
Greg Wilson

Software Tools in JavaScript

Contents

Contents i

1 Introduction 1
1.1 Who is our audience? . 1
1.2 What tools and ideas do we cover? . 2
1.3 How are these lessons laid out? . 3
1.4 How did we get here? . 3
1.5 How can people use and contribute to this material? 4
1.6 Who helped us and inspired us? . 5

2 Systems Programming 7
2.1 How can we list a directory? . 8
2.2 What is a callback function? . 10
2.3 What are anonymous functions? . 12
2.4 How can we select a set of files? . 13
2.5 How can we copy a set of files? . 17
2.6 Exercises . 22

3 Asynchronous Programming 27
3.1 How can we manage asynchronous execution? . 27
3.2 How do promises work? . 30
3.3 How are real promises different? . 35
3.4 How can we build tools with promises? . 37
3.5 Lining things up . 41
3.6 How can we make this more readable? . 41
3.7 How can we handle errors with asynchronous code? 43
3.8 Exercises . 45

4 Unit Testing 51
4.1 How should we structure unit testing? . 51
4.2 How can we separate registration, execution, and reporting? 52
4.3 How should we structure test registration? . 54
4.4 How can we build a command-line interface for testing? 56
4.5 Exercises . 60

i

ii CONTENTS

5 File Backup 63
5.1 How can we uniquely identify files? . 63
5.2 How can we back up files? . 67
5.3 How can we track which files have already been backed up? 70
5.4 How can we test code that modifies files? . 73
5.5 Design for test . 78
5.6 Exercises . 78

6 Data Tables 81
6.1 How can we implement data tables? . 82
6.2 How can we test the performance of our implementations? 85
6.3 What is the most efficient way to save a table? . 88
6.4 Does binary storage improve performance? . 89
6.5 Exercises . 92

7 Pattern Matching 97
7.1 How can we match query selectors? . 97
7.2 How can we implement a simple regular expression matcher? 102
7.3 How can we implement an extensible matcher? . 105
7.4 Exercises . 115

8 Parsing Expressions 117
8.1 How can we break text into tokens? . 118
8.2 How can we turn a list of tokens into a tree? . 123
8.3 Exercises . 128

9 Page Templates 131
9.1 What will our system look like? . 132
9.2 How can we keep track of values? . 133
9.3 How do we handle nodes? . 135
9.4 How do we implement node handlers? . 139
9.5 How can we implement control flow? . 143
9.6 How did we know how to do all of this? . 146
9.7 Exercises . 147

10 Build Manager 151
10.1 What’s in a build manager? . 152
10.2 Where should we start? . 153
10.3 How can we specify that a file is out of date? . 158
10.4 How can we update out-of-date files? . 160
10.5 How can we add generic build rules? . 162
10.6 What should we do next? . 169
10.7 Exercises . 169

CONTENTS iii

11 Layout Engine 173
11.1 How can we size rows and columns? . 174
11.2 How can we position rows and columns? . 177
11.3 How can we render elements? . 181
11.4 How can we wrap elements to fit? . 184
11.5 What subset of CSS will we support? . 187
11.6 Exercises . 194

12 File Interpolator 197
12.1 How can we evaluate JavaScript dynamically? . 197
12.2 How can we manage files? . 202
12.3 How can we find files? . 204
12.4 How can we interpolate pieces of code? . 208
12.5 What did we do instead? . 209
12.6 Exercises . 210

13 Module Loader 213
13.1 How can we implement namespaces? . 213
13.2 How can we load a module? . 215
13.3 Do we need to handle circular dependencies? . 217
13.4 How can a module load another module? . 221
13.5 Exercises . 225

14 Style Checker 229
14.1 How can we parse JavaScript to create an AST? 229
14.2 How can we find things in an AST? . 232
14.3 How can we apply checks? . 234
14.4 How does the AST walker work? . 235
14.5 How else could the AST walker work? . 238
14.6 What other kinds of analysis can we do? . 241
14.7 Exercises . 245

15 Code Generator 247
15.1 How can we replace a function with another function? 247
15.2 How can we generate JavaScript? . 250
15.3 How can we count how often functions are executed? 252
15.4 How can we time function execution? . 255
15.5 Exercises . 257

16 Documentation Generator 261
16.1 How can we extract documentation comments? 261
16.2 What input will we try to handle? . 265
16.3 How can we avoid duplicating names? . 270
16.4 Exercises . 275

iv CONTENTS

17 Module Bundler 279
17.1 What will we use as test cases? . 279
17.2 How can we find dependencies? . 282
17.3 How can we safely combine several files into one? 287
17.4 How can files access each other? . 290
17.5 Exercises . 295

18 Package Manager 297
18.1 What is semantic versioning? . 298
18.2 How can we find a consistent set of packages? . 298
18.3 How can we implement satisfy constraints? . 300
18.4 How can we do less work? . 303
18.5 Exercises . 307

19 Virtual Machine 311
19.1 What is the architecture of our virtual machine? 311
19.2 How can we execute these instructions? . 313
19.3 What do assembly programs look like? . 317
19.4 How can we store data? . 323
19.5 Exercises . 325

20 Debugger 329
20.1 What is our starting point? . 329
20.2 How can we make a tracing debugger? . 332
20.3 How can we make the debugger interactive? . 336
20.4 How can we test an interactive application? . 339
20.5 Exercises . 345

21 Conclusion 347

A Licensing 349
A.1 Writing . 349
A.2 Software . 350

B Bibliography 353

C Code of Conduct 357
C.1 Our Standards . 357
C.2 Our Responsibilities . 357
C.3 Scope . 358
C.4 Enforcement . 358
C.5 Attribution . 358

D Contributing 359
D.1 Making Decisions . 359
D.2 Formatting . 360
D.3 What We’re Looking For . 361

CONTENTS v

E Glossary 363

F Links 383

G Authors 389

Index 390

1
Introduction

Who you are and where we’re going

The best way to learn design is to study examples [Schon1984, Petre2016], and some of the best
examples of software design come from the tools programmers use in their own work. In these lessons
we build small versions of things like file backup systems, testing frameworks, regular expression
matchers, and browser layout engines both to demystify them and to give some insights into how
experienced programmers think. We draw inspiration from [Brown2011, Brown2012, Brown2016],
Mary Rose Cook1’s Gitlet2, and the books that introduced the Unix philosophy to an entire gener-
ation of programmers [Kernighan1979, Kernighan1981, Kernighan1983, Kernighan1988].

All of the written material in this project can be freely reused under the terms of the Creative
Commons - Attribution license3, while all of the software is made available under the terms of the
Hippocratic License4; see Appendix A for details.

All proceeds from this project will go to support the Red Door Family Shelter5.

1.1 Who is our audience?
Every lesson should be written with specific learners in mind. These three personas6 describe ours:

• Aïsha started writing VB macros for Excel in an accounting course and never looked back. After
spending three years doing front-end JavaScript work she now wants to learn how to build back-
end applications. This material will fill in some gaps in her programming knowledge and teach
her some common design patterns.

• Rupinder is studying computer science at college. He has learned a lot about the theory of
algorithms, and while he uses Git and unit testing tools in his assignments, he doesn’t feel he
understands how they work. This material will give him a better understanding of those tools
and of how to design new ones.

• Yim builds mobile apps for a living but also teaches two college courses: one on full-stack web
development using JavaScript and Node and another titled "Software Design". They are happy
with the former, but frustrated that so many books about the latter subject talk about it in the
abstract and use examples that their students can’t relate to. This material will fill those gaps
and give them starting points for a wide variety of course assignments.

1https://maryrosecook.com/
2http://gitlet.maryrosecook.com/
3https://creativecommons.org/licenses/by/4.0/
4https://firstdonoharm.dev/
5https://www.reddoorshelter.ca/
6https://teachtogether.tech/en/index.html#s:process-personas

1

https://maryrosecook.com/
http://gitlet.maryrosecook.com/
https://creativecommons.org/licenses/by/4.0/
https://firstdonoharm.dev/
https://www.reddoorshelter.ca/
https://teachtogether.tech/en/index.html#s:process-personas

2 1 Introduction

Like these three personas, readers should be able to:

• Write JavaScript programs using loops, arrays, functions, and classes.

• Create static web pages using HTML and CSS.

• Install Node on their computer and run programs with it from the command line.

• Use Git7 to save and share files. (It’s OK not to know the more obscure commands8.)

• Explain what a tree is and how to process one recursively. (This is the most complicated data
structure and algorithm we don’t explain.)

This book can be read on its own or as a companion to Building Software Together9, which is a
guide for students who are about to embark on their first large software project in a team. If you
are looking for a project to do in a course, adding a tool to those covered here would be fun as well
as educational. Please see Chapter 21 for more details.

1.2 What tools and ideas do we cover?
Programmers have invented a lot of tools10 to make their lives easier. This volume focuses on a few
that individual developers use while writing software; we hope future volumes will explore those
used in the applications that programmers build.

Appendix E defines the terms we introduce in these lessons, which in turn define the scope of
our lessons:

• How to process a program like any other piece of text.

• How to turn a program into a data structure that can be analyzed and modified.

• What design patterns are and which ones are used most often.

• How programs are executed and how we can control and inspect their execution.

• How we can analyze programs’ performance in order to make sensible design tradeoffs.

• How to find and run code modules on the fly.

7https://git-scm.com/
8https://git-man-page-generator.lokaltog.net/
9https://buildtogether.tech/
10https://en.wikipedia.org/wiki/Programming_tool

https://git-scm.com/
https://git-man-page-generator.lokaltog.net/
https://buildtogether.tech/
https://en.wikipedia.org/wiki/Programming_tool

1.3 How are these lessons laid out? 3

1.3 How are these lessons laid out?
We display JavaScript source code like this:� �
for (const thing in collection) {

console.log(thing)
}� �
and Unix shell commands like this:� �
for filename in *.dat
do

cut -d , -f 10 $filename
done� �
Data and output are shown in italics:� �
Package ,Releases
0,1
0-0,0
0-0-1,1
00print -lol ,2
00smalinux ,0
01changer ,0� �

We occasionally wrap lines in source code in unnatural ways to make listings fit the printed
page, and sometimes use ... to show where lines have been omitted. Where we need to break lines
of output for the same reason, we end all but the last line with a single backslash \. The full listings
are all available in our Git repository11 and on our website12.

Finally, we write functions as functionName rather than functionName(); the latter is more
common, but people don’t use objectName{} for objects or arrayName[] for arrays, and the empty
parentheses makes it hard to tell whether we’re talking about "the function itself" or "a call to the
function with no parameters".

1.4 How did we get here?
In the early 2000s, the University of Toronto asked Greg Wilson13 to teach an undergraduate
course on software architecture. After delivering the course three times he told the university they
should cancel it: between them, the dozen textbooks he had purchased with the phrase "software
architecture" in their titles devoted a total of less than 30 pages to describing the designs of actual
systems.

11https://github.com/software-tools-in-javascript/stjs/
12https://stjs.tech/
13https://third-bit.com/

https://github.com/software-tools-in-javascript/stjs/
https://stjs.tech/
https://third-bit.com/

4 1 Introduction

Frustrated by that, he and Andy Oram14 persuaded some well-known programmers to contribute
a chapter each to a collection called Beautiful Code [Oram2007], which went on to win the Jolt Award
in 2007. Entries in the book described everything from figuring out whether three points are on a
line to core components of Linux and the software for the Mars Rover, but the breadth that made
them fun to read also meant they weren’t particularly useful for teaching.

To fix that, Greg Wilson, Amy Brown15, Tavish Armstrong16, and Mike DiBernardo17 edited a
four-book series between 2011 and 2016 called The Architecture of Open Source Applications18. In
the first two volumes, the creators of fifty open source projects described their systems’ designs; the
third book explored the performance of those systems, while in the fourth volume contributors built
scale models of common tools as a way of demonstrating how those tools worked. These books were
closer to what an instructor would need for an undergraduate class on software design, but still
not quite right: the intended audience would probably not be familiar with many of the problem
domains, and since each author used the programming language of their choice, much of the code
would be hard to understand.

Software Tools in JavaScript is meant to address these shortcomings: all of the code is written
in one language, and the examples are all tools that programmers use daily. Most of the programs
are less than 60 lines long and the longest is less than 200; we believe each chapter can be covered
in class in 1-2 hours, while the exercises range in difficulty from a few minutes to a couple of days.

1.5 How can people use and contribute to this material?
All of the written material on this site is made available under the Creative Commons - Attribution -
NonCommercial 4.0 International license (CC-BY-NC-4.0), while the software is made available un-
der the Hippocratic License. The first allows you to use and remix this material for non-commercial
purposes, as-is or in adapted form, provided you cite its original source; the second allows you to use
and remix the software on this site provided you do not violate international agreements governing
human rights. Please see Appendix A for details.

If you would like to improve what we have or add new material, please see the Code of Conduct
in Appendix C and the contributor guidelines in Appendix D. If you have questions or would like
to use this material in a course, please file an issue in this site’s GitHub repository19 or send us
email20.

14http://www.praxagora.com/
15https://www.amyrhodabrown.com/
16http://tavisharmstrong.com/
17https://mikedebo.com/
18https://aosabook.org/
19https://github.com/software-tools-in-javascript/stjs
20mailto:gvwilson@third-bit.com

http://www.praxagora.com/
https://www.amyrhodabrown.com/
http://tavisharmstrong.com/
https://mikedebo.com/
https://aosabook.org/
https://github.com/software-tools-in-javascript/stjs
mailto:gvwilson@third-bit.com

1.6 Who helped us and inspired us? 5

1.6 Who helped us and inspired us?
This book is dedicated to Brian Kernighan21, who taught us all how to write about software. I am
grateful to the creators of Emacs22, ESLint23, Glosario24, GNU Make25, LaTeX26, Node27, NPM28,
Standard JS29, SVG Screenshot30, WAVE31, and all the other open source tools we used in creating
these lessons: if we all give a little, we all get a lot. I would also like to thank Darren McElligott
and Evan Schultz for their reviews and feedback; any errors, omissions, or misunderstandings that
remain are entirely my fault.

21https://en.wikipedia.org/wiki/Brian_Kernighan
22https://www.gnu.org/software/emacs/
23https://eslint.org/
24https://github.com/carpentries/glosario
25https://www.gnu.org/software/make/
26https://www.latex-project.org/
27https://nodejs.org/en/
28https://www.npmjs.com/
29https://standardjs.com/
30https://chrome.google.com/webstore/detail/svg-screenshot/nfakpcpmhhilkdpphcjgnokknpbpdllg
31https://wave.webaim.org/

https://en.wikipedia.org/wiki/Brian_Kernighan
https://www.gnu.org/software/emacs/
https://eslint.org/
https://github.com/carpentries/glosario
https://www.gnu.org/software/make/
https://www.latex-project.org/
https://nodejs.org/en/
https://www.npmjs.com/
https://standardjs.com/
https://chrome.google.com/webstore/detail/svg-screenshot/nfakpcpmhhilkdpphcjgnokknpbpdllg
https://wave.webaim.org/

2
Systems Programming

Using callbacks to manipulate files and directories

Terms defined: Boolean, anonymous function, asynchronous, callback function, cog-
nitive load, command-line argument, console, current working directory, destructur-
ing assignment, edge case, filesystem, filter, globbing, idiomatic, log message, path (in
filesystem), protocol, scope, single-threaded, string interpolation

The biggest difference between JavaScript and most other programming languages is that many
operations in JavaScript are asynchronous. Its designers didn’t want browsers to freeze while
waiting for data to arrive or for users to click on things, so operations that might be slow are
implemented by describing now what to do later. And since anything that touches the hard drive
is slow from a processor’s point of view, Node1 implements filesystem operations the same way.

How slow is slow?

[Gregg2020] used the analogy in Table 2.1 to show how long it takes a computer to do different
things if we imagine that one CPU cycle is equivalent to one second.

Early JavaScript programs used callback functions to describe asynchronous operations, but
as we’re about to see, callbacks can be hard to understand even in small programs. In 2015, the
language’s developers standardized a higher-level tool called promises to make callbacks easier to
manage, and more recently they have added new keywords called async and await to make it
easier still. We need to understand all three layers in order to debug things when they go wrong,
so this chapter explores callbacks, while Chapter 3 shows how promises and async/await work.

Operation Actual Time Would Be...
1 CPU cycle 0.3 nsec 1 sec
Main memory access 120 nsec 6 min
Solid-state disk I/O 50-150 µsec 2-6 days
Rotational disk I/O 1-10 msec 1-12 months
Internet: San Francisco to New York 40 msec 4 years
Internet: San Francisco to Australia 183 msec 19 years
Physical system reboot 5 min 32,000 years

Table 2.1: Computer operation times at human scale.

1https://nodejs.org/en/

7

https://nodejs.org/en/

8 2 Systems Programming

This chapter also shows how to read and write files and directories with Node’s standard libraries,
because we’re going to be doing that a lot.

2.1 How can we list a directory?
To start, let’s try listing the contents of a directory the way we would in Python2 or Java3:� �
import fs from 'fs '

const srcDir = process.argv [2]
const results = fs.readdir(srcDir)
for (const name of results) {

console.log(name)
}� �

Listing 2.1: list-dir-wrong.js

We use import module from 'source' to load the library source and assign its contents to
module . After that, we can refer to things in the library using module.component just as we refer
to things in any other object. We can use whatever name we want for the module, which allows
us to give short nicknames to libraries with long names; we will take advantage of this in future
chapters.

require versus import

In 2015, a new version of JavaScript called ES6 introduced the keyword import for importing
modules. It improves on the older require function in several ways, but Node still uses require
by default. To tell it to use import, we have added "type": "module" at the top level of our
Node package.json file.

Our little program uses the fs4 library which contains functions to create directories, read
or delete files, etc. (Its name is short for "filesystem".) We tell the program what to list using
command-line arguments, which Node automatically stores in an array called process.argv.
process.argv[0] is the name of the program used to run our code (in this case node), while
process.argv[1] is the name of our program (in this case list-dir-wrong.js); the rest of
process.argv holds whatever arguments we gave at the command line when we ran the program,
so process.argv[2] is the first argument after the name of our program (Figure 2.1):

If we run this program with the name of a directory as its argument, fs.readdir returns the
names of the things in that directory as an array of strings. The program uses for (const name of
results) to loop over the contents of that array. We could use let instead of const, but it’s good

2https://www.python.org/
3https://en.wikipedia.org/wiki/Java_(programming_language)
4https://nodejs.org/api/fs.html

https://www.python.org/
https://en.wikipedia.org/wiki/Java_(programming_language)
https://nodejs.org/api/fs.html

2.1 How can we list a directory? 9

node my-program.js -a today

['/usr/local/bin/node', 'my-program.js', '-a', 'today']

0 1 2 3

Figure 2.1: How Node stores command-line arguments in process.argv.

practice to declare things as const wherever possible so that anyone reading the program knows
the variable isn’t actually going to vary—doing this reduces the cognitive load on people reading
the program. Finally, console.log is JavaScript’s equivalent of other languages’ print command;
its strange name comes from the fact that its original purpose was to create log messages in the
browser console.

Unfortunately, our program doesn’t work:� �
node list -dir -wrong.js .� �

Listing 2.2: list-dir-wrong.sh� �
node:internal/process/esm_loader :74

internalBinding('errors '). triggerUncaughtException(
^

TypeError [ERR_INVALID_CALLBACK]: Callback must be a function. Received \
undefined

at makeCallback (node:fs :181:3)
at Object.readdir (node:fs :1030:14)
at /u/stjs/systems -programming/list -dir -wrong.js:4:20
at ModuleJob.run (node:internal/modules/esm/module_job :154:23)
at async Loader.import (node:internal/modules/esm/loader :177:24)
at async Object.loadESM (node:internal/process/esm_loader :68:5) {

code: 'ERR_INVALID_CALLBACK '
}� �

Listing 2.3: list-dir-wrong.out

The error message comes from something we didn’t write whose source we would struggle to read.
If we look for the name of our file (list-dir-wrong.js) we see the error occurred on line 4;
everything above that is inside fs.readdir, while everything below it is Node loading and running
our program.

The problem is that fs.readdir doesn’t return anything. Instead, its documentation says that
it needs a callback function that tells it what to do when data is available, so we need to explore
those in order to make our program work.

A theorem

1. Every program contains at least one bug.

10 2 Systems Programming

const first = () => {

 console.log('first')

}

const second = () => {

 console.log('second')

}

console.log('start')

do_later(first)

do_later(second)

console.log('end')

1.define function

2.define function

3. print

5. save for later

4. save for later

6. save for later

program action tasks

main

first

second

output

start

end

first

second

7. run callback

8. run callback

Figure 2.2: How JavaScript runs callback functions.

2. Every program can be made one line shorter.

3. Therefore, every program can be reduced to a single statement which is wrong.

— variously attributed

2.2 What is a callback function?
JavaScript uses a single-threaded programming model: as the introduction to this lesson said, it
splits operations like file I/O into "please do this" and "do this when data is available". fs.readdir
is the first part, but we need to write a function that specifies the second part.

JavaScript saves a reference to this function and calls with a specific set of parameters when
our data is ready (Figure 2.2). Those parameters defined a standard protocol for connecting to
libraries, just like the USB standard allows us to plug hardware devices together.

This corrected program gives fs.readdir a callback function called listContents:� �
import fs from 'fs '

const listContents = (err , files) => {
console.log('running callback ')
if (err) {

console.error(err)
} else {

2.2 What is a callback function? 11

for (const name of files) {
console.log(name)

}
}

}

const srcDir = process.argv [2]
fs.readdir(srcDir , listContents)
console.log('last line of program ')� �

Listing 2.4: list-dir-function-defined.js

Node callbacks always get an error (if there is any) as their first argument and the result of a
successful function call as their second. The function can tell the difference by checking to see if
the error argument is null. If it is, the function lists the directory’s contents with console.log,
otherwise, it uses console.error to display the error message. Let’s run the program with the
current working directory (written as ’.’) as an argument:� �
node list -dir -function -defined.js .� �

Listing 2.5: list-dir-function-defined.sh� �
last line of program
running callback
Makefile
copy -file -filtered.js
copy -file -unfiltered.js
...
x-trace -anonymous
x-trace -anonymous.md
x-trace -callback
x-trace -callback.md
x-where -is-node.md� �

Listing 2.6: list-dir-function-defined.slice.out

Nothing that follows will make sense if we don’t understand the order in which Node executes
the statements in this program (Figure 2.3):

1. Execute the first line to load the fs library.

2. Define a function of two parameters and assign it to listContents. (Remember, a function is
just another kind of data.)

3. Get the name of the directory from the command-line arguments.

4. Call fs.readdir to start a filesystem operation, telling it what directory we want to read and
what function to call when data is available.

5. Print a message to show we’re at the end of the file.

6. Wait until the filesystem operation finishes (this step is invisible).

7. Run the callback function, which prints the directory listing.

12 2 Systems Programming

import fs from 'fs'

const listContents = (err, files) => {

 console.log('running callback')

 if (err) {

 console.log(err)

 } else {

 for (const name of files) {

 console.log(name)

 }

 }

}

const srcDir = process.argv[2]

fs.readDir(srcDir, listContents)

console.log('last line of program')

1

2

3

4

5

6

7

load library

define function

get arguments

start operation

print message

finish operation

run function

Figure 2.3: When JavaScript runs callback functions.

2.3 What are anonymous functions?
Most JavaScript programmers wouldn’t define the function listContents and then pass it as a
callback. Instead, since the callback is only used in one place, it is more idiomatic to define it where
it is needed as an anonymous function. This makes it easier to see what’s going to happen when
the operation completes, though it means the order of execution is quite different from the order of
reading (Figure 2.4). Using an anonymous function gives us the final version of our program:� �
import fs from 'fs '

const srcDir = process.argv [2]
fs.readdir(srcDir , (err , files) => {

if (err) {
console.error(err)

} else {
for (const name of files) {

console.log(name)
}

}
})� �

Listing 2.7: list-dir-function-anonymous.js

2.4 How can we select a set of files? 13

import fs from 'fs'

const srcDir = process.argv[2]

fs.readDir(srcDir, (err, files) => {

 if (err) {

 console.log(err)

 } else {

 for (const name of files) {

 console.log(name)

 }

 }

})

1

2

3 4

load library

get arguments

startdefine function 5 finish 5 run

Figure 2.4: How and when JavaScript creates and runs anonymous callback functions.

Functions are data

As we noted above, a function is just another kind of data. Instead of being made up of
numbers, characters, or pixels, it is made up of instructions, but these are stored in memory
like anything else. Defining a function on the fly is no different from defining an array in-place
using [1, 3, 5], and passing a function as an argument to another function is no different
from passing an array. We are going to rely on this insight over and over again in the coming
lessons.

2.4 How can we select a set of files?
Suppose we want to copy some files instead of listing a directory’s contents. Depending on the
situation we might want to copy only those files given on the command line or all files except some
explicitly excluded. What we don’t want to have to do is list the files one by one; instead, we want
to be able to write patterns like *.js.

To find files that match patterns like that, we can use the glob5 module. (To glob (short for
"global") is an old Unix term for matching a set of files by name.) The glob module provides a
function that takes a pattern and a callback and does something with every filename that matched
the pattern:� �
import glob from 'glob '

glob ('**/*.*', (err , files) => {

5https://www.npmjs.com/package/glob

https://www.npmjs.com/package/glob

14 2 Systems Programming

**

x-trace-callback

/ * . *

/ problem .md

Figure 2.5: Using glob patterns to match filenames.

if (err) {
console.log(err)

} else {
for (const filename of files) {

console.log(filename)
}

}
})� �

Listing 2.8: glob-all-files.js� �
copy -file -filtered.js
copy -file -unfiltered.js
copy -file -unfiltered.out
copy -file -unfiltered.sh
copy -file -unfiltered.txt
...
x-trace -anonymous.md
x-trace -anonymous/trace.js
x-trace -callback.md
x-trace -callback/trace.js
x-where -is-node.md� �

Listing 2.9: glob-all-files.slice.out

The leading ** means "recurse into subdirectories", while *.* means "any characters followed
by ’.’ followed by any characters" (Figure 2.5). Names that don’t match *.* won’t be included, and
by default, neither are names that start with a ’.’ character. This is another old Unix convention:
files and directories whose names have a leading ’.’ usually contain configuration information for
various programs, so most commands will leave them alone unless told to do otherwise.

This program works, but we probably don’t want to copy Emacs backup files whose names end
with . We can get rid of them by filtering the list that glob returns:� �
import glob from 'glob '

glob ('**/*.*', (err , files) => {
if (err) {

console.log(err)
} else {

files = files.filter ((f) => { return !f.endsWith ('~') })
for (const filename of files) {

console.log(filename)
}

2.4 How can we select a set of files? 15

[
first.txt,

first.txt~,

second.txt,

second.txt~
]

true

false

true

false

[

]

first.txt,

second.txt,

Figure 2.6: Selecting array elements using Array.filter.

}
})� �

Listing 2.10: glob-get-then-filter-pedantic.js� �
copy -file -filtered.js
copy -file -unfiltered.js
copy -file -unfiltered.out
copy -file -unfiltered.sh
copy -file -unfiltered.txt
...
x-trace -anonymous.md
x-trace -anonymous/trace.js
x-trace -callback.md
x-trace -callback/trace.js
x-where -is-node.md� �

Listing 2.11: glob-get-then-filter-pedantic.slice.out

Array.filter creates a new array containing all the items of the original array that pass a test
(Figure 2.6). The test is specified as a callback function that Array.filter calls once once for each
item. This function must return a Boolean that tells Array.filter whether to keep the item in
the new array or not. Array.filter does not modify the original array, so we can filter our original
list of filenames several times if we want to.

We can make our globbing program more idiomatic by removing the parentheses around the
single parameter and writing just the expression we want the function to return:� �
import glob from 'glob '

glob ('**/*.*', (err , files) => {
if (err) {

console.log(err)
} else {

files = files.filter(f => !f.endsWith ('~'))
for (const filename of files) {

console.log(filename)
}

}
})� �

Listing 2.12: glob-get-then-filter-idiomatic.js

16 2 Systems Programming

However, it turns out that glob will filter for us. According to its documentation, the function
takes an options object full of key-value settings that control its behavior. This is another common
pattern in Node libraries: rather than accepting a large number of rarely-used parameters, a function
can take a single object full of settings.

If we use this, our program becomes:� �
import glob from 'glob '

glob ('**/*.*', { ignore: '*~' }, (err , files) => {
if (err) {

console.log(err)
} else {

for (const filename of files) {
console.log(filename)

}
}

})� �
Listing 2.13: glob-filter-with-options.js

Notice that we don’t quote the key in the options object. The keys in objects are almost always
strings, and if a string is simple enough that it won’t confuse the parser, we don’t need to put quotes
around it. Here, "simple enough" means "looks like it could be a variable name", or equivalently
"contains only letters, digits, and the underscore".

No one knows everything

We combined glob.glob and Array.filter in our functions for more than a year before
someone pointed out the ignore option for glob.glob. This shows:

1. Life is short, so most of us find a way to solve the problem in front of us and re-use it rather
than looking for something better.

2. Code reviews aren’t just about finding bugs: they are also the most effective way to transfer
knowledge between programmers. Even if someone is much more experienced than you,
there’s a good chance you might have stumbled over a better way to do something than
the one they’re using (see point #1 above).

To finish off our globbing program, let’s specify a source directory on the command line and
include that in the pattern:� �
import glob from 'glob '

const srcDir = process.argv [2]

glob(`${srcDir }/**/*.* ` , { ignore: '*~' }, (err , files) => {
if (err) {

console.log(err)
} else {

2.5 How can we copy a set of files? 17

for (const filename of files) {
console.log(filename)

}
}

})� �
Listing 2.14: glob-with-source-directory.js

This program uses string interpolation to insert the value of srcDir into a string. The template
string is written in back quotes, and JavaScript converts every expression written as ${expression}
to text. We could create the pattern by concatenating strings using srcDir + '/**/*.*', but most
programmers find interpolation easier to read.

2.5 How can we copy a set of files?
If we want to copy a set of files instead of just listing them we need a way to create the paths of the
files we are going to create. If our program takes a second argument that specifies the desired output
directory, we can construct the full output path by replacing the name of the source directory with
that path:� �
import glob from 'glob '

const [srcDir , dstDir] = process.argv.slice (2)

glob(`${srcDir }/**/*.* ` , { ignore: '*~' }, (err , files) => {
if (err) {

console.log(err)
} else {

for (const srcName of files) {
const dstName = srcName.replace(srcDir , dstDir)
console.log(srcName , dstName)

}
}

})� �
Listing 2.15: glob-with-dest-directory.js

This program uses destructuring assignment to create two variables at once by unpacking the
elements of an array (Figure 2.7). It only works if the array contains the enough elements, i.e., if
both a source and destination are given on the command line; we’ll add a check for that in the
exercises.

A more serious problem is that this program only works if the destination directory already
exists: fs and equivalent libraries in other languages usually won’t create directories for us auto-
matically. The need to do this comes up so often that there is a function called ensureDir to do
it:� �
import glob from 'glob '

18 2 Systems Programming

['node', 'program.js', 'input',]'output'

'input',

]
'output'

[
srcDir

datavariables

dstDir

[

]

actual
arrays

temporary
brackets

process.argv

slice

Figure 2.7: Assigning many values at once by destructuring.

import fs from 'fs -extra '
import path from 'path '

const [srcRoot , dstRoot] = process.argv.slice (2)

glob(`${srcRoot }/**/*.* ` , { ignore: '*~' }, (err , files) => {
if (err) {

console.log(err)
} else {

for (const srcName of files) {
const dstName = srcName.replace(srcRoot , dstRoot)
const dstDir = path.dirname(dstName)
fs.ensureDir(dstDir , (err) => {

if (err) {
console.error(err)

}
})

}
}

})� �
Listing 2.16: glob-ensure-output-directory.js

Notice that we import from fs-extra instead of fs; the fs-extra6 module provides some useful
utilities on top of fs. We also use path7 to manipulate pathnames rather than concatenating or
interpolating strings because there are a lot of tricky edge cases in pathnames that the authors of
that module have figured out for us.

Using distinct names

We are now calling our command-line arguments srcRoot and dstRoot rather than srcDir
and dstDir. We originally used dstDir as both the name of the top-level destination directory

6https://www.npmjs.com/package/fs-extra
7https://nodejs.org/api/path.html

https://www.npmjs.com/package/fs-extra
https://nodejs.org/api/path.html

2.5 How can we copy a set of files? 19

(from the command line) and the name of the particular output directory to create. This was
legal, since every function creates a new scope, but hard for people to understand.

Our file copying program currently creates empty destination directories but doesn’t actually
copy any files. Let’s use fs.copy to do that:� �
import glob from 'glob '
import fs from 'fs -extra '
import path from 'path '

const [srcRoot , dstRoot] = process.argv.slice (2)

glob(`${srcRoot }/**/*.* ` , { ignore: '*~' }, (err , files) => {
if (err) {

console.log(err)
} else {

for (const srcName of files) {
const dstName = srcName.replace(srcRoot , dstRoot)
const dstDir = path.dirname(dstName)
fs.ensureDir(dstDir , (err) => {

if (err) {
console.error(err)

} else {
fs.copy(srcName , dstName , (err) => {

if (err) {
console.error(err)

}
})

}
})

}
}

})� �
Listing 2.17: copy-file-unfiltered.js

The program now has three levels of callback (Figure 2.8):

1. When glob has data, do things and then call ensureDir.

2. When ensureDir completes, copy a file.

3. When copy finishes, check the error status.

Our program looks like it should work, but if we try to copy everything in the directory containing
these lessons we get an error message:� �
rm -rf /tmp/out
mkdir /tmp/out
node copy -file -unfiltered.js ../ node_modules /tmp/out 2>&1 | head -n 6� �

Listing 2.18: copy-file-unfiltered.sh

20 2 Systems Programming

glob(`${srcRoot}/**/*.*`, { ignore: '*~' }, (err, files) => {

 const dstName = srcName.replace(srcRoot, dstRoot)

 fs.ensureDir(dst, (err) => {

 if (err) {

 console.log(err)

 } else {

 for (const name of files) {

 fs.copy(srcName, dstName, (err) => {

 const dstDir = path.dirname(dstName)

 if (err) {

 console.log(err)

 } else {

 if (err) {

 console.error(err)

 }

 })

 }

 })

 }

 }

})

1 define function

4 do glob

2 define function

3 define function

5 call function

6 make directory

7 call function

8 copy file

9 copy file

Figure 2.8: Three levels of callback in the running example.

2.5 How can we copy a set of files? 21� �
[Error: ENOENT: no such file or directory , chmod \
'/tmp/out/@nodelib/fs.stat/README.md '] {

errno: -2,
code: 'ENOENT ',
syscall: 'chmod ',
path: '/tmp/out/@nodelib/fs.stat/README.md'

}� �
Listing 2.19: copy-file-unfiltered.out

The problem is that node_modules/fs.stat and node_modules/fs.walk match our globbing
expression, but are directories rather than files. To prevent our program from trying to use fs.copy
on directories, we must use fs.stat to get the properties of the thing whose name glob has given us
and then check if it’s a file. The name "stat" is short for "status", and since the status of something
in the filesystem can be very complex, fs.stat returns an object with methods that can answer
common questions8.

Here’s the final version of our file copying program:� �
import glob from 'glob '
import fs from 'fs -extra '
import path from 'path '

const [srcRoot , dstRoot] = process.argv.slice (2)

glob(`${srcRoot }/**/*.* ` , { ignore: '*~' }, (err , files) => {
if (err) {

console.log(err)
} else {

for (const srcName of files) {
fs.stat(srcName , (err , stats) => {

if (err) {
console.error(err)

} else if (stats.isFile ()) {
const dstName = srcName.replace(srcRoot , dstRoot)
const dstDir = path.dirname(dstName)
fs.ensureDir(dstDir , (err) => {

if (err) {
console.error(err)

} else {
fs.copy(srcName , dstName , (err) => {

if (err) {
console.error(err)

}
})

}
})

}
})

8https://nodejs.org/api/fs.html#fs_class_fs_stats

https://nodejs.org/api/fs.html#fs_class_fs_stats

22 2 Systems Programming

}
}

})� �
Listing 2.20: copy-file-filtered.js

It works, but four levels of asynchronous callbacks is hard for humans to understand. Chapter 3
will introduce a pair of tools that make code like this easier to read.

2.6 Exercises

Where is Node?

Write a program called wherenode.js that prints the full path to the version of Node is is run
with.

Tracing callbacks

In what order does the program below print messages?� �
const red = () => {

console.log('RED ')
}

const green = (func) => {
console.log('GREEN ')
func()

}

const blue = (left , right) => {
console.log('BLUE ')
left(right)

}

blue(green , red)� �
Listing 2.21: x-trace-callback/trace.js

Tracing anonymous callbacks

In what order does the program below print messages?� �
const blue = (left , right) => {

console.log('BLUE ')
left(right)

}

2.6 Exercises 23

blue(
(callback) => {

console.log('GREEN ')
callback ()

},
() => console.log('RED ')

)� �
Listing 2.22: x-trace-anonymous/trace.js

Checking arguments

Modify the file copying program to check that it has been given the right number of command-line
arguments and to print a sensible error message (including a usage statement) if it hasn’t.

Significant entries

count-lines-histogram.js displays many zeroes and gives no visual sense of how large entries
are. Modify it so that:

1. When it is run with the –nonzero flag only non-zero values are shown.

2. When it is run with the –graphical flag the numeric values are replaced with rows of asterisks.

3. If both flags are given the program prints an error message instead of running.

Glob patterns

What filenames does each of the following glob patterns match?

• results-[0123456789].csv

• results.(tsv|csv)

• results.dat?

• ./results.data

Filtering arrays

Fill in the blank in the code below so that it runs correctly. Note: you can compare strings in
JavaScript using <, >=, and other operators, so that (for example) person.personal > 'P' is true
if someone’s personal name starts with a letter that comes after ’P’ in the alphabet.� �
const people = [

{ personal: 'Jean ', family: 'Jennings ' },
{ personal: 'Marlyn ', family: 'Wescoff ' },
{ personal: 'Ruth ', family: 'Lichterman ' },

24 2 Systems Programming

{ personal: 'Betty ', family: 'Snyder ' },
{ personal: 'Frances ', family: 'Bilas ' },
{ personal: 'Kay ', family: 'McNulty ' }

]

const result = people.filter(____ => ____)

console.log(result)� �
Listing 2.23: x-array-filter/filter.js� �

[
{ personal: 'Jean ', family: 'Jennings ' },
{ personal: 'Ruth ', family: 'Lichterman ' },
{ personal: 'Frances ', family: 'Bilas ' }

]� �
Listing 2.24: x-array-filter/filter.txt

String interpolation

Fill in the code below so that it prints the message shown.� �
const people = [

{ personal: 'Christine ', family: 'Darden ' },
{ personal: 'Mary ', family: 'Jackson ' },
{ personal: 'Katherine ', family: 'Johnson ' },
{ personal: 'Dorothy ', family: 'Vaughan ' }

]

for (const person of people) {
console.log(`$____ , $____ `)

}� �
Listing 2.25: x-string-interpolation/interpolate.js� �

Darden , Christine
Jackson , Mary
Johnson , Katherine
Vaughan , Dorothy� �

Listing 2.26: x-string-interpolation/interpolate.txt

Destructuring assignment

What is assigned to each named variable in each statement below?

1. const first = [10, 20, 30]

2.6 Exercises 25

2. const [first, second] = [10, 20, 30]

3. const [first, second, third] = [10, 20, 30]

4. const [first, second, third, fourth] = [10, 20, 30]

5. const {left, right} = {left: 10, right: 30}

6. const {left, middle, right} = {left: 10, middle: 20, right: 30}

Counting lines

Write a program called lc that counts and reports the number of lines in one or more files and the
total number of lines, so that lc a.txt b.txt displays something like:� �
a.txt 475
b.txt 31
total 506� �
Renaming files

Write a program called rename that takes three or more command-line arguments:

1. A filename extension to match.

2. An extension to replace it with.

3. The names of one or more existing files.

When it runs, rename renames any files with the first extension to create files with the second
extension, but will not overwrite an existing file. For example, suppose a directory contains a.txt,
b.txt, and b.bck. The command:� �
rename .txt .bck a.txt b.txt� �
will rename a.txt to a.bck, but will not rename b.txt because b.bck already exists.

3
Asynchronous Programming

Using promises to manage delayed computation

Terms defined: UTF-8, call stack, character encoding, class, constructor, event loop,
exception, fluent interface, method, method chaining, non-blocking execution, promise,
promisification, protocol

Callbacks work, but they are hard to read and debug, which means they only "work" in a limited
sense. JavaScript’s developers added promises to the language in 2015 to make callbacks easier
to write and understand, and more recently they added the keywords async and await as well to
make asynchronous programming easier still. To show how these work, we will create a class of our
own called Pledge that provides the same core features as promises. Our explanation was inspired
by Trey Huffine’s1 tutorial2, and we encourage you to read that as well.

3.1 How can we manage asynchronous execution?
JavaScript is built around an event loop. Every task is represented by an entry in a queue; the
event loop repeatedly takes a task from the front of the queue, runs it, and adds any new tasks that
it creates to the back of the queue to run later. Only one task runs at a time; each has its own call
stack, but objects can be shared between tasks (Figure 3.1).

Most tasks execute all the code available in the order it is written. For example, this one-line
program uses Array.forEach to print each element of an array in turn:� �
[1000, 1500, 500]. forEach(t => console.log(t))� �

Listing 3.1: not-callbacks-alone.js� �
1000
1500
500� �

Listing 3.2: not-callbacks-alone.out

However, a handful of special built-in functions make Node3 switch tasks or add new tasks to the
run queue. For example, setTimeout tells Node to run a callback function after a certain number

1https://medium.com/@treyhuffine
2https://levelup.gitconnected.com/understand-javascript-promises-by-building-a-promise-from-scratch-
84c0fd855720

3https://nodejs.org/en/

27

https://medium.com/@treyhuffine
https://levelup.gitconnected.com/understand-javascript-promises-by-building-a-promise-from-scratch-84c0fd855720
https://levelup.gitconnected.com/understand-javascript-promises-by-building-a-promise-from-scratch-84c0fd855720
https://nodejs.org/en/

28 3 Asynchronous Programming

left

right

up

down

call stack heap

'name'

'height'

'width'

first()

second()

third() fourth()

run queue

event loop

Figure 3.1: Using an event loop to manage concurrent tasks.

of milliseconds have passed. Its first argument is a callback function that takes no arguments, and
its second is the delay. When setTimeout is called, Node sets the callback aside for the requested
length of time, then adds it to the run queue. (This means the task runs at least the specified
number of milliseconds later).

Why zero arguments?

setTimeout’s requirement that callback functions take no arguments is another example of a
protocol. One way to think about it is that protocols allow old code to use new code: whoever
wrote setTimeout couldn’t know what specific tasks we want to delay, so they specified a way
to wrap up any task at all.

As the listing below shows, the original task can generate many new tasks before it completes,
and those tasks can run in a different order than the order in which they were created (Figure 3.2).� �
[1000, 1500, 500]. forEach(t => {

console.log(`about to setTimeout for ${t}`)
setTimeout (() => console.log(`inside timer handler for ${t}`), t)

})� �
Listing 3.3: callbacks-with-timeouts.js� �

about to setTimeout for 1000
about to setTimeout for 1500
about to setTimeout for 500
inside timer handler for 500
inside timer handler for 1000
inside timer handler for 1500� �

Listing 3.4: callbacks-with-timeouts.out

3.1 How can we manage asynchronous execution? 29

call stack heap

() => console.log(...)

run queue

event loop

t = 1500
() => console.log(...)timer queue

'inside timer handler for 500'

t = 1000
() => console.log(...)

Figure 3.2: Using setTimeout to delay operations.

If we give setTimeout a delay of zero milliseconds, the new task can be run right away, but any
other tasks that are waiting have a chance to run as well:� �
[1000, 1500, 500]. forEach(t => {

console.log(`about to setTimeout for ${t}`)
setTimeout (() => console.log(`inside timer handler for ${t}`), 0)

})� �
Listing 3.5: callbacks-with-zero-timeouts.js� �

about to setTimeout for 1000
about to setTimeout for 1500
about to setTimeout for 500
inside timer handler for 1000
inside timer handler for 1500
inside timer handler for 500� �

Listing 3.6: callbacks-with-zero-timeouts.out

We can use this trick to build a generic non-blocking function that takes a callback defining a
task and switches tasks if any others are available:� �
const nonBlocking = (callback) => {

setTimeout(callback , 0)
}

[1000, 1500, 500]. forEach(t => {
console.log(`about to do nonBlocking for ${t}`)
nonBlocking (() => console.log(`inside timer handler for ${t}`))

})� �
Listing 3.7: non-blocking.js

30 3 Asynchronous Programming� �
about to do nonBlocking for 1000
about to do nonBlocking for 1500
about to do nonBlocking for 500
inside timer handler for 1000
inside timer handler for 1500
inside timer handler for 500� �

Listing 3.8: non-blocking.out

Node’s built-in function setImmediate does exactly what our nonBlocking function does: Node
also has process.nextTick, which doesn’t do quite the same thing—we’ll explore the differences
in the exercises.� �
[1000, 1500, 500]. forEach(t => {

console.log(`about to do setImmediate for ${t}`)
setImmediate (() => console.log(`inside immediate handler for ${t}`))

})� �
Listing 3.9: set-immediate.js� �

about to do setImmediate for 1000
about to do setImmediate for 1500
about to do setImmediate for 500
inside immediate handler for 1000
inside immediate handler for 1500
inside immediate handler for 500� �

Listing 3.10: set-immediate.out

3.2 How do promises work?
Before we start building our own promises, let’s look at how we want them to work:� �
import Pledge from './pledge.js'

new Pledge ((resolve , reject) => {
console.log('top of a single then clause ')
setTimeout (() => {

console.log('about to call resolve callback ')
resolve('this is the result ')

}, 0)
}). then((value) => {

console.log(`in 'then ' with "${value}"`)
return 'first then value '

})� �
Listing 3.11: use-pledge-motivation.js

3.2 How do promises work? 31

new Pledge((resolve, reject) => {

 console.log('top of single then clause')

 setTimeout(() => {

 console.log('about to resolve callback')

 resolve('this is the result')

 }, 0)

}).then((value) => {

 console.log(`in 'then' with "${value}"`)

 return 'first then value'

})

1 define callback

create object

define callback4

2

6 define callback

5 put on timer queue

3 run callback

7 attach callback

8 wake up

9 run attached callback

1
2

3

45

67

8

9

Figure 3.3: Order of operations when a promise resolves.

� �
top of a single then clause
about to call resolve callback
in 'then ' with "this is the result"� �

Listing 3.12: use-pledge-motivation.out

This short program creates a new Pledge with a callback that takes two other callbacks as
arguments: resolve (which will run when everything worked) and reject (which will run when
something went wrong). The top-level callback does the first part of what we want to do, i.e., what-
ever we want to run before we expect a delay; for demonstration purposes, we will use setTimeout
with zero delay to switch tasks. Once this task resumes, we call the resolve callback to trigger
whatever is supposed to happen after the delay.

Now look at the line with then. This is a method of the Pledge object we just created, and
its job is to do whatever we want to do after the delay. The argument to then is yet another
callback function; it will get the value passed to resolve, which is how the first part of the action
communicates with the second (Figure 3.3).

In order to make this work, Pledge’s constructor must take a single function called action.
This function must take take two callbacks as arguments: what to do if the action completes
successfully and what to do if it doesn’t (i.e., how to handle errors). Pledge will provide these
callbacks to the action at the right times.

Pledge also needs two methods: then to enable more actions and catch to handle errors. To
simplify things just a little bit, we will allow users to chain as many thens as they want, but only
allow one catch.

Fluent interfaces

A fluent interface is a style of object-oriented programming in which the methods of an object
return this so that method calls can be chained together. For example, if our class is:� �
class Fluent {

constructor () {...}

32 3 Asynchronous Programming

first (top) {
...do something with top ...
return this

}

second (left , right) {
...do something with left and right ...

}
}� �
then we can write:� �

const f = new Fluent ()
f.first('hello '). second('and ', 'goodbye ')� �

or even� �
(new Fluent ()). first('hello '). second('and ', 'goodbye ')� �
Array’s fluent interface lets us write expressions like Array.filter(...).map(...).map(...)

that are usually more readable than assigning intermediate results to temporary variables.
If the original action given to our Pledge completes successfully, the Pledge gives us a value by

calling the resolve callback. We pass this value to the first then, pass the result of that then to
the second one, and so on. If any of them fail and throw an exception, we pass that exception to
the error handler. Putting it all together, the whole class looks like this:� �
class Pledge {

constructor (action) {
this.actionCallbacks = []
this.errorCallback = () => {}
action(this.onResolve.bind(this), this.onReject.bind(this))

}

then (thenHandler) {
this.actionCallbacks.push(thenHandler)
return this

}

catch (errorHandler) {
this.errorCallback = errorHandler
return this

}

onResolve (value) {
let storedValue = value
try {

this.actionCallbacks.forEach ((action) => {
storedValue = action(storedValue)

})
} catch (err) {

3.2 How do promises work? 33

this.actionCallbacks = []
this.onReject(err)

}
}

onReject (err) {
this.errorCallback(err)

}
}

export default Pledge� �
Listing 3.13: pledge.js

Binding this

Pledge’s constructor makes two calls to a special function called bind. When we create an
object obj and call a method meth, JavaScript sets the special variable this to obj inside
meth. If we use a method as a callback, though, this isn’t automatically set to the correct
object. To convert the method to a plain old function with the right this, we have to use
bind. The documentation4 has more details and examples.

Let’s create a Pledge and return a value:� �
import Pledge from './pledge.js'

new Pledge ((resolve , reject) => {
console.log('top of a single then clause ')

}). then((value) => {
console.log(`then with "${value }"`)
return 'first then value '

})� �
Listing 3.14: use-pledge-return.js� �

top of a single then clause� �
Listing 3.15: use-pledge-return.out

Why didn’t this work?

1. We can’t use return with pledges because the call stack of the task that created the pledge is
gone by the time the pledge executes. Instead, we must call resolve or reject.

2. We haven’t done anything that defers execution, i.e., there is no call to setTimeout,
setImmediate, or anything else that would switch tasks. Our original motivating example got
this right.

4https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_objects/Function/bind

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_objects/Function/bind

34 3 Asynchronous Programming

This example shows how we can chain actions together:� �
import Pledge from './pledge.js'

new Pledge ((resolve , reject) => {
console.log('top of action callback with double then and a catch ')
setTimeout (() => {

console.log('about to call resolve callback ')
resolve('initial result ')
console.log('after resolve callback ')

}, 0)
console.log('end of action callback ')

}). then((value) => {
console.log(`first then with "${value}"`)
return 'first value '

}). then((value) => {
console.log(`second then with "${value}"`)
return 'second value '

})� �
Listing 3.16: use-pledge-chained.js� �

top of action callback with double then and a catch
end of action callback
about to call resolve callback
first then with "initial result"
second then with "first value"
after resolve callback� �

Listing 3.17: use-pledge-chained.out

Notice that inside each then we do use return because these clauses all run in a single task. As we
will see in the next section, the full implementation of Promise allows us to run both normal code
and delayed tasks inside then handlers.

Finally, in this example we explicitly signal a problem by calling reject to make sure our error
handling does what it’s supposed to:� �
import Pledge from './pledge.js'

new Pledge ((resolve , reject) => {
console.log('top of action callback with deliberate error ')
setTimeout (() => {

console.log('about to reject on purpose ')
reject('error on purpose ')

}, 0)
}). then((value) => {

console.log(`should not be here with "${value }"`)
}). catch ((err) => {

console.log(`in error handler with "${err}"`)
})

3.3 How are real promises different? 35

� �
Listing 3.18: use-pledge-reject.js� �

top of action callback with deliberate error
about to reject on purpose
in error handler with "error on purpose"� �

Listing 3.19: use-pledge-reject.out

3.3 How are real promises different?
Let’s rewrite our chained pledge with built-in promises:� �
new Promise ((resolve , reject) => {

console.log('top of action callback with double then and a catch ')
setTimeout (() => {

console.log('about to call resolve callback ')
resolve('initial result ')
console.log('after resolve callback ')

}, 0)
console.log('end of action callback ')

}). then((value) => {
console.log(`first then with "${value}"`)
return 'first value '

}). then((value) => {
console.log(`second then with "${value }"`)
return 'second value '

})� �
Listing 3.20: use-promise-chained.js� �

top of action callback with double then and a catch
end of action callback
about to call resolve callback
after resolve callback
first then with "initial result"
second then with "first value"� �

Listing 3.21: use-promise-chained.out

It looks almost the same, but if we read the output carefully we can see that the callbacks run
after the main program finishes. This is a signal that Node is delaying the execution of the code in
the then handler.

A very common pattern is to return another promise from inside then so that the next then
is called on the returned promise, not on the original promise (Figure 3.4). This is another way

36 3 Asynchronous Programming

delay('outer delay')

 .then((value) => {

 console.log(`first then: ${value}`)

 return delay('inner delay')

 }).then((value) => {

 console.log(`second then: ${value}`)

 })

1 first message

construct first promise

second message4

2

3 attach callback to first promise

console.log('before')

console.log('after')

run first callback5

1

2

3

4

5

construct second promise6

6

attach callback to second promise7

7

run second callback8

8

Figure 3.4: Chaining promises to make asynchronous operations depend on each other.

to implement a fluent interface: if a method of one object returns a second object, we can call a
method of the second object immediately.� �
const delay = (message) => {

return new Promise ((resolve , reject) => {
console.log(`constructing promise: ${message}`)
setTimeout (() => {

resolve(`resolving: ${message}`)
}, 1)

})
}

console.log('before ')
delay('outer delay ')

.then((value) => {
console.log(`first then: ${value}`)
return delay('inner delay ')

}). then((value) => {
console.log(`second then: ${value}`)

})
console.log('after ')� �

Listing 3.22: promise-example.js� �
before
constructing promise: outer delay
after
first then: resolving: outer delay
constructing promise: inner delay
second then: resolving: inner delay� �

Listing 3.23: promise-example.out

We therefore have three rules for chaining promises:

3.4 How can we build tools with promises? 37

1. If our code can run synchronously, just put it in then.

2. If we want to use our own asynchronous function, it must create and return a promise.

3. Finally, if we want to use a library function that relies on callbacks, we have to convert it to
use promises. Doing this is called promisification (because programmers will rarely pass up an
opportunity add a bit of jargon to the world), and most functions in the Node have already been
promisified.

3.4 How can we build tools with promises?
Promises may seem more complex than callbacks right now, but that’s because we’re looking at
how they work rather than at how to use them. To explore the latter subject, let’s use promises to
build a program to count the number of lines in a set of files. A few moments of search on NPM5

turns up a promisified version of fs-extra called fs-extra-promise, so we will rely on it for file
operations.

Our first step is to count the lines in a single file:� �
import fs from 'fs -extra -promise '

const filename = process.argv [2]

fs.readFileAsync(filename , { encoding: 'utf -8' })
.then(data => {

const length = data.split('\n'). length - 1
console.log(`${filename }: ${length}`)

})
.catch(err => {

console.error(err.message)
})� �

Listing 3.24: count-lines-single-file.js� �
node count -lines -single -file.js count -lines -single -file.js� �

Listing 3.25: count-lines-single-file.sh� �
count -lines -single -file.js: 12� �

Listing 3.26: count-lines-single-file.out

5https://www.npmjs.com/

https://www.npmjs.com/

38 3 Asynchronous Programming

Character encoding

A character encoding specifies how characters are stored as bytes. The most widely used
is UTF-8, which stores characters common in Western European languages in a single byte
and uses multi-byte sequences for other symbols. If we don’t specify a character encoding,
fs.readFileAsync gives us an array of bytes rather than a string of characters. We can tell
we’ve made this mistake when we try to call a method of String and Node tells us we can’t.

The next step is to count the lines in multiple files. We can use glob-promise to delay handling
the output of glob, but we need some way to create a separate task to count the lines in each file
and to wait until those line counts are available before exiting our program.

The tool we want is Promise.all, which waits until all of the promises in an array have com-
pleted. To make our program a little more readable, we will put the creation of the promise for each
file in a separate function:� �
import glob from 'glob -promise '
import fs from 'fs -extra -promise '

const main = (srcDir) => {
glob(`${srcDir }/**/*.* `)

.then(files => Promise.all(files.map(f => lineCount(f))))

.then(counts => counts.forEach(c => console.log(c)))

.catch(err => console.log(err.message))
}

const lineCount = (filename) => {
return new Promise ((resolve , reject) => {

fs.readFileAsync(filename , { encoding: 'utf -8' })
.then(data => resolve(data.split('\n'). length - 1))
.catch(err => reject(err))

})
}

const srcDir = process.argv [2]
main(srcDir)� �

Listing 3.27: count-lines-globbed-files.js� �
node count -lines -globbed -files.js .� �

Listing 3.28: count-lines-globbed-files.sh� �
10
1
12
4
1

3.4 How can we build tools with promises? 39

...
3
2
5
2
14� �

Listing 3.29: count-lines-globbed-files.slice.out

However, we want to display the names of the files whose lines we’re counting along with the
counts. To do this our then must return two values. We could put them in an array, but it’s better
practice to construct a temporary object with named fields (Figure 3.5). This approach allows us
to add or rearrange fields without breaking code and also serves as a bit of documentation. With
this change our line-counting program becomes:� �
import glob from 'glob -promise '
import fs from 'fs -extra -promise '

const main = (srcDir) => {
glob(`${srcDir }/**/*.* `)

.then(files => Promise.all(files.map(f => lineCount(f))))

.then(counts => counts.forEach(
c => console.log(`${c.lines}: ${c.name }`)))

.catch(err => console.log(err.message))
}

const lineCount = (filename) => {
return new Promise ((resolve , reject) => {

fs.readFileAsync(filename , { encoding: 'utf -8' })
.then(data => resolve ({

name: filename ,
lines: data.split('\n'). length - 1

}))
.catch(err => reject(err))

})
}

const srcDir = process.argv [2]
main(srcDir)� �

Listing 3.30: count-lines-print-filenames.js

As in Chapter 2, this works until we run into a directory whose name name matches *.*, which
we do when counting the lines in the contents of node_modules. The solution once again is to use
stat to check if something is a file or not before trying to read it. And since stat returns an object
that doesn’t include the file’s name, we create another temporary object to pass information down
the chain of thens.� �
import glob from 'glob -promise '
import fs from 'fs -extra -promise '

40 3 Asynchronous Programming

const first = () => {

 return { left: 'LEFT',

 right: 'RIGHT' }

}

const second = (left, right) => {

 // left === 'LEFT'

 // right === 'RIGHT'

}

second(first())

Figure 3.5: Creating temporary objects with named fields to carry values forward.

const main = (srcDir) => {
glob(`${srcDir }/**/*.* `)

.then(files => Promise.all(files.map(f => statPair(f))))

.then(files => files.filter(pair => pair.stats.isFile ()))

.then(files => files.map(pair => pair.filename))

.then(files => Promise.all(files.map(f => lineCount(f))))

.then(counts => counts.forEach(
c => console.log(`${c.lines}: ${c.name }`)))

.catch(err => console.log(err.message))
}

const statPair = (filename) => {
return new Promise ((resolve , reject) => {

fs.statAsync(filename)
.then(stats => resolve ({ filename , stats }))
.catch(err => reject(err))

})
}

const lineCount = (filename) => {
return new Promise ((resolve , reject) => {

fs.readFileAsync(filename , { encoding: 'utf -8' })
.then(data => resolve ({

name: filename ,
lines: data.split('\n'). length - 1

}))
.catch(err => reject(err))

})
}

const srcDir = process.argv [2]
main(srcDir)� �

Listing 3.31: count-lines-with-stat.js� �
node count -lines -with -stat.js .� �

Listing 3.32: count-lines-with-stat.sh

3.6 How can we make this more readable? 41� �
10: ./assign -immediately.js
1: ./assign -immediately.out
12: ./await -fs.js
4: ./await -fs.out
1: ./await -fs.sh
...
3: ./x-multiple -catch/example.js
2: ./x-multiple -catch/example.txt
5: ./x-trace -load.md
2: ./x-trace -load/config.yml
14: ./x-trace -load/example.js� �

Listing 3.33: count-lines-with-stat.slice.out

This code is complex, but much simpler than it would be if we were using callbacks.

3.5 Lining things up
This code uses the expression {filename, stats} to create an object whose keys are filename
and stats, and whose values are the values of the corresponding variables. Doing this makes
the code easier to read, both because it’s shorter but also because it signals that the value
associated with the key filename is exactly the value of the variable with the same name.

3.6 How can we make this more readable?
Promises eliminate the deep nesting associated with callbacks of callbacks, but they are still hard
to follow. The latest versions of JavaScript provide two new keywords async and await to flatten
code further. async means "this function implicitly returns a promise", while await means "wait
for a promise to resolve". This short program uses both keywords to print the first ten characters
of a file:� �
import fs from 'fs -extra -promise '

const firstTenCharacters = async (filename) => {
const text = await fs.readFileAsync(filename , 'utf -8')
console.log(`inside , raw text is ${text.length} characters long `)
return text.slice(0, 10)

}

console.log('about to call ')
const result = firstTenCharacters(process.argv [2])
console.log(`function result has type ${result.constructor.name}`)

42 3 Asynchronous Programming

result.then(value => console.log(`outside , final result is "${value }"`))� �
Listing 3.34: await-fs.js� �

about to call
function result has type Promise
inside , raw text is 24 characters long
outside , final result is "Begin at t"� �

Listing 3.35: await-fs.out

Translating code

When Node sees await and async it silently converts the code to use promises with then,
resolve, and reject; we will see how this works in Chapter 15. In order to provide a context
for this transformation we must put await inside a function that is declared to be async:
we can’t simply write await fs.statAsync(...) at the top level of our program outside a
function. This requirement is occasionally annoying, but since we should be putting our code
in functions anyway it’s hard to complain.

To see how much cleaner our code is with await and async, let’s rewrite our line counting
program to use them. First, we modify the two helper functions to look like they’re waiting for
results and returning them. They actually wrap their results in promises and return those, but
Node now takes care of that for us:� �
const statPair = async (filename) => {

const stats = await fs.statAsync(filename)
return { filename , stats }

}

const lineCount = async (filename) => {
const data = await fs.readFileAsync(filename , 'utf -8')
return {

filename ,
lines: data.split('\n'). length - 1

}
}� �

Listing 3.36: count-lines-with-stat-async.js

Next, we modify main to wait for things to complete. We must still use Promise.all to handle
the promises that are counting lines for individual files, but the result is less cluttered than our
previous version.� �
const main = async (srcDir) => {

const files = await glob(`${srcDir }/**/*.* `)
const pairs = await Promise.all(

files.map(async filename => await statPair(filename))

3.7 How can we handle errors with asynchronous code? 43

)
const filtered = pairs

.filter(pair => pair.stats.isFile ())

.map(pair => pair.filename)
const counts = await Promise.all(

filtered.map(async name => await lineCount(name))
)
counts.forEach(

({ filename , lines }) => console.log(`${lines}: ${filename}`)
)

}

const srcDir = process.argv [2]
main(srcDir)� �

Listing 3.37: count-lines-with-stat-async.js

3.7 How can we handle errors with asynchronous code?
We created several intermediate variables in the line-counting program to make the steps clearer.
Doing this also helps with error handling: to see how, we will build up an example in stages.

First, if we return a promise that fails without using await, then our main function will finish
running before the error occurs, and our try/catch doesn’t help us (Figure 3.6):� �
async function returnImmediately () {

try {
return Promise.reject(new Error('deliberate '))

} catch (err) {
console.log('caught exception ')

}
}

returnImmediately ()� �
Listing 3.38: return-immediately.js� �

/u/stjs/async -programming/return -immediately.js:3� �
Listing 3.39: return-immediately.out

One solution to this problem is to be consistent and always return something. Because the
function is declared async, the Error in the code below is automatically wrapped in a promise so
we can use .then and .catch to handle it as before:� �
async function returnImmediately () {

try {

44 3 Asynchronous Programming

async function returnImmediately () {

 try {

 return Promise.reject(new Error('deliberate'))

 } catch (err) {

 console.log('caught exception')

 }

}

create promise for later execution

2

1 3

1

check for error (none)2

raise exception3

Figure 3.6: Wrong and right ways to handle errors in asynchronous code.

return Promise.reject(new Error('deliberate '))
} catch (err) {

return new Error('caught exception ')
}

}

const result = returnImmediately ()
result.catch(err => console.log(`caller caught ${err}`))� �

Listing 3.40: assign-immediately.js� �
caller caught Error: deliberate� �

Listing 3.41: assign-immediately.out

If instead we return await, the function waits until the promise runs before
returning. The promise is turned into an exception because it failed, and since we’re inside the
scope of our try/catch block, everything works as we want:� �
async function returnAwait () {

try {
return await Promise.reject(new Error('deliberate '))

} catch (err) {
console.log('caught exception ')

}
}

returnAwait ()� �
Listing 3.42: return-await.js� �

caught exception� �
Listing 3.43: return-await.out

We prefer the second approach, but whichever you choose, please be consistent.

3.8 Exercises 45

3.8 Exercises

Immediate versus next tick

What is the difference between setImmediate and process.nextTick? When would you use each
one?

Tracing promise execution

1. What does this code print and why?� �
Promise.resolve('hello ')� �

2. What does this code print and why?� �
Promise.resolve('hello '). then(result => console.log(result))� �

3. What does this code print and why?� �
const p = new Promise ((resolve , reject) => resolve('hello '))

.then(result => console.log(result))� �
Hint: try each snippet of code interactively in the Node interpreter and as a command-line

script.

Multiple catches

Suppose we create a promise that deliberately fails and then add two error handlers:� �
const oops = new Promise ((resolve , reject) => reject(new Error('failure ')))
oops.catch(err => console.log(err.message))
oops.catch(err => console.log(err.message))� �

Listing 3.44: x-multiple-catch/example.js

When the code is run it produces:� �
failure
failure� �

Listing 3.45: x-multiple-catch/example.txt

1. Trace the order of operations: what is created and executed when?

2. What happens if we run these same lines interactively? Why do we see something different than
what we see when we run this file from the command line?

46 3 Asynchronous Programming

Then after catch

Suppose we create a promise that deliberately fails and attach both then and catch to it:� �
new Promise ((resolve , reject) => reject(new Error('failure ')))

.catch(err => console.log(err))

.then(err => console.log(err))� �
Listing 3.46: x-catch-then/example.js

When the code is run it produces:� �
Error: failure

at /u/stjs/promises/catch -then/example.js:1:41
at new Promise (<anonymous >)
at Object.<anonymous > (/u/stjs/promises/catch -then/example.js:1:1)
at Module._compile (internal/modules/cjs/loader.js :1151:30)
at Object.Module._extensions ..js \

(internal/modules/cjs/loader.js :1171:10)
at Module.load (internal/modules/cjs/loader.js :1000:32)
at Function.Module._load (internal/modules/cjs/loader.js :899:14)
at Function.executeUserEntryPoint [as runMain] \

(internal/modules/run_main.js :71:12)
at internal/main/run_main_module.js :17:47

undefined� �
Listing 3.47: x-catch-then/example.txt

1. Trace the order of execution.

2. Why is undefined printed at the end?

Head and tail

The Unix head command shows the first few lines of one or more files, while the tail command
shows the last few. Write programs head.js and tail.js that do the same things using promises
and async/await, so that:� �
node head.js 5 first.txt second.txt third.txt� �
prints the first 5 lines of each of the three files and:� �
node tail.js 5 first.txt second.txt third.txt� �
prints the last five lines of each file.

Histogram of line counts

Extend count-lines-with-stat-async.js to create a program lh.js that prints two columns of
output: the number of lines in one or more files and the number of files that are that long. For
example, if we run:

3.8 Exercises 47� �
node lh.js promises /*.*� �
the output might be:

Length Number of Files
1 7
3 3
4 3
6 7
8 2
12 2
13 1
15 1
17 2
20 1
24 1
35 2
37 3
38 1
171 1

Select matching lines

Using async and await, write a program called match.js‘ that finds and prints lines containing
a given string. For example:� �
node match.js Toronto first.txt second.txt third.txt� �
would print all of the lines from the three files that contain the word "Toronto".

Find lines in all files

Using async and await, write a program called in-all.js that finds and prints lines found in all
of its input files. For example:� �
node in-all.js first.txt second.txt third.txt� �
will print those lines that occur in all three files.

Find differences between two files

Using async and await, write a program called file-diff.js that compares the lines in two files
and shows which ones are only in the first file, which are only in the second, and which are in both.
For example, if left.txt contains:� �
some
people� �
and right.txt contains:

48 3 Asynchronous Programming� �
write
some
code� �
then:� �
node file -diff.js left.txt right.txt� �
would print:� �
2 code
1 people
* some
2 write� �
where 1, 2, and * show whether lines are in only the first or second file or are in both. Note that
the order of the lines in the file doesn’t matter.

Hint: you may want to use the Set class to store lines.

Trace file loading

Suppose we want are loading a YAML configuration file using the promisified version of the fs
library. In what order do the print statements in this test program appear and why?� �
import fs from 'fs -extra -promise '
import yaml from 'js -yaml '

const test = async () => {
const raw = await fs.readFileAsync('config.yml ', 'utf -8')
console.log('inside test , raw text ', raw)
const cooked = yaml.safeLoad(raw)
console.log('inside test , cooked configuration ', cooked)
return cooked

}

const result = test()
console.log('outside test , result is', result.constructor.name)
result.then(something => console.log('outside test we have ', something))� �

Listing 3.48: x-trace-load/example.js

Any and all

1. Add a method Pledge.any that takes an array of pledges and as soon as one of the pledges in
the array resolves, returns a single promise that resolves with the value from that pledge.

2. Add another method Pledge.all that takes an array of pledges and returns a single promise
that resolves to an array containing the final values of all of those pledges.

3.8 Exercises 49

This article6 may be helpful.

6https://2ality.com/2019/08/promise-combinators.html

https://2ality.com/2019/08/promise-combinators.html

4
Unit Testing

Testing software piece by piece

Terms defined: Singleton pattern, actual result (of test), assertion, caching, defensive
programming, design pattern, dynamic loading, error (in a test), exception handler,
expected result (of test), exploratory programming, fail (a test), fixture, global vari-
able, introspection, lifecycle, pass (a test), side effect, test runner, test subject, throw
(exception), unit test

We have written many small programs in the previous two chapters, but haven’t really tested
any of them. That’s OK for exploratory programming, but if our software is going to be used
instead of just read, we should try to make sure it works.

A tool for writing and running unit tests is a good first step. Such a tool should:

• find files containing tests;

• find the tests in those files;

• run the tests;

• capture their results; and

• report each test’s result and a summary of those results.

Our design is inspired by tools like Mocha1 and Jest2, which were in turn inspired by tools built
for other languages from the 1980s onward [Meszaros2007, Tudose2020].

4.1 How should we structure unit testing?
As in other unit testing frameworks, each test will be a function of zero arguments so that the
framework can run them all in the same way. Each test will create a fixture to be tested and
use assertions to compare the actual result against the expected result. The outcome can be
exactly one of:

• Pass: the test subject works as expected.

• Fail: something is wrong with the test subject.

1https://mochajs.org/
2https://jestjs.io/

51

https://mochajs.org/
https://jestjs.io/

52 4 Unit Testing

test subject

pass

failassertion

unexpected
exception

error

Figure 4.1: Running tests that can pass, fail, or contain errors.

• Error: something wrong in the test itself, which means we don’t know whether the test subject
is working properly or not.

To make this work, we need some way to distinguish failing tests from broken ones. Our solution
relies on the fact that exceptions are objects and that a program can use introspection to determine
the class of an object. If a test throws an exception whose class is assert.AssertionError,
then we will assume the exception came from one of the assertions we put in the test as a check
(Figure 4.1). Any other kind of assertion indicates that the test itself contains an error.

4.2 How can we separate registration, execution, and reporting?
To start, let’s use a handful of global variables to record tests and their results:� �
// State of tests.
const HopeTests = []
let HopePass = 0
let HopeFail = 0
let HopeError = 0� �

Listing 4.1: dry-run.js

We don’t run tests immediately because we want to wrap each one in our own exception
handler. Instead, the function hopeThat saves a descriptive message and a callback function that
implements a test in the HopeTest array.� �
// Record a single test for running later.
const hopeThat = (message , callback) => {

HopeTests.push([message , callback])
}� �

Listing 4.2: dry-run.js

4.2 How can we separate registration, execution, and reporting? 53

Independence

Because we’re appending tests to an array, they will be run in the order in which they are
registered, but we shouldn’t rely on that. Every unit test should work independently of every
other so that an error or failure in an early test doesn’t affect the result of a later one.

Finally, the function main runs all registered tests:� �
// Run all of the tests that have been asked for and report summary.
const main = () => {

HopeTests.forEach (([message , test]) => {
try {

test()
HopePass += 1

} catch (e) {
if (e instanceof assert.AssertionError) {

HopeFail += 1
} else {

HopeError += 1
}

}
})

console.log(`pass ${HopePass}`)
console.log(`fail ${HopeFail}`)
console.log(`error ${HopeError }`)

}� �
Listing 4.3: dry-run.js

If a test completes without an exception, it passes. If any of the assert calls inside the test raises
an AssertionError, the test fails, and if it raises any other exception, it’s an error. After all tests
are run, main reports the number of results of each kind.

Let’s try it out:� �
// Something to test (doesn 't handle zero properly).
const sign = (value) => {

if (value < 0) {
return -1

} else {
return 1

}
}

// These two should pass.
hopeThat('Sign of negative is -1', () => assert(sign(-3) === -1))
hopeThat('Sign of positive is 1', () => assert(sign (19) === 1))

// This one should fail.

54 4 Unit Testing

hopeThat('Sign of zero is 0', () => assert(sign (0) === 0))

// This one is an error.
hopeThat('Sign misspelled is error ', () => assert(sgn(1) === 1))

// Call the main driver.
main()� �

Listing 4.4: dry-run.js� �
pass 2
fail 1
error 1� �

Listing 4.5: dry-run.out

This simple "framework" does what it’s supposed to, but:

1. It doesn’t tell us which tests have passed or failed.

2. Those global variables should be consolidated somehow so that it’s clear they belong together.

3. It doesn’t discover tests on its own.

4. We don’t have a way to test things that are supposed to raise AssertionError. Putting assertions
into code to check that it is behaving correctly is called defensive programming; it’s a good
practice, but we should make sure those assertions are failing when they’re supposed to, just as
we should test our smoke detectors every once in a while.

4.3 How should we structure test registration?
The next version of our testing tool solves the first two problems in the original by putting the
testing machinery in a class. It uses the Singleton design pattern to ensure that only one object
of that class is ever created [Osmani2017]. Singletons are a way to manage global variables that
belong together like the ones we’re using to record tests and their results. As an extra benefit, if we
decide later that we need several copies of those variables, we can just construct more instances of
the class.

The file hope.js defines the class and exports one instance of it:� �
terse () {

return this.cases()
.map(([title , results]) => `${title}: ${results.length}`)
.join(' ')

}

verbose () {
let report = ''

4.3 How should we structure test registration? 55

Hope singleton

.todo

main program

Hope.test(...)

Hope.test(...)

Hope.test(...)

Hope.run(...)

creates

import hope

creates

runs all

Figure 4.2: Creating a singleton, recording tests, and running them.

let prefix = ''
for (const [title , results] of this.cases ()) {

report += `${prefix}${title}:`
prefix = '\n'
for (const r of results) {

report += `${prefix} ${r}`
}

}
return report

}

cases () {
return [

['passes ', this.passes],
['fails ', this.fails],
['errors ', this.errors]]

}� �
Listing 4.6: hope.js

This strategy relies on two things:

1. Node3 executes the code in a JavaScript module as it loads it, which means that it runs new
Hope() and exports the newly-created object.

2. Node caches modules so that a given module is only loaded once no matter how many times it
is imported. This ensures that new Hope() really is only called once.

Once a program has imported hope, it can call Hope.test to record a test for later execution
and Hope.run to execute all of the tests registered up until that point (Figure 4.2).

Finally, our Hope class can report results as both a terse one-line summary and as a detailed
listing. It can also provide the titles and results of individual tests so that if someone wants to
format them in a different way (e.g., as HTML) they can do so:� �

terse () {
return this.cases()

3https://nodejs.org/en/

https://nodejs.org/en/

56 4 Unit Testing

.map(([title , results]) => `${title}: ${results.length}`)

.join(' ')
}

verbose () {
let report = ''
let prefix = ''
for (const [title , results] of this.cases ()) {

report += `${prefix}${title}:`
prefix = '\n'
for (const r of results) {

report += `${prefix} ${r}`
}

}
return report

}

cases () {
return [

['passes ', this.passes],
['fails ', this.fails],
['errors ', this.errors]]

}� �
Listing 4.7: hope.js

Who’s calling?

Hope.test uses the caller4 module to get the name of the function that is registering a test.
Reporting the test’s name helps the user figure out where to start debugging; getting it via
introspection rather than requiring the user to pass the function’s name as a string reduces
typing and guarantees that what we report is accurate. Programmers will often copy, paste,
and modify tests; sooner or later (probably sooner) they will forget to modify the copy-and-
pasted function name being passed into Hope.test and will then lose time trying to figure
out why test_this is failing when the failure is actually in test_that.

4.4 How can we build a command-line interface for testing?
Most programmers don’t enjoy writing tests, so if we want them to do it, we have to make it as
painless as possible. A couple of import statements to get assert and hope and then one function
call per test is about as simple as we can make the tests themselves:

4https://www.npmjs.com/package/caller

https://www.npmjs.com/package/caller

4.4 How can we build a command-line interface for testing? 57� �
import assert from 'assert '
import hope from './hope.js'

hope.test('Sum of 1 and 2', () => assert ((1 + 2) === 3))� �
Listing 4.8: test-add.js

But that just defines the tests—how will we find them so that we can run them? One option is
to require people to import each of the files containing tests into another file:� �
// all -the -tests.js

import './test -add.js '
import './test -sub.js '
import './test -mul.js '
import './test -div.js '

Hope.run()
...� �
Here, all-the-tests.js imports other files so that they will register tests as a side effect via calls
to hope.test and then calls Hope.run to execute them. It works, but sooner or later (probably
sooner) someone will forget to import one of the test files.

A better strategy is to load test files dynamically. While import is usually written as a state-
ment, it can also be used as an async function that takes a path as a parameter and loads the
corresponding file. As before, loading files executes the code they contain, which registers tests as
a side effect:� �
import minimist from 'minimist '
import glob from 'glob '
import hope from './hope.js'

const main = async (args) => {
const options = parse(args)
if (options.filenames.length === 0) {

options.filenames = glob.sync(`${options.root }/**/ test -*.js `)
}
for (const f of options.filenames) {

await import(f)
}
hope.run()
const result = (options.output === 'terse ')

? hope.terse ()
: hope.verbose ()

console.log(result)
}

main(process.argv.slice (2))� �
Listing 4.9: pray.js

58 4 Unit Testing

By default, this program finds all files below the current working directory whose names match
the pattern test-*.js and uses terse output. Since we may want to look for files somewhere else,
or request verbose output, the program needs to handle command-line arguments.

The minimist5 module does this in a way that is consistent with Unix conventions. Given
command-line arguments after the program’s name (i.e., from process.argv[2] onward), it looks
for patterns like -x something and creates an object with flags as keys and values associated with
them.

Filenames in minimist

If we use a command line like pray.js -v something.js, then something.js becomes the
value of -v. To indicate that we want something.js added to the list of trailing filenames
associated with the special key _ (a single underscore), we have to write pray.js -v –
something.js. The double dash is a common Unix convention for signalling the end of pa-
rameters.

Our test runner is now complete, so we can try it out with some files containing tests that
pass, fail, and contain errors:� �
node pray.js -v� �

Listing 4.10: pray.sh� �
passes:

/u/stjs/unit -test/test -add.js::Sum of 1 and 2
/u/stjs/unit -test/test -sub.js:: Difference of 1 and 2

fails:
/u/stjs/unit -test/test -div.js:: Quotient of 1 and 0
/u/stjs/unit -test/test -mul.js:: Product of 1 and 2

errors:
/u/stjs/unit -test/test -missing.js::Sum of x and 0� �

Listing 4.11: pray.out

Infinity is allowed

test-div.js contains the line:� �
hope.test('Quotient of 1 and 0', () => assert ((1 / 0) === 0))� �

This test counts as a failure rather than an error because thinks the result of dividing by
zero is the special value Infinity rather than an arithmetic error.

Loading modules dynamically so that they can register something for us to call later is a common

5https://www.npmjs.com/package/minimist

https://www.npmjs.com/package/minimist

4.4 How can we build a command-line interface for testing? 59

pray.js

hope.js

test-add.js

test-sub.js

files variables

filenames ['test-add.js',
'test-sub.js']

hope

values

todo
passes
fails
errors

1 load

2 create

3 create

4 load

5
load

8

6 register

9 register

7 load

10 run

Figure 4.3: Lifecycle of dynamically-discovered unit tests.

pattern in many programming languages. Control flow goes back and forth between the framework
and the module being loaded as this happens so we must specify the lifecycle of the loaded modules
quite carefully. Figure 4.3 illustrates what span when a pair of files test-add.js and test-sub.js
are loaded by our framework:

1. pray loads hope.js.

2. Loading hope.js creates a single instance of the class Hope.

3. pray uses glob to find files with tests.

4. pray loads test-add.js using import as a function.

5. As test-add.js runs, it loads hope.js. Since hope.js is already loaded, this does not create a
new instance of Hope.

6. test-add.js uses hope.test to register a test (which does not run yet).

7. pray then loads test-sub.js...

8. ...which loads Hope...

9. ...then registers a test.

10. pray can now ask the unique instance of Hope to run all of the tests, then get a report from the
Hope singleton and display it.

60 4 Unit Testing

4.5 Exercises

Asynchronous globbing

Modify pray.js to use the asynchronous version of glob rather than glob.sync.

Timing tests

Install the microtime6 package and then modify the dry-run.js example so that it records and
reports the execution times for tests.

Approximately equal

1. Write a function assertApproxEqual that does nothing if two values are within a certain toler-
ance of each other but throws an exception if they are not:� �
throws exception
assertApproxEqual (1.0, 2.0, 0.01, 'Values are too far apart ')

does not throw
assertApproxEqual (1.0, 2.0, 10.0, 'Large margin of error ')� �

2. Modify the function so that a default tolerance is used if none is specified:� �
throws exception
assertApproxEqual (1.0, 2.0, 'Values are too far apart ')

does not throw
assertApproxEqual (1.0, 2.0, 'Large margin of error ', 10.0)� �

3. Modify the function again so that it checks the relative error instead of the absolute error.
(The relative error is the absolute value of the difference between the actual and expected value,
divided by the absolute value.)

Rectangle overlay

A windowing application represents rectangles using objects with four values: x and y are the
coordinates of the lower-left corner, while w and h are the width and height. All values are non-
negative: the lower-left corner of the screen is at (0, 0) and the screen’s size is WIDTHxHEIGHT.

1. Write tests to check that an object represents a valid rectangle.

2. The function overlay(a, b) takes two rectangles and returns either a new rectangle representing
the region where they overlap or null if they do not overlap. Write tests to check that overlay
is working correctly.

6https://www.npmjs.com/package/microtime

https://www.npmjs.com/package/microtime

4.5 Exercises 61

3. Do you tests assume that two rectangles that touch on an edge overlap or not? What about two
rectangles that only touch at a single corner?

Selecting tests

Modify pray.js so that if the user provides -s pattern or –select pattern then the program
only runs tests in files that contain the string pattern in their name.

Tagging tests

Modify hope.js so that users can optionally provide an array of strings to tag tests:� �
hope.test('Difference of 1 and 2',

() => assert ((1 - 2) === -1),
['math ', 'fast '])� �

Then modify pray.js so that if users specify either -t tagName or –tag tagName only tests
with that tag are run.

Mock objects

A mock object is a simplified replacement for part of a program whose behavior is easier to control
and predict than the thing it is replacing. For example, we may want to test that our program does
the right thing if an error occurs while reading a file. To do this, we write a function that wraps
fs.readFileSync:� �
const mockReadFileSync = (filename , encoding = 'utf -8') => {

return fs.readFileSync(filename , encoding)
}� �
and then modify it so that it throws an exception under our control. For example, if we define
MOCK_READ_FILE_CONTROL like this:� �
const MOCK_READ_FILE_CONTROL = [false , false , true , false , true]� �
then the third and fifth calls to mockReadFileSync throw an exception instead of reading data, as
do any calls after the fifth. Write this function.

Setup and teardown

Testing frameworks often allow programmers to specify a setup function that is to be run before
each test and a corresponding teardown function that is to be run after each test. (setup usually
re-creates complicated test fixtures, while teardown functions are sometimes needed to clean up
after tests, e.g., to close database connections or delete temporary files.)

Modify the testing framework in this chapter so that if a file of tests contains something like
this:� �
const createFixtures = () => {

...do something ...

62 4 Unit Testing

}

hope.setup(createFixtures)� �
then the function createFixtures will be called exactly once before each test in that file. Add a
similar way to register a teardown function with hope.teardown.

Multiple tests

Add a method hope.multiTest that allows users to specify multiple test cases for a function at
once. For example, this:� �
hope.multiTest('check all of these `, functionToTest , [

[['arg1a ', 'arg1b '], 'result1 '],
[['arg2a ', 'arg2b '], 'result2 '],
[['arg3a ', 'arg3b '], 'result3 ']

])� �
should be equivalent to this:� �
hope.test('check all of these 0',

() => assert(functionToTest('arg1a ', 'arg1b ') === 'result1 ')
)
hope.test('check all of these 1',

() => assert(functionToTest('arg2a ', 'arg2b ') === 'result2 ')
)
hope.test('check all of these 2',

() => assert(functionToTest('arg3a ', 'arg3b ') === 'result3 ')
)� �
Assertions for sets and maps

1. Write functions assertSetEqual and assertMapEqual that check whether two instances of Set
or two instances of Map are equal.

2. Write a function assertArraySame that checks whether two arrays have the same elements, even
if those elements are in different orders.

Testing promises

Modify the unit testing framework to handle async functions, so that:� �
hope.test('delayed test ', async () => {...})� �
does the right thing. (Note that you can use typeof to determine whether the object given to
hope.test is a function or a promise.)

5
File Backup

Archiving files with directory structure

Terms defined: Application Programming Interface, Coordinated Universal Time,
JavaScript Object Notation, SHA-1 hash, Time of check/time of use, collision, comma-
separated values, cryptographic hash function, handler, hash code, hash function, mock
object, pipe, race condition, stream, streaming API, timestamp, version control system

Now that we can test software we have something worth saving. A version control system
like Git1 keeps track of changes to files so that we can recover old versions if we want to. Its heart
is a way to archive files that:

1. records which versions of which files existed at the same time (so that we can go back to a
consistent previous state), and

2. stores any particular version of a file only once, so that we don’t waste disk space.

In this chapter we will build a tool for doing both tasks. It won’t do everything Git does: in
particular, it won’t let us create and merge branches. If you would like to know how that works,
please see Mary Rose Cook’s2 excellent Gitlet3 project.

5.1 How can we uniquely identify files?
To avoid storing redundant copies of files, we need a way to tell when two files contain the same
data. We can’t rely on names because files can be renamed or moved over time; we could compare
the files byte by byte, but a quicker way is to use a hash function that turns arbitrary data into
a fixed-length string of bits (Figure 5.1).

A hash function always produces the same hash code for a given input. A cryptographic
hash function has two extra properties:

1. The output depends on the entire input: changing even a single byte results in a different hash
code.

2. The outputs look like random numbers: they are unpredictable and evenly distributed (i.e., the
odds of getting any specific hash code are the same)

1https://git-scm.com/
2https://maryrosecook.com/
3http://gitlet.maryrosecook.com/

63

https://git-scm.com/
https://maryrosecook.com/
http://gitlet.maryrosecook.com/

64 5 File Backup

[123, 'blue', false]

[123, 'blur', false]

1001010111011110

0001101101010011

hash function

any small
change

completely different
result

Figure 5.1: How hash functions speed up lookup.

It’s easy to write a bad hash function, but very hard to write one that qualifies as cryptographic.
We will therefore use a library to calculate 160-bit SHA-1 hashes for our files. These are not random
enough to keep data secret from a patient, well-funded attacker, but that’s not what we’re using
them for: we just want hashes that are random to make collision extremely unlikely.

The Birthday Problem

The odds that two people share a birthday are 1/365 (ignoring February 29). The odds that
they don’t are therefore 364/365. When we add a third person, the odds that they don’t share a
birthday with either of the preceding two people are 363/365, so the overall odds that nobody
shares a birthday are (365/365)×(364/365)×(363/365). If we keep calculating, there’s a 50%
chance of two people sharing a birthday in a group of just 23 people, and a 99.9% chance with
70 people.

We can use the same math to calculate how many files we need to hash before there’s a
50% chance of a collision. Instead of 365 we use 2160 (the number of values that are 160 bits
long), and after checking Wikipedia4 and doing a few calculations with Wolfram Alpha5, we
calculate that we would need to have approximately 1024 files in order to have a 50% chance
of a collision. We’re willing to take that risk...

Node’s6 crypto7 module provides tools to create a SHA-1 hash. To use them, we create an
object that keeps track of the current state of the hashing calculations, tell it how we want to
encode (or represent) the hash value, and then feed it some bytes. When we are done, we call its
.end method and then use its .read method to get the final result:� �
import crypto from 'crypto '

// create a SHA1 hasher
const hash = crypto.createHash('sha1 ')

// encode as hex (rather than binary)
hash.setEncoding('hex ')

4https://en.wikipedia.org/wiki/Birthday_problem#A_simple_exponentiation
5http://wolframalpha.com
6https://nodejs.org/en/
7https://nodejs.org/api/crypto.html

https://en.wikipedia.org/wiki/Birthday_problem#A_simple_exponentiation
http://wolframalpha.com
https://nodejs.org/en/
https://nodejs.org/api/crypto.html

5.1 How can we uniquely identify files? 65

// send it some text
const text = process.argv [2]
hash.write(text)

// signal end of text
hash.end()

// display the result
const sha1sum = hash.read()
console.log(`SHA1 of "${text}" is ${sha1sum}`)� �

Listing 5.1: hash-text.js� �
node hash -text.js something� �

Listing 5.2: hash-text.sh� �
SHA1 of "something" is 1af17e73721dbe0c40011b82ed4bb1a7dbe3ce29� �

Listing 5.3: hash-text.out

Hashing a file instead of a fixed string is straightforward: we just read the file’s contents and
pass those characters to the hashing object:� �
import fs from 'fs '
import crypto from 'crypto '

const filename = process.argv [2]
const data = fs.readFileSync(filename , 'utf -8')

const hash = crypto.createHash('sha1 '). setEncoding('hex ')
hash.write(data)
hash.end()
const sha1sum = hash.read()

console.log(`SHA1 of "${filename }" is ${sha1sum}`)� �
Listing 5.4: hash-file.js� �

node hash -file.js hash -file.js� �
Listing 5.5: hash-file.sh� �

SHA1 of "hash -file.js" is c54c8ee3e576770d29ae2d0d73568e5a5c49eac0� �
Listing 5.6: hash-file.out

However, it is more efficient to process the file as a stream:

66 5 File Backup

hash

'data'
data

data

data

'finish'

callback(data)

callback()

finish

Figure 5.2: Processing files as streams of chunks.

� �
import fs from 'fs '
import crypto from 'crypto '

const filename = process.argv [2]
const hash = crypto.createHash('sha1 '). setEncoding('hex ')
fs.createReadStream(filename).pipe(hash)
hash.on('finish ', () => {

const final = hash.read()
console.log('final ', final)

})
console.log('program ends ')� �

Listing 5.7: hash-stream.js� �
node hash -stream.js hash -stream.js� �

Listing 5.8: hash-stream.sh� �
program ends
final dc9e6c231e243860dace2dbf52845b121062b60e� �

Listing 5.9: hash-stream.out

This kind of interface is called a streaming API because it is designed to process a stream of data
one chunk at a time rather than requiring all of the data to be in memory at once. Many applications
use streams so that programs don’t have to read entire (possibly large) files into memory.

To start, this program asks the fs library to create a reading stream for a file and to pipe the
data from that stream to the hashing object (Figure 5.2). It then tells the hashing object what
to do when there is no more data by providing a handler for the "finish" event. This is called
asynchronously: as the output shows, the main program ends before the task handling the end of
data is scheduled and run. Most programs also provide a handler for "data" events to do something
with each block of data as it comes in; the hash object in our program does that for us.

5.2 How can we back up files? 67

0104.csv

0105.csv

0106.csv

top.txt

bottom.txt

abc123

def456

top.txt

renamed.txt

abc123

def456

sub/new.txt

renamed.txt

ghi789

def456

abc123.bck

def456.bck

ghi789.bck

Figure 5.3: Organization of backup file storage.

5.2 How can we back up files?
Many files only change occasionally after they’re created, or not at all. It would be wasteful for a
version control system to make copies each time the user wanted to save a snapshot of a project,
so instead our tool will copy each unique file to something like abcd1234.bck, where abcd1234 is
a hash of the file’s contents. It will then store a data structure that records the filenames and hash
keys for each snapshot. The hash keys tell it which unique files are part of the snapshot, while the
filenames tell us what each file’s contents were called when the snapshot was made (since files can
be moved or renamed). To restore a particular snapshot, all we have to do is copy the saved .bck
files back to where they were (Figure 5.3).

We can build the tools we need to do this uses promises (Chapter 3). The main function creates
a promise that uses the asynchronous version of glob to find files and then:

1. checks that entries in the list are actually files;

2. reads each file into memory; and

3. calculates hashes for those files.� �
import fs from 'fs -extra -promise '
import glob from 'glob -promise '
import crypto from 'crypto '

const hashExisting = (rootDir) => {
const pattern = `${rootDir }/**/* `
return new Promise ((resolve , reject) => {

glob(pattern , {})
.then(matches => Promise.all(

matches.map(path => statPath(path))))
.then(pairs => pairs.filter(

68 5 File Backup

([path , stat]) => stat.isFile ()))
.then(pairs => Promise.all(

pairs.map (([path , stat]) => readPath(path))))
.then(pairs => Promise.all(

pairs.map (([path , content]) => hashPath(path , content))))
.then(pairs => resolve(pairs))
.catch(err => reject(err))

})
}� �

Listing 5.10: hash-existing-promise.js

This function uses Promise.all to wait for the operations on all of the files in the list to complete
before going on to the next step. A different design would combine stat, read, and hash into a single
step so that each file would be handled independently and use one Promise.all at the end to bring
them all together.

The first two helper functions that hashExisting relies on wrap asynchronous operation in
promises:� �
const statPath = (path) => {

return new Promise ((resolve , reject) => {
fs.statAsync(path)

.then(stat => resolve ([path , stat]))

.catch(err => reject(err))
})

}

const readPath = (path) => {
return new Promise ((resolve , reject) => {

fs.readFileAsync(path , 'utf -8')
.then(content => resolve ([path , content]))
.catch(err => reject(err))

})
}� �

Listing 5.11: hash-existing-promise.js

The final helper function calculates the hash synchronously, but we can use Promise.all to
wait on those operations finishing anyway:� �
const hashPath = (path , content) => {

const hasher = crypto.createHash('sha1 '). setEncoding('hex ')
hasher.write(content)
hasher.end()
return [path , hasher.read ()]

}� �
Listing 5.12: hash-existing-promise.js

Let’s try running it:� �
import hashExisting from './hash -existing -promise.js'

5.2 How can we back up files? 69

const root = process.argv [2]
hashExisting(root).then(pairs => pairs.forEach(

([path , hash]) => console.log(path , hash)
))� �

Listing 5.13: run-hash-existing-promise.js� �
node run -hash -existing -promise.js . | fgrep -v test/ | fgrep -v '~'� �

Listing 5.14: run-hash-existing-promise.sh� �
./ backup.js 11422489 e11be3d8ff76278503457665f6152ebe
./check -existing -files.js 66 b933cf9e792e9a9204171d04e0f8b530ec3f4f
./ figures/hash -function.pdf 0eb82de379a95ee2be3f00b38c0102e2f2f8170e
./ figures/hash -function.svg 563996575 d581f2a08e3e954d7faba4d189d0773
./ figures/mock -fs.pdf 0b3bba44e69122ee53bcc9d777c186c84b7c2ff2
...
./x-from -to.md f0f63b3576042dfc0050029ddfcccc3c42fe275d
./x-io-streams.md 1fb4d8b7785c5e7b2f1e29588e2ba28d101ced1a
./x-json -manifests.md 223 e0e4167acc6d4d81b76ba1287b90234c95e22
./x-mock -hashes.md 580 edfc0cb8eaca4f3700307002ae10ee97af8d2
./x-pre -commit.md b7d945af4554fc0f64b708fe735417bee8b33eef� �

Listing 5.15: run-hash-existing-promise.slice.out

The code we have written is clearer than it would be with callbacks (try rewriting it if you
don’t believe this) but the layer of promises around everything still obscures its meaning. The same
operations are easier to read when written using async and await:� �
const statPath = async (path) => {

const stat = await fs.statAsync(path)
return [path , stat]

}

const readPath = async (path) => {
const content = await fs.readFileAsync(path , 'utf -8')
return [path , content]

}

const hashPath = (path , content) => {
const hasher = crypto.createHash('sha1 '). setEncoding('hex ')
hasher.write(content)
hasher.end()
return [path , hasher.read ()]

}

const hashExisting = async (rootDir) => {
const pattern = `${rootDir }/**/* `
const options = {}

70 5 File Backup

const matches = await glob(pattern , options)
const stats = await Promise.all(matches.map(path => statPath(path)))
const files = stats.filter (([path , stat]) => stat.isFile ())
const contents = await Promise.all(

files.map (([path , stat]) => readPath(path)))
const hashes = contents.map(

([path , content]) => hashPath(path , content))
return hashes

}� �
Listing 5.16: hash-existing-async.js

This version creates and resolves exactly the same promises as the previous one, but those promises
are created for us automatically by Node. To check that it works, let’s run it for the same input
files:� �
import hashExisting from './hash -existing -async.js'

const root = process.argv [2]
hashExisting(root).then(

pairs => pairs.forEach (([path , hash]) => console.log(path , hash)))� �
Listing 5.17: run-hash-existing-async.js� �

node run -hash -existing -async.js . | fgrep -v test/ | fgrep -v '~'� �
Listing 5.18: run-hash-existing-async.sh� �

./ backup.js 11422489 e11be3d8ff76278503457665f6152ebe

./check -existing -files.js 66 b933cf9e792e9a9204171d04e0f8b530ec3f4f

./ figures/hash -function.pdf 0eb82de379a95ee2be3f00b38c0102e2f2f8170e

./ figures/hash -function.svg 563996575 d581f2a08e3e954d7faba4d189d0773

./ figures/mock -fs.pdf 0b3bba44e69122ee53bcc9d777c186c84b7c2ff2

...

./x-from -to.md f0f63b3576042dfc0050029ddfcccc3c42fe275d

./x-io-streams.md 1fb4d8b7785c5e7b2f1e29588e2ba28d101ced1a

./x-json -manifests.md 223 e0e4167acc6d4d81b76ba1287b90234c95e22

./x-mock -hashes.md 580 edfc0cb8eaca4f3700307002ae10ee97af8d2

./x-pre -commit.md b7d945af4554fc0f64b708fe735417bee8b33eef� �
Listing 5.19: run-hash-existing-async.slice.out

5.3 How can we track which files have already been backed up?
The second part of our backup tool keeps track of which files have and haven’t been backed up
already. It stores backups in a directory that contains backup files like abcd1234.bck and files

5.3 How can we track which files have already been backed up? 71

describing the contents of particular snapshots. The latter are named ssssssssss.csv, where
ssssssssss is the UTC timestamp of the backup’s creation and the .csv extension indicates
that the file is formatted as comma-separated values. (We could store these files as JSON, but
CSV is easier for people to read.)

Time of check/time of use

Our naming convention for index files will fail if we try to create more than one backup per
second. This might seem very unlikely, but many faults and security holes are the result of
programmers assuming things weren’t going to happen.

We could try to avoid this problem by using a two-part naming scheme ssssssss-a.csv,
ssssssss-b.csv, and so on, but this leads to a race condition called time of check/time
of use. If two users run the backup tool at the same time, they will both see that there isn’t
a file (yet) with the current timestamp, so they will both try to create the first one.

� �
import glob from 'glob -promise '
import path from 'path '

const findNew = async (rootDir , pathHashPairs) => {
const hashToPath = pathHashPairs.reduce ((obj , [path , hash]) => {

obj[hash] = path
return obj

}, {})

const pattern = `${rootDir }/*.bck `
const options = {}
const existingFiles = await glob(pattern , options)

existingFiles.forEach(filename => {
const stripped = path.basename(filename). replace (/\. bck$/, '')
delete hashToPath[stripped]

})

return hashToPath
}

export default findNew� �
Listing 5.20: check-existing-files.js

To test our program, let’s manually create testing directories with manufactured (shortened)
hashes:� �
tree --charset unicode test� �

Listing 5.21: tree-test.sh

72 5 File Backup� �
test
|-- bck -0-csv -0
|-- bck -1-csv -1
| |-- 0001. csv
| `-- abcd1234.bck
|-- bck -4-csv -2
| |-- 0001. csv
| |-- 3028. csv
| |-- 3456 cdef.bck
| |-- abcd1234.bck
| `-- bcde2345.bck
|-- test -backup.js
|-- test -find -mock.js
`-- test -find.js

3 directories , 10 files� �
Listing 5.22: tree-test.out

We use Mocha8 to manage our tests. Every test is an async function; Mocha automatically
waits for them all to complete before reporting results. To run them, we add the line:� �
"test": "mocha */test/test -*.js"� �
in the scripts section of our project’s package.json file so that when we run npm run test,
Mocha looks for files in test sub-directories of the directories holding our lessons.

Here are our first few tests:� �
import assert from 'assert '

import findNew from '../check -existing -files.js'

describe('pre -existing hashes and actual filesystem ', () => {
it('finds no pre -existing files when none given or exist ', async () => {

const expected = {}
const actual = await findNew('file -backup/test/bck -0-csv -0', [])
assert.deepStrictEqual(expected , actual ,

'Expected no files ')
})

it('finds some files when one is given and none exist ', async () => {
const check = [['somefile.txt ', '9876fedc ']]
const expected = { '9876fedc ': 'somefile.txt ' }
const actual = await findNew('file -backup/test/bck -0-csv -0', check)
assert.deepStrictEqual(expected , actual ,

'Expected one file ')
})

it('finds nothing needs backup when there is a match ', async () => {

8https://mochajs.org/

https://mochajs.org/

5.4 How can we test code that modifies files? 73

const check = [['alpha.js ', 'abcd1234 ']]
const expected = {}
const actual = await findNew('file -backup/test/bck -1-csv -1', check)
assert.deepStrictEqual(expected , actual ,

'Expected no files ')
})

it('finds something needs backup when there is a mismatch ', async () => {
const check = [['alpha.js ', 'a1b2c3d4 ']]
const expected = { a1b2c3d4: 'alpha.js ' }
const actual = await findNew('file -backup/test/bck -1-csv -1', check)
assert.deepStrictEqual(expected , actual ,

'Expected one file ')
})

it('finds mixed matches ', async () => {
const check = [

['matches.js', '3456cdef '],
['matches.txt ', 'abcd1234 '],
['mismatch.txt ', '12345678 ']

]
const expected = { 12345678: 'mismatch.txt ' }
const actual = await findNew('file -backup/test/bck -4-csv -2', check)
assert.deepStrictEqual(expected , actual ,

'Expected one file ')
})

})� �
Listing 5.23: test/test-find.js

and here is Mocha’s report:� �
> stjs@1 .0.0 test
> mocha */test/test -*.js "-g" "pre -existing hashes"

sh: mocha: command not found� �
Listing 5.24: test-check-filesystem.out

5.4 How can we test code that modifies files?
The final thing our tool needs to do is copy the files that need copying and create a new index file.
The code itself will be relatively simple, but testing will be complicated by the fact that our tests
will need to create directories and files before they run and then delete them afterward (so that
they don’t contaminate subsequent tests).

A better approach is to use a mock object instead of the real filesystem. A mock object has
the same interface as the function, object, class, or library that it replaces, but is designed to be

74 5 File Backup

write()

create()

delete()

read()

program

fs

hard drive

mock-fs

memory

Figure 5.4: Using a mock filesystem to simplify testing.

used solely for testing. Node’s mock-fs9 library provides the same functions as the fs library, but
stores everything in memory (Figure 5.4). This prevents our tests from accidentally disturbing the
filesystem, and also makes tests much faster (since in-memory operations are thousands of times
faster than operations that touch the disk).

We can create a mock filesystem by giving the library a JSON description of the files and what
they should contain:� �
import assert from 'assert '
import mock from 'mock -fs'

import findNew from '../check -existing -files.js'

describe('checks for pre -existing hashes using mock filesystem ', () => {
beforeEach (() => {

mock({
'bck -0-csv -0': {},
'bck -1-csv -1': {

'0001.csv ': 'alpha.js ,abcd1234 ',
'abcd1234.bck ': 'alpha.js content '

},
'bck -4-csv -2': {

'0001.csv ': ['alpha.js ,abcd1234 ',
'beta.txt ,bcde2345 ']. join('\n'),

'3024.csv ': ['alpha.js ,abcd1234 ',
'gamma.png ,3456 cdef ',
'subdir/renamed.txt ,bcde2345 ']. join('\n'),

'3456 cdef.bck ': 'gamma.png content ',
'abcd1234.bck ': 'alpha content ',
'bcde2345.bck ': 'beta.txt became subdir/renamed.txt '

}
})

})

afterEach (() => {
mock.restore ()

})

})

9https://www.npmjs.com/package/mock-fs

https://www.npmjs.com/package/mock-fs

5.4 How can we test code that modifies files? 75

� �
Listing 5.25: test/test-find-mock.js

Mocha automatically calls beforeEach before running each tests, and afterEach after each tests
completes (which is yet another protocol). All of the tests stay exactly the same, and since mock-fs
replaces the functions in the standard fs library with its own, nothing in our application needs to
change either.

We are finally ready to write the program that actually backs up files:� �
import fs from 'fs -extra -promise '

import hashExisting from './hash -existing -async.js'
import findNew from './check -existing -files.js'

const backup = async (src , dst , timestamp = null) => {
if (timestamp === null) {

timestamp = Math.round((new Date ()). getTime () / 1000)
}
timestamp = String(timestamp). padStart (10, '0')

const existing = await hashExisting(src)
const needToCopy = await findNew(dst , existing)
await copyFiles(dst , needToCopy)
await saveManifest(dst , timestamp , existing)

}

const copyFiles = async (dst , needToCopy) => {
const promises = Object.keys(needToCopy).map(hash => {

const srcPath = needToCopy[hash]
const dstPath = `${dst}/${hash}.bck `
fs.copyFileAsync(srcPath , dstPath)

})
return Promise.all(promises)

}

const saveManifest = async (dst , timestamp , pathHash) => {
pathHash = pathHash.sort()
const content = pathHash.map(

([path , hash]) => `${path},${hash}`).join('\n')
const manifest = `${dst}/${timestamp }.csv `
fs.writeFileAsync(manifest , content , 'utf -8')

}

export default backup� �
Listing 5.26: backup.js

The tests for this are more complicated than tests we have written previously because we want
to check with actual file hashes. Let’s set up some fixtures to run tests on:� �

76 5 File Backup

import backup from '../ backup.js '

const hashString = (data) => {
const hasher = crypto.createHash('sha1 '). setEncoding('hex ')
hasher.write(data)
hasher.end()
return hasher.read()

}

const Contents = {
aaa: 'AAA ',
bbb: 'BBB ',
ccc: 'CCC '

}

const Hashes = Object.keys(Contents). reduce ((obj , key) => {
obj[key] = hashString(Contents[key])
return obj

}, {})

const Fixture = {
source: {

'alpha.txt ': Contents.aaa ,
'beta.txt ': Contents.bbb ,
gamma: {

'delta.txt ': Contents.ccc
}

},
backup: {}

}

const InitialBackups = Object.keys(Hashes). reduce ((set , filename) => {
set.add(`backup/${Hashes[filename]}.bck `)
return set

}, new Set ())� �
Listing 5.27: test/test-backup.js

and then run some tests:� �
describe('check entire backup process ', () => {

beforeEach (() => {
mock(Fixture)

})

afterEach (() => {
mock.restore ()

})

it('creates an initial CSV manifest ', async () => {
await backup('source ', 'backup ', 0)

5.4 How can we test code that modifies files? 77

assert.strictEqual ((await glob('backup /* ')). length , 4,
'Expected 4 files ')

const actualBackups = new Set(await glob('backup /*.bck '))
assert.deepStrictEqual(actualBackups , InitialBackups ,

'Expected 3 backup files ')

const actualManifests = await glob('backup /*.csv ')
assert.deepStrictEqual(actualManifests , ['backup /0000000000. csv '],

'Expected one manifest ')
})

it('does not duplicate files unnecessarily ', async () => {
await backup('source ', 'backup ', 0)
assert.strictEqual ((await glob('backup /* ')). length , 4,

'Expected 4 files after first backup ')

await backup('source ', 'backup ', 1)
assert.strictEqual ((await glob('backup /* ')). length , 5,

'Expected 5 files after second backup ')
const actualBackups = new Set(await glob('backup /*.bck '))
assert.deepStrictEqual(actualBackups , InitialBackups ,

'Expected 3 backup files after second backup ')

const actualManifests = (await glob('backup /*.csv ')). sort()
assert.deepStrictEqual(actualManifests ,

['backup /0000000000. csv ', 'backup /0000000001. csv '],
'Expected two manifests ')

})

it('adds a file as needed ', async () => {
await backup('source ', 'backup ', 0)
assert.strictEqual ((await glob('backup /* ')). length , 4,

'Expected 4 files after first backup ')

await fs.writeFileAsync('source/newfile.txt ', 'NNN ')
const hashOfNewFile = hashString('NNN ')

await backup('source ', 'backup ', 1)
assert.strictEqual ((await glob('backup /* ')). length , 6,

'Expected 6 files after second backup ')
const expected = new Set(InitialBackups)

.add(`backup/${hashOfNewFile }.bck `)
const actualBackups = new Set(await glob('backup /*.bck '))
assert.deepStrictEqual(actualBackups , expected ,

'Expected 4 backup files after second backup ')

const actualManifests = (await glob('backup /*.csv ')). sort()
assert.deepStrictEqual(actualManifests ,

78 5 File Backup

['backup /0000000000. csv ', 'backup /0000000001. csv '],
'Expected two manifests ')

})
})� �

Listing 5.28: test/test-backup.js� �
> stjs@1 .0.0 test
> mocha */test/test -*.js "-g" "check entire backup process"

check entire backup process
X creates an initial CSV manifest
X does not duplicate files unnecessarily
X adds a file as needed

3 passing (18ms)� �
Listing 5.29: test-backup.out

5.5 Design for test
One of the best ways—maybe the best way—to evaluate software design is by thinking about
testability [Feathers2004]. We were able to use a mock filesystem instead of a real one because
the filesystem has a well-defined API that is provided to us in a single library, so replacing
it is a matter of changing one thing in one place. If you have to change several parts of your
code in order to test it, the code is telling you to consolidate those parts into one component.

5.6 Exercises

Odds of collision

If hashes were only 2 bits long, then the chances of collision with each successive file assuming no
previous collision are:

5.6 Exercises 79

Number of Files Odds of Collision
1 0%
2 25%
3 50%
4 75%
5 100%

A colleague of yours says this means that if we hash four files, there’s only a 75% chance of any
collision occurring. What are the actual odds?

Streaming I/O

Write a small program using fs.createReadStream and fs.createWriteStream that copies a file
piece by piece instead of reading it into memory and then writing it out again.

Sequencing backups

Modify the backup program so that manifests are numbered sequentially as 00000001.csv,
00000002.csv, and so on rather than being timestamped. Why doesn’t this solve the time of
check/time of use race condition mentioned earlier.

JSON manifests

1. Modify backup.js so that it can save JSON manifests as well as CSV manifests based on a
command-line flag.

2. Write another program called migrate.js that converts a set of manifests from CSV to JSON.
(The program’s name comes from the term data migration.)

3. Modify backup.js programs so that each manifest stores the user name of the person who
created it along with file hashes, and then modify migrate.js to transform old files into the
new format.

Testing line counting

Write tests for the line-counting functions of Chapter 3 using Mocha and mock-fs. Did you find
(at least) two bugs?

Mock hashes

1. Modify the file backup program so that it uses a function called ourHash to hash files.

2. Create a replacement that returns some predictable value, such as the first few characters of the
data.

3. Rewrite the tests to use this function.

How did you modify the main program so that the tests could control which hashing function
is used?

80 5 File Backup

Comparing manifests

Write a program compare-manifests.js that reads two manifest files and reports:

• Which files have the same names but different hashes (i.e., their contents have changed).

• Which files have the same hashes but different names (i.e., they have been renamed).

• Which files are in the first hash but neither their names nor their hashes are in the second (i.e.,
they have been deleted).

• Which files are in the second hash but neither their names nor their hashes are in the first (i.e.,
they have been added).

From one state to another

1. Write a program called from-to.js that takes the name of a directory and the name of a manifest
file as its command-line arguments, then adds, removes, and/or renames files in the directory
to restore the state described in the manifest. The program should only perform file operations
when it needs to, e.g., it should not delete a file and re-add it if the contents have not changed.

2. Write some tests for from-to.js using Mocha and mock-fs.

File history

1. Write a program called file-history.js that takes the name of a file as a command-line
argument and displays the history of that file by tracing it back in time through the available
manifests.

2. Write tests for your program using Mocha and mock-fs.

Pre-commit hooks

Modify backup.js to load and run a function called preCommit from a file called pre-commit.js
stored in the root directory of the files being backed up. If preCommit returns true, the backup
proceeds; if it returns false or throws an exception, no backup is created.

6
Data Tables

Storing and manipulating tables efficiently

Terms defined: JavaScript Object Notation, SQL, column-major storage, data frame,
garbage collection, heterogeneous, homogeneous, immutable, row-major storage, tagged
data, test harness

Chapter 2 said that operations in memory are thousands of times faster than operations that
touch the filesystem, but what about different in-memory operations—how do they compare with
each other? Putting it another way, how can we tell which of several designs is going to be the most
efficient?

The best answer is to conduct some experiments. To see how to do this, we will take a look
several ways to implement data tables with one or more named columns and zero or more rows. Each
row has one value for each column, and all the values in a column have the same type (Figure 6.1).
Data tables appear over and over again in programming, from spreadsheets and databases to the
data frames in R’s tidyverse1 packages, Python’s2 Pandas3 library, or the DataForge4 library for
JavaScript [Davis2018].

The key operations on data tables are those provided by SQL: filter, select, summarize, and
join. These can be implemented in about five hundred lines of code, but their performance depends
on how the data table is stored.

Site Month Licenses
TO 2021-03 416
EY 2021-03 78
TO 2021-04 373
SC 2021-04 61
EY 2021-04 55

column names

columns

rows

text date numeric

data types

Figure 6.1: The structure of a data table.

1https://www.tidyverse.org/
2https://www.python.org/
3https://pandas.pydata.org/
4http://www.data-forge-js.com/

81

https://www.tidyverse.org/
https://www.python.org/
https://pandas.pydata.org/
http://www.data-forge-js.com/

82 6 Data Tables

Site Month Licenses
TO 2021-03 416
EY 2021-03 78
TO 2021-04 373
SC 2021-04 61
EY 2021-04 55

conceptual

TO 2021-03 416 EY 2021-03 78

row-major storage

TO 2021-03 416EY 2021-03 78

column-major storage

Figure 6.2: Row-major storage vs. column-major storage for data tables.

6.1 How can we implement data tables?
One way to store a table is row-major order, in which the values in each row are stored together
in memory. This is sometimes also called heterogeneous storage because each "unit" of storage
can contain values of different types. We can implement this design in JavaScript using an array of
objects, each of which has the same keys (Figure 6.2).

Another option is column-major or homogeneous order, in which all the values in a column
are stored together. In JavaScript, this could be implemented using an object whose members are
all arrays of the same length.

To find out which is better we will construct one of each, try some operations, record their
execution times and memory use, and then compare them. Crucially, the answer will depend on
both the implementations themselves and on what mix of operations we measure. For example, if
one strategy works better for filter and another for select, the ratio of filters to selects may determine
which is "best".

Immutability

All of our implementations will treat each data table as immutable: once we have created
it, we will not modify its contents. This doesn’t actually have much impact on performance
an makes the programming easier and safer, since shared data structures are a rich source of
bugs.

For our first experiment, let’s build a row-major table with some number of columns. To keep
it simple, we will repeat the values 0, 1, and 2 to fill the table.� �
export const buildRows = (nRows , labels) => {

const result = []
for (let iR = 0; iR < nRows; iR += 1) {

const row = {}
labels.forEach(label => {

row[label] = iR
})
result.push(row)

}

6.1 How can we implement data tables? 83

{ site: 'TO', month: '2021-03', licenses: 416 }
{ site: 'EY', month: '2021-03', licenses: 78 }
{ site: 'TO', month: '2021-04', licenses: 373 }
{ site: 'SC', month: '2021-04', licenses: 61 }

[

]

{ site: 'TO', month: '2021-03', licenses: 416 }

{ site: 'TO', month: '2021-04', licenses: 373 }

[

]

{ site: 'TO', licenses: 416 }
{ site: 'EY', licenses: 78 }
{ site: 'TO', licenses: 373 }
{ site: 'SC', licenses: 61 }

[

]

filter

select

Figure 6.3: Operations on row-major data tables.

return result
}� �

Listing 6.1: build.js

Next, we write filter and select for tables laid out this way. We need to provide a callback
function to filter to determine which rows to keep like the callback for Array.filter; for selecting
columns, we provide a list of the keys that identify the columns we want to keep. We expect filtering
to be relatively fast, since it is recycling rows, while selecting should be relatively slow because we
have to construct a new set of arrays (Figure 6.3).� �
const rowFilter = (table , func) => {

return table.filter(row => func(row))
}

const rowSelect = (table , toKeep) => {
return table.map(row => {

const newRow = {}
toKeep.forEach(label => {

newRow[label] = row[label]
})
return newRow

})
}� �

Listing 6.2: table-performance.js

Now let’s do the same for column-major storage. Building the object that holds the columns is
straightforward:� �
export const buildCols = (nRows , labels) => {

const result = {}

84 6 Data Tables

labels.forEach(label => {
result[label] = []
for (let iR = 0; iR < nRows; iR += 1) {

result[label].push(iR)
}

})
return result

}� �
Listing 6.3: build.js

Filtering is more complex because the values in each row are scattered across several arrays, but
selecting is just a matter of recycling the arrays we want in the new table. We expect selecting to
be relatively fast, since only the references to the columns need to be copied, but filtering will be
relatively slow since we are constructing multiple new arrays (Figure 6.4).� �
const colFilter = (table , func) => {

const result = {}
const labels = Object.keys(result)
labels.forEach(label => {

result[label] = []
})
for (let iR = 0; iR < table.label_1.length; iR += 1) {

if (func(table , iR)) {
labels.forEach(label => {

result[label].push(table[label][iR])
})

}
}
return result

}

const colSelect = (table , toKeep) => {
const result = {}
toKeep.forEach(label => {

result[label] = table[label]
})
return result

}� �
Listing 6.4: table-performance.js

Not quite polymorphic

Our tests would be simpler to write if the two versions of filter and select took exactly the
same parameters, but the row-testing functions for filter are different because of the differ-
ences in the ways the tables are stored. We could force them to be the same by (for example)
packing the values for each row in the column-major implementation into a temporary object

6.2 How can we test the performance of our implementations? 85

site: ['TO', 'EY', 'TO', 'SC', ...]
month: ['2021-03', '2021-03', '2021-04', '2021-04', ...]
licenses: [416, 78, 373, 61, ...]

{

}

select

filter

site: ['TO', 'TO', ...]
month: ['2021-03', '2021-04', ...]
licenses: [416, 373, ...]

{

}

site: ['TO', 'EY', 'TO', 'SC', ...]

licenses: [416, 78, 373, 61, ...]

{

}

Figure 6.4: Operations on column-major data tables.

and passing that to the same filtering function we used for the row-major implementation, but
that extra work would bias the performance comparison in row-major’s favor.

6.2 How can we test the performance of our implementations?
Now that we have our tables and operations, we can build a test harness to run those operations
on data tables of varying sizes. We arbitrarily decide to keep half of the columns and one-third of
the rows; these ratios will affect our decision about which is better, so if we were doing this for a
real application we would test what happens as these fractions vary. And as we said earlier, the
relative performance will also depend on the how many filters we do for each select; our balance
should be based on data from whatever application we intend to support.

Our performance measurement program looks like this:� �
const RANGE = 3

const main = () => {
const nRows = parseInt(process.argv [2])
const nCols = parseInt(process.argv [3])
const filterPerSelect = parseFloat(process.argv [4])

const labels = [... Array(nCols).keys ()]. map(i => `label_${i + 1}`)
const someLabels = labels.slice(0, Math.floor(labels.length / 2))
assert(someLabels.length > 0,

'Must have some labels for select (array too short)')

const [rowTable , rowSize , rowHeap] = memory(buildRows , nRows , labels)
const [colTable , colSize , colHeap] = memory(buildCols , nRows , labels)

const rowFilterTime =
time(rowFilter , rowTable ,

row => ((row.label_1 % RANGE) === 0))

86 6 Data Tables

const rowSelectTime =
time(rowSelect , rowTable , someLabels)

const colFilterTime =
time(colFilter , colTable ,

(table , iR) => ((table.label_1[iR] % RANGE) === 0))
const colSelectTime =

time(colSelect , colTable , someLabels)

const ratio = calculateRatio(filterPerSelect ,
rowFilterTime , rowSelectTime ,
colFilterTime , colSelectTime)

const result = {
nRows ,
nCols ,
filterPerSelect ,
rowSize ,
rowHeap ,
colSize ,
colHeap ,
rowFilterTime ,
rowSelectTime ,
colFilterTime ,
colSelectTime ,
ratio

}
console.log(yaml.safeDump(result))

}� �
Listing 6.5: table-performance.js

The functions that actually do the measurements use the microtime5 library to get mi-
crosecond level timing because JavaScript’s Date only gives us millisecond-level resolution. We
use object-sizeof6 to estimate memory how much memory our structures require; we also call
process.memoryUsage() and look at the heapUsed value to see how much memory Node7 is using
while the program runs, but that may be affected by garbage collection and a host of other
factors outside our control.� �
const memory = (func , ... params) => {

const before = process.memoryUsage ()
const result = func (... params)
const after = process.memoryUsage ()
const heap = after.heapUsed - before.heapUsed
const size = sizeof(result)
return [result , size , heap]

}

5https://www.npmjs.com/package/microtime
6https://www.npmjs.com/package/object-sizeof
7https://nodejs.org/en/

https://www.npmjs.com/package/microtime
https://www.npmjs.com/package/object-sizeof
https://nodejs.org/en/

6.2 How can we test the performance of our implementations? 87

const time = (func , ... params) => {
const before = microtime.now()
func (... params)
const after = microtime.now()
return after - before

}

const calculateRatio = (f2S , rFilterT , rSelectT , cFilterT , cSelectT) => {
return ((f2S * rFilterT) + rSelectT) / ((f2S * cFilterT) + cSelectT)

}� �
Listing 6.6: table-performance.js

Let’s run our program for a table with 100 rows and 3 columns and a 3:1 ratio of filter to select:� �
node table -performance.js 100 3 3� �

Listing 6.7: table-performance-100-03-03.sh� �
nRows: 100
nCols: 3
filterPerSelect: 3
rowSize: 6600
rowHeap: 26512
colSize: 2442
colHeap: 8536
rowFilterTime: 75
rowSelectTime: 111
colFilterTime: 137
colSelectTime: 48
ratio: 0.7320261437908496� �

Listing 6.8: table-performance-100-03-03.out

What if we increase the table size to 10,000 rows by 30 columns with the same 3:1 filter/select
ratio?� �
nRows: 10000
nCols: 30
filterPerSelect: 3
rowSize: 7020000
rowHeap: 18392064
colSize: 2400462
colHeap: -3473800
rowFilterTime: 2929
rowSelectTime: 15863
colFilterTime: 4529
colSelectTime: 104
ratio: 1.8004528522386969� �

Listing 6.9: table-performance-10000-30-03.out

88 6 Data Tables

value 100-03-03 10000-30-03 10000-30-10
nRows 100 10000 10000
nCols 3 30 30
filterPerSelect 3 3 10
rowFilterTime 75 2929 2376
rowSelectTime 111 15863 15566
colFilterTime 137 4529 4380
colSelectTime 48 104 90

Table 6.1: Relative performance of operations on row-major and column-major data tables.

And if we keep the table size the same but use a 10:1 filter/select ratio?� �
nRows: 10000
nCols: 30
filterPerSelect: 10
rowSize: 7020000
rowHeap: 18287160
colSize: 2400462
colHeap: -3645056
rowFilterTime: 2376
rowSelectTime: 15566
colFilterTime: 4380
colSelectTime: 90
ratio: 0.8960127591706539� �

Listing 6.10: table-performance-10000-30-10.out

The results in Table 6.1 show that column-major storage is better. It uses less memory (pre-
sumably because column labels aren’t duplicated once per row) and the time required to construct
new objects when doing select with row-major storage outweighs cost of appending to arrays when
doing filter with column-major storage. Unfortunately, the code for column-major storage is a little
more complicated to write, which is a cost that doesn’t show up in experiments.

6.3 What is the most efficient way to save a table?
Data is valuable, so we are going to store data tables in files of some kind. If one storage scheme is
much more efficient than another and we are reading or writing frequently, that could change our
mind about which implementation to pick.

Two simple text-based schemes are row-oriented and column-oriented JSON—basically, just
printing the data structures we have. Let’s run the 10,000×30 test:� �
nRows: 10000
nCols: 30
rowStringTime: 57342
rowStringSize: 9393402

6.4 Does binary storage improve performance? 89

colStringTime: 13267
colStringSize: 2934164� �

Listing 6.11: storage-performance-10000-30.out

The time needed for the row-major version is almost ten times greater than that needed for the
column-major version; we assume that the redundant printing of the labels is mostly to blame, just
as redundant storage of the labels was to blame for row-major’s greater memory requirements.

If that diagnosis is correct, then a packed version of row-major storage ought to be faster. We
save the column headers once, then copy the data values into an array of arrays and save that:� �
const asPackedJson = (table) => {

const temp = {}
temp.keys = Object.keys(table [0])
temp.values = table.map(row => temp.keys.map(k => row[k]))
return JSON.stringify(temp)

}� �
Listing 6.12: packed-rows.js� �

nRows: 10000
nCols: 30
packedRowStringTime: 29659
packedRowStringSize: 2974084� �

Listing 6.13: packed-rows-10000-30.out

These results show that changing layout for storage is faster than turning the data structure
we have into a string. Again, we assume this is because copying data takes less time than turning
labels into strings over and over, but column-major storage is still the best approach.

6.4 Does binary storage improve performance?
Let’s try one more strategy for storing our tables. JavaScript stores values in tagged data structures:
some bits define the value’s type while other bits store the value itself in a type-dependent way
(Figure 6.5).

We can save space by keeping track of the types ourselves and just storing the bits that represent
the values. JavaScript has an ArrayBuffer class for exactly this purpose. It stores any value we
want as a set of bits; we then access those bits through a view that presents the data as a particular
type, such as Boolean (one byte per value) or number (64 bits per number). As Figure 6.6 shows,
we can mix different types of data in a single ArrayBuffer, but it’s up to us to keep track of which
bytes belong to which values.

To store a column-major table we will fill an ArrayBuffer with:

1. Two integers that hold the table’s size (number of rows and number of columns).

90 6 Data Tables

1
0000001

2
00000011

11111111
00000010

0
0
0
0
0

3
11010100

00010000
11001000
00110110

Boolean number string

type tag
true

ig
no

re
d

75
5

(in
 b

in
ar

y)

ad
dr

es
s

"alphabet"

Figure 6.5: How JavaScript uses tagged data structures to store objects.

0000001
00000011

11111111
00000010

0
0
0
0
0

'a'
'l'
'p'
'h'

[

true

true , 755 , "alphabet"]

755

'a'
'b'
'e'
't'

string

Figure 6.6: Storing object values as bits with lookup information.

6.4 Does binary storage improve performance? 91

2. A string with the column labels joined by newline characters. (We use newlines as a separator
because we assume column labels can’t contain them.)

3. The numbers themselves.� �
const asBinary = (table) => {

const labels = Object.keys(table)

const nCols = labels.length
const nRows = table[labels [0]]. length
const dimensions = new Uint32Array ([nCols , nRows])

const allLabels = labels.join('\n')
const encoder = new TextEncoder ()
const encodedLabels = encoder.encode(allLabels)

const dataSize = sizeof (0) * nCols * nRows
const totalSize =

dimensions.byteLength + encodedLabels.byteLength + dataSize

const buffer = new ArrayBuffer(totalSize)
const result = new Uint8Array(buffer)
result.set(dimensions , 0)
result.set(encodedLabels , dimensions.byteLength)

let current = dimensions.byteLength + encodedLabels.byteLength
labels.forEach(label => {

const temp = new Float64Array(table[label])
result.set(temp , current)
current += temp.byteLength

})

return result
}� �

Listing 6.14: packed-cols.js� �
nRows: 10000
nCols: 30
packedColBinaryTime: 6074
packedColBinarySize: 2400268� �

Listing 6.15: packed-cols-10000-30.out

Packing the data table saves time because copying bits is faster than turning numbers into
characters, but it doesn’t save as much space as expected. The reason is that double-precision
numbers are 8 bytes long, but because we have chosen simple integer values for our tests, they can
be represented by just 5 characters (which is 10 bytes). If we had "real" numbers the storage benefit
would probably be more pronounced; once again, the result of our experiment depends on the test
cases we choose.

92 6 Data Tables

Engineering

If science is the use of the experimental method to investigate the world, engineering is the
use of the experimental method to investigate and improve the things that people build.
Good software designers collect and analyze data all the time to find out whether one web-
site design works better than another [Kohavi2020] or to improve the performance of CPUs
[Patterson2017]; a few simple experiments like these can sometimes save weeks or months of
effort.

6.5 Exercises

Varying filter behavior

How does our decision about which storage format is better change if we keep 1% of rows when
filtering instead of one third? What if we keep 90% of rows?

Filtering by strings

Modify the comparison of filter and select to work with tables that contain columns of strings
instead of columns of numbers and see how that changes performance. For testing, creating random
4-letter strings using the characters A-Z and then filter by:

• an exact match,

• strings starting with a specific character, and

• strings that contain a specific character

Join performance

A join combines data from two tables based on matching keys. For example, if the two tables are:

Key Left
A a1
B b1
C c1

and:

Key Right
A a2
A a3
B b2

6.5 Exercises 93

then the join is:

Key Left Right
A a1 a2
A a1 a3
B b1 b2

Write a test to compare the performance of row-wise vs. column-wise storage when joining two
tables based on matching numeric keys. Does the answer depend on the fraction of keys that match?

Join optimization

The simplest way to join two tables is to look for matching keys using a double loop. An alternative
is to build an index for each table and then use it to construct matches. For example, suppose the
tables are:

Key Left
A a1
B b1
C c1

and:

Key Right
A a2
A a3
B b2

The first step is to create a Map showing where each key is found in the first table:� �
{A: [0], B: [1], C: [2]}� �
The second step is to create a similar Map for the second table:� �
{A: [0, 1], B: [2]}� �
We can then loop over the keys in one of the maps, look up values in the second map, and construct
all of the matches.

Write a function that joins two tables this way. Is it faster or slower than using a double loop?
How does the answer depend on the number of keys and the fraction that match?

Flipping storage

Our tests showed that storing row-oriented tables as JSON is much slower than storing column-
oriented tables. Write a test to determine whether converting a row-oriented table to a column-
oriented table and then saving the latter is faster than saving the row-oriented table directly.

94 6 Data Tables

Sparse storage

A sparse matrix is one in which most of the values are zero. Instead of storing them all, a program
can use a map to store non-zero values and a lookup function to return zero for anything that isn’t
stored explicitly:� �
def spareMatrixGet(matrix , row , col) => {

return matrix.contains(row , col)
? matrix.get(row , col)
: 0

}� �
The same technique can be used if most of the entries in a data table are missing. Write a

function that creates a sparse table in which a random 5% of the values are non-zero and the other
95% are zero, then compare the memory requirements and performance of filter and select for this
implementation versus those of row-wise and column-wise storage.

Loading time

Modify the programs in this section to measure the time required to convert a data table from
JSON or binary form back to a data structure.

Saving fixed-width strings

To improve performance, databases often store fixed-width strings, i.e., they limit the length of
the strings in a column to some fixed size and pad strings that are shorter than that.

1. Write a function that takes an array of strings and an integer with and creates an ArrayBuffer
containing the strings padded to that width. The function should throw an exception if any of
the strings are longer than the specified width.

2. Write another function that takes an ArrayBuffer as input and returns an array of strings. This
function should remove the padding so that strings shorter than the fixed width are restored to
their original form.

Saving variable-width strings

Fixed-width storage is inefficient for large blocks of text such as contracts, novels, and resumés,
since padding every document to the length of the longest will probably waste a lot of space. An
alternative way to store these in binary is to save each entry as a (length, text) pair.

1. Write a function that takes a list of strings as input and returns an ArrayBuffer containing
(length, text) pairs.

2. Write another function that takes such an ArrayBuffer and returns an array containing the
original text.

3. Write tests with Mocha to confirm that your functions work correctly.

6.5 Exercises 95

ASCII storage

The original ASCII standard specified a 7-bit character encoding for letters commonly used in
English, and many data files still only use characters whose numeric codes are in the range 0–127.

1. Write a function that takes an array of single-letter strings and returns an ArrayBuffer that
stores them using one byte per character if all of the characters will fit into 7 bits, and multiple
bytes per character if any of the characters require more than 7 bits.

2. Write another function that takes an ArrayBuffer generated by the first function and re-creates
the array of characters. The function must only take the ArrayBuffer as an argument, so the
first element of the ArrayBuffer should indicate how to interpret the rest of its contents.

3. Write tests with Mocha to check that your functions work correctly.

7
Pattern Matching

Using patterns to find things in data

Terms defined: Chain of Responsibility pattern,Document Object Model,Open-Closed
Principle, base class, child (in a tree), coupling, depth-first, derived class, eager match-
ing, greedy algorithm, node, polymorphism, query selector, regular expression, scope
creep, test-driven development

We have been globbing to match filenames against patterns since Chapter 2. This lesson will
explore how that works by building a simple version of the regular expressions used to match
text in everything from editor and shell commands to web scrapers. Our approach is inspired by
Brian Kernighan’s1 entry in [Oram2007].

Regular expressions have inspired pattern matching for many other kinds of data, such as query
selectors for HTML. They are easier to understand and implement than patterns for matching
text, so we will start by looking at them.

7.1 How can we match query selectors?
Programs stores HTML pages in memory using a document object model or DOM. Each element
in the page, such as a heading and or paragraph, is a nodes; the children of a node are the elements
it contains (Figure 7.1).

The first step is to define the patterns we want to support (Table 7.1).
According to this grammar, blockquote#important p.highlight is a highlighted paragraph

inside the blockquote whose ID is "important". To find elements in a page that match it, our
select function breaks the query into pieces and uses firstMatch to search recursively down the
document tree until all the selectors in the query string have matched or no matches have been
found (Figure 7.2).

Meaning Selector
Element with tag "elt" elt
Element with class="cls" .cls
Element with id="ident" #ident
child element inside a parent element parent child

Table 7.1: Supported patterns.

1https://en.wikipedia.org/wiki/Brian_Kernighan

97

https://en.wikipedia.org/wiki/Brian_Kernighan

98 7 Pattern Matching

<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <h1>Title</h1>
 <blockquote id="important">
 <p>Opening</p>
 <p>Explanation</p>
 <p class="highlight">Warning</p>
 </blockquote>
 <p>Closing</p>
 </body>
</html>

html

head body

h1

blockquote id: 'important'

p p p class: 'highlight'

ptitle

"Example" "Title"

"Opening" "Explanation" "Warning"

"Closing"

Figure 7.1: Representing an HTML document as a tree.

html

head body

h1

blockquote id: 'important'

p p p class: 'highlight'

p

Figure 7.2: Matching a simple set of query selectors.

7.1 How can we match query selectors? 99� �
import assert from 'assert '

const select = (root , selector) => {
const selectors = selector.split(' ').filter(s => s.length > 0)
return firstMatch(root , selectors)

}

const firstMatch = (node , selectors) => {
assert(selectors.length > 0,

'Require selector(s)')

// Not a tag.
if (node.type !== 'tag ') {

return null
}

// This node matches.
if (matchHere(node , selectors [0])) {

// This is the last selector , so matching worked.
if (selectors.length === 1) {

return node
}

// Try to match remaining selectors.
return firstChildMatch(node , selectors.slice (1))

}

// This node doesn 't match , so try further down.
return firstChildMatch(node , selectors)

}

export default select� �
Listing 7.1: simple-selectors.js

The firstMatch function handles three cases:

1. This node isn’t an element, i.e., it is plain text or a comment. This can’t match a selector, and
these nodes don’t have children, so the function returns null to indicate that matching has
failed.

2. This node matches the current selector. If there aren’t any selectors left then the whole pattern
must have matched, so the function returns this node as the match. If there are more selectors,
we try to match those that remain against this node’s children and return whatever result that
produces.

3. This node doesn’t match the current selector, so we search the children one by one to see if there
is a match further down.

100 7 Pattern Matching

This algorithm is called depth-first search: it explores one possible match to the end before
considering any others. firstMatch relies on a helper function called firstChildMatch, which finds
the first child of a node to match a set of selectors:� �
const firstChildMatch = (node , selectors) => {

assert(node.type === 'tag ',
`Should only try to match first child of tags , not ${node.type}`)

// First working match.
for (const child of node.children) {

const match = firstMatch(child , selectors)
if (match) {

return match
}

}

// Nothing worked.
return null

}� �
Listing 7.2: simple-selectors.js

and on the function matchHere which compares a node against a selector:� �
const matchHere = (node , selector) => {

let name = null
let id = null
let cls = null
if (selector.includes ('#')) {

[name , id] = selector.split('#')
} else if (selector.includes ('.')) {

[name , cls] = selector.split('.')
} else {

name = selector
}
return (node.name === name) &&

((id === null) || (node.attribs.id === id)) &&
((cls === null) || (node.attribs.class === cls))

}� �
Listing 7.3: simple-selectors.js

This version of matchHere is simple but inefficient, since it breaks the selector into parts each
time it is called rather than doing that once and re-using the results. We will build a more efficient
version in the exercises, but let’s try out the one we have. Our test cases are all in one piece of
HTML:� �
const HTML = `<main >

<p>text of first p</p>
<p id="id -01"> text of p#id -01</p>
<p id="id -02"> text of p#id -02</p>
<p class ="class -03"> text of p.class -03</p>

7.1 How can we match query selectors? 101

<div >
<p>text of div / p</p>
<p id="id -04"> text of div / p#id -04</p>
<p class="class -05"> text of div / p.class -05</p>
<p class="class -06"> should not be found </p>

</div >
<div id="id -07">

<p>text of div#id -07 / p</p>
<p class="class -06"> text of div#id -07 / p.class -06</p>

</div >
</main >`� �

Listing 7.4: simple-selectors-test.js

The program contains a table of queries and the expected matches. The function main loops
over it to report whether each test passes or fails:� �
const main = () => {

const doc = htmlparser2.parseDOM(HTML)[0]
const tests = [

['p', 'text of first p'],
['p#id -01', 'text of p#id -01'],
['p#id -02', 'text of p#id -02'],
['p.class -03', 'text of p.class -03'],
['div p', 'text of div / p'],
['div p#id -04', 'text of div / p#id -04'],
['div p.class -05', 'text of div / p.class -05'],
['div#id -07 p', 'text of div#id -07 / p'],
['div#id -07 p.class -06', 'text of div#id -07 / p.class -06']

]
tests.forEach (([selector , expected]) => {

const node = select(doc , selector)
const actual = getText(node)
const result = (actual === expected) ? 'pass ' : 'fail '
console.log(`"${selector }": ${result}`)

})
}

main()� �
Listing 7.5: simple-selectors-test.js

main uses a helper function called getText to extract text from a node or return an error message
if something has gone wrong:� �
const getText = (node) => {

if (!node) {
return 'MISSING NODE '

}
if (!('children ' in node)) {

return 'MISSING CHILDREN '
}

102 7 Pattern Matching

if (node.children.length !== 1) {
return 'WRONG NUMBER OF CHILDREN '

}
if (node.children [0]. type !== 'text ') {

return 'NOT TEXT '
}
return node.children [0]. data

}� �
Listing 7.6: simple-selectors-test.js

When we run our program it produces this result:� �
"p": pass
"p#id -01": pass
"p#id -02": pass
"p.class -03": pass
"div p": pass
"div p#id -04": pass
"div p.class -05": pass
"div#id -07 p": pass
"div#id -07 p.class -06": pass� �

Listing 7.7: simple-selectors-test.out

We will rewrite these tests using Mocha2 in the exercises.

Test then build

We actually wrote our test cases before implementing the code to match query selectors in
order to give ourselves a goal to work toward. Doing this is called test-driven development,
or TDD; while research doesn’t support the claim that it makes programmers more productive
[Fucci2016, Fucci2017], we find it helps prevent scope creep when writing lessons.

7.2 How can we implement a simple regular expression matcher?
Matching regular expressions against text relies on the same recursive strategy as matching query
selectors against nodes in an HTML page. If the first element of the pattern matches where we are,
we see if the rest of the pattern matches what’s left; otherwise, we see if the the pattern will match
further along. Our matcher will initially handle just the five cases shown in Table 7.2.
These five cases are a small subset of what JavaScript provides, but as Kernighan wrote, "This is
quite a useful class; in my own experience of using regular expressions on a day-to-day basis, it
easily accounts for 95 percent of all instances."

2https://mochajs.org/

https://mochajs.org/

7.2 How can we implement a simple regular expression matcher? 103

Meaning Character
Any literal character c c
Any single character .
Beginning of input ^
End of input $
Zero or more of the previous character *

Table 7.2: Pattern matching cases.

The top-level function that users call handles the special case of ^ at the start of a pattern match-
ing the start of the target string being searched. It then tries the pattern against each successive
substring of the target string until it finds a match or runs out of characters:� �
const match = (pattern , text) => {

// '^' at start of pattern matches start of text.
if (pattern [0] === '^') {

return matchHere(pattern , 1, text , 0)
}

// Try all possible starting points for pattern.
let iText = 0
do {

if (matchHere(pattern , 0, text , iText)) {
return true

}
iText += 1

} while (iText < text.length)

// Nothing worked.
return false

}� �
Listing 7.8: simple-regex.js

matchHere does the matching and recursing:� �
const matchHere = (pattern , iPattern , text , iText) => {

// There is no more pattern to match.
if (iPattern === pattern.length) {

return true
}

// '$' at end of pattern matches end of text.
if ((iPattern === (pattern.length - 1)) &&

(pattern[iPattern] === '$') &&
(iText === text.length)) {

return true
}

// '*' following current character means match many.

104 7 Pattern Matching

if (((pattern.length - iPattern) > 1) &&
(pattern[iPattern + 1] === '*')) {

while ((iText < text.length) && (text[iText] === pattern[iPattern])) {
iText += 1

}
return matchHere(pattern , iPattern + 2, text , iText)

}

// Match a single character.
if ((pattern[iPattern] === '.') ||

(pattern[iPattern] === text[iText])) {
return matchHere(pattern , iPattern + 1, text , iText + 1)

}

// Nothing worked.
return false

}� �
Listing 7.9: simple-regex.js

Once again, we use a table of test cases and expected results to test it:� �
const main = () => {

const tests = [
['a', 'a', true],
['b', 'a', false],
['a', 'ab ', true],
['b', 'ab ', true],
['ab ', 'ba ', false],
['^a', 'ab ', true],
['^b', 'ab ', false],
['a$ ', 'ab ', false],
['a$ ', 'ba ', true],
['a*', '', true],
['a*', 'baac ', true],
['ab*c', 'ac ', true],
['ab*c', 'abc ', true],
['ab*c', 'abbbc ', true],
['ab*c', 'abxc ', false]

]
tests.forEach (([regexp , text , expected]) => {

const actual = match(regexp , text)
const result = (actual === expected) ? 'pass ' : 'fail '
console.log(`"${regexp }" X "${text }": ${result}`)

})
}

main()� �
Listing 7.10: simple-regex.js

7.3 How can we implement an extensible matcher? 105� �
"a" X "a": pass
"b" X "a": pass
"a" X "ab": pass
"b" X "ab": pass
"ab" X "ba": pass
"^a" X "ab": pass
"^b" X "ab": pass
"a$" X "ab": pass
"a$" X "ba": pass
"a*" X "": pass
"a*" X "baac": pass
"ab*c" X "ac": pass
"ab*c" X "abc": pass
"ab*c" X "abbbc ": pass
"ab*c" X "abxc": pass� �

Listing 7.11: simple-regex.out

This program seems to work, but it actually contains an error that we will correct in the exercises.
(Think about what happens if we match the pattern /a*ab/ against the string 'aab'.) Our design
is also hard to extend: handling parentheses in patterns like /a(bc)*d/ will require major changes.
We need to explore a different approach.

7.3 How can we implement an extensible matcher?
Instead of packing all of our code into one long function, we can implement each kind of match as
separate function. Doing this makes it much easier to add more matchers: we just define a function
that we can mix in with calls to the ones we already have.

Rather than having these functions do the matching immediately, though, we will have each one
return an object that knows how to match itself against some text. Doing this allows us to build
a complex match once and re-use it many times. This is a common pattern in text processing: we
may want to apply a regular expression to each line in a large set of files, so recycling the matchers
will make our programs more efficient.

Each matching object has a method that takes the target string and the index to start matching
at as inputs. Its output is the index to continue matching at or undefined indicating that matching
failed. We can then combine these objects to match complex patterns (Figure 7.3).

The first step in implementing this is is to write test cases, which forces us to define the syntax
we are going to support:� �
import Alt from './regex -alt.js '
import Any from './regex -any.js '
import End from './regex -end.js '
import Lit from './regex -lit.js '
import Seq from './regex -seq.js '
import Start from './regex -start.js '

106 7 Pattern Matching

/ab*c/

sequence

literal 'a' repeat

literal 'b'

literal 'c'

X a b b c Y

0 1 2 3 4 5

" "

0 5

1 2 4 5

2 3 3 4

Figure 7.3: Using nested objects to match regular expressions.

const main = () => {
const tests = [

['a', 'a', true , Lit('a')],
['b', 'a', false , Lit('b')],
['a', 'ab ', true , Lit('a')],
['b', 'ab ', true , Lit('b')],
['ab ', 'ab ', true , Seq(Lit('a'), Lit('b'))],
['ba ', 'ab ', false , Seq(Lit('b'), Lit('a'))],
['ab ', 'ba ', false , Lit('ab ')],
['^a', 'ab ', true , Seq(Start(), Lit('a'))],
['^b', 'ab ', false , Seq(Start(), Lit('b'))],
['a$ ', 'ab ', false , Seq(Lit('a'), End())],
['a$ ', 'ba ', true , Seq(Lit('a'), End())],
['a*', '', true , Any('a')],
['a*', 'baac ', true , Any('a')],
['ab*c', 'ac ', true , Seq(Lit('a'), Any('b'), Lit('c'))],
['ab*c', 'abc ', true , Seq(Lit('a'), Any('b'), Lit('c'))],
['ab*c', 'abbbc ', true , Seq(Lit('a'), Any('b'), Lit('c'))],
['ab*c', 'abxc ', false , Seq(Lit('a'), Any('b'), Lit('c'))],
['ab|cd', 'xaby ', true , Alt(Lit('ab '), Lit('cd '))],
['ab|cd', 'acdc ', true , Alt(Lit('ab '), Lit('cd '))],
['a(b|c)d', 'xabdy ', true ,

Seq(Lit('a'), Alt(Lit('b'), Lit('c')), Lit('d'))],
['a(b|c)d', 'xabady ', false ,

Seq(Lit('a'), Alt(Lit('b'), Lit('c')), Lit('d'))]
]
tests.forEach (([pattern , text , expected , matcher]) => {

const actual = matcher.match(text)
const result = (actual === expected) ? 'pass ' : 'fail '
console.log(`"${pattern }" X "${text }": ${result}`)

})
}

main()� �
Listing 7.12: regex-initial/regex-complete.js

7.3 How can we implement an extensible matcher? 107

Next, we define a base class that all matchers will inherit from. This class contains the match
method that users will call so that we can start matching right away no matter what kind of matcher
we have at the top level of our pattern.� �
class RegexBase {

match (text) {
for (let i = 0; i < text.length; i += 1) {

if (this._match(text , i)) {
return true

}
}
return false

}

_match (text , start) {
throw new Error('derived classes must override "_match"')

}
}

export default RegexBase� �
Listing 7.13: regex-initial/regex-base.js

The base class also defines a _match method (with a leading underscore) that other classes will fill
in with actual matching code. The base implementation of this method throws an exception so that
if we forget to provide _match in a derived class our code will fail with a meaningful reminder.

One interface to call them all

Our design makes use of polymorphism, which literally means "having multiple forms". If
a set of objects all have methods that can be called the same way, then those objects can
be used interchangeably; putting it another way, a program can use them without knowing
exactly what they are. Polymorphism reduces the coupling between different parts of our
program, which in turn makes it easier for those programs to evolve.

We can now define empty versions of each matching class that all say "no match here" like this
one for literal characters:� �
import RegexBase from './regex -base.js '

class RegexLit extends RegexBase {
constructor (chars) {

super()
this.chars = chars

}

_match (text , start) {
return undefined // FIXME

}

108 7 Pattern Matching

}

export default (chars) => new RegexLit(chars)� �
Listing 7.14: regex-initial/regex-lit.js

Our tests now run, but most of them fail: "most" because we expect some tests not to match, so
the test runner reports true.� �
"a" X "a": fail
"b" X "a": pass
"a" X "ab": fail
"b" X "ab": fail
"ab" X "ab": fail
"ba" X "ab": pass
"ab" X "ba": pass
"^a" X "ab": fail
"^b" X "ab": pass
"a$" X "ab": pass
"a$" X "ba": fail
"a*" X "": fail
"a*" X "baac": fail
"ab*c" X "ac": fail
"ab*c" X "abc": fail
"ab*c" X "abbbc ": fail
"ab*c" X "abxc": pass
"ab|cd" X "xaby": fail
"ab|cd" X "acdc": fail
"a(b|c)d" X "xabdy": fail
"a(b|c)d" X "xabady ": pass� �

Listing 7.15: regex-initial.out

This output tells us how much work we have left to do: when all of these tests pass, we’re finished.
Let’s implement a literal character string matcher first:� �

import RegexBase from './regex -base.js '

class RegexLit extends RegexBase {
constructor (chars) {

super()
this.chars = chars

}

_match (text , start) {
const nextIndex = start + this.chars.length
if (nextIndex > text.length) {

return undefined
}
if (text.slice(start , nextIndex) !== this.chars) {

return undefined
}

7.3 How can we implement an extensible matcher? 109

return nextIndex
}

}

export default (chars) => new RegexLit(chars)� �
Listing 7.16: regex-beginning/regex-lit.js

Some tests now pass, others still fail as expected:� �
"a" X "a": pass
"b" X "a": pass
"a" X "ab": pass
"b" X "ab": pass
"ab" X "ab": fail
"ba" X "ab": pass
"ab" X "ba": pass
"^a" X "ab": fail
"^b" X "ab": pass
"a$" X "ab": pass
"a$" X "ba": fail
"a*" X "": fail
"a*" X "baac": fail
"ab*c" X "ac": fail
"ab*c" X "abc": fail
"ab*c" X "abbbc ": fail
"ab*c" X "abxc": pass
"ab|cd" X "xaby": fail
"ab|cd" X "acdc": fail
"a(b|c)d" X "xabdy": fail
"a(b|c)d" X "xabady ": pass� �

Listing 7.17: regex-beginning.out

We will tackle RegexSeq next so that we can combine other matchers. This is why we have tests
for Seq(Lit('a'), Lit('b')) and Lit('ab'): all children have to match in order without gaps.

But wait: suppose we have the pattern /a*ab/. This ought to match the text "ab", but will
it? The /*/ is greedy: it matches as much as it can (which is also called eager matching). As a
result, /a*/ will match the leading "a", leaving nothing for the literal /a/ to match (Figure 7.4).
Our current implementation doesn’t give us a way to try other possible matches when this happens.

Let’s re-think our design and have each matcher take its own arguments and a rest parameter
containing the rest of the matchers (Figure 7.5). (We will provide a default of null in the creation
function so we don’t have to type null over and over again.) Each matcher will try each of its
possibilities and then see if the rest will also match.

This design means we can get rid of RegexSeq, but it does make our tests a little harder to read:� �
import Alt from './regex -alt.js '
import Any from './regex -any.js '
import End from './regex -end.js '
import Lit from './regex -lit.js '
import Start from './regex -start.js '

110 7 Pattern Matching

/a*ab/

sequence

repeat literal 'a'

literal 'a'

literal 'b'

a b

0 1

" "

0

0 1

0 1

Figure 7.4: Why overly-greedy matching doesn’t work.

/a*ab/

repeat literal 'a'

literal 'a'

literal 'b'0 0

a b

0 1

" "

1 1

Figure 7.5: Using "rest" to match the remainder of a pattern.

const main = () => {
const tests = [

['a', 'a', true , Lit('a')],
['b', 'a', false , Lit('b')],
['a', 'ab ', true , Lit('a')],
['b', 'ab ', true , Lit('b')],
['ab ', 'ab ', true , Lit('a', Lit('b'))],
['ba ', 'ab ', false , Lit('b', Lit('a'))],
['ab ', 'ba ', false , Lit('ab ')],
['^a', 'ab ', true , Start(Lit('a'))],
['^b', 'ab ', false , Start(Lit('b'))],
['a$ ', 'ab ', false , Lit('a', End())],
['a$ ', 'ba ', true , Lit('a', End())],
['a*', '', true , Any(Lit('a'))],
['a*', 'baac ', true , Any(Lit('a'))],
['ab*c', 'ac ', true , Lit('a', Any(Lit('b'), Lit('c')))] ,
['ab*c', 'abc ', true , Lit('a', Any(Lit('b'), Lit('c')))] ,
['ab*c', 'abbbc ', true , Lit('a', Any(Lit('b'), Lit('c')))] ,
['ab*c', 'abxc ', false , Lit('a', Any(Lit('b'), Lit('c')))] ,
['ab|cd', 'xaby ', true , Alt(Lit('ab '), Lit('cd '))],
['ab|cd', 'acdc ', true , Alt(Lit('ab '), Lit('cd '))],
['a(b|c)d', 'xabdy ', true , Lit('a', Alt(Lit('b'), Lit('c'), Lit('d')))] ,
['a(b|c)d', 'xabady ', false , Lit('a', Alt(Lit('b'), Lit('c'), Lit('d')))]

]
tests.forEach (([pattern , text , expected , matcher]) => {

const actual = matcher.match(text)
const result = (actual === expected) ? 'pass ' : 'fail '
console.log(`"${pattern }" X "${text }": ${result}`)

7.3 How can we implement an extensible matcher? 111

})
}

main()� �
Listing 7.18: regex-recursive/regex-complete.js

Here’s how this works for matching a literal expression:� �
import RegexBase from './regex -base.js '

class RegexLit extends RegexBase {
constructor (chars , rest) {

super(rest)
this.chars = chars

}

_match (text , start) {
const nextIndex = start + this.chars.length
if (nextIndex > text.length) {

return undefined
}
if (text.slice(start , nextIndex) !== this.chars) {

return undefined
}
if (this.rest === null) {

return nextIndex
}
return this.rest._match(text , nextIndex)

}
}

export default (chars , rest = null) => new RegexLit(chars , rest)� �
Listing 7.19: regex-recursive/regex-lit.js

The _matchmethod checks whether all of the pattern matches the target text starting at the current
location. If so, it checks whether the rest of the overall pattern matches what’s left. Matching the
start /^/ and end /$/ anchors is just as straightforward:� �
import RegexBase from './regex -base.js '

class RegexStart extends RegexBase {
_match (text , start) {

if (start !== 0) {
return undefined

}
if (this.rest === null) {

return 0
}
return this.rest._match(text , start)

}

112 7 Pattern Matching

}

export default (rest = null) => new RegexStart(rest)� �
Listing 7.20: regex-recursive/regex-start.js� �

import RegexBase from './regex -base.js '

class RegexEnd extends RegexBase {
_match (text , start) {

if (start !== text.length) {
return undefined

}
if (this.rest === null) {

return text.length
}
return this.rest._match(text , start)

}
}

export default (rest = null) => new RegexEnd(rest)� �
Listing 7.21: regex-recursive/regex-end.js

Matching either/or is done by trying the first pattern and the rest, and if that fails, trying the
second pattern and the rest:� �
import RegexBase from './regex -base.js '

class RegexAlt extends RegexBase {
constructor (left , right , rest) {

super(rest)
this.left = left
this.right = right

}

_match (text , start) {
for (const pat of [this.left , this.right]) {

const afterPat = pat._match(text , start)
if (afterPat !== undefined) {

if (this.rest === null) {
return afterPat

}
const afterRest = this.rest._match(text , afterPat)
if (afterRest !== undefined) {

return afterRest
}

}
}
return undefined

}

7.3 How can we implement an extensible matcher? 113

}

const create = (left , right , rest = null) => {
return new RegexAlt(left , right , rest)

}

export default create� �
Listing 7.22: regex-recursive/regex-alt.js

To match a repetition, we figure out the maximum number of matches that might be left, then
count down until something succeeds. (We start with the maximum because matching is supposed to
be greedy.) Each non-empty repetition matches at least one character, so the number of remaining
characters is the maximum number of matches worth trying.� �
import RegexBase from './regex -base.js '

class RegexAny extends RegexBase {
constructor (child , rest) {

super(rest)
this.child = child

}

_match (text , start) {
const maxPossible = text.length - start
for (let num = maxPossible; num >= 0; num -= 1) {

const afterMany = this._matchMany(text , start , num)
if (afterMany !== undefined) {

return afterMany
}

}
return undefined

}

_matchMany (text , start , num) {
for (let i = 0; i < num; i += 1) {

start = this.child._match(text , start)
if (start === undefined) {

return undefined
}

}
if (this.rest !== null) {

return this.rest._match(text , start)
}
return start

}
}

const create = (child , rest = null) => {
return new RegexAny(child , rest)

}

114 7 Pattern Matching

export default create� �
Listing 7.23: regex-recursive/regex-any.js

With these classes in place, our tests all pass:� �
"a" X "a": pass
"b" X "a": pass
"a" X "ab": pass
"b" X "ab": pass
"ab" X "ab": pass
"ba" X "ab": pass
"ab" X "ba": pass
"^a" X "ab": pass
"^b" X "ab": pass
"a$" X "ab": pass
"a$" X "ba": pass
"a*" X "": pass
"a*" X "baac": pass
"ab*c" X "ac": pass
"ab*c" X "abc": pass
"ab*c" X "abbbc ": pass
"ab*c" X "abxc": pass
"ab|cd" X "xaby": pass
"ab|cd" X "acdc": pass
"a(b|c)d" X "xabdy": pass
"a(b|c)d" X "xabady ": pass� �

Listing 7.24: regex-recursive.out

The most important thing about this design is how extensible it is: if we want to add other
kinds of matching, all we have to do is add more classes. That extensibility comes from the lack of
centralized decision-making, which in turn comes from our use of polymorphism and the Chain of
Responsibility design pattern. Each component does its part and asks something else to handle
the remaining work; so long as each component takes the same inputs, we can put them together
however we want.

The Open-Closed Principle

The Open-Closed Principle states that software should be open for extension but closed for
modification, i.e., that it should be possible to extend functionality without having to rewrite
existing code. As we said in Chapter 3, this allows old code to use new code, but only if
our design permits the kinds of extensions people are going to want to make. Since we can’t
anticipate everything, it is normal to have to revise a design the first two or three times we
try to extend it. As [Brand1995] said of buildings, the things we make learn how to do things
better as we use them.

7.4 Exercises 115

7.4 Exercises

Split once

Modify the query selector code so that selectors like div#id and div.class are only split into
pieces once rather than being re-split each time matchHere is called.

Find and fix the error

The first regular expression matcher contains an error: the pattern 'a*ab' should match the string
'aab' but doesn’t. Figure out why it fails and fix it.

Unit tests

Rewrite the tests for selectors and regular expressions to use Mocha.

Find all with query selectors

Modify the query selector so that it returns all matches, not just the first one.

Select based on attributes

Modify the query selector to handle [attribute="value"] selectors, so that (for example)
div[align=center] returns all div elements whose align attribute has the value "center".

Child selectors

The expression parent > child selects all nodes of type child that are immediate children of
nodes of type parent—for example, div > p selects all paragraphs that are immediate children of
div elements. Modify simple-selectors.js to handle this kind of matching.

Find all with regular expressions

Modify the regular expression matcher to return all matches rather than just the first one.

Find one or more with regular expressions

Extend the regular expression matcher to support +, meaning "one or more".

Match sets of characters

Add a new regular expression matching class that matches any character from a set, so that
Charset('aeiou') matches any lower-case vowel.

116 7 Pattern Matching

Make repetition more efficient

Rewrite RegexAny so that it does not repeatedly re-match text.

Lazy matching

The regular expressions we have seen so far are eager: they match as much as they can, as early
as they can. An alternative is lazy matching, in which expressions match as little as they need
to. For example, given the string "ab", an eager match with the expression /ab*/ will match both
letters (because /b*/ matches a ’b’ if one is available) but a lazy match will only match the first
letter (because /b*/ can match no letters at all). Implement lazy matching for the * operator.

Optional matching

The ? operator means "optional", so that /a?/ matches either zero or one occurrences of the letter
’a’. Implement this operator.

8
Parsing Expressions

Turning text into code

Terms defined: Turing Machine,YAML, finite state machine, literal, parser, precedence,
token, well formed

In Chapter 7 we created regular expressions by constructing objects. It takes a lot less typing to
write them as strings as we did for HTML selectors, but if we’re going to do that we need something
to convert those strings to the required objects. In other words, we need to write a parser.

Table 8.1 shows the grammar we will handle. When we are done we should be able to parse
/^(a|b|$)*z$/ as "start of text", "any number of ’a’, ’b’, or ’$’", "a single ’z’, and "end of text".
(We write regular expressions inside slashes to distinguish them from strings.) To keep things simple,
we will create a tree of objects (Figure 8.1) rather than instances of the regular expression classes
from Chapter 7; the exercises will tackle the latter.

Please don’t write parsers

Languages that are comfortable for people to read are usually difficult for computers to under-
stand and vice versa, so we need parsers to translate human-friendly notation into computer-
friendly representations. However, the world doesn’t need more file formats; if you need a
configuration file or lookup table, please use CSV, JSON, YAML, or something else that
already has an acronym rather than inventing a format of your own.

Meaning Character
Any literal character c c
Beginning of input ^
End of input $
Zero or more of the previous thing *
Either/or |
Grouping (...)

Table 8.1: Regular expression grammar.

117

118 8 Parsing Expressions

sequence

start multiple 'z' end

either

either'a'

'b' '$'

Figure 8.1: Representing the result of parsing a regular expression as an tree.

8.1 How can we break text into tokens?
A token is an atom of text, such as the digits making up a number or the letters making up a
variable name. In our grammar the tokens are the special characters *, |, (,), ^, and $, plus any
sequence of one or more other characters (which count as one multi-letter token). This classification
guides the design of our parser:

1. If a character is special, create a token for it.

2. If it is a literal then:

1. combine it with the current literal if there is one, or

2. start a new literal.

3. Since ^ and $ are either special or regular depending on position, we must treat them as separate
tokens or as part of a literal based on where they appear.

We can translate these rules almost directly into code to create a list of objects whose keys are
kind and loc (short for location), with the extra key value for literal values:� �
const SIMPLE = {

'*': 'Any ',
'|': 'Alt ',
'(': 'GroupStart ',
')': 'GroupEnd '

}

const tokenize = (text) => {
const result = []
for (let i = 0; i < text.length; i += 1) {

const c = text[i]
if (c in SIMPLE) {

result.push({ kind: SIMPLE[c], loc: i })
} else if (c === '^') {

if (i === 0) {
result.push({ kind: 'Start ', loc: i })

} else {
combineOrPush(result , c, i)

8.1 How can we break text into tokens? 119

}
} else if (c === '$') {

if (i === (text.length - 1)) {
result.push({ kind: 'End ', loc: i })

} else {
combineOrPush(result , c, i)

}
} else {

combineOrPush(result , c, i)
}

}

return result
}

export default tokenize� �
Listing 8.1: tokenizer-collapse.js

The helper function combineOrPush does exactly what its name says. If the thing most recently
added to the list of tokens isn’t a literal, the new character becomes a new token; otherwise, we
append the new character to the literal we’re building:� �
const combineOrPush = (soFar , character , location) => {

const topIndex = soFar.length - 1
if ((soFar.length === 0) || (soFar[topIndex]. token !== 'Lit ')) {

soFar.push({ kind: 'Lit ', value: character , loc: location })
} else {

soFar[topIndex].value += character
}

}� �
Listing 8.2: tokenizer-collapse.js

We can try this out with a three-line test program:� �
import tokenize from './tokenizer -collapse.js'

const test = '^a^b*'
const result = tokenize(test)
console.log(JSON.stringify(result , null , 2))� �

Listing 8.3: tokenizer-collapse-example.js� �
[

{
"kind": "Start",
"loc": 0

},
{

120 8 Parsing Expressions

"kind": "Lit",
"value": "a",
"loc": 1

},
{

"kind": "Lit",
"value": "^",
"loc": 2

},
{

"kind": "Lit",
"value": "b",
"loc": 3

},
{

"kind": "Any",
"loc": 4

}
]� �

Listing 8.4: tokenizer-collapse-example.out

This simple tokenizer is readable, efficient, and wrong. The problem is that the expression /ab*/
means "a single a followed by zero or more b". If we combine the a and b as we read them, though,
we wind up with "zero or more repetitions of ab". (Don’t feel bad if you didn’t spot this: we didn’t
notice the problem until we were implementing the next step.)

The solution is to treat each regular character as its own literal in this stage and then combine
things later. Doing this lets us get rid of the nested if for handling ^ and $ as well:� �
const SIMPLE = {

'*': 'Any ',
'|': 'Alt ',
'(': 'GroupStart ',
')': 'GroupEnd '

}

const tokenize = (text) => {
const result = []
for (let i = 0; i < text.length; i += 1) {

const c = text[i]
if (c in SIMPLE) {

result.push({ kind: SIMPLE[c], loc: i })
} else if ((c === '^') && (i === 0)) {

result.push({ kind: 'Start ', loc: i })
} else if ((c === '$') && (i === (text.length - 1))) {

result.push({ kind: 'End ', loc: i })
} else {

result.push({ kind: 'Lit ', loc: i, value: c })
}

}

8.1 How can we break text into tokens? 121

return result
}

export default tokenize� �
Listing 8.5: tokenizer.js

Software isn’t done until it’s tested, so let’s build some Mocha1 tests for our tokenizer. The
listing below shows a few of these along with the output for the full set:� �
import assert from 'assert '

import tokenize from '../ tokenizer.js '

describe('tokenizes correctly ', async () => {
it('tokenizes a single character ', () => {

assert.deepStrictEqual(tokenize('a'), [
{ kind: 'Lit ', value: 'a', loc: 0 }

])
})

it('tokenizes a sequence of characters ', () => {
assert.deepStrictEqual(tokenize('ab '), [

{ kind: 'Lit ', value: 'a', loc: 0 },
{ kind: 'Lit ', value: 'b', loc: 1 }

])
})

it('tokenizes start anchor alone ', () => {
assert.deepStrictEqual(tokenize('^'), [

{ kind: 'Start ', loc: 0 }
])

})

it('tokenizes start anchor followed by characters ', () => {
assert.deepStrictEqual(tokenize('^a'), [

{ kind: 'Start ', loc: 0 },
{ kind: 'Lit ', value: 'a', loc: 1 }

])
})

it('tokenizes a complex expression ', () => {
assert.deepStrictEqual(tokenize('^a*(bcd|e^)*fgh '), [

{ kind: 'Start ', loc: 0 },
{ kind: 'Lit ', loc: 1, value: 'a' },
{ kind: 'Any ', loc: 2 },
{ kind: 'GroupStart ', loc: 3 },
{ kind: 'Lit ', loc: 4, value: 'b' },
{ kind: 'Lit ', loc: 5, value: 'c' },

1https://mochajs.org/

https://mochajs.org/

122 8 Parsing Expressions

{ kind: 'Lit ', loc: 6, value: 'd' },
{ kind: 'Alt ', loc: 7 },
{ kind: 'Lit ', loc: 8, value: 'e' },
{ kind: 'Lit ', loc: 9, value: '^' },
{ kind: 'GroupEnd ', loc: 10 },
{ kind: 'Any ', loc: 11 },
{ kind: 'Lit ', loc: 12, value: 'f' },
{ kind: 'Lit ', loc: 13, value: '$' },
{ kind: 'Lit ', loc: 14, value: 'g' },
{ kind: 'Lit ', loc: 15, value: 'h' },
{ kind: 'End ', loc: 16 }

])
})

})� �
Listing 8.6: test/test-tokenizer.js� �

> stjs@1 .0.0 test /u/stjs
> mocha */test/test -*.js "-g" "tokenizes correctly"

tokenizes correctly
X tokenizes a single character
X tokenizes a sequence of characters
X tokenizes start anchor alone
X tokenizes start anchor followed by characters
X tokenizes circumflex not at start
X tokenizes start anchor alone
X tokenizes end anchor preceded by characters
X tokenizes dollar sign not at end
X tokenizes repetition alone
X tokenizes repetition in string
X tokenizes repetition at end of string
X tokenizes alternation alone
X tokenizes alternation in string
X tokenizes alternation at start of string
X tokenizes the start of a group alone
X tokenizes the start of a group in a string
X tokenizes the end of a group alone
X tokenizes the end of a group at the end of a string
X tokenizes a complex expression

19 passing (12ms)� �
Listing 8.7: tokenizer-test.out

8.2 How can we turn a list of tokens into a tree? 123

8.2 How can we turn a list of tokens into a tree?
We now have a list of tokens, but we need a tree that captures the nesting introduced by parentheses
and the way that * applies to whatever comes before it. Let’s trace a few cases in order to see how
to build this tree:

1. If the regular expression is /a/, we create a Lit token for the letter a (where "create" means
"append to the output list").

2. What if the regular expression is /a*/? We first create a Lit token for the a and append it to
the output list. When we see the *, we take that Lit token off the tail of the output list and
replace it with an Any token that has the Lit token as its child.

3. Our next thought experiment is /(ab)/. We don’t know how long the group is going to be when
we see the (, so we put the parenthesis onto the output as a marker. We then add the Lit tokens
for the a and b until we see the), at which point we pull tokens off the end of the output list
until we get back to the (marker. When we find it, we put everything we have temporarily
collected into a Group token and append it to the output list. This algorithm automatically
handles /(a*)/ and /(a(b*)c)/.

4. What about /a|b/? We append a Lit token for a, get the | and—and we’re stuck, because we
don’t yet have the next token we need to finish building the Alt.

One way to solve this problem is to check to see if the thing on the top of the stack is waiting
to combine each time we append a new token. However, this doesn’t handle /a|b*/ properly. The
pattern is supposed to mean "one a or any number of b", but the check-and-combine strategy will
turn it into the equivalent of /(a|b)*/.

A better (i.e., correct) solution is to leave some partially-completed tokens in the output and
compress them later (Figure 8.2). If our input is the pattern /a|b/, we can:

1. Append a Lit token for a.

2. When we see |, make that Lit token the left child of the Alt and append that without filling in
the right child.

3. Append the Lit token for b.

4. After all tokens have been handled, look for partially-completed Alt tokens and make whatever
comes after them their right child.

Again, this automatically handles patterns like /(ab)|c*|(de)/.
It’s time to turn these ideas into code. The main structure of our parser is:� �

import assert from 'assert '

import tokenize from './tokenizer.js '

const parse = (text) => {
const result = []

124 8 Parsing Expressions

output pattern

a | b

b|a

b|a

b|a

Lit: 'a'

Lit: 'a'

Alt

Lit: 'a'

Alt Lit: 'b'

b|a

Lit: 'a'

Alt

Lit: 'b'

Figure 8.2: Mechanics of combining tokens while parsing regular expressions.

const allTokens = tokenize(text)
for (let i = 0; i < allTokens.length; i += 1) {

const token = allTokens[i]
const last = i === allTokens.length - 1
handle(result , token , last)

}
return compress(result)

}

export default parse� �
Listing 8.8: parser.js

We handle tokens case by case (with a few assertions to check that patterns are well formed):� �
const handle = (result , token , last) => {

if (token.kind === 'Lit ') {
result.push(token)

} else if (token.kind === 'Start ') {
assert(result.length === 0,

'Should not have start token after other tokens ')
result.push(token)

} else if (token.kind === 'End ') {
assert(last ,

'Should not have end token before other tokens ')

8.2 How can we turn a list of tokens into a tree? 125

result.push(token)
} else if (token.kind === 'GroupStart ') {

result.push(token)
} else if (token.kind === 'GroupEnd ') {

result.push(groupEnd(result , token))
} else if (token.kind === 'Any ') {

assert(result.length > 0,
`No operand for '*' (location ${token.loc})`)

token.child = result.pop()
result.push(token)

} else if (token.kind === 'Alt ') {
assert(result.length > 0,

`No operand for '*' (location ${token.loc})`)
token.left = result.pop()
token.right = null
result.push(token)

} else {
assert(false , 'UNIMPLEMENTED ')

}
}� �

Listing 8.9: parser.js

When we find the) that marks the end of a group, we take items from the end of the output
list until we find the matching start and use them to create a group:� �
const groupEnd = (result , token) => {

const group = {
kind: 'Group ',
loc: null ,
end: token.loc ,
children: []

}
while (true) {

assert(result.length > 0,
`Unmatched end parenthesis (location ${token.loc})`)

const child = result.pop()
if (child.kind === 'GroupStart ') {

group.loc = child.loc
break

}
group.children.unshift(child)

}
return group

}� �
Listing 8.10: parser.js

Finally, when we have finished with the input, we go through the output list one last time to
fill in the right side of Alts:� �

126 8 Parsing Expressions

const compress = (raw) => {
const cooked = []
while (raw.length > 0) {

const token = raw.pop()
if (token.kind === 'Alt ') {

assert(cooked.length > 0,
`No right operand for alt (location ${token.loc})`)

token.right = cooked.shift()
}
cooked.unshift(token)

}
return cooked

}� �
Listing 8.11: parser.js

Once again, it’s not done until we’ve tested it:� �
import assert from 'assert '

import parse from '../ parser.js'

describe('parses correctly ', async () => {
it('parses the empty string ', () => {

assert.deepStrictEqual(parse(''), [])
})

it('parses a single literal ', () => {
assert.deepStrictEqual(parse('a'), [

{ kind: 'Lit ', loc: 0, value: 'a' }
])

})

it('parses multiple literals ', () => {
assert.deepStrictEqual(parse('ab '), [

{ kind: 'Lit ', loc: 0, value: 'a' },
{ kind: 'Lit ', loc: 1, value: 'b' }

])
})

it('parses alt of groups ', () => {
assert.deepStrictEqual(parse('a|(bc)'), [

{
kind: 'Alt ',
loc: 1,
left: { kind: 'Lit ', loc: 0, value: 'a' },
right: {

kind: 'Group ',
loc: 2,
end: 5,

8.2 How can we turn a list of tokens into a tree? 127

children: [
{ kind: 'Lit ', loc: 3, value: 'b' },
{ kind: 'Lit ', loc: 4, value: 'c' }

]
}

}
])

})
})� �

Listing 8.12: test/test-parser.js� �
> stjs@1 .0.0 test /u/stjs
> mocha */test/test -*.js "-g" "parses correctly"

parses correctly
X parses the empty string
X parses a single literal
X parses multiple literals
X parses start anchors
X handles circumflex not at start
X parses end anchors
X parses circumflex not at start
X parses empty groups
X parses groups containing characters
X parses two groups containing characters
X parses any
X parses any of group
X parses alt
X parses alt of any
X parses alt of groups

15 passing (11ms)� �
Listing 8.13: parser-test.out

While our final parser is less than 90 lines of code, it is doing a lot of complex things. Compared
to parsers for things like JSON and YAML, though, it is still very simple. If we have more operators
with different precedences we should switch to the shunting-yard algorithm2, and if we need to
handle a language like JavaScript we should explore tools like ANTLR3, which can generate a parser
automatically given a description of the language to be parsed. As we said at the start, though, if
our design requires us to write a parser we should try to come up with a better design. CSV, JSON,
YAML, and other formats have their quirks4, but at least they’re broken the same way everywhere.

2https://en.wikipedia.org/wiki/Shunting-yard_algorithm
3https://www.antlr.org/
4https://third-bit.com/2015/06/11/why-we-cant-have-nice-things/

https://en.wikipedia.org/wiki/Shunting-yard_algorithm
https://www.antlr.org/
https://third-bit.com/2015/06/11/why-we-cant-have-nice-things/

128 8 Parsing Expressions

0 1

a

b

c
Start End(a|b)*c

Figure 8.3: A finite state machine equivalent to a regular expression.

The limits of computing

One of the most important theoretical results in computer science is that every formal lan-
guage corresponds to a type of abstract machine and vice versa, and that some languages (or
machines) are more or less powerful than others. For example, every regular expression cor-
responds to a finite state machine (FSM) like the one in Figure 8.3. As powerful as FSMs
are, they cannot match things like nested parentheses or HTML tags, and attempting to do
so is a sin5. If you add a stack to the system you can process a much richer set of languages,
and if you add two stacks you have something equivalent to a Turing Machine that can
do any conceivable computation. [Conery2021] presents this idea and others for self-taught
developers.

8.3 Exercises

Create objects

Modify the parser to return instances of classes derived from RegexBase.

Escape characters

Modify the parser to handle escape characters, so that (for example) * is interpreted as "a literal
’*’ character" and \\ is interpreted as "a literal backslash".

Lazy matching

Modify the parser so that *? is interpreted as a single token meaning "lazy match zero or more".

5https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-
tags/1732454#1732454

https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454#1732454
https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454#1732454

8.3 Exercises 129

Character sets

Modify the parser so that expressions like [xyz] are interpreted to mean "match any one of the
characters ’x’, ’y’, or ’z’".

Back reference

Modify the tokenizer so that it recognizes \1, \2, and so on to mean "back reference". The number
may contain any number of digits.

Named groups

1. Modify the tokenizer to recognize named groups. For example, the named group
/(?<triple>aaa)/ would create a named group called triple that matches exactly three con-
secutive occurrences of ’a’.

2. Write Mocha tests for your modified tokenizer. Does it handle nested named groups?

Object streams

Write a parser that turns files of key-value pairs separated by blank lines into objects. For example,
if the input is:� �
left: "left value"
first: 1

middle: "middle value"
second: 2

right: "right value"
third: 3� �
then the output will be:� �
[

{left: "left value", first: 1},
{middle: "middle value", second: 2},
{right: "right value", third: 3}

]� �
Keys are always upper- and lower-case characters; values may be strings in double quotes or

unquoted numbers.

Tokenize HTML

1. Write a tokenizer for a subset of HTML that consists of:

• Opening tags without attributes, such as <div> and <p>

• Closing tags, such as </p> and </div>

130 8 Parsing Expressions

• Plain text between tags that does not contain ’<’ or ’>’ characters

2. Modify the tokenizer to handle key="value" attributes in opening tags.

3. Write Mocha tests for your tokenizer.

The Shunting Yard Algorithm

1. Use the shunting-yard algorithm6 to implement a tokenizer for a simple subset of arithmetic that
includes:

• single-letter variable names

• single-digit numbers

• the +, *, and ^ operators, where + has the lowest precedence and ^ has the highest

2. Write Mocha tests for your tokenizer.

Handling errors

1. What does the regular expression tokenizer do with expressions that contain unmatched opening
parentheses like /a(b/? What about expressions that contain unmatched closing parentheses like
/ab)/?

2. Modify it so it produces a more useful error message.

6https://en.wikipedia.org/wiki/Shunting-yard_algorithm

https://en.wikipedia.org/wiki/Shunting-yard_algorithm

9
Page Templates

Generating HTML pages from templates

Terms defined: Visitor pattern, bare object, dynamic scoping, environment, lexical scop-
ing, stack frame, static site generator

Every program needs documentation in order to be usable, and the best place to put that
documentation is on the web. Writing and updating pages by hand is time-consuming and error-
prone, particularly when many parts are the same, so most documentation sites use some kind of
static site generator to create web pages from templates.

At the heart of every static site generator is a page templating system. Thousands of these have
been written in the last thirty years in every popular programming language (and one language,
PHP1, was created for this purpose). Most of these systems use one of three designs (Figure 9.1):

1. Mix commands in a language such as JavaScript with the HTML or Markdown using some kind
of marker to indicate which parts are commands and which parts are to be taken as-is. This
approach is taken by EJS2, which we used to write these lessons.

2. Create a mini-language with its own commands like Jekyll3 (which is used by GitHub Pages4).
Mini-languages are appealing because they are smaller and safer than general-purpose languages,
but experience shows that they eventually grow most of the features of a general-purpose lan-
guage. Again, some kind of marker must be used to show which parts of the page are code and
which are ordinary text.

3. Put directives in specially-named attributes in the HTML. This approach has been the least
popular, but since pages are valid HTML, it eliminates the need for a special parser.

<% items.forEach(item => { %>

 <%- item.title %>

<% } %>

EJS

{% for item in items %}

 {{ item.title }}

{% endfor %}

Jekyll

<ul z-loop="item:items">

Argon

Figure 9.1: Three different ways to implement page templating.

1https://www.php.net/
2https://ejs.co/
3https://jekyllrb.com/
4https://pages.github.com/

131

https://www.php.net/
https://ejs.co/
https://jekyllrb.com/
https://pages.github.com/

132 9 Page Templates

In this chapter we will build a simple page templating system using the third strategy. We will
process each page independently by parsing the HTML and walking the DOM to find nodes with
special attributes. Our program will execute the instructions in those nodes to do the equivalent of
loops and if/else statements; other nodes will be copied as-is to create text.

9.1 What will our system look like?
Let’s start by deciding what "done" looks like. Suppose we want to turn an array of strings into an
HTML list. Our page will look like this:� �
<html >

<body >
<p>Expect three items </p>
<ul z-loop="item:names">

</body >
</html >� �

Listing 9.1: input-loop.html

The attribute z-loop tells the tool to repeat the contents of that node; the loop variable and the
collection being looped over are separated by a colon. The attribute z-var tells the tool to fill in
the node with the value of the variable.

When our tool processes this page, the output will be standard HTML without any traces of
how it was created:� �
<html >

<body style="font -size: 200%; margin -left: 0.5em">
<p>Expect three items </p>

Johnson

Vaughan

Jackson

</body >
</html >� �

Listing 9.2: output-loop.html

9.2 How can we keep track of values? 133

Human-readable vs. machine-readable

The introduction said that mini-languages for page templating quickly start to accumulate
extra features. We have already started down that road by putting the loop variable and
loop target in a single attribute and splitting that attribute to get them out. Doing this
makes loops easy for people to type, but hides important information from standard HTML
processing tools. They can’t know that this particular attribute of these particular elements
contains multiple values or that those values should be extracted by splitting a string on a
colon. We could instead require people to use two attributes, as in:� �
<ul z-loop=" names" z-loop -var="item">� �
but we have decided to err on the side of minimal typing. And note that strictly speaking,
we should call our attributes data-something instead of z-something to conform with the
HTML5 specification5, but by the time we’re finished processing our templates, there shouldn’t
be any z-* attributes left to confuse a browser.

The next step is to define the API for filling in templates. Our tool needs the template itself,
somewhere to write its output, and some variables to use in the expansion. These variables might
come from a configuration file, from a YAML header in the file itself, or from some mix of the two;
for the moment, we will just pass them into the expansion function as an object:� �
const variables = {

names: ['Johnson ', 'Vaughan ', 'Jackson ']
}
const dom = readHtml('template.html ')
const expander = new Expander(dom , variables)
expander.walk()
console.log(expander.result)� �

Listing 9.3: example-call.js

9.2 How can we keep track of values?
Speaking of variables, we need a way to keep track of their current values; we say "current" because
the value of a loop variable changes each time we go around the loop. We also need to maintain
multiple sets of variables so that variables used inside a loop don’t conflict with ones used outside it.
(We don’t actually "need" to do this—we could just have one global set of variables—but experience
teaches us that if all our variables are global, all of our programs will be buggy.)

The standard way to manage variables is to create a stack of lookup tables. Each stack frame
is an object with names and values; when we need to find a variable, we look through the stack
frames in order to find the uppermost definition of that variable..

5https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes

https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes

134 9 Page Templates

Scoping rules

Searching the stack frame by frame while the program is running is called is dynamic scoping,
since we find variables while the program is running. In contrast, most programming languages
used lexical scoping, which figures out what a variable name refers to based on the structure
of the program text.

The values in a running program are sometimes called an environment, so we have named our
stack-handling class Env. Its methods let us push and pop new stack frames and find a variable
given its name; if the variable can’t be found, Env.find returns undefined instead of throwing an
exception (Figure 9.2).� �
class Env {

constructor (initial) {
this.stack = []
this.push(Object.assign ({}, initial))

}

push (frame) {
this.stack.push(frame)

}

pop () {
this.stack.pop()

}

find (name) {
for (let i = this.stack.length - 1; i >= 0; i--) {

if (name in this.stack[i]) {
return this.stack[i][name]

}
}
return undefined

}

toString () {
return JSON.stringify(this.stack)

}
}

export default Env� �
Listing 9.4: env.js

9.3 How do we handle nodes? 135

stack

Env

[],,

variables values

down

up

right

left

left

up

"title"

"name"

"section"

"date"

"separated"

"united"

Figure 9.2: Using a stack to manage variables.

9.3 How do we handle nodes?
HTML pages have a nested structure, so we will process them using the Visitor design pattern.
Visitor’s constructor takes the root node of the DOM tree as an argument and saves it. When
we call Visitor.walk without a value, it starts recursing from that saved root; if .walk is given a
value (as it is during recursive calls), it uses that instead.� �
import assert from 'assert '

class Visitor {
constructor (root) {

this.root = root
}

walk (node = null) {
if (node === null) {

node = this.root
}
if (this.open(node)) {

node.children.forEach(child => {
this.walk(child)

})
}
this.close(node)

}

open (node) {
assert(false ,

'Must implemented "open"')
}

close (node) {

136 9 Page Templates

body

h1 p

texttext span

text

Visitor

walk

open

close

5 6

8

9

10

1

Figure 9.3: Using the Visitor pattern to evaluate a page template.

assert(false ,
'Must implemented "close"')

}
}

export default Visitor� �
Listing 9.5: visitor.js

Visitor defines two methods called open and close that are called when we first arrive at a node
and when we are finished with it (Figure 9.3). The default implementations of these methods throw
exceptions to remind the creators of derived classes to implement their own versions.

The Expander class is specialization of Visitor that uses an Env to keep track of variables. It
imports a handler for each type of special node we support—we will write those in a moment—and
uses them to process each type of node:

1. If the node is plain text, copy it to the output.

2. If there is a handler for the node, call the handler’s open or close method.

3. Otherwise, open or close a regular tag.� �
import assert from 'assert '

import Visitor from './visitor.js '
import Env from './env.js'

import z_if from './z-if.js'
import z_loop from './z-loop.js'
import z_num from './z-num.js'
import z_var from './z-var.js'

const HANDLERS = {
'z-if ': z_if ,
'z-loop ': z_loop ,

9.3 How do we handle nodes? 137

'z-num ': z_num ,
'z-var ': z_var

}

class Expander extends Visitor {
constructor (root , vars) {

super(root)
this.env = new Env(vars)
this.handlers = HANDLERS
this.result = []

}

open (node) {
if (node.type === 'text ') {

this.output(node.data)
return false

} else if (this.hasHandler(node)) {
return this.getHandler(node).open(this , node)

} else {
this.showTag(node , false)
return true

}
}

close (node) {
if (node.type === 'text ') {

return
}
if (this.hasHandler(node)) {

this.getHandler(node).close(this , node)
} else {

this.showTag(node , true)
}

}

}

export default Expander� �
Listing 9.6: expander.js

Checking to see if there is a handler for a particular node and getting that handler are straight-
forward—we just look at the node’s attributes:� �

hasHandler (node) {
for (const name in node.attribs) {

if (name in this.handlers) {
return true

}
}
return false

138 9 Page Templates

}

getHandler (node) {
const possible = Object.keys(node.attribs)

.filter(name => name in this.handlers)
assert(possible.length === 1,

'Should be exactly one handler ')
return this.handlers[possible [0]]

}� �
Listing 9.7: expander.js

Finally, we need a few helper methods to show tags and generate output:� �
showTag (node , closing) {

if (closing) {
this.output(`</${node.name}>`)
return

}

this.output(`<${node.name}`)
if (node.name === 'body ') {

this.output(' style="font -size: 200%; margin -left: 0.5em"')
}
for (const name in node.attribs) {

if (!name.startsWith('z-')) {
this.output(` ${name }="${node.attribs[name]}"`)

}
}
this.output('>')

}

output (text) {
this.result.push((text === undefined) ? 'UNDEF ' : text)

}

getResult () {
return this.result.join('')

}� �
Listing 9.8: expander.js

Notice that this class adds strings to an array and joins them all right at the end rather than
concatenating strings repeatedly. Doing this is more efficient and also helps with debugging, since
each string in the array corresponds to a single method call.

9.4 How do we implement node handlers? 139

9.4 How do we implement node handlers?
At this point we have built a lot of infrastructure but haven’t actually processed any special nodes.
To do that, let’s write a handler that copies a constant number into the output:� �
export default {

open: (expander , node) => {
expander.showTag(node , false)
expander.output(node.attribs['z-num '])

},

close: (expander , node) => {
expander.showTag(node , true)

}
}� �

Listing 9.9: z-num.js

When we enter a node like this handler asks the expander to show an
opening tag followed by the value of the z-num attribute. When we exit the node, the handler asks
the expander to close the tag. The handler doesn’t know whether things are printed immediately,
added to an output list, or something else; it just knows that whoever called it implements the
low-level operations it needs.

Note that this expander is not a class, but instead an object with two functions stored under
the keys open and close. We could use a class for each handler so that handlers can store any extra
state they need, but bare objects are common and useful in JavaScript (though we will see below
that we should have used classes).

So much for constants; what about variables?� �
export default {

open: (expander , node) => {
expander.showTag(node , false)
expander.output(expander.env.find(node.attribs['z-var ']))

},

close: (expander , node) => {
expander.showTag(node , true)

}
}� �

Listing 9.10: z-var.js

This code is almost the same as the previous example. The only difference is that instead of copying
the attribute’s value directly to the output, we use it as a key to look up a value in the environment.

These two pairs of handlers look plausible, but do they work? To find out, we can build a
program that loads variable definitions from a JSON file, reads an HTML template, and does the
expansion:� �
import fs from 'fs '

140 9 Page Templates

import htmlparser2 from 'htmlparser2 '

import Expander from './expander.js '

const main = () => {
const vars = readJSON(process.argv [2])
const doc = readHtml(process.argv [3])
const expander = new Expander(doc , vars)
expander.walk()
console.log(expander.getResult ())

}

const readJSON = (filename) => {
const text = fs.readFileSync(filename , 'utf -8')
return JSON.parse(text)

}

const readHtml = (filename) => {
const text = fs.readFileSync(filename , 'utf -8')
return htmlparser2.parseDOM(text)[0]

}

main()� �
Listing 9.11: template.js

We added new variables for our test cases one by one as we were writing this chapter. To avoid
repeating text repeatedly, we show the entire set once:� �
{

"firstVariable ": "firstValue",
"secondVariable ": "secondValue",
"variableName ": "variableValue",
"showThis ": true ,
"doNotShowThis ": false ,
"names": [" Johnson", "Vaughan", "Jackson "]

}� �
Listing 9.12: vars.json

Our first test: is static text copied over as-is (Figure 9.4)?� �
<html >

<body >
<h1>Static Text </h1>
<p>This page has:</p>

static
text

</body >

</html >

9.4 How do we implement node handlers? 141

Static Text
This page has:

static
text

Figure 9.4: Static text generated by page templates.

� �
Listing 9.13: input-static-text.html� �

node template.js vars.json input -static -text.html� �
Listing 9.14: static-text.sh� �

<html >
<body style="font -size: 200%; margin -left: 0.5em">

<h1>Static Text </h1>
<p>This page has:</p>

static
text

</body >

</html >� �
Listing 9.15: output-static-text.html

Good. Now, does the expander handle constants (Figure 9.5)?� �
<html >

<body >
<p> </p>

</body >
</html >� �

Listing 9.16: input-single-constant.html� �
<html >

<body style="font -size: 200%; margin -left: 0.5em">
<p>123 </p>

142 9 Page Templates

123

Figure 9.5: A single constant generated by page templates.

This should be shown.

Figure 9.6: A single variable generated by page templates.

</body >
</html >� �

Listing 9.17: output-single-constant.html

What about a single variable (Figure 9.6)?� �
<html >

<body >
<p></p>

</body >
</html >� �

Listing 9.18: input-single-variable.html� �
<html >

<body style="font -size: 200%; margin -left: 0.5em">
<p>variableValue </p>

</body >
</html >� �

Listing 9.19: output-single-variable.html

What about a page containing multiple variables? There’s no reason it should fail if the single-
variable case works, but we should still check—again, software isn’t done until it has been tested
(Figure 9.7).� �
<html >

<body >
<p></p>
<p></p>

</body >
</html >� �

Listing 9.20: input-multiple-variables.html� �
<html >

<body style="font -size: 200%; margin -left: 0.5em">

9.5 How can we implement control flow? 143

firstValue

secondValue

Figure 9.7: Multiple variables generated by page templates.

<p>firstValue </p>
<p>secondValue </p>

</body >
</html >� �

Listing 9.21: output-multiple-variables.html

9.5 How can we implement control flow?
Our tool supports two types of control flow: conditional expressions and loops. Since we don’t
support Boolean expressions like and and or, implementing a conditional is as simple as looking up
a variable (which we know how to do) and then expanding the node if the value is true:� �
export default {

open: (expander , node) => {
const doRest = expander.env.find(node.attribs['z-if '])
if (doRest) {

expander.showTag(node , false)
}
return doRest

},

close: (expander , node) => {
if (expander.env.find(node.attribs['z-if '])) {

expander.showTag(node , true)
}

}
}� �

Listing 9.22: z-if.js

Let’s test it (Figure 9.8):� �
<html >

<body >
<p z-if=" showThis">This should be shown.</p>
<p z-if=" doNotShowThis">This should not be shown.</p>

144 9 Page Templates

This should be shown.

Figure 9.8: Conditional text generated by page templates.

</body >
</html >� �

Listing 9.23: input-conditional.html� �
<html >

<body style="font -size: 200%; margin -left: 0.5em">
<p>This should be shown.</p>

</body >
</html >� �

Listing 9.24: output-conditional.html

Spot the bug

This implementation of if contains a subtle bug. The open and close functions both check
the value of the control variable. If something inside the body of the if changes that value,
the result could be an opening tag without a matching closing tag or vice versa. We haven’t
implemented an assignment operator, so right now there’s no way for that to happen, but it’s
a plausible thing for us to add later, and tracking down a bug in old code that is revealed by
new code is always a headache.

Finally we come to loops. For these, we need to get the array we’re looping over from the
environment and do something for each of its elements. That "something" is:

1. Create a new stack frame holding the current value of the loop variable.

2. Expand all of the node’s children with that stack frame in place.

3. Pop the stack frame to get rid of the temporary variable.� �
export default {

open: (expander , node) => {
const [indexName , targetName] = node.attribs['z-loop ']. split(':')
delete node.attribs['z-loop ']
expander.showTag(node , false)
const target = expander.env.find(targetName)
for (const index of target) {

expander.env.push({ [indexName]: index })

9.5 How can we implement control flow? 145

node.children.forEach(child => expander.walk(child))
expander.env.pop()

}
return false

},

close: (expander , node) => {
expander.showTag(node , true)

}
}� �

Listing 9.25: z-loop.js

Once again, it’s not done until we test it (Figure 9.9):� �
<html >

<body >
<p>Expect three items </p>
<ul z-loop="item:names">

</body >
</html >� �

Listing 9.26: input-loop.html� �
<html >

<body style="font -size: 200%; margin -left: 0.5em">
<p>Expect three items </p>

Johnson

Vaughan

Jackson

</body >
</html >� �

Listing 9.27: output-loop.html

Notice how we create the new stack frame using:� �
{ [indexName]: index }� �
This is an ugly but useful trick. We can’t write:� �
{ indexName: index }� �
because that would create an object with the string indexName as a key, rather than one with the
value of the variable indexName as its key. We can’t do this either:

146 9 Page Templates

Expect three items

Johnson
Vaughan
Jackson

Figure 9.9: Repeated text generated with a loop by page templates.

� �
{ `${indexName }`: index }� �
though it seems like we should be able to. Instead, we create an array containing the string we want.
Since JavaScript automatically converts arrays to strings by concatenating their elements when it
needs to, our expression is a quick way to get the same effect as:� �
const temp = {}
temp[indexName] = index
expander.env.push(temp)� �
Those three lines are much easier to understand, though, so we should probably have been less
clever.

9.6 How did we know how to do all of this?
We have just implemented a simple programming language. It can’t do arithmetic, but if we wanted
to add tags like:� �
� �
we could. It’s unlikely anyone would use the result—typing all of that is so much clumsier than
typing width+1 that people wouldn’t use it unless they had no other choice—but the basic design
is there.

We didn’t invent any of this from scratch, any more than we invented the parsing algorithm of
Chapter 8. Instead, we did what you are doing now: we read what other programmers had written
and tried to make sense of the key ideas.

The problem is that "making sense" depends on who we are. When we use a low-level language,
we incur the cognitive load of assembling micro-steps into something more meaningful. When we use
a high-level language, on the other hand, we incur a similar load translating functions of functions
of functions (or meta-classes templated on object factories) into actual operations on actual data.

More experienced programmers are more capable at both ends of the curve, but that’s not
the only thing that changes. If a novice’s comprehension curve looks like the one on the left of

9.7 Exercises 147

Abstraction

Co
m
pr
eh

en
si
on

novice

expert

Figure 9.10: Novice and expert comprehension curves.

Figure 9.10, then an expert’s looks like the one on the right. Experts don’t just understand more
at all levels of abstraction; their preferred level has also shifted so that

√
x2 + y2 is actually more

readable than the medieval expression "the side of the square whose area is the sum of the areas of
the two squares whose sides are given by the first part and the second part".

One implication of this is that for any given task, the software that is quickest for a novice
to comprehend will almost certainly be different from the software that an expert can understand
most quickly. In an ideal world our tools would automatically re-represent programs at different
levels, so that with a click of a button we could view our code as either:� �
const hosts = links.map(a => a.href.split (':')[1]. split ('/ ')[0]). unique ()� �

or:� �
hosts = []
for (each a in links) do

temp <- attr(a, 'href '). split (':')[1]. split ('/')[0]
if (not (temp in hosts)) do

hosts.append(temp)
end

end� �
just as we could change the colors used for syntax highlighting or the depth to which loop bodies

are indented. But today’s tools don’t do that, and I suspect that any IDE smart enough to translate
between comprehension levels automatically would also be smart enough to write the code without
our help.

9.7 Exercises

Tracing execution

Add a directive that prints the current value of a variable using
console.error for debugging.

148 9 Page Templates

Unit tests

Write unit tests for template expansion using Mocha.

Trimming text

Modify all of the directives to take an extra optional attribute z-trim="true" If this attribute is
set, leading and trailing whitespace is trimmed from the directive’s expansion.

Literal text

Add a directive <div z-literal="true">...</div> that copies the enclosed text as-is without
interpreting or expanding any contained directives. (A directive like this would be needed when
writing documentation for the template expander.)

Including other files

1. Add a directive <div z-include="filename.html"/> that includes another file in the file being
processed.

2. Should included files be processed and the result copied into the including file, or should the
text be copied in and then processed? What difference does it make to the way variables are
evaluated?

HTML snippets

Add a directive <div z-snippet="variable">...</div> that saves some text in a variable so that
it can be displayed later. For example:� �
<html >

<body >
<div z-snippet =" prefix">Important :</div >
<p>Expect three items </p>

<li z-loop="item:names">

</body >
</html >� �
would printed the word "Important:" in bold before each item in the list.

YAML headers

Modify the template expander to handle variables defined in a YAML header in the page being
processed. For example, if the page is:� �

9.7 Exercises 149

name: "Dorothy Johnson Vaughan"

<html >

<body >
<p></p>

</body >
</html >� �
will create a paragraph containing the given name.

Expanding all files

Write a program expand-all.js that takes two directory names as command-line arguments and
builds a website in the second directory by expanding all of the HTML files found in the first or in
sub-directories of the first.

Counting loops

Add a directive <div z-index="indexName" z-limit="limitName">...</div> that loops from
zero to the value in the variable limitName, putting the current iteration index in indexName.

Auxiliary functions

1. Modify Expander so that it takes an extra argument auxiliaries containing zero or more
named functions:� �
const expander = new Expander(root , vars , {

max: Math.max ,
trim: (x) => x.trim()

})� �
2. Add a directive that looks up a function

in auxiliaries and calls it with the given variables as arguments.

10
Build Manager

Updating files that depend on other files

Terms defined: Template Method pattern, automatic variable, build manager, build
recipe, build rule, build target, compiled language, cycle (in a graph), dependency,
directed acyclic graph, driver, interpreted language, link (a program), pattern rule,
runnable documentation, stale (in build), topological order

Suppose we are using a page templating system to create a website (Chapter 9). If we a change
a single page our tool should translate it, but shouldn’t waste time translating others. If we change
a template, on the other hand, the tool should realize that every page in the site is potentially
affected and automatically re-translate all of them.

Choosing what actions to take based on how files depend on one another is a common pattern.
For example, programs in compiled languages like C and Java have to be translated into lower-
level forms before they can run. In fact, there are usually two stages to the translation: compiling
each source file into some intermediate form, and then linking the compiled modules to each other
and to libraries to create a runnable program (Figure 10.1). If a source file hasn’t changed, there’s
no need to recompile it before linking.

A build manager takes a description of what depends on what, figures out which files are
out of date, determines an order in which to rebuild things, and then executes any necessary steps.
Originally created to manage compilation, they are also useful for programs written in interpreted
languages like JavaScript when we want to bundle multiple modules into a single loadable file
(Chapter 17) or re-create documentation from source code (Chapter 16). In this chapter we will

first.c

second.c

first.obj

second.obj

compile link

system.lib

program.exe

Figure 10.1: Compiling source files and linking the resulting modules.

151

152 10 Build Manager

A

B C

D

order

C , D

B

A

Figure 10.2: How a build manager finds and respects dependencies.

create a simple build manager based on Make1, Bajel2, Jake3, and other systems discussed in
[Smith2011].

10.1 What’s in a build manager?
The input to a build manager is a set of rules, each of which has:

• a target, which is the file to be updated;

• some dependencies, which are the things that file depends on; and

• a recipe that specifies how to update the target if it is out of date compared to its dependencies.

The target of one rule can be a dependency of another rule, so the relationships between the files
form a directed acyclic graph or DAG (Figure 10.2). The graph is directed because "A depends
on B" is a one-way relationship; it cannot contain cycles (or loops) because if something depends
on itself we can never finish updating it. We say that a target is stale if it is older than any of its
dependencies. When this happens, we use the recipes to bring it up to date.

Our build manager must:

1. Read a file containing rules.

2. Construct the dependency graph.

3. Figure out which targets are stale.

4. Build those targets, making sure to build things before anything that depends on them is built.

1https://www.gnu.org/software/make/
2https://www.npmjs.com/package/bajel
3https://jakejs.com/

https://www.gnu.org/software/make/
https://www.npmjs.com/package/bajel
https://jakejs.com/

10.2 Where should we start? 153

Topological order

A topological ordering of a graph arranges the nodes so that every node comes after every-
thing it depends on. For example, if A depends on both B and C, then (B, C, A) and (C, B,
A) are both valid topological orders of the graph.

10.2 Where should we start?
We will store our rules in YAML files like this:� �
- target: A

depends:
- B
- C
recipes:
- "update A from B and C"

- target: B
depends:
- C
recipes:
- "update B from C"

- target: C
depends: []
recipes: []� �

Listing 10.1: three-simple-rules.yml

We could equally well have used JSON, but it wouldn’t have made sense to use CSV: rules have a
nested structure, and CSV doesn’t represent nesting particularly gracefully.

We are going to create our build manager in stages, so we start by writing a simple driver that
loads a JavaScript source file, creates an object of whatever class that file exports, and runs the
.build method of that object with the rest of the command-line parameters:� �
const main = async () => {

const BuilderClass = (await import(process.argv [2])). default
const builder = new BuilderClass (... process.argv.slice (3))
try {

builder.build()
} catch (err) {

console.error('Build failed:', err)
}

}

main()

154 10 Build Manager

� �
Listing 10.2: driver.js

We use the import function to dynamically load files containing in Chapter 4 as well. It only saves
us a few lines of code in this case, but we will use this idea of a general-purpose driver for larger
programs in future chapters.

To work with our driver, each version of our build manager must be a class that satisfies two
requirements:

1. Its constructor must take a configuration file as an argument.

2. It must provide a build method that needs no arguments.

The buildmethod must create a graph from the configuration file, check that it does not contain
any cycles, and then run whatever commands are needed to update stale targets. Just as we built
a generic Visitor class in Chapter 9, we can build a generic base class for our build manager that
does these steps in this order without actually implementing any of them:� �
import assert from 'assert '

class SkeletonBuilder {
constructor (configFile) {

this.configFile = configFile
}

build () {
this.loadConfig ()
this.buildGraph ()
this.checkCycles ()
this.run()

}

loadConfig () {
assert(false , 'not implemented ')

}

buildGraph () {
assert(false , 'not implemented ')

}

checkCycles () {
assert(false , 'not implemented ')

}

run () {
assert.fail('run method not implemented ')

}
}

export default SkeletonBuilder

10.2 Where should we start? 155

 main() {
 first()
 second()
 }

 first() {}

 second() {}

parent

 first() {
 ...
 }

 second() {
 ...
 }

child

 main()

Figure 10.3: The Template Method pattern in action.

� �
Listing 10.3: skeleton-builder.js

This is an example of the Template Method design pattern: the parent class defines the order
of the steps and child classes fill them in (Figure 10.3). This design pattern ensures that every child
does the same things in the same order, even if the details of how vary from case to case.

We would normally implement all of the methods required by the build method at the same
time, but to make the evolving code easier to follow we will write them them one by one. The
loadConfig method loads the configuration file as the builder object is being constructed:� �
import assert from 'assert '
import fs from 'fs '
import yaml from 'js -yaml '

import SkeletonBuilder from './skeleton -builder.js '

class ConfigLoader extends SkeletonBuilder {
loadConfig () {

this.config = yaml.safeLoad(fs.readFileSync(this.configFile , 'utf -8'))

assert(Array.isArray(this.config),
'Configuration must be array ')

this.config.forEach(rule => {
assert(('target ' in rule) && (typeof rule.target === 'string '),

`Rule ${JSON.stringify(rule)} does not string as 'target '`)

assert(('depends ' in rule) &&
Array.isArray(rule.depends) &&
rule.depends.every(dep => (typeof dep === 'string ')),
`Bad 'depends ' for rule ${JSON.stringify(rule)}`)

assert(('recipes ' in rule) &&
Array.isArray(rule.recipes) &&
rule.recipes.every(recipe => (typeof recipe === 'string ')),
`Bad 'recipes ' for rule ${JSON.stringify(rule)}`)

156 10 Build Manager

})
}

}

export default ConfigLoader� �
Listing 10.4: config-loader.js

The first line does the loading; the rest of the method checks that the rules are at least superficially
plausible. We need these checks because YAML is a generic file format that doesn’t know anything
about the extra requirements of our rules. And as we first saw in Chapter 3, we have to specify
that the character encoding of our file is UTF-8 so that JavaScript knows how to convert bytes into
text.

The next step is to turn the configuration into a graph in memory. We use the graphlib4 module
to manage nodes and links rather than writing our own classes for graphs, and store the recipe to
rebuild a node in that node. Two features of graphlib that took us a while to figure out are that:

1. links go from the dependency to the target, and

2. setEdge automatically adds nodes if they aren’t already present.

graphlib provides implementations of some common graph algorithms, including one to check
for cycles, so we might as well write that method at this point as well:� �
import assert from 'assert '
import graphlib from '@dagrejs/graphlib '

import ConfigLoader from './config -loader.js '

class GraphCreator extends ConfigLoader {
buildGraph () {

this.graph = new graphlib.Graph()
this.config.forEach(rule => {

this.graph.setNode(rule.target , {
recipes: rule.recipes

})
rule.depends.forEach(dep => this.graph.setEdge(dep , rule.target))

})
}

checkCycles () {
const cycles = graphlib.alg.findCycles(this.graph)
assert.strictEqual(cycles.length , 0,

`Dependency graph contains cycles ${cycles}`)
}

}

export default GraphCreator

4https://www.npmjs.com/package/graphlib

https://www.npmjs.com/package/graphlib

10.2 Where should we start? 157

� �
Listing 10.5: graph-creator.js

We can now create something that displays our configuration when it runs but does nothing
else:� �
import graphlib from '@dagrejs/graphlib '

import GraphCreator from './graph -creator.js '

class DisplayOnly extends GraphCreator {
run () {

console.log('Graph ')
console.log(graphlib.json.write(this.graph))
console.log('Sorted ')
console.log(graphlib.alg.topsort(this.graph))

}
}

export default DisplayOnly� �
Listing 10.6: display-only.js

If we run this with our three simple rules as input, it shows the graph with v and w keys to
represent the ends of the links:� �
node driver.js ./display -only.js three -simple -rules.yml� �

Listing 10.7: display-only.sh� �
Graph
{

options: { directed: true , multigraph: false , compound: false },
nodes: [

{ v: 'A', value: [Object] },
{ v: 'B', value: [Object] },
{ v: 'C', value: [Object] }

],
edges: [{ v: 'B', w: 'A' }, { v: 'C', w: 'A' }, { v: 'C', w: 'B' }]

}
Sorted
['C', 'B', 'A']� �

Listing 10.8: display-only.out

Let’s write a quick test to make sure the cycle detector works as intended:� �
- target: A

depends:
- B
recipes:

158 10 Build Manager

- "update A from B"
- target: B

depends:
- A
recipes:
- "update B from A"� �

Listing 10.9: circular-rules.yml� �
node driver.js ./display -only.js circular -rules.yml� �

Listing 10.10: check-cycles.sh� �
Build failed: AssertionError [ERR_ASSERTION]: Dependency graph contains \
cycles B,A

at DisplayOnly.checkCycles \
(/u/stjs/build -manager/graph -creator.js :19:12)

at DisplayOnly.build \
(/u/stjs/build -manager/skeleton -builder.js :11:10)

at main (/u/stjs/build -manager/driver.js :5:13) {
generatedMessage: false ,
code: 'ERR_ASSERTION ',
actual: 1,
expected: 0,
operator: 'strictEqual '

}� �
Listing 10.11: check-cycles.out

10.3 How can we specify that a file is out of date?
The next step is to figure out which files are out of date. Make does this by comparing the timestamps
of the files in question, but this isn’t always reliable: computers’ clocks may be slightly out of sync,
which can produce a wrong answer on a networked filesystem, and the operating system may only
report file update times to the nearest millisecond (which seemed very short in 1970 but seems very
long today).

More modern build systems store a hash of each file’s contents and compare the current hash
to the stored one to see if the file has changed. Since we already looked at hashing in Chapter 5,
we will use the timestamp approach here. And instead of using a mock filesystem as we did in
Chapter 5, we will simply load another configuration file that specifies fake timestamps for files:� �
A: 2
B: 5
C: 8� �

Listing 10.12: add-timestamps.yml

10.3 How can we specify that a file is out of date? 159

Since we want to associate those timestamps with files, we add a step to buildGraph to read
the timestamp file and add information to the graph’s nodes:� �
import assert from 'assert '
import fs from 'fs '
import yaml from 'js -yaml '

import GraphCreator from './graph -creator.js '

class AddTimestamps extends GraphCreator {
constructor (configFile , timesFile) {

super(configFile)
this.timesFile = timesFile

}

buildGraph () {
super.buildGraph ()
this.addTimestamps ()

}

addTimestamps () {
const times = yaml.safeLoad(fs.readFileSync(this.timesFile , 'utf -8'))
for (const node of Object.keys(times)) {

assert(this.graph.hasNode(node),
`Graph does not have node ${node}`)

this.graph.node(node). timestamp = times[node]
}
const missing = this.graph.nodes (). filter(

n => !('timestamp ' in this.graph.node(n))
)
assert.strictEqual(missing.length , 0,

`Timestamp missing for node(s) ${missing}`)
}

run () {
console.log(this.graph.nodes ().map(

n => `${n}: ${JSON.stringify(this.graph.node(n))}`
))

}
}

export default AddTimestamps� �
Listing 10.13: add-timestamps.js

160 10 Build Manager

Not quite what we were expecting

The steps defined in SkeletonBuilder.build don’t change when we do this, so people reading
the code don’t have to change their mental model of what it does overall. However, if we had
realized in advance that we were going to want to add timestamps from a file, we would
probably have added a step for that in the template method. And if someone ever wants
to inject a new step between building the graph and adding timestamps, they will have to
override addTimestamps and put their step at the top before calling super.addTimestamps,
which will make the code a lot harder to understand. We will reflect on this in the last section
of this chapter.

Before we move on, let’s make sure that adding timestamps works as we want:� �
node driver.js ./add -timestamps.js three -simple -rules.yml add -timestamps.yml� �

Listing 10.14: add-timestamps.sh� �
[

'A: {" recipes ":[" update A from B and C"]," timestamp ":2}',
'B: {" recipes ":[" update B from C"]," timestamp ":5}',
'C: {" recipes ":[]," timestamp ":8}'

]� �
Listing 10.15: add-timestamps.out

10.4 How can we update out-of-date files?
To figure out which recipes to execute and in which order, we set the pretended current time to
the latest time of any file, then look at each file in topological order. If a file is older than any of
its dependencies, we update the file and its pretended timestamp to trigger an update of anything
that depends on it.

We can pretend that updating a file always takes one unit of time, so we advance our fictional
clock by one for each build. Using graphlib.alg.topsort to create the topological order, we get
this:� �
import graphlib from '@dagrejs/graphlib '

import AddTimestamps from './add -timestamps.js '

class UpdateOnTimestamps extends AddTimestamps {
run () {

const sorted = graphlib.alg.topsort(this.graph)
const startTime = 1 + Math.max (... sorted.map(

10.4 How can we update out-of-date files? 161

n => this.graph.node(n). timestamp))
console.log(`${startTime }: START `)
const endTime = sorted.reduce ((currTime , node) => {

if (this.isStale(node)) {
console.log(`${currTime }: ${node}`)
this.graph.node(node). recipes.forEach(

a => console.log(` ${a}`))
this.graph.node(node). timestamp = currTime
currTime += 1

}
return currTime

}, startTime)
console.log(`${endTime }: END `)

}

isStale (node) {
return this.graph.predecessors(node).some(

other => this.graph.node(other). timestamp >=
this.graph.node(node). timestamp

)
}

}

export default UpdateOnTimestamps� �
Listing 10.16: update-timestamps.js

The run method:

1. Gets a sorted list of nodes.

2. Sets the starting time to be one unit past the largest file time.

3. Uses Array.reduce to operate on each node (i.e., each file) in order. If that file is stale, we print
the steps we would run and then update the file’s timestamp. We only advance the notional
current time when we do an update.

In order to check if a file is stale, we see if any of its dependencies currently have timestamps
greater than or equal to its. When we run this, it seems to do the right thing:� �
node driver.js ./update -timestamps.js three -simple -rules.yml add -timestamps.yml� �

Listing 10.17: update-timestamps.sh� �
9: START
9: B

update B from C
10: A

update A from B and C
11: END� �

Listing 10.18: update-timestamps.out

162 10 Build Manager

target: left.out

depends: []

recipes: []

target: %.out

depends: [%.in]

recipes: [update @TARGET from @DEPEDENCIES]

% matches 'left'

so this becomes left.in

and this becomes
update left.out from left.in

Figure 10.4: Turning patterns rules into runnable commands.

10.5 How can we add generic build rules?
If our website has a hundred blog posts or a hundred pages of documentation about particular
JavaScript files, we don’t want to have to write a hundred nearly-identical recipes. Instead, we want
to be able to write generic build rules that say, "Build all things of this kind the same way." These
generic rules need:

• a way to define a set of files;

• a way to specify a generic rule; and

• a way to fill in parts of that rule.

We will achieve this by overriding buildGraph to replace variables in recipes with values. Once
again, object-oriented programming helps us change only what we need to change, provided we
divided our problem into sensible chunks in the first place.

Make provides automatic variables with names like $< and $@ to represent the parts of a rule.
Our variables will be more readable: we will use @TARGET for the target, @DEPENDENCIES for the
dependencies (in order), and @DEP[1], @DEP[2], and so on for specific dependencies (Figure 10.4).

Our variable expander looks like this:� �
import UpdateOnTimestamps from './update -timestamps.js '

class VariableExpander extends UpdateOnTimestamps {
buildGraph () {

super.buildGraph ()
this.expandVariables ()

}

expandVariables () {
this.graph.nodes (). forEach(target => {

try {
const dependencies = this.graph.predecessors(target)

10.5 How can we add generic build rules? 163

const recipes = this.graph.node(target). recipes
this.graph.node(target). recipes = recipes.map(act => {

act = act
.replace('@TARGET ', target)
.replace('@DEPENDENCIES ', dependencies.join(' '))

dependencies.forEach ((dep , i) => {
act = act.replace(`@DEP[${i}]`, dependencies[i])

})
return act

})
} catch (error) {

console.error(`Cannot find ${target} in graph `)
process.exit (1)

}
})

}
}

export default VariableExpander� �
Listing 10.19: variable-expander.js

The first thing we do is test that it works when there aren’t any variables to expand by running
it on the same example we used previously:� �
9: START
9: B

update B from C
10: A

update A from B C
11: END� �

Listing 10.20: variable-expander.out

This is perhaps the most important reason to create tests: they tell us right away if something we
have added or changed has broken something that used to work. That gives us a firm base to build
on as we debug the new code.

Now we need to add pattern rules. Our first attempt at a rules file looks like this:� �
- target: left.out

depends: []
recipes: []
timestamp: 1

- target: left.in
depends: []
recipes: []
timestamp: 2

- target: right.out
depends: []
recipes: []
timestamp: 1

164 10 Build Manager

- target: right.in
depends: []
recipes: []
timestamp: 3

- target: "%. out"
depends:
- "%.in"
recipes:
- "update @TARGET from @DEPENDENCIES"� �

Listing 10.21: pattern-rules.yml

and our first attempt at reading it extracts rules before expanding variables:� �
import VariableExpander from './variable -expander.js '

class PatternUserAttempt extends VariableExpander {
buildGraph () {

super.buildGraph ()
this.extractRules ()
this.expandVariables ()

}

extractRules () {
this.rules = new Map()
this.graph.nodes (). forEach(target => {

if (target.includes ('%')) {
const data = {

recipes: this.graph.node(target). recipes
}
this.rules.set(target , data)

}
})
this.rules.forEach ((value , key) => {

this.graph.removeNode(key)
})

}
}

export default PatternUserAttempt� �
Listing 10.22: pattern-user-attempt.js

However, that doesn’t work:� �
Build failed: AssertionError [ERR_ASSERTION]: Graph does not have node A

at PatternUserAttempt.addTimestamps \
(/u/stjs/build -manager/add -timestamps.js :21:7)
at PatternUserAttempt.buildGraph \
(/u/stjs/build -manager/add -timestamps.js :15:10)
at PatternUserAttempt.buildGraph \
(/u/stjs/build -manager/variable -expander.js :5:11)

10.5 How can we add generic build rules? 165

at PatternUserAttempt.buildGraph \
(/u/stjs/build -manager/pattern -user -attempt.js :5:11)
at PatternUserAttempt.build \
(/u/stjs/build -manager/skeleton -builder.js :10:10)
at main (/u/stjs/build -manager/driver.js :5:13) {

generatedMessage: false ,
code: 'ERR_ASSERTION ',
actual: false ,
expected: true ,
operator: '=='

}� �
Listing 10.23: pattern-user-attempt.out

The problem is that our simple graph loader creates nodes for dependencies even if they aren’t
targets. As a result, we wind up tripping over the lack of a node for %.in before we get to extracting
rules.

Errors become assertions

When we first wrote add-timestamps.js, it didn’t contain the assertion that printed the
error message shown above. Once we tracked down our bug, though, we added the assertion to
ensure we didn’t make the same mistake again, and as runnable documentation to tell the
next programmer more about the code. Regular code tells the computer what to do; assertions
with meaningful error messages tell the reader why.

We can fix our problem by rewriting the rule loader to separate pattern rules from simple rules;
we can tell the two apart by checking if the rule’s dependencies include %. While we’re here, we will
enable timestamps as an optional field in the rules for testing purposes rather than having them in
a separate file:� �
import assert from 'assert '
import graphlib from '@dagrejs/graphlib '

import VariableExpander from './variable -expander.js'

class PatternUserRead extends VariableExpander {
buildGraph () {

this.buildGraphAndRules ()
this.expandVariables ()

}

buildGraphAndRules () {
this.graph = new graphlib.Graph()
this.rules = new Map()
this.config.forEach(rule => {

if (rule.target.includes ('%')) {
const data = {

recipes: rule.recipes ,

166 10 Build Manager

depends: rule.depends
}
this.rules.set(rule.target , data)

} else {
const timestamp = ('timestamp ' in rule)

? rule.timestamp
: null

this.graph.setNode(rule.target , {
recipes: rule.recipes ,
timestamp: timestamp

})
rule.depends.forEach(dep => {

assert (!dep.includes('%'),
'Cannot have "%" in a non -pattern rule ')

this.graph.setEdge(dep , rule.target)
})

}
})

}
}

export default PatternUserRead� �
Listing 10.24: pattern-user-read.js

Before we try to run this, let’s add methods to show the state of our two internal data structures:� �
import graphlib from '@dagrejs/graphlib '

import PatternUserRead from './pattern -user -read.js'

class PatternUserShow extends PatternUserRead {
run () {

console.log(JSON.stringify(this.toJSON(), null , 2))
}

toJSON () {
return {

graph: graphlib.json.write(this.graph),
rules: Array.from(this.rules.keys ()). map(key => {

return { k: key , v: this.rules.get(key) }
})

}
}

}

export default PatternUserShow� �
Listing 10.25: pattern-user-show.js� �

node driver.js ./pattern -user -show.js pattern -rules.yml

10.5 How can we add generic build rules? 167

� �
Listing 10.26: pattern-user-show.sh� �

{
"graph": {

"options ": {
"directed ": true ,
"multigraph ": false ,
"compound ": false

},
"nodes": [

{
"v": "left.out",
"value": {

"recipes ": [],
"timestamp ": 1

}
},
{

"v": "left.in",
"value": {

"recipes ": [],
"timestamp ": 2

}
},
{

"v": "right.out",
"value": {

"recipes ": [],
"timestamp ": 1

}
},
{

"v": "right.in",
"value": {

"recipes ": [],
"timestamp ": 3

}
}

],
"edges": []

},
"rules": [

{
"k": "%. out",
"v": {

"recipes ": [
"update @TARGET from @DEPENDENCIES"

],
"depends ": [

168 10 Build Manager

"%.in"
]

}
}

]
}� �

Listing 10.27: pattern-user-show.out

The output seems to be right, so let’s try expanding rules after building the graph and rules
but before expanding variables:� �
import PatternUserRead from './pattern -user -read.js'

class PatternUserRun extends PatternUserRead {
buildGraph () {

this.buildGraphAndRules ()
this.expandAllRules ()
this.expandVariables ()

}

expandAllRules () {
this.graph.nodes (). forEach(target => {

if (this.graph.predecessors(target). length > 0) {
return

}
const data = this.graph.node(target)
if (data.recipes.length > 0) {

return
}
const rule = this.findRule(target)
if (!rule) {

return
}
this.expandRule(target , rule)

})
}

findRule (target) {
const pattern = `%.${target.split ('.')[1]}`
return this.rules.has(pattern)

? this.rules.get(pattern)
: null

}

expandRule (target , rule) {
const stem = target.split ('.')[0]
rule.depends

.map(dep => dep.replace('%', stem))

.forEach(dep => this.graph.setEdge(dep , target))
const recipes = rule.recipes.map(act => act.replace('%', stem))

10.6 What should we do next? 169

const timestamp = this.graph.node(target). timestamp
this.graph.setNode(target , {

recipes: recipes ,
timestamp: timestamp

})
}

}

export default PatternUserRun� �
Listing 10.28: pattern-user-run.js� �

4: START
4: left.out

update left.out from left.in
5: right.out

update right.out from right.in
6: END� �

Listing 10.29: pattern-user-run.out

10.6 What should we do next?
We have added a lot of steps to our original template method, which makes it a bit of a stretch
to claim that the overall operation hasn’t changed. Knowing what we know now, we could go back
and modify the original SkeletonBuilder.build method to include those extra steps and provide
do-nothing implementations.

The root of the problem is that we didn’t anticipate all the steps that would be involved when
we wrote our template method. It typically takes a few child classes for this to settle down; if it
never does, then Template Method is probably the wrong pattern for our situation. Realizing this
isn’t a failure in initial design: we always learn about our problem as we try to capture it in code,
and if we know enough to anticipate 100% of the issues that are going to come up, it’s time to put
what we’ve learned in a library for future use.

10.7 Exercises

Handle failure

1. Modify the build manager to accommodate build steps that fail.

2. Write Mocha tests to check that this change works correctly.

170 10 Build Manager

Dry run

Add an option to the build manager to show what commands would be executed and why if a build
were actually run. For example, the output should display things like, "’update A’ because A older
than B".

Change directories

Modify the build manager so that:� �
node build.js -C some/sub/directory rules.yml timestamps.yml� �
runs the build in the specified directory rather than the current directory.

Merge files

Modify the build manager so that it can read multiple configuration files and execute their combines
rules.

Show recipes

Add a method to build manager to display all unique recipes, i.e., all of the commands it might
execute if asked to rebuild everything.

Conditional execution

Modify the build manager so that:

1. The user can pass variable=true and variable=false arguments on the command-line to
define variables.

2. Rules can contain an if: variable field.

3. Those rules are only executed if the variable is defined and true.

4. Write Mocha tests to check that this works correctly.

Define filesets

Modify the build manager so that users can define sets of files:� �
fileset:

name: everything
contains:

- X
- Y
- Z� �

and then refer to them later:

10.7 Exercises 171� �
- target: P

depends:
- @everything� �

Globbing

Modify the build manager so that it can dynamically construct a set of files:� �
glob:

name: allAvailableInputs
pattern: "./*.in"� �

and then refer to them later:� �
- target: P

depends:
- @allAvailableInputs� �

Use hashes

1. Write a program called build-init.js that calculates a hash for every file mentioned in the
build configuration and stores the hash along with the file’s name in build-hash.json.

2. Modify the build manager to compare the current hashes of files with those stored in
build-hash.json in order to determine what is out of date, and to update build-hash.json
each time it runs.

Auxiliary functions

1. Modify the builder manager so that it takes an extra argument auxiliaries containing zero or
more named functions:� �
const builder = new ExtensibleBuilder(configFile , timesFile , {

slice: (node , graph) => simplify(node , graph , 1)
})� �

2. Modify the run method to call these functions before executing the rules for a node, and to only
execute the rules if all of them return true.

3. Write Mocha tests to check that this works correctly.

11
Layout Engine

Figuring out what goes where in a web page

Terms defined: Liskov Substitution Principle, attribute, cache, confirmation bias, design
by contract, easy mode, layout engine, query selector, signature, z-buffering

You might be reading this as an HTML page, an e-book (which is basically the same thing), or
on the printed page. In all three cases, a layout engine took some text and some layout instructions
and decided where to put each character and image. We will build a small layout engine in this
chapter based on Matt Brubeck’s1 tutorial2 to explore how browsers decide what to put where.

Our inputs will be a very small subset of HTML and an equally small subset of CSS. We will
create our own classes to represent these instead of using those provided by various Node3 libraries;
to translate the combination of HTML and CSS into text on the screen, we will label each node in
the DOM tree with the appropriate styles, walk that tree to figure out where each visible element
belongs, and then draw the result as text on the screen.

Upside down

The coordinate systems for screens put (0, 0) in the upper left corner instead of the lower left.
X increases to the right as usual, but Y increases as we go down, rather than up (Figure 11.1).
This convention is a holdover from the days of teletype terminals that printed lines on rolls of
paper; as Mike Hoye4 has repeatedly observed5, the past is all around us.

F i r s t

S e c o n d

T h i r d

0 1 2 3 4 5

0

1

2

X

Y

Figure 11.1: Coordinate system with (0, 0) in the upper left corner.

1https://limpet.net/mbrubeck/
2https://limpet.net/mbrubeck/2014/08/08/toy-layout-engine-1.html
3https://nodejs.org/en/
4http://exple.tive.org/blarg/
5http://exple.tive.org/blarg/2020/11/26/punching-holes/

173

https://limpet.net/mbrubeck/
https://limpet.net/mbrubeck/2014/08/08/toy-layout-engine-1.html
https://nodejs.org/en/
http://exple.tive.org/blarg/
http://exple.tive.org/blarg/2020/11/26/punching-holes/

174 11 Layout Engine

11.1 How can we size rows and columns?
Let’s start on easy mode without margins, padding, line-wrapping, or other complications. Every-
thing we can put on the screen is represented as a rectangular cell, and every cell is either a row, a
column, or a block. A block has a fixed width and height:� �
export class Block {

constructor (width , height) {
this.width = width
this.height = height

}

getWidth () {
return this.width

}

getHeight () {
return this.height

}
}� �

Listing 11.1: easy-mode.js

A row arranges one or more cells horizontally; its width is the sum of the widths of its children,
while its height is the height of its tallest child (Figure 11.2):� �
export class Row {

constructor (... children) {
this.children = children

}

getWidth () {
let result = 0
for (const child of this.children) {

result += child.getWidth ()
}
return result

}

getHeight () {
let result = 0
for (const child of this.children) {

result = Math.max(result , child.getHeight ())
}
return result

}
}� �

Listing 11.2: easy-mode.js

11.1 How can we size rows and columns? 175

row

sum

max

column

sum

max

Figure 11.2: Calculating sizes of blocks with fixed width and height.

Finally, a column arranges one or more cells vertically; its width is the width of its widest child
and its height is the sum of the heights of its children. (Here and elsewhere we use the abbreviation
col when referring to columns.)� �
export class Col {

constructor (... children) {
this.children = children

}

getWidth () {
let result = 0
for (const child of this.children) {

result = Math.max(result , child.getWidth ())
}
return result

}

getHeight () {
let result = 0
for (const child of this.children) {

result += child.getHeight ()
}
return result

}
}� �

Listing 11.3: easy-mode.js

Rows and columns nest inside one another: a row cannot span two or more columns, and a
column cannot cross the boundary between two rows. Any time we have a structure with that
property we can represent it as a tree of nested objects. Given such a tree, we can calculate the
width and height of each cell every time we need to. This is simple but inefficient: we could calculate
both width and height at the same time and cache those values to avoid recalculation, but we called
this "easy mode" for a reason.

As simple as it is, this code could still contain errors (and did during development), so we

176 11 Layout Engine

write some Mocha6 tests to check that it works as desired before trying to build anything more
complicated:� �
import assert from 'assert '

import {
Block ,
Row ,
Col

} from '../easy -mode.js '

describe('lays out in easy mode ', () => {
it('lays out a single unit block ', async () => {

const fixture = new Block(1, 1)
assert.strictEqual(fixture.getWidth(), 1)
assert.strictEqual(fixture.getHeight(), 1)

})

it('lays out a large block ', async () => {
const fixture = new Block(3, 4)
assert.strictEqual(fixture.getWidth(), 3)
assert.strictEqual(fixture.getHeight(), 4)

})

it('lays out a row of two blocks ', async () => {
const fixture = new Row(

new Block(1, 1),
new Block(2, 4)

)
assert.strictEqual(fixture.getWidth(), 3)
assert.strictEqual(fixture.getHeight(), 4)

})

it('lays out a column of two blocks ', async () => {
const fixture = new Col(

new Block(1, 1),
new Block(2, 4)

)
assert.strictEqual(fixture.getWidth(), 2)
assert.strictEqual(fixture.getHeight(), 5)

})

it('lays out a grid of rows of columns ', async () => {
const fixture = new Col(

new Row(
new Block(1, 2),
new Block(3, 4)

),
new Row(

6https://mochajs.org/

https://mochajs.org/

11.2 How can we position rows and columns? 177

new Block(5, 6),
new Col(

new Block(7, 8),
new Block(9, 10)

)
)

)
assert.strictEqual(fixture.getWidth(), 14)
assert.strictEqual(fixture.getHeight(), 22)

})
})� �

Listing 11.4: test/test-easy-mode.js� �
> stjs@1 .0.0 test /u/stjs
> mocha */test/test -*.js "-g" "easy mode"

lays out in easy mode
X lays out a single unit block
X lays out a large block
X lays out a row of two blocks
X lays out a column of two blocks
X lays out a grid of rows of columns

5 passing (7ms)� �
Listing 11.5: test-easy-mode.out

11.2 How can we position rows and columns?
Now that we know how big each cell is we can figure out where to put it. Suppose we start with the
upper left corner of the browser: upper because we lay out the page top-to-bottom and left because
we are doing left-to-right layout. If the cell is a block, we place it there. If the cell is a row, on the
other hand, we get its height and then calculate its lower edge as y1 = y0 + height. We then place
the first child’s lower-left corner at (x0, y1), the second child’s at (x0 + width0, y1), and so on
(Figure 11.3). Similarly, if the cell is a column we place the first child at (x0, y0), the next at (x0,
y0 + height0), and so on.

To save ourselves some testing we will derive the classes that know how to do layout from the
classes we wrote before. Our blocks are:� �
export class PlacedBlock extends Block {

constructor (width , height) {
super(width , height)

178 11 Layout Engine

row

width

height

y0

y1

height

x0 x1 x2

width0 width1 width2

Figure 11.3: Laying out rows and columns of fixed-size blocks.

this.x0 = null
this.y0 = null

}

place (x0, y0) {
this.x0 = x0
this.y0 = y0

}

report () {
return [

'block ', this.x0, this.y0 ,
this.x0 + this.width ,
this.y0 + this.height

]
}

}� �
Listing 11.6: placed.js

while our columns are:� �
export class PlacedCol extends Col {

constructor (... children) {
super (... children)
this.x0 = null
this.y1 = null

}

place (x0, y0) {
this.x0 = x0
this.y0 = y0
let yCurrent = this.y0
this.children.forEach(child => {

child.place(x0, yCurrent)
yCurrent += child.getHeight ()

})
}

report () {

11.2 How can we position rows and columns? 179

return [
'col ', this.x0, this.y0 ,
this.x0 + this.getWidth(),
this.y0 + this.getHeight (),
... this.children.map(child => child.report ())

]
}

}� �
Listing 11.7: placed.js

and our rows are:� �
export class PlacedRow extends Row {

constructor (... children) {
super (... children)
this.x0 = null
this.y0 = null

}

place (x0 , y0) {
this.x0 = x0
this.y0 = y0
const y1 = this.y0 + this.getHeight ()
let xCurrent = x0
this.children.forEach(child => {

const childY = y1 - child.getHeight ()
child.place(xCurrent , childY)
xCurrent += child.getWidth ()

})
}

report () {
return [

'row ', this.x0, this.y0 ,
this.x0 + this.getWidth(),
this.y0 + this.getHeight (),
... this.children.map(child => child.report ())

]
}

}� �
Listing 11.8: placed.js

Once again, we write and run some tests to check that everything is doing what it’s supposed
to:� �
import assert from 'assert '

import {
PlacedBlock as Block ,
PlacedCol as Col ,

180 11 Layout Engine

PlacedRow as Row
} from '../ placed.js '

describe('places blocks ', () => {
it('places a single unit block ', async () => {

const fixture = new Block(1, 1)
fixture.place(0, 0)
assert.deepStrictEqual(

fixture.report(),
['block ', 0, 0, 1, 1]

)
})

it('places a large block ', async () => {
const fixture = new Block(3, 4)
fixture.place(0, 0)
assert.deepStrictEqual(

fixture.report(),
['block ', 0, 0, 3, 4]

)
})

it('places a row of two blocks ', async () => {
const fixture = new Row(

new Block(1, 1),
new Block(2, 4)

)
fixture.place(0, 0)
assert.deepStrictEqual(

fixture.report(),
['row ', 0, 0, 3, 4,

['block ', 0, 3, 1, 4],
['block ', 1, 0, 3, 4]

]
)

})

it('places a column of two blocks ', async () => {
const fixture = new Col(

new Block(1, 1),
new Block(2, 4)

)
fixture.place(0, 0)
assert.deepStrictEqual(

fixture.report(),
['col ', 0, 0, 2, 5,

['block ', 0, 0, 1, 1],
['block ', 0, 1, 2, 5]

]
)

11.3 How can we render elements? 181

})

})� �
Listing 11.9: test/test-placed.js� �

> stjs@1 .0.0 test /u/stjs
> mocha */test/test -*.js "-g" "places blocks"

places blocks
X places a single unit block
X places a large block
X places a row of two blocks
X places a column of two blocks
X places a grid of rows of columns

5 passing (8ms)� �
Listing 11.10: test-placed.out

11.3 How can we render elements?
We drew the blocks on a piece of graph paper in order to figure out the expected answers for the tests
shown above. We can do something similar in software by creating a "screen" of space characters
and then having each block draw itself in the right place. If we do this starting at the root of the tree,
child blocks will overwrite the markings made by their parents, which will automatically produce
the right appearance (Figure 11.4). (A more sophisticated version of this called z-buffering keeps
track of the visual depth of each pixel in order to draw things in three dimensions.)

Our pretended screen is just an array of arrays of characters:� �
const makeScreen = (width , height) => {

const screen = []
for (let i = 0; i < height; i += 1) {

screen.push(new Array(width).fill(' '))
}
return screen

}� �
Listing 11.11: render.js

We will use successive lower-case characters to show each block, i.e., the root block will draw
itself using ’a’, while its children will be ’b’, ’c’, and so on.

182 11 Layout Engine

block col block

block block

row

1

1

2

2

3

3

4

4

5

5 6

6

Figure 11.4: Render blocks by drawing child nodes on top of parent nodes.

� �
const draw = (screen , node , fill = null) => {

fill = nextFill(fill)
node.render(screen , fill)
if ('children ' in node) {

node.children.forEach(child => {
fill = draw(screen , child , fill)

})
}
return fill

}

const nextFill = (fill) => {
return (fill === null)

? 'a'
: String.fromCharCode(fill.charCodeAt () + 1)

}� �
Listing 11.12: render.js

To teach each kind of cell how to render itself, we have to derive a new class from each of the
ones we have and give the new class a render method with the same signature:� �
import {

PlacedBlock ,
PlacedCol ,
PlacedRow

} from './placed.js'

// [keep]
export class RenderedBlock extends PlacedBlock {

11.3 How can we render elements? 183

render (screen , fill) {
drawBlock(screen , this , fill)

}
}

export class RenderedCol extends PlacedCol {
render (screen , fill) {

drawBlock(screen , this , fill)
}

}

export class RenderedRow extends PlacedRow {
render (screen , fill) {

drawBlock(screen , this , fill)
}

}

const drawBlock = (screen , node , fill) => {
for (let ix = 0; ix < node.getWidth (); ix += 1) {

for (let iy = 0; iy < node.getHeight (); iy += 1) {
screen[node.y0 + iy][node.x0 + ix] = fill

}
}

}
// [/keep]� �

Listing 11.13: rendered.js

These render methods do exactly the same thing, so we have each one call a shared function that
does the actual work. If we were building a real layout engine, a cleaner solution would be to go
back and create a class called Cell with this render method, then derive our Block, Row, and Col
classes from that. In general, if two or more classes need to be able to do something, we should add
a method to do that to their lowest common ancestor.

Our simpler tests are a little easier to read once we have rendering in place, though we still had
to draw things on paper to figure out our complex ones:� �

it('renders a grid of rows of columns ', async () => {
const fixture = new Col(

new Row(
new Block(1, 2),
new Block(3, 4)

),
new Row(

new Block(1, 2),
new Col(

new Block(3, 4),
new Block(2, 3)

)
)

)
fixture.place(0, 0)

184 11 Layout Engine

assert.deepStrictEqual(
render(fixture),
[

'bddd ',
'bddd ',
'cddd ',
'cddd ',
'ehhh ',
'ehhh ',
'ehhh ',
'ehhh ',
'eiig ',
'fiig ',
'fiig '

].join('\n')
)

})� �
Listing 11.14: test/test-rendered.js

The fact that we find our own tests difficult to understand is a sign that we should do more testing.
It would be very easy for us to get a wrong result and convince ourselves that it was actually correct;
confirmation bias of this kind is very common in software development.

11.4 How can we wrap elements to fit?
One of the biggest differences between a browser and a printed page is that the text in the browser
wraps itself automatically as the window is resized. (The other, these days, is that the printed page
doesn’t spy on us, though someone is undoubtedly working on that.)

To add wrapping to our layout engine, suppose we fix the width of a row. If the total width of
the children is greater than the row’s width, the layout engine needs to wrap the children around.
This assumes that columns can be made as big as they need to be, i.e., that we can grow vertically
to make up for limited space horizontally. It also assumes that all of the row’s children are no wider
than the width of the row; we will look at what happens when they’re not in the exercises.

Our layout engine manages wrapping by transforming the tree. The height and width of blocks
are fixed, so they become themselves. Columns become themselves as well, but since they have
children that might need to wrap, the class representing columns needs a new method:� �
export class WrappedBlock extends PlacedBlock {

wrap () {
return this

}
}

export class WrappedCol extends PlacedCol {
wrap () {

11.4 How can we wrap elements to fit? 185

row

block block

width

row

col

row row

block block

width

Figure 11.5: Wrapping rows by introducing a new row and column.

const children = this.children.map(child => child.wrap ())
return new PlacedCol (... children)

}
}� �

Listing 11.15: wrapped.js

Rows do all the hard work. Each original row is replaced with a new row that contains a single
column with one or more rows, each of which is one "line" of wrapped cells (Figure 11.5). This
replacement is unnecessary when everything will fit on a single row, but it’s easiest to write the
code that does it every time; we will look at making this more efficient in the exercises.

Our new wrappable row’s constructor takes a fixed width followed by the children and returns
that fixed width when asked for its size:� �
export class WrappedRow extends PlacedRow {

constructor (width , ... children) {
super (... children)
assert(width >= 0,

'Need non -negative width ')
this.width = width

}

getWidth () {
return this.width

}

}� �
Listing 11.16: wrapped.js

Wrapping puts the row’s children into buckets, then converts the buckets to a row of a column of
rows:

186 11 Layout Engine� �
wrap () {

const children = this.children.map(child => child.wrap ())
const rows = []
let currentRow = []
let currentX = 0

children.forEach(child => {
const childWidth = child.getWidth ()
if ((currentX + childWidth) <= this.width) {

currentRow.push(child)
currentX += childWidth

} else {
rows.push(currentRow)
currentRow = [child]
currentX = childWidth

}
})
rows.push(currentRow)

const newRows = rows.map(row => new PlacedRow (... row))
const newCol = new PlacedCol (... newRows)
return new PlacedRow(newCol)

}� �
Listing 11.17: wrapped.js

Once again we bring forward all the previous tests and write some new ones to test the func-
tionality we’ve added:� �

it('wrap a row of two blocks that do not fit on one row ', async () => {
const fixture = new Row(

3,
new Block(2, 1),
new Block(2, 1)

)
const wrapped = fixture.wrap()
wrapped.place(0, 0)
assert.deepStrictEqual(

wrapped.report(),
['row ', 0, 0, 2, 2,

['col ', 0, 0, 2, 2,
['row ', 0, 0, 2, 1,

['block ', 0, 0, 2, 1]
],
['row ', 0, 1, 2, 2,

['block ', 0, 1, 2, 2]
]

]
]

)

11.5 What subset of CSS will we support? 187

})� �
Listing 11.18: test/test-wrapped.js� �

> stjs@1 .0.0 test /u/stjs
> mocha */test/test -*.js "-g" "wraps blocks"

wraps blocks
X wraps a single unit block
X wraps a large block
X wrap a row of two blocks that fit on one row
X wraps a column of two blocks
X wraps a grid of rows of columns that all fit on their row
X wrap a row of two blocks that do not fit on one row
X wrap multiple blocks that do not fit on one row

7 passing (10ms)� �
Listing 11.19: test-wrapped.out

The Liskov Substitution Principle

We are able to re-use tests like this because of the Liskov Substitution Principle, which
states that it should be possible to replace objects in a program with objects of derived classes
without breaking anything. In order to satisfy this principle, new code must handle the same
set of inputs as the old code, though it may be able to process more inputs as well. Conversely,
its output must be a subset of what the old code produced so that whatever is downstream
from it won’t be surprised. Thinking in these terms leads to a methodology called design by
contract.

11.5 What subset of CSS will we support?
It’s finally time to style pages that contain text. Our final subset of HTML has rows, columns, and
text blocks as before. Each text block has one or more lines of text; the number of lines determines
the block’s height and the length of the longest line determines its width.

Rows and columns can have attributes just as they can in real HTML, and each attribute must
have a single value in quotes. Rows no longer take a fixed width: instead, we will specify that with
our little subset of CSS. Together, these three classes are just over 40 lines of code:� �
export class DomBlock extends WrappedBlock {

188 11 Layout Engine

constructor (lines) {
super(

Math.max (... lines.split('\n').map(line => line.length)),
lines.length

)
this.lines = lines
this.tag = 'text '
this.rules = null

}

findRules (css) {
this.rules = css.findRules(this)

}
}

export class DomCol extends WrappedCol {
constructor (attributes , ... children) {

super (... children)
this.attributes = attributes
this.tag = 'col '
this.rules = null

}

findRules (css) {
this.rules = css.findRules(this)
this.children.forEach(child => child.findRules(css))

}
}

export class DomRow extends WrappedRow {
constructor (attributes , ... children) {

super(0, ... children)
this.attributes = attributes
this.tag = 'row '
this.rules = null

}

findRules (css) {
this.rules = css.findRules(this)
this.children.forEach(child => child.findRules(css))

}
}� �

Listing 11.20: micro-dom.js

We will use regular expressions to parse HTML (though as we explained in Chapter 8, this is a
sin7). The main body of our parser is:� �
7https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-
tags/1732454#1732454

https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454#1732454
https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454#1732454

11.5 What subset of CSS will we support? 189

import assert from 'assert '

import {
DomBlock ,
DomCol ,
DomRow

} from './micro -dom.js '

const TEXT_AND_TAG = /^([^ <]*)(<[^]+? >)(.*)$/ms
const TAG_AND_ATTR = /<(\w+)([^ >]*) >/
const KEY_AND_VALUE = /\s*(\w+)="([^"]*)"\s*/g

const parseHTML = (text) => {
const chunks = chunkify(text.trim ())
assert(isElement(chunks [0]),

'Must have enclosing outer node ')
const [node , remainder] = makeNode(chunks)
assert(remainder.length === 0,

'Cannot have dangling content ')
return node

}

const chunkify = (text) => {
const raw = []
while (text) {

const matches = text.match(TEXT_AND_TAG)
if (! matches) {

break
}
raw.push(matches [1])
raw.push(matches [2])
text = matches [3]

}
if (text) {

raw.push(text)
}
const nonEmpty = raw.filter(chunk => (chunk.length > 0))
return nonEmpty

}

const isElement = (chunk) => {
return chunk && (chunk [0] === '<')

}

export default parseHTML� �
Listing 11.21: parse.js

while the two functions that do most of the work are:� �

190 11 Layout Engine

const makeNode = (chunks) => {
assert(chunks.length > 0,

'Cannot make nodes without chunks ')

if (! isElement(chunks [0])) {
return [new DomBlock(chunks [0]), chunks.slice (1)]

}

const node = makeOpening(chunks [0])
const closing = `</${node.tag}>`

let remainder = chunks.slice (1)
let child = null
while (remainder && (remainder [0] !== closing)) {

[child , remainder] = makeNode(remainder)
node.children.push(child)

}

assert(remainder && (remainder [0] === closing),
`Node with tag ${node.tag} not closed `)

return [node , remainder.slice (1)]
}� �

Listing 11.22: parse.js

and:� �
const makeOpening = (chunk) => {

const outer = chunk.match(TAG_AND_ATTR)
const tag = outer [1]
const attributes = [... outer [2]. trim (). matchAll(KEY_AND_VALUE)]

.reduce ((obj , [all , key , value]) => {
obj[key] = value
return obj

}, {})
let Cls = null
if (tag === 'col ') {

Cls = DomCol
} else if (tag === 'row ') {

Cls = DomRow
}
assert(Cls !== null ,

`Unrecognized tag name ${tag}`)
return new Cls(attributes)

}� �
Listing 11.23: parse.js

The next step is to define a generic class for CSS rules with a subclass for each type of rule.
From highest precedence to lowest, the three types of rules we support identify specific nodes via
their ID, classes of nodes via their class attribute, and types of nodes via their element name. We

11.5 What subset of CSS will we support? 191

keep track of which rules take precedence over which through the simple expedient of numbering
the classes:� �
export class CssRule {

constructor (order , selector , styles) {
this.order = order
this.selector = selector
this.styles = styles

}
}� �

Listing 11.24: micro-css.js

An ID rule’s query selector is written as #name and matches HTML like <tag
id="name">...</tag> (where tag is row or col):� �
export class IdRule extends CssRule {

constructor (selector , styles) {
assert(selector.startsWith ('#') && (selector.length > 1),

`ID rule ${selector} must start with # and have a selector `)
super(IdRule.ORDER , selector.slice (1), styles)

}

match (node) {
return ('attributes ' in node) &&

('id ' in node.attributes) &&
(node.attributes.id === this.selector)

}
}
IdRule.ORDER = 0� �

Listing 11.25: micro-css.js

A class rule’s query selector is written as .kind and matches HTML like <tag
class="kind">...</tag>. Unlike real CSS, we only allow one class per node:� �
export class ClassRule extends CssRule {

constructor (selector , styles) {
assert(selector.startsWith ('.') && (selector.length > 1),

`Class rule ${selector} must start with . and have a selector `)
super(ClassRule.ORDER , selector.slice (1), styles)

}

match (node) {
return ('attributes ' in node) &&

('class ' in node.attributes) &&
(node.attributes.class === this.selector)

}
}
ClassRule.ORDER = 1� �

Listing 11.26: micro-css.js

192 11 Layout Engine

Finally, tag rules just have the name of the type of node they apply to without any punctuation:� �
export class TagRule extends CssRule {

constructor (selector , styles) {
super(TagRule.ORDER , selector , styles)

}

match (node) {
return this.selector === node.tag

}
}
TagRule.ORDER = 2� �

Listing 11.27: micro-css.js

We could build yet another parser to read a subset of CSS and convert it to objects, but this
chapter is long enough, so we will write our rules as JSON:� �
{

'row ': { width: 20 },
'.kind ': { width: 5 },
'#name ': { height: 10 }

}� �
and build a class that converts this representation to a set of objects:� �
export class CssRuleSet {

constructor (json , mergeDefaults = true) {
this.rules = this.jsonToRules(json)

}

jsonToRules (json) {
return Object.keys(json).map(selector => {

assert ((typeof selector === 'string ') && (selector.length > 0),
'Require non -empty string as selector ')

if (selector.startsWith ('#')) {
return new IdRule(selector , json[selector])

}
if (selector.startsWith ('.')) {

return new ClassRule(selector , json[selector])
}
return new TagRule(selector , json[selector])

})
}

findRules (node) {
const matches = this.rules.filter(rule => rule.match(node))
const sorted = matches.sort((left , right) => left.order - right.order)
return sorted

}
}

11.5 What subset of CSS will we support? 193

� �
Listing 11.28: micro-css.js

Our CSS ruleset class also has a method for finding the rules for a given DOM node. This
method relies on the precedence values we defined for our classes in order to sort them so that we
can find the most specific.

Here’s our final set of tests:� �
it('styles a tree of nodes with multiple rules ', async () => {

const html = [
'<col id="name">',
'<row class="kind">first\nsecond </row >',
'<row >third\nfourth </row >',
'</col >'

]
const dom = parseHTML(html.join(''))
const rules = new CssRuleSet ({

'.kind ': { height: 3 },
'#name ': { height: 5 },
row: { width: 10 }

})
dom.findRules(rules)
assert.deepStrictEqual(dom.rules , [

new IdRule('#name ', { height: 5 })
])
assert.deepStrictEqual(dom.children [0]. rules , [

new ClassRule ('.kind ', { height: 3 }),
new TagRule('row ', { width: 10 })

])
assert.deepStrictEqual(dom.children [1]. rules , [

new TagRule('row ', { width: 10 })
])

})� �
Listing 11.29: test/test-styled.js

If we were going on, we would override the cells’ getWidth and getHeight methods to pay
attention to styles. We would also decide what to do with cells that don’t have any styles defined:
use a default, flag it as an error, or make a choice based on the contents of the child nodes. We will
explore these possibilities in the exercises.

Where it all started

This chapter’s topic was one of the seeds from which this entire book grew (the other being
debuggers discussed in Chapter 20). After struggling with CSS for several years, Greg Wilson8

began wondering whether it really had to be so complicated. That question led to others,
which eventually led to all of this. The moral is, be careful what you ask.

194 11 Layout Engine

11.6 Exercises

Refactoring the node classes

Refactor the classes used to represent blocks, rows, and columns so that:

1. They all derive from a common parent.

2. All common behavior is defined in that parent (if only with placeholder methods).

Handling rule conflicts

Modify the rule lookup mechanism so that if two conflicting rules are defined, the one that is defined
second takes precedence. For example, if there are two definitions for row.bold, whichever comes
last in the JSON representation of the CSS wins.

Handling arbitrary tags

Modify the existing code to handle arbitrary HTML elements.

1. The parser should recognize <anyTag>...</anyTag>.

2. Instead of separate classes for rows and columns, there should be one class Node whose tag
attribute identifies its type.

Recycling nodes

Modify the wrapping code so that new rows and columns are only created if needed. For example,
if a row of width 10 contains a text node with the string "fits", a new row and column are not
inserted.

Rendering a clear background

Modify the rendering code so that only the text in block nodes is shown, i.e., so that the empty
space in rows and columns is rendered as spaces.

Clipping text

1. Modify the wrapping and rendering so that if a block of text is too wide for the available space
the extra characters are clipped. For example, if a column of width 5 contains a line "unfittable",
only "unfit" appears.

2. Extend your solution to break lines on spaces as needed in order to avoid clipping.

8https://third-bit.com/

https://third-bit.com/

11.6 Exercises 195

Bidirectional rendering

Modify the existing software to do either left-to-right or right-to-left rendering upon request.

Equal sizing

Modify the existing code to support elastic columns, i.e., so that all of the columns in a row are
automatically sized to have the same width. If the number of columns does not divide evenly into
the width of the row, allocate the extra space as equally as possible from left to right.

Padding elements

Modify the existing code so that:

1. Authors can define a padding attribute for row and column elements.

2. When the node is rendered, that many blank spaces are added on all four sides of the contents.

For example, the HTML <row>text</row> would render as:� �
+------+
| |
| text |
| |
+------+� �
where the lines show the outer border of the rendering.

Drawing borders

1. Modify the existing code so that elements may specify border: true or border: false (with
the latter being the default). If an element’s border property is true, it is drawn with a dashed
border. For example, if the border property of row is true, then <row>text</row> is rendered
as:� �
+----+
|text|
+----+� �

2. Extend your solution so that if two adjacent cells both have borders, only a single border is
drawn. For example, if the border property of col is true, then:� �
<row ><col >left </col ><col >right </col ></row >� �
is rendered as:� �
+----+-----+
|left|right|
+----+-----+� �

12
File Interpolator

Managing source files that have been broken into pieces

Terms defined: header file, literate programming, loader, sandbox, search path, shell
variable

Many of the examples in these lessons are too long to show comfortably in one block of code
on a printed page, so we needed a way to break them up. As an experiment, we wrote a custom
module loader that reads a source file containing specially-formatted comments and then reads
and inserts the files specified in those comments before running the code (Figure 12.1). Modern
programming languages don’t work this way, but C and C++ do this with header files, and static
site generators (Chapter 9) do this to share fragments of HTML.

The special comments in our source files contain two fields: the text to put in the displayed
version and file to include when loading:� �
class Something {

/*+ constructor + constructor.js +*/

/*+ a long method + long_method.js +*/

/*+ another method + another_method.js +*/
}� �

Listing 12.1: interpolation-example.js

We got this to work, but decided to use a different approach in this book. The stumbling block
was that the style-checking tool ESLint1 didn’t know what to make of our inclusions, so we would
either have to modify it or build a style checker of our own. (We will actually do that in Chapter 14,
but we won’t go nearly as far as ESLint.)

Despite being a dead end, the inclusion tool is a good way to show how JavaScript turns source
code into something it can execute. We need to be able to do this in the next couple of chapters,
so we might as well tackle it now.

12.1 How can we evaluate JavaScript dynamically?
We want to display files as they are on the web and in print, but interpolate the files referenced in
special comments when we load things with import. To do this, we need to understand the lifecycle
of a JavaScript program. When we ask for a file, Node2 reads the text, translates it into runnable

1https://eslint.org/
2https://nodejs.org/en/

197

https://eslint.org/
https://nodejs.org/en/

198 12 File Interpolator

class Something {

 /*+ constructor + constructor.js +*/

 /*+ a long method + long_method.js +*/

}

something.js

constructor () {

 ...constructor body...

}

construtor.js

long_method () {

 ...method body...

}

long_method.js

another_method () {

 ...method body...

}

another_method.js

class Something {

constructor () {

 ...constructor body...

}

long_method () {

 ...method body...

}

another_method () {

 ...method body...

}

}

 /*+ another method + another.js +*/

Figure 12.1: Including fragments of code to create runnable programs.

instructions, and runs those instructions. We can do the second and third steps whenever we want
using a function called eval, which takes a string as input and executes it as if it were part of the
program (Figure 12.2).

This is not a good idea

eval is a security risk: arbitrary code can do arbitrary things, so if we take a string typed in
by a user and execute it without any checks it could email our bookmark list to villains all over
the world, erase our hard drive, or do anything else that code can do (which is pretty much
anything). Browsers do their best to run code in a sandbox for safety, but Node doesn’t, so
it’s up to us to be (very) careful.

To see eval in action, let’s evaluate an expression:� �
console.log(eval('2 + 2'))� �

Listing 12.2: eval-two-plus-two.js� �
4� �

Listing 12.3: eval-two-plus-two.out

Notice that the input to eval is not 2 + 2, but rather a string containing the digit 2, a space, a

12.1 How can we evaluate JavaScript dynamically? 199

console.log('normal')

CREATE temp_01 STRING 'normal'

CREATE temp_02 LOOKUP 'console' 'log'

CALL temp_02 PARAMS temp_01 END

program in file

"console.log('normal')"

string in memory

instructions in memory output

normal

normal operation

CREATE temp_01 STRING 'console.log("normal")'

CREATE temp_02 BUILTIN 'eval'

CALL temp_02 PARAMS temp_01 END

"eval(console.log('normal'))"

string in memory

instructions in memory

output

normal

using eval

CREATE temp_01 STRING 'normal'

CREATE temp_02 LOOKUP 'console' 'log'

CALL temp_02 PARAMS temp_01 END

instructions in memory

Figure 12.2: eval vs. normal translation and execution.

200 12 File Interpolator

plus sign, another space, and another 2. When we call eval, it translates this string using exactly
the same parser that Node uses for our program and immediately runs the result.

We can make the example a little more interesting by constructing the string dynamically:� �
const x = 1
const y = 3
const z = 5
for (const name of ['x', 'y', 'z', 'oops ']) {

const expr = `${name} + 1`
console.log(name , '+ 1 =', eval(expr))

}� �
Listing 12.4: eval-loop.js� �

x + 1 = 2
y + 1 = 4
z + 1 = 6
undefined :1
oops + 1
^

ReferenceError: oops is not defined
at eval (eval at <anonymous > \
(/u/stjs/file -interpolator/eval -loop.js:7:30) , <anonymous >:1:1)
at /u/stjs/file -interpolator/eval -loop.js:7:30
at ModuleJob.run (internal/modules/esm/module_job.js :152:23)
at async Loader.import (internal/modules/esm/loader.js :166:24)
at async Object.loadESM (internal/process/esm_loader.js :68:5)� �

Listing 12.5: eval-loop.out

The first time the loop runs the string is 'x + 1'; since there’s a variable called x in scope, eval
does the addition and we print the result. The same thing happens for the variables y and z, but
we get an error when we try to evaluate the string 'oops + 1' because there is no variable in scope
called oops.

eval can use whatever variables are in scope when it’s called, but what happens to any variables
it defines? This example creates a variable called x and runs console.log to display it, but as the
output shows, x is local to the eval call just as variables created inside a function only exist during
a call to that function:� �
const code = `

const x = 'hello '
console.log('x in eval is', x)

`

eval(code)
console.log('typeof x after eval ', typeof x)� �

Listing 12.6: eval-local-vars.js

12.1 How can we evaluate JavaScript dynamically? 201� �
x in eval is hello
typeof x after eval undefined� �

Listing 12.7: eval-local-vars.out

However, eval can modify variables defined outside the text being evaluated in the same way
that a function can modify global variables:� �
let x = 'original '
eval('x = "modified"')
console.log('x after eval is', x)� �

Listing 12.8: eval-global-vars.js� �
x after eval is modified� �

Listing 12.9: eval-global-vars.out

This means that if the text we give to eval modifies a structure that is defined outside the text,
that change outlives the call to eval:� �
const seen = {}

for (const name of ['x', 'y', 'z']) {
const expr = `seen["${name }"] = "${name.toUpperCase ()}"`
eval(expr)

}

console.log(seen)� �
Listing 12.10: eval-global-structure.js� �

{ x: 'X', y: 'Y', z: 'Z' }� �
Listing 12.11: eval-global-structure.out

The examples so far have all evaluated strings embedded in the program itself, but eval
doesn’t care where its input comes from. Let’s move the code that does the modifying into
to-be-loaded.js:� �
// Modify a global structure defined by whoever loads us.
Seen.from_loaded_file = 'from loaded file '� �

Listing 12.12: to-be-loaded.js

This doesn’t work on its own because Seen isn’t defined:� �
/u/stjs/file -interpolator/to -be-loaded.js:3
Seen.from_loaded_file = 'from loaded file '
^

202 12 File Interpolator

ReferenceError: Seen is not defined
at /u/stjs/file -interpolator/to -be -loaded.js:3:1
at ModuleJob.run (internal/modules/esm/module_job.js :152:23)
at async Loader.import (internal/modules/esm/loader.js :166:24)
at async Object.loadESM (internal/process/esm_loader.js :68:5)� �

Listing 12.13: to-be-loaded.out

But if we read the file and eval the text after defining Seen, it does what we want:� �
import fs from 'fs '

const Seen = {}

const filename = process.argv [2]
const content = fs.readFileSync(filename , 'utf -8')
console.log('before eval , Seen is', Seen)
eval(content)
console.log('after eval , Seen is ', Seen)� �

Listing 12.14: does-the-loading.js� �
node does -the -loading.js to-be -loaded.js� �

Listing 12.15: does-the-loading.sh� �
before eval , Seen is {}
after eval , Seen is { from_loaded_file: 'from loaded file ' }� �

Listing 12.16: does-the-loading.out

12.2 How can we manage files?
The source files in this book are small enough that we don’t have to worry about reading them
repeatedly, but we would like to avoid re-reading things unnecessarily in large systems or when
there might be network delays. The usual approach is to create a cache using the Singleton pattern
that we first met in Chapter 4. Whenever we want to read a file, we check to see if it’s already in
the cache (Figure 12.3). If it is, we use that copy; if not, we read it and add it to the cache using
the file path as a lookup key.

We can write a simple cache in just a few lines of code:� �
import fs from 'fs '

class Cache {
constructor () {

this.loaded = new Map()

12.2 How can we manage files? 203

cache

loaded

/path/first.js ...file contents...

key value

/path/second.js ...file contents...

1 request /path/second.js

2 find and return

cache

loaded

/path/first.js ...file contents...

key value

/path/second.js ...file contents...

1 request /path/third.js

2 miss/path/second.js ...file contents...

4 return

3 read

Figure 12.3: Using the Singleton pattern to implement a cache of loaded files.

}

need (name) {
if (this.loaded.has(name)) {

console.log(`returning cached value for ${name}`)
return this.loaded.get(name)

}
console.log(`loading ${name}`)
const content = fs.readFileSync(name , 'utf -8')
const result = eval(content)
this.loaded.set(name , result)
return result

}
}

const cache = new Cache()

export default (name) => {
return cache.need(name)

}� �
Listing 12.17: need-simple.js

Since we are using eval, though, we can’t rely on export to make things available to the rest
of the program. Instead, we rely on the fact that the result of an eval call is the value of the last

204 12 File Interpolator

expression evaluated. Since a variable name on its own evaluates to the variable’s value, we can
create a function and then use its name to "export" it from the evaluated file:� �
// Define.
const report = (message) => {

console.log(`report in import -01.js with message "${message }"`)
}

// Export.
report� �

Listing 12.18: import-simple.js

To test our program, we load the implementation of the cache using import, then use it to load
and evaluate another file. This example expects that "other file" to define a function, which we call
in order to show that everything is working:� �
import need from './need -simple.js '

const imported = need('./import -simple.js ')
imported('called from test -simple.js ')� �

Listing 12.19: test-simple.js� �
node test -simple.js� �

Listing 12.20: test-simple.sh

12.3 How can we find files?
Each of the files included in our examples is in the same directory as the file including it, but in
C/C++ or a page templating system we might include a particular file in several different places.
We don’t want to have to put all of our files in a single directory, so we need a way specify where
to look for files that are being included.

One option is to use relative paths, but another option is to give our program a list of directories
to look in. This is called a search path, and many programs use them, including Node itself. By
convention, a search path is written as a colon-separated list of directories on Unix or using semi-
colons on Windows. If the path to an included starts with ./, we look for it locally; if not, we
go through the directories in the search path in order until we find a file with a matching name
(Figure 12.4).

That’s just how it is

The rules about search paths in the paragraph above are a convention: somebody did it this
way years ago and (almost) everyone has imitated it since. We could implement search paths

12.3 How can we find files? 205

/u/stjs/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/lib/node_modules

/u/stjs/bin

/usr/local/bin

/usr/bin

/bin

/usr/local/lib/node_modules

Figure 12.4: Using a colon-separated list of directories as a search path.

some other way, but as with configuration file formats, variable naming conventions, and many
other things, the last thing the world needs is more innovation.

Since the cache is responsible for finding files, it should also handle the search path. The outline
of the class stays the same:� �
import fs from 'fs '
import path from 'path '

class Cache {
constructor () {

this.loaded = new Map()
this.constructSearchPath ()

}

need (fileSpec) {
if (this.loaded.has(fileSpec)) {

console.log(`returning cached value for ${fileSpec}`)
return this.loaded.get(fileSpec)

}
console.log(`loading value for ${fileSpec}`)
const filePath = this.find(fileSpec)
const content = fs.readFileSync(filePath , 'utf -8')
const result = eval(content)
this.loaded.set(fileSpec , result)
return result

}

}

const cache = new Cache()

export default (fileSpec) => {
return cache.need(fileSpec)

}� �
Listing 12.21: need-path.js

206 12 File Interpolator

To get the search path, we look for the shell variable NEED_PATH. (Writing shell variables’
names in upper case is another convention.) If NEED_PATH exists, we split it on colons to create a
list of directories:� �

constructSearchPath () {
this.searchPath = []
if ('NEED_PATH ' in process.env) {

this.searchPath = process.env.NEED_PATH
.split(':')
.filter(x => x.length > 0)

}
}� �

Listing 12.22: need-path.js

When we need to find a file we first check to see if the path is local. If it’s not, we try the
directories in the search path in order:� �

constructSearchPath () {
this.searchPath = []
if ('NEED_PATH ' in process.env) {

this.searchPath = process.env.NEED_PATH
.split(':')
.filter(x => x.length > 0)

}
}� �

Listing 12.23: need-path.js

To test this, we put the file to import in a subdirectory called modules:� �
// Define.
const report = (message) => {

console.log(`in LEFT with message "${message }"`)
}

// Export.
report� �

Listing 12.24: modules/imported-left.js

and then put the file doing the importing in the current directory:� �
import need from './need -path.js '
const imported = need('imported -left.js ')
imported('called from test -import -left.js ')� �

Listing 12.25: test-import-left.js

We now need to set the variable NEED_PATH. There are many ways to do this in shell; if we only
need the variable to exist for a single command, the simplest is to write it as:� �
NAME=value command� �

12.3 How can we find files? 207

right before the command (on the same line). Here’s the shell command that runs our test case
using $PWD to get the current working directory:� �
NEED_PATH=$PWD/modules/ node test -import -left.js� �

Listing 12.26: test-import-left.sh� �
loading value for imported -left.js
trying /u/stjs/file -interpolator/modules/imported -left.js for \
imported -left.js
in LEFT with message "called from test -import -left.js"� �

Listing 12.27: test-import-left.out

Now let’s create a second importable file in the modules directory:� �
// Define.
const report = (message) => {

console.log(`in RIGHT with message "${message }"`)
}

// Export.
report� �

Listing 12.28: modules/imported-right.js

and load that twice to check that caching works:� �
import need from './need -path.js '

const imported = need('imported -right.js ')
imported('called from test -import -right.js ')

const alsoImported = need('imported -right.js ')
alsoImported('called from test -import -right.js ')� �

Listing 12.29: test-import-right.js� �
loading value for imported -right.js
trying /u/stjs/file -interpolator/modules/imported -right.js for \
imported -right.js
in RIGHT with message "called from test -import -right.js"
returning cached value for imported -right.js
in RIGHT with message "called from test -import -right.js"� �

Listing 12.30: test-import-right.out

208 12 File Interpolator

12.4 How can we interpolate pieces of code?
Interpolating files is straightforward once we have this machinery in place. We modify Cache.find
to return a directory and a file path, then add an interpolate method to replace special comments:� �
class Cache {

// ...
interpolate (fileDir , outer) {

return outer.replace(Cache.INTERPOLATE_PAT ,
(match , comment , filename) => {

filename = filename.trim()
const filePath = path.join(fileDir , filename)
if (!fs.existsSync(filePath)) {

throw new Error(`Cannot find ${filePath}`)
}
const inner = fs.readFileSync(filePath , 'utf -8')
return inner

})
}
// ...

}
Cache.INTERPOLATE_PAT = /\/*\+(.+?)\+(.+?)\+*\//g� �

Listing 12.31: caching.js

We can now have a file like this:� �
class Example {

constructor (msg) {
this.constructorMessage = msg

}
/*+ top method + import -interpolate -topmethod.js +*/
/*+ bottom method + import -interpolate -bottommethod.js +*/

}

Example� �
Listing 12.32: import-interpolate.js

and subfiles like this:� �
topMethod (msg) {

this.bottomMethod (`(topMethod ${msg})`)
}� �

Listing 12.33: import-interpolate-topmethod.js

and this:� �
bottomMethod (msg) {

console.log(`(bottomMethod ${msg})`)

12.5 What did we do instead? 209

}� �
Listing 12.34: import-interpolate-bottommethod.js

Let’s test it:� �
node test -import -interpolate.js� �

Listing 12.35: test-import-interpolate.sh� �
(bottomMethod (topMethod called from test -import -interpolate.js))� �

Listing 12.36: test-import-interpolate.out

When this program runs, its lifecycle is:

1. Node starts to run test-import-interpolate.js.

2. It sees the import of need-interpolate‘ so it reads and evaluates that code.

3. Doing this creates a singleton cache object.

4. The program then calls need('./import-interpolate.js').

5. This checks the cache: nope, nothing there.

6. So it loads import-interpolate.js.

7. It finds two specially-formatted comments in the text...

8. ...so it loads the file described by each one and inserts the text in place of the comment.

9. Now that it has the complete text, it calls eval...

10. ...and stores the result of eval (which is a class) in the cache.

11. It also returns that class.

12. We then create an instance of that class and call its method.

This works, but as we said in the introduction we decided not to use it because it didn’t play
well with other tools. No piece of software exists in isolation; when we evaluate a design, we always
have to ask how it fits into everything else we have.

12.5 What did we do instead?
Rather than interpolating file fragments, we extract or erase parts of regular JavaScript files based
on specially-formatted comments like the <fragment>...</fragment> pair shown below.

210 12 File Interpolator� �
class Example {

constructor (name) {
this.name = name

}

// <fragment >
fragment (message) {

console.log(`${name}: ${message}`)
}
// </fragment >

}� �
The code that selects the part of the file we want to display is part of our page templating

system. It re-extracts code for display every time the web version of this site is built, which ensures
that we always shows what’s in the current version of our examples. However, this system doesn’t
automatically update the description of the code: if we write, "It does X," then modify the code
to do Y, our lesson can be inconsistent. Literate programming was invented to try to prevent
this from happening, but it never really caught on—unfortunately, most programming systems that
describe themselves as "literate" these days only implement part of Donald Knuth’s3 original vision.

12.6 Exercises

Security concerns

1. Write a function loadAndRun that reads a file, evaluates it, and returns the result.

2. Create a file trust-me.js that prints "nothing happening here" when it is evaluated, but also
deletes everything in the directory called target.

3. Write tests for this using mock-fs4.

Please be careful doing this exercise.

Loading functions

Write a function that reads a file containing single-argument functions like this:� �
addOne: (x) => x + 1
halve: (x) => x / 2
array: (x) => Array(x).fill (0)� �
and returns an object containing callable functions.

3https://www-cs-faculty.stanford.edu/ knuth/
4https://www.npmjs.com/package/mock-fs

https://www-cs-faculty.stanford.edu/~knuth/
https://www.npmjs.com/package/mock-fs

12.6 Exercises 211

Registering functions

Write a function that loads one or more files containing function definitions like this:� �
const double = (x) => {

return 2 * x
}

EXPORTS.append(double)� �
and returns a list containing all the loaded functions.

Indenting inclusions

Modify the file inclusion system so that inclusions are indented by the same amount as the including
comment. For example, if the including file is:� �
const withLogging = (args) => {

/*+ logging call + logging.js +*/
}

withLogging� �
and the included file is:� �
console.log('first message ')
console.log('second message ')� �
then the result will be:� �
const withLogging = (args) => {

console.log('first message ')
console.log('second message ')

}

withLogging� �
i.e., all lines of the inclusion will be indented to match the first.

Interpolating from subdirectories

Modify the file interpolator so that snippets can be included from sub-directories using relative
paths.

Recursive search for inclusions

1. Modify the file interpolator so that it searches recursively through all subdirectories of the
directories on the search path to find inclusions.

2. Explain why this is a bad idea.

212 12 File Interpolator

Defining variables

Modify the file inclusion system so that users can pass in a Map containing name-value pairs and
have these interpolated into the text of the files being loaded. To interpolate a value, the included
file must use @@name@@.

Specifying markers

Modify the file inclusion system so that the user can override the inclusion comment markers. For
example, the user should be able to specify that /*! and !*/ be used to mark inclusions. (This is
often used in tutorials that need to show the inclusion markers without them being interpreted.)

Recursive inclusions

Modify the file interpolator to support recursive includes, i.e., to handle inclusion markers in files
that are being included. Be sure to check for the case of infinite includes.

Slicing files

Write a function that reads a JavaScript source file containing specially-formatted comments like
the ones shown below and extracts the indicated section.� �
const toBeLeftOut = (args) => {

console.log('this should not appear ')
}

// <keepThis >
const toBeKept = (args) => {

console.log('only this function should appear ')
}
// </keepThis >� �

Users should be able to specify any tag they want, and if that tag occurs multiple times, all
of the sections marked with that tag should be kept. (This is the approach we took for this book
instead of file interpolation.)

13
Module Loader

Loading source files as modules

Terms defined: absolute path, alias, circular dependency, closure, directed graph, en-
capsulate, immediately-invoked function expression, inner function, namespace, plugin
architecture

Chapter 12 showed how to use eval to load code dynamically. We can use this to build our own
version of JavaScript’s require function. Our function will take the name of a source file as an
argument and return whatever that file exports. The key requirement for such a function is to avoid
accidentally overwriting things: if we just eval some code and it happens to assign to a variable
called x, anything called x already in our program might be overwritten. We therefore need a way to
encapsulate the contents of what we’re loading. Our approach is based on [Casciaro2020], which
contains a lot of other useful information as well.

13.1 How can we implement namespaces?
A namespace is a collection of names in a program that are isolated from other namespaces. Most
modern languages provide namespaces as a built-in feature so that programmers don’t accidentally
step on each other’s toes. JavaScript doesn’t, so we have to implement them ourselves.

We can do this using closures. Every function is a namespace: variables defined inside the
function are distinct from variables defined outside it (Figure 13.1). If we create the variables we
want to manage inside a function, then defined another function inside the first and return that
inner function, that inner function will be the only thing with references to those variables.

For example, let’s create a function that always appends the same string to its argument:� �
const createAppender = (suffix) => {

const outer = (amount) => {

 const inner = (value) => {

 return value + amount

 }

}

const adder = outer(5)

adder(10)

global scope

adder amount 5

Figure 13.1: Using closures to create private variables.

213

214 13 Module Loader

const appender = (text) => {
return text + suffix

}
return appender

}

const exampleFunction = createAppender(' and that ')
console.log(exampleFunction('this '))
console.log('suffix is ', suffix)� �

Listing 13.1: manual-namespacing.js

When we run it, the value that was assigned to the parameter suffix still exists but can only be
reached by the inner function:� �
this and that
/u/stjs/module -loader/manual -namespacing.js:10
console.log('suffix is ', suffix)

^

ReferenceError: suffix is not defined
at /u/stjs/module -loader/manual -namespacing.js :10:26
at ModuleJob.run (internal/modules/esm/module_job.js :152:23)
at async Loader.import (internal/modules/esm/loader.js :166:24)
at async Object.loadESM (internal/process/esm_loader.js :68:5)� �

Listing 13.2: manual-namespacing.out

We could require every module to define a setup function like this for users to call, but thanks
to eval we can wrap the file’s contents in a function and call it automatically. To do this we will
create something called an immediately-invoked function expression (IIFE). The syntax ()
=> {...} defines a function. If we put the definition in parentheses and then put another pair of
parentheses right after it:� �
(() => {...})()� �
we have code that defines a function of no arguments and immediately calls it. We can use this
trick to achieve the same effect as the previous example in one step:� �
const contents = (() => {

const privateValue = 'private value '
const publicValue = 'public value '
return { publicValue }

})()

console.log(`contents.publicValue is ${contents.publicValue }`)
console.log(`contents.privateValue is ${contents.privateValue }`)� �

Listing 13.3: automatic-namespacing.js

13.2 How can we load a module? 215� �
contents.publicValue is public value
contents.privateValue is undefined� �

Listing 13.4: automatic-namespacing.out

Unconfusing the parser

The extra parentheses around the original definition force the parser to evaluate things in the
right order; if we write:� �
() => {...}()� �
then JavaScript interprets it as a function definition followed by an empty expression rather
than an immediate call to the function just defined.

13.2 How can we load a module?
We want the module we are loading to export names by assigning to module.exports just as
require does, so we need to provide an object called module and create a IIFE. (We will handle
the problem of the module loading other modules later.) Our loadModule function takes a filename
and returns a newly-created module object; the parameter to the function we build and eval must
be called module so that we can assign to module.exports. For clarity, we call the object we pass
in result in loadModule.� �
import fs from 'fs '

const loadModule = (filename) => {
const source = fs.readFileSync(filename , 'utf -8')
const result = {}
const fullText = `((module) => {${source }})(result)`
console.log(`full text for eval:\n${fullText }\n`)
eval(fullText)
return result.exports

}

export default loadModule� �
Listing 13.5: load-module-only.js

Figure 13.2 shows the structure of our loader so far. We can use this code as a test:� �
const publicValue = 'public value '

const privateValue = 'private value '

216 13 Module Loader

const loadModule = (filename) => {

 const source = ...read file...

 const result = {}

 const fullText = `...`

 eval(fullText)

 return result.exports

}

loader.js source.js

module.exports = 'hello'

1

variables values

filename "source.js"

2 source "module.exports = 'hello'"

3 result {}

4 fullText ((module) => {module.exports = 'hello'})(result)

1

2

3

4

5 result {exports: 'hello'}

5

Figure 13.2: Using IIFEs to encapsulate modules and get their exports.

13.3 Do we need to handle circular dependencies? 217

const publicFunction = (caller) => {
return `publicFunction called from ${caller}`

}

module.exports = { publicValue , publicFunction }� �
Listing 13.6: small-module.js

and this short program to load the test and check its exports:� �
import loadModule from './load -module -only.js '

const result = loadModule(process.argv [2])
console.log(`result.publicValue is ${result.publicValue }`)
console.log(`result.privateValue is ${result.privateValue }`)
console.log(result.publicFunction('main '))� �

Listing 13.7: test-load-module-only.js� �
node test -load -module -only.js small -module.js� �

Listing 13.8: test-load-module-only.sh� �
full text for eval:
((module) => {const publicValue = 'public value '

const privateValue = 'private value '

const publicFunction = (caller) => {
return `publicFunction called from ${caller}`

}

module.exports = { publicValue , publicFunction }
})(result)

result.publicValue is public value
result.privateValue is undefined
publicFunction called from main� �

Listing 13.9: test-load-module-only.out

13.3 Do we need to handle circular dependencies?
What if the code we are loading loads other code? We can visualize the network of who requires
whom as a directed graph: if X requires Y, we draw an arrow from X to Y. Unlike the directed

218 13 Module Loader

major

minor

top

bottom

minor

middle

major

Figure 13.3: Testing circular imports.

acyclic graphs we met in Chapter 10, though, these graphs can contain cycles: we say a circular
dependency exists if X depends on Y and Y depends on X either directly or indirectly. This may
seem nonsensical, but can easily arise with plugin architectures: the file containing the main
program loads an extension, and that extension calls utility functions defined in the file containing
the main program.

Most compiled languages can handle circular dependencies easily: they compile each module into
low-level instructions, then link those to resolve dependencies before running anything (Figure 13.3).
But interpreted languages usually run code as they’re loading it, so if X is in the process of loading
Y and Y tries to call X, X may not (fully) exist yet.

Circular dependencies work in Python1, but only sort of. Let’s create two files called major.py
and minor.py:� �
major.py

import minor

def top ():
print("top")
minor.middle ()

def bottom ():
print(" bottom ")

top()� �
Listing 13.10: checking/major.py� �

minor.py

import major

def middle ():
print(" middle ")
major.bottom ()� �

Listing 13.11: checking/minor.py

1https://www.python.org/

https://www.python.org/

13.3 Do we need to handle circular dependencies? 219

Loading fails when we run major.py from the command line:� �
top
Traceback (most recent call last):

File "major.py", line 3, in <module >
import minor

File "/u/stjs/module -loader/checking/minor.py", line 3, in <module >
import major

File "/u/stjs/module -loader/checking/major.py", line 12, in <module >
top()

File "/u/stjs/module -loader/checking/major.py", line 7, in top
minor.middle ()

AttributeError: module 'minor ' has no attribute 'middle '� �
Listing 13.12: checking/py-command-line.out

but works in the interactive interpreter:� �
$ python
>>> import major
top
middle
bottom� �

Listing 13.13: checking/py-interactive.out

The equivalent test in JavaScript also has two files:� �
// major.js
const { middle } = require ('./minor ')

const top = () => {
console.log('top ')
middle ()

}

const bottom = () => {
console.log('bottom ')

}

top()

module.exports = { top , bottom }� �
Listing 13.14: checking/major.js� �

// minor.js
const { bottom } = require ('./major ')

const middle = () => {
console.log('middle ')
bottom ()

220 13 Module Loader

}

module.exports = { middle }� �
Listing 13.15: checking/minor.js

It fails on the command line:� �
top
middle
/u/stjs/module -loader/checking/minor.js:6

bottom ()
^

TypeError: bottom is not a function
at middle (/u/stjs/module -loader/checking/minor.js :6:3)
at top (/u/stjs/module -loader/checking/major.js:6:3)
at Object.<anonymous > (/u/stjs/module -loader/checking/major.js :13:1)
at Module._compile (internal/modules/cjs/loader.js :1063:30)
at Object.Module._extensions ..js \

(internal/modules/cjs/loader.js :1092:10)
at Module.load (internal/modules/cjs/loader.js :928:32)
at Function.Module._load (internal/modules/cjs/loader.js :769:14)
at Function.executeUserEntryPoint [as runMain] \

(internal/modules/run_main.js :72:12)
at internal/main/run_main_module.js :17:47� �

Listing 13.16: checking/js-command-line.out

and also fails in the interactive interpreter (which is more consistent):� �
$ node
> require ('./major ')
top
middle
/u/stjs/module -loader/checking/minor.js:6

bottom ()
^

TypeError: bottom is not a function
at middle (/u/stjs/module -loader/checking/minor.js :6:3)
at top (/u/stjs/module -loader/checking/major.js:6:3)
at Object.<anonymous > (/u/stjs/module -loader/checking/major.js :13:1)
at Module._compile (internal/modules/cjs/loader.js :1063:30)
at Object.Module._extensions ..js \

(internal/modules/cjs/loader.js :1092:10)
at Module.load (internal/modules/cjs/loader.js :928:32)
at Function.Module._load (internal/modules/cjs/loader.js :769:14)
at Module.require (internal/modules/cjs/loader.js :952:19)
at require (internal/modules/cjs/helpers.js :88:18)
at [stdin]:1:1

13.4 How can a module load another module? 221

� �
Listing 13.17: checking/js-interactive.out

We therefore won’t try to handle circular dependencies. However, we will detect them and
generate a sensible error message.

import vs. require

Circular dependencies work JavaScript’s import syntax because we can analyze files to deter-
mine what needs what, get everything into memory, and then resolve dependencies. We can’t
do this with require-based code because someone might create an alias and call require
through that or eval a string that contains a require call. (Of course, they can also do these
things with the function version of import.)

13.4 How can a module load another module?
While we’re not going to handle circular dependencies, modules do need to be able to load other
modules. To enable this, we need to provide the module with a function called require that it can
call as it’s loading. As in Chapter 12, this function checks a cache to see if the file being asked for
has already been loaded. If not, it loads it and saves it; either way, it returns the result.

Our cache needs to be careful about how it identifies files so that it can detect duplicates loading
attempts that use different names. For example, suppose that major.js loads subdir/first.js
and subdir/second.js. When subdir/second.js loads ./first.js, our system needs to realize
that it already has that file even though the path looks different. We will use absolute paths as
cache keys so that every file has a unique, predictable key.

To reduce confusion, we will call our function need instead of require. In order to make the
cache available to modules while they’re loading, we will make it a property of need. (Remember,
a function is just another kind of object in JavaScript; every function gets several properties au-
tomatically, and we can always add more.) Since we’re using the built-in Map class as a cache, the
entire implementation of need is just 15 lines long:� �
import path from 'path '

import loadModule from './load -module.js '

const need = (name) => {
const absPath = path.resolve(name)
if (!need.cache.has(absPath)) {

const contents = loadModule(absPath , need)
need.cache.set(absPath , contents)

}
return need.cache.get(absPath)

}

222 13 Module Loader

need.cache = new Map()

export default need� �
Listing 13.18: need.js

We now need to modify loadModule to take our function need as a parameter. (Again, we’ll
have our modules call need('something.js') instead of require('something') for clarity.) Let’s
test it with the same small module that doesn’t need anything else to make sure we haven’t broken
anything:� �
import need from './need.js'

const small = need('small -module.js ')
console.log(`small.publicValue is ${small.publicValue }`)
console.log(`small.privateValue is ${small.privateValue }`)
console.log(small.publicFunction('main '))� �

Listing 13.19: test-need-small-module.js� �
full text for eval:
((module , need) => {
const publicValue = 'public value '

const privateValue = 'private value '

const publicFunction = (caller) => {
return `publicFunction called from ${caller}`

}

module.exports = { publicValue , publicFunction }

})(result , need)

small.publicValue is public value
small.privateValue is undefined
publicFunction called from main� �

Listing 13.20: test-need-small-module.out

What if we test it with a module that does load something else?� �
import need from './need '

const small = need('small -module.js ')

const large = (caller) => {
console.log(`large from ${caller}`)
small.publicFunction(`${caller} to large `)

}

13.4 How can a module load another module? 223

export default large� �
Listing 13.21: large-module.js� �

import need from './need.js'

const large = need('large -module.js ')
console.log(large.large('main '))� �

Listing 13.22: test-need-large-module.js� �
full text for eval:
((module , need) => {
import need from './need '

const small = need('small -module.js ')

const large = (caller) => {
console.log(`large from ${caller}`)
small.publicFunction(`${caller} to large `)

}

export default large

})(result , need)

undefined :2
import need from './need '
^^^^^^

SyntaxError: Cannot use import statement outside a module
at loadModule (/u/stjs/module -loader/load -module.js :8:8)
at need (/u/stjs/module -loader/need.js :8:22)
at /u/stjs/module -loader/test -need -large -module.js :3:15
at ModuleJob.run (internal/modules/esm/module_job.js :152:23)
at async Loader.import (internal/modules/esm/loader.js :166:24)
at async Object.loadESM (internal/process/esm_loader.js :68:5)� �

Listing 13.23: test-need-large-module.out

This doesn’t work because import only works at the top level of a program, not inside a function.
Our system can therefore only run loaded modules by needing them:� �
const small = need('small -module.js ')

const large = (caller) => {
return small.publicFunction(`large called from ${caller}`)

}

module.exports = large

224 13 Module Loader

� �
Listing 13.24: large-needless.js� �

import need from './need.js'

const large = need('large -needless.js ')
console.log(large('main '))� �

Listing 13.25: test-need-large-needless.js� �
full text for eval:
((module , need) => {
const small = need('small -module.js ')

const large = (caller) => {
return small.publicFunction(`large called from ${caller}`)

}

module.exports = large

})(result , need)

full text for eval:
((module , need) => {
const publicValue = 'public value '

const privateValue = 'private value '

const publicFunction = (caller) => {
return `publicFunction called from ${caller}`

}

module.exports = { publicValue , publicFunction }

})(result , need)

publicFunction called from large called from main� �
Listing 13.26: test-need-large-needless.out

"It’s so deep it’s meaningless"

The programs we have written in this chapter are harder to understand than most of the
programs in earlier chapters because they are so abstract. Reading through them, it’s easy to
get the feeling that everything is happening somewhere else. Programmers’ tools are often like
this: there’s always a risk of confusing the thing in the program with the thing the program is
working on. Drawing pictures of data structures can help, and so can practicing with closures

13.5 Exercises 225

(which are one of the most powerful ideas in programming), but a lot of the difficulty is
irreducible, so don’t feel bad if it takes you a while to wrap your head around it.

13.5 Exercises

Counting with closures

Write a function makeCounter that returns a function that produces the next integer in sequence
starting from zero each time it is called. Each function returned by makeCounter must count
independently, so:� �
left = makeCounter ()
right = makeCounter ()
console.log(`left ${left()`)
console.log(`right ${right ()`)
console.log(`left ${left()`)
console.log(`right ${right ()`)� �
must produce:� �
left 0
right 0
left 1
right `� �
Objects and namespaces

A JavaScript object stores key-value pairs, and the keys in one object are separate from the keys
in another. Why doesn’t this provide the same level of safety as a closure?

Testing module loading

Write tests for need.js using Mocha and mock-fs.

Using module as a name

What happens if we define the variable module in loadModule so that it is in scope when eval is
called rather than creating a variable called result and passing that in:� �
const loadModule = (filename) => {

const source = fs.readFileSync(filename , 'utf -8')
const module = {}
const fullText = `(() => {${source }})()`
eval(fullText)
return module.exports

226 13 Module Loader

}� �
Implementing a search path

Add a search path to need.js so that if a module isn’t found locally, it will be looked for in each
directory in the search path in order.

Using a setup function

Rewrite the module loader so that every module has a function called setup that must be called
after loading it to create its exports rather than using module.exports.

Handling errors while loading

1. Modify need.js so that it does something graceful if an exception is thrown while a module is
being loaded.

2. Write unit tests for this using Mocha.

Refactoring circularity

Suppose that main.js contains this:� �
const PLUGINS = []

const plugin = require ('./plugin ')

const main = () => {
PLUGINS.forEach(p => p())

}

const loadPlugin = (plugin) => {
PLUGINS.push(plugin)

}

module.exports = {
main ,
loadPlugin

}� �
Listing 13.27: x-refactoring-circularity/main.js

and plugin.js contains this:� �
const { loadPlugin } = require ('./main ')

const printMessage = () => {
console.log('running plugin ')

}

13.5 Exercises 227

loadPlugin(printMessage)� �
Listing 13.28: x-refactoring-circularity/plugin.js

Refactor this code so that it works correctly while still using require rather than import.

An LRU cache

A Least Recently Used (LRU) cache reduces access time while limiting the amount of memory
used by keeping track of the N items that have been used most recently. For example, if the cache
size is 3 and objects are accessed in the order shown in the first column, the cache’s contents will
be as shown in the second column:

Item Action Cache After Access
A read A [A]
A get A from cache [A]
B read B [B, A]
A get A from cache [A, B]
C read C [C, A, B]
D read D [D, C, A]
B read B [B, D, C]

1. Implement a function cachedRead that takes the number of entries in the cache as an argument
and returns a function that uses an LRU cache to either read files or return cached copies.

2. Modify cachedRead so that the number of items in the cache is determined by their combined
size rather than by the number of files.

Make functions safe for renaming

Our implementation of need implemented the cache as a property of the function itself.

1. How can this go wrong? (Hint: thing about aliases.)

2. Modify the implementation to solve this problem using a closure.

14
Style Checker

Checking that code conforms to style guidelines

Terms defined: Adapter pattern, Iterator pattern, Markdown, abstract syntax tree,
dynamic lookup, generator function, intrinsic complexity, linter, walk (a tree)

Programmers argue endlessly about the best way to format their programs, but everyone agrees
that the most important thing is to be consistent [Binkley2012, Johnson2019]. Since checking rules
by hand is tedious, most programmers use tools to compare code against various rules and report
any violations. Programs that do this are often called linters in honor of an early one for C named
lint (because it looked for fluff in source code).

In this chapter we will build a simple linter of our own inspired by ESLint1, which we use to
check the code in this book. Our tool will parse source code to create a data structure, then go
through that data structure and apply rules for each part of the program. It will also introduce us
to one of the key ideas of this book, which is that source code is just another kind of data.

Don’t define your own style

Just as the world doesn’t need more file format (Chapter 8) it also doesn’t need more program-
ming styles, or more arguments among programmers about whether there should be spaces
before curly braces or not. Standard JS2 may not do everything exactly the way you want,
but adopting it increases the odds that other programmers will be able to read your code at
first glance.

14.1 How can we parse JavaScript to create an AST?
A parser for a simple language like arithmetic or JSON is relatively easy to write. A parser for a
language as complex as JavaScript is much more work, so we will use one called Acorn3 instead.
Acorn takes a string containing source code as input and produces an abstract syntax tree (AST)
whose nodes store information about what’s in the program (Figure 14.1). An AST is for a program
what the DOM is for HTML: an in-memory representation that is easy for software to inspect and
manipulate.

1https://eslint.org/
2https://standardjs.com/
3https://github.com/acornjs/acorn

229

https://eslint.org/
https://standardjs.com/
https://github.com/acornjs/acorn

230 14 Style Checker

Program
start: 0
end: 11
body [...]

VariableDeclaration
start: 0
end: 11

declarations [...]

VariableDeclarator
start: 6
end: 11

id init

Identifier
start: 6
end: 7
name: x

Literal
start: 10
end: 11
value: 0

kind: const

Figure 14.1: The parse tree of a simple program.

ASTs can be quite complex—for example, the JSON representation of the AST for a single
constant declaration is 84 lines long:� �
import acorn from 'acorn '

const ast = acorn.parse('const x = 0', { locations: true })
console.log(JSON.stringify(ast , null , 2))� �

Listing 14.1: parse-single-const.js� �
{

"type": "Program",
"start": 0,
"end": 11,
"loc": {

"start": {
"line": 1,
"column ": 0

},
"end": {

...
"value": 0,
"raw": "0"

}
}

14.1 How can we parse JavaScript to create an AST? 231

],
"kind": "const"

}
],
"sourceType ": "script"

}� �
Listing 14.2: parse-single-const.slice.out

Acorn’s output is in Esprima4 format (so-called because it was originally defined by a tool with
that name). The format’s specification is very detailed, but we can usually figure out most of what
we need by inspection. For example, here is the output for a 15-line program:� �
import acorn from 'acorn '

const program = `const value = 2

const double = (x) => {
const y = 2 * x
return y

}

const result = double(value)
console.log(result)
`

const ast = acorn.parse(program , { locations: true })
console.log(JSON.stringify(ast , null , 2))� �

Listing 14.3: parse-const-func.js� �
{

"type": "Program",
"start": 0,
"end": 122,
"loc": {

"start": {
"line": 1,
"column ": 0

},
"end": {

...
"line": 1,
"column ": 0

},
"end": {

"line": 1,
"column ": 15

}

4https://esprima.org/

https://esprima.org/

232 14 Style Checker

double

declaration value

2

declaration double

identifier

call

value

console.log

result

program

call

result

parameterfunction x

declaration y

* 2

Figure 14.2: Walking a tree to perform an operation at each node.

},
"declarations ": [

...480 more lines ...� �
Listing 14.4: parse-const-func.slice.out

Yes, it really is almost 500 lines long...

14.2 How can we find things in an AST?
If we want to find functions, variables, or anything else in an AST we need to walk the tree, i.e.,
to visit each node in turn. The acorn-walk5 library will do this for us using the Visitor design
pattern we first saw in Chapter 9 If we provide a function to act on nodes of type Identifier,
acorn-walk will call that function each time it finds an identifier. We can use other options to say
that we want to record the locations of nodes (i.e., their line numbers) and to collect comments in
an array called onComment. Our function can do whatever we want; for demonstration purposes we
will add nodes to an array called state and report them all at the end (Figure 14.2).� �
5https://www.npmjs.com/package/acorn-walk

https://www.npmjs.com/package/acorn-walk

14.2 How can we find things in an AST? 233

import acorn from 'acorn '
import walk from 'acorn -walk '

const program = `// Constant
const value = 2

// Function
const double = (x) => {

const y = 2 * x
return y

}

// Main body
const result = double(value)
console.log(result)
`

const options = {
locations: true ,
onComment: []

}
const ast = acorn.parse(program , options)

const state = []
walk.simple(ast , {

Identifier: (node , state) => {
state.push(node)

}
}, null , state)

state.forEach(node => console.log(
`identifier ${node.name} on line ${node.loc.start.line}`

))
const comments = options.onComment.map(

node => node.loc.start.line
).join(', ')
console.log(`comments on lines ${comments}`)� �

Listing 14.5: walk-ast.js� �
identifier x on line 6
identifier y on line 7
identifier double on line 11
identifier value on line 11
identifier console on line 12
identifier result on line 12
comments on lines 1, 4, 10� �

Listing 14.6: walk-ast.out

234 14 Style Checker

There’s more than one way to do it

walk.simple takes four arguments:

1. The root node of the AST, which is used as the starting point.

2. An object containing callback functions for handling various kinds of nodes.

3. Another object that specifies what algorithm to use—we have set this to null to use the
default because we don’t particularly care about the order in which the nodes are processed.

4. Something we want passed in to each of the node handlers, which in our case is the state
array. If our node handling functions don’t require any extra data from one call to the next
we can leave this out; if we want to accumulate information across calls, this argument acts
as the Visitor’s memory.

Any general-purpose implementation of the Visitor pattern is going to need these four
things, but as we will see below, we can implement them in different ways.

14.3 How can we apply checks?
We don’t just want to collect nodes: we want to check their properties against a set of rules. One
way to do this would be to call walk.simple once for each rule, passing it a function that checks
just that rule. Another way—the one we’ll use—is to write a generic function that checks a rule
and records any nodes that don’t satisfy it, and then call that function once for each rule inside
our Identifier handler. This may see like extra work, but it ensures that all of our rule-checkers
store their results in the same way, which in turn means that we can write one reporting function
and be sure it will handle everything.

The function applyCheck takes the current state (where we are accumulating rule violations),
a label that identifies this rule (so that violations of it can be stored together), the node, and a
logical value telling it whether the node passed the test or not. If the node failed the test we make
sure that state contains a list with the appropriate label and then append this node to it. This
"create storage space on demand" pattern is widely used but doesn’t have a well-known name.� �
const applyCheck = (state , label , node , passes) => {

if (! passes) {
if (!(label in state)) {

state[label] = []
}
state[label].push(node)

}
}� �

Listing 14.7: check-name-lengths.js

We can now put a call to applyCheck inside the handler for Identifier:

14.4 How does the AST walker work? 235� �
const ast = acorn.parse(program , { locations: true })

const state = {}
walk.simple(ast , {

Identifier: (node , state) => {
applyCheck(state , 'name_length ', node , node.name.length >= 4)

}
}, null , state)

state.name_length.forEach(
node => console.log(`${node.name} at line ${node.loc.start.line}`))� �

Listing 14.8: check-name-lengths.js

We can’t just use applyCheck as the handler for Identifier because walk.simple wouldn’t know
how to call it. This is a (very simple) example of the Adapter design pattern: we write a function
or class to connect the code we want to call to the already-written code that is going to call it.

The output for the same sample program as before is:� �
x at line 6
y at line 7� �

Listing 14.9: check-name-lengths.out

The exercises will ask why the parameter x doesn’t show up as a violation of our rule that variables’
names must be at least four characters long.

14.4 How does the AST walker work?
The AST walker uses the Visitor pattern, but how does it actually work? We can build our own by
defining a class with methods that walk the tree, take action depending on the kind of node, and
then go through the children of that node (if any). The user can then derive a class of their own
from this and override the set of action methods they’re interested in.

One key difference between our implementation and acorn-walk’s is that our methods don’t
need to take state as a parameter because it’s contained in the object that they’re part of. That
simplifies the methods—one less parameter—but it does mean that anyone who wants to use our
visitor has to derive a class, which is a bit more complicated than writing a function. This tradeoff is
a sign that managing state is part of the problem’s intrinsic complexity: we can move it around,
but we can’t get rid of it.

The other difference between our visitor and acorn-walk is that our class uses dynamic lookup
(a form of introspection) to look up a method with the same name as the node type in the object.
While we normally refer to a particular method of an object using object.method, we can also look
them up by asking for object[name] in the same way that we would look up any other property
of any other object. Our completed class looks like this:� �
class Walker {

236 14 Style Checker

// Construct a new AST tree walker.
constructor (ast) {

this.ast = ast
}

// Walk the tree.
walk (accumulator) {

this.stack = []
this._walk(this.ast , accumulator)
return accumulator

}

// Act on node and then on children.
_walk (node , accumulator) {

if (node && (typeof node === 'object ') && ('type ' in node)) {
this._doNode(node , accumulator)
this._doChildren(node , accumulator)

}
}

// Handle a single node by lookup.
_doNode (node , accumulator) {

if (node.type in this) {
this[node.type](node , accumulator)

}
}

// Recurse for anything interesting within the node.
_doChildren (node , accumulator) {

this.stack.push(node)
for (const key in node) {

if (Array.isArray(node[key])) {
node[key]. forEach(child => {

this._walk(child , accumulator)
})

} else if (typeof node[key] === 'object ') {
this._walk(node[key], accumulator)

}
}
this.stack.pop(node)

}

// Is the current node a child of some other type of node?
_childOf (nodeTypes) {

return this.stack &&
nodeTypes.includes(this.stack.slice (-1)[0]. type)

}
}� �

Listing 14.10: walker-class.js

14.4 How does the AST walker work? 237

The code we need to use it is:� �
import acorn from 'acorn '

// Walk to accumulate variable and parameter definitions.
class VariableWalker extends Walker {

Identifier (node , accumulator) {
if (this._childOf([' ArrowFunctionExpression ',

'VariableDeclarator '])) {
accumulator.push(node.name)

}
}

}

// Test.
const program = `const value = 2

const double = (x) => {
const y = 2 * x
return y

}

const result = double(value)
console.log(result)
`

const ast = acorn.parse(program , { locations: true })
const walker = new VariableWalker(ast)
const accumulator = []
walker.walk(accumulator)
console.log('definitions are ', accumulator)� �

Listing 14.11: walker-class.js

and its output is:� �
definitions are ['value ', 'double ', 'x', 'y', 'result ']� �

Listing 14.12: walker-class.out

We think this approach to implementing the Visitor pattern is easier to understand and extend
than one that relies on callbacks, but that could just be a reflection of our background and expe-
rience. As with code style, the most important thing is consistency: if we implement Visitor using
classes in one place, we should implement it that way everywhere.

238 14 Style Checker

double

declaration value

2

declaration double

identifier

call

value

console.log

result

program

call

result

parameterfunction x

declaration y

* 2

x

program declaration value 2 declaration double function

Figure 14.3: Finding nodes in the tree using the Iterator pattern.

14.5 How else could the AST walker work?
A third approach to this problem uses the Iterator design pattern. Instead of taking the computa-
tion to the nodes as a visitor does, an iterator returns the elements of a complex structure one by
one for processing (Figure 14.3). One way to think about it is that the Visitor pattern encapsulates
recursion, while the Iterator pattern turns everything into a for loop.

We can implement the Iterator pattern in JavaScript using generator functions. If we declare
a function using function * (with an asterisk) instead of function then we can use the yield
keyword to return a value and suspend processing to be resumed later. The result of yield is a
two-part structure with a value and a flag showing whether or not processing is done:� �
function * threeWords () {

yield 'first '
yield 'second '
yield 'third '

}

14.5 How else could the AST walker work? 239

const gen = threeWords ()

console.log(gen.next ())
console.log(gen.next ())
console.log(gen.next ())
console.log(gen.next ())� �

Listing 14.13: generator-example.js� �
{ value: 'first ', done: false }
{ value: 'second ', done: false }
{ value: 'third ', done: false }
{ value: undefined , done: true }� �

Listing 14.14: generator-example.out

A generator function doesn’t actually generate anything; instead, it creates an object that we can
then ask for values repeatedly. This gives us a way to have several generators in play at the same
time.

As another example, this generator takes a string and produces its vowels one by one:� �
function * getVowels (text) {

for (const char of text) {
if ('AEIOUaeiou '. includes(char)) {

yield char
}

}
}

const test = 'this is a test '
const gen = getVowels(test)
let current = gen.next()
while (! current.done) {

console.log(current.value)
current = gen.next()

}� �
Listing 14.15: generator-vowels-while.js� �

i
i
a
e� �

Listing 14.16: generator-vowels-while.out

Instead of a while loop it is much more common to use for...of, which knows how to work
with generators:� �
for (const vowel of getVowels(test)) {

console.log(vowel)

240 14 Style Checker

}� �
Listing 14.17: generator-vowels-for.js

Finally, just as function * says "this function is a generator", yield * says "yield the values
from a nested generator one by one". We can use it to walk irregular structures like nested arrays:� �
function * getNodes (here) {

if (typeof here === 'string ') {
yield here

} else if (Array.isArray(here)) {
for (const child of here) {

yield * getNodes(child)
}

} else {
throw new Error(`unknown type "${typeof here}"`)

}
}

const nested = ['first ', ['second ', 'third ']]
for (const value of getNodes(nested)) {

console.log(value)
}� �

Listing 14.18: generator-tree.js

Let’s use generators to count the number of expressions of various types in a program. The
generator function that visits each node is:� �
function * getNodes (node) {

if (node && (typeof node === 'object ') && ('type ' in node)) {
yield node
for (const key in node) {

if (Array.isArray(node[key])) {
for (const child of node[key]) {

yield * getNodes(child)
}

} else if (typeof node[key] === 'object ') {
yield * getNodes(node[key])

}
}

}
}� �

Listing 14.19: generator-count.js

and the program that uses it is:� �
const ast = acorn.parse(program , { locations: true })
const result = {}
for (const node of getNodes(ast)) {

if (node.type === 'BinaryExpression ') {

14.6 What other kinds of analysis can we do? 241

if (node.operator in result) {
result[node.operator] += 1

} else {
result[node.operator] = 1

}
}

}
console.log('counts are ', result)� �

Listing 14.20: generator-count.js

When we run it with our usual test program as input, we get:� �
counts are { '*': 2, '+': 1 }� �

Listing 14.21: generator-count.out

Generators are a clean solution to many hard problems, but we find it more difficult to check
variable identifiers using generators than using the class-based Visitor approach because we want to
accumulate violations to report later. Again, this could be a reflection of what we’re used to rather
than anything intrinsic; as with coding style, the most important thing is to be consistent.

14.6 What other kinds of analysis can we do?
As one final example, consider the problem of keeping track of which methods are defined where in
a deeply-nested class hierarchy. (This problem comes up in some of the later chapters in this book:
we wrote so many classes that incrementally extended their predecessors for pedagogical purposes
that we lost track of what was defined where.) To create a table of method definitions, we first need
to find the ancestors of the last class in the hierarchy:� �
import assert from 'assert '
import acorn from 'acorn '
import fs from 'fs '
import path from 'path '
import walk from 'acorn -walk '

class FindAncestors {
find (dirname , filename , className) {

return this.traceAncestry(dirname , filename , className , [])
}

traceAncestry (dirname , filename , className , accum) {
const fullPath = path.join(dirname , filename)
const program = fs.readFileSync(fullPath , 'utf -8')
const options = { locations: true , sourceType: 'module ' }
const ast = acorn.parse(program , options)
const classDef = this.findClassDef(filename , ast , className)
accum.push({ filename , className , classDef })

242 14 Style Checker

const ancestorName = this.getAncestor(classDef)
if (ancestorName === null) {

return accum
}
const ancestorFile = this.findImport(filename , ast , ancestorName)
return this.traceAncestry(dirname , ancestorFile , ancestorName , accum)

}

}

export default FindAncestors� �
Listing 14.22: find-ancestors.js

Finding class definitions is a straightforward extension of what we have already done:� �
findClassDef (filename , ast , className) {

const state = []
walk.simple(ast , {

ClassDeclaration: (node , state) => {
if ((node.id.type === 'Identifier ') &&

(node.id.name === className)) {
state.push(node)

}
}

}, null , state)
assert(state.length === 1,

`No definition for ${className} in ${filename}`)
return state [0]

}� �
Listing 14.23: find-ancestors.js

To test this code, we start with the last of these three short files:� �
class Upper {

constructor () {
this.name = 'upper '

}

report () {
console.log(this.modify(this.name))

}

modify (text) {
return text.toUpperCase ()

}
}

module.exports = Upper� �
Listing 14.24: upper.js

14.6 What other kinds of analysis can we do? 243� �
import Upper from './upper.js'

class Middle extends Upper {
constructor () {

super()
this.range = 'middle '

}

modify (text) {
return `** ${super.modify(text)} **`

}
}

export default Middle� �
Listing 14.25: middle.js� �

import Middle from './middle.js'

class Lower extends Middle {
report () {

console.log(this.additional ())
}

additional () {
return 'lower '

}
}

export default Lower� �
Listing 14.26: lower.js� �

Lower in lower.js
Middle in ./ middle.js
Upper in ./upper.js� �

Listing 14.27: run-find-ancestors.out

Good: we can recover the chain of inheritance. Finding method definitions is also straightforward:� �
import FindAncestors from './find -ancestors.js '

class FindMethods extends FindAncestors {
find (dirname , filename , className) {

const classes = super.find(dirname , filename , className)
classes.forEach(record => {

record.methods = this.findMethods(record.classDef)
})
return classes

244 14 Style Checker

}

findMethods (classDef) {
return classDef.body.body

.filter(item => item.type === 'MethodDefinition ')

.map(item => {
if (item.kind === 'constructor ') {

return 'constructor '
} else if (item.kind === 'method ') {

return item.key.name
} else {

return null
}

})
.filter(item => item !== null)

}
}

export default FindMethods� �
Listing 14.28: find-methods.js

And finally, we can print a Markdown-formatted table showing which methods are defined in
which class:� �
method	Upper	Middle	Lower
additional	.	.	X
constructor	X	X	.
modify	X	X	.
report	X	.	X

Listing 14.29: run-find-methods.raw.out

which renders as:

method Upper Middle Lower
additional . . X
constructor X X .
modify X X .
report X . X

This may seem rather pointless for our toy example, but it proves its worth when we are looking
at something like the virtual machine we will build in Chapter 19, which has a more complex method
definition table:

14.7 Exercises 245

method DebuggerBase DebuggerInteractive DebuggerTest DebuggerExit
clear . X . .
constructor X X X .
exit . X . X
getCommand . X . .
handle . X . .
help . X . .
input . X X .
interact . X . .
list . X . .
message X . X .
next . X . .
print . X . .
run . X . .
setTester . . X .
setVM X . . .
stop . X . .
variables . X . .

14.7 Exercises

Function length

Derive a class from Walker that reports the length in lines of each function defined in the code
being checked.

Expression depth

Derive a class from Walker that reports how deep each top-level expression in the source code is.
For example, the depth of 1 + 2 * 3 is 2, while the depth of max(1 + 2 + 3) is 3 (one level for
the function call, one for the first addition, and one for the nested addition).

Downward and upward

Modify Walker so that users can specify one action to take at a node on the way down the tree and
a separate action to take on the way up. (Hint: require users to specify Nodename_downward and/or
Nodename_upward methods in their class, then use string concatenation to construct method names
while traversing the tree.)

Aggregating across files

Create a command-line program called sniff.js that checks for style violations in any number of
source files. The first command-line argument to sniff.js must be a JavaScript source file that

246 14 Style Checker

exports a class derived from Walker called Check that implements the checks the user wants. The
other command-line arguments must be the names of JavaScript source files to be checked:� �
node sniff.js my-check.js source -1.js source -2.js� �

Listing 14.30: x-across-files/sniff.sh

Finding assertions

Write a program find-assertions.js that finds all calls to assert or assert.something and
prints the assertion message (if any).

Finding a missing parameter

1. Why doesn’t the parameter x show up as a rule violation in the example where we check name
lengths?

2. Modify the example so that it does.

Finding nested indexes

Write a tool that finds places where nested indexing is used, i.e., where the program contains
expression like arr[table[i]].

Dynamic lookup

1. Write a function dynamicExecution that takes an object, the name of a method, and zero or
more parameters as arguments and calls that method on that object:� �
dynamicExecution(obj , 'meth ', 1, 'a')
// same as obj.meth(1, 'a')� �

2. What doesn’t this work for?

Generators and arrays

1. Write a generator that takes a two-dimensional table represented as an array of arrays and
returns the values in column-major order.

2. Write another generator that takes a similar table and returns the values in row-major order.

Generators and identifiers

Rewrite the tool to check identifier lengths using a generator.

15
Code Generator

Modifying code to track coverage and execution times

Terms defined: Decorator pattern, byte code, code coverage (in testing), compiler,
macro, nested function, two hard problems in computer science

We’ve been writing tests since Chapter 4, but how much of our code do they actually check?
One way to find out is to use a code coverage tool like Istanbul1 that watches a program while
it executes and keeps track of which lines have run and which haven’t. Making sure that each line
is tested at least once doesn’t guarantee that the code is bug-free, but any code that isn’t run
shouldn’t be trusted.

Our code coverage tool will keep track of which functions have and haven’t been called. Rather
than rewriting Node2 to keep track of this for us, we will modify the functions themselves by parsing
the code with Acorn3, inserting the instructions we need into the AST, and then turning the AST
back into code.

Simple usually isn’t

At first glance it would be a lot simpler to use regular expressions to find every line that
looks like the start of a function definition and insert a line right after each one to record
the information we want. Of course, some people split function headers across several lines
if they have lots of parameters, and there might be things that look like function definitions
embedded in comments or strings. It doesn’t take long before our simple solution turns into
a poorly-implemented parser for a subset of JavaScript that no-one else understands. Using a
full-blown parser and working with the AST is almost always less work.

15.1 How can we replace a function with another function?
The first thing we need is a way to wrap up an arbitrary function call. If we declare a function in
JavaScript with a parameter like ...args, all of the "extra" arguments in the call that don’t line up
with regular parameters are stuffed into the variable args (Figure 15.1). We can also call a function
by putting values in a variable and using func(...var) to spread those values out. There’s nothing
special about the names args and vars: what matters is the ellipsis ...

1https://istanbul.js.org/
2https://nodejs.org/en/
3https://github.com/acornjs/acorn

247

https://istanbul.js.org/
https://nodejs.org/en/
https://github.com/acornjs/acorn

248 15 Code Generator

example('a', 'b', 'c')

function example(first, ...args) {

'a' ['b', 'c']

 ...body...
}

calls

contains

Figure 15.1: Using ...args to capture and spread parameters.

We can use ...args to capture all of the arguments to a function call and forward them to
another function. Let’s start by creating functions with a varying number of parameters that run
to completion or throw an exception, then run them to make sure they do what we want:� �
let zero = () => console.log('zero ')

let one = (first) => console.log(`one(${first })`)

let two = (first , second) => console.log(`two(${first}, ${second })`)

let error = () => {
console.log('error ')
throw new Error('from error ')
console.log('should not reach this ')

}

const runAll = (title) => {
console.log(title)
zero()
one (1)
two(1, 2)
try {

error()
} catch (error) {

console.log(`caught ${error} as expected `)
}
console.log()

}

runAll('first time ')� �
Listing 15.1: replace-func.js

We can now write a function that takes a function as an input and creates a new function that
handles all of the errors in the original function:� �
const replace = (func) => {

return (... args) => {
console.log('before ')
try {

const result = func (... args)

15.1 How can we replace a function with another function? 249

console.log('after ')
return result

} catch (error) {
console.log('error ')
throw error

}
}

}

zero = replace(zero)
one = replace(one)
two = replace(two)
error = replace(error)

runAll('second time ')� �
Listing 15.2: replace-func.js

Let’s try it out:� �
first time
zero
one (1)
two(1, 2)
error
caught Error: from error as expected

second time
before
zero
after
before
one (1)
after
before
two(1, 2)
after
before
error
error
caught Error: from error as expected� �

Listing 15.3: replace-func.out

This is an example of the Decorator design pattern. A decorator is a function whose job is
to modify the behavior of other functions in some general ways. Decorators are built in to some
languages (like Python4), and we can add them in most others as we have done here.

4https://www.python.org/

https://www.python.org/

250 15 Code Generator

15.2 How can we generate JavaScript?
We could use a decorator to replace every function in our program with one that keeps track of
whether or not it was called, but it would be tedious to apply the decorator to every one of our
functions by hand. What we really want is a way to do this automatically for everything, and for
that we need to parse and generate code.

Other ways to do it

A third way to achieve what we want is to let the system turn code into runnable instructions
and then modify those instructions. This approach is often used in compiled languages like
Java5, where the byte code produced by the compiler is saved in files in order to be run.
We can’t do this here because Node compiles and runs code in a single step.

Our tool will parse the JavaScript with Acorn to create an AST, modify the AST, and then use
a library called Escodegen6 to turn the AST back into JavaScript. To start, let’s look at the AST
for a simple function definition, which is 75 lines of pretty-printed JSON:� �
import acorn from 'acorn '

const text = `const func = (param) => {
return param + 1

}`

const ast = acorn.parse(text , { sourceType: 'module ' })
console.log(JSON.stringify(ast , null , 2))� �

Listing 15.4: func-def.js� �
{

"type": "Program",
"start": 0,
"end": 46,
"body": [

{
"type": "VariableDeclaration",
"start": 0,
"end": 46,
"declarations ": [

{
"type": "VariableDeclarator",
"start": 6,
"end": 46,

5https://en.wikipedia.org/wiki/Java_(programming_language)
6https://github.com/estools/escodegen/

https://en.wikipedia.org/wiki/Java_(programming_language)
https://github.com/estools/escodegen/

15.2 How can we generate JavaScript? 251

"id": {
"type": "Identifier",
"start": 6,
"end": 10,
"name": "func"

},
"init": {

"type": "ArrowFunctionExpression",
"start": 13,
"end": 46,
"id": null ,
"expression ": false ,
"generator ": false ,
"async": false ,
"params ": [

{
"type": "Identifier",
"start": 14,
"end": 19,
"name": "param"

}
],
"body": {

"type": "BlockStatement",
"start": 24,
"end": 46,
"body": [

{
"type": "ReturnStatement",
"start": 28,
"end": 44,
"argument ": {

"type": "BinaryExpression",
"start": 35,
"end": 44,
"left": {

"type": "Identifier",
"start": 35,
"end": 40,
"name": "param"

},
"operator ": "+",
"right": {

"type": "Literal",
"start": 43,
"end": 44,
"value": 1,
"raw": "1"

}
}

252 15 Code Generator

}
]

}
}

}
],
"kind": "const"

}
],
"sourceType ": "module"

}� �
Listing 15.5: func-def.out

After inspecting a few nodes, we can try to create some of our own and turn them into code.
Here, for example, we have the JSON representation of the expression 40+2:� �
import escodegen from 'escodegen '

const result = escodegen.generate ({
type: 'BinaryExpression ',
operator: '+',
left: { type: 'Literal ', value: 40 },
right: { type: 'Literal ', value: 2 }

})
console.log(result)� �

Listing 15.6: one-plus-two.js� �
40 + 2� �

Listing 15.7: one-plus-two.out

15.3 How can we count how often functions are executed?
Our tool will find all the function declaration nodes in the program and insert a node to increment
an entry in a global variable called __counters. (Prefixing the name with two underscores doesn’t
guarantee that we won’t accidentally clobber a variable in the user’s program with the same name,
but hopefully it makes that less likely.) Our test case is:� �
const TEXT = `
const funcOuter = (param) => {

return param + 1
}
const funcInner = (param) => {

return param + 1
}

15.3 How can we count how often functions are executed? 253

for (const i of [1, 3, 5]) {
funcOuter(funcInner(i) + funcInner(i))

}
`� �

Listing 15.8: multi-func-counter.js

and the main function of our program is:� �
const main = () => {

const ast = acorn.parse(TEXT , { sourceType: 'module ' })

const allNodes = []
walk.simple(ast , {

VariableDeclarator: (node , state) => {
if (node.init && (node.init.type === 'ArrowFunctionExpression ')) {

state.push(node)
}

}
}, null , allNodes)

const names = {}
allNodes.forEach(node => insertCounter(names , node))
console.log(initializeCounters(names))
console.log(escodegen.generate(ast))
console.log(reportCounters ())

}� �
Listing 15.9: multi-func-counter.js

To insert a count we call insertCounter to record the function’s name and modify the node:� �
const insertCounter = (names , node) => {

const name = node.id.name
names[name] = 0

const body = node.init.body.body
const increment =

acorn.parse(`__counters['${name}'] += 1`, { sourceType: 'module ' })
body.unshift(increment)

}� �
Listing 15.10: multi-func-counter.js

Notice how we don’t try to build the nodes by hand, but instead construct the string we need, use
Acorn to parse that, and use the result. Doing this saves us from embedding multiple lines of JSON
in our program and also ensures that if a newer version of Acorn decides to generate a different
AST, our program will do the right thing automatically.

Finally, we need to add a couple of helper functions:� �
const initializeCounters = (names) => {

const body = Object.keys(names).map(n => `'${n}': 0`).join(',\n')

254 15 Code Generator

return 'const __counters = {\n' + body + '\n}'
}

const reportCounters = () => {
return 'console.log(__counters)'

}� �
Listing 15.11: multi-func-counter.js

and run it to make sure it all works:� �
const __counters = {
'funcOuter ': 0,
'funcInner ': 0
}
const funcOuter = param => {

__counters['funcOuter '] += 1;
return param + 1;

};
const funcInner = param => {

__counters['funcInner '] += 1;
return param + 1;

};
for (const i of [

1,
3,
5

]) {
funcOuter(funcInner(i) + funcInner(i));

}
console.log(__counters)� �

Listing 15.12: multi-func-counter.out

Too simple to be safe

Our simple approach to naming counters doesn’t work if functions can have the same names,
which they can if we use modules or nested functions. One way to solve this would be to
manufacture a label from the function’s name and the line number in the source code; another
would be to keep track of which functions are nested within which and concatenate their names
to produce a unique key. Problems like this are why people say that naming things is one of
the two hard problems in computer science.

15.4 How can we time function execution? 255

15.4 How can we time function execution?
Now that we have a way to insert code into functions we can use it to do many other things. For
example, we can find out how long it takes functions to run by wrapping them up in code that
records the start and end time of each call. As before, we find the nodes of interest and decorate
them, then stitch the result together with a bit of bookkeeping:� �
const timeFunc = (text) => {

const ast = acorn.parse(text , { sourceType: 'module ' })
const allNodes = gatherNodes(ast)
allNodes.forEach(node => wrapFuncDef(node))
return [

initializeCounters(allNodes),
escodegen.generate(ast),
reportCounters ()

].join('\n')
}� �

Listing 15.13: time-func.js

Gathering nodes is straightforward:� �
const gatherNodes = (ast) => {

const allNodes = []
walk.simple(ast , {

VariableDeclarator: (node , state) => {
if (node.init && (node.init.type === 'ArrowFunctionExpression ')) {

state.push(node)
}

}
}, null , allNodes)
return allNodes

}� �
Listing 15.14: time-func.js

as is wrapping the function definition:� �
const wrapFuncDef = (originalAst) => {

const name = originalAst.id.name
const wrapperAst = makeWrapperAst(name)
wrapperAst.init.body.body [0]. declarations [0]. init = originalAst.init
originalAst.init = wrapperAst.init

}� �
Listing 15.15: time-func.js

The only big difference is how we make the wrapper function. We create it with a placeholder
for the original function so that we have a spot in the AST to insert the actual code:

256 15 Code Generator� �
const timeFunc = (text) => {

const ast = acorn.parse(text , { sourceType: 'module ' })
const allNodes = gatherNodes(ast)
allNodes.forEach(node => wrapFuncDef(node))
return [

initializeCounters(allNodes),
escodegen.generate(ast),
reportCounters ()

].join('\n')
}� �

Listing 15.16: time-func.js

Let’s run one last test:� �
const __counters = {
'assignment ': 0,
'readFile ': 0
}
const assignment = (... originalArgs) => {

const originalFunc = range => {
let j = 0;
for (let i = 0; i < range; i += 1) {

j = i;
}

};
const startTime = Date.now ();
try {

const result = originalFunc (... originalArgs);
const endTime = Date.now ();
__counters['assignment '] += endTime - startTime;
return result;

} catch (error) {
const endTime = Date.now ();
__counters['assignment '] += endTime - startTime;
throw error;

}
};
const readFile = (... originalArgs) => {

const originalFunc = (range , filename) => {
for (let i = 0; i < range; i += 1) {

fs.readFileSync(filename , 'utf -8');
}

};
const startTime = Date.now ();
try {

const result = originalFunc (... originalArgs);
const endTime = Date.now ();
__counters['readFile '] += endTime - startTime;
return result;

} catch (error) {

15.5 Exercises 257

const endTime = Date.now ();
__counters['readFile '] += endTime - startTime;
throw error;

}
};
const numLoops = 100000;
assignment(numLoops);
readFile(numLoops , 'index.md ');
console.log(__counters)
OUTPUT
{ assignment: 1, readFile: 3879 }� �

Listing 15.17: test-time-func.out

Source-to-source translation is widely used in JavaScript: tools like Babel7 use it to transform
modern features like async and await (Chapter 3) into code that older browsers can understand.
The technique is so powerful that it is built into languages like Scheme, which allow programmers
to add new syntax to the language by defining macros. Depending on how carefully they are used,
macros can make programs elegant, incomprehensible, or both.

15.5 Exercises

JSON to JavaScript

Write a tool that uses Escodegen8 to translate simple expressions written in JSON into runnable
JavaScript. For example, the tool should translate:� �
['+', 3, ['*', 5, 'a']]� �
into:� �
3 + (5 * a)� �
JavaScript to HTML

Write a function that takes nested JavaScript function calls for generating HTML like this:� �
div(h1('title '), p('explanation '))� �
and turns them into HTML like this:� �
<div ><h1>title </h1 ><p>explanation </p></div >� �

7https://babeljs.io/
8https://github.com/estools/escodegen/

https://babeljs.io/
https://github.com/estools/escodegen/

258 15 Code Generator

Handling modules

Modify the code that counts the number of times a function is called to handle functions with the
same name from different modules.

Tracking calls

Write a decorator that takes a function as its argument and returns a new function that behaves
exactly the same way except that it keeps track of who called it.

1. The program contains a stack where decorated functions push and pop their names as they are
called and as they exit.

2. Each time a function is called it adds a record to an array to record its name and the name at
the top of the stack (i.e., the most-recently-called decorated function).

Counting classical function definitions

Modify the code generator to handle functions declared with the function keyword as well as
functions declared using =>.

Recording input file size

1. Write a program that replaces all calls to fs.readFileSync with calls to readFileSyncCount.

2. Write the function readFileSyncCount to read and return a file using fs.readFileSync but to
also record the file’s name and size in bytes.

3. Write a third function reportInputFileSizes that reports what files were read and how large
they were.

4. Write tests for these functions using Mocha and mock-fs.

Checking argument types

Write a tool that modifies functions to check the types of their arguments at run-time.

1. Each function is replaced by a function that passes all of its arguments to checkArgs along with
the function’s name, then continues with the function’s original operation.

2. The first time checkArgs is called for a particular function it records the actual types of the
arguments.

3. On subsequent calls, it checks that the argument types match those of the first call and throws
an exception if they do not.

15.5 Exercises 259

Two-dimensional arrays

The function make2D takes a row length and one or more values and creates a two-dimensional
array from those values:� �
make2D(2, 'a', 'b', 'c', 'd')
// produces [['a', 'b'], ['c', 'd']]� �
Write a function that searches code to find calls to make2D and replaces them with inline arrays-
of-arrays. This function only has to work for calls with a fixed row length, i.e., it does not have to
handle make2D(N, 'a', 'b').

From require to import

Write a function that searches code for simple calls to require and replaces them with calls to
import. This function only needs to work for the simplest case; for example, if the input is:� �
const name = require('module ')� �
then the output is:� �
import name from 'module '� �
Removing empty constructors

Write a function that removes empty constructors from class definitions. For example, if the input
is:� �
class Example {

constructor () {
}

someMethod () {
console.log('some method ')

}
}� �
then the output should be:� �
class Example {

someMethod () {
console.log('some method ')

}
}� �

16
Documentation Generator

Generating documentation from comments embedded in code

Terms defined: accumulator, block comment, doc comment, line comment, slug

Many programmers believe they’re more likely to write documentation and keep it up to date
if it is close to the code. Tools that extract specially-formatted comments from code and turn
them into documentation have been around since at least the 1980s; many are used for JavaScript,
including JSDoc1 and ESDoc2. This chapter will use what we learned in Chapter 15 about parsing
source code to build a simple documentation generator of our own.

16.1 How can we extract documentation comments?
We will use Acorn3 once again to parse our source files. This time we will use the parser’s onComment
option, giving it an array to fill in. For the moment we won’t bother to assign the AST produced
by parsing to a variable because we are just interested in the comments:� �
import fs from 'fs '
import acorn from 'acorn '

const text = fs.readFileSync(process.argv[2], 'utf -8')
const options = {

sourceType: 'module ',
locations: true ,
onComment: []

}
acorn.parse(text , options)
console.log(JSON.stringify(options.onComment , null , 2))� �

Listing 16.1: extract-comments.js� �
// double -slash comment
/* slash -star comment */� �

Listing 16.2: two-kinds-of-comment.js

1https://jsdoc.app/
2https://esdoc.org/
3https://github.com/acornjs/acorn

261

https://jsdoc.app/
https://esdoc.org/
https://github.com/acornjs/acorn

262 16 Documentation Generator� �
[

{
"type": "Line",
"value": " double -slash comment",
"start": 0,
"end": 23,
"loc": {

"start": {
"line": 1,
"column ": 0

},
"end": {

"line": 1,
"column ": 23

}
}

},
{

"type": "Block",
"value": " slash -star comment ",
"start": 24,
"end": 48,
"loc": {

"start": {
"line": 2,
"column ": 0

},
"end": {

"line": 2,
"column ": 24

}
}

}
]� �

Listing 16.3: two-kinds-of-comment.out

There is more information here than we need, so let’s slim down the JSON that we extract:� �
import fs from 'fs '
import acorn from 'acorn '

const text = fs.readFileSync(process.argv[2], 'utf -8')
const options = {

sourceType: 'module ',
locations: true ,
onComment: []

}
acorn.parse(text , options)
const subset = options.onComment.map(entry => {

return {

16.1 How can we extract documentation comments? 263

program

type: Line
value: ''
start: 1
end: 1

type: Line
value: 'text'
start: 2
end: 2

type: Line
value: ''
start: 3
end: 3

//
// text
//

/*
 * text
 */

program

type: Block
value: '\n * text\n '
start: 1
end: 1

Figure 16.1: How line comments and block comments are distinguished and represented.

type: entry.type ,
value: entry.value ,
start: entry.loc.start.line ,
end: entry.loc.end.line

}
})
console.log(JSON.stringify(subset , null , 2))� �

Listing 16.4: extract-comments-subset.js� �
node extract -comments -subset.js two -kinds -of-comment.js� �

Listing 16.5: two-kinds-of-comment-subset.sh� �
[

{
"type": "Line",
"value": " double -slash comment",
"start": 1,
"end": 1

},
{

"type": "Block",
"value": " slash -star comment ",
"start": 2,
"end": 2

}
]� �

Listing 16.6: two-kinds-of-comment-subset.out

Acorn distinguishes two kinds of comments (Figure 16.1). Line comments cannot span multiple
lines; if one line comment occurs immediately after another, Acorn reports two comments:� �
//
// multi -line double -slash comment

264 16 Documentation Generator

//� �
Listing 16.7: multi-line-double-slash-comment.js� �

node extract -comments -subset.js multi -line -double -slash -comment.js� �
Listing 16.8: multi-line-double-slash-comment.sh� �

[
{

"type": "Line",
"value": "",
"start": 1,
"end": 1

},
{

"type": "Line",
"value": " multi -line double -slash comment",
"start": 2,
"end": 2

},
{

"type": "Line",
"value": "",
"start": 3,
"end": 3

}
]� �

Listing 16.9: multi-line-double-slash-comment.out

Block comments, on the other hand, can span any number of lines. We don’t need to prefix
each line with * but most people do for readability:� �
/*
* multi -line slash -star comment
*/� �

Listing 16.10: multi-line-slash-star-comment.js� �
node extract -comments -subset.js multi -line -slash -star -comment.js� �

Listing 16.11: multi-line-slash-star-comment.sh� �
[

{
"type": "Block",
"value": "\n * multi -line slash -star comment\n ",
"start": 1,
"end": 3

16.2 What input will we try to handle? 265

}
]� �

Listing 16.12: multi-line-slash-star-comment.out

By convention, we use block comments that start with /** for documentation. The first two
characters are recognized by the parser as "start of comment", so the first character in the extracted
text is *:� �
/**
* doc comment
*/� �

Listing 16.13: doc-comment.js� �
[

{
"type": "Block",
"value": "*\n * doc comment\n ",
"start": 1,
"end": 3

}
]� �

Listing 16.14: doc-comment.out

16.2 What input will we try to handle?
We will use Markdown4 for formatting our documentation. The doc comments for function defi-
nitions look like this:� �
/**
* # Demonstrate documentation generator.
*/

import util from './util -plain '

/**
* ## `main `: Main driver.
*/

const main = () => {
// Parse arguments.
// Process input stream.

}

4https://en.wikipedia.org/wiki/Markdown

https://en.wikipedia.org/wiki/Markdown

266 16 Documentation Generator

/**
* ## `parseArgs `: Parse command line.
* - `args ` (`string []`): arguments to parse.
* - `defaults ` (`Object `): default values.
*
* Returns: program configuration object.
*/

const parseArgs = (args , defaults) => {
// body would go here

}

/**
* ## `process `: Transform data.
* - `input ` (`stream `): where to read.
* - `output ` (`stream `): where to write.
* - `op ` (`class `): what to do.
* Use @BaseProcessor unless told otherwise.
*/

const process = (input , output , op = util.BaseProcessor) => {
// body would go here

}� �
Listing 16.15: example-plain.js

while the ones for class definitions look like this:� �
/**
* # Utilities to demonstrate doc generator.
*/

/**
* ## `BaseProcessor `: General outline.
*/

class BaseProcessor {
/**
* ### `constructor `: Build processor.
*/

constructor () {
// body would go here

}

/**
* ### `run `: Pass input to output.
* - `input ` (`stream `): where to read.
* - `output ` (`stream `): where to write.
*/

run (input , output) {
// body would go here

}
}

16.2 What input will we try to handle? 267

export default BaseProcessor� �
Listing 16.16: util-plain.js

The doc comments are unpleasant at the moment: they repeat the function and method names
from the code, we have to create titles ourselves, and we have to remember the back-quotes for
formatting code. We will fix some of these problems once we have a basic tool up and running.

The next step in doing that is to translate Markdown into HTML. There are many Markdown
parsers in JavaScript; after experimenting with a few, we decided to use markdown-it5 along with
the markdown-it-anchor6 extension that creates HTML anchors for headings. The main program
gets all the doc comments from all of the input files, converts the Markdown to HTML, and displays
that:� �
const HEAD = '<html ><body style="font -size: 100%; margin -left: 0.5em">'
const FOOT = '</body ></html >'

const main = () => {
const allComments = getAllComments(process.argv.slice (2))
const md = new MarkdownIt ({ html: true })

.use(MarkdownAnchor , { level: 1, slugify: slugify })
const html = md.render(allComments)
console.log(HEAD)
console.log(html)
console.log(FOOT)

}� �
Listing 16.17: process-plain.js

To get all the comments we extract comments from all the files, remove the leading * characters
(which aren’t part of the documentation), and then join the results after stripping off extraneous
blanks:� �
const getAllComments = (allFilenames) => {

return allFilenames
.map(filename => {

const comments = extractComments(filename)
return { filename , comments }

})
.map(({ filename , comments }) => {

comments = comments.map(comment => removePrefix(comment))
return { filename , comments }

})
.map(({ filename , comments }) => {

const combined = comments
.map(comment => comment.stripped)
.join('\n\n')

return `# ${filename }\n\n${combined}`
})

5https://markdown-it.github.io/
6https://www.npmjs.com/package/markdown-it-anchor

https://markdown-it.github.io/
https://www.npmjs.com/package/markdown-it-anchor

268 16 Documentation Generator

.join('\n\n')
}� �

Listing 16.18: process-plain.js

Extracting the comments from a single file is done as before:� �
const extractComments = (filename) => {

const text = fs.readFileSync(filename , 'utf -8')
const options = {

sourceType: 'module ',
locations: true ,
onComment: []

}
acorn.parse(text , options)
const subset = options.onComment

.filter(entry => entry.type === 'Block ')

.map(entry => {
return {

type: entry.type ,
value: entry.value ,
start: entry.start ,
end: entry.end

}
})

return subset
}� �

Listing 16.19: process-plain.js

and removing the prefix * characters is a matter of splitting the text into lines, removing the leading
spaces and asterisks, and putting the lines back together:� �
const removePrefix = (comment) => {

comment.stripped = comment.value
.split('\n')
.slice(0, -1)
.map(line => line.replace (/^ *\/?* */, ''))
.map(line => line.replace('*/', ''))
.join('\n')
.trim()

return comment
}� �

Listing 16.20: process-plain.js

One thing that isn’t in this file (because we’re going to use it in later versions) is the function
slugify. A slug is a short string that identifies a header or a web page; the name comes from
the era of newspapers, where a slug was a short name used to identify an article while it was in
production. Our slugify function strips unnecessary characters out of a title, adds hyphens, and
generally makes it something you might see in a URL:

16.2 What input will we try to handle? 269� �
const slugify = (text) => {

return encodeURIComponent(
text.split(' ')[0]

.replace (/. js$/, '')

.trim()

.toLowerCase ()

.replace (/[^ \w]/g, '')

.replace (/\s+/g, '-')
)

}

export default slugify� �
Listing 16.21: slugify.js

Let’s run this generator and see what it produces (Figure 16.2 and Figure 16.3):� �
node process -plain.js example -plain.js util -plain.js� �

Listing 16.22: process-plain.sh� �
<html ><body style="font -size: 100%; margin -left: 0.5em">
<h1 id=" exampleplain">example -plain.js </h1>
<h1 id=" demonstrate">Demonstrate documentation generator .</h1>
<h2 id="main"><code >main </code >: Main driver.</h2 >
<h2 id=" parseargs"><code >parseArgs </code >: Parse command line.</h2 >

<code >args </code > (<code >string []</code >): arguments to parse.
<code >defaults </code > (<code >Object </code >): default values.

<p>Returns: program configuration object.</p>
<h2 id=" process"><code >process </code >: Transform data.</h2>

<code >input </code > (<code >stream </code >): where to read.
<code >output </code > (<code >stream </code >): where to write.
<code >op </code > (<code >class </code >): what to do.
Use @BaseProcessor unless told otherwise .

<h1 id=" utilplain">util -plain.js </h1 >
<h1 id=" utilities">Utilities to demonstrate doc generator .</h1>
<h2 id=" baseprocessor"><code >BaseProcessor </code >: General outline.</h2 >
<h3 id=" constructor"><code >constructor </code >: Build processor .</h3 >
<h3 id="run"><code >run </code >: Pass input to output.</h3>

<code >input </code > (<code >stream </code >): where to read.
<code >output </code > (<code >stream </code >): where to write.

</body ></html >� �
Listing 16.23: process-plain.html

270 16 Documentation Generator

example-plain.js

Demonstrate documentation generator.

main: Main driver.

parseArgs: Parse command line.

args (string[]): arguments to parse.
defaults (Object): default values.

Returns: program configuration object.

process: Transform data.

input (stream): where to read.
output (stream): where to write.
op (class): what to do. Use @BaseProcessor unless told otherwise.

util-plain.js

Utilities to demonstrate doc generator.

BaseProcessor: General outline.

constructor: Build processor.

run: Pass input to output.

input (stream): where to read.
output (stream): where to write.

Figure 16.2: The page produced by the documentation generator.

It works, but there is a double h1 header for each file (the filename and and the title comment),
the anchor IDs are hard to read, there are no cross-references, and so on. Some of the visual issues
can be resolved with CSS, and we can change our input format to make processing easier as long
as it also makes authoring easier. However, anything that is written twice will eventually be wrong
in one place or another, so our first priority is to remove duplication.

16.3 How can we avoid duplicating names?
If a comment is the first thing in a file, we want to use it as title text; this will save us having to
write an explicit level-1 title in a comment. For each other comment, we can extract the name of

16.3 How can we avoid duplicating names? 271

/**
 * # Demonstrate documentation generator.
 */

import util from './util-plain'

/**
 * ## `main`: Main driver.
 */
const main = () => {
}

/**
 * ## `parseArgs`: Parse command line.
 * - `args` (`string[]`): arguments to parse.
 * - `defaults` (`Object`): default values.
 *
 * Returns: program configuration object.
 */
const parseArgs = (args, defaults) => {
}

example-plain.js

example-plain.js

Demonstrate documentation generator.

main: Main driver.

parseArgs: Parse command line.

args (string[]): arguments to parse.
defaults (Object): default values.

Returns: program configuration object.

filename

Figure 16.3: How comments in code map to documentation in HTML.

the function or method from the node on the line immediately following the doc comment. This
allows us to write much tidier comments:� �
/**
* Overall file header.
*/

/**
* Double the input.
*/

const double = (x) => 2 * x

/**
* Triple the input.
*/

function triple (x) {
return 3 * x

}

/**
* Define a class.
*/

class Example {
/**
* Method description.
*/

someMethod () {

272 16 Documentation Generator

}
}� �

Listing 16.24: find-following-input.js

To extract and display information from nodes immediately following doc comments we must
find all the block comments, record the last line of each, and then search the AST to find nodes
that are on lines immediately following any of those trailing comment lines. (We will assume for
now that there are no blank lines between the comment and the start of the class or function.)
The main program finds the comments as usual, creates a set containing the line numbers we are
looking for, then searches for the nodes we want:� �
const main = () => {

const options = {
sourceType: 'module ',
locations: true ,
onComment: []

}
const text = fs.readFileSync(process.argv[2], 'utf -8')
const ast = acorn.parse(text , options)
const comments = options.onComment

.filter(entry => entry.type === 'Block ')

.map(entry => {
return {

value: entry.value ,
start: entry.loc.start.line ,
end: entry.loc.end.line

}
})

const targets = new Set(comments.map(comment => comment.end + 1))
const nodes = []
findFollowing(ast , targets , nodes)
console.log(nodes.map(node => condense(node)))

}� �
Listing 16.25: find-following.js

The recursive search is straightforward as well—we delete line numbers from the target set and
add nodes to the accumulator as we find matches:� �
const findFollowing = (node , targets , accum) => {

if ((! node) || (typeof node !== 'object ') || (!('type ' in node))) {
return

}

if (targets.has(node.loc.start.line)) {
accum.push(node)
targets.delete(node.loc.start.line)

}

for (const key in node) {

16.3 How can we avoid duplicating names? 273

if (Array.isArray(node[key])) {
node[key]. forEach(child => findFollowing(child , targets , accum))

} else if (typeof node[key] === 'object ') {
findFollowing(node[key], targets , accum)

}
}

}� �
Listing 16.26: find-following.js

Finally, we use a function called condense to get the name we want out of the AST we have:� �
const condense = (node) => {

const result = {
type: node.type ,
start: node.loc.start.line

}
switch (node.type) {

case 'VariableDeclaration ':
result.name = node.declarations [0].id.name
break

case 'FunctionDeclaration ':
result.name = node.id.name
break

case 'ClassDeclaration ':
result.name = node.id.name
break

case 'MethodDefinition ':
result.name = node.key.name
break

default:
assert.fail(`Unknown node type ${node.type}`)
break

}
return result

}� �
Listing 16.27: find-following.js

We need this because we get a different structure with:� �
const name = function () => {
}� �
than we get with:� �
function name() {
}� �

When we run this on our test case we get:� �
[

274 16 Documentation Generator

{ type: 'VariableDeclaration ', start: 8, name: 'double ' },
{ type: 'FunctionDeclaration ', start: 13, name: 'triple ' },
{ type: 'ClassDeclaration ', start: 20, name: 'Example ' },
{ type: 'MethodDefinition ', start: 24, name: 'someMethod ' }

]� �
Listing 16.28: find-following.out

We can use this to create better output (Figure 16.4):� �
import MarkdownIt from 'markdown -it'
import MarkdownAnchor from 'markdown -it-anchor '

import getComments from './get -comments.js '
import getDefinitions from './get -definitions.js '
import fillIn from './fill -in.js'
import slugify from './slugify.js '

const HEAD = '<html ><body style="font -size: 100%; margin -left: 0.5em">'
const FOOT = '</body ></html >'

const main = () => {
const filenames = process.argv.slice (2)
const allComments = getComments(filenames)
const allDefinitions = getDefinitions(filenames)
const combined = []
for (const [filename , comments] of allComments) {

const definitions = allDefinitions.get(filename)
const text = fillIn(filename , comments , definitions)
combined.push(text)

}
const md = new MarkdownIt ({ html: true })

.use(MarkdownAnchor , { level: 1, slugify: slugify })
const html = md.render(combined.join('\n\n'))
console.log(HEAD)
console.log(html)
console.log(FOOT)

}

main()� �
Listing 16.29: fill-in-headers.js� �

<html ><body style="font -size: 100%; margin -left: 0.5em">
<h1 id=" fillinheadersinput">fill -in -headers -input.js </h1 >
<p>Demonstrate documentation generator.</p>
<h2 id="main">main </h2>
<p>Main driver.</p>
<h2 id=" parseargs">parseArgs </h2 >
<p>Parse command -line arguments.</p>

16.4 Exercises 275

<code >args </code > (<code >string []</code >): arguments to parse.
<code >defaults </code > (<code >Object </code >): default values.

<blockquote >
<p>Program configuration object.</p>
</blockquote >
<h2 id=" baseprocessor">BaseProcessor </h2>
<p>Default processing class.</p>
<h3 id=" constructor">constructor </h3 >
<p>Build base processor .</p>
<h3 id="run">run </h3>
<p>Pass input to output.</p>

<code >input </code > (<code >stream </code >): where to read.
<code >output </code > (<code >stream </code >): where to write.

</body ></html >� �
Listing 16.30: fill-in-headers.html

Code is data

We haven’t made this point explicitly in a while, so we will repeat it here: code is just another
kind of data, and we can process it just like we would process any other data. Parsing code
to produce an AST is no different from parsing HTML to produce DOM; in both cases we
are simply transforming a textual representation that’s easy for people to author into a data
structure that’s easy for a program to manipulate. Pulling things out of that data to create
a report is no different from pulling numbers out of a hospital database to report monthly
vaccination rates.

Treating code as data enables us to do routine programming tasks with a single command,
which in turn gives us more time to think about the tasks that we can’t (yet) automate. Doing
this is the foundation of a tool-based approach to software engineering; as the mathemati-
cian Alfred North Whitehead once wrote, "Civilization advances by extending the number of
important operations which we can perform without thinking about them."

16.4 Exercises

Building an index

Modify the documentation generator to produce an alphabetical index of all classes and methods
found. Index entries should be hyperlinks to the documentation for the corresponding item.

276 16 Documentation Generator

fill-in-headers-input.js
Demonstrate documentation generator.

main

Main driver.

parseArgs

Parse command-line arguments.

args (string[]): arguments to parse.
defaults (Object): default values.

Program configuration object.

BaseProcessor

Default processing class.

constructor

Build base processor.

run

Pass input to output.

input (stream): where to read.
output (stream): where to write.

Figure 16.4: Filling in headers when generating documentation.

16.4 Exercises 277

Documenting exceptions

Extend the documentation generator to allow people to document the exceptions that a function
throws.

Deprecation warning

Add a feature to the documentation generator to allow authors to mark functions and methods as
deprecation (i.e., to indicate that while they still exist, they should not be used because they are
being phased out).

Usage examples

Enhance the documentation generator so that if a horizontal rule –- appears in a documentation
comment, the text following is typeset as usage example. (A doc comment may contain several
usage examples.)

Unit testing

Write unit tests for the documentation generator using Mocha.

Summarizing functions

Modify the documentation generator so that line comments inside a function that use //* are
formatted as a bullet list in the documentation for that function.

Cross referencing

Modify the documentation generator so that the documentation for one class or function can include
Markdown links to other classes or functions.

Data types

Modify the documentation generator to allow authors to define new data types in the same way as
JSDoc7.

Inline parameter documentation

Some documentation generators put the documentation for a parameter on the same line as the
parameter:� �
/**
* Transform data.
*/

function process(

7https://jsdoc.app/

https://jsdoc.app/

278 16 Documentation Generator

input , /*- {stream} where to read */
output , /*- {stream} where to write */
op /*- {Operation} what to do */

){
// body would go here

}� �
Modify the documentation generator to handle this.

Tests as documentation

The doctest8 library for Python allows programmers to embed unit tests as documentation in their
programs. Write a tool that:

1. Finds functions that start with a block comment.

2. Extracts the code and output from those blocks comments and turns them into assertions.

For example, given this input:� �
const findIncreasing = (values) => {

/**
* > findIncreasing ([])
* []
* > findIncreasing ([1])
* [1]
* > findIncreasing ([1, 2])
* [1, 2]
* > findIncreasing ([2, 1])
* [2]
*/

}� �
the tool would produce:� �
assert.deepStrictEqual(findIncreasing ([]), [])
assert.deepStrictEqual(findIncreasing ([1]), [1])
assert.deepStrictEqual(findIncreasing ([1, 2]), [1, 2])
assert.deepStrictEqual(findIncreasing ([2, 1]), [2])� �

8https://docs.python.org/3/library/doctest.html

https://docs.python.org/3/library/doctest.html

17
Module Bundler

Turning many files into one

Terms defined: entry point, module bundler, transitive closure

JavaScript was designed in a hurry 25 years ago to make web pages interactive. Nobody realized
it would become one of the most popular programming languages in the world, so it didn’t include
support for things that large programs need. One of those things was a way to turn a set of easy-
to-edit source files into a single easy-to-load file so that browsers could get what they needed with
one request.

A module bundler finds all the files that an application depends on and combines them into
a single loadable file (Figure 17.1). This file is much more efficient to load: it’s the same number
of bytes but just one network request. (See Table 2.1 for a reminder of why this is important.)
Bundling files also tests that dependencies actually resolve so that the application has at least a
chance of being able to run.

Bundling requires an entry point, i.e., a place to start searching for dependencies. Given that,
it finds all dependencies, combines them into one file, and ensures they can find each other correctly
once loaded. The sections below go through these steps one by one.

17.1 What will we use as test cases?
The simplest test case is a single file that doesn’t require anything else: if this doesn’t work, nothing
will. Our test case and the expected output are:� �
const main = () => {

console.log('in main ')
}

module.exports = main� �
Listing 17.1: single/main.js� �

in main� �
Listing 17.2: expected-single.out

In our second test case, main.js requires other.js, which doesn’t require anything. The main
file is:

279

280 17 Module Bundler

import red from './red.js'
import green from './green.js'

 const main = () => {
 green()
 blue()
 }

red.js

 import blue from './blue.js'

 const green = () => {
 blue()
 }

green.js

 const blue = () => {

 }

blue.js

 const main = () => {
 green()
 blue()
 }

 const green = () => {
 blue()
 }

 const blue = () => {
 ...
 }

Figure 17.1: Combining multiple modules into one.

� �
const other = require ('./other ')

const main = () => {
console.log(other('main '))

}

module.exports = main� �
Listing 17.3: simple/main.js

and the required file is:� �
const other = require ('./other ')

const main = () => {
console.log(other('main '))

}

module.exports = main� �
Listing 17.4: simple/main.js

The output we expect is:� �
other called from main

17.1 What will we use as test cases? 281

main.js

 top-left.js top-right.js

 subdir/bottom-left.js subdir/bottom-right.js

Figure 17.2: Dependencies in large module bundler test case.

� �
Listing 17.5: expected-simple.out

Why require?

Our tests cases use the old-style require function and assign things that are to be visible
outside the module to module.exports rather than using import and export. We tried writing
the chapter using the latter, but kept stumbling over whether we were talking about import
in Node’s module loader or the import we were building. This kind of confusion is common
when building programming tools; we hope that splitting terminology as we have will help.

Our third test case has multiple inclusions in multiple directories and is shown in Figure 17.2:

• ./main requires all four of the files below.

• ./top-left doesn’t require anything.

• ./top-right requires top-left and bottom-right.

• ./subdir/bottom-left also requires top-left and bottom-right.

• ./subdir/bottom-right doesn’t require anything.

The main program is:� �
// main.js

const topLeft = require ('./top -left ')
const topRight = require ('./top -right ')
const bottomLeft = require ('./ subdir/bottom -left ')
const bottomRight = require ('./ subdir/bottom -right ')

const main = () => {
const functions = [topLeft , topRight , bottomLeft , bottomRight]
functions.forEach(func => {

console.log(`${func('main ')}`)
})

282 17 Module Bundler

}

module.exports = main� �
Listing 17.6: full/main.js

and the other four files use require and module.exports to get what they need. The output we
expect is:� �
topLeft from main
topRight from main with topLeft from topRight and bottomRight from \
topRight

bottomLeft from main with topLeft from bottomLeft and bottomRight from \
bottomLeft

bottomRight from main� �
Listing 17.7: expected-full.out

We do not handle circular dependencies because require itself doesn’t (Chapter 13).

17.2 How can we find dependencies?
To get all the dependencies for one source file, we parse it and extract all of the calls to require.
The code to do this is relatively straightforward given what we know about Acorn1:� �
import acorn from 'acorn '
import fs from 'fs '
import walk from 'acorn -walk '

const getRequires = (filename) => {
const entryPointFile = filename
const text = fs.readFileSync(entryPointFile , 'utf -8')
const ast = acorn.parse(text)
const requires = []
walk.simple(ast , {

CallExpression: (node , state) => {
if ((node.callee.type === 'Identifier ') &&

(node.callee.name === 'require ')) {
state.push(node.arguments [0]. value)

}
}

}, null , requires)
return requires

}

export default getRequires

1https://github.com/acornjs/acorn

https://github.com/acornjs/acorn

17.2 How can we find dependencies? 283

� �
Listing 17.8: get-requires.js� �

import getRequires from './get -requires.js '

const result = getRequires(process.argv [2])
console.log(result)� �

Listing 17.9: test-get-requires.js� �
node test -get -requires.js simple/main.js� �

Listing 17.10: test-get-requires.sh� �
['./other ']� �

Listing 17.11: test-get-requires.out

An unsolvable problem

The dependency finder shown above gives the right answer for reasonable JavaScript programs,
but not all JavaScript is reasonable. Suppose creates an alias for require and uses that to
load other files:� �
const req = require
const weWillMissThis = req('./other -file ')� �

We could try to trace variable assignments to catch cases like these, but someone could
still fool us by writing this:� �
const clever = eval(`require `)
const weWillMissThisToo = clever ('./other -file ')� �

There is no general solution to this problem other than running the code to see what it
does. If you would like to understand why not, and learn about a pivotal moment in the history
of computing, we highly recommend [Petzold2008].

To get all of the dependencies a bundle needs we need to find the transitive closure of the
entry point’s dependencies, i.e., the requirements of the requirements and so on recursively. Our
algorithm for doing this uses two sets: pending, which contains the things we haven’t looked at yet,
and seen, which contains the things we have (Figure 17.3). pending initially contains the entry
point file and seen is initially empty. We keep taking items from pending until it is empty. If the
current thing is already in seen we do nothing; otherwise we get its dependencies and add them to
either seen or pending.

Finding dependencies is complicated by the fact that we can load something un-
der different names, such as ./subdir/bottom-left from main but ./bottom-left from

284 17 Module Bundler

A

B C

E D

pending seen

{ A } { }

{ B, C } { A }

{ C } { A, B }

{ D } { A, B, C }

{ } { A, B, C, D }

Figure 17.3: Implementing transitive closure using two sets.

./subdir/bottom-right. As with the module loader in Chapter 13, we use absolute paths as
unique identifiers. Our code is also complicated by the fact that JavaScript’s Set class doesn’t have
an equivalent of Array.pop, so we will actually maintain the "set" of pending items as a list. The
resulting code is:� �
import path from 'path '

import getRequires from './get -requires.js '

const transitiveClosure = (entryPointPath) => {
const pending = [path.resolve(entryPointPath)]
const filenames = new Set()
while (pending.length > 0) {

const candidate = path.resolve(pending.pop ())
if (filenames.has(candidate)) {

continue
}
filenames.add(candidate)
const candidateDir = path.dirname(candidate)
getRequires(candidate)

.map(raw => path.resolve(path.join(candidateDir , `${raw}.js `)))

.filter(cooked => !filenames.has(cooked))

.forEach(cooked => pending.push(cooked))
}
return [... filenames]

}

export default transitiveClosure� �
Listing 17.12: transitive-closure-only.js� �

import transitiveClosure from './transitive -closure -only.js'

const result = transitiveClosure(process.argv [2])
console.log(JSON.stringify(result , null , 2))� �

Listing 17.13: test-transitive-closure-only.js� �
node test -transitive -closure -only.js full/main.js

17.2 How can we find dependencies? 285

main.js

 top-left.js top-right.js

 subdir/bottom-left.js subdir/bottom-right.js

/u/stjs/main.js

/u/stjs/top-right.js

/u/stjs/subdir/bottom-left.js

./bottom-right.js

./top-left.js

./top-right.js

./subdir/bottom-left.js

./subdir/bottom-right.js

./top-left.js

./subdir/bottom-right.js

../top-left.js

/u/stjs/top-left.js

/u/stjs/subdir/bottom-right.js

absolute relative

Figure 17.4: Data structure used to map names to absolute paths.

� �
Listing 17.14: test-transitive-closure-only.sh� �

[
"/u/stjs/module -bundler/full/main.js",
"/u/stjs/module -bundler/full/subdir/bottom -right.js",
"/u/stjs/module -bundler/full/subdir/bottom -left.js",
"/u/stjs/module -bundler/full/top -left.js",
"/u/stjs/module -bundler/full/top -right.js"

]� �
Listing 17.15: test-transitive-closure-only.out

This works, but it isn’t keeping track of the mapping from required names within files to absolute
paths, so when one of the files in our bundle tries to access something, we might not know what
it’s after. The fix is to modify transitive closure to construct and return a two-level structure. The
primary keys are the absolute paths to the files being required, while sub-keys are the paths they
refer to when loading things (Figure 17.4).

Adding this takes our transitive closure code from 23 lines to 29 lines:� �
import path from 'path '

import getRequires from './get -requires.js '

286 17 Module Bundler

const transitiveClosure = (entryPointPath) => {
const mapping = {}
const pending = [path.resolve(entryPointPath)]
const filenames = new Set()
while (pending.length > 0) {

const candidate = path.resolve(pending.pop ())
if (filenames.has(candidate)) {

continue
}
filenames.add(candidate)
mapping[candidate] = {}
const candidateDir = path.dirname(candidate)
getRequires(candidate)

.map(raw => {
mapping[candidate][raw] =

path.resolve(path.join(candidateDir , `${raw}.js `))
return mapping[candidate][raw]

})
.filter(cooked => cooked !== null)
.forEach(cooked => pending.push(cooked))

}
return mapping

}

export default transitiveClosure� �
Listing 17.16: transitive-closure.js� �

import transitiveClosure from './transitive -closure.js'

const result = transitiveClosure(process.argv [2])
console.log(JSON.stringify(result , null , 2))� �

Listing 17.17: test-transitive-closure.js� �
node test -transitive -closure.js full/main.js� �

Listing 17.18: test-transitive-closure.sh� �
{

"/u/stjs/module -bundler/full/main.js": {
"./top -left": "/u/stjs/module -bundler/full/top -left.js",
"./top -right ": "/u/stjs/module -bundler/full/top -right.js",
"./ subdir/bottom -left": \
"/u/stjs/module -bundler/full/subdir/bottom -left.js",
"./ subdir/bottom -right": \
"/u/stjs/module -bundler/full/subdir/bottom -right.js"

},
"/u/stjs/module -bundler/full/subdir/bottom -right.js": {},
"/u/stjs/module -bundler/full/subdir/bottom -left.js": {

17.3 How can we safely combine several files into one? 287

"../top -left": "/u/stjs/module -bundler/full/top -left.js",
"./ bottom -right ": \
"/u/stjs/module -bundler/full/subdir/bottom -right.js"

},
"/u/stjs/module -bundler/full/top -left.js": {},
"/u/stjs/module -bundler/full/top -right.js": {

"./top -left": "/u/stjs/module -bundler/full/top -left.js",
"./ subdir/bottom -right": \
"/u/stjs/module -bundler/full/subdir/bottom -right.js"

}
}� �

Listing 17.19: test-transitive-closure.out

The real cost, though, is the extra complexity of the data structure: it took a couple of tries to get
it right, and it will be harder for the next person to understand than the original. Comprehension
and maintenance would be a little easier if we could draw diagrams directly in our source code, but
as long as we insist that our programs be stored in a punchcard-compatible format (i.e., as lines of
text), that will remain a dream.

17.3 How can we safely combine several files into one?
We now need to combine the files we have found into one while keeping each in its own namespace.
We do this using the same method we used in Chapter 13: wrap the source code in an IIFE, giving
that IIFE a module object to fill in and an implementation of require to resolve dependencies
within the bundle. For example, suppose we have this file:� �
const main = () => {

console.log('in main ')
}

module.exports = main� �
Listing 17.20: sanity-check-unwrapped.js

The wrapped version will look like this:� �
const wrapper = (module , require) => {

const main = () => {
console.log('in main ')

}

module.exports = main
}� �

Listing 17.21: sanity-check-wrapped.js

And we can test it like this:

288 17 Module Bundler� �
const wrapper = (module , require) => {

const main = () => {
console.log('in main ')

}

module.exports = main
}

const _require = (name) => null
const temp = {}
wrapper(temp , _require)
temp.exports ()� �

Listing 17.22: sanity-check-test.js� �
in main� �

Listing 17.23: sanity-check-test.out

We need to do this for multiple files, so we will put these IIFEs in a lookup table that uses the
files’ absolute paths as its keys. We will also wrap loading in a function so that we don’t accidentally
step on anyone else’s toys:� �
import fs from 'fs '
import path from 'path '

const HEAD = `const initialize = (creators) => {
`

const TAIL = `
}
`

const combineFiles = (allFilenames) => {
const body = allFilenames

.map(filename => {
const key = path.resolve(filename)
const source = fs.readFileSync(filename , 'utf -8')
const func = `(module , require) => {${source}}`
const entry = `creators.set('${key}',\n${func})`
return `// ${key}\n${entry}\n`

})
.join('\n')

const func = `${HEAD}\n${body}\n${TAIL}`
return func

}

export default combineFiles� �
Listing 17.24: combine-files.js

17.3 How can we safely combine several files into one? 289

HEAD const initialize = (creators) => {

TAIL }

left.js module.exports = 'left'

module.exports = 'right'right.js

const initialize = (creators) => {

creators.set('left.js', (module, require) => {
 module.exports = 'left'
})

creatores.set('right.js', (module, require) => {
 module.exports = 'right'
})

}

Figure 17.5: Assembling fragments and modules to create a bundle.

Breaking this down, the code in HEAD creates a function of no arguments while the code in TAIL
returns the lookup table from that function. In between, combineFiles adds an entry to the lookup
table for each file (Figure 17.5).

We can test that this works in our two-file case:� �
import combineFiles from './combine -files.js '

console.log(combineFiles(process.argv.slice (2)))� �
Listing 17.25: test-combine-files.js� �

const initialize = (creators) => {

// /u/stjs/stjs/module -bundler/simple/main.js
creators.set('/u/stjs/stjs/module -bundler/simple/main.js',
(module , require) => {const other = require ('./other ')

const main = () => {
console.log(other('main '))

}

module.exports = main
})

// /u/stjs/stjs/module -bundler/simple/other.js
creators.set('/u/stjs/stjs/module -bundler/simple/other.js',
(module , require) => {const other = (caller) => {

return `other called from ${caller}`
}

module.exports = other
})

}� �
Listing 17.26: test-combine-files-simple.js

and then load the result and call initialize:

290 17 Module Bundler� �
Map (2) {

'/u/stjs/module -bundler/simple/main.js' => [Function (anonymous)],
'/u/stjs/module -bundler/simple/other.js' => [Function (anonymous)]

}� �
Listing 17.27: show-combine-files-simple.out

17.4 How can files access each other?
The code we have built so far has not created our exports; instead, it has build a lookup table of
functions that can create what we asked for. More specifically we have:

• a lookup table from absolute filenames to functions that create the exports for those modules;

• a lookup table from the importer’s absolute filename to pairs storing the name of the required
file as it was written and the required file’s absolute filename; and

• an entry point.

To turn this into what we want, we must look up the function associated with the entry point and
run it, giving it an empty module object and a require function that we will describe below, then
get the exports it has added to that module object. Our replacement for require is only allowed
to take one argument (because that’s all that JavaScript’s require takes). However, it actually
needs four things: the argument to the user’s require call, the absolute path of the file making the
call, and the two lookup tables described above. Those two tables can’t be global variables because
of possible name collisions: no matter what we call them, the user might have given a variable the
same name.

As in Chapter 13 we solve this problem using closures. The result is probably the most difficult
code in this book to understand because of its many levels of abstraction. First, we write a function
that takes the two tables as arguments and returns a function that takes an absolute path identifying
this module. When that function is called, it creates and returns a function that takes a local path
inside a module and returns the exports. Each of these wrapping layers remembers more information
for us (Figure 17.6), but we won’t pretend that it’s easy to trace.

We also need a third structure: a cache for the modules we’ve already loaded. Putting it all
together we have:� �
import fs from 'fs '
import path from 'path '

import transitiveClosure from './transitive -closure.js'

const HEAD = `const creators = new Map()
const cache = new Map()

const makeRequire = (absPath) => {

17.4 How can files access each other? 291

absolute path export creation function

function 1

importer's
absolute path

[import name,
 import's absolute path]

import's
absolute path

function 2

import's
relative path

function 3

exports

Figure 17.6: A function that returns functions that return functions.

return (localPath) => {
const actualKey = translate[absPath][localPath]
if (!cache.has(actualKey)) {

const m = {}
creators.get(actualKey)(m)
cache.set(actualKey , m.exports)

}
return cache.get(actualKey)

}
}

const initialize = (creators) => {
`

const TAIL = `
}

initialize(creators)
`

const makeProof = (entryPoint) => `
const start = creators.get('${entryPoint }')
const m = {}
start(m)
m.exports ()
`

const createBundle = (entryPoint) => {
entryPoint = path.resolve(entryPoint)
const table = transitiveClosure(entryPoint)
const translate = `const translate = ${JSON.stringify(table , null , 2)}`
const creators = Object.keys(table).map(filename => makeCreator(filename))
const proof = makeProof(entryPoint)
return [

translate ,

292 17 Module Bundler

HEAD ,
... creators ,
TAIL ,
proof

].join('\n')
}

const makeCreator = (filename) => {
const key = path.resolve(filename)
const source = fs.readFileSync(filename , 'utf -8')
const func = `(module , require = makeRequire('${key}')) =>\n{${source}}`
const entry = `creators.set('${key}',\n${func})`
return `// ${key}\n${entry}\n`

}

export default createBundle� �
Listing 17.28: create-bundle.js

This code is hard to read because we have to distinguish what is being printed in the output
versus what is being executed right now and because of the levels of nesting needed to capture
variables safely. Getting this right took much more time per line of finished code than anything we
have seen so far except the promises in Chapter 3. However, it is all intrinsic complexity: anything
that does what require does is going to be equally convoluted.

To prove that our code works we will look up the function main in the first file and call it. (If we
were loading in the browser, we’d capture the exports in a variable for later use.) First, we create
the bundled file:� �
echo '' > bundle -single.js
node test -create -bundle.js single/main.js >> bundle -single.js� �

Listing 17.29: test-create-bundle-single.sh� �
const translate = {

"/u/stjs/stjs/module -bundler/single/main.js": {}
}
const creators = new Map()
const cache = new Map()

const makeRequire = (absPath) => {
return (localPath) => {

const actualKey = translate[absPath][localPath]
if (!cache.has(actualKey)) {

const m = {}
creators.get(actualKey)(m)
cache.set(actualKey , m.exports)

}
return cache.get(actualKey)

}
}

17.4 How can files access each other? 293

const initialize = (creators) => {

// /u/stjs/stjs/module -bundler/single/main.js
creators.set('/u/stjs/stjs/module -bundler/single/main.js',
(module , require =
makeRequire ('/u/stjs/stjs/module -bundler/single/main.js ')) =>
{const main = () => {

console.log('in main ')
}

module.exports = main
})

}

initialize(creators)

const start = creators.get('/u/stjs/stjs/module -bundler/single/main.js ')
const m = {}
start(m)
m.exports ()� �

Listing 17.30: bundle-single.js

and then we run it:� �
n main� �

Listing 17.31: test-bundle-single.out

That was a lot of work to print one line, but what we have should work for other files. The
two-file case with main and other works:� �
const translate = {

"/u/stjs/stjs/module -bundler/simple/main.js": {
"./ other ": "/u/stjs/stjs/module -bundler/simple/other.js"

},
"/u/stjs/stjs/module -bundler/simple/other.js": {}

}
const creators = new Map()
const cache = new Map()

const makeRequire = (absPath) => {
return (localPath) => {

const actualKey = translate[absPath][localPath]
if (!cache.has(actualKey)) {

const m = {}
creators.get(actualKey)(m)
cache.set(actualKey , m.exports)

294 17 Module Bundler

}
return cache.get(actualKey)

}
}

const initialize = (creators) => {

// /u/stjs/stjs/module -bundler/simple/main.js
creators.set('/u/stjs/stjs/module -bundler/simple/main.js ',
(module , require =
makeRequire ('/u/stjs/stjs/module -bundler/simple/main.js ')) =>
{const other = require ('./other ')

const main = () => {
console.log(other('main '))

}

module.exports = main
})

// /u/stjs/stjs/module -bundler/simple/other.js
creators.set('/u/stjs/stjs/module -bundler/simple/other.js',
(module , require =
makeRequire ('/u/stjs/stjs/module -bundler/simple/other.js ')) =>
{const other = (caller) => {

return `other called from ${caller}`
}

module.exports = other
})

}

initialize(creators)

const start = creators.get('/u/stjs/stjs/module -bundler/simple/main.js ')
const m = {}
start(m)
m.exports ()� �

Listing 17.32: bundle-simple.js� �
other called from main� �

Listing 17.33: test-bundle-simple.out

and so does our most complicated test with main and four other files:� �
topLeft from main

17.5 Exercises 295

topRight from main with topLeft from topRight and bottomRight from \
topRight
bottomLeft from main with topLeft from bottomLeft and bottomRight from \
bottomLeft
bottomRight from main� �

Listing 17.34: test-bundle-full.out

17.5 Exercises

Using test-driven development

Suppose we wanted to compress the files being stored by the file backup system in Chapter 5 instead
of copying them as-is. What tests would you write before adding this feature in order to ensure
that it worked correctly once it was implemented?

Finding import dependencies

Modify the dependency finder to work with import statements instead of require calls.

Track files using hashes

Modify the dependency finder to track files by hashing them instead of relying on paths, so that if
exactly the same file is being required from two locations, only one copy is loaded.

Using asynchronous file operations

Modify the dependency finder to use async and await instead of synchronous file operations.

Unit testing transitive closure

Write unit tests for the tool that finds the transitive closure of files’ requirements using Mocha and
mock-fs. (Rather than parsing JavaScript files in the mock filesystem, have each file contain only
a list of the names of the files it depends on.)

Exporting multiple functions

Create test cases for the module bundler in which files export more than one function and fix any
bugs in the module bundler that they uncover.

296 17 Module Bundler

Checking integrity

Write a function that checks the integrity of the data structure returned by the transitive closure
routine, i.e., that makes sure every cross-reference resolves correctly.

Logging module loading

1. Write a function called logLoad that takes a module name as an argument and prints a message
using console.error saying that the module has been loaded.

2. Modify the bundle generator to insert calls to this function to report when modules are actually
loaded.

Tracing execution

Trace the execution of every function called when the main function in the full bundle is called.

Making bundles more readable

Modify the bundle creator to make its output more readable, e.g., by adding comments and inden-
tation. (This does not matter to the computer, but can help debugging.)

18
Package Manager

Getting and installing packages

Terms defined: SAT solver, backward-compatible, combinatorial explosion, heuristic,
manifest, patch, prune, semantic versioning

There is no point building software if you can’t install it. Inspired by the Comprehensive TeX
Archive Network CTAN1, most languages now have an online archive from which developers can
download packages. Each package typically has a name and one or more version(s); each version
may have a list of dependencies, and the package may specify a version or range of versions for each
dependency.

Downloading files requires some web programming that is out of scope for this book, while
installing those files in the right places uses the systems programming skills of Chapter 2. The piece
we are missing is a way to figure out exactly what versions of different packages to install in order
to create a consistent setup. If packages A and B require different versions of C, it might not be
possible to use A and B together. On the other hand, if each one requires a range of versions of C
and those ranges overlap, we might be able to find a combination that works—at least, until we try
to install packages D and E.

We could install every package’s dependencies separately with it; the disk space wouldn’t be
much of an obstacle, but loading dozens of copies of the same package into the browser would slow
applications down. This chapter therefore explores how to find a workable installation or prove that
there isn’t one. It is based in part on this tutorial2 by Maël Nison3.

Satisfiability

What we are trying to do is find a version for each package that makes the assertion "P is
compatible with all its dependencies" true for every package P. The general-purpose tools for
doing this are called SAT solvers because they determine whether there is some assignment
of values that satisfies the claim (i.e., makes it true). Finding a solution can be extremely hard
in the general case, so most SAT solvers use heuristics to try to reduce the work.

1https://www.ctan.org/
2https://classic.yarnpkg.com/blog/2017/07/11/lets-dev-a-package-manager/
3https://arcanis.github.io/

297

https://www.ctan.org/
https://classic.yarnpkg.com/blog/2017/07/11/lets-dev-a-package-manager/
https://arcanis.github.io/

298 18 Package Manager

1 2
X

1
2

3

Y1

2

3

Z

Figure 18.1: Finding allowable combinations of package versions.

18.1 What is semantic versioning?
Most software projects use semantic versioning for software releases. Each version number con-
sists of three integers X.Y.Z, where X is the major version, Y is the minor version, and Z is the patch
number. (The full specification4 allows for more fields, but we will ignore them in this tutorial.)

A package’s authors increment its major version number every time something changes in a way
that makes the package incompatible with previous versions For example, if they add a required
parameter to a function, then code built for the old version will fail or behave unpredictably with
the new one. The minor version number is incremented when new functionality is backward-
compatible—i.e., it won’t break any existing code—and the patch number is changed for backward-
compatible bug fixes that don’t add any new features.

The notation for specifying a project’s dependencies looks a lot like arithmetic: >= 1.2.3 means
"any version from 1.2.3 onward", < 4 means "any version before 4.anything", and 1.0 - 3.1 means
"any version in the specified range (including patches)". Note that version 2.1 is greater than version
1.99: no matter how large a minor version number becomes, it never spills over into the major version
number in the way that minutes add up to hours or months add up to years.

It isn’t hard to write a few simple comparisons for semantic version identifiers, but getting all
the different cases right is almost as tricky as handling dates and times correctly, so we will rely
on the semver5 module. semver.valid('1.2.3') checks that 1.2.3 is a valid version identifier,
while semver.satisfies('2.2', '1.0 - 3.1') checks that its first argument is compatible with
the range specified in its second.

18.2 How can we find a consistent set of packages?
Imagine that each package we need is represented as an axis on a multi-dimensional grid, with
its versions as the tick marks (Figure 18.1). Each point on the grid is a possible combination of
package versions. We can block out regions of this grid using the constraints on the package versions;
whatever points are left when we’re done represent legal combinations.

For example, suppose we have the set of requirements shown in Table 18.1. There are 18 possible

4https://semver.org/
5https://www.npmjs.com/package/semver

https://semver.org/
https://www.npmjs.com/package/semver

18.2 How can we find a consistent set of packages? 299

Package Requires
X/1 Y/1-2
X/1 Z/1
X/2 Y/2-3
X/2 Z/1-2
Y/1 Z/2
Y/2 Z/2-3
Y/3 Z/3
Z/1
Z/2
Z/3

Table 18.1: Example package dependencies.

configurations (2 for X × 3 for Y × 3 for Z) but 16 are excluded by various incompatibilities. Of
the two remaining possibilities, X/2 + Y/3 + Z/3 is strictly greater than X/2 + Y/2 + Z/2, so
we would probably choose the former (Table 18.2). if we wound up with A/1 + B/2 versus A/2 +
B/1, we would need to add rules for resolving ties.

Reproducibility

No matter what kind of software you build, a given set of inputs should always produce the
same output; if they don’t, testing is much more difficult (or impossible) [Taschuk2017]. There
may not be a strong reason to prefer one mutually-compatible set of packages over another,
but a package manager should still resolve the ambiguity the same way every time. It may not
be what everyone wants, but at least they will be unhappy for the same reasons everywhere.
This is why NPM6 has both package.json and a package-lock.json files: the former is
written by the user and specifies what they want, while the latter is created by the package
manager and specifies exactly what they got. If you want to reproduce someone else’s setup
for debugging purposes, you should install what is described in the latter file.

To construct Table 18.1 we find the transitive closure of all packages plus all of their dependen-
cies. We then pick two packages and create a list of their valid pairs. Choosing a third package, we
cross off pairs that can’t be satisfied to leave triples of legal combinations. We repeat this until all
packages are included in our table.

In the worst case this procedure will create a combinatorial explosion of possibilities. Smart
algorithms will try to add packages to the mix in an order that minimize the number of new
possibilities at each stage, or create pairs and then combine them to create pairs of pairs and so
on. Our algorithm will be simpler (and therefore slower), but illustrates the key idea.

6https://www.npmjs.com/

https://www.npmjs.com/

300 18 Package Manager

X Y Z Excluded
1 1 1 Y/1 - Z/1
1 1 2 X/1 - Z/2
1 1 3 X/1 - Z/3
1 2 1 Y/2 - Z/1
1 2 2 X/1 - Z/2
1 2 3 X/1 - Z/3
1 3 1 X/1 - Y/3
1 3 2 X/1 - Y/3
1 3 3 X/1 - Y/3
2 1 1 X/2 - Y/1
2 1 2 X/2 - Y/1
2 1 3 X/2 - Y/1
2 2 1 Y/2 - Z/1
2 2 2
2 2 3 X/2 - Z/3
2 3 1 Y/3 - Z/1
2 3 2 Y/3 - Z/2
2 3 3 X/2 - Z/3

Table 18.2: Result for example package dependencies.

18.3 How can we implement satisfy constraints?
To avoid messing around with parsers, our programs reads a JSON data structure describing the
problem; a real package manager would read the manifests of the packages in question and con-
struct a similar data structure. We will stick to single-digit version numbers for readability, and
will use this as our first test case:� �
{

"X": {
"1": {

"Y": ["1"]
},
"2": {

"Y": ["2"]
}

},
"Y": {

"1": {},
"2": {}

}
}� �

Listing 18.1: double-chained.json

18.3 How can we implement satisfy constraints? 301

Comments

If you ever design a data format, please include a standard way for people to add comments,
because they will always want to. YAML has this, but JSON and CSV don’t.

To check if a combination of specific versions of packages is compatible with a manifest, we add
each package to our active list in turn and look for violations. If there aren’t any more packages to
add and we haven’t found a violation, then what we have must be a legal configuration.� �
import configStr from './config -str.js '

const sweep = (manifest) => {
const names = Object.keys(manifest)
const result = []
recurse(manifest , names , {}, result)

}

const recurse = (manifest , names , config , result) => {
if (names.length === 0) {

if (allows(manifest , config)) {
result.push({ ... config })

}
} else {

const next = names [0]
const rest = names.slice (1)
for (const version in manifest[next]) {

config[next] = version
recurse(manifest , rest , config , result)

}
}

}

export default sweep� �
Listing 18.2: sweep.js

The simplest way to find configurations is to sweep over all possibilities. For debugging purposes,
our function prints possibilities as it goes:� �
const allows = (manifest , config) => {

for (const [leftN , leftV] of Object.entries(config)) {
const requirements = manifest[leftN][leftV]
for (const [rightN , rightVAll] of Object.entries(requirements)) {

if (! rightVAll.includes(config[rightN])) {
const title = configStr(config)
const missing = config[rightN]
console.log(`${title} @ ${leftN}/${leftV} ${rightN }/${missing}`)
return false

302 18 Package Manager

}
}

}
console.log(configStr(config))
return true

}� �
Listing 18.3: sweep.js

If we run this program on the two-package example shown earlier we get this output:� �
node driver.js ./sweep.js double -chained.json� �

Listing 18.4: sweep-double-chained.sh� �
{X:1 Y:1}
{X:1 Y:2} @ X/1 Y/2
{X:2 Y:1} @ X/2 Y/1
{X:2 Y:2}� �

Listing 18.5: sweep-double-chained.out

When we run it on our triple-package example we get this:� �
node driver.js ./sweep.js triple.json� �

Listing 18.6: sweep-triple.sh� �
{X:1 Y:1 Z:1} @ Y/1 Z/1
{X:1 Y:1 Z:2} @ X/1 Z/2
{X:1 Y:1 Z:3} @ X/1 Z/3
{X:1 Y:2 Z:1} @ Y/2 Z/1
{X:1 Y:2 Z:2} @ X/1 Z/2
{X:1 Y:2 Z:3} @ X/1 Z/3
{X:1 Y:3 Z:1} @ X/1 Y/3
{X:1 Y:3 Z:2} @ X/1 Y/3
{X:1 Y:3 Z:3} @ X/1 Y/3
{X:2 Y:1 Z:1} @ X/2 Y/1
{X:2 Y:1 Z:2} @ X/2 Y/1
{X:2 Y:1 Z:3} @ X/2 Y/1
{X:2 Y:2 Z:1} @ Y/2 Z/1
{X:2 Y:2 Z:2}
{X:2 Y:2 Z:3} @ X/2 Z/3
{X:2 Y:3 Z:1} @ Y/3 Z/1
{X:2 Y:3 Z:2} @ Y/3 Z/2
{X:2 Y:3 Z:3} @ X/2 Z/3� �

Listing 18.7: sweep-triple.out

This works, but it is doing a lot of unnecessary work. If we sort the output by the case that caught
the exclusion it turns out that 9 of the 17 exclusions are redundant rediscovery of a previously-known
problem Table 18.3.

18.4 How can we do less work? 303

Excluded X Y Z
X/1 - Y/3 1 3 1
... 1 3 2
... 1 3 3
X/1 - Z/2 1 1 2
... 1 2 2
X/1 - Z/3 1 1 3
... 1 2 3
X/2 - Y/1 2 1 1
... 2 1 2
... 2 1 3
X/2 - Z/3 2 2 3
... 2 3 3
Y/1 - Z/1 1 1 1
Y/2 - Z/1 1 2 1
... 2 2 1
Y/3 - Z/1 2 3 1
... 2 3 2

2 2 2

Table 18.3: Package exclusions.

18.4 How can we do less work?
In order to make this more efficient we need to prune the search tree as we go along (Figure 18.2).
After all, if we know that X and Y are incompatible, there is no need to check Z as well.

This version of the program collects possible solutions and displays them at the end. It only
keeps checking a partial solution if what it has found so far looks good:� �
import configStr from './config -str.js '

const prune = (manifest) => {
const names = Object.keys(manifest)
const result = []
recurse(manifest , names , {}, result)
for (const config of result) {

console.log(configStr(config))
}

}

const recurse = (manifest , names , config , result) => {
if (names.length === 0) {

result.push({ ... config })
} else {

const next = names [0]
const rest = names.slice (1)

304 18 Package Manager

X=1

X=2

Y=1

Y=2

Y=3

Z=1

Z=2

Z=3

Z=1

Z=2

Z=3

Y=1

Y=2

Y=3

Z=1

Z=2

Z=3

Z=1

Z=2

Z=3

Figure 18.2: Pruning options in the search tree to reduce work.

for (const version in manifest[next]) {
config[next] = version
if (compatible(manifest , config)) {

recurse(manifest , rest , config , result)
}
delete config[next]

}
}

}

const report = (config , leftN , leftV , rightN , rightV) => {
const title = configStr(config)
console.log(`${title} @ ${leftN}/${leftV} ${rightN }/${rightV}`)

}

export default prune� �
Listing 18.8: prune.js

The compatible function checks to see if adding something will leave us with a consistent
configuration:� �
const compatible = (manifest , config) => {

for (const [leftN , leftV] of Object.entries(config)) {
const leftR = manifest[leftN][leftV]

18.4 How can we do less work? 305

for (const [rightN , rightV] of Object.entries(config)) {
if ((rightN in leftR) && (! leftR[rightN]. includes(rightV))) {

report(config , leftN , leftV , rightN , rightV)
return false

}
const rightR = manifest[rightN][rightV]
if ((leftN in rightR) && (! rightR[leftN]. includes(leftV))) {

report(config , leftN , leftV , rightN , rightV)
return false

}
}

}
return true

}� �
Listing 18.9: prune.js

Checking as we go gets us from 18 complete solutions to 11. One is workable and two are
incomplete—they represent 6 possible complete solutions that we didn’t need to finish:� �
{X:1 Y:1 Z:1} @ Y/1 Z/1
{X:1 Y:1 Z:2} @ X/1 Z/2
{X:1 Y:1 Z:3} @ X/1 Z/3
{X:1 Y:2 Z:1} @ Y/2 Z/1
{X:1 Y:2 Z:2} @ X/1 Z/2
{X:1 Y:2 Z:3} @ X/1 Z/3
{X:1 Y:3} @ X/1 Y/3
{X:2 Y:1} @ X/2 Y/1
{X:2 Y:2 Z:1} @ Y/2 Z/1
{X:2 Y:2 Z:3} @ X/2 Z/3
{X:2 Y:3 Z:1} @ Y/3 Z/1
{X:2 Y:3 Z:2} @ Y/3 Z/2
{X:2 Y:3 Z:3} @ X/2 Z/3
{X:2 Y:2 Z:2}� �

Listing 18.10: prune-triple.out

Another way to look at the work is the number of steps in the search. The full search had 18×3
= 54 steps. Pruning leaves us with (12×3) + (2×2) = 40 steps so we have eliminated roughly 1/4
of the work.

What if we searched in the reverse order?� �
import configStr from './config -str.js '

// [reverse]
const reverse = (manifest) => {

const names = Object.keys(manifest)
names.reverse ()
const result = []
recurse(manifest , names , {}, result)
for (const config of result) {

306 18 Package Manager

console.log(configStr(config))
}

}
// [/ reverse]

const recurse = (manifest , names , config , result) => {
if (names.length === 0) {

result.push({ ... config })
} else {

const next = names [0]
const rest = names.slice (1)
for (const version in manifest[next]) {

config[next] = version
if (compatible(manifest , config)) {

recurse(manifest , rest , config , result)
}
delete config[next]

}
}

}

const compatible = (manifest , config) => {
for (const [leftN , leftV] of Object.entries(config)) {

const leftR = manifest[leftN][leftV]
for (const [rightN , rightV] of Object.entries(config)) {

if ((rightN in leftR) && (! leftR[rightN]. includes(rightV))) {
report(config , leftN , leftV , rightN , rightV)
return false

}
const rightR = manifest[rightN][rightV]
if ((leftN in rightR) && (! rightR[leftN]. includes(leftV))) {

report(config , leftN , leftV , rightN , rightV)
return false

}
}

}
return true

}

const report = (config , leftN , leftV , rightN , rightV) => {
const title = configStr(config)
console.log(`${title} @ ${leftN}/${leftV} ${rightN }/${rightV}`)

}

export default reverse� �
Listing 18.11: reverse.js� �

{Z:1 Y:1} @ Z/1 Y/1
{Z:1 Y:2} @ Z/1 Y/2

18.5 Exercises 307

{Z:1 Y:3} @ Z/1 Y/3
{Z:2 Y:1 X:1} @ Z/2 X/1
{Z:2 Y:1 X:2} @ Y/1 X/2
{Z:2 Y:2 X:1} @ Z/2 X/1
{Z:2 Y:3} @ Z/2 Y/3
{Z:3 Y:1} @ Z/3 Y/1
{Z:3 Y:2 X:1} @ Z/3 X/1
{Z:3 Y:2 X:2} @ Z/3 X/2
{Z:3 Y:3 X:1} @ Z/3 X/1
{Z:3 Y:3 X:2} @ Z/3 X/2
{Z:2 Y:2 X:2}� �

Listing 18.12: reverse-triple.out

Now we have (8×3) + (5×2) = 34 steps, i.e., we have eliminated roughly 1/3 of the work.
That may not seem like a big difference, but if we go five levels deep at the same rate it cuts the
work in half. There are lots of heuristics for searching trees; none are guaranteed to give better
performance in every case, but most give better performance in most cases.

What research is for

SAT solvers are like regular expression libraries and random number generators: it is the work
of many lifetimes to create ones that are both fast and correct. A lot of computer science
researchers devote their careers to highly-specialized topics like this. The debates often seem
esoteric to outsiders, and most ideas turn out to be dead ends, but even small improvements
in fundamental tools can have a profound impact.

18.5 Exercises

Comparing semantic versions

Write a function that takes an array of semantic version specifiers and sorts them in ascending
order. Remember that 2.1 is greater than 1.99.

Parsing semantic versions

Using the techniques of Chapter 8, write a parser for a subset of the semantic versioning specifica-
tion7.

7https://semver.org/

https://semver.org/

308 18 Package Manager

Using scoring functions

Many different combinations of package versions can be mutually compatible. One way to decide
which actual combination to install is to create a scoring function that measures how good or
bad a particular combination is. For example, a function could measure the "distance" between two
versions as:� �
const score (X, Y) => {

if (X.major !== Y.major) {
return 100 * abs(X.major - Y.major)

} else if (X.minor !== Y.minor) {
return 10 * abs(X.minor - Y.minor)

} else {
return abs(X.patch - Y.patch)

}
}� �
1. Implement a working version of this function and use it to measure the total distance between

the set of packages found by the solver and the set containing the most recent version of each
package.

2. Explain why this doesn’t actually solve the original problem.

Using full semantic versions

Modify the constraint solver to use full semantic versions instead of single digits.

Regular releases

Some packages release new versions on a regular cycle, e.g., Version 2021.1 is released on March 1
of 2021, Version 2021.2 is released on September 1 of that year, version 2022.1 is released on March
1 of the following year, and so on.

1. How does this make package management easier?

2. How does it make it more difficult?

Writing unit tests

Write unit tests for the constraint solver using Mocha.

Generating test fixtures

Write a function that creates fixtures for testing the constraint solver:

1. Its first argument is an object whose keys are (fake) package names and whose values are integers
indicating the number of versions of that package to include in the test set, such as {'left': 3,
'middle': 2, 'right': 15}. Its second argument is a seed for random number generation.

18.5 Exercises 309

2. It generates one valid configuration, such as {'left': 2, 'middle': 2, 'right': 9}. (This
is to ensure that there is at least one installable set of packages.)

3. It then generates random constraints between the packages. (These may or may not result in other
installable combinations.) When this is done, it adds constraints so that the valid configuration
from the previous step is included.

Searching least first

Rewrite the constraint solver so that it searches packages by looking at those with the fewest
available versions first. Does this reduce the amount of work done for the small examples in this
chapter? Does it reduce the amount of work done for larger examples?

Using generators

Rewrite the constraint solver to use generators.

Using exclusions

1. Modify the constraint solver so that it uses a list of package exclusions instead of a list of package
requirements, i.e., its input tells it that version 1.2 of package Red can not work with versions
3.1 and 3.2 of package Green (which implies that Red 1.2 can work with any other versions of
Green).

2. Explain why package managers aren’t built this way.

19
Virtual Machine

Assembling and running low-level code

Terms defined: Application Binary Interface, assembler, assembly code, bitwise opera-
tion, instruction pointer, instruction set, label (address in memory), op code, register,
virtual machine, word (of memory)

Computers don’t execute JavaScript directly. Instead, each processor has its own instruction
set, and a compiler translates high-level languages into those instructions. Compilers often use an
intermediate representation called assembly code that gives instructions human-readable names
instead of numbers. To understand more about how JavaScript actually runs we will simulate a
very simple processor with a little bit of memory. If you want to dive deeper, have a look at Bob
Nystrom’s1 Crafting Interpreters2. You may also enjoy Human Resource Machine3, which asks you
to solve puzzles of increasing difficulty using a processor almost as simple as ours.

19.1 What is the architecture of our virtual machine?
Our virtual machine has three parts, which are shown in Figure 19.1 for a program made up of
110 instructions:

1. An instruction pointer (IP) that holds the memory address of the next instruction to execute.
It is automatically initialized to point at address 0, which is where every program must start.
This rule is part of the Application Binary Interface (ABI) for our virtual machine.

2. Four registers named R0 to R4 that instructions can access directly. There are no memory-to-
memory operations in our VM: everything happens in or through registers.

3. 256 words of memory, each of which can store a single value. Both the program and its data
live in this single block of memory; we chose the size 256 so that each address will fit in a single
byte.

The instructions for our VM are 3 bytes long. The op code fits into one byte, and each instruc-
tion may optionally include one or two single-byte operands. Each operand is a register identifier,
a constant, or an address (which is just a constant that identifies a location in memory); since
constants have to fit in one byte, the largest number we can represent directly is 256. Table 19.1
uses the letters r, c, and a to indicate instruction format, where r indicates a register identifier, c
indicates a constant, and a indicates an address.

1http://journal.stuffwithstuff.com/
2https://craftinginterpreters.com/
3https://tomorrowcorporation.com/humanresourcemachine

311

http://journal.stuffwithstuff.com/
https://craftinginterpreters.com/
https://tomorrowcorporation.com/humanresourcemachine

312 19 Virtual Machine

0
1
2
3
4
5
6
7

memory address

108
109
110
111

252
253
254
255

program

data

IP

R0

R1

R2

R3

registers

Figure 19.1: Architecture of the virtual machine.

Instruction Code Format Action Example Equivalent
hlt 1 – Halt program hlt process.exit(0)
ldc 2 rc Load immediate ldc R0 123 R0 := 123
ldr 3 rr Load register ldr R0 R1 R0 := RAM[R1]
cpy 4 rr Copy register cpy R0 R1 R0 := R1
str 5 rr Store register str R0 R1 RAM[R1] := R0
add 6 rr Add add R0 R1 R0 := R0 + R1
sub 7 rr Subtract sub R0 R1 R0 := R0 - R1
beq 8 ra Branch if equal beq R0 123 if (R0 === 0) PC := 123
bne 9 ra Branch if not equal bne R0 123 if (R0 !== 0) PC := 123
prr 10 r- Print register prr R0 console.log(R0)
prm 11 r- Print memory prm R0 console.log(RAM[R0])

Table 19.1: Virtual machine op codes.

19.2 How can we execute these instructions? 313

We put our VM’s architectural details in a file that can be shared by other components:� �
const OPS = {

hlt: { code: 1, fmt: '--' }, // Halt program
ldc: { code: 2, fmt: 'rv ' }, // Load immediate
ldr: { code: 3, fmt: 'rr ' }, // Load register
cpy: { code: 4, fmt: 'rr ' }, // Copy register
str: { code: 5, fmt: 'rr ' }, // Store register
add: { code: 6, fmt: 'rr ' }, // Add
sub: { code: 7, fmt: 'rr ' }, // Subtract
beq: { code: 8, fmt: 'rv ' }, // Branch if equal
bne: { code: 9, fmt: 'rv ' }, // Branch if not equal
prr: { code: 10, fmt: 'r-' }, // Print register
prm: { code: 11, fmt: 'r-' } // Print memory

}

const OP_MASK = 0xFF // select a single byte
const OP_SHIFT = 8 // shift up by one byte
const OP_WIDTH = 6 // op width in characters when printing

const NUM_REG = 4 // number of registers
const RAM_LEN = 256 // number of words in RAM

export {
OPS ,
OP_MASK ,
OP_SHIFT ,
OP_WIDTH ,
NUM_REG ,
RAM_LEN

}� �
Listing 19.1: architecture.js

While there isn’t a name for this design pattern, putting all the constants that define a system in
one file instead of scattering them across multiple files makes them easier to find as well as ensuring
consistency.

19.2 How can we execute these instructions?
As in previous chapters, we will split a class that would normally be written in one piece into several
parts for exposition. We start by defining a class with an instruction pointer, some registers, and
some memory along with a prompt for output:� �
import assert from 'assert '

import {

314 19 Virtual Machine

OP_MASK ,
OP_SHIFT ,
NUM_REG ,
RAM_LEN

} from './ architecture.js '

const COLUMNS = 4
const DIGITS = 8

class VirtualMachineBase {
constructor () {

this.ip = 0
this.reg = Array(NUM_REG)
this.ram = Array(RAM_LEN)
this.prompt = '>>'

}

}

export default VirtualMachineBase� �
Listing 19.2: vm-base.js

A program is just an array of numbers representing instructions. To load one, we copy those
numbers into memory and reset the instruction pointer and registers:� �

initialize (program) {
assert(program.length <= this.ram.length ,

'Program is too long for memory ')
for (let i = 0; i < this.ram.length; i += 1) {

if (i < program.length) {
this.ram[i] = program[i]

} else {
this.ram[i] = 0

}
}
this.ip = 0
this.reg.fill (0)

}� �
Listing 19.3: vm-base.js

In order to handle the next instruction, the VM gets the value in memory that the instruction
pointer currently refers to and moves the instruction pointer on by one address. It then uses bitwise
operations to extract the op code and operands from the instruction (Figure 19.2):� �

fetch () {
assert ((0 <= this.ip) && (this.ip < RAM_LEN),

`Program counter ${this.ip} out of range 0..${RAM_LEN}`)
let instruction = this.ram[this.ip]
this.ip += 1

19.2 How can we execute these instructions? 315

memory

IP

R0

R1

R2

R3

oparg0arg1

Figure 19.2: Using bitwise operations to unpack instructions.

const op = instruction & OP_MASK
instruction >>= OP_SHIFT
const arg0 = instruction & OP_MASK
instruction >>= OP_SHIFT
const arg1 = instruction & OP_MASK
return [op , arg0 , arg1]

}� �
Listing 19.4: vm-base.js

Semi-realistic

We always unpack two operands regardless of whether the instructions has them or not, since
this is what a hardware implementation would be. We have also included assertions in our
VM to simulate the way that real hardware includes logic to detect illegal instructions and
out-of-bound memory addresses.

The next step is to extend our base class with one that has a run method. As its name suggests,
this runs the program by fetching instructions and executing them until told to stop:� �
import assert from 'assert '

import {
OPS

} from './ architecture.js '

import VirtualMachineBase from './vm-base.js '

class VirtualMachine extends VirtualMachineBase {
run () {

let running = true
while (running) {

const [op , arg0 , arg1] = this.fetch()
switch (op) {

316 19 Virtual Machine

case OPS.hlt.code:
running = false
break

case OPS.ldc.code:
this.assertIsRegister(arg0 , op)
this.reg[arg0] = arg1
break

default:
assert(false , `Unknown op ${op}`)
break

}
}

}

assertIsRegister (reg) {
assert ((0 <= reg) && (reg < this.reg.length),

`Invalid register ${reg}`)
}

assertIsAddress (addr) {
assert ((0 <= addr) && (addr < this.ram.length),

`Invalid register ${addr}`)
}

}

export default VirtualMachine� �
Listing 19.5: vm.js

Some instructions are very similar to others, so we will only look at three here. The first stores
the value of one register in the address held by another register:� �

case OPS.str.code:
this.assertIsRegister(arg0 , op)
this.assertIsRegister(arg1 , op)
this.assertIsAddress(this.reg[arg1], op)
this.ram[this.reg[arg1]] = this.reg[arg0]
break� �

Listing 19.6: vm.js

The first three lines check that the operation is legal; the fourth one uses the value in one register
as an address, which is why it has nested array indexing.

Adding the value in one register to the value in another register is simpler:� �
case OPS.add.code:

this.assertIsRegister(arg0 , op)
this.assertIsRegister(arg1 , op)

19.3 What do assembly programs look like? 317

this.reg[arg0] += this.reg[arg1]
break� �

Listing 19.7: vm.js

as is jumping to a fixed address if the value in a register is zero:� �
case OPS.beq.code:

this.assertIsRegister(arg0 , op)
this.assertIsAddress(arg1 , op)
if (this.reg[arg0] === 0) {

this.ip = arg1
}
break� �

Listing 19.8: vm.js

19.3 What do assembly programs look like?
We could figure out numerical op codes by hand, and in fact that’s what the first programmers4
did. However, it is much easier to use an assembler, which is just a small compiler for a language
that very closely represents actual machine instructions.

Each command in our assembly languages matches an instruction in the VM. Here’s an assembly
language program to print the value stored in R1 and then halt:� �
Print initial contents of R1.
prr R1
hlt� �

Listing 19.9: print-r1.as

Its numeric representation is:� �
00010a
000001� �

Listing 19.10: print-r1.mx

One thing the assembly language has that the instruction set doesn’t is labels on addresses.
The label loop doesn’t take up any space; instead, it tells the assembler to give the address of the
next instruction a name so that we can refer to that address as @loop in jump instructions. For
example, this program prints the numbers from 0 to 2 (Figure 19.3):� �
Count up to 3.
- R0: loop index.
- R1: loop limit.

4http://eniacprogrammers.org/

http://eniacprogrammers.org/

318 19 Virtual Machine

ldc R0 0
ldc R1 3
loop:
prr R0
ldc R2 1
add R0 R2
cpy R2 R1
sub R2 R0
bne R2 @loop
hlt� �

Listing 19.11: count-up.as� �
000002
030102
00000a
010202
020006
010204
000207
020209
000001� �

Listing 19.12: count-up.mx

Let’s trace this program’s execution (Figure 19.4):

1. R0 holds the current loop index.

2. R1 holds the loop’s upper bound (in this case 3).

3. The loop prints the value of R0 (one instruction).

4. The program adds 1 to R0. This takes two instructions because we can only add register-to-
register.

5. It checks to see if we should loop again, which takes three instructions.

6. If the program doesn’t jump back, it halts.

The implementation of the assembler mirrors the simplicity of assembly language. The main
method gets interesting lines, finds the addresses of labels, and turns each remaining line into an
instruction:� �

assemble (lines) {
lines = this.cleanLines(lines)
const labels = this.findLabels(lines)
const instructions = lines.filter(line => !this.isLabel(line))
const compiled = instructions.map(instr => this.compile(instr , labels))
const program = this.instructionsToText(compiled)
return program

}

19.3 What do assembly programs look like? 319

R0 := 0

R1 := 3

print R0

R0 += 1

R2 := R1 - R0

R2 == 0
false

halt

true

Figure 19.3: Flowchart of assembly language program to count up from 0 to 2.

ldc R0 0

ldc R1 3

prr R0

ldc R2 1

add R0 R2

cpy R2 R1

sub R2 R0

bne R2 2

hlt

0

1

2

3

4

5

6

7

8

0/-/-/-

0/3/-/-

0/3/1/-

1/3/1/-

1/3/3/-

1/3/2/-

print 0 print 1

1/3/1/-

2/3/1/-

2/3/3/-

2/3/1/-

jump 2 jump 2

print 2

2/3/1/-

3/3/1/-

3/3/3/-

3/3/0/-

no jump

halt

Figure 19.4: Tracing registers and memory values for a simple counting program.

320 19 Virtual Machine

cleanLines (lines) {
return lines

.map(line => line.trim ())

.filter(line => line.length > 0)

.filter(line => !this.isComment(line))
}

isComment (line) {
return line.startsWith ('#')

}� �
Listing 19.13: assembler.js

To find labels, we go through the lines one by one and either save the label or increment the
current address (because labels don’t take up space):� �

findLabels (lines) {
const result = {}
let index = 0
lines.forEach(line => {

if (this.isLabel(line)) {
const label = line.slice(0, -1)
assert (!(label in result),

`Duplicate label ${label}`)
result[label] = index

} else {
index += 1

}
})
return result

}

isLabel (line) {
return line.endsWith (':')

}� �
Listing 19.14: assembler.js

To compile a single instruction we break the line into tokens, look up the format for the operands,
and pack them into a single value:� �

compile (instruction , labels) {
const [op, ... args] = instruction.split (/\s+/)
assert(op in OPS ,

`Unknown operation "${op}"`)
let result = 0
switch (OPS[op].fmt) {

case '--':
result = this.combine(

OPS[op].code
)

19.3 What do assembly programs look like? 321

break
case 'r-':

result = this.combine(
this.register(args [0]),
OPS[op].code

)
break

case 'rr ':
result = this.combine(

this.register(args [1]),
this.register(args [0]),
OPS[op].code

)
break

case 'rv ':
result = this.combine(

this.value(args[1], labels),
this.register(args [0]),
OPS[op].code

)
break

default:
assert(false ,

`Unknown instruction format ${OPS[op].fmt}`)
}
return result

}� �
Listing 19.15: assembler.js

Combining op codes and operands into a single value is the reverse of the unpacking done by
the virtual machine:� �

combine (... args) {
assert(args.length > 0,

'Cannot combine no arguments ')
let result = 0
for (const a of args) {

result <<= OP_SHIFT
result |= a

}
return result

}� �
Listing 19.16: assembler.js

Finally, we need few utility functions:� �
instructionsToText (program) {

return program.map(op => op.toString (16). padStart(OP_WIDTH , '0'))
}

322 19 Virtual Machine

register (token) {
assert(token [0] === 'R',

`Register "${token }" does not start with 'R'`)
const r = parseInt(token.slice (1))
assert ((0 <= r) && (r < NUM_REG),

`Illegal register ${token}`)
return r

}

value (token , labels) {
if (token [0] !== '@') {

return parseInt(token)
}
const labelName = token.slice (1)
assert(labelName in labels ,

`Unknown label "${token }"`)
return labels[labelName]

}� �
Listing 19.17: assembler.js

Let’s try assembling a program and display its output, the registers, and the interesting contents
of memory. As a test, this program counts up to three:� �
Count up to 3.
- R0: loop index.
- R1: loop limit.
ldc R0 0
ldc R1 3
loop:
prr R0
ldc R2 1
add R0 R2
cpy R2 R1
sub R2 R0
bne R2 @loop
hlt� �

Listing 19.18: count-up.as� �
>> 0
>> 1
>> 2
R0 = 3
R1 = 3
R2 = 0
R3 = 0
0: 00000002 00030102 0000000a 00010202
4: 00020006 00010204 00000207 00020209
8: 00000001 00000000 00000000 00000000

19.4 How can we store data? 323

ldc R0 0

ldc R1 3

ldc R2 11

str R0 R2

ldc R3 1

add R0 R3

add R2 R3

cpy R3 R1

sub R3 R0

0

1

2

3

4

5

6

7

8

9 bne R3 3

hlt

-

-

-

-

10

11

12

13

20

loop

array

Figure 19.5: Allocating storage for arrays in the virtual machine.

� �
Listing 19.19: count-up-out.out

19.4 How can we store data?
It is tedious to write interesting programs when each value needs a unique name. We can do a lot
more once we have collections like arrays, so let’s add those to our assembler. We don’t have to
make any changes to the virtual machine, which doesn’t care if we think of a bunch of numbers as
individuals or elements of an array, but we do need a way to create arrays and refer to them.

We will allocate storage for arrays at the end of the program by using .data on a line of its
own to mark the start of the data section and then label: number to give a region a name and
allocate some storage space (Figure 19.5).

This enhancement only requires a few changes to the assembler. First, we need to split the lines
into instructions and data allocations:� �

assemble (lines) {
lines = this.cleanLines(lines)
const [toCompile , toAllocate] = this.splitAllocations(lines)
const labels = this.findLabels(lines)
const instructions = toCompile.filter(line => !this.isLabel(line))
const baseOfData = instructions.length
this.addAllocations(baseOfData , labels , toAllocate)

324 19 Virtual Machine

const compiled = instructions.map(instr => this.compile(instr , labels))
const program = this.instructionsToText(compiled)
return program

}� �
Listing 19.20: allocate-data.js� �

splitAllocations (lines) {
const split = lines.indexOf(DIVIDER)
if (split === -1) {

return [lines , []]
} else {

return [lines.slice(0, split), lines.slice(split + 1)]
}

}� �
Listing 19.21: allocate-data.js

Second, we need to figure out where each allocation lies and create a label accordingly:� �
addAllocations (baseOfData , labels , toAllocate) {

toAllocate.forEach(alloc => {
const fields = alloc.split (':').map(a => a.trim ())
assert(fields.length === 2,

`Invalid allocation directive "${alloc}"`)
const [label , numWordsText] = fields
assert (!(label in labels),

`Duplicate label "${label}" in data allocation `)
const numWords = parseInt(numWordsText)
assert ((baseOfData + numWords) < RAM_LEN ,

`Allocation "${label}" requires too much memory `)
labels[label] = baseOfData
baseOfData += numWords

})
}� �

Listing 19.22: allocate-data.js

And that’s it: no other changes are needed to either compilation or execution. To test it, let’s
fill an array with the numbers from 0 to 3:� �
Count up to 3.
- R0: loop index.
- R1: loop limit.
- R2: array index.
- R3: temporary.
ldc R0 0
ldc R1 3
ldc R2 @array
loop:
str R0 R2

19.5 Exercises 325

ldc R3 1
add R0 R3
add R2 R3
cpy R3 R1
sub R3 R0
bne R3 @loop
hlt
.data
array: 10� �

Listing 19.23: fill-array.as� �
R0 = 3
R1 = 3
R2 = 14
R3 = 0
0: 00000002 00030102 000 b0202 00020005
4: 00010302 00030006 00030206 00010304
8: 00000307 00030309 00000001 00000000
c: 00000001 00000002 00000000 00000000� �

Listing 19.24: fill-array-out.out

How does it actually work?

Our VM is just another program. If you’d like to know what happens when instructions finally
meet hardware, and how electrical circuits are able to do arithmetic, make decisions, and talk
to the world, [Patterson2017] has everything you want to know and more.

19.5 Exercises

Swapping values

Write an assembly language program that swaps the values in R1 and R2 without affecting the
values in other registers.

Reversing an array

Write an assembly language program that starts with:

• the base address of an array in one word

• the length of the array N in the next word

326 19 Virtual Machine

• N values immediately thereafter

and reverses the array in place.

Increment and decrement

1. Add instructions inc and dec that add one to the value of a register and subtract one from the
value of a register respectively.

2. Rewrite the examples to use these instructions. How much shorter do they make the programs?
How much easier to read?

Using long addresses

1. Modify the virtual machine so that the ldr and str instructions contain 16-bit addresses rather
than 8-bit addresses and increase the virtual machine’s memory to 64K words to match.

2. How does this complicate instruction interpretation?

Operating on strings

The C programming language stored character strings as non-zero bytes terminated by a byte
containing zero.

1. Write a program that starts with the base address of a string in R1 and finishes with the length
of the string (not including the terminator) in the same register.

2. Write a program that starts with the base address of a string in R1 and the base address of
some other block of memory in R2 and copies the string to that new location (including the
terminator).

3. What happens in each case if the terminator is missing?

Call and return

1. Add another register to the virtual machine called SP (for "stack pointer") that is automatically
initialized to the last address in memory.

2. Add an instruction psh (short for "push") that copies a value from a register to the address
stored in SP and then subtracts one from SP.

3. Add an instruction pop (short for "pop") that adds one to SP and then copies a value from that
address into a register.

4. Using these instructions, write a subroutine that evaluates 2x+1 for every value in an array.

19.5 Exercises 327

Disassembling instructions

A disassembler turns machine instructions into assembly code. Write a disassembler for the in-
struction set used by our virtual machine. (Since the labels for addresses are not stored in machine
instructions, disassemblers typically generate labels like @L001 and @L002.)

Linking multiple files

1. Modify the assembler to handle .include filename directives.

2. What does your modified assembler do about duplicate label names? How does it prevent infinite
includes (i.e., A.as includes B.as which includes A.as again)?

Providing system calls

Modify the virtual machine so that developers can add "system calls" to it.

1. On startup, the virtual machine loads an array of functions defined in a file called syscalls.js.

2. The sys instruction takes a one-byte constant argument. It looks up the corresponding function
and calls it with the values of R0-R3 as parameters and places the result in R0.

Unit testing

1. Write unit tests for the assembler.

2. Once they are working, write unit tests for the virtual machine.

20
Debugger

Running programs under the control of a breakpointing debugger

Terms defined: breakpoint, source map

We have finally come to one of the topics that sparked this book: how does a debugger work?
(The other was layout engines, discussed in Chapter 11.) Debuggers are as much a part of good
programmers’ lives as version control but are taught far less often (in part, we believe, because it’s
harder to create homework questions for them). In this chapter we will build a simple single-stepping
debugger; in doing so, we will show one way to test interactive applications (Chapter 4).

20.1 What is our starting point?
We would like to debug a higher-level language than the assembly code of Chapter 19, but we don’t
want to have to write a parser or wrestle with the ASTs of Chapter 14. As a compromise, we will
represent programs as JSON data structures whose element have the form [command ...args]:� �
// const a = [-3, -5, -1, 0, -2, 1, 3, 1]
// const b = Array ()
// let largest = a[0]
// let i = 0
// while (i < length(a)) {
// if (a[i] > largest) {
// b.push(a[i])
// }
// i += 1
// }
// i = 0
// while (i < length(b)) {
// console.log(b[i])
// i += 1
// }

[
["defA", "a", ["data", -3, -5, -1, 0, -2, 1, 3, 1]],
["defA", "b", ["data"]],
["defV", "largest", ["getA", "a", ["num", 0]]],
[" append", "b", ["getV", "largest "]],
["defV", "i", ["num", 0]],
["loop", ["lt", ["getV", "i"], ["len", "a"]],

329

330 20 Debugger

["test", ["gt", ["getA", "a", ["getV", "i"]], ["getV", "largest "]],
["setV", "largest", ["getA", "a", ["getV", "i"]]],
[" append", "b", ["getV", "largest "]]

],
["setV", "i", ["add", ["getV", "i"], ["num", 1]]]

],
["setV", "i", ["num", 0]],
["loop", ["lt", ["getV", "i"], ["len", "b"]],

["print", ["getA", "b", ["getV", "i"]]],
["setV", "i", ["add", ["getV", "i"], ["num", 1]]]

]
]� �

Listing 20.1: filter-base.json

Our virtual machine is structured like the one in Chapter 19. A real system would parse a
program to create JSON, then translate JSON into assembly code, then assemble that to create
machine instructions. Again, to keep things simple we will execute a program by removing comments
and blank lines and then running commands by looking up the command name’s and calling that
method:� �
import assert from 'assert '

class VirtualMachineBase {
constructor (program) {

this.program = this.compile(program)
this.prefix = '>>'

}

compile (lines) {
const text = lines

.map(line => line.trim ())

.filter(line => (line.length > 0) && !line.startsWith ('//'))

.join('\n')
return JSON.parse(text)

}

run () {
this.env = {}
this.runAll(this.program)

}

runAll (commands) {
commands.forEach(command => this.exec(command))

}

exec (command) {
const [op, ... args] = command
assert(op in this ,

`Unknown op "${op}"`)
return this[op](args)

20.1 What is our starting point? 331

}

}

export default VirtualMachineBase� �
Listing 20.2: vm-base.js

Remember, functions and methods are just another kind of data, so if an object has a method called
"meth", the expression this["meth"] looks it up and this["meth"](args) calls it. If "meth" is
stored in a variable called name, then this[name](args) will do exactly the same thing.

The method in our VM that defines a new variable with an initial value looks like this:� �
defV (args) {

this.checkOp('defV ', 2, args)
const [name , value] = args
this.env[name] = this.exec(value)

}� �
Listing 20.3: vm-base.js

while the one that adds two values looks like this:� �
add (args) {

this.checkOp('add ', 2, args)
const left = this.exec(args [0])
const right = this.exec(args [1])
return left + right

}� �
Listing 20.4: vm-base.js

Running a while loop is:� �
loop (args) {

this.checkBody('loop ', 1, args)
const body = args.slice (1)
while (this.exec(args [0])) {

this.runAll(body)
}

}� �
Listing 20.5: vm-base.js

and checking that a variable name refers to an array is:� �
checkArray (op, name) {

this.checkName(op , name)
const array = this.env[name]
assert(Array.isArray(array),

`Variable "${name}" used in "${op}" is not array `)
}� �

Listing 20.6: vm-base.js

332 20 Debugger

The other operations are similar to these.

20.2 How can we make a tracing debugger?
The next thing we need in our debugger is a source map that keeps track of where in the source
file each instruction came from. Since JSON is a subset of JavaScript, we could get line numbers
by parsing our programs with Acorn1. However, we would then have to scrape the information we
want for this example out of the AST. Since this chapter is supposed to be about debugging, not
parsing, we will instead cheat and add a line number to each interesting statement by hand so that
our program looks like this:� �
[

[1, "defA", "a", ["data", -3, -5, -1, 0, -2, 1, 3, 1]],
[2, "defA", "b", ["data"]],
[3, "defV", "largest", ["getA", "a", ["num", 0]]],
[4, "append", "b", ["getV", "largest "]],
[5, "defV", "i", ["num", 0]],
[6, "loop", ["lt", ["getV", "i"], ["len", "a"]],
[7, "test", ["gt", ["getA", "a", ["getV", "i"]], ["getV", "largest "]],
[8, "setV", "largest", ["getA", "a", ["getV", "i"]]],
[9, "append", "b", ["getV", "largest "]]

],
[11, "setV", "i", ["add", ["getV", "i"], ["num", 1]]]

],
[13, "setV", "i", ["num", 0]],
[14, "loop", ["lt", ["getV", "i"], ["len", "b"]],
[15, "print", ["getA", "b", ["getV", "i"]]],
[16, "setV", "i", ["add", ["getV", "i"], ["num", 1]]]

]
]� �

Listing 20.7: filter-source-map.json

Building the source map from that is simple; for now, we just modify exec to ignore the line
number:� �
import assert from 'assert '

import VirtualMachineBase from './vm-base.js'

class VirtualMachineSourceMap extends VirtualMachineBase {
compile (lines) {

const original = super.compile(lines)
this.sourceMap = {}
const result = original.map(command => this.transform(command))

1https://github.com/acornjs/acorn

https://github.com/acornjs/acorn

20.2 How can we make a tracing debugger? 333

return result
}

transform (node) {
if (!Array.isArray(node)) {

return node
}
if (Array.length === 0) {

return []
}
const [first , ... rest] = node
if (typeof first !== 'number ') {

return [first , null , ... rest.map(arg => this.transform(arg))]
}
const [op , ... args] = rest
this.sourceMap[first] =

[op , first , ... args.map(arg => this.transform(arg))]
return this.sourceMap[first]

}

exec (command) {
const [op , lineNum , ... args] = command
assert(op in this ,

`Unknown op "${op}"`)
return this[op](args)

}
}

export default VirtualMachineSourceMap� �
Listing 20.8: vm-source-map.js

It’s not really cheating

We said that adding line numbers by hand was cheating, but it isn’t. What we’re actually
doing is deferring a problem until we’re sure we need to solve it. If our approach is clumsy or
fails outright because of some aspect of design we didn’t foresee, there will have been no point
handling line numbers the "right" way. A good rule for software design is to tackle the thing
you’re least sure about first, using temporary code in place of what you think you’ll eventually
need.

The next step is to modify the VM’s exec method so that it executes a callback function for
each significant operation (where "significant" means "we bothered to record its line number").
Since we’re not sure what our debugger is going to need, we give this callback the environment
holding the current set of variables, the line number, and the operation being performed:� �
import assert from 'assert '

334 20 Debugger

debugger

1 create debugger

2 create VM

VM

program

program debugger

3 vm.dbg.setVM(vm)

VMprogram debugger

Figure 20.1: Two-step initialization of mutually-dependent objects.

import VirtualMachineSourceMap from './vm-source -map.js '

class VirtualMachineCallback extends VirtualMachineSourceMap {
constructor (program , dbg) {

super(program)
this.dbg = dbg
this.dbg.setVM(this)

}

exec (command) {
const [op, lineNum , ... args] = command
this.dbg.handle(this.env , lineNum , op)
assert(op in this ,

`Unknown op "${op}"`)
return this[op](args , lineNum)

}

message (prefix , val) {
this.dbg.message(`${prefix} ${val}`)

}
}

export default VirtualMachineCallback� �
Listing 20.9: vm-callback.js

We also modify the VM’s constructor to record the debugger and give it a reference to the
virtual machine (Figure 20.1). We have to connect the two objects explicitly because each one
needs a reference to the other, but one of them has to be created first. "A gets B then B tells A
about itself" is a common pattern; we will look at other ways to manage it in the exercises.

To run the program, we create a debugger object and pass it to the VM’s constructor:� �
import assert from 'assert '

20.2 How can we make a tracing debugger? 335

import readSource from './read -source.js '

const main = () => {
assert(process.argv.length === 5,

'Usage: run -debugger.js ./vm ./ debugger input|-')
const VM = require(process.argv [2])
const Debugger = require(process.argv [3])
const inFile = process.argv [4]
const lines = readSource(inFile)
const dbg = new Debugger ()
const vm = new VM(lines , dbg)
vm.run()

}

main()� �
Listing 20.10: run-debugger.js

A simple debugger just traces interesting statements as they run:� �
import DebuggerBase from './debugger -base.js '

class DebuggerTrace extends DebuggerBase {
handle (env , lineNum , op) {

if (lineNum !== null) {
console.log(`${lineNum} / ${op}: ${JSON.stringify(env)}`)

}
}

}

export default DebuggerTrace� �
Listing 20.11: debugger-trace.js

Let’s try it on a program that adds the numbers in an array:� �
// const a = [-5, 1, 3]
// const total = 0
// let i = 0
// while (i < length(a)) {
// total += a[i]
// i += 1
// }
// console.log(total)

[
[1, "defA", "a", ["data", -5, 1, 3]],
[2, "defV", "total", ["num", 0]],
[3, "defV", "i", ["num", 0]],
[4, "loop", ["lt", ["getV", "i"], ["len", "a"]],

[5, "setV", "total",
["add", ["getV", "total"], ["getA", "a", ["getV", "i"]]]

336 20 Debugger

],
[8, "setV", "i", ["add", ["getV", "i"], ["num", 1]]]

],
[10, "print", ["getV", "total "]]

]� �
Listing 20.12: sum-source-map.json� �

1 / defA: {}
2 / defV: {"a":[-5,1,3]}
3 / defV: {"a":[-5,1,3]," total ":0}
4 / loop: {"a":[-5,1,3]," total ":0,"i":0}
5 / setV: {"a":[-5,1,3]," total ":0,"i":0}
8 / setV: {"a":[-5,1,3]," total ":-5,"i":0}
5 / setV: {"a":[-5,1,3]," total ":-5,"i":1}
8 / setV: {"a":[-5,1,3]," total ":-4,"i":1}
5 / setV: {"a":[-5,1,3]," total ":-4,"i":2}
8 / setV: {"a":[-5,1,3]," total ":-1,"i":2}
10 / print: {"a":[-5,1,3]," total":-1,"i":3}
>> -1� �

Listing 20.13: sum-source-map-trace.out

20.3 How can we make the debugger interactive?
What we have built so far is an always-on print statement. To turn it into an interactive debugger,
we will use the prompt-sync2 module to manage user input with the following set of commands:

• ? or help to list commands.

• clear # to clear a breakpoint at a numbered line.

• list to list lines and breakpoints.

• next to go forward one line.

• print name to show a variable while at a breakpoint.

• run to run to the next breakpoint.

• stop # to break at a numbered line.

• variables to list all variable names.

• exit to exit immediately.

2https://www.npmjs.com/package/prompt-sync

https://www.npmjs.com/package/prompt-sync

20.3 How can we make the debugger interactive? 337

When the virtual machine calls the debugger, the debugger first checks whether or not it is on
a numbered line. If it isn’t, it hands control back to the VM. Otherwise, its action depends on our
current state. If we are single-stepping or if this line is a breakpoint, Otherwise, it does nothing.

The overall structure of the interactive debugger is:� �
import prompt from 'prompt -sync '

import DebuggerBase from './debugger -base.js '

const PROMPT_OPTIONS = { sigint: true }

class DebuggerInteractive extends DebuggerBase {
constructor () {

super()
this.singleStep = true
this.breakpoints = new Set()
this.lookup = {

'?': 'help ',
c: 'clear ',
l: 'list ',
n: 'next ',
p: 'print ',
r: 'run ',
s: 'stop ',
v: 'variables ',
x: 'exit '

}
}

handle (env , lineNum , op) {
if (lineNum === null) {

return
}
if (this.singleStep) {

this.singleStep = false
this.interact(env , lineNum , op)

} else if (this.breakpoints.has(lineNum)) {
this.interact(env , lineNum , op)

}
}

}

export default DebuggerInteractive� �
Listing 20.14: debugger-interactive.js

It interacts with users by lookup up a command and invoking the corresponding method, just as
the VM does:� �

interact (env , lineNum , op) {

338 20 Debugger

let interacting = true
while (interacting) {

const command = this.getCommand(env , lineNum , op)
if (command.length === 0) {

continue
}
const [cmd , ... args] = command
if (cmd in this) {

interacting = this[cmd](env , lineNum , op , args)
} else if (cmd in this.lookup) {

interacting = this[this.lookup[cmd]](env , lineNum , op, args)
} else {

this.message(`unknown command ${command} (use '?' for help)`)
}

}
}

getCommand (env , lineNum , op) {
const options = Object.keys(this.lookup).sort (). join('')
const display = `[${lineNum} ${options }] `
return this.input(display)

.split (/\s+/)

.map(s => s.trim ())

.filter(s => s.length > 0)
}

input (display) {
return prompt(PROMPT_OPTIONS)(display)

}� �
Listing 20.15: debugger-interactive.js

Learning as we go

We didn’t originally put the input and output in methods that could be overridden, but
realized later we needed to do this to make the debugger testable. Rather than coming back
and rewriting this, we have done it here.

With this structure in place, the command handlers are pretty straightforward. For example,
this method moves us to the next line:� �

next (env , lineNum , op, args) {
this.singleStep = true
return false

}� �
Listing 20.16: debugger-interactive.js

while this one prints the value of a variable:

20.4 How can we test an interactive application? 339� �
print (env , lineNum , op , args) {

if (args.length !== 1) {
this.message('p[rint] requires one variable name ')

} else if (!(args [0] in env)) {
this.message(`unknown variable name "${args [0]}" `)

} else {
this.message(JSON.stringify(env[args [0]]))

}
return true

}� �
Listing 20.17: debugger-interactive.js

After using this for a few moments, though we realized that we needed to change the signature
of the loop method. We want to stop the loop each time it runs, and need to know where we are.
We didn’t allow for this in the base class, and we don’t want to have to change every method, so
we take advantage of the fact that JavaScript ignores any extra arguments passed to a method:� �
import VirtualMachineCallback from './vm-callback.js '

class VirtualMachineInteractive extends VirtualMachineCallback {
loop (args , lineNum) {

this.checkBody('loop ', 1, args)
const body = args.slice (1)
while (this.exec(args [0])) {

this.dbg.handle(this.env , lineNum , 'loop ')
this.runAll(body)

}
}

}

export default VirtualMachineInteractive� �
Listing 20.18: vm-interactive.js

This is sloppy, but it works; we will tidy it up in the exercises.

20.4 How can we test an interactive application?
How can we test an interactive application like a debugger? The answer is, "By making it non-
interactive." Like many tools over the past thirty years, our approach is based on a program called
Expect3. Our library replaces the input and output functions of the application being tested with
callbacks, then provides input when asked and checks output when it is given (Figure 20.2).
The results look like this:

3https://en.wikipedia.org/wiki/Expect

https://en.wikipedia.org/wiki/Expect

340 20 Debugger

stdin

stdout

program

in use

stdin

stdout

program

in test

 ask for input

prepared
input

expected
output

Figure 20.2: Replacing input and output to test interactive applications.

� �
describe('interactive debugger ', () => {

it('runs and prints ', (done) => {
setup('print -0.json ')

.get('[1 ?clnprsvx] ')

.send('r')

.get('>> 0')

.run()
done()

})

it('breaks and resumes ', (done) => {
setup('print -3.json ')

.get('[1 ?clnprsvx] ')

.send('s 3')

.get('[1 ?clnprsvx] ')

.send('r')

.get('>> 0')

.get('>> 1')

.get('[3 ?clnprsvx] ')

.send('x')

.run()
done()

})
})� �

Listing 20.19: test/test-expect.js

Our Expect class may be short, but it is hard to understand because it is so abstract:� �

20.4 How can we test an interactive application? 341

import assert from 'assert '

class Expect {
constructor (subject , start) {

this.start = start
this.steps = []
subject.setTester(this)

}

send (text) {
this.steps.push({ op: 'toSystem ', arg: text })
return this

}

get (text) {
this.steps.push({ op: 'fromSystem ', arg: text })
return this

}

run () {
this.start ()
assert.strictEqual(this.steps.length , 0,

'Extra steps at end of test ')
}

toSystem () {
return this.next('toSystem ')

}

fromSystem (actual) {
const expected = this.next('fromSystem ')
assert.strictEqual(expected , actual ,

`Expected "${expected }" got "${actual }"`)
}

next (kind) {
assert(this.steps.length > 0,

'Unexpected end of steps ')
assert.strictEqual(this.steps [0].op , kind ,

`Expected ${kind}, got "${this.steps [0].op}"`)
const text = this.steps [0]. arg
this.steps = this.steps.slice (1)
return text

}
}

export default Expect� �
Listing 20.20: expect.js

Piece by piece:

342 20 Debugger

• subject is the thing being tested.

• start is a callback to start the system running. It gives control to the subject, which then calls
back into the test framework for input and output.

• get and send store things to be given to the subject and to be checked against its output. Both
methods return this so that we can chain calls together.

• run starts the system and checks that all expected interactions have been used up when testing
is done.

• toSystem and fromSystem use next to get the next test record, check its type, and return the
string.

Let’s modify the debugger to use the tester, keeping in mind that the prompt counts as an
output (and yes, we forgot this in the first version):� �
import DebuggerInteractive from './debugger -interactive.js'

class DebuggerTest extends DebuggerInteractive {
constructor () {

super()
this.tester = null

}

setTester (tester) {
this.tester = tester

}

input (display) {
this.tester.fromSystem(display)
return this.tester.toSystem ()

}

message (m) {
this.tester.fromSystem(m)

}
}

export default DebuggerTest� �
Listing 20.21: debugger-test.js

Again, we can’t pass the tester as a constructor parameter because of initialization order, so we
write a setup function to make sure everything is connected the right way:� �
import Expect from '../ expect.js '
import VM from '../vm-interactive.js '
import Debugger from '../debugger -test.js '
import readSource from '../read -source.js '

const setup = (filename) => {

20.4 How can we test an interactive application? 343

const lines = readSource(path.join('debugger/test ', filename))
const dbg = new Debugger ()
const vm = new VM(lines , dbg)
return new Expect(dbg , () => vm.run ())

}� �
Listing 20.22: test/test-expect.js

Let’s try running our tests:� �
npm run test -- -g 'interactive debugger '� �

Listing 20.23: test-expect.sh� �
> stjs@1 .0.0 test /u/stjs
> mocha */test/test -*.js "-g" "interactive debugger"

interactive debugger
X runs and prints� �

Listing 20.24: test-expect.out

That works—or does it? Why is only one test shown, and doesn’t the summary appear? After
a bit of digging, we realize that the debugger’s exit command calls process.exit when the simu-
lated program ends, so the whole program including the VM, debugger, and test framework stops
immediately before the promises that contain the tests have run.

We could fix this by modifying the debugger callback to return an indication of whether or
not execution should continue, then modify the VM to pay attention to that flag. However, this
approach becomes very complicated when we have deeply-nested calls to exec, which will happen
with loops and conditionals.

A better alternative is to use an exception for control flow. We can define our own kind of
exception as an empty class: it doesn’t need any data because we are only using it to get a typed
object:� �
class HaltException {
}

export default HaltException� �
Listing 20.25: halt-exception.js

Next, we modify the debugger to throw this exception when asked to exit:� �
import HaltException from './halt -exception.js '
import DebuggerTest from './debugger -test.js '

class DebuggerExit extends DebuggerTest {
exit (env , lineNum , op, args) {

throw new HaltException ()

344 20 Debugger

}
}

export default DebuggerExit� �
Listing 20.26: debugger-exit.js

And finally we modify the VM to finish cleanly if this exception is thrown, but re-throw any other
kind of exception:� �
import HaltException from './halt -exception.js '
import VirtualMachineInteractive from './vm-interactive.js '

class VirtualMachineExit extends VirtualMachineInteractive {
run () {

this.env = {}
try {

this.runAll(this.program)
} catch (exc) {

if (exc instanceof HaltException) {
return

}
throw exc

}
}

}

export default VirtualMachineExit� �
Listing 20.27: vm-exit.js

With these changes in place, we are finally able to test our interactive debugger:� �
npm run test -- -g 'exitable debugger '� �

Listing 20.28: test-exit.sh� �
> stjs@1 .0.0 test /u/stjs
> mocha */test/test -*.js "-g" "exitable debugger"

exitable debugger
X runs and prints
X breaks and resumes

2 passing (7ms)� �
Listing 20.29: test-exit.out

20.5 Exercises 345

20.5 Exercises

Implementing tab completion

Read the documentation for prompt-sync4 and then implement tab completion for the debugger.

Modifying variables while running

Add a set command that sets the value of a variable to a new value in a running program. How
do you handle setting array elements?

Making output more readable

Modify the tracing debugger so that the statements inside loops and conditionals are indented for
easier reading.

Better loops

Our solution for handling loops is sloppy; fix it.

Using a flag to continue execution

Modify the debugger and virtual machine to use a "continue executing" flag rather than throwing
an exception when execution should end. Which approach is easier to understand? Which will be
easier to extend in future?

Numbering lines

Write a tool that takes a JSON program representation without statement numbers and produces
one that numbers all of the interesting statements for debugging purposes. Use whatever definition
of "interesting" you think would be most useful.

Looping around again

Implement a "next loop iteration" command that runs the program until it reaches the current
point in the next iteration of the current loop.

Looking up objects

Rather than having some objects call setXYZ methods in other objects, it is common practice to
use a lookup table for mutual dependencies:

1. Every object initializes calls table.set(name, this) in its constructor.

4https://www.npmjs.com/package/prompt-sync

https://www.npmjs.com/package/prompt-sync

346 20 Debugger

2. Whenever object A needs the instance of object B, it calls table.lookup('B'). It does not store
the result in a member variable.

Modify the virtual machine and debugger to use this pattern.

Watching for variable changes

Modify the debugger and virtual machine to implement watchpoints that halt the program when-
ever the value of a variable changes.

Translating JSON to assembler

Write a tool that translates the JSON program representation into the assembly code of Chapter 19.
To simplify things, increase the number of registers so that there is always storage for intermediate
results when doing arithmetic.

21
Conclusion

Where we have been and where you could go next

We have come a long way since we listed the contents of a directory in Chapter 2. Saving files
in version control, making sure code meets style rules, debugging it and bundling it (hopefully in
that order)—programmers do these things every day, and we hope that understanding how they
work will help you do them better.

We also hope that your journey won’t stop here. If you would like to add a chapter to this book
or translate it into another programming language, human language, or both, your help would be
very welcome: please see the introduction in Chapter 1 and the contributors’ guide in Appendix D
for more information.

We shape our tools, and thereafter our tools shape us.
— Marshall McLuhan

347

A
Licensing

All of the written material on this site is made available under the Creative Commons - Attribution
- NonCommercial 4.0 International license (CC-BY-NC-4.0), while the software is made available
under the Hippocratic License.

A.1 Writing
This is a human-readable summary of (and not a substitute for) the license. For the full legal text
of this license, please see https://creativecommons.org/licenses/by-nc/4.0/legalcode1.

All of this site is made available under the terms of the Creative Commons Attribution - Non-
Commercial 4.0 license. You are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material

• The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that suggests
the licensor endorses you or your use.

• NonCommercial — You may not use the material for commercial purposes.

• No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

Notices:
You do not have to comply with the license for elements of the material in the public domain

or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your

intended use. For example, other rights such as publicity, privacy, or moral rights may limit how
you use the material.

1https://creativecommons.org/licenses/by-nc/4.0/legalcode

349

https://creativecommons.org/licenses/by-nc/4.0/legalcode

350 A Licensing

A.2 Software
Licensor hereby grants permission by this license ("License"), free of charge, to any person or
entity (the "Licensee") obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following conditions:

• The above copyright notice and this License or a subsequent version published on the Hippocratic
License Website2 shall be included in all copies or substantial portions of the Software. Licensee
has the option of following the terms and conditions either of the above numbered version of this
License or of any subsequent version published on the Hippocratic License Website.

• Compliance with Human Rights Laws and Human Rights Principles:

1. Human Rights Laws. The Software shall not be used by any person or entity for any systems,
activities, or other uses that violate any applicable laws, regulations, or rules that protect
human, civil, labor, privacy, political, environmental, security, economic, due process, or sim-
ilar rights (the "Human Rights Laws"). Where the Human Rights Laws of more than one
jurisdiction are applicable to the use of the Software, the Human Rights Laws that are most
protective of the individuals or groups harmed shall apply.

2. Human Rights Principles. Licensee is advised to consult the articles of the United Nations
Universal Declaration of Human Rights3 and the United Nations Global Compact4 that de-
fine recognized principles of international human rights (the "Human Rights Principles"). It is
Licensor’s express intent that all use of the Software be consistent with Human Rights Princi-
ples. If Licensor receives notification or otherwise learns of an alleged violation of any Human
Rights Principles relating to Licensee’s use of the Software, Licensor may in its discretion and
without obligation (i) (a) notify Licensee of such allegation and (b) allow Licensee 90 days
from notification under (i)(a) to investigate and respond to Licensor regarding the allegation
and (ii) (a) after the earlier of 90 days from notification under (i)(a), or Licensee’s response
under (i)(b), notify Licensee of License termination and (b) allow Licensee an additional 90
days from notification under (ii)(a) to cease use of the Software.

3. Indemnity. Licensee shall hold harmless and indemnify Licensor against all losses, damages, li-
abilities, deficiencies, claims, actions, judgments, settlements, interest, awards, penalties, fines,
costs, or expenses of whatever kind, including Licensor’s reasonable attorneys’ fees, arising out
of or relating to Licensee’s non-compliance with this License or use of the Software in violation
of Human Rights Laws or Human Rights Principles.

• Enforceability: If any portion or provision of this License is determined to be invalid, illegal,
or unenforceable by a court of competent jurisdiction, then such invalidity, illegality, or unen-
forceability shall not affect any other term or provision of this License or invalidate or render
unenforceable such term or provision in any other jurisdiction. Upon a determination that any

2https://firstdonoharm.dev/
3https://www.un.org/en/universal-declaration-human-rights/
4https://www.unglobalcompact.org/what-is-gc/mission/principles

https://firstdonoharm.dev/
https://www.un.org/en/universal-declaration-human-rights/
https://www.unglobalcompact.org/what-is-gc/mission/principles

A.2 Software 351

term or provision is invalid, illegal, or unenforceable, to the extent permitted by applicable law,
the court may modify this License to affect the original intent of the parties as closely as possible.
The section headings are for convenience only and are not intended to affect the construction or
interpretation of this License. Any rule of construction to the effect that ambiguities are to be
resolved against the drafting party shall not apply in interpreting this License. The language in
this License shall be interpreted as to its fair meaning and not strictly for or against any party.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The Hippocratic License is an Ethical Source license5.

5https://ethicalsource.dev

https://ethicalsource.dev

B
Bibliography

[Binkley2012] Dave Binkley, Marcia Davis, Dawn Lawrie, Jonathan I. Maletic, Christopher Morrell,
and Bonita Sharif: "The Impact of Identifier Style on Effort and Comprehension". ESE, 18(2),
2012, https://doi.org/10.1007/s10664-012-9201-4.

[Brand1995] Stewart Brand: How Buildings Learn: What Happens After They’re Built. Penguin
USA, 1995, 978-0140139969.

[Brown2011] Amy Brown and Greg Wilson (eds.): The Architecture of Open Source Applications:
Elegance, Evolution, and a Few Fearless Hacks1. Lulu, 2011, 978-1257638017.

[Brown2012] Amy Brown and Greg Wilson (eds.): The Architecture of Open Source Applications:
Structure, Scale, and a Few More Fearless Hacks2. Lulu, 2012, 978-0201103427.

[Brown2016] Amy Brown and Michael DiBernardo (eds.): 500 Lines or Less: Experienced Program-
mers Solve Interesting Problems3. Lulu, 2016, 978-1329871274.

[Casciaro2020] Mario Casciaro and Luciano Mammino: Node.js Design Patterns (3rd edition).
Packt, 2020, 978-1839214110.

[Conery2021] Rob Conery: The Imposter’s Handbook: A CS Primer for Self-Taught Developers.
Independently published, 2021, 979-8708185266.

[Davis2018] Ashley Davis: Data Wrangling with JavaScript4. Manning, 2018, 978-1617294846.

[Feathers2004] Michael C. Feathers: Working Effectively with Legacy Code. Prentice-Hall, 2004,
978-0131177055.

[Fucci2016] Davide Fucci, Giuseppe Scanniello, Simone Romano, Martin Shepperd, Boyce Sigweni,
Fernando Uyaguari, Burak Turhan, Natalia Juristo, and Markku Oivo: "An External Replication
on the Effects of Test-driven Development Using a Multi-site Blind Analysis Approach5". Proc.
ESEM’16, https://doi.org/10.1145/2961111.2962592.

[Fucci2017] Davide Fucci, Hakan Erdogmus, Burak Turhan, Markku Oivo, and Natalia Juristo: "A
Dissection of the Test-Driven Development Process: Does It Really Matter to Test-First or to
Test-Last?6". TSE, 43(7), 2017, https://doi.org/10.1109/tse.2016.2616877.

[Gregg2020] Brendan Gregg: Systems Performance: Enterprise and the Cloud (2nd edition). Pear-
son, 2020, 978-0136820154.

1http://aosabook.org
2http://aosabook.org
3http://aosabook.org
4https://www.manning.com/books/data-wrangling-with-javascript
5https://doi.org/10.1145/2961111.2962592
6https://doi.org/10.1109/tse.2016.2616877

353

https://doi.org/10.1007/s10664-012-9201-4
https://doi.org/10.1145/2961111.2962592
https://doi.org/10.1109/tse.2016.2616877
http://aosabook.org
http://aosabook.org
http://aosabook.org
https://www.manning.com/books/data-wrangling-with-javascript
https://doi.org/10.1145/2961111.2962592
https://doi.org/10.1109/tse.2016.2616877

354 B Bibliography

[Jackson2016] Daniel Jackson: Software Abstractions: Logic, Language, and Analysis (revised edi-
tion). MIT Press, 2016, 978-0262528900.

[Johnson2019] John Johnson, Sergio Lubo, Nishitha Yedla, Jairo Aponte, and Bonita Sharif:
"An Empirical Study Assessing Source Code Readability in Comprehension". Proc. ICSME’19,
https://doi.org/10.1109/ICSME.2019.00085.

[Kernighan1979] Brian W. Kernighan and P. J. Plauger: The Elements of Programming Style.
McGraw-Hill, 1979, 978-0070342071.

[Kernighan1981] Brian W. Kernighan and P. J. Plauger: Software Tools in Pascal. Addison-Wesley
Professional, 1981, 978-0201103427.

[Kernighan1983] Brian W. Kernighan and Rob Pike: The Unix Programming Environment.
Prentice-Hall, 1983, 978-0139376818.

[Kernighan1988] Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language.
Prentice-Hall, 1988, 978-0131103627.

[Kohavi2020] Ron Kohavi, Diane Tang, and Ya Xu: Trustworthy Online Controlled Experiments:
A Practical Guide to A/B Testing. Cambridge University Press, 2020, 978-1108724265.

[Meszaros2007] Gerard Meszaros: xUnit Test Patterns: Refactoring Test Code. Addison-Wesley,
2007, 978-0131495050.

[Minahan1986] Anne Minahan: "Martha’s Rules7". Affilia, 1(2), 1986,
https://doi.org/10.1177/088610998600100206.

[Oram2007] Andy Oram and Greg Wilson (eds.): Beautiful Code: Leading Programmers Explain
How They Think. O’Reilly, 2007, 978-0596510046.

[Osmani2017] Addy Osmani: "Learning JavaScript Design Patterns8".

[Patterson2017] David A. Patterson and John L. Hennessy: Computer Organization and Design:
The Hardware/Software Interface. Morgan Kaufmann, 2017, 978-0128122754.

[Petre2016] Marian Petre and André van der Hoek: Software Design Decoded: 66 Ways Experts
Think. MIT Press, 2016, 978-0262035187.

[Petzold2008] Charles Petzold: The Annotated Turing. Wiley, 2008, 978-0470229057.

[Schon1984] Donald A. Schon: The Reflective Practitioner: How Professionals Think in Action.
Basic Books, 1984, 978-0465068784.

[Smith2011] Peter Smith: Software Build Systems: Principles and Experience. Addison-Wesley Pro-
fessional, 2011, 978-0134185965.

[Taschuk2017] Morgan Taschuk and Greg Wilson: "Ten Simple Rules for Making Research Software
More Robust". PLoS Comp Bio, 13(4), 2017, https://doi.org/10.1371/journal.pcbi.1005412.

7https://doi.org/10.1177/088610998600100206
8https://addyosmani.com/resources/essentialjsdesignpatterns/book/

https://doi.org/10.1109/ICSME.2019.00085
https://doi.org/10.1177/088610998600100206
https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.1177/088610998600100206
https://addyosmani.com/resources/essentialjsdesignpatterns/book/

355

[Tudose2020] Cătălin Tudose: JUnit in Action (3rd edition). Manning, 2020, 978-1617297045.

[Wayne2018] Hillel Wayne: Practical TLA+: Planning Driven Development. Apress, 2018, 978-
1484238288.

[Zeller2009] Andreas Zeller: Why Programs Fail: A Guide to Systematic Debugging (2nd edition).
Morgan Kaufmann, 2009, 978-0080923000.

C
Code of Conduct

In the interest of fostering an open and welcoming environment, we as contributors and maintainers
pledge to making participation in our project and our community a harassment-free experience for
everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level
of experience, education, socio-economic status, nationality, personal appearance, race, religion, or
sexual identity and orientation.

C.1 Our Standards
Examples of behavior that contributes to creating a positive environment include:

• using welcoming and inclusive language,

• being respectful of differing viewpoints and experiences,

• gracefully accepting constructive criticism,

• focusing on what is best for the community, and

• showing empathy towards other community members.

Examples of unacceptable behavior by participants include:

• the use of sexualized language or imagery and unwelcome sexual attention or advances,

• trolling, insulting/derogatory comments, and personal or political attacks,

• public or private harassment,

• publishing others’ private information, such as a physical or electronic address, without explicit
permission, and

• other conduct which could reasonably be considered inappropriate in a professional setting

C.2 Our Responsibilities
Project maintainers are responsible for clarifying the standards of acceptable behavior and are
expected to take appropriate and fair corrective action in response to any instances of unacceptable
behavior.

357

358 C Code of Conduct

Project maintainers have the right and responsibility to remove, edit, or reject comments, com-
mits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct,
or to ban temporarily or permanently any contributor for other behaviors that they deem inappro-
priate, threatening, offensive, or harmful.

C.3 Scope
This Code of Conduct applies both within project spaces and in public spaces when an individual is
representing the project or its community. Examples of representing a project or community include
using an official project email address, posting via an official social media account, or acting as an
appointed representative at an online or offline event. Representation of a project may be further
defined and clarified by project maintainers.

C.4 Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by emailing the
project team1. All complaints will be reviewed and investigated and will result in a response that is
deemed necessary and appropriate to the circumstances. The project team is obligated to maintain
confidentiality with regard to the reporter of an incident. Further details of specific enforcement
policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face
temporary or permanent repercussions as determined by other members of the project’s leadership.

C.5 Attribution
This Code of Conduct is adapted from the Contributor Covenant2 version 1.4.

1mailto:info@stjs.tech
2https://www.contributor-covenant.org

mailto:info@stjs.tech
https://www.contributor-covenant.org

D
Contributing

All contributors must abide by our Code of Conduct.

D.1 Making Decisions
This project uses Martha’s Rules1 [Minahan1986] for consensus decision making:

1. Before each meeting, anyone who wishes may sponsor a proposal by filing an issue in the GitHub
repository tagged "proposal". Proposals must be filed at least 24 hours before a meeting in order
to be considered at that meeting, and must include:

• a one-line summary (the subject line of the issue)

• the full text of the proposal

• any required background information

• pros and cons

• possible alternatives

2. A quorum is established in a meeting if half or more of voting members are present.

3. Once a person has sponsored a proposal, they are responsible for it. The group may not discuss
or vote on the issue unless the sponsor or their delegate is present. The sponsor is also responsible
for presenting the item to the group.

4. After the sponsor presents the proposal, a "sense" vote is cast for the proposal prior to any
discussion:

• Who likes the proposal?

• Who can live with the proposal?

• Who is uncomfortable with the proposal?

5. If all of the group likes or can live with the proposal, it passes immediately.

6. If most of the group is uncomfortable with the proposal, it is postponed for further rework by
the sponsor.

1https://journals.sagepub.com/doi/10.1177/088610998600100206

359

https://journals.sagepub.com/doi/10.1177/088610998600100206

360 D Contributing

7. Otherwise, members who are uncomfortable can briefly state their objections. A timer is then set
for a brief discussion moderated by the facilitator. After 10 minutes or when no one has anything
further to add (whichever comes first), the facilitator calls for a yes-or-no vote on the question:
"Should we implement this decision over the stated objections?" If a majority votes "yes" the
proposal is implemented. Otherwise, the proposal is returned to the sponsor for further work.

D.2 Formatting
1. The commands to rebuild the site, run a server, produce the PDF version, and check internal

consistency are stored in Makefile and use the tools in bin/. Run make on its own to get a list
of available actions.

2. Each chapter or appendix is identified by a slug such as some-topic. Its text lives in
slug /index.md, and there is an entry under the chapters key in _config.yml with its slug
and its title. This list controls ordering.

3. Use only level-2 headings within chapters and appendices and use "Title Case" the titles.

4. To create cross-references:

• Use some text for glossary entries. The key must appear in
_data/glossary.yml.

• Use to cross-reference a chapter or appendix. The slugs must appear in
_config.yml.

• Use to cross-reference a figure and to cross-reference a
table.

• Use <cite>key,key</cite> for bibliography citations. The keys must appear in
bibliography/index.md.

5. Use text to add an index entry. This can be combined with a glossary
reference, as in text.

6. To include a code sample use {% include code file="name.ext" %}. The path to the file must
be relative to the including file. In most cases it will be in the same directory as the chapter or
appendix.

7. To continue a paragraph that has been interrupted by a code sample or something else, use:� �
{: .continue}
text of paragraph� �
This has no effect on the appearance of the HTML, but prevents an unwanted paragraph indent
in the PDF version.

8. To create a callout box, use:

D.3 What We’re Looking For 361� �
<div class=" callout" markdown ="1">

Title of callout

text of callout

</div >� �
Use "Sentence case" for the callout’s title, and please put blank lines before and after the opening
and closing <div> markers.

9. To insert an external link, use [text][tag] in the body, then add the link to the Kramdown
link_defs section in _config.yml. The clumsy syntax is necessary to get around this bug2.

10. To create a figure, put the image file in the same directory as the chapter or appendix and use
this to include it:� �
{% include figure id="label" img="file.svg"

alt=" short text" cap="full caption" %}� �
where label is chapter-slug -image-slug , alt is just a few words long (plain text), and cap
is the full caption that will appear inline (Markdown).

11. Use diagrams.net3 to create SVG diagrams. Avoid screenshots when possible, since getting them
to display correctly in print is a pain.

Note: you will need Python and LaTeX in order to build the PDF version of this book.
After installing them, you will need the packages listed in requirements/python.txt and
requirements/latex.txt.

D.3 What We’re Looking For
We would welcome translations of this book into other programming languages, or into other human
languages. We would also be grateful for chapters on other tools, such as:

• An accessibility checking tool like WAVE4 (which we have used while building this site)?

• Formal verification tools like Alloy5 [Jackson2016] and TLA+6 work [Wayne2018].

• Intelligent code completion7.

2https://stackoverflow.com/questions/66320774/how-to-pre-define-links-in-jekyll-config-yml-using-kramdown-links-
def-options

3https://www.diagrams.net/
4https://wave.webaim.org/
5https://alloytools.org/
6https://lamport.azurewebsites.net/tla/tla.html
7https://en.wikipedia.org/wiki/Intelligent_code_completion

https://stackoverflow.com/questions/66320774/how-to-pre-define-links-in-jekyll-config-yml-using-kramdown-links-def-options
https://stackoverflow.com/questions/66320774/how-to-pre-define-links-in-jekyll-config-yml-using-kramdown-links-def-options
https://www.diagrams.net/
https://wave.webaim.org/
https://alloytools.org/
https://lamport.azurewebsites.net/tla/tla.html
https://en.wikipedia.org/wiki/Intelligent_code_completion

362 D Contributing

• Fuzzing8 and delta debugging9 [Zeller2009].

• How relational databases work (this tutorial10 could serve as a starting point).

• How to create an HTTP server11 from the socket layer up.

• A text editor using termit12 or kilo13 as a starting point. (Turns out that "undo" is a lot harder
to build than most people realize.)

• A very simple version of React14 and Redux15.

• OAuth16 for single sign-on.

• A text-mode browser like Lynx17.

• A collaborative text editor like Etherpad18 (the synchronization algorithm is hard).

• An in-browser testing tool like Cypress19.

• A package repository that’s resistant to DoS attacks.

• A distributed logging and monitoring tool.

8https://en.wikipedia.org/wiki/Fuzzing
9https://en.wikipedia.org/wiki/Delta_debugging
10https://cstack.github.io/db_tutorial/
11http://aosabook.org/en/500L/a-simple-web-server.html
12https://github.com/hakash/termit
13https://viewsourcecode.org/snaptoken/kilo/index.html
14https://dev.to/iainfreestone/9-examples-of-building-your-own-version-of-react-51a8
15https://redux.js.org/
16https://oauth.net/
17https://lynx.browser.org/
18https://etherpad.org/
19https://www.cypress.io/

https://en.wikipedia.org/wiki/Fuzzing
https://en.wikipedia.org/wiki/Delta_debugging
https://cstack.github.io/db_tutorial/
http://aosabook.org/en/500L/a-simple-web-server.html
https://github.com/hakash/termit
https://viewsourcecode.org/snaptoken/kilo/index.html
https://dev.to/iainfreestone/9-examples-of-building-your-own-version-of-react-51a8
https://redux.js.org/
https://oauth.net/
https://lynx.browser.org/
https://etherpad.org/
https://www.cypress.io/

E
Glossary

absolute error: The absolute value of the difference between the observed and the correct value.
Absolute error is usually less useful than relative error.

absolute path: A path that points to the same location in the filesystem regardless of where it
is evaluated. An absolute path is the equivalent of latitude and longitude in geography. See also:
relative path.

abstract method: In object-oriented programming, a method that is defined but not imple-
mented. Programmers will define an abstract method in a parent class to specify operations
that child classes must provide.

abstract syntax tree (AST): A deeply nested data structure, or tree, that represents the struc-
ture of a program. For example, the AST might have a node representing a while loop with
one child representing the loop condition and another representing the loop body.

accidental complexity: The extra (avoidable) complexity introduced by poor design choices. The
term is used in contrast with intrinsic complexity.

accumulator: A variable that collects and/or combines many values. For example, if a program
sums the values in an array by adding them all to a variable called result, then result is the
accumulator.

actual result (of test): The value generated by running code in a test. If this matches the ex-
pected result, the test passes; if the two are different, the test fails.

Adapter pattern: A design pattern that rearranges parameters, provides extra values, or does
other work so that one function can be called by another.

alias: A second or subsequent reference to the same object. Aliases are useful, but increase the
cognitive load on readers who have to remember that all these names refer to the same thing.

anonymous function: A function that has not been assigned a name. Anonymous functions are
usually quite short, and are usually defined where they are used, e.g., as callbacks. In Python,
these are called lambda functions and are created through use of the lambda reserved word.

Application Binary Interface (ABI): The low-level layout that a piece of software must have
to work on a particular kind of machine.

Application Programming Interface (API): A set of functions provided by a software library
or web service that other software can call.

argument: A value passed to a function when it is called. See also: parameter.

ASCII: A standard way to represent the characters commonly used in the Western European
languages as 7- or 8-bit integers, now largely superceded by Unicode.

363

364 E Glossary

assembler: A compiler that translates software written in assembly code into machine instruc-
tions. See also: disassembler.

assembly code: A low-level programming language whose statements correspond closely to the
actual instruction set of a particular kind of processor.

assertion: A Boolean expression that must be true at a certain point in a program. Assertions
may be built into the language (e.g., Python’s assert statement) or provided as functions (as
with Node’s assert library).

associative array: See dictionary.

asynchronous: Not happening at the same time. In programming, an asynchronous operation is
one that runs independently of another, or that starts at one time and ends at another. See
also: synchronous.

attribute: A name-value pair associated with an object, used to store metadata about the object
such as an array’s dimensions.

automatic variable: A variable that is automatically given a value in a build rule. For example,
Make automatically assigns the name of a rule’s target to the automatic variable $@. Automatic
variables are frequently used when writing pattern rules. See also: Makefile.

backward-compatible: A property of a system that enables interoperability with an older legacy
system, or with input designed for such a system.

bare object: An object that isn’t an instance of any particular class.

base class: In object-oriented programming, a class from which other classes are derived. See
also: child class, derived class, parent class.

binary: A system which can have one of two possible states, often represented as 0 and 1 or true
and false.

bit: A single binary digit (0 or 1). See also: binary, Boolean.

bitwise operation: An operation that manipulates individual bits in memory. Common bitwise
operations include and, or, not, and xor.

block comment: A comment that spans multiple lines. Block comments may be marked with
special start and end symbols, like /* and */ in C and its descendents, or each line may be
prefixed with a marker like #.

Boolean: Relating to a variable or data type that can have either a logical value of true or false.
Named for George Boole, a 19th century mathematician.

breadth first: To go through a nested data structure such as a tree by exploring all of one level,
then going on to the next level and so on, or to explore a problem by examining the first step
of each possible solution, and then trying the next step for each. See also: depth-first.

breakpoint: An instruction to a debugger telling it to suspend execution whenever a specific point
in the program (such as a particular line) is reached. See also: watchpoint.

365

bug: A missing or undesirable feature of a piece of software.

build manager: A program that keeps track of how files depend on one another and runs com-
mands to update any files that are out-of-date. Build managers were invented to compile only
those parts of programs that had changed, but are now often used to implement workflows in
which plots depend on results files, which in turn depend on raw data files or configuration files.
See also: build rule, dependency, Makefile.

build recipe: The part of a build rule that describes how to update something that has fallen
out-of-date.

build rule: A specification for a build manager that describes how some files depend on others
and what to do if those files are out-of-date.

build target: The file(s) that a build rule will update if they are out-of-date compared to their
dependencies. See also: Makefile.

byte code: A set of instructions designed to be executed efficiently by an interpreter.

cache: Something that stores copies of data so that future requests for it can be satisfied more
quickly. The CPU in a computer uses a hardware cache to hold recently-accessed values; many
programs rely on a software cache to reduce network traffic and latency. Figuring out when
something in a cache is out-of-date and should be replaced is one of the two hard problems
in computer science.

caching: To save a copy of some data in a local cache to make future access faster.

call stack: A data structure that stores information about the active subroutines executed.

callback function: A function A that is passed to another function B so that B can call it at
some later point. Callbacks can be used synchronously, as in generic functions like map that
invoke a callback function once for each element in a collection, or asynchronously, as in a
client that runs a callback when a response is received in answer to a request.

Cascading Style Sheets (CSS): A way to control the appearance of HTML. CSS is typically
used to specify fonts, colors, and layout.

catch (an exception): To handle an error or other unexpected event represented by an excep-
tion.

Chain of Responsibility pattern: A design pattern in which each object either handles a
request or passes it on to another object.

character encoding: A specification of how characters are stored as bytes. The most commonly-
used encoding today is UTF-8.

child (in a tree): A node in a tree that is below another node (call the parent).

child class: In object-oriented programming, a class derived from another class (called the
parent class).

366 E Glossary

circular dependency: A situation in which X depends on Y and Y depends on X, either directly
or indirectly. If there is a circular dependency, then the dependency graph is not acyclic.

class: In object-oriented programming, a structure that combines data and operations (called
methods). The program then uses a constructor to create an object with those properties
and methods. Programmers generally put generic or reusable behavior in parent classes, and
more detailed or specific behavior in child classes.

client: A program such as a web browser that gets data from a server and displays it to, or
interacts with, users. The term is used more generally to refer to any program A that makes
requests of another program B. A single program can be both a client and a server.

closure: A set of variables defined in the same scope whose existence has been preserved after
that scope has ended.

code coverage (in testing): How much of a library or program is executed when tests run. This
is normally reported as a percentage of lines of code.

cognitive load: The amount of working memory needed to accomplish a set of simultaneous tasks.

collision: A situation in which a program tries to store two items in the same location in memory.
For example, a collision occurs when a hash function generates the same hash code for two
different items.

column-major storage: Storing each column of a two-dimensional array as one block of memory
so that elements in the same row are far apart. See also: row-major storage.

combinatorial explosion: The exponential growth in the size of a problem or the time required
to solve it that arises when all possible combinations of a set of items must be searched.

comma-separated values (CSV): A text format for tabular data in which each record is one
row and fields are separated by commas. There are many minor variations, particularly around
quoting of strings.

command-line argument: A filename or control flag given to a command-line program when it
is run.

command-line interface (CLI): A user interface that relies solely on text for commands and
output, typically running in a shell.

comment: Text written in a script that is not treated as code to be run, but rather as text that
describes what the code is doing. These are usually short notes, often beginning with a # (in
many programming languages).

compile: To translate textual source into another form. Programs in compiled languages are
translated into machine instructions for a computer to run, andMarkdown is usually translated
into HTML for display.

compiled language: Originally, a language such as C or Fortran that is translated into machine
instructions for execution. Languages such as Java are also compiled before execution, but into
byte code instead of machine instructions, while interpreted languages like JavaScript are
compiled to byte code on the fly.

367

compiler: An application that translates programs written in some languages into machine in-
structions or byte code.

confirmation bias: The tendency for someone to look for evidence that they are right rather than
searching for reasons why they might be wrong.

console: A computer terminal where a user may enter commands, or a program, such as a shell
that simulates such a device.

constructor: A function that creates an object of a particular class.

Coordinated Universal Time (UTC): The standard time against which all others are defined.
UTC is the time at longitude 0°, and is not adjusted for daylight savings. Timestamps are
often reported in UTC so that they will be the same no matter what timezone the computer is
in.

corner case: Another name for an edge case.

coupling: The degree of interaction between two classes,modules, or other software components.
If a system’s components are loosely coupled, changes to one are unlikely to affect others. If
they are tightly coupled, then any change requires other changes elsewhere, which complicates
maintenance and evolution.

cryptographic hash function: A hash function that produces an apparently-random value for
any input.

current working directory: The folder or directory location in which the program operates.
Any action taken by the program occurs relative to this directory.

cycle (in a graph): A set of links in a graph that leads from a node back to itself.

data frame: A two-dimensional data structure for storing tabular data in memory. Rows represent
records and columns represent fields.

data migration: Moving data from one location or format to another. The term refers to trans-
lating data from an old format to a newer one.

Decorator pattern: A design pattern in which a function adds additional features to another
function or a class after its initial definition. Decorators are a feature of Python and can be
implemented in most other languages as well.

defensive programming: A set of programming practices that assumes mistakes will happen and
either reports or corrects them, such as inserting assertions to report situations that are not
ever supposed to occur.

dependency: See prerequisite.

dependency graph: A directed graph showing how things depend on one another, such as
the files to be updated by a build manager. If the dependency graph is not acyclic, the
dependencies cannot be resolved.

368 E Glossary

deprecation: To indicate that while a function, method, or class exists, its use is no longer rec-
ommended (for example, because it is going to be phased out in a future release).

depth-first: A search algorithm that explores one possibility all the way to its conclusion before
moving on to the next.

derived class: In object-oriented programming, a class that is a direct or indirect extension
of a base class. See also: child class.

design by contract: A style of designing software in which functions specify the pre-conditions
that must be true in order for them to run and the post-conditions they guarantee will be
true when they return. A function can then be replaced by one with weaker pre-conditions (i.e.,
it accepts a wider set of input) and/or stronger post-conditions (i.e., it produces a smaller range
of output) without breaking anything else. See also: Liskov Substitution Principle.

design pattern: A recurring pattern in software design that is specific enough to be worth naming,
but not so specific that a single best implementation can be provided by a library. See also:
Iterator pattern, Singleton pattern, Template Method pattern, Visitor pattern.

destructuring assignment: Unpacking values from data structures and assigning them to mul-
tiple variables in a single statement.

dictionary: A data structure that allows items to be looked up by value, sometimes called an
associative array. Dictionaries are often implemented using hash tables.

directed acyclic graph (DAG): A directed graph which does not contain any loops (i.e., it is
not possible to reach a node from itself by following edges).

directed graph: A graph whose edges have directions.

directory: A structure in a filesystem that contains references to other structures, such as files
and other directories.

disassembler: A program that translates machine instructions into assembly code or some other
higher-level language. See also: assembler.

doc comment: A documentation comment ("doc comment" for short) is a specially-formatted
comment containing documentation about a piece of code that is embedded in the code itself.

Document Object Model (DOM): A standard, in-memory representation of HTML and
XML. Each element is stored as a node in a tree with a set of named attributes; con-
tained elements are child nodes.

driver: A program that runs other programs, or a function that drives all of the other functions
in a program.

dynamic loading: To import a module into the memory of a program while it is already run-
ning. Most interpreted languages use dynamic loading, and provide tools so that programs
can find and load modules dynamically to configure themselves.

369

dynamic lookup: To find a function or a property of an object by name while a program is
running. For example, instead of getting a specific property of an object using obj.name, a
program might use obj[someVariable], where someVariable could hold "name" or some other
property name.

dynamic scoping: To find the value of a variable by looking at what is on the call stack at the
moment the lookup is done. Almost all programming languages use lexical-scoping instead,
since it is more predictable.

eager matching: Matching as much as possible, as early as possible.

easy mode: A term borrowed from gaming meaning to do something with obstacles or difficulties
simplified or removed, often for practice purposes.

edge: A connection between two nodes in a graph. An edge may have data associated with it,
such as a name or distance.

edge case: A problem that only comes up under unusual circumstances or when a system is pushed
to its limits; also sometimes called a corner case. Programs intended for widespread use have
to handle edge cases, but doing so can make them much more complicated.

element: A named component in an HTML or XML document. Elements are usually written
<name>...</name>, where "..." represents the content of the element. Elements often have at-
tributes.

encapsulate: To store data inside some kind of structure so that it is only accessible through that
structure.

entry point: Where a program begins executing.

environment: A structure that stores a set of variable names and the values they refer to.

error (in a test): Signalled when something goes wrong in a unit test itself rather than in the
system being tested. In this case, we do not know anything about the correctness of the system.

error handling: What a program does to detect and correct for errors. Examples include printing
a message and using a default configuration if the user-specified configuration cannot be found.

event loop: A mechanism for managing concurrent activities in a program. Tasks are represented
as items in a queue; the event loop repeatedly takes an item from the front of the queue and
runs it, adding any other tasks it generates to the back of the queue to run later.

exception: An object that stores information about an error or other unusual event in a program.
One part of a program will create and raise an exception to signal that something unexpected
has happened; another part will catch it.

exception handler: A piece of code that deals with an exception after it is caught, e.g., by
recording a message, retrying the operation that failed, or performing an alternate operation.

expected result (of test): The value that a piece of software is supposed to produce when tested
in a certain way, or the state in which it is supposed to leave the system. See also: actual result
(of test).

370 E Glossary

exploratory programming: A software development methodology in which requirements emerge
or change as the software is being written, often in response to results from early runs.

export: To make something visible outside amodule so that other parts of a program can import
it. In most languages a module must export things explicitly in an attempt to avoid name
collision.

fail (a test): A test fails if the actual result does not match the expected result. See also:
pass (a test).

feature (in software): Some aspect of software that was deliberately designed or built. A bug is
an undesired feature.

field: A component of a record containing a single value. Every record in a database table has
the same fields.

filename extension: The last part of a filename, usually following the ’.’ symbol. Filename exten-
sions are commonly used to indicate the type of content in the file, though there is no guarantee
that this is correct.

filesystem: The part of the operating system that manages how files are stored and retrieved.
Also used to refer to all of those files and directories or the specific way they are stored (as in
"the Unix filesystem").

filter: As a verb, to choose a set of records (i.e., rows of a table) based on the values they
contain. As a noun, a command-line program that reads lines of text from files or standard
input, performs some operation on them (such as filtering), and writes to a file or stdout.

finite state machine (FSM): A theoretical model of computing consisting of a directed graph
whose nodes represent the states of the computation and whose arcs show how to move from
one state to another. Every regular expression corresponds to a finite state machine.

fixed-width (of strings): A set of character strings that have the same length. Databases often
used fixed-width strings to make storage and access more efficient; short strings are padded up
to the required length and long strings are truncated.

fixture: The thing on which a test is run, such as the parameters to the function being tested or
the file being processed.

fluent interface: A style of object-oriented programming in which methods return objects so that
other methods can immediately be called.

folder: Another term for a directory.

formal verification: Proving the correctness of an algorithm, program, or piece of hardware using
mathematical techniques.

garbage collection: The process of identifying memory that has been allocated but is no longer
in use and reclaiming it to be re-used.

371

generator function: A function whose state is automatically saved when it returns a value so
that execution can be restarted from that point the next time it is called. One example of
generator functions use is to produce streams of values that can be processed by for loops. See
also: Iterator pattern.

generic function: A collection of functions with similar purpose, each operating on a different
class of data.

global variable: A variable defined outside any particular function or package namespace, which
is therefore visible to all functions. See also: local variable.

globbing: To specify a set of filenames using a simplified form of regular expressions, such as
*.dat to mean "all files whose names end in .dat". The name is derived from "global".

graph: A plot or a chart that displays data, or a data structure in which nodes are connected to
one another by edges. See also: tree.

greedy algorithm: An algorithm that consumes as much input as possible, as early as possible.

handler: A callback function responsible for handling some particular event, such as the user
clicking on a button or new data being receiving from a file.

hash code: A value generated by a hash function. Good hash codes have the same properties
as random numbers in order to reduce the frequency of collisions.

hash function: A function that turns arbitrary data into a bit array, or a key, of a fixed size.
Hash functions are used to determine where data should be stored in a hash table.

hash table: A data structure that calculates a pseudo-random key (location) for each value passed
to it and stores the value in that location. Hash tables enable fast lookup for arbitrary data.
This occurs at the cost of extra memory because hash tables must always be larger than the
amount of information they need to store, to avoid the possibility of data collisions, when the
hash function returns the same key for two different values.

header file: In C and C++, a file that defines constants and function signatures but does not
contain runnable code. Header files tell the including file what is defined in other files so that
the compiler can generate correct code.

heterogeneous: Containing mixed data types. For example, an array in Javascript can contain a
mix of numbers, character strings, and values of other types. See also: homogeneous.

heuristic: A rule or guideline that isn’t guaranteed to produce the desired result, but usually does.

homogeneous: Containing a single data type. For example, a vector must be homogeneous: its
values must all be numeric, logical, etc. See also: heterogeneous.

HTTP request: A message sent from a client to a server using the HTTP protocol asking for
data. A request usually asks for a web page, image, or other data. See also: HTTP response.

HTTP response: A reply sent from a server to a client using the HTTP protocol in response
to a request. The response usually contains a web page, image, or data.

372 E Glossary

HyperText Markup Language (HTML): The standard markup language used for web
pages. HTML is represented in memory using DOM (Digital Object Model). See also: XML.

HyperText Transfer Protocol (HTTP): The standard protocol for data transfer on the
World-Wide Web. HTTP defines the format of requests and responses, the meanings of
standard error codes, and other features.

idiomatic: To use a language in the same way as a fluent or native speaker. Programs are called
idiomatic if they use the language the way that proficient programmers use it.

immediately-invoked function expression (IIFE): A function that is invoked once at the
point where it is defined. IIFEs are typically used to create a scope to hide some function
or variable definitions.

immutable: Data that cannot be changed after being created. Immutable data is easier to think
about, particularly if data structures are shared between several tasks, but may result in higher
memory requirements.

import: To bring things from a module into a program for use. In most languages a program can
only import things that the module explicitly exports.

index (in a database): An auxiliary data structure in a database used to speed up search for
some entries. An index increases memory and disk requirements but reduces search time.

inner function: A function defined inside another (outer) function. Creating and returning inner
functions is a way to create closures.

instance: An object of a particular class.

instruction pointer: A special register in a processor that stores the address of the next in-
struction to execute.

instruction set: The basic operations that a particular processor can execute directly.

interpreted language: A high-level language that is not executed directly by the computer, but
instead is run by an interpreter that translates program instructions into machine commands
on the fly.

interpreter: A program whose job it is to run programs written in a high-level interpreted
language. Interpreters can run interactively, but may also execute commands saved in a file.

intrinsic complexity: The unavoidable complexity inherent in a problem that any solution must
deal with. The term is used in contrast with accidental complexity.

introspection: Having a program examine itself as it is running; common examples are to deter-
mine the specific class of a generic object or to get the fields of an object when they are not
known in advance.

ISO date format: An international for formatting dates. While the full standard is complex, the
most common form is YYYY-MM-DD, i.e., a four-digit year, a two-digit month, and a two-digit
day, separated by hyphens.

373

Iterator pattern: A design pattern in which a temporary object or generator function
produces each value from a collection in turn for processing. This pattern hides the differences
between different kinds of data structures so that everything can be processed using loops. See
also: Visitor pattern.

JavaScript Object Notation (JSON): A way to represent data by combining basic values like
numbers and character strings in lists and key/value structures. The acronym stands for
"JavaScript Object Notation"; unlike better-defined standards like XML, it is unencumbered
by a syntax for comments or ways to define a schema. See also: YAML.

join: An operation that combines two tables, typically by matching keys from one with keys from
another.

key: A field or combination of fields whose value(s) uniquely identify a record within a table or
dataset. Keys are often used to select specific records and in joins.

label (address in memory): A human-readable name given to a particular location in memory
when writing programs in assembly code.

layout engine: A piece of software that decides where to place text, images, and other elements
on a page.

lazy matching: Matching as little as possible while still finding a valid match. See also: eager
matching.

Least Recently Used cache (LRU cache): A cache that discards items that have not been
used recently in order to limit memory requirements.

lexical scoping: To look up the value associated with a name according to the textual structure
of a program. Most programming languages use lexical scoping instead of dynamic scoping
because the latter is less predictable.

library: An installable collection of software, also often called a module or package.

lifecycle: The steps that something is allowed or required to go through. The lifecycle of an object
runs from its construction through the operations it can or must perform before it is destroyed.

line comment: A comment in a program that spans part of a single line, as opposed to a block
comment that may span multiple lines.

link (a program): To combine separately compiled modules into a single runnable program.

linter: A program that checks for common problems in software, such as violations of indentation
rules or variable naming conventions. The name comes from the first tool of its kind, called
lint.

Liskov Substitution Principle: A design rule stating that it should be possible to replace objects
in a program with objects of derived classes without breaking the program.Design by contract
is intended to enforce this rule.

list: A vector that can contain values of many different (heterogeneous) types.

374 E Glossary

literal: A representation of a fixed value in a program, such as the digits 123 for the number 123
or the characters "abc" for the string containing those three letters.

literate programming: A programming paradigm that mixes prose and code so that explanations
and instructions are side by side.

loader: A function whose job is to read files containing runnable code into memory and make that
code available to the calling program.

local variable: A variable defined inside a function which is only visible within that function. See
also: closure, global variable.

log message: A status report or error message written to a file as a program runs.

loop body: The statement or statements executed by a loop.

loosely coupled: Components in a software system are said to be loosely coupled if they are
relatively independent of one another, i.e., if any one of them can be changed or replaced
without others having to be altered as well. See also: tightly coupled.

macro: Originally short for "macro-instruction", an instruction to translate some of the text into
a program into other text before using it.

Makefile: A configuration file for the original build manager.

manifest: A list that specifies the precise versions of a complete set of libraries or other software
components.

Markdown: A markup language with a simple syntax intended as a replacement for HTML.

markup language: A set of rules for annotating text to define its meaning or how it should be
displayed. The markup is usually not displayed, but instead controls how the underlying text
is interpreted or shown. Markdown and HTML are widely-used markup languages for web
pages. See also: XML.

method: An implementation of a generic function that handles objects of a specific class.

method chaining: A style of object-oriented programming in which an object’s methods re-
turn that object as their result so that another method can immediately be called, as in
obj.a().b().c().

mock object: A simplified replacement for part of a program whose behavior is easy to control
and predict. Mock objects are used in unit tests to simulate databases, web services, and other
complex systems.

module: A reusable software package, also often called a library.

module bundler: A program that finds all the dependencies of a set of source files and combines
them into a single loadable file.

multi-threaded: Capable of performing several operations simultaneously. Multi-threaded pro-
grams are usually more efficient than single-threaded ones, but also harder to understand
and debug.

375

name collision: The ambiguity that arises when two or more things in a program that have the
same name are active at the same time. Most languages use namespaces to prevent such
collisions. See also: call stack.

namespace: A collection of names in a program that exists in isolation from other namespaces.
Each function, object, class, or module in a program typically has its own namespace so that
references to "X" in one part of a program do not accidentally refer to something called "X" in
another part of the program. Scope is a distinct, but related, concept. See also: name collision,
scope.

nested function: A function that is defined inside another function.

node: An element of a graph that is connected to other nodes by edges. Nodes typically have
data associated with them, such as names or weights.

non-blocking execution: To allow a program to continue running while an operation is in
progress. For example, many systems support non-blocking execution for file I/O so that the
program can continue doing work while it waits for data to be read from or written to the
filesystem (which is typically much slower than the CPU).

object: In object-oriented programming, a structure that contains the data for a specific
instance of a class. The operations the object is capable of are defined by the class’s methods.

object-oriented programming (OOP): A style of programming in which functions and data are
bound together in objects that only interact with each other through well-defined interfaces.

off-by-one error: A common error in programming in which the program refers to element i of
a structure when it should refer to element i-1 or i+1, or processes N elements when it should
process N-1 or N+1.

op code: The numerical code for a particular instruction that a processor can execute.

Open-Closed Principle: A design rule stating that software should be open for extension but
closed for modification, i.e., it should be possible to extend functionality without having to
rewrite existing code.

operating system: A program that provides a standard interface to whatever hardware it is
running on. Theoretically, any program that only interacts with the operating system should
run on any computer that operating system runs on.

package: A collection of code, data, and documentation that can be distributed and re-used. Also
referred to in some languages as a library or module.

pad (a string): To add extra characters to a string to make it a required length.

parameter: A variable specified in a function definition that is assigned a value when the function
is called. See also: argument.

parent (in a tree): A node in a tree that is above another node (called a child). Every node in
a tree except the root node has a single parent.

376 E Glossary

parent class: In object-oriented programming, the class from which a sub class (called the
child class) is derived.

parser: A piece of software that translates a textual representation of something into a data
structure. For example, a YAML parser reads indented text and produces nested lists and
objects.

pass (a test): A test passes if the actual result matches the expected result. See also: fail (a
test).

patch: A single file containing a set of changes to a set of files, separated by markers that indicate
where each individual change should be applied.

path (in filesystem): A string that specifies a location in a filesystem. In Unix, the directories
in a path are joined using /. See also: absolute path, relative path.

pattern rule: A generic build rule that describes how to update any file whose name matches a
pattern. Pattern rules often use automatic variables to represent the actual filenames.

pipe: To use the output of one computation as the input for the next, or the connection between
the two computations responsible for the data transfer. Pipes were popularized by the Unix
shell, and are now used in many different programming languages and systems.

pipe (in the Unix shell): The | used to make the output of one command the input of the next.

plugin architecture: A style of application design in which the main program loads and runs
small independent modules that do the bulk of the work.

polymorphism: Having many different implementations of the same interface. If a set of functions
or objects are polymorphic, they can be called interchangeably.

post-condition: Something that is guaranteed to be true after a function runs successfully. Post-
conditions are often expressed as assertions that are guaranteed to be be true of a function’s
results. See also: design by contract, pre-condition.

pre-condition: Something that must be true before a function runs in order for it to work correctly.
Pre-conditions are often expressed as as assertions that must be true of a function’s inputs in
order for it to run successfully. See also: design by contract, post-condition.

precedence: The priority of an operation. For example, multiplication has a higher precedence
than addition, so a+b*c is read as "the sum of a with the product of b and c".

prerequisite: Something that a build target depends on. See also: dependency.

process: An operating system’s representation of a running program. A process typically has
some memory, the identity of the user who is running it, and a set of connections to open files.

promise: A way to represent the result of a delayed or asynchronous computation. A promise
is a placeholder for a value that will eventually be computed; any attempt to read the value
before it is available blocks, while any such attempt after the computation finishes acts like a
normal read. See also: promisification.

377

promisification: In JavaScript, the act of wrapping a callback function in a promise for uniform
asynchronous execution.

protocol: Any standard specifying how two pieces of software interact. A network protocol such
as HTTP defines the messages that clients and servers exchange on the World-Wide Web;
object-oriented programs often define protocols for interactions between objects of different
classes.

prune: To remove branches and nodes from a tree, or to rule out partially-complete solutions when
searching for an overall solution in order to reduce work.

pseudo-random number: A value generated in a repeatable way that resembles the true ran-
domness of the universe well enough to fool observers.

pseudo-random number generator (PRNG): A function that can generate pseudo-random
numbers. See also: seed.

query selector: A pattern that specifies a set of DOM nodes. Query selectors are used in CSS
to specify the elements that rules apply to, or by JavaScript programs to manipulate web pages.

query string: The portion of a URL after the question mark ? that specifies extra parameters
for the HTTP request as name-value pairs.

race condition: A situation in which a result depends on the order in which two or more concur-
rent operations are carried out.

raise (an exception): To signal that something unexpected or unusual has happened in a pro-
gram by creating an exception and handing it to the error-handling system, which then tries
to find a point in the program that will catch it. See also: throw (exception).

read-eval-print loop (REPL): An interactive program that reads a command typed in by a
user, executes it, prints the result, and then waits patiently for the next command. REPLs are
often used to explore new ideas, or for debugging.

record: A group of related values that are stored together. A record may be represented as a tuple
or as a row in a table; in the latter case, every record in the table has the same fields.

register: A small piece of memory (typically one word long) built into a processor that operations
can refer to directly.

regular expression: A pattern for matching text, written as text itself. Regular expressions are
sometimes called "regexp", "regex", or "RE", and are powerful tools for working with text.

relational database: A database that organizes information into tables, each of which has a fixed
set of named fields (shown as columns) and a variable number of records (shown as rows).
See also: SQL.

relative error: The absolute value of the difference between the actual and correct value divided
by the correct value. For example, if the actual value is 9 and the correct value is 10, the relative
error is 0.1. Relative error is usually more useful than absolute error.

378 E Glossary

relative path: A path that is interpreted relative to some other location, such as the current
working directory. A relative path is the equivalent of giving directions using terms like
"straight" and "left". See also: absolute path.

root (in a tree): The node in a tree of which all other nodes are direct or indirect children, or
equivalently the only node in the tree that has no parent.

row-major storage: Storing each row of a two-dimensional array as one block of memory so that
elements in the same column are far apart. See also: column-major storage.

runnable documentation: Statements about code that can be executed to check their correct-
ness, such as assertions or type declarations.

sandbox: A testing environment that is separate from the production system, or an environment
that is only allowed to perform a restricted set of operations for security reasons.

SAT solver: A library or application that determines whether there is an assignment of true
and false to a set of Boolean variables that makes an expression true (i.e., that satisfies the
expression).

schema: A specification of the format of a dataset, including the name, format, and content of
each table.

scope: The portion of a program within which a definition can be seen and used. See also: closure,
global variable, local variable, namespace.

scope creep: Slow but steady increase in a project’s goals after the project starts.

scoring function: A function that measures or estimates how good a solution to a problem is.

search path: The list of directories that a program searches to find something. For example, the
Unix shell uses the search path stored in the PATH variable when trying to find a program whose
name it has been given.

seed: A value used to initialize a pseudo-random number generator.

semantic versioning: A standard for identifying software releases. In the version identifier
major.minor.patch, major changes when a new version of software is incompatible with old
versions, minor changes when new features are added to an existing version, and patch changes
when small bugs are fixed.

server: Typically, a program such as a database manager or web server that provides data to a
client upon request.

SHA-1 hash: A cryptographic hash function that produces a 160-bit output.

shell: A command-line interface that allows a user to interact with the operating system,
such as Bash (for Unix and MacOS) or PowerShell (for Windows).

shell variable: A variable set and used in the Unix shell. Commonly-used shell variables include
HOME (the user’s home directory) and PATH (their search path).

379

side effect: A change made by a function while it runs that is visible after the function finishes,
such as modifying a global variable or writing to a file. Side effects make programs harder
for people to understand, since the effects are not necessarily clear at the point in the program
where the function is called.

signature: The set of parameters (with types or meaning) that characterize the calling interface
of a function or set of functions. Two functions with the same signature can be called inter-
changeably.

single-threaded: A model of program execution in which only one thing can happen at a time.
Single-threaded execution is easier for people to understand, but less efficient than multi-
threaded execution.

singleton: A set with only one element, or a class with only one instance. See also: Singleton
pattern.

Singleton pattern: A design pattern that creates a singleton object to manage some resource
or service, such as a database or cache. In object-oriented programming, the pattern is
usually implemented by hiding the constructor of the class in some way so that it can only
be called once.

slug: An abbreviated portion of a page’s URL that uniquely identifies it. In the example
https://www.mysite.com/category/post-name, the slug is post-name.

source map: A table used to translate a piece of code back to the lines in the original source.

sparse matrix: A matrix in which most of the values are zero (or some other value). Rather than
storing many copies of the same values, programs will often use a special data structure that
only stores the "interesting" values.

SQL: The language used for writing queries for a relational database. The term was originally
an acronym for Structured Query Language.

stack frame: A section of the call stack that records details of a single call to a specific function.

stale (in build): To be out-of-date compared to a prerequisite. A build manager’s job is to
find and update things that are stale.

standard error: A predefined communication channel for a process typically used to report er-
rors. See also: standard input, standard output.

standard input: A predefined communication channel for a process, typically used to read input
from the keyboard or from the previous process in a pipe. See also: standard error, standard
output.

standard output: A predefined communication channel for a process, typically used to send
output to the screen or to the next process in a pipe. See also: standard error, standard
input.

static site generator: A software tool that creates HTML pages from templates and content.

380 E Glossary

stream: A sequential flow of data, such as the bits arriving across a network connection or the
bytes read from a file.

streaming API: An API that processes data in chunks rather than needing to have all of it in
memory at once. Streaming APIs usually require handlers for events such as "start of data",
"next block", and "end of data".

string: A block of text in a program. The term is short for "character string".

string interpolation: The process of inserting text corresponding to specified values into a string,
usually to make output human-readable.

synchronous: To happen at the same time. In programming, synchronous operations are ones
that have to run simultaneously, or complete at the same time. See also: asynchronous.

tab completion: A technique implemented by most REPLs, shells, and programming editors
that completes a command, variable name, filename, or other text when the TAB key is pressed.

table: A set of records in a relational database or data frame.

tagged data: A technique for storing data in a two-part structure, where one part identifies the
type and the other part stores the bits making up the value.

Template Method pattern: A design pattern in which a parent class defines an overall
sequence of operations by calling abstract methods that child classes must then implement.
Each child class then behaves in the same general way, but implements the steps differently.

test harness: A program written to test some other program or set of functions, typically to
measure their performance.

test runner: A program that finds and runs software tests and reports their results.

test subject: The thing being tested, sometimes also called the system under test (SUT).

test-driven development (TDD): A programming practice in which tests are written before a
new feature is added or a bug is fixed in order to clarify the goal.

throw (exception): Another term for raising an exception.

tightly coupled: Components in a software system are said to be tightly coupled if they depend
on each other’s internals, so that if one is altered then others have to be altered as well. See
also: loosely coupled.

Time of check/time of use (ToCToU): A race condition in which a process checks the state
of something and then operates on it, but some other process might alter that state between
the check and the operation.

timestamp: A digital identifier showing the time at which something was created or accessed.
Timestamps should use ISO date format for portability.

token: An indivisible unit of text for a parser, such as a variable name or a number. Exactly what
constitutes a token depends on the language.

381

topological order: Any ordering of the nodes in a graph that respects the direction of its edges,
i.e., if there is an edge from node A to node B, A comes before B in the ordering. There may
be many topological orderings of a particular graph.

transitive closure: The set of all nodes in a graph that are reachable from a starting node,
either directly or indirectly.

tree: A graph in which every node except the root has exactly one parent.

tuple: A value that has a fixed number of parts, such as the three color components of a red-green-
blue color specification.

Turing Machine: A theoretical model of computation that manipulates symbols on an infinite
tape according to a fixed table of rules. Any computation that can be expressed as an algorithm
can be done by a Turing Machine.

two hard problems in computer science: Refers to a quote by Phil Karlton: "There are only
two hard problems in computer science—cache invalidation and naming things." Many variations
add a third problem as a joke, such as off-by-one errors.

type declaration: A statement in a program that a variable or value has a particular data type.
Languages like Java require type declarations for all variables; they are optional in TypeScript
and Python, and not allowed in pure JavaScript.

Unicode: A standard that defines numeric codes for many thousands of characters and symbols.
Unicode does not define how those numbers are stored; that is done by standards like UTF-8.

Uniform Resource Locator (URL): A unique address on the World-Wide Web. URLs origi-
nally identified web pages, but may also represent datasets or database queries, particularly if
they include a query string.

unit test: A test that exercises one function or feature of a piece of software and produces pass,
fail, or error.

UTF-8: A way to store the numeric codes representing Unicode characters in memory that is
backward-compatible with the older ASCII standard.

vector: A sequence of values, usually of homogeneous type.

version control system: A system for managing changes made to software during its develop-
ment.

virtual machine: A program that pretends to be a computer. This may seem a bit redundant, but
VMs are quick to create and start up, and changes made inside the virtual machine are contained
within that VM so we can install new packages or run a completely different operating system
without affecting the underlying computer.

Visitor pattern: A design pattern in which the operation to be done is taken to each element of
a data structure in turn. It is usually implemented by having a generator "visitor" that knows
how to reach the structure’s elements, which is given a function or method to call for each in
turn, and that carries out the specific operation. See also: Iterator pattern.

382 E Glossary

walk (a tree): To visit each node in a tree in some order, typically depth-first or breadth-
first.

watchpoint: An instruction for a debugger telling it to suspect execution whenever the value of a
variable (or more generally an expression) changes. See also: breakpoint.

well formed: A piece of text that obeys the rules of a formal grammar is said to be well formed.

word (of memory): The unit of memory that a particular processor most naturally works with.
While a byte is a fixed size (8 bits), a word may be 16, 32, or 64 bits long depending on the
processor.

XML: A set of rules for defining HTML-like tags and using them to format documents (typically
data). XML was popular in the early 2000s, but its complexity led many programmers to adopt
JSON, instead.

YAML: Short for "YAML Ain’t Markup Language", a way to represent nested data using inden-
tation rather than the parentheses and commas of JSON. YAML is often used in configuration
files and to define parameters for various flavors of Markdown documents.

z-buffering: A drawing method that keeps track of the depth of what lies "under" each pixel so
that it displays whatever is nearest to the observer.

F
Links

A Simple Web Server http://aosabook.org/en/500L/a-simple-web-server.html

acorn.js https://github.com/acornjs/acorn

acorn-walk https://www.npmjs.com/package/acorn-walk

Alloy https://alloytools.org/

ANTLR https://www.antlr.org/

The Architecture of Open Source Applications https://aosabook.org/

Tavish Armstrong http://tavisharmstrong.com/

Babel https://babeljs.io/

Bajel https://www.npmjs.com/package/bajel

Function.prototype.bind() https://developer.mozilla.org/en-US/docs/Web/JavaScript/-
Reference/Global_objects/Function/bind

Amy Brown https://www.amyrhodabrown.com/

Let’s build a browser engine! https://limpet.net/mbrubeck/2014/08/08/-
toy-layout-engine-1.html

Matt Brubeck https://limpet.net/mbrubeck/

Building Software Together https://buildtogether.tech/

caller https://www.npmjs.com/package/caller

The Carpentries https://carpentries.org/

Creative Commons - Attribution 4.0 International License https://creativecommons.-
org/licenses/by/4.0/

Contributor Covenant https://www.contributor-covenant.org

Mary Rose Cook https://maryrosecook.com/

Crafting Interpreters https://craftinginterpreters.com/

The Comprehensive TeX Archive Network https://www.ctan.org/

Cypress https://www.cypress.io/

383

384 F Links

Data-Forge http://www.data-forge-js.com/

Let’s Build a Simple Database https://cstack.github.io/db_tutorial/

Delta debugging https://en.wikipedia.org/wiki/Delta_debugging

diagrams.net drawing tool https://www.diagrams.net/

Mike DiBernardo https://mikedebo.com/

doctest https://docs.python.org/3/library/doctest.html

Embedded JavaScript Templating https://ejs.co/

Emacs https://www.gnu.org/software/emacs/

Contact address mailto:info@stjs.tech

The ENIAC Programmers Project http://eniacprogrammers.org/

Escodegen https://github.com/estools/escodegen/

ESDoc https://esdoc.org/

ESLint https://eslint.org/

Esprima https://esprima.org/

Etherpad https://etherpad.org/

Expect https://en.wikipedia.org/wiki/Expect

Fuzzing https://en.wikipedia.org/wiki/Fuzzing

Git https://git-scm.com/

Git man page generator https://git-man-page-generator.lokaltog.net/

GitHub Pages https://pages.github.com/

Gitlet http://gitlet.maryrosecook.com/

Glosario https://github.com/carpentries/glosario

GNU Make https://www.gnu.org/software/make/

Graphlib https://www.npmjs.com/package/graphlib

Hippocratic License https://firstdonoharm.dev/

Mike Hoye http://exple.tive.org/blarg/

Using data attributes https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/-
Use_data_attributes

385

Understand JavaScript Promises by Building a Simple Promise Example https://-
levelup.gitconnected.com/understand-javascript-promises-by-building-a-promise–
from-scratch-84c0fd855720

Trey Huffine https://medium.com/@treyhuffine

Human Resource Machine https://tomorrowcorporation.com/humanresourcemachine

Intelligent code completion https://en.wikipedia.org/wiki/Intelligent_code_completion

Istanbul https://istanbul.js.org/

Jake https://jakejs.com/

Java https://en.wikipedia.org/wiki/Java_(programming_language)

Jekyll https://jekyllrb.com/

A bug in Jekyll https://stackoverflow.com/questions/66320774/how-to-pre-define-links-in–
jekyll-config-yml-using-kramdown-links-def-options

Jest https://jestjs.io/

JavaScript for Data Science https://js4ds.org/

JSDoc https://jsdoc.app/

Brian Kernighan https://en.wikipedia.org/wiki/Brian_Kernighan

kilo text editor https://viewsourcecode.org/snaptoken/kilo/index.html

Donald Knuth https://www-cs-faculty.stanford.edu/ knuth/

LaTeX https://www.latex-project.org/

Lynx browser https://lynx.browser.org/

Markdown https://en.wikipedia.org/wiki/Markdown

markdown-it https://markdown-it.github.io/

markdown-it-anchor https://www.npmjs.com/package/markdown-it-anchor

Martha’s Rules https://journals.sagepub.com/doi/10.1177/088610998600100206

microtime https://www.npmjs.com/package/microtime

minimist https://www.npmjs.com/package/minimist

Mocha https://mochajs.org/

Maël Nison https://arcanis.github.io/

Node.js https://nodejs.org/en/

386 F Links

Node crypto module https://nodejs.org/api/crypto.html

Node fs package https://nodejs.org/api/fs.html

Node fs-extra package https://www.npmjs.com/package/fs-extra

Node filesystem status class. https://nodejs.org/api/fs.html#fs_class_fs_stats

Node glob https://www.npmjs.com/package/glob

Node mock-fs https://www.npmjs.com/package/mock-fs

Node path https://nodejs.org/api/path.html

Node prompt-sync https://www.npmjs.com/package/prompt-sync

Node semver https://www.npmjs.com/package/semver

NPM https://www.npmjs.com/

Bob Nystrom http://journal.stuffwithstuff.com/

OAuth https://oauth.net/

object-sizeof package https://www.npmjs.com/package/object-sizeof

Andy Oram http://www.praxagora.com/

Let’s Dev: A Package Manager https://classic.yarnpkg.com/blog/2017/07/11/lets-dev-a–
package-manager/

Pandas https://pandas.pydata.org/

PHP https://www.php.net/

Wikipedia article on programming tools https://en.wikipedia.org/wiki/Programming_tool

JavaScript Promise combinators https://2ality.com/2019/08/promise-combinators.html

Punching Holes http://exple.tive.org/blarg/2020/11/26/punching-holes/

Python https://www.python.org/

Build your own version of React https://dev.to/iainfreestone/9-examples-of-building–
your-own-version-of-react-51a8

Red Door Family Shelter https://www.reddoorshelter.ca/

Redux https://redux.js.org/

Shunting-yard algorithm https://en.wikipedia.org/wiki/Shunting-yard_algorithm

Semantic versioning specification https://semver.org/

You can’t parse [XHTML with regex https://stackoverflow.com/questions/1732348/-
regex-match-open-tags-except-xhtml-self-contained-tags/1732454#1732454

387

JavaScript Standard Style https://standardjs.com/

Software Tools in JavaScript repository https://github.com/software-tools-in-javascript/stjs/

Software Tools in JavaScript https://stjs.tech/

SVG Screenshot https://chrome.google.com/webstore/detail/svg-screenshot/-
nfakpcpmhhilkdpphcjgnokknpbpdllg

Teaching Tech Together http://teachtogether.tech/

Learner personas https://teachtogether.tech/en/index.html#s:process-personas

Termit https://github.com/hakash/termit

Why We Can’t Have Nice Things https://third-bit.com/2015/06/11/-
why-we-cant-have-nice-things/

Tidyverse https://www.tidyverse.org/

TLA+ https://lamport.azurewebsites.net/tla/tla.html

WAVE https://wave.webaim.org/

The Birthday Problem https://en.wikipedia.org/wiki/Birthday_problem#-
A_simple_exponentiation

Greg Wilson https://third-bit.com/

Wolfram Alpha http://wolframalpha.com

G
Authors

Greg Wilson1 has worked in industry and academia for 35 years, and is the author or editor of
several books, including Beautiful Code, The Architecture of Open Source Applications2, JavaScript
for Data Science3, and Teaching Tech Together4. He was the co-founder and first Executive Director
of Software Carpentry5 and received ACM SIGSOFT’s Influential Educator Award in 2020.

1https://third-bit.com/
2https://aosabook.org/
3https://js4ds.org/
4http://teachtogether.tech/
5https://carpentries.org/

389

https://third-bit.com/
https://aosabook.org/
https://js4ds.org/
http://teachtogether.tech/
https://carpentries.org/

Index

abstract syntax tree, 229, 247, 261, 329
Accumulator pattern, 272
Acorn, 229, 247, 253, 261, 282, 332
actual result (in unit test), 51
Adapter pattern, 235
algorithm

greedy, 109
alias

during import, 221
Alloy, 361
anonymous function, 12
ANTLR, 127
API

as protocol, 10, 28
Application Binary Interface, 311
Armstrong, Tavish, 4
array

implementation of, 323
Array.filter, 15
Array.forEach, 27
Array.reduce, 161
ArrayBuffer, 89
assembler, 317
assembly code, 311, 329
assertion

as runnable documentation, 165
in unit test, 51

assignment
destructuring, 17

async keyword, 41
asynchronous execution, 7
automatic variable (in build), 162
await keyword, 41

Babel, 257
backward compatibility, 298
Bajel, 152

bare object, 139
bind method to object, 33
bitwise operation, 314
block comment, 264
Brown, Amy, 4
Brubeck, Matt, 173
build

automatic variable, 162
clock synchronization, 158
dependency, 152
hash code, 158
pattern rule, 163
recipe, 152
rule, 162
stale, 152
timestamp, 158

build manager, 151
build target, 152

C, 151, 197, 229
C++, 197
cache

calculated values, 175
modules, 55
of loaded files, 202, 221

call stack
environment, 134
stack frame, 134

callback function, 7
conventions for, 11

caller module, 56
chain of inheritance, 243
Chain of Responsibility pattern, 114
character encoding, 38

UTF-8, 38
circular dependency, 218
clock synchronization (in build), 158

390

INDEX 391

closure, 213
code

as data, 13, 275
code completion, 361
code coverage, 247
Code of Conduct, 359
coding style

importance of consistency, 229
linter, 229

cognitive load, 9, 146
collision (in hashing), 64
column-major storage order, 82
combinatorial explosion, 299
command-line argument, 8
comment

block, 264
doc, 265
line, 263

compiled language, 151
linking, 151

Comprehensive TeX Archive Network, 297
confirmation bias, 184
console.log, 9
const declaration

advantages of, 9
Cook, Mary Rose, 63
coordinate system, 173
coupling, 107
cryptographic hash function, 63
CSS, 187, 270

struggles with, 193

DAG, 152
data frame, 81
DataForge, 81
debugger, 329

source map, 332
Decorator pattern, 249
delta debugging, 362
dependency (in build), 152
depth-first search, 100
design by contract, 187
design pattern

Accumulator, 272
Adapter, 235
Chain of Responsibility, 114

Decorator, 249
Iterator, 238
Singleton, 54, 202
Template Method, 155, 169
Visitor, 135, 154, 232

destructuring assignment, 17
DiBernardo, Mike, 4
directed acyclic graph, 218
directed acyclic graph (DAG), 152
directed graph, 217
doc comment, 265
Document Object Model, 97, 229
DOM, 97, 132
dynamic loading, 57
dynamic lookup, 235
dynamic scoping, 134

eager matching, 109
EJS, 131
encapsulation, 213
entry point (of module), 279
environment (to store variables), 134
error (in unit test), 52
Escodegen, 250
ESDoc, 261
ESLint, 197, 229
Esprima format, 231
eval

insecurity of, 198
event handler

streaming API, 66
event loop, 27
exception

for control flow, 343
handler, 52
in promise, 32
throw, 52
with await, 44

execution
asynchronous, 7
event loop, 27
non-blocking, 29
single-threaded, 10
streaming, 66

Expect, 339
expected result (in unit test), 51

392 INDEX

experiments, 81
test harness, 85

exploratory programming, 51

fail (in unit test), 51
filesystem operations, 7
finite state machine

correspondence with regular expressions,
128

fixture (in unit test), 51
fluent interface, 31
formal verification

Alloy, 361
TLA+, 361

fs.stat, 21
function

anonymous, 12
inner, 213
nested, 254

function signature, 182
fuzz testing, 362

generator function, 238
Git, 63
GitHub Pages, 131
globbing, 13

filtering results, 14
greedy algorithm, 109

hash code, 63
in build, 158
SHA-1, 64

hash function, 63
collision, 64
cryptographic, 63

header file
in C and C++, 197
static site generator, 197

helper function, 68, 253
heterogeneous storage, 82
homogeneous storage, 82
Hoye, Mike, 173
HTML5 specification, 133
Huffine, Trey, 27
Human Resource Machine, 311

immediately-invoked function expression, 214,
287

immutable data, 82
import

alias, 221
import module, 8
import vs. require, 8, 281
inner function, 213
instruction pointer, 311
instruction set, 311
interpreted language, 151
intrinsic complexity, 235, 292
introspection

in unit testing, 52
of methods, 235

Istanbul, 247
Iterator pattern, 238

generator function, 238

Jake, 152
Java, 8, 151, 250
JavaScript

hurried design of, 279
Jekyll, 131
Jest, 51
JSDoc, 261

Kernighan, Brian, 5, 97, 102
Knuth, Donald, 210

label (on address), 317
language

compiled, 151
interpreted, 151

layout engine, 173
lexical scoping, 134
lifecycle

of file interpolation, 209
of unit test, 59

line comment, 263
linking (compiled language), 151
linter, 229
Liskov Substitution Principle, 187
literal (in parsing), 118
literate programming, 210

macro, 257
Make, 152
manifest (of package), 300

INDEX 393

Markdown, 244, 265
parser, 267

matching
eager, 109

method chaining, 31
Mocha, 51, 72, 102, 121, 176

afterEach, 75
beforeEach, 75

mock object
for testing, 73

module
entry point, 279

module bundler, 279
module loader, 197
mutual references, 334

namespace, 213
nested function, 254
Nison, Maël, 297
non-blocking execution, 29
Nystrom, Bob, 311

OAuth, 362
op code, 311
Open-Closed Principle, 114
operator precedence

implementing, 127
Oram, Andy, 4

package manifest, 300
Pandas, 81
parser, 117

check-and-combine, 123
post-hoc compression strategy, 123
reasons not to write, 117
shunting-yard algorithm, 127

pass (in unit test), 51
patch number, 298
pattern rule (in build), 163
PHP, 131
plugin architecture, 218
polymorphism (in software design), 107
process.argv, 8
programming style

fluent interface, 31
promise

as alternative to callback, 27

automatic creation of, 42
behavior, 30
catch, 31
reject, 31
resolve, 31
then, 31

Promise.all, 38
protocol

API as, 10, 28
for unit testing, 75

prune (a search tree), 303
Python, 8, 81, 218, 249

query selector, 191
query selector (for HTML), 97

R, 81
race condition, 71

time of check/time of use, 71
recipe (in build), 152
recycling data, 83
Redux, 362
register (in computer), 311
regular expression, 97
reject promise, 31
require

caching modules, 55
require vs. import, 8, 281
resolve promise, 31
row-major storage order, 82
rule (in build), 162
runnable documentation (assertions as), 165

sandbox (for safe execution), 198
SAT solver, 297, 307
satisfiability, 297
scope

of variable definitions, 19
scope creep

when writing lessons, 102
scoping

dynamic, 134
lexical, 134

search
depth-first, 100

search path, 204
shell variable, 206

394 INDEX

semantic versioning, 298
patch number, 298

setImmediate, 30
setTimeout, 27
SHA-1 hash code, 64
shell variable (for storing search path), 206
shunting-yard algorithm, 127
side effect

for module registration, 57
signature

of function, 182
sin

using regular expressions to parse HTML,
128

single-threaded execution, 10
Singleton pattern, 54, 202
slug (unique identifier), 268
software design

bare object, 139
coupling, 107
deferring problems, 333
design by contract, 187
driver, 153
encapsulation, 213
generic function, 234
Liskov Substitution Principle, 187
Open-Closed Principle, 114
plugin architecture, 218
polymorphism, 107
testability, 78

source map, 332
spread

function arguments, 247
SQL, 81
stack frame, 133, 134
stale (in build), 152
Standard JS, 229
static site generator, 131

header file, 197
storage

heterogeneous, 82
homogeneous, 82

storage order
column-major, 82
row-major, 82

streaming API, 66

event handler, 66
string interpolation, 17

tagged data structure, 89
target

build, 152
TDD, 102
Template Method pattern, 155, 169
test harness, 85
test runner, 58
test subject (in unit test), 51
test-driven development, 102
testability

as design criterion, 78
tidyverse, 81
time of check/time of use, 71
timestamp

in build, 158
TLA+, 361
token (in parsing), 118
topological order, 153
transitive closure, 283, 299
Turing Machine, 128
two hard problems in computer science, 254

unit test
actual result, 51
error, 52
expected result, 51
fail, 51
fixture, 51
interactive application, 339
lifecycle, 59
pass, 51
requirements for, 51
test runner, 58
test subject, 51
using mock object, 73

University of Toronto, 3
UTF-8, 38

variable definition
scope, 19

version control system, 63
Git, 63

virtual machine, 311, 330
op code, 311

INDEX 395

Visitor pattern, 135, 154, 232

walk a tree, 232
WebAIM WAVE, 361
Whitehead, Alfred North, 275
Wilson, Greg, 3, 193, 389
Wolfram Alpha, 64

	Contents
	Contents
	Introduction
	Who is our audience?
	What tools and ideas do we cover?
	How are these lessons laid out?
	How did we get here?
	How can people use and contribute to this material?
	Who helped us and inspired us?

	Systems Programming
	How can we list a directory?
	What is a callback function?
	What are anonymous functions?
	How can we select a set of files?
	How can we copy a set of files?
	Exercises

	Asynchronous Programming
	How can we manage asynchronous execution?
	How do promises work?
	How are real promises different?
	How can we build tools with promises?
	Lining things up
	How can we make this more readable?
	How can we handle errors with asynchronous code?
	Exercises

	Unit Testing
	How should we structure unit testing?
	How can we separate registration, execution, and reporting?
	How should we structure test registration?
	How can we build a command-line interface for testing?
	Exercises

	File Backup
	How can we uniquely identify files?
	How can we back up files?
	How can we track which files have already been backed up?
	How can we test code that modifies files?
	Design for test
	Exercises

	Data Tables
	How can we implement data tables?
	How can we test the performance of our implementations?
	What is the most efficient way to save a table?
	Does binary storage improve performance?
	Exercises

	Pattern Matching
	How can we match query selectors?
	How can we implement a simple regular expression matcher?
	How can we implement an extensible matcher?
	Exercises

	Parsing Expressions
	How can we break text into tokens?
	How can we turn a list of tokens into a tree?
	Exercises

	Page Templates
	What will our system look like?
	How can we keep track of values?
	How do we handle nodes?
	How do we implement node handlers?
	How can we implement control flow?
	How did we know how to do all of this?
	Exercises

	Build Manager
	What's in a build manager?
	Where should we start?
	How can we specify that a file is out of date?
	How can we update out-of-date files?
	How can we add generic build rules?
	What should we do next?
	Exercises

	Layout Engine
	How can we size rows and columns?
	How can we position rows and columns?
	How can we render elements?
	How can we wrap elements to fit?
	What subset of CSS will we support?
	Exercises

	File Interpolator
	How can we evaluate JavaScript dynamically?
	How can we manage files?
	How can we find files?
	How can we interpolate pieces of code?
	What did we do instead?
	Exercises

	Module Loader
	How can we implement namespaces?
	How can we load a module?
	Do we need to handle circular dependencies?
	How can a module load another module?
	Exercises

	Style Checker
	How can we parse JavaScript to create an AST?
	How can we find things in an AST?
	How can we apply checks?
	How does the AST walker work?
	How else could the AST walker work?
	What other kinds of analysis can we do?
	Exercises

	Code Generator
	How can we replace a function with another function?
	How can we generate JavaScript?
	How can we count how often functions are executed?
	How can we time function execution?
	Exercises

	Documentation Generator
	How can we extract documentation comments?
	What input will we try to handle?
	How can we avoid duplicating names?
	Exercises

	Module Bundler
	What will we use as test cases?
	How can we find dependencies?
	How can we safely combine several files into one?
	How can files access each other?
	Exercises

	Package Manager
	What is semantic versioning?
	How can we find a consistent set of packages?
	How can we implement satisfy constraints?
	How can we do less work?
	Exercises

	Virtual Machine
	What is the architecture of our virtual machine?
	How can we execute these instructions?
	What do assembly programs look like?
	How can we store data?
	Exercises

	Debugger
	What is our starting point?
	How can we make a tracing debugger?
	How can we make the debugger interactive?
	How can we test an interactive application?
	Exercises

	Conclusion
	Licensing
	Writing
	Software

	Bibliography
	Code of Conduct
	Our Standards
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Contributing
	Making Decisions
	Formatting
	What We're Looking For

	Glossary
	Links
	Authors
	Index

