JAVASCRIFT

'IIH 1l
100 POWER SOLUTIONS

T

1
.H‘.‘

——

Plug-in JavaScript

100 POWER SOLUTIONS

Robin Nixon

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

e McGrawe Wil Companies

Copyright © 2011 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

ISBN: 978-0-07-173862-0
MHID: 0-07-173862-2

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-173861-3,
MHID: 0-07-173861-4.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechani-
cal error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information
and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO
THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING
ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY
DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

SAVE HUNDREDS OF HOURS
OF PROGRAMMING TIME!

PLUG-IN

These handy guides are packed with ready-to-
run plug-ins you can use right away to create

dynamic Web content. Every plug-in offers - —
a full working solution for a result you can =

achieve immediately, using complete code L ESS

you simply drop into your own programs. g

Valuable customization tips are also included = HTML

in these practical resources. _ﬂ_-_______&

100 POWER SOLUTIONS
-_—

Robin Nixon is a developer and freelance tech-
nical writer who has published more than 500
articles in magazines such as PC Plus, PCW,
Web User, .net, PC Advisor, and PC Answers.

£ | JAVASCRIPT

e
100 POWER SOLUTIONS
_____—_—_—_-—

ROBIN NIXON

Available everywhere computer books are sold, in print and ebook formats.

Learn more. % Do more.

MHPROFESSIONAL.COM

For Julie

About the Author

Robin Nixon has worked with and written about computers since the early 1980s (his first
computer was a Tandy TRS 80 Model 1 with a massive 4KB of RAM!). Since then, he has
written in excess of 500 articles for many of the U.K.’s top computer magazines. Plug-in
JavaScript is his sixth book.

Robin lives on the southeast coast of England with his wife Julie, who is a trained nurse,
and five children. He also finds time to foster three disabled children and works full time
from home as a technical author.

Also by Robin Nixon

The PC Companion, Sigma Press, 1993, ISBN 978-150585138

The Amstrad Advanced User Guide, Sigma Press, 1993, ISBN 978-150585152
Learning PHP, MySQL, and JavaScript, O’Reilly, 2009, ISBN 978-0596157135
Ubuntu: Up and Running, O'Reilly, 2010, ISBN 978-0596804848

Plug-in PHP, McGraw-Hill Professional, 2010, ISBN 978-0071666596

About the Technical Editor

Alan Solis has more than 30 years experience designing, writing, and maintaining software
for companies ranging from small start-ups to large corporations. He currently designs and
maintains websites and web applications using PHP, JavaScript, Java, and various relational
databases.

In his spare time, Alan enjoys creative writing and is a published short story and poetry
author. Alan lives in the San Jose, California area with his wife, Cheryl.

O© 0 NN & U B W N e

e
W N R o©o

Contents at a Glance

Making the Best Use of These Plug-ins 1
JavaScript, CSS,and the DOM ...ttt 13
The Core Plug-ins ...ttt ittt ittt iinnnns 23
Location and Dimensionsciiuiiiiiiiiiiiiiiiiiniennenns 73
Visibility ... 97
Movement and Animation i i i i i 129
Chaining and Interactiont 177
Menus and Navigationcoiiiiiiiiiiiiiiiiiiiiiineeennnnn. 211
Text Effects ..ottt it i i i i e 257
Audio and Visual Effectscciiiiiiiiiiiiiiiiiiiinieennnann. 289
Cookies, Ajax, and Security il 321
Forms and Validationo ittt iiiiiiiiiiiinneennnn 339
Solutions to Common Problemscoiiiiiiiiiiiiiiiiiiinn... 359
IndeX oo e e et ittt e 385

This page intentionally left blank

Contents

Acknowledgments xxiii
Introduction XXV
Making the Best Use of These Plug-ins 1
Downloading and Installing Web Browsers 2
Choosing a Program Editor —.......... L 3
Managing Ajax ... 4
Older Versions of Microsoft Internet Explorer 6
Emulating Internet Explorers6and 7 7
The Companion Website 8
Including All the Plug-ins 9
Including Single Plug-ins 9
Where to Include the JavaScripto 10
Cherry Picking Code Sections 10
Bug Fixing and Reporting 10
Waiting Until the Web Page Has Loaded 11
SUmMmary ... 12
JavaScript, CSS,and the DOMcciiiiiiiiiiiiiiiiiiiiinnnen 13
The Document Object Model (DOM) 14
Accessing the DOM from JavaScript 16
Cascading StyleSheets 17
Accessing Styles in JavaScript ... o o o oo 19
JavaScript and Semicolons ... 21
Summary ... 21
The Core Plug-ins ...ttt ittt ittt iannns 23
Plug-in 1: O()o o 24
AboutthePlug-in 24
Variables, Arrays, and Functions 24
How It Works ... 25
HowToUselt 30
The Plug-in ... 31
Plug-in2: S() 31
AboutthePlug-in 32
Variables, Arrays, and Functions 32
How It Works ... 33
HowToUselt 33
The Plug-in 34

vii

viii

Plug-in JavaScript: 100 Power Solutions

Plug-in 3: Initialize()
About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in
Plug-in 4: CaptureMouse()

About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in
Plug-in 5: CaptureKeyboard()

About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in
Plug-in 6: FromKeyCode()

About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in
Plug-in 7: GetLastKey()

About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in

Plug-in 8: PreventAction()
About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in
Plug-in 9: NoPx() and Px()

About the Plug-ins

Variables, Arrays, and Functions

How They Work

How To Use Them

The Plug-ins

Plug-in 10: X() and Y()

About the Plug-ins

Variables, Arrays, and Functions

Contents

How They Work 55

How ToUseThem i, 55

The Plug-ins 56
Plug-in 11: W()and H() i i i i 56
Aboutthe Plug-ins i i il 57
Variables, Arrays, and Functions 57

How They Work 57

How ToUseThem i, 58

The Plug-ins 59
Plug-in 12: Html() 59
Aboutthe Plug-in o i il 60
Variables, Arrays, and Functions 60

How It Works ..o 60

How ToUseIt e 60

The Plug-in 61
Plug-in 13: SaveState() i i 61
Aboutthe Plug-in o i il 61
Variables, Arrays, and Functions 62

How It Works ..o 62

How ToUselt e 62

The Plug-in 63
Plug-in 14: RestoreState() L. 63
Aboutthe Plug-in i i il 63
Variables, Arrays, and Functions 64

How It Works ..o 64

How ToUselt e 64

The Plug-in 65
Plug-in 15: InsVars() i i 65
Aboutthe Plug-in o i i il 65
Variables, Arrays, and Functions 66

How It Works ..o 66

How ToUse It e 66

The Plug-in 67
Plug-in 16: StrRepeat() i 67
Aboutthe Plug-in i i il 67
Variables, Arrays, and Functions 67

How It Works ..o 68

How ToUse It e e 68

The Plug-in 68
Plug-in 17: HexDec() 68
Aboutthe Plug-in o i il 69
Variables, Arrays, and Functions 69

How It Works ..o 69

How ToUse It e 69

The Plug-in 69

iX

X

Plug-in JavaScript: 100 Power Solutions

Plug-in 18: DecHex() i i i 69
Aboutthe Plug-in i i il 70
Variables, Arrays, and Functions 70
How It Works ..o 70
How ToUseIto e e 70
The Plug-in 71

Location and Dimensionsoiiiiiinininenennenenenennnnnn 73

Plug-in 19: ResizeWidth() L. 74
Aboutthe Plug-in i il 74
Variables, Arrays, and Functions 74
How It WOrKs ..o 74
How ToUse It i 75
ThePlug-in 75

Plug-in 20: ResizeHeight() i 75
Aboutthe Plug-in i il 76
Variables, Arrays, and Functions 76
How It WOrks ..o 76
How ToUse It e 76
The Plug-in 77

Plug-in 21: Resize()o 77
Aboutthe Plug-in i il 78
Variables, Arrays, and Functions 78
How It WOrks ..o e 78
How ToUse It e e 78
The Plug-in 78

Plug-in 22: Position() i i i 79
Aboutthe Plug-in i il 79
Variables, Arrays, and Functions 79
How It WOrks ..o 79
How ToUse It e 79
The Plug-in 80

Plug-in 23: GoTo()o i 80
Aboutthe Plug-in i i il 81
Variables, Arrays, and Functions 81
How It WOrks ..o 81
How ToUse It e 81
The Plug-in 82

Plug-in 24: Locate() i 82
Aboutthe Plug-in i 82
Variables, Arrays, and Functions 83
How It WOrks ..o 83
How ToUse It e e 83

The Plug-in 83

Contents

Plug-in 25: GetWindowWidth() L. 84
Aboutthe Plug-in i i il 84
Variables, Arrays, and Functions 84

How It Works ..o 84

How ToUseIto e e 85

The Plug-in 85
Plug-in 26: GetWindowHeight() 85
Aboutthe Plug-in o i il 85
Variables, Arrays, and Functions 86

How It Works ..o 86

How ToUseIt e 86

The Plug-in 87
Plug-in 27: GoToEdge() i i i 87
Aboutthe Plug-in o i il 87
Variables, Arrays, and Functions 88

How It Works ..o 88

How ToUseIt e 89

The Plug-in 89
Plug-in 28: CenterX() 90
Aboutthe Plug-in o i il 90
Variables, Arrays, and Functions 91

How It Works ..o 91

How ToUselt e 91

The Plug-in 92
Plug-in 29: CenterY() il 92
Aboutthe Plug-in i i il 92
Variables, Arrays, and Functions 93

How It Works ..o 93

How ToUselt e 93

The Plug-in 93
Plug-in 30: Center() i 94
Aboutthe Plug-in i i il 94
Variables, Arrays, and Functions 94

How It Works ..o 94

How ToUse It e e 95

The Plug-in 95
Visibility ... 97
Plug-in 31: Invisible() 98
Aboutthe Plug-in i 98
Variables, Arrays, and Functions 98

How It WOrks ..o 99

How ToUse It e e 99

The Plug-in 100

Xi

Xii

Plug-in JavaScript: 100 Power Solutions

Plug-in 32: Visible()

About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in

Plug-in 33: VisibilityToggle()
About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in
Plug-in 34: Opacity()

About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in
Plug-in 35: Fade()

About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in

Plug-in 36: FadeOut()
About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in
Plug-in 37: Fadeln()

About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in
Plug-in 38: FadeToggle()

About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in
Plug-in 39: FadeBetween()

About the Plug-in

Variables, Arrays, and Functions

Contents

How It Works ..o 120

How ToUseIto e e 120

The Plug-in 121
Plug-in40: Hide() i 121
Aboutthe Plug-in o i il 121
Variables, Arrays, and Functions 121

How It Works ..o 122

How ToUseIto e e 122

The Plug-in 123
Plug-in41: Show() 123
Aboutthe Plug-in o i il 123
Variables, Arrays, and Functions 124

How It Works ..o 124

How ToUseIt e 124

The Plug-in 125
Plug-in 42: HideToggle() i i i i 126
Aboutthe Plug-in o i il 126
Variables, Arrays, and Functions 126

How It Works ..o 126

How ToUselt e 127

The Plug-in 128
Movement and Animation ittt ittt i e it 129
Plug-in43:Slide() 130
Aboutthe Plug-in i il 130
Variables, Arrays, and Functions 131

How It WOrks ..o e 131

How ToUse It i 135

The Plug-in 136
Plug-in 44: SlideBetween() il 137
Aboutthe Plug-in i i il 137
Variables, Arrays, and Functions 138

How It WoOrks ..o 138

How ToUse It e 139

The Plug-in 141
Plug-in 45: Deflate() i 141
Aboutthe Plug-in i i il 141
Variables, Arrays, and Functions 142

How It WOrks ..o 143

How ToUse It e 145

The Plug-in 146
Plug-in46: Reflate() i 147
Aboutthe Plug-in i il 148
Variables, Arrays, and Functions 148

How It Works ... 149

Xiii

Xiv

Plug-in JavaScript: 100 Power Solutions

How ToUseIto e e
The Plug-in
Plug-in 47: DeflateToggle() L.
Aboutthe Plug-in o i il
Variables, Arrays, and Functions
How It Works ..o
How ToUseIto e e
The Plug-in
Plug-in 48: DeflateBetween() L.
Aboutthe Plug-in o i il
Variables, Arrays, and Functions
How It Works ..o
How ToUseIt e
The Plug-in
Plug-in49: Zoom()
Aboutthe Plug-in o i il
Variables, Arrays, and Functions
How It Works ..o
How ToUselt e
The Plug-in
Plug-in 50: ZoomDown() i i
Aboutthe Plug-in i i il
Variables, Arrays, and Functions
How It Works ..o
How ToUselt e
The Plug-in
Plug-in 51: ZoomRestore() i i
Aboutthe Plug-in i i il
Variables, Arrays, and Functions
How It Works ..o
How ToUse It e
The Plug-in
Plug-in 52: ZoomToggle() i
Aboutthe Plug-in i i il
Variables, Arrays, and Functions
How It Works ..o
How ToUse It e e
The Plug-in

7 Chaining and Interaction i i,
Plug-in 53: Chain(), NextInChain(), and CallBack()
Aboutthe Plug-ins il
Variables, Arrays, and Functions

How They Work

How ToUse Themot

Contents

Using the CallBack() Function Directly 183
The Plug-ins 184
Plug-in 54: Repeat() i i 185
Aboutthe Plug-in o i il 185
Variables, Arrays, and Functions 185
How It Works ..o 185
How ToUseIto e e 186
The Plug-in 186
Plug-in 55: While() 186
Aboutthe Plug-in o i il 187
Variables, Arrays, and Functions 187
How It Works ..o 187
How ToUseIt e 189
The Plug-in 191
Plug-in 56: Pause() i i 191
Aboutthe Plug-in o i il 192
Variables, Arrays, and Functions 192
How It Works ..o 192
How ToUselt e 192
The Plug-in 193
Plug-in 57: WaitKey()vovttet et e e 193
Aboutthe Plug-in i i il 193
Variables, Arrays, and Functions 194
How It Works ..o 194
How ToUselt e 195
The Plug-in 196
Plug-in 58: FP() v vt vttt ettt e et e e 196
Aboutthe Plug-in i i il 197
Variables, Arrays, and Functions 197
How It Works ..o 198
How ToUse It e 199
The Plug-in 201
Plug-in 59: HoverSlide() i i i i 201
Aboutthe Plug-in i i il 201
Variables, Arrays, and Functions 203
How It Works ..o 204
How ToUse It e e 206
The Plug-in 208
Menus and Navigation i il 211
Plug-in 60: HoverSlideMenu() 212
Aboutthe Plug-in i il 212
Variables, Arrays, and Functions 213
How It WOrKs ..o 213
How ToUse It e 214

The Plug-in 216

XV

Xvi

Plug-in JavaScript: 100 Power Solutions

Plug-in 61: PopDown()

About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in
Plug-in 62: PopUp()

About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in

Plug-in 63: PopToggle()
About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in
Plug-in 64: FoldingMenu()

About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in
Plug-in 65: ContextMenu()

About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in

Plug-in 66: DockBar()
About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in
Plug-in 67: RollOver()

About the Plug-in

Variables, Arrays, and Functions
How It Works

How ToUselt

The Plug-in

Plug-in 68: Breadcrumbs()
About the Plug-in

Variables, Arrays, and Functions

Contents

How It Works ..o 246

How ToUseIto e e 248

The Plug-in 248
Plug-in 69: BrowserWindow() i il 248
Aboutthe Plug-in o i il 249
Variables, Arrays, and Functions 250

How It Works ..o 251

How ToUseIto e e 253

The Plug-in 255

Text Effects ..ottt ittt it ittt it teeneeeeeeeanenennnnnns 257
Plug-in 70: TextScroll() i 258
AboutthePlug-in 258
Variables, Arrays, and Functions 258

How It WOrks ..o 259

How ToUse It e 260

The Plug-in 261
Plug-in 71: TextType()o 262
Aboutthe Plug-in i il 262
Variables, Arrays, and Functions 262

How It WOrks ..o 263

How ToUse It e 264
ThePlug-in 265
Plug-in 72: MatrixToText() i i i i, 265
Aboutthe Plug-in i il 266
Variables, Arrays, and Functions 266

How It WOrks ..o e 267

How ToUse It i 269

The Plug-in 269
Plug-in 73: TextToMatrix() i i i, 270
Aboutthe Plug-in i i il 270
Variables, Arrays, and Functions 271

How It WOrks ..o 271

How ToUse It e 271

The Plug-in 272
Plug-in 74: ColorFade() i i 273
Aboutthe Plug-in i i il 273
Variables, Arrays, and Functions 274

How It WOrks ..o 274

How ToUse It e 276

The Plug-in 278
Plug-in 75: FIyIn()o 279
Aboutthe Plug-in i il 279
Variables, Arrays, and Functions 280

How It Works ... 280

Xvii

Xviii

Plug-in JavaScript: 100 Power Solutions

10

How ToUse It e 281
The Plug-in ... 283
Plug-in 76: TextRipple() i 283
Aboutthe Plug-in 283
Variables, Arrays, and Functions 284
How It Works ... 285
How ToUse It e 286
The Plug-in ... 287
Audio and Visual Effectsiiiiiiiiiiiiiiiiiiiinennennnn. 289
Plug-in 77: Lightbox() ... 290
Aboutthe Plug-in 290
Variables, Arrays, and Functions 291
How It Works ... 291
How ToUse It e 293
The Plug-in 294
Plug-in 78: Slideshow () 295
AboutthePlug-in i 295
Variables, Arrays, and Functions 295
How It Works ... 296
How ToUse It e e e 298
The Plug-in 299
Plug-in 79: Billboard() i 300
Aboutthe Plug-in 301
Variables, Arrays, and Functions 301
How It Works ..o 301
How ToUse It e 304
ThePlug-in 305
Plug-in 80: GoogleChart() i i 306
Aboutthe Plug-in 306
Variables, Arrays, and Functions 308
How It Works ... 308
How ToUse It e 309
The Plug-in 310
Plug-in 81: PlaySound() i 311
Aboutthe Plug-in 311
Variables, Arrays, and Functions 312
How It Works ..o 312
How ToUse It e 312
The Plug-in 313
Plug-in 82: EmbedYouTube() 313
Aboutthe Plug-in 314
Variables, Arrays, and Functions 314

How It Works ... o 314

11

Contents

How ToUseIto e e 314

The Plug-in 315
Plug-in 83: PulsateOnMouseover() o .. 315
Aboutthe Plug-in o i il 316
Variables, Arrays, and Functions 316

How It Works ..o 317

How ToUseIto e e 318

The Plug-in 319
Cookies, Ajax, and Security il 321
Plug-in 84: ProcessCookie() i .. 322
Aboutthe Plug-in i il 322
Variables, Arrays, and Functions 323

How It WOrks ..o 323

How ToUse It e 324

The Plug-in 326
Plug-in 85: CreateAjaxObject() 326
Aboutthe Plug-in i il 327
Variables, Arrays, and Functions 327

How It WOrks ..o 327

How ToUse It e 328

The Plug-in 329
Plug-in 86: GetAjaxRequest() L. 330
Aboutthe Plug-in i il 330
Variables, Arrays, and Functions 331

How It WOrks ..o e 331

How ToUse It i 331

The Plug-in 332
Plug-in 87: PostAjaxRequest() L. 332
Aboutthe Plug-in i il 333
Variables, Arrays, and Functions 333

How It WOrKs ..o 333

How ToUse It e 334
ThePlug-in 335
Plug-in 88: FrameBust() i 335
AboutthePlug-in i 335
Variables, Arrays, and Functions 336

How It WOrks ..o 336

How ToUse It e 336

The Plug-in 337
Plug-in 89: ProtectEmail() i 337
Aboutthe Plug-in i il 337
Variables, Arrays, and Functions 337

How It WOrKs ..o 338

How ToUse It e 338

The Plug-in 338

Xix

XX

Plug-in JavaScript: 100 Power Solutions

12

13

Forms and Validation iiiiiiiiiinininiienenenenannnns 339
Plug-in 90: FieldPrompt() i 340
AboutthePlug-in ool 340
Variables, Arrays, and Functions 341
How It Works ... o 341
How ToUse It e 342
The Plug-in 342
Plug-in 91: ResizeTextarea() i .. 343
AboutthePlug-in ool 343
Variables, Arrays, and Functions 344
How It Works ... o 345
How ToUse It e 346
ThePlug-in 346
Plug-in 92: ValidateEmail() L 346
AboutthePlug-in il 347
Variables, Arrays, and Functions 347
How It Works ... 347
How ToUse It e 348
ThePlug-in 348
Plug-in 93: ValidatePassword() 349
AboutthePlug-in o il 349
Variables, Arrays, and Functions 350
How It Works ... 350
How ToUse It e 350
The Plug-in 351
Plug-in 94: CleanupString() .« ... ovvnetrneti et 351
AboutthePlug-in il 352
Variables, Arrays, and Functions 352
How It Works ... 352
How ToUse It e 353
The Plug-in 353
Plug-in 95: ValidateCreditCard() 353
AboutthePlug-in il 354
Variables, Arrays, and Functions 354
How It Works ... 354
How ToUse It e 356
The Plug-in 356
Solutions to Common Problemsciiiiiiiinnenennenenenns 359
Plug-in 96: RollingCopyright() 360
AboutthePlug-in o il 360
Variables, Arrays, and Functions 360
How It Works ... o 360
How ToUse It i 361

The Plug-in 361

Contents

Plug-in 97: Alert() 361
Aboutthe Plug-in i i il 362
Variables, Arrays, and Functions 363

How It Works ..o 363

How ToUseIto e e 365

The Plug-in 366
Plug-in 98: ReplaceAlert() L. 367
Aboutthe Plug-in o i il 367
Variables, Arrays, and Functions 368

How It Works ..o 368

How ToUseIt e 368

The Plug-in 368
Plug-in 99: TOOITIP() .+ v v vttt e et et e et e 368
Aboutthe Plug-in o i il 368
Variables, Arrays, and Functions 369

How It Works ..o 370

How ToUseIt e 372

The Plug-in 372
Plug-in 100: CursorTrail() i i i i 373
Aboutthe Plug-in o i il 374
Variables, Arrays, and Functions 374

How It Works ..o 375

How ToUselt e 377

The Plug-in 378
Plug-in 101: TouchEnable() 379
Aboutthe Plug-in i i il 379
Variables, Arrays, and Functions 380

How It Works ..o 380

How ToUselt e 382

The Plug-in 383

XXi

This page intentionally left blank

Acknowledgments

another book of handy plug-ins. I also want to thank Joya, Alan, Melinda, Tania, and

everyone else who has helped create this book, without whom it would not be the same.
McGraw-Hill is an exceptionally professional and friendly company to work with, and it
has once again been a pleasure.

Iwould like to thank Wendy Rinaldi for giving me the opportunity of putting together

XXiii

This page intentionally left blank

Introduction

avaScript is the free language built into all modern browsers including Internet Explorer,

Firefox, Safari, Opera, and Chrome. It is the power behind dynamic HTML and the Ajax

environment used for Web 2.0 websites such as Facebook, Flickr, Gmail, and many others.

Plug-in JavaScript is aimed squarely at people who have learned basic HTML (and
perhaps a little CSS and JavaScript) and are interested in doing more. For example, you may
wish to create more dynamic menu systems, provide mouse hover effects, or support Ajax
functionality. In this book you will be shown how to do all these things and much more
using very simple JavaScript, and it is never assumed that you know anything about a
solution. Instead, you are taken through each example step by step with the explanations
included, so there is no need to look up anything elsewhere; every solution is complete and
applicable immediately.

Where possible, the book purposefully ignores more advanced JavaScript techniques
such as object oriented programming (even though they may sometimes be more powerful)
to make it easy for you to understand all the plug-ins. Not using these advanced techniques
doesn’t mean the plug-ins are any less useful; rather, they may simply take a few extra lines
of code to achieve the same result, which will generally run just as fast as more compact
code.

The book can be dipped into as required because each chapter is self contained—when
you have a particular problem to solve, you can refer to the relevant chapter and it will be
all that you need.

About JavaScript

The JavaScript programming language is already over 15 years old and is more popular
than ever. Written by Brendan Eich at Netscape and previously known by the names Mocha
and LiveScript, JavaScript was first incorporated into the Netscape Navigator browser in
1995, the same time that Netscape added support for Sun’s Java technology.

JavaScript is a quite different language from Java but, as part of a marketing deal made
between Netscape and Sun Microsystems, it was given its name to benefit from the general
buzz surrounding the Java language. To justify this naming, all Java keywords are reserved
in JavaScript, its standard library follows Java’s naming conventions, and its Math and Date
objects are based on Java 1 classes. Also, the trademark name “JavaScript” now belongs to
Oracle Corporation—but the similarities end there.

XXV

XXvi

Plug-in JavaScript: 100 Power Solutions

Microsoft’s version, called JScript, was released a year later as a component of Internet
Explorer 3 and, as you might expect, it differed in several important respects, making it less
than 100 percent compatible with JavaScript. Unfortunately, that remains true to this day, as
you will see in several of these plug-ins that work differently depending on which browser
they find themselves running in.

Unlike other languages used for creating websites, such as Perl, PHP, and Ruby,
JavaScript runs within the web browser, not on a web server. This makes it the perfect tool
for creating dynamic web pages because it can modify HTML elements in real time. It is
also the technology behind Web 2.0 Ajax functionality, in which data is transferred between
a web server and web browser behind the scenes, without the user being aware of it.

As you will learn in Chapter 2, JavaScript’s great power lies in its ability to access
HTML'’s Document Object Model (DOM), in which every element on a web page can be
individually addressed (either reading or modifying its value), and elements can also be
created and deleted on the fly, as well as layered over each other and moved about. You can
even go so far as to treat a web browser window as a blank canvas and build entire
applications and arcade games from scratch using JavaScript and the DOM (although doing
so takes some quite advanced programming skills).

Because Oracle owns the trademark to its name, JavaScript has officially been known as
ECMAScript ever since the language was submitted to ECMA, the European Computer
Manufacturers Association (a nonprofit standards organization).

JavaScript Frameworks

Even with recent steps towards standardization, different browser developers still
implement JavaScript in slightly different ways, giving rise to the plethora of JavaScript
frameworks now available such as JQuery, YUI, Mootools, and so on. These technologies
handle all the inconsistencies for you, providing a set of functions you can call without
worrying about browser differences.

The plug-ins in this book provide much of the functionality of these frameworks
without actually constituting a framework. Procedural programming techniques make them
easy to use and also to understand their workings. And, although the plug-ins are often
interconnected and draw on each other’s features, it’s possible to copy just a single plug-in
and its dependencies to a web page. On the other hand, with the major frameworks it’s
quite difficult to extract just the functions you need.

Although at only around 25Kb for the compressed file containing all the plug-ins, the
additional tiny amount of bandwidth used means you probably will never want or need to
extract just a few functions: you can simply drop a link to the file in any web page to have
access to all the plug-ins.

What This Book Provides

This book provides 100 ready-to-go plug-ins you can draw on, usually with a simple, single
call. Of course, because all projects are different, I provide only the bare bones needed and
leave layout and styling to the absolute minimum. This leaves you free to insert the
functions into your own programs and then tailor them to your exact requirements.

The types of plug-ins supplied offer quick and simple solutions to a very wide range of
problems, allowing you to avoid having to reinvent the wheel each time you need a new

Introduction xxvii

feature—because the chances are that the module you need (or one very similar) can be
found in this book as a plug-in. Even if it isn’t, because each and every one is broken down
into component parts and explained in detail, you can cherry-pick code segments from
different plug-ins to build your own.

About the Plug-ins

All this book’s plug-ins are ready to run and can be either typed in (if you don’t have
Internet access) or downloaded from pluginjavascript.com, where they are stored as a
complete collection in a sing]e file.

When you visit the website, you can navigate through the plug-ins chapter by chapter
and view the JavaScript code highlighted in color for clarity. From there, you can copy,
paste, or download the plug-ins directly to your computer.

What Is and Isn’t Included

Although the first aim of this book is to provide newcomers to JavaScript with a comprehensive
resource of functions and routines to draw on, it has a secondary goal, which is to help you
move up to the next level and to build your own programming toolkit. Therefore, all the
plug-ins are thoroughly documented and explained in detail, and advice is given on ways
to improve and extend them, as well as how to adapt them to your own requirements.

While this book isn’t a programming manual or a teaching guide, I do hope that by
reading through the explanations, rather than just including the plug-ins in your projects,
you'll pick up a number of tips and tricks that many programmers take years to discover,
and by osmosis you will learn more about the JavaScript programming language.

Plug-in License
You are free to use any of the plug-ins in this book in your own projects, and you may
modify them as necessary without attributing this book—although if you do give credit, it
will always be appreciated.

However, you may not sell, give away, or otherwise distribute the plug-ins themselves
in any manner, whether printed or in electronic format, without the written permission of
the publisher.

Companion Website

A companion website (pluginjavascript.com) accompanies this book, where all 100 plug-ins
are available to download, along with example code for you to experiment with.

The website is best used in conjunction with this book. As you read a chapter, call it up
on the website, and you can view each plug-in onscreen with color-highlighted syntax. This
makes it very easy to see the structure of each program.

Then, when you wish, you can click a link to copy and paste code right into your own
programs. Or, if you prefer, you can download all the plug-ins to your computer and from
there transfer them to your own website.

This page intentionally left blank

CHAPTER 1

Making the Best Use of These Plug-ins

2 Plug-In JavaScript: 100 Power Solutions

yourself up as a JavaScript programmer is as easy as having a text editor and a web
browser. Well, you could get by with just those, but there’s actually a lot more to it if
you want to produce code efficiently, quickly, and with the minimum of bugs.

First of all, although JavaScript is available on almost all web browsers it varies slightly
between them in the way it implements certain features. This means that you need to be
able to test your code on all the main browsers to ensure that it works correctly in all cases.
So you really need to have access to a Windows computer, because recent versions of
Internet Explorer (IE) are available only for that operating system.

Because JavaScript is supported by all major browsers, you might think that setting

Downloading and Installing Web Browsers

Table 1-1 lists the five major web browsers and their Internet download locations. While all
of them can be installed on a Windows PC, some of them are not available for Mac OS X or
Linux. The web pages at these URLs are smart and offer up the correct version to download
according to your operating system, if available.

Before proceeding with this book I recommend that you ensure you have installed as
many of these browsers on your computer as you can.

If you're running any version of Windows from XP onward, then you will be able to
install all of them, but on other operating systems it’s not quite so easy. For example,
because development of IE for the Mac was halted many years ago at IE version 5, you can
install all the browsers on Mac OS X except for Microsoft Internet Explorer. And, although
it’s possible to install the Wine windows application interface on a Mac and run Internet
Explorer using it, I have found it to be a laborious process with inconsistent results, and
therefore wouldn’t recommend that method. Neither would I suggest you rely on those
websites that take screen shots of a web page in different browsers, because they can't tell
you whether the mouse, keyboard, and other features are working well, or even at all.

Instead, your best option is to either perform a dual install of Windows alongside Mac
OS X, or ensure you have access to a Windows PC. After all, unless you intend to develop
only for Mac computers, people using a Windows operating system will represent by far the
majority of your users.

As for Linux, not only does it not have access to Internet Explorer, there is no version of
Safari either, although all the other browsers do come in Linux flavors. And, as with OS X,
while various solutions exist that incorporate Wine for running Internet Explorer, they seem
to work only with some distributions and not others, so it can be a bit of a minefield trying
to find a bulletproof way to run Windows browsers on Linux.

Tape1-1 Web Web Browser Download URL

Browsers and Their

Download URLs Apple Safari apple.com/safari
Google Chrome google.com/chrome
Microsoft Internet Explorer microsoft.com/ie
Mozilla Firefox mozilla.com/firefox
Opera opera.com/download

Chapter 1: Making the Best Use of These Plug-ins

What it all comes down to is that, if you will be developing on a non-Windows
computer I recommend that you have access to a Windows PC or have Windows installed
as a dual boot (or a virtual machine) alongside your main operating system so that you can
fully test your programs before publishing them to the web at large.

Choosing a Program Editor

Long gone are the days of relying on a simple Notepad program for coding. Software for
writing program code has progressed in leaps and bounds in recent years, with text editors
being replaced by powerful program editors that highlight your syntax using different colors
and can quickly locate things for you like matching (and missing) brackets and braces and so on.

Table 1-2 lists a number of free program editors that will do a great job of helping you to
write JavaScript code quickly and efficiently.

Which one you choose is largely down to personal preference—in my case I settled on
Notepad++ (see Figure 1-1).

TS b 7\ Ry e ke oot LT, - PR LE pe <
Bls Bk Sewch Yirar Formet Lergquege Safarep Pecra Aun TedFE Pugna dndes | X
G s s A el e A x| DD CEIEHD e - ¢
H =whn|
1 “mccapt -
Z | TumcEion Cce==c] 10k
2 10
9 sr=docursent .. gatElemancByld]{ idf . actyle.dixpley;:
5
] for 3 = O; j £ 23; 43
7 I
1] docureent, goLElemenr By Idd diva [5) b - ac7le . di=play =
2 1
10
11 £ [ax == 'nore'] docupent.getElemencByld] idf-scyla.dixpley = 'bhleck':
iz F

-
L
L]

15 | fwmckion coggle(b

15 11

18 ¥ [docusant _gatElamencById| '«»'). wtyle. dimplwy == ‘none'

1?7 i

ina docusant . gatElmmancById] £ §.atyle.dizplay = ‘mone’

i9 donuassnn , goTE L et nn By ITdd poacylE, dizplay = 'Llack')

zo |

Izl aadwn

i [|

3 docussnt .. gatElemeneById] 'w' j.acyle.dixplay = 'mons’ ¢

=4 | doguasent , QrtElepeatEyLdd ' £ b ACylE, Aisplay = ‘hlock!)

L) F |

8 i

=7 - <tapeipnr =
Hy par Tuxt Pdarkos nb char : §IE Ln:1 Cal:l1 Zal:0 Dlon'Windowa AMSL IME

Ficure 1-1 The Notepad++ program editor

4 Plug-1n JavaScript: 100 Power Solutions

Program URL Windows Mac Linux
Bluefish bluefish.openoffice.nl 4 4
Cream cream.sourceforge.net v v
Editra editra.org v v v
Free HTML Editor coffeecup.com/free-editor 4

jEdit jedit.org v v v
Notepad++ notepad-plus.sourceforge.net v

TaBLe 1-2 A Selection of Free Program Editors

In most program editors, moving the cursor to different parts of a program usually
allows you to highlight sections of the code. For example, placing the cursor next to any
bracket in Notepad++ automatically highlights the matching one.

Managing Ajax
Ajax stands for Asynchronous JavaScript and XML, but the name is really a misnomer
because Ajax is far more than an XML handling technology. It is, in fact, at the heart of all
the modern Web 2.0 websites that exchange information between the web browser and
server in the background, without the user being aware.

To do this, a server side programming language is required, and probably the most
popular one is the PHP scripting language. So, although this isn’t a book about Ajax and
PHP, inevitably some of the plug-ins make use of these technologies and, if you wish to test
them on your development computer, you'll need to install a web server and PHP
processor. You don’t have to do this if you don’t intend to use any of the Ajax plug-ins,
which are clearly marked as such, but if you do, don’t worry: it really is quite simple.

It’s simple because the developers of PHP have released an all-in-one application called
Zend Server Community Edition (CE) that includes all of PHP, an Apache web server and a
MySQL database. You can download Zend from the following URL:

http://zend.com/products/server-ce

Versions are available for all three main operating systems (Windows, Mac OS X, and
Linux), and the installation process is reasonably straightforward, although you’ll need to
carefully read the prompts and make intelligent responses to them. Figure 1-2 shows how
you can easily control Zend Server CE directly from within your web browser.

T1P If you are interested in PHP programming, my book Plug-in PHP (McGraw-Hill/Professional,
2010) contains 100 PHP plug-ins and an entire chapter devoted to installing Zend Server CE
and other PHP solutions on different platforms.

Don’t worry that you'll need to know how to program in PHP because you won't, as the
server side scripts can be typed in or downloaded from this book’s companion website—all

Chapter 1: Making the Best Use of These Plug-ins

Be Eed Vera Besowerss Jeak Help SO0 LGAEE | IDMVLEG | | 1I1MA050

¥ R c x -l‘h- -+ . . L r S R R ERTAS DR R LS

Tasks Sysiam Cvariew

Vg FHE ' paos FH P warmon
. e
E" 1 Latnct o & irkcicnd PP Fabvesd es Sarsd Frarresn i Ve s on
Corfam 2ad Cerer Esbengerg

 Twaiger H H= a2 I T p] v

Lt ot Y)] WA i f g o) B HE Sarv] [hala Caike
Zand Diarsgger
by ROTL I T
L] oy EOEE

Zanvd Oiptire e

O Aenmmme Tl

Ficure 1-2 The Zend Server CE dashboard

you have to do is place them in the same Zend Server CE document root folder as your
HTML and JavaScript files.

Table 1-3 details the default locations of document root that Zend Server CE creates on
different operating systems. If you keep your various HTML, JavaScript, and PHP files in
that folder (and subfolders), then they can all be served up by the Apache web server.

Unfortunately there’s no room to go into much detail about Zend Server CE in this
book, although there is one thing I should mention: you may find the Zend Server CE
document root folder doesn’t allow you to copy files into it by default. If you find this to be
the case, you should change the folder permissions to grant access.

Tase 1-3 Zend Operating System Document Root
Server CE Document
Root on Various Windows C:/Program Files/Zend/Apache2/htdocs
Platforms Mac 0OS X susr/local/zend/apache2/htdocs
Debian/Ubuntu Linux J/var/www
Fedora Linux J/var/www/html
Generic Linux susr/local/zend/apache2/htdocs

6 Plug-In JavaScript: 100 Power Solutions

There is also a very good Zend Server CE online user guide, which you can access at the
following URL:

http://files.zend.com/help/Zend-Server-Community-Edition/welcome.htm

Older Versions of Microsoft Internet Explorer

The latest version of Internet Explorer (IE8 at the time of writing) has made tremendous
strides toward compatibility with the other major browsers, but there are still large numbers
of users running IE7 and even IE6. Figure 1-3 shows the breakdown of browsers by use as of
the end of 2009 according to statcounter.com.

As you can see, IE6 and IE7 have over 35 percent of all users between them. Because of
this, and because each version of Internet Explorer works differently, you need to test your
web pages in the older versions in addition to testing them in the latest versions of the

Ly ins PRCAT VA b0 ' 1 8 | Aol e GAoal et - Moois Frelia

Fin Ecit :i! EBackmuda Jaol: Hulp [Gk | 10247000 | 10S0SLAN0 || Leswlase
m' C X & ' o mpoiguscorrcomm B (7 - o |- Pl W

SratCounter Global Stats

Fap & Beoraaes awaiang Seoms Wl o w50 A

4% 0
| (1]]
| Traneferrireg chofa Troem 5 TG PSR, EDFTY o [P

Ficure 1-3 Browser market share as of December 2009

Chapter 1: Making the Best Use of These Plug-ins

main browsers. I know, it’s a pain, but it has to be done. Luckily, there’s a trick to make this
easier than it might otherwise be.

Emulating Internet Explorers 6 and 7

To aid developers who have designed websites to work specifically with older versions, the
developers of Internet Explorer created a meta tab that you can add to the head of a web
page to make IE think it is an earlier version of itself. Here are the two main meta tags you
will use:

<meta http-equiv="X-UA-Compatible" content="IE=7" />
<meta http-equiv="X-UA-Compatible" content="IE=5" />

This is an example of how to incorporate the IE7 tag:

<html>
<head>
<meta http-equiv="X-UA-Compatible" content="IE=7" />
<title>My Website</title>
</head>
<body>
. Website Contents ...

There is no IE=6 option (presumably because the rendering engines for IE5 and IE6 are
so similar), so using the IE=5 option makes Internet Explorer enter what is known as
“quirks” mode, in which it behaves like both IE5 and IE6.

Incidentally, if you wish to force Internet Explorer into full standards mode (to be as
compatible as possible with other browsers) you can use the option 1E=8. Without the meta
tag, Internet Explorer will use its proprietary and optimal settings, known as “edge” mode,
which you can also select with the option IE=edge. Of course, once you have finished
testing, you should remove or comment out these meta tags unless you wish to use one for
a particular reason.

In addition to using the meta tags, you should always ensure that you have a suitable
HTML doctype declaration at the start of each document. The most commonly found
doctype is the following, which has been fully tested and works with all of this book’s
plug-ins.

< !DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >

CAUTION If you use a different doctype from the one listed, certain plug-ins may behave differently,
and you may find you have to slightly modify them. I often use both the preceding “loose”
doctype and the IE7 meta tag to get the most compatible results with other major browsers.
Remember, if IE behaves strangely when all other browsers appear to work well with your code,
the solution could be to change the doctype and or IE5/IE7 meta tags. If you are interested in the
subject of browser compatibility and its various nuances, I recommend visiting the Quirks Mode
website at quirksmode.org.

8 Plug-In JavaScript: 100 Power Solutions

The Companion Website
To save you the effort of typing all the plug-ins in this book, you can download them from
this book’s companion website at pluginjavascript.com (see Figure 1-4).

Click the “Download Plug-ins” link to download the file plug-ins.zip, which is an archive
file (easily extractable on all operating systems) containing all the plug-ins. Once extracted,
in the root of the plug-ins.zip archive you'll find the files PJ.js and PJsmall.js, which contain
the plug-ins in a ready-to-use form. Also in the root is a file called ReadMe.txt, which
contains the latest details about the plug-ins, including any improvements or updates that
have been made since this book was published.

There are also eleven subfolders labeled from 3 to 13, corresponding to chapters in this
book. Within each folder you'll find various example HTML and JavaScript files showing the
use of each function that you can load into a browser to try out for yourself. Some plug-ins
also make use of Ajax techniques and may include other associated files (such as those with
.php extensions), in which case they will be documented in the associated chapter.

GE:I I.l Tty b R e £ 1L ¢ i 'l =] | o | £ |

b H‘F’lug-'n Awentmpt

Plug-in JavaScript: 100 Power Solutions

By Rabin hExon (Modema HILDI10, [3BH S78-00717085133
Harre | sl | Byy 1 | Eoembegd Phyg-ing

Chapber L £ 3a B8 2 B 210010233

Scrpk iv the fram b buk mio sl medern brosasers nchdng Irkarrat Explarar, Frefax, Safan, Cpara ard
Chirares, 1 is the porssy behind damsmi HTHL Sd the s srsinonmient s for Web 20 mehshss suoh &5
Facab=apk:, Fickr, Gmad ard mare athare. Plug-n lavaSerpt i sined squersly o pacpls mhe heva learad basse

HTHL lard pertapa & il C55) but ere mrisresbsd n dargg mam. For scamphla, they map Mk o ossta mam
ANTIRI iU P STEeE, prov el ma s hiover sffeots, support &le Punotbions bty 58d more, Using Flsg-n JavaBoim
thep will be skjarm ke o da @l theae thinge @nd meuch more unrsg very mmple JasaScnpk.

CONTENTS

Ouicirg & Cevelopmesnt Servesr
The= DOIM
. Core Plug-ns

| - L i}

WD 00 el O O s LRI e
-
-
—

13. Salutiors to Cammon Frobl=ms

& [nesmen | Pratecnsd Plods g = e -

Ficure 1-4 The companion website at pluginjavascript.com

Chapter 1: Making the Best Use of These Plug-ins

Including All the Plug-ins

The easiest (and recommended) way for you to use these plug-ins is to load them all into a
web page as a complete set, which you can do with the following command, assuming you
saved the file PJ.js into the current folder:

<script type="text/javascript" src="PJ.js"></script>

In fact, by default all modern browsers assume that scripts will be JavaScript, so you can
use the following short form, which omits the type= parameter:

<script src="PJ.js"></scripts>

Or, if you have PJ.js located elsewhere, such as in the root folder, you change the
command slightly to include the path, like this:

<script src="/PJ.js"></script>

Alternatively, if you use a specific folder for your JavaScript files, such as scripts, you
use this command:

<script src="scripts/PJ.js"></scripts>
And the compressed version of the file, PJsmall.js, can be included instead, like this:
<script src="scripts/PJsmall.js"></scripts>

Immediately following the line that includes the file, you need to add a second line as
follows, which will initialize the plug-ins, ready for use:

<script> Initialize()</scripts>

The benefits of doing this are that you only need to add a couple of lines to your web
pages to have access to all the plug-ins, and there is only one file to change when you
modify any plug-ins. Also, at only around 60KB for the raw JavaScript file, it doesn’t take
very long to load or consume much bandwidth.

What's more, as already mentioned, you can choose to use the compressed version of
the file, called PJsmall.js, which is under half the size and can be found in the zip file along
with PJ.js. The only difference between the two files is that the larger one has all the
functions shown in plain text where they are easy to see and edit if you wish, and the small
version is tightly compressed and not easy to understand if you view it. Regardless of this
difference, they both work identically to each other.

Including Single Plug-ins
All of the plug-ins included in this book are tightly integrated with each other, and as you
progress through the book you’ll see how the later plug-ins rely more and more on earlier
ones, until you reach the point where plug-ins that would normally require dozens of lines
of code only take up a handful of lines because they can draw on the wealth of features
provided by other plug-ins.

10

Plug-In JavaScript: 100 Power Solutions

Therefore, because you have the option of using the compressed JavaScript file, which
takes up less space than even most small images, I don’t recommend trying to copy and
paste individual plug-ins into your web pages unless reduced size and bandwidth usage
are essential, because you will have to follow the subfunctions and sub-subfunctions, until
you have located all the dependencies required for a particular plug-in to work.

Where to Include the JavaScript

The best place to insert the plug-ins is in the head section of your web pages so the whole
page will have access to them. The following example (which assumes that PJsmall.js is in
the document root) illustrates the recommended way to insert the file (shown in bold text):

<html>
<head>
<script src="/PJsmall.js"></script>
script>PJ Initialize()</script>
<title>My Website</title>
</head>
<body>
. Website Contents ...

Placing the code in the head section means the file of plug-ins will load in first and,
therefore, your own JavaScript code can be placed anywhere you like within the rest of the
web page (including the head) and when it calls one of the plug-in functions it’s guaranteed
to be available.

Cherry Picking Code Sections

Although the primary objective of this book is to provide you with a comprehensive toolkit of
plug-in JavaScript functions to save you having to reinvent the wheel, I also hope that the full
documentation of the plug-ins will make them easy for you to adapt to your own purposes. In
fact, I encourage you to take what you can from this book and extend and improve it.

If that means you want to cherry pick a routine from here and a code snippet from there
and build your own new plug-ins, then this book will have succeeded in its secondary goal
of helping you to take your JavaScript programming skills to the next level.

Bug Fixing and Reporting

The raw JavaScript plug-ins comprise over 2500 lines of code, which has been tested over
and again in as many different conditions as possible. But you should realize that this book
represents a major amount of programming and it is inevitable that some unforeseen bugs
will show up.

Hopefully there aren’t too many of them, and those that there are will be of minimal
consequence. Even so, this means that to ensure you have the latest versions, you should
grab the plug-ins from the companion website at pluginjavascript.com. Speaking of which, if
you come up with any fixes or improvements please send them to me via the website and I'll
use them to update the source files and improve their capabilities for all readers—you will be

Chapter 1: Making the Best Use of These Plug-ins

credited in the source code. Please include a note to say that I have your permission to post
your code online and in future editions of this book or, sadly, I will not be able to use it.

Waiting Until the Web Page Has Loaded

Quite often, and particularly on longer web pages, you will not want your JavaScript to run
until all elements in a page have loaded. One reason is that the graphics you'll be using may
not be ready, or the contents of objects such as divs and spans may not yet be available for
manipulation.

Also, some browsers will return incorrect values when a page hasn’t yet loaded. For
example, if you request the width of the browser too early you may be given a value that
doesn’t include the vertical scroll bar, and therefore if you try to place anything in that part
of the screen (thinking that it is available to you) it will be hidden by a scroll bar.

Some browsers don’t even return a semi-useful value. For instance, when asked for the
location of an object prior to a page loading, Internet Explorer will always return the
coordinates 0,0.

Therefore, you will usually need to place all your JavaScript within the body of the
following function:

<scripts>
window.onload = function ()

{
}

</scripts>

// Your code and all its functions goes here..

This makes it so that your code will not get executed until the very last item has been
loaded into the web page and has been fully rendered. If you get into the habit of enclosing
all your code within this function, you'll ensure that all objects accessed by it are available
and avoid error messages and initially unsightly web pages.

By the way, although you could move the call to Initialize () here rather than in the
<head> of a web page, I don’t recommend it. Initialize () doesn’t rely on any elements of
the web page since it interacts only with the browser to create global variables and attach
functions to some keyboard and mouse events, so you don’t need to move it here. Also,
placing the call to Initialize () right next to the command that loads in the plug-ins is
sensible practice, as you can’t have one without the other.

Tip On very busy pages, a long initial delay can be quite annoying because various elements you
will be using are simply loaded in and displayed where they lie within the HTML—only later
reaching their final destinations and dimensions. The first solution to this is to ensure that you
use a CSS (Cascading Style Sheet) (more on that in Chapter 2) that is loaded in right at the start.
This will help your page layout to form itself correctly on the fly. Another trick you can use is to
assign zero values to the width and height of objects that you don’t want the user to see until
later, using standard HTML width=and height=keywords (accepted by tables, images, and
other objects). Then, once your code is called up after the page has fully loaded, you can give
these objects their correct dimensions. Or you can use an element’s style argument to make it
invisible, like this: style='display:none’, and then change the property to visible when
you are ready to display it.

12 Plug-In JavaScript: 100 Power Solutions

Summary
By now you should have a computer configured as a suitable development workstation and
should know how you intend to include the plug-ins in your web pages. Before moving on
to explaining plug-ins in detail, however, it’s important to make sure you understand the
DOM (Document Object Model) that is used by JavaScript for manipulating elements
within a web page. We'll take a look at that next, as well as the use of CSS (Cascading
Style Sheets).

CHAPTER 2

JavaScript, CSS, and the DOM

14

Plug-In JavaScript: 100 Power Solutions

alone scripting language and it would still have been very useful. But the developers

did something that would help form the future of the Web, which was to link it to
the HTML Document Object Model (DOM), a way of defining an HTML document in a
structured way that can then be accessed by languages such as JavaScript and Microsoft’s
VBScript (although I don’t cover the latter in this book).

Whenever you see something dynamic happening on a web page such as an image
popping up when you pass the mouse over a link, graphic images zooming out when you
click them, or menus altering according to your selections, this is usually accomplished
using JavaScript, which offers functionality not offered elsewhere other than by Flash or
Java apps—whose scope is limited to the area in which they are embedded.

And speaking of Java, you may be forgiven for thinking that JavaScript is connected with
the Java programming language when, in fact, it has little to do with it; JavaScript was purely
given the name as a marketing ploy to cash in on the popularity of the Java language. Because
of this, some people refer to JavaScript as ECMAScript, but since that doesn’t roll off the
tongue easily, I doubt it will take over as the language’s most popular name.

Anyway, once you have the DOM and a language to access it, you can do almost
anything with a web page, such as easily add new paragraphs; change focus and select text;
replace images; play sound effects, music, and videos; and much more.

When you add Cascading Style Sheets (CSS) to the mixture you can apply style changes
to a page, completely changing the way it looks, without altering the HTML. Actually, CSS
has something in common with JavaScript in that certain style settings can apply dynamic
effects to page elements such as changing their color and other properties when the mouse
passes over them (as you'll see implemented in some of the plug-ins).

Therefore the plug-ins in this book use both CSS and JavaScript to achieve the required
functionality in the simplest and easiest way possible. But in order to understand what is
going on in many of the plug-ins, it’s important that you first have a grounding in both the
DOM and CSS.

I I The great thing about JavaScript is that it could have been designed purely as a stand

Tip You may already be experienced with programming in JavaScript and using CSS and the
DOM. If so, you may wish to simply skim through this chapter for a quick refresher on the
subject. But if you are relatively new to JavaScript I recommend you familiarize yourself with the
contents of this chapter, because the plug-ins in this book are built on the principles discussed.

The Document Object Model (DOM)

The Document Object Model (DOM) separates the different parts of an HTML document
into a hierarchy of discrete objects, each one having its own properties and methods.
Methods are functions that can do something with an object, while properties are attributes
of an object such as the value it holds in the case of a text object, or its width and height in
case of an image, and so on.

The outermost object possible is the window object, which is the current browser
window, tab, or popped up window. Underneath this is the document object, of which there
can be more than one (such as several documents loaded into different frames within a
page). Inside a document there are other objects such as the head and body of a page.

Chapter 2: JavaScript, €SS, and the DOM 15

Within the head there can be other objects such as the title and meta objects, while the
body object can contain numerous other objects, including HTML tags such as headings,
anchors, forms, and so forth.

Figure 2-1 shows the DOM of an example document, with the title “Hello” and a meta
tag in the head section and three HTML elements (a link, a form, and an image) in the
body section.

Of course even the simplest of web pages has more structure than outlined in this
figure, but it serves to show how the DOM works; starting from the very outside of the
DOM is the window, inside which there’s a single document (although more are allowed),
and within the document are the various elements or objects, which connect to each other.

The only one of the items in the figure that is a property is the string “Hello,” which is
the property of the title object. All the other items are objects or object argument names.
If the figure were to extend further down, the property for the meta name might be found
to be “robots” and the URL property for the a href could be “google.com,” and so on.

Representing this as HTML code the structure of the head section looks like this:

<head>
<meta name="robots" content="index, follow" />
<titles>Hello</title>

</head>

The meta tag in this case is one that allows search engines and other web crawlers
(or robots) to index the page and follow any links found within it.
The body section of HTML looks like this:

<body>
Visit Google
<form id="login" method="post" action="program.php">
<input id="name" type="text" name="username" value="fred" />
<input type="submit" />
</form>

</body>

window
document

[hody]

I
| meta | | title | | a | | form | | img |

r

[name | | Hello | [h

Ficure 2-1 Example of a DOM showing head and body sections

16

Plug-In JavaScript: 100 Power Solutions

Remembering that these two sections of HTML are part of the same document, you
bring them both together inside an <html> tag, like this:

<html>
<head>
<meta name="robots" content="index, follow" />
<titles>Hello</title>
</head>
<body>
Visit Google
<form id="login" method="post" action="program.php">
<input id="name" type="text" name="username" value="fred" />
<input type="submit" />
</form>

</body>
</html>

Of course, a web page can look quite different from this, but it should follow the same
form. Even though modern browsers are very forgiving and allow you to omit many things,
such as the opening and closing tags, I don’t recommend you do this, because one day you
might want to convert your page to XHTML, which is a lot stricter. It's always a good idea
to close every tag and make sure you do so in the right order. For example, you shouldn’t
close a document by issuing </html> followed by </body> because the proper nesting of
tags would be broken.

For the same reason, you should also get into the habit of closing any tags that do not
have a closing version, such as , which does not have a matching
tag, and therefore requires a / character right before the final > in order to properly close it.
In the same way
 becomes
, and so on.

You should also remember that arguments within tags must have either single or double
quotation marks to be XHTML compatible, even though nearly all browsers allow you to
omit them.

NOTE In the early days of the Web, when most users had very slow dial-up modems, it was common
to see all manner of things such as quotation marks and various tags omitted from web pages.
Nowadays, most of your users will have fairly decent bandwidth speeds, and there’s no longer
any reason to do this.

Accessing the DOM from JavaScript

You may have wondered why I gave the form an ID of “login,” and the first input tag an ID
of “name” (and the value “fred”). The reason is to show how JavaScript handles all of this
DOM nesting quite easily with the use of the period character. For example, some standard
properties such as the document title can be read like this:

title = document.title

Chapter 2: JavaScript, CSS, and the DOM

Ficure 2-2 8 Helo - Winidows Imiemet Explores [=[=2] & |
The pop-up window | G
shows the input N | I | tmthtm | ¥+ | X [|#9 Geogle =
value. i Feoribn (7 Hilla _
Mexmge bom w=bp- o |
¥ad Submicman] Abh M
= Hel:
M Cormputsr | Protacksd Mode: OF Fg = S 1NTE -

But in order to access most other object properties you need to assign an ID to the object.
For example, once the name is assigned to the input field, you can find its current value
(if any), in the following manner, which assigns the value to the variable username:

username = document.forms.login.name.value

The reason that . value is added after .name (but not after . title in the preceding
example) is that . title is already a property, whereas .name is a form input object that
itself has properties, including its value in .value.

The reason for prepopulating the input statement with the value “fred” also becomes
apparent if you add the following four lines of code before the closing </body> tag, and
then load the preceding example into a browser:

<scripts>

document .write (document.title)

alert (document.forms.login.name.value)
</scripts>

The browser will then display the value of document . title just after the missing
graphic icon, which is there because the image photo11.jpg doesn’t exist, and the current value
of the input statement, “fred”, is also displayed in a pop-up alert (shown in Figure 2-2).

Cascading Style Sheets

Using CSS, you can apply styles to your web pages to make them look exactly how you want.
This works because CSS is connected to the DOM so that you can quickly and easily restyle
any element. For example, if you don’t like the default look of the <h1>, <h2>, and other
heading tags, you can assign new styles to override the default settings for the font family and
size used, or whether bold or italics should be set and many more properties, too.

18

Plug-In JavaScript: 100 Power Solutions

The main way you add styling to a web page is similar to including JavaScript; you
insert the required statements in the head of a web page between the <head> and </head>
tags. To change the style of the <h1> tag you might use the following code:

<style>
hl { color:red; font-size:3em; font-family:Arial }
</style>

Within an HTML page this might look like the following (see Figure 2-3):

<html>
<head>
<styles>
hl { color:red; font-size:3em; font-family:Arial }
</style>

</head>
<titles>Hello World</title>
<body>
<hl>Hello there</hl>
</body>
</html>

Or you can use one of the preferred methods of including a style sheet, which is
particularly useful when you wish to style a whole site, rather than a single page.

The first way you can do this is by using the CSS @import directive, in place of a
sequence of style statements, like this:

<style>
@import url("/css/styles.css");
</style>

This statement tells the browser to fetch a style sheet with the name styles.css from the
/css folder. The @import command is quite flexible in that you can create style sheets that
themselves pull in other style sheets, and so on. Just make sure that there are no <styles or
</styles> tags in any of your external style sheets or they will not work.

Ficure 2-3 ﬂ Helio Worid - Wirdoss Iemmet Exploser (== & |
Styling the <h1> r— !
tag, with the '-H_a"'-.‘_..f |E e MEiEd (] Googe B o

original style P]

shown in the i 5 ke o 8 Fidlc World - Winda.

smaller window

Rl ¢ .

i Frvarlies | 8 HellowWodd

Hello there

Hello there

wurs -

M Corvpuier |F ¥

* Cormputar | Prokacted

Chapter 2: JavaScript, CSS, and the DOM 19

You can also include a style sheet using the HTML <1inks> tag, as follows:
<link rel="stylesheet" type="text/css" href="/css/styles.css" />

This has the exact same effect as the @import directive, except that the <1ink> tagisnota
valid style directive, and so it cannot be used from within one style sheet to pull in another—
and it, therefore, should also not be placed within a pair of <styles ... </style> tags. Just as
you can use multiple @eimport directives within your CSS to include multiple external style
sheets, you can also use as many <1inks> statements as you like in your HTML.

There’s also nothing stopping you from using external style sheets and then overriding
certain styles for the current page by inserting style statements, either with <styles> ...
</styles> tags or directly within HTML, like this (which results in italic blue text within
the tags):

<div style="font-style:italic; color:blue;">Hello</div>
A better solution is to change the HTML by assigning a class value, as follows:
<div class="iblue">Hello</div>

Then you can use the following style setting, either in the page header or within an
external style sheet for referring to the class:

.iblue { font-style:italic; color:blue; }

Of course, if you use another style inside the div, then any attributes that are the same
will override those of the div styling. In the case of the <h1> tag that was styled earlier, the
font color of red that was assigned to <h1> will override the iblue class setting of blue, but
the other . iblue attribute of italic text will stay unaltered—resulting in the same Arial font
“Hello there” text as Figure 2-3, except that it will be changed to italic.

Properly explaining CSS would easily fill a large book, so these are just the bare bones
basics you need to know in order to understand what is going on in the plug-ins. If you are
interested in learning more about the subjects of XHTML and CSS in depth, I recommend
the book HTML & XHTML: The Complete Reference, by Thomas A. Powell (McGraw-Hill/
Professional, 2003).

Accessing Styles in JavaScript

Using JavaScript you can also change on the fly many of the same styles you can define
using CSS. This is possible because the CSS attributes are also DOM object properties. For
example, here’s how you use CSS to set an attribute for a particular ID:

#under { text-decoration:underline; }

Any text within the element that has an ID of under will now be underlined. This
element can also be accessed from JavaScript, so let’s change it to another decoration type
with this JavaScript statement:

document .getElementById('under') .style.textDecoration = 'line-through'

20

Plug-In JavaScript: 100 Power Solutions

All text items within the under ID will now be changed from underlined to line-
through. To help make this clearer, the following example combines these two statements
into a working HTML page (see Figure 2-4):

<html>
<head>
<style>
*#under { text-decoration:underline; }
</style>
</head>
<title>Hello World</titles>
<body>
<div id="under"><hlsHow are you?</hl></div>
<div id="under">A second line</div>
<div id="under"s>And a third</divs>
<scripts>
document .getElementById ('under') .style.textDecoration =
'line-through'
</scripts>
</body>
</html>

Straight away you can see from the figure that the “How are you” text has been changed
to line-through, but take a look at the two lines underneath; they are both still underlined.
The reason for this is that the same ID name was used multiple times, but JavaScript acted
only on the first instance.

CSS may have allowed the use of an ID as if it were a class (which applies to a group of
elements, rather than just one), but JavaScript certainly doesn’t; as soon as it finishes
modifying the first instance it stops because it assumes that the job is done. Therefore, the
two lines following are not changed by the script.

This serves to illustrate a problem a beginner to CSS may encounter: some styles you
apply may seem to work, but it’s only as a side effect of how the browser implements them.
In this case it reminds you to always use an ID for identifying a single element and a class
for multiple ones.

By the way, modifying a class attribute can be done from JavaScript but it requires stepping
through the elements in a document to locate each occurrence and then changing it.

Ficure 2-4 3 Hallz Woeld - Windewa Indes~at Explorar =
Using JavaScript to = A | ; == 1
change an attribute el = | B C\tarehRobin k.~ | 3 |:°'l |2 Google ted &
from underline to o Fawniltes |ﬁ.,|_|_||“,|,h,h“hl T R "
line-through !

Howarevyoun?

A second line

el 4 e

M Comgubes | Proieded Mode: OF i~ W10E -

Chapter 2: JavaScript, CSS, and the DOM pil

If you would like to learn more about CSS, I recommend the book Dynamic Web
Programming: A Beginner's Guide, by Marty Matthews and John Cronan (McGraw-Hill/
Professional, 2009).

JavaScript and Semicolons

There are some JavaScript programmers who always place a semicolon at the end of every
statement, but it isn’t necessary to do so because JavaScript interpreters accept either a
semicolon or a new line as the end marker for a statement.

However, if you wish to have more than one statement in a line, you must use a
semicolon between them. In this book I try to avoid this to keep the code as readable as
possible.

On the other hand, using semicolons everywhere makes your JavaScript code more
easily convertible to languages such as PHP and C, which require them. But it’s up to you
whether or not you use them.

Tip Some programs that work with JavaScript directly to help find bugs or optimize or reduce your
code will not work unless you have placed a semicolon after every single statement. If you will
be using any of these you'll save a lot of time by getting into the habit of using semicolons
right away.

Summary

If this is all new to you, you should now have a very basic picture of how JavaScript, CSS,
and the DOM relate to each other. This will help you understand the plug-in documentation
in the following chapters. In them, I provide all the information you need to effectively use
the plug-ins on your own pages, as well as how to modify and improve them for your own
purposes.

This page intentionally left blank

CHAPTER 3

The Core Plug-ins

PLUG-IN

24

Plug-In JavaScript: 100 Power Solutions

upon the wealth of ready-made functions supplied with the language. However, this

hasn’t turned out to be the case with JavaScript, so this chapter concentrates on
providing a selection of basic functions needed in order to be able to develop JavaScript
programs as quickly and efficiently as possible.

This chapter contains more plug-ins than any other chapter (18 in all), as well as a
collection of handy global variables that will make your life much simpler, and will make
the remaining plug-ins easier to understand and modify.

Since these core plug-ins and global variables are used throughout the book I recommend
you take the time to digest the contents of this chapter as fully as possible before starting to
use the remaining functions. I apologize in advance for the amount of documentation on
these first few plug-ins, but they are important ones, and it’s essential that you are fully
familiar with their use.

In my previous book, Plug-in PHP (McGraw-Hill /Professional, 2010) I was able to draw

0()

The o () function is the most fundamental of the plug-ins provided in this book and is used
by almost all the others. In its simplest form it replaces the long-winded JavaScript function
name getElementById (), which takes the string argument supplied to it and then returns
the HTML DOM (Document Object Model) object that has been assigned that ID. The letter
0 is short for the word Object since the main purpose of this function is to retrieve an object
or to modify its properties.

About the Plug-in

This plug-in takes one required and two optional arguments as follows:

e id This can be a string containing the ID of an object, an object, or even an array
containing several objects and/or object IDs. If none of the optional arguments are
also provided then the function returns the object or objects represented by id. If
there are optional arguments then the purpose of the function changes to assign the
value in value to the property in property of the object (or objects) in id.

* property This optional string argument can contain the name of a property
belonging to the object (or objects) in id that requires modifying

* value If this optional argument is set it represents the value to be assigned to the
property in property of the object (or objects) in id. Both the property and value
arguments must have values, otherwise 0 () will simply return the object (or
objects) in id.

Variables, Arrays, and Functions

tmp [] Array holding the result of processing the id array
3 Integer loop variable for indexing into id

UNDEF Global string variable with the value ‘undefined’
InsVars () Plug-in to insert values into a string

Chapter 3: The Core Plug-ins

push () Function to push a value onto an array
substr () Function to return a substring from a string
eval () Function to evaluate a string as JavaScript code
try () Function to run a function passing an any error to a matching
catch () statement
catch () Function called when a try () statement fails
getElementById Function to return an object by its name
How It Works

This plug-in does a lot more than simply provide a shortened name for an existing function,
because you can pass it either the string ID name of an object, or the object itself. For
example, consider the following HTML div:

<div id='outerdiv's> .. </div>
Using the 0 () plug-in you can access the div object directly with the following command:
mydiv = O('outerdiv')

This command is equivalent to the following, which sets the variable mydiv to represent
the div object that has the ID of ‘outerdiv’:

mydiv = document.getElementById('outerdiv')

This means that you can, for example, use the value returned by this plug-in to change
the HTML contents of the div (the text between its opening and closing tags) as follows, by
modifying its innerHTML property:

mydiv.innerHTML = "<hl>A Heading</hl>"

Or, you can bypass assigning the object to a variable and access the object directly from
the 0 () plug-in, like this:

O('outerdiv') .innerHTML = '<hl>A Heading</hl>'
Passing Either Strings or Objects

The 0 () function is also very versatile in that sometimes you may have a variable
containing a string name, like this:

myvariable = 'outerdiv'
On the other hand, it can represent the actual object itself, like this:
myvariable = O('outerdiv')

The former contains simply the string of characters comprising 'outerdiv’, while the
latter is an object. Because the job of O () is to return the object referred to by the string

25

26

Plug-In JavaScript: 100 Power Solutions

name it is passed, if you happen to pass it an object instead of a string it will simply return
that object back to you. Therefore whether myvariable contains a string that refers to an
object or the object itself, you can use just the one statement to access it, like this:

othervariable = O(myvariable)
Or like this:
O (myvariable) .innerHTML = '<h2>A Subheading</h2>'

Note that there are no quotation marks around myvariable in this instance because a
variable, not a string, is being passed.

NOTE [have used single quotation marks in these examples but JavaScript allows you to use either
single or double quotation marks. However, for the sake of standardization I usually use single
quotes for strings, unless a string includes a single quotes within it. In which case I use double
quotation marks to enclose the string.

Additional Arguments

As well as accepting strings and objects, the 0 () plug-in allows you to pass it an optional
pair of arguments that are then used to modify object properties. For example, the previous
examples can also be rewritten like this:

O('outerdiv', 'innerHTML',6 '<hl>A Heading</hl>"')
O(myvariable, 'innerHTML', '<h2>A Subheading</h2>")

Both of the preceding are acceptable alternative syntax for assigning a value to an
object’s property.

Passing Arrays
You may be wondering about the point of this alternative syntax. Well, it comes into its own
when you want to access many different objects at a time. This is something that you cannot
do with standard JavaScript, but you can achieve it with the 0 () plug-in, which allows you
to pass an array of objects, object ID names, or a combination of both.

For example, let’s say that you would like to clear the HTML contents of three objects
that have the names ‘Fred’, ‘Mary’, and ‘Bill". Regular JavaScript would require three
separate commands, but you can easily achieve the same result with the following code:

ids = Array('Fred', 'Mary',6 'Bill')
O(ids, 'innerHTML',6 '"')

You can even mix objects and object ID names within an array, as follows:
ids = Array('Fred', 'Mary', 'Bill', myobject)

Or, you can combine everything into one line of code in the following way, which will
clear out the innerHTML contents of all the objects:

O(Array('Fred', 'Mary', 'Bill', myobject), 'innerHTML',6 '')

Chapter 3: The Core Plug-ins

Figure 3-1 shows a group of three divs that have all had their innerHTML properties set
to the same value, using the code in the following example web page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >
<html><head><title>Plug-in JavaScript</titles>

<script src="PJ.js"></script>
<script>Initialize()</scripts>

</head><body>
Fred: </spans>

Mary:

Bill:

<scripts>

ids = Array('Fred', 'Mary', 'Bill')
O(ids, 'innerHTML', 'New contents...')
</scripts>

</body></html>

This is the first time that you have seen a complete example of using the plug-ins. It
begins with the < |DOCTYPE ...> setting, then adds both the page’s <title> and the two
<script> lines required to include and set up the plug-ins. After that the <head> is closed
and the <body> of the page is opened. Then three lines of HTML create simple
sections that don’t contain any content.

Finally, there is another <script> section in which the contents of these spans is
changed so that each displays the string ‘New contents...”. This is the format that most
standard web pages will follow when using the plug-ins. The result of loading this page
into a browser is shown in Figure 3-1.

Now that you've seen how easy it is to use the plug-ins and where the different parts fit
within a web page, throughout the rest of this book’s examples I will omit everything before
(and including) the <body > tag (except where a plug-in affects that particular section) and
concentrate only on the relevant HTML and JavaScript required to explain the use of a
plug-in.

Ficure 3-1 ‘ﬁnug-lnhu:impt-“duumaq:brnr @

i =,
chogrs e (RO sumwsmemmins Tolx

objects using 0 ()

Wi | i Plg-in ewScipt

Fred: Hew canbents
Moy Flew conterts
Bill Hew conbents...

M Camputer| Probacted Mods OFF v HInes -

28

Plug-In JavaScript: 100 Power Solutions

When an Array Is Passed
The o () plug-in comprises three parts. The first one tests the argument id to see if it is an
array, which it does by using the instanceof operator, like this:

if (id instanceof Array)

If it is an array then more than one object has been passed to the function, so the array
tmp is declared as a local array (that can only be accessed by this instance of this function)
using the var keyword, like this:

var tmp = []

Then a for () loop iterates through the array, using the integer variable j as an index
pointer to each individual array element.

Making Recursive Calls

Interestingly, the 0 () function is called again within each iteration, but just with the single
element located at the current array index pointed to by j. This is known as a recursive
function call, meaning that the function calls itself. It's a very neat way to reuse code to get a

job done once you have broken it down into a more manageable chunk. The loop code looks
like this:

for (var j = 0 ; j < id.length ; ++3)
tmp.push (0 (id[j], property, value))

To explain how it works in this instance, one element has been extracted from an array
of elements and then that element is passed back to the same function, which will then
process that element and return a value back to itself. So, for example, if an array of items is
passed to O (), it will be iterated through in stages, each time passing one element from the
array in turn to the same function, until all elements have been processed.

Looked at from the function’s receiving end, when it sees that it has received a single
item (and not an array), control flow drops through to the remaining code, where that item
is processed and whatever value or object is calculated is returned. Upon return from the
function (back to the same function), the result of the function call is placed in the next free
location in the tmp array by using the JavaScript push () function and is promptly forgotten
about (since it has been dealt with), and the next element of the array is then processed.

Once all elements are done with (in other words, the value of j equals the number of
items in the array, as indicated by id.length), the array tmp is returned to the calling code.

You will notice that the variables property and value are not treated as arrays, because
they aren’t. If the variable property has a value it should be the name of an object’s
property, and value will contain the value to assign to that property. These arguments are
optional but can be used to give the same value to the same properties of all objects in an
array. Because the function calls itself recursively, it also has to pass property and value
(whether or not they have values) along with the object to be processed, otherwise if they
have values they will be lost.

Chapter 3: The Core Plug-ins

TiP If you're new to recursion and it seems somewhat complicated to you, try reading through this
section a couple more times and you should soon get the hang of it. Wikipedia also has quite a
good explanation of the concept at wikipedia.org/wiki/Recursion, and no, it doesn't just say
“see Recursion”!

Processing the Additional Arguments

In the previous section I talked about property and value, the optional arguments for
modifying an object’s properties. The second main section of this function is where that
modification happens. The code starts by testing whether or not both property and value
have a value by using the typeof operator, like this:

if (typeof property != UNDEF && (typeof value != UNDEF)

The variable UNDEF is a global variable that has been assigned the value ‘undefined’ by
the Initialize () function, which is detailed a little later.

Both arguments must have a value for this 1 £ () statement to execute. If they do, it’s
time to make another recursive call, passing the value of id back to the same function. This
illustrates the power of the 0 () plug-in in that you never have to worry whether the main
argument you pass it is an object or the ID name of an object; either is acceptable, and so
this part of the function simply passes on the value of id, whatever type of variable it is.

Inside this 1 £ () statement the eval () function is used to assign the value to the
property, first surrounding the value with single quotation marks if it is a string (otherwise,
eval () would try to evaluate it, rather than treat it as a string):

if (typeof value == 'string') value = "'" + value + "'"
return eval ("O('"™ + id + "')." + property + " = " + value)

The value returned by eval () is then returned by the function.

At the Deepest Level
The remaining lines of the plug-in execute only when id is not an array and when no
optional parameters have been passed. Since they come after both of the sections that can
make recursive calls, they are the place where the function ultimately returns from these
recursive calls.

These lines also represent the heart of the 0 () function in that they will return an object
by providing its ID name. The code look like this:

if (typeof id == 'object') return id
else

{

try { return document.getElementById(id) }
catch(e) { alert('PJ - Unknown ID: ' + id) }
The first line ends function execution if 1d is an object, by simply returning it. Otherwise an

attempt is made to return the object whose ID is id. Sometimes, though, you will accidentally
pass an ID to the 0 () function that hasn’t yet been assigned. If this happens, rather than having

29

30

Plug-In JavaScript: 100 Power Solutions

JavaScript come to a halt (which it would do if the object doesn’t exist), an error message alert
is displayed to let you know this has happened.

This is achieved by using a pair of try () .. catch() functions. The first tries the code
and passes execution to the second if there is an error.

You may wish to remove the alert () call in a production website so that your users
won't see any errors that you might leave in your code. However, remember that trying to
access a nonexistent object is a critical error that stops all program flow, and you really don’t
want to leave any such errors in your production code.

How To Use It

This plug-in has two distinct modes. In the first it returns an object referred to by an ID
string, while in the second it updates an object’s property with a new value. In either case, if
the object itself is passed to the plug-in (instead of its ID name) then the object is accessed
directly, since there’s no need to look it up.

Furthermore, in both lookup and property setting modes you can pass an array of
objects and/or ID names. If you are looking up objects, the plug-in returns an array. If you
are setting properties, all the objects have the specified property set to the given value, and
those values are returned.

However, the value returned by the plug-in is really only of use when looking up an
object, such as in the following, which are just four of the countless ways of using the
plug-in:

objectname = O('mydiv')

O('copyrightspan') .innerHTML = '© 2011')
background = O('menu') .style.backgroundColor
O('menu') .style.color = 'yellow'

When you are assigning a value to one or more properties, as in the following examples,
the returned value will simply be that of the assigned value, which is not that useful to you,
except perhaps when you are debugging code:

O (objectname, 'innerHTML', '<hls>Heading Text</hl>"')
O(Array('first', 'second'), 'mouseover',K 'mousehandler')

As you will see throughout this book, the 0 () plug-in is used in a variety of different
ways, and you will soon get used to thinking of it as the main way to access individual
elements in a webpage.

NotE Well known JavaScript frameworks, such as jQuery, Script.aculo.us Prototype, and many
others, make use of a similar function to O (), but they usually call it $ (). Some add even more
functionality to it than there is in the O () plug-in, which makes it even more powerful, but also
more complicated too. The $ is a sensible choice of character for naming such functions as it’s
short and instantly recognizable. However I have deliberately not used the same convention
precisely because other frameworks do use it. That way the plug-ins in this book should be less
likely to conflict with third-party frameworks if you use them both on the same web pages.

PLUG-IN

Chapter 3: The Core Plug-ins

The Plug-in

function 0(id, property, value)

{

if (id instanceof Array)
{
var tmp = []
for (var j = 0 ; j < id.length ; ++3)
tmp.push (0 (id[j], property, value))
return tmp

}

if (typeof property != UNDEF && typeof value != UNDEF)
{
if (typeof value == 'string') value = "'" + value + "'"
return eval ("O('" + id + "')." + property + " = " + value)
}
if (typeof id == 'object') return id
else

{

try { return document.getElementById(id) }
catch(e) { alert('PJ - Unknown ID: ' + id) }

S()

Probably the most common use to which JavaScript is put is modifying CSS properties in
HTML documents. These include colors, dimensions, location, opacity, and much more.
Generally this is done using code such as the following, which changes the foreground text
color of a div:

document .getElement .ById('element') .style.color = 'red'
Or, using the previous plug-in, this can be shortened to:
O('element') .style.color = 'red'

This is such a common action that I have created a companion plug-in to 0 () called s ()
(for Style), which deals with handling an object’s style subobject. Using it, the preceding
commands can be reduced to the following:

S('element') .color = 'red'

Figure 3-2 shows the plug-in being used to change the background colors of the three
divs. Even though the figure is not in color, you can tell that by their shades that the divs
are different colors.

i

32

Plug-In JavaScript: 100 Power Solutions

Figure 3-2

Using s () to
change the
background colors
of some divs

"8 Plug-In JwsaScipt - Windows biterrst Equlorar =

@I:::If £ G hery\BobinDesktop Pl el £ tm - | by |

Wi | i PLg-in enScipt

Fred
Moy
Bl

M Camputer| Probacted Mods OFF v HINeL -

About the Plug-in

The s () plug-in is similar to 0 () with the exception that instead of referencing an object,
that object’s style subobject is accessed. Also, since events are not used by it there is no
need to check for them in this function. It accepts the following arguments:

e id This can be a string containing the ID of an object, an object, or even an array
containing several objects and/or object IDs. If none of the optional arguments are
also provided then the function returns the style subobject of the object (or objects)
represented by id. If there are optional arguments, then the purpose of the function
changes to assign the value in value to the property in property of the style
subobject of the object (or objects) in id.

e property This optional string argument can contain the name of a property
belonging to the style subobject of the object (or objects) in id that requires
modifying.

* value If this optional argument is set it represents the value to be assigned to the
property in property of the style subobject of the object (or objects) in id. Both
the property and value arguments must have values, otherwise s () will simply
return the style subobject of the object (or objects) in id.

Variables, Arrays, and Functions

tmp [] Array holding the result of processing the id array

b Integer loop variable for indexing into id

style Style subobject

push () Function to push a value onto an array

try () Function to run a function passing an any error to a matching catch ()
statement

catch () Function called when a try () statement fails

o) Plug-in 1, the main “object” function. Since O () or S () are both used by
almost all plug-ins, this is the last time either will be listed in a “Variables,
Arrays, and Functions” section.

Chapter 3: The Core Plug-ins

How It Works

Now that you understand how the 0 () plug-in works, you will have an idea how this one
functions. Because it is so similar, I'll just outline the basics.

As with 0 (), this function has three main parts. The first processes id if it happens to be
an array. It does this by recursively calling itself with each element within the array so as to
deal with each one separately. The code that does this is as follows, with the final line
returning an array of all the values returned during the process:

if (id instanceof Array)

{
var tmp = []
for (var j = 0 ; j < id.length ; ++3j)
tmp.push(S(id[j], property, value))
return tmp

The second section handles the case when you are using the plug-in in its property
assigning mode. It determines this by checking whether both the arguments property and
value have values. If they do, then the property in property of the style subobject of the
object represented by id is assigned the value in value.

Otherwise the object fetching mode is entered, and so the style subobject of id is returned.

However, for the reasons given in the previous section, accessing the object is embedded
within try () statements so that any errors can be caught and displayed via a call to
alert (), using the matching catch () statements:

if (typeof property != UNDEF && typeof value != UNDEF)

try { return 0O(id).stylelproperty] = value }

catch(e) { alert('PJ - Unknown ID: ' + id) }
}
else if (typeof id == 'object') return id.style
else

{

try { return 0O(id).style }
catch(e) { alert('PJ - Unknown ID: ' + id) }

During development you will find this error catching very useful, as mistyping ID
names or accessing them before they have been declared are common errors.

NOTE I refer to the style subobject, but I could also call it the sty1le property, because it is both:
it’s a property called style, which is itself an object that has properties. Therefore I tend to refer
to properties that are also objects as a subobjects.

How To Use It

You use the plug-in in much the same way as you use the 0 () function. With it you can
either fetch the style subobject of an object, or you can modify one of the style properties of

3

34

Plug-In JavaScript: 100 Power Solutions

that object. Here’s one way you could use the plug-in to first fetch and then use an object’s
style subobject:

var styleobject = S('mydiv')
styleobject.backgroundColor = 'cyan'

Or, you can access the style subobject directly, like this:
S('mydiv') .backgroundColor = 'cyan'

If you wish, you can also set the value of a property from within the plug-in like this:
S('mydiv', 'backgroundColor', 'cyan')

This latter form also allows you to set style properties for several objects at once, like this:

ids = Array('one', 'two', 'three')
S(ids, 'backgroundColor', 'cyan')

In this case, all the objects in the ids array will have their backgroundColor style
property set to ‘cyan’. Omitting the head section and any other parts of the web page, the
code used to create the output in Figure 3-2 is as follows:

Fred: </spans>

Mary:

Bill:

<script>

ids = Array('Fred', 'Mary',6 'Bill')
O(ids, 'innerHTML', 'New contents...')
S('Fred') .backgroundColor = 'red'
S('Mary') .backgroundColor = 'blue'
S('Bill') .backgroundColor = 'green'
</scripts>

First, the divs are created within HTML, then a section of JavaScript follows in which
the ids array is populated with the three ID names of the divs. After that, the 0 () plug-in is
used to assign vales to the innerHTML properties of these divs as a group, and then each
div’s backgroundColor property is individually set using three separate calls to s ().

Over the coming chapters you will see the S () plug-in used in many different contexts,
and I think you’ll find that in future you'll never want to access style properties in any
other way.

The Plug-in

function S(id, property, value)

{

if (id instanceof Array)
{
var tmp = []
for (var j = 0 ; j < id.length ; ++3)

PLUG-IN

Chapter 3: The Core Plug-ins

tmp.push(S(id[j], property, value))
return tmp

}

if (typeof property != UNDEF && typeof value != UNDEF)

{

try { return O(id) .style[property] = value }

catch(e) { alert('PJ - Unknown ID: ' + id) }
}
else 1f (typeof id == 'object') return id.style
else

{

try { return 0O(id) .style }
catch(e) { alert('PJ - Unknown ID: ' + id) }

Initialize()

In order to set up the plug-ins ready to use, you will have to call up a small initialization
plug-in at the start of your web pages. As previously mentioned, I recommend you always
include the following two lines of code at the start of each one:

<script src="PJ.js"></scripts>
<script>Initialize()</scripts>

Or if you are using the compressed version of the plug-ins, P[small.js, then you would
use that file in place of PJ.js.

This plug-in is the Initialize () function that is called by that code, and it prepares a
wide range of functionality you can draw on, as shown in Figure 3-3, in which the browser
type is detected.

About the Plug-in

This plug-in requires no arguments and doesn’t return any. However, please refer to the
table of variables, arrays, and functions in the next section, as some very important global
variables are set up by it.

Figure 3-3 inug.lnh.l:impt-“dumm&pbrnr @@E

Displaying the T

variable SROWSER Rl 2] ctrhobini e ot hnrrglel3 i chlx]
after calling this . , -

plug-in | W —— Mz fram wabpege

F lh- Faurbniwsan b [E

| T—

W Commpitar] P = Wl -

35

36 Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

MOUSE_DOWN Global integer set to true if a mouse button is currently held down,
otherwise false

MOUSE_IN Global integer set to true if the mouse pointer is currently within the
browser window, otherwise false

MOUSE_X Global integer containing the current horizontal coordinate of the mouse
pointer

MOUSE_Y Global integer containing the current vertical coordinate of the mouse
pointer

SCROLL_X Global integer containing the amount the browser has been scrolled
vertically, in pixels

SCROLL_Y Global integer containing the amount the browser has been scrolled
horizontally, in pixels

KEY PRESS Global integer containing the value of the last key pressed

ZINDEX Global integer containing the maximum z-index of any object accessed via
the plug-ins

CHAIN_ CALLS Global array containing plug-ins that have been chained together and which
are yet to be executed

INTERVAL Global integer containing the time in milliseconds between calls to a
repeated event

UNDEF Global string containing the value ‘undefined’

HID Global string containing the value ‘hidden’

VIS Global string containing the value ‘visible’

ABS Global string containing the value ‘absolute’

FIX Global string containing the value ‘fixed’

REL Global string containing the value ‘relative’

TP Global string containing the value ‘top’

BM Global string containing the value ‘bottom’

LT Global string containing the value ‘left’

RT Global string containing the value ‘right’

BROWSER Global string containing the name of the current browser

NavCheck () Subfunction to check for the existence of a string in the browser User

Agent string

How It Works

Let’s look first at each of this plug-in’s global variable definitions:

* MOUSE DOWN This integer variable is updated by the two inline, anonymous
functions (later in the plug-in) that are attached to the document . onmouseup and
document . onmousedown events. With it you can quickly make a check to see

Chapter 3: The Core Plug-ins

whether or not a mouse button is being pressed anywhere in the browser window
by simply looking at this variable, which has a value of true if down; otherwise it is
set to false.

MOUSE IN In a similar fashion, the document . onmouseout and document
.onmouseover events are captured, and this global variable is set to true when the
mouse pointer is within the bounds of the browser window; otherwise it is set to
false.

MOUSE_X and MOUSE_Y This pair of global variables is constantly updated by the
CaptureMouse () plug-in (the plug-in following this one), which is attached to the
document . onmousemove event. Therefore, you can reference these variables at any
time to determine the position of the mouse pointer.

SCROLL_X and SCROLL_Y These global variables are also kept updated by the
CaptureMouse () plug-in. They are continuously updated with values representing
the amount by which the browser has scrolled in both vertical and horizontal
directions.

KEY PRESS This global variable is updated by the CaptureKeyboard () plug-in,
which captures the document . onkeydown and document . onkeypress events and
sets the variable depending on the key that was pressed.

zINDEX This global variable starts off with a default value of 1,000. It is used by
the plug-ins to determine the zIndex property of objects it uses. This is the depth at
which it will be displayed on the screen, with lower or negative numbers being
behind higher and positive numbers. For example, the ContextMenu () plug-in in
Chapter 8, which opens a drop-down element when you right-click, uses this value
to ensure that the element it displays appears in front of all other windows. Also, the
BrowserWindow () plug-in (also in Chapter 8), which creates in-browser, moveable
pop-up windows, sets windows that are clicked to the value of ZINDEX + 1, to
ensure that they come to the front.

CHAIN CALLS Some of the plug-ins have the ability to be chained together so that
they run consecutively, each one starting after the previous has finished. Normally,
JavaScript doesn’t allow such behavior and, if you call up a function that, for example,
sets up an interrupt to perform an animation, that function will return immediately to
the calling code without waiting for the sequence of interrupts to complete. This is
exactly the behavior normally required, as it allows other things to happen at the
same time. But some of these plug-ins work better when they are chained, which is
achieved by placing a sequence of functions in the CHAIN_ CALLS array so that as
each function completes, the next in the chain can be called. The only reasons you
might want to access this array are either to determine if (and how many) functions
are queued up, or possibly to empty the array to cancel all queued up functions.

INTERVAL After many hours of experimentation on all the major browsers

across a range of computers and operating systems, I have derived a value of

30 milliseconds as being the optimal time to allow between interrupt calls, because
some shorter functions complete in under 10 milliseconds, while others may take
20 or more, but none should take any longer than 30 milliseconds. Therefore, I have

3

38

Plug-In JavaScript: 100 Power Solutions

set the global variable INTERVAL to 30. This fixed value is required for timing
purposes, so that all the interrupt functions in this book can ensure that they take
exactly the number of milliseconds passed to them. If JavaScript speeds creep up
over the next few years, as they inevitably do, this allows you to optimize these
plug-ins and drop the value of this variable to 25, 20, 15, or even fewer milliseconds,
as computers get faster and JavaScript interpreters improve. This will not speed up
the plug-ins, but it will allow animations to have extra steps between the first and
last frame, making the transitions smoother.

Global String Variables

After these first ten global variables, a further ten global string variables are defined. These
are UNDEF, HID, VIS, ABS, FIX, REL, STA, INH, TP, BM, LT and RT, and in order they stand for
the strings ‘undefined’, ‘hidden’, ‘visible’, “absolute’, ‘fixed’, ‘relative’, ‘static’, ‘inherit’, ‘top’,
‘bottom’, ‘left” and ‘right’.

Although they are not essential, I have created these variables because the strings to
which they refer are used frequently by the plug-ins, and this helps to keep the code more
compact. It also serves to make the listings in this book narrower, so that lines that might
previously have wrapped around now display on a single line. Additionally, they help to
make the code more readable, as long as you refer back to this section if you forget the
values of any of them.

Determining the Current Browser

Because JavaScript varies in its implementation between different developers, you sometimes
need to know which browser you are dealing with. So, in conjunction with the subfunction
NavCheck (), the next ten lines of code will set the global variable BROWSER to one out of the
following strings, depending on the browser used: ‘IE’, ‘Opera’, ‘Chrome’,'iPod’, ‘iPhone’,
‘iPad’, “Android’, ‘Safari’, ‘Firefox’, and "UNKNOWN'. You can then refer to this variable in the
same way that some of the plug-ins do in order to offer different code to different browsers.
When ‘Firefox’ is returned it means that a browser running on the Gecko rendering engine is in
use, which includes browsers other than Firefox.

Attaching Functions to Events

Much of the functionality of these plug-ins rests on the capturing of various built-in
browser events, as is done by the remaining seven lines of code. The first three attach

the CaptureMouse () function to the document . ommousemove event, and the
CaptureKeyboard () function to the document . onkeydown and document . onkeypress
events. What these plug-ins do is documented in their own sections, but suffice it to say
that they are called each time one of those events occurs and they keep the global variable
KEY PRESS updated.

The final four lines attach functions that are so small that I have created them as
anonymous, inline functions. All they do is capture the document . onmouseout, document
.onmouseover, document . onmouseup and document . onmousedown events, keeping the
global variables MOUSE_IN and MOUSE_DOWN updated.

Chapter 3: The Core Plug-ins

How To Use It

To use this plug-in you must ensure it is called prior to calling any other plug-ins, and you must
call this plug-in in order for almost all the plug-ins to work. If you wish to check that it has
been successfully called, you can try issuing the following statement from within <script>
tags, which will display the name of the browser being used, as shown in Figure 3-3:

alert ('Your browser is ' + BROWSER)

However, you will normally wish to use this and the other plug-ins only once a page
has fully loaded and all its elements locations and dimensions are known and can be
manipulated. Therefore, the command (and the rest of your code) is best placed within
a window.onload anonymous function, like this:

window.onload = function()

{
}

alert ("Your browser is " + BROWSER)

The Plug-in

function Initialize()

{

MOUSE _DOWN = false
MOUSE_IN = true
MOUSE X =0
MOUSE_Y =0
SCROLL_ X =0
SCROLL_Y =0
KEY_ PRESS = "
ZINDEX = 1000
CHAIN CALLS = []
INTERVAL = 30
UNDEF = 'undefined'
HID = 'hidden'
VIs = 'visible'
ABS = 'absolute'
FIX = 'fixed'

REL = 'relative'
STA = 'static'
INH = 'inherit'
TP = 'top'

BM = 'bottom!'

LT = 'left'

RT = 'right'

if (document.all) BROWSER = 'IE'
else if (window.opera) BROWSER = 'Opera'

39

PLUG-IN

40

Plug-In JavaScript: 100 Power Solutions

else if (NavCheck('Chrome')) BROWSER = 'Chrome'
else 1f (NavCheck('iPod') BROWSER = 'iPod'
else 1f (NavCheck ('iPhone') BROWSER = 'iPhone'
else 1if (NavCheck('iPad')) BROWSER = 'iPad'
else 1f (NavCheck ('Android')) BROWSER = 'Android'
else 1f (NavCheck('Safari')) BROWSER = 'Safari'
else if (NavCheck('Gecko')) BROWSER = 'Firefox'
else BROWSER = 'UNKNOWN'
document . onmousemove = CaptureMouse
document . onkeydown = CaptureKeyboard
document .onkeypress = CaptureKeyboard
document .onmouseout = function() { MOUSE IN = false }
document .onmouseover = function() { MOUSE_IN = true }
document . onmouseup = function() { MOUSE DOWN = false }
document .onmousedown = function() { MOUSE DOWN = true }
function NavCheck (check)
{
return navigator.userAgent.indexOf (check) 1= -1

}

CaptureMouse()

This plug-in is called only by the Initialize () function, and you should not need to call
it yourself. What it does is attach to the mouse movement event, updating various global

variables with

details about the mouse position, as shown in Figure 3-4.

About the Plug-in

This plug-in attaches to the document . onmousemove event, updating the global variables
MOUSE_X, MOUSE_Y, SCROLL_X, and SCROLL_Y. The event passes the value e to it, which is
only used by browsers other than Internet Explorer. It does not require you to pass it any
arguments, nor does it return any values.

Ficure 3-4
This plug-in lets
you know where
the mouse
pointer is.

@ Pugin asipt- Widow Wt Bpleer o5 |
@Oﬂ' I.F'_ 4 Lhwra ' Bobin' D skt op Pl accurrg lnd Lhim - | -I-?.l ® |
W | PlgHn bstcnpt

Meuse LT = 301,25 Serell 3, =50

J'I."'-.-I.-I-n Tl turer D ped dyreaUimd Etn b oo D e direaTim d Ttn lbn o Ermdea Dimd diy ™
| m BB

M Camputar| Protacted Mode: Off 4 v ik -

Chapter 3: The Core Plug-ins

Variables, Arrays, and Functions

e The event as passed to the function by browsers other than
Internet Explorer. e .pageX and e .pageY contain the X and Y
locations of the mouse pointer.

window.event Internet Explorer uses the window.event property instead of
an event passed as an argument. The clientX and clientY
subproperties contain the X and Y locations of the mouse pointer.

document . If the browser is Internet Explorer then the scrollLeft
documentElement and scrollTop properties of this property are accessed to
determine the amount of horizontal and vertical scroll.

window On browsers other than Internet Explorer the pageXOffsett
and pageYOf fset properties of window are accessed to
determine the amount of horizontal and vertical scroll.

MOUSE_X Global integer containing the current horizontal coordinate of the
mouse pointer

MOUSE_Y Global integer containing the current vertical coordinate of the
mouse pointer.

SCROLL_X Global integer containing the amount the browser has been
scrolled vertically, in pixels.

SCROLL_X Global integer containing the amount the browser has been
scrolled vertically, in pixels.

How It Works

This function traps the document . onmousemove event and accesses either the e value
passed to it in browsers other than Internet Explorer or, in Internet Explorer, it accesses the
global window.event property. Using these values it sets the values of the global variables
MOUSE_X and MOUSE_Y to the current X and Y coordinates of the mouse pointer.

The scrollLeft and scrollTop properties of document . documentElement are also
accessed in Internet Explorer to determine the amount of any horizontal and vertical
scrolling. These values are placed in the global variables SCROLL_X and SCROLL_Y. In
browsers other than Internet Explorer, SCROLL_X and SCROLL_Y are given their values
based on the pageXOf fset and pageYOffset properties of window.

The value true is then returned to allow the event to be acted on by the browser.

How To Use It

You will not access this function directly. Instead, by calling the Initialize () plug-in as
recommended, the values needed to determine the X and Y locations of the mouse pointer
and any horizontal or scrolling values are placed in the global variables MOUSE_X, MOUSE_Y,
SCROLL_X, and SCROLL_Y and are kept constantly updated.

To illustrate how you can use these, the following code will display these values in
real time:

<div id='output's></div><p>
PaddingPaddingPaddingPaddingPaddingPaddingPaddingPaddingPaddingPadding

Q

2

Plug-In JavaScript: 100 Power Solutions

<scripts>
window.onload = function()

{

setInterval (simpleInterrupt, INTERVAL)

function simpleInterrupt ()

O('output') .innerHTML =
! Mouse X,Y = ' + MOUSE X + ',' + MOUSE_ Y +
' Scroll X,¥ = ' + SCROLL X + ',' + SCROLL_Y

}

}
</scripts>

The first section is within the HTML body of a web page and is used to create a div into
which the output will be inserted. Underneath the div there’s a line of text made up from
repeating the word Padding. This is used to make the text overflow (since there are no
spaces in it), causing the bottom scrollbar to appear so you can move the scrollbar and see
the offset value change in real time. If your browser is set very wide, you should resize it
until the scrollbar appears.

In the <script> section there's a single main line of code that sets up a regular interrupt
using the setInterval () function, passing it the name of the function to call (which is
simpleInterrupt) and the frequency at which it should be called in INTERVAL (which
is 30 by default). This means the function simpleInterrupt () will be called up every
30 milliseconds.

Tip In JavaScript, whenever you wish to reference a function by its name without actually calling
the function, you omit the final opening and closing brackets. In this instance, the
setInterval () function knows that you are passing only the name of the function. If you
used opening and closing brackets, the function would first be called and the value it returned
would be passed to the set Interval () function, which is probably not what you want.

The simpleInterrupt () function uses the 0 () plug-in you have already seen to select
the div ‘output” object by name. It then assigns the following string to that object’s
innerHTML property. This has the effect of inserting the string as if it were entered between
the opening and closing div tags. The value assigned is some text and the values in the four
global variables.

To try this for yourself, enter the example code (as well as entering the required initial
pair of <script> commands to load in the PJ s file and calling the Initialize () plug-in),
or select exampleO4.htm from the plug-ins.zip file, which you can download from the
companion website at pluginjavascript.com.

Then resize your browser so that it is fairly small and the bottom scrollbar is visible.
Move the mouse about within the browser and move the scrollbar to see the values
displayed change in real time. Because of the way the scrolling event works, you will only
see its values change when you release the mouse button after moving one of the scrollbars.

PLUG-IN

Chapter 3: The Core Plug-ins

As you can see, with very little work you can look up important values associated with
the mouse whenever you need them. You also just saw the 0 () plug-in being used in a real
situation.

The Plug-in

function CaptureMouse (e)

{

if (BROWSER == 'IE')

{

SCROLL_X = document.documentElement.scrollLeft
SCROLL_Y = document.documentElement.scrollTop

MOUSE X = window.event.clientX + SCROLL_X
MOUSE Y = window.event.clientY + SCROLL Y
}
else

{

SCROLL_X = window.pageXOffset
SCROLL_Y = window.pageYOffset
MOUSE X = e.pageX
MOUSE Y = e.pageY

}

return true

CaptureKeyboard()

This plug-in makes a note of any keypresses made and stores the result in the global
variable KEY_PRESS, as demonstrated by the example in Figure 3-5, which has detected the
Alt key being pressed.

About the Plug-in

You will not need to call this plug-in yourself because it should already have been called by
the Initialize () plug-in. It doesn’t require any arguments and doesn’t return any that
you can use.

Ficure 3-5 inug-lnh.l:impt-“dum&pmr @@E

Determining which — r — . :
keys have been @D' 8] Chlkers\RohinhDe st op'\PlLearnplel S im |H| % |
pressed is easy e ———

with this plug-in. | B Plg-in bt

Tou prasmd Al

W Computar] Probactsd ke OfF dg o« miaps -

43

44 Plug-1n JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

e The event as passed to the function by browsers other than Internet
Explorer. Either e . charCode or e.keyCode contains the value of
the key pressed.

window.event Internet Explorer uses the window.event property instead of an
event passed as an argument. The keyCode contains the value of
the key pressed.

BROWSER Global variable used to determine the browser.

KEY PRESS Global variable to be assigned the value of the keypress.
fromCharCode () JavaScript function to convert Unicode values to characters.
FromKeyCode () Plug-in to return the value of a keypress or its name if it is one of

many special characters such as ‘Esc’, ‘Home’, and so on.

How It Works

This function works differently depending on whether you are using Internet Explorer or
not. If you are, it looks up the keypress in window. event .keyCode and passes it through
the FromKeyCode () plug-in, which will assign a string if the keypress was a special one
such as ‘PgUp’, ‘Backspace’, and so on. Then, if the value is still a number (that is, it hasn’t
been substituted for a special key name), the JavaScript £romCharCode () function converts
it from its Unicode value to an actual key value, so that if, for example, the key e is pressed,
then the value ‘e’ is returned.

On non-Internet Explorer browsers, both e . charCode and e . keyCode are checked for
a value because both the events document . onkeydown and document . onkeypress are
captured by this function. One function captures regular keys, while the other handles the
special keys already referred to, so combining both into the same function makes sense. So,
if e. charCode has a value, it is passed through the JavaScript £romCharCode () function to
convert it from its Unicode value. Or, if e . keycode has a value, a special key was pressed,
so its value is passed through the FromKkeyCode () plug-in to look the key name up.

In either case, the result is that KEY PRESS will contain a letter, number, punctuation
symbol, the name of a special key, or simply a key number if it is none of the others. There is
no keyboard buffering to, for example, create strings of input, as only the last key pressed is
saved. However, it is quite possible to create an input function using this if you need one.

Finally, a value of true is returned to allow further processing of the event by the browser.

How To Use It

Using this plug-in is as simple as referencing the global variable, KEY PRESS, that it maintains.
The following is a simple example that continuously updates the contents of a div with the
value of the last key pressed:

<div id='output's></div>

<scripts>
window.onload = function ()

{

setInterval (simpleInterrupt, INTERVAL)

PLUG-IN

Chapter 3: The Core Plug-ins

function simpleInterrupt ()

{
}
}

</scripts>

O('output') .innerHTML = ' You pressed: ' + KEY PRESS

Again (and I won’t mention this any more), this assumes you have already included the
lines to load in PJ.js and called the Initialize () function.

The interrupt is set up so that the value of the last keypress can be continuously displayed.
If you prefer, you can always use a command such as the following in the loop instead:

alert ('You pressed: ' + KEY PRESS)

However, it is intrusive, and you have to click the OK button to close the alert each time
it is called. What’s more, it locks up the browser because the alert () function prevents
you from doing anything else (even closing the browser) until you have clicked OK, and
even then the alert will pop up again, and again, forever.

T1P Because of the problem of alext () potentially taking over a browser if placed within a loop,
this book includes an alternate function called Alert () (with an upper case A) which you may
prefer to use. It does not lock the browser and has other benefits too. For further details, please
refer to Chapter 13.

The Plug-in

function CaptureKeyboard (e)

{

if (BROWSER == 'IE')

{

KEY_ PRESS = FromKeyCode (window.event .keyCode)

if (KEY_ PRESS > 0)
KEY PRESS = String.fromCharCode (KEY PRESS)

}

else

{

if (e.charCode) KEY PRESS = String.fromCharCode (e.charCode)
else if (e.keyCode) KEY PRESS = FromKeyCode (e.keyCode)

}

return true

FromKeyCode()

This plug-in returns the name of the key pressed if it is a special one such as ‘Ctrl” or “Alt’;
otherwise, the value passed to it is returned, as shown in Figure 3-6, in which the
translations for key codes 1 through 144 are displayed.

46

Plug-In JavaScript: 100 Power Solutions

Ficure 3-6 | # Dlugin uaScipt- Wndows Weerat Bplorar | 1= o |
This plug-in returns I RS -
meaningful names @E' 8] Ciillsers\RohivhDe o \Pl\saroplel . itm [+ x |

for key codes. W | Pugen beasrpt

1.2, 5,45 6.7 Backomaca, Tab, 10, 11, Center, Enter. 14, 15, Shuft, Conrel, At
Paure, Capslork, 21, 22, 23, 24, 23, 26, B, 28, 29, 30, 31, 32 Fgllp, Fgln, End,
Home, [eft, Up, Eight, Diawen, A1, 42, 43, 44, Tra, Del, 47, 48, 49, 50, 51, 520 55, 54,
55, S&, 5T, 5B, 59 60, &1, &2, 63, 64, 65, 66, 67, &8 &3 T, 172, T3, T4, T, Th,
TTOTS. TR B0.81,82, 83, 54, B5, B, BT 80,89, 7, Wiedowe, 32, Megn, M, 75,
W, BTN 00 106, 101, 103, 103, 104, 105, 106, 107, 108, 10%, 110, 111, 112,
113, 114, 115, 118, 177, 118, 113, 120, 121, 122, 123, 124, 125, 124, 127, 128
128, 130, 137, 132, 123, 134, 135, 136, 137, 13E, 135, 140, 141, 142, 143,
Hurdock,

M Camputar| Protacted Mode: Off 4 v ik -

About the Plug-in

This plug in takes a key code as an argument and returns either a string representing the
special key that was pressed, or the code if no such key was pressed.

Variables, Arrays, and Functions

c Key code passed to the function and returned by it if it does not
represent a special key

How It Works

This function uses a switch () statement to test the value of ¢ and return various strings if
it matches set values. If none of the values match, then c is returned.

How To Use It

Generally this plug-in will be called for you by the CaptureKeyboard () plug-in.
However, you may have an application for which you’d rather not return the strings
given, or you'd rather return different names. In these cases, feel free to modify the plug-in
to your requirements.

For example, if you don’t want the keypresses created by pressing the sHiFT key, you
might prefer to return a value of the empty string for that value instead of the string ‘shirr’.
That way, when the user presses the shirt key followed by the M key, for example, you will
only see the value ‘M” and not ‘sHiFt” followed by ‘M’

The reason I've gone to the bother of trapping these special keys is that, although there
are already useful input features built into JavaScript, these plug-ins allow you to, for example,
set up various special keys to move objects around the screen or perform particular functions
the moment a key is pressed.

Chapter 3: The Core Plug-ins

Here’s a combined HTML and JavaScript example to return the translations for codes 1
through 144:

<div id='output's></div>

<script>
window.onload = function()
{
for (j =1 ; j < 145 ; ++3)
O('output') .innerHTML += FromKeyCode (j) + ', '

}

</scripts>

An interesting point to note here is the use of the += operator to keep appending to the
contents of the innerHTML property of the ‘output’ div.

The Plug-in

function FromKeyCode (c)

{

switch (c)

{
case 8: return 'Backspace'
case 9: return 'Tab'
case 12: return 'Center'
case 13: return 'Enter'
case 16: return 'Shift'
case 17: return 'Control'
case 18: return 'Alt’
case 19: return 'Pause'
case 20: return 'Capslock'
case 27: return 'Esc'
case 33: return 'PgUp'
case 34: return 'PgDn'
case 35: return 'End'
case 36: return 'Home'
case 37: return 'left!
case 38: return 'Up'
case 39: return 'Right'
case 40: return 'Down'
case 45: return 'Ins'
case 46: return 'Del'
case 91: return 'Windows'
case 93: return 'Menu'
case 144: return 'Numlock'

return c

4

PLUG-IN

48

Plug-In JavaScript: 100 Power Solutions

GetLastKey()

This plug-in returns the value of whatever the last keypress was and then resets the stored
value to the empty string to indicate that the key value has been retrieved. Figure 3-7 shows
a simple input function created using this plug-in.

About the Plug-in

This plug-in doesn’t take any arguments and returns the value of the most recently pressed
key (if any).
Variables, Arrays, and Functions

k Local string variable that holds the value of KEY PRESS
before resetting it and returning k

How It Works

This plug-in assigns the value in KEY_PRESS, the global variable that contains the last key
pressed, to the local variable k. Then it resets KEY_PRESS to the empty string to show that
the value has been read. Finally, the contents of k is returned. If there was no keypress, the
empty string is returned.

How To Use It

To use this plug-in, call it with no arguments and it will return either a letter, number,
punctuation symbol, or a special key name. If the key was none of these, then its code is
returned.

You can use this plug-in to create a very simple input function, like this:

What is your name? </spans>

<scripts>
window.onload = function ()

{

input ('name')

function input (id)

{

var interrupt = setInterval (simpleInterrupt, INTERVAL)

Ficure 3-7 ‘ﬁnug-lnhu:impt-“duumaq:brnr @

This plug-in can - s] . ' |
build an input KL= (] crunenthoniniestop'Bhemrpled T 4] %

function.

i ﬂ'Phg'lllh-allpt

Twhat 15 wour came T marshall mathers

8 Camputer| Probactsd Wode: OFF v HINEE v

PLUG-IN

Chapter 3: The Core Plug-ins

function simpleInterrupt ()

{

var k = GetLastKey ()
if (k == 'Enter')

k = .
clearInterval (interrupt)

}

0(id) .innerHTML += k
}
}
</scripts>

To make this work, a span is created in which the input will be placed. Then the JavaScript
code makes a call to a new function called input (), passing the ID of the span. The input ()
function then sets up a repeating interrupt using setInterval () to the subfunction
simpleInterrupt ().

The simpleInterrupt () function then calls GetLastKey () each time it is called. If the
value is ever ‘Enter’, it means the user has pressed the Enter key and k is assigned the value
*.” (a period), and the interrupt is disabled using clearInterval (), with the interrupt ID
previously assigned to interrupt.

Finally, the innerHTML property of the object indicated by id has the latest key value
returned appended to it. If the value is the empty string, then nothing is appended.

All your code has to do then is look at the end of the string to see if it is the period
character to indicate that the user has pressed Enter. Your code then removes that character
and uses the remainder of the string. Alternatively, you can use a different end of input
marker. Whatever you do, if you want to create your own input routine rather than use a
ready-made one such as an <input type='text'> tag, you have to go through all these
swings and roundabouts of interrupt driven calls, because that’s the way JavaScript works.
However, at least you now have a way of doing so when you need it.

For a bit of fun, if you store the input somewhere hidden rather than in a span, you can
check for a sequence of characters to be entered—much like entering cheat codes into a
game—and if a recognizable sequence is entered, you can trigger a bonus feature.

The Plug-in

function GetLastKey ()

{

var k = KEY PRESS
KEY PRESS = ''
return k

PreventAction()

This plug-in is for preventing an object’s drag or select event (or both) from occurring. For
example, sometimes you may wish to prevent a section of text from being copied, or at least
from being highlighted, and you can easily do that with this plug-in. Figure 3-8 shows one

49

50

Plug-In JavaScript: 100 Power Solutions

Ficure 3-8 Plug-In besa Serpt - Wind ol Interst Expbonar
The image and the I —TY-

second sentence m' @] C.ALlers\RobirhDe st ophPhonrvpl el tm | 44| x |
cannot be dragged
or selected.

W | = Pug-n breaSorpt

pel. And ts tet b5 uomele ciable

The mage Sanlgde-Esiri

W Compiutar] Probactsd ko OFF dg o« Wmiaps -

section of text that is being selected, while the second sentence is not selectable. The GIF
image is also undraggable.

About the Plug-in

This plug-in takes three arguments and, depending on their values, either prevents or
enables certain events to occur. The arguments are as follows:

e id TheID of an object, such as a div or span section of HTML, a GIF image, or any
other object

e type Thisargument can have one of three string values: ‘drag’, ‘select’, or ‘both’.
If the value is “drag’, then the object referred to by id will either be prevented from
being dragged or allowed to be dragged, depending on the value of onof£. If it is
‘select’, then the selection of text will be either prevented or allowed, depending on
the value of onof£. If it is ‘both’, then both these events will be either prevented or
allowed.

® onoff This argument should be either true or false; alternatively, the values 1
or 0 are acceptable. The values true or 1 mean the event (or events) in the variable
type are prevented. If onof f is false or 0 then the event (or events) are allowed.

Variables, Arrays, and Functions

ondragstart Event of the object passed in id

onselectstart Event of the object passed in id

onmousedown Event of the object passed in id

MozUserSelect Property of the object passed in id (only used by Mozilla-based
browsers such as Firefox)

How It Works

The plug-in code is divided into two main sections. In the first, the drag event of the object
referenced by id is managed, while the second half is for handling the id object’s select
event. Each of these halves is again split into two parts. In the first half of each, the events it
handles are prevented, while the second half is for re-enabling an event after it has been
disabled.

Chapter 3: The Core Plug-ins

To provide these features, if the browser supports it, either the ondragstart or
onselectstart event of the object in id (or both events if the value in type is ‘both’) is
assigned an inline, anonymous function that returns the value false, which has the effect
of cancelling any further action.

If the event is not recognized, then the onmousedown event for the object in id is caught and
set to return false. This is not that great a solution because it prevents other onmousedown
events from being attached, but it does have the effect of preventing the event from occurring.

In the case of Mozilla-based browsers such as Firefox, the special property MozUserSelect
is set to either ‘none’ to prevent text from being selected, or ‘text’ to re-enable it. This is
necessary because these browsers will not use the onselectstart event, and using this
property is less intrusive than capturing the onmousedown event.

How To Use It

To prevent the copying and pasting of the contents of a div, for example, you can attach this
function to its onselectstart event, like this:

PreventAction('mydiv', 'select',6 true)

If a user tries to select any text, this plug-in stops the event before it can get going. This
is not merely a relatively easy way to prevent people from copying text from your web
pages, it also helps prevent text from being inadvertently highlighted when you are using
the mouse to drag items about.

You can also use it in to prevent an object from being dragged in the browser or dragged
and dropped elsewhere, like this:

PreventAction('mygif', 'drag', true)

Here’s some code that illustrates both of these uses:

The image cannot be dragged.

<span id='text'sAnd this text is unselectable

<scripts>
window.onload = function ()

{

PreventAction('gif', 'drag"', true)
PreventAction('text', 'select',6 true)
}
</scripts>

In the HTML section of the example, a GIF image with the name i1.gif is displayed and
given the ID of “gif’. This is followed by some regular text and a span with the ID of “text’.

Below that, in the <script> section, the GIF image has its drag property disabled, and
the span text is made unselectable. If you try either of these actions they will fail. However,
Internet Explorer will allow you to continue the selection within the span if you commence
a select action from outside the span. You can work around this bug by setting the whole
document as unselectable, like this:

PreventAction (document .body, 'select', true)

a

PLUG-IN

Plug-In JavaScript: 100 Power Solutions

However, this means that nothing at all on your web page can be selected. Other
browsers do not have this bug.

The Plug-in

function PreventAction(id, type, onoff)
{
if (type == 'drag' || type == 'both')
{
if (onoff == true)
{
if (typeof 0O(id) .ondragstart != UNDEF)
0(id) .ondragstart = function() { return false }
else 0(id) .onmousedown = function() { return false }

}

else
{
if (typeof 0O(id) .ondragstart != UNDEF)
0(id) .ondragstart v
else 0O(id) .onmousedown = ''

1
}
if (type == 'select' || type == 'both')
{
if (onoff == true)
{
if (typeof 0O(id) .onselectstart != UNDEF)
0(id) .onselectstart = function() { return false }
else 1f (typeof S(id) .MozUserSelect != UNDEF)
S(id) .MozUserSelect = 'none'
else 0(id) .onmousedown = function() { return false }
1
else
{
if (typeof 0O(id) .onselectstart != UNDEF)
0(id) .onselectstart = '!'
else if (typeof S(id) .MozUserSelect != UNDEF)
S(id) .MozUserSelect = 'text'
else O(id) .onmousedown = '!'
}

NoPx() and Px()

These plug-ins are short but powerful functions that provide opposing functionality.
NoPx () removes the ‘px” suffix attached to some CSS properties, while Px () attaches the
‘px’ suffix to a property. Figure 3-9 shows the plug-ins in use.

Chapter 3: The Core Plug-ins 53

Ficure 3-9 ﬁnu;mm:mm-mdum&;mr @

These plug-ins - n T |

make it easier to GLJ' & '5-'&'-'"!"'“*'“'“ML_"'J:W'"'?‘""“ % "

work in values of b |
ED -in breno

pixels. Wl kig-in brewiang

The wabie rebiamed For B wackh of "sepaee’ b1 100 po

oA e r I\. AUk e r i reg RoPTHI thi 3 e v 1000

W Computar] Probactsd ke OfF dg o« miaps -

About the Plug-ins

These plug-ins require an object’s property to be passed to them. If NoPx () is passed a
value, then the value returned will be that of the value less any ‘px’ suffix. If Px () is called,
then the value returned is that of the value passed to the plug-in, combined with the suffix
‘px’. In no case is any property actually changed by these plug-ins, as values are merely
derived based on the properties, and it is up to you to use them as required. The plug-ins
require the following argument:

¢ value The property to be modified

Variables, Arrays, and Functions

‘ replace () ‘ JavaScript function for replacing a subsection of a string

How They Work

The NoPx () function uses the JavaScript replace () function to replace any occurrences of
‘px’ in the string it is passed, and then returns the result, multiplied by 1 to ensure it is
turned from a string into a number.

The Px () function adds the suffix ‘px’ to any value it is passed and then returns the result.

How To Use Them

The NoPx () function is very simple in that all it does is replace the substring ‘px’ (if found)
with the empty string in any string it is passed. Thus it can strip away the trailing ‘px” suffix
that many object properties have. For example, the style.marginLeft property is just one
of many that end in ‘px’, so the following call will strip it out:

value = NoPx (S (id) .marginLeft)

In this example the object referred to by id is passed to the s () function, which returns
the style subobject. The marginLeft property is then appended to this and the resulting
string value, which might look like “10px’, for example, is then passed to the NoPx () function.
In this case, it would return the number 10, which is then assigned to the variable value.

PLUG-IN

o

10

Plug-In JavaScript: 100 Power Solutions

The Px () function performs the inverse, adding the “px” suffix to a value. This is useful
when you need to assign “px’ to an object’s property that needs to know you are working in
pixels. For example, the style.width property can be used to set the width of an object,
but it needs to have ‘px” added to it. To save you having to do this you can make the
following call instead:

S(id) .left = Px(135)

This command uses the S () function to set the width of the object referred to by id to
135 pixels, since Px (135) evaluates to the string “135px’.
Here’s an example of how you might use these plug-ins:

<div id='square's>I'm a square</divs>

<scripts>
window.onload = function ()

{

S('square') .width = Px(100)

S('square') .height = Px(100)

S('square') .backgroundColor = 'yellow'

alert ("The value returned for the width of 'square' is: " +

S('square') .width + '\nAfter using NoPx() this becomes ' +
NoPx (S ('square') .width))

}

</scripts>

The HTML section contains a single div element with some text. In the <script>
section the div is resized to become 100 pixels wide by 100 high, using the Px () function to
create the values. The background is also set to yellow so you can see the square.

After this there’s a call to the JavaScript alert () function in which the value of the
object’s width style property is displayed ("100px’), and that value is passed through the
NoPx () function and redisplayed. This time it’s the number 100.

The Plug-ins

function NoPx (value)

{
}

function Px(value)

{
}

return value.replace(/px/, '') * 1

return value + 'px'

X() and Y()

This pair of similar functions returns an object’s exact horizontal or vertical offset from the left
or top of the browser. The plug-in names are so short because they are used very frequently
and it saves on typing; it also makes your source code easier to follow. In Figure 3-10 you can
see that the left and top edges of the div are inset from the browser edge by 8 pixels.

Chapter 3: The Core Plug-ins

Ficure 3-10 inug-lnh.llimpt-“dummapbrm @@E

Looking up the

absolute horizontal @ﬁ' & "f’r""'""'hj’% e[]
and vertical offsets Rz e from webpeg e

. o Plig-in brewicopt
of an object % | B Phg -
Te & semore i The chiect ‘square’ i1 stpaxbon 61
(614
W Compiutar] Probactsd kode OfF dg o« Wmiaps -

About the Plug-ins

These plug-ins return the absolute horizontal or vertical offsets of an object from the left or
top of the browser window. They take this argument:

e id The object whose offset is to be returned

Variables, Arrays, and Functions

obj Local object copy of the id object
offset Local integer used to hold the horizontal or vertical offset
offsetParent The parent offset object
offsetLeft The object’s left offset
offsetTop The object’s top offset
How They Work

These plug-ins first make a copy of the object represented by id in obj and set the local
variable of fset to either the of fsetLeft or of £setTop property of the object. This is the
amount by which the object is offset from its parent.

Then, in case the parent object is also a subobject, the if () and while () statements
recurse back through all parent objects, adding their offsets in turn to of £set, until there
are no more parent objects. At this point of £set contains the absolute distance in pixels
from the left side or top edge of the browser window to the left or top of the object. This
value is then returned.

How To Use Them

To use these plug-ins, pass the ID of an object to them and they will return either the
absolute horizontal or absolute vertical position of its left side or top edge in pixels. Here’s
some code to illustrate their use:

<div id='square's>I'm a square</div>

<scripts>

%

PLUG-IN

56

Plug-In JavaScript: 100 Power Solutions

window.onload = function()

{

S('square') .width = Px(100)
S('square') .height = Px(100)
S('square') .backgroundColor = 'yellow'
alert ("The object 'square' is at position " +
X('square') + ',' + Y('square'))
}
</scripts>

This example is similar to the previous one in that it creates a square div with the ID
‘square’, but in this example the object’s absolute left and top offsets are returned by the
alert () statement, with callsto X () and Y ().

The Plug-ins

function X (id)
{
var obj 0 (id)
var offset = obj.offsetLeft

if (obj.offsetParent)
while (obj = obj.offsetParent)
offset += obj.offsetlLeft

return offset

}

function Y (id)
{
var obj o(id)
var offset = obj.offsetTop

if (obj.offsetParent)
while (obj = obj.offsetParent)
offset += obj.offsetTop

return offset

W() and H()

In addition to needing to know the location of an object, as in the previous pair of plug-ins,

you often need to know their width and height, which you can determine with these
functions. Figure 3-11 shows the plug-ins being used to discover an object’s width
and height.

Chapter 3: The Core Plug-ins 57

Ficure 3-11 EPugin feascnpt - Window: W Bl =0 |
Determining the T F T e =
width and height of @'—@' £ "*'“""'Pﬂ% |42 % |
an object oz Lt =JE

0| 8 Phig-in et gt

]'l:'l.as-quilt F - The chject “square’ i3 100 by 100 pizab,

W Computar] Probactsd kode OfF dg o« miaps -

About the Plug-ins

These plug-ins return an object’s exact width or height, including any margins and borders.
They require the following argument:

* id The object whose dimensions are to be returned

Variables, Arrays, and Functions

offsetWidth The object’s width
offsetHeight The object’s height
marginLeft The object’s left margin width
marginRight The objects’ right margin width
marginTop The object’s top margin width
marginBottom The object’s bottom margin width
borderLeft The object’s left border width
borderRight The object’s right border width
borderTopWidth The object’s top border width
borderBottomWidth The object’s bottom border width
border The image object’s border property
NoPx () The plug-in to remove ‘px’ suffixes
How They Work

Each function adds together all the properties that affect either an object’s width or its
height. To return the width of an object, its of fsetWidth is added to its marginLeft and
marginRight properties, like this:

var width = 0(id) .offsetWidth +
NoPx (S (id) .marginLeft) +
NoPx (S (id) .marginRight)

38

Plug-In JavaScript: 100 Power Solutions

Next, a check is made of its borderLeftWidth and borderRightWidth properties by
adding the two values together to obtain their sum. If the result is greater than 0, then that
amount is placed in the variable bord. Here is that code section:

var bord = NoPx(S(id) .borderLeftWidth) +
NoPx (S (id) .borderRightWidth)

Next, because an object’s border style property overrides an image’s border property (even
though the border image property retains its value), if bord has a value it is subtracted from
the value to be returned. If it doesn’t have a value, then the object’s image border property
value, multiplied by two (once for the left and once for the right border), is subtracted from the
value to be returned. This is because the of £setWidth property already includes the widths of
any borders, so they are taken off so as to return only the object and its margin’s width. Here is
the code for this section:

if (bord > 0) width -= bord
else 1if (0(id) .border) width -= O(id) .border * 2
return width

An object’s padding width is not returned because none of the plug-ins need to know
this value.

To return the height of an object, the same process is used in the H () plug-in, with
the properties of fsetHeight, marginTop, marginBottom, borderTopWidth,
borderBottomWidth, and border.

In either case the calculated value is returned.

CAUTION If you add together the H () heights of two vertically adjacent boxes (perhaps in order to
specify the height of a containing div), if there are margins, the calculated height will be greater
than the height the browser actually uses to render both boxes on top of each other, due to vertical
margin collapsing, in which only the largest of the two margins is used.

How To Use Them

To use these plug-ins, pass them the ID of an object whose dimensions you need. Here’s
some code showing how you might use them:

<div id='square'>I'm a square</divs>

<scripts>
window.onload = function ()

{

S('square') .width = Px(100)
S('square') .height = Px(100)
S('square') .backgroundColor = 'yellow'

alert ("The object 'square' is " +
W('square') + ' by ' + H('square') + ' pixels.')
}

</scripts>

PLUG-IN

12

Chapter 3: The Core Plug-ins 59

This example is quite similar to previous ones in that the div called ‘square’ is created in
the HTML section. The difference here is that the alert () function displays the width and
height of the object using the w() and H() plug-ins.

NOTE You may find it interesting to note the use of all the S (), w(), H() and NoPx () plug-ins
here. Already you can see how these plug-ins are coming together to make your programming
much easier. Without the earlier functions to build on, these plug-ins might be two or three times
the size, but this way they only use a handful of characters, such as w('obj ') . Once you get a
little further into the book, even more powerful functions will become available to you that would
take dozens, if not hundreds, of lines of code to write from scratch.

The Plug-ins

function W(id)

{

var width = 0(id) .offsetWidth +
NoPx (S (id) .marginLeft) +
NoPx (S (id) .marginRight)

var bord = NoPx (S (id) .borderLeftwidth) +
NoPx (S (id) .borderRightWidth)

if (bord > 0) width -= bord
else 1if (0(id) .border) width -= 0(id) .border * 2

return width

}

function H(id)

{

var height = 0(id).offsetHeight +
NoPx (S (id) .marginTop) +
NoPx (S (id) .marginBottom)

var bord = NoPx (S (id) .borderTopWidth) +
NoPx (S (id) .borderBottomWidth)

if (bord > 0) height -= bord
else 1f(0(id) .border) height -= 0(id) .border * 2

return height

Htmi()

Because you will frequently find yourself needing to write to the innerHTML property of
objects, I wrote this simple plug-in to keep the code short and improve its readability, as
shown in Figure 3-12.

60

Plug-In JavaScript: 100 Power Solutions

Ficure 3-12 ﬁnu;mm:mm-mdum&;mr @
This plug-in makes - i T - - I
it easy to read and ELJ'] %L e tcbirhDe skt op \Plherarm | e 12 tm 4] &
write the HTML _ Mssnge from webipage ==

y Phig-in brewbcngt
contents of an ¢ | B8P =

object.

i , LeThizisn bading</H1»

This is a subheading

ok |

W Computar] Probactsd kode OfF dg o« miaps -

About the Plug-in

This plug-in returns the innerHTML property of the object it is passed. You can use it to
either read or write this property. Only the first argument is required to read a value, but
both are required to write one:

e id TheID of the object with the innerHTML property to access

* value The value to assign to the innerHTML property

Variables, Arrays, and Functions

‘ innerHTML ‘ The property containing the HTML text of an object

How It Works

To read a value, the plug-in uses the 0 () plug-in to reference the object in id and return its
innerHTML property. To write a value, you pass a second argument, value, to the plug-in.
If the code notices that this argument has been passed, the innerHTML property of id is
changed to value. In either case the value of the innerHTML property is returned.

How To Use It

You can either read or write to the innerHTML property of an object that supports it using
this function. To write to it you use a statement such as this:

Html ('mydiv', 'This is some new text')
To read from the property, you use a statement such as this:
var contents = Html ('mydiv')

Here’s some code that uses a couple of alert () calls so you can see the before and after
effects of using the plug-in:

<div id='heading's><hl>This is a heading</hl></div>

<scripts>

PLUG-IN

13

Chapter 3: The Core Plug-ins

window.onload = function()

{

alert (Html ('heading'))
Html ('heading', '<h2>This is a subheading</h2>")
alert (Html ('heading'))

}

</scripts>

The first section of HTML creates a div with an <h1> heading. Then the <script>
section immediately pops up an alert showing this value by using a call to Htm1 (). After
that, the value of the object’s innerHTML property is changed to a subheading, again using
Html (), and then a second call to the JavaScript alert () function redisplays the property,
using the Htm1l () function—at which time you will see that the contents has changed.

The Plug-in

function Html (id, value)

{

if (typeof value != UNDEF)
0 (id) .innerHTML = value
return O (id) .innerHTML

SaveState()

After you change the properties for an object, there are times when you might want to
restore it to its original state. This plug-in allows you to back up all the most important style
properties of an object. Figure 3-13 shows a div being prepared with a few values prior to
testing the Savestate () plug-in.

About the Plug-in

This plug-in backs up several of the most important style properties of an object, where they
can be later retrieved should you need them. It takes the following argument:

e id The object whose properties are to be backed up

Ficure 3-13 inug-lnh.l:impt-“dum&pmr @@E

Creating a div with T
whichI tg tesltV " @_D' £ Citlhen'fohirhLe skt op iPlezarmple L tm & | +?l % |

saving and . Phig-in byenicrmt
restoring states il S

[Ernropde Text

W Computar] Probactsd kode OfF dg o« Wmiaps -

61

62 Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

left The object’s style.left property
top The object’s style. top property
visibility The object’s style.visibility property
color The object’s style.color property
backgroundColor The object’s style.backgroundColor property
display The object’s style.display property
opacity The object’s style.opacity property
MozOpacity The object’s style.MozOpacity property
KhtmlOpacity The object’s style.KhtmlOpacity property
filter The object’s style.filter property
zIndex The object’s style.zIndex property

How It Works

This is a very simple plug-in that creates backup properties for each of the properties. Each
new backup property name begins with the string “Save_", and ends with the original
property name. The ones you may not know are MozOpacity, which is the opacity
property used by Mozilla based browsers such as Firefox, and KhtmlOpacity, which is
used by older versions of the Apple Safari browser.

How To Use It

To create a set of backup properties for an object, pass its ID to the SaveState () plug-in,
like this:

SaveState ('myobject ')

The following code shows a few style settings being made to an object and then its state
being saved:

<div id='mydiv's>Example Text</divs>

<scripts>
window.onload = function ()

{

S('mydiv') .width = Px(200)
S('mydiv') .height = Px(100)
S('mydiv') .backgroundColor = 'green'
S('mydiv') .color = 'white'
S('mydiv') .position = 'absolute'

SaveState ('mydiv'")

}

</scripts>

PLUG-IN

14

Chapter 3: The Core Plug-ins

This creates a green, 200 by 100-pixel rectangle with white text whose position is
absolute (and the object is therefore movable). In the next plug-in, you'll see what happens
if these values are changed and the saved state is restored.

The Plug-in

function SaveState (id)

{

0(id) .Save_ left = S(id) .left

0(id) .Save_top = S(id) .top

0(id) .Save visibility = S(id) .visibility
0(4id) .Save_color = S(id) .color

0 (id) .Save_backgroundColor = S(id) .backgroundColor
0 (id) .Save display = S(id) .display
0(id) .Save_ opacity = S(id) .opacity
0(id) .Save_MozOpacity S (id) .MozOpacity
0(id) .Save_ KhtmlOpacity S (id) .KhtmlOpacity
0(id) .Save filter = S(id) .filter

0 (id) .Save_zIndex = S(id) .zIndex

RestoreState()

This is the partner plug-in for SaveState (). It will restore an object’s major style settings to
the way they were when they were saved. Figure 3-14 shows that the div created in the
previous plug-in has been modified; its colors are different and it has been moved to the
right. An alert box has popped up to let you see this before the Restorestate () plug-in is
called to restore the div to its original state.

About the Plug-in

This plug-in restores the style properties that have been saved using the savestate ()
plug-in. It takes this argument:

¢ id The object whose style properties are to be restored

Ficure 3-14 ﬁnug-lnm:impt-“dum&pbﬁr @

The SaveState() . ; TR AT |

and RestoreState() ELJ' £ tilLherstRiohinhLe ktop \Pliearrple 14 him |*E
Muazuga fromiasbpage

plug-ins in action 37 | @ Phig-in lenicrpt

By Clik DR see them dhange back aguin

—

Lo |

W Compiutar] Probactsd kode OFF dg o« miaps -

63

64 Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

left The object’s style.left property
top The object’s style.top property
visibility The object’s style.visibility property
color The object’s style.color property
backgroundColor The object’s style.backgroundColor property
display The object’s style.display property
opacity The object’s style.opacity property
MozOpacity The object’s style.MozOpacity property
KhtmlOpacity The object’s style.KhtmlOpacity property
filter The object’s style.filter property
zIndex The object’s style.zIndex property

How It Works

This plug-in reverses the action of the SaveState () plug-in by retrieving the values saved
in the properties, beginning with the string ‘Save_’, and restoring them. If there are any
additional properties you need to save and restore, they are very easy to add to these
functions.

How To Use It

To use it, just pass this plug-in the ID of an object whose state has already been saved,
like this:

RestoreState ('myobject')

The following example extends the previous plug-in to both create a div and then
change it twice, the first time by modifying a few of its style properties and the second to
change it back by calling RestoreState (). In between, the JavaScript alert () function is
called to give you a chance to view the screen before moving on:

<div id='mydiv'>Example Text</divs>

<scripts>
window.onload = function()

{

S('mydiv') .width = Px(200)
S('mydiv') .height = Px(100)
S('mydiv') .backgroundColor = 'green'
S('mydiv') .color = 'white'
S('mydiv') .position = 'absolute'

SaveState ('mydiv!')

alert ('Click OK to see some changes')

PLUG-IN

15

Chapter 3: The Core Plug-ins

S('mydiv') .backgroundColor = 'blue'
S('mydiv') .color 'vellow'
S('mydiv') .left = Px(100)

alert ('Click OK to see them change back again')

RestoreState ('mydiv')

}

</scripts>

If you enter this example into your browser, the div will start off as white text on green,
then it will change to yellow on blue and move to the right, and finally it will return to its
original colors and position, all with a single call to RestoreState ().

The Plug-in

function RestoreState (id)

{

S(id) .left = 0(id) .save_left
S(id) .top = 0(id) .Save_ top
S(id) .visibility = 0(id) .Save visibility
S(id) .color = 0(id) .Save_color
S (id) .backgroundColor = 0O(id) .Save backgroundColor
S(id) .display = 0(id) .Save display
S(id) .opacity = 0(id) .Save_opacity
S (id) .MozOpacity 0(id) .Save MozOpacity
S(id) .KhtmlOpacity 0(id) .Save_ KhtmlOpacity
S(id) .filter = 0(id) .Save_ filter
S(id) .zIndex = 0(id) .Save_zIndex

}

InsVars()

In JavaScript, when you want to create a string of text that also includes the values of
different variables, you have to keep closing the string, then use a + sign followed by the
variable name, follow it with another +, and then re-open the string—and you have to do
this for every single variable. However, this plug-in lets you easily drop the values of
variables into any string. Figure 3-15 shows three values being inserted in this manner.

About the Plug-in

This plug-in requires at least two arguments. The first is the string in which to insert various
values, and the second, third, and so on, are the values to be inserted, as follows:

e string The string in which to insert values

e valuel Avalue toinsertin string

® value2 Asvaluel (etc...)

65

66

Plug-In JavaScript: 100 Power Solutions

Ficure 3-15 ﬁnug-lnhulimpt-“dummapml Mes s fram mmi = EiE

This plug-in makes @D' £l ':_"'-.IJIHI'-Fiatlin'-['Hl-tl:lp'-F'J'ﬂ':I w |

it easy to insert
values into strings.

> ﬁ'ﬂhg--l-h-a}:-pt i Y The prochsct of i arsd 112 42

Thoe exadaple JaealSongt Leske e thas

“mccapkls L ¥

T

slact ([rwVmrm ["The preduct of Bl mnd @2 im 3™, &6, 7, 68 " 71|

<racripts> =
i Campuker| Probarhed Mo e OFf fy = Himes -
Variables, Arrays, and Functions
tmp Local variable containing the string to process
arguments Array of arguments passed to the plug-in
replace () JavaScript function to replace substrings in a string
regExp () JavaScript function to create a regular expression

How It Works

This plug-in makes use of the handy fact that JavaScript passes an array to every function
that is called. This array is called arguments, and each element of it is one of the values that
has been passed to the function.

Therefore, the first element is extracted and placed in tmp, a local variable. This is the
string in which to make the variable substitutions, like this:

var tmp = arguments[0]

Then a for () loop is used to iterate through each remaining element. If there is a
substring with the value ‘#1” within the string tmp, the first value is inserted in its place. The
same happens for ‘#2’, ‘#3’, and any number of similar substrings, with each being replaced
by the next in line of the values passed to the plug-in, like this:

tmp = tmp.replace(new RegExp('#' + j, 'g'), arguments[j])

To allow one value to be inserted in many places in a string, a global replace is enabled
by using the RegExp () object to create a new regular expression with the value ‘g’ supplied
to indicate a global search and/or replace.

Finally, the modified tmp string is returned.

How To Use It

To insert values into a string using InsVars (), you call it up in the following manner:

string = InsVars('The product of #1 and #2 is #3', 6, 7, 6 * 7)

PLUG-IN

16

Chapter 3: The Core Plug-ins

This statement will assign the value “The product of 6 and 7 is 42” to string. All you
have to remember is to use the same number of ‘#?’ tags as there are values to be inserted.

The Plug-in

function InsVars()

{

var tmp = arguments[0]

for (var j = 1 ; j < arguments.length ; ++3)
tmp = tmp.replace(new RegExp('#' + j, 'g'), arguments[j])
return tmp

StrRepeat()

Unlike many other languages, JavaScript doesn’t come with a function to create a new
string from a repeated substring. So here’s a plug-in to do the job, as shown in Figure 3-16,
in which a cheer is repeated three times.

About the Plug-in

This plug-in creates a repeated string based on a string and a number. It takes these
arguments:

® str Astring to repeat

* num The number of times to repeat the string

Variables, Arrays, and Functions

tmp Local string variable used to store the string as it is assembled

b Local integer variable used for looping

Ficure 3-16 ﬁnug-lnhu:impt-“duj Pbesiage from webpage E"

Using this plug-in i
- g i
to create a cheer. ﬁ"»,-] ALl
Thm chaera for thesmnar,
Ll ﬁ-ﬂlug-q. brenboriph § IA. Hip, Hip Haomp. Hip, Hip Haoarwy. Hip, Hip Hoorey,
Thoe ezainple Jawad ot |
“mccapkls | L
=ity = PThees okbed

StrPapawt ("Hip, Hip Hooomy-. ™, 3]
ALEET (ATT1E)
i acripte>

M Camputer| Probacted Mods OFF v Hines -

67

PLUG-IN

68

1

Plug-In JavaScript: 100 Power Solutions

How It Works

The plug-in uses a for () loop to assemble a final string created from num copies of str,
and then returns the new string.

How To Use It

To use this function, pass it a string and a number, like this:

string = 'Three cheers for the winner. ' +
StrRepeat ('Hip, Hip Hooray', 3)
alert (string)

This code places the repeated cheer into string and then displays it using a call to the
JavaScript alert () function.

The Plug-in

function StrRepeat (str, num)

{

var tmp = '

for (var j = 0 ; j < num ; ++3)
tmp += str

return tmp

HexDec()

The final two plug-ins in this chapter are to do with handling hexadecimal numbers,
something you have to do quite often in JavaScript, particularly when managing colors.
This one converts a hexadecimal number into decimal, as shown by Figure 3-17.

Ficure 3-17 ﬁnug-lnhu:impt-'l."hdum bdnamugn From s b Ei"

Converting a @'_C" '—F AL Riobi

number from =

Zexgdefimal to i | i Pug-n et J L The hieadacimal nurber FFFF iR decimal is 61535
ecima S

Tho: eszample JawaS ot Les

LA IPE >

mlect ("Ths Iaz:sdscimal nusbher FEFF in dacinml im " +
BexDea i ' FFEF' i)

i acripte>

M Camputer| Probacted Mods OFF v HInes -

PLUG-IN

18

Chapter 3: The Core Plug-ins

About the Plug-in

This plug-in requires a hexadecimal string to be passed to it, and it then returns that
number in decimal. It requires this argument:

* n Astring containing a hexadecimal number

Variables, Arrays, and Functions

‘ parselnt () ‘ JavaScript function to convert a string to a number

How It Works

This plug-in uses the JavaScript function parseInt () to convert a hexadecimal string to
a decimal number. It does this because the second parameter passed to it is 16. If the second
number were 8, for example, it would try to convert from an octal number, and so on.

How To Use It

Pass the HexDec () function any string containing a hexadecimal number and it will return
decimal number, like this:

alert ('The hexadecimal number FFFF in decimal is ' +
HexDec ('FFFF'))

In this instance the hexadecimal number FFFF is converted to 65,535 in decimal, and the
result is displayed using a call to the JavaScript alert () function.

The Plug-in

function HexDec (n)

{
}

return (parseInt (n, 16))

DecHex()

This plug-in takes a decimal number and turns it into a hexadecimal string, as shown in
Figure 3-18.

Fore 38 Vg o —————)

Converting a o . T
number from @"»J' &1 CitLhenobirtD:
decimal to ; 5 Th i iitinh I
) Phig-in brenScript ' e daciral nubier 103 in headeanmal iz ad
hexadecimal]

Thoe eszarple JaealS ongd Lesde H

| QK |

LA IPE >

Elect ("Thas dacimal numbec 171 io decimsl ix ™ +
[eoHaw £173) |

i acript>

i Computer| Probected Bode CFF i v HINPL w

69

10

Plug-In JavaScript: 100 Power Solutions

About the Plug-in

This plug-in requires a decimal number to be passed to it, and it then returns that number
in the form of a hexadecimal string. It requires this argument:

e n A decimal number to be converted into hexadecimal

Variables, Arrays, and Functions

‘ to.String () ‘ JavaScript function for converting a number to a string

How It Works

This plug-in uses two code segments combined into a single statement. The first segment
looks like this:

n<16 2?2 '0" : !

This is known as a ternary expression, in whichn < 16 is an initial test. The ? symbol
then indicates that if the result of the test is true then the value immediately following the »
should be returned. Otherwise the value following the : should be returned. In this example,
that means that values of n that are lower than 16 will result in the string '0' being returned,
while values of n that are 16 and above result in ' ' being returned.

The reason for this is that this plug-in will mostly be used by code that wants to create
color triplets for setting a color. These triplets are made up of three groups of two hexadecimal
characters, like these: FF0088, 112233, CCCCCC, and so on.

Each of these stands for hexadecimal FF (256 decimal) shades of the colors red green
and blue. For example, FF0088 means the intensity values for the given color should be FF
red, 00 green and 88 blue, in hexadecimal. Therefore, going back to the code segment, if n is
less than 16 it becomes a single digit in hexadecimal (a number between 0 and F), and in
such cases a leading 0 is added to pad the number up to the required two digits.

Having padded the number with a 0 (if necessary), the number n is then passed to the
JavaScript toString () function with an argument of 16, like this code segment:

n.toString(16)

This tells it to convert the number to base 16, which is hexadecimal. The results of the
two segments are then concatenated and returned. When you put both pieces of code
together they look like this:

return (n < 16 ? '0' : '') + n.toString(16)

How To Use It

To convert a decimal number to hexadecimal, pass it to the DecHex () plug-in, like this:

alert ('The decimal number 173 in hexadecimal is ' + DecHex (173))

Chapter 3: The Core Plug-ins

The value displayed by this statement is ‘ad’, which is an acceptable hexadecimal
number for JavaScript when used as part of a color, so there’s usually no need to convert it
to uppercase or add any prefix to it.

This now completes the fundamentals of your basic JavaScript toolkit and, of necessity,
it’s one of the longest chapters in the book. In the next chapter, we’ll start adding plug-ins to
provide location and positioning features, and then the fun will really start.

The Plug-in

function DecHex (n)

{
}

return (n < 16 2 '0' : '') + n.toString(1le6)

This page intentionally left blank

CHAPTER 4

Location and Dimensions

PLUG-IN

[

Plug-In JavaScript: 100 Power Solutions

This one does the same, but there are enough plug-ins in the collection now that we
can also start to create some interesting effects, including resizing and repositioning
objects.

I I The previous chapter concentrated on providing a basic subset of core functionality.

ResizeWidth()

When creating dynamic web pages you will often need to change the dimensions of objects.
You might do this to emphasize a section by enlarging it, you may allow the contents of a
page to be rearranged by the user, or you might wish to open up elements such as forms or
light boxes, and so forth.

With this plug-in, you can resize the width of any object that has a width property, such
as the example div shown in Figure 4-1, which has had its width resized to 300 pixels.

About the Plug-in

This plug-in changes the width of an object. It requires the following arguments:

e id TheID of an object or the object itself. You can also pass an array of objects
and/or object IDs.

* width The new width for the object. If id is an array, all the objects referred to are
set to this width.

Variables, Arrays, and Functions

b Local integer loop variable
overflow The object’s style.overflow property
width The object’s style.width property
HID Global string variable with the value 'hidden’
Px () Plug-in to add the suffix ‘px’

How It Works

This plug-in also offers the multifunctionality of the 0 () and s () plug-ins, in which you
can pass either the ID of an object or the object itself, and you can even pass an array of IDs
and/or objects to change them all at the same time.

8 Dlug-In Jotia 5ot - Windoues ntoret Eqlorer - = = |
@{:J' 2] Cilsers\RohivDe st op iR Mhsrvple 1 v [4] % |

i ﬂ'Phg'lllh-allpt

i Campiter| Protected kode OfFf g~ Bines -

Ficure 4-1 Resizing the width of an object

PLUG-IN

20

Chapter 4: Location and Dimensions

It achieves this by taking advantage of the fact that the s () plug-in is already set up to
deal with an object ID, an object, or an array of objects and/or object IDs. Therefore, all that
is necessary is to call s () twice; once to set the object’s or array of objects’ style.overflow
properties to ‘hidden’, and then to set the style.width properties to the value in width.

The variable HID is a global variable created by the Initialize () plug-in, and it has
the value ‘hidden’. The style.overflow property of the object is set to this value to allow
objects to be reduced as well as enlarged and, when reduced, text that would have
overflowed is simply ignored.

How To Use It
To use this plug-in pass it an object and a width, like this:

ResizeWidth ('mydiv', 200)

Or you can pass an array of objects, like this:

ids = Array('objone', 'objtwo', 'objthree')
ResizeWidth (ids, 480)

Here’s an example you can try that resets the width of the div to 300 pixels. It also
changes the text and background colors so that you can see the change:

<div id='example'>Example div</div>

<scripts>
window.onload = function ()

{

S ('example') .backgroundColor = 'blue’
S('example') .color = 'yellow'
ResizeWidth('example', 300)

}

</scripts>

The Plug-in

function ResizeWidth (id, width)

{

S(id, 'overflow',6 HID)
S(id, 'width', Px (width))

ResizeHeight()

In the same way that you may need to resize the width of an object, here’s a plug-in to
resize its height. Figure 4-2 shows the div created in the previous plug-in now increased in
height to 100 pixels.

[£]

76 Plug-In JavaScript: 100 Power Solutions

8 Plug-In S Scipt - Windoues Interst Explorer = Tl e
@'.':__:J' E| Chlhen'FobiniDedt op'PIvecsmple 0 tm - | 4y | X |

Wi | i Plg-in enScipt

M Camputer| Probactsd Mode OF g v [INEL w

Ficure 4-2 Resizing the height of an object

About the
This plug-in

* id

Plug-in

changes the height of an object. It requires the following arguments:

The ID of an object or the object itself. You can also pass an array of objects

and/or object IDs.

® height

are set to this height.

Variables, Arrays, and Functions

3 Local integer loop variable
overflow The object’s style.overflow property
height The object’s style.height property
HID Global string variable with the value 'hidden'
Px () Plug-in to add the suffix ‘px’

How It Works

This is the companion plug-in to ResizeWidth (), and it works in exactly the same manner
as the previous one, with the only difference being that the object’s style.height property

is modified
As with

instead of style.width.

ResizeWidth (), you can pass either object IDs or objects, and you can also
pass an array of IDs and/or objects. For further details on how this plug-in works, please

refer to the ResizeWidth () plug-in.

How To Use It
To use this plug-in pass it an object and a height, like this:

ResizeHeight ('mydiv', 100)

The new height for the object. If id is an array, all the objects referred to

PLUG-IN

2

Chapter 4: Location and Dimensions

Or you can pass an array of objects, like this:

ids = Array('objone', 'objtwo', 'objthree')
ResizeHeight (ids, 240)

Here’s an example you can try that modifies the example in the previous plug-in by
resizing the div to 100 pixels in height:

<div id='example'>Example div</div>

<script>
window.onload = function ()

{

S ('example') .backgroundColor = 'blue'
S('example') .color = 'yellow'
ResizeWidth('example', 300)

ResizeHeight ('example', 100)

}

</scripts>

The Plug-in

function ResizeHeight (id, height)

{

S(id, 'overflow',6 HID)
S(id, 'height', Px (height))

Resize()

This simple plug-in combines the previous two into a single function to save on typing and
to make your code more compact. With it you can change both the width and height of an
object or array of objects, as shown in Figure 4-3.

ug-In bz - [T r
@_@' [i@] & Alhvens\RehintDe skt op VP Pyezarmpled L tm [4] % |

W | i Pl beascriph

i Computer| Probected Mosde OFF g v I v

Ficure 4-3 Resizing both the width and the height of an object

m

18 Plug-In JavaScript: 100 Power Solutions

About the Plug-in
This plug-in changes the width and height of an object. It requires the following arguments:

e id TheID of an object or the object itself. You can also pass an array of objects
and/or object IDs.

e width The new width for the object. If id is an array;, all the objects referred to are
set to this width.

* height The new height for the object. If id is an array, all the objects referred to
are set to this height.

Variables, Arrays, and Functions

ResizeWidth () Plug-in to change an object’s width
ResizeHeight () Plug-in to change an object’s height
How It Works

This plug-in simply makes a call to ResizeWidth () followed by one to ResizeHeight ().

How To Use It
To use this plug-in, pass it an object along with a width and height, like this:

Resize ('mydiv', 100, 100)
Or you can pass an array of objects, like this:

ids = Array('objl', 'obj2', 'obj3')
Resize (ids, 128, 128)

Here’s an example you can try that further improves the example in the previous
plug-in to resize both the width and height of an object with only a single call:

<div id='example's>Example div</div>

<scripts>

window.onload = function ()

{
S('example') .backgroundColor = 'red'
S('example') .color = 'white'

Resize ('example', 100, 100)

}

</scripts>

The Plug-in

function Resize(id, width, height)

{
ResizeWidth(id, width)
ResizeHeight (id, height)

222

Chapter 4: Location and Dimensions

Position()

This plug-in sets the CSS style.position property of an object. This is useful when you
wish to control an object’s offset from its parent’s location, or even completely move it to
any absolute position. Figure 4-4 shows a div that has been offset horizontally from its
previous position by 100 pixels.

About the Plug-in
This plug in sets the CSS style.position property of an object. It requires the following

arguments:
* id An object, an object ID, or an array of objects and/or object IDs

e type Thetype of style.position property to assign, out of ‘absolute’, ‘fixed’,
‘relative’, ‘static” or “inherit’. You can also use the shorter, global variables (created
by the Initialize () plug-in) of ABS, FIX, REL, STA and INH.

Variables, Arrays, and Functions

position The object’s style.position property

How It Works

This function uses the capability of the S () function that accepts an object, an object ID, or
even an array of objects and/or object IDs. Therefore, it simply passes the values in id and
type directly to the s () plug-in.

How To Use It

To set an object’s style.position property using this plug-in, make a call such as:

Position ('myobject', ABS)

" Plug-In JwaScApt - Windous: Wtemet Explorer — |

K ® [E] CihersibobiniDe bt Phezrpledihim [es] x|

| 8 Plg-in besicnpt

. w | 3

i Camputer| Probacted Mode OFF v HIneL -

Ficure 4-4 This plug-in enables objects to be moved.

19

PLUG-IN

80

23

Plug-In JavaScript: 100 Power Solutions

For example, to change an object to have an “absolute’ position (using the shorter, global
variable ABS created by the Initialize () plug-in) and then move it, you could use code
such as the following:

<div id='moveme'>Move Me</div>

<scripts>
window.onload = function ()

{

S ('moveme') .backgroundColor = 'red'
S ('moveme') .color = 'white'
Position('moveme', REL)
S('moveme') .left = Px(100)
}
</scripts>

This example creates a div called ‘moveme’, which is then set to white text on a red
background, and then the Position () plug-inis called to give it a ‘relative” position.
Finally, its style.left property is set to 100 using the Px () plug-in, which offsets it
horizontally from its parent object by 100 pixels.

CAUTION As well as the difference in location change between divs that use ‘absolute’ and ‘relative’
style positions, you also need to take into account the fact that a div with an ‘absolute’ style
position is automatically shrunk to fit its contents, whereas one with a ‘relative style position
will retain its previous width which, by default, extends to the right hand edge of its containing
object. If you use a span instead, it will always shrink to fit its contents, regardless of where or
how it is positioned.

The Plug-in

function Position(id, type)

{
}

S(id, 'position', type)

GoTo()

If an object has been set free from the page, for example by using the previous plug-in,
Position (), then you can move it to another location by changing its style.left and
style.top properties, and this plug-in makes it quicker and easier by providing a single
function to do this. In Figure 4-5, a div has been moved by 200 pixels to the right and by
25 pixels down.

Chapter 4: Location and Dimensions

PugIn LaaScrpt - Windos beress Explorer . = e
@\i:l' & ChlheriFobini[e st op\Plecsmplel Lhim - | kS |

| 8 Plig-in et

M Camputer| Probacted Mods OFF v BInes -

Ficure 4-5 The GoTo() plug-in moves an object.

About the Plug-in

This plug-in moves an object (if it is movable) to a new location. It takes the following
arguments:

e id An object, an object ID, or an array of objects and/or object IDs

e x The horizontal offset, from the left edge of the parent object, to which the object
should be moved (or from the browser edge if the object has a style.position
property of ‘fixed” or ‘absolute”)

* y The vertical offset, from the top edge of the parent object, to which the object
should be moved (or from the browser top if the object has a style.position
property of ‘fixed” or “absolute’)

Variables, Arrays, and Functions

left The object’s style.left property
top The object’s style.top property
Px () Plug-in to add the suffix ‘px’

How It Works

This plug-in also takes advantage of the S () plug-in’s capability to manage arrays of objects
and/or object IDs, single objects, or object IDs. It makes just two calls: one to set the object’s
style.left property to the value in x with the suffix ‘px’ appended, as is required by
the rules of CSS, and the other to do the same but with the style. top property using

the value in y.

How To Use It

To use this plug-in make sure that an object is movable by first issuing a command such as
this (using the global variable REL, which contains the string ‘relative’):

Position ('advertdiv', REL)

81

PLUG-IN

82

2

Plug-In JavaScript: 100 Power Solutions

The following example gives the div an ‘absolute’ position (using the global variable
ABS) and then moves it:

<div id='moveme'>Move Me</div>

<script>
window.onload = function ()

{

S ('moveme') .backgroundColor = 'green'
S('moveme') .color = 'cyan'
Position ('moveme', ABS)
GoTo ('moveme', 200, 25)

</scripts>

The Plug-in

function GoTo(id, %, Vy)

{
S(id, 'left', Px(x))
sS(id, 'top', Px(y))

Locate()

This plug-in combines the Position () and GoTo () plug-ins into a very handy single
plug-in that is especially useful when first setting up objects on a web page. With it you
can set an object’s style.position property at the same time as its horizontal and
vertical offsets. Figure 4-6 shows this plug-in moving an object with an ‘absolute’ position
to the location 100,40.

About the Plug-in

This plug-in sets an object’s style.position property as well as its horizontal and vertical
offsets. It requires the following arguments:
e id An object, an object ID, or an array of objects and/or object IDs

e type The type of style.position property to assign, out of ‘absolute’, ‘fixed’,
‘relative’, ‘static’, or ‘inherit’ (or the global variables ABS, FIX, REL, STA and INH)

8 Dlugin bt - Windoows Wbt Eplorer e |
@\'::_Ii | ChlheryiFobiniDe dtop\Plecsmplel 4 him ‘|*1| x|

| 8 Plig-in et

Tden be
M Camputer| Probacted Mods OFF g * R -

Ficure 4-6 Setting an object’s position and location at the same time

Chapter 4: Location and Dimensions

¢ x The horizontal offset, from the left edge of the parent object (or browser for
‘fixed” objects), to which the object should be moved (or from the browser edge if
the object has a style.position property of ‘fixed” or ‘absolute’)

e y The vertical offset, from the top edge of the parent object (or browser for ‘fixed’
objects), to which the object should be moved (or from the browser top if the object
has a style.position property of ‘fixed’ or ‘absolute’)

Variables, Arrays, and Functions

Position () Plug-in to set an object’s style.position property
GoTo () Plug-in to move an object to a new location
How It Works

This plug-in draws on the functionality of the plug-ins Position () and GoTo (), which
both allow an object, an object ID, or an array of objects and/or object IDs to be accessed.
Therefore, it simply calls each in turn, passing the arguments id, style, x, and y, as
necessary.

How To Use It

To set an object’s style.position property and move it to its correct location using this
plug-in, you might use code such as the following;:

<div id='moveme'>Move Me</div>

<script>

window.onload = function ()

{
S ('moveme') .backgroundColor = 'orange'
S('moveme') .color 'black!
Locate ('moveme', ABS, 100, 40)

}

</scripts>

In the preceding you can see the Locate () plug-in provides a wide range of
functionality with a single call.

NOTE The absolute position property is always made relative to the first parent element that has a
position other than static. A relative position is relative to its containing object, and a fixed
property is relative to the browser borders.

The Plug-in

function Locate(id, type, %, V)
{

Position (id, type)

GoTo (id, x, vy)

83

PLUG-IN

84

25

Plug-In JavaScript: 100 Power Solutions

GetWindowWidth()

There are many reasons to need to know the width of the browser window, the most
obvious of which is so that you can determine which objects you can display where in a
dynamically generated website. This plug-in gives you that exact information, as shown by
the alert box in Figure 4-7. It also takes into account any scroll bars that might reduce the
available width.

About the Plug-in
This function will tell you the width of the browser window to the nearest pixel. It doesn’t
require any arguments and returns the width as an integer.

Variables, Arrays, and Functions

de Local object copy of document .documentElement
BROWSER Global variable containing the browser name
barwidth Local integer variable set if a vertical scroll bar exists
scrollHeight The de.scrollHeight property
clientHeight The de.clientHeight property
innerWidth The window. innerWidth property
clientWwidth The de.clientWidth and document .body.clientWidth
properties
How It Works

This plug-in first copies the document . documentElement object into de to provide a much
shorter name, reducing the amount of code to enter. Next, if the browser is not Internet
Explorer as determined by the value in the global variable BROWSER, then the local integer
variable barwidth is set to a value of 17 if the value in de . scrol1Height is greater than
thatin de.clientHeight.

| "# Flug-In JwaScapt - Windous: Wtemat Explorer I =
=T
GLJ" & Chlber'iRobiniDe ddop P example? S him - | +3 | he I

37| 8 Plgein by MESEIDa fromiashpage |

'l This binrasee b2 3 warckrey wddih oh 541
LA,

]

M Camputer| Probacted Mods OFF fi v BInes -

Ficure 4-7 Determining the available width of the browser window

PLU

26

Chapter 4: Location and Dimensions

The de . scrollHeight value is bigger when there is more web page below the bottom
that can be scrolled to. In that case, there will be a scroll bar, so barwidth is given the value
of 17, which is the default width of scrollbars in all browsers. This value is then subtracted
from the full window width and the result is returned.

Otherwise, as is often the case if the browser is Internet Explorer, the code simply
returns the value of whichever has a value, either de.clientWidth or document .body
.clientWidth (allowing for either strict or quirks mode). This value already takes into
account any scroll bar, so no further code is required.

How To Use It

To use this plug-in, simply call it and use the value returned, as in the following example,
which passes the returned value to an alert () statement, where it is displayed:

<script>
window.onload = function()

{
}

</scripts>

alert ('This browser has a window width of: ' + GetWindowWidth())

The Plug-in

function GetWindowWidth ()

{

var de = document.documentElement

if (BROWSER != 'IE')

{

var barwidth = de.scrollHeight > de.clientHeight ? 17 : 0
return window.innerWidth - barwidth

}

return de.clientWidth || document.body.clientWidth

}

GetWindowHeight()

This is the companion plug-in to GetWindowWidth (). It returns the height of the browser
window, bearing in mind any scroll bars. In Figure 4-8 the height of the usable area of this
browser has been determined by this plug-in to be 124 pixels.

About the Plug-in

This plug-in takes no arguments and returns the available height of the current window,
taking any scroll bars into account.

85

86 Plug-In JavaScript: 100 Power Solutions

iﬂug—lnmlﬂpt-“dﬂ.ﬁmapmr g@ﬁ
@_{::lf IF_ CilberyiRobini D st op iPlecsmp e htm - | -I-,.l W |
10 Phigein basi: | Message from webpags (==

4 i-i. This keawser has § windoss height oft 124

i Computer| Protected B ode CFF i v HINeL -

Ficure 4-8 Determining the usable height of the current browser window

Variables, Arrays, and Functions

de Local object copy of document .documentElement
BROWSER Global variable containing the browser name
barwidth Local integer variable set if a vertical scrollbar exists
scrollWidth The de.scrollwWidth property
clientWidth The de.clientWidth property
innerHeight The window. innerHeight property
clientHeight The de.clientHeight and document .body.clientHeight
properties
How It Works

This plug-in works in almost the same way as GetWindowWidth () except that it returns the
available height in the current browser window, taking any scroll bars into account. Please
refer to GetWindowWidth () for further details.

How To Use It

To use this plug-in, simply call it and use the value returned as in the following example,
which passes the returned value to an alert () statement where it is displayed:

<scripts>
window.onload = function ()

{
}

</scripts>

alert ('This browser has a window height of: ' + GetWindowHeight ())

The following plug-in is a good example of how this and the previous plug-in,
GetWindowWidth (), come in very handy.

PLUG-IN

21

Chapter 4: Location and Dimensions

The Plug-in

function GetWindowHeight ()

{

var de = document.documentElement

if (BROWSER != 'IE')

{

var barwidth = de.scrollWidth > de.clientWidth ? 17
return window.innerHeight - barwidth

}

return de.clientHeight || document.body.clientHeight

}

GoToEdge()

These plug-ins are starting to come together in such a way that it's now easy to build a
plug-in that will move one or more objects to one of the edges of the browser, which is what
this one does: it allows you to move objects to the top, left, right, or bottom edges of the

browser, as shown in Figure 4-9.

About the Plug-in

This plug-in locates one or more objects at one of the four edges of the browser window. It

requires the following arguments:

* id An object, an object ID, or an array of objects or object IDs

¢ where The edge to which the object or objects should be moved, out of ‘top’,

‘bottom’, ‘left’, or ‘right’

e percent The distance from the left or top of the browser depending on the value

in where

@-@' Ir_ CAlLhen'iFobinti Dt op i Pvexsnp 2 T.him

W | S Plug-n st

s ©

Y

W Compiutar] Probactsd kode OfF dg v 80P

Ficure 4-9 Attaching GIF images to different edges of the browser

81

88 Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

3 Local integer for indexing into i4d if its an array

width Local variable containing the width of the browser, less that of
id

height Local variable containing the height of the browser, less that of
id

amount Local variable containing percent as a percent

TP, BM, LT and RT Global variables with the values ‘top’, ‘bottom’, ‘left’, and ‘right’

GetWindowWidth () Plug-in to return the browser width

GetWindowHeight () Plug-in to return the browser height

W() Plug-in to return the width of an object

H() Plug-in to return the height of an object

GoTo () Plug-in to move an object to a new location

How It Works

Like many others, this plug-in supports the passing of an object, an object ID, or an array of
objects and/or object IDs. This is managed by the initial if () section, which determines
whether id is an array using the instanceof operator. If it is, then each element of the
array is recursively passed to the same function, along with the values of where and
percent. Once all have been processed, the function then returns.

After this the three local variables width, height, and amount are assigned values
representing the amount of width and height remaining in the browser window (after the
width and height of the object are taken into account). This is done by fetching the width and
height of the browser window using the GetWindowWidth () and GetWindowHeight ()
plug-ins and then subtracting the object’s width from one and its height from the other, as
determined by calls to w () and H().

The variable amount is set to percent /100 so that it can be used as a multiplier. For
example, if percent has a value of 40, then dividing it by 100 assigns it the value of 0.40,
which can then be multiplied by any number to reduce it to 40 percent of its original value.
In this case, the multiplier determines how far along an edge the object should appear.

Next, a switch () statement tests for the four allowed argument values for where,
which are ‘top’, ‘bottom’, ‘left’, or ‘right’. The shorthand global variable equivalents of TP,
BM, LT, and RT are used in place of these values to make the code shorter and clearer. A
break command ends each subsection of the switch () statement except for the final one,
where it is not required because program flow will continue on the next line down anyway.

Depending on which of the four values has been passed in where, the local variables x
and y are set to align the object in id right up against the edge specified. The object is also
displayed at a position between 0 and 100 percent along (or down), according to the value
in percent. Finally, a call to GoTo () is made to move the object to the new location.

There are many uses for this plug-in; one in particular is a dock bar, similar to the one
used at the bottom of the screen on the Apple OS X operating system, with a row or column
of expanding and collapsing icons. Plug-in 66, DockBar () provides exactly this functionality,
for any web page.

Chapter 4: Location and Dimensions 89

How To Use It

To use this plug-in, pass an object to it along with details on where to display it, as in the
following example, which displays four different icons, one per edge:

<scripts>
window.onload = function ()

{

ids = Array('ii', r'i2', 'i3', 'i4"')
Position(ids, FIX)
GoToEdge ('il', TP, 50)
GoToEdge ('i2', BM, 10)
GoToEdge ('i3', LT, 33)
GoToEdge ('i4', RT, 66)
}
</scripts>

In the first section of HTML, four GIF images are loaded in, with each given a different
ID. Then, in the <script> section the array ids is populated with these IDs so that the
following Position () command can set all of them to have a style.position of ‘fixed’.
This means they will stay where they are put, even if the browser page scrolls.

Finally, each image is attached to a different edge using four different calls to GoToEdge ().
The top one is 50 percent in, the bottom 10 percent in, the left 33 percent down, and the
right 66 percent down.

NOTE As with all of this book’s examples, you can download this plug-in and all associated content
(such as the images used) from the companion website at pluginjavascript.com.

The Plug-in

function GoToEdge (id, where, percent)

{

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
GoToEdge (1id[j], where, percent)

return
}
var width = GetWindowWidth() - W(id)
var height = GetWindowHeight () - H(id)

var amount = percent / 100

switch (where)

{

case TP: var x = width * amount

PLUG-IN

90

2

Plug-In JavaScript: 100 Power Solutions

var y = 0
break
case BM: var x = width * amount
var y = height
break
case LT: var x = 0
var y = height * amount
break
case RT: var x = width
var y = height * amount

}

GoTo (id, x, V)

CenterX()

Another very useful function is to center an object, which is what this plug-in does. By
using the browser width and object width it moves an object horizontally to exactly the
center of the browser. Figure 4-10 shows a div that has been centered horizontally using
this plug-in.

About the Plug-in

This plug-in centers an object (or objects) on a horizontal axis. It requires the following
argument:

e id An object, an object ID, or an array of objects or object IDs

inug-lnh.llimpt-“dumm&pl:ﬁr @@E
m' IF_ CiLhen'iFobiniDe et op \Plecsnp le 16 itm - | k,l % |
W | S PugHn lreaiopt
Taet <
W Computar] Probactsd kode OfF dg o« miaps -

Ficure 4-10 Centering a div horizontally

Chapter 4: Location and Dimensions

Variables, Arrays, and Functions

3 Local integer variable for indexing into id if it is an array

left The style.left property of object

SCROLL_X Global variable containing the number of pixels by which the
browser has scrolled horizontally

GetWindowWidth () The available width of the browser window, taking into account
any scroll bars

W() Plug-in to fetch an object’s width

Px () Plug-in to append the suffix ‘px’

How It Works

This plug-in allows arrays of objects and/or object IDs, as well as single objects or object
IDs. It does this by using the instanceof operator to tell whether id is an array and, if it is,
it iterates through the array using the local variable j as an index, recursively calling itself
with the single element values. Upon completion, the if () section of code returns.

In the second part of the plug-in, the S () plug-in sets the object’s style.left property to
the correct value (using a call to Px () to add the ‘px’ suffix) to center the object horizontally.

The correct value is determined by looking up the width of the window (less 17 if
there’s a scroll bar), minus the width of id. This value is then divided by 2. For example, if
the window is 600 pixels wide and the object is 100 (and there is no scroll bar), the value is
determined by subtracting 100 from 600, which equals 500; and this number is divided by 2
to get a final result of 250. Therefore, an offset of 250 pixels from the left will exactly center
an object of 100 pixels width in a 600-pixel wide browser. If there is a scroll bar, the values
become 583 — 100 / 2, which equals 241.5. The Math.round () call deals with a fractional
result, which in this case is rounded up to 242.

If the browser has not scrolled, this is all the calculation that is needed. However, because
the horizontal offset is from the left edge of the document (not the window), if there has been
a horizontal scroll the object will be displayed left of center by the amount of the scrolling.
Therefore, the global variable SCROLL_X is added to the calculated value in order to place the
object exactly between the left and right hand edges of the window.

How To Use It

To center an object, as long as it is capable of being moved, just call Centerx () in the
following manner, which creates a simple div and then centers it:

<div id='test's> Test div</divs>

<scripts>

window.onload = function ()

{
Locate('test', ABS, 20, 20)
Resize('test', 100, 100)
S('test') .border = 'solid ' + Px (1)
CenterX('test')

}

</script>

9

PLUG-IN

92

29

Plug-In JavaScript: 100 Power Solutions

The entity is there to separate the text from the border, which it otherwise runs
into. The Locate () call sets the ‘test” div to an ‘absolute” position using the global variable
ABS for shorthand. It also locates the div at the position 20,20. The Resize () call then turns
the div into a 100 by 100-pixel square. Then, in this example, rather than using colors to
make the div easy to see, the div has been given a solid border with a callto s ().

Finally, a call is made to CenterX () and the div is centered horizontally.

The Plug-in

function CenterX(id)

{

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
CenterX (id[j])
return

}

S(id) .left = Px(Math.round((GetWindowWidth() - W(id))) / 2 + SCROLL_X)

CenterY()

This is the partner plug-in to CenterX (), which enables you to center an object vertically.
Figure 4-11 shows a div that has been centered using this plug-in.

About the Plug-in

This plug-in centers an object (or objects) on a vertical axis. It requires the following argument:

e id An object, an object ID, or an array of objects or object IDs

"8 Plug-in JasaScipt - Windows hiterrst Equlorar ==

ﬁhi:l' & ChlheryiFobini[e st op \Plecsmplel 4 him - | kS |

W | S PlugHn lreiopt

Test i

W Compiutar] Probactsd kode OfF dg o« Wmiups -

Ficure 4-11 Centering a div vertically

Chapter 4: Location and Dimensions

Variables, Arrays, and Functions

3 Local integer variable for indexing into id if it is an array

top The style. top property of object

SCROLL_Y Global variable containing the number of pixels by which the
browser has scrolled vertically

GetWindowHeight () The available height of the browser window, taking into account
any scroll bars

H() Plug-in to fetch an object’s height

Px () Plug-in to append the suffix ‘px’

How It Works

This plug-in is almost identical to CenterX (), except that an object is centered along its
vertical axis. See the section on CenterX () for more details.

How To Use It
To center an object vertically using this plug-in, you might use code such as the following:

<div id='test's> Test div</divs>

<script>
window.onload = function ()

{

Locate('test', ABS, 20, 20)
Resize('test', 100, 100)

S('test') .border = 'solid ' + Px (1)
CenterY ('test')

}

</scripts>

This example creates a div in the HTML section and then, in the <script> section, it
sets the object’s style.position property to ‘absolute’ using the Locate () command and
the global variable ABS. It also moves the object to location 20,20.

The div is then resized using Resize () to a width and height of 100. After that it is
given a single-pixel border to make it stand out and then, on the final line, the CenterY ()
plug-in is called to center it vertically.

The Plug-in

function CenterY (id)

{

if (id instanceof Array)
{
for (var j = 0 ;
CenterY (id[j])
return

j < id.length ; ++3)

}

S(id) .top = Px(Math.round((GetWindowHeight () - H(id))) / 2 + SCROLL_Y)

93

PLUG-IN

94

30

Plug-In JavaScript: 100 Power Solutions

Center()

More often than not, when you center an object you usually want to do so in both horizontal
and vertical directions, so this plug-in brings both the previous ones together into a single
function, as shown in Figure 4-12.

About the Plug-in

This plug-in centers an object (or objects) on both its vertical and horizontal axes. It requires
the following argument:

* id An object, an object ID, or an array of objects or object IDs

Variables, Arrays, and Functions

CenterX () Plug-in to center an object horizontally
CenterY () Plug-in to center an object vertically
How It Works

Since both the centerX () and CenterY () plug-ins have been written to take arguments
that can be an array of objects and/or object IDs, an object, or an object ID, there is little
work for this plug-in to do, so it simply calls each one in turn, passing id (whether or not
it’s an array) to each.

"8 Plug-In JwsaScipt - Windows Witeerst Eulorar =

ﬁ"i:l' | CiLbhen\RobintDeddop\Plecsmpled L btm - | kS |

W | Plg-n brewscopt

Test Jdir

W Compiutar] Probactsd kode OFF dg o« Wiaps -

Ficure 4-12 Centering a div both horizontally and vertically

Chapter 4: Location and Dimensions

How To Use It

To fully center an object in both the horizontal and vertical directions you could use code
such as the following:

<div id='test'>Test div</div>

<scripts>
window.onload = function ()

{

Locate('test', ABS, 20, 20)
Resize('test', 100, 100)

S('test') .border = 'solid ' + Px(1)
Center ('test")

}

</scripts>

This example is very similar to the previous two, except that it calls the Center ()
plug-in at the end to fully center the div.

That covers this chapter’s plug-ins, and we're about to start really cooking, because in
the following chapter we’ll begin making objects invisible, and then make them reappear,
smoothly fade them in and out, and even more. Along the way I'll show you how to put
these effects to good use.

The Plug-in

function Center (id)

{

CenterX (id)
CenterY (id)

95

This page intentionally left blank

CHAPTER 5

Visibility

PLUG-IN

98

3l

Plug-In JavaScript: 100 Power Solutions

example, a smooth fade from one image to another is often far more beautiful
than other wipe or dissolve transformations. Likewise, instantly revealing or
hiding an object, when done well, is clean and easy on the eye.

This chapter focuses on these types of effects, ranging from setting the visibility (or
invisibility) of an object to fading objects in and out, fading between objects, and so on.
The plug-ins in this chapter also provide the basic functionality required by many later
plug-ins—most particularly the menu and navigation plug-ins in Chapter 8.

Many of the most impressive effects you'll see on websites are also the simplest. For

Invisible()

To ease into this chapter, we'll begin with a few short and sweet plug-ins that every JavaScript
programmer needs in their toolkit. The first one is Invisible (), which makes an object
disappear from a web page while the space it occupies remains, as opposed to hiding an
object, which collapses and causes elements around it to assume its space (see Plug-in 40,
Hide () for that effect).

Figure 5-1 shows a span with the text “Now you see me...” followed by some plain text
not in a div that reads “and soon you won’t”. An alert window has been raised to let you
see these elements before the call to Invisible () is made. Figure 5-2 shows what happens
after clicking the alert: the shaded text in the span is invisible, but the other text snippet
remains in place, demonstrating that the span is still there, just not visible.

About the Plug-in

This plug-in makes an object invisible while retaining the object’s position and dimensions.
It requires the following argument:

e id An object, an object ID, or an array of objects and/or object IDs

Variables, Arrays, and Functions

visibility The style.visibility property of the object(s)

HID Global variable with the value ‘hidden’

"8 Plug-In JwsaScipt - Windows hiteerst Eulorar =

— -
@\%FJ'] Cilkers\RohinhDe At op'\Plbearepled L tm w|de | 5 |
tuamnge from wabpacs
W | = Plug-n breaSorpt
Hawrwon see me. . axed soom wons weent Ji, 6ok OKbo san the abjuct disappear

T

W Computar] Probactsd kode OfF dg o« miaps -

Ficure 5-1 The shaded area is a span set to disappear when the alert is clicked.

Chapter 5: Visibility

|8 Plug-In S Scnpt - Windoos: Intamat Explcrar — |

E)= &) calhenthoniniDedton PiarplelL bt *[+] % |

W | = Plug-n breaSorpt

arvd oo ot wea't

W Compiutar] Probactsd ke OfF dg o« miaps -

Ficure 5-2 After clicking the alert the shaded span becomes invisible.

How It Works

This plug-in makes a call to the s () plug-in in such a way that you can pass it an array of
objects and/or object IDs, a single object, or an object ID. The style.visibility property
of the object (or objects) is then set to the value in the global variable HID, which is ‘hidden’.

How To Use It

To use this plug-in, pass it the object or objects to make invisible. The following example
shows one way you might incorporate it:

Now you see me... and soon you won't

<scripts>
window.onload = function ()

{

S ('ghost') .backgroundColor = 'lightblue'
Resize ('ghost', 128, 32)

alert ('Click OK to see the object disappear')
Invisible ('ghost')

}

</scripts>

This example first creates a span in the HTML section and gives it some text. Following
this is more text that isn’t included within the span. Then, in the <script> section, the
span’s background color is set to light blue and resized to make it stand out.

Next, an alert is raised to give you the chance to see the initial display before the call to
the Invisible () plug-in is made. After clicking the alert OK button, the call is made, and
the contents of the span becomes invisible.

Tip When you want to keep your layout unchanged when hiding an object, you should use this
plug-in in preference to Plug-in 40, Hide (). Plug-in 31 preserves an object’s dimensions, while
Plug-in 40 fully collapses an object, causing elements surrounding it to move in and occupy
newly vacant space.

99

PLU

100

32

Plug-In JavaScript: 100 Power Solutions

The Plug-in

function Invisible (id)

{
}

S(id, 'visibility', HID)

Visible()

This is the partner plug-in to Invisible (). It makes a previously invisible object visible.
Figure 5-3 expands the example in the previous plug-in. Now, when the alert message’s OK
button is clicked, the invisible text will reappear and the browser will look like Figure 5-1
again (but without the alert window).

About the Plug-in

This plug-in makes an object visible after it has been made invisible. It requires the
following argument:

* id An object, an object ID, or an array of objects and/or object IDs

Variables, Arrays, and Functions

visibility The style.visibility property of the object(s)
VIS Global variable with the value ‘visible’
How It Works

This plug-in makes a call to the S () plug-in in such a way that you can pass it an array of
objects and/or object IDs, a single object, or an object ID. Then the style.visibility
property of the object (or objects) is set to the value in the global variable vIs, which

is ‘visible’.

Plug-In BauaScApt - windoues Itk Bplonr
e, I -
] - (Ll Etond s o £ * | 5
& | ©Alers\RohirhDe st op' Flbearp el 2 i [+4] % |
kanege fram wabpugs
W | = Plug-in breaSorpt
ared seem wola won't F .I-i. Click OF ta 19 the object eappamr
=
i Campitar] Protacted ke Off dg v W0 -

Ficure 5-3 After clicking OK the hidden text reappears.

PLU

33

Chapter 5: Visibility

How To Use It

To make invisible objects reappear, just pass them to this plug-in. The following example
extends the previous plug-in example to make the hidden span reappear:

Now you see me... and soon you won't

<scripts>
window.onload = function ()

{

S ('ghost') .backgroundColor = 'lightblue'
Resize('ghost', 128, 32)

alert ('Click OK to see the object disappear')
Invisible ('ghost')

alert ('Click OK to see the object reappear')
Visible ('ghost!')

}

</scripts>

Just the final two lines of code in this example are new: an alert, so that you can verify
that the span was made invisible, and a call to Visible () that is executed after clicking
OK, which makes the object reappear.

The Plug-in

function Visible (id)

{
}

S(id, 'visibility', VIS)

VisibilityToggle()

This plug-in inverses the visibility of an object. If it is visible it becomes invisible, or if it is
invisible it becomes visible. In Figure 5-4, each time the button is clicked, the text to the
right toggles between being visible and invisible.

8 Pug-In JasaSenpt - Wind oo ntarrt Explonar =

Ea)= &) ChlhersthohiniDestoptPluearrpled 3 him [+ x|

i ﬂ'Phg'lllh-allpt

Click Me | Togzhng Tedt

W Computar] Probactsd kode OFF dg o« Wmiaps -

Ficure 5-4 Attaching a plug-in to a button’s click event

101

102

Plug-In JavaScript: 100 Power Solutions

About the Plug-in

Each time this plug-in is called, the object or objects passed to it change their visibility to the
opposite state. It requires the following argument:

* id An object, an object ID, or an array of objects and/or object IDs

Variables, Arrays, and Functions

b Local integer for indexing into id if it is an array
visibility The object’s style.visibility property
HID Global variable with the value ‘hidden’
VIS Global variable with the value ‘visible’

How It Works

This plug-in uses the recursive trick that many others employ to handle arrays of objects and/
or object IDs, as well as single objects and object IDs. It does this using the instanceof
operator to test whether id is an array. If it is, the array is iterated through using the local
variable j ina for () loop, individually calling the function itself recursively for each element
of the array. Once it’s done, the function returns.

If id is not an array, the S () plug-in is called, along with the inverse value of the object’s
style.visibility property. This is achieved using the following ternary expression, along
with the two global variables HID and v1s, which stand for the strings ‘hidden” and ‘visible”:

S(id) .visibility = (S(id) .visibility == HID) ? VIS : HID

In plain English, this statement equates to “If the current value of the object’s style
.visibility property is ‘hidden’, then return the value “visible’; otherwise return the
value ‘hidden’.” Everything after the first equals sign and before the question mark is the test.
The value immediately following it is the one to return if the test result is true, and the final
value is to be returned if the test result is false.

All this has the effect of applying the opposite state of the visibility property to the

object.

How To Use It

You can call this plug-in directly from within JavaScript, like this:
VisibilityToggle ('myobject')
Or you can pass an array of objects, like this:

ids = Array('firstobj', 'secondobj', 'thirdobj')
VisibilityToggle (ids)

Alternatively, you can incorporate the call within an HTML statement, as in the
following two lines of HTML that cause the text in the span called ‘toggle’ to switch

PLUG-IN

34

Chapter 5: Visibility

between being invisible or invisible each time the button is clicked (you could equally
attach it to an onmouseover or other event too):

<input type='submit' value='Click Me'
onclick="VisibilityToggle ('toggle')" />
Toggling Text</spans>

You will see this plug-in used in a number of the other plug-ins, in various ways.

NoOTE Calling this plug-in from HTML illustrates the main reason why nearly all these plug-ins
allow you to pass either an object or an object ID. In the preceding example, the object ID of
‘toggle” is passed to the plug-in, but the object this (which is an object, not the ID of an object)
can also be passed, thus telling the plug-in that the HTML object in which the call is embedded is
the one to manipulate. This is how rollover and other similar effects are achieved—you’ll see
more on this in the next plug-in, and in Chapter 8, “Menus and Navigation.”

The Plug-in

function VisibilityToggle (id)

{

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++73)
VisibilityToggle (id[j])
return

}

S(id) .visibility = S(id) .visibility == HID ? VIS : HID

}

Opacity()

Being able to switch an object from visible to invisible is great, but sometimes you need
finer control over an object’s visibility. This is referred to in JavaScript by the inverse term:
its opacity. With this plug-in, you can set the opacity of any object to a value between 0 percent
(totally transparent, or invisible) and 100 percent (fully opaque, nothing behind shows
through).

Figure 5-5 shows three buttons displayed using the default opacity of 100 percent.
In Figure 5-6 each button has been clicked to change its value to 25 percent, 50 percent, or
75 percent, respectively.

About the Plug-in
This plug-in applies the opacity setting supplied to the object or objects it is passed. It requires

the following arguments:
* id An object, an object ID, or an array of objects and/or object IDs

* percent The amount of opacity to apply to the object or objects, from 0 percent,
which is fully transparent, to 100 percent, which is fully opaque.

103

Plug-In JavaScript: 100 Power Solutions

ug-In bz - [T r
EEI' (i@ & Alhvers\Reoint D st op VP Pyezarmple) 4 tm [4] % |

W | S PlugHn st

Cheks the buione

| 25 prvart | | S0pamcan || 75 pacan

W Computar] Probactsd ko OfF dg o« miaps -

Ficure 5-5 Three button objects at the default opacity of 100 percent

Variables, Arrays, and Functions

opacity The style.opacity property as used by most browsers

MozOpacity The version of the opacity property used by Mozilla-based
browsers such as Firefox

KhtmlOpacity The version of the opacity property used on older versions of the
Apple Safari browser

filter Used to implement Microsoft’s version of the opacity property
(and many other properties too)

How It Works

This plug-in makes four different calls in turn because various browsers approach the subject
of opacity in different ways. Fortunately, none of the methods clash with each other, so a lot

of if..then..else code is not necessary.

The first line for most browsers (such as Opera, Google Chrome, and recent versions of

Apple Safari) looks like this:

S(id, 'opacity', percent / 100)

ug-In bz - [T r
EEI' |1 & Alhvers\Reint D st op VP Pyezarmple) 4 tm [4] % |

W | S g lreasopt

Cheks the buione

S0 paricaind 15 paarcail

W Computar] Probactsd kode OF dg o« Wmiaps -

Ficure 5-6 After being clicked, the buttons are at 25 percent, 50 percent, and 75 percent opacity.

Chapter 5: Visibility

This simply takes the value in percent, divides it by 100, and applies it to the style
.opacity property of id. Of course, if 1d is an array, all its elements will have that property
updated.

However, Mozilla-based browsers such as Firefox have their own property for this
function, so the following line of code performs the equivalent for them by changing the
style.MozOpacity property. Likewise, the third line is for Safari browsers that use the
old rendering engine (before Webkit was introduced) and therefore require the style
.KhtmlOpacity property be changed.

Finally, Microsoft chose a more complicated approach and includes opacity as part of
their nonstandard filters and transitions group of features. The object’s filter property is set
in the following manner (for a setting of 25 percent, for example):

S(id) .filter = 'alpha(opacity = 25)'

However, because you need to take into account the fact that 1d could be an array, the
following version of the call is made, with both the property and setting values also passed
to the s () plug-in:

S(id, 'filter', 'alpha(opacity = 25)")

Also, rather than a numeric value, a string has to be assigned to the filter property,
which requires construction. So, in order to place the value in percent into the string, the
following code is used (employing the Insvars () plug-in from Chapter 3):

S(id, 'filter', InsVars("alpha(opacity = '#1')", percent))

How To Use It

To change an object’s opacity, just pass it along with the object or its ID (or an array of
objects and/or object IDs). You can use a JavaScript command like this:

Opacity ('fadeddiv', 64)

Or, you can embed the call within HTML, as in the following example, which creates
three clickable buttons:

<center>Click the buttons<p>

<input type='submit' wvalue='25 percent' onclick='Opacity(this, 25)' />
<input type='submit' wvalue='50 percent' onclick='Opacity(this, 50)' />
<input type='submit' value='75 percent' onclick='Opacity(this, 75)' />

When clicked, the different buttons will change their opacity by the assigned amount
(25 percent, 50 percent, or 75 percent, respectively). Notice that none of these HTML
elements have been assigned IDs because the keyword this has been passed to the
Opacity () plug-in, thus taking advantage of the fact that this plug-in (like most of them)
will accept either an object ID or an object. The this keyword directly passes the calling
object to the function, which is why no ID name is required.

105

PLUG-IN

106

35

Plug-In JavaScript: 100 Power Solutions

The Plug-in

function Opacity(id, percent)

{

S(id, 'opacity', percent / 100)
S(id, 'MozOpacity', percent / 100)
S(id, 'KhtmlOpacity', percent / 100)
S(id, 'filter', InsVars ("alpha (opacity = '#1')", percent))

Fade()

This plug-in makes great use of the previous one, Opacity (), by making it possible to
smoothly change an object’s opacity over time. In Figure 5-7, two images have had their IDs
attached to mouse events so that they will fade in and out.

About the Plug-in

This plug-in fades an object from one opacity value to another (either increasing or decreasing
it) over a set number of milliseconds. It requires the following arguments:

id An object, an object ID, or an array of objects and/or object IDs

start The beginning level of opacity

end The final level of opacity

msecs The number of milliseconds the fade should take

interruptible If this option is set, an object’s fade can be interrupted and

replaced with a new fade on the same object; otherwise, the fade will continue until
it has finished.

cB This argument is sometimes passed by other plug-ins when a second function
is to be called once this one has finished execution. Its value is simply a string variable
containing the name of the function to call. Because it is not generally a user passable
value, I will no longer mention €B in the list of arguments, unless it is being used in
a different manner.

Plug-In bwaSenpt - Windous Interat Explorar
Ea)= &) calherthoniniDedton PliarleS b [+] x|

[ﬁ'mug'ill Fyenioiph

\ 4

W Computar] Probactsd ko OFF dg o« miaps -

Ficure 5-7 The left image is slowly fading into the background.

Chapter 5: Visibility

Variables, Arrays, and Functions

3 Local variable for indexing into id if it is an array

stepval Local variable used in the calculation of the amount of opacity to
change in each frame of animation

INTERVAL Global variable with a default value of 30—the number of
milliseconds between each call to the interrupt

FA Flag Property of id that is set to true if a fade is in progress,
otherwise it is false

FA Start Property of id assigned the value of start

FA End Property of id assigned the value of end

FA Level Property of id containing the current opacity level

FA Step Property of id containing the amount by which to change the

opacity in each step

FA Int Property of id containing the value passed in the
interruptible argument

Fadeout Property of id used by the FadeToggle () plug-in: true if it has
been faded out, or false if it has been faded in

FA IID Property of id containing the value returned by
setInterval () —this value is used by clearInterval () to
turn off the DoFade () interrupt attached to id

DoFade () Plug-in subfunction called every INTERVAL milliseconds until
the fade is completed or interrupted—this function updates the
opacity of 1d each time it is called

Opacity () Plug-in to change the opacity of an object or array of objects
Math.abs () Function to return an absolute positive value from a number that
may be positive or negative

Math.max () Function to return the largest of two values

Math.min () Function to return the smallest of two values

setInterval () Function to start periodic interrupt calls to another function

clearInterval () Function to stop the interrupts started by SetInterval ()
How It Works

This is the first of the really substantial plug-ins. At almost 50 lines of code it isn’t short, but
don’t be put off by it; the coding is straightforward, and you've seen many of its parts
before. If you can work through this plug-in, you'll be able to follow them all.

This function works by using interrupts to call a function at regular intervals to change
the opacity of an object by a small amount each time (which is how all the transition and
animation plug-ins in this book work). To do this, the plug-in comes in two parts. The first
part prepares all the variables and initiates the interrupts, and the second part receives the
interrupt calls and performs the incremental opacity changes.

107

108

Plug-In JavaScript: 100 Power Solutions

Let’s start with the first 1 £ () section of code. There’s nothing unusual here; it simply
passes id back to the same function recursively to be dealt with an element at a time if it’s
an array:

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
Fade (id[j], start, end, msecs, interruptible, CB)
return

After that, the local variable stepval is created, like this:
var stepval = Math.abs(start - end) / (msecs / INTERVAL)

Its value is calculated by finding the difference between the start and end opacity values;
that is, it subtracts one from the other and then passes the result through the Math. abs ()
function. This gives a positive integer representing the difference, like this:

Math.abs (start - end)

Then the length of time the fade should take, which has been passed as a value in
milliseconds in the variable msecs, is divided by INTERVAL, which is the number of
milliseconds between each frame of the transition (30 by default). The code for that is
simple division:

(msecs / INTERVAL)

The first value (the start and end difference) is then divided by the second (the timing)
and then assigned to the variable stepval.

A Specific Case
Let’s see what value this calculation comes out as by assuming that start has a value of 0,
end has a value of 100, and msecs has a value of 1000. This gives us the following formula:

Math.abs (0 - 100) / (1000 / 30)

The calculation comes to 100 / (1000 / 30), and the answer is the value 3 . In terms of
this code, this means that, if the following three things are true:
1. The interrupt is going to take place once every 30 milliseconds,
2. You want the animation to take 1000 milliseconds,
3. There are 100 levels of opacity,
Then the distance between each level of opacity should be 3. In other words, to smoothly

fade from a value of 0 to 100 over the course of 1 second, there will be 33.33 steps, separated
by 3 levels of opacity.

Chapter 5: Visibility

A Standard Formula

The preceding formula is how almost all the animations and transitions in this book work.
They take the value in milliseconds that you supply for their duration, they then divide that
by the interval (usually 30 milliseconds), and finally they divide the distance between the start
and end points of the animation by the timing value, to find out the amount the animation
needs to move on each step, as shown in the following statement:

var stepval = Math.abs(start - end) / (msecs / INTERVAL)

If a Fade Is Already in Progress

This plug-in has been designed so that you can force it to proceed until it has finished, or
you can allow it to be interrupted (but only by another Fade () call on the same object). This
is so that you can offer onmouseover and onmouseout routines that will interrupt if you
move your mouse again before the transition completes. That way, a partially faded object
can be made to fade back to its start point again if you take the mouse away.

Alternatively, sometimes you may need to display an uninterrupted animation on the
screen and maybe even chain a few together. You have the option to choose either by setting
the interruptible argument to true if a fade can be interrupted, or false if it cannot.
You can also use 1 and 0 for these values if you prefer.

The next section of code deals with this by looking at the FA_Flag property of id. This
is a new property given to id, which has the value true only when a fade is in progress.

NOTE Assigning new properties directly to objects is a technique used throughout this book. It's a
very convenient way of using some object-oriented aspects of JavaScript.

The next section of code checks whether a fade is already in progress. If it is, the code checks
whether the FA_Int property of id is set (to see whether an interrupt is allowed). If it isnt, the
function immediately exits as it cannot be interrupted. Otherwise, the clearInterval ()
function is called to end the currently repeating interrupts, and the object’s new FA_Start
property is set to the current value in FA_Fade.

This primes the new fade to start only where the previous one (that was just cancelled)
left off, which means that the new fade will ignore the start value that was passed. This
override ensures a very smooth and natural flow between the two transitions. The following
code performs this process:

if (0(id) .FA_Flag)

{

if (!0(id) .FA_Int) return

clearInterval (O(id) .FA IID)
0(id) .FA_Start = 0(id).FA_Level

If a Fade Is Not in Progress
If a fade isn’t already in progress, the new id property FA_Start is assigned the value in
start so that the remaining code can use this value to know where the fade started from.

109

110

Plug-In JavaScript: 100 Power Solutions

The 1d property FA Level is also set to start because that is the property that will be
manipulated to track the opacity level on each interrupt. These statements are placed within
an else segment, like this:

else

{
O0(id) .FA Start = start
0(id) .FA Level = start

}

The Remaining Assignments
In the final few lines of the setup portion of this plug-in, a few other new properties of id
have to be assigned, as follows:

0(id) .FA Flag = true
0(id) .FA End = end
0(id) .FA Int = interruptible

The first line sets the object’s FA_Flag to true, and this is used in other parts of the
code to decide whether or not the plug-in can be entered (or reentered). The second line
makes a copy of the end value in the new property FA_End, and the last assigns the value in
interruptible to the property FA_Int.

Next, the amount by which to change the opacity has to be stored in FA_Step. This is
either stepval if the opacity is going to increase, or -stepval if it will be decreasing, as
determined by this line:

0(id) .FA Step = end > O(id).FA Start ? stepval : -stepval

Assisting the FadeToggle() Plug-in

The FadeToggle() plug-in, which is covered a little later in this chapter, needs a way to
know whether an object has been faded in or out. To give it this information, the next new
property of id, Fadeout, is set to either true if the object is being faded out, or false if it
is being faded in, like this:

0(id) .Fadeout = end < O(id) .FA_Start ? true : false

Initiating the Interrupts
The last line of the setup section of the plug-in sets up the repeating interrupts in the
following way:

0(id) .FA IID = setInterval (DoFade, INTERVAL)

This statement starts off a repeating interrupt that will call the DoFade () subfunction
every INTERVAL milliseconds. The value returned by calling setInterval () is saved in
the new id property FA_IID, as it is needed later when it’s time to cancel the interrupts.

Chapter 5: Visibility

The DoFade() Subfunction

This function is a subfunction of Fade () and is known as a private method or private
function. Such functions share all the local variables of the parent function, so there’s no
need to pass them as arguments and, because they can only be used by the parent function,
they don’t clutter up the namespace.

This makes them ideal to use as interrupt or event driven functions, which is exactly
what I have done in this plug-in. Every INTERVAL milliseconds (30 by default), DoFade () is
called up by JavaScript. It has one main job, which is to change the opacity of id by just a
little. The following line is the one that changes the value for this:

0(id) .FA Level += O(id) .FA Step

This simply adds the value of the FA Step property of id to its FA_Level property.
If FA_Step is positive, the value is therefore added, but if it is negative it is subtracted
(for example 100 + -3 is 97, because the first + gets ignored).

If the Final Opacity Has Been Reached
Having derived this new value, it’s time to check whether it is the final value wanted, and if
so whether the animation has completed. The code to do that is slightly verbose:

if (0(id) .FA Level >= Math.max(O(id).FA Start, 0O(id).FA End) ||
0(id) .FA Level <= Math.min(O(id) .FA Start, O(id).FA _End))

Essentially, it checks whether the current opacity value (in FA_Level) has reached the
final required value (in FA_End). If it is the same as or greater than (or less than, in the case
of decreasing) the final value, then the following code segment is executed:

0(id) .FA Level = O(id).FA End
0(id) .FA Flag = false
clearInterval (O(id) .FA IID)

In this section, the value of FA Level is set to the exact value in FA End. This must be
done because FA Level will often have a fractional value, and one final frame of animation
is almost always required to ensure that the correct final opacity level is reached.

After this the FA_Flag property of id is set to false to indicate that the fade has finished.
This is immediately followed by a call to clearInterval () with the value that was saved in
the FA_IID property. This cancels any further interrupts.

The CB Argument
The final statement in this i f () section is as follows:

if (typeof CB != UNDEF) eval (CB)

It checks the argument passed in CB (if any) and uses the eval () function to evaluate
it. This type of procedure is called a callback and is used by the chaining plug-ins. In a
nutshell, now that this plug-in has completed running, this call allows any plug-ins that
may be chained to follow this one to begin their execution. However, this happens only if
the argument CB has a value.

112

Plug-In JavaScript: 100 Power Solutions

This argument is generally passed when you wish to have a second function run when
the plug-in has finished executing; you simply pass the function to call in a string as the
final parameter to plug-ins that support callbacks natively.

NOTE Chapter 7 covers callbacks and chaining in much more detail, but I have placed this brief
description here due to this being the first plug-in that supports callbacks.

Changing the Opacity
The last thing this subfunction does is call the Opacity () plug-in to set the current opacity
value, with this line of code:

Opacity(id, O(id) .FA Level)

If clearInterval () has been called, then that’s the end of it; otherwise, INTERVAL
milliseconds later DoFade () will get called again, and a slightly different value for FA_Level
will be computed and passed to the Opacity () plug-in, until the transition has finished.

NOTE We spent a lot of time going over this particular plug-in because most of the other animation
and transition plug-ins work in a similar fashion. Once you understand this one, you will more
easily see how the others work.

How To Use It

To make an object fade, you would use a command such as this:
Fade ('object', 100, 0, 1000, 0)

This will fade the object out starting with full opacity down to being totally transparent,
over the course of one second. The final argument of 0 prevents the fade from being
interrupted.

You can also embed calls to this plug-in within HTML, like this:

<a href='http://abc.com' onmouseover="Fade ('object', 75, 100, 500, 1)"
onmouseout="Fade ('object', 100, 75, 500, 1)">My Link

If the link was previously given an opacity of 75, then each time the mouse passes over
it the link will gradually increase opacity over half a second, darkening it. When the mouse
leaves it will fade back to a 75 percent opacity level.

Here’s some example code you can try for yourself (or download from the companion
website at pluginjavascript.com to ensure you have the images):

<center>

<scripts>
window.onload = function ()

Chapter 5: Visibility

O('il') .onmouseover = function() { Fade('il', 100, 0, 1000, 0) }

O('il') .onmouseout = function() { Fade('il', 0, 100, 1000, 0) }

O('i2') .onmouseover = function() { Fade('i2', 100, 0, 1000, 1) }

O('i2') .onmouseout = function() { Fade('i2', 0, 100, 1000, 1) }
</scripts>

The HTML section sets up two images with the IDs of ‘i1” and ‘i2". In the <script > section
the onmouseover and onmouseout events of each are attached so that the objects will fade out
when the mouse passes over them and fade back in again when the mouse leaves. For the sake
of brevity, I used inline, anonymous functions here instead of named functions.

The calls made to Fade () for the first image, ‘i1’, have the interruptible argument set to
0, which means they cannot be interrupted and will always continue to completion. The
second image has the interruptible argument set to 1, which allows interruptions.

The Difference between Interruptible and Noninterruptible Calls

Try passing your mouse over the pair of images and note what happens. You will see that
the second image smoothly fades in and out as soon as the mouse enters or leaves it, always
picking up from the opacity level of the fade that was interrupted.

On the other hand, the first image is harder to control because you can only make it fade
out or in from either a fully opaque or a fully transparent state; you cannot interrupt it part
way. This also means that if you move the mouse away from the first image before the
transition has completed, the mouse will already be out, so there will be no onmouseout
event to trigger until you move it back in again and wait for the transition to complete, and
then move the mouse out.

You'll see what I mean as you experiment with the example, and it will become clear
how the noninterruptible method is ideal for animations and transitions that you want to
always complete, while interruptible ones are best used where user interaction with the
mouse is required.

The Plug-in

function Fade(id, start, end, msecs, interruptible, CB)

{

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
Fade (id[j], start, end, msecs, interruptible, CB)
return

}

var stepval = Math.abs (start - end) / (msecs / INTERVAL)

if (O0(id) .FA Flag)

{

if (!0(id).FA Int) return

clearInterval (O(id) .FA IID)
0(id) .FA Start = O(id).FA Level

13

114 Plug-In JavaScript: 100 Power Solutions

else

O(id) .FA Start = start
O(id) .FA Level = start

0(id) .FA Flag = true

0(id) .FA End = end

0(id) .FA Int = interruptible

O(id) .FA Step = end > O(id) .FA Start ? stepval : -stepval
0(id) .Fadeout = end < 0O(id) .FA_Start ? true : false
0(id) .FA IID = setInterval (DoFade, INTERVAL)

function DoFade ()

{

0(id) .FA Level += 0(id).FA Step

if (0(id) .FA Level >= Math.max(O(id).FA Start, O(id).FA_End) ||
0(id) .FA Level <= Math.min(O(id) .FA Start, O(id).FA _End))

{
0(id) .FA Level = 0O(id).FA End
0(id) .FA Flag = false
clearInterval (O(id) .FA IID)
if (typeof CB != UNDEF) eval (CB)
}

Opacity(id, O(id) .FA Level)

236 FadeOut()

This plug-in will fade out any object or objects passed to it. In Figure 5-8, each of the images
has some text above it that will fade out the image below when the mouse passes over it.

ug-in -
)= &) CtihenthoniniDedtoptPlearralelS him v x|

W | = Pug-in breaSorpt

Monseover 1 Ifoasscoer 2

W Computar] Probactsd kode OfF dg o« Wmiaps -

Ficure 5-8 The right-hand image has been faded out.

Chapter 5: Visibility

About the Plug-in

This plug-in will fade out an object over a period of time specified. It takes the following
arguments:

* id An object, an object ID, or an array of objects and/or object IDs
e msecs The number of milliseconds the transition should take

* interruptible If set, the fade out can be interrupted; otherwise it cannot

Variables, Arrays, and Functions

‘ Fade () ‘ Plug-in to fade an object between two levels of opacity

How It Works

This plug-in calls the Fade () plug-in, but it requires fewer arguments. Because of the way
Fade () works this plug-in also accepts an object, an object ID, or an array of objects and/or
object IDs.

How To Use It

Place a call to FadeOut () wherever you would like an object to be faded out. This can be
from within HTML in the form of an onmouseover or onclick event, for example, or you
can place the calls within a section of JavaScript code, as in the following example:

<center>

Mouseover 1l</spans>
<span id='sp2'sMouseover 2<p>

<scripts>
window.onload = function()

{
O('spl') .onmouseover = function() { FadeOut('il', 500, 1) }
O('sp2') .onmouseover = function() { FadeOut('i2', 500, 1) }

}

</scripts>

The HTML portion of this example creates two spans to accompany two images. The
<script> section then attaches to the onmouseover events of each span so that the image
below each one will fade out if the mouse is passed over the span text.

Once an image has been faded out, you can still pass the mouse over each span and the
image will then fade out again. This doesn’t look very good, as the images suddenly appear
before fading, but it can be corrected with the following plug-in.

The Plug-in

function FadeOut (id, msecs, interruptible, CB)

{
}

Fade (id, 100, 0, msecs, interruptible, CB)

115

PLUG-IN

116

31

Plug-In JavaScript: 100 Power Solutions

Fadeln()

This plug-in is a simple front-end to the Fade () plug-in; it fades in an object that has been
previously faded out, as can be seen in Figure 5-9.

About the Plug-in
This plug-in will fade in an object over a period of time specified. It takes the following
arguments:

* id An object, an object ID, or an array of objects and/or object IDs

* msecs The number of milliseconds the transition should take

e interruptible If set, the fade in can be interrupted; otherwise it cannot

Variables, Arrays, and Functions

‘ Fade () ‘ Plug-in to fade an object between two levels of opacity

How It Works

This plug-in calls the Fade () plug-in, but it requires fewer arguments. Because of the way
Fade () works this plug-in also accepts an object, an object ID, or an array of objects and/or
object IDs.

How To Use It

You can use this plug-in in much the same way as the previous one: from within HTML or
from a JavaScript section of code. The following example is a modified version of the

Plug-in JwsaScrpt - Windous Interrst Bl
m' [@ A lrens\Robieh Dt op Pl 61T i -| l-_r| % |

W | 2 Plug-in brenSoopt

Monseover 1 Ifoasscoer 2

W Computar] Probactsd kode OfF dg o« miaps -

Ficure 5-9 The right-hand image has been faded in and the left one has been faded back out.

PLU

38

Chapter 5: Visibility

previous one; this example will fade the images in and out as you pass the mouse over the
Mouseover 1 and Mouseover 2 sections:

<center>

Mouseover l
<span id='sp2'sMouseover 2<p>

<scripts>
window.onload = function ()

{

O('spl') .onmouseover = function() { FadeOut('il', 500, 1) }
O('sp2') .onmouseover = function() { FadeOut('i2', 500, 1) }
O('spl') .onmouseout = function() { FadeIn('il', 500, 1) }
O('sp2') .onmouseout = function() { FadeIn('i2', 500, 1) }
}
</scripts>

The main benefit from using this plug-in with Fadeout () is that together they require
fewer arguments than the Fade () plug-in, are easier to remember, and are shorter. They are
also used by the next two plug-ins, which toggle an object between being faded out or in
and fade smoothly between two objects, respectively.

The Plug-in

function FadeIn(id, msecs, interruptible, CB)

{

Fade (id, 0, 100, msecs, interruptible, CB)

}

FadeToggle()

If you use this plug-in, you don’t need to know the current faded out or in state of an object;
it tracks the state for you and inverts whatever that state is. Figure 5-10 shows an icon of
a house that is being refaded into view with this plug-in.

"8 Plug-In wsaScipt - Windows iteerst Eulorar ==

@'E" £ CAlberyiRohin\De st op i Flecarmpled T.him v [+] % |

| S Plig-in et

Housmower

W Computar] Probactd ko OfF dg o« Wiaps -

Fieure 5-10 The house is starting to fade into view.

17

118

Plug-In JavaScript: 100 Power Solutions

About the Plug-in

This plug-in either fades an object in or out, depending on its previous state. It requires the
following arguments:

* id An object, an object ID, or an array of objects and/or object IDs
e msecs The number of milliseconds the transition should take

* interruptible If set, the fade can be interrupted; otherwise, it cannot

Variables, Arrays, and Functions

3 Local variable that iterates through the elements in id if it is an array
Fadeout New property given to id and set to true if it has been faded out
FadeIn () Plug-in to fade an object in
FadeOut () Plug-in to fade an object out

How It Works

This plug-in has to make use of its own code to iterate through id if it is an array because of
the need to individually check the Fadeout property of id for each object. It uses the
standard form of many prior plug-ins to call the same function recursively with single array
elements.

The second half of the plug-in is where the Fadeout property is checked. If it is set to
true, then that value will have been assigned from within the Fade () plug-in, discussed
earlier in this chapter. When set to true, it means that the object has been faded out. If the
Fadeout property doesn’t exist or is set to false, then the object has not been faded out.

Therefore, based on the value of Fadeout, a decision is made by the FadeToggle ()
plug-in to call either the FadeIn () plug-in to fade the object in or the FadeOut () plug-in to
fade it out.

How To Use It

You can attach this plug-in to an event from within HTML, or you can call it up from a
section of JavaScript code. In the following example, the same call to FadeToggle () is
attached to both the onmouseover and the onmouseout events of the span:

<center>

Houseover

<scripts>

window.onload = function()

{
FadeToggle('il', 1, 1)
O('spl') .onmouseover = function() { FadeToggle('il', 500, 1) }
O('spl') .onmouseout = function() { FadeToggle('il', 500, 1) }

}

</script>

PLUG-IN

39

Chapter 5: Visibility

Make sure to look at the first call in the <script> section. Notice how it sets a transition
time of just 1 millisecond for the fade. This is the recommended way to set up toggleable
elements to start up in their inverse state because it causes the transition to occur, but over
only a single frame of animation.

This technique is useful if you want the house image to start faded out: the call to
FadeToggle () accomplishes the first fade out as quickly as possible—faster than the eye
can see. When you run the example, you should hardly even notice the image until you
pass the mouse over the text.

With the image faded out, the remaining two lines of code attach to the two mouse
events. The house will smoothly fade in and out as you pass your mouse over the text
because the interruptible argument is set to 1 and allows smooth interrupts to the
transitions.

The Plug-in

function FadeToggle (id, msecs, interruptible, CB)

{

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
FadeToggle (id[j], msecs, interruptible, CB)
return

}

if (0(id) .Fadeout) FadeIn(id, msecs, interruptible, CB)
else FadeOut (id, msecs, interruptible, CB)

FadeBetween()

This plug-in fades smoothly between two images in a similar manner to a fade transition
in a slideshow program. Figure 5-11 shows two overlaid images in the process of fading
between each other.

T Mg in B Wi T Eprr =
ﬁ'i::l' & Cilben'iRobintiDe ddop P exampledi him - | +3 | 4 |

37| 8 Plig-in et

Cresaney

W Compiutar] Probactsd kode OFF dg o« miaps -

Fieure 5-11 The house and people icons are fading between each other.

19

120

Plug-In JavaScript: 100 Power Solutions

About the Plug-in

This plug-in fades smoothly between two images. It requires the following arguments:

* idl An object, an object ID, or an array of objects and/or object IDs
* id2 An object, an object ID, or an array of objects and/or object IDs
¢ msecs The number of milliseconds the transition should take

* interruptible If set, the fade can be interrupted; otherwise, it cannot

Variables, Arrays, and Functions

FadeOut () Plug-in to fade an object out
FadeIn () Plug-in to fade an object in
How It Works

This plug-in calls the FadeOut () plug-in for id1 and the FadeIn () plug-in for id2. Itis
also possible to supply an object, an object ID, or an array of objects and/or object IDs to
both plug-ins.

How To Use It

To use this plug-in, pass it two IDs, objects, or arrays of objects and/or object IDs, and they
will fade from the first object to the second. For the best results, you will probably want to
overlay the objects on top of each other so that you can get smooth transitions. However,
the plug-in still works fine if you wish to fade between objects in different locations.

The following example illustrates the setting up of your objects and then fading
between them:

<center>

Crossover

<scripts>

window.onload = function ()

{
Locate (Array('il', 'i2'), ABS, 0, 0)
FadeToggle('i2', 1, 1
O('spl') .onmouseover
O('spl') .onmouseout

function() { FadeBetween('il', 'i2', 500, 1) }
function() { FadeBetween('i2',6 'il', 500, 1) }

}

</scripts>

In the HTML section a span is created to which mouse events will be attached and then
two GIF images are loaded.

In the <script> section the two images are lifted out of the layout by making their
position setting “absolute’, then the second image is speedily faded out (over a period of
1 millisecond) so that only the first image is visible.

PLUG-IN

40

Chapter 5: Visibility

The mouse events are attached to the FadeBetween () plug-in so that passing your

mouse over the span text smoothly fades between the images over a period of half a second.

The first FadeBetween () call fades from the first image to the second, while the second call
fades back again.

The Plug-in

function FadeBetween(idl, id2, msecs, interruptible, CB)

{

FadeOut (idl, msecs, interruptible, CB)
FadeIn(i1d2, msecs, interruptible, CB)

Hide()

This plug-in is different from Plug-in 31, Invisible (), in that when called it completely
collapses the object down to a 0 by 0 pixel space. The object is still there so that it can be
unhidden, but it is not visible. Because it occupies no space, other elements will often move
in to occupy the freed up space. This makes it perfect for menuing and similar features.

In Figure 5-12, a row of three buttons has been created, each of which is attached by its
onclick event to a call to the Hide () plug-in. In Figure 5-13, the middle button is hidden
after being clicked, and the other buttons have moved in to take up the vacant space.

About the Plug-in

This plug-in will hide an object, effectively removing it from a web page. It requires the
following argument:

* id An object, an object ID, or an array of objects and/or object IDs

Variables, Arrays, and Functions

HI Flag New property assigned to id and set to true when id is hidden
display The style.display property of id
8 Dlug-In S Senpt - Windoue bomet Bplorer = I
@\i:l' B Chlben'iBobiniDe ddop P Nexampled htm - | Hi x |

W | S g st

BuwtonA | [Buton B | [BusonC |

W Compitar] Probactsd kode OfF dg o« Wmiups -

Ficure 5-12 Three buttons created with click events to hide them

121

122 Plug-In JavaScript: 100 Power Solutions

8 Dlug-in LasaSonpt - Windous it Explorr s

ﬁ_lf_:li [i2] aLher\FobirDe skt g Plexsmpledil him v [4] % |

W | S PlugHn lreiopt

Eiuion & :Equmc :

W Compiutar] Probactsd kode OfF dg o« miaps -

Ficure 5-13 The middle button has been clicked and is now hidden.

How It Works

This plug-in makes a call to the s () plug-in using the assignment version of the call, so that
id can be an object, an object ID, or an array of objects and/or object IDs. Each object has
its style.display property set to ‘none’, which hides it. Additionally, a call to 0 () is made
with the arguments HI_Flag and true, which sets the new object property Hi_Flag to
true so that other plug-ins can tell that the object has been hidden. This call also supports
arrays.

Finally, any callback function contained in CB is evaluated with the eval () function,
but only if the argument CB (explained in Chapter 7) has a value.

How To Use It

To hide an object, pass it to the Hide () plug-in, either from inside a section of JavaScript
code, or from within HTML. The follow example creates three buttons, each of which can be
clicked to make it hide:

<br /s><centers>

<input id='a' type='submit' value=' Button A ' />
<input id='b' type='submit' value=' Button B ' />
<input id='c' type='submit' value=' Button C ' />

<scripts>
window.onload = function()

{

O('a').onclick = function() { Hide('a') }
O('b') .onclick = function() { Hide('b') }
O('c').onclick = function() { Hide('c') }
}
</script>

Alternatively, the input tags could be written as follows, and then no <script > section
is necessary:

<input type='submit' wvalue=' Button A ' onclick='Hide (this)' />
<input type='submit' value=' Button B ' onclick='Hide (this)' />
<input type='submit' value=' Button C ' onclick='Hide (this)' />

PLUG-IN

4

Chapter 5: Visibility

Or, one button can hide another, like this:

<input id='a' type='submit' value=' Button A ' onclick="Hide('b')" />
<input id='b' type='submit' value=' Button B ' onclick="Hide('a')" />

The previous two lines each hide the other button, so whichever is clicked first will stay
displayed, since the other button will now be hidden and therefore can’t be clicked.

In the following plug-in you'll see how Hide () can be combined with Show () for
creating dynamic web page interaction.

The Plug-in

function Hide (id, CB)

{

S(id, 'display', 'none')
0(id, 'HI_Flag', true)
if (typeof CB != UNDEF) eval (CB)

Show()

This is the partner plug-in for Hide () . With it you can reveal an object that has previously
been hidden. In Figure 5-14 the two plug-ins have been combined to create a mouseover
menu of limericks.

About the Plug-in

This plug-in will show an object, restoring its dimensions and location and moving back
any elements that had moved in to take its space. It requires the following argument:

e id An object, an object ID, or an array of objects and/or object IDs

8 Plug-In JasaSenpt - Windooe: ntarrt Explonar == |

m' [@ ©Alrens\Robieh Dt op Plusarg e L i [+s] x|

W | = Pug-n breaSorpt

Limericks by Edward Lear
Beard Limerick | Bew Limerick | Chin Limerick

There was an Old ke m & tres,
Whe wars herobly bared by a Eee,
When they said, ‘Dioes it bux?
He repled, 'Vies, & deesl!
Tt's & repolar binas <f o Bee!'

W Compiutar] Probactsd kode OFF dg o« Wiaps -

Ficure 5-14 Different limericks appear as the mouse passes each heading.

123

124

Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

HI Flag New property assigned to id and set to true when id is hidden or
false when it is not
display The style.display property of id
How It Works

This plug-in makes a call to the s () plug-in using the assignment version of the call so that id
can be an object, an object ID, or an array of objects and/or object IDs. Each object has its
style.display property set to ‘block’, which restores its full width and height. Additionally,
acall to 0 () is made with the arguments HI_Flag and false, which sets the new object
property Hi Flag to false, so that other plug-ins can tell that the object is not hidden. This
call also supports arrays.

Finally, any callback function contained in CB is evaluated with the eval () function,
but only if the argument CB (explained in Chapter 7) has a value.

How To Use It

Now that you have both Hide () and Show () in your toolkit, you can start to create some
professional results, as in the following example, which features a simple mouseover menu
of headings that call up different sections of HTML when the mouse passes over them:

<h2>Limericks by Edward Lear</h2>

Beard Limerick |
Bee Limerick</spans> |
Chin Limerick<p>

<div id='11'>There was an 0ld Man with a beard,

Who said, 'It is just as I feared!

Two Owls and a Hen,

Four Larks and a Wren,

Have all built their nests in my beard!'</divs>

<div id='12'>There was an 0ld Man in a tree,

Who was horribly bored by a Bee;

When they said, 'Does it buzz?'

He replied, 'Yes, it does!'

'It's a regular brute of a Bee!'</div>

<div id='13'>There was a Young Lady whose chin,

Resembled the point of a pin;

So she had it made sharp,

And purchased a harp,

And played several tunes with her chin.</divs>

<scripts>
window.onload = function ()

Chapter 5: Visibility

Hide (Array('1l1', '12', '13'))
O('hl') .onmouseover = function() { Show('l1l') }
O('hl') .onmouseout = function() { Hide('l1') }
O('h2') .onmouseover = function() { Show('l2') }
O('h2') .onmouseout = function() { Hide('l2') }
O('h3') .onmouseover = function() { Show('13') }
O('h3') .onmouseout = function() { Hide('13') }
}
</scripts>

This is all pretty straightforward. The HTML section is in two parts. The first displays
a header along with the three spans containing subheadings, and the second displays three
divs, each containing a different limerick.

The <script> section then hides all three of the divs with a single call to Hide () in
which an array of object IDs is passed. Then follows six statements that attach either the
Hide () or show () plug-in to the onmouseover or onmouseout events of the subheadings
via the use of anonymous inline functions.

Whenever the mouse is passed over any subheading, the matching div will be displayed
using a call to Show () . As soon as the mouse passes out of the subheading, a matching call
to Hide () is made to remove it again.

Placing the JavaScript within HTML

As you will have noticed, my preference when creating such interactive sections of a web
page is to proceed using strong separation between HTML and JavaScript. I find that it
makes the HTML much more readable and far easier to update. However, if you prefer
to embed JavaScript calls within HTML, you could replace the three span lines with the
following:

Beard
Limerick |

Bee
Limerick |

Chin

Limerick</spans><p>

If you do choose this method of attaching to the mouse events, you can remove the final
six statements from the <script> section, but you will still need to keep the initial Hide ()
statement in order to hide all the divs away on page load.

The Plug-in

function Show(id, CB)
{
S(id, ‘'display', 'block')
0(id, 'HI_Flag',6 false)
if (typeof CB != UNDEF) eval (CB)

125

126

242

Plug-In JavaScript: 100 Power Solutions

HideToggle()

This chapter’s final plug-in combines the Hide () and Show () plug-ins into a single plug-in
that will toggle the value of an object from one state to the other, without you having to
know which state it was in to begin with. Figure 5-15 shows an informational paragraph
that, when clicked, will replace itself with another, simply by issuing a single call to this
plug-in.

About the Plug-in

This plug-in will make an object hidden if it is shown or show it if it is hidden. It requires
the following argument:

* id An object, an object ID, or an array of objects and/or object IDs

Variables, Arrays, and Functions

3 Local variable to iterate through id if it is an array
HI Flag Flag set by the Hide () and Show () plug-ins. If true an object is
hidden, if false or unset it is shown.
display The style.display property of id
Show () Plug-in to show an object that has been hidden
Hide () Plug-in to hide an object
How It Works

This plug-in uses the usual code you have seen a few times to iterate through id if it happens
to be an array. It determines this with the instanceof operator and, if it is an array, the local
variable j iterates through id using a for () loop, passing each individual element of the
array back to the same function recursively. Once the array has been processed, the function
returns.

| "# Plug-In JwaScrpt - Windous: temst Explorer =
—,
@'L.,_-I' &1 el smrs Fobind esdoto pPLY ecample 4G it - | 3| x|

| 8 Plig-in et

Democrat Info

The Demecrabe Paty is one of the workds ablest parbes, and
has the most regustered webars of sy party o e world as of
. Tt is conmdared b2 be laf of conber

M Camputer| Probacted Mods OFF v HInes -

Ficure 5-15 Toggling between sets of info

Chapter 5: Visibility

If id is not an array, the display property of id is inspected. If its value is not ‘none’,
the object is visible, so the Hide () plug-in is called. Otherwise, the object is visible, so the
Show () plug-in is called.

How To Use It

To use this plug-in, pass it an object to be hidden or shown. As in most cases, you can also
pass an object ID or an array of objects and/or object IDs. The following example illustrates
creating a couple of different elements and toggling between them:

<div id='democrat's><h2>Democrat Info</h2>

The Democratic Party is one of the world's oldest parties, and

has the most registered voters of any party in the world as of

2004. It is considered to be left of center.<p>

Click to see Republican info</div>

<div id='republican's><h2>Republican Info</h2>

The Republican Party is often called the Grand 0ld Party or the

GOP, despite being the younger of the two major parties. It is

considered to be right of center.<p>

Click to see Democrat info</div>

<script>
window.onload = function()

{
Hide ('republican')
O('democrat') .onclick = toggle
O('republican') .onclick = toggle

function toggle ()

{

}
}

</scripts>

HideToggle (Array ('democrat', 'republican'))

In the HTML section, two divs are created, one for information on the U.S. Democratic
Party, and the other for the U.S. Republican Party. After the informational text (taken from
Wikipedia) each div also includes a link with which the alternate information can be
displayed.

In the <script> section, the second div (with the ID of ‘republican’) is hidden so that
only one div is shown. The other div could be hidden instead, but one of them must be
hidden to start with in order for the toggling to work.

Then two attachments are made, one to each onclick event of the divs. They simply
attach the function toggle () to the events, remembering that by leaving out the brackets
the function is attached to the event, rather than the value returned by the function being
attached.

Finally, the toggle () function calls the HideToggle () plug-in, passing it both of
the div IDs. Since one is shown and one is hidden, toggling them both replaces one with
the other.

127

128

Plug-In JavaScript: 100 Power Solutions

The Plug-in

function HideToggle (id, CB)

{

if (id instanceof Array)

{

for (var j = 0 ; j < id.length ; ++3)
HideToggle (id[j], CB)
return
}
if (S(id) .display != 'none') Hide(id, CB)

else Show(id, CB)

CHAPTER 6

Movement and Animation

PLUG-IN

130

43

Plug-In JavaScript: 100 Power Solutions

have now been covered. Using the tools already outlined, the plug-ins in this chapter

enable you to slide objects around the screen, deflate, and inflate objects over time,
and zoom objects in a variety of ways. With all of this, you can create some very impressive
effects with only a few lines of code.

I Trom this point on, the plug-ins really start to get interesting as most of the core functions

Slide()

This plug-in allows you to slide an object from one place to another over time, making it
useful for sliding elements in on demand, hiding and revealing objects, or creating animation
effects. Figure 6-1 shows an image in the process of sliding from the bottom left to the top
right of the browser.

About the Plug-in
This plug-in moves an object from one location to another over a period of time. It supports
single objects only (not arrays) because if there were more than one object, only the topmost
one would be seen. Therefore, you can pass only an object or an object ID to this plug-in.
It requires the following arguments:

e id Either an object or an object ID—it cannot be an array of objects

* frx, fry The top left corner of the initial position for id

e tox, toy The top left corner of the final position for id

* msecs The number of milliseconds the animation should take

* interruptible If true (or 1), this plug-in can be interrupted by a new call on the
same object; if false (or 0), the call is uninterruptible

"8 Plug-in JwsaScipt - Windows hiteerst Eulorar ==

—
® |] cAlherriRobiniDe st opiPexsmpledi iim v [2 |
b I

wi | % Plg-in enScipt

W Computar] Probactsd kode OFF dg o« miaps -

Ficure 6-1 This plug-in smoothly slides objects over time.

Chapter 6:

Variables, Arrays, and Functions

Movement and Animation

stepx Local variable containing the amount by which to move horizontally
in each step

stepy Local variable containing the amount by which to move vertically in
each step

count Local variable to count the steps

lenl Local variable containing the start to end distance

len2 Local variable containing the new start to end distance after an
animation is interrupted and given now coordinates

SL _Flag New property assigned to id: true when a slide is in progress,
otherwise false or unset

SL_ Int New property assigned to id: true if the previous call to this plug-
in set the slide to uninterruptible

SL_IID New property assigned to id with which the repeating interrupts
can be stopped

INTERVAL Global variable with the value 30

Distance () Subfunction to calculate the distance between two locations

DoSlide () Subfunction to perform the sliding animation

GoTo () Plug-in to move an object to a new location

setInterval () Function to set another function to be called repeatedly

clearInterval () Function to stop the interrupts created by setInterval ()

How It Works

The first section of code tests for the existence of the SI._Flag property of id. If it has a value

of true (or 1) then a slide on id is already in progress. This is the statement used:

if (0(id) .SL_Flag)

Next, the property of id, SL_Int is tested. If it is false then the previous call to S1ide ()

for this id set this variable to indicate that the function could not be interrupted, so the

function returns.

Otherwise, interrupting the plug-in is allowed, so the current slide is stopped by calling
clearInterval (), passing it the SL_IID property of id, as returned by SetInterval ().

The code to do this is as follows:

if (10(id) .FL_Int)

return

else clearInterval (O(id) .SL_IID)

Next, because the plug-in has been interrupted, it’s necessary to allow the interrupting
slide to commence from wherever the previous one was halted. What’s more, because the
coordinates of the halted object will not be the start coordinates passed to the interrupting

131

132

Plug-In JavaScript: 100 Power Solutions

call, it’s necessary to ensure that the interrupting call moves at the same speed as the one
specified in the call.

For example, if the call to S1ide () specifies an animation time of 1000 milliseconds, but it
interrupts another slide and discovers that the object is now only one third of the distance from
the destination (instead of the 100 percent it would have been if this was the first S1ide () call
on the object), then the new slide should only take one-third of 1000 milliseconds to move,
or 333 milliseconds.

Using the Pythagorean Theorem

To calculate the new distance to travel, and, therefore, determine the speed of the new slide,
the plug-in uses the Pythagorean theorem, which states that on a right angled triangle, the
volume of the square on the hypotenuse is equal to the sum of the volumes of the squares
on the other two sides.

This works because if you draw a line between any two points, on a two-dimensional
surface such as a browser, you can draw a horizontal line from one point and a vertical line
from the other so that they meet each other at a single coordinate to create a right angled
triangle, with the longest edge being the line connecting the two locations.

Therefore, using the Pythagorean theorem, the distance between the requested start and
end locations is determined by passing the results of tox - frxand toy - fry to the
subfunction Distance (), like this:

var lenl = Distance(tox - frx, toy - fry)
The Distance () subfunction looks like this:

function Distance (x, V)

{
x = Math.max (1, x)
y = Math.max (1, vy)
return Math.round(Math.sgrt (Math.abs(x * x) + Math.abs(y * y)))

The variable x is the length of one short side of the triangle, while y is the length of the
other short side. If either value is 0, then it is changed to 1, otherwise division-by-zero errors
may occur.

Each value is then multiplied by itself to determine the volumes of the squares, and they
are then converted to absolute values, since they could be negative numbers. These figures
are then added together to give their combined volume, which is also the volume of the
square on the long side of the triangle.

Finally, to discover the length of the triangle’s longest side, the square root of this new
volume is returned—the distance in pixels between the locations frx,fry and tox,toy.

With the distance now stored in 1eni, the values of frx and fry are overridden with
those of the actual coordinates of the object, by looking them up with the X () and ¥ ()
plug-ins using the following code. The plug-in will use this new start location, overriding
the one passed to it by the calling code:

frx
fry

X (id)
Y (id)

Chapter 6: Movement and Animation 133

The preceding process is then repeated to discover the distance between the new start
location of frx,fry and the final location of tox,toy and this distance is then placed in the
variable 1en2, like this:

var len2 = Distance(tox - frx, toy - fry)

It is now possible to adjust the value of msecs (the length of time the animation should
take in milliseconds) by multiplying it by the result of dividing 1en2 by leni, like this:

msecs *= len2 / lenl

For example, if the original length is 240 pixels and the new length is 200 pixels, then the
preceding statement is the equivalent of

msecs *= 200 / 240
or:
msecs *= 0.833

Therefore, the length of time the animation should take will become 833 milliseconds.
This formula also works when the interrupting call discovers that the actual location of the
object is further away than the start position it has specified. If that is the case, msecs will
end up being multiplied by a value larger than 1, which will extend the time that should be
taken.

Determining the Movement Distance for Each Step

Next, the plug-in computes the distance between the start and end positions (whether as
originally requested by the calling code, or modified due to interrupting a previous slide)
and divides the horizontal and vertical differences into the number of steps required to
make the animation last for the number of milliseconds specified in msecs (which again
could be the original value, or a new value computed from interrupting a previous slide).
The following code calculates these step values:

var stepx = (tox - frx) / (msecs / INTERVAL)
var stepy = (toy - fry) / (msecs / INTERVAL)

To explain how these two lines of code work, I have determined that the value in
INTERVAL (which is 30 by default) is the optimal time in milliseconds between animation
frames. Therefore, the following calculation calculates the number of steps required to make
an animation last msecs milliseconds (if each step happens every INTERVAL milliseconds):

(msecs / INTERVAL)

Tip Always ensure you pass the msecs argument a value greater than zero because this plug-in
(and all of the animation and transition plug-ins) does not check for it having a value of zero,
which will cause errors and halt the animation.

134

Plug-In JavaScript: 100 Power Solutions

The distance between the start and end locations is determined by subtracting the end
from the start, as in these two calculations:

(tox - frx)
(toy - fry)

If the start is before the end then the result of a calculation is a negative number, otherwise
it is positive. The results are then divided by the result of the previous calculation to divide
the distance by the steps required to determine the amount of movement for each axis, for
each step of animation.

Setting Up the Repeating Interrupts

The last four lines of the setup portion of the plug-in set the local variable count to zero; it
will count each step, and inform the plug-in when it’s time to stop. Then the new SL._Int
property of id is set to the value in interruptible. This causes any call that attempts to
interrupt the slide to be prevented unless it has the value true or 1. Next, the new SL._Flag
property of id is given the value true to tell this and any other plug-ins that a slide is
currently in progress on the object id.

Finally, setInterval () is called, passing it the DoS1ide function name and the value
in INTERVAL. Because the brackets are left off the end of the function name, the function
itself is passed to set Interval (). If brackets were placed after the name then the result of
calling the Doslide () function would be passed to setInterval (), which is another
value altogether.

This statement has the effect of initiating an interrupt call to the Doslide () function every
INTERVAL (30 by default) milliseconds. The value returned by the function is stored in SL._IID
(11D stands for Interrupt ID), so that it can be used as an argument to clearInterval () when
the slide has completed (or if it is interrupted). The code to do all this is as follows:

var count =0

0(id) .SL_Int = interruptible

0(id) .SL_Flag = true

0(id) .SL_IID = setInterval (DoSlide, INTERVAL)

Performing the Slide
The portion of code that performs the animation is the Doslide () subfunction. Subfunctions
retain access to the main function’s local variables and are, therefore, a neat way to create
a repeating interrupt without having to keep passing the arguments required.

The first thing the subfunction does is call the GoTo () plug-in to move the object to its
next location, as follows:

GoTo (id, frx + stepx * count, fry + stepy * count)

The two values stepx and stepy were calculated earlier in the plug-in, so this simply
takes the value in £rx and adds to it the result of multiplying stepx by count (the current
step number). The same is also calculated for the vertical location.

Next, an if () section of code is entered, in which the value of count is tested against
the result of the calculation msecs / INTERVAL. The current value of count is tested, but

Chapter 6: Movement and Animation

the suffix of ++ then increments count after making the test so that it has its new value
ready for the next time the subfunction is called. The statement looks like this:

if (count++ >= (msecs / INTERVAL))

{
}

If count is greater than or equal to msecs / INTERVAL, the object has reached its final
destination and the animation is complete, so the following four lines of code (shown as ...
in the previous if () segment) are executed:

0(id) .SL_Flag = false

GoTo (id, tox, toy)
clearInterval (O(id) .SL_IID)

if (typeof CB != UNDEF) eval (CB)

The first line sets the SI._Flag property of id to false to indicate no slide is running on
id. Then a GoTo () call ensures that the object has ended in exactly the correct position, by
passing it the values of tox and toy. This is necessary because the values of stepx and
stepy will usually be floating point numbers and, therefore, the final location as calculated
using them could be a tiny bit off. The tox and toy arguments for this call ensure that any
imprecision is not an issue.

After this, the clearInterval () function is called with an argument of SL._I1ID, the
property of id that was created from the result of calling setInterval (). This turns off the
repeated interrupts.

Finally, any callback function contained in CB is evaluated with the eval () function,
but only if the argument CB (explained in Chapter 7) has a value.

How To Use It

To slide an object from one place to another it must first be released from its default location
by giving its style.position property a value such as ‘absolute’. The following example
moves an object from the coordinates 0,100 to 450,0 over the course of 1500 milliseconds
(1.5 seconds):

<scripts>
window.onload = function()

Position('globe', ABS)
Slide('globe', 0, 100, 450, 0, 1500, 0)

}

</scripts>

The HTML section displays an image and gives it the ID “‘globe’. Then, in the <script>
section, the image is given an ‘absolute’ position using the Position () plug-in and is then
animated with a single call to S1ide (). The final argument passed is for whether the
animation is interruptible and, in this case, it is not.

135

136 Plug-In JavaScript: 100 Power Solutions

Let’s look at another example that responds to mouse events and allows interruption by
adding a couple of commands to the <script> section of the previous example:

O('globe') .onmouseover = function()

{ slide(this, 450, 0, 450, 50, 500, 1) }
O('globe') .onmouseout = function()

{ slide(this, 450, 50, 450, 0, 500, 1) }

Now when you pass the mouse over the globe it will move from the position 450,0 to
450,50. When you move the mouse away, it will slide back to 450,0. As you'll see, it doesn’t
matter where you interrupt the slide, it always maintains the correct speed. Notice that the
keyword this tells S1ide () which object to slide.

However, if you interrupt one slide with another that has a different distance to go or
a different length of time specified, then the interrupted and interrupting speeds will not
match. I recommend you to generally disallow interrupting a slide with a dissimilar one. as
with the first S1ide () call in the example, which you cannot interrupt.

The Plug-in

function Slide (id, frx, fry, tox, toy, msecs, interruptible, CB)
{
if (0(id) .SL_Flag)
{
if (!0(id) .SL_Int) return
else clearInterval (O(id) .SL_IID)

var lenl = Distance(tox - frx, toy - fry)
frx = X (id)
fry = Y(id)
var len2 = Distance(tox - frx, toy - fry)
msecs *= len2 / lenl
}
var stepx = (tox - frx) / (msecs / INTERVAL)
var stepy = (toy - fry) / (msecs / INTERVAL)
var count =0
0(id) .SL_Int = interruptible
0(id) .SL_Flag = true
0(id) .SL_IID = setInterval (DoSlide, INTERVAL)

function Distance (x, Vy)

{
X = Math.max (1, x)
y = Math.max (1, y)
return Math.round (Math.sqgrt (Math.abs(x * x) + Math.abs(y * y)))

}
function DoSlide ()
{

GoTo(id, frx + stepx * count, fry + stepy * count)

if (count++ >= (msecs / INTERVAL))

PLUG-IN

Chapter 6: Movement and Animation

0(id) .SL_Flag = false

GoTo (id, tox, toy)
clearInterval (O(id) .SL IID)

if (typeof CB != UNDEF) eval (CB)

SlideBetween()

This plug-in is swaps the positions of two objects by sliding them past each other. This is a
great effect for swapping requested objects into a chosen location. For example, Figure 6-2
shows a collection of photos that can be individually displayed by passing the mouse over
the associated title. When you do this, the previous photograph is swapped with the new
one and they slide past each other, the old one returning to the stack of pictures and the new
one moving to the main viewing area.

About the Plug-in
This plug-in takes the positions of two objects and then swaps the two by sliding the objects
past each other. It takes the following arguments:

e id Either an object, or an object ID—it cannot be an array of objects

e msecs The number of milliseconds the animation should take

e interruptible If true (or 1), this plug-in can be interrupted by a new call on the
same objects; otherwise, if false (or 0), the call is uninterruptible

mv [@] Coutseen, RabiniDestog P Femple bk bim

W B Pugein leascript

Cheose a phete: Lavdacape, Museom, Parrots, Steps, Prrandd

¥ Compubar | Protactsd Mada: OFF dg T HINE v

Ficure 6-2 This plug-in creates smooth and impressive swap effects.

131

138

Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

SL_Flag Property of both 1d1 and id2—true if a slide is in progress

SL Int Property of both 1d1 and id2—true if a slide can be interrupted
tl Local temporary variable to store a copy of 1id1l’s SB_X property
t2 Local temporary variable to store a copy of id1’s SB_Y property
x1 Local temporary variable to store a copy of 1id1l’s SB_X property
V2l Local temporary variable to store a copy of id1’s SB_Y property
X2 Local temporary variable to store a copy of 1d2’s SB_X property
y2 Local temporary variable to store a copy of id2’s SB_Y property
SB X Property of both 1d1 and id2 containing their horizontal locations
SB Y Property of both 1d1 and id2 containing their vertical locations

How It Works

This plug-in first checks whether either of the objects passed to it is currently being used in
a slide animation by testing their SL._F1lag properties. If so, both objects then have their
SL_Int properties tested. If neither has a value of true or 1, then the slide may not be
interrupted and the function returns. The code to do this is as follows:

if (0(idl).SL_Flag || 0(id2) .SL_Flag)

{
if (10(id1l).SL_Int || !0(id2).SL_Int)
return

If the function is interruptible, then the locations of each object require swapping so that
they can return to their start locations. This behavior has been chosen because the only details
passed to the plug-in are the object IDs. Therefore, if an interrupting call to S1ideBetween ()
is requested on an object, the only different action it can take is to reverse the current slide.

To do this, the temporary variables t1 and t2 are given the current horizontal and
vertical locations of 1d1. Then id1 is given the position of id2. Finally, id2 is given the
position stored in t1 and t2, using the following statements:

var tl = 0(id1) .SB_X
var t2 = 0(id1l) .SB_Y
0(idl) .SB X = 0(id2).SB X

id1) .SB Y = 0(id2).SB_Y

O () -

0(id2) .SB_X = t1

0(id2) .SB_Y = t2
If a slide is not currently in progress on either object, copies are made of the current

horizontal and locations of each object. These are created as new properties of each object (rather
than local variables) so that interrupting calls (if allowed) can have access to them, as follows:

else

{

]

>
-
[o
=

0(id1l).sB_X
0(idl) .SB_Y = Y (id1l)

Chapter 6: Movement and Animation

0(id2) .SB X
0(id2) .SB_Y = Y(id2)

I
<
-
(o
N

Next, although not necessary, temporary copies are made of the locations of each object
in the short named variables x1, x2, y1, and y2. This is so that the final two statements are
easier to read and can fit on single lines. The four lines that do it look like this:

var x1 = 0(idl) .SB X
var yl = O(idl) .SB Y
var x2 = 0(id2).SB X
var y2 = 0(id2).SB_Y

The final statements that start the animations going with calls to the s1ide () plug-in
are as follows:

Slide(idl, x1, y1l, x2, y2, msecs, interruptible, CB)
Slide (id2, x2, y2, x1, yl, msecs, interruptible, CB)

The first statement sets up id1 to move from its location to that of id2, and the second
sets 1d2 up to move from its location to that of id1.

How To Use It

There are many ways you can use this plug-in. All you need is a single line of code to
smoothly swap two objects, like the following, which swaps object1 and object2 by
sliding them past each other over the course of 1000 milliseconds (1 second):

SlideBetween (objectl, object2, 1000, 0)

The final argument of 0 specifies that the animation may not be interrupted and must
proceed until it completes.

Here’s an example of how you could use this plug-in to create a simple but effective
way to display photographs:

Choose a photo:

Landscape,
Museum</spans,
Parrots</spans>,
Steps,
Pyramid
<div id='bl's</div>

<div id='b2'></div>

<div id='b3'></div>

<div id='b4's></div>

<div id='b5'></div>

139

140

Plug-In JavaScript: 100 Power Solutions

<scripts>
window.onload = function()

{

Locate (Array('bl', 'b2', 'b3', 'b4', 'b5'), 'absolute', 2, 50)
Locate('pl', ABS, 330, 50)
Locate('p2', ABS, 335, 55)
Locate('p3', ABS, 340, 60)
Locate('p4', ABS, 345, 65)
Locate('p5', ABS, 350, 70)
swap('ml', 'pl', 'bl')
swap('m2', 'p2', 'b2"')
swap('m3', 'p3', 'b3')
swap('m4', 'p4', 'b4')
swap('m5', 'p5', 'b5')

function swap(ol, 02, 03)

{
0(ol) .onmouseover = function() { SlideBetween(o2, o3, 200, 1) }
O(ol) .onmouseout = function() { SlideBetween(o2, o3, 200, 1) }

}
}
</scripts>

The HTML section of this example displays some text and five headings that describe
five photographs. Each heading is given an ID and placed in its own span tag. Underneath
this, five empty divs are created with unique IDs. These will be used as objects with which
to swap the photographs. Finally, the photographs are displayed, with each one having a
unique ID assigned to it.

In the <script> section, the first statement sets all the blank divs to have a position
property of “absolute” and places them all at the location 2,50. Then the photos are also made
“absolute’ and placed in their locations. I chose to give them slightly different coordinates to
show them as a stack of images.

After this, five calls to a new function called swap () are made to attach to the image’s
mouse events. The swap () function takes three arguments, o1, 02, and o3, for the three objects
passed to it. The o1 object is one of the heading divs, which then has its onmouseover and
onmouseout events attached to by inline, anonymous functions that call the S1ideBetween ()
plug-in, passing o2 and o3 (the two objects to swap) to it, and a time period of 200 milliseconds
that the swap should take.

All this has the effect of swapping a photo with its blank companion div when the mouse
passes over its heading. It swaps them back when the mouse passes out of the heading.
Because the final argument passed to S1ideBetween () is a 1, the animations are interruptible,
so if you move the mouse away before a picture has finished sliding, it will simply slide back to
its position in the stack of images.

I'have deliberately only given you the guts of how this works so you can see how to
easily create your own functions. With suitable CSS and graphics, you can use these
techniques to create very impressive dynamic effects.

PLUG-IN

45

The Plug-in

Chapter 6: Movement and Animation

function SlideBetween (idl, id2, msecs, interruptible, CB)

{

if (0(idl).SL _Flag || 0(id2).SL_Flag)

{

if (10(id1l).SL_Int || !0(id2).SL_Int)
return
var tl = 0(id1l) .sB_X
var t2 = 0(idl) .SB_ Y
0(id1) .SB X = 0(id2).SB_X
0(id1) .SB Y = 0(id2).SB Y
0(id2).SB X = t1
0(id2) .SB Y = t2
}
else
{
0(idl) .SB_X = X(id1)
0(idl) .SB_Y = Y (id1)
0(id2) .8B_X = X(id2)
0(id2) .SB_Y = Y (id2)
}
var x1 = 0O(idl).SB X
var yl = 0(idl).SB_ Y
var x2 = 0(id2).SB X
var y2 = 0(id2).SB_Y
Slide(id1l, x1, yl, x2, y2, msecs, interruptible, CB)
Slide(id2, x2, y2, x1, yl, msecs, interruptible, CB)
}
Deflate()

With this plug-in you can make an object shrink down over time until it is no longer visible.

You can also specify whether to deflate (or shrink) the width, height, or both. Figure 6-3
shows three images, each of which is in the process of being deflated with this plug-in. The
first is shrinking horizontally, the last vertically, and the middle one is deflating in both

dimensions.

About the Plug-in

This plug-in takes an object and over a specified time period shrinks it down until it is no
longer visible. The following are the required arguments:

* id An object, an object ID, or an array of objects and/or object IDs

* w If true or 1, the object’s width will shrink

* h If true or 1, the object’s height will shrink

141

142 Plug-In JavaScript: 100 Power Solutions

ug-in o [13 [T
ﬁ@' IE_ Gl vy Apbs n' D sk to ph P om pl e him

W Pl JreTo

M Comparter | Protectad Pads: O g o« wiips -

Ficure 6-3 Three different types of deflation supported by this plug-in

e msecs The number of milliseconds the animation should take

* interruptible If true (or 1), this plug-in can be interrupted by a new call on the

same object; otherwise, if false (or 0), the call is uninterruptible

Variables, Arrays, and Functions

3 Local variable to index into id if it is an array

stepw Local variable containing the amount of horizontal change per frame

steph Local variable containing the amount of vertical change per frame

width Local variable containing the width to which id should be changed at
each step

height Local variable containing the height to which id should be changed
at each step

overflow The object’s style.overflow object, which is set to HID (‘hidden’)
to prevent an object’s contents overflowing as it shrinks

DF_Flag Property of id that is true if a Deflate () call is in progress

DF_Int Property of id containing true if the deflation is interruptible

DF_IID Property of id used to clear an interrupt with clearInterval ()

DF_Oldw Property of id containing the unshrunk width of id

DF _O1ldH Property of id containing the unshrunk height of id

DF_Count Property if id that counts the number of frames in the animation

Deflated Property of id set to true if it has been deflated—used by the

DeflateToggle () plug-in

Chapter 6: Movement and Animation

INTERVAL Global variable with the value 30
HID Global variable with the value ‘hidden’
setInterval () Function to set up repeating interrupts
clearInterval () Function to stop repeating interrupts
DoDeflate () Subfunction to perform the animation
W() Plug-in to fetch an object’s width
H() Plug-in to fetch an object’s height
Resize () Plug-in to resize an object

How It Works

This plug-in has a few different parts. The first part tests whether id is an array; if it is, it
calls itself recursively with each element of id using the following code:

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3j)
Deflate(id[j], w, h, msecs, interruptible, CB)
return

This allows many objects to be deflated at once, as long as they are passed to Deflate ()
in an array.

Next, the code has to take into account the fact that when only one dimension of an
image is changed, most browsers will automatically modify the other one to keep the image
at the same aspect ratio. However, in this case that feature is not wanted, so if either the
horizontal or vertical width is not to be changed (as decided by the values in the wand h
arguments), that dimension is given a fixed value representing its current length to replace
its default value of ‘auto’. This allows one dimension to be altered and the other will not
change:

if (!w) ResizeWidth(id, W (id))
if (!h) ResizeHeight (id, H(id))

Next, if a deflate animation is already in progress on id (as determined by its DF_Flag
property having a value of true or 1), its DF_Int property is checked. This contains true or
1 if the animation may be interrupted; if it is not true or 1, the function returns. Otherwise, if
any deflate interrupt is currently running, it is stopped with a call to clearInterval (). The
code for these two actions is as follows:

if (0(id) .DF_Flag)
{
if (!0(id) .DF_Int) return
else clearInterval (O(id) .DF _IID)

}

143

144

Plug-In JavaScript: 100 Power Solutions

Otherwise, if this is the first time the id object has been used by the Deflate () plug-in,
there are some properties that need assigning, as follows:

else

{
if (w) O(id).DF_OldWw = W(id)
if (h) 0O(id) .DF_OldH = H(id)
O0(id) .DF_Count = msecs / INTERVAL

In this section, the properties DF_01dW and DF_01dH are assigned the current width and
height of the object so that they can be restored later—but only those dimensions that are to
be resized have this value saved.

Also, the DF_Count property is assigned the result of msecs / INTERVAL, which is the
number of steps in the animation. This variable will later count down one step at a time to
zero (in the DoDeflate () subfunction), and each time its value will be multiplied by the
values in stepw and/or steph to calculate the correct width and/or height of id for each
step of the animation.

Next, some properties have to be assigned a certain value (whether or not this is the first
time id has been used with this plug-in) by the following statements:

var stepw = O(id) .DF OldWw / (msecs / INTERVAL)
var steph = O(id) .DF OldH / (msecs / INTERVAL)

S(id) .overflow = HID

0(id) .Deflated = true

0(id) .DF_Flag = true

0(id) .DF_Int = interruptible

O0(id) .DF_IID = setInterval (DoDeflate, INTERVAL)

First, the horizontal and vertical distances for each step of the animation are assigned to
stepw and steph. This determines the amount of horizontal and vertical shrinkage required
in each step to ensure the animation lasts msecs milliseconds.

The next statement ensures that the contents of the id object will not overflow its
boundaries during resizing by setting the style.overflow property of id to HID (which
stands for ‘hidden’). This is not an issue when resizing images, but it certainly is when the
object is a div or span that contains multiple items such as text and images.

The Deflated property is then set to true to indicate the object’s current deflated/
inflated state to this and other plug-ins, such as DeflateToggle (). The DF_Flag is also set
to true to tell this and any other plug-ins that a Deflate () call is now in progress on id.

Next, DF_Int is given the value in interruptible so that if the plug-in is called again
on id while the animation is still running, this value can be tested and, if not true or 1, the
plug-in will not be interrupted.

The final statement in this part of the code uses setInterval () to set up an interrupt
call to DoDeflate () every INTERVAL milliseconds. The result of making this call is a value
that can later be passed to clearInterval () to cancel the interrupts. It is saved in the
DF_IID property of id.

Chapter 6: Movement and Animation

The DoDeflate() Subfunction
Once initialized by the main part of the plug-in, the DoDeflate () subfunction is called
every INTERVAL milliseconds, and each time it shrinks the object a little more, like this:

if (w) ResizeWidth(id, stepw * O(id) .DF_Count)
if (h) ResizeHeight (id, steph * O(id) .DF_Count)

These two lines calculate the new width and/or height of id and then resize either or
both.

Next, a check is made to see if this was the final resize and whether the animation can
now stop. This is done by checking the value of DF_Count, which is decremented after each
frame of animation.

When the Animation Is Finished

If the DF_Count property is less than 1, the animation has completed and the DF_Flag
property of id is set to false to indicate that there is now no deflate operation running
on id.

Finally, the width and/or height of the dimension(s) being resized are set to zero to
complete the transition.

In the final two lines of the plug-in, the clearInterval () function is called to prevent
any further interrupts. Any callback function contained in CB is evaluated with the eval ()
function, but only if the argument CB (explained in Chapter 7) has a value. The code for
these actions is as follows:

if (0(id) .DF_Count-- < 1)

{

O0(id) .DF_Flag = false

if (w) ResizeWidth(id, 0)
if (h) ResizeHeight (id, 0)

clearInterval (O(id) .DF_IID)
if (typeof CB != UNDEF) eval (CB)

Tip The double-hyphen (--) operator following DF Count is a handy way of telling JavaScript to
decrement the variable, but only after its current value has been used in the i f () statement,
thus saving an extra line of code.

How To Use It

Using deflate () is a great way to make an object disappear smoothly and is much more
fun than just fading it out or hiding it. Here’s some example code illustrating the three
different types of effects supported by this plug-in:

<span id='d'sMouseover Me</spans>

145

146

Plug-In JavaScript: 100 Power Solutions

<scripts>
window.onload = function()

{
Locate('pl', ABS, O, 0)
Locate('p2', ABS, 160, 0)
Locate('p3', ABS, 320, 0)
Deflate('pl', 1, 0, 2000, 0)
Deflate('p2', 1, 1, 2000, 0)
Deflate('p3', 0, 1, 2000, 0)

}

</scripts>

The HTML section of this example places three images on the screen and assigns them
unique IDs. The <script> section then uses the Locate () plug-in to give them all a position
of “absolute” and places them overlapping each other, along the top of the browser.

The final three lines call up a different Deflate () effect on each, which is achieved by
passing different values of the second and third parameters. The first image shrinks only in
a horizontal direction because the two width and height parameters are 1 and 0. The middle
image has width and height parameters of 1 and 1, so it shrinks in both directions. The last
image has width and height parameters of 0 and 1 and shrinks only in a vertical direction.

The final two parameters of 2000 and 0 cause the animations to take 2000 milliseconds
each (although they run concurrently), and the 0 specifies that they are not interruptible.

The Plug-in

function Deflate(id, w, h, msecs, interruptible, CB)

{

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
Deflate(id[j], w, h, msecs, interruptible, CB)
return

if (!w) ResizeWidth(id, W(id))
if (!h) ResizeHeight (id, H(id))

if (O(id) .DF_Flag)

if (!0(id) .DF_Int) return
else clearInterval (O(id) .DF_IID)

}

else

{
if (w) O(id).DF_OldWw = W(id)
if (h) O(id) .DF_OldH = H(id)
0(id) .DF_Count = msecs / INTERVAL

}

var stepw
var steph

O(id) .DF_0ldw / (msecs / INTERVAL)
O0(id) .DF_OldH / (msecs / INTERVAL)

Chapter 6: Movement and Animation 1417

S(id) .overflow = HID

0(id) .Deflated = true

O0(id) .DF_Flag = true

0(id) .DF_Int = interruptible

O(id) .DF_IID = setlInterval (DoDeflate, INTERVAL)

function DoDeflate ()

{
if (w) ResizeWidth(id, stepw * O(id) .DF_Count)
if (h) ResizeHeight (id, steph * O(id) .DF_Count)

if (0(id) .DF_Count-- < 1)
{
0(id) .DF_Flag = false
if (w) ResizeWidth(id, 0)
if (h) ResizeHeight (id, 0)
clearInterval (O(id) .DF_IID)
if (typeof CB != UNDEF) eval (CB)

g 46 Reflate()

This is the companion plug-in to Deflate (). With it, you can expand a deflated object back
to its original dimensions over a specified period of time, with a choice of three different
animation types. In Figure 6-4, a div has been added to the example in the Deflate ()
plug-in with which you can deflate or reflate the objects.

4 b SCA - e o £ e imeart Bl 04

w' Ir_ Gty vy Apbs n' D sk to ph P e ampl e him

W Plg-in JresScrpd

Mouseorer Me

Ficure 6-4 Both the plug-ins Deflate() and Reflate() are attached to mouse events.

148

Plug-In JavaScript: 100 Power Solutions

About the Plug-in
This plug-in takes an object (or an array of objects) and reinflates it to its original dimensions
after it was deflated using the Deflate () plug-in. You can call this plug-in only on objects
that have been previously deflated, otherwise the call will be ignored. It takes the following
arguments:

* id An object, an object ID, or an array of objects and/or object IDs

e w If true or 1, the object’s width will expand to its original value

e h If true or 1, the object’s height will expand to its original value

* msecs The number of milliseconds the animation should take

* interruptible If true (or 1), this plug-in can be interrupted by a new call on the
same object; otherwise, if false (or 0), the call is uninterruptible

Variables, Arrays, and Functions

3 Local variable to index into id if it is an array

stepw Local variable containing the amount of horizontal change per frame

steph Local variable containing the amount of vertical change per frame

width Local variable containing the width to which id should be changed
at each step

height Local variable containing the height to which id should be changed
at each step

DF_Flag Property of id that is true if a Deflate () call is in progress

DF_Int Property of id containing true if the deflation is interruptible

DF_IID Property of id that clears an interrupt with clearInterval ()

DF_Oldw Property of id containing the unshrunk width of id

DF_OldH Property of id containing the unshrunk height of id

DF_Count Property of id that counts the number of frames in the animation

Deflated Property of id set to true if it has been deflated—used by the
DeflateToggle () plug-in

INTERVAL Global variable with the value 30

setInterval () Function to set up repeating interrupts

clearInterval () Function to stop repeating interrupts

DoReflate () Subfunction to perform the animation

Resize () Plug-in to resize an object

Chapter 6: Movement and Animation 149

How It Works

This plug-in works in a very similar way to the Deflate () plug-in with two main differences.
First, if the Deflated property of id is not true, the plug-in returns because the object cannot
be reinflated. Here is the piece of code that does that:

if (!0(id) .Deflated) return

Second, instead of DF_Count counting down from the maximum step count to zero, it
counts upward from 0 and so is initialized to a value of zero in this plug-in (as opposed to
the value it is assigned with msecs / INTERVAL in the Deflate () plug-in). The DoReflate ()
subfunction uses the following statement to increment the DF_Count property each frame of
the animation (instead of decrementing, as in the DoDeflate () subfunction of Deflate ()):

if (O0(id) .DF_Count++ >= msecs / INTERVAL)

The Deflated property of id that indicates whether an object is deflated or inflated is
set to false by this plug-in (rather than true, as with Deflate ()), but the rest of the code
is virtually the same, so please read the details on Deflate () for further details.

How To Use It

You should call this plug-in on an object only after the object has been deflated using the
Deflate () plug-in. If you try to use it on an object that hasn’t yet been deflated, the plug-in
will simply return.

The following example is expanded from the one in the Deflate () plug-in section.
It has a div inserted before the images that you can pass the mouse over to either deflate or
reflate the images:

<span id='d'sMouseover Me</spans>

<scripts>
window.onload = function ()
{
Locate('pl', ABS, O, 30)

Locate('p2', ABS, 160, 30)
Locate ('p3', ABS, 320, 30)

O('d') .onmouseover = down
O('d') .onmouseout up

function down ()

{
Deflate('pl', 1, 0, 2000, 1)
Deflate('p2', 1, 1, 2000, 1)
Deflate('p3', 0, 1, 2000, 1)

150

Plug-In JavaScript: 100 Power Solutions

function up ()

{

Reflate('pl', 1, 0, 2000, 1)
Reflate('p2', 1, 1, 2000, 1)
Reflate('p3', 0, 1, 2000, 1)

}
}
</scripts>

This example replaces the direct calls to the Deflate () plug-in with a pair of new
functions, down () and up () . These are attached to the onmouseover and onmouseout
events of the span displaying the text “Mouseover Me”, so that when you move the mouse
over the text the objects deflate, and when you move it away, they inflate.

The calls to the two plug-ins have their final parameter set to 1. This is the interruptible
argument, and, therefore, interrupting of the plug-ins has been enabled. This means that the
example is very responsive and the animations occur immediately upon moving the mouse
in or out of the span, taking into account the current amount of deflation or reflation to
smoothly inverse the previous animation.

The Plug-in

function Reflate(id, w, h, msecs, interruptible, CB)

{

if (id instanceof Array)
{
for (var j = 0 ; j < id.length ; ++3)
Reflate(id[j], w, h, msecs, interruptible, CB)
return

}

if (!0(id) .Deflated) return
else if (O0(id) .DF_Flag)

if (!0(id).DF_Int) return
else clearInterval (O(id) .DF_IID)

}

else O(id) .DF_Count = 0

var stepw
var steph

O0(id) .DF_OldW / (msecs / INTERVAL)
O(id).DF_OldH / (msecs / INTERVAL)

0(id) .DF_Flag = true

0(id) .Deflated = false

0 (id) .DF_Int = interruptible

O0(id) .DF_IID = gsetInterval (DoReflate, INTERVAL)

function DoReflate ()

{
if (w) ResizeWidth(id, stepw * O(id) .DF_Count)
if (h) ResizeHeight (id, steph * O(id) .DF_Count)

if (O(id) .DF_Count++ >= msecs / INTERVAL)

PLUG-IN

|

Chapter 6: Movement and Animation

0(id) .DF_Flag = false

if (w) ResizeWidth(id, O(id) .DF_O1ldwW)
if (h) ResizeHeight (id, O(id) .DF_O1ldH)
clearInterval (O(id) .DF_IID)

if (typeof CB != UNDEF) eval (CB)

DeflateToggle()

If you use this plug-in, you don’t need to keep track of which objects have or haven’t been
deflated, and it saves on extra code, too. In Figure 6-5 the example in the Reflate () plug-

in section has been updated to use this plug-in.

About the Plug-in
This plug-in toggles an object between being deflated or inflated. It takes the following
arguments:

id An object, an object ID, or an array of objects and/or object IDs
w If true or 1, the object’s width will deflate or reflate
h If true or 1, the object’s height will deflate or reflate

msecs The number of milliseconds the animation should take

interruptible If true (or 1), this plug-in can be interrupted by a new call on the

same object; otherwise, if false (or 0), the call is uninterruptible

ired crie & Wi et v |

Ir_ Gy vy Apba n D skt ph P e om pl e im

W Plg-in JresScrpd

Mousemer Me

M Compirter | Probectsd Bada: OfF #g v W ANPe -

Ficure 6-5 The images automatically toggle between being inflated and deflated.

152 Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

b Local variable for indexing into id if it is an array

Deflated Property of id that is true if id is deflated

Deflate() Plug-in to deflate an object to O width by O height

Reflate () Plug-in to reflate an object to its original dimensions
How It Works

This plug-in uses the standard recursive techniques of many of the others to determine
whether id is an array and if it is, to pass each element of the array recursively back to the
same function to be dealt with individually, as follows:

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3j)
DeflateToggle (id[j], w, h, msecs, interruptible, CB)
return

After that there are just two statements, the first of which tests the Deflated property
of id. If itis true, the object has been (or is in the process of being) deflated, so the
Reflate () plug-inis called. Otherwise, the object is inflated (or is in the process of being
reinflated), so the Deflate () plug-in is called, like this:

if (O(id) .Deflated) Reflate(id, w, h, msecs, interruptible, CB)
else Deflate(id, w, h, msecs, interruptible, CB)

How To Use It

You can use this plug-in to replace having to call both of the Deflate () and Reflate ()
plug-ins and to save having to track their deflated/inflated states. The following code is
similar to the previous example in the Reflate () section, except that it is shorter because it
uses DeflateToggle () instead of both the Deflate () and Reflate () plug-ins:

Mouseover Me</spans

<script>

window.onload = functionf()

{
Locate('pl', ABS, O, 30)
Locate('p2', ABS, 160, 30)
Locate('p3', ABS, 320, 30)
Deflate('p2', 1, 0, 1, 1)

O('d') .onmouseover = toggle
O('d') .onmouseout = toggle

PLUG-IN

43

Chapter 6: Movement and Animation

function toggle ()

{

DeflateToggle('pl', 1, 1, 2000, 1
DeflateToggle('p2', 1, 0, 2000, 1
DeflateToggle('p3', 0, 1, 2000, 1

}
}
</scripts>

For variety, I added a call to Deflate () just after those to the Locate () plug-in so that
the second picture will start off deflated. Notice that I passed a value of 1 millisecond for the
call (the fastest allowed) so that, for all intents and purposes, it is instant.

Try passing your mouse in and out of the Mouseover Me text and watch how the
pictures toggle their deflated /inflated states as you do so, smoothly changing between each
animation type as soon as you move the cursor in and out.

To become fully acquainted with what this plug-in can do for you, you might want
to change the animation length from 2000 milliseconds to other values, change the
interruptible argument to 0, change the animation types by varying the w and h
parameters, or use different images in varying locations.

Tip Remember that the second and third arquments (wand h, which specify whether the width and/
or height is to be modified) must be the same for all deflates, inflates, and toggles on an object for
it to correctly deflate and inflate. For example, if you deflate just the width of an object and then
try to inflate just its height then nothing will happen since the height has not been deflated. In
this case only the object’s width can be inflated.

The Plug-in

function DeflateToggle(id, w, h, msecs, interruptible, CB)

{

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
DeflateToggle (id[j], w, h, msecs, interruptible, CB)
return

}

if (O0(id) .Deflated) Reflate(id, w, h, msecs, interruptible, CB)
else Deflate(id, w, h, msecs, interruptible, CB)

DeflateBetween()

This plug-in provides similar functionality to the FadeBetween () plug-in, except that it
resizes a pair of objects in a choice of three different ways (height, width, or width and
height), rather than simply fading from one to the other. This plug-in is good for creating
professional slideshow effects, or for swapping content. In Figure 6-6, two images have been

153

154

Plug-In JavaScript: 100 Power Solutions

ug-In i - D T
@-@' 'E_ CiLhen'iFobiniDe bt op i\ Plecsmp led T, htm - | ed };|
0| 8 Phig-in et gt

Monseover Me

W Computar] Probactsd ke OfF dg o« Wmiaes -

Ficure 6-6 Swapping two objects by deflating one and inflating the other

overlaid on each other and, while the larger one deflates, the smaller picture inflates and
will soon be as large as the original image, which will have disappeared by the time the
original smaller picture reaches that size.

About the Plug-in

This plug-in swaps two objects by deflating one and inflating the other at the same time. It
requires these arguments:

idl An object, an object ID, or an array of objects and/or object IDs
id2 An object, an object ID, or an array of objects and/or object IDs
w If true or 1, the object’s width will deflate or reflate

h If true or 1, the object’s height will deflate or reflate

msecs The number of milliseconds the animation should take

interruptible If true (or 1), this plug-in can be interrupted by a new call on the
same object; otherwise, if false (or 0), the call is uninterruptible

Variables, Arrays, and Functions

Deflate () Plug-in to deflate an object to zero width and height
Reflate () Plug-in to reinflate and object to its previous dimensions
How It Works

This plug-in simply makes one call to Deflate () for the first object and another to Reflate ()
for the second.

Chapter 6: Movement and Animation

How To Use It

To use this plug-in, you need to ensure that the second object has already been deflated.
Ideally, you will have also released each object from its position in the HTML by giving it
a position style of “absolute” or ‘relative’. You will probably also have overlaid the objects on
each other.

The following example does all of this and features a span that you can pass your mouse
over to initiate the swaps:

Mouseover Me</spans>

<scripts>
window.onload = function ()

{
Locate (Array('pl', 'p2'), ABS, 0, 30)
Deflate('p2', 1, 1, 1, 0)

O('d') .onmouseover = swapl
O('d') .onmouseout = swap2

function swapl ()

{
}

function swap2 ()

{

}
}

</scripts>

DeflateBetween('pl', 'p2', 1, 1, 1000, 1)

DeflateBetween('p2', 'pl', 1, 1, 1000, 1)

The HTML section creates a span with the text “Mouseover Me” and also displays two
images, All three items are given unique IDs.

In the <script> section, both of the images are given a position style setting of
‘absolute” and located at 0 pixels across, and 30 down using calls to the Locate () plug-in.
The second image is then deflated using the Deflate () plug-in, over the shortest time
possible (1 millisecond), which is virtually instantaneous.

Finally, the onmouseover and onmouseout events of the div are attached, in order, to
the swap1 () and swap2 () functions, which call the DeflateBetween () plug-in to either
swap from image 1 to image 2, or from image 2 to image 1.

The transitions are given 1000 milliseconds (or 1 second) to complete. Because the
interruptible parameter is set to 1, you can pass your mouse in and out of the Mouseover
Me text to instantly change between displaying one image or the other.

You may want to try changing the w and h arguments to see the various different effects
you can achieve.

155

PLUG-IN

156

49

Plug-In JavaScript: 100 Power Solutions

The Plug-in

function DeflateBetween(idl, id2, w, h, msecs, interruptible, CB)

{

Deflate(idl, w, h, msecs, interruptible, CB)
Reflate(id2, w, h, msecs, interruptible, CB)

Zoom()

This plug-in is similar in some ways to the Deflate () and Reflate () plug-ins but it can
do much more, including zooming in and out using the center of an object as the focus,
padding margins during zooms to retain the same width and height (ensuring other objects
don’t get disturbed by the resizing), and specifying end widths and heights.

In Figure 6-7, four icons are displayed, each of which is attached by its mouse events to
the Zoom () plug-in so that when the mouse passes over them they enlarge, and when it
moves away they shrink back down. In the figure the second icon is currently zoomed up.

About the Plug-in

This plug-in will zoom an object over a period of time between two supplied sets of width
and height. It can also pad the object to retain its overall dimensions and supports three
different styles of zoom. It requires the following arguments:

* id An object, an object ID, or an array of objects and/or object IDs

e w If true or 1, the object’s width will be zoomed

* h If true or 1, the object’s height will be zoomed

e fromw The width from which the object should be zoomed

e fromh The height from which the object should be zoomed

e tow The width to which the object should be zoomed

ug-In ks - T T
@EI' [CALbers Babinh De skt o Plbeserp e 42 v [4] % |

| 2 Plg-n breascipt

SRe &

W Compiutar] Probactsd kode OfF dg o« miaps -

Ficure 6-7 Zooming icons when the mouse passes over them

Chapter 6: Movement and Animation

e toh The height to which the object should be zoomed
e msecs The number of milliseconds the animation should take

e pad If greater than 0, the object will be padded with CSS padding (so that it
always keeps the same dimensions); otherwise, if it is -1, no padding is required
and id may not be moved during a zoom. If pad is 0 or null then, as well as not
applying padding, the object will be moved during resizing so as to remain

centered.

* interruptible If true (or 1), this plug-in can be interrupted by a new call on the
same object; otherwise, if false (or 0), the call is uninterruptible

Variables, Arrays, and Functions

b Local variable for indexing into id if it is an array

tox Local variable containing the final horizontal offset

toy Local variable containing the final vertical offset

midx Local variable containing the horizontal center offset

midy Local variable containing the vertical center offset

widthl Local variable containing the amount of padding for the left of
the object

width2 Copy of widthl containing the amount of padding for the right of
the object

heightl Local variable containing the amount of padding for the top of
the object

height?2 Copy of height1 containing the amount of padding for the bottom
of the object

stepw Local variable containing the amount of change in width for each
step

steph Local variable containing the amount of change in height for
each step

INTERVAL Global variable containing the value 30

HID Global variable containing the value ‘hidden’

ZO_ W Property of id containing its current width

ZO_H Property of id containing its current height

Z0O_Flag Property of id set to true if a zoom is in progress

ZO_Int Property of id set to true if a zoom may be interrupted

ZO_Count Property of id containing the current frame number of the animation

ZO_IID Property of id containing the value required to cancel the interrupts
with clearInterval ()

157

158

Plug-In JavaScript: 100 Power Solutions

paddingLeft The style.paddingLeft property of id
paddingTop The style.paddingTop property of id
paddingRight The style.paddingRight property of id
paddingBottom The style.paddingBottom property of id
overflow The style.overflow property of id

setInterval ()

Function to start repeated interrupts to another function

clearInterval ()

Function to stop repeated interrupts

Math.max ()

Function to return the maximum out of two values

Math.floor ()

Function to remove any numbers after the decimal point in a floating
point number and return an integer

Math.round ()

Function to round a floating point number either up or down to the
nearest integer

DoZoom () Subfunction to perform the zoom animation
ZoomPad () Subfunction to pad an object while zooming so that it retains the
same dimensions

NoPx () Plug-in to remove the ‘px’ suffix of a property

Px () Plug-in to add the ‘px’ suffix to a value

W() Plug-in to return an object’s width

H() Plug-in to return an object’s height

X () Plug-in to return an object’s horizontal offset

Y () Plug-in to return an object’s vertical offset

GoTo () Plug-in to move an object to a new location

Resize () Plug-in to resize the dimensions of an object
How It Works

This plug-in is quite long because it has to achieve a number of different objectives, but if
you follow this explanation you'll see how it breaks down into easily digestible chunks.
However, you don’t need to understand how this function works if you just want to use it,
so please don’t be put off by this extended commentary.

You should be fully familiar with the first section of code by now because it checks
whether id is an array, and if it is, passes each element recursively to the same function to
be dealt with individually, as follows:

if (id instanceof Array)

{
for (var j = 0
Zoom (id [j],

msecs, pad,

return

; J < id.length ; ++73)
h, fromw, fromh, tow, toh,
interruptible, CB)

Chapter 6: Movement and Animation

After this, copies of the object’s current x and y coordinates need saving (if they haven’t
already been saved), like this:

if (typeof 0O(id).ZO X == UNDEF)

0(id) .Z0_X = X(id)
0(id) .Z0_Y = Y(id)

}

The typeof operator checks whether the property zo_x is already defined; if it isn’t, it
assigns values it and the property z0_Y, taken from the plug-ins X () and Y ().

If a Zoom Is Not Currently in Progress

Next, the plug-in checks whether a zoom is currently in progress on id by looking at its
ZO_Flag property. If a zoom is not in progress, then three variables require initializing prior
to starting the zoom, as follows:

if (!0(id).z0_Flag)

{
0(id) .zZzo w = Math.max (fromw, tow)
0(id) .Zz0_H Math.max (fromh, toh)
0(id) .Z0_Count = 0

The first two statements assign whichever value is larger out of the start and destination
widths and heights in £romw, tow, fromh, and toh to the ZO_w and z0_H properties of id.
This sets default values for the width and height of a zoom should only one of the dimensions
be set to change (therefore, the nonchanging dimension will retain this value). The ZO_Count
property is also initialized to zero.

If a Zoom Is in Progress

If a zoom is in progress, the z0_Int property is inspected. If it is not true, the plug-in may
not be interrupted, so it returns. Next, the repeating interrupts are stopped by calling the
clearInterval () function. Also, because the only useful action an interrupt can do to a
zoom in progress is to reverse the direction of zooming, the z0_Count property of id is set
to its inverse. Here is the section of code that does this:

else

{
if (!0(id).z0_Int) return
else clearInterval (O(id) .ZO_IID)

0(id) .ZO_Count = (msecs / INTERVAL) - O(id).zO_Count

}

If the zoom can’t be interrupted then the plug-in returns. Otherwise the current repeating
interrupts are cancelled.

The final statement is based on the result of msecs / INTERVAL being the number of
steps required to make the zoom last for msecs milliseconds. Therefore, if the Z0_Count
property has a value of 10 out of 34 (for example), then for the zoom to reverse there will be
only 10 steps remaining to return to the starting zoom level.

159

160

Plug-In JavaScript: 100 Power Solutions

Setting Up the Variables
After this, a few local variables require setting up (whether or not a zoom is currently running),
using this code:

var maxw = Math.max (fromw, tow)
var maxh = Math.max (fromh, toh)
var stepw = (tow - fromw) / (msecs / INTERVAL)
var steph = (toh - fromh) / (msecs / INTERVAL)

The first two statements use the Math.max () function to determine the maximum
width and height an object will be at either the start or end of the zoom, and places these
values in maxw and maxh. Then the horizontal and vertical distance between each frame of
the zoom is calculated and placed in stepw and steph.

The last four statements of the initial setup process are these:

S(id) .overflow = HID

0(id) .Z0O_Flag = true

0(id) .Z0_Int = interruptible

0(id) .Z0_IID = setInterval (DoZoom, INTERVAL)

The first one ensures that the object will not overflow outside its boundaries if it is made
smaller than the contents. This isn’t applicable to images but must be done for objects such
as divs and spans that can contain many different elements. The overflowing is prevented
by setting 1d’s style.overflow property to the value in HID, which is ‘hidden’.

Next, the z0_Flag property is set to true to indicate to this and other plug-ins that a zoom
is in progress on id. The Z0_Int property is also assigned the value in interruptible, which
will be true if this zoom can be interrupted.

Finally, the setInterval () function is called in such a way that the DoZoom () subfunction
will be called every INTERVAL milliseconds. The result returned by the function is placed in
ZO_I1D so that it can later be used to cancel the interrupts using a call to clearInterval ().

The DoZoom() Subfunction

The job of the DoZoom () subfunction is to perform the resizing required by changing the
object’s dimensions just a little each time it is called. The first three lines calculate the new
width and height and perform the resizing as follows:

if (w) O(id) .ZO_W = Math.round(fromw + stepw * O(id) .ZO_Count)
if (h) O(id) .ZO_H = Math.round(fromh + steph * O(id) .ZO_Count)
Resize(id, 0(id).z0 W, O(id).zO0_H)

In the first line, if the argument w is true, then horizontal resizing is allowed so the zo_w
property of id is assigned the new value required for the object’s width. This value is
calculated by multiplying stepw (the amount of change for each step of the animation) by
ZO_Count (the number of this animation step) and adding it to the value of the fromw
argument (the original width of the object). If the zoom is reducing id, then a negative value
is added to £romw, otherwise a positive value is added.

The second line does exactly the same, but for the object’s height and places the result in
id’s Zo_H property. If either w or h is not true, then that dimension is not to be resized
during the zoom, and the value previously assigned to either the zo_w or zo_H property

Chapter 6: Movement and Animation

earlier in the plug-in will be the default used. The third line performs the resizing by calling
the Resize () plug-in.
After this, the values required to center the object are placed in midx and midy, like this:

var midx
var midy

0(id) .Z0_X + Math.round((maxw - O(id) .ZO_W)

/ 2)
0(id) .ZO Y + Math.round((maxh - O(id).zO0 H) / 2)

These are calculated by taking the maximum width and height of the object and then
subtracting its current width and height from them. These values are then divided by 2 to
obtain the offset from the top left of the object, which has been stored in the zo_x and zo_T
properties of id.

When the Pad Argument Is True

If the pad argument is greater than zero, the calling code of this plug-in will pad out id as it
changes dimensions so that it will retain the same overall size, and, therefore, elements
resting against it will also stay aligned where they are. Without this setting, as the width
and height of id changes, any objects surrounding it might move about to take the new
dimensions into account. The following line of code calls the ZoomPad () subfunction to
create the padding required:

if (pad > 0) ZoomPad (Math.max (fromw, tow),
Math.max (fromh, toh), 0O(id).zO0 W, 0(id) .ZO_H)

This finds the maximum width and height that the object will be out of its start and end
values of fromw, tow, fromh, and toh, by using the Math.max () function. The object will
then have its padding adjusted so that if it is going to zoom larger, padding is placed
around it in advance, into which the resizing can grow. Or, if it will be reducing, then no
padding is added, but as the object reduces, more and more padding is added to make up
for the reduction in size. The overall result is that when pad is greater than zero, id will
always have the same overall dimensions (when you add its width and height to its
padding).

Otherwise, if pad doesn’t have a value of -1, id is moved to keep it centered (if pad
is -1, no padding is required and no moving of id is wanted).

If This Plug-in Has Been Called by the DockBar() Plug-in
Next, there’s an interesting piece of code used only by the DockBar () plug-in, covered in
Chapter 8. It looks like this:

else if (0(id) .DB_Parent)
GoToEdge (O (id) .DB_Parent, O(id) .DB_Where, 50)

This code examines the DB_Parent property of id. If it is true, the plug-in has been
called from DockBar (), in which case the GoToEdge () plug-in from Chapter 4 is called to
keep id up against the edge to which it has been assigned by the value in the DB_Where
property.

If this plug-in isn’t being used as part of the DockBar () plug-in, then it’s necessary to
keep id centered (unless the pad argument is —1, in which case centering is disabled). Of
course, if id has not been lifted up from the page by making it have an “absolute’, ‘relative’,
or other position style property, then any attempt to change its location will be ignored (in
which case the best way to keep the object centered is to set pad to true).

161

162

Plug-In JavaScript: 100 Power Solutions

However, if the object does have a set x and y coordinate, then each time it reduces or
enlarges, its top left corner will require moving slightly to keep its center in the middle,
although an object that is using padding will not change position as it will always have the
same overall dimensions.

When the Animation Has Completed
To check whether the zoom has completed, the following if () statement is used:

if (++0(id).Z0O_Count >= (msecs / INTERVAL))

This statement increments the Z0_Count property of id and then checks whether it is
greater than or equal to the result of msecs / INTERVAL (which gives the number of steps
in the animation). If it isn’t, then the contents of the if () statement are ignored and the
subfunction returns and will be called up again in INTERVAL milliseconds time.

Otherwise, the zoom has finished and the following statements are executed:

var endx = 0(id) .20_X + Math.round((maxw - tow)
var endy 0(id) .ZO_Y + Math.round((maxh - toh)
0(id) .Z0_Flag false

Resize (id, tow, toh)

clearInterval (O(id) .ZO_IID)

/ 2)
/ 2)

The first two lines calculate the final top x and y locations for the object and place them
in endx and endy. The next line sets the z0_Flag property of id to £alse to indicate that
no zoom is running on id. Next, the object is resized to its final width and height in tow and
toh, and the repeating interrupts are stopped by calling clearInterval (), passing it the
property zo_I1ID that was stored when setInterval () was called.

After this, if padding is being used, ZoomPad () is called to update the padding;
otherwise, if pad is not -1, the GoTo () plug-in is called to ensure that id is located exactly
at its final position in endx and endy:

if (pad > 0) ZoomPad (fromw, fromh, tow, toh)
else if (pad != -1) GoTo(id, endx, endy)

Then, if this plug-in is being called by the DockBar () plug-in, id is moved to its final
place at the required edge:

if (O(id) .DB_Parent) GoToEdge (O(id) .DB_Parent, O(id) .DB_Where, 50)

The final statement checks whether the CB argument has been passed, and if so it calls
eval () to execute it, as explained in Chapter 7:

if (typeof CB != UNDEF) eval (CB)

The ZoomPad() Subfunction

The ZoomPad () subfunction applies sufficient CSS padding to id in order to ensure that the
object always has the same overall dimensions. It takes four arguments, frw, £rh, padw, and
padh. The variables frw and frh contain the initial width and height of id, and padw and
padh contain the overall required width and height for id.

Chapter 6: Movement and Animation 163

Therefore, if £rw is less than padw or £rh is less than padh, some padding must be
applied. This is calculated by subtracting padw from frw and padh from £rh. Along the
way, padw and padh are passed through the Math.round () function to return integer
values.

Then left and top are given the new padding width and height to be given to the left
and top of id. The variables right and bottom are also assigned these values, which will
apply the padding width and height to the right and bottom of id. This is the code used,
which simply divides each padding value by two:

var left = Math.max (0, frw - Math.round(padw)) / 2
var right = left
var top = Math.max (0, frh - Math.round(padh)) / 2

var bottom = top

If the amount of padding to add to either the width or height of id is an odd number,
then left and/or top (being half that number) will have a fractional part of .5.

For example, if 5 pixels width padding is required, then 1eft will have a value of 2.5, as
will right. This is because left contains the padding to add to one side of id, right
contains the amount to add to the other, top contains the amount of padding to add to the
top, and bot tom contains the amount to add to the bottom of id.

However, because most browsers don’t allow floating point values for these properties
(although, strangely, some do), 1eft is compared with the value of Math.floor (left),
which returns the value passed to it, less any fractional part. So if 1eft has a value of 2.5,
Math.floor (left) returns 2.

Therefore, if the following code finds that 1eft does have a fractional part, it removes it
and then gives that value plus 1 to right so that, in the current example, if left was 2.5
then now it will have a value of 2, and right will be 3:

if (left != Math.floor(left))

{

left = Math.floor(left)
right = left + 1

The next five lines of code are the same, except they set up top and bot tom padding
amounts, like this:

if (top != Math.floor (top))
{
top
bottom

Math.floor (top)
top + 1

The final four statements actually set all the object’s padding values, like this:

S(id) .paddingLeft = Px(left)
S(id) .paddingRight = Px(right)
S (id) .paddingTop = Px(top)
S (id) .paddingBottom = Px (bottom)

164

Plug-In JavaScript: 100 Power Solutions

How To Use It

Thankfully, using this plug-in is a great deal simpler than describing it. To zoom an object
either up or down all you need to do is pass the object to Zoom (), along with start and end
dimensions, like this:

Zoom (myobject, 1, 1, 100, 100, 20, 20, 1000, 0, 0)

This statement will zoom myobject from a width and height of 100 pixels each to just
20 each. You can also get fancy and turn a horizontal rectangle into a vertical one, like this:

Zoom (myobject, 1, 1, 100, 10, 10, 100, 1000, O, O)

This will change myobject from being 100 by 10 pixels to 10 by 100 pixels over the
course of 1000 milliseconds.

The following example displays four 86 by 86 pixel icons at a width and height of 70 by
70 pixels. You can then pass your mouse over them to zoom them up to their original size
and back down again:

<script>
window.onload = function()

{

ids = Array('il', 'i2', 'i3', 'i4"')
Zoom(ids, 1, 1, 86,86, 70,70, 1, 1, 0)
O(ids, 'onmouseover',6 'up')

O(ids, 'onmouseout', 'down')

function up ()

{
}

function down ()

{

}
}

</scripts>

Zzoom(this, 1, 1, 70, 70, 86, 86, 200, 1, 1)

Zoom(this, 1, 1, 86, 86, 70, 70, 200, 1, 1)

The first four lines of HTML display the icons and give them unique IDs. The <script>
section then creates the array ids out of these IDs, which is used in the following line to
zoom down all the icons from 86 by 86 pixels to 70 by 70. It passes a value of 1 millisecond
so that the change is virtually instantaneous.

Then the 0 () plug-in attaches the up () and down () functions to all these icons’
onmouseover and onmouseout events en masse. In these functions, the calls to Zoom () set
the pad argument to true so that all the icons are padded as they zoom and, therefore, retain

Chapter 6: Movement and Animation 165

the same overall dimensions (so keeping the surrounding icons from moving about during
the zooms).

The interruptible argument is set to true so that each zoom can be smoothly
interrupted and reversed as you pass your mouse over and away from each icon.

If you wish to experiment, try changing the values of the pad and interruptible
arguments to false or zero and see what happens when you toggle the values of the w and
h arguments (as long as at least one remains true or 1) to change the types of zooms.

The Plug-in

function Zoom(id, w, h, fromw, fromh, tow, toh,
msecs, pad, interruptible, CB)
{

if (id instanceof Array)
{
for (var j = 0 ; j < id.length ; ++3)
Zoom (id[j], w, h, fromw, fromh, tow, toh,
msecs, pad, interruptible, CB)
return

if (typeof 0O(id).Z0 X == UNDEF)

0(id) .20 X = X(id)
0(id) .20 _Y = Y(id)

if (!0(id) .z0O_Flag)

0(id) .Zz0_ W = Math.max (fromw, tow)
0(id) .Z0O_H Math.max (fromh, toh)
0(id) .Z0_Count 0

}

else

{
if (!0(id) .zO0_Int) return
else clearInterval (0O(id).ZO_IID)

0(id) .Z0 Count = (msecs / INTERVAL) - O(id).ZO Count
}
var maxw = Math.max (fromw, tow)
var maxh = Math.max(fromh, toh)

var stepw
var steph

(tow - fromw) / (msecs / INTERVAL)
(toh - fromh) / (msecs / INTERVAL)

S(id) .overflow = HID

0(id) .Z0_Flag = true

0(id) .Z0_Int = interruptible
o (id)

.Z0_TIID = setInterval (DoZoom, INTERVAL)

166 Plug-In JavaScript: 100 Power Solutions

function DoZoom /()

{
if (w) 0O(id) .ZO_W = Math.round(fromw + stepw * O(id).ZO_Count)
if (h) O(id) .ZO_H = Math.round(fromh + steph * 0O(id) .Zz0O_Count)

Resize (id, 0O(id).zO_W, O(id) .ZO_H)

var midx = 0(id).Z0 X + Math.round((maxw - O(id).z0 W) / 2)
var midy 0(id) .Z0O_Y + Math.round((maxh - 0(id).ZO H) / 2

if (pad > 0) ZoomPad (Math.max (fromw, tow),
Math.max (fromh, toh), 0O(id).ZO W, O(id).zO_H)
else 1if (pad != -1) GoTo(id, midx, midy)

if (O(id) .DB_Parent)
GoToEdge (O (id) .DB_Parent, O(id) .DB_Where, 50)

if (++0(id) .Z0_Count >= (msecs / INTERVAL))

{

var endx 0(id) .Z0 X + Math.round((maxw - tow) / 2)
var endy 0(id) .Z0_Y + Math.round((maxh - toh) / 2
0(id) .Z0_Flag = false

Resize (id, tow, toh)
clearInterval (O(id) .ZO_IID)

if (pad > 0) ZoomPad (fromw, fromh, tow, toh)
else if (pad != -1) GoTo(id, endx, endy)

if (O0(id) .DB_Parent)
GoToEdge (O (id) .DB_Parent, O(id) .DB_Where, 50)
if (typeof CB != UNDEF) eval (CB)

}

function ZoomPad (frw, frh, padw, padh)

{
var left = Math.max (0, frw - Math.round(padw)) / 2
var right = left
var top = Math.max (0, frh - Math.round(padh)) / 2

var bottom = top

if (left != Math.floor(left))

{
left = Math.floor(left)
right = left + 1
}
if (top != Math.floor (top))
{
top = Math.floor (top)

bottom = top + 1

PLUG-IN

9

Chapter 6: Movement and Animation

S (id) .paddingLeft = Px(left)
S(id) .paddingRight = Px(right)
S (id) .paddingTop = Px(top)
S (id) .paddingBottom = Px(bottom)
}
}
}
ZoomDown()

This plug-in zooms an object down over time from its current size to zero dimensions. It
does this in such a way that the object can also be zoomed back up again with the following
plug-in, ZoomRestore (). Figure 6-8 shows four icons that have had their onmouseover
events attached to this plug-in and that are in varying states of zooming after the mouse has
swept across them.

About the Plug-in

This plug-in takes an object and zooms it down until it has zero dimensions. It requires the
following arguments:

id An object, an object ID, or an array of objects and/or object IDs
w If true or 1, the object’s width will be zoomed down

h If true or 1, the object’s height will be zoomed down

msecs The number of milliseconds the animation should take

pad If0, the object will be moved during resizing so as to remain centered. If greater
than 0, the object will be padded with CSS padding to retain its original dimensions as
it zooms down. If -1, no padding will be applied and the object will not be moved
during resizing.

interruptible If true (or 1), this plug-in can be interrupted by a new call on the
same object; otherwise, if false (or 0), the call is uninterruptible

Pug-In Jwa et - Wind s et Explorer
@_O' |i2] CaLher\FobirDe skt g\ Pxsmpledd him v [+] % |

0| 8 Phig-in et gt

OO0 ¢ &

W Computar] Probactsd kode OFF dg o« miaps -

Ficure 6-8 These icons are in varying states of zooming down.

167

168

Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

3 local variable for indexing into id if it is an array
ZO Flag Property of 1d that contains true if a zoom on id is in process
ZO_Int Property of id that contains true if a zoom is interruptible
ZO _Oldw Property of 1d containing its previous width
z0O_0O1dH Property of 1d containing its previous height
Zoomdown Property of 1d that contains true if it has been zoomed down
Zoom () Plug-in to zoom an object from one size to another
How It Works

This plug-in starts off with the familiar code to iterate through id if it is an array and
recursively call itself with each element to process it individually, as follows:

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3j)
ZoomDown (id[j], w, h, msecs, pad, interruptible, CB)
return

Next, the plug-in checks whether a zoom is already in process on id and, if so, it checks
whether that zoom is interruptible, like this:

if (0(id) .ZO_Flag && !0(id) .zZO_Int) return

If there is a zoom in action (as determined by the Z0_Flag property of id) and it cannot
be interrupted (as determined by id’s z0_Int property) then the plug-in returns. Otherwise
the following code is executed:

else if (!0(id) .Z0O_Oldw)

{

0(id) .Z0_0ldw = W(id)
0(id) .ZO_OldH = H(id)
0(id) .z0_X = X(id)
0(id).zo Y = Y(id)

This checks whether the z0_01dw property exists. If it doesn’t, id has not been zoomed
down before so its current width and height are stored in its z0_01dw and ZO_01dH properties.
These values are obtained using the w () and H() plug-ins. Also, the coordinates of the object
are read from X (id) and Y (id) and stored in the z0_X and z0O_Y properties.

The first of the final three statements sets the Zoomdown property of id to true to
indicate that the object is (or is in the process of being) zoomed down. Then the object’s
location is reset to the stored values in Zz0_X and Z0_Y (to handle the case where an object
has an odd dimension length and sometimes gets disturbed by a pixel), and the Zoom ()

Chapter 6: Movement and Animation 169

plug-in is called, passing it the original width and height of id, the new zero width and
height values, and the value of pad and interruptible, as follows:

0(id) .Zoomdown = true

GoTo(id, 0(id).zZ0 X, 0(id) .zZO_Y)

Zoom(id, w, h, 0(id).z0 0ldW, O(id).ZO OldH, 0, 0,
msecs, pad, interruptible, CB)

How To Use It

To use this function, you pass it an object (or array of objects) and specify the type of zoom
down you want (whether to zoom down the horizontal or vertical axis, or both), along with
the number of milliseconds it should take, whether to use padding and whether the zoom
should be interruptible, like this:

ZoomDown (myobject, 1, 1, 1000, 0, 0)

This zooms down myobject from whatever its current dimensions are in both the
horizontal and vertical directions, over a period of 1000 milliseconds. The final two values
specify that no padding should be used and that the zoom should not be interruptible.

Here’s an example in which four icons are displayed, which have their onmouseover
events attached to this plug-in:

<scripts>
window.onload = function ()

ids = Array('il', 'i2', 'i3', 'i4')
O(ids, 'onmouseover', 'down')

function down ()

{
}
}

</scripts>

ZoomDown (this, 1, 1, 500, 1, 1)

The first section of HTML displays the images and assigns them unique IDs. The <script>
section creates the array ids out of the ID names and then passes it to the 0 () plug-in, which
attaches the down () function to their onmouseover events.

The function down () simply calls ZoomDown () to zoom each icon down when the
mouse passes over it. You will notice that once an icon has been zoomed down you can still
pass the mouse over the empty space it leaves to activate another zoom. This is because the
previous width and height values of each object are stored by the ZoomDown () plug-in.

PLUG-IN

170 Plug-In JavaScript: 100 Power Solutions

Rather than allowing this messy behavior, you can attach the following plug-in,
ZoomRestore (), to the icons, so that they will zoom back up when the mouse moves away.

The Plug-in

function ZoomDown (id, w, h, msecs, pad, interruptible, CB)

{

if (id instanceof Array)
{
for (var j = 0 ; j < id.length ; ++3)
ZoomDown (id [j], w, h, msecs, pad, interruptible, CB)
return

}

if (0(id) .ZO_Flag && !0(id) .ZO_Int) return
else if (!0(id).z0O_Oldw)

.Z0_0ldaw =
.Z0_01dH
.70 X =
.70 Y =

Il
KoXom =

0(id) .Zoomdown = true

GoTo(id, 0(id).z0 X, 0(id) .zO0 Y)

Zoom(id, w, h, 0(id).z0_0ldw, 0O(id).zo0 OldH, 0, O,
msecs, pad, interruptible, CB)

5 ZoomRestore()

This is the partner plug-in for ZoomDown () . With it you can restore a previously zoomed
down object over time to its original dimensions. In Figure 6-9, four icons have been
displayed with their onmouseover events attached to the Zoombown () plug-in and their
onmouseout events attached to this plug-in.

Plug-In buaScapt - Windos: Explorr
@_@' IF_ ChiLhen'iFobiniDe bt op i\ Plecsmp e L itm - | k,l % |
0| 8 Phig-in et gt

o-<B

M Camputar| Protacted Mode: Off 4 v Rioee -

Ficure 6-9 The icons can now be zoomed down and back up with the mouse.

Chapter 6: Movement and Animation

About the Plug-in

This plug-in takes an object that has been zoomed down and over time zooms it back to its
original dimensions. It takes the following arguments:

* id An object, an object ID, or an array of objects and/or object IDs

e w If true or 1, the object’s width will be zoomed up

e h If true or 1, the object’s height will be zoomed up

* msecs The number of milliseconds the animation should take

e pad If0, the object will be moved during resizing so as to remain centered. If greater
than 0, the object will be padded with CSS padding to retain its original dimensions as
it zooms down. If -1, no padding will be applied and the object will not be moved
during resizing.

* interruptible If true (or 1), this plug-in can be interrupted by a new call on the
same object; otherwise, if false (or 0), the call is uninterruptible

Variables, Arrays, and Functions

b Local variable for indexing into id if it is an array
Z0_Flag Property of id that contains true if a zoom on id is in process
ZO_Int Property of id that contains true if a zoom is interruptible
zO_0ldw Property of 1d containing its previous width
Z0_0Ol1dH Property of id containing its previous height
Zoomdown Property of id that contains true if it has been zoomed down
Zoom () Plug-in to zoom an object from one size to another

How It Works

This plug-in begins with the familiar code to iterate through id if it is an array and recursively
call itself with each element to process it individually, as follows:

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
ZoomRestore (id[j], w, h, msecs, pad, interruptible, CB)
return

Next, the plug-in checks whether a zoom is already in process on id and if so it checks
whether that zoom is interruptible, like this:

if ((0(id).20_Flag && !0(id).ZO_Int) || !0(id) .Zoomdown)
return

If there is a zoom in action (as determined by the z0_Flag property of id,) and it
cannot be interrupted (as determined by id’s ZO_Int property) then the plug-in returns.

m

172

Plug-In JavaScript: 100 Power Solutions

The Zoomdown property of id is also checked, because if it is not true then the object is not
zoomed down, so the plug-in also returns.

The final two statements set the Zoomdown property of id to false to indicate that the
object is (or is in the process of being) zoomed up, and then the Zoom () plug-in is called,
passing it the current zero width and height of id, the object’s previously saved original
width and height values in the Z0_01dw and z0_014dH properties, and the value of pad and
interruptible, as follows:

0(id) .Zoomdown = false
Zoom(id, w, h, 0, 0, O(id).z0O 0ldw, O(id) .zO_OldH,
msecs, pad, interruptible, CB)

How To Use It

To use this function, you pass it an object (or array of objects) that has already been zoomed
down and specify the type of zoom up you want (whether to zoom the horizontal or
vertical axis, or both), along with the number of milliseconds it should take, whether to use
padding, and whether the zoom should be interruptible, like this:

ZoomRestore (myobject, 1, 1, 1000, 0, 0)

This restores the dimensions of myobject over a period of 1000 milliseconds from zero
width and height, back to its original values. The final two values specify that no padding
should be used, and that the zoom should not be interruptible.

The following examples extend the previous plug-in, Zoombown (), to restore the icons
back to their original sizes when the mouse moves away from them:

<scripts>
window.onload = function ()

{

ids = Array('ii', r'i2', 'i3', 'i4"')
O(ids, 'onmouseover', 'down')
O(ids, 'onmouseout', 'up')

function down ()

{
}

function up ()

{
}
}

</scripts>

ZoomDown (this, 0, 1, 500, 1, 1)

ZoomRestore (this, 0, 1, 500, 1, 1)

£52

Chapter 6: Movement and Animation

For this example I set the horizontal w argument of the calls to 0 so that only the height
of the objects is allowed to be resized. This has the effect of making the icons appear to spin
around their horizontal axes if you let them zoom all the way down and back up again. You
could alternatively set the vertical h argument to zero instead (but not both), and then the
icons would appear to spin around their vertical axes.

The Plug-in

function ZoomRestore(id, w, h, msecs, pad, interruptible, CB)

{

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
ZoomRestore (id[j], w, h, msecs, pad, interruptible, CB)
return

}

if ((0(id).Z0_Flag && !0(id).ZO_Int) || !0(id) .Zoomdown)
return

0(id) .Zoomdown = false
Zoom(id, w, h, 0, 0, O(id).z0 _0Oldw, O(id) .zZO_Ol1dH,
msecs, pad, interruptible, CB)

ZoomToggle()

The final plug-in in this chapter brings the last few zooming plug-ins together into a single
one that can zoom both down and up, in three different ways. In Figure 6-10, four icons
have been displayed, each of which is attached to this plug-in and set to zoom around its
vertical axis when the mouse passes in and out.

PlugIn twuaSon pt - Windos: et Explonar

® [E] CALhens\RiohinDesbtop P liesrmgle5 L tm] x|

0| 8 Phig-in et gt

1 1 Q

i Camputar| Protacted Mode: Off 4 v Rioke -

Ficure 6-10 The ZoomToggle() plug-in being used on four different icons

173

174

Plug-In JavaScript: 100 Power Solutions

About the Plug-in

This plug-in toggles the zoomed down state of an object. If it is zoomed down then the
object is restored to its original dimensions; otherwise, the object is zoomed down to zero
width and height. It requires the following arguments:

* id An object, an object ID, or an array of objects and/or object IDs

e w If true or 1, the object’s width will be zoomed

* h If true or 1, the object’s height will be zoomed

e msecs The number of milliseconds the animation should take

e pad If0, the object will be moved during resizing so as to remain centered. If
greater than 0, the object will be padded with CSS padding to retain its original
dimensions as it zooms down. If -1, no padding will be applied and the object will
not be moved during resizing.

* interruptible If true (or 1), this plug-in can be interrupted by a new call on the
same object; otherwise, if false (or 0), the call is uninterruptible

Variables, Arrays, and Functions

3 Local variable for indexing into id if it is an array
Z0_Flag Property of id that contains true if a zoom on id is in process
ZO_Int Property of id that contains true if a zoom is interruptible
Zoomdown Property of id that contains true if it has been zoomed down
ZoomDown () Plug-in to zoom an object down to zero width and height
ZoomRestore () Plug-in to zoom an object back to its original dimensions

How It Works

This plug-in begins with the familiar code to iterate through id if it is an array and recursively
call itself with each element to process it individually, as follows:

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3j)
ZoomRestore (id[j], w, h, msecs, pad, interruptible, CB)
return

Next, the z0_Flag property of id is tested. If it is true, a zoom is currently in progress
on id so the ZO_Int property is then tested. If it is not true, the current zoom may not be
interrupted, so the plug-in returns, using the following code:

if (0(id) .Z0O_Flag && !0(id) .zO_Int) return

Chapter 6: Movement and Animation 115

The final two statements check the Zoomdown property of id. If it is not true, the object
is not zoomed down so the ZoomDown () plug-in is called; otherwise, the object is zoomed
down so the ZoomRestore () plug-in is called, as follows:

if (!0(id) .Zoomdown) ZoomDown (id, w, h, msecs, pad, interruptible, CB)
else ZoomRestore (id, w, h, msecs, pad, interruptible, CB)

How To Use It

To use this plug-in, you don’t need to keep track of an object’s zoom down state because
you can just call it and the plug-in will decide whether an object requires zooming down or
up. All you need to do is specify whether the zoom can occur in the horizontal or vertical
direction (or both), the speed of the zoom, whether to pad the object, and if the zoom should
be interruptible, like this:

ZoomToggle (myobject, 1, 0, 750, 0, 0)

This statement will toggle the zoom down state of the object myobject and allows the
zoom to progress only on its width (so the object will appear to rotate about its vertical
axis). The zoom will take 750 milliseconds, will not pad myobject, and is not interruptible.

The following example is similar to those in the last couple of plug-ins in that four icons
are displayed and their zoom states can be controlled by passing the mouse in and out of
them:

<scripts>
window.onload = function ()

{

ids = Array('i1l', 'i2', 'i3', 'i4")
ZoomToggle (Array('il', 'i3'), 1, 1, 1, 1, 0)
O(ids, 'onmouseover', 'toggle')

O(ids, 'onmouseout', 'toggle')

function toggle ()

{
}
}

</scripts>

zZoomToggle (this, 1, 0, 500, 1, 1)

There is an extra call to ZoomToggle () just after the ids array is assigned, which
toggles the zoom down state of the first and third icons. This means that the ZoomToggle ()
effect can be easily seen as you pass your mouse over the icons, and some zoom into view
while others zoom down. I have chosen to allow the zoom to occur only on an object’s
width so that the icons appear to be spinning around their vertical axes.

176

Plug-In JavaScript: 100 Power Solutions

In Chapter 7, I'll show how you can connect or chain a set of plug-ins together, among

other goodies, so that each one is called only when the previous one has finished. This
allows for some very creative and professional-looking animation effects and also further
extends user interaction.

NOoTE Don't forget that while I have concentrated on images in this chapter, all the plug-ins will

work on any type of object, so you can slide, deflate, and zoom chunks of HTML or anything that

can be placed in or is a visible object.

The Plug-in

function ZoomToggle(id, w, h, msecs, pad, interruptible, CB)

{

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
ZoomToggle (id[j], w, h, msecs, pad, interruptible, CB)
return

}

if (0(id) .ZO_Flag && !0(id) .ZO_Int) return

if (!0(id) .Zoomdown) ZoomDown (id, w, h, msecs, pad, interruptible, CB)
else ZoomRestore (id, w, h, msecs, pad, interruptible, CB)

CHAPTER 7

Chaining and Interaction

PLUG-IN

178

23

Plug-In JavaScript: 100 Power Solutions

book to form sequences of actions or animations. These can be animations you write to

create stunning opening effects, or they can be small chains to perform simple actions
such as moving menu elements.

Chaining is also useful for ensuring that one action will follow another. This can be very
hard to do in JavaScript because it is event driven, and therefore plug-ins called at the same
time will normally run in parallel with each other. However, by adding what is known as a
callback function at the end of many of the plug-ins, one plug-in can be set to call another
when it completes—hence the term chaining.

You'll also learn how you can use callbacks (like a mini, two-part chain) on those
functions that support chaining.

In this chapter I'll show you how you can chain together many of the plug-ins in this

Chain(), NextinChain(), and CallBack()

These plug-ins are a suite of functions that enable you to line up a sequence of plug-in calls
to run in sequence, with each one calling the next when it has finished. This is a great way
to create amazing animation effects in JavaScript that you might think can only be done in
programs such as Java or Flash. Figure 7-1 shows a ball that has been set to bounce around
the screen by chaining together four calls to the s1ide () plug-in.

About the Plug-ins

The Chain () plug-in accepts an array of plug-in calls and then pushes them onto a stack so
that each call can be popped off one at a time and executed when the previous one finishes.
It requires the following argument:

e calls Anarray of strings containing a sequence of plug-ins to call

Table 7-1 lists the plug-ins that have the ability to call other plug-ins via a callback.

EF‘Iug-inJmEcript-"h'indm et EBaplorer = |! (=) |ﬁ
-.’:_.:D | & CAuserRobinD eddnp Pl e sz ple i3 e m | 4| x|

w88 Plug-in lsenScript

M Computer | Protected Mode CHf g v MUK =

Ficure 7-1 A ball is made to bounce around the screen

Chapter 7: Chaining and Interaction 179

Chain () DeflateToggle () FadeToggle () Repeat () While ()
CallBack () Fade () Hide () Show () Zoom ()
ChainThis () FadeBetween () HideToggle () Slide () ZoombDown ()
Deflate () FadeIn() Pause () SlideBetween () ZoomRestore ()
DeflateBetween () FadeOut () Reflate() WaitKey () ZoomToggle ()

TaBLe 7-1 The Plug-ins That Support the Chaining of Other Plug-ins

Table 7-2 lists the plug-ins that can be called by another plug-in via a callback. You should
not include any other plug-in calls within a chain sequence (unless you use the ChainThis ()
plug-in, discussed later), as they will not call up any remaining plug-ins in a chain, so a
sequence may be interrupted. However, you can always include your own plug-ins in a chain
if you place a call to NextInChain () after the final instruction has executed.

CAUTION Never attempt to insert any of the Chain (), Repeat (), or While () plug-ins into a
chain or you'll get “out of memory,” recursion, and possibly other errors. These functions can
only be used for creating chains that don’t contain calls to themselves.

The NextInChain () and CallBack () plug-ins are generally not expected to be called
directly, although you can do so using the information that follows.

Variables, Arrays, and Functions

3 Local variable to iterate through the calls array
CHAIN CALLS Global array in which chained plug-ins are stored prior to their execution.
push () Function to push a value onto an array
pop () Function to pop a value off an array
eval () Function to evaluate a string as JavaScript code
How They Work

The Chain () plug-in takes the plug-ins stored in the calls array and pushes them all onto
the global CHAIN_CALLS array. Because the last item pushed onto an array is always the

ChainThis () FadeIn() Reflate() ZoombDown ()
Deflate () FadeOut () Show () ZoomRestore ()
DeflateBetween () FadeToggle () Slide () ZoomToggle ()
DeflateToggle () Hide () SlideBetween ()

Fade () HideToggle () WaitKey ()

FadeBetween () Pause () Zoom ()

TaBLe 7-2 The Plug-ins That Support Being Chained or Using Callbacks

180

Plug-In JavaScript: 100 Power Solutions

first one out when using the JavaScript push () and pop () functions, they would all come
out in the reverse order if the elements were pushed onto the array in the order they were
encountered. Therefore, the calls array is traversed from end to start, pushing each
element in turn onto CHAIN CALLS, like this:

function Chain(calls)

{

for (var j = calls.length ; j >= 0 ; --7)
if (calls([j])
CHAIN CALLS.push(calls[j])

NextInChain ()

The first line is the one that iterates backward through the calls array. The second
checks that there is something stored in that element and, if there is, the third pushes it onto
the CHAIN_CALLS global array.

Finally, the NextInChain () plug-in (discussed next) is called to start executing the chain.

NOTE The push () and pop () JavaScript functions create what is known as a LIFO stack, which
stands for Last In First Out. With such a system the most recently pushed element is popped off
first, and the first element pushed onto the stack is the last one popped off it. But in the case of the
Chain () plug-in a FIFO (First In First Out) stack is required, which is achieved by pushing
the contents of the calls array onto the stack in reverse order, so that the sequence in which the
stack of calls is executed is the same as in the array originally passed to the Chain () plug-in.

The NextInChain() Plug-in

The NextInChain () plug-in simply examines the global CHAIN CALLS array and, if it has
any chained calls left to run, pops the next one off and passes it to the CallBack () plug-in
to execute it, like this:

if (CHAIN CALLS.length)
CallBack (CHAIN CALLS.pop())

The CallBack() Plug-in
This plug-in allows you to attach a plug-in to be called after the current one finishes
execution, like this:

var insert = expr.lastIndexOf(')')

var left = expr.substr (0, insert)

var right = expr.substr (insert)

var middle = "'NextInChain()'"

if (expr.substr(insert - 1, 1) = '(")
middle = ', ' + middle

eval (left + middle + right)

Chapter 7: Chaining and Interaction

This code works by passing the name of a plug-in to be called in the CB argument for a
function call that supports it. It does this by taking the expression passed to it and then
inserting the next call in the chain into this expression as its final argument.

To do this the string variables 1left, right and middle are first created, with left
containing all the expression up to the insertion point, middle a string containing a reference
to the 'NextInChain () ' plug-in, and right the remainder of the expression after the
insertion point. The reference to 'NextInChain () ' uses single quotes within double quotes
to ensure that when the string is evaluated, the single quoted string will be processed as a
string, and not the result of calling the function named in the string.

Then, if the character immediately preceding the final ‘)’ is not a ‘(" this means that the
expression passed to CallBack () includes arguments, so the variable middle has a comma
and space prepended to it, to act as a variable separator. Otherwise, it keeps its assigned
value of 'NextInChain () '.Finally the three values of 1eft, middle, and right are
concatenated and passed to the eval () function.

When a plug-in is called up this way it will notice that the CB argument is not empty
and will therefore evaluate it. In this instance the Next InChain () plug-in will be called.

NOTE The reason for passing the name of a function (or an expression) in CB this way, rather than
simply having the plug-in just call Next InChain (), is to let you pass expressions of your own
to be executed as a callback. To do this you place an expression (or function call) in a string and
pass it in the CB arqument to any plug-in that accepts it (listed in Table 7-1). Your expression
will then be evaluated when the called plug-in completes.

The ChainThis() Plug-in

This plug-in allows you to take a plug-in or function that is not chainable (which you can
determine by checking Table 7-2) and then use it within a chain. The code is quite simple
and looks like this:

eval (expr)
NextInChain ()

For example, suppose that for one of the instructions in a chain you want to move an
object using the following statement:

GoTo ('myobject', x / 2, vy + 100)

You can make this call chainable by turning it into a string using the Insvars () plug-in
and ChainThis (), as follows:

string = InsVars ("ChainThis ('GoTo (\"myobject\", #1, #2)')",
x / 2, y + 100)

The Insvars () plug-in makes it easy to insert variables into a string by using tokens
such as #1 and #2 as place holders for them and passing the variables or expressions after
the main string.

If you then pass the string string to Chain () (or Repeat () or While ()) as one of the
elements in a chain, the GoTo () call will be executed when its turn comes up, and the
program flow will pass onto the next item in the chain (if any).

181

182

Plug-In JavaScript: 100 Power Solutions

This technique only works well with functions that work procedurally from start to end
in a single process. If you use ChainThis () on a function that does its job using events or
interrupts, you will usually get very unexpected results.

NOTE You may find with the InsVars () plug-in that you use up the main two levels of quotation
marks, both double and single, and need a third level of quotation. This is easily accomplished by
using the \ escape character before a quotation mark, like this: \" or this: \ '. In fact, you will see
that the previous example statement uses this technique when passing the “myobject” ID to
GoTo (), because the double quote has already been used for the outside of the string and the
single quote is used for the substring being passed to CallBack ().

How To Use Them

To use the Chain () plug-in, you need to create an array of plug-in calls to be chained
together, and each call must be assembled into a string before it is placed into the array. For
example, assume you wish to add the following call to a chain:

FadeOut (myobject, 1000, 0)
To do so, you must first convert it to a string, like this:
stringl = 'FadeOut (' + myobject + ', 1000, 0)'
Or, if you have a more complicated call, like this:
Slide('a', width / 2, height / 2 - 50, width / 2 -20, height / 2, 500, 0)
then it would need to be turned into a string, like this:

string2 = "Slide('™ + a + "', " + width / 2 + ", " + height / 2 - 50 + ", "
+ width / 2 -29 + ", " + "height / 2, 500, 0)"

Obviously this quickly gets very messy, so it’s almost always much easier to make use
of Plug-in 15, InsVars (), as in these two simpler versions of the preceding statements:

stringl = InsVars('FadeOut ('#1', 1000, 0)', myobject)
string2 = InsVars("Slide('#1', #2, #3, #4, #5, 500, 0",
ball, width / 2, height / 2 - 50, width / 2 -20, height / 2)

In these two lines the argument list has simply been placed at the end of the main string,
with each value position replaced with a #1, #2, and so on, for each value to be inserted.

The two strings can then be placed in a chain, and the first item in the chain started,
using the following statement:

Chain (Array (stringl, string2))

The first statement places the strings in an array which it then passes to the Chain () plug-in.
Here’s an example that uses these techniques to make a ball bounce around the browser:

<scripts>
window.onload = function ()

Chapter 7: Chaining and Interaction 183

Position('ball', ABS)

width = GetWindowWidth ()

height = GetWindowHeight ()

r = width - 100

b = height - 100

x = width / 2 - 50

y = height / 2 - 50

chl = InsVars("Slide('ball', #1, #2, #3, #4, 500, 0)", 0, y, x, 0)
ch2 = InsVars("Slide('ball', #1, #2, #3, #4, 500, 0)", x, 0, r, Vy)
ch3 = InsVars("Slide('ball', #1, #2, #3, #4, 500, 0)", r, v, X, b)
ch4 = InsVars("Slide('ball', #1, #2, #3, #4, 500, 0)", x, b, 0, vy)

Chain (Array(chl, ch2, ch3, ch4))

}

</scripts>

The HTML section displays a 100 by 100 pixel image of a ball, then the first line of the
<scripts> section sets the ball’s property style to ‘absolute’ so that it can be moved about.

After this the width and height of the browser are calculated and stored in width and
height, then the right and bottom positions required to place the ball against these edges
are placed in r and b. These values are simply the width and height of the browser less the
ball’s width and height of 100 pixels each.

The variables x and y are also calculated to set them to coordinates that place the ball
exactly in the center of the browser (bearing in mind its width and height of 100 pixels).

Next, four Slide () plug-in calls are assembled into strings using the InsVars ()
plug-in. In turn, the calls slide the ball from the center left of the browser to the top middle,
then to the center right, then to the bottom middle, and finally back to the center left of the
browser.

These call strings are then placed in an array and passed to the Chain () plug-in to get
the ball rolling (so to speak).

NOTE Because of the way chaining has been implemented with a single global array, you can have
only one chain of plug-ins running at a time. You can sometimes carefully create a chain that
interleaves two or more separate sets of plug-ins so that a number of different animations appear
to be running concurrently. However, you will need to use trial and error to get the best results
with this technique.

Using the CallBack() Function Directly
The callBack () plug-in achieves its functionality by adding the name of a function to call
back after the current one has finished execution. You can also do this, as long as the plug-in
you call supports chaining, as detailed in Table 7-2.

For example, if you would like to have the Hide () plug-in called immediately after a
Deflate (), you can use code such as this:

Deflate (myobject, 1, 1, 500, 0, 'Hide(myobject)"')

184

Plug-In JavaScript: 100 Power Solutions

This calls up the Deflate () plug-in, passing it myobject, with the required parameters
to deflate it over 500 milliseconds and without the possibility of the plug-in being interrupted.
However, there is a final argument, which is a call to Hide (), placed within a string so that
the string, not the result of executing the function, is passed.

You will need to tweak the syntax slightly if you are passing object IDs rather than
objects within a callback, like this:

Deflate('myobject', 1, 1, 500, 0, "Hide('myobject')")

This way, after the double quotes are stripped off by the eval () function that will
eventually execute this callback string, the single quotes will remain to indicate that
myobject is a string that is an object ID, and not the name of an object.

This procedure is a quick and easy way to create a two-part chain without having to
assemble a chain. Remember, however, that it works only on plug-ins that can be inserted
into a chain.

The Plug-ins

function Chain(calls)

{

for (var j = calls.length ; j >= 0 ; --3)
if (calls[jl)
CHAIN CALLS.push(calls[j])

NextInChain ()

}

function NextInChain ()

{

if (CHAIN CALLS.length)
CallBack (CHAIN CALLS.pop())

}

function CallBack (expr)

{

var insert = expr.lastIndexOf(')"')

var left = expr.substr (0, insert)

var right = expr.substr (insert)

var middle = "'NextInChain()'"

if (expr.substr(insert - 1, 1) != '(")
middle = ', ' + middle

eval (left + middle + right)

}

function ChainThis (expr)

{

eval (expr)
NextInChain ()

PLUG-IN

9

Chapter 7: Chaining and Interaction

Repeat()

As well as chaining plug-ins together, you can make one or more plug-ins repeat a specified
number of times using the Repeat () plug-in. In a medium such as a book it’s not possible
to capture the motion in these examples, so Figure 7-2 shows the ball (slightly grayed out)
as it was captured on different repetitions of an animation created using this plug-in.

About the Plug-in

This plug-in allows you to repeat a chain of actions as many times as you like. It requires
the following arguments:

e number The number of times the chain should be repeated

e calls An array of strings containing a sequence of plug-ins to call

Variables, Arrays, and Functions

J Local variable used for counting the repeats

temp Local copy of the calls array

concat () Function to merge two or more arrays

Chain () Plug-in used to chain a group of plug-ins together
How It Works

This plug-in takes the calls array and duplicates it enough times so that there are number
copies of the calls, like this:

var temp = calls

for (var j = 1 ; j < number ; ++j)
calls = calls.concat (temp)

Chain(calls)

Ficure 7-2 Flug-in Ineafonipt - Windran kemret Eaplorer

You can repeat a r') | - |
chain multiple @L: ¥ | @ | ChUserRobintD esonphPriearnpledd hkm "'| Hl =
times. —

w8 Plug-in lsenScript

—

{8 Computer | Protected bodes OFF g r UK -

185

PLUG-IN

186

29

Plug-In JavaScript: 100 Power Solutions

First, the local array temp is assigned a copy of calls, then the concat () function
merges the contents of temp with calls, until there are number copies altogether. Finally,
the Chain () plug-in is called to start the first call running.

How To Use It

Using this plug-in is the same as calling Chain () except that you also pass an additional
parameter to specify the number of times the chain should repeat.

The following example slightly modifies the one in the Chain () and NextInChain ()
plug-ins section to make the ball bounce around the browser 10 times:

<script>
window.onload = function ()

{

Position('ball', ABS)

width = GetWindowWidth ()

height = GetWindowHeight ()

r = width - 100

b = height - 100

x = width / 2 - 50

y = height / 2 - 50

chl = InsVars("Slide('ball', #1, #2, #3, #4, 500, 0)", 0, vy, x, 0)
ch2 = InsVars("Slide('ball', #1, #2, #3, #4, 500, 0)", x, 0, ¥, V)
ch3 = InsVars("Slide('ball', #1, #2, #3, #4, 500, 0)", ¥, y, X, b)
ch4 = InsVars("Slide('ball', #1, #2, #3, #4, 500, 0)", x, b, 0, vy)

Repeat (10, Array(chl, ch2, ch3, ch4))

}

</scripts>

The Plug-in

function Repeat (number, calls)

{

var temp = calls

for (var j = 1 ; j < number ; ++j)
calls = calls.concat (temp)

Chain(calls)

While()

Sometimes you may find it convenient for a chain of plug-ins to keep repeating while a
certain condition is true; for example, if no key has been pressed or the mouse hasn’t been
clicked. With this plug-in you can supply a test condition along with a chain and, as long as
the condition returns true, the chain will keep repeating.

Chapter 7: Chaining and Interaction 1817

Figure 7-3 shows an animation of a sailing ship that slowly fades into view and sails
across the browser, then fades out again. Before each trip the global variable KEY PRESS is
checked and the animation repeats until the space bar is pressed.

About the Plug-in

This plug in takes an expression and an array of statements to chain if the expression
evaluates to true. It requires the following parameters:

e expr A string containing an expression that can be evaluated to either true or
false

e calls An array of strings containing a sequence of plug-ins to place in a chain

Variables, Arrays, and Functions

temp Local string variable used for reconstructing a string from the
array in calls
b Local variable for iterating through the calls array
eval () Function to evaluate a JavaScript expression
replace () Function to replace parts of a string
substr () Function to return part of a string
push () Function to push a value onto an array
InsVars () Plug-in for inserting values into a string
Chain () Plug-in for chaining sequences of plug-ins together
How It Works

This plug-in resides within an if () statement and completes only if the string value passed
in expr evaluates to true, like this:

if (eval (expr))

Figure 7-3

The ship keeps on
sailing until the
space bar is
pressed.

| 2 Plg-n breascipt

W Computar] Probactsd ko OfF

L T T

188

Plug-In JavaScript: 100 Power Solutions

If it does, the local string temp is created and the calls array is iterated through using
the local variable j as an index into it. This is done because the way the chain keeps
repeating is to continually pass an entire chain as a single statement of a new chain. To
understand this, consider the following pseudo code:

if expr is true then..
Add this statement to a chain
Also add this statement
And then add this statement
Now add all of the above including the if statement to the chain

What is happening here is the same as what the code in the While () plug-in does. It
first evaluates the expression and if it is true it sends all the statements it has been passed
to the Chain () plug-in. Then it also sends all of the preceding statements, so that when the
first sequence has finished executing, the if () statement and associated calls will come up
once again and will be passed once more to the Wwhile () plug-in to deal with.

The next time around, if expr evaluates to false, the While () plug-in will finish. But if
it still evaluates to true, then all the statements are again sent to Chain (), followed by all
the code required to make it start over again. And so the process continues, going round
and round until expr evaluates to false, if it ever does.

How the Additional Call to While() Is Added to a Chain

In essence, what the preceding does is add a call to While () as one of the items in a chain. To

do this, each element in calls is extracted from the array and appended to the string temp.
This is because the Chain () plug-in, which will be called later, does not accept array

elements that are themselves arrays. Instead, such elements must be a string value that will

later be converted into an array by a call to eval () (by the NextInChain () plug-in, which

occurs when it is the statement’s turn to be executed). The code that creates temp is as follows:

var temp = ''
for (var j = 0 ; j < calls.length ; ++73)
temp += '"' + calls[j].replace(/"/g, '"\\\"') + '",'

Each time round the loop the value in calls [j] is extracted, the replace () function is
used to escape any double quotes, changing them from " to \". Because a double quote is
also added to the start and end of each string section (followed by a comma), any double
quotes that appear inside the strings and are not escaped will clash with the outside quotes
and create a syntax error, in the same way that the following statement would fail:

string = "She said "Hello""
The correct version of this statement with escaped double quotes is:
string = "She said \"Hello\""

The Assembled String

Let’s assume that calls contains the following two strings:

FadeOut ('obj', 50, 0)
FadeIn("Obj", 50, 0)

Chapter 7: Chaining and Interaction 189

After processing through the previous code it will be turned into the following string:
"FadeOut ('obj', 50, 0)","FadeIn(\"Obj\", 50, 0)",

Now we have a string that can be merged with another string containing the word
Array () to look like the following (once the final comma is removed):

Array ("FadeOut ('obj', 50, 0)","FadeIn(\"Obj\", 50, 0)")

The eval () function can then evaluate this string back into an array. As I mentioned, the
final comma needs removing, and this is done by the following line of code, which uses the
substr () function to trim it off:

temp = temp.substr (0, temp.length -1)

The new string in temp is now ready to convert into the final string to be added to the
calls array as part of the chain, which is done with the following statement:

calls.push(InsVars ("While ('#1', Array(#2))", expr, temp))

This uses the Insvars () plug-in to insert the value in expr and the string just assembled
in temp into the string that is passed to the push () call.

In the case of the previous calls.push () statement, if the contents of expr is simply
the number 1 (an expression that will always be true), the entire new string would look
like this:

While('l', Array("FadeOut('obj', 50, 0)","FadeIn(\"Obj\", 50, 0)"))

As you can see, this is a perfectly formatted call to the while () plug-in itself and, in
fact, it will always be identical to the call that your code made to the plug-in in the first case.

How To Use It

Using this plug-in is much simpler than explaining its workings. All you have to do is make
acall towhile (), passing it an expression as a string and an array of calls to be chained if
the expression evaluates to true, like this:

var ¢ = 0
While("c++ < 3", Array("FadeIn('obj', 50, 0)", "FadeOut('obj', 50, 0)"))

Here the variable c is assigned the value 0, then While () is called, passing it the
expression c++ < 3. Each time the chain repeats, the value of ¢ will be incremented until it
is 3, at which point the expression will evaluate as false, so the While () will finish. In this
instance, the object ‘obj” will pulsate three times and then be invisible.

Here’s a much more interesting example that animates a ship sailing on the sea,
including effects such as fading in and out:

<div id='sea's></div>

<scripts>

190 Plug-In JavaScript: 100 Power Solutions

window.onload = function()

{

width = GetWindowWidth ()
height = GetWindowHeight ()
x = width - 200

y = height - 150

Locate('sea', ABS, 0, height - 50)
Resize('sea', width, 50)

S (document .body) .backgroundColor '#b7d4dc!
S('sea') .backgroundColor = '#90a5a6'
Locate ('ship', ABS, 0, vy)

While ("KEY PRESS != ' '",

Array (
"FadeIn('ship', 500, 0)",
InsVars ("Slide ('ship', #1, #2, #3, #4, 5000,0)", 0, v, X, V),
"FadeOut ('ship', 500, 0)",
InsVars ("CallBack ('GoTo (\"ship\", #1, #2)')", 0, V)
)
)
}
</scripts>

The two lines of HTML set up a div to represent the sea and display an image of a
sailing ship. Next, the <script> section starts off by obtaining the width and height of the
browser and setting x and y to values for the sailing ship to use in a call to the slide ()
plug-in.

After this, the sea is given the property style of “absolute’ so that it can be placed in an
exact location, and is then resized so that it takes up the bottom 50 pixels of the browser. To
represent the sky and sea colors, the document . body object has its background color
changed, while the “sea” object also has its background color changed. Finally, the ship is
located at its start position of 0, y.

The final part of this example is the While () statement, which passes the following
expression:

"KEY PRESS != ' '"

KEY_PRESS is a global variable that is automatically set to whatever the value of the last
key pressed happens to be, so this expression will return true until the space bar is pressed.

The first three statements in the chain of calls are pretty obvious; they fade the ship in,
move it across the browser, and then fade it out. However, the final call is a little more
interesting because it’s an example of using the CallBack () plug-in to turn a nonchainable
plug-in (in this case GoTo ()) into a chainable one, for just this single call.

It uses the Insvars () plug-in to insert the variables and values into the string
containing the GoTo () call. This string is then placed within a call to callBack () and
becomes chainable.

Therefore, the fourth statement moves the ship back to the start position ready for its
next voyage—if the space bar still hasn’t been pressed.

PLUG-IN

26

Chapter 7: Chaining and Interaction

NOTE Because the expression passed to the while () statement is tested only at the start of each
chain of calls, an entire chain will always execute before it can be stopped. If you need more
precise control than this you can always empty the global array CHAIN CALLS (which contains
all the items in a chain). This will stop a chain after the current statement has finished and can
be done by issuing the statement CHAIN CALLS.length = 0. If you need an even speedier
reaction to user input, a while () statement is not your best choice of plug-in, and you should
be looking at creating some event-driven code.

The Plug-in

function While (expr, calls)

{
if (eval (expr))
{
var temp = ''
for (var j = 0 ; j < calls.length ; ++3)
temp += '"' + calls[j].replace(/"/g, '"\\\"') + ',
temp = temp.substr (0, temp.length -1)
calls.push(InsVars ("While('#1', Array(#2))", expr, temp))
Chain(calls)
1
}
Pause()

There are often times during an animation when you need it to stop for a while, and you
can do this with the Pause () plug-in. With it, you can specify a period of time in
milliseconds until the next plug-in in a chain is called. In Figure 7-4, the example from the
previous plug-in, Wwhile (), has a few extra commands inserted into the chain, which zoom

Ficure 7-4

Inserting time
delays into chains

w - IE_ il bers ' Robinh D it op ' PIcarnp e 56 ira

| 2 Plg-n breascipt

M Compitar| Profactad Mode: OF 4 v B0pe -

191

192

Plug-In JavaScript: 100 Power Solutions

the ship down when it reaches the center of the browser and then pause for 1 second before
zooming it back again to resume its journey.

About the Plug-in

This plug-in pauses between commands in a chain for the length of time specified. It takes
the following argument:

e wait Length of time to pause in milliseconds

Variables, Arrays, and Functions

setTimeout () Function to create a single interrupt at some point in the future
NextInChain () Plug-in to run the next command in a chain (if there is one)
How It Works

This plug-in is quite straightforward. It simply makes a call to the SetTimeout () function
to make it call the NextInChain () plug-in after wait milliseconds have expired.

Because commands within a chain are linked together via the Next InChain () plug-in,
this is the only means by which the next command in a chain can be run. By setting the
timeout to occur at a future time, the chain will not continue execution until that timeout
occurs and Next InChain () is called.

Unlike the setInterval () function, setTimeout () sets up a single interrupt and then
forgets all about it once it has occurred, so there is no need to clear it.

How To Use It

To use this plug-in, insert a string such as the following, which will create an event 1.5 seconds
in the future to resume execution of the chain, into an array of chain commands:

"Pause (1500) "

Here’s a fun example that illustrates the use of Pause () by zooming down the ship in
the previous plug-in, Wwhile (), when it reaches the center of the browser, then pausing for a
second before zooming it back in again, letting the ship continue on its course:

<div id='sea'></divs>

<scripts>
window.onload = function ()

{

width = GetWindowWidth ()

height = GetWindowHeight ()
b4 = width - 200

y = height - 150

mid = width / 2 - 100

PLUG-IN

ol

Chapter 7: Chaining and Interaction 193

Locate('sea', ABS, 0, height - 50)
Resize('sea', width, 50)

S (document .body) .backgroundColor '#b7d4dc!
S('sea') .backgroundColor = '#90a5a6'
Locate ('ship', ABS, 0, vy)

While ("KEY PRESS != \" \"",
Array (

"FadeIn('ship', 500, 0)",
InsVars("Slide('ship', 0, #1, #2, #1, 2500,0)", y, mid),
"ZoomDown ('ship', 1, 1, 250, 0, 0O)",
"Pause (1000) ",
"ZoomRestore ('ship', 1, 1, 250, 0, 0)",
InsVars("Slide('ship', #1, #2, #3, #2, 2500,0)", mid, y, x),
"FadeOut ('ship', 500, 0)",
InsVars ("CallBack ('GoTo(\"ship\", 0, #1)")", v)

)
}

</scripts>

The changes from the previous example are highlighted in bold. As you can see, the
main difference is the insertion of a call to Pause () between calls to Zoombown () and
zoomRestore (). The Slide () command for moving the ship has also been split into two
halves, and the variable mid is used for the midpoint of the ship’s journey.

NOTE Where you already know values and they do not require calculating with an expression
(or taking them from a variable), there is no need to use the InsVars () plug-in to insert them
into a string because you can simply put the values in the string yourself, as I did with the
FadeIn (), ZoomDown (), Pause (), ZoomRestore (), and Fadeout () calls.

The Plug-in

function Pause (wait)

{
}

setTimeout ("NextInChain ()", wait)

WaitKey()

This plug-in is useful for inserting a pause in a chain that waits until a key is pressed. In
Figure 7-5, the chain has been paused and is using this plug-in to wait for a keypress.

About the Plug-in

This plug-in halts execution of a chain until a key is pressed. It requires no arguments.

194

Plug-In JavaScript: 100 Power Solutions

Fioure 7-5 L = =
A chain waits for E{-:}'l' I.E Zoybary Ao bl n'On ba ph Placa m pla 5T, bem 'r|+p-| X |

a keypress
| Phin e Soript

M o ey | Proke cie ol M oo O g~ Wur -

Variables, Arrays, and Functions

KEY PRESS Global variable containing the value of the last key pressed

INTERVAL Global variable containing the value 30

GetLastKey () Plug-in to return the value of the last key pressed

NextInChain () Plug-in to run the next command in a chain

DoWaitKey () Subfunction to wait for a keypress before allowing a chain to

continue execution

SetTimeout () Function to create a single call to another function at a future time

How It Works

This plug-in first calls the GetLastKey () function, which removes any key that has been
pressed and leaves the global variable KEY_PRESS containing the empty string. Next, the
setTimeout () function is called to create an interrupt call to the DoWaitKey () subfunction
in INTERVAL milliseconds. Here is the code for these two statements:

GetLastKey ()
setTimeout (DoWaitKey, INTERVAL)

When the DowaitKey () subfunction is called, it checks the value of KEY PRESS and, if
it is no longer the empty string, the Next InChain () plug-in is called to allow the next
command in a chain to run (if there is one).

Otherwise, if no key has been pressed, another call to setTimeout () is made, which
calls DowaitKey () after another INTERVAL milliseconds to see if a key has been pressed,
using this code:

if (KEY_PRESS != '"') NextInChain ()
else setTimeout (DoWaitKey, INTERVAL)

Therefore, if there is a keypress, after calling Next InChain () the subfunction returns and
will not be called again unless a new call is made to WaitKey (), otherwise DoWaitKey () will
be repeatedly called every INTERVAL milliseconds until a key is pressed.

Chapter 7: Chaining and Interaction 195

How To Use It

To use this plug-in, you will need to insert it as a string within an array of chain commands,
as follows:

"WaitKey ()"

You can then choose to ignore the key that was pressed or have a later command in the
chain use the GetLastKey () plug-in to return the key and use it.

The following example replaces the somewhat zany zooming down and back up of the
previous example in the Pause () plug-in section, with a “Press any key” message that fades
in, waits for a keypress, and then fades out again—allowing the ship to sail on its way:

<div id='sea's></div>

Press any key

<script>
window.onload = function()

{

width = GetWindowWidth ()
height = GetWindowHeight ()
X = width - 200

Y = height - 150

mid = width / 2 - 100

Locate('sea', ABS, 0, height - 50)
Resize('sea', width, 50)

S (document .body) .backgroundColor = '#b7d4dc'

S('sea') .backgroundColor = '#90a5a6'

Locate ('ship', ABS, 0, vy)

Locate('note', ABS,0, y + 115)

CenterX ('note')

Opacity('note', 0)

While("KEY_PRESS =t ',

Array (

"FadeIn('ship', 500, 0)",
InsVars("Slide('ship', 0, #1, #2, #1, 2500,0)", vy, mid),
"FadeIn('note', 1000, 0)",
"WaitKey ()",
"FadeOut ('note', 1000, 0)",
InsVars ("Slide('ship', #1, #2, #3, #2, 2500,0)", mid, y, x),
"FadeOut ('ship', 500, 0)",
InsVars ("CallBack ('GoTo (\"ship\", 0, #1)")", v)

)
}

</scripts>

The differences between this and the last example are highlighted in bold. In the HTML
section, a new span has been added with the message text. In the <script> section, the
span is moved to the location where it will later be displayed, and its opacity is set to zero to
make it invisible.

PLUG-IN

196

28

Plug-In JavaScript: 100 Power Solutions

Finally, within the chain of commands the previous zoom instructions have been
replaced with calls to FadeIn (), WaitKey (), and FadeOut ().

If you press any key except the space bar when the message is displayed, the ship will
then proceed on its way and continue repeating in a loop. However, if the key you press is
the space bar, then the expression at the start of the Wwhile () command will evaluate to
true, and the chain will stop repeating.

The Plug-in

function WaitKey ()

{

GetLastKey ()
setTimeout (DoWaitKey, INTERVAL)

function DoWaitKey ()

{
if (KEY_PRESS = ''") NextInChain()
else setTimeout (DoWaitKey, INTERVAL)

Flip()

This plug-in provides a professional flip effect that will appear to spin an object around to
reveal its reverse side. Three different spin effects are provided, making this a great way to
provide interesting visual effects and offer more information on your web pages.

In Figure 7-6, the photograph of Albert Einstein is attached to a mouse event so that
when the mouse passes over the image, it flips to reveal more information. It’s not possible to
show you the effect in the medium of a book, but think of the image as a trading or similar
type of card with a picture on the front and further information on the back. Figure 7-7
shows the “reverse” of the image as the mouse is held over it.

Fioure 7-6 g st - Wedse e Bglees. [| o |
The image in this ﬁ },| CAlsmmtHnkin T e - |4 2 |
web page is £ o = 2
reversible when W | Phigein LawaSoigh

moused over.

Ceneral Relativity

Gereral relatrty 1= 2 theecy of gravitsiion dewelopesd
tiw Bmeten i the wears 1907-1915 The Savelogroen
of penerd relatrety begen wih the equvakice
prirsple, mder winch the siabas of &cceleratad metion
and bemp b 1e8t W & @ akkahenal Geld (far exagle
when sionding on the soface of the Eadh) are
physicaly idenhcal The wpshot of Hos is that fee 211
mertial fefio, on ket m e Gl i Ealing because
that £ how skgects mowe when there is no firre beng
exected on them, metesd of oz beng due b the force
of By a8 12 e cage o clasaial 1 chiame s

8 Compuiar | Pratected Pode: OF

Chapter 7: Chaining and Interaction

Ficure 7-7

When the mouse is
passed over the
image, it smoothly

[+ | D P —rp——

W | = Plag-in leaSorpn

flips over.
General Relativity PO ic iy
t. opket aned imither
General velairaby 45 @ theory of gravtation davelped i :‘f:;:dl; <o
I

by Birgten o the pears 1907-1915 The developaent
of groerd relsteity began wib the equivalence [et
pranciple, voder which the stabes of wcoelarated motion. (e 1920 Mobed Per in Plasios “Tor bis
and being o rect 1 @ graviationa] Bed (for example (=R e Thewsial P el
whety standing on the axfare of the Bath] are | pesodetse oo™ Ha s

phipsically identical. The upshot of this & that free falis et :‘l'.“"'n_]""m:
iertial metien an obgect o free Eall & Calkog because |amd Be b of ehsvin
thatis bew obgacis mowe when Here 1= ne farce beng b | bisieal nere s

M il mad 130 o |
exerted oo them, inskead of this hemg dus ta the force e u.;ar:n_. =

of gravity as is the case n classical mechanics u-1|-\.¢rhl|l::-|- PtcR

it lapraal of o]t

I Campiger | Profactad WModse OFf dg o« WP -

About the Plug-in
This plug-in takes two objects and then animates them so that they appear to flip over as if

they are attached back to back. It requires these arguments:
e idl An object or object ID—it may not be an array
e id2 An object or object ID—it may not be an array
e w If true or 1, the width will be flipped
e h If true or 1, the height will be flipped
e msecs The number of milliseconds the flip should take

e pad If set, the objects will be padded to retain their overall dimensions during
the flip

Variables, Arrays, and Functions

swap Local string variable containing a command string suitable
for Insvars () to add a call to VisibilityToggle () to a
chain

fast Local string variable containing a command string suitable for
InsVars () to add a 1 millisecond call to ZoomToggle () to
a chain

slow Local string variable containing a command string suitable
for InsvVars () to add a call of length msecs / 2 to
ZoomToggle () to a chain

197

198 Plug-In JavaScript: 100 Power Solutions

ZO_Flag Property of either or both id1 and id2, which is set if a
zooms already in operation on an object
CallBack () Plug-in to enable any command to be added to a chain
VisibilityToggle () Plug-in to toggle the visibility of an object
ZoomToggle () Plug-in to toggle the zoom state of an object
Chain () Plug-in to start a chain of calls executing
How It Works

This function first checks the state of both id1 and 1d2’s z0_Flag property. If either is
true, a zoom is already in operation on an object, so the function returns, like this:

if (0(idl) .Z0_Flag || 0(id2) .ZO_Flag) return

Next, three local string variables are created as a way to keep the code tidy and stop any
lines wrapping around. They are also efficient as each string is used twice. These are the

assignments:

var swap = "ChainThis('VisibilityToggle (\"#1\")"')"
var fast = "ZoomToggle ('#1', #2, #3, 1, #4, 0O)"
var slow = "ZoomToggle ('#1', #2, #3, #4, #5, 0)"

The variable swap is assigned a string suitable for enabling the VisibilityToggle ()
plug-in to be used in a chain (by implementing it via the ChainThis () plug-in). The strings
fast and slow contain strings to place calls to the ZoomToggle () plug-in, one of them taking
1 millisecond (and therefore being virtually instantaneous) and the other taking a specified time.

The #1, #2, and so on within the strings are variable or value place holders. When these
strings are passed to the InsVars () plug-in, these place holders will be replaced by the
values or variables also passed to it.

The final call in the plug-in is to the Chain () plug-in, passing it a sequence of six
commands, which are all passed through the Insvars () plug-in to combine the strings
with the variables, like this:

Chain (Array (

InsVars(slow, idl, w, h, msecs / 2, pad),
InsVars (fast, id2, w, h, pad) ,
InsVars (swap, 1d2)
InsVars(slow, id2, w, h, msecs / 2, pad),
InsVars (swap, idl)
InsVars (fast, id1l, w, h, pad)

))

I'have spaced out the code into columns so that you can more clearly see the values
being passed. The sequence of commands performs the following six steps:

1. Zoom id1 down over half the time specified in msecs This performs the first
half of the flip animation.

2. Zoom id2 down over the course of 1 millisecond This ensures that id2 is quickly
zoomed down so that can be zoomed up shortly at normal speed.

Chapter 7: Chaining and Interaction

3. Toggle id2’s visibility (from hidden to visible) After id2 has been zoomed
down, this makes it safe to make it visible ready for zooming up.

4. Zoom id2 up over half the time specified in msecs This performs the second
half of the flip animation.

5. Toggle id1’s visibility (from visible to hidden) This tidies up after the flip by
making 1d1 invisible.

6. Zoom id1l up over the course of 1 millisecond Once invisible, id1 is zoomed
back up again, and the objects are then in a state where the flip can be reversed.

How To Use It

To create a flip animation, you need to first have two objects of equal dimensions. They
must then be overlaid on each other with the second object’s visibility property turned off,
using code such as this:

ids = Array('a', 'b')

Locate (ids, ABS, 10, 10)
VisibilityToggle('b'")
Flip('a', 'b', 1, 0, 1000, 0)

This code takes two objects that have been given the IDs of ‘a” and ‘b’, places their
names in the array ids, and then locates them at the absolute position 10,10 with a call to
the Locate () plug-in. Object ‘b’ then has its visibility turned off by the
VisibilityToggle () plug-in. Finally, the F1ip () plug-in is called with the two objects
and set to flip only the width (so that the flip will twist around the vertical axis). A time of
1000 milliseconds is specified and padding is not used.

Here’s an example that creates a mini web page on the subject of general relativity with
a photo of Albert Einstein that flips when you pass the mouse over it, revealing more
information on the reverse side:

<div id='c's>General Relativity

<p align='justify's>General relativity is a theory of gravitation
developed by Einstein in the years 1907-1915. The development of
general relativity began with the equivalence principle, under which
the states of accelerated motion and being at rest in a gravitational
field (for example when standing on the surface of the Earth) are
physically identical. The upshot of this is that free fall is inertial
motion; an object in free fall is falling because that is how objects
move when there is no force being exerted on them, instead of this
being due to the force of gravity as is the case in classical
mechanics.</p></div>

<scripts>
window.onload = function ()
{
Hide('c")
width = GetWindowWidth ()

199

200 Plug-In JavaScript: 100 Power Solutions

Resize('c', width - 220, 260)
Show ('c")

ids = Array('a', 'b')

Locate (ids, ABS, width - 205, 5)
Resize (ids, 200, 264)
VisibilityToggle('b'")

O('a') .onmouseover = function() { Flip('a', 'b', 1, 0, 250, 0) }
O('b') .onmouseout = function() { Flip('b', 'a', 1, 0, 250, 0) }
}
</scripts>

The HTML section displays the two images along with a div containing the article text.
The <script> section then hides the text with a call to Hide () because it is going to be
resized; if it didn’t do this, the Internet Explorer browser would return the wrong browser
width in the next command as it would prepare for possibly requiring a scroll bar. After
resizing the article text, the Show () plug-in is called to display it again and, now that it has
its dimensions reduced to fit within the current window, Internet Explorer will not try to
leave a gap for a scroll bar in case it should need it.

Next, the ids array is populated with the image IDs and is passed to the Locate ()
plug-in to place them at the top right corner of the browser. The Resize () plug-in is also
called because, unfortunately, odd widths and heights sometimes cause a slight 1-pixel
disturbance to animations depending on the browser used (something to do with the way
they handle rounding), so ensuring that both dimensions of objects passed to F1ip () are
even is the easiest way to get the best results. It also ensures that both images have the same
dimensions and will flip neatly.

Next, the second object is set to invisible before setting up the mouse events to call
Flip (). This must be done because the two images are overlaid on each other and could
have varying zIndex values, so you must ensure the correct one is at the front by making
the other one invisible.

In the final two lines, the onmouseover event of object ‘a’ is attached to a flip from
object ‘a’” to ‘b’, while the onmouseout event of object ‘b’ is attached to a flip from object ‘b’
to‘a’.

Before any flips, object ‘a” will be visible, so passing the mouse over it will start the flip.
After the flip has finished, object ‘b’ will be visible and the mouse will still be over it (unless
the user quickly moved it away), which is why the onmouseout even of object ‘b’ is attached:
so the animation will flip back again when the mouse moves away.

Objects as well as images

Although images give the best flip results, you can pass any kind of object such as a div or
table and so on, to the F1ip () plug-in. This means you could, for example, have an e-mail
button that flips over when the mouse passes over it to reveal a small form for entering
your e-mail address to subscribe to newsletters. If you do this, text and objects will flow in
and out of the object rather than rotate the way an image does, so you get a slightly
different—but still interesting—effect.

You can also use Flip () to swap sections of HTML according to the selection of radio
button or clicking of links. And don’t forget that you can flip objects horizontally and
vertically, or you can even do both at the same time to create a zoom-away-and-back-again
effect. Try changing the values in the F1ip () calls of the last two lines of the example and
see what different results you get.

PLUG-IN

29

Chapter 7: Chaining and Interaction

NOTE As already mentioned, when using objects that have an odd value for one or more dimensions
you may see a slight one pixel jitter occur either horizontally or vertically during a flip. This
happens because there are differences between the way different browsers round fractional
numbers and is fixed by the plug-in remembering the object’s positions before a flip and restoring
them afterwards. Even though it’s almost imperceptible, if you wish to avoid this tiny
disturbance, you should work only with dimensions that have even values. It's quite easy to
ensure this with a call to the Resize () plug-in prior to using F1ip ().

The Plug-in

function Flip(idl, id2, w, h, msecs, pad)

{

if (0(idl).Zz0_Flag || 0(id2).Z0O_Flag) return

var swap = "ChainThis('VisibilityToggle (\"#1\")')"
var fast = "ZoomToggle ('#1', #2, #3, 1, #4, 0)"
var slow = "ZoomToggle ('#1', #2, #3, #4, #5, 0)"

Chain (Array (
InsVars(slow, idl, w, h, msecs / 2, pad

)
InsVars (fast, id2, w, h, pad)
InsVars (swap, 1id2)
InsVars (slow, id2, w, h, msecs / 2, pad),
InsVars (swap, idl)
InsVars (fast, idl, w, h, pad)
))
}
HoverSlide()

This plug-in places an object on one of the edges of the browser with a small portion of it
revealed and the remainder hidden. When you pass your mouse over it, the object slides
out into the window to reveal itself and then slides back in again when you move the
mouse away.

Figure 7-8 shows an object that has been attached to the top of a browser, showing only
the keys of a piano. In Figure 7-9, the mouse has passed over the keyboard and slid the
object into the browser to reveal itself.

About the Plug-in

This plug-in places an object across one edge of a browser boundary with most of it unseen,
outside the browser, and a small area showing that you can pass the mouse over to make
the object slide in and out. It requires the following arguments:

e id Either an object or an object ID—this cannot be an array of objects

e where The edge to which the object should be attached out of ‘top’, ‘left’, ‘right’,
and ‘bottom’

201

202

Plug-In JavaScript: 100 Power Solutions

Ficure 7-8 8 Pug-in L = e ——
An object is =y F_t D — .
attached to the ﬁ"-.__.l' £ € lhery' Eohin et op' Pl exsmple§d him - | e
browser top o (R

showing only its 57| 8 Phag-in laeaSoipe

bottom. I !! lll T ll "I'I—I'I—I'I'I—I'I' -

The "I'll Be Bach' Music Store

‘Wiz pride curselves in having the widest selection of
instrumants of ary music stare, ranging from piamas, violirs,
flutes, ard other classical and band irstraments, to the latest
electric guitars, keyboards, synthesizers and mizing eguipment.

S Campifan] Protacted Mode OfF dg = W Re -

o offset The amount by which the object should be offset from the left or top of the
edge—if offset is a number, the amount is an exact offset in pixels, but if it is a

string prefaced with a % symbol (such as “%50”), then the object is to be placed that
percent along the edge

e showing The number of pixels by which the object must poke into the browser

e msecs The number of milliseconds it should take for the object to slide either in

or out
Ficure 7-9 # Plug-in L asipt - Windiows et Eqilanar = e s
After moving the - o -
mouse 0vergthe ﬁ".q__._l*l £ by Bl D ot op' PP gl e 54 him - | 4y | X

object, it slides 0| 8 Plagein leaSonpt
into view.

‘We prids

instrumea alirs,
flutes, ar B |atest
electric gaitars, , SYTIENESIZers and mixing equipmenit.

W Campifan] Protacted Mode OF dg o« B lRe -

Chapter 7: Chaining and Interaction

Variables, Arrays, and Functions

w&h Local variables containing the furthest positions along and down an
edge that id can be placed

o Local variable containing the position in pixels along or down the
edge at which to display id

t Local variable containing the portion of the object in pixels that isn’t
displayed when id is slid out
Local variable containing the number of steps in the animation

X,y Local variable containing the coordinates of the top left corner of
id

s Local variable containing the amount by which to move id for each
step when it is sliding

0oX, Oy Local variables used while updating the HS_X and HS_Y properties
of id

HS X,HS Y Properties of id containing its top left coordinates

HS IID Property of id used for clearing repeating interrupts set up by
setInterval ()

INTERVAL Global variable containing the value 30

TP, BM, LT, RT Global variables standing for ‘top’, ‘bottom’, ‘left’, and ‘right’

onmouseover Event attached to id when the mouse passes over it

onmouseout Event attached to id when the mouse passes out of it

Math.max () Function to return the maximum of two values

Math.min () Function to return the minimum of two values

setInterval () Function to start repeating interrupts

clearInterval () Function to end repeating interrupts

substr () Function to return part of a string

GetWindowWidth () Plug-in to return the width of the browser

GetWindowHeight () Plug-in to return the height of the browser

W() Plug-in to return the width of an object

H() Plug-in to return the height of an object

GoTo () Plug-in to move an object to a new location

SlideIn() Subfunction to start 1d sliding into the browser

SlideOut () Subfunction to start id sliding out of the browser

DoSlideIn() Sub-subfunction to perform the slide in animation

DoS1lideOut () Sub-subfunction to perform the slide out animation

203

204

Plug-In JavaScript: 100 Power Solutions

How It Works

This plug-in begins by finding the farthest possible position along or down an edge that id
can be placed, by taking the browser width, subtracting the width of id from it, and placing
the result into w. The variable h is also calculated for the vertical edges, as follows:

var w = GetWindowWidth() - W(id)
var h = GetWindowHeight () - H(id)

Next, the variable o is set to zero if of £set is a number or, if of £set is a string
beginning with the % character, o is given the value resulting from dividing the numeric
part of the argument by 100. In the first instance, the value of zero will indicate later that an
exact offset in pixels has been passed in of fset, but in the second case, a percentage
distance along the edge has been specified for where id should be located, and that value is
now in o. Here is the code that does this:

var o = offset[0] != '$' ? 0 : offset.substr(1l) / 100

If the Left or Right Edge Has Been Chosen

Next, the plug-in needs to determine which edge is going to be used, so it first tests the
value where against the global variables LT and RT (which contain the strings ‘left” and
‘right’). If it is one of these, then the following code is executed:

var t = W(id) - showing

var u = Math.min(t, msecs / INTERVAL)
var x = where == LT ? -t : w + t

var y = o ? h * o : offset

var s = t / u

This assigns the amount of id that isn’t shown by default to t, then u is assigned the
number of steps the animation requires to complete in msecs milliseconds. After this, the x
and y coordinates are determined by checking the where argument again to see if it
contains ‘left’ (the value of L.T). If it does, it means the left edge is being used, so x is set to
-t, which places id sufficiently off screen so that only showing pixels of the object are
visible. Otherwise, x is set to move the object off the right hand edge of the screen in a
similar fashion.

The y variable is similarly calculated, being set either to the value in of £set if o is zero
(in other words, an absolute offset along the edge was requested), or settoh * o because o
is a fractional value representing the percent along the edge that the object should be
located, and h is the maximum distance down the edge that the object may appear.

Finally, s, the step distance by which id should be moved for each frame of a slide, is
calculated by dividing t (the amount of id that isn’t shown by default) by u (the number of
steps required to make the animation last msecs milliseconds). These variables will all be
used during the animation stages of the plug-in.

If the Top or Bottom Edge Has Been Chosen
If either the top or bottom edge has been chosen for the object’s placement, a very similar
set of calculations is made to obtain the values required for t, u, x, y, and s, as follows:

Chapter 7: Chaining and Interaction 205

var t = H(id) - showing

var u = Math.min(t, msecs / INTERVAL)
var x = o ? w * o : offset

var y = where == TP ? -t : h + t

var s = t / u

Setting Up the Events

The final few lines of code in the setup section move id to the location x,y; store a copy of
each in the HS_X and HS_Y properties; and set up the onmouseover and onmouseout
events to call up the SlideIn() and slideOut () subfunctions, respectively:

GoTo (id, x, y)

0(id) .HS X = x
0(id) .HS_Y =y
0(id) .onmouseover = SlidelIn
0(id) .onmouseout = SlideOut

The Slideln() Subfunction

The job of this function is to slide the object into view when the mouse passes over any part
of it. The first thing it does is cancel any previously running regular interrupts (for instance,
if the object was in the process of sliding out) with a call to clearInterval (), and then it
sets up a new regular interrupt to the DoSlideIn () sub-subfunction, like this:

if (O(id) .HS_IID) clearInterval(O(id).HS_IID)
0(id) .HS_IID = setInterval (DoSlideIn, INTERVAL)

This sub-subfunction is where all the animation takes place. First, though, to make use
of smaller, more manageable variable names, ox and oy are given the values in the HS_X
and HS_Y properties of id. These are the location of the top left corner of id:

var ox = O(id) .HS X
var oy = O(id).HS Y

Next, a group of if.. else if..statements test for whether the edge being used is the
top, bottom, left, or right by checking the argument where against the global variables TP,
BM, LT, and RT. Then, as long as id still has further to move, the value of either ox or oy is
incremented or decremented by the step value in s. Otherwise, if there is no further
movement to make, the clearInterval () function is called to stop the repeating
interrupts, like this:

if (where == TP && oy < 0) oy = Math.min(0, oy + s)

else if (where == BM && oy > h) oy = Math.max(h, oy - s)

else if (where == LT && oxX < 0) ox = Math.min(0, ox + s)

else if (where == RT && OX > w) Ox = Math.max(w, ox - 8)
D

else clearInterval (O(id) .HS IID)

206

Plug-In JavaScript: 100 Power Solutions

Finally, the object is moved to the new location in ox and oy, and the HS_X and HS_Y
properties are assigned these values, as follows:

GoTo (id, ox, oy)
0(id) .HS X = ox
0(id) .HS_Y = oy

The SlideOut() Subfunction

The job of this function is to slide the object away again when the mouse passes out of it. The
first thing it does is cancel any previously running regular interrupts (for instance, if the
object was in the process of sliding in) with a call to clearInterval (). Then it sets up a
new regular interrupt to the DoSlideOut () sub-subfunction, like this:

if (0(id) .HS_IID) clearInterval(O(id).HS_IID)
0(id) .HS _IID = setInterval (DoSlideOut, INTERVAL)

As with the similar function DoSlideIn (), copies of the properties used are first placed
into shorter variable names, like this:

var ox = O(id).HS X
var oy 0(id) .HS Y

Then, if the movement hasn’t completed, the values of ox and oy are modified as
necessary depending upon which edge is being used; otherwise the repeating interrupt is
cancelled, as follows:

if (where == TP && oy > y) oy = Math.max(y, oy - s)

else if (where == BM && oy < y) oy = Math.min(y, oy + s)

else if (where == LT && oX > X) ox = Math.max(x, ox - s)

else if (where == RT && OX < X) Ox = Math.max(x, ox + 8)
D

else clearInterval (O(id) .HS II

Finally, the object is moved to the new location in ox and oy, and the HS_X and HS_Y
properties are assigned these values, as follows:

GoTo (id, ox, oy)
0(id) .HS_X = ox
o(id) .HS Y oy

NoOTE HoverSlide() is one of the more complicated plug-ins, but it does create great effects, so it's
worth reading the preceding explanation through a few times if any parts aren’t clear at first.

How To Use It

To use the Hoverslide () plug-in, you pass it an object and then tell it where the object
should be placed (out of the ‘top’, ‘bottom’, ‘left’, or ‘right” edges), whereabouts on the edge
to place it, how much of the object to allow showing, and the speed of the sliding animation
in milliseconds, as in these two examples:

HoverSlide ('myobject', 'top', '%50', 60, 1000)
HoverSlide ('myobject2', 'right', 15, 20, 1000)

Chapter 7: Chaining and Interaction

The first statement places an object at the top edge of the browser, exactly 50 percent
along, with 60 pixels showing, and with a sliding time of 1 second. The second one does the
same for another object, but it is attached to the right edge starting 15 pixels down and has
only 20 pixels showing.

Before you call the plug-in, it’s important to give the object a style position of either
‘absolute’ or ‘fixed’, as in these statements:

Position (object, FIX)
Position ('mydiv', ABS)

The first of these has a fixed position (FIX) and places the object in the browser so that
even if you scroll right through the web page, the object will remain on screen exactly where
it was placed. The second has an absolute position (ABS) and places the object absolutely
within a web page so that it will start off looking exactly the same as a fixed object but will
move with the page when you scroll it.

Here’s a fun example using a fixed object to create a dynamic menu for a music store:

<table id='a' width='375' height='160"
cellpadding='0"' cellspacing='0' bgcolor='black'>
<tr height='20"'>
<td colspan='3"'>

<center>
I'11l Be Bach Music Store
</centers>

</td>
</tr>
<tr height='80"'>
<td width='150' align='right'>

</td>
<td>

</td>
<td width='315' valign='middle'>
<center>

<u>New! - Special Offers</u>

<us>View our Guestbook</u>

<u>Follow us on Twitter</us

<u>Read our Blog</u>

</center>
</td>
</tr>

<tr height='60"'>
<td colspan='3">

</td>
</tr>
</table>

201

208 Plug-In JavaScript: 100 Power Solutions

<centers>

The "I'll Be Bach" Music Store

</center>

We pride ourselves in having the widest selection of instruments of
any music store, ranging from pianos, violins, flutes, and other
classical and band instruments, to the latest electric guitars,
keyboards, synthesizers and mixing equipment.

<scripts>
window.onload = function ()

{
Position('a', FIX)
HoverSlide('a', 'top', '%50', 60, 300)

}

</scripts>

The vast majority of this example is plain HTML, which is intentional, because I wanted
to illustrate how easy it is to set up such a feature on your website with only a couple of
lines of JavaScript; the first one of which sets the style position of the object, and the second
displays the object with just the piano keyboard graphic image showing. By the way, the
links shown in the slide in menu are, of course, only for illustrative purposes and cannot be
clicked.

For an even more interesting effect, you could try changing the opacity of the div,
like this:

Opacity('a', 80)

Now that you have available the full power of chaining and other interactive
techniques, in the next chapter I'll show you some amazing menu and navigation effects
that will really help your web pages to stand out from the crowd.

The Plug-in

function HoverSlide (id, where, offset, showing, msecs)

{

var w = GetWindowWidth () - W(id)
var h = GetWindowHeight () - H(id)
var o = offset[0] != '$' ? 0 : offset.substr(l) / 100
if (where == LT || where == RT)
{
var t = W(id) - showing

var u = Math.min(t, msecs / INTERVAL)

var X =
var
var

0~
U}

else

var
var
var
var
var

ns XK e
Il

}

GoTo (id, x,

0(id) .HS_X
0(id) .HS_Y
o(id)
0(id)

Chapter 7:
where == LT ? -t : w + t
o? h * o : offset
t / u
H(id) - showing

Math.min(t, msecs / INTERVAL)
o?w * o : offset

where == TP ? -t : h + t

t / u

y)

= X
=Y

.onmouseover = SlidelIn
.onmouseout = SlideOut

function SlideIn()

{

if (0(id) .HS_IID) clearInterval (0O(id).
0(id) .HS_IID = setInterval (DoSlideln,
function DoSlideIn ()
{
var ox = O(id) .HS X
var oy = O(id) .HS Y
if (where == TP && oy < 0) oy
else if (where == BM && oy > h) oy
else if (where == LT && ox < 0) ox
else if (where == RT && OX > W) OX
else clearInterval (O(id) .HS_IID)

GoTo (id, ox, oy)

0 (id)
0 (id)

}

LHS X = ox
.HS Y oy

function SlideOut ()

{

if (0(id) .HS_IID)

0(id) .HS_IID = setInterval (DoSlideOut,

function DoSlideOut ()

{

var ox = O(id) .HS X
var oy = O(id) .HS_ Y

HS IID)
INTERVAL)

= Math.min(
= Math.max (
= Math.min (
= Math.max (

clearInterval (O(id) .HS IID)

INTERVAL)

oy
oy
ox

Chaining and Interaction

n n n n

209

210

Plug-In JavaScript: 100 Power Solutions

if

else
else
else
else

(where
if (where
if (where

if (where

clearInterval (O (id)

GoTo (id, ox, oy)

0(id) .HS_X = ox
0(id) .HS Y

oy

TP
BM
LT
RT

&&
&&
&&
&&

oy > vY)
oy < VY)
oxX > X)
oX < X)
HS IID

oy
oy
ox
ox

Math.
Math.
Math.
Math.

oy
oy
ox
oxX

nn n n

CHAPTER 8

Menus and Navigation

PLUG-IN

212

60

Plug-In JavaScript: 100 Power Solutions

navigating through large numbers of pages are being devised all the time. Menus
and navigation are probably the areas that make the most use of JavaScript for
this purpose.

In the early days of JavaScript, the interaction was mainly limited to instant changes of
location and color as the mouse passed over a menu, but nowadays savvy web users expect
much more fluid and appealing designs with fades, transitions, and more.

The plug-ins in this chapter give you a variety of solutions that you can use as-is, or you
can build them up into more sophisticated systems. They range from sliding menus to
pop-up and down menus, folding and context menus, and even a dock bar similar to the
one used in Mac OS X.

ﬁ s websites try to offer a better look and feel than their competitors, new ways of

HoverSlideMenu()

This plug-in expands on the final one in Chapter 7, Hoverslide (), to build a complete
menu system, rather than just a single slideable menu. With it you can select a group of
objects that will be attached to one of the edges of the browser and which will slide into
view when the mouse passes over the part showing. In Figure 8-1, two almost identical sets
of objects containing links have been attached to the top and bottom of the browser.

About the Plug-in

This plug-in takes an array of objects and then lines them all up along one of the browser edges
where they become a collection of slide in menus. The following arguments are required:

e ids An array of objects and/or object IDs

e where The edge the objects should be attached to, either ‘top’, ‘left’, ‘right’, or
‘bottom’

o offset How far along the edge to locate the objects—if of £set begins with a %
symbol, the position will be that percent from the start, otherwise it will be offset
pixels from the start

e showing The number of pixels to leave showing of each object so the mouse can
pass over them to cause the menu to slide in

Froume 51 LT m |

This plug-in creates = e T F =
slide-in menus on @E' @] Ciillsers'Rabin! Desktop' PJ\xarnpleid. htm |‘”‘-’| x|

any edge of the
browser.

W | = Plg-in laSoripn

WEATHER

I Campiger | Profactad Modse OFf dg v W -

Chapter 8:

e gap The number of pixels to leave between each object

e msecs The number of milliseconds each object should take to slide in or out

Variables, Arrays, and Functions

Menus and Navigation

len Local variable containing the number of objects in ids
total Local variable containing the total width or height that all the
objects take up when brought together, including gaps
start Local variable containing the position along or down an edge
that the first object should be placed
a Local array containing the width or height of each object
jump Local variable containing the progressive width of each object
and the gaps while positioning the objects
3 Local variable for indexing into the a array to save the width or
height of each object
TP & BM Global variables containing the values ‘top’ and ‘bottom’
W() Plug-in to return the width of an object
H() Plug-in to return the height of an object
GetWindowWidth () Plug-in to return the width of the browser
GetWindowHeight () Plug-in to return the height of the browser
HoverSlide () Plug-in to slide an object in and out from a browser edge
How It Works
The first thing this plug-in does is assign values to some local variables, like this:
var len = ids.length
var total = gap * (len - 1)
var start = (offset[0] != '%$') ? 0 : offset.substr(l) / 100
var a =[]
var jump = 0

The variable 1en is assigned the number of items in the ids array, and total is assigned
the width in pixels of all the gaps. Next, start is set to either 0 or the value of offset / 100

if it begins with the character %. Later, if start is 0, the value in of £set will be used to
align the objects in their required positions at exact positions. Otherwise, start contains
a percentage value for the start point.

After this, the array a is created to hold the widths of the objects and jump is initialized

to 0; it will store the current widths and gaps so far, as each object is given its location.
Next, there are two sections of code, the first of which is executed if either the top or
bottom of the browser is to be used for the menu:

if (where == TP || where == BM)

{

for (var j = 0 ;

j < len ; ++3)

23

214

Plug-In JavaScript: 100 Power Solutions

aljl = w(ids[jl)
total += aljl

}

start = start ? (GetWindowWidth() - total) * start : offset * 1

The first line compares the where argument with TP and BM (global variables containing
the values ‘top” and ‘bottom’). If where is one of these values, the menu will be laid out
horizontally, so the for () loop places all the widths of the objects in the a array by fetching
them with the W () plug-in. The variable total is also incremented by this value so that
when the loop has finished it will contain the sum of all the object widths and all the gap
widths (the latter having been assigned earlier).

Then, if start is not zero, it contains the percentage value that was previously assigned,
so the width of the browser, as returned by GetWindowWidth () less the value in total, is
multiplied by start (which is a fractional value less than 1), and the result is placed in
start. This value represents the percent offset from the start of the edge. However, if start
is 0, then offset contains the exact number of pixels the menus should be located from the
edge. Because this value may be a string, it is multiplied by 1 to turn it into an integer. The
result is then placed in start.

The second part of the 1 f () statement repeats the procedure, substituting values
applicable for the left or right hand edge of the screen, like this:

else
{
for (var j = 0 ; j < len ; ++3)
{
aljl = H(ids[j])
total += aljl
}
start = start ? (GetWindowHeight () - total) * start : offset * 1

Finally, another for () loop iterates through the ids array and calls the Hoverslide ()
plug-on for each object, placing them all in their correct positions based on the value of start,
plus that in jump. Initially, jump is zero so there is no additional offset, but as each object is
added to the menu, jump is incremented by the previous object width and the size of the gap,
so that each additional object is located at the correct distance from the previous one.

How To Use It

To use this plug-in, you need to create an object for each of the sliding menu parts. A div is
perfect for the job. Fill each with the images, links, and any other contents you need, and
make sure the edge of the div is a suitable tab that will make people want to pass their
mouse over it. Now all you need to do is call the plug-in, like this:

HoverSlideMenu(idsl, 'top', '%50', 20, 10, 200)

In this example, the objects in the array ids are passed to the plug-in, telling it to place the
menus at the browser top, 50 percent along the edge (therefore in the middle), with 20 pixels

Chapter 8: Menus and Navigation 215

poking into the browser, 10 pixels space between each object, and a slide in and out time of
200 milliseconds.
Here’s an example that places such a set of menus at the top of the screen:

<div id="ml'>

 » <us>World News</u>

 » <us>Entertainment News</us

 » <u>Tech News</us>

 » <u>Business News</u>

<center>NEWS</center></div>

<div id="m2'>

 » <usHurricane News</u>

 » <u>Long Term Forecast</u>

 » <us>National Weather</us

 » <usLocal Weather</us

<center>WEATHER</center></div>

<div id='m3'>

 » <u>Football News</us

 » <u>Baseball News</u>

 » <u>Soccer News</u>

 » <u>Hockey News</u>

<center>SPORT</center></divs>

<script>

window.onload = function()

{
ids = Array('ml', 'm2', 'm3')
Hide (ids)
Resize (ids, 150, 100)
Position(ids, FIX)

S(ids, 'backgroundColor', 'red')

S(ids, 'color', 'cyan')

Show (ids)

HoverSlideMenu (ids, 'top', '%50', 21, 10, 200)
</script?>

This example creates three divs and places simulated links in them using <u> tags—in
the real world you might use <a href..> tags here. Each object is also given a unique ID.
Also the sraquo; HTML entity creates pairs of right pointing brackets.

Then, in the <script> section, the ids array is populated with the object names and the
Hide () plug-in makes them invisible so they will display neatly when the menus have been
created—and you shouldn’t see them jump around. It also helps to hide any content that
might make some browsers return a value that makes room for a potential horizontal scroll
bar, thus ensuring that everything centers correctly.

After resizing the objects, setting style positions, and assigning their colors, it’s then safe
to show the objects again with Show () . In fact, you must do so in order for the plug-in to be
able to look up their dimensions. Finally, the HoverslideMenu () plug-in is called and the
menus are displayed.

PLUG-IN

216

6

Plug-In JavaScript: 100 Power Solutions

NOTE 1t isn't necessary to give all objects the same dimensions—they will still line up neatly,

spaced from each other by the value passed in the gap argument. You can also specify a value of 0

for the gap if you want all the menus to align directly next to each other. Also, don't forget that if

you use a style position of ‘absolute’, your menus will scroll with the page, but if you use ‘fixed’
they will stay where you put them, even if the page is scrolled.

The Plug-in

function HoverSlideMenu(ids, where, offset, showing, gap, msecs)

{

var len = ids.length
var total = gap * (len - 1)
var start = (offset[0] != '%$'") ? 0 : offset.substr(l) / 100
var a = []
var jump =0
if (where == TP || where == BM)
{
for (var j = 0 ; j < len ; ++3)
{
aljl = W(ids[3j])
total += aljl
1
start = start ? (GetWindowWidth() - total) * start : offset * 1
}
else
{
for (var j = 0 ; j < len ; ++3j)
{
aljl = H(ids[3j])
total += alj]
}
start = start ? (GetWindowHeight () - total) * start : offset * 1
}
for (var j = 0 ; j < len ; ++3)

{

HoverSlide (ids[j], where, start + jump, showing, msecs)
jump += aljl + gap

PopDown()

With this function, you can remove an object from the browser using a variety of different
transitions. This plug-in is especially good for menu effects, as you'll see in other plug-ins
in this chapter. Figure 8-2 shows four avatars from the resource website art.eonworks.com.

Chapter 8: Menus and Navigation N1

Ficure 8-2 = i

Attaching four = TorE D -
Attachin [| D P T —rp——— [++] x|
PopDown() effects a1 T —

to avatars

I Campiger | Profactad Modse OFf

Each avatar has a different PopDown () style attached to its onmouseover event and will
disappear in different ways as you pass your mouse over them.

About the Plug-in

This plug-in takes an object and then removes it from the browser in one of a variety of
styles. It requires the following arguments:

e id An object or object ID or an array of objects and/or object IDs

e type The type of pop-down—out of ‘fade’, ‘inflate’, ‘zoom’, or ‘instant’

e w If true or 1, the width of the object (where applicable) will reduce

e h If true or 1, the height of the object (where applicable) will reduce

e msecs The number of milliseconds the transition should take, except for the type
‘instant’, which uses no timing

e interruptible If true or 1, the plug-in can be interrupted with another call on
the same object

Variables, Arrays, and Functions

3 Local variable for iterating though id if it is an array

PO_IsUp Property of id that is false if it is popped down, otherwise it is popped up
FadeOut () Plug-in to fade out an object over time

Deflate () Plug-in to reduce an object’s dimensions over time

ZoomDown () Plug-in to zoom down an object around its center point

Hide () Plug-in to hide an object so it does not appear in the browser

InsVars () Plug-in to insert values into a string

218

Plug-In JavaScript: 100 Power Solutions

How It Works

This plug-in starts with the standard code that iterates through id if it is an array and
recursively passes each element back to itself to be dealt with individually, as follows:

if (id instanceof Array)

{

for (var j = 0 ; j < id.length ; ++3)
PopDown (id[j], type, w, h, msecs, interruptible)
return

Next, a group of four 1£ () .. else if () statements check for the different types of
pop-down requested in the argument type, like this:

if (type == 'fade')

FadeOut (id, msecs, interruptible,
InsVars ("Hide ('#1')", id))

}

else if () ..

This first section calls the FadeOut () plug-in and passes the callback function name of
Hide (), with 14 as its argument, so that the object will be hidden after it has faded. The
other sections call up Deflate () and ZoomDown () in the same way and with the same
callback string, with the final section simply calling the Hide () plug-in when the type of
pop-down requested is ‘instant’.

Finally, the PO_IsUp property of id is set to false to indicate to other plug-ins that the
object is (or is on the process of being) popped down.

How To Use It

Using this plug-in is as simple as passing an object (or an array of objects), along with the
pop-down type you want, out of ‘fade’, ‘inflate’, “zoom’, or ‘instant’. If type is either ‘inflate” or
‘zoom’, you also need to specify whether the width or height (or both) dimensions should be
modified. If type is either ‘fade’ or ‘instant’, you can pass any values for these arguments, such
as 0 or null, as they will be ignored. Finally, you specify the length of time in milliseconds the
pop-down should take (if it’s not “instant’) and whether the plug-in can be interrupted.

Here’s an example that displays four images and attaches a different style of pop-down
to each:

<centers>Reload

</centers>

<script>
window.onload = function ()

{

O('al') .onmouseover = function() { PopDown('al', 'fade', 1,1,500,0) }

Chapter 8: Menus and Navigation 219

O('a2') .onmouseover = function() { PopDown('a2', 'inflate',1,0,500,0) }
O('a3') .onmouseover = function() { PopDown ('a3', 'zoom', 1,1,500,0) }
O('a4') .onmouseover = function() { PopDown ('a4', 'instant',1,1,500,0) }

}

</scripts>

The HTML section centers a group of four images and gives them unique IDs. A link is
also made to reload the page. Next, in the <script> section, four different calls to PopDown ()
are attached to the different onmouseover events of the images.

When you pass your mouse over any image it will pop down and then hide, and the
other images will all move in to take up the space it previously occupied. This is why there
is the “Reload” link above them, so that you can reload the example and watch it again.

Take some time to play with each type of pop-down and note what’s different about
them. For example, the Deflate () plug-in reduces the object’s dimensions in real time,
causing the other objects to reposition as the object is deflating, whereas the ZoombDown ()
plug-in first zooms the object down and then collapses its width and height. You may also
wish to experiment with the w and h arguments to see how they change the type of pop-
down effect.

The Plug-in

function PopDown (id, type, w, h, msecs, interruptible)

{

if (id instanceof Array)

{

for (var j = 0 ; j < id.length ; ++3)

PopDown (id[j], type, w, h, msecs, interruptible)
return
}
if (type == 'fade')

{

FadeOut (id, msecs, interruptible,
InsVars ("Hide ('#1')", id))

}

else 1f (type == 'inflate')

Deflate(id, w, h, msecs, interruptible,
InsVars ("Hide ('#1')", id))
}

else 1f (type == 'zoom')

{

ZoomDown (id, w, h, msecs, 1, interruptible,
InsVars ("Hide ('#1')", id))
}

else 1f (type == 'instant') Hide(id)

0(id) .PO_IsUp = false

220 Plug-In JavaScript: 100 Power Solutions

%62 PopUp()

This is the partner plug-in for PopDown () . With it, you can pop an object up that has previously
been popped down. Figure 8-3 extends the one in the PopDown () plug-in by providing four
spans, which you can pass the mouse over and out of to pop an object down and back up again.

About the Plug-in

This plug-in takes an object and then restores its state using one of a variety of styles. It
requires the following arguments:

e id An object or object ID or an array of objects and/or object IDs

e type The type of pop-up, out of ‘fade’, ‘inflate’, “zoom’, or ‘instant’

e w If true or 1, the width of the object (where applicable) will expand

e h If true or 1, the height of the object (wWhere applicable) will expand

e msecs The number of milliseconds the transition should take, except for the type
‘instant’, which uses no timing

e interruptible If true or 1, the plug-in can be interrupted with another call on
the same object

Variables, Arrays, and Functions

3 Local variable for iterating though id if it is an array

PO_IsUp Property of id that is false if it is popped down, otherwise it is
popped up

FadeIn () Plug-in to fade in an object over time

Reflate() Plug-in to expand an object’s dimensions over time

ZoomRestore () Plug-in to zoom up an object around its center point

Hide () Plug-in to show an object that has been hidden

InsVars () Plug-in to insert values into a string

Ficure 8-3 ﬁmhmﬁ-mma‘ur @Eﬁ

With this plugin [| D P Ty p—— +[+] %]

you can pop
| Phag-in L aScript

objects back up
again.

Linage 1| Impge 2| Image 5 | Imape 4

I Campiger | Profacted Modse OFf dg = Bl -

Chapter 8: Menus and Navigation

How It Works

This plug-in has the usual code at the start that iterates through id if it is an array and
recursively passes each element back to itself to be dealt with individually, as follows:

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3j)
PopUp (id[j], type, w, h, msecs, interruptible)
return

Next, since the object will previously have been hidden using the Hide () plug-in, it is
shown by calling Show () :

Show (id)

This is all that needs to be done at this point if type is ‘instant’. If it isn’t, a group of
if () .. else if () statements call one of the FadeIn (), Reflate (), Oor ZoomRestore ()
plug-ins, depending on the value in type, as follows:

if (type == 'fade')

FadeIn(id, msecs, interruptible)
else if (type == 'inflate')

Reflate(id, w, h, msecs, interruptible)
else if (type == 'zoom')

ZoomRestore (id, w, h, msecs, 1, interruptible)

Finally, the PO_IsUp property of id is set to true to indicate to other plug-ins that the
object is (or is in the process of being) popped up.

0(id) .PO_IsUp = true

How To Use It

You use this plug-in in the same manner as PopDown () to restore an object to its original
state. Following is an example that expands on the PopDown () plug-in to make the images
pop both down and up again:

<centers>

Image 1l</spans> |
Image 2 |
Image 3 |
Image 4

<div id='d's>

</divs></centers>

2

222

Plug-In JavaScript: 100 Power Solutions

PLU

<scripts>

window.onload = function()

{
Position('d', 'absolute')
CenterX('d')
O('l1') .onmouseover = function() { PopDown('al', 'fade', 1,1,500,1) }
0('1l2') .onmouseover function() { PopDown('a2','inflate',1,0,500,1) }
O('1l3') .onmouseover function() { PopDown('a3', 'zoom', 1,1,500,1) }
O0('1l4"') .onmouseover = function() { PopDown ('a4', 'instant',1,1,500,1) }
O('l1') .onmouseout = function() { PopUp('al','fade', 1,1,500,1) }
O('1l2') .onmouseout = function() { PopUp('a2', 'inflate',1,0,500,1) }
0('13') .onmouseout = function() { PopUp('a3', 'zoom', 1,1,500,1) }
O('l4') .onmouseout = function() { PopUp('a4', 'instant',1,1,500,1) }

}

</scripts>

As well as displaying the four images, the HTML section now includes four spans that
you can pass the mouse over and out of to make the associated images pop down and back
up again. The images have their alignment set to make them line up beside each other, and
they are placed in a div that is centered by a statement in the <script> section.

Also, in the <script> section, there are four more statements that attach PopUp ()
plug-ins to the onmouseout events of the spans.

The Plug-in

function PopUp(id, type, w, h, msecs, interruptible)
{
if (id instanceof Array)
{
for (var j = 0 ; j < id.length ; ++3)
PopUp (id[j], type, w, h, msecs, interruptible)
return
}
Show (id)
if (type == 'fade')
FadeIn(id, msecs, interruptible)
else 1f (type == 'inflate')
Reflate(id, w, h, msecs, interruptible)
else 1f (type == 'zoom')
ZoomRestore (id, w, h, msecs, 1, interruptible)

0(id) .PO_IsUp = true

PopToggle()

With this plug-in, you can cut down on a lot of code by calling it whenever you want to
reverse the pop-down or up state of an object. Figure 8-4 shows the result of optimizing the
code from the PopUp () plug-in section to use only this plug-in.

63

Chapter 8: Menus and Navigation 223

FiGure 8-4 Flug-In LavaSeript - Windoss Tneerie Equlorar
With PopToggle() [| D P Ty p—— 4] x|

you can
v | Phag-in laeaScript

substantially
optimize your code.

Linage 1| Imsge 2| Image 5 | Imape 4

I Campiger | Protactad Modse OFf dg o« WP -

About the Plug-in
This plug-in takes an object and then toggles its state between popped up and down using

one of a variety of styles. It requires the following arguments:
e id An object or object ID or an array of objects and/or object IDs
e type The type of pop-up or pop-down, out of ‘fade’, ‘inflate’, zoom’, or ‘instant’
o w If true or 1, the width of the object (where applicable) will be modified
e h If true or 1, the height of the object (where applicable) will be modified

e msecs The number of milliseconds the transition should take, except for the type
‘instant’, which uses no timing

e interruptible If true or 1, the plug-in can be interrupted with another call on
the same object

Variables, Arrays, and Functions

b Local variable for iterating though id if it is an array
PO_IsUp Property of id that is false if it is popped down, otherwise it is
popped up
PopDown () Plug-in to pop down an object
PopUp () Plug-in to pop up an object
How It Works

This plug-in starts with the code used by many plug-ins to iterate through id if it is an array
and recursively pass each element back to itself to be processed individually, like this:

if (id instanceof Array)
{
for (var j = 0 ; j < id.length ; ++3j)
PopToggle (id[j], type, w, h, msecs, interruptible)
return

224 Plug-In JavaScript: 100 Power Solutions

Next, the PO_IsUp property of id is tested to see whether it has a value. If its type is
UNDEF (or ‘undefined’) then it doesn’t, and the object has to be popped down (since it hasn’t
been popped down yet), so PO_IsUp is set to true, like this:

if (typeof 0O(id) .PO _IsUp == UNDEF)
0(id) .PO_IsUp = true

Then a check is again made on PO_IsUp now that it must have a value of either true or
false.Ifitis true, the PopDown () plug-in is called; otherwise, the object is already popped
down so the PopUp () plug-in is called, as follows:

if (0(id) .PO_IsUp) PopDown(id, type, w, h, msecs, interruptible)
else PopUp (id, type, w, h, msecs, interruptible)

How To Use It

To use this plug-in, pass it an object and the type of pop-up and down effect to use, out of
‘fade’, ‘inflate’, “zoom’, or ‘instant’. Then decide whether the width, height, or both
dimensions will resize (if applicable), how long the transition should take, and whether it
can be interrupted, like this:

PopToggle ('object', 'inflate', 0, 1, 500, 0)

Here’s an example that rewrites the code used in the previous pop-in example to
significantly shorten it:

<center>

Image 1l |
Image 2 |
Image 3 |
Image 4

<div id='d's>

</div></centers>

<scripts>
window.onload = function ()

{

Position('d', ABS)

CenterX('d"')

O('l1l') .onmouseover = O('l1l').onmouseout = fade
O('1l2") .onmouseover = O('l2'").onmouseout = inflate
O('13'") .onmouseover = O('l3'").onmouseout = zoom
O0('1l4'") .onmouseover = O('l4').onmouseout = instant

PLUG-IN

64

Chapter 8: Menus and Navigation

function fade () { PopToggle('al', 'fade', 1, 1, 500, 1) }
function inflate() { PopToggle('a2', 'inflate',K 1, 0, 500, 1) }
function zoom/() { PopToggle('a3', 'zoom', 1, 1, 500, 1) }
function instant() { PopToggle('a4', 'instant', 1, 1, 500, 1) }

}

</scripts>

The HTML section is unchanged, but the <script > uses a technique I haven’t shown
you yet, which is to assign both the onmouseover and onmouseout events to the same
function, using a single statement, like this:

O('1l1l') .onmouseover = O('l1l'").onmouseout = fade

This works because these events are readable as well as writable, so the onmouseout
event is first assigned to the fade () function, and the onmouseover event is then assigned
to the value in the onmouseout event.

This means only four statements are used in place of eight. Likewise, because
PopToggle () can replace both the PopDown () and PopUp () plug-ins, only four functions
are required to manage eight actions.

In fact, the functions can be attached to the events using inline, anonymous functions,
but the line lengths would become rather long and less easy to edit.

The Plug-in

function PopToggle (id, type, w, h, msecs, interruptible)

{

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
PopToggle (id[j], type, w, h, msecs, interruptible)
return

}

if (typeof 0O(id) .PO_IsUp == UNDEF)
0(id) .PO_IsUp = true

if (O0(id) .PO_IsUp) PopDown (id, type, w, h, msecs, interruptible)
else PopUp (id, type, w, h, msecs, interruptible)

FoldingMenu()

Using the pop-up and down features of the preceding plug-ins, it’s possible to create
professional looking folding menus, which is what this plug-in offers. With it, you can
create a wide variety of different folding menus with different transition styles. For
example, Figure 8-5 shows a folding menu with four headings, each with different sets of
contents.

226

Plug-In JavaScript: 100 Power Solutions

FiGure 8-5
Creating a folding
menu side bar.

E Pugin dwasaigt - Windows Wterst Bglesr =l |
Ol = o BN [44] x|

W | B2 Plg-in laSorpn

News
B Local Mlews

5 leald Fems

Apaat
Wenihe
Limks

g v Wk -

I Campigar | Profacted Modse OFf

About the Plug-in

The plug-in requires a pair of arrays of heading and contents objects and then displays a
folding menu based on the styles and actions you supply. It takes the following arguments:

headings An array of objects and/or object IDs

contents An array of objects and/or object IDs

action The menu action type, either ‘hover” or “click’

type The type of transitions to use, out of ‘fade’, ‘inflate’, “zoom’, or ‘instant’
multi If true or 1, more than one contents section can be open at a time

w,h If type is ‘inflate’ or ‘zoom’, these arguments specify whether the width, height,
or both dimensions will be modified during transitions

msecsl The transition time in milliseconds of popping down
msecs2 The transition time in milliseconds of popping up

interruptible If true or 1, the PopUp () and PopDown () plug-in can be
interrupted by another call on the same id

Variables, Arrays, and Functions

b Local variable for iterating through the headings array

FO_C Property of each heading containing the object in the contents
array to which it refers

PO_IsUp Property of each object in the contents array, which is false
when an object is popped down, otherwise the object is popped
up

cursor Property of each heading'’s style object used for changing the
mouse pointer when over the heading

Chapter 8: Menus and Navigation 227

onmouseover Event of each heading
onmouseout Event of each heading
slice () Function to return a subsection of an array
PopUp () Plug-in to pop up an object
PopDown () Function to pop down an object
PopToggle () Function to toggle the popped state of an object
DoFoldingMenu () Subfunction to perform the transition
How It Works

The first thing this plug-in does is pop down all the objects in the contents array except for
the first one, which must remain popped up—and which has its PO_IsUp property set to
true to indicate this, as follows:

PopDown (contents.slice (1), type, w, h, 1, 0)
O(contents[0]) .PO_IsUp = true

The slice () function is used with a value of 1 to pass to PopDown () all elements from
the second element onward (because the first element of an array is 0). The msecs argument
to PopDown () is 1 so that the transition is set to take only 1 millisecond and is, therefore,
virtually instantaneous.

Next, the headings and contents arrays are iterated though in a for () loop, using j
as an index into them, like this:

for (var j = 0 ; j < headings.length ; ++3j)

{

O (headings[j]) .FO_C = contents[j]

S (headings[j]) .cursor = 'pointer'

if (action == 'hover') O (headings[j]) .onmouseover = DoFoldingMenu
else O (headings[j]) .onclick = DoFoldingMenu

Each heading has its FO_C property assigned the object in the associated contents array.
This will pop up and down the contents associated with a heading. Then each heading has
it cursor property set to ‘pointer’, so that the mouse pointer will change when it passes over
the heading.

After that the action argument is tested. If it is ‘hover’, the DoFoldingMenu ()
subfunction is attached to the current heading’s onmouseover event so that it will be called
up by passing the mouse over it.

Otherwise, the subfunction is attached to the current heading’s onclick event so that it
will only be called up when the heading is clicked.

The DoFoldingMenu Subfunction
Once all the various properties and events are set up for the plug-in, the DoFoldingMenu ()
subfunction will be called up whenever a change to the menus is required.

228

Plug-In JavaScript: 100 Power Solutions

When this happens, the first statement in the function checks the multi argument. If it
is true or 1, it means that more than one set of contents can be popped up at a time; in fact,
all of them can be up (or down) at the same time.

By setting the multi argument, each onmouseover or onclick event of a heading will
toggle the pop-up or pop-down state of the associated contents object with the PopToggle ()
plug-in, like this:

if (multi) PopToggle(this.FO C, type, w, h, msecsl, interruptible)

If multi is not set, then only one contents object can be popped up at a time, so when a
new one is selected to be popped up the previously popped up one must be popped down.
This is worked out by iterating through the headings array in a for () loop, like this:

for (j = 0 ; j < headings.length ; ++j)
if (0(O(headings[j]).FO_C).PO_IsUp && O(headings[j]) != this)
PopDown (O (headings [j]) .FO_C, type, w, h, msecsl, interruptible)

The variable j iterates through each element in the headings array and checks each
one’s associated contents object PO_IsUp property. If it is true or 1, the contents object is
currently popped up, so the heading object is compared with this, which refers to the
current heading that was either clicked or had the mouse passed over it. If they match, they
are one and the same and nothing happens since the currently selected contents object will
be set to a popped up state a couple of lines later in the code.

However, if the contents object that has been found to be popped up is different from
the current heading’s contents object, then it is the one that was previously popped up,
so it is popped down with a call to PopDown () . The time setting used here is from the
argument msecs1.

Finally, the currently selected contents object is set to a popped up state (if it isn’t
already popped up), like this:

if (!10(this.FO_C).PO IsUp)
PopUp (this.FO C, type, w, h, msecs2, interruptible)

This pop-up action is given its own time setting in msecs2 so that different folding
effects can be achieved by using differing values for msecs1 and msecsz2.

How To Use It

There are two main ways to use this plug-in. The first is within an accordion or folding

menu, and the other is to separate out the headings from the contents to have the control

objects in a different place from the displayed contents. The first is most suited to being

operated by mouse clicks because, as the transitions occur, new elements could pass under

the mouse cursor, and if onmouseover were used, unwanted selections could be made.
Here’s an example of an accordion-style menu driven by mouse clicks:

News
<div id='cl'>

 » Local News<br/ >

 » World News<br/ >

 » Entertainment News<br/ >

Chapter 8: Menus and Navigation 229

 » Business News<br/ >
 » Technology News<br/ ></div>

Sport
<div id='c2'>
 » Football<br/ >
 » Baseball<br/ >
 » Hockey<br/ >
 » Soccer<br/ ></divs>

Weather
<div id='c3'>

 » Movies<br/ >

 » Music<br/ >

 » <a href='televison.htm'sTelevision<br/ ></divs>

Links
<div id='c4'>

 » Home Page<br/ >

 » Articles<br/ >
 » Videos<br/ >

 » Podcasts<br/ ></divs>

<scripts>
window.onload = function ()

{

headings = Array('hl', 'h2', 'h3', 'h4')

contents = Array('cl', 'c2', 'c3', 'c4')

FoldingMenu (headings, contents, 'click', 'inflate', 0,1,1,200,300,1)
}
</scripts>

I designed this and most other plug-ins in such a way that they do not rely on you using
CSS other than to style the menus in the way you want them. Of course, CSS can be used to
apply different styles when the mouse passes over, but the goal of this book is to enable you
to set up objects in standard HTML that you control with a small section of JavaScript.

Therefore, the HTML in this example creates four heading spans, each of which has a
span section of links underneath, although this contents could be any HTML or objects,
such as images and so on. In addition to the four headings, there are four contents sections.

I have specifically chosen spans here because browsers automatically know their
dimensions based on their contents. Divs are different in that their width is effectively
infinite (at least to the browser edge), so you cannot deflate a div’s width dimension unless
you set it, for example, using the Resizewidth () plug-in.

The <script> section is very simple. Two arrays are created, one for the headings and
one for the contents. Next, the FoldingMenu () plug-in is called, with an action argument
of ‘click’, a style argument of ‘inflate’, and a multi argument of 0. The w and h arguments
are set to 0 and 1 so that only the height of an object will be adjusted during transitions.

After this, msecs1 and msecs2 are set to 200 and 300 so that popping down will take
200 milliseconds and popping up will take 300. This provides a more interesting effect than
if they are given the same values. I recommend you try altering them yourself, giving first
msecs1 the larger value and then msecs2. You'll find you can create a wide range of
interesting effects.

230

Plug-In JavaScript: 100 Power Solutions

You can also have a lot of fun by changing the type to another value such as ‘fade’,
‘zoom’, or ‘instant’; you may also want to experiment with modifying the w and h arguments
to change the width and height (or both). Don’t forget that you can also change multi to true
or 1 and have a quite different type of menu, in which the headings toggle their contents
between being popped up and down.

Using the ‘hover’ Action
If you plan to offer a hover effect, you'll need to lay out your HTML slightly differently so
that when objects pop up they don’t do so under the mouse and then cause an automatic
(and unwanted) mouseover event to occur—which could result in popping up the wrong
section.

Here’s one way you can modify the HTML to use the ‘hover” action of the
FoldingMenu () plug-in:

News |
Sport |
Weather |
Links

 » Local News

 World News

 Entertainment News
 Business News

 Technology News</spans>

 » Football
 Baseball

 Hockey

 Soccer

 » Movies
 <a href='music.htm'sMusic

 Television

 » Home Page
 <a href='articles.htm'sArticles

 Videos

 Podcasts

<scripts>
window.onload = function ()

{

headings = Array('hl', 'h2', 'h3', 'h4')
contents = Array('cl', 'c2', 'c3', 'c4')
FoldingMenu (headings, contents, 'click', 'inflate', 0,1,1,200,300,1)

}

</scripts>

Chapter 8: Menus and Navigation 231

The script section is identical to the previous example; only the HTML has been changed
to place all the headings at the top, with the contents sections underneath them as shown in
Figure 8-6.

The Plug-in

function FoldingMenu (headings, contents, action, type, multi,
w, h, msecsl, msecs2, interruptible)

PopDown (contents.slice (1), type, w, h, 1, 0)
O(contents[0]) .PO_IsUp = true

for (var j = 0 ; j < headings.length ; ++3j)
{
O (headings[j]) .FO_C = contents[j]
S (headings[j]) .cursor = 'pointer'
if (action == 'hover') O (headings([j]) .onmouseover = DoFoldingMenu
else O (headings[j]) .onclick = DoFoldingMenu

}

function DoFoldingMenu ()
{

if (multi) PopToggle(this.FO C, type, w, h, msecsl, interruptible)

else

{

for (j = 0 ; j < headings.length ; ++j)
if (0(O(headings[j]).FO_C).PO IsUp && O(headings[j]) != this)
PopDown (O (headings [j]) .FO_C, type, w, h,
msecsl, interruptible)

if (!0(this.FO _C).PO_IsUp)
PopUp (this.FO C, type, w, h, msecs2, interruptible)

Ficure 8-6

The plug-in is now
used to create
‘hover’ action
menus.

E'E:I w | s ol Deskiog PTysam phe im

W R Phig-in beaSonpn

v || x |

Maws | Eport | Wenther | Links
o Lol Mews World Mess Enterainment Mews Busness Hews Technology Mews

S Computar | Protectad Mocke O g = FHpwe =

232 Plug-In JavaScript: 100 Power Solutions

= 65 ContextMenu()

With this plug-in, you can replace the standard mouse right-click menu with your own. Much
more than a way to block casual users from viewing the source of a page, the ContextMenu ()

plug-in lets you create entire sections of HTML and pop them up at the mouse cursor position
when the user clicks the right mouse button. In Figure 8-7, a simple menu for a hardware store
has been popped up with a right-click.

About the Plug-in

This plug-in requires an object that, when right-clicked, should pop up a menu, which you
also pass to it. It takes the following arguments:

e id An object to which the right-click should be attached—generally, you will
attach to the document object, but you can be more specific and attach different
context menus to different objects (arrays of objects are not supported)

e contents An object containing the menu to be displayed

e type The type of transition effect for popping the menu up and down, out of
‘fade’, ‘inflate’, “zoom’, or ‘instant’

e w Ifapplicable and this argument is true or 1, the object’s width will be modified
during the transition

e h If applicable and this argument is true or 1, the object’s height will be modified
during the transition

e msecs The number of milliseconds the pop-up transition should take

Fiure 8-7 @ Phgin s - Widows Intemet Eplaess (o | o |

Now you can _—— : -
create your own ﬁ[:l = | B) Usery Bobin’ Das kg T sam ple im w |y | x|
right-click menus. it | Phgin ascnpe |

Tom's Hardware

Tom's Hardware
Eaght click: amywdvere Bor the qoain m

| B Corputer | Pronected Mok OF g » Hum -

Chapter 8: Menus and Navigation

Variables, Arrays, and Functions

ny

Local variables containing the left and top edges of the location of
content

MOUSE_X, MOUSE_Y

Global variables containing the current mouse x and y coordinates

PO_IsUp Property of id that is false if it is popped down, otherwise it is
popped up

FA Flag Property of 1d set by the Fade () plug-in when a fade is in
progress on id

DF_Flag Property of 1d set by the Deflate or Inflate () plug-in when
a deflate or reflate is in progress on id

zIndex Style property of contents containing its depth location from

front (highest) to back (lowest)

Context IID

Property of 1d returned by calling setInterval () to later be
used by clearInterval ()

SetInterval ()

Function to start repeating interrupts

clearInterval ()

Function to stop repeating interrupts

Locate () Plug-in to set an object’s style position and coordinates
PopUp () Plug-in to pop up a previously popped down object
PopDown () Plug-in to pop down an object

W(),H() Plug-ins to return the width and height of an object

ContextUp ()

Subfunction to pop up contents when the mouse is right-clicked

ContextDown ()

Subfunction of ContextUp () to check whether the mouse has
moved out of the space occupied by contents and if so to
remove it

How It Works

This plug-in first releases the contents object from its position in the HTML document by
using the Locate () plug-in to give it a style position of ABS (a global variable with the
value ‘absolute’). Next, it moves it off screen to a location thousands of pixels away,
removing it from the browser as quickly as possible so as not to appear within your page.

Next, contents is popped down, ready to be popped up when required, and the
oncontextmenu event of 1d is attached to the ContextUp () subfunction, which will pop
up contents when id is right-clicked. Here are the three lines of code that do this:

Locate (contents,
PopDown (contents,

0 (id) .oncontextmenu

-10000, -10000)
type, 1, 1, 1, 0)
ContextUp

233

234

Plug-In JavaScript: 100 Power Solutions

The ContextUp() Subfunction

The purpose of this subfunction is to react to a right-click event on id. The first thing it
does, though, is check whether it can go ahead by examining the state of flags created by the
PopUp (), PopDown (), Fade (), Deflate (), and Reflate () plug-ins, like this:

if (O(contents).PO IsUp ||
O(contents) .FA Flag ||
O(contents) .DF_Flag) return false

If any of these flags is true, then either contents is already popped up, or one of the
transition types is already in action on contents, so the plug-in returns.

If the plug-in can proceed, it next sets the local variables x and y to the current
coordinates of the mouse cursor and then moves the popped down contents to that location
with a call to GoTo () . It calls PopUp () to pop it up, like this:

var x = MOUSE_X

var y = MOUSE_Y

GoTo (contents, x, vy)

PopUp (contents, type, w, h, msecs, 1)

Next, it’s necessary to ensure that any objects that have been created or had their zIndex
property changed since the contents div was created will not appear in front of it, so the
object’s zIndex property is set to the value in ZINDEX plus 1. ZINDEX is the global variable
that tracks the highest zIndex property so far used by an object, so adding 1 to this value
ensures that contents will appear on top of every other object in the browser. Here’s the
statement that does this:

S (contents) .zIndex = ZINDEX + 1

The plug-in needs a way to determine whether the mouse has moved out of the area
occupied by contents, and therefore whether it needs to be popped down. You might
think that attaching to the onmouseout event of contents would do the trick but, sadly,
it won’t do so reliably and in all cases. The reason for this is if you include a form input or
other elements within contents, when the mouse passes over them the browser will
think it has passed out of being over the contents object and will prematurely trigger the
onmouseout event.

Therefore, it is necessary to track the position of the mouse and pop the object down
only if it moves out of the object’s bounds. To do this, a repeating interrupt is created to call
up the subfunction ContextDown () every INTERVAL milliseconds to see whether the
mouse is still inside the object, as follows:

0 (id) .Context IID = setInterval (ContextDown, INTERVAL)

Finally, the return statement returns a value of false to tell the browser to cancel
pulling up the standard right-click menu:

return false

Chapter 8: Menus and Navigation

The ContextDown Sub-subfunction
This function monitors the position of the mouse by checking the MOUSE_X and MOUSE_Y
global variables:

if (MOUSE X < x || MOUSE_X > (x + W(contents)) ||
MOUSE Y < y || MOUSE Y > (y + H(contents)))

If the mouse pointer is not within the bounds of contents, the object is popped down
and the repeating interrupts are stopped with a call to clearInterval (), passing it the
value in the property Context_IID that was saved when setInterval () was called. Also,
the property PO_IsUp is set to false because contents has now been popped down:

PopDown (contents, type, w, h, msecs, 1)
clearInterval (O(id) .Context IID)
O(contents) .PO_IsUp = false

If the mouse is still within the bounds of contents, the function returns to be called
again in another INTERVAL milliseconds.

NoTE With a little tweaking, this plug-in could easily be adapted to create a slight buffer around
the context menu so the menu won't disappear if the mouse goes slightly outside the boundary.

How To Use It

To use this plug-in, use HTML (and CSS if you wish) to create an attractive menu (or
whatever object you want the right-click to call up), and pass it to the plug-in, along with
the object to which it should be attached, the type of pop-up transition to use, and the time
the transition should take.

Here’s an example that creates a simple menu for a hardware store:

<center><hl>Tom's Hardware</hl>
Right click anywhere for the main menu</centers

<centers>

 Tom's Hardware

Kitchen</as>

Bathroom

Furniture

Lighting

Flooring

Decorating

Electrical

Heating

Tools

Gardening

0ffers
</center>

235

236

Plug-In JavaScript: 100 Power Solutions

<scripts>
window.onload = function()

{

S('menu') .backgroundColor = '#abeceb'
S('menu') .border = 'solid 1px'
ContextMenu (document, 'menu', 'fade', 0, 0, 300)
}
</scripts>

The HTML section displays a simple heading and instructional sentence, followed by a
span with the ID “‘menu’, which contains a few links. Of course, the links go nowhere because
they only contain a # symbol, but they display as if they do.

The <script> section sets the background color of the menu, gives it a solid border,
and then calls up ContextMenu () to prepare the browser for handling right-clicks.

You might want to play with this example by trying different style arguments such as
‘inflate’, ‘zoom’, and ‘instant’. You can also play with the wand h arguments, as well as the
timing in msecs.

Something else you can try is to create an object and attach the menu to that rather than
the entire document. Or, try making a couple of different menus for different objects—once
you have this plug-in in your web toolkit, you are on your way to creating some highly
dynamic and interactive websites.

The Plug-in

function ContextMenu(id, contents, type, w, h, msecs)
Locate (contents, ABS, -10000, -10000)
PopDown (contents, type, 1, 1, 1, 0)
0(id) .oncontextmenu = ContextUp

function ContextUp ()
{
if (O(contents).PO _IsUp ||
O(contents) .FA Flag ||
O(contents) .DF_Flag) return false

var x = MOUSE_ X

var y = MOUSE_Y

GoTo (contents, x, Vy)

PopUp (contents, type, w, h, msecs, 1)

S (contents) .zIndex = ZINDEX + 1

O (id) .Context IID = setInterval (ContextDown, INTERVAL)
return false

function ContextDown ()

{

if (MOUSE X < x || MOUSE X > (x + W(contents)) ||
MOUSE Y < y || MOUSE Y > (y + H(contents)))
{

PopDown (contents, type, w, h, msecs, 1)
clearInterval (O(id) .Context IID)

PLUG-IN

6

Chapter 8: Menus and Navigation 237

O(contents) .PO_IsUp = false

DockBar()

This plug-in adds a dock bar to the browser similar to the one used by Mac OS X. It’s easily
configurable and can be attached to any of the browser’s four edges. Figure 8-8 shows six
dock bar icons attached to the bottom edge of a browser using this plug-in, with one in the
process of zooming up.

About the Plug-in

This plug-in takes a containing object and list of elements within the object and turns them
into a dock bar that you can affix to any edge of the browser. It requires the following
arguments:

e id A containing object such as a div or span that holds the individual dock bar
elements—this cannot be an array

e items An array of objects located within id, usually comprising images

e where The edge to which the bar should be attached, out of ‘top’, ‘bottom’, ‘left’,
or ‘right’

e increase The percentage by which an item should enlarge when the mouse
passes over it

e msecs Thenumber of milliseconds the transition should take

m = |£ Colnart Roban' Dedktop Phammple & b

—

DEGR

B Camiputes | Proteded Mods) Off G~ Wum -

| 8 Plug-in Javascrgt

Ficure 8-8 Use this plug-in to create impressive dock bars.

Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

3 Local variable used for iterating through the items array

oldw, oldh Local variables containing the original width and height of an item

TP, BM Global variables containing the strings ‘top’ and ‘bottom’

verticalAlign Style property of the elements of the items array

align Property of the elements of the items array

cursor Style property of the elements of the items array to set the mouse
cursor icon

DB Parent Property of each element of the items array containing a copy of id

DB Where Property of each element of the items array containing a copy of
where

DB Name Property of each element of the items array containing a copy of the

element

DB_0ldw, DB OldH

Properties of each element of the items array containing the original
width and height of the element

DB_NewW, DB_NewH

Properties of each element of the items array containing the
enlarged width and height of the element

onmouseover Event of each element of the items array used for attaching to
DockUp ()

onmouseout Event of each element of the items array used for attaching to
DockDown ()

Math.round () Function to turn a floating point number into an integer

Position()

Plug-in to change the style position of an object

GoToEdge () Plug-in to move an object to a browser edge
Zoom () Plug-in to zoom an object down or up
DockUp () Subfunction to zoom up an object
DockDown () Subfunction to zoom down an object

How It Works

This plug-in starts by releasing the containing object in id from the browser and giving it
a style position of ‘fixed’ to ensure that the dock bar will stay in place even if the browser is
scrolled, as follows (FIX being a global variable with the value ‘fixed’):

Position(id, FIX)

Then all the elements in the items array are iterated through in a for () loop with the
local variable j as the index pointer, and the first statements within the loop set the
alignment of each element, like this:

for (var j = 0 ; j < items.length ; ++73)

{

Chapter 8: Menus and Navigation

if (where[l] == TP || where == BM)
S(items[j]) .verticalAlign = where
else O(items[j]) .align = where

If the argument where has either of the values ‘top” or ‘bottom” (tested by the global
variables TP and BM), then the verticalAlign style property of the element is set to the
value in where. Otherwise, where must have a value of either ‘left’ or ‘right” so the align
property of the element is given that value.

Next, each element’s original width and height is extracted from the w() and H() plug-ins
and placed in the local variables o1dw and o1dh, like this:

var oldw = W(items[j])
var oldh = H(items[j])

After that, the cursor to display whenever the mouse is over an element is set to ‘pointer”
and several properties are created, as follows:

S(items[j]) .cursor = 'pointer'

O(items[j]) .DB_Parent = id

O(items[j]) .DB_Where = where

O(items[j]).DB_OldW = oldw

O(items[j]).DB 01dH = oldh

O(items[j]) .DB NewW = Math.round(oldw + oldw * increase / 100)
O(items[j]) .DB_NewH = Math.round(oldh + oldh * increase / 100)

This causes information about the element and the containing object it is located within
to be stored as new properties of the elements. These properties can then be referenced by
the following DockUp () and DockDown () subfunctions and also be referenced from within
the Zoom () plug-in which this one relies on.

First, the id object is copied to the DB_Parent property. Next, the value in where is
copied so that Zoom () will know where to place the element as it zooms it, and o1dw and
oldh are added as properties to tell Zoom () where to zoom up from. The width and height
that an element should be zoomed up to are also calculated by increasing the original width
and height by the percentage value in increase and placed in the DB_NewW and DB_NewH
properties.

The final two statements in this loop attach the DockUp () and DockDown () subfunctions
to the element’s onmouseover and onmouseout events, respectively, as follows:

O(items[j]) .onmouseover = DockUp
O(items[j]) .onmouseout = DockDown

Finally, in the setup section of code, the containing object id is moved to the edge
indicated by the value in where, like this:

GoToEdge (id, where, 50)

The DockUp() and DockDown() Subfunctions

These two functions trigger either the popping up or the popping down of an element by
passing the various properties of the pseudo object this to the Zoom () plug-in; this being
a keyword that represents the object that triggered the event that called the function.

239

20

Plug-In JavaScript: 100 Power Solutions

The two functions are very similar and simply swap the positions of the original and
larger dimensions of the element. Here’s the statement that zooms an object up:

Zoom(this, 1, 1, O(this).DB_0Oldw, O(this).DB_OldH,
O(this) .DB_NewW, O(this) .DB NewH, msecs, 0, 1)

And this one zooms it back down again:

Zoom(this, 1, 1, O(this).DB _NewW, O(this).DB_NewH,
O(this) .DB_0Oldw, O(this) .DB_OldH, msecs, 0, 1)

How To Use It

To use this plug-in to create a dock bar, you first need to create an HTML object to contain
the various elements. Usually a simple span or div is all you need. Next, place the elements
that comprise the dock bar in that container. Generally, you will want to use images, but
you can use other objects if you wish.

Here’s an example that creates a six-icon dock bar:

<scripts>
window.onload = function ()

Position('dock', FIX)
ids = Array('i1i', r'i2r', r'i3', 'i4', 'is5', r'ie')
DockBar ('dock', ids, 'bottom', 32, 256)

}

</scripts>

As you can see, it’s all very simple and easy to assemble. I placed only the images in the
span, but you will probably want to enclose each image within an <a href.. >.. pair
of tags to give them a click action.

In this instance, I placed the dock bar at the bottom, but a quick change to the where
argument from ‘bottom’ to ‘top” will move it to the top of the browser.

If you wish to place a dock bar on the left or right edge of the browser, you'll need to
slightly alter the HTML, like this:

<br clear='all' />
<br clear='all' />
<br clear='all' />
<br clear='all' />

Chapter 8: Menus and Navigation 11

<br clear='all' />

Notice that all I added are some <br clear='all' /> statements to ensure that the
elements line up one below the other. Now you can change the where argument in the
<script> section to either ‘left” or ‘right’ to attach the dock bar to the left or right edge.

Tip You can apply a background or gradient to the enclosing span to provide a greater effect.

The Plug-in

function DockBar (id, items, where, increase, msecs)

{

Position (id, FIX)

for (var j = 0 ; j < items.length ; ++73)
{
if (where == TP || where == BM)
S(items[j]) .verticalAlign = where
else O(items[j]) .align = where

var oldw = W(items[j])
var oldh = H(items[j])

S(items[j]) .cursor = 'pointer'

O(items[j]) .DB_Parent = id

O(items[j]) .DB_Where = where

O(items[j]).DB _0ldWw = oldw

O(items[j]).DB O0l1dH = oldh

O(items[j]) .DB_NewW = Math.round(oldw + oldw * increase / 100)
O(items[j]) .DB_NewH = Math.round(oldh + oldh * increase / 100)

O(items[j]) .onmouseover = DockUp
O(items[j]) .onmouseout DockDown

}

GoToEdge (id, where, 50)

function DockUp ()

{

Zoom(this, 1, 1, O(this).DB 0ldwWw, O(this) .DB Ol1dH,
O(this) .DB_NewW, O(this).DB NewH, msecs, 0, 1)

}

function DockDown ()

{

Zoom(this, 1, 1, O(this).DB NewW, O(this) .DB NewH,
O(this) .DB_0OldW, O(this).DB OldH, msecs, 0, 1)

PLUG-IN

2

67

Plug-In JavaScript: 100 Power Solutions

RollOver()

You've almost certainly seen and used rollover images that change as the mouse passes over
them, but what about making rollover objects do the same? That’s what this plug-in does.
With it, rollovers can contain HTML, images, and anything else you like, making it much
more powerful than simple image rollovers.

Figure 8-9 shows an advertisement from a classified ads site.

When you mouse over the ad, it rolls over to show the new details in Figure 8-10.

About the Plug-in

This plug-in takes two objects that can be images, divs, or spans containing HTML and/or
images. It creates a rollover so that the second object is displayed when the mouse passes
across the first. It requires the following arguments:

e rol An object or object ID or an array of objects and or object IDs—if it is an array,
then ro2 must also be an array with the same number of elements

e ro2 An object or object ID or an array of objects and or object IDs—this should
only be an array if rol is an array

Variables, Arrays, and Functions

a Local array containing the objects in rol and ro2

w, h Local variable containing the width and height of the objects

X,y Local variable containing the top left corner coordinates of the objects
iid Local variable containing the result of calling setInterval () used

later for calling clearInterval ()

Global variables containing the current horizontal and vertical
positions of the mouse pointer

MOUSE_X, MOUSE_Y

Hide () Plug-in to hide an object

HideToggle ()

Plug-in to toggle the hidden/shown state of an object

Locate () Plug-in to move an object to another location and assign it a style
position property such as ‘relative’ or ‘absolute’, and so on

onmouseover Event of rol that calls up the DoRol1 () subfunction

DoRo11 () Subfunction to perform a rollover from rol to ro2 and then set up a
repeating interrupt to the Rol1Check () sub-subfunction to see if the
mouse has moved away yet

RollCheck () Sub-subfunction that returns every INTERVAL milliseconds when it is
called unless the mouse has moved away from ro2, in which case the
objects are rolled back again

How It Works

This plug-in supports arrays as well as single objects and is almost unique among all the
plug-ins in that, if the first argument is an array, then the second one must also be an array.

Chapter 8: Menus and Navigation

FiGure 8-9

A rollover has been
attached to this
“for sale”
classified ad.

[+ | & DT —pp——r—

W | Phagein laeaSorpn

=

s For sale: 600 room, 300
ses o rear ok central Lendon
|z ocaied choge b all
ik afnecaties, Tagh m the

henrt of Washrinster cihy

M Campger] Profected Mode OFF v B -

Usually, if the first argument is an array the second argument, a single object, is assigned to
all elements of the array, but this plug-in requires either two single objects or two arrays.

In the former case, the first object is rolled over with the second. In the latter case, each
element of the first array will roll over with each matching element in the second array.

The first few lines of code facilitate recursively passing on the elements of both arrays as
individual items back to the same function to be processed as individual items (there is no
error checking, so make sure you pass two matching arrays or two objects):

if (rol instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3j)
RollOver(rol[j], ro2I[jl)
return

Next, the local array a is assigned elements rol and ro2 to make them easier for later
functions to access them. Then the width and height and horizontal and vertical locations of
the objects are saved in the local variables w, h, %, and vy, like this:

var a = Array(rol, ro2)
var w = W(rol) + 1

var h = H(rol) + 1

var x = X(rol)

var y = Y(rol)

Ficure 8-10

When the mouse
passes over, the
second object is
displayed.

m' £ by Biohi [ie skt oy P esreple T

W | Phagein laeaSorpn

29,518 =q ft Histencal
seffing, famous residents
EHEEs [g crapsd
throughsu Fheae 535
1234 Bor more Jedails

M Campger| Profected Mode OFF v Hor -

23

244

Plug-In JavaScript: 100 Power Solutions

The width and height each have a pixel added to resolve issues in some browsers where
there might otherwise be an anomaly at the edge boundary, which could cause the rollover
to cycle rapidly.

The final three lines of the main setup section hide ro2 so that only ro1 is visible, then
both rol and ro2 are located relative to their enclosing object at an offset of 0,0, so that they
are on top of each other. Finally, an onmouseover event attaches the DoRo11 () subfunction
to the onmouseover event of ro1, as follows:

Hide (ro2)
Locate(a, REL, 0, 0)
O(rol) .onmouseover = DoRoll

The DoRoll() Subfunction

This function swaps the two objects’ visibility properties so that ro2 becomes visible and
rol becomes hidden. Then it sets up a repeating interrupt to call the Rol1lCheck ()
sub-subfunction every INTERVAL milliseconds, like this:

HideToggle (a)
var iid = setInterval (RollCheck, INTERVAL)

The local variable 11id is give the value returned by setInterval (), which will later be
used by clearInterval () to cancel the repeating interrupts.

The RollCheck() Sub-subfunction

This function simply checks whether the mouse has moved out of the space occupied by the
objects. If it has, it swaps the two objects back so that ro1 is visible and ro2 is again hidden.
Then it cancels the repeating interrupts with a call to clearInterval (), like this:

if (MOUSE_X < x || MOUSE X > x + w ||
MOUSE Y <y || MOUSE Y > y + h)
{

HideToggle (a)
clearInterval (1iid)

Why Not Use onmouseout Instead of RollCheck()?

Much as I would like to use onmouseout instead of Rol1Check (), it’s not possible to do so
on an object that contains many different items because passing the mouse cursor between
these items will often trigger an unwanted onmouseout event. Therefore the simplest, and
also a 100 percent reliable solution, is to check whether the mouse has moved out of the area
and then call the code that you would otherwise have attached to an onmouseout event.

How To Use It

To use this plug-in, you need to prepare two objects that have the same width and height.
You can then pass them as arguments. Or, if you prefer, you can create several sets of
matching pairs to use as rollovers and pass two arrays to the plug-in. This saves repeated
calls to the plug-in if you have many sets to create.

Chapter 8: Menus and Navigation 215

Here’s an example that uses two single objects to create a rollover effect for a classified ad:

<div id='rl'>

For sale: 600 room, 300 year old central London house, located

close to all the amenities, right in the heart of Westminster city.</divs>

<div id='r2'>

829,818 sq ft: Historical setting, famous residents, exquisitely
decorated throughout. Phone 555 1234 for more details.</div>

<scripts>

window.onload = function ()

{
rolls = Array('rl', 'r2')
S(rolls, 'border', 'solid 1px')
Resize(rolls, 320, 100)
S('pl') .paddingRight = Px(10)

S('p2'") .paddingLeft = Px(10)
RollOver('rl', 'r2')

}

</scripts>

The HTML section creates two divs and places some text and an image in each. Then the
<script> section creates the array rolls, which adds a border to each object and resizes
them both to 320 by 100 pixels.

A couple of calls to the s () plug-in sets up some padding around the images so that the
text doesn’t align right up against them, and then the Rol10ver () plug-in is called to
combine the two objects into a single rollover.

The Plug-in

function RollOver (rol, ro2)

{

if (rol instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
RollOver (rol[j], ro2[j])

return
}
var a = Array(rol, ro2)
var w = W(rol) + 1
var h = H(rol) + 1
var x = X(rol)
var y = Y(rol)
Hide (ro2)

Locate(a, REL, 0, 0)
O(rol) .onmouseover = DoRoll

function DoRoll ()

{

PLUG-IN

246

6

Plug-In JavaScript: 100 Power Solutions

HideToggle (a)
var iid = setInterval (RollCheck, INTERVAL)

function RollCheck ()

{

if (MOUSE X < x || MOUSE X > x + w ||
MOUSE Y < y || MOUSE Y > y + h)
{

HideToggle (a)
clearInterval (iid)

Breadcrumbs()

This plug-in provides an automatic trail of “breadcrumbs” leading from a website’s home
page to the current page. With it, users can backtrack to any location between the current
page and the home page with a single click. Figure 8-11 shows the plug-in being used on
a page in a local file system on a Windows PC.

About the Plug-in

This plug-in returns the HTML to create a breadcrumb trail from the current web page back
to the home page. It requires the following argument:

e spacer A string of characters to place between each breadcrumb

Variables, Arrays, and Functions

parts Local array containing the URL of the current page split into parts
crumbs Local array that builds the breadcrumbs
title Local variable containing the title of the current web page, if any
url Local variable containing the URL of the website
display Local variable containing the main HTML to return to
b Local variable for iterating through different arrays
push () Function to push a value onto an array
InsVars () Plug-in to insert values into a string
How It Works

This plug-in fetches the path to the current page from self.location.href and splits it at
the ? character (if there is one) to extract the main URL from any query string. Then the half
before the ? is split again at every / character, with the result being placed in the array parts.

After that, the crumbs array is created, which will be built up to contain the path. It is
assigned an initial value of parts [0] (which will be http: or £tp: and so on), followed by
the string ‘//’, like this:

Chapter 8: Menus and Navigation y/iv|

Ficure 8-11 ﬁnq.hm:&:q:t-mmmr @@E

grrgj‘igcergrgzisck [| D Py p——— »[4] x|

sracasyveste |50 g mmic

2o Lliers e Boby o Dedkrop s BT o Phag-in JavaSenps
I Campigar | Profactad Modse OFf dg o« BRe -
var parts = self.location.href.split('?"') [0].split('/")

var crumbs = Array(parts[0] + '//')

Next a for () loop iterates through all but the first two elements of the parts array to
reassemble the URL into the crumbs array using the push () function, as follows:

for (var j = 2 ; j < parts.length ; ++j)

{
if (parts[j] == '') crumbs([0] += '/'
else crumbs.push(parts[j])

The next three lines of code extract the title of the page (if any), the main URL of the
website, and the first breadcrumb, named ‘Home’, like this:

var title = document.title ? document.title : parts[j - 1]
var url crumbs [0] + crumbs[1]
var display = InsVars("Home", url)

The Insvars () plug-in inserts the value in url into the string display, replacing the
#1. If no title is found, the filename of the current page is used instead. Then, if no argument
was supplied for the spacer to place between each breadcrumb, spacer is given the default
value of a single space:

if (typeof spacer == UNDEF) gap = ' '

After this, another for () loop extracts each element from the crumbs array and
attaches it (prefaced with a / character) to the display string with suitable HTML anchor
tags, like this:

for (j = 2 ; j < crumbs.length - 1 ; ++3j)

{

url += '/'" + crumbs[j]
display += spacer + InsVars("#2", url, crumbs([j])

Finally, the contents of display is returned, prepended to another spacer string,
followed by the page title:

return display + spacer + title

48

269

Plug-In JavaScript: 100 Power Solutions

How To Use It

To use this plug-in, pass it a string to use as a spacer between the breadcrumbs, and the
breadcrumb string will be returned. Here’s a simple example to do just that:

<div id='bc'></div>

<scripts>
window.onload = function ()

{
}

</scripts>

O('bc') .innerHTML = Breadcrumbs (" » ")

The HTML section creates a div in which the result will be placed, while the <script>
section makes a single call and places the result into the innerHTML property of the div.
Because simple, plain HTML is returned, you can use CSS to style the returned string to
make it fit with your web page design.

The Plug-in

function Breadcrumbs (spacer)

{
var parts = self.location.href.split('?') [0].split('/")
var crumbs = Array(parts[0] + '//')

for (var j = 2 ; j < parts.length ; ++3)
{
if (parts[j] == '') crumbs[0] += '/'
else crumbs.push(parts([j])

}

var title = document.title ? document.title : parts[j - 1]
var url crumbs [0] + crumbs[1]
var display = InsVars("Home", url)

if (typeof spacer == UNDEF) gap = ' '

for (j = 2 ; j < crumbs.length - 1 ; ++3j)

{
url += '/'" + crumbs[j]
display += spacer + InsVars("#2", url, crumbs([j])

}

return display + spacer + title

BrowserWindow()

Didn’t you just hate pop-ups before browsers came with blockers? In my view, there is
nothing wrong with the concept of pop-ups, it’s just that it was too easy for websites to
inundate you with them, and once everyone started using them it turned into a nightmare.

Chapter 8: Menus and Navigation

However, when I set up an Internet radio station in the 1990s, I used pop-ups to good
effect by implementing them as an audio player console so that people could listen to the
radio while they continued to surf in the main browser window. Perhaps partly due to the
novelty, most of the website’s visitors kept these pop-ups open for long periods as they
listened to our shows.

Even though they have a bad name nowadays, pop-ups do have plenty of sensible uses,
such as providing alerts and instant message notifications, for example. This plug-in provides
a versatile in-browser pop-up that’s more user friendly than opening a new browser window
pop-up—which will generally only get blocked anyway. It also gives the user full control, as it
can be moved around the browser window and is easily dismissible.

With this plug-in, you can ask a user for their login details, display private messages
from another user in a forum, provide a selection of options, and so on. Or, as in Figure 8-12,
you can pop up a window to provide further details when a user clicks a link. The great
thing about it is that the user has full control. They can keep the widow raised and move it
around to reveal any content it was covering, or they can simply close it.

About the Plug-in

This plug-in creates an in-browser pop-up window that can be moved about by the user
and also popped back down again. It requires the following arguments:
e id An object or object ID identifying the main container—this may not be an array
e headerid An object or object ID identifying the draggable header
e closeid An object or object ID identifying the close button

x &y The top left coordinates of the pop-up

Ficure 8-12 ﬁ@hmm-mmmr @
Creating an in- o . :

browserg POP-Up ELJ' B Chlher'BohinDedt op' PP scempledd him - | *1| x|
window

v | Phag-in L aScript

Chck e ts ragse the wpdow

In Brovevs er Window ﬁ

JavaScript s the fres
larguage bult mto &l
modeEm I_'m:.-.-ﬁa-rs and g
= tha powar bhehird dymaniic
== JAASCRIT [e
Tor Wab 2.0 wabsitas.
Phlg-m JawsScnpt 1=
amed Ssquaraly ab peopka
wha have |esmed basic
HTHML [and perhaps a littk
C=5) but are nterested in dong more. For
mare deksls plesss sk the webeibe

M Campiger] Profected Mode OFF v Bl -

29

250 Plug-In JavaScript: 100 Power Solutions

e bounds If true, the pop-up is forced to stay within the browser window,
otherwise it may be moved off the edges

e type The type of transition to use when popping the pop-up up or down, either
‘fade’, ‘inflate’, “zoom’, or ‘instant’

o w&h If type is either ‘inflate’ or ‘zoom’, w and h specify which dimension(s) will
be modified, otherwise these values will be ignored

e msecs The number of milliseconds a pop-up or pop-down should take (unless
type is ‘instant”)

e interruptible If true, the pop-up can be interrupted by a pop-down call during
its pop-up transition

Variables, Arrays, and Functions

browserw, Local variables containing the width and height of the browser
browserh

borderw, borderh Local variables containing the total widths of the left and right and top
and bottom borders of the pop-up

popupw, popuph Local variables containing the width and height of the pop-up

xoffset, yoffset Local variables of the BWMove () subfunction containing the differences
between the pop-up location and the current mouse positions

X,y Local variables of the DoBWMove () sub-subfunction containing the
differences between the current and saved mouse positions

r,b Local variables of the DoBWMove () sub-subfunction containing the
right and bottom maximum allowable coordinates for the pop-up if
bounds is true

cursor Style property of closeid set to ‘pointer’ when the mouse passes
over it
onclick Event of 1d attached to the BWToFront () subfunction and event of

closeid attached to the BWCloseWindow () subfunction

onmousedown Event of headerid attached to the BWMove () subfunction

MOUSE_X, MOUSE Y | Global variables containing the coordinates of the mouse cursor

MOUSE_DOWN Global variable set to true when the mouse button is down

MOUSE_IN Global variable set to true when the mouse cursor is within the
bounds of the browser

SCROLL X, Global variables containing the number of pixels the document has

SCROLL_Y been scrolled in the horizontal and vertical directions

setInterval () Function to start repeated interrupts

clearInterval () Function to stop repeated interrupts

Math.max () Function to return the maximum of two values

Math.min () Function to return the minimum of two values

PreventAction () Plug-in to stop an event from occurring

Chapter 8: Menus and Navigation 251

GoTo () Plug-in to move an object to a new location

PopUp () Plug-in to pop up a previously popped down object
PopDown () Plug-in to pop down and object

BWToFront () Subfunction to bring a pop-up window to the front

BWCloseWindow () Subfunction to close a pop-up window

BWMove () Subfunction to prepare to move a pop-up when it is dragged
DoBWMove () Sub-subfunction to move a pop-up when it is dragged
How It Works

The first thing this plug-in does is move the pop-up to its correct location and initiate the
pop-up process, like this:

GoTo (id, x, vy)
PopUp (id, type, w, h, msecs, interruptible)

Next, some local variables are assigned values to keep track of the browser’s dimensions,
the borders (if any) of the pop-up, and its width and height, as follows:

var browserw = GetWindowWidth ()
var browserh = GetWindowHeight ()

var borderw = NoPx(S(id) .borderLeftwWidth) +
NoPx (S (id) .borderRightWidth)

var borderh = NoPx(S(id) .borderTopWidth) +
NoPx (S (id) .borderBottomWidth)

var popupw = W(id)

var popuph = H(id)

The mouse cursor is then set to become a pointer when it passes over the closeid
object, which is used as the close button. After that, the BWToFront () subfunction is
assigned to the onclick event of the pop-up so that whenever you click anywhere on the
pop-up, if it is partially obscured by another, it is brought to the front.

In addition, the closeid object is assigned to the BiCloseWindow () subfunction so
that clicking the close button will pop the window down, and the BWMove () subfunction is
attached to the headerid object so that you can click and drag the header to move the
pop-up about, like this:

S (closeid) .cursor = 'pointer'
0(id) .onclick = BWToFront
O(closeid) .onclick = BWCloseWindow
O (headerid) .onmousedown = BWMove

The last couple of lines in the main setup section of code use the PreventAction ()
plug-in to disable the ‘select’ event on the headerid and closeid objects. If this is not
done, dragging the pop-up quickly may highlight parts of the header text because the
pop-up will drag behind the pointer. This unsightly behavior is prevented like this:

PreventAction (headerid, 'select',6 true)
PreventAction (closeid, 'select', true)

252

Plug-In JavaScript: 100 Power Solutions

The BWToFront() and BWCloseWindow() Subfunctions

The BWToFront () function simply changes the style zIndex property of the pop-up so that
it is brought to the front, like this:

S(id) .zIndex = ++ZINDEX

Every time an in-browser window such as id is clicked, this function is called, moving
it to the front, and updating the value in ZINDEX.
The BWCloseWindow () function pops the pop-up down, like this:

PopDown (id, type, w, h, msecs, interruptible)

The BWMove Subfunction

The job of this function is to prepare the pop-up for being dragged around. First, the pop-up
is brought to the front with a call to BWToFront () and the mouse cursor is changed to the
operating system’s icon for moving a window;, like this:

BWToFront ()
S (headerid) .cursor = 'move'

Next, it makes copies of the current difference between the top left corner of the pop-up
and the current mouse position, placing them in xof fset and yoffset, and setInterval ()
is called to create repeating interrupts to the DoBWMove () sub-subfunction every 10 milliseconds
to allow the object to be dragged about, as follows:

var xoffset = MOUSE X - X(id)
var yoffset = MOUSE Y - Y(id)
var iid = setInterval (DoBWMove, 10)

The DoBWMove() Sub-subfunction

This is the function that actually moves the pop-up about. It starts by giving the local
variables x and y the difference between the current mouse location and the location that
was stored in xoffset and yoffset when BWMove () was initially called, like this:

var x = MOUSE_X - xoffset
var y MOUSE_Y - yoffset

Then the bounds argument is tested. If it is true or 1, then the pop-up must stay within
the main browser window, and the farthest horizontal and vertical locations the pop-up
may go to are placed in the local variables r and b (for right and bottom). These values are
then used to calculate the new values of x and y, using the Math.min () and Math.max ()
functions to ensure the pop-up stays in bounds, like this:

var r = browserw - popupw - borderw + SCROLL X
var b = browserh - popuph - borderh + SCROLL Y
bid = Math.max (0, Math.min(x, r))
v = Math.max (0, Math.min(y, b))

Next, the current mouse position is tested to see whether it is outside the bounds of the
browser window or if the mouse button is no longer down. In any of these cases, dragging

Chapter 8: Menus and Navigation

of the pop-up must be terminated so the clearInterval () function is called to stop the
repeating interrupts and the mouse cursor icon for the headerid object is restored to the
default, like this:

|| MOUSE_X > (browserw + SCROLL_X) ||
|| MOUSE Y > (browserh + SCROLL_Y) ||
|| 'MOUSE IN)

if (MOUSE X < 0
MOUSE_Y < 0
IMOUSE_DOWN

clearInterval (iid)
S (headerid) .cursor = 'default'

Finally, whether or not the interrupts have been stopped, a call is made to GoTo () to
update the location of the pop-up, like this:

GoTo (id, x, vy)

If the interrupts have not been turned off, DoBwWMove () will be called again in another
10 milliseconds, and so on, until dragging the object has stopped.

The use of SCROLL_X and SCROLL_Y means that, as long as they have the style position
property of “absolute’, these windows can be made to pop up anywhere within a document,
not just within the viewable area.

How To Use It

To use this plug-in, you must first create an object that will be the main container for the
plug-in. This can be a div, a span, or even a table. Then you need to place a couple of
different elements within this container, namely a header which will drag the pop-up about
and a close button for dismissing the pop-up. Once this is done, you can place anything else
you want in your pop-up and it will be ready to be called up.

Following is an example that uses a table to create the various elements. Many people
will say this is not the correct use for tables and that I should use CSS. However, my aim in
this example is to avoid styling as much as possible and provide the bare bones to keep it
easy to follow. A simple table is easy to understand and uses less code than CSS styling
would take:

<div id='click's<u>Click me to raise the window</us></divs>

<table id='window' bgcolor='lightblue' cellpadding='5"'>
<tr>
<td id='header' width='310' align='center's>
In Browser Window</fonts>
</td>
<td id='close' width='20"' bgcolor='red' align='center's>
X
</td>
</tr>
<tr>
<td id='content' colspan='2' bgcolor="'#eeceecee'>

253

Plug-In JavaScript: 100 Power Solutions

JavaScript is the free language built into all modern
browsers and is the power behind dynamic HTML and the Ajax
used for Web 2.0 websites.
 Plug-in
JavaScript is aimed squarely at people who have learned
basic HTML (and perhaps a little CSS) but are interested
in doing more. For more details please <a href=
'http://pluginjavascript.com' target='New'svisit the
website.

</td>
</tr>
</table>

<script>
window.onload =

{

function ()

Hide ('window"')

x = (GetWindowWidth() - 330) / 2

y = (GetWindowHeight () - 245) / 2

S('window') .border = 'solid 2px'

Position ('window', ABS)

PopDown ('window', 'fade', null, null, 1, false)

Resize ('window', 330, 245)

S('click'") .cursor = 'pointer'

S('image') .paddingRight = Px(10)

S('content') .border = 'solid 1px'

S('content') .textAlign = 'justify'

O('click') .onclick = function()

{

BrowserWindow ('window', 'header',6 'close', x, y, true,

'fade', null, null, 500, false)

}

}
</scripts>

The HTML section starts by creating a div that you can click to raise the pop-up.
Underneath this is a table with three sections: a header, a close button, and a content section.

The <scripts> section of code starts by calculating the correct coordinates to place the
pop-up in the center of the browser, gives the pop-up a solid border of 2 pixel’s width, and
uses the Position () plug-in to give the pop-up a style position of “absolute’, which
releases is from its place within the HTML so that it can be moved anywhere within the
document. You can use a style position of ‘fixed’ if you prefer to limit the pop-up to
staying only within the browser’s viewport into the document.

The PopDown () plug-in is then called with a value of 1 millisecond to quickly hide the
pop-up away. It’s important to use the transition type of ‘fade’ to later pop the window up
because the transition types must match or you will get strange errors.

The window is then resized to ensure that it is of set dimensions and, to prevent content
overflowing from the pop-up, its overflow style property is set to ‘hidden’.

Chapter 8: Menus and Navigation

Next, four style properties are set to give the first div a mouse pointer cursor, to give a
little padding to the image, to provide a 1 pixel border between the header and the content,
and to set the text to full justification. None of these things are necessary, but they are
included to show how you can add a little styling from JavaScript as easily as you can from
a <styles> section of HTML.

Finally, the onclick event of the div is set to call the BrowserWindow () plug-in.

NOTE Because I used a table as the container object for this pop-up, it does not handle the ‘deflate’
or 'zoom’ transitions at all well, since table dimensions are fixed and will not collapse on
demand. If you wish to create a pop-up window that uses either of these transition types, you will
need to build your container object using divs, spans, and CSS.

The Plug-in

function BrowserWindow (id, headerid, closeid, x, y, bounds,
type, w, h, msecs, interruptible)

GoTo (id, x, V)
PopUp (id, type, w, h, msecs, interruptible)

var browserw = GetWindowWidth ()
var browserh = GetWindowHeight ()

var borderw = NoPx(S(id) .borderLeftwidth) +
NoPx (S (id) .borderRightWidth)

var borderh = NoPx(S(id) .borderTopWidth) +
NoPx (S (id) .borderBottomWidth)

var popupw = W(id)

var popuph = H(id)

S(closeid) .cursor = 'pointer'

0(id) .onclick = BWToFront

O(closeid) .onclick = BWCloseWindow

O (headerid) .onmousedown = BWMove

PreventAction (headerid, 'select',6 true)

PreventAction (closeid, 'select', true)

function BWToFront ()

{
}

function BWCloseWindow ()

{
}

function BWMove ()

{

S(id) .zIndex = ++ZINDEX

PopDown (id, type, w, h, msecs, interruptible)

BWToFront ()
S (headerid) .cursor = 'move'

255

256 Plug-In JavaScript: 100 Power Solutions

var xoffset
var yoffset
var iid

MOUSE X - X(id)
MOUSE_Y - Y (id)
setInterval (DoBWMove, 10)

function DoBWMove ()

{

var x
var y

MOUSE_X - xoffset
MOUSE_Y - yoffset

if (bounds)

{
var r = browserw - popupw - borderw + SCROLL X
var b = browserh - popuph - borderh + SCROLL Y
X = Math.max (0, Math.min(x, r))
v = Math.max (0, Math.min(y, b))

if (MOUSE X < 0 || MOUSE X > (browserw + SCROLL X) ||
MOUSE Y < 0 || MOUSE Y > (browserh + SCROLL_Y) ||
IMOUSE_DOWN || !MOUSE_IN)

clearInterval (iid)
S (headerid) .cursor = 'default'

}

GoTo (id, x, V)

CHAPTER 9

Text Effects

PLUG-IN

258

10

Plug-In JavaScript: 100 Power Solutions

features. For example, you can enable text scrolling, either to the left or right, and you
can choose how many times the scroll should repeat and its speed.
There are also typewriter and “matrix” effects to make text appear and disappear, as
well as color fading text, flying text into position, and even fancy ripple effects for drawing
attention to important text.

I I This chapter provides you with a wide range of plug-ins offering text manipulation

TextScroll()

With this plug-in, you can scroll selected text either left or right at a speed of your choosing
and for a set number of times. Figure 9-1 shows two phrases. The top one is scrolling left over
the course of three seconds, and the bottom is scrolling right over a period of one second.

About the Plug-in

This plug-in takes an object that contains text and then scrolls it. It requires the following
arguments:

e id An object, object ID, or array of objects and/or object IDs

e dir The direction of scrolling, either ‘left” or ‘right’

e number The number of times to repeat the scroll, with 0 indicating infinite repeats

e msecs Thenumber of milliseconds a full scroll should take

Variables, Arrays, and Functions

3 Local variable for iterating through id if it is an array

copy Local copy of the HTML contents if id

len Local variable containing the length of copy

freq Local variable containing the period in milliseconds between each call
to DoTextScroll ()

ctrl, ctr2 Local counters for counting the characters in a string and the number
of scroll iterations

iid Local variable returned from the call to setInterval (), to be used
when calling clearInterval ()

innerText Property of id in non-Firefox browsers containing the object’s text

textContent Property of id in Firefox browsers containing the object’s text

TS Flag Property of id that is true when a scroll is in progress on it

LT Global variable with the value ‘left’

Math.round () Function to turn a floating point number into an integer

substr () Function to return a substring

SetInterval () Function start repeating interrupts

clearInterval () Function to stop repeating interrupts

DoTextScroll () Subfunction to perform the text scrolling

Html () Plug-in to return the HTML content of an object

Chapter 9: Text Effects

£ Mlug-m Javaenipt - Windawen Intamst Explare

EE- ||£I ChLhes Rolan Desktap Ph sl Ui v | '-rl # |

i ﬂplug-ln JrwaSenp

zy dog. The quick brown fox jumps over the la

ercraft is full of eels. My hov

Cuaiie N Cornpsts | Procected Mode: OFF fg = [y -

Ficure 9-1 Scrolling text is easy with this plug-in.

How It Works

This plug-in begins by iterating through id if it is an array, recursively calling itself to
individually deal with each element, like this:

if (id instanceof Array)

{

for (var j = 0 ; j < id.length ; ++3j)
TextScroll (id[j], dir, number, msecs)
return

The TS_Flag property of id is then tested. If it’s true, a scroll is already operating on
the object so the function returns. Otherwise, the property is set to true to indicate that a
scroll is in action on the id, as follows:

if (0(id) .TS_Flag) return
else O(id).TS_Flag = true

Next, some local variables are set up to hold the text content of id, the length of the text,
the frequency at which the DoTextScroll () subfunction must be called in order for the
scroll to take msecs milliseconds, a couple of counters and, finally, the repeating interrupts
are set up with a call to setInterval (), with these statements:

var copy = Html (id)

var len = copy.length

var freq = Math.round(msecs / len)

var ctrl = 0

var ctr2 = 0

var iid = setInterval (DoTextScroll, freq)

The DoTextScroll Subfunction

This function is called repeatedly at a frequency that will ensure that a full scroll of the text
will take msecs milliseconds. It first determines whether to scroll left or right by checking the
dir argument and then modifying the string copy accordingly. If scrolling left, characters are

259

260

Plug-In JavaScript: 100 Power Solutions

removed from the beginning of the string and added to the end. If scrolling right, characters
are removed from the end of the string and added to the beginning, like this:

if (dir == LT) copy = copy.substr(l) + copyl[0]
else copy = copyllen - 1] + copy.substr (0, len - 1)

Another test must then be made due to differences between browsers. If the browser
supports the innerText property of an object, then that is assigned the value in copy;
otherwise, the textContent property is assigned the value, as follows:

if (O0(id) .innerText) O(id) .innerText = copy
else 0(id) .textContent = copy

Next, an if () statement increments ctrl. If the incremented value equals the value
in len, then the contents of the statement are executed because a full scroll has completed;
otherwise, the function returns to be called again in freq milliseconds. The code looks
like this:

if (++ctrl == len)

{

Inside the statement, ctr1l is reset to 0, ready for the next scroll (if there is one). Then
ctr2 is incremented in another if () statement. If that value equals the one in the argument
number, all scrolling is complete, and the TS_Flag property of id is set to false and the
repeated interrupts are stopped with a call to clearInterval (), like this:

ctrl = 0

if (++ctr2 == number)

{
0(id) .TS Flag = false
clearInterval (iid)

}
How To Use It

To use this plug-in, you pass it an object, such as a div or span that has some text in it, tell it
whether to scroll left or right, and decide how many times the scroll should repeat and how
long it should take.

Here’s an example that creates two divs with different sentences in the HTML section,
and then in the <script> section scrolls them in different directions, a different number of
times, and at differing speeds:

<div id='tl'>The quick brown fox jumps over the lazy dog. </divs

<div id='t2'>My hovercraft is full of eels. </div>

<scripts>
window.onload = function ()

Chapter 9: Text Effects 261

TextScroll('tl', LT, 2, 1000)
TextScroll('t2', RT, 1, 2000)

}

</scripts>

The divs have IDs of t1 and t2, respectively, and the LT and RT arguments are global
variables with the values ‘left’ and ‘right’.

The Plug-in

function TextScroll (id, dir, number, msecs)

{

if (id instanceof Array)
{
for (var j = 0 ; j < id.length ; ++3)
TextScroll (id[j], dir, number, msecs)
return

}

if (0(id) .TS _Flag) return
else 0(id) .TS_Flag = true

var copy = Html (id)

var len = copy.length

var freq = Math.round(msecs / len)

var ctrl = 0

var ctr2 = 0

var iid = setInterval (DoTextScroll, freq)

function DoTextScroll ()

{
if (dir == LT) copy = copy.substr(l) + copy[0]
else copy = copyllen - 1] + copy.substr(0, len - 1)

if (0(id) .innerText) 0O(id) .innerText = copy

else 0 (id) .textContent = copy
if (++ctrl == len)
{

ctrl = 0

if (++ctr2 == number)

{

0(id) .TS Flag = false
clearInterval (iid)

PLUG-IN

262 Plug-In JavaScript: 100 Power Solutions

TextType()

This plug-in emulates an old-fashioned typewriter or a teletype machine by outputting the
text contents of an object one character at a time, over a period of time specified by you.
Figure 9-2 shows a phrase being displayed with this plug-in.

About the Plug-in

This plug-in takes an object that contains text and then displays it one character at a time. It
requires the following arguments:

e id An object, object ID, or array of objects and/or object IDs

e number The number of times to repeat the process, with 0 indicating infinite repeats

e msecs The number of milliseconds it should take to type out the text

Variables, Arrays, and Functions

b Local variable that iterates through id if it is an array

html Local variable containing the HTML content of id

len Local variable containing the length of html

freq Local variable containing the period in milliseconds between each call
to DoTextScroll ()

ctrl, ctr2 Local counters for counting the characters in a string and the number
of scroll iterations

iid Local variable returned from the call to setInterval (), to be used
when calling clearInterval ()

str Substring of html used for displaying the characters so far “typed”

innerText Property of 1d in non-Firefox browsers containing the object’s text

textContent Property of 1d in Firefox browsers containing the object’s text

TT Flag Property of 1d that is true when a call to TextType () is already in
progress on it

Math.round () Function to turn a floating point number into an integer

substr () Function to return a substring

SetInterval () Function to start repeating interrupts

clearInterval () Function to stop repeating interrupts

Html () Plug-in to return the HTML content of an object

DoTextType () Subfunction to perform the “typing”

Chapter 9: Text Effects

| Plug-in LvaSesipt - Windows Watsmrt Eqplosar =

Ea)= &) €l hohin Desbtop Plarrple] Lhtm v+ x|

W | = Plg-in lsasrpe

The quick brown fox jumps
over t_

I Campiger | Profacted Modse OFf dg = R -

Ficure 9-2 You can emulate a teletype machine or typewriter with this plug-in.

How It Works

This plug-in begins by iterating through id if it is an array, recursively calling itself to
individually process each element, like this:

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
TextType (id[j], number, msecs)
return

The TT_Flag property of id is then tested. If it’s true, a call to this plug-in is already
operating on the object, so it returns. Otherwise, the property is set to true to indicate that a
call is in progress on the id, as follows:

if (0(id).TT_Flag) return
else O(id) .TT Flag = true

Next, some local variables are set up to hold the text content of id, the length of the text,
the frequency at which the DoText Type () subfunction must be called in order for the
typing to take msecs milliseconds, a couple of counters and, finally, the repeating interrupts
are set up with a call to setInterval (), with these statements:

var html = Html (id)

var len = html.length

var freq = Math.round(msecs / len)

var ctrl = 0

var ctr2 = 0

var iid = setlInterval (DoTextType, freq)

The DoTextType() Subfunction
This function starts by assigning the characters so far typed to the local variable str. Next,
an underline character is placed at the end to simulate a cursor, like this:

var str = html.substr(0, ctrl) + ' '

263

264

Plug-In JavaScript: 100 Power Solutions

After that, the ctr1l counter is tested against the value in len. If they match, the text has
completed being typed; otherwise, there is more yet to be typed, so ctrl is incremented,
like this:

if (ctrl++ == len)

{

Inside the 1 £ () statement, ctrl is reset to 0 ready for the next repeat (if there is one) and
ctr2 is incremented within another if () statement and compared with the value in the
number argument. If they match, then all repeats have finished and the TT_Flag property of
idis set to false, the repeating interrupts are cancelled with a call to clearInterval (),
and the final underline character (which was previously appended to str) is stripped from it
using a call to substr (), as follows:

ctrl = 0

if (++ctr2 == number)

{
0(id) .TT Flag = false
clearInterval (iid)
str = str.substr (0, len)

Next, because different browsers use different properties for the value, if the browser
supports the innerText property, it is assigned the value in str; otherwise, the textContent
property of id is assigned the value, like this:

if (0(id) .innerText) 0O(id) .innerText = str
else 0(1d) .textContent str

Then the function returns and, if the repeating interrupts have not been cleared, it will
be called up again in another freq milliseconds.

How To Use It

To use this plug-in, put some text in a container, such as a div or span, and pass that container
to the plug-in along with the number of repeats required and the length of time it should take
to complete the typing.

Here’s a simple example that types out a simple phrase once, over a period of five
seconds:

<div id='text's>The quick brown fox jumps over the lazy dog.</divs>

<scripts>
window.onload = function ()

{
}

</scripts>

TextType ('text', 1, 5000)

PLUG-IN

Chapter 9: Text Effects

The Plug-in

function TextType (id, number, msecs)

{

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
TextType (id[j], number, msecs)
return

}

if (0(id) .TT Flag) return
else 0(id) .TT Flag = true

var html = Html (id)

var len = html.length

var freq = Math.round(msecs / len)

var ctrl = 0

var ctr2 = 0

var iid = setInterval (DoTextType, freq)

function DoTextType ()

{

var str = html.substr(0, ctrl) + '_'

if (ctrl++ == len)

{

ctrl = 0

if (++ctr2 == number)

{
0(id) .TT _Flag = false
clearInterval (iid)
str = str.substr (0, len)

}

if (0(id) .innerText) 0O(id) .innerText
else 0(1id) .textContent

str
str

7 MatrixToText()

This plug-in provides an effect similar to the one used in the Matrix movies to make text
slowly appear from a random collection of characters. Figure 9-3 shows some text halfway
through being revealed using this plug-in.

265

Plug-In JavaScript: 100 Power Solutions

"2 Plug-In Javasaipt - Windows Intsemi Equlorst

|

e
GL.-J' i Chlhery Fobin' [skt op' PP mample] L him - | ta| K |

e

2 Phig-in lasa’ciph

WelcEme to the belX sczencl
XiCbkbion dnL fynta3y ocan
web2ite in thH wzold!

i Campiger | Protactad Modse OFf dg o« WP -

Ficure 9-3 This plug-in creates an interesting text reveal effect.

About the Plug-in

This plug-in takes an object containing some text and replaces it with random characters,
then slowly changes them to reveal the original text. It requires the following arguments:

e id An object, object ID, or array of objects and/or object IDs

e msecs Thenumber of milliseconds it should take to reveal the text

Variables, Arrays, and Functions

3 Local variable that iterates through id if it is an array

html Local variable containing the HTML content of id

len Local variable containing the length of html

freq Local variable containing the period in milliseconds between each call
to DoMatrixTotext ()

matrix Local string variable originally containing scrambled text

count Local variable for counting the steps of the transformation

chars Local string variable containing all the upper- and lowercase letters
and the digits 0 to 9

iid Local variable returned form the call to setInterval (), to be used
when calling clearInterval ()

innerText Property of id in non-Firefox browsers containing the object’s text

textContent Property of id in Firefox browsers containing the object’s text

innerHTML Property of id containing its HTML

INTERVAL Global variable with the value 30

MT Flag Property of id that is true when a call to MatrixToText () is

already in progress on it

Chapter 9: Text Effects

substr () Function to return a substring

Math.round () Function to turn a floating point number into an integer, rounding the
number up or down, whichever is closest

Math.floor () Function to turn a floating point number into an integer, always
rounding the number down

Math.random () Function to return a random number between O and 1

SetInterval () Function to start repeating interrupts

clearInterval () Function to stop repeating interrupts

Html () Plug-in to return the HTML of an object

DoMatrixToText () Function to reveal the original text

How It Works

This plug-in begins by iterating through id if it is an array, recursively calling itself to
individually process each element, like this:

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
MatrixToText (id[j], msecs)
return

The MT_Flag property of id is then tested. If it’s true, a call to this plug-in is already
operating on the object, so it returns. Otherwise, the property is set to true to indicate that
a call is in progress on the id, as follows:

if (0(id) .MT_Flag) return
else 0O(id) .MT Flag = true

Next, html is given the HTML contents of id, 1en its length, and freq the frequency
with which the DoMatrixToText () subfunction needs to be called in order for the transition
to take msecs milliseconds. In addition, the string variable matrix is created, which will
hold the random text as it is slowly revealed; count, the counter for each step, is initialized
to 0; and chars, the string containing all possible characters for scrambling the text, is
populated with the characters a—z, A-Z and 0-9, as follows:

var html = Html (id)

var len = html.length

var freq = Math.round (msecs / INTERVAL)
var matrix = "'

var count = 0

var chars = 'ABCDEFGHIHJKLMOPQRSTUVWXYZ' +

'abcdefghijklmnopgrstuvwxyz' +
'0123456789"'

267

268

Plug-In JavaScript: 100 Power Solutions

Next, a for () loop iterates through each character in html, replacing it with a random
character from chars (if it is not a newline or space), like this:

for (var j = 0 ; j < len ; ++3j)
{
if (html[j] == '\n' || html[j] == ' ') matrix += html[]j]
else matrix += chars[Math.floor (Math.random() * chars.length)]

The value in matrix is then assigned to either the innerText or textContent
property of 1d, according to which one is supported by the current browser, and the regular
interrupts to the subfunction that will perform the reveal are set up, like this:

if (0(id) .innerText) 0O(id) .innerText = matrix
else 0(1id) .textContent = matrix
var iid = setInterval (DoMatrixToText, freq)

The DoMatrixToText() Subfunction

This function does the revealing by using a for () loop each time it is called up to replace
len / 20 characters in the string matrix with the correct values. This is sufficient to change
only enough for each step, so that the transition will take msecs milliseconds, as follows:

for (j =0 ; j < len / 20 ; ++3)

{

var k = Math.floor (Math.random() * len)
matrix = matrix.substr (0, k) + html[k] + matrix.substr(k + 1)

The value of 20 was determined by performing several tests with strings of different
sizes and timing them. It’s not an exact value, so you might find you want to tweak it. The
new value in matrix is then assigned to the correct property of id in order to display it:

if (0(id) .innerText) 0O(id) .innerText = matrix
else 0(1id) .textContent = matrix

Finally, the count variable is incremented within an i £ () statement. If the new value is
the same as INTERVAL, the transition has completed, so the MT Flag property of id is set to
false to indicate that the transition is over. Its innerHTML property is then restored to its
original value, and the repeating interrupts are cancelled, like this:

if (++count == INTERVAL)

{
0(id) .MT_Flag = false
0(id) .innerHTML = html
clearInterval (iid)

The function then returns and, if there are still characters to be revealed, it is called up
again in freq milliseconds time, and so forth, until the transition has finished.

Chapter 9: Text Effects 269

How To Use It

To use this plug-in, pass it an object, such as a div or span that contains some text, and tell it
how long the reveal transition should take, as with this example:

<div id='text'>Welcome to the best science fiction and fantasy fan
website in the world!</divs>

<scripts>
window.onload = function ()

{
}

</scripts>

MatrixToText ('text', 3000)

The Plug-in

function MatrixToText (id, msecs)

{

if (id instanceof Array)
{
for (var j = 0 ; j < id.length ; ++3)
MatrixToText (id[j], msecs)
return

}

if (0(id) .MT_Flag) return
else O(id) .MT Flag = true

var html = Html (id)

var len = html.length

var freqg = Math.round (msecs / INTERVAL)

var matrix = "'

var count = 0

var chars = 'ABCDEFGHIHJKLMOPQRSTUVWXYZ' +
'abcdefghijklmnopgrstuvwxyz' +
'0123456789"

for (var j = 0 ; j < len ; ++3)

if (html[j] == '\n' || html[j] == ' ') matrix += html[]j]

else matrix += chars[Math.floor (Math.random() * chars.length)]

}

if (0(id) .innerText) 0O(id) .innerText = matrix
else 0 (id) .textContent = matrix

var iid = setInterval (DoMatrixToText, freq)

function DoMatrixToText ()

PLUG-IN

210 Plug-In JavaScript: 100 Power Solutions

for (j = 0 ; j < len / 20 ; ++3)

{
var k = Math.floor (Math.random() * len)
matrix = matrix.substr (0, k) + html[k] + matrix.substr(k + 1)
}
if (0(id) .innerText) 0O(id) .innerText = matrix
else 0 (id) .textContent = matrix
if (++count == INTERVAL)
{

0(id) .MT_Flag = false
0 (id) .innerHTML = html
clearInterval (1iid)

7 TextToMatrix()

This plug-in provides the inverse functionality to the MatrixToText () plug-in. It takes
some text and slowly scrambles it over a period of time specified by you. Figure 9-4 shows
some text that has been fully scrambled with this plug-in.

About the Plug-in

This plug-in takes an object containing some text and replaces it with random characters
over a time period you specify. It requires the following arguments:

e id An object, object ID, or array of objects and/or object IDs

e msecs Thenumber of milliseconds it should take to scramble the text

8 Pug-in LwvaSeipt - Windows Inbemat Eqlorer = i e
@Ej' i Chlhery Fobin' [skt op' PP mample] L him - | ta| K |

0| Phig-in laeaSoiph

1xedyFQ JZ ROj BtMK Owi66LO
sbEbFeX 4hJ gfYHiVv kzS
TamXBwn hW Mgé s=z0b7d

I Campiger | Profactad Modse OFf dg o« WP -

Ficure 9-4 This plug-in slowly scrambles text over a specified length of time.

Chapter 9: Text Effects

Variables, Arrays, and Functions

3 Local variable that iterates through id if it is an array

text Local variable containing the HTML content of 1d

len Local variable containing the length of html

freq Local variable containing the period in milliseconds between each call
to DoMatrixTotext ()

count Local variable for counting the steps of the transformation

chars Local string variable containing all the upper- and lowercase letters
and the digits O to 9

iid Local variable returned from the call to setInterval (), to be used
when calling clearInterval ()

innerText Property of id in non-Firefox browsers containing the object’s text

textContent Property of id in Firefox browsers containing the object’s text

INTERVAL Global variable with the value 30

TM Flag Property of id that is true when a call to TextToMatrix () is
already in progress on it

substr () Function to return a substring

Math.floor () Function to turn a floating point number into an integer, always
rounding the number down

Math.random () Function to return a random number between O and 1

SetInterval () Function to start repeating interrupts

clearInterval () Function to stop repeating interrupts

Html () Plug-in to return the HTML of an object

DoTextToMatrix () Function to scramble the original text

How It Works

This plug-in works in almost the same fashion as the MatrixToText () plug-in except that
the string text is slowly scrambled over time and assigned to the id object to display it—a
full explanation can be found in the notes in the section “Plug-in 72: MatrixToText().”

How To Use It

To use this plug-in, pass it an object, such as a div or span that contains some text, and tell it
how long the scramble transition should take, as with this example:

<div id='text'>Welcome to the best science fiction and fantasy fan
website in the world!</divs>

<scripts>

window.onload = function()

212 Plug-In JavaScript: 100 Power Solutions

TextToMatrix ('text', 3000)
FadeOut ('text', 3000)

}

</scripts>

Note that I snuck in a call to the FadeOut () plug-in in this example as it makes for an
interesting combined effect of the scrambling text slowly fading away—this is just one
example of how you can combine these plug-in to produce even more complex and
interesting results.

You may also notice that I omitted the interruptible argument to FadeOut ().
Therefore, this passes a value of ‘undefined’ for that argument to the function, which will
be treated as if it was the value false and so it saves on typing.

The Plug-in

function TextToMatrix (id, msecs)

{

if (id instanceof Array)
{
for (var j = 0 ; j < id.length ; ++3)
TextToMatrix (id[j], msecs)
return

}

if (0(id).TM_Flag) return
else O0(id) .TM Flag = true

var text = Html (id)

var len = text.length

var freq = Math.round(msecs / INTERVAL)

var count = 0

var chars = 'ABCDEFGHIHJKLMOPQRSTUVWXYZ' +
'abcdefghijklmnopgrstuvwxyz' +
'0123456789'"

var iid = setInterval (DoTextToMatrix, freq)

function DoTextToMatrix ()

{

for (var j = 0 ; j < len / 20 ; ++3j)

{

var k Math.floor (Math.random() * len)
var 1 = Math.floor (Math.random() * chars.length)

if (text[k] != '"\n' && text[k] != '"\r' && textl[k] != "' ")
text = text.substr (0, k) + chars[l] + text.substr(k + 1)

}

if (0(id) .innerText) 0O (id) .innerText = text
else 0(id) .textContent = text

PLUG-IN

|

Chapter 9: Text Effects

if (++count == INTERVAL)

0(id) .TM_Flag = false
clearInterval (iid)

ColorFade()

This plug-in provides a very smooth transition effect between two different colors, and you
can use it with either an object’s text or its background colors. Figure 9-5 shows two elements
that have been set to fade colors. The first continuously alternates between yellow and blue
text and background colors, while the second fades from black to light blue when the mouse
is passed over it.

About the Plug-in

This plug-in changes the text or background color of the contents of an object over a specified
period of time. It requires the following arguments:

id An object or object ID or an array of objects and/or object IDs
colorl The start color expressed as a six-digit hexadecimal number
color2 The end color expressed as a six-digit hexadecimal number

what The property to change, either ‘text” for the text color, or ‘back” (or anything
other than ‘text’) for the background color

msecs The number of milliseconds the transition should take

number The number of times the transition should repeat, with 0 meaning infinite
repeats

£ PUg-In JavaSenpt - Windouws Witsmnit Bxionar =i

[[L T S — [+ x|

W | =2 Plg-in leasrpn

New - See our latest offers!
Mouseover Me

I Campiger | Profactad Modse OFf dg o« WLl -

Ficure 9-5 This plug-in is great for banners and mouseover highlights.

213

214

Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

3 Local variable that indexes into id if it is an array, and for splitting the
colors into triplets

step Local variable containing the amount of change between each
transition frame

index Local variable used as a multipliers fort generating color values

count Local variable containing a counter for counting the repeats

direc Local variable containing the direction of color change, either 1 or -1

cols|[] Local array containing the ‘from’ color triplets

steps [] Local array containing the step between each color triplet

prop Local variable containing the property to change either color or
backgroundColor

iid Local variable containing the value returned by setInterval (), to be
used later by clearInterval ()

temp Local variable used for building up each transition color

CF _Flagtext

Property of id that is true if a color change transition is in effect on it

CF_Flagback

Property of id that is true if a background color change transition is
in effect on it

INTERVAL Global variable with the value 30

DoColorFade () Subfunction to perform the color changes

ZeroToFF () Sub-subfunction to ensure values are integers between O and 255
(equal to 00 to FF hexadecimal)

DecHex () Plug-in to convert a decimal value to hexadecimal

setInterval () Function to set up repeating interrupts

clearInterval ()

Function to stop repeating interrupts

Math.round ()

Function to turn a floating point number into an integer

Math.max () Function to return the maximum of two values
Math.min () Function to return the minimum of two values
How It Works

This function starts by iterating through id if it is an array, recursively calling itself to
process each element individually, like this:

{

if (id instanceof Array)

for (var j =

0

7

j < id.length ; ++73)

ColorFade (id[j], colorl, color2, what, msecs, number)

return

Chapter 9: Text Effects

Next, a pair of flags are checked to see whether a fade is already in process on id. If the
argument what has the value ‘text’, then the CF_Flagtext property of id is tested or set.
Otherwise, if it is ‘back’, its CF_Flagback property is tested or set, like this:

if (0(id) ['CF_Flag' + what])

{
if (!10(id) ['CF_Int' + what]) return
else clearInterval (O(id) ['CF_IID' + what])

}

else O(id) ['CF_Flag' + what] = true

If a fade is running and the plug-in is not set to interruptible, the plug-in returns;
otherwise, any current repeating interrupts are halted, ready for new ones to be set up. If
the flag is not set, it is assigned the value true to indicate that a fade is in progress.

After this, if either of the colors was passed without the preceding required # character,
it is added:

if (colorl[0] == '#') colorl = colorl.substr(1l)
if (color2[0] == '#') color2 = color2.substr(l)

Next, various local variables are assigned values that will be used later:

var step = Math.round(msecs / INTERVAL)
var index = 0
var count = 0
var direc = 1
var cols = []
var steps = []

The last five are simple initializations, while the first one gives step a value that will
calculate the difference between transition frames so that the whole effect will take msecs
milliseconds.

After this, the cols [] array is populated with the triplet color values, and the steps []
array with the step values for each triplet between each frame, like this:

for (var j = 0 ; j < 3 ; ++3)

{
var tmp = HexDec (color2.substr(j * 2, 2))
cols[j] = HexDec(colorl.substr(j * 2, 2))
steps[j] = (tmp - cols[j]) / step

The local variable prop is then assigned a property name, either color or
backgroundColor, depending on the value in the argument what:

if (what == 'text') var prop = 'color'
else var prop = 'backgroundColor'

This is what makes the plug-in dual functional: either the foreground or background
color will be changed.

215

216

Plug-In JavaScript: 100 Power Solutions

Finally, in the setup section of code, the value in interruptible is saved, and the
setInterval () function is called to set up repeating interrupts to the DoColorFade ()
subfunction every INTERVAL milliseconds. The value returned by the function is then stored
in CF_IID to be used later when clearInterval () is called:

O(id) ['CF_Int' + what] = interruptible
0(id) ['CF_IID' + what] = setInterval (DoColorFade, INTERVAL)

The DoColorFade Subfunction

This function starts off by preparing the variable temp with an initial # character to start a
color string. A for () loop then iterates through the cols [] array, calculating the current
frame’s color values, converting them to hexadecimal, and then appending them to temp.
After that, the value in temp is assigned to the property of id stored in prop:

var temp ='#'

for (var j = 0 ; j < 3 ; ++3)
temp += DecHex (ZeroToFF (cols[j] + index * steps([j]))

S (id) [prop]l = temp

After this, the index variable is incremented by the value in direc. If direcis 1, index
increases by 1; if it is -1, it decreases by 1, like this:

if ((index += direc) > step || index < 0)

If the new value of index is either greater than step or less than 0, the transition is
complete, so the following code is executed to reverse the direction of fade by negating
direc. Then, if all repeats are finished, it cancels the repeating interrupts:

direc = -direc
if (++count == number)
{
0(id) ['CF_Flag' + what] = false

clearInterval (1iid)

The ZeroToFF() Sub-subfunction

This function takes the value passed to it in num and uses the Math.max () function to
ensure it is not less than 0, the Math.min () function to ensure it isn’t greater than 255, and
the Math.round () function to turn it into an integer, like this:

return Math.round (Math.min (255, Math.max (0, num)))

How To Use It

To use this plug-in, pass it an object, such as a div or span that contains some text; provide
starting and ending values in strings such as ‘#123456’; decide whether to change the text or

Chapter 9: Text Effects

background color by setting an argument for what of ‘text” or ‘back’; choose a length of time
in milliseconds for the transition; and finally, decide how many times you want the transition
to repeat.

Here’s an example that uses the plug-in in two different ways. One highlights some text
by constantly transitioning it between the two colors supplied, and the other reacts to
onmouseover and onmouseout events to fade between the two colors:

<center>

New - See our latest offers!

Mouseover Me</spans

</centers>
<scripts>
window.onload = function()
{
ColorFade('t', '#ffffff', '#0000ff', 'text',6 2000, O)
ColorFade('t', '#ffo0000', '#ffff00', 'back', 2000, 0)
O('m') .onmouseover = function() { fade('#000000', '#0088ff') }
O('m') .onmouseout = function() { fade ('#0088ff', '#000000') }
function fade(a, b)
{
ColorFade('m', a, b, 'text', 200, 1)
}
}
</scripts>

The text section creates two spans with the IDs ‘t” and ‘m’. In the <script> section, the
first two commands set both the background and text colors of ‘t’ to transition between
yellow (‘#££ff00") and blue (‘#0000£f"). Because a number argument of 0 is passed, the
transitions continue infinitely.

Below this, the ‘m’ span has its onmouseover and onmouseout events attached to a
small function called fade () that calls ColorFade () with a number argument of 1, so that
each transition happens only once. This means that when the mouse passes over, the color
fades to light blue (‘#0000ff"), and when the mouse moves away it fades back to black
("#000000").

Pass your mouse over the second span to see the smooth fading mouseover effect you
can achieve for links and other elements.

NoOTE Odd transitions change the color of an object from the first to the second color, while even
ones change it back again. This means that number argument values of 1, 3, 5, and so on will
leave the second color on display, while 2, 4, 6, and so on will restore the first color after all
transitions are over.

218

Plug-In JavaScript: 100 Power Solutions

The Plug-in

function ColorFade(id, colorl, color2, what,

{

if (id instanceof Array)

{

for (var j = 0 ; j < id.length ; ++3)
ColorFade (id[j], colorl, color2,

return

if (O(id) ['CF_Flag' + what])

if (!10(id) ['CF_Int' + what])

what,

return

msecs,

else clearInterval (O(id) ['CF_IID' + what])

}

else O(id) ['CF_Flag' + what] = true

if (colorl[0] == '"#') colorl = colorl.substr(1l)

if (color2[0] == '#') color2 = color2.substr(1l)

var step = Math.round(msecs / INTERVAL)

var index = 0

var count = 0

var direc = 1

var cols = []

var steps = []

for (var j = 0 ; j < 3 ; ++3)

{
var tmp = HexDec (color2.substr(j * 2, 2))
cols[j] = HexDec(colorl.substr(j * 2, 2))
steps[j] = (tmp - cols[j]) / step

}

if (what == 'text') var prop = 'color'

else var prop = 'backgroundColor'

0(id) ['CF_Int' + what] = interruptible
0(id) ['CF_IID' + what] = setInterval (DoColorFade,

function DoColorFade ()
{
var temp ='#'
for (var j = 0 ; j < 3 ; ++3)

temp += DecHex (ZeroToFF (cols[j]

S (id) [propl = temp

if ((index += direc) > step || index < 0)

{

direc = -direc

number, interruptible)

msecs, number)

INTERVAL)

+ index * steps[jl))

PLUG-IN

1

Chapter 9: Text Effects

if (++count == number)
0(id) ['CF_Flag' + what] = false
clearInterval (O(id) ['CF_IID' + what])
1
}
function ZeroToFF (num)
{
return Math.round (Math.min (255, Math.max (0, num)))
1

FlyIn()
With this plug-in, you can make text (or any object) fly into its position in a document from

any location you choose and at whatever speed you wish. Figure 9-6 shows a list of five
items set to fly in from the bottom of the browser, one per second over the course of five

seconds.

About the Plug-in
This plug-in flies an object into its final location over a time you specify. It requires these
arguments:

e id An object or object ID or an array of objects and/or object IDs

e x If specified, the relative horizontal offset at which the animation should start—
it may be a positive or negative value

e y If specified, the relative vertical offset at which the animation should start—
it may be a positive or negative value

e msecs Thenumber of milliseconds the animation should take

8 Plug-in Levasenpit - Windows Woeeeit Bqilorar |

m' IF_ LAl ey Eobin [kt o' P sarmgel 15 him - | e X |

W S Plag-in laeaioipn

Hooww fy v comein 2 el s

+ Win the lotreay
-
Tnbeezir the ey

L
Llarny & e e -

I Campiger | Profactad Modse OFf dg o« W lRe -

Ficure 9-6 Instead of having static objects, why not fly them in at the start?

219

280 Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

3 Local variable to iterate through id if it is an array

tox, toy Local variables containing the original (and final) location of 1d

fromx, fromy Local variables containing the start location of id for the
animation

xstep, ystep Local variables containing the amount by which to move id in
each frame

count Local variable to count the animation frames

ABS Global variable with the value ‘absolute’

FI_Flag Property of id that is true if a fly-in is already in progress on it

setInterval () Function to start repeating interrupts

clearInterval () Function to end repeating interrupts

DoFlyIn() Subfunction to perform the animation

Position () Plug-in to set the style position property of an object

GoTo Plug-in to move an object to a new location

How It Works

This plug-in starts by using j to iterate through id if it is an array and recursively calling
itself to individually process each element:

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3j)
FlyIn(id[j], x, y, msecs)
return

Next, the FI_Flag property of id is checked. If it is true, a fly-in is already in progress
on the object so it returns. Otherwise, the property is given the value true to indicate that
a fly-in is running on id, like this:

if (0(id) .FI_Flag) return
else O(id) .FI_Flag = true

After that, the various local variables that will be used by the DoFlyIn () subfunction
are set up, as follows:

var tox = X(id)
var toy = Y(id)
var fromx = tox + X

var fromy = toy + y

var xstep = x / (msecs / INTERVAL)
var ystep = y / (msecs / INTERVAL)
var count = 0

Chapter 9: Text Effects

The variables tox and toy save the current location of the object as a record of where to
fly it into. The start location for the animation is then placed in fromx and f£romy, the step
value for each dimension of each frame is stored in xstep and ystep, and the counter
count is initialized.

Finally, in the setup section, the id object is released from the HTML and given a style
position property of ‘absolute’, using the global variable ABS. This allows it to be moved
anywhere within the document. Next, the setInterval () function is called to start
repeating interrupts to the DoFlyIn () subfunction every INTERVAL milliseconds. The
result of calling the function is saved in iid to be used later when clearInterval ()
is called:

Position(id, ABS)
var iid = setInterval (DoFlyIn, INTERVAL)

The DoFlyIn() Subfunction
This function simply uses the GoTo () plug-in to move id to each location in the animation,
like this:

GoTo (id, fromx - xstep * count, fromy - ystep * count)

An if () statement then checks count to see whether it has a value greater than or
equal to msecs / INTERVAL. If it does, the fly-in has completed and the following code is
executed, but whether it does or doesn’t equal that value, count is incremented after the
test is made, like this:

if (count++ >= msecs / INTERVAL)

{

If the fly-in has finished, the FI_Flag property of id is set to false to indicate this,
GoTo () is called to ensure that id is placed at exactly the correct location (because xstep
and ystep will usually be floating point values and the final values calculated using them
could be off by a pixel or two). Then the repeating interrupts are stopped with a call to
clearInterval (), like this:

0(id) .FI_Flag = false
GoTo (id, tox, toy)
clearInterval (iid)

The function then returns and, if the fly-in hasn’t yet finished, it will be called again in
INTERVAL milliseconds, and so on until the animation has completed.

How To Use It

To use this plug-in, pass it an object and specify where you wish the object to fly in from by
providing relative horizontal and vertical coordinates in the next two arguments. You also
have to tell the plug-in how long the animation should take in milliseconds.

281

282

Plug-In JavaScript: 100 Power Solutions

Here’s an example that flies some list elements up from the browser bottom, with each
arriving at its destination one second after the one above it:

How to become a millionaire:<uls>

Win the lottery

<lisInherit the money</lis>

<span id='c'sMarry a millionaire

Become a movie or pop star

Invest $130/month in stocks for 40 years!

<script>
window.onload = function ()

{

h = GetWindowHeight ()
FlyIn('a', 0, h, 1000)
FlyIn('b', 0, h, 2000)
FlyIn('c', 0, h, 3000)
FlyIn('d', 0, h, 4000)
FlyIn('e', 0, h, 5000)

}

</scripts>

In case you were wondering, statistically the stock market has returned 11 percent on
average per year over the last several decades. And, according to any compound interest
calculator, $130 invested every month over 40 years, and at an average of 11% interest per
year, will return a gross amount of $1,007,490.02, before taxes and fees.

Of course inflation will eat away at that amount, approximately halving its actual value
each decade, so the final amount in today’s money would probably be closer to $250,000,
pre tax and fees. Still, it’s not bad for having invested only $62,400 in total. By the way,

I am not an investment advisor and this doesn’t constitute advice for you to make any
investments.

But I digress, so back to the HTML part of the example. This HTML section creates a
simple list and places its element within spans. The <script> section then places the height
of the browser into the variable h and issues five calls to F1yIn () with the different object
IDs, a start location just under the bottom of the screen, and animation periods from 1 to
5 seconds.

You can just as easily fly the elements in from the browser top by specifying a y value of
—20 or so, or from the left or right edges by using values of -W ('object ') -50 for the x
argument when flying form the left, or GetWindowWidth () for the x argument if flying in
from the right. In fact, you can specify any relative x and y coordinates you like so objects
can fly in at any angle.

TiP Because objects have to be given a style position property of ‘absolute” in order to move them
about, if you have not enclosed the object (or a set of objects) in a suitable container with set
dimensions such as a div or span, other elements of the HTML could move themselves to fill in
the space previously occupied by the object (or objects). Tables are also good place holders for
objects that you will be flying in.

276

Chapter 9: Text Effects

The Plug-in

function FlyIn(id, x, y, msecs)
{
if (id instanceof Array)
{
for (var j = 0 ; j < id.length ; ++3)
FlyIn(id[j], x, y, msecs)
return

}

if (0(id) .FI_Flag) return
else O(id) .FI_Flag = true

var tox X (id)

var toy = Y(id)

var fromx = tox + x

var fromy = toy + y

var xstep = x / (msecs / INTERVAL)
var ystep = y / (msecs / INTERVAL)
var count = 0

Position(id, ABS)
var iid = setInterval (DoFlyIn, INTERVAL)

function DoFlyIn()

{

GoTo(id, fromx - xstep * count, fromy - ystep * count)

if (count++ >= msecs / INTERVAL)

{
0(id) .FI_Flag = false
GoTo (id, tox, toy)
clearInterval (1id)

TextRipple()

This plug-in gives an interesting ripple effect to text, changing the size of characters next to
each other to provide a wave that runs from the start to the end of the string. Figure 9-7
shows the list elements from the previous plug-in, F1yIn (), but here they have their
onmouseover events attached to this plug-in.

About the Plug-in

This plug-in performs a wave or ripple effect from the start to end of text contained within
an object. It requires the following arguments:

e id An object, object ID, or an array of objects and/or object IDs

e number The number of times to repeat the ripple—infinite, if number is 0

e msecs The number of milliseconds the ripple should take

283

284 Plug-In JavaScript: 100 Power Solutions

)

8 Plug-in Lavascrpt - Windows itemic Bqlorsr = |
@_E::l' |] €\Lhers' Rohin Deskt o' Plexwmplea im - | el I3 |
8 Phig-in lasa’ciph

Huonw oy bogrcoomeir au L Bescncnirs:

Wi thE Iobbery

I-htrit ke masnew

Mary @ DVNillonaire

Become 3 TN OWie o pop star

Torvest 313000 tll in Atocks for 40 yoars?

M Campiger| Profected Mode OFF v R -

Ficure 9-7 This plug-in provides a great effect for drawing people’s attention.

Variables, Arrays, and Functions

3 Local variable used for iterating through id if it is an array

html Local variable containing the HTML content of id

len Local variable containing the length of html

freq Local variable containing the time between each call to
DoTextRipple () in milliseconds, such that the ripple will take
msecs milliseconds to complete

ctrl, ctr2 Local variables for counting each character in a ripple, and each
repeat of the animation respectively

iid Local variable containing the result of calling setInterval () to
be used later when calling clearInterval ()

temp Local variable that holds the HTML for each step of the animation

innerHTML Property of id containing its HTML

innerText Property of id in non-Firefox browsers containing its text content

textContent Property of id in Firefox browsers containing its text content

TR Flag Property of id which is true when a ripple is in process on it

Chapter 9: Text Effects

Html () Plug-in to return the HTML content of an object
InsVars () Plug-in to insert values into a string
DoTextRipple () Subfunction to perform the animation
setInterval () Function to set up repeating interrupts
clearInterval () Function to stop repeating interrupts
substr () Function to return a substring

How It Works

This plug-in starts by using j to iterate through id if it is an array and recursively calling
itself to individually process each element:

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3j)
TextRipple (id[j], number, msecs)
return

Next, the TR_Flag property of id is checked. If it is true, a ripple is already in progress
on the object and it returns. Otherwise, the property is given the value true to indicate that
a ripple is running on id, like this:

if (0(id) .TR_Flag) return
else O(id) .TR Flag = true

After that, the local variable html is given a copy of the HTML content of id; len is set
to its length; freqis assigned the time in milliseconds between each call to DoTextRipple ()
such that the ripple will take msecs milliseconds; two counters, ctrl and ctr2, are initialized;
and setInterval () is called to set up repeating interrupts to the DoTextRipple ()
subfunction every freq milliseconds, like this:

var html = Html (id)

var len = html.length

var freq = msecs / len

var ctrl = 0

var ctr2 = 0

var iid = setInterval (DoTextRipple, freq)

The variable 1id is given the value returned by setInterval (), which will be used
later when clearInterval () is called.

The DoTextRipple() Subfunction
This function starts off by assigning temp the left hand part of html, prior to any font size
changes, with ctrl indexing the point at which the fonts will be manipulated:

var temp = html.substr (0, ctrl)

285

286

Plug-In JavaScript: 100 Power Solutions

Next, each character in html that will have its font size changed is processed within a
for () loop such that the outside characters of the group are the smallest, the ones just in
from them are larger, and the largest one is in the center, as follows:

for (var J = 0 ; § < 7 ; ++3)
temp += InsVars("#2",
4 - Math.abs(j - 3), html.substr(ctrl + j, 1))

The part that determines thisis 4 - Math.abs(j - 3), which, for the values 0 through
6 of 3, gives the following font size values (because the Math. abs () function makes all
negative numbers positive): 1,2, 3,4, 3,2, 1.

Once all the font sizes have been calculated and stored in temp using the InsvVars ()
plug-in to insert the values into a string containing statements, the
innerHTML property of id is assigned this string to display it, along with the remaining,
unchanged portion of html:

Html (id, temp + html.substr(ctrl + j))

An if () statement then increments ctrl and checks whether it equals the value in 1en.
If so, the animation has finished and the code following is executed:

if (++ctrl == len)

{

If the ripple is finished, then ctr1l is reset and another if () statement checks whether
there are any more repeats of the interrupt remaining, like this:

ctrl = 0

if (++ctr2 == number)

{
if (0(id) .innerText) 0O(id) .innerText = html
else 0(id) .textContent = html

0(id) .TR_Flag = false
clearInterval (1iid)

If the repeats have finished, the value in html is saved back into id as text, not HTML
(Otherwise, unwanted extra HTML tags would be added by the browser—the time for
saving HTML to the property is only when the font sizes are being changed).

Next, the TR_Flag property of id is set to false to indicate that all ripples have
completed, and the clearInterval () function is called to stop any future calls to the
subfunction, passing it the value previously stored in iid.

The function then returns but will be called up again in £req milliseconds if there are
still outstanding animation frames to display.

How To Use It

To use this animation, pass it an object, such as a div or span containing only text with no
HTML markup or other tags; tell it the number of times to repeat the ripple; and give it the
length of time in milliseconds that the animation should take.

Chapter 9: Text Effects

Here’s an example that takes the list from the F1yIn () plug-in and attaches each entry
to an onmouseover event to trigger the ripple:

How to become a millionaire:<uls>

Win the lottery

Inherit the money

<span id='c'sMarry a millionaire

Become a movie or pop star

Invest $130/month in stocks for 40 years!
</uls>

<scripts>
window.onload = function()

{

O(Array('a', 'b', 'c', 'd', 'e'), 'onmouseover',6 ripple)

function ripple ()

{
}
}

</scripts>

TextRipple (this, 1, 500)

To prevent the text from moving down on the page as the larger characters in a ripple
increase its height, each line on which a ripple can be triggered has the html immediately preceding it. This ensures that the height of the
line is always set to the maximum +4 size of font used by the plug-in. You can also use CSS
styling, tables, and other methods to enclose lines that will be rippled and prevent them
moving themselves or other elements about.

The <script> section passes an array of the objects to the 0 () plug-in, along with the
‘onmouseover’ event name as a string, and the name of the function ripple below it. The
ripple function then uses the this keyword, which acts as a pseudo object representing
the object that triggered the event. This saves having to pass arguments to the function,
keeping the code short and simple.

The Plug-in

function TextRipple(id, number, msecs)

{

if (id instanceof Array)
{
for (var j = 0 ; j < id.length ; ++3)
TextRipple (id[j], number, msecs)
return

281

288 Plug-In JavaScript: 100 Power Solutions

if (0(id) .TR _Flag) return
else O(id) .TR_Flag = true

var html = Html (id)

var len = html.length

var freq = msecs / len

var ctrl = 0

var ctr2 = 0

var iid = setInterval (DoTextRipple, freq)

function DoTextRipple ()

{

var temp = html.substr (0, ctrl)
for (var j = 0 ; 3 < 7 ; ++3)
temp += InsVars ("#2",

4 - Math.abs(j - 3), html.substr(ctrl + j, 1))

0(id) .innerHTML = temp + html.substr(ctrl + j)

if (++ctrl == len)

{
ctrl = 0
if (++ctr2 == number)
{

if (0(id) .innerText) 0O(id) .innerText = html
else 0(id) .textContent = html

0(id) .TR_Flag = false
clearInterval (iid)

CHAPTER 10

Audio and Visual Effects

290

PLUG-IN

Plug-In JavaScript: 100 Power Solutions

and slide shows (or combining the two), making rotating billboards for placing advertising

or news updates, or making objects pulsate as you pass the mouse over them.

There are also plug-ins to help you create professional looking charts with the help of
Google Charts, present YouTube videos in a variety of ways with a single function call, and
play sounds in response to events or for any other reason.

In this chapter, there are a number of handy plug-ins you can use for creating light boxes

Lightbox()

With this plug-in you can display an image or any object in the center of the browser with
the outside darkened and made transparent by amounts you can specify. Your users can
then view these objects with minimum distraction and simply click them to dismiss the
light box. Figure 10-1 shows a photograph being displayed using this plug-in.

About the Plug-in
This plug-in displays a photo (or other object) centered in the browser, with a darkened

frame over the web page behind it. It requires the following arguments:
e id An object or object ID—this may not be an array
e coll Astarting color for the frame
e col2 Anending color for the frame
e opacity The final opacity of the frame

e msecs The time in milliseconds the transition should take

Ficure 10-1 # Plug-in L aSaipi: Bample 71 - Wind ows Infemet Eqlane = L e
Show off your 5 = = 1
favorite ﬁﬁ' £ Ol FobinDedkd op' Pl exsmple 17 litm | +y | B

photographs with J i Phig-in lawase

this light box ¥ | WUTR—r

plug-in.

S Campifan] Protacted Mode OfF dg o« B Re -

Chapter 10: Audio and Visual Effects

Variables, Arrays, and Functions

newdiv New div object created to use for the frame

LB DIV Object ID of the new div

cursor Style property of id that sets the mouse cursor to a pointer when it
is over id, indicating that it is clickable

overflow Style property of document .body set to ‘hidden’ during the display
of id to prevent scrolling

zIndex Style properties of both the frame and id, set to bring them to the
forefront of the browser

onclick Event of 1d set to dismiss the light box if clicked

HID Global variable with the value ‘hidden’

ABS Global variable with the value ‘absolute’

ZINDEX Global variable containing the highest zIndex property used so far

DismissLB ()

Subfunction to dismiss the light box

Hide ()

Plug-in to hide an object

Show ()

Plug-in to show a previously hidden object

Position()

Plug-in to set an object’s style position property

Locate () Plug-in to set an object’s style position property and move it to
a new location

Resize () Plug-in to resize an object

Opacity () Plug-in to set an object’s opacity

Center () Plug-in to center an object in the browser

GetWindowWidth () Plug-in to return the width of the browser

GetWindowHeight ()

Plug-in to return the height of the browser

Fade ()

Plug-in to fade the opacity of an object to a new level

FadeIn()

Plug-in to fade the opacity of an object to 100

FadeOut ()

Plug-in to fade the opacity of an object to O

ColorFade ()

Plug-in to fade the color of an object between two colors

Chain

Plug-in to chain two or more plug-ins in a sequence

InsVars ()

Plug-in to insert values into a string

createElement ()

Function to create a new HTML element

setAttribute ()

Function to set an attribute of an HTML element

appendChild ()

Function to append a child HTML element

How It Works

This plug-in starts off by setting the mouse cursor when over id into a pointer, to indicate
that it is clickable (doing so dismisses the light box), like this:

S(id) .cursor =

'pointer’

291

292

Plug-In JavaScript: 100 Power Solutions

Then, if this is the first time the plug-in has been called, a new div object with the ID of
‘LB_DIV’ is created and appended to the HTML for use as the darkened frame around
id—otherwise, the div has previously been created so this code is skipped:

if (!O('LB_DIV'))

{

var newdiv = document.createElement ('div')
newdiv.setAttribute('id', 'LB_DIV')
document .body.appendChild (newdiv)

Next, the overflow property of the document .body is set to ‘hidden’ to disable scrolling
the web page, then both the frame and id are hidden with a call to Hide (). This is so that
they can both be moved about and otherwise modified without these actions being seen by
the user.

After that, the frame is moved to the top left of the browser and resized to fill the entire
window, and its zIndex property is set to the highest value used so far (held in ZINDEX),
like this:

S (document .body) .overflow = HID

Hide (Array(id, 'LB DIV'))

Locate ('LB _DIV', ABS, 0, 0)

Resize ('LB _DIV', GetWindowWidth(), GetWindowHeight ())
S('LB_DIV') .zIndex = ZINDEX

Having set up the frame, id is processed next by setting its opacity to 0, which releases
it from the HTML by calling Position () to set its style position attribute to ‘absolute’.
Next, its zIndex is set to a value that is 1 higher than the frame’s, and the ZINDEX global
variable is also incremented to contain this higher value:

Opacity(id, 0)
Position(id, ABS)
S(id) .zIndex = ++ZINDEX

With both objects now prepared, the Show () plug-in is called to re-enable the objects in
the browser, and id is centered. Next, the new div (with the ID “‘LB_DIV’) is faded to the
value in opacity over msecs milliseconds, id is faded in to an opacity of 100, and the
background color of the frame is faded between col1 and col2 over the same time period,
like this (remembering that FadeIn () fades an object from 0 percent to 100 percent opacity):

Show (Array (id, 'LB_DIV'))

Center (id)

Fade ('LB DIV', 0, opacity, msecs)

FadeIn(id, msecs, 0)

ColorFade ('LB_DIV', coll, col2, 'back', msecs, 1)

Finally, in the display section of code, the onclick event of id is set to call up the
DismissLB () subfunction when clicked, as follows:

0(id) .onclick = DismissLB

Chapter 10: Audio and Visual Effects

The DismissLB() Subfunction
This function is called whenever id is clicked. The first thing it does is fade the frame’s
opacity back down to 0 and its background color from col2 back to col1, like this:

Fade ('LB_DIV', opacity, 0, msecs)
ColorFade ('LB_DIV', col2, coll, 'back', msecs, 1)

At the same time, a chain is created to perform three actions in sequence: first, fade out
id; second, hide id; and third, restore any scrollbars to document . body, as follows:

Chain (Array (

InsVars ("FadeOut (Array ('#1', 'LB DIV'), #2, 0)", id, msecs),
InsVars ("Hide (Array ('#1', 'LB_DIV'))", id),
"S (document .body, 'overflow', 'auto')"

How To Use It

To use this plug-in, you need to have an image (or any other object) already prepared. Most
likely you will also have set its style.display attribute to ‘none’ so that it is not visible in
the web page, like this:

Next you can attach the plug-in to an event such as an onclick or onmouseover to pop
the object up in a light box. Here’s an example that uses an onclick event:

<button id='link' type='button'>Click Me</buttons>

<scripts>
window.onload = function ()

{

O('link'") .onclick = function()
{
Lightbox ('photo', '#888888', '000000', 80, 500, 1)
}
}
</scripts>

The HTML section of this example creates a button with a link to the anonymous inline
function, along with an image object with the ID “photo’. The <script> section simply
contains the function that calls up the Lightbox () plug-in.

When a light box is in use, none of the elements underneath it that are usually clickable
(or have onmouseover events attached) will work until the light box is removed. This is
because the div object it creates covers the entire browser window and has a higher zIndex
value than everything except the light box contents, which makes it especially useful when
you wish to force the user to focus only on one thing, such as entering log-in details or
accepting notification of an error, and so on.

293

294

Plug-In JavaScript: 100 Power Solutions

TiP The reason for requiring the two color arguments of col1 and colz2 is to allow for web pages of
any color background, which can then be faded to any other color of your choice for the light box
frame. If your website has standard black text on a white background, I recommend you try
fading the light box between the color values #888888 (midgray) and #000000 (black). Or, you
can be creative and fade between contrasting colors for an even more eye-catching effect. The
value you choose for the opacity argument will also greatly change the transition effect.

The Plug-in

function Lightbox(id, coll, col2, opacity, msecs)

{

S(id) .cursor = 'pointer'

if (!O('LB_DIV'))

{
var newdiv = document.createElement ('div')
newdiv.setAttribute('id', 'LB _DIV')
document .body.appendChild (newdiv)

}

S (document .body) .overflow = HID

Hide (Array(id, 'LB DIV'))

Locate('LB_DIV', ABS, 0, 0)

Resize ('LB DIV', GetWindowWidth(), GetWindowHeight ())
S('LB_DIV').zIndex = ZINDEX

Opacity(id, 0)
Position(id, ABS)
S(id) .zIndex = ++ZINDEX

Show (Array (id, 'LB_DIV'))

Center (id)

Fade ('LB_DIV', 0, opacity, msecs)

FadeIn (id, msecs, 0)

ColorFade ('LB _DIV', coll, col2, 'back', msecs, 1)

0(id) .onclick = DismissLB

function DismissLB()
{
Fade ('LB_DIV', opacity, 0, msecs)
ColorFade ('LB DIV', col2, coll, 'back', msecs, 1)
Chain (Array (
InsVars ("FadeOut (Array ('#1', 'LB DIV'), #2, 0)", id, msecs),
InsVars ("Hide (Array ('#1', 'LB DIV'))", id),
"S (document .body, 'overflow', 'auto')"

))

PLUG-IN

|

Chapter 10: Audio and Visual Effects

Ficure 10-2 ﬁng.nmmph Eamh T3 - Wind ows Intemet Bplarer @

With this plug-in,

one image fades [+ | & DT —pp—rr »[4] x|

into another

= Phig-in LasaScipn

I Campiger | Profacted Modse OFf dg o= WP -

Slideshow()

With this plug-in, you can display a sequence of images in a slide show. Figure 10-2 shows
this plug-in being used in conjunction with the previous plug-in, Lightbox (), to create a
slide show on a darkened background.

About the Plug-in

This plug-in takes an empty container such as a div or span and displays a continuously
rotating sequence of images that fade into each other. It requires the following arguments:

id An object or object ID—this may not be an array

e images An array of images (preferably of the same dimensions)

e msecs The time each fade transition should take in milliseconds

e wait The time in milliseconds to wait between each transition—if this value is set
to the string ‘stop’, it tells the plug-in to stop any current slide show and exit

Variables, Arrays, and Functions

index Local variable used for indexing the array of images
newimg Local variable containing a new image object
SS Stop Property of id which, if true, stops the slide show

SS_IMG@1, SS_IMG2

Object IDs of the two new image objects

sSrcC

Property of each image object containing its source file

295

296

Plug-In JavaScript: 100 Power Solutions

ABS Global variable with the value ‘absolute’
setTimeout () Function to set up an interrupt to a function after a specified period
DoSlideshow () Subfunction to perform the fade transitions
Locate () Plug-in to set an object’s style position property and move it to
a new location
Opacity () Plug-in to set an object’s opacity
FadeIn() Plug-in to center an object in the browser
FadeBetween () Plug-in to fade between two objects
createElement () Function to create a new HTML element
setAttribute () Function to set an attribute of an HTML element
appendChild () Function to append a child HTML element
How It Works

This plug-in begins by setting 1en to the number of items in images and setting the Ss_sStop
attribute of id to either true or false, depending on whether the wait argument contains
the string “stop’. If it does, the value true is assigned so the subfunction will know to stop
the fade transitions. The line of code looks like this:

var len images.length
0(id) .SS_Stop = (wait == 'stop') ? true : false

As well as checking the wait arguments to see if it has the value ‘stop’, the SS_Flag
property of id is tested; if it is true, a slide show is already in operation on this id, so the
following code is not executed:

if (!0(id) .SS_Stop && !0(id) .SS Flag)

Otherwise, as long as the wait argument contains a number, the previous code is then
entered.

Here, if there is no object with the ID ‘SS_IMGY’, this is the first time the plug-in has
been called, so it populates the id container object with two new image objects having the
IDs 'SS_IMG1’ and ‘SS_IMG2'. It then overlays these objects over each other by locating the
second one in the same position as the first, like this:

var newimg = document.createElement ('img')
newimg.setAttribute('id', 'SS_IMG1')
0(1id) .appendChild (newimg)

newimg = document.createElement ('img')
newimg.setAttribute('id', 'SS IMG2')
0(id) .appendChild (newimg)

Locate('SS_IMG2', ABS, 0, 0)

These lines illustrate how you can add new elements to a DOM tree at any point. First,
use document . createElement () to create a new element object, then set any attributes

Chapter 10: Audio and Visual Effects

using setAttribute (), and finally, use appendchild () to append the new element to
the DOM.

Next, the variable index is initialized to 0; this will be used later to index the next image
in a slide show. The first image object is then assigned the contents of the first element in the
images array, which will be the location of a photo or other image:

var index =0
O('SS_IMG1l') .src = images[0]
0(id) .SS_Flag = true

The SS_Flag property is also set to true to indicate that a slide show is in progress.
After that, the second image has its opacity is set to 0 to make it invisible, and the first
image is faded in over a period of msecs milliseconds:

Opacity('SS_IMG2', 0)
FadeIn('SS IMGl', msecs, 0)

Finally, in the setup section of code, the setTimeout () function is called to set up
an interrupt to call the DoSlideshow () subfunction after a period of msecs + wait
milliseconds. This accounts for the time it will take the first image to fade in, plus the time
required for the wait:

setTimeout (DoSlideshow, msecs + wait)

The DoSlideshow() Subfunction
The job of this function is to transition a fade between two images and then initiate an
interrupt to call itself again when the next transition is due (unless it is cancelled).

The first thing this function does is load the first image with the current value in the
images array, as indexed by index. The first time it calls this, nothing happens since the
same image has already been loaded. However, on all future transitions it has the effect of
taking the picture that is being displayed in the second image and duplicating it in the first,
so that they both are showing the same picture:

O('SS_IMGl').src = images[index]

Since both images are showing the same picture, it is safe to set the first one to be fully
visible and the second one to invisible, like this:

Opacity('SS IMG1', 100)
Opacity ('SS_IMG2', 0)

Having made this swap, the index variable is incremented to point to the next picture
in the slide show and, if it becomes larger than the number of images in the images array, it
is reset to 0 (using the % operator) to start again at the beginning, as follows:

index = ++index % len

Next, it’s time to load in the next picture listed in the images array into the second
image, because the first image is the one currently being displayed, and the second has been
made invisible ready to do this:

O('SS_IMG2') .src = images[index]

291

298

Plug-In JavaScript: 100 Power Solutions

I will explain the following statement shortly, but here it is for reference:

var next = InsVars("O('SS_IMGl').src = '#1'",
images[(index + 1) % lenl])

Now that each image holds a different picture, it’s a simple matter to call the
FadeBetween () plug-in to fade between the two, like this:

FadeBetween('SS _IMG1l', 'SS_IMG2', msecs, next)

This makes the second image the visible one and the first one invisible. At this point, the
image states are the same as at the start of the subfunction.

The value of the next argument in the FadeBetween () call is a string containing a
callback function, which is mostly used by chains to link them together. However, in this
case it is just passing a statement to be executed once the plug-in completes its work.

The contents of next, which I previously glossed over, creates a statement that will load
the next picture in the slide show into the first image once the fade between the two images
is finished and the first image is now invisible (and available for use in this way).

This is done to preload the picture so that it is cached in the browser and, next time
round the loop, when the picture is loaded into image 2, it will be fetched from the cache
without any delays while it is downloaded from the server.

This means program execution is ready to go round the loop again. However, the next
interrupt call to the subfunction is only set up if the SS_Stop property of id is false,
because if it is true then a call has been made requesting the slide show to stop:

if (!0(id).SS _Stop) setTimeout (DoSlideshow, msecs + wait)

Otherwise, if the slide show is stopped, the SS_Flag property of id is set to false to
indicate this:

else 0O(id) .SS_Flag = false

How To Use It

To use this plug-in, prepare an empty div or span and pass it to the plug-in along with an
array containing the URLs of the images for the show and two timers: the first for how long
each fade transition should take and the second for the length of pause between changing
images, both in milliseconds.

Here’s an example that combines this plug-in with the previous one, Lightbox (), to
create a slide show in a light box:

<button id='link' type='button's>Click Me</buttons>
<div id='show'></div>

<script>
window.onload = function()
{
Resize ('show', 320, 240)
Hide ('show!')
photos = Array ('photol.jpg', 'photo2.jpg',
'photo3.jpg', 'photo4.jpg', 'photo5.jpg')

Chapter 10: Audio and Visual Effects

O('link') .onclick = function()

{

Slideshow ('show', photos, 500, 2000)
Lightbox('show', '#888888', '000000', 80, 500, 1)

}

}
</scripts>

In the HTML section, a button is created that will call the anonymous, inline function
when clicked, while underneath it there’s an empty div. In the <scripts> section, the div is
resized (with a call to Resize ()) to the dimensions required so that the S1ideshow ()
function can center it correctly—without these dimensions, if the contents of the div is not
ready when the Center () call is made, the object might appear off center.

The div is also hidden with a call to Hide () because now that it has dimensions it will
push any content below it out of the way. Then the array photos is populated with the
URLSs of five photos, and the function calls both s1ideshow () and Lightbox () to merge
the two plug-ins together.

Because the Lightbox () plug-in dismisses its contents when you click it, the slide show
will not stop, even though it isn’t visible. If you click the button again, the S1ideshow ()
plug-in will realize that it is still running and simply continue the slide show.

If you want to turn the slide show off, you need to set the SS_Stop property of ‘show’
to 1 or true, and the next time a slide change is due it will stop:

O('show') .SS Stop = true

Tip This plug-in is designed so that you can place the containing object anywhere you like and the
slide show will occur at that position; you don’t have to use it in a light box if you don’t want to.

The Plug-in

function Slideshow(id, images, msecs, wait)

{

var len = images.length
0(id) .SS _Stop = (wait == 'stop') ? true : false

if (!0(id).SS_Stop && !0(id) .SS_Flag)
{
if (1O('SsS IMG1'))
{
var newimg = document.createElement ('img')
newimg.setAttribute('id', 'SS IMG1')
0(id) .appendChild (newimg)

newimg = document.createElement ('img')
newimg.setAttribute('id', 'SS_IMG2')
0(1id) .appendChild (newimg)

Locate('SS_IMG2', ABS, 0, 0)

299

300 Plug-In JavaScript: 100 Power Solutions

var index =0

O('SS IMGl') .src = images|[0]
Opacity('SS IMG2', 0)

FadeIn('SS IMGl', msecs, 0)
setTimeout (DoSlideshow, msecs + wait)

}

function DoSlideshow ()

{
O('SS IMGl') .src = images[index]
Opacity('SS_IMG1', 100)
Opacity('SS IMG2', 0)
index = ++index % images.length
O('SS IMG2') .src = images [index]

var next = InsVars("O('SS IMGl').src = '#1'",
images[(index + 1) % lenl])
FadeBetween('SS IMGl', 'SS IMG2', msecs, 0, next)

if (!0(id) .SS_Stop) setTimeout (DoSlideshow, msecs + wait)
else 0O(id) .SS_Flag = false

7 Billboard()

This plug-in is similar to the S1ideshow () plug-in in that it fades between objects in a
sequence. The difference is that the Billboard () plug-in allows you to put any objects in
a show, and they must already exist in the document (whereas the Slideshow () plug-in
pulls images in by their URLs only when needed).

A great use for this plug-in is to rotate banners or other advertisements, which can be
images, divs, spans, or other objects. Figure 10-3 shows one image in a sequence being
displayed using this plug-in.

PLUG-IN

Ficure 10-3 ﬁnq.mmm Eamghe T3 - Wind ows Iniemet Eplarer m
This plug-in creates s = = g
2 billboad of @LJ' B €Oy Bobin Desktop Pl exsmyple] 4 nim [#2] % |

rotating objects

: = Phig-in lasaSoipn
and/or images. % | Phg -

M Campger| Profected Mode OFF v R -

About the Plug-in

Chapter 10: Audio and Visual Effects

This plug-in takes a containing object such as a div or span and an array of objects held
within it, which it then rotates like an automated billboard. It requires the following

arguments:

e id An object or object ID—this cannot be an array

e objects An array of objects or object IDs

e random If true, the objects will be displayed in random order

e msecs The time in milliseconds that each fade between objects should take

e wait The time in milliseconds to wait before fading to the next object

Variables, Arrays, and Functions

j Local variable used as an index to iterate through the objects array

len Local variable containing the number of items in the objects array

index Local variable used to reference each object to be displayed

h Local variable containing the cumulative height of each object for
locating them in their required locations

rand Local variable containing a random number between O and 1len — 1

BB Ready Property of id that is true if the objects have already been
positioned in their places

BB_Stop Property of id that is true if the billboard rotation is disabled

REL Global variable with the value ‘relative’

FadeOut () Plug-in to fade out an object

FadeIn() Plug-in to fade in an object

Locate () Plug-in to apply a style position and location to an object

H() Plug-in to return an object’s height

DoBillboard () Subfunction to rotate the contents of the billboard

setTimeout () Function to set up an interrupt to a function in the future

clearTimeout () Function to stop any timeout that has been set

slice() Function to return a portion of an array

Math. floor () Function to turn a floating point number into a rounded down integer

Math.random() Function to return a random number

How It Works

This plug-in begins by setting the local variable 1en to the number of items in the objects

array:

var len = objects.length

301

302

Plug-In JavaScript: 100 Power Solutions

Next, it checks whether it has already been called by examining the BB_Ready property
of id. If it is not true, then the objects have not yet been moved to their required locations,
so the following code is executed, which begins with setting up some variables.

First 1en is assigned the number of items in objects, and then the 0 (id) .BB_Index
property of id and the local variable h are initialized to 0, like this:

var h =0
0(id) .BB_Index 0

After setting up the local variables, the BB_Ready property of id is set to true so that
future calls to the plug-in will know that the objects have been properly located. Then all
items in objects other than the first are faded out by passing them through the slice ()
function to split them off, and a value of 1 millisecond is used for the transition to make it
virtually instantaneous. This has the effect of leaving only the first item visible:

0(id) .BB_Ready = true
FadeOut (objects.slice(1), 1, 0)

After that, a for () loop iterates through all but the first item in objects, subtracting
the height of each previous object from the local variable h. Each object is then released from
its position in the web page and given a style position attribute of ‘relative’ (using the global
variable REL).

Each object’s x coordinate is set to 0 to line it up with the left-hand side of the first one,
and its y coordinate is set to h, which is a negative number containing the sum of all the
heights of the objects above the current one, thus moving the object up the browser and
placing it directly on top of the first one:

for (j =1 ; j < len ; ++3)

{
h -= H(O(objects[j-11))
Locate (O (objects[j]), REL, 0, h)

Next, if the wait argument has the value ‘stop’, the BB_Stop property of id is set to
true, indicating that the billboard transitions should stop; otherwise, it is assigned the
value false:

O0(id) .BB_Stop = (wait == 'stop') ? true : false

After that, as long as BB_Stop is not true and as long as the billboard is not already
running (the BB_Flag property of id will be true if it is), an interrupt is set to call the
DoBillboard () subfunctionin msecs + wait milliseconds:

if (!0(id) .BB_Stop && !0(id) .BB_Flag)
O0(id) .BB_IID = setTimeout (DoBillboard, msecs + wait)

The result returned by the call is placed in the BB_IID property of id for used when
calling clearTimeout ().

Chapter 10: Audio and Visual Effects

The DoBillboard() Subfunction
This function starts by setting the BB_Flag property of id to true to indicate that the
billboard is running:

0(id) .BB_Flag = true
It then checks the BB_Stop property of id to see whether it can continue or should stop:

if (0(id).BB_Stop)

{
0(id) .BB_Flag = false
clearTimeout (O (id) .BB_IID)
return

If BB_Stop is true, then a request has been made to stop the transition, so the function
will reset BB_Flag to false, stop any timeout that is due, and return. No more interrupts
will occur on it, unless the plug-in is called again—at which time the transitions pick up
from where they left off. This allows you to, for example, pause the transitions if the mouse
passes over an object and resume them again when it leaves.

Otherwise, the function continues running and the next thing to happen is the currently
displayed object gets faded out:

else FadeOut (objects[0O(id) .BB Index], msecs, 0)

Then, if the argument random is true (or 1), the subsequent object to display should be
selected at random, which is done by this code:

var rand = O(id) .BB_Index
while (rand == 0O(id) .BB_Index)

rand = Math.floor (Math.random() * len)
0(id) .BB_Index = rand

Here rand is assigned the value of the 0 (id) . BB_Index property, which points to the
currently displayed object. Then a while () statement repeatedly selects random numbers,
placing them in the variable rand, until it is not the same as 0 (1d) . BB_Index. This ensures
that the next object displayed in the billboard won’t be the same as the current one.

Once a value is found, it is placed in 0 (1d) .BB_Index. Otherwise, if random is not true,
the objects are displayed in sequential order and 0 (id) .BB_Index is incremented. If it
becomes greater than the number of items in the objects arrayj, it is reset to 0 (using the %
operator):

else 0O(id) .BB_Index = ++0(id).BB Index % len

At this point, 0 (1d) .BB_Index represents the next object to be displayed, so a call is
made to the FadeIn () plug-in to fade it in:

FadeIn(objects[0(id) .BB Index], msecs, 0)

303

304

Plug-In JavaScript: 100 Power Solutions

Finally, any currently pending interrupt is cancelled and another interrupt is set up to
call the subfunction again in msecs + wait milliseconds, giving enough time for both the
fade transition and the wait period to pass:

clearTimeout (O (id) .BB_IID)
0(id) .BB_IID = setTimeout (DoBillboard, msecs + wait)

How To Use It

To use this plug-in, you need to first prepare a containing object to hold all the items that
will be rotated in the billboard. Then place the subobjects within it, and you're ready to call
the plug-in from JavaScript.

Here’s an example that combines the divs used in Plug-in 67, Rol10ver (), with a new
image of the same dimensions:

<div id='billb' style='display:none'>

<div id='bl'><img id='pl' src='palace.png' align='left' style=
'padding-right:10px'>For sale: 600 room, 300 year old central London
house, located close to all the amenities, right in the heart of
Westminster city.</div>

<div id='b2'><img id='p2' src='plan.png' align='right' style=
'padding-left:10px'>829,818 sq ft: Historical setting, famous
residents, exquisitely decorated throughout. Phone 555 1234 for more
details.</div>

</div>

<scripts>
window.onload = function ()

{

S('billb'") .border = 'solid 1px'
Resize('billb', 320, 100)

objects = Array('bl', 'b2', 'b3')

Resize (objects, 320, 100)

S (objects, 'background.Color',6 '#ffffff')

Show ('billb')
Billboard('billb', objects, 1, 500, 3000)

O('billb') .onmouseover = pause
O('billb'") .onmouseout = resume

function pause ()

{
}

function resume ()

{

Billboard('billb', '', '', ! 'stop')

I

Chapter 10: Audio and Visual Effects

Billboard('billb', objects, 1, 500, 3000)

}

}
</scripts>

I'laid out the HTML so that you can clearly see the three subobjects within the main
containing object (with the ID ‘billb”), which has its style display attribute set to ‘hidden’ so
as not to show the subobjects.

In the <script> section, the containing object is given a solid 1-pixel border (which is
not necessary but improves the look) and resized it to 320 by 100 pixels. The subobjects are
then also resized to those dimensions so that all elements are the same, then Show () is
called to re-enable the displaying of the container div, and then the Billboard () plug-in is
called to start things.

Next, the onmouseover and onmouseout events of ‘billb” are attached to the functions
pause () and resume (). The pause () function needs only to pass the argument names of
‘billb” to reference the container object and the value ‘stop” in the wait argument. In this
instance, all other arguments will be ignored, so they have been set to the empty string. The
resume () function, however, should be identical to the initial call made to start the billboard
in the first place.

As you pass your mouse over the billboard it will stop rotating, but it will resume once
you move it away. Of course, the objects in this example are not linked to anything, but you
will probably use this plug-in for advertising and make them clickable; you can even
include forms within the objects.

NOTE To place all the subobjects in the same location, they must start off lined up underneath each
other in the browser. In the case of divs, this will already be the case, but spans and images may
require a
 tag placed after them to ensure the correct positioning. The Billboard ()
plug-in then subtracts the height of all previous objects to place each consecutive one over the
first. Should you forget to line them all up this way, some of the objects will not display correctly,
if at all.

The Plug-in

function Billboard(id, objects, random, msecs, wait)

{

var len = objects.length

if (10(id) .BB_Ready)

{

var h =0
0(id) .BB_Index = 0

0(id) .BB_Ready = true
FadeOut (objects.slice(1), 1, 0)

for (j =1 ; j < len ; ++3)

{

h -= H(O(objects[j-11)

305

306 Plug-In JavaScript: 100 Power Solutions

Locate (O (objects[j]), REL, 0, h)

}

0(id) .BB_Stop = (wait == 'stop') ? true : false

if (!0(id) .BB_Stop && !0(id) .BB_Flag)
0(id) .BB_IID = setTimeout (DoBillboard, msecs + wait)

function DoBillboard ()

{

0(id) .BB_Flag = true

if (0(id).BB_Stop)

{
0(id) .BB_Flag = false
clearTimeout (O (id) .BB_IID)
return

}

else FadeOut (objects [0 (id) .BB _Index], msecs, 0)

if (random)

{

var rand = O(id) .BB_Index
while (rand == 0O(id) .BB_ Index)

rand = Math.floor (Math.random() * len)
0(id) .BB_Index = rand

}

else O(id) .BB_Index = ++0(id).BB Index % len

FadeIn (objects[0(id) .BB Index], msecs, 0)
0(id) .BB_IID = setTimeout (DoBillboard, msecs + wait)

8 GoogleChart()

Among many other products, Google offers a great program for creating and displaying
charts. However, to make the best use of it there are many options you need to set up and a
lot of documentation to be read. This plug-in distills the main features of the service into a
set of basic arguments you can pass to it, making the service extra easy to use. Figure 10-4
shows the plug-in being used to display a 3-D pie chart.

PLUG-IN

About the Plug-in

This plug-in takes a container such as a div or span and inserts an image into it, which it
fetches from the Google Charts service. It requires the following arguments:

e id An object or object ID—this cannot be an array

e title The charttitle

e tcolor The title color

Ficure 10-4

This plug-in makes
it easy to create
charts from
collections of data.

Chapter 10: Audio and Visual Effects

Ko) ®] €t hobinDesktop Phexrpledi him

W | = Plag-in eaSorpn

My Fawvaorite Types of Cheese

T
W Eio

| L
B Clucid
W S5
B Colty

Dorgarcala

i i Camputer | Protected Modse OF dg v W -

tsize The title font size

type The type of chart, any of ‘line’, “vbar’, ‘hbar’, ‘gometer’, ‘pie’, ‘pie3d’, ‘venn’,
or ‘radar’—see Table 10-1 for more details (and see Figure 10-5 for some example
chart types)

e bwidth The bar width if the chart is a bar chart
e labels Astring of data labels, separated by | characters

e legends A string of data legends, separated by | characters

e colors Astring of colors, one for each item of data, in six digit hex values,
separated by commas

e bgfill The background fill color as a six-digit hex string

e data The data, as a string of numeric values, separated by commas

TaBLe 10-1 The
Supported Values for
the type Argument
and the Charts They
Create

Type value Chart type

‘line’ Standard line chart
‘vbar’ Vertical bar chart
‘hbar’ Horizontal bar chart
‘gometer’ Google Go Meter
‘pie’ Standard pie chart
‘pie3d’ 3D pie chart

‘venn’ Venn diagram
‘radar’ Radar chart

307

308 Plug-In JavaScript: 100 Power Solutions

50 Kb
March April
January
February Apr May June
Bar Chart 3D Pie Chart Line Chart
100
801 o a
60 ° ° A S E—4 B N N ——
40
[] M
20 ° .
0 T T T 1
0 25 50 75 100 \
Scatter Chart Radar Chart Compound Chart
Ficure 10-5 Some of the chart types supported by Google Charts
Variables, Arrays, and Functions
types Local associative array used to turn values in the type argument into the
keywords required by Google Charts
tl Local variable containing the escaped title
t2 Local variable containing the type of chart as a Google Charts keyword
tail Local variable containing the query string for sending to Google
innerHTML Property of id containing its HTML
UNDEF Global variable containing the string ‘undefined’
escape () Function to escape a string, making it suitable for use in a query string
How It Works

This plug-in begins by populating the associative array types with the eight types of chart
names as used by the plug-in and their corresponding keywords, as passed on to Google
Charts, like this:

var types =

{

'line' : 'le',
'vbar' : 'bvg',
'hbar' : 'bhg',
'gometer' : 'gom',
'pie’ : 'p',
'pie3d! : 'p3',
'venn' : 'v',

'radar' : 't

Chapter 10: Audio and Visual Effects

Next, the type argument is tested to see if it has a value. If not, it is given the value
‘pie’, which, therefore, becomes the default for when no type is given:

if (typeof type == UNDEF) type = 'pie'

Then title is passed through the escape () function to make it suitable for passing in
a query string URL tail, and title is then placed in the variable t1. Meanwhile, the
keyword for the chart type to send to Google is looked up by referencing the type
argument in the types array, as follows (such that if, for example, type has the value
‘hbar’, t2 will be assigned the value ‘bhg’, and so on):

var tl = escape(title)
var t2 = types|[type]

After this, a selection of arguments that are required for most charts (such as the chart’s
title, width, height, and so on) are assembled into the variable tail, each separated by an
& entity, like this:

var tail = 'chtt=' + tl
+ '&cht=" + t2
+ '&chs="' + width + 'x' + height
+ '&chbh=" + bwidth
+ '&chxt=x,y'
+ '&chd=t:"' + data

Then, if values for them have been passed to the plug-in, a set of five if () statements
adds other arguments to tail:

if (tcolor && tsize) tail += '&chts=' + tcolor + ',' + tsize
if (labels) tail += '&chl="' + labels
if (legends) tail += '&chdl="' + legends
if (colors) tail += '&chco=" + colors
if (bgfill) tail += '&chf=bg,s,' + bgfill

With tail now containing the completed query string, it is appended to the Google

Charts URL and then placed in an tag, which is then assigned to the HTML of id:

Html (id, "<img src='http://chart.apis.google.com/chart?" +
tail + "' />")

This results in the chart displaying within the id container object.

How To Use It

To use this plug-in, start with an empty div, span, or other container that has an innerHTML
property, and then pass this object along with all the required parameters to the plug-in, as
in this example:

<div id='chart'></div>

<scripts>
window.onload = function ()

309

310 Plug-In JavaScript: 100 Power Solutions

title = 'My Favorite Types of Cheese'

tcolor = 'FF0000'

tsize = '20"'

type = 'pie3d’

width = '530'

height = '230'

bwidth = '

labels = 'Stilton|Brie|Swiss|Cheddar|Edam|Colby|Gorgonzola'
legends = labels

colors = 'BD0000,DE6B00,284B89,008951,9D9D9D,A5AB4B,8C70A4,FFD200"'
bgfill = 'EEEEFF'

data = '14.9,18.7,7.1,47.3,6.0,3.1,2.1"

GoogleChart ('chart', title, tcolor, tsize, type, bwidth, labels,
legends, colors, bgfill, width, height, data)

Resize ('chart', width, height)
S('chart') .border = 'solid 1lpx'

}

</scripts>

To simplify this example, all the arguments have been separately assigned to variables,
which are then passed to the plug-in. Also, the containing div is resized to the width and
height of the chart and is given a 1-pixel, solid border. This results in a fully self-contained
div, displaying the chart as returned by Google. You can get more information about Google
Charts at code.google.com/apis/chart/.

Tip The Google Charts API has a limit of 50,000 calls per day from each website, so if your site is
making that many calls or more, you should run the plug-in once in your browser, right-click,
save the image, and upload it to your web server. That way, you can display it as often as you like
using <imgs tags.

The Plug-in

function GoogleChart (id, title, tcolor, tsize, type, bwidth,
labels, legends, colors, bgfill, width, height, data)
{

var types =

'line’ : 'lct,
'vbar' : 'bvg',
'"hbar' : 'bhg',
'gometer' : 'gom',
lpiel . lpll

'pie3d! : 'p3',
'venn' v,

'radar' : 't

PLUG-IN

Chapter 10: Audio and Visual Effects

if (typeof type == UNDEF) type = 'pie'

var tl = escape(title)
var t2 = types[type]
var tail = 'chtt=" + tl
+ '&cht="' + t2
+ '&chs="' + width + 'x' + height
+ '&chbh=" + bwidth
+ '&chxt=x,y'
+ '&chd=t:' + data
if (tcolor && tsize) tail += '&chts=' + tcolor + ',' + tsize
if (labels) tail += '&chl="' + labels
if (legends) tail += '&chdl=" + legends
if (colors) tail += '&chco=" + colors
if (bgfill) tail += '&chf=bg,s,' + bgfill

Html (id, "<img src='http://chart.apis.google.com/chart?" +
tail + "' />")

81 PlaySound()

This plug-in lets you play a sound as a result of a mouse move or button event, a keyboard
event, or any other reason. Figure 10-6 reintroduces the avatars used in previous chapters,
but this time their onmouseover events are attached to this plug-in.

About the Plug-in

This plug-in takes an empty container such as a div or span and embeds an audio player in
it to play a sound. It requires the following arguments:

e id An object or object ID—this cannot be an array

e file The URL of an audio file, generally a WAV or similar file

e loop If‘true’, the sound will loop continuously; if ‘stop’, it will stop a previously
playing sound; any other value will play the sound once

Ficure 10-6 - iE
When you pass the =P e T =
mouse over these " " = @] CrLkers' Rohin e it op' Plamirnpled L i | ‘“'.rl % |
images, a sound
will play.

W | B2 Plg-in lsaSoripn

M Campuger| Profected Mode OFF v Hor -

312 Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

innerHTML Property of id containing its HTML
Resize () Plug-in to resize an object
Locate () Plug-in to set an object’s style position and location
InsVars () Plug-in to insert values into a string
How It Works

This plug-in first resizes id so that it has no width or height and then gives it an “absolute’
style position so that it cannot affect any other objects in the web page, like this:

Resize(id, 0, 0)
Locate (id, ABS, 0, 0)

Next, if the argument 1oop contains the string value ‘stop’, then any currently playing
sound is stopped by setting the innerHTML property of id to the empty string, thus
removing any previously embedded sound player:

if (loop == 'stop') O(id) .innerHTML = ''

Otherwise, the innerHTML property of id is assigned the correct HTML to embed a
sound player and auto start the sound playing, looping it if 1oop contains the string value
‘true’, like this:

else O(id) .innerHTML =
InsVars ("<embed src='#1' hidden='true' " +
"autostart='true' loop='#2' />", file, loop)

How To Use It

Playing a sound is as easy as passing an empty container such as a div or span to the plug-in,
along with the URL of the sound to play and, if required, the value ‘true’ in the argument
loop. Here’s an example that attaches the plug-in to the onmouseover events of four
images:

</spans>

<scripts>
window.onload = function()

ids = Array('al', 'a2', 'a3', 'a4d')
O(ids, 'onmouseover',6 bloop)

function bloop ()

PLUG-IN

82

Chapter 10: Audio and Visual Effects

{

PlaySound('sound', 'bloop.wav', 0)
}
}

</scripts>

NOTE This plug-in relies on the browser having a plug-in of its own already installed to play
sounds, which is true in the majority of cases. Browsers without a sound plug-in will simply
ignore this code. Also, there may be a slight delay before some sounds begin playing, so this plug-
in works best when immediate playback is not essential. If you do need instant sounds, the most
robust way to accomplish this is probably to write a Flash script, or obtain a Flash sound player
and embed it. Also, small files will play quicker than large ones.

The Plug-in

function PlaySound(id, file, loop)

{
Resize (id, 0, 0)
Locate (id, ABS, 0, 0)

if (loop == 'stop') O(id) .innerHTML = ''!'
else 0O(id) .innerHTML =
InsVars ("<embed src='#1' hidden='true' " +

"autostart='true' loop='#2' />", file, loop)

EmbedYouTube()

With this plug-in, you can forget about all the HTML and other code needed to display a
YouTube video because it’s all handled for you with a single function call. Figure 10-7 shows
the Emmy Award winning movie Dr Horrible’s Sing-Along Blog being played using this plug-in.

Ficure 10-7 ﬁnlg-hh.lmph Ecamigthe 31 - Whntdows Intemet Eqlars @
Displaying YouTube I = - = |
videos is easy with @\qﬂ_‘]' & Clhery Eobini e ddop' PP exsmpled § him | *1| x
this plug-in. R TI——

11 * T C L RR-3-

M Campuger] Profected Mode OFF v Bl -

33

34

Plug-In JavaScript: 100 Power Solutions

About the Plug-in
This plug-in returns the HTML code required to embed a YouTube video. It requires the

following arguments:
e video A YouTube video identifier such as ‘apEZpYnN_1g’
e width, height The width and height at which to display the video
e hqg If‘true’ (and itis available), the video is played in high quality
e full If ‘true’, the video is allowed to be viewed in full screen mode

e auto If1, the video starts playing automatically

Variables, Arrays, and Functions

temp Local variable containing the HTML to display the video
InsVars () Plug-in to insert values into a string
How It Works

This plug-in begins by assigning to hg the query string to use to display a video in high
quality (if the argument hq is 1 or true); otherwise, it is assigned the empty string;:

if (hg) hg
else hg

'&ap=%2526fmt%3D18"'

The next four lines of code account for when one or both of the width or height
arguments are omitted, assigning sensible default values to them that will display a video
in a 4:3 aspect ratio, if required:

if (width && !height) height = width * 0.7500
if (!width && height) width = height * 1.3333
if (!width) width = 425
if (!height) height = 324

This means that, for example, if you want a video to be 300 pixels wide you can enter
that for the width, and set the height to ' ', and that empty value will be calculated for you
(it will be set to 225 in this case).

I'will gloss over the remaining statements as they simply build the string variable temp
using the various HTML parameters required and then return the string.

How To Use It

To use this plug-in, you need to have prepared a container object such as a div or span and
then pass this, along with the result of calling the plug-in, to the Html () plug-in to insert
the HTML code into the object. The following example shows how:

</spans>

<scripts>
window.onload = function ()

PLUG-IN

Chapter 10: Audio and Visual Effects

Html ('movie', EmbedYouTube ('apEZpYnN 1g', 320, 240,
"true', 'true', 1))

}

</scripts>

All you have to decide is the width and height for the video and whether to allow high
quality, full screen, and auto starting. At the most basic, you can issue a simple call such as
the following to place the video in a web page, ready for the user to click its Play button:

Html ('movie', EmbedYouTube ('apEZpYnN 1g'))

The Plug-in

function EmbedYouTube (video, width, height, hqg, full, auto)

{

if (hg) hg = '&ap=%2526fmt%3D18"

else hg = '!

if (width && !height) height = width * 0.7500

if (!width && height) width = height * 1.3333

if (!width) width = 425

if (lheight) height = 324

var temp = InsVars("<object width='#1' height='#2'>" +

"<param name='movie' value='http://www.youtube.com/v/" +
"#3& fs=1&autoplay=#4#5'>", width, height, wvideo,

auto, hq)

temp += InsVars ("</param><param name='allowFullScreen' " +
"value='#1"'></param><param name='allowscriptaccess' " +
"value='always'></param>", full)

temp += InsVars ("<embed src='http://www.youtube.com" +
"/v/#1l& fs=1&autoplay=#2#3"' type='application/" +
"x-shockwave-flash' allowscriptaccess='always' " +
"allowfullscreen='true'", video, auto, hq)

temp += InsVars ("width='#1' height='#2'></embed></object>",
width, height)

return temp

PulsateOnMouseover()

With this plug-in, you can create an onmouseover hover effect for an object that slowly fades
itin and out again, over a time and by an amount you specify. Figure 10-8 shows the same
image attached to this plug-in using three different levels of fading and transition times.

315

316

Plug-In JavaScript: 100 Power Solutions

Figure 10-8
Attach this plug-in
to an object and it
will pulsate when
the mouse passes
over it.

About the Plug-in

8 Plug-in LevaSenpt: Excenple 13 - Wandows Intomet Eqhater |

Ko) ®] € hobinDesktop Plexmpled s him v x|

W S Plag-in laenioipe

i

./r‘.:f; ‘1&\5

RSl | L

L &8

IIII I_...

8 Campiger | Profactad Modse O dg = WP -

This plug-in takes an object and attaches to its onmouseover and onmouseout events to
create a pulsating effect. It requires the following arguments:

e id An object or object ID or an array of objects and/or object IDs

msecs

opl The default opacity for the object, between 0 and 100
opl The opacity to which the object should be faded, between 0 and 100

The number of milliseconds each full cycle should take

Variables, Arrays, and Functions

J Local variable used to index into id if it is an array

finish Local variable set to true if the pulsating stops

faded Local variable set to true when the object is faded (or fading), otherwise
false

iid Local variable assigned the result of calling setInterval () to be used
later when clearInterval () is called

FA Level Property of 1d used by the Fade () plug-in to set its opacity

FA Flag Property of id used by the Fade () plug-in and set to true to indicate
that a fade transition is in progress, otherwise it is false or ‘undefined’

onmouseover Event attached to id triggered when the mouse passes over

onmouseout Event attached to id triggered when the mouse passes out

PulseateOn () Subfunction that sets up the main variables

DoPulsate () Sub-subfunction that performs the transitions

Fade () Plug-in to fade an object from one opacity level to another

setInterval () Function to set up repeating interrupts to another function

clearInterval () | Function to stop the repeating interrupts

Chapter 10: Audio and Visual Effects

How It Works

This plug-in begins by checking whether id is an array. If it is, it iterates through it and
recursively calls itself, separately passing each element of the array to be processed
individually, like this:

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
PulsateOnMouseover (id[j], opl, op2, msecs)
return

Next, the variable finish is set to false—it will later be set to true whenever the
mouse passes out of an object and the pulsating has to stop. The iid variable is also
declared, which will be used to store the value returned by the setInterval () function:

var finish = false
var iid

After this, the opacity of id is set to the level in the argument op1, to which the FA Level
property of id is also set. This property is used by the Fade () plug-in, but this plug-in needs
to access it in order to know when an object has faded in or out by the correct amount:

Opacity(id, op1l)
0(id) .FA Level = opl

Finally, in the setup section, the mouse events of id are attached to the PulsateOn ()
subfunction for starting the pulsations, and to an inline, anonymous function that sets the
variable finish to true when the mouse moves away from an object, like this:

0 (id) .onmouseover = PulsateOn
0(id) .onmouseout = function() { finish = true }

The PulsateOn() Subfunction

This function’s job is to set up the variables required prior to calling the DoPulsate () sub-
subfunction. It first declares the variable faded and assigns it the value of false, indicating
that the object is faded in—it will be t rue when it is faded out. The finish variable is also
set to false in case the plug-in has been restarted after having been previously stopped:

var faded = false
finish = false

If the variable iid has a value, a previous call has been made to the plug-in, so it is
passed to the clearInterval () function to stop any repeating interrupts that may
currently be in place. After that, setInterval () is called to set up repeating interrupts to
the DoPulsate () plug-in every INTERVAL milliseconds, like this:

if (iid) clearInterval (iid)
iid = setInterval (DoPulsate, INTERVAL)

317

318

Plug-In JavaScript: 100 Power Solutions

The DoPulsate() Sub-subfunction

This function is where the pulsating is made to occur. and it is in two parts: one for fading
out and the other for fading in. The first part checks the faded variable and, if it is not
true, the object is not faded out. Next it checks the FA_Level property of id and, if it is the
same as the value in op1, then id is at its default opacity and is ready to be faded out. Here
is the line of code that performs these two tests:

if (!faded && O(id).FA Level == opl)

Inside the if () statement, a further check is made to see whether the finish variable
has been set to true. If it has, rather than fade the object out, it’s necessary to stop the
repeating interrupts, like this:

if (finish) clearInterval (iid)

When the function next returns, it will not be called up again unless a new set of
repeating interrupts is triggered by another onmouseover event.

However, if finish is not true, then it’s business as usual for the function, which
instigates a fade out by calling the Fade () plug-in with a final opacity value of op2. The
variable faded is also set to true to indicate that the object is faded or is in the process of
doing so, like this:

Fade (id, opl, op2, msecs / 2, 0)
faded = true

The transition duration of msecs / 2 is used because there are two transitions in each
full cycle, so each transition must take only half the value in msecs to complete.

In the second part of this function, if the variable faded is true, the FA_Flag property
of id is tested. This property is set to true by the Fade () plug-in whenever a fade
transition is in progress and is set to false once a transition has completed. If FA_Flagis
true, the function will return because a fade is in progress, and it must not be interrupted:

else if (10(id).FA Flag)
Otherwise, the code within the i f () statement will be executed, as follows:

Fade (id, op2, opl, msecs / 2, 0)
faded = false

Here a call to Fade () is made with a final opacity value of op1 to fade the object back to
its default opacity level, and the variable faded is set to false to indicate that the object is
faded in or is in the process of doing so.

How To Use It

The plug-in is written so that it will always fade back to the default opacity for an object
when the mouse is moved away. To use it, attach it to any objects that you would like to
pulsate when the mouse passes over them. These can be images, divs, spans, or anything
that has an opacity property that can be changed.

Chapter 10: Audio and Visual Effects

Here’s an example that uses the same image three times, with each attached to the
plug-in using different arguments:

<scripts>
window.onload = function()

{

PulsateOnMouseover ('a', 100, 66, 500)
PulsateOnMouseover ('b', 66, 100, 750)
PulsateOnMouseover ('c', 100, 0, 1000)

}

</scripts>

The first image is set to pulsate between opacity levels of 100 and 66, so it will lighten by
a third and back again on each pulsation, over a duration of 500 milliseconds. The second
one starts with a default opacity level of 66 and a fade value of 100 so, rather than fade out,
it will in fact darken by about a third and lighten back again during each pulsation, which
will take three quarters of a second to complete. The final image simply fades between full
and zero opacity and back again over the course of a second.

The Plug-in

function PulsateOnMouseover (id, opl, op2, msecs)

{

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
PulsateOnMouseover (id[j], opl, op2, msecs)
return

}

var finish = false
var iid

Opacity(id, opl)

0(id) .FA Level = opl
0(id) .onmouseover = PulsateOn
0(id) .onmouseout = function() { finish = true }

function PulsateOn ()

{

var faded = false
finish false

if (iid) clearInterval (iid)
iid = setInterval (DoPulsate, INTERVAL)

function DoPulsate ()

{

319

320

Plug-In JavaScript: 100 Power Solutions

if (!faded && O(id) .FA_Level == opl)

{

if (finish) clearInterval (iid)

else

{
Fade (id, opl, op2, msecs / 2, 0)
faded = true

}

1

else if (!0(id).FA_Flag)

{
Fade (id, op2, opl, msecs / 2, 0)
faded = false

1

CHAPTER 11

Cookies, Ajax, and Security

PLUG-IN

322

84

Plug-In JavaScript: 100 Power Solutions

hen developing with JavaScript, you often need ways to store and retrieve data
from both the user’s web browser and the web server. This chapter provides you
with the plug-ins you need to manage the transfer of cookies between the web
document and browser and to handle Ajax calls between the browser and

web server.

There are also a couple of plug-ins you can use to bust a web page out of frames if it has
been loaded inside one and to allow you to put your e-mail address in a web document in
such a way that it is easily clickable or copyable by a surfer, but not by web bots that harvest
e-mail addresses for spamming.

ProcessCookie()

With this plug-in, you can save cookies to a user’s computer and read them back again later.
This lets you keep track user names, shopping carts, or any data you need to keep current
as a user browses your site and changes pages. Figure 11-1 shows the cookie “username’
being read back and its value displayed using an alert () message.

About the Plug-in

This plug-in can save a cookie, read it in from the computer, or delete it. It requires the
following arguments:

® action The action to take with the cookie, out of ‘save’, ‘read’, or “erase’

® name The cookie’s name

® value The value to be stored in the cookie

® seconds The number of seconds after which the cookie should expire

® path The domain and path to which the cookie applies

® domain The domain name of the website, such as mydomain.com

® secure If this has the value 1, the browser should use SSL when sending the cookie
Pug.in LavaScigt: Ecmph 34 - Windos Intomet Bl =

E) ® 2] € b habin Desktop: PJ.EEH!IJIII-rlrI v [e| % |
Kawwge fram verbpinge
u iE'Phg i Law

1'I|1 waliis petimnesd Pai useipames 15 Tied®

M:m aithied chik [OE] 1o delees the cookie, aml then
relaad the page 1o ee il the coakie Furs been sraseil

O click [Cancel] 1o dio nothing, and den aload
the page o aee F it bun retened b vabos

O] | Lancal |

I Campiger | Profacted Modse OFf dg o« WL Re -

Fieure 11-1 Setting and reading cookie values with this plug-in

Chapter 11: Cookies, Ajax, and Security

Variables, Arrays, and Functions

date Local variable containing a new date object
expires Local variable containing the expiry time and date
start Local variable set to point to the start of cookie data
end Local variable set to point to the end of cookie data

document .cookie The cookie property of the document use for accessing the cookie

toGMTString () Function to convert a date to Greenwich Mean Time
Date () Function to return a new date object
setTime () Function to set a time
getTime () Function to return a time
indexOf () Function to return the location of one string within another
substring () Function to return a portion of a string
escape () Function to encode a string to a form suitable for transferring over
the internet
unescape () Function to decode an escaped string
How It Works

This program is in three parts. The first is executed when the action argument contains the
value ‘save’. It creates a new date object and sets it to the current time and date, like this:

var date = new Date()
date.setTime (date.getTime () + seconds * 1000)

Saving a Cookie

Next, the expires variable is given the correct value to make the cookie expire in seconds
seconds, the path variable is assigned the path on the server to which the cookie applies,
the domain and secure arguments are added (if they have values), and the cookie is set by
assigning these values to document . cookie, as follows:

var expires = seconds ? '; expires=' + date.toGMTString() : ''
path = path ? '; path=' + path L
domain = domain ? '; domain=' + domain : !
secure = secure ? '; secure=' + secure !
document .cookie = name + '=' + escape(value) + expires + path

Reading a Cookie

In the next section, a cookie is read back from the computer, starting by checking whether or
not there are any existing cookies on the computer; if there are not, the value false is
returned:

if (!document.cookie.length) return false

323

324 Plug-In JavaScript: 100 Power Solutions

Otherwise, the cookie is looked up by setting the variable start to point to the string
containing the value in name followed by the = sign, by using a call to index0f (). If itis
not found, a value of -1 is returned, so the value false is returned by the plug-in:

var start = document.cookie.indexOf (name + '=')
if (start == -1) return false

If both these tests pass, then the cookie has been found, so start is set to point to the
portion of the cookie string directly after the name and = sign:

start += name.length + 1

The variable end is then set to the end of the string by finding the character ; that
terminates all cookie strings bar the last one:

var end = document.cookie.indexOf (';', start)

If it is not found, it means this was the last cookie and it is the end of the string. Therefore,
the following line of code returns either the location of the following ;, or the end of the string
and places it back in end:

end = (end == -1) ? document.cookie.length : end
Finally, the cookie value is returned:
return unescape (document.cookie.substring(start, end))

Erasing a Cookie

The code to erase a cookie makes use of a recursive call by passing the cookie name and
a value of the empty string, along with a time one minute in the past, back to itself with
an action argument of ‘save”:

ProcessCookie('save', name, '', -60)

How To Use It

To use this plug-in, put the action in the act ion argument, which should be a value of
‘save’, ‘read’, or ‘erase’, and then pass the cookie’s name and any other values needed.

For example, to set the cookie “password” to the value ‘mypass” with an expiry date of
one hour from now, you would use the following:

ProcessCookie ('save', 'password',K 'mypass', 60 * 60, '/'")
Once a cookie has been set, you can read it back like this:

value = ProcessCookie('read',K 'password', '', '', '/')
Or, you can delete a cookie like this:

ProcessCookie ('erase', 'password',6 '', '', '/")

Chapter 11: Cookies, Ajax, and Security

The final path argument specifies which part of the server the cookie applies to. The
value of */’ means that everywhere, from the document root upward, can access the cookie.
However, you can restrict the scope by, for example, changing the path to a subfolder such
as ‘/chat’. Or you can simply omit the argument to give the same scope as if it had the value
‘/’. If you do so, you can also shorten the calls used to read and erase the cookie, like this:

value = ProcessCookie('read',6 'password')
ProcessCookie ('erase', 'password')

Remember that the path (or no path) you use must be the same for all accesses to the
same cookie, otherwise you will not be able to reliably read and write it. Also, you will
probably not need to use the domain and secure arguments, which is why I omitted them
from the preceding examples, but if you do they are available.

Here’s an example that lets you test that cookies are being reliably transferred:

<scripts>
window.onload = function()

{

value = ProcessCookie('read',6 'username')
if (value != false)
alert ("The value returned for 'username' is: '" + value + "'")

else alert ("The cookie 'username' has no value.")

alert ("Click OK to store cookie 'username' with the value 'fred'")
ProcessCookie ('save', 'username',6 'fred', 60 * 60 * 24)

alert ("Click OK to retrieve the cookie")
value = ProcessCookie('read',6 'username')

if (confirm("The value returned for 'username' is: '" + value
"1 \n\nNow, either click [OK] to delete the cookie, and then\n"
"reload the page to see if the cookie has been erased.\n\nOr "
"click [Cancel] to do nothing, and then reload\nthe page to "

+ o+ o+ o+

"see if it has retained its value.\n"))
ProcessCookie ('erase', 'username')

}

</scripts>

This JavaScript first fetches the cookie ‘username’ and, if it has a value, it is displayed.
The first time you load this page, that cookie won’t exist so you'll see an alert pop up and
tell you so.

Next, the cookie is created and assigned the value ‘fred’, with alert messages before and
after so you can see the result of each action.

Finally, a confirm dialog is called up in which you can click either the OK button to
erase the cookie or the Cancel button to leave it alone. I suggest you click OK and then
reload the page to see that the cookie has been erased. Then follow through the alerts again,
but this time click the Cancel button and reload the page, and you’ll see that the cookie’s
value has been retained.

325

326

28

Plug-In JavaScript: 100 Power Solutions

The Plug-in

function ProcessCookie (action, name, value, seconds, path,
domain, secure)

if (action == 'save')
{
var date = new Date()
date.setTime (date.getTime () + seconds * 1000)

var expires = seconds ? '; expires=' + date.toGMTString() : '!'
path = path ? '; path=" + path R
domain = domain ? '; domain=' + domain :
secure = gecure ? '; secure=' + secure !
document .cookie = name + '=' + escape(value) + expires + path
else 1f (action == 'read')
if (!document.cookie.length) return false
else
var start = document.cookie.indexOf (name + '=')
if (start == -1) return false
else
start += name.length + 1
var end = document.cookie.indexOf (';', start)
end = (end == -1) ? document.cookie.length : end

return unescape (document.cookie.substring(start, end))
else 1if (action == 'erase')
ProcessCookie ('save', name, '', -60)

CreateAjaxObject()

Ajax is the power behind the vastly improved user interaction of Web 2.0. It stands for
Asynchronous JavaScript and XML, which is really a contrived acronym for a background
call made to a web server. Using this plug-in, you can easily create a new Ajax object that
can be used to send and request information to and from a web server in the background,
without the user being aware of it.

Unlike in the past, when a POST or GET stopped action in the browser until it completed,
with Ajax the browser handles the request without disrupting the web application.

Figure 11-2 shows a simple HTML file that has been fetched from the web server and
inserted into a div, using this plug-in in conjunction with the next one, GetAjaxRequest ().

Chapter 11: Cookies, Ajax, and Security

Figure 11-2

The contents of
a web page has
been inserted
into a div.

EE' = | @] b plhupingwascript cam plug-in eampd e MEICIE

W | B2 Plag-in lsaSorpn

Flug-m JawaScnpt 15 arred sqpaarely af prople whe have laamed

e basic HTRAL (and perbaps a Bile C55) bt are inkerested o domng,
r more. For ecample, ey may wish to reate more dyoamic mem
=ANT TR A systers, provice meuse hever effects, gupport Ajar fincticealoy
aed mrere. Thang Fhag-wn Javaonpt they will b shown hew to <o
al Hees Hungs and misch mem uang weor simple JavaSenpt I s
niever asmuned that vou koew amthing sbowt & selubion, aned pou
are taken through each example step by step with the explarahions
included so there is v need to lock up anpthing ehewhere. Every selotion is conmplaps
and apphiabk mmedaey, Whers possbls the bose papsddl s e
advancad a5 copt techmques such as chject cnenked programming (=ven theogh ther
may sometrres be more powerfiad) s tat you can mderskand every single phag-in

B Incamat | Protected Modse Off dg v W -

About the Plug-in

This plug-in creates an Ajax object ready for making background calls to the web server. It
requires the following arguments:

® id An object or object ID—this may not be an array

® callback The function to pass the returned data to once it has been retrieved

Variables, Arrays, and Functions

ajax Local Ajax object

readyState Property of ajax containing its state

status Property of ajax containing its status

responseText Property of ajax containing the text returned by the Ajax call

XMLHttpRequest () Function used by non-Microsoft browsers to create an Ajax object

ActiveXObject () Function used by Microsoft browsers to create an Ajax object
How It Works

Since the Ajax request object has to be created in different ways for different browsers, this

plug-in uses pairs of try{} ... catch{} statements to try each method in turn until one

works or until all have been tried and false is returned, like this:

try

{
}

catch (el)

{

var ajax = new XMLHttpRequest ()

try

32

328 Plug-In JavaScript: 100 Power Solutions

{
}

catch (e2)

{

ajax = new ActiveXObject ("Msxml2.XMLHTTP"

try

{
1
catch(e3)

{
}

ajax = new ActiveXObject ("Microsoft .XMLHTTP")

ajax = false

The first try () works with any browser but Internet Explorer version 6 or lower, the
second is for Internet Explorer 6, and the third is for Internet Explorer 5. Therefore, the tests
are made roughly in order of popular browser usage.

Assuming one of the try () functions succeeds, ajax is a new Ajax object; otherwise, it
contains the value false. If it isn’t an object, then the plug-in will return false; otherwise
the following code attaches an inline, anonymous function to the onreadystatechange
event of ajax, as follows:

if (ajax) ajax.onreadystatechange = function()
if (this.readyState == 4 &&
this.status == 200 &&
this.responseText != null)

callback.call (this.responseText)

This subfunction is called every time the readyState property of ajax changes and
checks whether it has a value of 4, the status property has a value of 200, and the
responseText property is not null. If all these tests are satisfied, it means an Ajax request
was successful, so the function passed in the callback argument is called, passing it the
data returned in this.responseText.

The actual Ajax call is not made by this plug-in. It merely catches the event ready to
populate id with the value that is returned by an Ajax call. The Ajax call itself is made in the
next two plug-ins, GetAjaxRequest () and PostAjaxRequest ().

How To Use It

Generally, you will not use this function directly if you call either GetAjaxRequest () or
PostAjaxRequest () to handle your Ajax calls, because they will call it for you; as in the
following code, which loads some data into a div:

<div id='a'></div>

<scripts>
window.onload = function ()

Chapter 11: Cookies, Ajax, and Security

url = 'ajaxtest.htm!'
GetAjaxRequest ('a', todiv, url)

function todiv ()

{

}
}

</scripts>

Html ('a', this)

The function todiv () is passed to the plug-in (note that parentheses have been omitted
from the function, otherwise only the value returned by it would be passed) and is later called
back by it when the returned data is ready. At that point, it retrieves the data using the this
keyword and assigns it to the innerHTML property of the div using the Html () plug-in.

You need to know that Ajax is a tightly controlled process to prevent hackers using it to
inject malevolent code from other servers. Therefore, only files or programs on the same
server as the one containing the Ajax can be accessed. For example, if you wanted to pull a
copy of the Google home page into a div on your website, it would not be possible and the
Ajax call would fail.

Therefore, the preceding example will not work if you test it on another server unless
you also copy the ajaxtest.htm file to it. However, you can verify that it works by calling the
script up from the Plug-in JavaScript website, using this URL:

http://pluginjavascript.com/plug-ins/example85.htm

The Plug-in

function CreateAjaxObject (id, callback)

{

try

{
}

catch (el)

{

var ajax = new XMLHttpRequest ()

try

{
}

catch (e2)

{

ajax = new ActiveXObject ("Msxml2.XMLHTTP")

try

{
!
catch (e3)

{
}

ajax = new ActiveXObject ("Microsoft .XMLHTTP")

ajax = false

329

PLUG-IN

330

Plug-In JavaScript: 100 Power Solutions

if (ajax) ajax.onreadystatechange = function()

{

if (this.
this.
this.
callback.

}

return ajax

readyState == 4 &&
status == 200 &&
responseText != null)

call (this.responseText)

8 GetAjaxRequest()

This plug-in uses the previous one, CreateAjaxObject (), to load the Wikipedia home
page into a div. Of course, Ajax can be used for much more than grabbing web pages, such
as checking whether a username is taken when signing up to a website or updating news
feeds, reader comments, or chat, and so on. However, I decided to pull in a web page for the
sake of simplicity, so that you can quickly verify that these plug-ins are working for you, as
shown in Figure 11-3.

About the Plug-in
This plug-in fetches data from a website in the background. It requires the following arguments:

® id An object or object ID—this cannot be an array

® callback The function to pass the returned data to once it has been retrieved

url The URL with which to communicate

® args Any arguments to pass to the URL

Ficure 11-3
The Wikipedia
home page has
been inserted
into a div.

Pluig-in LwvaSoipt: Ecempls 34 - Wind o Intom et Eqilara

m" IF'_ i e plugin g s k. came plu i 1ms esampl=ie hime

W | = Plag-in eaSoripn

JEICIEY

WIKIPEDIA

Emglish

¥ .| & sl
B
I — PN
S s 1

7 éa-‘;‘“
o Ir oL
] r1("~l?E1

B Incamat | Protected Modse Off

g v Wk -

Chapter 11: Cookies, Ajax, and Security

Variables, Arrays, and Functions

nocache Local variable assigned a random string to prevent caching
ajax Local variable assigned an Ajax object
CreateAjaxObject () Plug-in to return a new Ajax object
open () Method of ajax for opening a request
send () Method of ajax for sending a request
Math.random () Function to return a random number

How It Works

This plug-in uses the GET method to communicate with a server, which passes data in the
tail of the URL called a query string. However, browser caching will often interfere with
repeated requests of this type, serving up only the cached data from previous requests.
Therefore, the variable nocache is created and assigned a random string to ensure that no
two GET calls will be the same and therefore will not be cached:

var nocache = '&nocache=' + Math.random() * 1000000

Next, the variable ajax is assigned the new Ajax object returned by calling
CreateAjaxObject (), and if the result is not true (meaning the call was unsuccessful) a
value of false is returned:

var ajax = new CreateAjaxObject (id)
if (l!ajax) return false

If execution reaches this point, the Ajax object was successfully created, so the open
method of ajax is called, passing it the string ‘GET” for the type of request. This is followed
by a string comprising the URL to be called that was passed in url, the arguments supplied
in args, the nocache string just created, and the value true to tell the browser to make an
asynchronous call (a value of false would tell it to make a synchronous call):

ajax.open('GET', url + '?' + args + nocache, true)
Finally, the call is made and the value true is returned to indicate success:

ajax.send(null)
return true

How To Use It

To use this plug-in, decide what data you wish to load and from where, then call the plug-in,
passing it a function to call back when the data has been retrieved and any arguments that
require passing.

The following example is somewhat interesting in that it gets around the problem of
being unable to access websites other than the one the Ajax web page came from by calling
a PHP script on the server, which then fetches the requested data without a hitch:

<div id='a'></div>

<scripts>
window.onload = function ()

33

PLUG-IN

332

81

Plug-In JavaScript: 100 Power Solutions

url = 'http://pluginjavascript.com/plug-ins/ajaxget.php'
args = 'url=http://wikipedia.org/'
GetAjaxRequest ('a', todiv, url, args)

function todiv ()

{
}
}

</scripts>

Html ('a', this)

The ajaxget.php program is a very simple, one-liner that looks like this:
<?php if (isset($_GET['url']l)) echo file get contents($_GET['url']l); 2>

If your server supports PHP (and most do), you can use the same script on it to check
whether the server has been sent a query string looking something like url=http://website.
com?args=vals. (In the case of the preceding example, the args=vals section is specified in the
line that assigns the string url=http://wikipedia.org to the args variable).

The ajaxget.php script then uses the file_get_contents () PHP function to fetch the
requested data (in this case the Wikipedia home page), which is then returned using the
PHP echo command, which outputs the data it just fetched.

The todiv () callback function, which was passed to GetAjaxRequest (), is then called
back and passed the retrieved data, which it then promptly inserts into the innerHTML
property of the div.

As with the previous Ajax example, the restrictions put in place by browsers require that
the example and PHP files reside on the same server, so here’s a link you can try it out with:

http:/fwww.pluginjavascript.com/plug-ins/example86.htm

The Plug-in

function GetAjaxRequest (id, type, url, args)

{

var nocache = '&nocache=' + Math.random() * 1000000
var ajax = new CreateAjaxObject (id, type)
if (lajax) return false

ajax.open('GET', url + '?' + args + nocache, true)
ajax.send(null)
return true

PostAjaxRequest()

This plug-in is very similar to GetAjaxRequest () except that it uses a POST request to
interact with the web server. In Figure 11-4, the weather at the airport in Anchorage, Alaska,
has been extracted from the weather.gov RSS feed. Here it is displayed in raw form, but you
can easily write some JavaScript to use only the items of data you want and format them to
your requirements.

Chapter 11: Cookies, Ajax, and Security 333

Ficure 11-4 L Eszatiphe 57 - WK Explarar
%Ehcghr:seg'lclrjag;tn @_E::lf IF_ Tkt e g ey sz ik came plu i esamplsi1 him - | =] | "\1' b4 |

data from an
RSS feed into
a code tag.

v | Phag-in L aScript

| =Pl vergen="1.0¢ encading="TSC-0E59- 17>

orss yenmen= 2.0 amins de="http 'pwl crpfdclelemens’ 1. L=
<chanme]>
| =itk earber at Ancherage Interational Abpoert, AT - wia O AL's Wational
| Weather Service=ite=
k=i rwrang weathe gowdaia) coenl_oba el
“lastEudeDate> S, 11 Spr 2010 O3:53:00 -0800<Tast Bl dD ate=
=Gt =
| cdemeripbon>Weather condiians from HOUA' s Mational Weather Sermce .

B Incamat | Protected Modse Off dg o« WP -

About the Plug-in

This plug-in fetches data from a website in the background. It requires the following
arguments:
® id An object or object ID—this cannot be an array
® callback The function to pass the returned data to once it has been retrieved
® url The URL with which to communicate

® args Any arguments to pass to the URL

Variables, Arrays, and Functions

contenttype Local variable containing the content type used for
URL-encoded forms

ajax Local variable assigned an Ajax object
CreateAjaxObject () Plug-in to return a new Ajax object
open () Method of ajax for opening a request
setRequestHeader () Method of ajax for setting various headers
send () Method of ajax for sending a request
Math.random () Function to return a random number

How It Works

This plug-in is as simple as GetAjaxRequest (). It starts by setting the content type of the
date in the request being sent to that of a URL-encoded form. It then creates the Ajax object
with a call to CreatehAjaxObject (), and if the result is not true, returns the value false
as it cannot proceed any further:

var contenttype = 'application/x-www-form-urlencoded'
var ajax = new CreateAjaxObject (id, callback)
if (l!ajax) return false

334

Plug-In JavaScript: 100 Power Solutions

If the object creation was successful, it goes on to open up the request, passing a type of
‘POST” in POST, the URL in URL, and the value true, for an asynchronous request:

ajax.open('POST', url, true)

Next, the content type, content length, and connection headers are sent:

ajax.setRequestHeader ('Content-type', contenttype)
ajax.setRequestHeader ('Content-length', args.length)
ajax.setRequestHeader ('Connection', 'close")

Finally, the request is sent and the value true is returned to indicate success:

ajax.send (args)
return true

How To Use It

You call this plug-in in exactly the same way as GetAjaxRequest () —it’s just that the process
used by the plug-in to perform the Ajax is a POST, not a GET request. Therefore, the target
of the request also needs to respond to the POST request, as is the case with the following
example, which fetches the weather details at Anchorage, Alaska airport:

<div id='a's></div>

<scripts>
window.onload = function ()

{
url = 'ajaxpost.php'
args = 'url=http://www.weather.gov/xml/current obs/PANC.rss'
PostAjaxRequest ('a', todiv, url, args)

function todiv ()

{

var rss = this.replace(/\</g, '<')
rss = rss.replace(/\>/g, '>')
rss = rss.replace(/\n/g, '
'")
Html('a', rss)
}
}
</scripts>
The URL supplied to the plug-in is the PHP script ajaxpost.php, which is in the same
folder as the example file. It’s another simple one-line PHP script, which looks like this:

<?php if (isset($_POST['url'])) echo file get contents($ POST['url'l); ?>

This is almost the same as the ajaxget.php script except that it processes POST requests.
You can copy it to your own server, where it should work fine if it supports PHP.

This example is a little more interesting than the previous two in that an RSS feed is
fetched. It’s no different than a web page as far as Ajax is concerned, but displaying it after

PLUG-IN

88

Chapter 11: Cookies, Ajax, and Security 335

it has been retrieved poses a problem, in that it contains several XML tags that won’t show
up under HTML.

To correct this, the callback function todiv () has been modified to exchange all
occurrences of the < and > symbols with their HTML entity equivalents &1t ; and > ; and
all linefeed characters are changed to
 tags.

For reasons previously stated, the PHP and example should be in the same folder of the
same server, so here’s a URL you can use to test the example:

http:/fwww.pluginjavascript.com/plug-ins/example87.htm

NoTe With XML, you would probably want to parse the tree to extract just the elements you want,
but if you are fetching only text or HTML, you have all the tools you need to easily make all
types of Ajax calls and act appropriately on the data they return.

The Plug-in

function PostAjaxRequest (id, callback, url, args)

{

var contenttype = 'application/x-www-form-urlencoded'
var ajax = new CreateAjaxObject (id, callback)
if (lajax) return false

ajax.open('POST', url, true)

ajax.setRequestHeader ('Content-type', contenttype)
ajax.setRequestHeader ('Content-length', args.length)
ajax.setRequestHeader ('Connection', 'close!')

ajax.send (args)
return true

FrameBust()

This is a simple but always useful plug-in that checks whether it is running inside a frame
and, if it is, busts out of it, placing the current page in its own parent page. This can be
useful when you find that other sites link to your pages, but bury them inside iframes so
that they do not display at their best. Figure 11-5 shows one web page embedded within
another and displaying an optional confirm dialog, offering to bust out of the frame.

About the Plug-in

This plug-in can close any embedding frame, making a web page the parent web page for
the current tab or window. It supports the following optional argument:

® message If this has a value, it will be displayed in a confirm dialog window
offering the user the option to click OK to close the surrounding frame. If it doesn’t
have a value, the plug-in will automatically and silently close the embedding frame.

336

Plug-In JavaScript: 100 Power Solutions

Ficure 11-5 Pluig-in LavaSenpt: Ecangsla 58 - Wind ows Eqlarir
%Ehcghr:sbzlsutg;gur @_E" (] Cillsens Bobin Dkt op' Pl eormpled & rim -[4| x |

web pages out of

embedding frames. W _| B Phyin Jemmscrgs

File: & 0

Thii page had esn baaded up wihin 3 sunoending fiame.
This we ﬂ Plaass chek [OK]iF pou would ke to dose the sumonding fams.

File: Lok || e |

This web page will affer to oot ont of a frsone i it fimds st is
Iy heen called up witlin ome

8 Campiger | Profacted Modse OFf dg o« WP -

Variables, Arrays, and Functions

top Object representing the outermost of any frame set
self Object representing the current document
top.location Property of top containing URL of its document
self.location.href Property of self.location containing its URL
confirm() Function to offer a yes/no confirm dialog

How It Works

This plug-in either makes the current document the top one by setting its URL to that of the
top object’s, or it displays a message (if the message argument has a value) that offers the
user the choice of breaking out of frames or leaving them as they are.

How To Use It

To use this plug-in, either call it without an argument if you never want your pages to be
embedded in frames, or pass a message for a confirm dialog, to which the response is to
click OK to bust out of frames or Cancel to keep the pages as they are. Here’s an example of
passing a message:

<script>

FrameBust ("This page has been loaded up within a surrounding frame.\n" +
"Please click [OK] if you would like to close the surrounding frame.")

</scripts>

You can use \n or other escaped characters in the message to control the way it displays.
If you don’t wish to provide a message and want all pages to bust out of frames, just
leave the message string out of the call to FrameBust ().

PLUG-IN

89

Chapter 11: Cookies, Ajax, and Security

The Plug-in

function FrameBust (message)

{

if (top != self)

{

if (message)

{
if (confirm(message))
top.location.replace(self.location.href)

}

else top.location.replace(self.location.href)

ProtectEmail()

Spamming these days is worse than ever now that the spammers have access to huge
botnets of hacked computers and use automated programs to continuously trawl the web
looking for e-mail addresses to harvest. However, e-mail is still extremely important and
you usually need to display your e-mail address prominently on your site.

Thankfully, with this plug-in you can display your e-mail address in such a way that
your users can click or copy it, yet it will be obfuscated from automatic e-mail harvesters, as
shown in Figure 11-6, where the e-mail address is both copyable and clickable but doesn’t
actually appear as a whole in the web page.

About the Plug-in

This plug-in obfuscates an e-mail address in such a way that spam harvesting programs
should not be able to find it. It requires as many arguments as you like because you break
your e-mail address into multiple strings and then pass them all as parameters.

Variables, Arrays, and Functions

3 Local variable used to iterate through the arguments array
a Local variable containing the e-mail address to display
arguments Array containing all the arguments passed to a function
Ficure 11-6 8 Pug-in LvaSeipt: Ecemgla 39 - Windows Intomet Eqlarse = e

Use this plug-in to
keep your e-mail
address visible but
unharvestable.

ﬁ'i::l' & Clheny' Eobini D ki op' PP axwmpledhim - | +3 | .4 |

Wi | % Plag-in laeatconpt

Please contact me at: simon. jones @ myserver. com

i Campiger | Profactad WModse OFf dg o« B R -

331

338

Plug-In JavaScript: 100 Power Solutions

How It Works

This is a simple function that relies on the fact that all arguments sent to a function can be
accessed via the arguments array. What it does is piece all the arguments it is sent back
together to reconstruct an e-mail address using a for () loop, like this:

var a = "'
for (var j=0 ; j < arguments.length ; ++j)
a += arguments[j]

The variable a is then used to create a hyperlink to the e-mail address, with the code
itself using segmented strings to further obfuscate matters. The result is then returned,
like this:

return "<a hr" + "ef" + "='mai" + "1t" + "o:" + a + "'>" + a + ""

How To Use It

To use this plug-in, break your e-mail address up into multiple strings and then pass them
all to the plug-in. Here’s an example showing how to do this for the e-mail address sinon.
jones@myserver.com.

<h2>Please contact me at: .</h2>

<scripts>
window.onload = function ()

Html ('email', ProtectEmail('sim', 'on.j', 'ones',
'@emyserv', 'er.c', 'om'))

}

</scripts>

Where you wish the e-mail address to be shown, just place an empty span and give it an
ID. You can then insert the e-mail address into the innerHTML property of the span from
within a section of JavaScript. If you ensure that the e-mail address is completely broken
into parts, it is doubtful that any known automatic harvester will be able to extract it for
spamming purposes.

The Plug-in

function ProtectEmail ()

{

var a = '!

for (var j=0 ; j < arguments.length ; ++3)
a += arguments[j]

return "<a hr" + "ef" + "='mai" + "1t" + "o:" + a + "'>" + a + ""

CHAPTER 12

Forms and Validation

340

PLUG-IN

9

Plug-In JavaScript: 100 Power Solutions

receive the data that is required and remove any attempts at hacking or compromising
your server or the data on it. However, it is very helpful to your users if you also
provide validation directly in the browser.

For example, it can be particularly helpful to provide extra assistance when a user is
filling in a form to save it from having to be represented to them if it fails validation at the
server. It also cuts down on your bandwidth usage and keeps the optimum number of
concurrent users on the server.

This chapter includes plug-ins to provide extra hints for blank form fields that must be
filled out, to provide the ability to resize text area inputs if a user types more than the
expected amount of text, to check that e-mail addresses and passwords are valid, to clean
up user input strings, and to check that credit card number checksums validate.

I Torm validation is something you must do on your web server to ensure that you

FieldPrompt()

When a form field hasn’t been entered, there’s a large blank area of white space that isn’t
being used. With this plug-in you can display a prompt in the field that disappears as
soon as the user starts typing into it. Figure 12-1 shows two empty input fields containing
prompts that were created using this plug-in, in a similar way to the new HTML5 placeholder
feature.

About the Plug-in

This plug-in takes a form input object and, if it is blank, displays a prompt of your choosing.
It requires the following arguments:

® id An object or object ID—this cannot be an array

® prompt The prompt string to display

® inputcolor The color to use for displaying user input

® promptcolor The color in which to display the font

® promptstyle The font style to use for the prompt, such as ‘italic’

5;?:“;'1;?% 1 Flug-in Invserit Example 20 - Windews Intemet Explarer =
i ug-i =, —
provides additional @-L_.ff r& L e Bobin' Deabop' Phasemp). him MEE |

information to your -
users. W | 38 Plug-n IresScngt |

Signup Form

Bawen Fimars smeryooenama
Feils FEeAss sefar o aanhd fhaidess

W Conputsr | Pridscted Wode: O g - iM% -

Chapter 12: Forms and Validation

Variables, Arrays, and Functions

FP_Empty Property of id that is true when the input field doesn’t contain any
input, otherwise false
value Property of id containing its contents
fontStyle Style property of id containing the font style of the field
color Style property of id containing the color of the field text
FP_Off () Subfunction called when the user moves the cursor into the field
FP_On() Subfunction called when the user moves out of a field
How It Works

This plug-in starts by giving the input and prompt colors and styles default values if none
have been passed to it, like this:

inputcolor = inputcolor ? inputcolor : '#000000'
promptcolor = promptcolor ? promptcolor : '#888888'
promptstyle = promptstyle ? promptstyle : 'italic!'

Next, the FP_0n () subfunction is called to display the supplied prompt if the field is
empty, and the onfocus and onblur events of id are attached to the FP_0Off () and FP_
on () subfunctions so that the prompt can be switched in and out according to whether the
user has clicked within the field or outside of it:

FP_On ()
0(id) .onfocus = FP_Off
0(id) .onblur FP_On

The FP_Off() Subfunction

This function is called when the field gains focus. It first checks the value property of id to
see whether it contains the prompt string. If it does, then the prompt needs to be removed
ready for the user to type in some input, like this:

0(id) .FP_Empty = true

0(id) .value = '

S(id) .fontStyle = '!'

S (id) .color = inputcolor

Here, the FP_Empty property of id is set to true to indicate that the field is empty, the
field’s value is set to the empty string, any font style is turned off, and the field text color
is set to the value in the inputcolor argument:

If the field doesn’t contain the value in prompt, then the FP_Empty property is set
to false.

The FP_On() Subfunction

This function displays the value in prompt as long as the field doesn’t already have a value
entered by the user, which it checks by examining the value property of id. It also allows
the code within to be executed if the field contains the prompt string. The reason for this is

|

342

Plug-In JavaScript: 100 Power Solutions

that if the user reloads the page while a prompt is displayed, the value property will already
be set to the prompt before this function runs. This is the code that inserts the prompt:

0(id) .FP_Empty = true

0(id) .value = prompt
S(id) .fontStyle = promptstyle
S(id) .color = promptcolor

Here the FP_Empty property is first set to true to indicate that there isn’t any user
entered text in the field, value is assigned the string in prompt, and the fontStyle and
color properties of the prompt are set.

However, if the value property does contain text entered by the user, the FP_Empty
property of id is set to false to indicate this.

How To Use It

To use this plug-in, pass it a form field object, a prompt string, and optional color and style
arguments. Here’s an example that creates two fields, both displaying different prompts:

<h2>Signup Form</h2>

<pre>

Name: <input id='name' type='text' size='50'/>
Email: <input id='email' type='text' size='50'/>
</pre>

<scripts>

window.onload = function/()

{

FieldPrompt ('name', "Please enter your name",
'"#000000"', '#444444', 'italic')
FieldPrompt ('email', "Please enter your email address",
'"#000000"', '#444444', 'italic')
}
</scripts>

The two calls to FieldPrompt () can also use the plug-in’s default values, like this:

FieldPrompt ('name', "Please enter your name")
FieldPrompt ('email', "Please enter your email address")

The Plug-in

function FieldPrompt (id, prompt, inputcolor, promptcolor, promptstyle)

{

inputcolor = inputcolor ? inputcolor : '#000000'
promptcolor = promptcolor ? promptcolor : '#888888'
promptstyle = promptstyle ? promptstyle : 'italic!
FP_On ()

0 (id) .onfocus = FP_Off
0(id) .onblur = FP_On

PLUG-IN

9

Chapter 12: Forms and Validation

function FP_Off ()

{

if (0(id) .value == prompt)
{
0(id) .FP_Empty = true
0(id) .value =
S(id) .fontStyle = '!'
S(id) .color = inputcolor

}

else O(id) .FP_Empty = false

}

function FP_On()

{

if (0(id).value == '' || 0(id).value == prompt)
{

0(id) .FP_Empty = true

0(id) .value = prompt

S(id) .fontStyle = promptstyle

S(id) .color = promptcolor

}

else O(id) .FP_Empty = false

ResizeTextarea()

When you offer a textarea field in a form in which users can enter more than a single line of
input, it can be difficult to decide how large to make it. If it is too small, users will have to
scroll back and forth through it when making revisions. On the other hand, if it is too large,
it wastes space and can look intimidating, implying that a large amount of text is expected
to be input.

This plug-in provides the solution by allowing you to specify minimum and maximum
vertical heights within which the textarea is allowed to expand or contract, according to the
amount of text entered. In Figure 12-2, a 64 by 3 column textarea is displayed, in which
some text is being entered.

Then, in Figure 12-3, a total of 8 lines of text have been input, and the textarea has
expanded accordingly.

About the Plug-in

This plug-in adjusts the height of a textarea field according to the amount of text it contains,
within bounds that you specify. It requires the following arguments:

® id An object or object ID or an array of objects and/or object IDs

® min Optional argument specifying the minimum height that id can be reduced to

® max Optional argument specifying the maximum height that id can be enlarged to

343

3

Plug-In JavaScript: 100 Power Solutions

Ficure 12-2

Some text is being
entered into a
textarea form field.

mv [C:\Uharit Rt Danktopt P ymsarng el hem - [4] % I
| Pugn Inaerpt []

Flease emier a shovi hio

By ficet job in oompuring ik Ghe|

al

I Compuber | Profected Mode: O g~ HiNE: -

Variables, Arrays, an

d Functions

J Local variable for iterating through id if it is an array
onmouseup Event of id that calls the subfunction after a mouse click
onkeyup Event of id that calls the subfunction after a key press
scrollHeight Property of id containing its total height in pixels
clientHeight Property of 1d containing its visible height pixels

rows Property of 1d containing its number of rows
DoResizeTextarea () Subfunction to resize the height of id

After several more

lines are entered, w" |] Conartt Fobin' Duap Pyecarnp e berm - 4] x ||
the textarea T

expands W |l Plug-n Iraderpt |

accordingly.

Flease emier a shovi hio

Fm

My ficet job 1h oompuring (ib che =aEly 1503 was d=algning
communicontion aystanr for dissbled pecple. Thawxs coopoired

aimple inpat dewioEs |with so=cim2a only & aingle Deyi and
soart xofcosre to iotecprak chean.

Eka UK'x top compubter ragericrAas wlace I hed maxcorcsd colas
earging feot Editorial Assiscant, throwgh De=puty Editor,

Lar=r om [moved iamo publishing and worked for many of

stursx Editor, Promaticna Cocarcdinmtcr mrd Cowver Dime Editoo.

I Compuber | Profected Mode: O dg v MMy -

Chapter 12: Forms and Validation

How It Works

This plug-in starts by calling itself recursively if id is an array, passing each element to be
processed individually, like this:

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3j)
ResizeTextarea (id[j], min, max)
return

Next, if min or max have not been passed values, they are assigned defaults of 0 and
100 lines, respectively:

min = min ? min : 0
max = max ? max : 100

Finally, in the setup section, the onmouseup and onkeyup events of id are assigned to
the DoResizeTextarea () subfunction:

0(id) .onmouseup = DoResizeTextarea
0(id) .onkeyup = DoResizeTextarea

The DoResizeTextarea() Subfunction

This function contains just two while () loops. The first one continuously increases the
number of rows that id has until either the text in the textarea is fully visible, or the
maximum number of rows in the argument max is reached:

while (O(id) .scrollHeight > 0O(id) .clientHeight && O(id) .rows < max)
++0(1d) .rows

The second while () loop performs the inverse, reducing the height of the textarea so
that it is only as large as the text it contains or until it reaches the minimum height supplied
in the argument min:

while (0(id) .scrollHeight < 0(id) .clientHeight && O(id) .rows > min)
--0(id) .rows

NoOTE While automatically expanding and reducing the textarea seems to work fine on most major
browsers, once the clientHeight property in Firefox has been increased it doesn't seem to
reduce it back down again if text is deleted, so the textarea will net shrink. If you can think of a
way to get Firefox to reduce as well as increase a textarea according to the text within it, please
let me know via the website.

345

346 Plug-In JavaScript: 100 Power Solutions

How To Use It

To use this plug-in, prepare the textarea by setting it to the width and height you need, then
pass it to the plug-in, along with an optional minimum and maximum height. This example
shows how:

<h3>Please enter a short bio</h3>
<textarea id='ta' rows='3' cols=64'></textarea>

<scripts>
window.onload = function ()

{
}

</scripts>

ResizeTextarea('ta', 3, 8)

In this example, a minimum height of 3 and a maximum height of 8 rows have been
passed. However, you can omit one or both of these arguments, in which case minimum
and maximum values of 0 and 10 will be used.

The Plug-in

function ResizeTextarea (id, min, max)

{

if (id instanceof Array)

{
for (var j = 0 ; j < id.length ; ++3)
ResizeTextarea (id[j], min, max)
return

}

min = min ? min : 0
max = max ? max : 10

0(id) .onmouseup = DoResizeTextarea
0 (id) .onkeyup = DoResizeTextarea

function DoResizeTextarea ()

{

while (O(id) .scrollHeight > O(id) .clientHeight && O(id) .rows < max)
++0(id) . rows

while (0(id) .scrollHeight < 0(id) .clientHeight && O(id) .rows > min)
--0(id) .rows

=

= 92 ValidateEmail()

= With this plug-in, you can make a quick test on a supplied e-mail address to determine
whether it is legally structured. This lets you filter out typos, as well as people simply
entering nonsense to see what will happen. Figure 12-4 shows the result of testing the
fictitious e-mail address bill@gates.com, which validates since it is correctly formed.

Chapter 12: Forms and Validation

Ficure 12-4 Fiug-in Irvatserioh Exmple 82 - Windews Irtemet
This plug-in tests
whether an e-mail @_Of |:' Ly B b’ Deakiop' P Iecerng el H a

address validates. - - X
T ;’F‘lug-n lruEs ke 4 Il\. That sddmay nwaid

| Emait hili@gakes com [Subrit |

]

i Compute | Prodectsd Wode:

About the Plug-in

This plug-in checks whether an e-mail address is correctly structured and in a valid format.
It requires the following argument:

® email A string containing the e-mail address to validate

Variables, Arrays, and Functions

at Local variable containing the position of the @ sign in email

left Local variable containing the part of email before the @

right Local variable containing the part of email after the @

llen Local variable containing the length of 1eft

rlen Local variable containing the length of right

test () Function to test for a match in a string

indexOf () Function to locate the first occurrence of one string in another
How It Works

This function tests various aspects of a supplied string to check whether it conforms to the
correct standards for an e-mail address. It starts off by seeing if there is an @ symbol in the
string, using a call to indexOf ():

var at = email.indexOf('@"')

Then, if there is no @ or the argument contains characters that are not word characters
(a—z, A-Z, or 0-9), hyphens, periods, or the @, underline, or plus symbols, the plug-in returns
false, as it has already been determined that the e-mail address is invalid, as follows:

if (at == -1 || /["\w\-\.\@_ \+]/.test(email)) return false

Next, the variables 1left and right are assigned the string on either side of the @ symbol,
and the variables 11en and rlen are then set to the lengths of each, like this:

var left = email.substr (0, at)
var right = email.substr(at + 1)
var llen = left.length

var rlen = right.length

347

348

Plug-In JavaScript: 100 Power Solutions

Using these values, if 1eft is less than 1 or greater than 64 characters, or right is less
than 4 or greater than 254 characters, or if there is no period after the @ symbol, then e-mail
address is invalid, and so the plug-in returns false:

if (llen < 1 || 1llen > 64 || rlen < 4 || rlen > 254 ||
right.indexOf ('.') == -1) return false

After all these tests, the format of the e-mail address appears to be valid, so the value
true is returned:

return true

NoOTE A valid e-mail address should be of the form 1-64 characters@4-254 characters. It can
contain the letters a—z or A-Z, the digits 0-9, and the hyphen, period, underline and plus
characters. No other characters are recommended, even though some may seem to be supported,
as they could conflict with shell scripts or other programs used to process emails. If you need to
support other characters place them into the reqular expression passed to the test () function in
the second line of the plug-in. Also there should always be a period after the @ symbol to divide
the domain name from the top level domain extension.

How To Use It

To use this plug-in, pass it a string containing an e-mail address, and it will return either
true or false, depending on whether the e-mail address is valid. Here’s an example that
will let you test the plug-in by entering different e-mail addresses:

Email: <input id='email' type='text' name='email' />
<button id='button's>Submit</buttons>

<scripts>
window.onload = function ()

{

O('button') .onclick = function()

{

if (vValidateEmail (O('email') .value)) alert("That address is valid")
else alert ("That email address is invalid")

}
}
</scripts>
The HTML section creates an input field and then places a button after it. The <script>

section then attaches an anonymous, inline function to the button via its onclick event,
which validates the e-mail address each time it is clicked.

The Plug-in

function ValidateEmail (email)

{

var at = email.indexOf('@"')

293

if (at ==

var left =
var right =
var llen =
var rlen =

Chapter 12: Forms and Validation

email.substr (0, at)
email.substr(at + 1)
left.length
right.length

-1 || /IM\w\-\.\@_\+]/.test(email)) return false

if (llen < 1 || 1llen > 64 || rlen < 4 || rlen > 254 ||
right.indexOf ('.') == -1) return false

return true

ValidatePassword()

To help your users pick more secure passwords, you may wish to require them to be of a
certain format, such as including both upper- and lowercase characters, as well as digits
and punctuation. With this plug-in, you can choose any or all of these and the plug-in will
return true or false, depending on whether the user has satisfied your requirements.

In Figure 12-5 the password that has been entered has not verified.

About the Plug-in

This plug-in takes a password string and then returns either true or false, depending on
whether it satisfies the conditions also passed as arguments. It requires the following

arguments:

® pass The password to validate

® min The minimum password length

® max The maximum password length

® upper If true orl, atleast one uppercase character must be in pass

® lower If true or 1, atleast one lowercase character must be in pass

® dig If true or 1, atleast one digit must be in pass

® punct If true orl, at least one nonalphanumeric character must be in pass

Figure 12-5
Ensure your users
enter strong
passwords with
this plug-in.

 Plug-in lgwaSongh Bample 02 - Windows Irtemat
.ﬁf I:' LA’ Fobn® Dmakop' P Ied
o =

W | Plug-n IroxSzopt

Fassword: seswss | Submit |

Froem werbpage

A T passwon bs i

i Compute | Prodectad Wodeom

349

350

Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

len Local variable containing the length of pass
valid local variable that is true if pass validates, otherwise false
test () Function to test for a match in a string

How It Works

This plug-in first assigns the length of the password to 1en and initializes valid with the
value true, which it will retain if it passes the tests to determine its validity:

var len = pass.length
var valid = true

Next, pass is checked to ensure it is within the lengths required by the min and max
arguments, and valid is assigned the value false if not:

if (len < min || len > max) valid = false

The following four tests are made only if the argument they work from is true or has
the value 1. For example, the following statement returns false if the argument upper is
true or 1 and there is not at least one uppercase letter in pass:

else if (upper && !/[A-Z]/.test(pass)) valid = false

The following three statements do the same for lowercase letters, digits, and
punctuation (nonalphanumeric) characters:

else if (lower && !/[a-z]/.test(pass)) valid = false
else if (dig && !/ [0-9]/.test (pass)) valid = false
else if (punct && !/[%a-zA-Z0-9]/.test(pass)) valid = false

If pass meets all these tests, then valid will retain its initial value of true, which is
then returned; otherwise, one of the tests will set valid to false, and that value will be
returned:

return valid

How To Use It

To use this plug-in, pass it a password string and the arguments you want for the password
to meet your security requirements. The following example uses the strictest policy the plug-in
supports, in which the password must include at least one each of upper- and lowercase
letters, digits, and punctuation. It also requires passwords to be at least 8 characters long
(but no more than 16):

Password: <input id='pass' type='password' name='pass' />
<button id='button's>Submit</buttons>

<scripts>

PLUG-IN

94

Chapter 12: Forms and Validation

window.onload = function()

{

O('button') .onclick = function()

{
if (validatePassword(O('pass') .value, 8, 16, 1, 1, 1, 1))
alert ("That password is wvalid")
else alert ("That password is invalid")

}
}
</scripts>

The Plug-in

function ValidatePassword(pass, min, max, upper, lower, dig, punct)

{

var len = pass.length

var valid = true

if len < min || len > max) valid = false
else if (upper && !/[A-Z]/.test(pass valid = false

)

) valid = false
) valid = false
t(pass)) valid = false

else if (dig && !/[0-9]/.test (pass

(

()
else if (lower && !/[a-z]/.test(pass)

()
else if (punct && !/["a-zA-Z0-9]/.tes

return valid

CleanupString()

This plug-in provides a number of string manipulation functions that often come in handy.
For example, don’t you hate it when you enter a credit card or phone number into a web
form, only to be told you aren’t allowed to use spaces and must enter it again? If your
content management system doesn’t like spaces either, this plug-in can remove them before
they arrive at your server. It can also remove all digits, text, or punctuation, convert from
lower- to uppercase text (and vice versa), and even change all groups of multiple spaces
into just a single space. Figure 12-6 shows a credit card number being entered into a web
form including spaces.

Ficure 12-6 8 Plug-in lywaSorpt Bpmple B - Windows rtemt Explaner EE

A user has entered

.,
a sequence of @Uf ||: LU’ Eobin® Deakiop' P lecernp e him --| +a | o |
credit card -
numbers with e |
spaces.] :
Credt Card Mumber: 01 5 3587 8910 2145 Submit

i Compute | Prodectad Wode: O g - RLiN% -

351

352

Plug-In JavaScript: 100 Power Solutions

Figure 12-7 shows the input after the user has clicked the Submit button—all the spaces
are now removed, leaving only the card number behind.

About the Plug-in

This plug-in takes a string and can perform one or more of several actions on it. It requires
the following arguments:

® string The string to clean up

® allspaces If true orl,all spacesin string are removed

® alldigs If true or1,all digitsin string are removed

® alltext Iftrueorl,alltextinstringisremoved

® allpunct If true or 1, all punctuation in string is removed

® uptolow If true orl, all uppercase characters in string are converted to
lowercase

® lowtoup If true or 1, all lowercase characters in string are converted to
uppercase

® spacestosingle If trueorl,all groups of multiple spaces in string are
reduced to a single space

Variables, Arrays, and Functions

‘ replace () ‘ Function to replace one value with another in a string

How It Works

This plug-in goes through each of the arguments it is supplied in turn. If the argument has
the value true or 1, then the matching replace () function is performed on the string. For
example, the following statement removes all spaces from string when the allspaces
argument is 1 or true:

if (allspaces) string = string.replace(/[\sl/g, '')

All the remaining statements are very similar, differing only by the regular expressions
used for testing.

F— = —_—————————————————— = =

quunz 1277 ﬂH.ul—n) r-h - —
This plug-in has iy J"Iﬁt Example O - Windows Irtemet Explarer E E| |
automatically @LJ' £ Ci\lbhan Fobin® Dmaktop| Phsxernp e hm -[ap [%
stripped out the -

spaces. . w38 Plug-n lrosdengt |

Credit Card Mumber: 012 H667891 033456 { Submi |

S Compute | Prodectsd Wode: O g - RLiN% -

PLU

95

Chapter 12: Forms and Validation

How To Use It

To use this plug-in, pass it a string along with the arguments needed to perform the changes
required on the string. The modified string will then be returned. Here’s an example that
cleans up a credit card number by removing all spaces, text, and punctuation from it:

Credit Card Number:
<input id='ccnum' type='text' name='ccnum' size='24"' />
<button id='button's>Submit</buttons>

<scripts>
window.onload = function()

{

O('button') .onclick = function()

{

O('ccnum') .value =
CleanupString (O ('ccnum') .value , 1 ,0 ,1, 1, 0, 0, 0)

}
}
</scripts>

To use this in a web form, you could change the onclick event used in this example to
the onsubmit event of your form. If you do, make sure that when the plug-in has finished
execution, the function you point the event to returns true, because any other value will
likely cancel the form submission, and a return value of false certainly will cancel it.

The Plug-in

function CleanupString(string, allspaces, alldigs, alltext, allpunct,
uptolow, lowtoup, spacestosingle)
{

if (allspaces) string = string.replace(/[\sl/g, '")

if (alldigs) string = string.replace(/[\dl/g, '')

if (alltext) string = string.replace(/[a-zA-Z]/g, '')

if (allpunct) string = string.replace(/[*\sa-zA-Z0-9]/g, '')
if (uptolow) string = string.toLowerCase ()

if (lowtoup) string = string.toUpperCase ()

if (spacestosingle) string = string.replace(/[\sl/g, ' ')

return string

ValidateCreditCard()

With this plug-in, you can check that a credit card number you are given by a user is at least
of the correct format and has the right checksum before submitting it to a card processing
company. Figure 12-8 shows a set of made up credit card details that did not pass the
validation.

353

354 Plug-In JavaScript: 100 Power Solutions

Ficure 12-8 8 Plug-in rvaSeript Exampla 95 - Windows Intemt Explorsr ===
Checking whether — T = i
credit card details ﬁ"x_,-"' Bl C g 25 hnim -4 |
match basic

’ W | Plug-inleeSonpt
requirements g

Your credit card details:

Thest card i reyt vlbdaie

Card Humber; 0203162002 1367 —
Expire=; Mooch 12 Yaar aliil

| Bubmi Cradi Card | |I|
i Comguter | Protected PAode: CF TR - IR -

About the Plug-in

This plug-in takes details about a credit card and returns true or false depending whether
the card passes checksum and date verification. It requires the following arguments:

® number A creditcard number
® month The card’s expiry month

® year The card’s expiry year

Variables, Arrays, and Functions

left Local variable containing the first 4 digits of number
cclen Local variable containing the number of digits in number
chksum Local variable containing the card’s checksum
date Local date object
substr () Function to return a portion of a string
getTime () Function to get the current time and date
getFullYear () Function to get the year as a 4-digit number
getMonth () Function to get the month

How It Works

This function first ensures that all three parameters passed to it are strings by adding the
empty string to them, like this:

number += ''
month += "'
year += !

Chapter 12: Forms and Validation

Next, each argument is processed through the CleanupString () plug-in to ensure that
they are in the formats required:

number = CleanupString(number, true, false, true, true)
month = CleanupString(month, true, false, true, true)
year = CleanupString (year, true, false, true, true)

After this, the variable 1eft is assigned the first 4 digits of number, cclenis set to the
card number’s length, and chksum is initialized to 0:

var left = number.substr (0, 4)
var cclen = number.length
var chksum = 0
Next, several if () ... else if () statements check that left contains a valid

sequence that matches a known brand of credit card and, if it does, that the card number
length in cclen is correct for the card type. If 1eft doesn’t match a known card, or it
matches one but cclen is the wrong length, then the plug-in returns false to indicate that
the card didn’t verify.

If these initial tests are passed, the card’s checksum is then calculated using an algorithm
invented by IBM scientist Hans Peter Luhn (for further details see en.wikipedia.org/wiki/Luhn_
algorithm), like this:

°

for (var j = 1 - (cclen % 2) ; j < cclen ; j += 2)
if (j < cclen) chksum += number[j] * 1

o

for (j = cclen $ 2 ; j < cclen ; j += 2)

{

if (j < cclen)

{

d = number[j] * 2
chksum += d < 10 2 d : d - 9

}
if (chksum % 10 != 0) return false

Finally, the date is looked up and compared to the values supplied to the plug-in, so that
even if the card has validated this far, the plug-in will still return false if the card has expired:

var date = new Date()
date.setTime (date.getTime())

if (year.length == 4) year = year.substr(2, 2)
if (year > 50) return false
else if (year < (date.getFullYear() - 2000)) return false
else 1f ((date.getMonth() + 1) > month return false

else return true

355

356

Plug-In JavaScript: 100 Power Solutions

How To Use It

To use this plug-in, pass it a card number, expiry date, and month and it will return true or
false. Of course, this algorithm tests only whether the card meets certain requirements and
not whether the user has entered a genuine card or whether the card has been revoked or is
over the user’s credit limit, and so on. The purpose of the plug-in is mainly to catch typing
errors and people entering random data to see what happens.

This example shows how you might use the plug-in:

<h3>Your credit card details:</h3>

Card Number: <input id='ccnum' type='text' name='n' size='24"' />

Expires: Month <input id='ccmonth' type='text' name='m' size='2' />
Year <input id='ccyear' type='text' name='y' size='4' />

<button id='button's>Submit Credit Card</buttons

<scripts>
window.onload = function ()

{

O('button') .onclick = function()

{

if (vValidateCreditCard(O('ccnum') .value,
O('ccmonth') .value, O('ccyear') .value))
alert ("That card validated successfully")
else alert ("That card did not wvalidate")

}
}
</scripts>

When incorporating the plug-in with your own code you will probably want to replace
the onclick event attachment used in the example with a function attached to the
onsubmit event of your form. Also, make sure that when you do this your function returns
true if the card verifies to allow the form submission to complete, and false (along with
probably displaying an error message) if the card doesn’t validate, to stop the form
submission going through.

NoTE Only years up to 2050 are currently supported in order to base card dates around the years
1950 to 2050. If you are reading a well thumbed copy of this book and it's coming up to mid
century, and JavaScript is still being used, well, you may wish to increase the value 50 in the 4th
to last line to a higher value a few years ahead of the current year.

The Plug-in

function ValidateCreditCard (number, month, year)

{

number += !
month += !
year += !
number = CleanupString (number, true, false, true, true)

month = CleanupString(month, true, false, true, true)

Chapter 12: Forms and Validation 357

year = CleanupString (year, true, false, true, true)
var left = number.substr (0, 4)

var cclen = number.length

var chksum = 0

if (left >= 3000 && left <= 3059 ||
left >= 3600 && left <= 3699 ||
left >= 3800 && left <= 3889)

{ // Diners Club
if (cclen != 14) return false

}

else if (left >= 3088 && left <= 3094 ||
left >= 3096 && left <= 3102 ||
left >= 3112 && left <= 3120 ||
left >= 3158 && left <= 3159 ||
left >= 3337 && left <= 3349 ||
left >= 3528 && left <= 3589)
{ // JcB

if (cclen != 16) return false
}

else if (left >= 3400 && left <= 3499 ||
left >= 3700 && left <= 3799)

{ // Bmerican Express
if (cclen != 15) return false

}

else 1f (left >= 3890 && left <= 3899)
{ // carte Blanche
if (cclen != 14) return false

else 1if (left >= 4000 && left <= 4999)
{ // Visa

if (cclen != 13 && cclen != 16) return false
}

else 1if (left >= 5100 && left <= 5599)
{ // MasterCard

if (cclen != 16) return false
}
else 1f (left == 5610)
{ // BAustralian BankCard

if (cclen != 16) return false
}
else 1if (left == 6011)
{ // Discover

if (cclen != 16) return false

}

else return false // Unrecognized Card

for (var j = 1 - (cclen % 2) ; j < cclen ; j += 2)
if (j < cclen) chksum += number[j] * 1

for (j = cclen % 2 ; j < cclen ; j += 2)

{

358 Plug-In JavaScript: 100 Power Solutions

if (j < cclen)

{
d = number[j] * 2
chksum += d < 10 2 d : d - 9

}
if (chksum % 10 != 0) return false

var date = new Date()
date.setTime (date.getTime())

if (year.length == 4) year = year.substr(2, 2)

if (year > 50) return false
else 1if (year < (date.getFullYear() - 2000)) return false
else 1f ((date.getMonth() + 1) > month return false

else return true

CHAPTER 13

Solutions to Common Problems

PLUG-IN

360

96

Plug-In JavaScript: 100 Power Solutions

chapters, so I've included them here. They offer features such as keeping your

copyright notices current each new year; a less intrusive, in-browser alert window
that doesn’t prevent you from accessing the rest of the current document; a function to
provide tooltips for any object; the facility to add cursor trails to the mouse pointer; and a
way to make a web page touch enabled for use with tablet computers and other touch
devices.

I I There are a number of plug-ins that didn’t fit clearly within any of the previous

RollingCopyright()
This simple plug-in is worth using on any pages where a copyright notice is included,

because no matter how many years ago you last updated the page, it will always show the
current year, as shown by the screen grab in Figure 13-1.

About the Plug-in

This plug-in takes a start year for when the copyright began and returns a copyright string
using that and the current year. It requires the following argument:

® start The start year as a four-digit number

Variables, Arrays, and Functions

date Local date object

Date () Function to return a new date object

getFullYear () Function to return a four digit year
How It Works

This plug-in creates a new date object and assigns it the current year as a four-digit number,
like this:

var date = new Date ()

date = date.getFullYear ()

E{‘:;;Eyiﬁr'l S Pl e 5ottt Bl 98 - Wnd o et Exprlons T i]
copyright notices C}G] G 2R ok nhDe shetng PIey gl e 565, i = | -1,| o |
up-to-date with this

plug-in. W Pug-in Inaiorer

Thix websike 3= © 2005-20 10 KMy ebProparties Inc

B Camipaber| Probected Modeln OFF fg = WL -

PLUG-IN

91

Chapter 13: Solutions to Common Problems

Then the two dates are returned preceded by a copyright symbol:

return '© ' + start + "-" + date

How To Use It

To use this plug-in, pass it the starting year for the copyright and then assign the string it
returns to an element in your document, as in the following example:

<scripts>
window.onload = function ()

{

Html ('copy', InsVars("This website is #1 MyWebProperties Inc",
RollingCopyright (2005)))

}

</scripts>

The HTML section creates a span that will be used to display the copyright message,
and then the <script> section uses the Insvars () plug-in to insert the result of calling
RollingCopyright () into a sentence, which is then assigned to the innerHTML property of
the span.

The Plug-in

function RollingCopyright (start)

{

var date = new Date ()
date = date.getFullYear ()

return '© ' + start + "-" + date

Alert()

The built-in JavaScript alert () function is great for help with debugging or for alerting
users about something important. However, the function is a modal dialog, which means
that it takes over the browser, preventing access to anything within it other than the alert
window. What's worse, if a web page calls alert () in a loop it will effectively lock you out
of the browser, even preventing you from closing it.

This plug-in provides a handy replacement for the function that is much more user
friendly in that it is not modal, and all other parts of the browser remain accessible while it

361

362

Plug-In JavaScript: 100 Power Solutions

A standard Internet
Explorer alert m- Il_' 15 \Lber £ Pocded e skt g P rogd T, i "rl “:l-l ® |
message - —

W Plg-in Jreicrpt

i You muk log-in beforeyou oun ums thicasbzits

Cx]

8 Campuber| Probected Pacde; OFF v Bume =

is displayed. It also features smart scrolling; unlike the regular alert () window that just
gets bigger and bigger depending on the size of message, this plug-in will provide
scrollbars instead, so that it always remains the same size. Figure 13-2 shows a standard
alert () dialog.

Figure 13-3 shows this plug-in used to display the same message as Figure 13-2. It is
fairly similar to the Internet Explorer alert window, but it also uses some styling similar
to that used by Firefox and other web browsers, so it should look good on all major
browsers.

About the Plug-in

This plug-in takes a message and displays it in an in-browser alert dialog. It requires the
following argument:

® value A string, value, or expression to display

A message
displayed by the m- [1L Rk D bt P g 5Tt "rl ¢,| ® |
Alert() plug-in - —

W Plg-in et

ﬂ ik P [DcHn Bakin pIU can s Tisweke ik

8 Campuber| Probected Pcde; OFF v Bume =

Chapter 13: Solutions to Common Problems

Variables, Arrays, and Functions

divs Local array containing the IDs of the two main divs
newdiv Local object used for creating new divs

warn Local variable containing the HTML for the warning triangle
ok Local variable containing the HTML for the OK button
mess Local variable containing the HTML of the message

html Local variable containing the HTML for the alert contents

ALERT DIV & SHADOW DIV
& ALERT TITLE & ALERT
MESSAGE & ALERT OK

IDs of the various elements created by this plug-in

innerHTML Property of various objects containing their HTML
backgroundColor Property of various objects containing their background colors
fontFamily Property of various objects containing their fonts

fontSize Property of various objects containing their font sizes
padding Property of the message area containing its padding
paddingTop Property of the title area containing its top padding
textAlign Property of the title containing its text alignment

overflow Property of the message area containing its overflow setting
border Property of the main div containing its border setting
onclick Event of the OK button attached to AlertHide ()

AlertHide ()

Subfunction to hide the alert

Position()

Plug-in to set an object’s style position property

Resize () Plug-in to resize and object

Center () Plug-in to center an object both vertically and horizontally
GoTo () Plug-in to move an object to a new position

Opacity () Plug-in to set the opacity of an object

visible () Plug-in to make an object visible

Invisible()

Plug-in to make an object invisible

createElement ()

Function to create a new HTML element

setAttribute ()

Function to set an attribute of an HTML element

appendChild ()

Function to append a child object to an element

How It Works

This plug-in starts by creating an array of the main two divs it uses, then four strings are
created to hold the warning triangle HTML, the OK button, the alert message itself, and two
new subdivs that will contain the alert’s title and message HTML:

var divs = Array ('ALERT DIV', 'SHADOW DIV')

var warn = "" +
"Δ "

var ok = "<center><input id='ALERT OK' type='submit' /></center>"

363

364

Plug-In JavaScript: 100 Power Solutions

var mess = warn + value + '

' + ok
var html = "<div id='ALERT TITLE'></div>" +
"<div id:'ALERT_MESSAGE'></div>"

Next, if the object with the ID “ALERT_DIV’ doesn’t exist, it means this is the first time
the plug-in has been called, so the two main divs are created, like this:

var newdiv = document.createElement ('div')
newdiv.setAttribute('id', 'SHADOW DIV')
document .body . appendChild (newdiv)

newdiv = document.createElement ('div'")
newdiv.setAttribute('id', 'ALERT DIV')
document .body . appendChild (newdiv)

These statements create new divs with the IDs “ALERT_DIV” and ‘SHADOW_DIV’,
attaching them to the document body. The divs are then released from their location in the
HTML, resized, and centered, and the shadow div has its opacity set to 50 percent, as
follows:

Position(divs, ABS)

Resize('ALERT_DIV',

Resize ('SHADOW DIV',
Center('ALERT_DIV')

GOTO('SHADOW_DIV', X('ALERT_DIV')
Opacity ('SHADOW DIV', 50)

350,
354,

140)
146)

+ 4, Y('ALERT DIV') + 6)

Next, the divs are hidden with a call to the subfunction AlertHide (), and the main
div’s innerHTML property is assigned the value of html, which contains the HTML with
which to create the two subdivs, both of which are then resized:

AlertHide ()

Html ('ALERT_DIV', html)
Resize('ALERT_TITLE', 350, 22)
Resize ('ALERT MESSAGE', 330, 98)

After this, a number of style elements are set up, and the innerHTML of the title and
message divs is assigned, like this:

Html ('ALERT _TITLE', 'Message from the webpage')
Html ('ALERT MESSAGE', mess)

S ('ALERT TITLE') .backgroundColor '#acc5e0!
S('ALERT TITLE') .fontFamily 'Arial’

S ('ALERT TITLE') .paddingTop '2px!
S('ALERT TITLE') .textAlign 'center!'
S('ALERT TITLE') .fontSize '14px!

O ('ALERT MESSAGE') .innerHTML mess

S ('ALERT_MESSAGE') .fontFamily 'Arial'

S ('ALERT MESSAGE') .fontSize '12px!

S ('ALERT MESSAGE') .padding '10px"'

S ('ALERT MESSAGE') .overflow 'auto'

S ('ALERT DIV') .backgroundColor '"#£0£0£0"

Chapter 13: Solutions to Common Problems

S ('ALERT DIV') .border 'solid #444444 1lpx'
S ('"SHADOW_DIV') .backgroundColor '#444444"
O ('ALERT OK') .value = ! OK !

These statements set the correct colors, fonts, alignments, padding, and borders for the
elements, and the message alert has its overflow property set to ‘auto’, so that larger
messages will have scrollbars added if necessary to scroll through the content.

Finally, the onclick event of the OK button is attached to the AlertHide () subfunction,
and the divs are made visible, like this:

O('ALERT OK') .onclick = AlertHide
Visible (divs)

The plug-in ends with the AlertHide () subfunction, which is called when the OK
button is clicked:

function AlertHide ()

{
}

Invisible (divs)

How To Use It

You use this plug-in in the same manner as the built-in alert () function: by simply passing
a value or expression to display, like this:

Alert ("You must log-in before you can use this website")
Or, here’s an example that combines a string and an expression:
Alert ("The product of 6 and 7 is " + 6 * 7)

One of the best things about this plug-in is that you can use it to watch values changing
in real time without having to click OK after each alert message as you would with the
standard alert () function. Here’s an example you can try that creates repeating interrupts
to call the plug-in and display the current mouse coordinates, which change as you move
the mouse about:

window.onload = function()
{

setInterval (mousecoords, INTERVAL)

function mousecoords ()

{
}

Alert ("Mouse X = " + MOUSE X + " | Mouse Y = " + MOUSE_Y)

In this particular example, because the calls to Alert () repeat continuously, nothing
will happen if you click the OK button to dismiss the message, as another Alert () call is

365

366 Plug-In JavaScript: 100 Power Solutions

made INTERVAL milliseconds later. If you want to test the plug-in with a single call just try a
command such as this:

Alert ("This is a test alert message")

NoOTE Don't confuse the two functions because they use the same letters. The original JavaScript
function starts with a lowercase letter ‘a’, and is called alert (), while the new plug-in begins
with an upper case letter ‘A" and is called Alert ().

The Plug-in

function Alert (value)

{

var divs = Array ('ALERT DIV', 'SHADOW DIV')

var warn = "" +
"Δ "

var ok = "<center><input i1d='ALERT OK' type='submit' /></center>"

var mess = warn + value + '

' + ok

var html = "<div id='ALERT TITLE'></div>" +

"<div id='ALERT MESSAGE'></div>"

if (!O('ALERT DIV'))

{
var newdiv = document.createElement ('div')
newdiv.setAttribute('id', 'SHADOW DIV')
document .body.appendChild (newdiv)
newdiv = document.createElement ('div')
newdiv.setAttribute('id', 'ALERT_DIV')
document .body.appendChild (newdiv)
Position(divs, ABS)
Resize('ALERT_DIV', 350, 140)
Resize('SHADOW_DIV', 354, 146)
Center('ALERT_DIV')
GoTo ('SHADOW DIV', X('ALERT DIV') + 4, Y('ALERT DIV') + 6)
Opacity ('SHADOW DIV', 50)

}

AlertHide ()

Html ('ALERT DIV', html)

Resize ('ALERT TITLE', 350, 22)

Resize ('ALERT MESSAGE', 330, 98)

Html ('ALERT_TITLE', 'Message from the webpage')

Html ('ALERT_MESSAGE', mess)

S ('ALERT TITLE') .backgroundColor = '#acc5e0'
S('ALERT TITLE') .fontFamily = 'Arial’
S('ALERT TITLE') .paddingTop = '2px'
S('ALERT TITLE') .textAlign = 'center'
S() -

'"ALERT TITLE') .fontSize

'l4px’

298

'ALERT MESSAGE'

Chapter 13: Solutions to Common Problems

.fontFamily

)
'"ALERT_MESSAGE') .fontSize
)

'ALERT MESSAGE'

.padding

'ALERT MESSAGE') .overflow

'"ALERT DIV') .border

'SHADOW _DIV') .backgroundColor
'"ALERT OK') .value
'"ALERT OK') .onclick

Visible (divs)

S(
S(
S(
S(
S ('ALERT DIV') .backgroundColor
S(
S(
O
o

function AlertHide ()

{

Invisible (divs)

ReplaceAlert()

'Arial’

'12px!

110px"

'auto!

'"#f0f0f0"

'solid #444444 1px'
"#444444"

1 OK 1
AlertHide

If you like the Alert () plug-in, you can use this one to replace the default JavaScript
alert () with it and use it all the time. Figure 13-4 shows the alert () function being called
to display the mouse’s current coordinates but in fact, the Alert () plug-in is handling the
message display, as it has now replaced the default function.

About the Plug-in

This is probably the shortest plug-in in the book, and it requires no arguments to change the
default action of alert () to use the new Alert () plug-in.

Ficure 13-4
With this plug-in,
all calls to alert()
will use the new
Alert() plug-in.

W Plig-in Jeeicip

m w | e R D et s rgd 58 - [4y | 5 |

ﬂmun:-:-mmmnnm

PyieiE== | from the webipage

M8 Compuber| Prote ched Picede; CFF v FuUre -

367

PLUG-IN

368

99

Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

‘ alert ‘ Property of the window object specifying which code to use for handling alerts

How It Works

This plug-in simply attaches the Alert () plug-in to the alert event of the window object,
like this:

window.alert = Alert

How To Use It

To replace the default JavaScript alert () function with the new Alert () plug-in, just call
ReplaceAlert (). The following example is modified from the one used in the previous
plug-in, Alert () to call the default alert () function, which has been diverted to use the
new Alert () plug-in:

window.onload = function()

{

ReplaceAlert ()
setInterval (mousecoords, INTERVAL)

function mousecoords ()

{

alert ("Mouse X = " + MOUSE X + " | Mouse Y = " + MOUSE_Y)

}

The Plug-in

function ReplaceAlert ()

{
}

window.alert = Alert

ToolTip()

With this plug-in, you can add tooltips that fade in and out over a period to any object, with
a range of fully configurable display options. Figure 13-5 shows a tooltip that has been
attached to the Home link of a web page.

About the Plug-in

This plug-in displays a tooltip when the mouse passes over an attached object. It requires
the following arguments:

® id An object or object ID—this cannot be an array

® tip The tip message to display, which may contain HTML

® font The fontto use

Ficure 13-5

Use this plug-in to
attach smoothly
fading tooltips to
objects.

Chapter 13: Solutions to Common Problems

@EI [e\ R D hetrgoh P T rgd 96 - [4y | 5 |

BB Plg-in Dreioip

Home | News | Blog | Links

Clck this Ik ko rerbam
o thia man hame page

M8 Compuber| Prote ched Pcede; COFF v FUrE -

® size The fontsize to use

® textc The text color to use

® backc The background color to use

® borde The border color to use

® bstyle The border style to use
® bwidth The border width to use, in pixels

® msecs The time each fade out or in should take in milliseconds

® timeout The time after which the tooltip will automatically fade out in
milliseconds; if 0 or not passed, the tooltip will not automatically fade out

Variables, Arrays, and Functions

tt Local variable containing the string ‘TT_’ concatenated with the ID
name of id

newdiv Local variable containing the new div object

MOUSE_X Global variable containing the current horizontal location of the mouse
cursor

MOUSE_Y Global variable containing the current vertical location of the mouse
cursor

ZINDEX Global variable containing the highest zIndex value so far used

Hidden Property of the new div: true when the tooltip is hidden, otherwise
false

IID Property of the new div used to cancel any pending interrupt that may
have been set using setTimeoout ()

zIndex Property of the new div set to bring it to the front of all objects

fontFamily Property of the new div containing its font family

fontSize Property of the new div containing its font size

padding Property of the new div containing its padding

369

310

Plug-In JavaScript: 100 Power Solutions

color Property of the new div containing its text color

backgroundColor Property of the new div containing its background color

bordercolor Property of the new div containing its border color

bordersStyle Property of the new div containing its border style

borderWidth Property of the new div containing its border width

innerHTML Property of the new div containing its HTML

onmouseover Event of id attached to DoToolTip ()

onmouseout Event of id attached to ToolTipHide ()

DoToolTip () Subfunction to display a tooltip

ToolTipHide () Subfunction to hide a tooltip

FadeIn () Plug-in to fade an object in

FadeOut () Plug-in to fade out an object

Px() Plug-in to add the suffix ‘px’ to a number

setTimeout () Function to set up an interrupt to a function at a future time

clearTimeout () Function to cancel an interrupt set by setTimeout ()
How It Works

This plug-in first creates a new div for each different tooltip, with an ID comprising the string
“TT_" and the ID name of id, and then creates a local variable to hold this ID, like this:

var tt = 'TT_ ' + O(id).id

Next, if the div for the tooltip for id hasn’t yet been created, this is done using the
following code:

var newdiv = document.createElement ('div')
newdiv.setAttribute ('id', tt)
document .body.appendChild (newdiv)

The opacity of the new div is then set to 0 to hide it, and it is released from the HTML
by giving it a style position attribute of “absolute’, using the global variable ABs:

Opacity(tt, 0)
Position (tt, ABS)

Next, all the arguments are given default values for any that have not been given a value:

font = font ? font : 'Arial'
size = size ? size : 'small'
textc = textc ? textc : '#884444'
backc = backc ? backc : '"#ffffsgsg’
bordec = bordc ©? bordc : '#aaaaaa'
bstyle = bstyle ? bstyle : 'dotted'
bwidth = bwidth ? bwidth : 1

msecs = msecs ? msecs : 250

Chapter 13: Solutions to Common Problems

After that, various style settings based on these values are applied to the new div, and
the contents of the tip argument are placed in its innerHTML property, as follows:

S(tt) .fontFamily = font

S(tt) .fontSize = size

S(tt) .padding = '3px 5px 3px 5px'
S(tt) .color = textc

S(tt) .backgroundColor = backc

S(tt) .borderColor = bordc

S(tt) .borderStyle = bstyle

S(tt) .borderwidth = Px(bwidth)

Html (tt, tip)

Finally, in the setup section, the DoToolTip () and ToolTipHide () subfunctions are
attached to the onmouseover and onmouseout events of id, and the Hidden property of idis
set to false to indicate that the tooltip is not currently visible:

0(id) .onmouseover = DoToolTip
0(id) .onmouseout = ToolTipHide
O(tt) .Hidden = false

The DoToolTip() Subfunction

This function moves the tooltip div referred to by tt to a location 15 pixels to the right and
15 down from the mouse position, sets its zIndex property to the highest value used so far
plus 1 (to ensure it displays above all other elements), fades the tooltip in, and sets the
tooltip’s Hidden attribute to false to indicate that it is now visible:

GoTo (tt, MOUSE X + 15, MOUSE_ Y + 15)
O(tt) .zIndex = ZINDEX + 1

FadeIn (tt, msecs)

O(tt) .Hidden = false

With the tooltip now displayed, if a timeout has been specified then setTimeout () is
called to create an interrupt call to the ToolTipHide () subfunction in timeout milliseconds,
to fade it away again (after first cancelling any timeout that may currently be in place), like
this:

if (O(tt).IID) clearTimeout (O(tt) .IID)
O(tt) .IID = setTimeout (ToolTipHide, timeout)

The ToolTipHide() Subfunction

This function simply checks whether the tooltip is currently hidden. If it is, it has nothing to
do and returns; otherwise, it fades out the tooltip and sets its Hidden attribute to true to
indicate the new setting:

FadeOut (tt, msecs)
O(tt) .Hidden = true

3

312

Plug-In JavaScript: 100 Power Solutions

How To Use It
To use this plug-in, all you need to do is pass it an object and the tip message to display, like
this:

ToolTip ('home', 'Visit the Home page')

You can also pass any or all of the other supported arguments to tailor the output. The
following example illustrates attaching a tooltip to a link using all the available options:

<h2>
Home |
News |
Blog |
<a 1d='links' href='/links'sLinks
</h2>

<scripts>
window.onload = function ()

{

tip = 'Click this link to return
to the main home page'
ToolTip ('home', tip, 'Verdana',6 '12px', '#444444', '#eeeeff',
1#008888"', 'solid', 'l', 500, 5000)

O('links') .title = tip

}

</scripts>

The HTML section sets up four links and gives them IDs. Then the <script> section
attaches a tooltip to the first link. As you can see by the
 included in the string
assigned to tip, HTML is supported, enabling you to configure the tooltip any way you like.

There is also a standard title tag attached to the final link so that you can compare the
way it displays with this plug-in by passing the mouse over that link too.

The Plug-in

function ToolTip(id, tip, font, size, textc, backc, bordc,
bstyle, bwidth, msecs, timeout)

var tt = 'TT_' + O(id).id

if (1o(tt))

{
var newdiv = document.createElement ('div')
newdiv.setAttribute ('id', tt)
document .body.appendChild (newdiv)
Opacity(tt, 0)
Position (tt, ABS)

font = font ? font : 'Arial’
size = size ? size : 'small'
textc = textc ? textc : '#884444"
backc = backc ? backc : '#ffffsgs’
bordc = bordc ? bordc : '#aaaaaa'

PLUG-IN

10

Chapter 13: Solutions to Common Problems

bstyle = bstyle ? bstyle : 'dotted'
bwidth = bwidth ? bwidth : 1

msecs = msecs ? msecs : 250
S(tt) .fontFamily = font

S(tt) .fontSize = size

S(tt) .padding = '3px 5px 3px 5px'
S(tt) .color = textc

S(tt) .backgroundColor = backc

S(tt) .borderColor = bordc

S(tt) .borderStyle = bstyle
S(tt) .borderWwidth = Px(bwidth)
O(tt) .innerHTML = tip

}

0 (id) .onmouseover = DoToolTip
0(id) .onmouseout = ToolTipHide
O(tt) .Hidden false

function DoToolTip ()

{

GoTo (tt, MOUSE X + 15, MOUSE Y + 15)
O(tt) .zIndex = ZINDEX + 1

FadeIn (tt, msecs)

O(tt) .Hidden = false

if (timeout)

{
if (O(tt).IID) clearTimeout (O(tt).IID)
O(tt) .IID = setTimeout (ToolTipHide, timeout)

}

function ToolTipHide ()

{

if (!O(tt) .Hidden)

{
FadeOut (tt, msecs)
O(tt) .Hidden = true

CursorTrail()

This plug-in can provide a great visual aid for your users, or you can use it as a special
effect. It leaves a trail of ten images behind the mouse cursor, with each image a little more
faded out than the one in front of it, so that it gives a smoother flowing appearance than, for

33

314 Plug-In JavaScript: 100 Power Solutions

Fieure 13-6 E Flug-in mgn Excwrrple 1IN - Wirel s Trberrest Exploner EIEE
Add cursor trails to r
the mouse pointer m w @] s Rk e st R Ty rogd e 100 b - | -,,| ® |
by calling this plug-
in. W Pug-in Inaiorer
| N
S Carpeater| Probected Pdcedel OFF g~ WieEd -

example, the built-in Windows cursor trail utility. It also allows you to select your own
images for the trail. Figure 13-6 shows a cursor trail created using the mouse pointer image
supplied with this plug-in on the pluginjavascript.com website.

About the Plug-in

This plug-in creates a trail of images that follow the mouse pointer. It requires the following
arguments:

e image The URL of an image to use for the trail
e length The length of the trail, with smaller numbers being shorter

e state If1 or true the trails are turned on; a value of 0 or false turns them off

Variables, Arrays, and Functions

3 Local variable for iterating through the ten images

w Local variable containing the width of the browser

h Local variable containing the height of the browser

c Local variable containing the string ‘CT_’

newimg Local variable containing each new image as it is created

zIndex Property of each image set to bring them in front of all other
elements

ABS Global variable with the value ‘absolute’

MOUSE X & MOUSE_Y Global variables containing the horizontal and vertical mouse
coordinates

ZINDEX Global variable containing the highest zIndex property so far used

GoTo () Plug-in to move an object to a new location

Hide () Plug-in to hide an object

Show () Plug-in to show an object that has been hidden

Chapter 13: Solutions to Common Problems

Position () Plug-in to set the style position property of an object
Opacity () Plug-in to set the opacity of an object
GetWindowWidth () Plug-in to return the width of the browser
GetWindowHeight () Plug-in to return the height of the browser
createElement () Function to create a new HTML element
setAttribute () Function to set an attribute of an object
appendChild() Function to attach a child object to an object
setInterval () Function to start repeating interrupts to another function
clearInterval () Function to stop repeating interrupts

How It Works

To start with, this plug-in saves the width and height of the browser in wand h and sets c to
the string ‘CT_’, a prefix that will be used when assigning IDs to the image objects that will
be created:

var w = GetWindowWidth ()
var h = GetWindowHeight ()
var ¢ = 'CT_!'

Next, if state is not 1 or true, any repeating interrupts are cancelled, and the plug-in
returns, which turns off the mouse trails:

if (!state) return clearInterval (CT IID)

At the next line of code, if no object has the ID “TT_0’, it means this is the first time the
plug-in has been called, so all the image objects are created and set to style positions of
‘absolute’ (so that they can be moved about). In addition, their opacity is set to different
levels so that the ones furthest away from the mouse cursor are the most faded, the images
are loaded from the URL supplied in image, and the X and Y properties of each image are
assigned starting values of ~9999 to place them well off screen, as follows:

if (1O('TT_0"))
{
for (var j = 0 ; j < 10 ; ++3)
{
var newimg = document.createElement ('img')
newimg.setAttribute ('id', c + J)
document .body.appendChild (newimg)
Position (newimg, ABS)
Opacity (newimg, (j + 1) * 9)

newimg.src = image
O(c + j).X = -9999
O(c + Jj).Y = -9999

305

316

Plug-In JavaScript: 100 Power Solutions

With everything prepared, the final command in the setup section starts the repeating
interrupts to the DoCurTrail () subfunction:

CT_IID = setInterval (DoCurTrail, length)

The DoCurTrail() Subfunction

This function performs the moving of all the trail images, which it manages with a for ()
loop, within which the first command moves the image for the current iteration to its new
position:

for (var j = 0 ; j < 10 ; ++3)

{

GoTo(c + j, O(c + j).X + 2, O(c + J).¥Y + 2)

For example, when j has the value 5, the image with the ID calculated with the
expression ¢ + j is manipulated, which is “CT_5". The number 2 in the code places the
images down and to the right by two pixels.

Next, the zIndex property of the image is set to the maximum zIndex so far used plus 1,
to ensure that it will display on top of all other elements:

S(c + j).zIndex = ZINDEX + 1

Then, if the image is set to display directly under the mouse pointer, the image is
hidden. If it wasn’t hidden, the user could never click a link because a trail image would be
between the mouse pointer and the clickable object underneath it:

if (O(c + j).X == MOUSE_X && O(c + j).Y == MOUSE_Y) Hide(c + j)
Otherwise, if the image is away from the mouse pointer, it is shown:
else Show(c + 7j)

Next, as long as j has a value greater than 0 (and therefore is indexing the nine trail
images above the first), the image location of the image one behind the current one is set to
that of the current image:

if (§ > 0)

Finally, the highest numbered image (with the ID ‘CT_9’) is set either to the current
mouse location or, if the mouse is off screen, to a position well off the start of the screen
(with the values 12 and 20 representing the width and height of the mouse pointer):

MOUSE X < (w - 12) ? MOUSE X : -9999

O(c + 9).X
.Y = MOUSE Y < (h - 20) ? MOUSE Y : -9999

Chapter 13: Solutions to Common Problems

Only this highest numbered image needs to be given the mouse coordinates, because
each time around the loop the coordinates of each item are copied down to the one behind
it. For example, the next time around the image with the ID ‘CT_8" will be passed the values
in the image with the ID ‘CT_9’, and so on.

How To Use It

To use this plug-in, pass it the URL of an image to display as the trail, a value for how long
the trail should be (with 1 being the smallest), and a value of true or 1 for the state
argument, like this:

CursorTrail ('mousepointer.gif', 20, 1)
To turn the effect off, just change the state argument to 0 or false, like this:
CursorTrail ('mousepointer.gif', 20, 0)

For example, Figure 13-7 shows the file snowflake.gif being used in place of mousepointer.
gif, with the following code:

<scripts>
window.onload = function ()
{
CursorTrail ('snowflake.gif', 20, 1)
}
</scripts>

Tip For an even more interesting effect, try displaying animated GIFs in the cursor trail instead of
static ones.

Fieure 13-7 . ug-n b le 100 - s s st Explossr
You can use this r
plugin to provide KRl = |8] serstRotsnD dtog Pt 100 - 4| x|
seasonal or festive .
cursor trails. W Pg-n lnascipt
A
. o
.| il

4

S o peaber | Probecied Pdodern OFF g = Wik -

3n

318

Plug-In JavaScript: 100 Power Solutions

The Plug-in

function

{

var w
var h
var c

CursorTrail (image, length, state)

= GetWindowWidth ()

= rcT

GetWindowHeight ()

if (!state) return clearInterval (CT IID)

if (10('TT 0'))

{

}

for (var j = 0 ; j < 10 ; ++3)

{

var newimg = document.createElement ('img')
newimg.setAttribute('id', c + j)

document . body . appendChild (newimg)

Position (newimg, ABS)

Opacity (newimg, (j + 1) * 9)

newimg.src = image

O(c + j).X = -9999

O(c + j).Y = -9999

CT IID = setInterval (DoCurTrail, length)

function DoCurTrail ()

{

for (var j =0 ; j <

{

GoTo(c + j, O(c +
S(c + j) .zIndex =

if (O(c + j).X ==
else Show(c + j)

if (J > 0)

+ 9).X = MOUSE_X
Y = MOUSE_Y

e
I

10 ; ++3)

j).X + 2, O(c + j).Y + 2)
ZINDEX + 1

MOUSE X && O(c + j).Y == MOUSE Y) Hide(c + j)

O(c + J).
O(c + J).

i
I
KX

< (w - 12) ? MOUSE X : -9999
< (h - 20) ? MOUSE Y : -9999

2101

Chapter 13: Solutions to Common Problems

TouchEnable()

Interest in touch screen devices really picked up momentum with Apple’s release of the
iPad in the spring of 2010, so I couldn’t resist adding a bonus 101st plug-in to this collection.
Here’s the final plug-in, which allows you to touch-enable a web page. Figure 13-8 shows a
copy of the web page for Plug-in PHP, a companion book to this one, in which a small frame
has been attached to the top of the browser window with links to turn touch-enabling on
and off.

About the Plug-in

This plug-in changes the mouse click action so that a click and drag operation becomes a
scroll operation, allowing users of touch-enabled screens to scroll a document up, down,
left, and right simply by touching the screen and moving their finger (or a stylus) about, in
the same manner they would using an iPhone, iPad, Android phone, or other touch device.
It requires the following argument:

* state If1 or true, touch enabling is turned on; otherwise, it is turned off

mf |] ©AlizarssReabirhDuskba ph P fygzsm pladl L bem '|+p|:-c|

4 ﬂ“l.g-in]mhr'pt
L0 el DR, Thiz wabpage has ke foucl anabled. Activgts « Deaclivaty « [4] E

Whan sciivaind peu can bauch snpevhars o rodd| thir paps wrirg & kauch Fowan

Plug-in PHP: 100 Power Solutions

By Bobim Mixon [mMoGraw HIl 2010, 1S8M 975-0071666506)

Home | Ahout | Buy [t | Eonem | Dpwripad

Chaptar: 1 2 34 5 8 1 8 Bi0i1112

PHP was orginally davalopsd n 1904 by Rasmus Landorf 1o replece & sat of Perl scrpts Pe had been dsing 1o A
maintan Mg parsonal wabsita. Evan n tha eardy days Landof intanded that PHP shodld ba fexila and aasily
expandable, and through rewnitas of the language parsar, that has remained a kay ethos of the projact o this |
dary, with mumerols extansion lbranes avalabke through the FEAR (PHP Extansion and Application Rapositorg
add-on. But smply hawing access (o &l thasa Tunctions &n't varg usafd whan you nead ©o cuicky put togathar
a project 1o a tight deadine, bacause thay Typicaly provide varg specific Tunctionality. That's whane this book
COMBE iNKD it5 own because it prowides 100 neacky-f0-g0 plig-irs you Can simphy drop into your programs and
use, nomaly with a =imple, =ngls cal

CONTENTS

1. Building a Development Sarver
2, PHP and Mug-ins .

MR Compartar| Predactad kiada: OFF g« ®lop -

Ficure 13-8 With this plug-in you can touch-enable your web pages.

319

380

Plug-In JavaScript: 100 Power Solutions

Variables, Arrays, and Functions

db Local variable used as shorthand for document . body

iid Local variable containing the result of calling setInterval () to
be used later when calling clearInterval ()

flag Local variable set to true when touch enabling is on

oldmousex & oldmousey Temporary copies of MOUSE X and MOUSE_Y to save the mouse
position when StartTE () is called

tempmousex & Temporary copies of MOUSE_X and MOUSE_Y used in DoTE () to

tempmousey see if the mouse has moved

MOUSE_X & MOUSE_Y Global variables containing the location of the mouse cursor

MOUSE_IN Global variable set to true if the mouse is within the bounds of

the browser, otherwise false

onmousedown & Events of the document body that trigger when the mouse is

onmouseup clicked and released

StartTE () Subfunction to begin touch enabling

DOTE () Sub-subfunction to scroll the document as required

StopTE () Subfunction to turn off touch enabling

PreventAction () Plug-in to prevent the default action of an event

setInterval () Function to set up repeated interrupts to another function

clearInterval () Function to stop repeated interrupts

scrollBy () Function to scroll the document body by a specified amount
How It Works

This plug-in starts by making a copy of document .body in the local variable db, thus creating
a shorthand reference to shorten the code:

var db = document.body

The state argument is then tested and, if it is 1 or true, touch enabling is being turned
on, so the variables iid and flag are initialized, PreventAction () is called to disable the
default actions for drag and select operations on the document body, and the onmousedown
and onmouseup events of the document body are attached to the StartTE () and StopTE ()
subfunctions, as follows:

var iid = null

var flag = false
PreventAction (db, 'both', true)
db.onmousedown = StartTE
db.onmouseup = StopTE

If stateis 0 or false, then touch enabling is to be turned off, so PreventAction() is
called to restore the default actions for drag and select operations on the document body; its
onmousedown and onmouseup event hooks are removed, and the plug-in returns:

Chapter 13: Solutions to Common Problems

PreventAction (db, 'both', false)
db.onmousedown = ''

db.onmouseup = !

return

The StartTE() Subfunction

This function first checks the flag variable to see whether touch control has already been
enabled. If it has, false is returned; otherwise, copies of the mouse cursor position are
placed in temporary variables to compare later to see if the document body should be
scrolled, like this:

var oldmousex = MOUSE_X
var oldmousey = MOUSE_Y
var tempmousex = MOUSE_X
var tempmousey = MOUSE_Y

Next, flag is set to true to indicate that touch control has been enabled, and
setInterval () is called to set up repeating interrupts to DoTE () :

flag = true
iid = setlInterval (DoTE, 10)

The DoTE() Sub-subfunction

This function first checks whether the mouse button is currently held down and is within
the bounds of the browser, like this:

if (MOUSE_DOWN && MOUSE_ IN)

If the mouse button is either not down or not within the browser’s bounds, the StopTE ()
subfunction is called to release the current scroll. Otherwise, a test is made to see whether the
mouse has moved from the position that was stored in the variables tempmousex and
tempmousey when StartTE () was first called:

if (MOUSE_X != tempmousex || MOUSE_Y != tempmousey)

If the mouse has moved, tempmousex and tempmousey are updated to the new mouse
location, like this:

tempmousex = MOUSE_X
tempmousey = MOUSE Y

Next, the window is scrolled by the difference between the current mouse location and
the one that was stored in oldmousex and oldmousey when StartTE () was first called,
like this:

window.scrollBy (oldmousex - MOUSE X, oldmousey - MOUSE_Y)

381

382

Plug-In JavaScript: 100 Power Solutions

This causes oldmousex and oldmousey to retain the location of the mouse at the point
when the mouse button was clicked, and this location is compared to the current mouse
location to determine the amount by which the document body should be scrolled.

However, the variables tempmousex and tempmousey are used only to see whether the
mouse has moved since the last interrupt to the DoTE () sub-subfunction and to decide
whether a scroll is required. The scrolling is always relative to the values stored in
oldmousex and oldmousey, not those in tempmousex and tempmousey.

The StopTE() Subfunction

This function simply sets the flag variable to false to indicate that a scroll is not currently
in operation and clears the repeating intervals. The document will not scroll again until the
mouse button is held down once more—the same action as touching a touch screen.

How To Use It

To use this plug-in, call it up with a value of 1 or true, like this:
TouchEnable (1)

To turn it off again, call it with a value of 0 or false, like this:
TouchEnable (0)

The following example shows how you can embed on and off controls for this feature in
a web page, in a similar way to the one shown in Figure 13-8:

<div id='enabled's>

This webpage has been <istouch enabled</i>.

<a href="javascript:TouchEnable(1)"

title="Turn on touchscreen control"sActivate ·

<a href="javascript:TouchEnable (0)"

title="Turn off touchscreen control"sDeactivate ·
[<a href="javascript:ZoomDown ('enabled', 1, 1, 1000);
FadeOut ('enabled', 1000)"title="Remove this panel"sx]

When activated you can touch anywhere to scroll this page
using a touch screen</fonts></divs

<script>
Locate ('enabled', 'fixed', 0, -100)
S('enabled') .backgroundColor = '#eeeeaa'

S('enabled') .padding
S('enabled') .border
Opacity ('enabled', 0)

'2pxX 5px 2px 5px'
'dotted black 1px!'

GoToEdge ('enabled', 'top', 50)
FadeIn ('enabled', 1000)
</scripts>

Just add this code to any existing web page that is long enough to require scrolling.

Chapter 13: Solutions to Common Problems

NOTE Thanks for reading this book, and I hope you decide to use many of these plug-ins on your
own websites. Don’t forget that all the plug-ins and example files are available for download
on the companion website at pluginjavascript.com, where you can also go to obtain more
information, leave comments or suggestions, or ask questions in the book’s online forum. I visit
the forum reqularly and I am always pleased to hear from readers. I will do my best to try and
help you solve any problems you may have with your current coding projects.

The Plug-in

function TouchEnable (state)

{

var db = document.body

if (state)

{
var iid = null
var flag false

PreventAction (db, 'both', true)

db.onmousedown = StartTE
db.onmouseup = StopTE

}

else

{

PreventAction(db, 'both', false)

db . onmousedown "

db.onmouseup = !

return

}

function StartTE (e)

{

if (!flag)

{
var oldmousex = MOUSE_X
var oldmousey = MOUSE_Y

var tempmousex = MOUSE X
var tempmousey = MOUSE Y

flag = true

iid = setInterval (DoTE, 10)

}

return false

function DoTE ()

{

383

384 Plug-In JavaScript: 100 Power Solutions

if (MOUSE DOWN && MOUSE IN)

{

if (MOUSE X != tempmousex || MOUSE Y != tempmousey)

{

tempmousex = MOUSE_X
tempmousey = MOUSE Y
window.scrollBy (oldmousex - MOUSE X, oldmousey - MOUSE_Y)

}
}

else StopTE()

}

function StopTE()

{

flag = false
clearInterval (iid)

Symbols and Numbers
; (semicolons), in JavaScript, 21

$(),30
3D pie charts, 308
A

absolute positioning, with Locate(), 82
accessibility, CursorTrail() as visual aid, 373
action argument
FoldingMenu(), 226
ProcessCookie(), 322
advertisements, Billboard() and, 300
Ajax (Asynchronous JavaScript and XML)
creating Ajax objects. See
CreateAjaxObject()
getting Ajax requests. See
GetAjaxRequest()
managing, 4-6
posting Ajax requests. See
PostAjaxRequest()
Alert(). See also ReplaceAlert()
code for, 366-367
errors and, 30
how it works/how to use it,
363-366
overview of, 361-362
variables, arrays, and functions, 363
alldigs argument, CleanupStringy(), 352
allpunct argument, CleanupString(), 352
allspaces argument, CleanupString(), 352
alltext argument, CleanupStringy(), 352
anchors, DOM web page objects, 15
Android phone, 379

Index

animation. See also movement and animation
plug-ins
Fade (), 109
pausing, 191
repetition of, 185
while conditions, 186-187
Apple Safari, 2
args argument
GetAjaxRequest(), 330
PostAjaxRequest(), 333
arguments
passing with O(), 26
PreventAction(), 50
processing the additional arguments
of O(), 29
arrays
Alert(), 363
Billboard(), 301
Breadcrumbs(), 246
BrowserWindow(), 250-251
CallBack(), 179
CaptureKeyboard(), 44
CaptureMouse(), 41
Center(), 94
CenterX(), 91
CenterY(), 93
Chain(), 179
CleanupString(), 352
ColorFade(), 274
ContextMenu(), 233
CreateAjaxObject(), 327
CursorTrail(), 374-375
DecHex(), 70
Deflate(), 142-143

385

Plug-In JavaScript: 100 Power Solutions

arrays (cont.)
DeflateBetween(), 154
DeflateToggle(), 152
DockBar(), 238
EmbedYouTube(), 314
Fade(), 107
FadeBetween(), 120
Fadeln(), 116
FadeOut(), 115
FadeToggle(), 118
FieldPrompt(), 341
Flip(), 197-198
FlyIn(), 280
FoldingMenu(), 226
FrameBust(), 336
FromKeyCode(), 46
GetAjaxRequest(), 331
GetLastKey(), 48
GetWindowHeight(), 86
GetWindowWidth(), 84
GoogleChart(), 308
GoTo(), 81
GoToEdge(), 88
H(), 57
HexDec(), 69
Hide(), 121-122
HideToggle(), 126
HoverSlide(), 203
HoverSlideMenu(), 213
Html(), 60
Initialize(), 36

instanceof operator for identifying, 91

InsVars(), 65-66
Invisible(), 98
Lightbox(), 291
Locate(), 83
MatrixToText(), 266267
NextInChain(), 179
NoPx(), 53

0O(), 24-28

Opacity(), 104

Pause(), 192
PlaySoundy(), 312
PopDown(), 217
PopToggle(), 223
PopUp(), 220
Position(), 79-80
PostAjaxRequest(), 333
PreventAction(), 50
ProcessCookie(), 323
ProjectEmail(), 337
PulsateOnMouseover(), 316

Px(), 53
Reflate(), 148
Repeat(), 185
ReplaceAlert(), 368
Resize(), 78
ResizeHeight(), 76
ResizeTextarea(), 344
ResizeWidth(), 74
RestoreState(), 64
Rolling Copyright(), 360
RollOver(), 242
S(), 32
SaveState(), 62
Show(), 124
Slide(), 131
SlideBetween(), 138
Slideshow(), 295-296
StrRepeat(), 67
TextRipple(), 284-285
TextScroll(), 258-259
TextToMatrix(), 271
TextType(), 262
ToolTip(), 369-370
TouchEnable(), 380
ValidateCreditCard(), 354
ValidateEmail(), 347
ValidatePassword(), 350
VisibilityToggle(), 102
Visible(), 100
W(), 57
WaitKey(), 194
While(), 187
X(), 55
Y(), 55
Zoom(), 157-158
ZoomDown(), 168
ZoomRestore(), 171
ZoomToggle(), 174
Asynchronous JavaScript and XML. See Ajax
(Asynchronous JavaScript and XML)
attributes, modifying class attributes from
JavaScript, 20
audio and visual effect plug-ins
Billboard(), 300-306
EmbedYouTube(), 313-315
GoogleChart(), 306-311
Lightbox(), 290294
overview of, 290
PlaySound(), 311-313
PulsateOnMouseover(), 315-320
Slideshow (), 295-300
auto argument, Embed YouTube(), 314

backc argument, ToolTip(), 369
background color, using S() to change, 31-32
banners
Billboard() and, 300
ColorFade() and, 273
bar charts, 308
bgfill argument, GoogleChart(), 307
Billboard()
code for, 305-306
how it works/how to use it, 301-305
overview of, 300-301
variables, arrays, and functions, 301
Bluefish, as program editor, 4
body section, DOM web page objects, 14-16
bordc argument, ToolTip(), 369
bounds argument, BrowserWindow(), 250
Breadcrumbs()
code for, 248
how it works/how to use it, 246-248
overview of, 246
variables, arrays, and functions, 246
BrowserWindow()
code for, 255-256
how it works/how to use it, 251-255
overview of, 248-250
variables, arrays, and functions, 250-251
bstyle argument, ToolTip(), 369
bugs, fixing in plug-ins, 10-11
bwidth argument
GoogleChart(), 307
ToolTip(), 369
BWMove(), subfunction of
BrowserWindow(), 252
BWToFront(), subfunction of
BrowserWindow(), 252

C
C language, converting JavaScript to, 21
CallBack()
code for, 184
how it works, 180-181
how to use it, 183-184
overview of, 179
variables, arrays, and functions, 179
callback argument
CreateAjaxObject(), 327
GetAjaxRequest(), 330
calls argument
Chain(), 178

Index

Repeat(), 185
While(), 187
CaptureKeyboard()
code for, 45
FromKeyCode() called by, 46
how it works/how to use it, 44-45
overview of, 43
variables, arrays, and functions, 44
CaptureMouse()
code for, 43
how it works/how to use it, 41-43
overview of, 40
variables, arrays, and functions, 41
Cascading Style Sheets (CSS)
accessing styles in JavaScript, 19-21
overview of, 17-19
Position() setting object position
property, 79
removing or attaching px suffix to
properties, 52
S() and, 31
CB argument, Fade (), 106, 111-112
Center()
code for, 95
how it works/how to use it, 94-95
overview of, 94
variables, arrays, and functions, 94
CenterX()
Center() combining CenterX() and
CenterY(), 94
code for, 92
how it works/how to use it, 91-92
overview of, 90
variables, arrays, and functions, 91
CenterY()
code for, 93
how it works/how to use it, 93
overview of, 92
variables, arrays, and functions, 93, 94
Chain()
code for, 184
how it works, 179-180
how to use it, 182-183
overview of, 178-179
variables, arrays, and functions, 179
CHAIN_CALLS, Initialize() variable, 37
chaining and interaction plug-ins
CallBack(), 179-181, 183-184
Chain(), 178-184
ChainThis(), 181-182, 184
Flip(), 196-201

381

388

Plug-In JavaScript: 100 Power Solutions

chaining and interaction plug-ins (cont.)
HoverSlide(), 201-210
NextInChain(), 179-180
Pause(), 191-193
Repeat(), 185-186
WaitKey(), 193-196
While(), 186-191
ChainThis()
code for, 184
how it works, 181-182
charts, types supported by Google Charts, 308
Chrome, downloading, 2
CleanupString()
code for, 353
how it works/how to use it, 352-353
overview of, 351-352
variables, arrays, and functions, 352
closeid argument, BrowserWindow(), 249
coll argument, Lightbox(), 290
col2 argument, Lightbox(), 290
colorl argument, ColorFade(), 273
color2 argument, ColorFade(), 273
ColorFade()
code for, 278-279
how it works/how to use it, 274-277
overview of, 273
variables, arrays, and functions, 274
colors argument, GoogleChart(), 307
compound charts, supported by Google
Charts, 308
contents argument
ContextMenu(), 232
FoldingMenu(), 226
ContextDown(), subfunction of
ContextMenu(), 235
ContextMenu()
code for, 236-237
how it works/how to use it, 233-236
overview of, 232
variables, arrays, and functions, 233
ContextUp(), subfunction of
ContextMenu(), 234
cookies. See ProcessCookie()
copyrights. See RollingCopyright()
core plug-ins
CaptureKeyboard(), 4345
CaptureMouse(), 4043
complete example of plug-in code, 27
DecHex(), 69-71
FromKeyCode(), 4547
GetLastKey(), 48-50
HexDec(), 68-69

Html(), 59-61

Initialize(), 3540

InsVars(), 65-67

NoPx() and Px(), 52-54

0(), 24-31

PreventAction(), 49-52

RestoreState(), 63—65

S(), 31-35

SaveState(), 61-63

StrRepeat(), 67-68

W() and H(), 56-59

X() and Y(), 54-56
Cream, as program editor, 4
CreateAjaxObject()

code for, 329-330

how it works/how to use it, 327-329

variables, arrays, and functions, 327
credit cards, validating. See

ValidateCreditCard()

CursorTrail()

code for, 378

how it works/how to use it, 375-377

overview of, 373-374

variables, arrays, and functions, 374-375

D
data argument, GoogleChart(), 307
debugging, Alert() and, 361
DecHex()
code for, 71
how it works/how to use it, 70-71
overview of, 69-70
variables, arrays, and functions, 70
decimal numbers
converting hexadecimal numbers to, 68
converting to hexadecimal, 69
Deflate()
code for, 146-147
DeflateBetween() used with, 154
DeflateToggle() combines Deflate() and
Reflate(), 152
DoDeflate() subfunction, 145
how it works, 143-144
how to use it, 145-146
overview of, 141-142
variables, arrays, and functions, 142-143
DeflateBetween()
code for, 156
how it works/how to use it, 154-155
overview of, 153-154
variables, arrays, and functions, 154

DeflateToggle()
code for, 153
how it works/how to use it, 152-153
overview of, 151
variables, arrays, and functions, 152
dig argument, ValidatePassword(), 349
dimensions plug-ins. See location and
dimensions plug-ins
dir argument, TextScroll(), 258
DismissLB(), subfunction of Lightbox(), 293
DoBillboard(), subfunction of Billboard(),
303-304
DoBWMove(), subfunction of
BrowserWindow(), 252-253
DockBar()
code for, 241
GoToEdge() and, 88
how it works/how to use it, 238-241
overview of, 237
variables, arrays, and functions, 238
Zoom() and, 161-162
DockDown(), subfunction of DockBar(),
239-240
DockUp(), subfunction of DockBar(), 239-240
DoColorFade(), subfunction of ColorFade(), 276
Document Object Model (DOM)
accessing from JavaScript, 16-17
overview of, 14-16
document objects, in DOM, 14
document . onmouse event, CaptureMouse()
trapping, 41
DoCurTrail(), subfunction of CursorTrail(),
376-377
DoDeflate(), subfunction of Deflate(), 145
DoFade(), subfunction of Fade (), 111
DoFlyIn(), subfunction of FlyIn(), 281
DoFoldingMenu(), subfunction of
FoldingMenu(), 227-228
DOM (Document Object Model)
accessing from JavaScript, 16-17
overview of, 14-16
domain argument, ProcessCookie(), 322
DoMatrixToText(), subfunction of
MatrixToText(), 268
DoPulsate(), subfunction of
PulsateOnMouseover(), 318
DoResizeTextarea(), subfunction of
ResizeTextarea(), 345
DoRoll(), subfunction of RollOver(), 244
DoSlide(), subfunction of Slide(), 134
DoSlideshow(), subfunction of Slideshow(),
297-298

Index

DoTE(), subfunction of TouchEnable(), 381-382

DoTextRipple(), subfunction of TextRipple(),
285-286

DoTextScroll(), subfunction of TextScroll(),
259-260

DoTextType(), subfunction of TextType(),
263-264

DoToolTip(), subfunction of ToolTip(), 371

downloading/installing web browsers, 2-3

DoZoom(), subfunction of Zoom(), 160-161

drag events, preventing with
PreventAction(), 49

Dynamic Web Programming: A Beginner’s Guide
(Matthews and Cronan), 21

E

e-mail
spam protection. See ProjectEmail()
validating e-mail addresses. See
ValidateEmail()
ECMAScript. See JavaScript
Editra, as program editor, 4
effects
animation. See animation
audio and visual. See audio and visual
effect plug-ins
fading between colors. See ColorFade()
swapping position of, 137, 153-154
text. See text effects plug-ins
visibility. See visibility plug-ins
email argument, ValidateEmail(), 347
EmbedYouTube()
code for, 315
how it works/how to use it, 314-315
overview of, 313-314
variables, arrays, and functions, 314
end, Fade(), 106
errors, reporting errors in plug-ins, 10-11
expr argument, While(), 187

F
Fade()

code for, 113-114

how it works, 107-112

how to use it, 112-113

overview of, 106

variables, arrays, and functions, 107
fade effects, between colors. See ColorFade()
FadeBetween()

code for, 121

DeflateBetween() compared with, 153

389

390

Plug-In JavaScript: 100 Power Solutions

FadeBetween() (cont.)

how it works/how to use it, 120-121

overview of, 119-120

variables, arrays, and functions, 120
Fadeln()

code for, 117

how it works/how to use it, 116-117

overview of, 116

variables, arrays, and functions, 116
FadeOut()

code for, 115

how it works/how to use it, 115

overview of, 114-115

variables, arrays, and functions, 115
FadeToggle()

code for, 119

how it works/how to use it, 118-119

overview of, 117-118

variables, arrays, and functions, 118
FieldPrompt()

code for, 342-343

how it works/how to use it, 341-342

overview of, 340

variables, arrays, and functions, 341
file argument, PlaySound(), 311
Flash, JavaScript compared with, 14
Flip()

code for, 201

how it works/how to use it, 198-201

overview of, 196-197

variables, arrays, and functions, 197-198
FlyIn()

code for, 283

how it works/how to use it, 280-282

overview of, 279

variables, arrays, and functions, 280
FoldingMenu()

code for, 231

how it works/how to use it, 227-231

overview of, 225-226

variables, arrays, and functions, 226
font argument, ToolTip(), 368
for () loop

creating strings with, 68

iterating through arrays, 28
form validation plug-ins

CleanupString(), 351-353

FieldPrompt(), 340-343

overview of, 340

ResizeTextarea(), 343-346

ValidateCreditCard(), 353-358

ValidateEmail(), 346-349

ValidatePassword(), 349-351
forms, DOM web page objects, 15
FP_Off(), subfunction of FieldPrompt(), 341
FP_On(), subfunction of FieldPrompt(),

341-342

FrameBust()

code for, 337

how it works/how to use it, 336

overview of, 335-336

variables, arrays, and functions, 336
Free HTML Editor, as program editor, 4
fromh argument, Zoom(), 156
FromKeyCode()

code for, 47

how it works/how to use it, 46-47

overview of, 45-46

variables, arrays, and functions, 46
fromw argument, Zoomy(), 156
frx, fry argument, Slide(), 130, 132-133
full argument, EmbedYouTube(), 314
functions

Alert(), 363

attaching to events, 38

Billboard(), 301

Breadcrumbs(), 246

BrowserWindow(), 250-251

CallBack(), 179

CaptureKeyboard(), 44

CaptureMouse(), 41

Center(), 94

CenterX(), 91

CenterY(), 93

Chain(), 179

CleanupString(), 352

ColorFade(), 274

ContextMenu(), 233

CreateAjaxObject(), 327

CursorTrail(), 374-375

DecHex(), 70

Deflate(), 142-143

DeflateBetween(), 154

DeflateToggle(), 152

DockBar(), 238

EmbedYouTube(), 314

Fade(), 107

FadeBetween(), 120

Fadeln(), 116

FadeOut(), 115

FadeToggle(), 118

FieldPrompt(), 341

Flip(), 197-198

FlyIn(), 280
FoldingMenu(), 226
FrameBust(), 336
FromKeyCode(), 46
GetAjaxRequest(), 331
GetLastKey(), 48
GetWindowHeight(), 86
GetWindowWidth(), 84
GoogleChart(), 308
GOTO()/ 81

GoToEdge(), 88

H(), 57

HexDec(), 69

Hide(), 121-122
HideToggle(), 126
HoverSlide(), 203
HoverSlideMenu(), 213
Html(), 60

Initialize(), 36
InsVars(), 65-66
Invisible(), 98
Lightbox(), 291
Locate(), 83
MatrixToText(), 266267
NextInChain(), 179
NoPx(), 53

0O(), 24-25

Opacity(), 104

Pause(), 192
PlaySoundy(), 312
PopDown(), 217
PopToggle(), 223
PopUp(), 220
Position(), 79-80
PostAjaxRequest(), 333
PreventAction(), 50
ProcessCookie(), 323
ProjectEmail(), 337
PulsateOnMouseover(), 316
Px(), 53

referencing by name without calling, 42
Reflate(), 148

Repeat(), 185
ReplaceAlert(), 368
Resize(), 78
ResizeHeight(), 76
ResizeTextarea(), 344
ResizeWidth(), 74
RestoreState(), 64
Rolling Copyright(), 360
RollOver(), 242

Index

S(), 32

SaveState(), 62
Show(), 124

Slide(), 131
SlideBetween(), 138
Slideshow/(), 295-296
StrRepeat(), 67
TextRipple(), 284-285
TextScroll(), 258-259
TextToMatrix(), 271
TextType(), 262
ToolTip(), 369-370
TouchEnable(), 380
ValidateCreditCard(), 354
ValidateEmail(), 347
ValidatePassword(), 350
VisibilityToggle(), 102
Visible(), 100

W(), 57

WaitKey(), 194
While(), 187

X(), 55

Y(), 55

Zoom(), 157-158
ZoomDown(), 168
ZoomRestore(), 171
ZoomToggle(), 174

G

gap argument, HoverSlideMenu(), 213
GetAjaxRequest()

code for, 331-332

how it works/how to use it, 331-332

overview of, 330

variables, arrays, and functions, 331
getElementById (), O() function replacing, 24
GetLastKey()

code for, 49

how it works/how to use it, 48—-49

overview of, 48

variables, arrays, and functions, 48
GetWindowHeight()

code for, 87

how it works/how to use it, 86

overview of, 85-86

variables, arrays, and functions, 86
GetWindowWidth()

code for, 85

how it works/how to use it, 84-85

overview of, 84

variables, arrays, and functions, 84

391

392

Plug-In JavaScript: 100 Power Solutions

Google Chrome, downloading, 2
GoogleChart()

code for, 310-311

how it works/how to use it, 308-310

overview of, 306-308

variables, arrays, and functions, 308
GoTo()

code for, 82

how it works/how to use it, 81-82

Locate() combining Position() and

GOTO()/ 82

overview of, 80-81

variables, arrays, and functions, 81
GoToEdge()

code for, 89-90

how it works/how to use it, 88-89

overview of, 87

variables, arrays, and functions, 88

code for, 59
how it works/how to use it, 57-59
overview of, 56-57
variables, arrays, and functions, 57
h argument
ContextMenuy(), 232
Deflate(), 141
DeflateBetween(), 154
DeflateToggle(), 151
Flip(), 197
FoldingMenu(), 226
PopDown(), 217
PopToggle(), 223
PopUp(), 220
Reflate(), 148
Zoom(), 156
ZoomDown(), 167
ZoomRestore(), 171
ZoomToggle(), 174
<h1> tags, styling, 18
head section
DOM web page objects, 14-16
inserting plug-ins into, 10

H()

headerid argument, BrowserWindow(), 249

headings argument, FoldingMenu(), 226
headings, DOM web page objects, 15
height

function for object height, 56

getting height of browser window, 85

resizing object height, 75, 77

height argument
EmbedYouTube(), 314
Resize() argument, 78
ResizeHeight() argument, 76
hexadecimal numbers
converting decimal numbers to, 69
converting to decimal, 68
HexDec()
code for, 69
how it works/how to use it, 69
overview of, 68—-69
variables, arrays, and functions, 69
Hide()
code for, 123
HideToggle() combining Hide() and
Show(), 126
how it works/how to use it, 122-123
overview of, 121
variables, arrays, and functions,
121-122
HideToggle()
code for, 128
how it works/how to use it, 126-127
overview of, 126
variables, arrays, and functions, 126
hover action, of FoldingMenu(), 230-231
HoverSlide()
code for, 208-210
how it works, 204-206
how to use it, 206-208
overview of, 201-202
variables, arrays, and functions, 203
HoverSlideMenu()
code for, 216
how it works/how to use it, 213-215
overview of, 212-213
variables, arrays, and functions, 213
hqg argument, EmbedYouTube(), 314
Html()
code for, 61
how it works/how to use it, 60-61
overview of, 59-60
variables, arrays, and functions, 60
HTML & XHTML: The Complete Reference
(Powell), 19
HTML (Hypertext Markup Language)
embedding JavaScript within, 125
innerHTML property, 60
JavaScript linked to HTML using
DOM, 14
placeholder feature in HTMLS5, 340

id argument

Billboard(), 301
BrowserWindow(), 249
Center(), 94
CenterX(), 90
CenterY(), 92
ColorFade(), 273
ContextMenu(), 232
CreateAjaxObject(), 327
Deflate(), 141
DeflateToggle(), 151
DockBar(), 237
Fade(), 106

Fadeln(), 118
FadeOut(), 115
FieldPrompt(), 340
FlyIn(), 279
GetAjaxRequest(), 330
GoogleChart(), 306
GoTo(), 79
GoToEdge(), 87
HideToggle(), 126
HoverSlide(), 201
Invisible(), 98
Lightbox(), 290
Locate(), 82
MatrixToText(), 266
Opacity(), 103
parameter of O(), 24
parameter of S(), 32
PlaySound(), 311
PopDown(), 217
PopToggle(), 223
PopUp(), 220
Position(), 79
PostAjaxRequest(), 333
PreventAction(), 50

PulsateOnMouseover(), 316

Reflate(), 148
Resize(), 78
ResizeHeight(), 76
ResizeTextarea(), 343
ResizeWidth(), 74
RestoreState(), 63
SaveState(), 61
Show(), 123

Slide(), 130
SlideBetween(), 137
Slideshow(), 295

Index

TextRipple(), 283
TextScroll(), 258
TextToMatrix(), 270
TextType(), 262
ToolTip(), 368
W() and H(), 57
X() and Y(), 55
Zoom(), 156
ZoomDown(), 167
ZoomRestore(), 171
ZoomToggle(), 174
idl argument
DeflateBetween(), 154
FadeBetween(), 120
Flip(), 197
id2 argument
DeflateBetween(), 154
FadeBetween(), 120
Flip(), 197
ids argument, HoverSlideMenu(), 212
IE (Internet Explorer). See Internet Explorer (IE)
image argument, CursorTrail(), 374
images argument, Slideshow(), 295
images, flipping, 200
@import directive, CSS, 18
increase argument, DockBar(), 237
Initialize()
CaptureMouse() called by, 40
code for, 39-40
how it works/how to use it, 36-39
overview of, 35
variables, arrays, and functions, 36
innerHTML property, 60
inputcolor argument, FieldPrompt(), 340
instanceof operator, 91
InsVars()
code for, 67
how it works/how to use it, 66-67
overview of, 65-66
variables, arrays, and functions, 65-66
Internet Explorer (IE)
CaptureKeyboard() and, 44
downloading, 2
emulating IE 6 and 7, 7
older versions of, 67
versions and OSs systems, 2
interruptible argument
BrowserWindow(), 250
Deflate(), 142
DeflateBetween(), 154
DeflateToggle(), 151

393

394

Plug-In JavaScript: 100 Power Solutions

interruptible argument (cont.)
Fade(), 106
FadeBetween(), 120
Fadeln(), 118
FadeOut(), 115
FoldingMenu(), 226
PopDown(), 217
PopToggle(), 223
PopUp(), 220
Reflate(), 148
Slide(), 130, 134, 137
Zoom(), 157
ZoomDown(), 167
ZoomRestore(), 171
ZoomToggle(), 174
interruptible calls, vs. noninterruptible, 113
INTERVAL
determining distance between steps
when sliding objects, 133-135
Initialize() variable, 37-38
Invisible()
code for, 100
Hide() compared with, 121
how it works/how to use it, 99
overview of, 98
variables, arrays, and functions, 98
iPad, 379
iPhone, 379
items argument, DockBar(), 237

J

Java apps, JavaScript compared

with, 14

JavaScript
CSS and, 14, 17-21
DOM and, 14-17
plug-ins. See plug-ins
semicolons in, 21

jEdit, as program editor, 4

K

key codes, FromKeyCode() returning names
of, 45-46

keyboard, recording keypresses, 43
KEY_PRESS

CaptureKeyboard() and,

44-45

GetLastKey() and, 48

Initialize() and, 37

WaitKey() and, 194

L

labels argument, GoogleChart(), 307
Last In First Out (LIFO), function stacks, 180
legends argument, GoogleChart(), 307
length argument, CursorTrail(), 374
LIFO (Last In First Out), function stacks, 180
Lightbox()

code for, 294

how it works/how to use it, 291-293

overview of, 290

variables, arrays, and functions, 291
line charts, 308
<link> tags, including style sheets with, 19
Linux

program editors supported by, 4

web browsers supported by, 2

Zend Server Community Edition and, 4-5

Locate()
code for, 83
how it works/how to use it, 83
overview of, 82-83
variables, arrays, and functions, 83
location and dimensions plug-ins
Center(), 94-95
CenterX(), 90-92
CenterY(), 92-93
GetWindowHeight(), 85-87
GetWindowWidth(), 84-85
GoTo(), 80-82
GoToEdge(), 87-90
Locate(), 82-83
Position(), 79-80
Resize(), 77-78
ResizeHeight(), 75-77
ResizeWidth(), 74-75
loop argument, PlaySound(), 311
lower argument, ValidatePassword(), 349
lowtoup argument, CleanupStringy(), 352

M
Mac OSX
program editors supported by, 4
web browsers supported by, 2
Zend Server Community Edition and,
4-5
MatrixToText()
code for, 269-270
how it works/how to use it, 267269
overview of, 265-266
variables, arrays, and functions, 266-267

max argument
ResizeTextarea(), 343
ValidatePassword(), 349
menu and navigation plug-ins
Breadcrumbs(), 246248
BrowserWindow(), 248-256
ContextMenu(), 232-237
DockBar(), 237-241
FoldingMenu(), 225-231
HoverSlideMenu(), 212-216
PopDown(), 216-219
PopToggle(), 222225
PopUp(), 220-222
RollOver(), 242-246
message argument, FrameBust(), 335
meta, DOM web page objects, 15
Microsoft Internet Explorer. See Internet
Explorer (IE)
min argument
ResizeTextarea(), 343
ValidatePassword(), 349
month argument, ValidateCreditCard(), 354
mouse
CaptureMouse() plug-in showing
location of, 40
CursorTrail(), 373-378
Deflate() and Relate() attached to mouse
events, 147
MOUSE_DOWN, Initialize() variable, 36-37
MOUSE_IN, Initialize() variable, 37
mouseovers
ColorFade() for, 273
Show() and Hide() used in, 123
MOUSE_X and MOUSE_Y, Initialize()
variable, 37
movement and animation plug-ins
Deflate(), 141-147
DeflateBetween(), 153-156
DeflateToggle(), 151-153
Reflate(), 147-151
Slide(), 130-137
SlideBetween(), 137-141
Zoom(), 156-167
ZoomDown(), 167-170
ZoomRestore(), 170-173
ZoomToggle(), 173-176
msecs argument
Billboard(), 301
BrowserWindow(), 250
ColorFade(), 273
ContextMenu(), 232

Index

Deflate(), 142
DeflateBetween(), 154
DeflateToggle(), 151
DockBar(), 237
Fade(), 106
FadeBetween(), 120
Fadeln(), 118
FadeOut(), 115
Flip(), 197
FlyIn(), 279
FoldingMenu(), 226
HoverSlide(), 202
HoverSlideMenu(), 213
Lightbox(), 290
MatrixToText(), 266
PopDown(), 217
PopToggle(), 223
PopUp(), 220
PulsateOnMouseover(), 316
Reflate(), 148
Slide(), 130, 133, 135
SlideBetween(), 137
Slideshow(), 295
TextRipple(), 283
TextScroll(), 258
TextToMatrix(), 270
TextType(), 262
ToolTip(), 369
Zoom(), 157
ZoomDown(), 167
ZoomRestore(), 171
ZoomToggle(), 174
multi argument, FoldingMenu(), 226

name argument, ProcessCookie(), 322
navigation plug-ins. See menu and navigation
plug-ins

NextInChain()

code for, 184

how it works, 180

overview of, 179

variables, arrays, and functions, 179
noninterruptible calls, vs. interruptible, 113
NoPx()

code for, 54

how it works/how to use it, 53-54

overview of, 52-53

variables, arrays, and functions, 53
Notepad++, as program editor, 34

395

396

Plug-In JavaScript: 100 Power Solutions

notifications, Alert() and, 361

num argument, StrRepeat(), 67

number argument
ColorFade(), 273
Repeat(), 185
TextRipple(), 283
TextScroll(), 258
TextType(), 262
ValidateCreditCard(), 354

0

code for, 31

deepest level of, 29-30

how it works, 25

how to use it, 30

overview of, 24

passing additional arguments, 26

passing arrays, 26-28

passing strings or objects with, 25-26

processing the additional arguments, 29

recursive calls with, 28-29

ResizeWidth() using capability of, 74

variables, arrays, and functions, 24-25

objects

absolute positioning with Locate(), 82

centering both horizontally and
vertically with Center(), 94

centering horizontally with CenterX(), 90

centering vertically with CenterY(), 92

fading between opacity values, 106

fading between two images, 119

fading in, 116

fading out, 114

flipping, 200

functions for managing horizontal and
vertical offset of objects in
browsers, 54

functions for width and height, 56

hiding, 121-123

moving to edge of browser window with
GoToEdge(), 87

opacity of, 103

passing with O(), 25-26

positioning with GoTo(), 80-81

reinflating shrunken objects, 147

resizing height of, 75, 77

resizing pair of objects to select heights
and widths, 153

resizing width of, 74, 77

00

restoring state of, 61
restoring zoomed down object to
original dimensions, 170
saving state of, 61
setting position of, 79
showing, 123-125
shrinking over time, 141
sliding in creating animation effects, 130
swapping position of, 137
toggling between fade in/fade out, 117
toggling between hiding/showing, 126
toggling between shrinking/
unshrinking, 151
toggling between visible and invisible, 101
toggling between zoom options, 173
visibility of, 98, 100
zooming down to zero dimensions, 167
zooming in/out, 156
objects argument, Billboard(), 301
offset argument
HoverSlide(), 202
HoverSlideMenu(), 212
onmouseout event, 150, 244
onmouseover event, 150, 315
onof f argument, PreventAction(), 50
onselectstart event, PreventAction()
applied to, 51-52
opl argument, PulsateOnMouseover(), 316
Opacity()
code for, 106
how it works/how to use it, 104-105
overview of, 103-104
variables, arrays, and functions, 104
opacity
fading between opacity values, 106
reaching final opacity during fade, 111
setting object opacity, 103
toggling between fade in/fade out, 117
opacity argument, Lightbox(), 290

P
pad argument
Flip(), 197
Zoom(), 157, 161
ZoomDown(), 167
ZoomRestore(), 171
ZoomToggle(), 174
padding margins, zooming and, 156
pass argument, ValidatePassword(), 349
passwords, validating security of. See
ValidatePassword()

path argument, ProcessCookie(), 322
Pause()
code for, 193
how it works/how to use it, 192-193
overview of, 191-192
variables, arrays, and functions, 192
percent argument
GoToEdge(), 87
Opacity(), 103
PHP
converting JavaScript to, 21
as server side scripting language, 4
pie charts, 308
pixels
positioning objects with GoTo(), 80-81
working with, 52-53
placeholder feature, HTMLS5, 340
PlaySound()
code for, 313
how it works/how to use it, 312-313
overview of, 311
variables, arrays, and functions, 312
Plug-in PHP (Nixon), 24
plug-ins
Ajax. See Ajax (Asynchronous JavaScript
and XML)
for alerts and notifications. See Alert()
audio and visual effects. See audio and
visual effect plug-ins
chaining and interaction. See chaining
and interaction plug-ins
for cookies. See ProcessCookie()
for copyrights. See RollingCopyright()
core. See core plug-ins
for cursor trails. See CursorTrail()
form validation. See form validation
plug-ins
location and dimensions. See location
and dimensions plug-ins
menus and navigation. See menu and
navigation plug-ins
movement and animation. See
movement and animation plug-ins
security. See security
text effects. See text effects plug-ins
tooltips. See ToolTip()
for touch devices. See TouchEnable()
visibility. See visibility plug-ins
plug-ins, best use
choosing program editors, 34
companion website for this book, 8

Index

downloading and installing web
browsers, 2-3
fixing bugs and reporting errors, 10-11
inserting into head section of
web pages, 10
loading all plug-ins included in this
book, 9
loading single plug-in from those
included in this book, 9-10
managing Ajax, 4-6
older versions of Internet Explorer, 6-7
summary, 12
waiting until web pages load before
running, 11
pluginjavascript.com
companion site to this book, 8
downloading plug-ins from and
reporting bugs to, 10-11
pop (), 180
PopDown()
code for, 219
how it works/how to use it, 218-219
overview of, 216-217
variables, arrays, and functions, 217
PopToggle()
code for, 225
how it works/how to use it, 223-225
overview of, 222-223
variables, arrays, and functions, 223
PopUp()
code for, 222
how it works/how to use it, 221-222
overview of, 220
variables, arrays, and functions, 220
Position()
code for, 80
how it works/how to use it, 79-80
Locate() combining Position() and
GoTo(), 82
overview of, 79
variables, arrays, and functions, 79
PostAjaxRequest()
code for, 335
how it works/how to use it, 333-335
overview of, 332-333
variables, arrays, and functions, 333
PreventAction()
code for, 52
how it works/how to use it, 50-52
overview of, 49-50
variables, arrays, and functions, 50

397

398

Plug-In JavaScript: 100 Power Solutions

ProcessCookie()

code for, 326

how it works/how to use it, 323-325

overview of, 322

variables, arrays, and functions, 323
program editors, choosing, 3—4
ProjectEmail()

code for, 338

how it works/how to use it, 338

overview of, 337

variables, arrays, and functions, 337
prompt argument, FieldPrompt(), 340
promptcolor argument, FieldPrompt(), 340
promptstyle argument, FieldPrompt(), 340
property argument

0(), 24,29

S(), 32
PulsateOn(), subfunction of

PulsateOnMouseover(), 317

PulsateOnMouseover()

code for, 319-320

how it works/how to use it, 317-319

overview of, 315-316

variables, arrays, and functions, 316
punct argument, ValidatePassword(), 349
push (), 180
Px()

code for, 54

how it works/how to use it, 53-54

overview of, 52-53

variables, arrays, and functions, 53
Pythagorean theorem, Slide() plug-in using to

calculate distances, 132-133

R
random argument, Billboard(), 301
recursive calls, with O(), 28-29
Reflate()
code for, 150-151
DeflateBetween() used with, 154
DeflateToggle() combines Deflate() and
Reflate(), 152
how it works/how to use it, 149-150
overview of, 147-148
variables, arrays, and functions, 148
Repeat()
code for, 186
how it works/how to use it, 185-186
overview of, 185
variables, arrays, and functions, 185

replace(), NoPx () using JavaScript
replace(), 53

ReplaceAlert(). See also Alert()

code for, 368

how it works/how to use it, 368

overview of, 367

variables, arrays, and functions, 368
Resize()

code for, 78

how it works/how to use it, 78

overview of, 77-78

variables, arrays, and functions, 78
ResizeHeight()

code for, 77

how it works/how to use it, 76-77

overview of, 75-76

variables, arrays, and functions, 76
ResizeTextarea()

code for, 346

how it works/how to use it, 345-346

overview of, 343-344

variables, arrays, and functions, 344
ResizeWidth()

code for, 75

how it works/how to use it, 74-75

overview of, 74

variables, arrays, and functions, 74
RestoreState()

code for, 65

how it works/how to use it, 64-65

overview of, 63

variables, arrays, and functions, 64
ripple effects. See TextRipple()
rol argument, RollOver(), 242
ro2 argument, RollOver(), 242
RollCheck(), subfunction of RollOver(), 244
RollingCopyright()

code for, 361

how it works/how to use it, 360-361

overview of, 360

variables, arrays, and functions, 360
RollOver()

code for, 245-246

how it works/how to use it, 242-245

overview of, 242

variables, arrays, and functions, 242

S

code for, 34-35
GoTo() argument using capability of, 81

S0

Hide() and, 122
how it works/how to use it, 33-34
Invisible() and, 99
overview of, 31-32
Position() using capability of, 79
ResizeWidth() using capability of, 74-75
Show() and, 124
variables, arrays, and functions, 32
Visible() and, 100
Safari, downloading, 2
SaveState()
code for, 63
how it works/how to use it, 62-63
overview of, 61
variables, arrays, and functions, 62
scatter charts, 308
scrolling events, CaptureMouse() and, 42
scrolling text. See TextScroll()
SCROLL_X and SCROLL_Y, Initialize()
variable, 37
seconds argument, ProcessCookie(), 322
secure argument, ProcessCookie(), 322
security
bursting web pages out of frames. See
FrameBust()
spam protection. See ProjectEmail()
validating credit cards. See
ValidateCreditCard()
validating passwords. See
ValidatePassword()
selection events, preventing with
PreventAction(), 49
semicolons (;), in JavaScript, 21
Show()
code for, 125
how it works/how to use it, 124-125
overview of, 123
variables, arrays, and functions, 124
showing argument
HoverSlide(), 202
HoverSlideMenu(), 212
shrinking objects
expanding shrunken objects back to
original dimensions, 147
over time, 141
toggling between shrinking /
unshrinking, 151
size argument, ToolTip(), 369
Slide()
calculating distance for each step, 133-134
code for, 136-137
how it works, 131-132

Index

how to use it, 135-136
overview of, 130
performing the slide, 134-135
Pythagorean theorem used to calculate
distances, 132-133
setting up repeating interrupts, 134
variables, arrays, and functions, 131
SlideBetween()
code for, 141
how it works/how to use it, 138-140
overview of, 137
variables, arrays, and functions, 138
SlideIn(), subfunction of HoverSlide(), 205-206
SlideOut(), subfunction of HoverSlide(), 206
Slideshow()
code for, 299-300
how it works/how to use it, 296-299
overview of, 295
variables, arrays, and functions, 295-296
slideshows
swap effects and, 153-154
transitions in, 119
sound effects. See audio and visual effect
plug-ins
spacer argument, Breadcrumbs(), 246
spacestosingle argument, CleanupStringy(),
352
start argument
Fade(), 106
Rolling Copyright(), 360
StartTE(), subfunction of TouchEnable(), 381
state
restoring object state, 63
saving object state, 61
state argument
CursorTrail(), 374
TouchEnable(), 379
StopTE(), subfunction of TouchEnable(), 382
str argument, StrRepeat(), 67
string argument, CleanupStringy(), 352
strings
how it works/how to use it, 65-66
manipulation functions. See
CleanupString|()
passing with O(), 25-26
repeating string based on previous
string, 67
StrRepeat()
code for, 68
how it works/how to use it, 68
overview of, 67
variables, arrays, and functions, 67

399

400

Plug-In JavaScript: 100 Power Solutions

style.position property, CSS, 79
style.visibility property, CSS, 99-100
swap effects
by deflating one and inflating the other,
153-154
SlideBetween() argument for, 137

T

tcolor argument, GoogleChart(), 306
text effects plug-ins
ColorFade(), 273-279
FlyIn(), 279-283
MatrixToText(), 265-270
overview of, 258
TextRipple(), 283288
TextScroll(), 258-261
TextToMatrix(), 270-273
TextType(), 262-265
textarea field on forms, resizing. See
ResizeTextarea()
textc argument, ToolTip(), 369
TextRipple()
code for, 287-288
how it works/how to use it, 285-287
overview of, 283-284
variables, arrays, and functions, 284-285
TextScroll()
code for, 261
how it works/how to use it, 259-261
overview of, 258
variables, arrays, and functions, 258-259
TextToMatrix()
code for, 272-273
how it works/how to use it, 271-272
overview of, 270
variables, arrays, and functions, 271
TextType()
code for, 265
how it works/how to use it, 263-264
variables, arrays, and functions, 262
timeout argument, ToolTip(), 369
tip argument, ToolTip(), 368
title argument, GoogleChart(), 306
title, DOM web page objects, 15
toh argument, Zoom(), 157
ToolTip()
code for, 372-373
how it works/how to use it, 370-372
overview of, 368-369
variables, arrays, and functions, 369-370
ToolTipHide(), subfunction of ToolTip(), 371

touch devices, 379
TouchEnable()
code for, 383-384
how it works/how to use it, 380-382
overview of, 379
variables, arrays, and functions, 380
tow argument, Zoomy(), 156
tox, toy arguments, Slide(), 130, 132-134
transitions
Fade(), 109
FadeBetween(), 119
try () .catch(), testing and catching errors
with, 30
tsize argument, GoogleChart(), 307
type argument
BrowserWindow(), 250
ContextMenu(), 232
FoldingMenu(), 226
GoogleChart(), 307
Locate(), 82
PopDown(), 217
PopToggle(), 223
PopUp(), 220
Position(), 79
PreventAction(), 50
typeof operator, 29
typewriter emulation. See TextType()

U

upper argument, ValidatePassword(), 349
uptolow argument, CleanupString(), 352
url argument
GetAjaxRequest(), 330
PostAjaxRequest(), 333

Vv
ValidateCreditCard()

code for, 356-358

how it works/how to use it, 354-356

overview of, 353-354

variables, arrays, and functions, 354
ValidateEmail()

code for, 348-349

how it works/how to use it, 347-348

overview of, 346-347

variables, arrays, and functions, 347
ValidatePassword()

code for, 351

how it works/how to use it, 350-351

overview of, 349

variables, arrays, and functions, 350

validation of forms. See form validation
plug-ins

value argument
Alert(), 362
0(), 24,29
ProcessCookie(), 322
S(), 32

variables
Alert(), 363
Billboard(), 301
Breadcrumbs(), 246
BrowserWindow(), 250-251
CallBack(), 179
CaptureKeyboard(), 44
CaptureMouse(), 41
Center(), 94
CenterX(), 91
CenterY(), 93
Chain(), 179
CleanupString(), 352
ColorFade(), 274
ContextMenu(), 233
CreateAjaxObject(), 327
CursorTrail(), 374-375
DecHex(), 70
Deflate(), 142-143
DeflateBetween(), 154
DeflateToggle(), 152
DockBar(), 238
EmbedYouTube(), 314
Fade(), 107
FadeBetween(), 120
Fadeln(), 116
FadeOut(), 115
FadeToggle(), 118
FieldPrompt(), 341
Flip(), 197-198
FlyIn(), 280
FoldingMenu(), 226
FrameBust(), 336
FromKeyCode(), 46
GetAjaxRequest(), 331
GetLastKey(), 48
GetWindowHeight(), 86
GetWindowWidth(), 84

global string variables of Initialize(), 38

GoogleChart(), 308
GoTo(), 81
GoToEdge(), 88
H(), 57

HexDec(), 69

Index

Hide(), 121-122
HideToggle(), 126
HoverSlide(), 203
HoverSlideMenu(), 213
Html(), 60
including in text strings using InsVars(),
65-66
Initialize(), 36-38
InsVars(), 65-66
Invisible(), 98
Lightbox(), 291
Locate(), 83
MatrixToText(), 266-267
NextInChain(), 179
NoPx(), 53
0O(), 24-25
Opacity(), 104
Pause(), 192
PlaySound(), 312
PopDown(), 217
PopToggle(), 223
PopUp(), 220
Position(), 79-80
PostAjaxRequest(), 333
PreventAction(), 50
ProcessCookie(), 323
ProjectEmail(), 337
PulsateOnMouseover(), 316
Px(), 53
Reflate(), 148
Repeat(), 185
ReplaceAlert(), 368
Resize(), 78
ResizeHeight(), 76
ResizeTextarea(), 344
ResizeWidth(), 74
RestoreState(), 64
Rolling Copyright(), 360
RollOver(), 242
S(), 32
SaveState(), 62
Show(), 124
Slide(), 131
SlideBetween(), 138
Slideshow(), 295-296
StrRepeat(), 67
TextRipple(), 284-285
TextScroll(), 258-259
TextToMatrix(), 271
TextType(), 262
ToolTip(), 369-370

401

Plug-In JavaScript: 100 Power Solutions

variables (cont.)

TouchEnable(), 380

ValidateCreditCard(), 354

ValidateEmail(), 347

ValidatePassword(), 350

Visibility Toggle(), 102

Visible(), 100

W(), 57

WaitKey(), 194

While(), 187

X(), 55

Y(), 55

Zoom(), 157-158, 160

ZoomDown(), 168

ZoomRestore(), 171

ZoomToggle(), 174
video argument, EmbedYouTube(), 314
video effects. See audio and visual effect

plug-ins

visibility plug-ins

Fade (), 106-114

FadeBetween(), 119-121

Fadeln(), 116-117

FadeOut(), 114-115

FadeToggle(), 117-119

Hide(), 121-123

HideToggle(), 126-128

Invisible(), 98-100

Opacity(), 103-106

Show(), 123-125

Visibility Toggle(), 101-103

Visible(), 100-101
VisibilityToggle()

code for, 103

how it works/how to use it, 102-103

overview of, 101-102

variables, arrays, and functions, 102
Visible()

code for, 101

how it works/how to use it, 100-101

overview of, 100

variables, arrays, and functions, 100
visual aids, CursorTrail() as, 373

w

code for, 59

how it works/how to use it, 57-59
overview of, 56-57

variables, arrays, and functions, 57

WO

w & h argument, BrowserWindow(), 250
w argument
ContextMenu(), 232
Deflate(), 141
DeflateBetween(), 154
DeflateToggle(), 151
Flip(), 197
FoldingMenu(), 226
PopDown(), 217
PopToggle(), 223
PopUp(), 220
Reflate(), 148
Zoom(), 156
ZoomDown(), 167
ZoomRestore(), 171
ZoomToggle(), 174
wait argument
Billboard(), 301
Pause(), 192
Slideshow(), 295
WaitKey/()
code for, 196
how it works/how to use it, 194-196
overview of, 193
variables, arrays, and functions, 194
Web 2.0, 4
web browsers
determining current browser, 38
downloading and installing, 2-3
getting height of browser window, 85
getting width of browser window, 84
JavaScript support, 2
managing horizontal and vertical offset
of objects, 54
market share by browser types, 6
moving to edge of browser window, 86
older versions of Internet Explorer, 6-7
web pages
accessing elements using O(), 30
adding styling to, 18

inserting plug-ins into head section of, 2-3

objects in, 14-16
waiting until pages load before running
plug-ins, 11
website, companion website for this book, 8
what argument, ColorFade(), 273
where argument
DockBar(), 237
GoToEdge(), 87
HoverSlide(), 201
HoverSlideMenu(), 212

While()
code for, 191
how it works, 187-189
how to use it, 189-191
overview of, 186-187
variables, arrays, and functions, 187
width
function for object width, 56
getting width of browser window, 84
resizing object width, 74, 77
width argument
EmbedYouTube(), 314
Resize(), 78
ResizeWidth(), 74
window objects, in DOM, 14
Windows PCs
program editors supported by, 4
web browsers supported by, 2
Zend Server Community Edition and, 4-5

X

code for, 56

how it works/how to use it, 55-56

overview of, 54-55

variables, arrays, and functions, 55
x & y argument, BrowserWindow(), 249
X argument

FlyIn(), 279

GoTo(), 79

Locate(), 83

Y

code for, 56

how it works/how to use it, 55-56

overview of, 54-55

variables, arrays, and functions, 55
y argument

FlyIn(), 279

GoTo(), 79

Locate(), 83

X()

Y()

Index

year argument, ValidateCreditCard(), 354
YouTube video, displaying. See
EmbedYouTube()

YA
Zend Server, Community Edition (CE), 4-6
ZeroToFF(), subfunction of ColorFade(), 276
ZINDEX, Initialize() variable, 37
Zoom()

checking completion of, 162

code for, 165-167

DockBar() plug-in calling, 161-162

DoZoom() subfunction, 160-161

Hide() compared with, 121

how it works, 158-159

how to use it, 164-165

overview of, 156-157

setting up variables for, 160

SlideBetween() argument, 165-167

variables, arrays, and functions,

157-158
when pad argument is true, 161
zoom not in progress/zoom in
progress, 159

ZoomPad() subfunction, 162-163
ZoomDown()

code for, 170

how it works/how to use it, 168-170

overview of, 167

variables, arrays, and functions, 168

ZoomRestore() as companion to, 170
ZoomPad(), subfunction of Zoom(), 162-163
ZoomRestore()

code for, 173

how it works/how to use it, 171-173

overview of, 170-171

variables, arrays, and functions, 171
ZoomToggle()

code for, 176

how it works/how to use it, 174-176

overview of, 173-174

variables, arrays, and functions, 174

403

	Contents
	Acknowledgments
	Introduction
	1 Making the Best Use of These Plug-ins
	Downloading and Installing Web Browsers
	Choosing a Program Editor
	Managing Ajax
	Older Versions of Microsoft Internet Explorer
	Emulating Internet Explorers 6 and 7

	The Companion Website
	Including All the Plug-ins
	Including Single Plug-ins
	Where to Include the JavaScript
	Cherry Picking Code Sections
	Bug Fixing and Reporting
	Waiting Until the Web Page Has Loaded
	Summary

	2 JavaScript, CSS, and the DOM
	The Document Object Model (DOM)
	Accessing the DOM from JavaScript

	Cascading Style Sheets
	Accessing Styles in JavaScript
	JavaScript and Semicolons
	Summary

	3 The Core Plug-ins
	Plug-in 1: O()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 2: S()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 3: Initialize()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 4: CaptureMouse()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 5: CaptureKeyboard()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 6: FromKeyCode()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 7: GetLastKey()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 8: PreventAction()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 9: NoPx() and Px()
	About the Plug-ins
	Variables, Arrays, and Functions
	How They Work
	How To Use Them
	The Plug-ins

	Plug-in 10: X() and Y()
	About the Plug-ins
	Variables, Arrays, and Functions
	How They Work
	How To Use Them
	The Plug-ins

	Plug-in 11: W() and H()
	About the Plug-ins
	Variables, Arrays, and Functions
	How They Work
	How To Use Them
	The Plug-ins

	Plug-in 12: Html()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 13: SaveState()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 14: RestoreState()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 15: InsVars()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 16: StrRepeat()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 17: HexDec()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 18: DecHex()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	4 Location and Dimensions
	Plug-in 19: ResizeWidth()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 20: ResizeHeight()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 21: Resize()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 22: Position()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 23: GoTo()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 24: Locate()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 25: GetWindowWidth()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 26: GetWindowHeight()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 27: GoToEdge()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 28: CenterX()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 29: CenterY()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 30: Center()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	5 Visibility
	Plug-in 31: Invisible()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 32: Visible()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 33: VisibilityToggle()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 34: Opacity()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 35: Fade()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 36: FadeOut()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 37: FadeIn()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 38: FadeToggle()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 39: FadeBetween()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 40: Hide()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 41: Show()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 42: HideToggle()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	6 Movement and Animation
	Plug-in 43: Slide()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 44: SlideBetween()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 45: Deflate()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 46: Reflate()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 47: DeflateToggle()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 48: DeflateBetween()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 49: Zoom()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 50: ZoomDown()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 51: ZoomRestore()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 52: ZoomToggle()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	7 Chaining and Interaction
	Plug-in 53: Chain(), NextInChain(), and CallBack()
	About the Plug-ins
	Variables, Arrays, and Functions
	How They Work
	How To Use Them
	Using the CallBack() Function Directly
	The Plug-ins

	Plug-in 54: Repeat()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 55: While()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 56: Pause()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 57: WaitKey()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 58: Flip()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 59: HoverSlide()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	8 Menus and Navigation
	Plug-in 60: HoverSlideMenu()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 61: PopDown()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 62: PopUp()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 63: PopToggle()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 64: FoldingMenu()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 65: ContextMenu()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 66: DockBar()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 67: RollOver()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 68: Breadcrumbs()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 69: BrowserWindow()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	9 Text Effects
	Plug-in 70: TextScroll()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 71: TextType()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 72: MatrixToText()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 73: TextToMatrix()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 74: ColorFade()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 75: FlyIn()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 76: TextRipple()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	10 Audio and Visual Effects
	Plug-in 77: Lightbox()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 78: Slideshow()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 79: Billboard()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 80: GoogleChart()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 81: PlaySound()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 82: EmbedYouTube()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 83: PulsateOnMouseover()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	11 Cookies, Ajax, and Security
	Plug-in 84: ProcessCookie()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 85: CreateAjaxObject()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 86: GetAjaxRequest()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 87: PostAjaxRequest()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 88: FrameBust()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 89: ProtectEmail()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	12 Forms and Validation
	Plug-in 90: FieldPrompt()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 91: ResizeTextarea()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 92: ValidateEmail()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 93: ValidatePassword()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 94: CleanupString()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 95: ValidateCreditCard()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	13 Solutions to Common Problems
	Plug-in 96: RollingCopyright()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 97: Alert()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 98: ReplaceAlert()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 99: ToolTip()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 100: CursorTrail()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Plug-in 101: TouchEnable()
	About the Plug-in
	Variables, Arrays, and Functions
	How It Works
	How To Use It
	The Plug-in

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

