object, 604 properties, 103

Draggable, 324-330 CSS, 163-164

Droppable, 324-330 pseudo-classes, 165

fallback video/audio, 461-462

HTMLS drag and drop, 286-288

MediaElement, 459, 623-626
configuration, 459-461

controls, 463 querySelectorA11() function, 4

download control, 463-464

options, 623-626 ready() method, 40, 52, 67
select() method, 246-247 remove() method, 126-129
Selectable, 361-362 removeAttr() method, 92-93, 95

636

removeClass() method - siblings() method

removeClass() method, 52, 101, 368
replaceAl1() method, 123-126
replaceWwith() method, 123-126
replacing elements, 123-126
require.js, 24
Resig, John, 7
resizable
events, 614
methods, 611
options, 611-613
REST (Representational State Transfer), 180
requests, 213-219

Safari, 3
script, external documents, 16-19
scrollbars, position, 267-272
scrolling

to event, 272-276

to top, 276-277
scrollLeft() method, 276-277
scrol1Top() method, 276-277
select() method, 246-247
<select> element, 42
selectable() method, 361-372
Selectable plugin, 361-362

methods, 569

options, 570-572
selectFile() method, 367-368
selections

adding to, 59-60

filtering, 143-145

callback function, 146-147

inserting content via, 112-117

iterating, 43—45

iteration, 141-143

mapping, 151-153
marching ants, 366
methods for, 501-508
slice() method, 58-59
working within, 34-45
WYSIWYG editor, 473-480
selectors, 27
asterisk, 499
attribute filters, 495-496
child filters, 497-498
context filters, 494-495
form state selectors, 498
forms elements, 498
hierarchy and, 493
simple selectors, 493
visibility filters, 495
Selectors API, 28-33
$ object, 29-30
<a> element, 32
methods, click(), 32
<ui> element, 31
semicolons, 22-23
serialize() method, 192-194
server requests in AJAX, 178
data transport formats, 180-181
GET method, 179-180
GET requests, 181
JSON formatted data, 189-192
sending data, 188-189
XML formatted data, 182-188
POST method, 179-180
POST requests, 192-194
RESTful requests, 180
Set Attribute button, 94
setUpThisWeek() method, 55
show() method, 169-170, 209, 223-230
showing elements, 223-230
siblings() method, 45

637

Silverlight — transition() method

Silverlight, 463
Sizzle, 4
slice() method, 58-59
sTideDown() method, 231-234
slider
events, 617
methods, 615-616
options, 616—-617
ui object, 617-618
slideshows
clearTimeout() method,
454
collections, 443
counters, 457
<div> element, 450
fadeIn() method, 456
fadeOut() method, 456
numbering, 451
properties, 452
transition() method, 456
 element, 453
slideToggle() method, 231-234
sTideUp() method, 231-234
sliding elements (animation), 231
sortable() method, 339-347, 354-358
sortable lists, 339-347
Sortable plugin, 339-347, 354-358
customizing, 347-353
events, 565-566
methods, 561-562
options, 562-565
serialize options, 566
ui object, 567
sorted lists, 354-358
storage, files, 12

638

switch control, 23
switch keyword, 20

tabbed user interface, 420-424
<table> element, 57
Tablesorter plugin, 433-440

options, 619-621
tabs

elements, 609

events, 608

methods, 605-606

options, 606-608

styling, 609

ui object, 609
tabs() method, 420-424
Tabs plugin

animation, 428-429

implementation, 417-419

remote content loading, 425-428
taggers, 11
<td> element, 52, 53-54
text

methods and, 525

settting, 104-106

multiple items, 106-108

WYSIWYG editor, 469-473
text() method, 103
<textarea> element, 42
this keyword, 43, 142, 246
toggle() method, 223-230
toggleClass() method, 102
<tr> element, 53
transition() method, 456

trigger() method — wrapAll() method

trigger() method, 68
try keyword, 20
type selectors, 11-12

Ul library, 323-234
Accordion Ul
building, 373-375
default pane, 376-379
event changes, 379-380

header elements, 380-382

Datepicker plugin, 383-395
localizing, 395-397
Dialog plugin, 399-414
Draggable and Droppable
libraries, 323
Draggable plugin, 324-330
Droppable plugin, 324-330
Selectable plugin, 361-372
Sortable plugin, 339, 354-358
customizing, 347-353
ui object
Dialog plugin, 604
events, droppable, 557-558
options
draggable, 556-557
droppable, 557-559
slider, 618
Sortable plugin, 567
tabs, 609
 element, 31, 344
unselect() method, 246-247
unselectFile() method, 369

unwrap() method, 103, 121-123

unwrapping elements, 121-123
upload event, 80
utilities
Datepicker plugin, 597
methods, 547-549

val() method, 34
validate() method, 40-41
values
arrays, finding, 158-160
disabled, 41
methods and, 525-526
van Kesteren, Anne, 28
variables, naming, 24
video
download control, 463-464
fallback, 461-462
Flash Player, 462-463
h.264 content, 462-463
Silverlight, 463
<video> element, 461
visibility, selectors, 495

WebKit, 3

WebKit Blink, 4

WHATWG (Web Hypertext Application
Technology Working Group), 280

while keyword, 20

wrap() method, 103, 117-119

wrapA11() method, 103, 119

639

wraplnner() method - XMLHttpRequest object

wrapInner() method, 103, 119-121
wrapper methods, 63-64
click(), 64-67
hover(), 67
ready(), 67
wrapping content, elements
collection, 119
contents, 119-121
individual, 117-119
unwrapping, 121-123
WYSIWYG editor
contenteditable attribute,
467-469

640

selections
creating, 473-478
restoring, 479-480
storing, 478—479
text formatting, 469-473

XHTML, 10

XML (eXtensible Markup Language), GET
requests and, 182-188

XMLHttpRequest object, file uploads and,
313-319

Try Safari Books Online FREE
for 15 days and take 15% off

for up to 6 Months*

Gain unlimited subscription access to thousands of books and videos.

Safari

Books Online

With Safari Books Online, learn without limits
from thousands of technology, digital media and
professional development books and videos from
hundreds of leading publishers. With a monthly
or annual unlimited access subscription, you get:

* Anytime, anywhere mobile access with Safari
To Go apps for iPad, iPhone and Android

¢ Hundreds of expert-led instructional videos on
today's hottest topics

e Sample code to help accelerate a wide variety
of software projects

* Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

* Rough Cuts pre-published manuscripts

START YOUR FREE TRIAL TODAY!

Visit: www.safaribooksonline.com/wrox

*Discount applies to new Safari Library subscribers only
and is valid for the first 6 consecutive monthly billing
cycles. Safari Library is not available in all countries.

An Imprint of (WWILEY
Now you know.

http://www.safaribooksonline.com/wrox

AN

WFrox

A Wiley Brand

Programmer to Programmer”

Connect with Wrox.

Participate

Take an active role online by participating
in our P2P forums @ p2p.wrox.com

Wrox Blox

Download short informational pieces and code
to keep you up to date and out of trouble

Join the Community

Sign up for our free monthly newsletter
at newsletter.wrox.com

Wrox.com

Browse the vast selection of Wrox titles, e-books,
and blogs and find exactly what you need

User Group Program

Become a member and take advantage of all
the benefits

Wrox on

Follow @wrox on Twitter and be in the know
on the latest news in the world of Wrox

Wrox on

Join the Wrox Facebook page at
facebook.com/wroxpress and get updates
on new books and publications as well

as upcoming programmer conferences
and user group events

Contact Us.

We love feedback! Have a book idea? Need community support?
Let us know by e-mailing wrox-partnerwithus@wrox.com

mailto:partnerwithus@wrox.com

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Title Page
	Copyright����������������
	Contents���������������
	Introduction
	Part I The jQuery API����������������������������
	Chapter 1 Introduction to jQuery���������������������������������������
	What jQuery Can Do for You���������������������������������
	Who Develops jQuery?���������������������������
	Obtaining jQuery�����������������������
	Installing jQuery������������������������
	Programming Conventions������������������������������
	Markup and CSS Conventions���������������������������������
	JavaScript Conventions�����������������������������

	Summary��������������

	Chapter 2 Selecting and Filtering��
	The Origin of the Selectors API��������������������������������������
	Using the Selectors API������������������������������
	Filtering a Selection����������������������������
	Working Within the Context of a Selection��
	Working with an Element’s Relatives��

	Slicing a Selection��������������������������
	Adding to a Selection����������������������������
	Summary��������������

	Chapter 3 Events�����������������������
	The Various Event Wrapper Methods��
	Attaching Other Events�����������������������������
	Attaching Persistent Event Handlers��
	Removing Event Handlers������������������������������
	Creating Custom Events�����������������������������
	Summary��������������

	Chapter 4 Manipulating Content and Attributes��
	Setting, Retrieving, and Removing Attributes���
	Setting Multiple Attributes����������������������������������
	Manipulating Class Names�������������������������������
	Manipulating HTML and Text Content���
	Getting, Setting, and Removing Content���
	Appending and Prepending Content���������������������������������������
	Inserting Beside Content�������������������������������
	Inserting Beside Content via a Selection���
	Wrapping Content�����������������������

	Replacing Elements�������������������������
	Removing Content�����������������������
	Cloning Content����������������������
	Summary��������������

	Chapter 5 Iteration of Arrays and Objects��
	Enumerating Arrays�������������������������
	Enumerating Objects��������������������������
	Iterating a Selection����������������������������

	Filtering Selections and Arrays��������������������������������������
	Filtering a Selection����������������������������
	Filtering a Selection with a Callback Function���
	Filtering an Array�������������������������

	Mapping a Selection or an Array��������������������������������������
	Mapping a Selection��������������������������
	Mapping an Array�����������������������

	Array Utility Methods����������������������������
	Making an Array����������������������
	Finding a Value Within an Array��������������������������������������
	Merging Two Arrays�������������������������

	Summary��������������

	Chapter 6 CSS��������������������
	Working with CSS Properties����������������������������������
	jQuery’s Pseudo-Classes������������������������������
	Obtaining Outer Dimensions���������������������������������
	Summary��������������

	Chapter 7 AJAX���������������������
	Making a Server Request������������������������������
	What’s the Difference Between GET and POST?��
	RESTful Requests�����������������������
	Formats Used to Transport Data with an AJAX Request��
	Making a GET Request with jQuery���������������������������������������

	Loading HTML Snippets from the Server��
	Dynamically Loading JavaScript�������������������������������������
	AJAX Events������������������
	Using AJAX Event Methods�������������������������������
	Attaching AJAX Events to Individual Requests���
	Sending a REST Request�����������������������������

	Summary��������������

	Chapter 8 Animation and Easing Effects���
	Showing and Hiding Elements����������������������������������
	Sliding Elements�����������������������
	Fading Elements����������������������
	Custom Animation�����������������������
	Animation Options������������������������
	Summary��������������

	Chapter 9 Plugins������������������������
	Writing a Plugin�����������������������
	Writing a Simple jQuery Plugin�������������������������������������
	Inspecting the Document Object Model���
	Writing a Context Menu jQuery Plugin���

	Good Practice for jQuery Plugin Development��
	Summary��������������

	Chapter 10 Scrollbars����������������������������
	Getting the Position of a Scrollbar��
	Scrolling to a Particular Element within a Scrolling <div>���
	Scrolling to the Top���������������������������
	Summary��������������

	Chapter 11 HTML5 Drag and Drop�������������������������������������
	Implementing Drag and Drop���������������������������������
	Prerequisite Plugins���������������������������
	Event Setup������������������

	Implementing Drag-and-Drop File Uploads��
	Adding the File Information Data Object��
	Using a Custom XMLHttpRequest Object���
	Additional Utilities���������������������������

	Summary��������������

	Part II jQuery UI������������������������
	Chapter 12 Draggable and Droppable���
	Making Elements Draggable��������������������������������
	Delegating Drop Zones for Draggable Elements���
	Summary��������������

	Chapter 13 Sortable��������������������������
	Making a List Sortable�����������������������������
	Customizing Sortable���������������������������
	Saving the State of Sorted Lists���������������������������������������
	Summary��������������

	Chapter 14 Selectable����������������������������
	Introducing the Selectable Plugin��
	Summary��������������

	Chapter 15 Accordion���������������������������
	Building an Accordion UI�������������������������������
	Changing the Default Pane��������������������������������
	Changing the Accordion Event�����������������������������������
	Setting the Header Elements����������������������������������
	Summary��������������

	Chapter 16 Datepicker����������������������������
	Implementing a Datepicker��������������������������������
	Custom Styling the Datepicker������������������������������������
	Setting the Range of Allowed Dates���

	Localizing the Datepicker��������������������������������
	Setting the Date Format������������������������������
	Localizing Datepicker Text���������������������������������
	Changing the Starting Weekday������������������������������������

	Summary��������������

	Chapter 17 Dialog������������������������
	Implementing a Dialog����������������������������
	Styling a Dialog�����������������������
	Making a Modal Dialog����������������������������
	Auto-Opening the Dialog������������������������������
	Controlling Dynamic Interaction��������������������������������������
	Animating the Dialog���������������������������
	Working with Dialog Events���������������������������������
	Summary��������������

	Chapter 18 Tabs����������������������
	Implementing Tabs������������������������
	Styling the Tabbed User Interface��
	Loading Remote Content via AJAX��������������������������������������
	Animating Tab Transitions��������������������������������
	Summary��������������

	Part III Popular Third-Party jQuery Plugins��
	Chapter 19 Tablesorter�����������������������������
	Sorting a Table����������������������
	Summary��������������

	Chapter 20 Creating an Interactive Slideshow���
	Creating a Slideshow���������������������������
	Summary��������������

	Chapter 21 Working with HTML5 Audio and Video��
	Downloading the MediaElement Plugin��
	Configuring the MediaElement Plugin��
	Creating an HTML Structure That Enables Fallback Video/Audio Plugins for Older Browsers��
	Implementing h.264 Video Content���������������������������������������
	Customizing Player Controls����������������������������������
	Controlling When the Download of Media Begins��
	Summary��������������

	Chapter 22 Creating a Simple WYSIWYG Editor��
	Making an Element Editable with the contenteditable Attribute��
	Creating Buttons to Apply Bold, Italic, Underline, Font, and Font Size���
	Creating a Selection���������������������������
	Storing a Selection��������������������������
	Restoring a Selection����������������������������
	Summary��������������

	Part IV Appendices
	Appendix A: Exercise Answers�����������������������������������
	Appendix B: jQuery Selectors�����������������������������������
	Appendix C: Selecting, Traversing, and Filtering���
	Appendix D: Events�������������������������
	Appendix E: Manipulating Content, Attributes, and Custom Data��
	Appendix F: More Content Manipulation��
	Appendix G: AJAX Methods�������������������������������
	Appendix H: CSS����������������������
	Appendix I: Utilities����������������������������
	Appendix J: Draggable and Droppable��
	Appendix K: Sortable���������������������������
	Appendix L: Selectable�����������������������������
	Appendix M: Animation and Easing Effects���
	Appendix N: Accordion����������������������������
	Appendix O: Datepicker�����������������������������
	Appendix P: Dialog�������������������������
	Appendix Q: Tabs�����������������������
	Appendix R: Resizable����������������������������
	Appendix S: Slider�������������������������
	Appendix T: Tablesorter������������������������������
	Appendix U: MediaElement�������������������������������

	Index
	EULA

