

Modern JavaScript Web
Development Cookbook

Easy solutions to common and everyday JavaScript
development problems

Federico Kereki

BIRMINGHAM - MUMBAI

Modern JavaScript Web Development
Cookbook
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Larissa Pinto
Content Development Editor: Flavian Vaz, Onkar Wani
Technical Editor: Rutuja Vaze
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Alishon Mendonsa
Production Coordinator: Deepika Naik

First published: December 2018

Production reference: 1211218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-274-9

www.packtpub.com

http://www.packtpub.com

This book is more than deservedly dedicated, with my continued love, to Sylvia Tosar.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Federico Kereki is a Uruguayan systems engineer, with a master's degree in education, and
over 30 years' experience as a consultant, system developer, university professor, and
writer. He is currently a subject matter expert at Globant, and he has taught CS courses at
Universidad de la República, Universidad ORT Uruguay, and Universidad de la Empresa.

He has written for the Linux Journal and the LinuxPro Magazine in the USA, Linux+ and
Mundo Linux in Europe, and websites such as Linux.com and IBM DeveloperWorks. He has
also written booklets on computer security, and two books—Essential GWT, and Mastering
JavaScript Functional Programming.

This book couldn't have been possible without the continued support from my wife, Sylvia
Tosar, who provided everything so I could work on this book—which was started while in
a stint working in Pune, India, 10,000 miles away from home; continued for a short while
in London, England; and only finished back home in Montevideo, Uruguay, but always
with her by my side, in person or thanks to the internet.

About the reviewers
Bruno Joseph Dmello is currently working at Truckx as a web development consultant. He
has six years' experience in web application development serving a variety of domains,
including entertainment, social media, enterprise, and IT services. He is a JavaScript
enthusiast, with four years' experience of working with it. Bruno follows Kaizen and enjoys
the freedom of architecting new things on the web. He has also contributed to the
community by authoring books such as Web Development in Node.js and MongoDB (version2,
version 3), What You Need To Know About Node.js (free ebook), and JSON Essentials (version
2), and by being a reviewer.

Sasan Seydnejad has more than a decade of experience in developing web user interfaces
and frontend applications using JavaScript, CSS, and frameworks such as Angular and
React.

He specializes in modular SPA design and implementation, responsive mobile-friendly
user interfaces, client application architecture, and UX design. He has worked and
consulted for various tech companies, including Nokia and Trading Central. He is also the
author of the book Modular Programming with JavaScript, by Packt Publishing.

Xun (Brian) Wu is the founder and CEO of smartchart.tech. He has 17+ years of extensive,
hands-on experience on design and development with blockchain, big data, Cloud, UI, and
system infrastructure. He has co-authored a number of books, including Seven NoSQL
Databases in a Week, Hyperledger Cookbook, and Blockchain Quick Start Guide. He has been a
technical reviewer on more than 40 books for Packt. He serves as a board adviser for
several blockchain start-ups and owns several patents on blockchain. Brian also holds an
NJIT computer science master's degree. He lives in New Jersey with his two beautiful
daughters, Bridget and Charlotte.

I would like to thank my parents, wife, and kids for their patience and support throughout
this endeavor.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Working with JavaScript Development Tools 8
Introduction 8
Installing Visual Studio Code for development 9

How to do it… 10
How it works… 11

Extending Visual Studio Code 14
How to do it… 14

Adding Fira Code font for better editing 18
How to do it… 19
How it works… 20

Adding npm for package management 21
How to do it… 23
How it works… 23

Creating a project with npm 24
Installing packages for different purposes 27

There's more… 28
Doing version control with Git 29

How to do it… 30
There's more… 31

Formatting your source code with Prettier 34
How to do it… 36
How it works… 38

Documenting your code with JSDoc 40
How to do it… 41
How it works… 42

Adding code quality checks with ESLint 44
How to do it… 45
How it works… 47
There's more… 48

Adding Flow for data types checks 50
How to do it… 51
How it works… 52

Configuring Flow's linting 52
Using Flow within VSC 54

Chapter 2: Using Modern JavaScript Features 56
Introduction 56
Adding types 58

Table of Contents

[ii]

Getting started 58
How to do it... 59

Basic types in Flow 60
Union types 62
Class types 63
Type aliases 65
Generic types 66
Opaque types for safer coding 68
Working with libraries 70

Working with strings 72
How to do it... 72

Interpolating in template strings 72
Tagged templates 73
Writing multiline strings 74
Repeating strings 75
Padding strings 75
Searching in strings 76
Trimming strings 76
Iterating over strings 77

Enhancing your code 77
How to do it... 77

Working in strict mode 77
Scoping variables 78
Spreading and joining values 81
Destructuring arrays and objects 82
Doing powers 84

Defining functions 84
How to do it... 84

Writing arrow functions 84
Returning values 85
Handling this in arrow functions 86
Defining types for arrow functions 88
Defining default argument values 88

Programming functionally 90
How to do it... 90

Reducing arrays to values 90
Mapping arrays 92
Filtering arrays 93
Producing functions from functions 93

Doing async calls compactly 96
Getting started 96
How to do it... 98

Doing Ajax calls with promises 98
Doing Ajax calls with async/await 101

Working with objects and classes 103
How to do it... 103

Defining classes 103
Extending classes 104

Table of Contents

[iii]

Implementing interfaces 105
Static methods 107
Using getters and setters 108

Organizing code in modules 109
How to do it... 110

Doing modules the IIFE way 110
Redoing our IIFE module in the modern way 112
Adding initialization checks 113
Using more import/export possibilities 114
Using Flow types with modules 116

Determining a feature's availability 116
How to do it... 116

Chapter 3: Developing with Node 119
Introduction 119
Checking Node's setup 120

How to do it… 120
How it works… 121

Working with modules 122
How to do it… 123
How it works… 124

Using Flow with Node, directly 125
How to do it… 125
How it works… 127

Using Flow with Node through preprocessing 128
How to do it… 128
How it works... 129

Running your Node code with Nodemon 130
How to do it... 131
How it works... 131

Using promises instead of error first callbacks 134
How to do it… 134
How it works… 135
There's more… 137

Working with streams to process requests 137
How to do it… 138
How it works… 139

Compressing files with streams 141
How to do it… 141
How it works… 142

Working with a database 144
Getting ready 144
How to do it… 145

Getting a connection 145
Executing some queries 146
Updating the database 147

Table of Contents

[iv]

Getting everything together 149
How it works… 149
There's more... 150

Executing external processes with exec() 151
How to do it… 151
How it works… 152
There's more... 153

Using spawn() to run a command, and communicating with it 153
How to do it… 153
How it works… 154

Using fork() to run Node commands 155
How to do it… 155
How it works… 156

Chapter 4: Implementing RESTful Services with Node 157
Introduction 157
Developing a server with Express 158

How to do it... 158
How it works... 159

Adding middleware 160
Getting ready 162
How to do it... 163
How it works... 164

Getting request parameters 165
How to do it... 165
How it works... 165

Serving static files 166
How to do it... 167
How it works... 169
There's more... 169

Adding routes 171
How to do it... 172
How it works... 174

Implementing secure connections 175
How to do it... 176
How it works... 177

Adding security safeguards with Helmet 178
How to do it... 179
How it works... 180

Implementing CORS 181
How to do it... 182
How it works... 183

Adding authentication with JWT 185
How to do it... 186
How it works... 189

Table of Contents

[v]

Tying it all together – building a REST server 190
How to do it... 191
How it works... 193

Handling GETs 193
Handling DELETEs 197
Handling PUTs 199
Handling POSTs 201

There's more... 204
Accepting JSON data 204
Adding the PATCH method for partial updates 204
Using Restify instead of Express 204
Allowing filtering, sorting, and pagination 205
Using GraphQL instead of REST 206
Implementing a microservice-based architecture 208

Chapter 5: Testing and Debugging Your Server 209
Introduction 209
Adding logging with Winston 210

How to do it... 211
How it works... 214
There's more... 217

Adding HTTP logging with Morgan 217
How to do it... 218
How it works... 220
There's more... 221

Configuring your server for different environments 222
How to do it... 222
How it works... 225
There's more... 227

Unit testing your code 227
How to do it... 228

Doing functional tests 229
Using spies 231
Working with mocks 233

How it works... 236
There's more.... 238

Measuring your test coverage 238
How to do it... 238
How it works... 239

Debugging your code 242
How to do it... 242
How it works... 247

Testing simple services from the command line 248
Getting ready 248
How to do it... 249

Testing more complex sequences of calls with Postman 253

Table of Contents

[vi]

Getting ready 253
How to do it... 253

Doing basic requests 254
Adding some checks 256
Chaining requests 258

How it works... 258
There's more... 260

Documenting and testing your REST API with Swagger 261
How to do it... 262

Writing our specs 262
Enabling Swagger 264

How it works... 264

Chapter 6: Developing with React 270
Introduction 270
Starting out with React 270

How to do it... 272
How it works... 274
There's more... 275

Reinstalling your tools 276
How to do it... 276

Reinstalling Flow and Prettier 276
Reinstalling ESLint 276

How it works... 278
Defining components 279

How to do it... 281
Creating the application 281
Creating the basic App component 282
Creating the RegionsInformationTable component 283
Creating the CountryFilterBar component 285
Creating the ResultsDataTable component 288
Creating the ExpandableCard component 290

How it works... 291
There's more... 292

Handling state 294
How to do it... 294
How it works... 295
There's more... 296

Composing components 297
How to do it... 297
How it works... 300

Handling life cycle events 301
How to do it... 301
How it works... 302

Simplifying component development with Storybook 302
How to do it... 303

Table of Contents

[vii]

How it works... 305
There's more... 308

Chapter 7: Enhancing Your Application 312
Introduction 312
Adding SASS for separate styling 313

How to do it… 314
How it works… 316

Creating StyledComponents for inline styling 322
How to do it… 322
How it works… 323

Making your application responsive to screen sizes 327
How to do it… 328
How it works… 329

Resizing elements 330
Reordering elements 332
Hiding or showing elements 333

Making your application adaptive for enhanced usability 335
How to do it… 336
How it works… 336

Making a global application with internationalization and
localization 340

How to do it… 340
How it works… 343

Setting up for accessibility (a11y) 350
How to do it… 351
How it works… 353

Solving static problems 353
Solving runtime problems 356

There is more 357

Chapter 8: Expanding Your Application 359
Introduction 359
Managing state with Redux 359

Getting ready 360
How to do it... 362

Defining actions 362
Writing a reducer 363
Defining the store 364
Building our components 365
Connecting components to the store 366
Defining the main page 368

How it works... 369
See also 370

Doing async actions with redux-thunk 371
How to do it… 371

Defining the actions 372

Table of Contents

[viii]

Writing the reducer 374
Modifying the country drop-down list 376
Modifying the region table 378
Setting up the main application 379
Using thunks 380

How it works… 382
There's more… 384

Adding routing with react-router 385
Getting started 385
How to do it… 386
How it works… 388
There's more… 390

Adding authorization to routes 390
How to do it… 390

Creating a login component 391
Defining actions and the reducer 392
Creating a component to protect a route 394

How it works… 396
There's more… 397

Code splitting for performance 398
Getting ready 398
How to do it… 399
How it works… 402
There's more… 404

Chapter 9: Debugging Your Application 406
Introduction 406
Logging with style 406

Getting ready 407
How to do it… 408
How it works… 410

Debugging with the React Developer Tools 412
Getting Ready 412
How to do it… 413
How it works… 414

Debugging with the standalone tool 416
Getting ready 416
How to do it… 417
How it works… 419

Logging Redux with redux-logger 421
Getting ready 421
How to do it… 422

Setting up our counter application 423
Setting up our region application 424

How it works… 424
Logging the counter application 425

Table of Contents

[ix]

Logging the region application 426
Debugging Redux with the Redux Developer Tools 428

Getting ready 428
How to do it… 429
How it works… 429

Connecting routing for debugging 434
Getting ready 434
How to do it… 435
How it works… 437

Chapter 10: Testing Your Application 442
Introduction 442
Testing components with Jest and Enzyme 442

Getting ready 443
How to do it... 443

Testing a component without events 444
Testing a component with events 446

How it works... 449
Testing reducers and mappings 450

How to do it... 451
How it works... 454

Testing actions and thunks 456
Getting ready 456
How to do it... 457
How it works... 461

Testing changes with Snapshots 462
How to do it... 462
How it works... 466

Running the tests 466
The produced snapshot files 467
Regenerating snapshots 469

Measuring test coverage 470
How to do it... 471
How it works... 471

Chapter 11: Creating Mobile Apps with React Native 474
Introduction 474
Setting things up 475

How to do it... 476
How it works... 477
There's more... 481

Adding development tools 484
How to do it... 484

Adding ESLint 484
Adding Flow 485
Adding Prettier 486

Table of Contents

[x]

How it works... 487
Using native components 488

Getting ready 489
How to do it... 491
How it works... 496
There's more... 500

Adapting to devices and orientation 500
How to do it... 501
How it works... 508
There's more... 510

Styling and laying out your components 511
How to do it... 512
How it works... 519

Adding platform-specific code 521
How to do it... 521
How it works... 522
There's more... 524

Routing and navigating 524
How to do it... 525
How it works... 529
There's more... 531

Chapter 12: Testing and Debugging Your Mobile App 533
Introduction 533
Writing unit tests with Jest 533

Getting ready 534
How to do it... 534
How it works... 538

Adding snapshot testing 538
How to do it... 539
How it works... 541

Measuring test coverage 544
How to do it... 544
How it works... 545

Using Storybook to preview components 548
Getting ready 548
How to do it... 549
How it works... 553

Debugging your app with react-native-debugger 559
Getting started 559
How to do it... 560
How it works... 561

Debugging in an alternate way with Reactotron 566
Getting ready 566
How to do it... 567

Table of Contents

[xi]

How it works... 570

Chapter 13: Creating a Desktop Application with Electron 575
Introduction 575
Setting up Electron with React 575

How to do it... 576
How it works... 578

Adding Node functionality to your app 579
How to do it... 580
How it works... 583

Building a more windowy experience 586
How to do it... 586
How it works... 590

Testing and debugging your app 592
How to do it... 592
How it works... 594
There's more... 597

Making a distributable package 598
How to do it... 598
How it works... 601

Other Books You May Enjoy 603

Index 606

Preface
Since its origins more than 20 years ago, JavaScript has evolved from a basic language
designed to enhance web pages by adding some interactivity to them, to a full language
that has been used to develop quite large, modern websites of very high complexity, with
highly interactive behaviors and fast response times, that successfully challenge classic
desktop applications. Not only has JavaScript become the tool for web development, it has
also occupied a place in server development, starting to edge out more conventional
languages and frameworks such as PHP, Java, and .NET, since developers can also use
their JavaScript knowledge when working with Node. Finally, two other areas, mobile
application and desktop program development, both previously reserved for specific
languages, have also become part of JavaScript's wide range of tools.

Given this wide scope of JavaScript usage, in this book, we'll start by providing insights on
the new features of the latest version of JavaScript, which can be applied everywhere, and
also cover several modern tools that will help you with development. Then, we'll move on
to using the language for specific areas, starting with the development of a services-based
server, going on to create a web page that will use those services, then creating a mobile
native version of the same web page, and ending up by producing a desktop executable
program—each and every one of our products based on JavaScript and our set of tools.

Who this book is for
This book is for developers who want to explore the latest JavaScript features, frameworks,
and tools for building complete web applications, including server- and client-side code. A
basic working knowledge of JavaScript is required, and you will be introduced to the latest
version, dated June 2018, to keep up with the latest developments and functionality in the
language.

Preface

[2]

What this book covers
In this book, we will cover several subjects and the book is divided into five parts. In part
one, in the first two chapters we'll get an overview of JavaScript tools and features:

Chapter 1, Working with JavaScript Development Tools, is where we'll study and
install several tools that will help our development, such as Visual Studio Code
for development, npm for package management, Git for version control, Prettier
for source code formatting, ESLint for code quality checks, and Flow for data
type checks, among others.
Chapter 2, Using Modern JavaScript Features, we will see how to use types in your
code, and also go into more recent additions to JavaScript, dealing with strings,
scopes, functions, async calls, class-oriented programming, modules, and even a
touch of Functional Programming (FP).

In part two, the next three chapters, we'll move on to developing server-side code using
Node, ending by writing a complete RESTful server:

Chapter 3, Developing with Node, covers the basics of Node, and learn how to use
JavaScript for server development. We'll cover themes such as streaming,
accessing databases, and executing external processes, among others.
Chapter 4, Implementing RESTful Services with Node, we'll see how to develop a
server with Express, serving static files, and dealing with Cross-Origin Resource
Sharing (CORS) permissions and with authentication rules, tying it all together
by building a RESTful set of services.
Chapter 5, Testing and Debugging Your Server, will teach you how to debug your
code and write unit tests for it by using more tools, including Winston, Morgan,
Jest, Postman, and Swagger.

After having worked on the server, we'll move to browsers, which makes up part three of
this book. We devote the next five chapters to developing web applications with React and
using the server we just developed as our backend, so we'll be going full stack with our
development:

Chapter 6, Developing with React, we'll learn about the React framework, set it up
to use the development tools, and then we'll create a Single Page Application
(SPA), which we'll expand in the following chapters.
Chapter 7, Enhancing Your Application, deals with styling your
application with SASS and StyledComponents, making it adaptive and
responsive, and covers accessibility and internationalization concerns.

Preface

[3]

Chapter 8, Expanding Your Application, we'll see how to handle state with Redux,
a powerful tool that will be necessary for larger-scale websites, and we'll also
include topics such as routing, authorization, and code splitting for performance.
Chapter 9, Debugging Your Application, we'll cover themes such as logging and
using browser and standalone tools for enhanced debugging.
Chapter 10, Testing Your Application, is where we will write unit tests for our
code using Jest, and we'll also see how to use Storybook to simplify both
development and testing.

It so happens that a variant of React, React Native, can be used to develop mobile
applications, and that will be our next topic for the following two chapters which make up
for part four of this book:

Chapter 11, Creating Mobile Apps with React Native, we'll see how to install and
use React Native to build a mobile version of our web pages, which will work
with different sized devices, in landscape or portrait mode, taking advantage of
native features.
Chapter 12, Testing and Debugging Your Mobile App, we'll cover how to debug
and test our code, using some tools we have already seen, such as Jest and
Storybook, plus a few new ones, specific for mobile development.

Finally in part five, for the last chapter of the book we'll use both our server and client-side
knowledge, to develop native desktop applications with Electron:

Chapter 13, Creating a Desktop Application with Electron, is where we'll see that we
can use Electron together with the tools we have already seen, React and Node,
to produce, debug, and test native desktop applications, which you can distribute
to users, who will be able to install them on their own machines just as they'd do
with any other desktop program.

To get the most out of this book
The book assumes you already have basic knowledge of JavaScript, and works up from
there. Modern features of the language are explained, so we can develop code in the best
way. Best practices for the language are also introduced and followed in all the code.
Knowledge of HTML and CSS will also be required for the web and mobile applications.

Preface

[4]

All the code in the book runs on Windows, macOS, and Linux machines, so you shouldn't
have any problems with regard to whatever computer you use. Some experience with
terminal/command-line tools will come in handy, but most of the work will be done with a
graphic interface.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Modern- ​JavaScript- ​Web- ​Development- ​Cookbook. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​9781788992749_ ​ColorImages. ​pdf.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/Modern-JavaScript-Web-Development-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788992749_ColorImages.pdf

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Keep in mind that you won't always be needing util.promisify()."

A block of code is set as follows:

// Source file: src/roundmath.js

/* @flow */
"use strict";

// continues..

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

// Source file: src/flowcomments.js

let someFlag /*: boolean */;
let greatTotal /*: number */;
let firstName /*: string */;

function toString(x /*: number */) /*: string */ {
 return String(x);
}

let traffic /*: "red" | "amber" | "green" */;

// continues...

Any command-line input or output is written as follows:

> npm install moment --save
> npm run addTypes

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"VSC provides full access to commands through its Command Palette... as seen in the
following screenshot."

Preface

[6]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...
This section contains the steps required to follow the recipe.

How it works...
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

Preface

[7]

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Working with JavaScript

Development Tools
The recipes we'll be seeing here are as follows:

Installing Visual Studio Code for development
Extending Visual Studio Code
Adding Fira Code font for better editing
Adding npm for package management
Doing version control with Git
Formatting your source code with Prettier
Documenting your code with JSDoc
Adding code quality checks with ESLint
Adding Flow for data types checks

Introduction
JavaScript has gone beyond a simple tool for adding small effects or behaviors to web
pages, and has now become one of the world's most-used languages, applied to all sorts of
developments. Given the complexity and variety of packages, libraries, and frameworks
these days, you wouldn't start working without a full set of tools, and in this chapter we
will aim to set up a good development environment, so you can work in a most efficient
fashion.

Let's start by setting up some tools that will come in handy for all our JS development. It's
been said that a bad craftsman blames his tools, so let's avoid even a hint of that by making
some good choices!

Working with JavaScript Development Tools Chapter 1

[9]

Installing Visual Studio Code for
development
The first tool we'll need is an Integrated Development Environment (IDE), or at least a
powerful code editor. Some people make do with a simple editor, possibly something like
vi or Notepad, but in the long run, all the wasted time in doing everything by hand doesn't
pay. There are many options, such as (in alphabetic order) Atom, Eclipse, IntelliJ IDEA,
Microsoft Visual Studio, NetBeans, Sublime Text, WebStorm, and Visual Studio Code.
Personally, I've opted for the latter, though of course you may work perfectly well with any
of the others.

The term IDE isn't really very well-defined. An IDE usually integrates
many tools, providing a more seamless experience for the developer.
Editors meant for development work provide some similar functionality
by means of plugins or extensions. While this can certainly approximate
the ease of use of an IDE, there may be some problems, such as a harder
installation or configuration, or an interface that might be harder to figure
out, but in the end, you may get practically the same feature set.

Visual Studio Code (VSC) is basically a source code editor, developed by Microsoft in
2015. Despite the similar name, it's not related to Microsoft's more powerful IDE, Visual
Studio. The editor is free and open source, and the latest version is (currently) 1.29.1, dated
November 2018, though new releases come out monthly. It can be used for JS development,
but also for other languages, so if you wanted to, say, do your server-side coding in PHP,
you could perfectly well use VSC for that too. However, from our point of view, the fact
that VSC ships with IntelliSense for basically all the frontend languages (JS, TypeScript,
JSON, HTML, CSS, LESS, SASS) is a good selling point. See https:/ ​/​code. ​visualstudio.
com/​docs/​editor/ ​intellisense for more on this.

A nice touch is that VSC is written in JS, based on Node, and packaged for the desktop by
using the Electron framework. (We'll get to see these topics in Chapter 13, Creating a
Desktop Application with Electron.) This automatically lets you use VSC in Linux, macOS, and
Windows, which is a good advantage if you work in a team and not everybody shares the
same development environment preferences.

A commonly held misconception is that VSC is based on the Atom editor.
Though VSC shares the same editor component (Monaco), VSC itself is
distinct from Atom. A source of this misunderstanding may be the fact
that Electron, when created in 2013, was originally called Atom Shell; the
name change to Electron happened in 2015.

https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense

Working with JavaScript Development Tools Chapter 1

[10]

In the past, I've worked extensively with Eclipse, Microsoft Visual Studio, and NetBeans.
However, nowadays I work exclusively with VSC. Why do I prefer it? My reasons (your
mileage may vary!) include the following:

Availability for multiple operating systems: I personally use it on Mac and Linux all
the time, and sometimes on Windows
Actively developed and maintained: With updates (including bug fixes) provided on
a regular basis
Very good performance: VSC feels quite speedy
IntelliSense support: Out of the box for all JS needs
Extensions available through plugins: These become integrated into your work flow,
adding new functionality
Integrated debugging: As we'll see in Chapter 5, Testing and Debugging Your Server
Integrated source code management: Through Git (see the Doing version control with
Git section, later)
Integrated terminal: You can run commands or launch processes without leaving
VSC

On the other hand, there are also some disadvantages; the main two being as follows:

The interface, configuration, and design of plugins usually varies from one to
another, so you'll have to deal with frequent inconsistencies.
VSC has no knowledge of projects or the links between tools needed to create, for
example, a React frontend application that communicates with a Node backend
server. VSC at most recognizes folders, but how you organize them, and where
you place your pieces of code, is totally up to you.

How to do it…
How do you install VSC? Instructions are different for each operating system, and may
vary over time, so we'll just point you to downloading the appropriate package for your
system at https:/ ​/​code. ​visualstudio. ​com/ ​download, and following the correct platform-
specific instructions at https:/ ​/ ​code. ​visualstudio. ​com/​docs/ ​setup/ ​setup- ​overview. For
Linux distributions, instead of downloading and installing some package by yourself, there
may be another way out. For example, with OpenSUSE, there exists a repository that will
allow you to install and update VSC through OpenSUSE itself; check out https:/ ​/​en.
opensuse.​org/​Visual_ ​Studio_ ​Code for instructions on this, or https:/ ​/​code.
visualstudio.​com/ ​docs/ ​setup/ ​linux for even more distribution-specific instructions.

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview
https://en.opensuse.org/Visual_Studio_Code
https://en.opensuse.org/Visual_Studio_Code
https://en.opensuse.org/Visual_Studio_Code
https://en.opensuse.org/Visual_Studio_Code
https://en.opensuse.org/Visual_Studio_Code
https://en.opensuse.org/Visual_Studio_Code
https://en.opensuse.org/Visual_Studio_Code
https://en.opensuse.org/Visual_Studio_Code
https://en.opensuse.org/Visual_Studio_Code
https://en.opensuse.org/Visual_Studio_Code
https://en.opensuse.org/Visual_Studio_Code
https://en.opensuse.org/Visual_Studio_Code
https://en.opensuse.org/Visual_Studio_Code
https://en.opensuse.org/Visual_Studio_Code
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux
https://code.visualstudio.com/docs/setup/linux

Working with JavaScript Development Tools Chapter 1

[11]

If you want to live on the edge, and get to see new features as early as
possible, there's also an Insiders build. You may install both the normal
VSC stable build and the Insiders build, and work with whichever you
prefer. Be warned, though, that you may find unexpected bugs, but you
can help the VSC development team get rid of those by letting them
know!

How it works…
After having installed it, open VSC and try out its settings to start configuring things the
way you prefer, see the following screenshot. The bottom-left gear menu provides access to
several related items, such as keyboard shortcuts, the color scheme, and icon set. If you
have worked with VSC in the past, you'll have access to more recent files and folders:

 The Welcome screen in VSC, and the settings gear at the bottom left

Working with JavaScript Development Tools Chapter 1

[12]

Configuring VSC is sort of unusual, but maybe to be expected, due to its JS origins.
Basically, as seen in the following screenshot, you get a split screen, showing all the
available configuration items (more than four hundred!) on the left, in JSON format, and
you may change their values by writing new ones on the right side. If you mouse over any
setting, you'll get to see the possible values, and you can select a new one just by clicking on
it:

 Configuring VSC is done by editing a JSON file with your personal choices

Working with JavaScript Development Tools Chapter 1

[13]

Do you want to pick a different editor for your work, or at least check out
what's available out there? You may check
out www.slant.co/topics/1686/~javascript-ides-or-editors for a long
list of candidates, with pros and cons for each. At the current time (October
2018) the page shows 41 options, with Visual Studio Code at the top of the
list.

One extra advantage of VSC has to do with updates. It will periodically check to see
whether there's a new available version, and it will let you download and install it. (On the
other hand, if you use Linux and install VSC through a repository, it may get updated
automatically, without you even having to confirm it.) After that, you'll get an information
screen with the changes for the last month; as seen in the following screenshot:

 After each monthly update, you'll be informed of VSC's new features

https://www.slant.co/topics/1686/~javascript-ides-or-editors

Working with JavaScript Development Tools Chapter 1

[14]

Configuration of VSC goes beyond what we have just mentioned; see the following sections
to find out more ways of extending its power and making it better for you to use.

Extending Visual Studio Code
VSC includes many out-of-the-box features, with which you can actually get started and
working with no problems. By means of extensions, you can add support for languages,
debugging, code quality, and many more functions. Configuring visual aspects is also
provided, and you can change VSC's theme, shortcuts, and general preferences. However,
you will want to add even more functionality to VSC, and that's where extensions (plugins)
come in.

You can even develop your own extensions for VSC, though we won't be
getting into that subject in this book. If you are interested, check
out https:/ ​/​code. ​visualstudio. ​com/​docs/ ​extensions/ ​overview.
Extensions can be written in either JS or TypeScript (see the Adding Flow
for data types checks section), and of course you can develop them by using
VSC itself!

How to do it…
Extensions are optional installable additions to VSC, which provide specific new functions.
Installing new extensions is a breeze. You can bring up the menu of all the available
extensions by going to View | Extensions in the main menu (where you can also find a
keyboard shortcut for it) or by clicking the Extensions icon at the bottom of the Activities
bar at the left of VSC.

https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview

Working with JavaScript Development Tools Chapter 1

[15]

You will first get the list of currently installed extensions, as demonstrated in the following
screenshot:

 The list of already-installed extensions

Working with JavaScript Development Tools Chapter 1

[16]

If you want, you can disable any specific extension: click on it at the left side of the screen,
and then click on Disable at the right. You can also fully uninstall any extension, and it's a
sure bet that you'll do this quite a lot; the only way to find out if an extension works for you
is by experimenting! Take a look at the following screenshot:

The VSC Marketplace is a good place to search for new extensions

Working with JavaScript Development Tools Chapter 1

[17]

Finding new extensions is also a breeze. You can either go to the VSC Marketplace at
https:/​/​marketplace. ​visualstudio. ​com/ ​ as seen in the preceding screenshot or directly
search from within VSC, by typing in the search box, as seen in the following screenshot. I'd
recommend paying attention to the total number of installs (the higher the better) and the
rating from 1 to 5 stars (also, the higher the better). We'll be using several extensions; see,
for example, in this chapter the Formatting your source code with Prettier and Documenting
your code with JSDoc sections; there will be more in later chapters:

You can also search for new extensions from within VSC by just typing some keywords

Extensions are updated automatically, and you won't have to do much. Periodically, I'd
recommend having a look at your list of extensions, and possibly searching again for new
ones; there have been cases of new versions deprecating old ones, but with a new name, so
an update wouldn't have worked. And, finally, be ready to experiment and find for
yourself which extensions make you tick!

https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/

Working with JavaScript Development Tools Chapter 1

[18]

Adding Fira Code font for better editing
If you want to try a topic that can quickly lead to a (warm? heated?) discussion, say out
loud that the best font for programming is such and such, and just wait! I don't want to
start any arguments, but I can certainly recommend a font that can make your JS code look
much better, and become more readable.

An article in Slant, at https:/ ​/​www. ​slant. ​co/ ​topics/ ​67/ ​~best-
programming- ​fonts, lists over 100 programming fonts; did you even think
so many were available?

The key to a better font hinges on the concept of ligatures. In typography, a ligature occurs
when two or more letters are joined, becoming a single character. OK, the proper technical
word would be glyph, but let's not make it more complicated than needed!

Some ligatures you may not be aware of are these: the ampersand
character (&) was originally a ligature of the letters E and t, spelling out et
in Latin, meaning and. Similarly, the German ß character was a ligature of
two s letters, next to each other, and the Spanish Ñ originally was a pair of
N characters, one written on top of the other.

In JS, there are many symbols that are written as two or more characters, just because no
other way is available. For example, the greater than or equal to symbol is typed as >=,
which doesn't look as good as the mathematical symbol ≥, does it? Other combinations are
<= (less than or equal to), => (for arrow functions, which we'll meet in Chapter 2, Using
Modern JavaScript Features), the binary shift operators << and >>, the equality operators ==
and === (plus the corresponding != and !==), and more.

Do not confuse ligatures with kerning. Both have to do with showing
adjacent characters, but the former refers to joining characters and
replacing them with a new one, while the latter deals with reducing the
distance between characters. If you place an f next to an i, kerning would
make them closer without overlapping (in the same way that you can
reduce spacing between A and V because of the letters' shapes), while a
ligature would replace both characters with fi, actually joining both letters.

https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts
https://www.slant.co/topics/67/~best-programming-fonts

Working with JavaScript Development Tools Chapter 1

[19]

How to do it…
While there are many monospaced fonts (meaning all characters have the same width,
which helps with onscreen alignment and indentation), there are not so many that also
provide ligatures. In my case, after experimenting with many, I can recommend using Fira
Code, available online at https:/ ​/​github. ​com/​tonsky/ ​FiraCode. This font provides lots of
ligatures, not only for JS but for other programming languages as well. Take a look at
following illustration for all the possibilities:

 All the available ligatures, as seen in the figure taken from
https://raw.githubusercontent.com/tonsky/FiraCode/master/showcases/all_ligatures.png

https://github.com/tonsky/FiraCode
https://github.com/tonsky/FiraCode
https://github.com/tonsky/FiraCode
https://github.com/tonsky/FiraCode
https://github.com/tonsky/FiraCode
https://github.com/tonsky/FiraCode
https://github.com/tonsky/FiraCode
https://github.com/tonsky/FiraCode
https://github.com/tonsky/FiraCode
https://github.com/tonsky/FiraCode
https://github.com/tonsky/FiraCode

Working with JavaScript Development Tools Chapter 1

[20]

Download the latest version (1.206, as of December 2018) and install it, according to the
standard procedures for your operating system. Afterwards, you'll have to change a pair of
VSC settings, as seen earlier in this chapter; just add the following lines, and save your
configuration:

"editor.fontFamily": "'Fira Code', 'Droid Sans Mono', 'Courier New'",
"editor.fontLigatures": true,
.
.
.

The first line defines what font you want to use (and in CSS style, I also provided
alternatives, just in case I took my settings to a different machine where Fira Code wasn't
available) and the second line tells VSC to enable onscreen ligatures.

How it works…
After doing the changes in the previous section, when you open VSC, you'll be able to see
code as in the following screenshot:

A sample listing, showing several ligatures; see lines 60 (=>), 63 (=== and ||), or 71 (<=)

Working with JavaScript Development Tools Chapter 1

[21]

Note that you don't have to do anything at all when you type in your code. If you want an
arrow ligature, you will have to type the two characters = and > as usual; the way they will
look on screen is just a result of font rendering. Similarly, if you want to search for an
arrow, seek =>, as that's what will be saved to disk.

Now we have got VSC configured to our liking, let's start more packages to help with
source code management and other features.

Adding npm for package management
When working either on the frontend or the backend, you will surely want to use already
available libraries and frameworks, and that begets an interesting problem: how to deal
with those packages' own needs, more packages, which themselves need even more
packages, and so on. In Chapter 3, Developing with Node, we'll work with Node, but we
need to get ahead of ourselves, and install npm (the package manager of Node) now to be
able to set up several other tools.

npm also is the name of a gigantic repository of software, at https:/ ​/​www. ​npmjs. ​com/ ​,
which counts has around 600,000 packages you can observe that in the following screenshot
and it grows at a daily rate of more than 500 packages, according to counts such as
at http:/​/​www.​modulecounts. ​com/ ​, a place that tracks several well-known code
repositories:

https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
http://www.modulecounts.com/
http://www.modulecounts.com/
http://www.modulecounts.com/
http://www.modulecounts.com/
http://www.modulecounts.com/
http://www.modulecounts.com/
http://www.modulecounts.com/
http://www.modulecounts.com/
http://www.modulecounts.com/
http://www.modulecounts.com/

Working with JavaScript Development Tools Chapter 1

[22]

 The growth of the npm repository seems exponential, according to data from www.modulecounts.com/

It can be safely said that it's probably impossible that a modern JS application doesn't
require at least one, and more likely several, packages from npm, so adding a package
manager will be mandatory; let's see a couple of them.

Working with JavaScript Development Tools Chapter 1

[23]

How to do it…
To get npm, you must first install Node, and that will come in handy for Chapter 3,
Developing with Node, and the following ones. We won't copy the details here from the web
(see https:/​/​docs. ​npmjs. ​com/ ​getting- ​started/ ​installing- ​node) but we can resume as
follows:

Install Node, either by downloading it and then doing a manual installation (the1.
most common way for Windows) or by adding an appropriate repository and
then using your Linux package manager to install Node (that's the way I do this
in my OpenSuse machines). Be careful, and pick the Long Term Support (LTS)
version, recognizable by its even major number (such as 8.x.x, for example),
unless you feel adventurous enough to use the latest development version, and
you don't mind risks such as things stopping working!
Verify that Node is correctly installed. At the command line, type node -v and2.
get the current version; in my machine, it's v9.7.1, but this will surely change by
the time you try this out, and yes, I'm feeling adventurous and not using the LTS
version!
Check if npm is up to its latest version with the npm -v command. If it's not (refer3.
to the following code snippet), you'll have to update it:

> npm -v
5.5.1
 ──────────────────────
 │ │
 │ Update available 5.5.1 → 5.7.1 │
 │ Run npm i -g npm to update │
 │ │
 ──────────────────────

If you are working without a package manager (meaning you can get updates for your
software automatically, without having to go and look for each on a one-by-one basis) you
could also be interested in installing nvm, though it's optional; for more on this, see https:/
/​github.​com/​creationix/ ​nvm.

How it works…
We'll be back to using npm in several places in this text. You'll have to use it in order to
install several packages (some of which appear in this very chapter, such as JSDoc or
Prettier) and later on we'll see how to configure an application, so all its required
packages will be available and up to date.

https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://docs.npmjs.com/getting-started/installing-node
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm

Working with JavaScript Development Tools Chapter 1

[24]

You can find complete documentation for all npm features at https:/ ​/
docs. ​npmjs. ​com/ ​.

Creating a project with npm
If you pick any empty directory and just install a package, you'll get some warnings related
to a missing file, and you'll also find some new elements:

~ > md sample
~ > cd sample
~/sample > npm install lodash
npm WARN saveError ENOENT: no such file or directory, open
'/home/fkereki/sample/package.json'
npm notice created a lockfile as package-lock.json. You should commit this
file.
npm WARN enoent ENOENT: no such file or directory, open
'/home/fkereki/sample/package.json'
npm WARN sample No description
npm WARN sample No repository field.
npm WARN sample No README data
npm WARN sample No license field.

+ lodash@4.17.11
added 1 package from 2 contributors and audited 1 package in 1.945s
found 0 vulnerabilities

~/sample> dir
total 4
drwxr-xr-x 3 fkereki users 20 Mar 15 11:39 node_modules
-rw-r--r-- 1 fkereki users 313 Mar 15 11:39 package-lock.json

What's happening here? Let's explain the results step by step, and then add whatever's
missing. When you install modules, they (plus all their dependencies, and their
dependencies' dependencies, and so on) are placed by default in a
node_modules directory. This is a good measure, because all the code that will go in that
directory is code that you haven't actually written, and that will eventually get updated by
npm without your direct control. We can verify that quickly by going to the newly created
directory and checking out its contents:

~/sample> cd node_modules
~/sample/node_modules> dir
total 36
drwxr-xr-x 3 fkereki users 20480 Mar 15 11:39 lodash

https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/

Working with JavaScript Development Tools Chapter 1

[25]

But, how would you control what packages (and their versions) are to be installed? That's
the point of the missing package.json file, which, among other things that we'll meet later
in the book, lets you specify what packages you want. (We'll also use it to specify
parameters for other tools, such as Babel or ESLint, as we'll see later in this chapter.) You
can create this file by hand, but it's easier to use npm init and just answer a few questions.
This will create the required file, which will eventually describe all the dependencies of
your project, plus other features (such as build or deploy procedures) that we'll see later:

~/sample> npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.
See `npm help json` for definitive documentation on these fields
and exactly what they do.
Use `npm install <pkg>` afterwards to install a package and
save it as a dependency in the package.json file.

Press ^C at any time to quit.
package name: (sample) simpleproject
version: (1.0.0)
description: A simple project to show package.json creation
entry point: (index.js)
test command:
git repository:
keywords:
author: Federico Kereki
license: (ISC)
About to write to /home/fkereki/sample/package.json:

{
 "name": "simpleproject",
 "version": "1.0.0",
 "description": "A simple project to show package.json creation",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Federico Kereki",
 "license": "ISC"
}
Is this ok? (yes)

Working with JavaScript Development Tools Chapter 1

[26]

Let's quickly go over each field, but remember these are only the basic ones; you can find
more complete, official descriptions at https:/ ​/​docs. ​npmjs. ​com/ ​files/ ​package. ​json. As
we skipped some answers, not all fields are present in the produced project file, but you
can add everything later:

name: Whatever name you want to assign to the project; by default, the
directory's name.
version: The semantic version number for your project. You would update this
number whenever you create a newer version. See https:/ ​/​semver. ​org/ ​ for
more information on semantic versioning.
description: A simple description of your project, used by the npm search
command.
main: The name of the primary entry point to your program. It's common to use
index.js for this.
test command: A command (script) that you would run in order to execute unit
tests for your code. We'll also be seeing this later in the book.
git repository: If you are going to use source control, here you would give
the details for it. We'll get to this in the Doing version control with Git section later
in this chapter.
scripts: This is an object that contains script commands you can run with npm
run; for example, you could write scripts to build a project, deploy it, check it for
code quality rules, and so on.
author: Who created the project.
license: Whatever license you want to assign to your project; this is meant for
other people to know how they may use your package (permissions, restrictions)
should you allow it. You can find a (quite long!) list of possible licenses
at https:/ ​/​spdx. ​org/ ​licenses/ ​, and be careful when selecting one; there are
legal aspects involved!

But, where are the packages? Let's see about that in the next section.

https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/
https://semver.org/
https://spdx.org/licenses/
https://spdx.org/licenses/
https://spdx.org/licenses/
https://spdx.org/licenses/
https://spdx.org/licenses/
https://spdx.org/licenses/
https://spdx.org/licenses/
https://spdx.org/licenses/
https://spdx.org/licenses/
https://spdx.org/licenses/

Working with JavaScript Development Tools Chapter 1

[27]

Installing packages for different purposes
There are two ways of installing npm packages: globally or locally:

If you plan to use the package from the command line, install it globally; for
example, npm install prettier -g would install the prettier command so
you can use it anywhere. (We'll see more of prettier in the Formatting your
source code with Prettier section.) You may need to run the command as an
administrator, or with sudo.
Otherwise, if you just need the package for your project, install it locally.

Installing packages locally can also be done in more than one way:

If you need the package for your own project, then you install it as a production
package with npm install lodash --save
Instead, if you need the package in order to build your project, but not as a part
of the final, produced code, install it as a development package with npm
install eslint --save-dev

There are many shorthand versions for commands and options, such as
just i for install, or -D for --save-dev, but I am more comfortable
spelling everything out. If you want to learn more about this, just try npm
--help.

After running these two latter commands, if you inspect package.json, you'll notice that
some lines were added:

~/sample> cat package.json
{
 "name": "simpleproject",
 "version": "1.0.0",
 "description": "A simple project to show package.json creation",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Federico Kereki",
 "license": "ISC",
 "dependencies": {
 "lodash": "^4.17.5"
 },
 "devDependencies": {
 "prettier": "^1.11.1"
 }
}

Working with JavaScript Development Tools Chapter 1

[28]

The dependencies and devDependencies entries refer to the production and
development packages you require. If you are writing your software, and you decide you
need a new package, there are two ways of doing this:

Add an entry to package.json, in the proper place, and then do npm install
to get it
Alternatively, use npm install with either --save or --save-dev, and
package.json will be updated by npm

To remove a dependency, use npm uninstall instead. You must include
--save or --save-dev in order to also remove the reference from
package.json.

If you need specific versions, you will have to learn about semantic versioning. Version
rules may become complex, and we'll just see the main ones; check https:/ ​/​docs. ​npmjs.
com/​files/​package. ​json#dependencies and https:/ ​/​github. ​com/ ​npm/ ​node-
semver#versions for a complete description:

4.5.6 Version 4.5.6, and none other
^4.0.0 Latest compatible version 4.x.x
^4.2.0 Latest compatible version 4.2.x
>5.6.7 A version greater than 5.6.7
~8.7.6 A version approximately equivalent to 8.7.6; should be 8.7.x

There's more…
Maintaining your packages and updating them is an important task, and if you are part of a
development team, with people possibly even in different regions or countries, it becomes
mandatory that everybody should be working with the same configuration at all times. If
the project is very dynamic (meaning that packages will be added, removed, or updated
frequently), npm can become a bit slow and also produce consistency or security problems;
to address this situation, in 2016 Facebook released a new package manager, yarn.
(See https:/​/​yarnpkg. ​com/ ​en/ ​.)

If you want to see the rationale for the changes, see the original blog post
about yarn at https:/ ​/ ​code.​facebook. ​com/ ​posts/ ​1840075619545360.

https://docs.npmjs.com/files/package.json#dependencies
https://docs.npmjs.com/files/package.json#dependencies
https://docs.npmjs.com/files/package.json#dependencies
https://docs.npmjs.com/files/package.json#dependencies
https://docs.npmjs.com/files/package.json#dependencies
https://docs.npmjs.com/files/package.json#dependencies
https://docs.npmjs.com/files/package.json#dependencies
https://docs.npmjs.com/files/package.json#dependencies
https://docs.npmjs.com/files/package.json#dependencies
https://docs.npmjs.com/files/package.json#dependencies
https://docs.npmjs.com/files/package.json#dependencies
https://docs.npmjs.com/files/package.json#dependencies
https://docs.npmjs.com/files/package.json#dependencies
https://docs.npmjs.com/files/package.json#dependencies
https://github.com/npm/node-semver#versions
https://github.com/npm/node-semver#versions
https://github.com/npm/node-semver#versions
https://github.com/npm/node-semver#versions
https://github.com/npm/node-semver#versions
https://github.com/npm/node-semver#versions
https://github.com/npm/node-semver#versions
https://github.com/npm/node-semver#versions
https://github.com/npm/node-semver#versions
https://github.com/npm/node-semver#versions
https://github.com/npm/node-semver#versions
https://github.com/npm/node-semver#versions
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://yarnpkg.com/en/
https://code.facebook.com/posts/1840075619545360
https://code.facebook.com/posts/1840075619545360
https://code.facebook.com/posts/1840075619545360
https://code.facebook.com/posts/1840075619545360
https://code.facebook.com/posts/1840075619545360
https://code.facebook.com/posts/1840075619545360
https://code.facebook.com/posts/1840075619545360
https://code.facebook.com/posts/1840075619545360
https://code.facebook.com/posts/1840075619545360
https://code.facebook.com/posts/1840075619545360
https://code.facebook.com/posts/1840075619545360
https://code.facebook.com/posts/1840075619545360
https://code.facebook.com/posts/1840075619545360

Working with JavaScript Development Tools Chapter 1

[29]

A key feature is that you can seamlessly replace npm with yarn, and just start using the
latter, because it shares the same feature set (apart from some minor differences) while
working in a faster, more reliable, and more secure way. For instance, yarn can manage
downloads in parallel, and even work with cached packages, so it would even be possible
to do some updates without a connection to the internet!

Installation is quite simple, and a bit ironic. Use npm with npm install -g yarn, and
from that moment on, you will be able to use yarn directly and forget npm. See https:/ ​/
yarnpkg.​com/​en/​docs/ ​install for more complete documentation on the installation
process.

For more details on comparing npm and yarn commands, check
out https:/ ​/​yarnpkg. ​com/ ​lang/​en/ ​docs/ ​migrating- ​from- ​npm/ ​
or https:/ ​/ ​shift. ​infinite. ​red/ ​npm-​vs- ​yarn- ​cheat- ​sheet-
8755b092e5cc.

Doing version control with Git
In modern software development, it goes without saying that you will need some SCM
(Software Configuration Management) software to keep track of all changes in your code.
Today, the most-used tool is Git, which we'll also be using. Git was created in 2005 by
Linus Torvalds (who also created Linux!) for the development of the Linux kernel; not a
small task considering that its source is over 25 million lines of code!

Linux is not the only major operating system controlled with Git; in
February 2017, Microsoft itself decide to migrate the development of
Microsoft Windows to Git, and developed customizations to enhance
remote work.

We won't be delving into how Git works, what commands to use, and so on, because that
would be material enough for a book! We will focus on how to use Git with VSC. This is
rather simple because not only was VSC written with Git access in mind, but there are also
some extensions that can make work even easier, so you don't have to memorize lots of
commands and options; take look at following illustration:

https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://yarnpkg.com/lang/en/docs/migrating-from-npm/
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc
https://shift.infinite.red/npm-vs-yarn-cheat-sheet-8755b092e5cc

Working with JavaScript Development Tools Chapter 1

[30]

 Git has lot of commands, but you can cope very well with a few selected ones.
This XKCD comic is available online at https://xkcd.com/1597/.

How to do it…
Personally, I have a GitHub account, and I decided to use it for the code for this book. This
is not only a way of being able to quickly share all the code with readers, but also (and
quite important!) a way to ensure I wouldn't be able to accidentally lose my work, which I
am quite capable of doing! See https:/ ​/ ​github. ​com/ ​fkereki/ ​modernjs for all code. I will
assume that you have an appropriate Git server, and that you are able to initialize a
project, connect it to the server, and so on. Also, VSC needs Git to be pre-installed in your
machine; if you haven't installed it, checkout https:/ ​/​git- ​scm. ​com/ ​book/ ​en/​v2/ ​Getting-
Started-​Installing- ​Git to get started.

https://github.com/fkereki/modernjs
https://github.com/fkereki/modernjs
https://github.com/fkereki/modernjs
https://github.com/fkereki/modernjs
https://github.com/fkereki/modernjs
https://github.com/fkereki/modernjs
https://github.com/fkereki/modernjs
https://github.com/fkereki/modernjs
https://github.com/fkereki/modernjs
https://github.com/fkereki/modernjs
https://github.com/fkereki/modernjs
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Working with JavaScript Development Tools Chapter 1

[31]

VSC provides full access to commands through its Command Palette.... as seen in the
following screenshot. You can search for a command there, and after clicking on it, VSC
will ask for all possible parameters one at the time, so you don't have to do them by
memory:

You can enter Git commands through VSC's command palette, and you'll get asked for the required parameters, if any

Committing code is quite frequent, so you can directly do it by clicking on the source
control icon (third from the top, at the left) and entering the commit message that you want.
In that screen, you can also revert local changes and more; mouse over to get all possible
features.

There's more…
There is a single Git extension that I would recommend for VSC: look for GitLens (also
called Git Supercharged) and install it. This extension provides access to practically all Git
information.

Working with JavaScript Development Tools Chapter 1

[32]

Take a look at the following screenshot:

 GitLens in use

Among other features, GitLens provides the following:

A lens, to show recent commit and author information
An explorer, to browse repositories and file histories
A blame annotation, to show who made the last change to a line, as with git
blame
The ability to search for commits in different ways, and much more

Working with JavaScript Development Tools Chapter 1

[33]

For more detailed information, see http:/ ​/​gitlens. ​amod. ​io/​. Pay particular attention to
customization at https:/ ​/​github. ​com/ ​eamodio/ ​vscode- ​gitlens/ ​#configuration, because
most features can be twiddled to better suit your work style. You can access them through
the standard Settings page (look for all configuration items whose names start with
GitLens), or by opening the Command Palette and looking for GitLens: Open Settings,
which will open a special setup screen as seen in the following screenshot:

 Gitlens also provides a special onscreen settings feature, which allows you to configure practically every aspect of the tool

http://gitlens.amod.io/
http://gitlens.amod.io/
http://gitlens.amod.io/
http://gitlens.amod.io/
http://gitlens.amod.io/
http://gitlens.amod.io/
http://gitlens.amod.io/
http://gitlens.amod.io/
http://gitlens.amod.io/
http://gitlens.amod.io/
https://github.com/eamodio/vscode-gitlens/#configuration
https://github.com/eamodio/vscode-gitlens/#configuration
https://github.com/eamodio/vscode-gitlens/#configuration
https://github.com/eamodio/vscode-gitlens/#configuration
https://github.com/eamodio/vscode-gitlens/#configuration
https://github.com/eamodio/vscode-gitlens/#configuration
https://github.com/eamodio/vscode-gitlens/#configuration
https://github.com/eamodio/vscode-gitlens/#configuration
https://github.com/eamodio/vscode-gitlens/#configuration
https://github.com/eamodio/vscode-gitlens/#configuration
https://github.com/eamodio/vscode-gitlens/#configuration
https://github.com/eamodio/vscode-gitlens/#configuration
https://github.com/eamodio/vscode-gitlens/#configuration
https://github.com/eamodio/vscode-gitlens/#configuration
https://github.com/eamodio/vscode-gitlens/#configuration

Working with JavaScript Development Tools Chapter 1

[34]

Now that we have a development environment set up, and we have chosen and installed a
minimum set of tools, let's go further and add some optional, but highly recommended,
additional packages that will help produce better code.

Formatting your source code with Prettier
If you work in a project with several other developers, sooner or later arguments as to how
code should be formatted are certain to pop up, and they can keep going for a long time!
Deciding upon a single standard for your source code is really needed, but if formatting
depends on each person, it's certain that you will end with even more "standards" than
team members! Take a look at the following illustration. Something you don't want to have
in a team is extra friction or aggravation, and style arguments can take forever:

 You cannot afford to have more than one standard.
This XKCD comic is available online at https://xkcd.com/927/.

The problem is worsened by the fact that modern JS projects will not only include JS source
code, but also possibly TypeScript or Flow (see the Adding Flow for data types checks
section later), JSX (see Chapter 6, Developing with React), JSON, HTML, CSS or SCSS, and
even more.

After having tried out many source code formatters, I finally decided to use Prettier for
all purposes. Prettier is an opinionated code formatter, which supports all the languages
that I listed previously, reformatting source code according to a set of rules, thus ensuring
that all code conforms to an expected style.

Working with JavaScript Development Tools Chapter 1

[35]

If you want to read the original description for Prettier, see the blog
post at https:/ ​/ ​jlongster. ​com/ ​A-​Prettier- ​Formatter, where the author
describes the rationale for the project and gives some details on
implementation and options.

What does it mean, that it is opinionated? Many (or most) code formatters provide a very big
set of configuration options that you can twiddle in order to get the code to look as you
wish. On the other hand, Prettier has its own set of rules, with little leeway for
configuration, and thus cuts short all arguments. Moreover, you can get it to work
seamlessly with VSC, meaning that whenever you save the code, it will get reformatted.

Let's see some examples of this opinionating. Working with arrow functions (which we shall
see in more detail in the Defining functions section of Chapter 2, Using Modern JavaScript
Features), if the function has a single parameter, enclosing it in parentheses is optional:

const plus1= (x)=> 1+x

However, Prettier decides that in this case the parentheses should not be included. Also,
note that it added several spaces for clarity, as well as the (optional) missing semicolon:

const plus1 = x => 1 + x;

Similarly, if you use promises (we'll see them in the Doing async calls compactly section of
Chapter 2, Using JavaScript Modern Features) you may write something such as the
following:

fetch('http://some.url').then((response) => {
 return response.json();
 }).then((myJson) => {
 console.log(myJson);
 }).catch(e => { /* something wrong */ });

However, it will get reformatted to the more usual following code:

fetch("http://some.url")
 .then(response => {
 return response.json();
 })
 .then(myJson => {
 console.log(myJson);
 })
 .catch(e => {
 /* something wrong */
 });

https://jlongster.com/A-Prettier-Formatter
https://jlongster.com/A-Prettier-Formatter
https://jlongster.com/A-Prettier-Formatter
https://jlongster.com/A-Prettier-Formatter
https://jlongster.com/A-Prettier-Formatter
https://jlongster.com/A-Prettier-Formatter
https://jlongster.com/A-Prettier-Formatter
https://jlongster.com/A-Prettier-Formatter
https://jlongster.com/A-Prettier-Formatter
https://jlongster.com/A-Prettier-Formatter
https://jlongster.com/A-Prettier-Formatter
https://jlongster.com/A-Prettier-Formatter
https://jlongster.com/A-Prettier-Formatter

Working with JavaScript Development Tools Chapter 1

[36]

Note how each .then(...) was pushed to a separate line, according to the most common
style for JS. The formatting rules that Prettier applies are derived from usual practice,
and it wouldn't be possible to list them all here. But, what really matters is that by using
this tool, you may be certain that your whole team will be working in the same fashion.

If your team grumbles about some rule or other, remind them of the
saying there's a right way, a wrong way, and the Army way! After adopting
Prettier, there will be no place for style discussions any more, and
peace will eventually reign.

How to do it…
Installing Prettier is very simple: you should just add the VSC extension, which you can
find by searching for Prettier Code Formatter; as a check, the latest version (as of
December, 2018) is 1.16.0, and the author is Esben Petersen. The plugin itself can be found
in the VSC marketplace, at https:/ ​/​marketplace. ​visualstudio. ​com/​items? ​itemName=
esbenp.​prettier- ​vscode. You can also install it globally (as we saw in the Installing
packages for different purposes section earlier in this chapter) to be able to use it in scripts or
from the command line with npm or yarn. See https:/ ​/​prettier. ​io/ ​docs/ ​en/​install.
html, and I'd recommend doing that.

There is one change you will want to make in the VSC preferences. Go to File | Preferences
| Settings, and add the following line to your user configuration, so every file will be
formatted automatically whenever you save it:

"editor.formatOnSave": true,
.
.
.

If you'd rather only apply Prettier to JS, then you should use this instead:

"[javascript]": {
 "editor.formatOnSave": true
},
.
.
.

https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://prettier.io/docs/en/install.html
https://prettier.io/docs/en/install.html
https://prettier.io/docs/en/install.html
https://prettier.io/docs/en/install.html
https://prettier.io/docs/en/install.html
https://prettier.io/docs/en/install.html
https://prettier.io/docs/en/install.html
https://prettier.io/docs/en/install.html
https://prettier.io/docs/en/install.html
https://prettier.io/docs/en/install.html
https://prettier.io/docs/en/install.html
https://prettier.io/docs/en/install.html
https://prettier.io/docs/en/install.html
https://prettier.io/docs/en/install.html

Working with JavaScript Development Tools Chapter 1

[37]

As we said, Prettier is pretty opinionated as to how code should look, and there are only
a few options that you can change. The available options can be set in package.json
(which makes it easier for all the team to share them) in a "prettier" key. Some of the
possibilities (meaning the ones you might want to modify) are as follows:

Option Default
value Meaning

arrowParens false For arrow functions with a single parameter, whether to enclose
it in parentheses.

bracketSpacing true Include a space after the opening brace of an object, and before
the closing brace.

jsxBracketSameLine false
If true, the ending > for a multiline JSX element will be added
at the end of the last line; if false, it will be on a separate line.

printWidth 80 Maximum line size.
semi true Add semicolons at the end of every line, even if not needed.
singleQuote false Use single quotes for strings.
tabWidth 2 Indentation size.

trailingComma none

Specify whether to add trailing commas or not, wherever
possible. Options are none (never add such commas), es5
(add them where ES5 allows, as in arrays or objects), or all
(add them even to function arguments).

useTabs false Use tabs for indentation.

Personally, the only ones I use are tabWidth:4 and printWidth:75, but the latter is for
the sake of the book only, not for other work. My package.json thus includes the
following; I have it just before the dependencies key, but you can place it elsewhere:

"prettier": {
 "tabWidth": 4,
 "printWidth": 75
},
.
.
.

Working with JavaScript Development Tools Chapter 1

[38]

You can also use Prettier independently of VSC, and in that case the
configuration options should go in a .prettierrc file. See https:/ ​/
prettier. ​io/ ​docs/ ​en/ ​cli. ​html and https:/ ​/ ​prettier. ​io/ ​docs/ ​en/
configuration. ​html for more on this.

Finally, if you want to avoid Prettier code formatting for some reason or another, you
can do the following:

Avoid all formatting for a given file by adding its path and name to a
.prettierignore text file at the project root
Avoid reformatting a single sentence by preceding it with a // prettier-
ignore comment

For the latter option, remember to use the appropriate comment style depending on the
source code language. For example, in an HTML file's you would use <!-- prettier-
ignore -->, while in CSS, it should be /* prettier-ignore */, and for JSX, {/*
prettier-ignore */}.

How it works…
There are two ways of using Prettier. The first is to configure VSC to automatically
format the code whenever you save it; following the instructions we saw earlier when we
installed VSC, change the editor Format on save option to true, and you'll be set. Of course,
you can also format the code whenever you want by right clicking and selecting the Format
Document option.

https://prettier.io/docs/en/cli.html
https://prettier.io/docs/en/cli.html
https://prettier.io/docs/en/cli.html
https://prettier.io/docs/en/cli.html
https://prettier.io/docs/en/cli.html
https://prettier.io/docs/en/cli.html
https://prettier.io/docs/en/cli.html
https://prettier.io/docs/en/cli.html
https://prettier.io/docs/en/cli.html
https://prettier.io/docs/en/cli.html
https://prettier.io/docs/en/cli.html
https://prettier.io/docs/en/cli.html
https://prettier.io/docs/en/cli.html
https://prettier.io/docs/en/cli.html
https://prettier.io/docs/en/configuration.html
https://prettier.io/docs/en/configuration.html
https://prettier.io/docs/en/configuration.html
https://prettier.io/docs/en/configuration.html
https://prettier.io/docs/en/configuration.html
https://prettier.io/docs/en/configuration.html
https://prettier.io/docs/en/configuration.html
https://prettier.io/docs/en/configuration.html
https://prettier.io/docs/en/configuration.html
https://prettier.io/docs/en/configuration.html
https://prettier.io/docs/en/configuration.html
https://prettier.io/docs/en/configuration.html
https://prettier.io/docs/en/configuration.html
https://prettier.io/docs/en/configuration.html

Working with JavaScript Development Tools Chapter 1

[39]

You can also use Prettier online. Go to https:/ ​/​prettier. ​io/ ​playground/ ​, paste your
code into the left panel, and you'll instantly get a formatted version in the right panel. Take
a look at the following screenshot for an example of code reformatting:

 Prettier online can be used to experiment with configuration parameters, or for a quick code reformatting session

If you want to experiment with the few available options, click Show Options at the
bottom-left corner, and you'll be able to configure Prettier, according to what we saw in the
previous section, see the following screenshot:

https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/
https://prettier.io/playground/

Working with JavaScript Development Tools Chapter 1

[40]

 If you want to dynamically experiment with (the few available) Prettier settings, you can do so in the online playground

When preparing the code for this book, I set the right margin at 75, because that's what will
fit in a printed page. I also set indentation to 4 characters, because I find it clearer. Other
than that, I left everything as the default; fewer style arguments to deal with this way!

Documenting your code with JSDoc
A good rule for maintainability is that code should be documented. JSDoc (or JSDoc3; the
name reflects the current version, 3.6.0) is an API documentation generator, which can
produce an HTML website with full documentation for your code. You only have to add
comments (in a specific format) to your source code, and JSDoc will scan the code to pick
them up and generate the documentation. Let's first see how those comments should be
written, and then turn to a tool to make the work easier with VSC.

Working with JavaScript Development Tools Chapter 1

[41]

The official web page for JSDoc is at http:/ ​/​usejsdoc. ​org/ ​, and the
source code can be found at https:/ ​/​github. ​com/ ​jsdoc3/ ​jsdoc.

How to do it…
The main idea for JSDoc is to document your APIs, including functions, classes, methods,
and whatnot. JSDoc comments are expected to precede the code that is being documented.
Comments start with /** and end with */; the double star distinguishes them from normal
comments.

Don't go overboard with stars, because if you write three or more, then
the comment will also be ignored; JSDoc expects two stars, no more, no
less.

The following code block shows the simplest possible example, how you might document a
function by providing a description of its goals and arguments:

/**
 * Solves the Hanoi Towers puzzle, for any number of disks.
 *
 * @param {number} disks - How many disks to move
 * @param {string} from - The starting pole's name
 * @param {string} to - The destination pole's name
 * @param {string} extra - The other pole's name
 */
const hanoi = (disks, from, to, extra) => {
 if (disks === 1) {
 console.log(`Move disk 1 from post ${from} to post ${to}`);
 } else {
 hanoi(disks - 1, from, extra, to);
 console.log(`Move disk ${disks} from post ${from} to post ${to}`);
 hanoi(disks - 1, extra, to, from);
 }
};

http://usejsdoc.org/
http://usejsdoc.org/
http://usejsdoc.org/
http://usejsdoc.org/
http://usejsdoc.org/
http://usejsdoc.org/
http://usejsdoc.org/
http://usejsdoc.org/
https://github.com/jsdoc3/jsdoc
https://github.com/jsdoc3/jsdoc
https://github.com/jsdoc3/jsdoc
https://github.com/jsdoc3/jsdoc
https://github.com/jsdoc3/jsdoc
https://github.com/jsdoc3/jsdoc
https://github.com/jsdoc3/jsdoc
https://github.com/jsdoc3/jsdoc
https://github.com/jsdoc3/jsdoc
https://github.com/jsdoc3/jsdoc
https://github.com/jsdoc3/jsdoc

Working with JavaScript Development Tools Chapter 1

[42]

The @param notation is a block tag, which introduces a code item, in this case, a parameter
of the function. A (partial) list of common tags is as follows:

@author The developer's name.
@class Defines a class.
@constructor Marks a function a constructor.
@copyright, @license Legal details.
@deprecated Marks a function or method as deprecated.
@exports An exported module member.
@function, @callback Defines a function, and more specifically, one used as a callback.
@param What parameters are expected. The data type may be added within braces.
@property or @prop A property of an object.
@return or @returns What the function or method returns.
@throws or @exception An exception thrown by a method.
@version A library's version.

There are more tags, such as @private, to identify a member as private, but since JS
doesn't really provide that feature, I skipped it. Other tags are more specific, and you may
not use them, such as @generator or @mixin. If you want to see the complete list of
possible block (and also a couple of inline) tags, checkout http:/ ​/ ​usejsdoc. ​org/ ​index.
html.

A confession: we won't be using JsDoc very much in this book, but only
because all the needed explanations will be given in the text itself. For
normal work, I'd always use it, but in this book it would mainly be
redundant.

How it works…
Writing this sort of comment can quickly become tedious, but you can use the Document
This VSC extension to automatically generate the needed template, which you will then
complete. You can find the extension at https:/ ​/​marketplace. ​visualstudio. ​com/ ​items?
itemName=​joelday. ​docthis,but it's simpler to install it through VSC itself: search for
Document This and it will quickly appear.

After including this extension, if you right-click on the code, a new command will appear
that will automatically generate (mostly empty) comments for you to complete.

http://usejsdoc.org/index.html
http://usejsdoc.org/index.html
http://usejsdoc.org/index.html
http://usejsdoc.org/index.html
http://usejsdoc.org/index.html
http://usejsdoc.org/index.html
http://usejsdoc.org/index.html
http://usejsdoc.org/index.html
http://usejsdoc.org/index.html
http://usejsdoc.org/index.html
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis
https://marketplace.visualstudio.com/items?itemName=joelday.docthis

Working with JavaScript Development Tools Chapter 1

[43]

As for generating the automatic documentation, checkout http:/ ​/​usejsdoc. ​org/​about-
commandline.​html; we won't go into this because it's fairly straightforward. You can
configure JSDoc, and also change the template it uses for the generated page; see http:/ ​/
usejsdoc.​org/​about- ​configuring- ​jsdoc. ​html and http:/ ​/​usejsdoc. ​org/​about-
configuring-​default- ​template. ​html for these topics. See the following screenshot:

 A simple example of the JSDoc output

Of course, documenting a single function won't be your use case! But for our purposes, it's
enough; for normal use, you'd get an index with links to every class, function, and so on,
fully documenting your code.

http://usejsdoc.org/about-commandline.html
http://usejsdoc.org/about-commandline.html
http://usejsdoc.org/about-commandline.html
http://usejsdoc.org/about-commandline.html
http://usejsdoc.org/about-commandline.html
http://usejsdoc.org/about-commandline.html
http://usejsdoc.org/about-commandline.html
http://usejsdoc.org/about-commandline.html
http://usejsdoc.org/about-commandline.html
http://usejsdoc.org/about-commandline.html
http://usejsdoc.org/about-commandline.html
http://usejsdoc.org/about-commandline.html
http://usejsdoc.org/about-configuring-jsdoc.html
http://usejsdoc.org/about-configuring-jsdoc.html
http://usejsdoc.org/about-configuring-jsdoc.html
http://usejsdoc.org/about-configuring-jsdoc.html
http://usejsdoc.org/about-configuring-jsdoc.html
http://usejsdoc.org/about-configuring-jsdoc.html
http://usejsdoc.org/about-configuring-jsdoc.html
http://usejsdoc.org/about-configuring-jsdoc.html
http://usejsdoc.org/about-configuring-jsdoc.html
http://usejsdoc.org/about-configuring-jsdoc.html
http://usejsdoc.org/about-configuring-jsdoc.html
http://usejsdoc.org/about-configuring-jsdoc.html
http://usejsdoc.org/about-configuring-jsdoc.html
http://usejsdoc.org/about-configuring-jsdoc.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html
http://usejsdoc.org/about-configuring-default-template.html

Working with JavaScript Development Tools Chapter 1

[44]

You have set up your working environment, and you are able to write documented, well-
indented code in the latest version of JS, but that's still not proof against some error that
may be committed, so let's now look into ways of enhancing your code more deeply.

Adding code quality checks with ESLint
JS is a very potent language, but there's also great potential for misuse. For example, most
people would agree that if a==b is true, and b==c is also true, then a==c should be true too,
but because of the data type conversion rules that JS applies for the == operator, you have
the following:

""==0 // true
0=="0" // true
""=="0" // false!?

Another example follows; what does this very simple function return?

function mystery() {
 return
 {
 something: true
 }
}

If you answered an object, you would have been bitten by a missing semicolon. This code is
actually interpreted by JS as follows:

function mystery() {
 return ;
 {
 something: true;
 }
}

Note the semicolon after return. This function returns undefined, and something is
interpreted as a label for an expression that happens to be true; bad! These kinds of
situations are common enough, and even if you know what you are doing, getting at least a
warning about possible problems with your code could help root out a bug, and that's the
kind of warning that ESLint produces.

The gotcha shown previously is only one of many that JS has for unaware
developers. Google for JavaScript gotchas and you'll get several lists of
possible errors.

Working with JavaScript Development Tools Chapter 1

[45]

How to do it…
Linters are a class of programming tools that analyze your source code, and raise warnings
and errors about poor-quality uses or constructs that could even imply bugs. We are going
to use ESLint, created by Nicholas Zakas in 2013; the tool's current version is 5.10.0, as of
December, 2018.

The first lint program was written in 1978 by Stephen Johnson, at Bell
Labs, where he also worked on Unix, yet another compiler compiler
(yacc), and the portable C compiler, which made it easier to output code
for different computer architectures.

ESLint is based upon pluggable rules, which may be enabled or disabled at will, or
configured according to your specific preferences. (You could even develop your own
rules, but that's beyond the scope of this book.) There are also bundles of rules that let you
avoid having to individually configure dozens of distinct rules.

Installing ESLint is quite simple, and just requires doing the following:

 npm install eslint eslint-config-recommended --save-dev

Then, you will have to add ESLint options to the package.json configuration file; let's get
into this. First, we'll add a script to apply ESLint to our complete source directory (which
has only a single file at this time!) with npm run eslint:

"scripts": {
 "build": "babel src -d out",
 "eslint": "eslint src",
 "test": "echo \"Error: no test specified\" && exit 1"
}

We must also specify some configuration for ESLint itself. We'll add a completely new
section for this:

"eslintConfig": {
 "parserOptions": {
 "ecmaVersion": 2017,
 "sourceType": "module"
 },
 "env": {
 "browser": true,
 "node": true
 },
 "extends": "eslint:recommended",
 "rules": {}
}

Working with JavaScript Development Tools Chapter 1

[46]

Let's go item by item:

parserOptions lets you specify what JS version you want to process (I'm going
with 2017, for ES8), and whether you are going to use modules (I'm indicating
this, in advance of what we'll see in the Organizing code in modules section of
Chapter 2, Using Modern JavaScript Features).
env lets you specify the environment(s) you are going to work with, and that
really means that some global variables will be assumed to exist. In this case, I'm
saying I will be working both with code for browsers and for Node, but there are
plenty more possible environments; checkout the Specifying Environments section
at https:/ ​/​eslint. ​org/ ​docs/ ​user- ​guide/ ​configuring. Later on, we will be
adding some more environments, for example, for unit testing.
extends lets you select a predefined set of rules, which you will later be able to
modify to suit your tastes. I'm going with the recommended set; you can read
more about it at https:/ ​/ ​github. ​com/ ​kunalgolani/ ​eslint- ​config. The
available sets of rules change only whenever the ESlint major version changes,
so they are reasonably stable. Furthermore, the recommended set represents a
usually agreed upon list of rules, so before you start tinkering with specific
changes, give it a try as is. The complete set of rules is available at https:/ ​/
eslint.​org/ ​docs/ ​rules/ ​, and the recommended rules can be found at https:/ ​/
github.​com/ ​eslint/ ​eslint/ ​blob/ ​master/ ​conf/ ​eslint- ​recommended. ​js.
rules lets you change some of the rules to better suit your style. We'll see good
reasons for this soon.

If (and only if) you are planning to use some Babel feature that is not yet
supported by ESLint, you should install and use the babel-eslint
package from https:/ ​/ ​www. ​npmjs. ​com/ ​package/ ​babel- ​eslint. This will
also require adding a line to the .eslintrc.json file to change the
parser that ESLint uses. However, keep in mind that it's highly unlikely
you will require this change!

https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://github.com/kunalgolani/eslint-config
https://github.com/kunalgolani/eslint-config
https://github.com/kunalgolani/eslint-config
https://github.com/kunalgolani/eslint-config
https://github.com/kunalgolani/eslint-config
https://github.com/kunalgolani/eslint-config
https://github.com/kunalgolani/eslint-config
https://github.com/kunalgolani/eslint-config
https://github.com/kunalgolani/eslint-config
https://github.com/kunalgolani/eslint-config
https://github.com/kunalgolani/eslint-config
https://github.com/kunalgolani/eslint-config
https://github.com/kunalgolani/eslint-config
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://github.com/eslint/eslint/blob/master/conf/eslint-recommended.js
https://www.npmjs.com/package/babel-eslint
https://www.npmjs.com/package/babel-eslint
https://www.npmjs.com/package/babel-eslint
https://www.npmjs.com/package/babel-eslint
https://www.npmjs.com/package/babel-eslint
https://www.npmjs.com/package/babel-eslint
https://www.npmjs.com/package/babel-eslint
https://www.npmjs.com/package/babel-eslint
https://www.npmjs.com/package/babel-eslint
https://www.npmjs.com/package/babel-eslint
https://www.npmjs.com/package/babel-eslint
https://www.npmjs.com/package/babel-eslint
https://www.npmjs.com/package/babel-eslint
https://www.npmjs.com/package/babel-eslint
https://www.npmjs.com/package/babel-eslint

Working with JavaScript Development Tools Chapter 1

[47]

How it works…
If we use npm run eslint as is, we will get the following result:

> npm run eslint
> simpleproject@1.0.0 eslint /home/fkereki/sample
> eslint src

/home/fkereki/sample/src/eight_queens.js
 32:1 error Unexpected console statement no-console
> X 1 problem (1 error, 0 warnings)

The standard rules do not allow using console.log(...), since you don't probably want
to include them in your shipped application; this is the no-console rule at https:/ ​/
eslint.​org/​docs/ ​rules/ ​no- ​console. We can enable or disable rules on a global or local
basis. If we approve of this console.log(...), we must then disable the no-console
rule locally. We'll do this by adding a comment to the source code, just before the problem
line:

// eslint-disable-next-line no-console
console.log(`Solutions found: ${solutions}`);

If you had used // eslint-disable no-console, you would have disabled the no-
console rule for the whole source file; // eslint-disable with no further specification
would have disabled all rules for the file. After this, if you use npm run eslint, you'll get
no errors.

Now, let's set a global rule. Some people don't like the solutions++ line because not
everybody feels comfortable with the ++ operator; there's a no-plusplus rule for this,
at https:/​/​eslint. ​org/ ​docs/ ​rules/ ​no- ​plusplus, but by default it's not enabled in the
recommended set, so we will enable it globally by adding to the rules section in
package.json:

"rules": {
 "no-plusplus": "error"
}

https://eslint.org/docs/rules/no-console
https://eslint.org/docs/rules/no-console
https://eslint.org/docs/rules/no-console
https://eslint.org/docs/rules/no-console
https://eslint.org/docs/rules/no-console
https://eslint.org/docs/rules/no-console
https://eslint.org/docs/rules/no-console
https://eslint.org/docs/rules/no-console
https://eslint.org/docs/rules/no-console
https://eslint.org/docs/rules/no-console
https://eslint.org/docs/rules/no-console
https://eslint.org/docs/rules/no-console
https://eslint.org/docs/rules/no-console
https://eslint.org/docs/rules/no-console
https://eslint.org/docs/rules/no-plusplus
https://eslint.org/docs/rules/no-plusplus
https://eslint.org/docs/rules/no-plusplus
https://eslint.org/docs/rules/no-plusplus
https://eslint.org/docs/rules/no-plusplus
https://eslint.org/docs/rules/no-plusplus
https://eslint.org/docs/rules/no-plusplus
https://eslint.org/docs/rules/no-plusplus
https://eslint.org/docs/rules/no-plusplus
https://eslint.org/docs/rules/no-plusplus
https://eslint.org/docs/rules/no-plusplus
https://eslint.org/docs/rules/no-plusplus
https://eslint.org/docs/rules/no-plusplus
https://eslint.org/docs/rules/no-plusplus
https://eslint.org/docs/rules/no-plusplus

Working with JavaScript Development Tools Chapter 1

[48]

After this, if you run ESLint, you'll get a new error, and the developer that supposedly did
it should fix the code:

/home/fkereki/sample/src/eight_queens.js
 13:9 error Unary operator '++' used no-plusplus

The possible configurations for a rule are "off" (if you want to disable it), "warn" (if you
want to get a warning, but accept it), and "error" (rejecting the file). Some rules accept
extra configurations, but those are specific; you'll have to read the rule documentation in
order to learn about the possible changes. See https:/ ​/​eslint. ​org/ ​docs/ ​rules/ ​no- ​empty
for a specific example with the no-empty rule, which disallows empty blocks of code but
has an extra option to allow them in catch statements.

Deciding what rules to enable or disable is something that usually happens at the
beginning of a project, and it can be expected that some new rule changes will happen over
time. In any case, no matter what you pick, ideally you should work only
with "off" and "error"; if developers get used to warnings, they finally end up not
paying attention to them, and that can be bad! Get used to the whole list of rules at https:/
/​eslint.​org/​docs/ ​rules/ ​.​

Finally, all projects will be using an out/ directory for the output file, which you would
then distribute. If you care to look at some files within it, you don't need ESLint protesting
about possible errors in generated code. To avoid this, you can add a small section to the
package.json file:

 "eslintIgnore": ["**/out/*.js"],

There's more…
Of course, all these checks are very good, but if you had to stop working, save everything,
and run a separate tool each time you wanted to check for problems in your code, it would
soon become unbearable. However, with VSC you can add a plugin to interact with ESLint
in real time. Go to the extensions view and search for ESLint; you should find and install an
extension, currently at version 1.7.2 (March 2018), written by Dirk Baeumer.

https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/

Working with JavaScript Development Tools Chapter 1

[49]

Once you install this extension, errors will be shown on screen with a wavy red underline,
and if you mouse over them, you'll get an explanation about the failed rule. Take a look at
the for an example:

 The ESLint plugin in action, showing problems with the code in real time

There are very few configuration items for ESLint; the only one I use
is "eslint.alwaysShowStatus": true, so the status bar will show whether ESLint is
enabled or not.

An interesting package that you could consider is the web DeepScan tool
at https:/ ​/ ​deepscan. ​io/ ​home/​. DeepScan is advertised as beyond Lint,
insofar as it can also detect runtime problems having to do with implicit
type conversions, null checks, unreachable code, and more. For the time
being, DeepScan is considered to be in beta stage and there are no paid
plans yet. You can use it free for open source projects; for example, you
can use it automatically with a GitHub project.

https://deepscan.io/home/
https://deepscan.io/home/
https://deepscan.io/home/
https://deepscan.io/home/
https://deepscan.io/home/
https://deepscan.io/home/
https://deepscan.io/home/
https://deepscan.io/home/
https://deepscan.io/home/
https://deepscan.io/home/

Working with JavaScript Development Tools Chapter 1

[50]

Adding Flow for data types checks
Let's finish this chapter by considering a tool that turns JS into a (sort of) new language, a
typed one. One of the characteristics of JS is being untyped; for example, a variable can hold,
or a function may return, any kind of value, there's no way to declare what type(s) should
be stored in a variable or returned from a function. In this section, we will add Flow, a tool
developed by Facebook, which allows for data type controls.

Angular developers do not go for Flow, and opt for TypeScript instead.
(OK, not Angular developers only; you can use TypeScript practically
everywhere!) This version of JS was developed by Microsoft, and also
includes data typing in a style very similar to Flow. TypeScript has its
own transpiler, and you won't need Babel or Flow, so configuration will
be a tad simpler. Instead of ESLint, you'll use TSLint, but you need not
forego ESLint's rules: install tslint-eslint-rules; (see https:/ ​/
github. ​com/ ​buzinas/ ​tslint- ​eslint- ​rules) and you'll get the best of
both worlds.

We will be getting into how to fully use Flow in the Adding types section of Chapter 2,
Using JavaScript Modern Features, but let me give you a preview of what we expect; then,
we'll get to install all the needed packages, and afterwards we'll go into more
details. Imagine you wrote a highly complex function to add two numbers:

function addTwoNumbers(x, y) {
 return x + y;
}

console.log(addTwoNumbers(22, 9)); // 31, fine

However, since JS won't check types and has some conversion rules, the following two lines
would also work:

console.log(addTwoNumbers("F", "K")); // FK - oops...
console.log(addTwoNumbers([], {})); // [object Object]! more oops...

You could, on principle, add a lot of data type checking code to your function to
verify typeof(x)==="number", but that can become a chore. (Although, of course, for
some cases it's the only solution.) However, many errors can be detected before even
running the code, as would happen here.

https://github.com/buzinas/tslint-eslint-rules
https://github.com/buzinas/tslint-eslint-rules
https://github.com/buzinas/tslint-eslint-rules
https://github.com/buzinas/tslint-eslint-rules
https://github.com/buzinas/tslint-eslint-rules
https://github.com/buzinas/tslint-eslint-rules
https://github.com/buzinas/tslint-eslint-rules
https://github.com/buzinas/tslint-eslint-rules
https://github.com/buzinas/tslint-eslint-rules
https://github.com/buzinas/tslint-eslint-rules
https://github.com/buzinas/tslint-eslint-rules
https://github.com/buzinas/tslint-eslint-rules
https://github.com/buzinas/tslint-eslint-rules
https://github.com/buzinas/tslint-eslint-rules

Working with JavaScript Development Tools Chapter 1

[51]

If you modify the function to include data type declarations, Flow will be able to detect the
two wrong uses, and you will be able to solve the situation before even running the code:

function addTwoNumbers(x: number, y: number) {
 return x + y;
}

Basically, that's all there is! Of course, there are many details about what data types are
available, defining new ones, using interfaces, and much more, but we'll get to that in the
next chapter. For the time being, let's just install it with the promise that we will learn more
about its use very shortly.

How to do it…
Installing Flow depends on whether you are working with Babel (as would be the case for
client-side browser code) or not (as you would do for server-side code). We will see how to
deal with Node starting in Chapter 3, Developing with Node; here, we'll just consider Babel.

To start, execute the following command to get the needed Flow packages, including the
Babel and ESLint ones:

npm install flow-bin babel-preset-flow eslint-plugin-flowtype --save-dev

Then, add the "flow" preset for Babel in package.json:

"babel": {
 "presets": ["env", "flow"]
},

Add some lines to the ESLint configuration, also in package.json:

"eslintConfig": {
 "parserOptions": {
 "ecmaVersion": 2017,
 "sourceType": "module"
 },
 "env": {
 "browser": true,
 "node": true
 },
 "parser": "babel-eslint",
 "extends": ["eslint:recommended", "plugin:flowtype/recommended"],
 "plugins": ["flowtype"],
 "rules": {
 .

Working with JavaScript Development Tools Chapter 1

[52]

 .
 .
 }
},

Add a "flow" script in package.json:

"scripts": {
 "build": "babel src -d out",
 "flow": "flow",
 .
 .
 .
},

Finally, perform npm run flow init to initialize Flow, only once, to create a
.flowconfig file with information that will be used by the Flow process. (See https:/ ​/
flow.​org/​en/​docs/ ​config/ ​ for more information on this file.)

The .flowconfig file doesn't really match the style of other configuration
files, and should really be a JSON file instead, possibly part of
package.json. However, this is a still pending item; you can
check https:/ ​/​github. ​com/ ​facebook/ ​flow/ ​issues/ ​153 to monitor
advances, but for the time being, you'll have to deal with .flowconfig as
is.

How it works…
With the configuration you just wrote, you are set! Just do npm run flow whenever you
start to work, to run a background process that will check your code incrementally and let
you know about possible data type problems. However, you may even skip this step if you
work with VSC; see the next section.

Configuring Flow's linting
Even though ESLint has us well covered for avoiding JS bad coding practices, it doesn't do
much with regard to data types, but Flow can help us in this area.

https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://github.com/facebook/flow/issues/153
https://github.com/facebook/flow/issues/153
https://github.com/facebook/flow/issues/153
https://github.com/facebook/flow/issues/153
https://github.com/facebook/flow/issues/153
https://github.com/facebook/flow/issues/153
https://github.com/facebook/flow/issues/153
https://github.com/facebook/flow/issues/153
https://github.com/facebook/flow/issues/153
https://github.com/facebook/flow/issues/153
https://github.com/facebook/flow/issues/153
https://github.com/facebook/flow/issues/153
https://github.com/facebook/flow/issues/153
https://github.com/facebook/flow/issues/153
https://github.com/facebook/flow/issues/153

Working with JavaScript Development Tools Chapter 1

[53]

There is a set of rules you can apply, and you will configure them through the
.flowconfig file we mentioned in the previous section:

[lints]
all=warn
unsafe-getters-setters=off

The first line, all=warn, is a catch-all, which defines the standard setting for all rules;
possible values are off, warn, and error. After that, you can specify settings for individual
rules; for example, in the preceding code I decided to ignore warnings about unsafe getters
or setters. Some rules are as follows:

sketchy-null, which applies whenever you test the value of a variable that
could be false (for example, zero) but also null or undefined, in the context of
something like if (x) { ... }. This warning is meant to remind you that the
variable might have a value you weren't considering.
sketchy-null-bool, sketchy-null-number, sketchy-null-string, and
sketchy-null-mixed are more granular versions of sketchy-null, and apply
only to the specified data types.
unclear-type warns about using any, Object, or Function as data type
annotations.
untyped-import and untyped-type-import warn you against importing
from untyped files.
unsafe-getters-setters advises against using getters or setters, because of
their side effects.

Read the complete current set of Flow linting rules at https:/ ​/​flow. ​org/
en/​docs/ ​linting/ ​rule- ​reference/ ​, where you will also find examples of
each rule.

You should also set include_warnings to true, in order to be able to get warnings in
VSC:

[options]
include_warnings=true

https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/
https://flow.org/en/docs/linting/rule-reference/

Working with JavaScript Development Tools Chapter 1

[54]

Whatever settings you include in .fontconfig will apply globally to your entire project,
but you can also change them on a file-by-file basis, or even for a single line of code, along
the same lines as with ESLint. You can disable warnings for a line by using a flowlint-
next-line comment and listing the rules you want to change:

// flowlint-next-line sketchy-null-bool:off
if (x) {
 // ...
}

There is another comment, flowlint, that applies to the complete file. Checkout https:/ ​/
flow.​org/​en/​docs/ ​linting/ ​flowlint- ​comments/ ​ for more possibilities.

Using Flow within VSC
As we have been doing previously, we'll want to see Flow problems right in VSC. There's a
simple solution: just go to Extensions, search for Flow Language Support, and install the
package; that's it!

You'll also have to change two settings for VSC:

Add "flow.useNPMPackagedFlow": true and this will remove the need to do
npm run flow at the beginning; the extension will do that on its own
Add "javascript.validate.enable": false to avoid clashes between
Flow's syntax and JS

https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/
https://flow.org/en/docs/linting/flowlint-comments/

Working with JavaScript Development Tools Chapter 1

[55]

After that, you will be able to see Flow errors onscreen; see following screenshot for an
example:

The VSC Flow extension lets you catch data type errors in real time; however, error messages are not always very clear

2
Using Modern JavaScript

Features
The recipes we will be covering in this chapter are as follows:

Adding types
Working with strings
Enhancing your code
Defining functions
Programming functionally
Doing async calls compactly
Working with objects and classes
Organizing code in modules
Determining a feature's availability

Introduction
In the previous chapter, we set up our working environment with many tools that we will
be using throughout this book. In this chapter, we will get ourselves prepared for the rest of
this book, and we will be considering some interesting and powerful modern features of
JavaScript that can you help be more effective and write better code.

We will be considering several new language features that will come handy—but definitely
not everything! JS has really grown into a big language, and there are some features that
you're not likely to ever need. From the very start, we will also work more seriously
with Flow, aiming to forego the usage of untyped JS, for a safer way of developing code.

Using Modern JavaScript Features Chapter 2

[57]

It may be important to highlight that JS has evolved through the years, and that there isn't a
single standard version. The most recent one is (formally) called ECMAScript 2018, which
is usually shortened to ES2018. The current list of versions of the language is as follows:

ECMAScript 1, June 1997
ECMAScript 2, June 1998, essentially equal to the previous version
ECMAScript 3, December 1999, adding several new functionalities
ECMAScript 5, December 2009 (there never was an ECMAScript 4; that version
was abandoned) also known as JS5
ECMAScript 5.1, June 2011
ECMAScript 6 (ES2015 or ES6), June 2015
ECMAScript 7 (ES2016), June 2016
ECMAScript 8 (ES2017), June 2017
ECMAScript 9 (ES2018), June 2018

ECMA was originally an acronym meaning European Computer
Manufacturers Association, but nowadays the name is simply considered
a name by itself. You can go to its site at https:/ ​/ ​www.​ecma-
international. ​org/ ​ and view the standard language specification
at https:/ ​/ ​www. ​ecma- ​international. ​org/ ​publications/ ​standards/
Ecma- ​262. ​htm.

Whenever we refer to JS in this text without further specification, the latest version (that is,
ES2018) is what we mean. No browsers fully implement this version, and further on in this
book, we'll solve this problem by using Babel, a tool that will convert the modern features
into equivalent, but older and compatible code, so even if you program in the latest fashion,
users with older browsers will still be able to run your code. The tools we'll be using will
install Babel on their own, so we won't have to do that, but if you're curious, you can read
more at https:/​/​babeljs. ​io/ ​.

A very good source for all JS-related things is the Mozilla Developer
Network (MDN), which has been going strong with all sorts of web
documentation for over ten years. Take a look to their site at https:/ ​/
developer. ​mozilla. ​org/ ​bm/​docs/ ​Web/ ​JavaScript; we'll be frequently
making reference to it. You can also read http:/ ​/​es6- ​features. ​org/ ​ for a
wealth of examples of ES6 features.

https://www.ecma-international.org/
https://www.ecma-international.org/
https://www.ecma-international.org/
https://www.ecma-international.org/
https://www.ecma-international.org/
https://www.ecma-international.org/
https://www.ecma-international.org/
https://www.ecma-international.org/
https://www.ecma-international.org/
https://www.ecma-international.org/
https://www.ecma-international.org/
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://babeljs.io/
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
https://developer.mozilla.org/bm/docs/Web/JavaScript
http://es6-features.org/
http://es6-features.org/
http://es6-features.org/
http://es6-features.org/
http://es6-features.org/
http://es6-features.org/
http://es6-features.org/
http://es6-features.org/
http://es6-features.org/
http://es6-features.org/

Using Modern JavaScript Features Chapter 2

[58]

Adding types
In the previous chapter, we installed Flow so that we could add data types check to JS, but
we didn't really get into its syntax or rules. Let's get into that now, before getting into JS-
specific features.

Getting started
Flow will not check every file unless you expressly require it to. For a file to be checked,
you must add a simple comment to the very top, as shown in the following code snippet.
Flow will ignore any files that lack this comment, so even if you were adding the tool to an
already existing project, you could do it gradually, adding files one at a time:

/* @flow */

Starting with Flow's controls, you just have to specify what data type you expect any
variable to be, and Flow will check that it's always used correctly. Fortunately, Flow is also
capable of determining data types by value; for example, if you assign a string to a variable,
it will assume that this variable is meant to contain strings. Adapting an example
from https:/​/​flow. ​org/ ​en/ ​docs/ ​usage/ ​, you could write the following:

/* @flow */

function foo(x: ?number): string {
 if (x) {
 return x;
 } else {
 return "some string";
 }
}

console.log(foo("x"));

The :?number and :string annotations specify that x is an optional numeric parameter,
and that foo should return a string. Can you see two problems with the rest of the code? If
you use npm run flow, you'll get a report showing what the problem is. First, you
cannot return x, because of the data types mismatch between the variable and the
expected return value:

Error ---
---------------- src/types_examples.js:5:16

Cannot return x because number [1] is incompatible with string [2].

https://flow.org/en/docs/usage/
https://flow.org/en/docs/usage/
https://flow.org/en/docs/usage/
https://flow.org/en/docs/usage/
https://flow.org/en/docs/usage/
https://flow.org/en/docs/usage/
https://flow.org/en/docs/usage/
https://flow.org/en/docs/usage/
https://flow.org/en/docs/usage/
https://flow.org/en/docs/usage/
https://flow.org/en/docs/usage/
https://flow.org/en/docs/usage/
https://flow.org/en/docs/usage/
https://flow.org/en/docs/usage/

Using Modern JavaScript Features Chapter 2

[59]

 2│
 [1][2] 3│ function foo(x /* :?number */) /* :string */ {
 4│ if (x) {
 5│ return x;
 6│ } else {
 7│ return 'some string';
 8│ }

Second, you are trying to call a function but passing a parameter of the wrong type:

Error--
--------------- src/types_examples.js:12:17

Cannot call foo with 'x' bound to x because string [1] is incompatible with
number [2].

 [2] 3│ function foo(x /* :?number */) /* :string */ {
 :
 9│ }
 10│
 11│ // eslint-disable-next-line no-console
 [1] 12│ console.log(foo('x'));
 13│

All of the preceding code is (except for the type declarations) valid JS, so it would have
been accepted; Flow tells you about the problems so that you can fix them. Now, let's get
into greater detail, and see all of the possibilities that this tool gives us.

If you want to ignore Flow's warnings for any line, precede it with a
comment like // @FlowFixMe and follow with the reason why you want
to skip that situation. See https:/ ​/​flow. ​org/ ​en/ ​docs/ ​config/ ​options/
#toc- ​suppress- ​comment- ​regex for more on this.

How to do it...
There are many ways to define types so that you can deal with simple and complex cases
with no problems. Let's start with the simpler, basic types, and then move on to more
specific cases.

https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex
https://flow.org/en/docs/config/options/#toc-suppress-comment-regex

Using Modern JavaScript Features Chapter 2

[60]

Basic types in Flow
The possible data types definitions can be found at https:/ ​/​flow. ​org/ ​en/ ​docs/ ​types/
—we won't copy them all here, but rather show you the main ones through a few examples.
Please look at the full documentation because there's a great variety of possibilities that you
should be aware of:

:boolean Boolean values.
:number Numeric values.
:string Strings.

:null

Null values. You wouldn't just be declaring that a certain
variable should always be null; rather,
you'll be using these with advanced types such as unions,
which we'll get to see in the next section.

:void Void (undefined) value.

:mixed

Any type, but will still get checked for consistency. For
instance, if at one point Flow knows that the variable is a
Boolean, then using it as a string would be flagged as
wrong.

:any
Any type, and Flow won't do any checks for it.
This amounts to disabling type checks on
whatever is of any type.

function
foo(x: ?boolean)

A function with an optional boolean parameter. This is the
same as declaring that the argument
can either be a boolean, null, or also undefined.

function bar() :string A function that returns a string result.

{ property ?: number }
An optional object property; if present, it could be numeric
or undefined, but not null.

: Array<number>

: number[]

An array of numbers, in two different styles. If you want to
deal with fixed length arrays, tuples may apply; go
to https:/ ​/​flow. ​org/​en/ ​docs/ ​types/ ​tuples/ ​ to find out
more.

We will find out how to assign or define types for these definitions in
the Defining types for arrow functions recipe, later in this chapter.

https://flow.org/en/docs/types/
https://flow.org/en/docs/types/
https://flow.org/en/docs/types/
https://flow.org/en/docs/types/
https://flow.org/en/docs/types/
https://flow.org/en/docs/types/
https://flow.org/en/docs/types/
https://flow.org/en/docs/types/
https://flow.org/en/docs/types/
https://flow.org/en/docs/types/
https://flow.org/en/docs/types/
https://flow.org/en/docs/types/
https://flow.org/en/docs/types/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/
https://flow.org/en/docs/types/tuples/

Using Modern JavaScript Features Chapter 2

[61]

We can see some examples of the definitions in the following code. I disabled ESLint's rule
about unused variables to avoid obvious problems:

// Source file: src/types_basic.js

/* @flow */
/* eslint-disable no-unused-vars */

let someFlag: boolean;
let greatTotal: number;
let firstName: string;

function toString(x: number): string {
 return String(x);
}

function addTwo(x: number | string, y: number | string) {
 return x + y;
}

function showValue(z: mixed): void {
 // not returning anything
 console.log("Showing... ", z);
}

let numbersList: Array<number>;
numbersList = [22, 9, 60]; // OK
numbersList[1] = "SEP"; // error; cannot assign a string to a number

let anotherList: number[] = [12, 4, 56];

// continues...

The addTwo() definition has a hidden problem: are you sure
that x and y will always be of the same type? Actually, x could be a
number and y could be a string, and Flow wouldn't complain. We have no
easy way of testing this, and a runtime check for typeof x === typeof
y would be needed.

Using Modern JavaScript Features Chapter 2

[62]

When you define an object, you should provide data types for all of its properties and
methods. Object definitions are considered to be sealed, meaning that you cannot change the
object types. If you cannot or won't do this, start with an empty object, and then Flow will
let you add properties at will:

// ...continued

let sealedObject: { name: string, age?: number } = { name: "" };

sealedObject.name = "Ivan Horvat"; // OK

sealedObject.id = 229; // error: key isn't defined in the data type

sealedObject = { age: 57 }; // error: mandatory "name" field is missing

let unsealedObject = {};
unsealedObject.id = 229; // OK

If a function expects an object with some properties, and it receives an
object with those properties plus some extra ones, Flow won't complain. If
you don't want this, use exact objects; see https:/ ​/​flow. ​org/ ​en/​docs/
types/ ​objects/ ​#toc- ​exact- ​object- ​types. However, this also causes
problems, such as disabling the spread operator; see https:/ ​/​github.
com/​facebook/ ​flow/ ​issues/ ​2405 for a (two year long!) discussion.

Now, let's turn to more complex definitions, which you will probably end up using, since
they better match usual business requirements and program specifications.

Union types
The basic definitions of the previous section may be enough for plenty of code, but as you
start working with more complex problems, you'll need some more advanced Flow
features, and you may want to define types separately so that you can reuse them
elsewhere. Due to this, in this and the following sections, we'll look at more advanced
types.

In JS, it's common that a variable may have, at different times, different data types. For that
situation, you can use union types:

// Source file: src/types_advanced.js

let flag: number | boolean;
flag = true; // OK
flag = 1; // also OK

https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://flow.org/en/docs/types/objects/#toc-exact-object-types
https://github.com/facebook/flow/issues/2405
https://github.com/facebook/flow/issues/2405
https://github.com/facebook/flow/issues/2405
https://github.com/facebook/flow/issues/2405
https://github.com/facebook/flow/issues/2405
https://github.com/facebook/flow/issues/2405
https://github.com/facebook/flow/issues/2405
https://github.com/facebook/flow/issues/2405
https://github.com/facebook/flow/issues/2405
https://github.com/facebook/flow/issues/2405
https://github.com/facebook/flow/issues/2405
https://github.com/facebook/flow/issues/2405
https://github.com/facebook/flow/issues/2405
https://github.com/facebook/flow/issues/2405

Using Modern JavaScript Features Chapter 2

[63]

flag = "1"; // error: wrong type

let traffic: "red" | "amber" | "green"; // traffic is implicitly string
traffic = "yellow"; // error: not allowed

type numberOrString = number | string;
function addTwo(x: numberOrString, y: numberOrString) {
 return x + y;
}

// continues...

For some occasions in which you have objects that have different
properties depending on some internal value, you can also use
disjoint unions; see https:/ ​/ ​flow. ​org/ ​en/​docs/ ​types/ ​unions/ ​.

Class types
Flow supports classes and mostly in an automatic way. Every time you define a class, it
becomes a type by itself, so you don't have to do anything else; you can just use it
elsewhere. (We'll be seeing more about classes in a short while, in the Working with Objects
and Classes section.) You can assign types to properties and methods in the same way as for
objects and functions. Using our Person class again as an example, the following code
shows how to define it with Flow:

// Source file: src/types_advanced.js

class Person {
 // class fields need Flow annotations
 first: string;
 last: string;

 constructor(first: string, last: string) {
 this.first = first;
 this.last = last;
 }

 initials(): string {
 return `${this.first[0]}${this.last[0]}`;
 }

 fullName(): string {
 return `${this.first} ${this.last}`;
 }

https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/
https://flow.org/en/docs/types/unions/

Using Modern JavaScript Features Chapter 2

[64]

 get lastFirst(): string {
 return `${this.last}, ${this.first}`;
 }

 set lastFirst(lf: string) {
 // very unsafe; no checks!
 const parts = lf.split(",");
 this.last = parts[0];
 this.first = parts[1];
 }
}

let pp = new Person("Jan", "Jansen"); // OK
let qq = new Person(1, 2); // error: wrong types for the constructor
let rr: Person; // OK, "Person" type is understood and can be used

However, there is a problem you may encounter. If you have distinct classes, even with
exactly the same shape, they won't be considered equivalent by Flow. For instance, even if
Animal and Pet are equivalent, the assignment of Pet to Animal (or vice versa) won't be
allowed:

// Source file: src/types_advanced.js

class Animal {
 name: string;
 species: string;
 age: number;
}

class Pet {
 name: string;
 species: string;
 age: number;
}

let tom: Animal;
tom = new Pet(); // error: Pet and Animal are distinct types

In this particular case, if you were to say that Pet extends Animal, then you could assign
Pet to Animal, but not the other way round. A more general solution would involve
creating an interface and using it in several places:

// Source file: src/types_advanced.js

interface AnimalInt {
 name: string;
 species: string;

Using Modern JavaScript Features Chapter 2

[65]

 age: number;
}

class Animal2 implements AnimalInt {
 name: string;
 species: string;
 age: number;
}

class Pet2 implements AnimalInt {
 name: string;
 species: string;
 age: number;
}

let tom2: AnimalInt; // not Animal2 nor Pet2
tom2 = new Pet2(); // OK now

Note that the interface definition, which includes three fields, doesn't exempt you from
declaring those fields when you define Animal2 or Pet2; in fact, if you were to forget some
of these fields, Flow would point out the error, because neither of the three is marked as
optional.

Type aliases
When your types become more complex or when you want to reuse the same definition in
several places, you can create a type alias:

// Source file: src/types_advanced.js

type simpleFlag = number | boolean;

type complexObject = {
 id: string,
 name: string,
 indicator: simpleFlag,
 listOfValues: Array<number>
};

After defining types in this fashion, you can just use them anywhere, even in the definition
of new types, as we did in complexObject, where we defined a field to be of the
previously defined simpleFlag type:

// Source file: src/types_advanced.js

let myFlag: simpleFlag;

Using Modern JavaScript Features Chapter 2

[66]

let something: complexObject = {
 id: "B2209",
 name: "Anna Malli",
 indicator: 1,
 listOfValues: [12, 4, 56]
};

Type aliases can even be generic, as we'll see in the next section. You can also export types
from a module, and import them for usage anywhere; we'll get to that in the Working with
libraries section.

Generic types
In functional programming, it's quite usual to work with the identity function, which is
defined as follows:

// Source file: src/types_advanced.js

const identity = x => x;

In combinatory logic, which we won't be going into, this corresponds with
the I combinator.

How would you write a type definition for this function? If the argument is a number, it
will return a number; if it's a string, it'll return a string and so on. Writing all possible
situations would be a chore and not very Don't Repeat Yourself (DRY). Flow provides a
solution, with generic types:

// Source file: src/types_advanced.js

const identity = <T>(x: T): T => x;

In this case, T stands for the generic type. Both the argument of the function and the result
of the function itself are defined to be of T type, so Flow will know that whatever type the
argument is, the result type will be the same. A similar syntax would be used for the more
usual way of defining functions:

// Source file: src/types_advanced.js

function identity2<T>(x: T): T {
 return x;
}

Using Modern JavaScript Features Chapter 2

[67]

Flow also checks that you don't accidentally restrict a generic type. In the following case,
you would always be returning a number, while T might actually be any other different
type:

// Source file: src/types_advanced.js

function identity3<T>(x: T): T {
 return 229; // wrong; this is always a number, not generic
}

You need not restrict yourself to a single generic type; the following nonsense example
shows a case with two types:

// Source file: src/types_advanced.js

function makeObject<T1, T2>(x: T1, y: T2) {
 return { first: x, second: y };
}

It's also possible to define a parametric type with a generic type that can later be specified.
In the following example, the type definition for pair allows you to further create new
types, each of which will always produce pairs of values of the same type:

// Source file: src/types_advanced.js

type pair<T> = [T, T];

type pairOfNumbers = pair<number>;
type pairOfStrings = pair<string>;

let pn: pairOfNumbers = [22, 9];

let ps: pairOfStrings = ["F", "K"];

There are more ways you can use generic types; check https:/ ​/​flow. ​org/
en/​docs/ ​types/ ​generics/ ​ for a complete description of available
possibilities.

https://flow.org/en/docs/types/generics/
https://flow.org/en/docs/types/generics/
https://flow.org/en/docs/types/generics/
https://flow.org/en/docs/types/generics/
https://flow.org/en/docs/types/generics/
https://flow.org/en/docs/types/generics/
https://flow.org/en/docs/types/generics/
https://flow.org/en/docs/types/generics/
https://flow.org/en/docs/types/generics/
https://flow.org/en/docs/types/generics/
https://flow.org/en/docs/types/generics/
https://flow.org/en/docs/types/generics/
https://flow.org/en/docs/types/generics/
https://flow.org/en/docs/types/generics/
https://flow.org/en/docs/types/generics/

Using Modern JavaScript Features Chapter 2

[68]

Opaque types for safer coding
In Flow (and TypeScript as well), types that are structurally the same are considered to be
compatible and one can be used instead of the other. Let's consider an example. In
Uruguay, there is a national identification card with a DNI code: this is a string that's
formed by seven digits, a dash, and a check digit. You could have an application that lets
you update people's data:

// Source file: src/opaque_types.js

type dniType = string;
type nameType = string;

function updateClient(id: number, dni: dniType, name: nameType) {
 /*
 Talk to some server
 Update the DNI and name for the client with given id
 */
}

What could happen? If you don't define better types, there's nothing preventing you from
doing a call such as updateClient(229, "Kari Nordmann", "1234567-8"); can you
spot the switched values? Since both dniType and nameType are just bottom strings, even
though they imply totally different concepts, Flow won't complain. Flow ensures that types
are used correctly, but since it doesn't handle semantics, your code can still be obviously
wrong.

Opaque types are different, since they obscure their internal implementation details from the
outside, and have much stricter compatibility rules. You could have a file
called opaque_types.js with the following definitions:

// Source file: src/opaque_types.js

opaque type dniType = string;
type nameType = string; // not opaque!

Then, in a different source file, we could attempt the following:

// Source file: src/opaque_usage.js

import type { dniType, nameType } from "./opaque_types";
import { stringToDni } from "./opaque_types";

let newDni = "1234567-8"; // supposedly a DNI

Using Modern JavaScript Features Chapter 2

[69]

let newName = "Kari Nordmann";

updateClient(229, newName, newDni); // doesn't work; 2nd argument should be
a DNI
updateClient(229, newDni, newName); // doesn't work either; same reason

How can we fix this? Not even changing the definition of newDni would help:

let newDni: dniType = "1234567-8"; // a string cannot be assigned to DNI

Even after this change, Flow would still complain that a string isn't a DNI. When we work
with opaque types, if we want to do type conversions, we must provide them on our own.
In our case, we should add such a function to our file with type definitions:

// Source file: src/opaque_types.js

const stringToDni = (st: string): dniType => {
 /*
 do validations on st
 if OK, return a dniType
 if wrong, throw an error
 */
 return (st: dniType);
};

export { stringToDni };

Now, we can work! Let's see the code:

// Source file: src/opaque_usage.js

updateClient(229, stringToDni(newDni), newName); // OK!

This is still not optimal. We know that all DNI values are strings, so we should be able to
use them as such, right? This isn't the case:

// Source file: src/opaque_usage.js

function showText(st: string) {
 console.log(`Important message: ${st}`);
}

let anotherDni: dniType = stringToDni("9876543-2");
showText(anotherDni); // error!

Using Modern JavaScript Features Chapter 2

[70]

The anotherDni variable is of dniType, but as opaque types carry no information as to the
real types, trying to use it as a string fails. You could, of course, write a dniToString()
function, but that seems to be overkill—and would quickly get out of control in a system
with potentially dozens of data types! We have a fallback: we can add a subtyping
constraint, which will allow the opaque type to be used as a different type:

// Source file: src/opaque_types.js

opaque type dniType : string = string;

This means that dniType may be used as string, but not vice versa. Using opaque types
will add safety to your code, since more errors will be caught, but you can also get a certain
measure of flexibility through these constraints, which will make your life easier.

Working with libraries
Today, it's highly likely that any project you create will depend on third-party libraries, and
it's very likely that those weren't written with Flow. By default, Flow will ignore these
libraries and won't do any type checking. This means that any data type errors you might
commit when using the library will be unrecognized, and you'll have to deal with them in
the old-fashioned way, through testing and debugging—a throwback to worse times!

To solve this problem, Flow lets you work with library definitions (libdefs) (see https:/ ​/
flow.​org/​en/​docs/ ​libdefs/ ​) that describe the data types, interfaces, or classes for a
library, separately from the library itself, like header files in C++ and other languages.
Libdefs are .js files, but they are placed in a flow-typed directory at the root of your
project.

You can change this directory by editing the .flowconfig configuration
file, but we won't meddle with it. If you are interested in effecting such a
change, see the [libs] documentation at https:/ ​/​flow. ​org/ ​en/​docs/
config/ ​.

There exists a repository of library definitions, flow-typed, in which you can find already
made files for many popular libraries; see https:/ ​/​github. ​com/ ​flowtype/ ​flow- ​typed for
more information. However, you don't need to directly deal with that, because there is a
tool that does the work for you, though at some times it will pass the buck back to you!

https://flow.org/en/docs/libdefs/
https://flow.org/en/docs/libdefs/
https://flow.org/en/docs/libdefs/
https://flow.org/en/docs/libdefs/
https://flow.org/en/docs/libdefs/
https://flow.org/en/docs/libdefs/
https://flow.org/en/docs/libdefs/
https://flow.org/en/docs/libdefs/
https://flow.org/en/docs/libdefs/
https://flow.org/en/docs/libdefs/
https://flow.org/en/docs/libdefs/
https://flow.org/en/docs/libdefs/
https://flow.org/en/docs/libdefs/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://flow.org/en/docs/config/
https://github.com/flowtype/flow-typed
https://github.com/flowtype/flow-typed
https://github.com/flowtype/flow-typed
https://github.com/flowtype/flow-typed
https://github.com/flowtype/flow-typed
https://github.com/flowtype/flow-typed
https://github.com/flowtype/flow-typed
https://github.com/flowtype/flow-typed
https://github.com/flowtype/flow-typed
https://github.com/flowtype/flow-typed
https://github.com/flowtype/flow-typed
https://github.com/flowtype/flow-typed
https://github.com/flowtype/flow-typed

Using Modern JavaScript Features Chapter 2

[71]

The main objection against Flow these days, and a point for TypeScript, is
that the list of supported libraries in terms of data type descriptions is far
greater for the latter. There are some projects that attempt to make Flow
work with TypeScript's descriptions, but so far this is still pending,
though some good results have been shown.

First, install the new tool:

npm install flow-typed --save-dev

Then, add a script in package.json to simplify the work:

scripts: {
 .
 .
 .
 addTypes: "flow-typed install",
 .
 .
 .

Using npm run addTypes will scan your project and attempt to add all possible libdefs. If
it cannot find an appropriate definition for a library (this isn't unusual, I'm sorry to say), it
will create a basic definition using any everywhere. For instance, I added
the moment library to the project:

> npm install moment --save
> npm run addTypes

After this, the flow-typed directory was added to the project root. In it, there a lot of files
appeared, including moment_v2.3.x.js with the type definitions for the moment library.
For libraries without a libdef, files were also created, but you may ignore them.

If you need a libdef, and it doesn't exist, you may be able to create it by yourself. (And,
please, contribute your work to the flow-typed project!) I added npm install fetch -
-save, but when I tried to get the libdef, it wasn't found. So, I can either keep working
without the definitions (the standard situation!) or I can try to create the appropriate file;
none is really an optimal situation.

I would suggest adding the flow-typed directory to .gitignore so that
those files won't get uploaded to Git. Since it's standard practice to do npm
install every time you pull from the repository, now you also have
to use npm run addTypes—or, better yet, create a script that will do both
commands!

Using Modern JavaScript Features Chapter 2

[72]

Working with strings
Strings have been a feature of JS since the very first version, but nowadays there are some
more features available.

How to do it...
In the following sections, we'll see many functions that we'll be using through the rest of
this book, such as interpolation (to build up strings out of several parts) or tagged strings
(which we'll use to style components in the Creating StyledComponents for inline
styling section of Chapter 7, Enhancing Your Application), to show just two examples.

Interpolating in template strings
Everybody has, at one time or another, used common operators to build up a string, as in
the following code fragment:

let name = lastName + "," + firstName;
let clientUrl = basicUrl + "/clients/" + clientId + "/";

JS has now added template literals, providing an easy way to include variable text and
produce multiple line strings. String interpolation is quite simple, and the preceding code
could be rewritten as follows:

let name = `${lastName}, ${firstName}`;
let clientUrl = `${basicUrl}/clients/${clientId}/`;

Template literals were earlier known as template strings, but current JS
specifications don't use that expression any more. For more information,
go to https:/ ​/ ​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/
Reference/ ​Template_ ​literals.

Template literals are delimited by back-tick characters (`...`). You use ${...} wherever
you want some value or expression to be substituted:

let confirm = `Special handling: ${flagHandle ? "YES" : "NO"}`;

Of course, it's easy to go overboard and start pushing too much logic when interpolating. I
would recommend avoiding code such as the following for just that reason:

let list = ["London", "Paris", "Amsterdam", "Berlin", "Prague"];
let sched = `Visiting ${list.length > 0 ? list.join(", ") : "no cities"}`;
// Visiting London, Paris, Amsterdam, Berlin, Prague

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Using Modern JavaScript Features Chapter 2

[73]

If list had been empty, "Visiting no cities" would have been produced instead. It's
far clearer if you push logic out of templates; even if the resulting code is somewhat larger,
it will gain in clarity:

let list = ["London", "Paris", "Amsterdam", "Berlin", "Prague"];
let destinations = list.length > 0 ? list.join(", ") : "no cities";
let sched = `Visiting ${destinations}`;

We'll fight the temptation to include logic in templates later, when we
work in React (from Chapter 6, Developing with React, to Chapter 10,
Testing your Application) and see how we can render components.

Tagged templates
A tagged template is a more advanced form of the templates we've been looking at.
Basically, it's another way to call a function, but with a syntax similar to a template string.
Let's look at an example and then explain it:

// Source file: src/tagged_templates.js

function showAge(strings, name, year) {
 const currYear = new Date().getFullYear();
 const yearsAgo = currYear - year;
 return (
 strings[0] + name + strings[1] + year + `, ${yearsAgo} years ago`
);
}

const who = "Prince Valiant";
const when = 1937;
const output1 = showAge`The ${who} character was created in ${when}.`;
console.log(output1);
// The Prince Valiant character was created in 1937, 81 years ago

const model = "Suzuki";
const yearBought = 2009;
const output2 = showAge`My ${model} car was bought in ${yearBought}`;
console.log(output2);
// My Suzuki car was bought in 2009, 9 years ago

Using Modern JavaScript Features Chapter 2

[74]

The showAge() function is called with the following:

An array of strings, corresponding to each constant part of the template, so
strings[0] is The and strings[2] is . in the first case, for example
A parameter for each expression included; in our case, there's two of them

The function may do any calculations and return any type of value—possibly not a string!
In our example, the function produces an enhanced version of the original string, adding
how many years ago something happened—when a comic strip character was created or an
automobile was bought, for example.

We'll be using tagged templates in the Creating StyledComponents for inline
styling section of Chapter 7, Enhancing Your Application; the styled-
component library we'll use depends totally on this feature to allow for
more readable code.

Writing multiline strings
Another feature of the new template literals is that they can span several lines. With earlier
versions of JS, if you wanted to produce multiple lines of text, you had to insert newline
characters ("\n") in the output string, like so:

let threeLines = "These are\nthree lines\nof text";
console.log(threeLines);
// These are
// three lines
// of text

With template strings, you can just write the line as desired:

let threeLines = `These are
three lines
of text`;

However, I would recommend against this practice. Even if the code may seem more
legible, when it gets indented, the result looks ugly, since continuation lines must start at
the first column—do you see why? Check out the following code—the continuation lines
are pushed to the left, breaking the visual continuity of the indented code:

if (someCondition) {
 .
 .
 .
 if (anotherCondition) {

Using Modern JavaScript Features Chapter 2

[75]

 .
 .
 .
 var threeLines = `These are
three lines
of text`;
 }
}

You can use a backslash to escape characters that are not meant to be part of templating:

let notEscaped1 = `this is \$\{not\} interpolation\\nright? `;
// "this is ${not} interpolation\nright? "

You might want to look into String.raw (see https:/ ​/ ​developer.
mozilla. ​org/ ​en- ​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Global_ ​Objects/
String/ ​raw) for an alternative to this way of avoiding templating. You can
just avoid templating altogether, since an informal poll has shown that
practically no developers know of it and it isn't such a great advantage
after all.

Repeating strings
Let's finish with several new string-related functions. Most are pretty simple to understand,
so the explanations will mostly be brief. For a complete list of all available string functions,
both old and new, see https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/ ​JavaScript/
Reference/​Global_ ​Objects/ ​String.

You can iterate any string using the .repeat(...) method:

"Hello!".repeat(3); // Hello!Hello!Hello!

Padding strings
You can pad a string to a given length by adding repeated strings either at the left or at the
right of the original text by using .padStart(...) and .padEnd(...):

"Hello".padStart(12); // " Hello"
"Hello".padStart(12,"XYZ"); // "XYZXYZXHello"
"Hello".padStart(3); // "Hello"; no effect here

"Hello".padEnd(12); // "Hello "
"Hello".padEnd(12,"XYZ"); // "HelloXYZXYZX"
"Hello".padEnd(4); // "Hello"; no effect here either

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/raw
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Using Modern JavaScript Features Chapter 2

[76]

Among possible uses, you may pad a number with zeroes to the left. We have to transform
the number into a string because the padding methods are only available for strings:

let padded = String(229.6).padStart(12, "0"); // "0000000229.6"

The reason for using padStart and padEnd instead
of padLeft and padRight has to do with left-to-right and right-to-left
languages. It was felt that start and end were not ambiguous, while left
and right would be. For example, in Hebrew, the start of a string is
printed at the right and its end is to the left.

Searching in strings
There are new functions to determine whether a strings starts with, ends with, or includes a
given string. This can give you much relief from using indexOf(...) and length-related
calculations:

"Hello, there!".startsWith("He"); // true
"Hello, there!".endsWith("!"); // true
"Hello, there!".includes("her"); // true

Each of these methods has a position as an optional second parameter,
which specifies where to do the search; see https:/ ​/​developer. ​mozilla.
org/​en- ​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Global_ ​Objects/ ​String/
startsWith, https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​Objects/ ​String/ ​endsWith, and https:/ ​/
developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/
Global_ ​Objects/ ​String/ ​includes for more information.

Trimming strings
You may trim a string at both ends, or only at one, by
using .trim(...), .trimStart(...), and .trimEnd(...):

" Hello, there! ".trim(); // "Hello, there!"
" Hello, there! ".trimStart(); // "Hello, there! "
" Hello, there! ".trimEnd(); // " Hello, there!"

Originally, .trimStart() was .trimLeft(),
and .trimEnd() was .trimRight(), but the names were changed for
the same reason as .padStart() and .padEnd() were.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes

Using Modern JavaScript Features Chapter 2

[77]

Iterating over strings
Strings are now iterable objects (such as arrays are), meaning that you can use for...of to
iterate over them, character by character:

for (let ch of "PACKT") {
 console.log(ch);
}

The spread operator (read about it in depth, in the Spreading and joining values section of this
chapter) will also work, hence transforming a string into an array of single characters:

let letters = [..."PACKT"];
// ["P", "A", "C", "K", "T"]

Enhancing your code
Now, let's go over several useful new functions of JS, which have to do with basic needs
and features. This won't be exhaustive, since JS is quite big, after all! However, we will
touch on the most interesting features that you will be likely to use.

How to do it...
The features in this section aren't linked by a common thread, apart from the fact that they
will help you to write shorter, more concise code and help you to avoid possible common
errors.

Working in strict mode
Let's start with a change that you probably won't need! JS was somewhat cavalier as to
some errors and, instead of warning or crashing, it would just silently ignore them. In 2015,
a new strict mode was included, which changed the JS engine's behavior to start reporting
these errors. To enable the new mode, you had to include a single line before anything else,
with a simple string:

"use strict";

Using Modern JavaScript Features Chapter 2

[78]

Including this string would enforce strict mode for your code. What errors were caught? A
brief list includes the following:

You cannot create a global variable by accident. If you misspelled a variable's
name in a function, JS would have created a new global variable and just moved
on; in strict mode, an error is produced.
You cannot use eval() to create variables.
You cannot have function parameters with duplicate names, as in function
doIt(a, b, a, c).
You cannot delete non-writable object properties; for example, you cannot delete
someObject.prototype.
You cannot write to some variables; for instance, you cannot do
undefined=22 or NaN=9.
The with statement is forbidden.
Some words (such as interface or private, for example) were reserved for
keywords in future versions of JS.

The previous list isn't complete and there're a few more changes and
restrictions. For full details, read https:/ ​/​developer. ​mozilla. ​org/ ​en-
US/​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Strict_ ​mode.

Should you use this? For your main script, "use strict" is optional, but for modules and
classes, it's implied. So, most code will always run in strict mode, so you'd really get used to
including that string. That said, if you are using Babel, the required string is already
provided for you by the transpiler. On the other hand, Node's modules will require it, as
we'll see in the next chapter.

Scoping variables
The concept of scope is associated with the idea of visibility: scope is the context in which
defined elements (such as variables or functions) can be referenced or used. Clasically, JS
provided only two types of scope: global scope (accessible everywhere) and function scope
(accessible only within the function itself). Since scopes have been around since the
beginning of JS, let's just remember a couple of rules, with not much elaboration:

Scopes are hierarchically arranged, and child scopes can access everything in the
parent scope, but not the other way round.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Using Modern JavaScript Features Chapter 2

[79]

Access to the parent scope will be disabled if you redefine something at an inner
scope. References will always be to the child definition, and you cannot access
the equally named element in the outer, encompassing scope.

JS5 introduced a new type of scope, called block scope, that lets you work in a more careful
way. This allows you to create variables for a single block, without existence outside of it,
even in the rest of the function or method where they were defined. With this concept, two
new ways of defining variables, other than using var, were added: let and const.

The new declarations are not subject to hoisting, so if you are not used to
declaring all variables at the top of your code before they are used, you
may have problems. Since the usual practice is starting functions with all
declarations, this isn't likely to affect you. See https:/ ​/​developer.
mozilla. ​org/ ​en- ​US/ ​docs/ ​Glossary/ ​Hoisting for more details.

The first option, let, allows you to declare a variable that will be limited to the block or
statement where it is used. The second option, const, adds the proviso that the variable
isn't supposed to change value, but rather be constant; if you try to assign a new value to a
constant, an error will be produced. The following simple examples show the new
behaviors:

Using const for a constant value needs little explanation, but what
about let? The reason harkens back to the origin of the BASIC
programming language. In that language, you assigned values to
variables with code like 37 LET X1 = (B1*A4 - B2*A2) / D; this
particular line was taken from Darmouth College's BASIC manual
facsimile, dated October 1964. See http:/ ​/​www. ​bitsavers. ​org/​pdf/
dartmouth/ ​BASIC_ ​Oct64. ​pdf for more information.

// Source file: src/let_const.js

{
 let w = 0;
}
console.log(w); // error: w is not defined!

let x = 1;
{
 let x = 99;
}
console.log(x); // still 1;

let y = 2;
for (let y = 999; 1 > 2; y++) {

https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf
http://www.bitsavers.org/pdf/dartmouth/BASIC_Oct64.pdf

Using Modern JavaScript Features Chapter 2

[80]

 /* nothing! */
}
console.log(y); // still 2;

const z = 3;
z = 9999; // error!

Using let also solves a classic problem. What would the following code do? Here it is:

// Source file: src/let_const.js

// Countdown to zero?
var delay = 0;
for (var i = 10; i >= 0; i--) {
 delay += 1000;
 setTimeout(() => {
 console.log(i + (i > 0 ? "..." : "!"));
 }, delay);
}

If you were expecting a countdown to zero (10... 9... 8... down to 2... 1...
0!) with suitable one second delays, you'll be surprised, because this code emits -1! eleven
times! The problem has to do with closures; by the time the loop ends, the i variable is -1,
so when the waiting (timeout) functions run, i has that value. This can be solved in several
ways, but using let instead of var is the simplest solution; each closure will capture a
different copy of the loop variable, and the countdown will be correct:

// Source file: src/let_const.js

var delay = 0;
for (let i = 10; i >= 0; i--) { // minimal fix!
 delay += 1000;
 setTimeout(() => {
 console.log(i + (i > 0 ? "..." : "!"));
 }, delay);
}

For more on blocks and let/const, check out https:/ ​/ ​developer.
mozilla. ​org/ ​en- ​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Statements/
block, https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/​JavaScript/
Reference/ ​Statements/ ​const and https:/ ​/​developer. ​mozilla. ​org/ ​en-
US/​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Statements/ ​let at MDN.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let

Using Modern JavaScript Features Chapter 2

[81]

Spreading and joining values
A new operator, ..., lets you expand an array, string, or object, into independent values.
This is harder to explain than to show, so let's see some basic examples:

// Source file: src/spread_and_rest.js

let values = [22, 9, 60, 12, 4, 56];

const maxOfValues = Math.max(...values); // 60
const minOfValues = Math.min(...values); // 4

You can also use it to copy arrays or concatenate them:

// Source file: src/spread_and_rest.js

let arr1 = [1, 1, 2, 3];
let arr2 = [13, 21, 34];

let copyOfArr1 = [...arr1]; // a copy of arr1 is created

let fibArray = [0, ...arr1, 5, 8, ...arr2]; // first 10 Fibonacci numbers

If you apply the spread operator to a string, the effect is to separate it into
individual characters, much as if you had used .split(); for
instance, console.log(..."JS") shows ["J", "S"], so this case isn't
particularly interesting.

You can also use it to clone or modify objects; in fact, this is a usage we're going to meet
again later, in Chapter 8, Expanding Your Application, mostly when we use Redux:

// Source file: src/spread_and_rest.js

let person = { name: "Juan", age: 24 };

let copyOfPerson = { ...person }; // same data as in the person object

let expandedPerson = { ...person, sister: "María" };
// {name: "Juan", age: 24, sister: "María"}

Using Modern JavaScript Features Chapter 2

[82]

This is also useful for writing functions with an undefined number of arguments, avoiding
the old style usage of the arguments pseudo-array. Here, instead of splitting an element
into many, it joins several distinct elements into a single array. Note, however, that this
usage only applies to the last arguments of a function; something such as function
many(a, ...several, b, c) wouldn't be allowed:

// Source file: src/spread_and_rest.js

function average(...nums: Array<number>): number {
 let sum = 0;
 for (let i = 0; i < nums.length; i++) {
 sum += nums[i];
 }
 return sum / nums.length;
};

console.log(average(22, 9, 60, 12, 4, 56)); // 27.166667

If you are wondering why I called arguments a pseudo-array, the reason
is because it looks somewhat like an array, but only provides the .length
property; see more at https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/
JavaScript/ ​Reference/ ​Functions/ ​arguments. In any case, you won't be
dealing with it, thanks to the spread operator.

Destructuring arrays and objects
Another powerful construct provided by JS nowadays is the destructuring assignment. This
is also harder to explain than to show, so once again let's directly get to some examples! The
simplest case lets you split an array into variables:

let [a, b, c] = [22, 9, 60]; // a=22, b=9, c=60

More interesting still is that you can swap or twiddle variables around! Following on from
the preceding example, we'd have the following:

[a, b] = [b, a]; // a and b are swapped! a=9, b=22
[c, b, a] = [b, a, c]; // and now a=60, b=9, c=22

You can also assign default values to missing variables, ignore values you don't care for,
and even apply the rest operator:

// default values
let [d, e = 1, f = 2, g] = [12, 4]; // d=12, e=4, f=2, g=undefined

// ignoring values

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments

Using Modern JavaScript Features Chapter 2

[83]

let [h, , i] = [13, 21, 34]; // h=13, i=34

// using with rest
let [j, k, ...l] = [2, 3, 5, 8]; // j=2, k=3, l=[5,8]

This can also be applied to objects, letting you pick attributes and even renaming them, as
with the flag and name in the following code. Assigning values by default is also possible:

let obj = { p: 1, q: true, r: "FK" };

let { p, r } = obj; // p=1, r="FK"
let { q: flag, r: name } = obj; // Renaming: flag=true, name="FK"
let { q, t = "India" } = obj; // q=true; t="India"

One interesting usage of this is allowing a function to return many values at once. If you
want to return, say, two values, you can either return an array or an object and use
destructuring to separate the returned values in a single sentence:

function minAndMax1(...nums) {
 return [Math.min(...nums), Math.max(...nums)];
}

let [small1, big1] = minAndMax1(22, 9, 60, 12, 4, 56);

Alternatively, you can use an object and an arrow function just for variety; note the extra
parentheses we used, since we are returning an object. We are also renaming attributes, by
the way:

const minAndMax2 = (...nums) => ({
 min: Math.min(...nums),
 max: Math.max(...nums)
});

let { min: small2, max: big2 } = minAndMax2(22, 9, 60, 12, 4, 56);

You can find many examples of spreading and destructuring in MDN if
you visit the following links:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Referenc
e/Operators/Spread_syntax

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Referenc
e/Functions/rest_parameters

https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/​JavaScript/
Reference/ ​Operators/ ​Destructuring_ ​assignment

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

Using Modern JavaScript Features Chapter 2

[84]

Doing powers
Finally, let's introduce a newly added operator, **, which stands for power calculations:

let a = 2 ** 3; // 8

This is just a shortcut for the existing Math.pow() function:

let b = Math.pow(2, 3); // also 8

An exponential assignment operator also exists, which is similar to +=, -=, and the rest:

let c = 4;
c **= 3; // 4 cubed: 64

This is an operator that you won't probably using very often, unless you deal with interest
calculations and financial formulas. A final reminder: just as in math, the exponentiation
operator groups from right to left, so 2 ** 3 ** 4 is calculated as 2 ** (3 ** 4); be
careful!

Defining functions
JS isn't a functional programming language by definition, but it includes practically
everything that a full-fledged functional language would provide. In our case, we won't be
delving too deeply into this programming paradigm, but let's see some important features
that will simplify your work.

How to do it...
JS has always included functions, which can be defined in many ways, but now there is yet
one more function definition style that will provide several advantages; read on.

Writing arrow functions
After reading the preceding paragraph, did you try to count how many ways there are to
define a function in JS? There are actually far more than you probably think, including at
least the following:

A named function declaration: function one(...) {...}
An anonymous function expression: var two = function(...) {...}

Using Modern JavaScript Features Chapter 2

[85]

A named function expression: var three = function someName(...) {...}
An immediately-invoked expression: var four = (function() { ...; return
function(...) {...}; })()

A function constructor: var five = new Function(...)
The new style, an arrow function: var six = (...) => {...}

You are probably quite used to the first trio, while the two that follow may be not so
common. However, what we now care about is the last style, called an arrow function.
Arrow functions work pretty much in the same fashion as functions defined in the other
ways, but there are three key differences:

Arrow functions do not have an arguments object
Arrow functions may implicitly return a value, even if no return statement is
provided
Arrow functions do not bind the value of this

In fact, there are some more differences, including the fact that you cannot
use arrow functions as constructors, they don't have a prototype property,
and they cannot be used as generators. For more on this, see https:/ ​/
developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/
Functions/ ​Arrow_ ​functions.

The first difference is handled simply by using the spread operator, as we saw earlier in this
chapter. So, let's focus on the last two items, which are more interesting, instead.

Returning values
An arrow function may have a block of code with some return statements in it or it may just
be an expression. The former case is most similar to the standard way of defining a
function; for example, we could write a function to add three numbers as follows, using
both styles. We should add data types to the definitions, but we'll get to that soon:

function addThree1 (x, y, z) {
 const s = x + y + z;
 return s;
}

const addThree2 = (x, y, z) => {
 const s = x + y + z;
 return s;
};

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Using Modern JavaScript Features Chapter 2

[86]

If you can do this just by returning an expression, you can then write an equivalent version;
just write whatever you want to return immediately after the arrow:

const addThree3 = (x, y, z) => x + y + z;

There's a special case: if you are returning an object, then you must place it within
parentheses because otherwise JS will confuse it with a block of code. For Redux (which
we'll be seeing in the Managing State with Redux section of Chapter 8, Expanding Your
Application), you might want to write an action creator that returns an action, namely an
object with a type attribute and possibly some more:

const simpleAction = (t, d) => {
 type: t;
 data: d;
};

console.log(simpleAction("ADD_KEY", 229)); // undefined

What's happening here? JS is interpreting the braces as a block, and then type and data are
considered to be labels (see https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/
JavaScript/​Reference/ ​Statements/ ​label if you don't remember these!), so the whole
object is really a block that just doesn't return anything, and JS returns an undefined result.
Just placing the object in parentheses will work as expected:

const simpleAction = (t, d) => ({
 type: t;
 data: d;
});

// this works as expected

Handling this in arrow functions
A well-known JS problem is how to handle this, because its value isn't always what you
expect! Modern JS solves this with arrow functions that, unlike common functions, inherit
the proper this value. A well-known example is as follows: you would expect the
following code to display JAVASCRIPT after a few seconds, but rather undefined will be
shown (don't mind the fact that you could have coded show() in a simpler way; I wanted
to highlight a general problem and not a particular solution):

// Source file: src/arrow_functions.js

function Show(value: mixed): void {
 this.saved = value;

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/label

Using Modern JavaScript Features Chapter 2

[87]

 setTimeout(function() {
 console.log(this.saved);
 }, 1000);
}

let w = new Show("Doesn't work..."); // instead, "undefined" is shown

There are three ways of solving this:

Using .bind() to properly bind the timeout function to the correct value of
this

Using a closure and defining a local variable (usually called that) to store and
save the original value of this
Using arrow functions, which will work without any extra work

We can see these three solutions in the following code:

// Source file: src/arrow_functions.js

function Show1(value: mixed): void {
 this.saved = value;
 setTimeout(
 function() {
 console.log(this.saved);
 }.bind(this),
 1000
);
}

function Show2(value: mixed): void {
 this.saved = value;
 const that = this;
 setTimeout(function() {
 console.log(that.saved);
 }, 2000);
}

function Show3(value: mixed): void {
 this.saved = value;
 setTimeout(() => {
 console.log(this.saved);
 }, 3000);
}

let x = new Show1("This");
let y = new Show2("always");
let z = new Show3("works");

Using Modern JavaScript Features Chapter 2

[88]

We will get to see the .bind() idea in React in the Defining
Components section of Chapter 6, Developing with React, where we
will deal with this related problems.

Defining types for arrow functions
Finally, let's see how types would be defined for arrow functions. We can have a couple
more implementations of the toString() function we saw earlier in the Basic types in
Flow section:

// Source file: src/types_basic.js

const toString2 = (x: number): string => {
 return x + "";
};

type numberToString = number => string;
const toString3: numberToString = (x: number) => String(x);

Defining default argument values
An interesting new feature for functions is the possibility of defining default values for
missing arguments. We could write a function to calculate nth roots that, by default, would
calculate square roots:

// Source file: src/default_arguments.js

function root(a: number, n: number = 2): number {
 return a ** (1 / n);
}

// Or, equivalently:
// const root = (a: number, n: number = 2): number => a ** (1 / n);

console.log(root(125, 3)); // 5
console.log(root(4)); // 2
console.log(root(9, undefined)); // 3

As seen in the third example, passing undefined is equivalent to omitting the value. This
means that you can provide default values for any parameter: a call such as
someFunction(undefined, 22, undefined) would use default values for the first and
third arguments, and 22 as the second one.

Using Modern JavaScript Features Chapter 2

[89]

Default values can also be used for methods and constructors. In the following Counter
class, the inc() method, if not provided with a number, will increment the counter by 1.
Also, when constructing the counter, if you don't provide an initial value, zero will be used:

// Source file: src/default_arguments.js

class Counter {
 count: number; // required by Flow

 constructor(i: number = 0) {
 this.count = 0;
 }

 inc(n: number = 1) {
 this.count += n;
 }
}

const cnt = new Counter();
cnt.inc(3);
cnt.inc();
cnt.inc();

console.log(cnt.count); // 5

As a last detail, you can use values from previous arguments to calculate the default values
of later ones. A simple nonsense example shows this; I'll skip type declarations since they
are not relevant here:

// Source file: src/default_arguments.js

function nonsense(a = 2, b = a + 1, c = a * b, d = 9) {
 console.log(a, b, c, d);
}

nonsense(1, 2, 3, 4); // 1 2 3 4
nonsense(); // 2 3 6 9
nonsense(undefined, 4, undefined, 6); // 2 4 8 6

Using default values is a very practical way to simplify the usage of functions, particularly
in the case of complex APIs with many parameters, but allowing sensible values for
whatever the user omits.

Using Modern JavaScript Features Chapter 2

[90]

Programming functionally
Functional programming is often more declarative than imperative, with higher level
functions that can do complete processing in a simpler, straightforward way. Here, let's
look at several functional programming techniques that you should really adopt for your
own code.

How to do it...
Functional programming has always been present in JS, but recent versions of the language
have added well-known features of other languages that you can use to shorten your code,
also making it simpler to understand.

Reducing arrays to values
A simple question: how many times have you looped through an array to, say, add its
numbers? The odds are, many times! This kind of operation —going through an array
element by element performing some calculation to arrive at a final result—is the first one
we will be implementing in a functional way, with .reduce().

The name .reduce() pretty much tells us what it does: it reduces a
complete array to a single value. In other languages, this operation is
called fold.

The most usual example, which most texts and articles show, is summing all of the
elements of an array, and, since I'm traditionally minded, let's do just that! You must
provide an initial value for your calculation (in this case, since we want a sum, it would be
a zero) and a function that will update the calculated value when accessing each array
element:

// Source file: src/map_filter_reduce.js

const someArray: Array<number> = [22, 9, 60, 12, 4, 56];

const totalSum = someArray.reduce(
 (acc: number, val: number) => acc + val,
 0
); // 163

Using Modern JavaScript Features Chapter 2

[91]

How does it work? Internally, .reduce() starts by taking your initial value (zero, in this
case) and then it calls the reducing function, giving it the accumulated total (acc) and the
first element of the array (val). The function must update the accumulated total: in this
case, it would calculate 0 + 22, so the next total would be 22. After, .reduce() would call
the function again, passing it 22 (the updated total) and 9 (the second array element), and
31 would become the new accumulated total. This will proceed systematically through the
complete array, until the final value (163) is computed. Note that all aspects of loop control
are automatic, so there is no way you can err somewhere, and the code is quite declarative:
you could almost read it as "reduce someArray to a value by summing all elements,
starting with zero".

There are some more possibilities for .reduce(): check out https:/ ​/
developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/
Global_ ​Objects/ ​Array/ ​reduce for more information. You can also use
.reduceRight(), which essentially works in the same fashion, but
starting at the end of the array and proceeding backwards; see https:/ ​/
developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/
Global_ ​Objects/ ​Array/ ​ReduceRight for more information.

Of course, you are not limited to processing arrays of numbers; you can deal with any data
type, and the final result can also be any type. For example, you could use .reduce() to
turn an array of names into an HTML bulleted list, as follows:

// Source file: src/map_filter_reduce.js

const names = ["Juan", "María", "Sylvia", "Federico"];

const bulletedList =
 "" +
 names.reduce((acc, val) => `${acc}${val}`, "") +
 "";

//
JuanMaríaSylviaFe
derico

With a little practice, it's safe to say that you'll probably be able to transform any kind of
calculation over an array into a .reduce() call with shorter, clearer code.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/ReduceRight

Using Modern JavaScript Features Chapter 2

[92]

Mapping arrays
A second type of very common operation is to go through an array and produce a new
array by doing some kind of process to each element. Fortunately, we also have a way to do
that functionally by using .map(). The way this function works is simple: given an array
and a function, it applies the function to each element of the array and produces a new
array with the results of each call.

Suppose we called a web service and got back an array with people data. We just wanted
their ages so that we are able to do some other process; say, calculate the average age of the
people who used the service. We can manage this simply:

// Source file: src/map_filter_reduce.js

type person = { name: string, sex: string, age: number };

const family: Array<person> = [
 { name: "Huey", sex: "M", age: 7 },
 { name: "Dewey", sex: "M", age: 8 },
 { name: "Louie", sex: "M", age: 9 },
 { name: "Daisy", sex: "F", age: 25 },
 { name: "Donald", sex: "M", age: 30 },
 { name: "Della", sex: "F", age: 30 }
];

const ages = family.map(x => x.age);
// [7, 8, 9, 25, 30, 30]

Using .map() is, like .reduce(), a much shorter and safer way to process an array. In fact,
most times, the two operations are used one after the other, with some possible .filter()
operations mixed in to select what should or should not be processed; let's get into that
now.

The .map() operation also has some extra features; see https:/ ​/
developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/
Global_ ​Objects/ ​Array/ ​map for a complete description. Also, if you really
want to affect the original array, rather than producing a new one, take a
look at the .forEach() method at https:/ ​/ ​developer. ​mozilla. ​org/ ​en-
US/​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Array/ ​forEach.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach

Using Modern JavaScript Features Chapter 2

[93]

Filtering arrays
The third operation we are considering is .filter(), which will scan a complete array and
generate a new one, but only with the elements that satisfy some condition, as given by you
via a function. Following our example, we could pick only the males in the service result by
writing the following:

// Source file: src/map_filter_reduce.js

const males = family.filter(x => x.sex === "M");
// an array with Huey, Dewey, Louie, and Donald records

Having these three operations makes it simple to do sequences of calls and generate results
with little code. For example, could we find out the age of the eldest of the males in the
family? Yes, quickly—with just a few lines of code:

// Source file: src/map_filter_reduce.js

const eldestMaleAge = family
 .filter(x => x.sex === "M")
 .map(x => x.age)
 .reduce((acc, val) => Math.max(acc, val), 0); // 30

This style of chained operations is quite common: in this case, we first select the males, then
we pick their ages, and then we reduce the array to a single value, the maximum: neat!

Producing functions from functions
Let's finish this section on functional aspects by looking at a quintessential functional
programming tool: Higher Order Functions (HOFs): functions that produce functions as
results! In later chapters, we'll actually meet more usages of HOFs; here, let's work out a
simple example.

The following example is taken from my previous book for Packt,
Mastering JavaScript Functional Programming. Chapter 2, Thinking
Functionally - A First Example, and Chapter 6, Producing Functions - Higher-
Order Functions will be of particular interest with regard to HOFs. See
more
at www.packtpub.com/web-development/mastering-javascript-function
al-programming.

https://www.packtpub.com/web-development/mastering-javascript-functional-programming
https://www.packtpub.com/web-development/mastering-javascript-functional-programming

Using Modern JavaScript Features Chapter 2

[94]

Suppose you have developed an e-commerce site. The user selects products, adds them to
his/her shopping cart, and at the end clicks on a BILL ME button so that his/her credit card
will be charged. However, if the user were to click twice or more, he/she would be billed
several times rather than once. Your application might have something along these lines in
its HTML:

<button id="billBtn" onclick="billUser(sales, data)">Bill me</button>

Somewhere among your scripts, there would be some code like the following. I'm not
including data type declarations because they are not relevant to our code; we don't really
know or care what the arguments to billUser() would be:

function billUser(sales, data) {
 window.alert("Billing the user...");
 // actually bill the user
}

Now, what could you do in order to avoid repeated clicks on the button? There are several
not-quite-so-good solutions, such as the following:

Do nothing, just warn the user, and hope they pay attention!
Use a global flag to signal the fact that the user clicked once.
Remove the onclick handler from the button after the user clicks.
Change the onclick handler to something else that won't bill the user.

However, all of these solutions are somewhat lacking, depend on global objects, need you
to mess with the billing function, are tightly linked with the user view, and so on. Since
requiring that some functions are executed only once isn't such an outlandish requirement,
let's specify the following:

The original function should be unchanged and do its thing—nothing more
We want a new function that will call the original one, but only once
We want a general solution so that we can apply it in different situations

We will write a function, once(), that will take a function as its argument and produce a
new function, but that will do its thing only once. The logic is not long, but study it carefully:

// Source file: src/functional_code.js

const once = fn => {
 let done = false;
 return (...args) => {
 if (!done) {
 done = true;

Using Modern JavaScript Features Chapter 2

[95]

 fn(...args);
 }
 };
};

Some analysis of our new function is as follows:

The definition shows that once() takes a generic function (fn()) as an argument
The return statement shows that once() returns another function
We are using the spread operator to deal with functions with any number of
arguments
We are using a closure for the done variable, which remembers whether fn()
was invoked or not

I left out type definitions for clarity, but in the source code provided with
this book, full definitions are provided. Can you work them out on your
own? A tip: the output of the once() function should be the same type as
the input to it.

With this new function, you could have coded the button as follows. When the user clicks
on the button, the function that will get called with (sales, data) as arguments isn't
billUser(), but rather the result of having applied once() to billUser()—and that
would have resulted in a new function that would have called billUser() only once:

<button id="billButton" onclick="once(billUser)(sales, data)">
Bill me
</button>;

This is the concept of a higher order function: a function that receives functions as
arguments and produces a new function as a result. Usually, there are three kinds of
possible transformations that we could desire:

Wrapping functions: We do this so that they keep their original functionality, but
add some new feature; for example, we could add logging or timing so that the
original function still does its thing, but log its parameters or produce timing
information
Altering functions: We do this so that they will differ in some key point with the
original version; this is what we did with once(), which produces a new version
of a function that runs only a single time
Other changes: These changes include turning a function into a promise (we'll see
this when we get to Node, in the Using Promises instead of error first
callbacks section of Chapter 3, Developing with Node) and more

Using Modern JavaScript Features Chapter 2

[96]

Doing async calls compactly
When Ajax started appearing, it was commonly used with callbacks, which themselves
could have callbacks of their own, with more callbacks within, which eventually led to
coining the term callback hell. As a way out of that impractical programming style, two other
styles of working with services and asynchronous calls appeared: promises and
async/await—though in truth, the latter also use promises!

Getting started
Let's see both styles by using a simple example. This book was written in three different
cities: Pune, India; London, England; and Montevideo, Uruguay, so let's do some work
related to those cities. We will write code that will get weather information for those cities:

For Montevideo alone
For London and then for Pune, in series, so that the second call won't start until
the first is done
For the three cities in parallel, so that all three requests will be processed at the
same time, gaining time by the overlap

We will not get into details such as using this or that API, getting a private key, and so on,
and we'll just fake it by accessing the free The Weather Channel page. We will use the
following definitions for all our coding, which we'll do in Node, using the axios module;
don't worry about the details now:

// Source file: src/get_service_with_promises.js

const axios = require("axios");

const BASE_URL = "https://weather.com/en-IN/weather/today/l/";

// latitude and longitude data for our three cities
const MONTEVIDEO_UY = "-34.90,-56.16";
const LONDON_EN = "51.51,-0.13";
const PUNE_IN = "18.52,73.86";

const getWeather = coords => axios.get(`${BASE_URL}${coords}`);

Using Modern JavaScript Features Chapter 2

[97]

The BASE_URL constant provides the basic web address, to which you must attach the
coordinates (latitude, longitude) of the desired city. On its own, we would get a page like
the one shown in the following screenshot:

 we will be using Ajax to get weather information for cities

In real life, we would not be getting a web page but rather an API, and then process the
returned results. In our case, since we don't actually care for the data, but for the methods
we'll use to do the calls, we'll be content with just showing some banal information, such as
how many bytes were sent back. Totally useless, I agree, but this is enough for our example!

We'll be using axios in several places in this book, so you may want to
read its documentation, which can be found at https:/ ​/​github. ​com/
axios/ ​axios.

https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios

Using Modern JavaScript Features Chapter 2

[98]

How to do it...
Using functions as callbacks is the most classic way of dealing with async calls, but this has
several disadvantages, such as code that is harder to read and series difficulties in dealing
with some not-too-uncommon cases. Here, we'll look at two alternative ways of working.

Doing Ajax calls with promises
The first way we can do web service calls is by using promises, and they were (up to the
appearance of the more modern async/await statements, which we'll be seeing in the next
section) the favorite method. Promises were available some time back (first around 2011
through jQuery's deferred objects, and afterwards by means of libraries such as
BlueBird or Q), but in recent JS versions, they became native. Since promises cannot really
be considered something new, let's just see some examples so that we can move on to more
modern ways of working—no, we won't be even considering going further back than
promises, and directly work with callbacks!

Do native promises imply that libraries won't be needed again? That's a
tricky question! JS promises are quite basic, and most libraries add several
methods that can simplify your coding. (See http:/ ​/​bluebirdjs. ​com/
docs/ ​api- ​reference. ​html or https:/ ​/​github. ​com/ ​kriskowal/ ​q/​wiki/
API-​Reference for such features from Bluebird or Q.) Hence, while you
may do perfectly well with native promises, in some circumstances, you
may want to keep using a library.

Getting the weather data for Montevideo is simple if we use the getWeather() function
that we defined previously:

// Source file: src/get_service_with_promises.js

function getMontevideo() {
 getWeather(MONTEVIDEO_UY)
 .then(result => {
 console.log("Montevideo, with promises");
 console.log(`Montevideo: ${result.data.length} bytes`);
 })
 .catch(error => console.log(error.message));
}

http://bluebirdjs.com/docs/api-reference.html
http://bluebirdjs.com/docs/api-reference.html
http://bluebirdjs.com/docs/api-reference.html
http://bluebirdjs.com/docs/api-reference.html
http://bluebirdjs.com/docs/api-reference.html
http://bluebirdjs.com/docs/api-reference.html
http://bluebirdjs.com/docs/api-reference.html
http://bluebirdjs.com/docs/api-reference.html
http://bluebirdjs.com/docs/api-reference.html
http://bluebirdjs.com/docs/api-reference.html
http://bluebirdjs.com/docs/api-reference.html
http://bluebirdjs.com/docs/api-reference.html
http://bluebirdjs.com/docs/api-reference.html
http://bluebirdjs.com/docs/api-reference.html
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference
https://github.com/kriskowal/q/wiki/API-Reference

Using Modern JavaScript Features Chapter 2

[99]

The getWeather() function actually returns a promise; its .then() method corresponds
to the success case and .catch() corresponds to any error situations.

Getting data for two cities in a row is also simple. We don't want to start the second request
until the first one has been successful, and that leads to the following scheme:

// Source file: src/get_service_with_promises.js

function getLondonAndPuneInSeries() {
 getWeather(LONDON_EN)
 .then(londonData => {
 getWeather(PUNE_IN)
 .then(puneData => {
 console.log("London and Pune, in series");
 console.log(`London: ${londonData.data.length} b`);
 console.log(`Pune: ${puneData.data.length} b`);
 })
 .catch(error => {
 console.log("Error getting Pune...", error.message);
 });
 })
 .catch(error => {
 console.log("Error getting London...", error.message);
 });
}

This is not the only way to program such a series of calls, but since we
won't actually be directly working with promises, let's just skip the
alternatives.

Finally, in order to do calls in parallel and optimize time, the Promise.all() method will
be used to build up a new promise out of the three individual ones for each city. If all calls
succeed, the bigger promise will also do; should any of the three calls fail, then failure will
also be the global result:

For more information on Promise.all(), check out https:/ ​/​developer.
mozilla. ​org/ ​en- ​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Global_ ​Objects/
Promise/ ​all. If you'd rather build a promise that succeeds when
any (instead of all) of the involved promises succeeds, you should use
Promise.race(); see https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/
Web/​JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Promise/ ​race.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race

Using Modern JavaScript Features Chapter 2

[100]

// Source file: src/get_service_with_promises.js

function getCitiesInParallel() {
 const montevideoGet = getWeather(MONTEVIDEO_UY);
 const londonGet = getWeather(LONDON_EN);
 const puneGet = getWeather(PUNE_IN);

 Promise.all([montevideoGet, londonGet, puneGet])
 .then(([montevideoData, londonData, puneData]) => {
 console.log("All three cities in parallel, with promises");
 console.log(`Montevideo: ${montevideoData.data.length} b`);
 console.log(`London: ${londonData.data.length} b`);
 console.log(`Pune: ${puneData.data.length} b`);
 })
 .catch(error => {
 console.log(error.message);
 });
}

Note how we use a destructuring assignment to get the data for each city. The result of
calling these functions may be as follows; I added some spacing for clarity:

Montevideo, with promises
Montevideo: 353277 bytes

London and Pune, in series
London: 356537 b
Pune: 351679 b

All three cities in parallel, with promises
Montevideo: 351294 b
London: 356516 b
Pune: 351679 b

Organizing web calls with promises is a straightforward method, but the usage of possibly
nested .then() methods can become hard to understand, so we really should give a look
to an alternative. We'll do just that in the next section.

Using Modern JavaScript Features Chapter 2

[101]

Doing Ajax calls with async/await
The second way, async/await, is more modern but, deep inside, actually also works with
promises, but simplifyies the job. There are some important definitions that we should take
into account:

An async function will contain some await expressions, depending on promises
await expressions pause the execution of the async function until the promise's
resolution
After the promise's resolution, processing is resumed, with the returned value
If an error is produced, it can be caught with try ... catch
await can only be used in async functions

How does this affect our coding? Let's review our three examples. Getting information for a
single city is simple:

// Source file: src/get_service_with_async_await.js

async function getMontevideo() {
 try {
 const montevideoData = await getWeather(MONTEVIDEO_UY);
 console.log("Montevideo, with async/await");
 console.log(`Montevideo: ${montevideoData.data.length} bytes`);
 } catch (error) {
 console.log(error.message);
 }
}

We are still using a promise (the one returned by axios via the getWeather() call), but
now the code looks more familiar: you wait for results to come, and then you process
them—it almost looks as if the call were a synchronous one!

Getting data for London and then Pune in sequence is also quite direct: you wait for the
first city's data, then you wait for the second's, and then you do your final process; what
could be simpler? Let's see the code:

// Source file: src/get_service_with_async_await.js

async function getLondonAndPuneInSeries() {
 try {
 const londonData = await getWeather(LONDON_EN);
 const puneData = await getWeather(PUNE_IN);
 console.log("London and Pune, in series");
 console.log(`London: ${londonData.data.length} b`);
 console.log(`Pune: ${puneData.data.length} b`);

Using Modern JavaScript Features Chapter 2

[102]

 } catch (error) {
 console.log(error.message);
 }
}

Finally, getting all data in parallel also depends on the Promise.all() method we saw in
the previous section:

// Source file: src/get_service_with_async_await.js

async function getCitiesInParallel() {
 try {
 const montevideoGet = getWeather(MONTEVIDEO_UY);
 const londonGet = getWeather(LONDON_EN);
 const puneGet = getWeather(PUNE_IN);

 const [montevideoData, londonData, puneData] = await Promise.all([
 montevideoGet,
 londonGet,
 puneGet
]);

 console.log("All three cities in parallel, with async/await");
 console.log(`Montevideo: ${montevideoData.data.length} b`);
 console.log(`London: ${londonData.data.length} b`);
 console.log(`Pune: ${puneData.data.length} b`);
 } catch (error) {
 console.log(error.message);
 }
}

The parallel call code is really quite similar to the pure promises' version: the only
difference here is that you await results, instead of using .then().

We have seen two ways of dealing with asynchronous service calls. Both are very much in
use, but in this text, we'll tend to favor async/await, given that the resulting code seems
clearer, with less extra baggage.

Using Modern JavaScript Features Chapter 2

[103]

Working with objects and classes
If you want to start a lively discussion, ask a group of web developers: is JavaScript an object
oriented language, or merely an object based one?, and retreat quickly! This discussion, while
possibly arcane, has gone on year after year, and will probably continue for a while. A
usual argument for the object-based opinion has to do with the fact that JS didn't include
classes and inheritance and was prototype oriented. This argument has been voided now
because the latest versions of JS provide two new keywords, class and extends, which
behave in pretty much the same way as their counterparts in other official OO languages.
However, keep in mind that the new classes are just syntactical sugar over the existing
prototype-based inheritance; no new paradigm or model was truly introduced.

JS could do inheritance, but it was harder. To see how this was achieved
in the old fashioned way, look at https:/ ​/​developer. ​mozilla. ​org/ ​en-
US/​docs/ ​Learn/ ​JavaScript/ ​Objects/ ​Inheritance, and you'll have to
agree that using class and extends is much better than assigning
prototypes and constructors by hand!

How to do it...
If you have worked with other common programming languages, such as Java, C++, and
Python, the concepts of classes and objects should already be clear to you; we'll assume
that's the case and look at how these concepts apply in modern JS.

Defining classes
Let's start with the basics and look at how classes are defined in modern JS. Afterwards,
we'll move to other features that are interesting, but that you might not use that often. To
define a class, we simply write something like the following:

// Source file: src/class_persons.js

class Person {
 constructor(first, last) {
 this.first = first;
 this.last = last;
 }

 initials() {
 return `${this.first[0]}${this.last[0]}`;
 }

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance

Using Modern JavaScript Features Chapter 2

[104]

 fullName() {
 return `${this.first} ${this.last}`;
 }
}

let pp = new Person("Erika", "Mustermann");
console.log(pp); // Person {first: "Erika", last: "Mustermann"}
console.log(pp.initials()); // "EM"
console.log(pp.fullName()); // "Erika Mustermann"

The new syntax is much clearer than using functions for constructors, as in older versions
of JS. We wrote a .constructor() method, which will initialize new objects, and we
defined two methods, .initials() and .fullName(), which will be available for all
instances of the Person class.

We are following the usual convention of using an initial uppercase letter
for class names and initial lowercase letters for variables, functions,
methods, and so on.

Extending classes
We can also extend a previously existing class. To refer to the original constructor, use
super(), and to refer to the parent's method, use super.method(); see the redefinition of
.fullName() here:

// Source file: src/class_persons.js

class Developer extends Person {
 constructor(first, last, language) {
 super(first, last);
 this.language = language;
 }

 fullName() {
 // redefines the original method
 return `${super.fullName()}, ${this.language} dev`;
 }
}

let dd = new Developer("John", "Doe", "JS");
console.log(dd); // Developer {first: "John", last: "Doe", language: "JS"}
console.log(dd.initials()); // "JD"
console.log(dd.fullName()); // "John Doe, JS dev"

Using Modern JavaScript Features Chapter 2

[105]

You are not limited to extending your own classes; you can also extend the JS ones, too:

// Source file: src/class_persons.js

class ExtDate extends Date {
 fullDate() {
 const months = [
 "JAN",
 "FEB",
 "MAR",
 "APR",
 "MAY",
 "JUN",
 "JUL",
 "AUG",
 "SEP",
 "OCT",
 "NOV",
 "DEC"
];

 return (
 months[this.getMonth()] +
 " " +
 String(this.getDate()).padStart(2, "0") +
 " " +
 this.getFullYear()
);
 }
}

console.log(new ExtDate().fullDate()); // "MAY 01 2018"

If you don't need a special constructor, you can omit it; the parent's constructor will be
called by default.

Implementing interfaces
JS doesn't allow multiple inheritance, and it doesn't provide for implementing interfaces
either. However, you can build your own ersatz interfaces by using mixins, using a higher
order function (as we saw earlier, in the Producing functions from functions section), but with
a class as a parameter, and adding methods (but not properties) to it. Even if you don't get
to actually use it, let's look at a short example, because it gives another example of working
in a functional way.

Using Modern JavaScript Features Chapter 2

[106]

Read https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Glossary/ ​Mixin for
a definition. As an alternative, you can use TypeScript; see https:/ ​/​www.
typescriptlang. ​org/ ​docs/ ​handbook/ ​interfaces. ​html for the latter.

Let's take our Person class from earlier, once again. Let's imagine a couple of interfaces:
one could provide an object with a method that produced the JSON version of itself, and
another could tell you how many properties an object has. (OK, none of these examples are
too useful, but bear with me; the method we'll use is what matters.) We will define two
functions that receive a class as an argument and return an extended version of it as a
result:

// Source file: src/class_persons.js

const toJsonMixin = base =>
 class extends base {
 toJson() {
 return JSON.stringify(this);
 }
 };

const countKeysMixin = base =>
 class extends base {
 countKeys() {
 return Object.keys(this).length;
 }
 };

Now, we can create a new PersonWithMixins class (not a very good name, is it?) by using
these two mixins, and we can even provide a different implementation, as with the
.toJson() method. A very important detail is that the class to extend is actually the result
of a function call; check it out:

// Source file: src/class_persons.js

class PersonWithTwoMixins extends toJsonMixin(countKeysMixin(Person)) {
 toJson() {
 // redefine the method, just for the sake of it
 return "NEW TOJSON " + super.toJson();
 }
}

let p2m = new PersonWithTwoMixins("Jane", "Roe");
console.log(p2m);
console.log(p2m.toJson()); // NEW TOJSON {"first":"Jane","last":"Roe"}
console.log(p2m.countKeys()); // 2

https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://developer.mozilla.org/en-US/docs/Glossary/Mixin
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html

Using Modern JavaScript Features Chapter 2

[107]

Being able to add methods to an object in this way can be a workaround for the problem of
being able to implement interfaces. This is important to show how JS can let you work in an
advanced style, seemingly beyond what the language itself provides, so that you won't be
feeling that the language hinders you when trying to solve a problem.

Using Flow, we will get to use the usual Java-style implements and
interface declarations, but they will only be used for type checking; see
the Implementing interfaces section for more details.

Static methods
Often, you have some utility functions that are related to a class, but not to specific object
instances. In this case, you can define such functions as static methods, and they will be
available in an easy way. For instance, we could create a .getMonthName() method, which
will return the name of a given month:

// Source file: src/class_persons.js

class ExtDate extends Date {
 static getMonthName(m) {
 const months = [
 "JAN",
 "FEB",
 .
 .
 .
 "DEC"
];
 return months[m];
 }
 fullDate2() {
 return (
 ExtDate.getMonthName(this.getMonth()) +
 " " +
 String(this.getDate()).padStart(2, "0") +
 " " +
 this.getFullYear()
);
 }
}

console.log(new ExtDate().fullDate2()); // "MAY 01 2018"
console.log(ExtDate.getMonthName(8)); // "SEP"

Using Modern JavaScript Features Chapter 2

[108]

Static methods must be accessed by giving the class name; since they do not correspond to
objects, they cannot be used with this or an object itself.

Using getters and setters
JS now lets you define dynamic properties that, instead of being a stored value in the object,
are calculated on the spot. For example, with the previous Person class, we could have a
getter for lastFirst, as follows:

// Source file: src/class_persons.js

class Person {
 constructor(first, last) {
 this.first = first;
 this.last = last;
 }

 // initials() method snipped out...

 fullName() {
 return `${this.first} ${this.last}`;
 }

 get lastFirst() {
 return `${this.last}, ${this.first}`;
 }

 // see below...
}

With this definition, you could access a .lastFirst property as if it actually were an
attribute of the object; no parentheses are needed:

pp = new Person("Jean", "Dupont");
console.log(pp.fullName()); // "Jean Dupont"
console.log(pp.lastFirst); // "Dupont, Jean"

You can complement a getter with a setter, and it will perform any operations you want it
to. For example, we may want let the user assign a value to .lastFirst and then change
.first and .last appropriately.

Using Modern JavaScript Features Chapter 2

[109]

Working somewhat cavalierly (no checks on arguments!), we could add the following
definition to our Person class:

// Source file: src/class_persons.js

class Person {
 // ...continued from above

 set lastFirst(lf) {
 // very unsafe; no checks!
 const parts = lf.split(",");
 this.last = parts[0];
 this.first = parts[1];
 }
}

pp.lastFirst = "Svensson, Sven";
console.log(pp); // Person {first: " Sven", last: "Svensson"}

Of course, having a property and having a getter or a setter for the same property is not
allowed. Also, getter functions cannot have parameters, and setter functions must have
exactly one.

You can find more information on getters and setters at https:/ ​/
developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/
Functions/ ​get and https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/
JavaScript/ ​Reference/ ​Functions/ ​set, respectively.

The previous sections do not exhaust all of the possibilities of JS as to classes and objects
(not by a long shot!), but I opted to go over the most likely ones for clarity.

Organizing code in modules
As today's JS applications become more and more complex, working with namespaces and
dependencies becomes ever more difficult to handle. A key solution to this problem was
the concept of modules, which allows you to partition your solution in independent parts,
taking advantage of encapsulation to avoid conflict between different modules. In this
section, we'll look at how to work in this fashion. However, we'll start with a previous JS
pattern, which may become useful in its own way.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/set

Using Modern JavaScript Features Chapter 2

[110]

Node, which we'll be working with starting with the next chapter, also
does modules but in a different fashion, so we'll postpone the discussion
of its modules for now.

How to do it...
Organizing code is such a basic need when dealing with hundreds or thousands of or even
larger code bases, and so many ways of dealing with the problem were designed before JS
finally defined a standard. First, we'll look at the more classic iffy way (we'll see what this
means soon) and then move on to more modern solutions, but be aware that you may
encounter all of these styles when reading other people's code!

Doing modules the IIFE way
Before modules became widely available, there was a fairly common pattern in use, which
basically provided the same features that today's modules do. First, let's introduce a sample
fragment of code, and then examine its properties:

// Source file: src/iife_counter.js

/* @flow */

/*
 In the following code, the only thing that needs
 an explicit type declaration for Flow, is "name".
 Flow can work out on its own the rest of the types.
*/

const myCounter = ((name: string) => {
 let count = 0;

 const inc = () => ++count;

 const get = () => count; // private

 const toString = () => `${name}: ${get()}`;

 return {
 inc,
 toString
 };

Using Modern JavaScript Features Chapter 2

[111]

})("Clicks");

console.log(myCounter); // an object, with methods inc and toString

myCounter.inc(); // 1
myCounter.inc(); // 2
myCounter.inc(); // 3

myCounter.toString(); // "Clicks: 3"

Defining a function and immediately calling it is called an IIFE, pronounced iffy, and stands
for Immediately Invoked Function Expression.

IIFEs are also known as Self-Executing Anonymous Functions, which doesn't
sound as good as iffy!

We defined a function (the one starting with name => ...), but we immediately called it
(with ("Clicks") afterwards). Therefore, what gets assigned to myCounter is not a
function, but its returned value, that is, an object. Let's analyze this object's contents.
Because of the scoping rules for functions, whatever you define inside isn't visible from the
outside. In our particular case, this means that count, get(), inc(), and toString()
won't be accessible. However, since our IIFE returns an object including the two latter
functions, those two (and only those two) are usable from the outside: this is called the
revealing module pattern.

A question: where is the "Clicks" value stored, and why isn't the value
of count lost from call to call? The answer to both questions has to do
with a well-known JS feature, closures, which has been in the language
since its beginning. See https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/
Web/​JavaScript/ ​Closures for more information on this.

If you have followed on so far, the following should be clear to you:

Whatever variables or functions are defined in the module aren't visible or
accessible from the outside, unless you voluntarily reveal them
Whatever names you decide to use in your module won't conflict with outside
names because of normal lexical scoping rules
The captured variables (in our case, name) persist so that the module can store
information and use it later

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

Using Modern JavaScript Features Chapter 2

[112]

All in all, we must agree that IIFEs are a poor man's module and their usage is quite common.
Browse the web for a bit; you are certain to find examples of it. However, ES6 introduced a
more general (and clearer and easier to understand) way of defining modules, which is
what we'll be using: let's talk about this next.

Redoing our IIFE module in the modern way
The key concept in modules is that you'll have separate files, each of which will represent a
module. There are two complementary concepts: importing and exporting. Modules will
import the features they require from other modules, which must have exported them so
that they are available.

First, let's look at the equivalent of our counter module from the previous section, and then
comment on the extra features we can use:

// Source file: src/module_counter.1.js

/* @flow */

let name: string = "";
let count: number = 0;

let get = () => count;
let inc = () => ++count;
let toString = () => `${name}: ${get()}`;

/*
 Since we cannot initialize anything otherwise,
 a common pattern is to provide a "init()" function
 to do all necessary initializations.
*/
const init = (n: string) => {
 name = n;
};

export default { inc, toString, init }; // everything else is private

How would we use this module? Let's hold on the explanations about some internal
aspects and answer that first.

Using Modern JavaScript Features Chapter 2

[113]

To use this module in some other file from our application, we would write something as
follows, with a new source file that imports the functions that our module exported:

// Source file: src/module_counter_usage.js

import myCounter from "module_counter";

/*
 Initialize the counter appropriately
*/
myCounter.init("Clicks");

/*
 The rest would work as before
*/
myCounter.inc(); // 1
myCounter.inc(); // 2
myCounter.inc(); // 3
myCounter.toString(); // "Clicks: 3"

OK, so using this module to provide a counter isn't so different after all. The main
difference with the IIFE version is that here, we cannot do an initialization. A common
pattern to provide this is to export a init() function that will do whatever is needed.
Whoever uses the module must, first of all, call init() to set things up properly.

There's no need to immediately call the init() function, as would
happen with the IIFE version, and you could delay it until necessary.
Also, the init() function could be called more times in order to reset the
module. These possibilities provide extra functionality.

Adding initialization checks
If you wish, you can make the .init() function more powerful by having the module
crash if used without initialization:

// Source file: module_counter.2.js

/* @flow */

let name = "";
let count = 0;

let get = () => count;

let throwNotInit = () => {

Using Modern JavaScript Features Chapter 2

[114]

 throw new Error("Not initialized");
};
let inc = throwNotInit;
let toString = throwNotInit;

/*
 Since we cannot initialize anything otherwise,
 a common pattern is to provide a "init()" function
 to do all necessary initializations. In this case,
 "inc()" and "toString()" will just throw an error
 if the module wasn't initialized.
*/
const init = (n: string) => {
 name = n;
 inc = () => ++count;
 toString = () => `${name}: ${get()}`;
};

export default { inc, toString, init }; // everything else is private

In this fashion, we can ensure proper usage of our module. Note that the idea of assigning a
new function to replace an old one is very typical of the Functional Programming style;
functions are first class objects that can be passed around, returned, or stored.

Using more import/export possibilities
In the previous section, we exported a single item from our module by using what is called
a default export: one per module. There is also another kind of export, named exports, of
which you can have several per module. You can even mix them in the same module, but
it's usually clearer to not mix them up. For example, say you needed a module to do some
distance and weight conversions. Your module could be as follows:

// Source file: src/module_conversions.js

/* @flow */

type conversion = number => number;

const SPEED_OF_LIGHT_IN_VACUUM_IN_MPS = 186282;
const KILOMETERS_PER_MILE = 1.60934;
const GRAMS_PER_POUND = 453.592;
const GRAMS_PER_OUNCE = 28.3495;

const milesToKm: conversion = m => m * KILOMETERS_PER_MILE;
const kmToMiles: conversion = k => k / KILOMETERS_PER_MILE;

Using Modern JavaScript Features Chapter 2

[115]

const poundsToKg: conversion = p => p * (GRAMS_PER_POUND / 1000);
const kgToPounds: conversion = k => k / (GRAMS_PER_POUND / 1000);

const ouncesToGrams: conversion = o => o * GRAMS_PER_OUNCE;
const gramsToOunces: conversion = g => g / GRAMS_PER_OUNCE;

/*
 It's usually preferred to include all "export"
 statements together, at the end of the file.
 You need not have a SINGLE export, however.
*/
export { milesToKm, kmToMiles };
export { poundsToKg, kgToPounds, gramsToOunces, ouncesToGrams };
export { SPEED_OF_LIGHT_IN_VACUUM_IN_MPS };

You can have as many definitions as you want, and you can export any of them; in our case,
we are exporting six functions and one constant. You do not need to pack everything into a
single export; you can have several, as we have already shown you. Exports are usually
grouped together at the end of a module to help a reader quickly find everything that the
module exports, but sometimes you may find them all throughout the code; we won't be
doing that. You can also export something in the same line where you define it, as
in export const LENGTH_OF_YEAR_IN_DAYS = 365.2422, but we won't use that style
either, for consistency.

When importing a module with named exports, you just have to say which of the exports
you want. You can import from different modules; you'll just require several import
statements. It's a standard practice to group all of them at the start of your source file. You
can also rename an import, as in the case of poundsToKg in the following code, which
we'll use as p_to_kg. In reality, you would do this if you had identically named imports
from two different modules; in our particular example, it doesn't really make sense:

// Source file: src/module_conversion_usage.js

/* @flow */

import {
 milesToKm,
 ouncesToGrams,
 poundsToKg as p_to_kg
} from "./module_conversions.js";
console.log(`A miss is as good as ${milesToKm(1)} kilometers.`);

console.log(
 `${ouncesToGrams(1)} grams of protection `,
 `are worth ${p_to_kg(1) * 1000} grams of cure.`
);

Using Modern JavaScript Features Chapter 2

[116]

So far, we have seen how to export JS elements—functions and constants in our
example—but you could also export classes, objects, arrays, and so on. In the next section,
we'll get back to Flow, and see how types can also be exported and imported.

Using Flow types with modules
Exporting data types (including generics, interfaces, and so on) is quite similar to normal
exports, except that you must include the word type. If you wanted to use the conversion
type elsewhere, in the original module, you would add the following:

export type { conversion };

Correspondingly, wherever you wanted to import that type, you would add something like
this:

import type { conversion } from "./module_conversions.js";

Note, however, an important detail: you cannot export or import data types in the same
sentence in which you deal with standard JS elements: export and export type are
distinct, separate statements, and so are import and import type.

Determining a feature's availability
To round off this chapter, let me introduce two web tools that can help you be aware about
what features you can safely use and which will make a transpiler (such as Babel, which
we mentioned at the start of this chapter) necessary.

How to do it...
Your first resource will be https:/ ​/ ​kangax. ​github. ​io/​compat- ​table/ ​, which provides
very thorough and complete tables showing, feature by feature, what is supported on JS
engines everywhere. Depending on your specific needs, you might be able to totally
dispense with transpiling, but it's certain you should be careful before taking such a
measure!

https://kangax.github.io/compat-table/
https://kangax.github.io/compat-table/
https://kangax.github.io/compat-table/
https://kangax.github.io/compat-table/
https://kangax.github.io/compat-table/
https://kangax.github.io/compat-table/
https://kangax.github.io/compat-table/
https://kangax.github.io/compat-table/
https://kangax.github.io/compat-table/
https://kangax.github.io/compat-table/
https://kangax.github.io/compat-table/
https://kangax.github.io/compat-table/
https://kangax.github.io/compat-table/
https://kangax.github.io/compat-table/

Using Modern JavaScript Features Chapter 2

[117]

The following screenshot shows Kangax at work:

 The Kangax website lets you determine what features are (or are not) provided by browsers, versions of Node, and so on

Using Modern JavaScript Features Chapter 2

[118]

A second web tool that you should be aware of is Can I use... at https:/ ​/​caniuse. ​com/ ​. In
this site, you can search for any feature (be it JS, HTML, or CSS), and you'll get to see what
browser versions support it or not. A comment is relevant: this site only provides
information for desktop and mobile browsers; you cannot see if a feature is supported in
Node, for example. The following screenshot shows Can I use... at work:

 The Can I Use... site lets you find out what browsers support (or don't) a given feature

https://caniuse.com/
https://caniuse.com/
https://caniuse.com/
https://caniuse.com/
https://caniuse.com/
https://caniuse.com/
https://caniuse.com/
https://caniuse.com/

3
Developing with Node

The recipes we will be seeing in this chapter are as follows:

Checking Node's setup
Working with modules
Using Flow with Node, directly
Using Flow with Node through preprocessing
Running your Node code with Nodemon
Using promises instead of error first callbacks
Working with streams to process requests
Compressing files with streams
Working with a database
Executing external processes with exec()
Using spawn() to run a command, and communicating with it
Using fork() to run Node commands

Introduction
We installed Node in the Installing Node and npm section of Chapter 1, Working with
JavaScript Development Tools, but that was only for setting npm up. Node can be used not
only as a web server, which is the most common usage, but also to write shell line
commands or even desktop applications, as we'll see in Chapter 13, Creating a Desktop
Application with Electron. However, some configuration and development practices are
common for all those environments, and that will be the objective of this chapter. In this
chapter, we will get started on Node development.

Developing with Node Chapter 3

[120]

Checking Node's setup
For starters, let's verify Node is working, by creating a very basic server; we'll get into more
details in the next Chapter 4, Implementing RESTful Services with Node, but now we just
want to make sure everything is fine. In other chapters, we will use Node more seriously,
but the objective here is to verify that it works OK.

How to do it…
Getting ahead a bit, let's set up a very basic server, which will answer all the requests by
sending back a 'Server alive!' string. For this, we will need to follow three steps:

Use require() to import the http module of Node—we'll see more on modules1.
in the next section; for the time being, just assume that require() is equivalent
to import.
Then, use the createServer() method to set up our server.2.
After that, provide a function that will answer all requests by sending back a3.
text/plain fixed answer.

The following code represents the most basic possible server, and will let us know whether
everything has worked correctly. I have named the file miniserver.js. The line in bold
does all the work, which we'll go over in the next section:

// Source file: src/miniserver.js

/* @flow */
"use strict";

const http = require("http");

http
 .createServer((req, res) => {
 res.writeHead(200, { "Content-Type": "text/plain" });
 res.end("Server alive!");
 })
 .listen(8080, "localhost");

console.log("Mini server ready at http://localhost:8080/");

Developing with Node Chapter 3

[121]

How it works…
We wrote a server; now, let's see it run. With this very simple project, we can just directly
run the server code. In later sections in this chapter, we'll see that using Flow types will
require some extra preprocessing; we can skip that part for now, however. We can start our
server with the following command line:

> node src/miniserver.js
Mini server ready at http://localhost:8080/

To verify if everything is working fine, just open a browser and go to
http://localhost:8080. The following screenshot shows the (admittedly not very
impressive) result:

 Our minimalistic server is running, showing that we have Node working properly

Now that we know that everything is OK, let's get started with some basic techniques that
we will be using in several other places of the book.

Why are we running the server at port 8080 instead of 80? To access ports
below 1024, you need administrative (root) rights. However, that would
make your server highly unsafe; a hacker that somehow managed to get
into it would have maximum rights at your machine! Thus, the standard
practice is to run Node with normal rights, at ports over 1024 (such as
8080, for example) and set up a reverse proxy to send traffic on ports 80
(HTTP) or 443 (HTTPS).

Developing with Node Chapter 3

[122]

Working with modules
In the Organizing code in modules section of Chapter 2, Using JavaScript Modern Features, we
saw how modern JS works with modules. However, with Node, we have a little setback: it
doesn't do modules the modern JS way—unless you are willing to work with experimental
features!

Why doesn't Node work with the modern JS modules? The reason harkens back to several
years before the new modules with import and export statements existed, and Node
implemented the CommonJS module format. (We'll be seeing more about those modules in
the next section.) Obviously, libraries meant to be used with Node were also developed
using that format, and nowadays there are an uncountable number of modules that follow
those guidelines.

However, since the new standard for modules appeared, a pressure began to apply to use
the new syntax—but that posed some problems beyond just adjusting the language; can
you have two radically different module styles coexisting? (Because, no one can magically
transform all the existing code that uses CommonJS into the new format, right?) There are
some other differences. ES modules are meant to be used in asynchronous fashion, while
CommonJS modules are synchronous; for most cases, this doesn't cause a difference, but
there are cases that must be considered.

The solution that was arrived at isn't considered definitive yet. For the time being (since
version 8.5) you can enable the ES modules by using the --experimental-
modules command line flag. If you invoke node with it, it will recognize the ES modules, if
their extension is .mjs instead of plain .js. Hopefully, by version 10, it won't be needed,
but that cannot be ensured, and there's also a certain risk that some details might change by
then!

This solution, using the new .mjs file extension to identify new-style
modules, is whimsically known as the Michael Jackson Solution because
of the initials of the three words.

So, if I were writing this book in one or two years' time, I'd probably be telling you to just
go ahead, start using the .mjs file extension, and use the new style modules.

See https:/ ​/​nodejs. ​org/ ​api/ ​esm.​html for current information about this
feature.

https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html

Developing with Node Chapter 3

[123]

However, at this time, it should not be considered a totally safe step—the feature is clearly
marked as experimental at this point of time—so let's keep going with the current (old)
standard, and learn how to work with the old-fashioned modules. Let's create a math
module you might want to use for financial coding, so we get to see a Node style module
built from scratch.

How to do it…
With Node modules, there are two important changes in how we export and import
elements. Any file can be a module, as with ES modules. In a nutshell, in order to import
something from a module, you'll have to use a require() function, and the module itself
will use an exports object to specify what it will export.

JS math operators (addition, subtraction, and so on) don't do rounding, so let's write a
roundmath.js module that will perform arithmetic, but rounding to cents, for an
imagined business-related application. First, we get started with the common two lines that
enable Flow, and set strict mode:

// Source file: src/roundmath.js

/* @flow */
"use strict";

// continues...

Don't forget to add the "use strict" line in all your modules, before the
rest of your code, as we mentioned in the Working in strict mode section in
the previous chapter. JS modules are strict by definition, but that doesn't
apply to Node modules, which are not strict.

Then, let's define our functions. Just for variety, we'll have a couple of internal (not
exported) functions, and several ones that will be exported:

// ...continued

// These won't be exported:

const roundToCents = (x: number): number => Math.round(x * 100) / 100;
const changeSign = (x: number): number => -x;

// The following will be exported:

const addR = (x: number, y: number): number => roundToCents(x + y);

Developing with Node Chapter 3

[124]

const subR = (x: number, y: number): number => addR(x, changeSign(y));

const multR = (x: number, y: number): number => roundToCents(x * y);

const divR = (x: number, y: number): number => {
 if (y === 0) {
 throw new Error("Divisor must be nonzero");
 } else {
 return roundToCents(x / y);
 }
};

// continues...

Finally, as per usual conventions, all exports will be together, at the bottom, so it will be
easy to see everything that a module exports. Instead of the modern export statement, you
assign whatever you want to export, to an exports object. If you want to keep variables or
functions private, all you need do is skip assigning them; in our case, we are only exporting
four of the six functions we coded:

// ...continued

exports.addR = addR;
exports.subR = subR;
exports.multR = multR;
exports.divR = divR;

How it works…
How would we use this module, and how does it work? If we wanted to import some of its
functions from other modules, we'd write something as follows; see how we use some of
the operations we designed:

// Source file: src/doroundmath.js

/* @flow */
"use strict";

const RM = require("./roundmath.js");

console.log(RM.addR(12.348, 4.221)); // 16.57
console.log(RM.changeSign(0.07)); // error; RM.changeSign is not a function

Developing with Node Chapter 3

[125]

The first two lines are the usual. Then, we require() whatever modules we need; in this
case, a single one. Also, per convention, all such requirements are grouped together, at the
start, to make it simpler to understand the needs of a module, without having to go all
through the code. In our case, RM gets assigned the exports object, so you can refer to
RM.addR(), RM.subR(), and so on, and this makes clear to the reader that you are using
something from the RM module.

If you want to write a bit less, you can take advantage of the destructuring statement (which
we met in the Destructuring arrays and objects section in the previous chapter) and directly
assign the desired methods to individual variables:

/* @flow */
"use strict";

const { multR, divR } = require("./roundmath.js");

console.log(multR(22.9, 12.4)); // 283.96
console.log(divR(22, 7)); // 3.14

It is better if you get used to only importing modules that you'll need. In other cases (which
we'll see in later chapters) we can use tools to just remove whatever modules you don't
actually use, and if you require() everything, that wouldn't be possible.

Using Flow with Node, directly
Since we are using Flow, and Node doesn't actually know about the data types, there will
obviously be problems if we just try to execute our data-typed code. There are two
solutions for this: one not so elegant, but that speeds up development, and another more
powerful one, but that will require extra work. Let's here consider the first, simpler
solution, and leave the second one for the next section.

How to do it…
It so happens that Flow provides two ways of specifying types: the way that we have been
using so far, with extra type notations, and another more verbose one, through the
comments. Of course, JS doesn't know about type definitions, so the first style won't work
unless we do extra work (as we'll see) but using comments is totally safe.

Developing with Node Chapter 3

[126]

To define types with comments, all Flow specific definitions must be enclosed in comments
starting with /*: (note the extra colon) and finishing with the usual */, for simple basic
types, or /*:: and */ for everything else. We can revisit some examples we saw earlier in
Chapter 2, Using JavaScript Modern Features. Simple cases are as follows:

// Source file: src/flowcomments.js

let someFlag /*: boolean */;
let greatTotal /*: number */;
let firstName /*: string */;

function toString(x /*: number */) /*: string */ {
 return String(x);
}

let traffic /*: "red" | "amber" | "green" */;

// continues...

More complex definitions, including optional parameters, types and opaque types, class
attributes, and so on, require the longer comments:

// ...continued

/*::
type pair<T> = [T, T];
type pairOfNumbers = pair<number>;
type pairOfStrings = pair<string>;

type simpleFlag = number | boolean;

type complexObject = {
 id: string,
 name: string,
 indicator: simpleFlag,
 listOfValues: Array<number>
};
*/

class Person {
 /*::
 first: string;
 last: string;
 */

 constructor(first /*: string */, last /*: string */) {
 this.first = first;

Developing with Node Chapter 3

[127]

 this.last = last;
 }

 // ...several methods, snipped out
}

// continues...

You can also export and import data types:

// ...continued

/*::
import type { dniType, nameType } from "./opaque_types";
*/

/*::
export type { pairOfNumbers, pairOfStrings };
*/

How it works…
Why and how does this work? Flow is able to recognize both the /*:: ... */ and
/*: ... */ comments, and thus can do its job perfectly well. Since the Flow code is all
hidden away in comments, from the point of view of the JS engine, the Flow parts do not
even exist, so an obvious advantage of this way of working is that you can directly execute
your code.

Why would you not like this? The evident criticism is that the code looks, to put it mildly,
ugly. If you were used to, say, TypeScript, having to wrap all type-related things in
comments can become a chore, and the code will also be harder to read. Also, there is a risk
that you'll mistype a comment (forgetting one of those many colons is a possibility) and
then Flow will just ignore your definitions, posing a possible risk of letting a bug go
through.

Is there an alternative? Yes, there is, but it will require some extra processing, while giving
us the benefit of using standard Flow notation; let's turn to that now.

Developing with Node Chapter 3

[128]

Using Flow with Node through
preprocessing
Working with comments is a bit overly verbose. If you'd rather work with straightforward
type annotations and extra statements, you will have to turn to some preprocessing, to get
rid of the Flow paraphernalia before attempting to run your Node code. The good thing
with this is that the required processing can be quite efficient, and practically unnoticeable
when you develop; let's get into it, and see how we can get to keep Flow definitions, while
not breaking our Node code.

How to do it…
We want to use the shorter, more concise style of Flow, but Node cannot execute code with
such additives.The solution to our conundrum is easy: just remove everything related to
Flow before attempting to run! There is a package, flow-remove-types, that does just
that. To start, as usual, you'll have to install the needed package:

npm install flow-remove-types --save-dev

To continue, you will have to enable it by adding a new script. We were writing our code in
the src/ directory, so let's send the Flow-cleaned output to the out/ directory. In
that directory, we will get the version of the code that we will use in our server:

"scripts": {
 "build": "flow-remove-types src/ -d out/",
 "addTypes": "flow-typed install",
 "update": "npm install && flow-typed install",
 "flow": "flow",
 .
 .
 .
},

To finish, we should also tell Git to ignore the out/ directory. We were already ignoring
the node_modules and flow-typed directories, so let's add one more:

**/node_modules
**/flow-typed
**/out

Developing with Node Chapter 3

[129]

We are specifying **/out instead of just out/, because we are sharing a
single Git repository between many projects, for the sake of the book. If,
as is more common, you had a separate repository for each project, then
you would simply specify out.

How it works...
What will change from the moment you start using flow-remove-types? First, obviously,
you cannot just run your project with a simple node src/somefilename.js; first you'll
have to strip Flow by npm run build. The effect of this command will be to create a copy
in out/, of everything in src/, but without type declarations. Then, you will be able to run
the project by doing node out/somefilename.js—filenames won't be changed.

When flow-remove-types package cleans up your files, it replaces all type declarations
with whitespaces, so the transformed output files have exactly the same number of lines,
and every function starts at exactly the same line as before, removing the need for
sourcemaps and keeping the output legible. The following code shows how part of our
module from the Working with modules section would look after the process:

/* @flow */
"use strict";

// These won't be exported:

const roundToCents = (x: number): number => Math.round(x * 100) / 100;

const changeSign = (x: number): number => -x;

// The following will be exported:

const addR = (x: number, y: number): number => roundToCents(x + y);

const subR = (x: number, y: number): number => addR(x, changeSign(y));

const multR = (x: number, y: number): number => roundToCents(x * y);

const divR = (x: number, y: number): number => {
 if (y === 0) {
 throw new Error("Divisor must be nonzero");
 } else {
 return roundToCents(x / y);
 }
};

Developing with Node Chapter 3

[130]

If you would rather have a smaller-sized output (after all, reading code with all those blank
spaces can be a bit tiresome) you can produce a source map and remove all spaces, by
adding a couple of parameters to your build script, or by adding a different script, as
shown in the following code snippet:

"scripts": {
 "build": "flow-remove-types src/ -d out/",
 "buildWithMaps": "flow-remove-types src/ -d out/ --pretty --
sourcemaps",
 .
 .
 .
},

The Node debugger included in VSC fully supports source maps, so
producing briefer code won't be a problem. We'll get to see more about
this in Chapter 5, Testing and Debugging Your Server.

Now we have a way to keep working with Node and Flow together, but running our code
has become just a tad more complex; let's see if we can fix that!

Running your Node code with Nodemon
With the work we have done so far, after each and every change, running our updated
Node code would require that we perform the following:

Stop the current version of the code, if it's still running.1.
Rerun the build process to update the out directory.2.
Run the new version of the code.3.

Doing all of this, for every single small change, can quickly become boring and tiresome.
But, there is a solution: we can install a watcher, that will monitor our files for changes and
do everything mentioned here by itself, freeing us from the repetitive chore. Let's then see
how we can set a tool to watch out for changes, and do all the steps shown on its own.

Developing with Node Chapter 3

[131]

How to do it...
We will want to install and configure nodemon, which will take care of everything for us,
running updated code as necessary. First, obviously, we must install the
mentioned package. You could do it globally with npm install nodemon -g, but I'd
rather do it locally:

npm install nodemon --save-dev

Then, we'll need to add a couple of scripts:

npm start will build the application and run our main file
npm run nodemon will start the monitoring

"scripts": {
 "build": "flow-remove-types src/ -d out/",
 "buildWithMaps": "flow-remove-types src/ -d out/ --pretty --
 sourcemaps",
 "start": "npm run build && node out/doroundmath.js",
 "nodemon": "nodemon --watch src --delay 1 --exec npm start",
 .
 .
 .
},

Now, we are ready to monitor our application for changes, and restart it as needed!

How it works...
The command most interesting for us is the second one. When you run it, nodemon will
start monitoring, meaning it will watch whatever directory you selected (out, in this case)
and whenever it detects some file change, it will wait one second (to make sure, for
example, that all files are saved) and then it will rerun the application. How did I do this?

Developing with Node Chapter 3

[132]

Initially, I started nodemon. When you do npm run nodemon, the project is built and then
run, and nodemon keeps waiting for any changes; see the following screenshot:

 When you start nodemon, it builds the project, runs it, and keeps watching out for any changes that need a restart

Developing with Node Chapter 3

[133]

Afterwards, I just added a simple console.log() line, so a file would be changed; the
following screenshot was the result, showing the rebuilt and restarted code, plus the extra
output line:

 After any change in a watched file, nodemon will restart the project. In this case, I had just added a line logging ADDED TEXT JUST FOR THE CHANGE.

That's all there is to it. The application will be rebuilt and restarted automatically, without
us having to manually rerun npm start each and every time; a big help!

Read more about nodemon at http:/ ​/​nodemon. ​io/​ and https:/ ​/ ​github.
com/​remy/ ​nodemon. ​

http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
http://nodemon.io/
https://github.com/remy/nodemon
https://github.com/remy/nodemon
https://github.com/remy/nodemon
https://github.com/remy/nodemon
https://github.com/remy/nodemon
https://github.com/remy/nodemon
https://github.com/remy/nodemon
https://github.com/remy/nodemon
https://github.com/remy/nodemon
https://github.com/remy/nodemon
https://github.com/remy/nodemon

Developing with Node Chapter 3

[134]

Using promises instead of error first
callbacks
Now, let's start considering several techniques that will come in handy when writing
services.

Node runs as a single thread, so if every time it had to call a service, or read a file, or access
a database, or do any other I/O-related operation, it would have to wait for it to finish, then
attending requests would take a long time, blocking other requests from being attended,
and the server would show a very bad performance. Instead, all operations such as those
are always done asynchronically, and you must provide a callback that will be called
whenever the operation is finished; meanwhile, Node will be available to process other
clients' requests.

There are synchronous versions of many functions, but they can only be
applied for desktop work, and never for web servers.

Node established a standard that all callbacks should receive two parameters: an error and a
result. If the operation failed somehow, the error argument would describe the reason.
Otherwise, if the operation had succeeded, the error would be null or undefined (but, in
any case, a falsy value) and the result would have the resultant value.

This means that the usual Node code is full of callbacks, and if a callback itself needs
another operation, that means yet more callbacks, which themselves may have even more
callbacks, resulting in what is called callback hell. Instead of working in this fashion, we
want to be able to opt for modern promises, and, fortunately, there is a simple way to do so.
Let's see how we can simplify our code by avoiding callbacks.

How to do it…
Let's start by seeing how a common error first callback works. The fs (file system) module
provides a readFile() method that can read a file, and either produce its text or an error.
My showFileLength1() function attempts to read a file, and list its length. As usual with
callbacks, we have to provide a function, which will receive two values: a possible error,
and a possible result.

Developing with Node Chapter 3

[135]

This function must check whether the first argument is null or not. If it isn't null, it means
there was a problem, and the operation wasn't successful. On the other hand, if the first
argument is null, then the second argument has the file read operation result. The following
code highlights the usual programming pattern used with Node callbacks; the lines in bold
are the key ones:

// Source file: src/promisify.js

/* @flow */
"use strict";

const fs = require("fs");

const FILE_TO_READ = "/home/fkereki/MODERNJS/chapter03/src/promisify.js";
// its own source!

function showFileLength1(fileName: string): void {
 fs.readFile(fileName, "utf8", (err, text) => {
 if (err) {
 throw err;
 } else {
 console.log(`1. Reading, old style: ${text.length} bytes`);
 }
 });
}
showFileLength1(FILE_TO_READ);

// continues...

This style of coding is well-known, but doesn't really fit modern development, based on
promises and, even better, async/await. So, since version 8 of Node, there has been a way
to automatically transform an error-first callback function into a promise:
util.promisify(). If you apply that method to any old-style function, it will turn into a
promise, which you can then work in simpler ways.

How it works…
The util module is standard with Node, and all you have to do to use it is the following:

const util = require("util");

Developing with Node Chapter 3

[136]

The util.promisify() method is actually another example of a Higher
Order Function, as we saw in the Producing functions from functions section
of Chapter 2, Using JavaScript Modern Features.

Using util.promisify(), we can make fs.readFile() return a promise, which we'll
process with the .then() and .catch() methods:

// ...continued

function showFileLength2(fileName: string): void {
 fs.readFile = util.promisify(fs.readFile);

 fs
 .readFile(fileName, "utf8")
 .then((text: string) => {
 console.log(`2. Reading with promises: ${text.length} bytes`);
 })
 .catch((err: mixed) => {
 throw err;
 });
}
showFileLength2(FILE_TO_READ);

// continues...

You could have also written const { promisify } =
require("util"), and then it would have been fs.readFile =
promisify(fs.readFile).

This also allows us the usage of async and await; I'll be using an arrow async function,
just for variety:

// ...continued

const showFileLength3 = async (fileName: string) => {
 fs.readFile = util.promisify(fs.readFile);

 try {
 const text: string = await fs.readFile(fileName, "utf8");
 console.log(`3. Reading with async/await: ${text.length} bytes`);
 } catch (err) {
 throw err;
 }
};
showFileLength3(FILE_TO_READ);

Developing with Node Chapter 3

[137]

There's more…
Keep in mind that you won't always be needing util.promisify(). There are two
reasons for this:

Some libraries (such as axios, which we already used) already return promises,
so you don't have to do anything
Some other methods (such as the http.request() method of Node; see https:/
/​nodejs. ​org/ ​dist/ ​latest- ​v9. ​x/​docs/ ​api/ ​http. ​html#http_ ​http_ ​request_
options_ ​callback) have a different signature altogether, without even an error
argument

In any case, aiming for a standard usage will help, so we'll adopt the promise-based style
for the rest of the book.

Working with streams to process requests
If you have to work with a large enough set of data, it's fairly obvious that it will cause
problems. Your server may not be able to provide all the required memory, or even if that
doesn't prove to be a problem, the needed processing time would surpass the standard
waiting time, causing timeouts—plus the fact that your server would close out other
requests, because it would be devoted to handling your long-time processing one.

Node provides a way to work with collections of data as streams, being able to process the
data as it flows, and piping it to compose functionality out of smaller steps, much in the
fashion of Linux's and Unix's pipelines. Let's see a basic example, which you might use if
you were interested in doing low-level Node request processing. (As is, we will be using
higher-level libraries to do this work, as we'll see in the next chapter.) When a request
comes in, its body can be accessed as a stream, thus allowing your server to deal with any
size of requests.

The response that will be sent to the client is also a stream; we'll see an
example of this in the next section, Compressing files with streams.

https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback
https://nodejs.org/dist/latest-v9.x/docs/api/http.html#http_http_request_options_callback

Developing with Node Chapter 3

[138]

Streams can be of four kinds:

Readable: Which can (obviously!) be read. You would use this to process a file, or,
as in our following example, to get a web request's data.
Writable: To which data can be written.
Duplex: Both readable and writable, such as a web socket.
Transform: Duplex streams that can transform the data as it is read and written;
we'll see an example of this for zipping files.

How to do it…
Let's write some simple code to process a request, and just show what was asked. Our main
code for the request process will be the following:

// Source file: src/process_request.js

const http = require("http");

http
 .createServer((req, res) => {
 // For PUT/POST methods, wait until the
 // complete request body has been read.

 if (req.method === "POST" || req.method === "PUT") {
 let body = "";

 req.on("data", data => {
 body += data;
 });

 req.on("end", () => processRequest(req, res, body));

 } else {
 return processRequest(req, res, "");
 }
 })
 .listen(8080, "localhost");

// continues...

Developing with Node Chapter 3

[139]

The processRequest() function will be quite simple, limited to showing its parameters.
This kind of code can become helpful if you need to better understand how to process
requests, as we'll see in the next chapter. We will get parameters both from the URL and the
request body:

// ...continued

const url = require("url");
const querystring = require("querystring");

function processRequest(req, res, body) {
 /*
 Get parameters, both from the URL and the request body
 */
 const urlObj = url.parse(req.url, true);
 const urlParams = urlObj.query;
 const bodyParams = querystring.parse(body);

 console.log("URL OBJECT", urlObj);
 console.log("URL PARAMETERS", urlParams);
 console.log("BODY PARAMETERS", bodyParams);

 /*
 Here you would analyze the URL to decide what is required
 Then you would do whatever is needed to fulfill the request
 Finally, when everything was ready, results would be sent
 In our case, we just send a FINISHED message
 */

 res.writeHead(200, "OK");
 res.end(`FINISHED WITH THE ${req.method} REQUEST`);
}

The output of this code, which we'll see next, will be the the request url object (req.url),
its parameters, and the parameters in the body.

How it works…
Let's run the simple server we just wrote, to see how it works. We can build and run it with
the following two lines:

> npm run build
> node out/process_request.js

Developing with Node Chapter 3

[140]

After the server is running, we can test it by using curl—we'll get back to this in the
Testing simple services from the command line section of Chapter 5, Testing and Debugging Your
Server, and we'll see our FINISHED... message:

> curl "http://127.0.0.1:8080/some/path/in/the/server?alpha=22&beta=9"
FINISHED WITH THE GET REQUEST

The quote characters around the URL are needed, because the & character
has a special meaning by itself for shell line commands.

The server console will show the following output, but what we care about right now are
the URL parameters, that match with what was provided in the curl call:

URL OBJECT Url {
 protocol: null,
 slashes: null,
 auth: null,
 host: null,
 port: null,
 hostname: null,
 hash: null,
 search: '?alpha=22&beta=9',
 query: { alpha: '22', beta: '9' },
 pathname: '/some/path/in/the/server',
 path: '/some/path/in/the/server?alpha=22&beta=9',
 href: '/some/path/in/the/server?alpha=22&beta=9' }
URL PARAMETERS { alpha: '22', beta: '9' }
BODY PARAMETERS {}

This was easy, but if the service request had been a POST, we would have listened to events
to build up the body of the request. Refer to the following:

'data' is fired whenever there is more data to be processed. In our case, on each
event we add to the body string, so as to build up the request body
'end' is fired when there is no more data. Here, we use it to recognize when we
have got the complete body of the request, and are then ready to move on and
process it.
'close' (when a stream is closed) and 'error' events do not apply here, but
are also available for stream processing.

Developing with Node Chapter 3

[141]

If we were to do curl -X "POST" --data "gamma=60" --data "delta=FK"
"http://127.0.0.1:8080/other/path/" to perform a POST, passing a couple of body
parameters, the console output would change:

URL OBJECT Url {
 protocol: null,
 slashes: null,
 auth: null,
 host: null,
 port: null,
 hostname: null,
 hash: null,
 search: null,
 query: {},
 pathname: '/other/path/',
 path: '/other/path/',
 href: '/other/path/' }
URL PARAMETERS {}
BODY PARAMETERS { gamma: '60', delta: 'FK' }

Read more about streams (a lot of information!) at https:/ ​/​nodejs. ​org/
api/​stream. ​html.

Compressing files with streams
We can see more examples of using streams, of several types, such as in cases where we
wanted to zip a file. In this recipe, we will be using a readable stream to read from a source,
and a writable stream to put the zipped result.

How to do it…
The code is quite straightforward, and short, too. We just have to require the needed
modules, create an input stream for the file that we'll read, an output stream for the file that
we'll create, and pipe the first stream to the second one; nothing could be simpler:

// Source file: src/zip_files.js

const zlib = require("zlib");

const fs = require("fs");

https://nodejs.org/api/stream.html
https://nodejs.org/api/stream.html
https://nodejs.org/api/stream.html
https://nodejs.org/api/stream.html
https://nodejs.org/api/stream.html
https://nodejs.org/api/stream.html
https://nodejs.org/api/stream.html
https://nodejs.org/api/stream.html
https://nodejs.org/api/stream.html
https://nodejs.org/api/stream.html
https://nodejs.org/api/stream.html
https://nodejs.org/api/stream.html

Developing with Node Chapter 3

[142]

const inputStream = fs.createReadStream(
 "/home/fkereki/Documents/CHURCHES - Digital Taxonomy.pdf"
);

const gzipStream = zlib.createGzip();

const outputStream = fs.createWriteStream(
 "/home/fkereki/Documents/CHURCHES.gz"
);

inputStream.pipe(gzipStream).pipe(outputStream);

How it works…
We use the fs module to produce two streams: a readable one, with which we will be
reading a given file (here, a fixed one, but it would be trivial to read any other one) and a
writable one, where the gzipped output will go. We will pipe the input stream through the
gzip module, which will compress the input before passing it on to the output.

We could as easily have produced a server that would have sent the zipped file to the
client, to download. The following is the required code; the key difference is that the zipped
stream now goes to the response stream. We must also provide some headers, so the client
will know that a zipped file is being sent:

// Source file: src/zip_send.js

const zlib = require("zlib");
const fs = require("fs");

const http = require("http");

http
 .createServer(function(request, response) {
 // Tell the client, this is a zip file.
 response.writeHead(200, {
 "Content-Type": "application/zip",
 "Content-disposition": "attachment; filename=churches.gz"
 });

 const inputStream = fs.createReadStream(
 "/home/fkereki/Documents/CHURCHES - Digital Taxonomy.pdf"
);

Developing with Node Chapter 3

[143]

 const gzipStream = zlib.createGzip();

 inputStream.pipe(gzipStream).pipe(response);
 })
 .listen(8080, "localhost");

If you npm run build and then node out/zip_send.js, opening 127.0.0.1:8080 will
get what is shown in the following screenshot; you get the zipped file to download:

 Streams are also used to zip and send a file to the browser

Read more about fs at https:/ ​/​nodejs. ​org/​api/ ​fs. ​html, and about
zlib at https:/ ​/ ​nodejs. ​org/​api/ ​zlib. ​html.

https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
https://nodejs.org/api/zlib.html
https://nodejs.org/api/zlib.html
https://nodejs.org/api/zlib.html
https://nodejs.org/api/zlib.html
https://nodejs.org/api/zlib.html
https://nodejs.org/api/zlib.html
https://nodejs.org/api/zlib.html
https://nodejs.org/api/zlib.html
https://nodejs.org/api/zlib.html
https://nodejs.org/api/zlib.html
https://nodejs.org/api/zlib.html
https://nodejs.org/api/zlib.html
https://nodejs.org/api/zlib.html

Developing with Node Chapter 3

[144]

Working with a database
Let's now see how you would access a database, such as MySQL, PostgreSQL, MSSQL,
Oracle, or more. (We will be needing this in Chapter 4, Implementing RESTful Services with
Node, when we get to build a set of services.) Accessing a database is frequently done,
so that's what we will be doing. I chose some geographical data (with countries, their
regions, and the cities in those), to which we'll later add something else, to work with more
complex examples.

Getting ready
Getting a list of countries was easy: I used the data from https:/ ​/​github. ​com/ ​datasets/
country-​codes, which I pruned down to just the country two-character code (as in the ISO
3166-1 norm) and name. For regions and cities, I used GeoNames' data from http:/ ​/
download.​geonames. ​org/ ​export/ ​dump/ ​; in particular, I used admin1CodesASCII.txt,
which I reworked into regions.csv, and cities15000.zip, which I edited into
cities.csv.

If you want to be able to view CSV files in a clearer format, check out the
EXCEL VIEWER extension for VSC.

What you need to know about these three tables is as follows:

Countries are identified by a two-letter code (such as UY for Uruguay, or IN for
India), and have a name
Regions belong to a country, and are identified by the country code, plus a string;
in addition, they have a name
Cities are identified by a numeric code, have a name, latitude and longitude,
population, and are in a region of a country

This is enough to get started; later, we will be adding some more tables, to experiment a bit
more. I used MariaDB (the open fork of MySQL; see https:/ ​/​mariadb. ​com/ ​) and MySQL
WorkBench (see https:/ ​/​www. ​mysql. ​com/ ​products/ ​workbench/ ​) to create the tables and
import the data, just because it's even simpler than doing it by hand! I also created a
fkereki user, with modernJS!! as the password, to access the tables.

https://github.com/datasets/country-codes
https://github.com/datasets/country-codes
https://github.com/datasets/country-codes
https://github.com/datasets/country-codes
https://github.com/datasets/country-codes
https://github.com/datasets/country-codes
https://github.com/datasets/country-codes
https://github.com/datasets/country-codes
https://github.com/datasets/country-codes
https://github.com/datasets/country-codes
https://github.com/datasets/country-codes
https://github.com/datasets/country-codes
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
https://mariadb.com/
https://mariadb.com/
https://mariadb.com/
https://mariadb.com/
https://mariadb.com/
https://mariadb.com/
https://mariadb.com/
https://mariadb.com/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/

Developing with Node Chapter 3

[145]

If you want to use a different database, such as PostgreSQL or Oracle, the
following code will be quite similar, so don't worry much about dealing
with a specific DB. If you use an ORM, you'll then see some DB-
independent ways of accessing data, which could help should you really
have to deal with different DB products.

How to do it…
In order to access a MariaDB database, we will install the mariasql package from https:/
/​github.​com/​mscdex/ ​node- ​mariasql and then promisify its .query() method, to work in
an easier fashion. Installation is accomplished with npm install mariasql --save and,
after a short while (you will see some object code being built), the package will be installed.
Follow the steps mentioned next.

Another possibility would be to use mariasql-promise from https:/ ​/
github. ​com/ ​steelbrain/ ​mariasql- ​promise, all of whose methods
already return promises. However, getting the connection object and
storing it for later use is harder with this library, and that's why I opted
for the original one; after all, we only need to modify .query() to return
a promise.

Getting a connection
First, let's have some constants that we will be using later; apart from the Flow and strict
usage lines, we just require the MariaDB library, the promisify() function, and we define
four constants to access the database:

// Source file: src/dbaccess.js

/* @flow */
"use strict";

const mariaSQL = require("mariasql");
const { promisify } = require("util");

const DB_HOST = "127.0.0.1";
const DB_USER = "fkereki";
const DB_PASS = "modernJS!!";
const DB_SCHEMA = "world";

// continues...

https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/steelbrain/mariasql-promise
https://github.com/steelbrain/mariasql-promise
https://github.com/steelbrain/mariasql-promise
https://github.com/steelbrain/mariasql-promise
https://github.com/steelbrain/mariasql-promise
https://github.com/steelbrain/mariasql-promise
https://github.com/steelbrain/mariasql-promise
https://github.com/steelbrain/mariasql-promise
https://github.com/steelbrain/mariasql-promise
https://github.com/steelbrain/mariasql-promise
https://github.com/steelbrain/mariasql-promise
https://github.com/steelbrain/mariasql-promise

Developing with Node Chapter 3

[146]

Now, let's get a database connection. We just create a new object, and promisify its
.query() method. The dbConn variable will be passed as a parameter to every function
that will need to access the database:

// ...continued

function getDbConnection(host, user, password, db) {
 const dbConn = new mariaSQL({ host, user, password, db });
 dbConn.query = promisify(dbConn.query);
 return dbConn;
}

const dbConn = getDbConnection(DB_HOST, DB_USER, DB_PASS, DB_SCHEMA);

// continues...

Executing some queries
A simple way of testing if the connection works is by executing a trivial query that returns a
constant value; what really matters here is that the function should work without throwing
any exceptions. We use await to get the result of the .query() method, that is an array
with all the found rows; in this case, the array will obviously have a single row:

// ...continued

async function tryDbAccess(dbConn) {
 try {
 const rows = await dbConn.query("SELECT 1960 AS someYear");
 console.log(`Year was ${rows[0].someYear}`);
 } catch (e) {
 console.log("Unexpected error", e);
 }
}

// continues...

Let's try something else: what about finding the ten countries that have more cities? We can
use .forEach() to list the results in a frankly not-very-attractive format:

// ...continued

async function get10CountriesWithMoreCities(dbConn) {
 try {
 const myQuery = `SELECT
 CI.countryCode,
 CO.countryName,

Developing with Node Chapter 3

[147]

 COUNT(*) as countCities
 FROM cities CI JOIN countries CO
 ON CI.countryCode=CO.countryCode
 GROUP BY 1
 ORDER BY 3 DESC
 LIMIT 10`;

 const rows = await dbConn.query(myQuery);
 rows.forEach(r =>
 console.log(r.countryCode, r.countryName, r.countCities)
);
 } catch (e) {
 console.log("Unexpected error", e);
 }
}

// continues...

Updating the database
Finally, let's do some updates. We will first add a new (invented!) country; we will then
check whether it exists; we will update it and check the changes, then we will proceed to
delete it, and finally we'll verify that it's gone:

// ...continued

async function addSeekAndDeleteCountry(dbConn) {
 try {
 const code = "42";
 const name = "DOUGLASADAMSLAND";

 /*
 1. Add the new country via a prepared insert statement
 */
 const prepInsert = dbConn.prepare(
 "INSERT INTO countries (countryCode, countryName) VALUES
(:code, :name)"
);
 const preppedInsert = prepInsert({ code, name });
 await dbConn.query(preppedInsert);

 /*
 2. Seek the recently added country, return an array of objects
 */
 const getAdams = `SELECT * FROM countries WHERE
countryCode="${code}"`;
 const adams = await dbConn.query(getAdams);

Developing with Node Chapter 3

[148]

 console.log(
 adams.length,
 adams[0].countryCode,
 adams[0].countryName
);

 /*
 3. Update the country, but using placeholders
 */
 await dbConn.query(
 `UPDATE countries SET countryName=? WHERE countryCode=?`,
 ["NEW NAME", code]
);

 /*
 4. Check the new data, but returning an array of arrays instead
 */
 const adams2 = await dbConn.query(
 `SELECT * FROM countries WHERE countryCode=?`,
 [code],
 { useArray: true }
);
 console.log(adams2.length, adams2[0][0], adams2[0][1]);

 /*
 5. Drop the new country
 */
 await dbConn.query(`DELETE FROM countries WHERE countryCode="42"`);

 /*
 6. Verify that the country is no more
 */
 const adams3 = await dbConn.query(getAdams);
 console.log(adams3.length);
 } catch (e) {
 console.log("Unexpected error", e);
 }
}

// continues...

Developing with Node Chapter 3

[149]

Getting everything together
All we have to do now, to get a complete working example, is just call the three functions:

// ...continued

tryDbAccess(dbConn);
get10CountriesWithMoreCities(dbConn);
addSeekAndDeleteCountry(dbConn);

Finally, I added a script to automate running all tests, by doing npm run start-db:

"scripts": {
 "build": "flow-remove-types src/ -d out/",
 "buildWithMaps": "flow-remove-types src/ -d out/ --pretty --
sourcemaps",
 "start": "npm run build && node out/doroundmath.js",
 "start-db": "npm run build && node out/dbaccess.js",
 .
 .
 .
},

Let's analyze how the code works, and remark on some interesting points.

How it works…
Running tryDbAccess() isn't hard to figure out: the constant query goes to the server, and
an array with a single row comes back. The output of our code would have been as follows:

Year was 1960

The second query gets more interesting. Apart from the details of actually writing the SQL
query (which is beyond the objectives of this book) the interesting point is the returned
array, each with an object with the selected fields:

IN India 1301
BR Brazil 1203
RU Russian Federation 1090
DE Germany 1061
CN China 810
FR France 633
ES Spain 616
JP Japan 605
IT Italy 575
MX Mexico 556

Developing with Node Chapter 3

[150]

Now, let's get to the last example. We are seeing several ways of creating the statement that
will be executed.

The INSERT uses a prepared statement. A good way to prepare safe queries (meaning, they
cannot be involved in SQL injection hacks) is by using prepared strings. The .prepare()
method is interesting: given a string, it returns a function, that when called with the actual
parameters to use, will itself return the string to use in the query. Of course, you can also
build the function by hand, as I did in the other examples—but then it's up to you to make
sure that the resulting query is safe!

The .escape() method can help building a safe query string, if you don't
want to use .prepare(). See more at https:/ ​/​github. ​com/ ​mscdex/ ​node-
mariasql.

The subsequent SELECT uses a string created by hand (nothing too original here) but the
UPDATE shows another style: using ? symbols as placeholders. In that case, you must also
provide an array of values that will replace the placeholders; it's fundamental that the order
of the values in the array matches the expected arguments.

Next, the second SELECT also uses placeholders, but adds a tweak: passing an object with
the useArray:true option, the function performs a tad faster, because it doesn't create
objects for each row, and simply returns arrays. This has a problem, however, because now
you have to remember what each position of the array means.

The results of the code are as expected: first a single line, showing that a country was
actually created, with the values we passed; then, the same record but with a changed
name, and finally a zero showing that the country doesn't exist any more:

1 '42' 'DOUGLASADAMSLAND'
1 '42' 'NEW NAME'
0

There's more...
In this section, we have gone through several examples of accessing a database to perform
varied operations on it, by means of a direct connection, working with tables and cursors.
You could also consider using an Object-Relational Mapping (ORM) library, to work with
objects instead: the best known possibility is probably Sequelize
(at http://docs.sequelizejs.com/) but there are some more packages (such as TinyORM,
Objection.js, or CaminteJS, just to mention some which are still in development, not
abandoned).

https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
https://github.com/mscdex/node-mariasql
http://docs.sequelizejs.com/

Developing with Node Chapter 3

[151]

Executing external processes with exec()
If you are implementing some service with Node, there may be occasions in which you
require to do some heavy processing, and that, as we have mentioned before, is a no-no
because you will block all users. If you need to do this kind of work, Node lets you offload
the work to an external process, freeing itself and becoming available for continuing work.
The external process will work on its own, in an asynchronous fashion, and when it is done,
you will be able to process its results. There are several ways of doing this; let's go into
them.

The first option to run a separate command is the child_process.exec() method. This
will spawn a shell, and execute a given command in it. Whatever output is generated will
be buffered, and when the command finishes execution, a callback function will be called
with either the produced output, or an error.

Let's see an example of calling an external process, by accessing the filesystem.

How to do it…
An example, to get a directory listing of all JS files at a given path, could be as follows. (Yes,
of course you could and should do this using fs.readDir(), but we want to show how to
do it with a child process.)

As shown in the Using Promises instead of error first callbacks section earlier in this chapter,
we will promisify() the call, to simplify coding:

// Source file: src/process_exec.js

const child_process = require("child_process");
const { promisify } = require("util");
child_process.exec = promisify(child_process.exec);

async function getDirectoryJs(path: ?string) {
 try {
 const cmd = "ls -ld -1 *.js";
 const stdout = await child_process.exec(cmd, { cwd: path });
 console.log("OUT", path || "");
 console.log(stdout);
 } catch (e) {
 console.log("ERR", e.stderr);
 }
}

Developing with Node Chapter 3

[152]

How it works…
When we call the .exec() method, a separate shell is created, and the command runs in it.
If the call is successful, the output will be returned; otherwise, an object with a .stderr
property will be thrown as an exception. A possible couple of runs are as follows:

getDirectoryJs("/home/fkereki/MODERNJS/chapter03/flow-typed/npm");
OUT /home/fkereki/MODERNJS/chapter03/flow-typed/npm
-rw-r--r-- 1 fkereki users 4791 Apr 9 12:52 axios_v0.18.x.js
-rw-r--r-- 1 fkereki users 3006 Mar 28 14:51 babel-cli_vx.x.x.js
-rw-r--r-- 1 fkereki users 3904 Apr 9 12:52 babel-eslint_vx.x.x.js
-rw-r--r-- 1 fkereki users 2760 Apr 9 12:52 babel-preset-env_vx.x.x.js
-rw-r--r-- 1 fkereki users 888 Apr 9 12:52 babel-preset-flow_vx.x.x.js
-rw-r--r-- 1 fkereki users 518 Apr 9 12:52 eslint-config-
recommended_vx.x.x.js
-rw-r--r-- 1 fkereki users 14995 Apr 9 12:52 eslint-plugin-
flowtype_vx.x.x.js
-rw-r--r-- 1 fkereki users 73344 Apr 9 12:52 eslint_vx.x.x.js
-rw-r--r-- 1 fkereki users 1889 Mar 28 14:51 fetch_vx.x.x.js
-rw-r--r-- 1 fkereki users 188 Apr 9 12:52 flow-bin_v0.x.x.js
-rw-r--r-- 1 fkereki users 13290 Apr 9 12:52 flow-coverage-report_vx.x.x.js
-rw-r--r-- 1 fkereki users 1091 Apr 9 12:52 flow-remove-types_vx.x.x.js
-rw-r--r-- 1 fkereki users 5763 Apr 9 12:52 flow-typed_vx.x.x.js
-rw-r--r-- 1 fkereki users 1009 Apr 9 12:52 mariasql_vx.x.x.js
-rw-r--r-- 1 fkereki users 0 Mar 28 14:51 moment_v2.3.x.js
-rw-r--r-- 1 fkereki users 5880 Apr 9 12:52 nodemon_vx.x.x.js
-rw-r--r-- 1 fkereki users 4786 Apr 9 12:52 prettier_v1.x.x.js

getDirectoryJs("/boot");
ERR ls: cannot access '*.js': No such file or directory

The second parameter for .exec() provides an object with possible options. In our case,
we are specifying the current working directory (cwd) for the command. Another
interesting option can let you work with commands that produce lots of output. By default,
the maximum buffered output will be 200K; if you need more, you'll have to add an object
with the maxBuffer option set to a larger value; check https:/ ​/​nodejs. ​org/ ​api/ ​child_
process.​html#child_ ​process_ ​child_ ​process_ ​exec_ ​command_ ​options_ ​callback for more
on these and other options.

There's no limit to the complexity of the command that you can execute, but there's also a
risk. Keep in mind the possibility of being hacked: if you are building up your command
based on some input provided by an user, you could be on the end of a command injection
attack. Imagine you wanted to build something such as `ls ${path}` and the user had
provided "/; rm -rf *" as the path; what would happen?

https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_exec_command_options_callback

Developing with Node Chapter 3

[153]

There's more...
Using .exec() is very good for short commands, with little output. If you don't actually
need the shell, you can do even better with .execFile(), which runs the desired
command directly, without first creating a shell and then running the command in it.
See https:/​/​nodejs. ​org/ ​api/ ​child_ ​process. ​html#child_ ​process_ ​child_ ​process_
execfile_​file_​args_ ​options_ ​callback for more information on this.

Using spawn() to run a command, and
communicating with it
Using .exec() is simple, but you are limited to small-sized outputs, and you cannot also
get a partial answer: let's see more about this. Imagine you are preparing a large file to be
sent to a client. If you were to read that file with .exec(), you wouldn't be able to start
sending the file contents to a client until you had read all the file. However, if the file were
too large, that would not only imply a delay, but also the possibility of a crash. Using
.spawn() gives you an interesting addition: the possibility of using streams to
communicate, in a bidirectional way, with the spawned process.

How to do it…
Using .spawn() is similar to .exec() in general terms. Let's now use a separate process to
read a directory and send its results back. We will be passing the path we want to process
using a stream, and we'll get the list of found files also through streaming.

To start, let's have the main code, which will spawn a process:

// Source file: src/process_spawn.js

const path = require("path");
const { spawn } = require("child_process");

const child = spawn("node", [path.resolve("out/process_spawn_dir.js")]);

child.stdin.write("/home/fkereki");

child.stdout.on("data", data => {
 console.log(String(data));
});

https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
https://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback

Developing with Node Chapter 3

[154]

child.stdout.on("end", () => {
 child.kill();
});

To finish, we need the child process, which would be as follows:

// Source file: src/process_spawn.js

const fs = require("fs");

process.stdin.resume();

process.stdin.on("data", path => {
 // Received a path to process
 fs
 .readdirSync(path)
 .sort((a, b) => a.localeCompare(b, [], { sensitivity: "base" }))
 .filter(file => !file.startsWith("."))
 .forEach(file => process.stdout.write(file + "\n"));

 process.stdout.end();
});

How it works…
Spawned processes show yet another case of events. The process stays there, waiting, and
the "data" event is fired whenever the process receives any data via the stdin input, as
done through the child.stdin.write("/home/fkereki") line. Then, the process reads
the directory, with fs.readdirSync(), a synchronous call you shouldn't use in normal
Node code, but that is safe in a subprocess, because it won't block anything. The results of
the call are sorted, filtered to avoid hidden files, and then lines are written to stdout.

In a similar fashion to the child process, the parent process listens to events coming from
the child's stdout. Whenever data arrives ("data" events are fired) it is simply logged
with console.log(). When the child signals that no more data will be coming, by
performing process.stdout.end(), the "end" event is fired, and the parent recognizes
it, and can do whatever it wants.

Developing with Node Chapter 3

[155]

This way of spawning processes thus allows for bidirectional communication between the
parent and child processes, which could be used in many different forms.

Using fork() to run Node commands
The Child_process.fork() method is a special case of .spawn(), which specifically
only spawns new Node processes. The spawned child process has a communication channel
built in that makes it even simpler to pass messages between the parent process and itself:
you just use the .send() method to send a message, and listen to the "message" event on
the other side. Let's see how to fork off a second process, and communicate with the first
one.

How to do it…
Since the code of the previous section used .spawn() to launch a new Node instance and
run some code, it's fairly obvious that we can quickly and simply adjust it to use .fork()
instead. Also, we won't have to use stdin and stdout to communicate, opting for
messaging instead.

First, let's start with the parent code. It would become the following; the key differences are
the usage of .fork() instead of .spawn(), and the way that the file path is sent to the
child process:

// Source file: src/process_fork.js

const path = require("path");
const { fork } = require("child_process");

const child = fork(path.resolve("out/process_fork_dir.js"));

child.send({ path: "/home/fkereki" });

child.on("message", data => {
 console.log(String(data));
});

Developing with Node Chapter 3

[156]

Then, the child code would also show small variations, in the way messages are received,
and data is sent to the parent:

// Source file: src/process_fork_dir.js

const fs = require("fs");

process.on("message", obj => {
 // Received a path to process
 fs
 .readdirSync(obj.path)
 .sort((a, b) => a.localeCompare(b, [], { sensitivity: "base" }))
 .filter(file => !file.startsWith("."))
 .forEach(file => process.send && process.send(file));
});

How it works…
Using .fork() implies that the child process is a Node process, so instead of expressly
mentioning it, as we did in the previous section, we just have to pass the name of the JS file
to be executed.

The second difference, as we mentioned, is that instead of using stdin and stdout for
communication, we can .send() a message (in any direction, from parent to child or vice
versa) and we listen to the "message" event instead of the "data" one.

If you analyze the highlighted differences in code, you'll realize that the differences are
really minor, and for the special (but not uncommon) case of needing to run a separate
Node process, .fork() is more appropriate, and possibly a tad simpler to use.

4
Implementing RESTful Services

with Node
We will cover the following recipes:

Developing a server with Express
Adding middleware
Getting request parameters
Serving static files
Adding routes
Implementing secure connections
Adding security safeguards with Helmet
Implementing CORS
Adding authentication with JWT
Tying it all together – building a REST server

Introduction
In the last chapter, we looked at a set of important basic Node techniques. In this chapter,
we will use them to set up a basic server with Express and build on that until we get to
produce a RESTful server that's appropriate for a Services Oriented Architecture (SOA)
setup.

Implementing RESTful Services with Node Chapter 4

[158]

Developing a server with Express
While you can work with plain vanilla Node and do everything, today Express is surely
the most used Node framework, allowing you to easily develop servers by providing a
whole bunch of basic functionality. First, let's install it and check it's working, and then
move on to constructing services and more.

In this recipe, we'll start by doing the basic installation of Express so that we can use it in
later sections for more advanced work.

You can learn more about Express at https:/ ​/​expressjs. ​com/ ​.

How to do it...
Let's install Express and make sure that it works. Installation is basically trivial because it's
just another npm package, so you just need a simple command:

npm install express --save

You can add a --verbose optional parameter to the npm command to get
a more verbose output and be able to see that things are happening.

Next, let's redo our basic test server from the previous chapter, but using Express. And,
yes, this is way overkill for such a simple feature, but we just want to check that we set
everything up in the right fashion! Refer to the following code:

// Source file: src/hello_world.js

/* @flow */
"use strict";

const express = require("express");

const app = express();

app.get("/", (req, res) => res.send("Server alive, with Express!"));

https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/

Implementing RESTful Services with Node Chapter 4

[159]

app.listen(8080, () =>
 console.log(
 "Mini server (with Express) ready at http://localhost:8080/!"
)
);

How it works...
Running this server is practically the same as with our very basic Node one:

> npm run build
> node out/hello_world.js
Mini server (with Express) ready at http://localhost:8080/!

We can do the same tests as earlier, and note the following:

Accessing the / address gets back a Server alive message
Other paths produce a 404 (Not Found) error:

> curl 127.0.0.1:8080
Server alive, with Express!

Trying to access other paths (or /, but not with GET) will return a 404 error and a HTML
error screen:

 The basic Express configuration shows an error screen for 404 (Not Found) errors

The key line is the app.get("/", (req, res) => ...) call. Basically, after having
created the application object (app) you can specify a route (in this case, /), a HTTP method
(such as .get(), .post(), .put(), and .delete()), and a whole lot more.

Implementing RESTful Services with Node Chapter 4

[160]

Go to https:/ ​/​expressjs. ​com/ ​en/ ​4x/​api. ​html#app. ​METHOD for more on
the available methods.

You can also use .all() as a catch-all for every possible method, and a function that will
get called when the user hits that particular path. In our case, no matter what the request
(req) is, the response (res) is constant, but obviously you'd want to do more for an actual
service!

It goes without saying that you will surely have more than one route, and
possibly process not only GET methods. You can certainly add many more
routes and methods, and we'll get to more advanced routing in upcoming
sections.

The other interesting line is app.listen(), which specifies what port to listen to, and a
function that will be executed when the server starts up; in our case, it's just a log message.

Now that we have managed to get our server running, let's implement some other usual
server functionality.

Adding middleware
Express bases all of its functionality on a key concept: middleware. If you work with plain
vanilla Node, you have to write a single large request handler that will have to take care of
all of the requests your server may receive. By using middleware, Express lets you break
down this process into smaller pieces, in a more functional, pipeline-ish sort of way. If you
need to check security, log requests, handle routing, and so on, all will be done by
appropriately placed middleware functions.

First, let's understand how Express differs from Node, see how we can add some basic
middleware of our own, and only then move on to apply the usual functions for common
needs. Refer to the following diagram for more information:

https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD
https://expressjs.com/en/4x/api.html#app.METHOD

Implementing RESTful Services with Node Chapter 4

[161]

 Standard processing, in absence of the Express middleware handling – your code must do all of the processing

In standard processing (see the preceding diagram), Node gets requests from internet
clients, passes them to your code for processing, gets the generated response, and passes it
along to the original client. Your code must handle everything in what amounts, basically,
to a very large function, dealing with security, encryption, routing, errors, and so on. If you
add Express to the mix, the process changes a bit:

 When Express is added, it handles requests by passing them to a middleware stack to produce the response

In this case, you set up a series of functions that will be called in order by Express, and
each function will deal with a specific aspect of the overall process, simplifying the overall
logic. Moreover, you won't have to directly deal with common problems (say, CORS or
zipping, to mention just a few) because there are plenty of Express packages that already
provide such functions; all you have to do is add them to the stack, at the appropriate place.

To get a better idea of how this works, in this recipe let's develop a very basic request
logger (we'll learn about it in depth in the Adding HTTP logging with Morgan section of
Chapter 5, Testing and Debugging Your Server) and an error reporter.

Implementing RESTful Services with Node Chapter 4

[162]

Getting ready
If you want to add some middleware, you have to place it in the correct order among all of
the functions that you define. For example, if you want to log something, you'd probably
want to do it before any processing is done, so you'd add that definition at the top of your
stack, or very near to it.

Middleware functions receive three parameters: the incoming HTTP request (let's call it
req, as we've been doing so far), the outgoing HTTP response (res), and a function that
you must call when you want processing to continue with the next piece of middleware in
the stack (next()). When your middleware gets called, it must either send a response (by
using res.send(), res.sendFile(), or res.end()) or call next() so that the following
functions in the stack will get the chance to produce the answer.

Error functions are a bit different, and they add an error (err) parameter to the three we
just listed; having four parameters is what marks the function as an error processor in the
eyes of Express. If everything works fine, Express skips the error middleware, but if an
error occurs, Express will skip every function until it gets to the first available error
function.

Let's jump to the end and view our complete middleware example, which will be as
follows; we'll explain how it works in the next section:

// Source file: src/middleware.js

/* @flow */
"use strict";
const express = require("express");
const app = express();

app.use((req, res, next) => {
 console.log("Logger... ", new Date(), req.method, req.path);
 next();
});

app.use((req, res, next) => {
 if (req.method !== "DELETE") {
 res.send("Server alive, with Express!");
 } else {
 next(new Error("DELETEs are not accepted!"));
 }
});

// eslint-disable-next-line no-unused-vars
app.use((err, req, res, next) => {

Implementing RESTful Services with Node Chapter 4

[163]

 console.error("Error....", err.message);
 res.status(500).send("INTERNAL SERVER ERROR");
});

app.listen(8080, () =>
 console.log(
 "Mini server (with Express) ready at http://localhost:8080/!"
)
);

How to do it...
Let's start with our logger. We want it to apply to every path so that we can just omit the
path. An alternative would be writing app.use("*", ...), which means exactly the
same; we'll also use it as an example. Your logic could do anything, and since we want to
log requests, we can just list the current timestamp, the request method, and the
requested path. Afterwards—and this is the most important thing—since we haven't
finished dealing with the request, calling next() is mandatory, or the request will end up
in a processing limbo, never sending anything to the client:

app.use((req, res, next) => {
 console.log("Logger... ", new Date(), req.method, req.path);
 next();
});

Since we want to have some errors, let's define that the DELETE methods aren't to be
accepted, so next() will be called, but passing an error object; other requests will just get a
simple text answer. Our main request processing code could then be as follows:

app.use((req, res, next) => {
 if (req.method === "DELETE") {
 next(new Error("DELETEs are not accepted!"));
 } else {
 res.send("Server alive, with Express!");
 }
});

Finally, our error processing code will log the error, and send back a 500 status:

// eslint-disable-next-line no-unused-vars
app.use((err, req, res, next) => {
 console.error("Error....", err.message);
 res.status(500).send("INTERNAL SERVER ERROR");
});

Implementing RESTful Services with Node Chapter 4

[164]

You'll note the need for disabling the no-unused-vars ESLint rule. Recognizing errors just
by the function signature is not a very good practice, and if you are setting your error
handler at the end of the stack so that there's no other function to call, the next parameter
will be unused and cause an error. There is some talk of solving this situation in upcoming
versions of Express, but for now the point is moot.

The error code we just showed, basic as it is, could be used in practically
every Node server you write. We will be using it as is in our examples.

How it works...
We've set everything up; now, let's see our code working:

> npm run build
> node out/middleware.js

We can use some curl requests to test this; let's use GET, POST, and DELETE:

> curl "http://127.0.0.1:8080/some/path/to/get?value=9"
Server alive, with Express!
> curl -X POST "http://127.0.0.1:8080/a/post/to/a/path"
Server alive, with Express!
> curl -X DELETE "http://127.0.0.1:8080/try/to/delete?key=22"
INTERNAL SERVER ERROR

The logged output will be as follows:

Logger... 2018-05-08T00:22:20.192Z GET /some/path/to/get
Logger... 2018-05-08T00:22:44.282Z POST /a/post/to/a/path
Logger... 2018-05-08T00:23:01.888Z DELETE /try/to/delete
Error.... DELETEs are not accepted!

Now, we now know how to write our own middleware, but it so happens that Express
provides lots of ready-made functions. Let's give them a whirl and look at how we can use
them for several common needs.

Implementing RESTful Services with Node Chapter 4

[165]

Getting request parameters
Let's get to a basic problem: how do you get the request parameters? In our earlier example,
in the Working with streams to process requests section of the previous chapter, we did it by
hand, working with the request stream to get the body, and using parsing functions to
extract the parameters. However, Express already provides some middleware you can use
before any other function in your stack that needs parameters, either from the body or the
URL itself. So in this recipe, let's see how we can access the request parameters, which is a
very basic need.

How to do it...
Let's see what it takes to access the parameters. First, you have to require the body-parser
module and ask for the options you want; we'll get into that next:

// Source file: src/get_parameters.js

const bodyParser = require("body-parser");
app.use(bodyParser.urlencoded({ extended: false }));

Since you want the parameters to be parsed before any processing, the app.use() line will
be at the top of your stack.

Now, getting into more detail, the body-parser module provides four parsers:

A URL-encoded body parser, just like we're using here, to read about the differences
in using extended true or false. Checkout https:/ ​/ ​github. ​com/ ​expressjs/
body-​parser for more information.
A JSON body parser, as in bodyParser.json(), to process requests with
Content-Type is done through application/json.
A raw body parser, as with bodyParser.raw(), to process application/octet-
stream contents by default, though this can be changed by providing a type
option.
A text body parser, like bodyParser.text(), to process text/plain content.

The three latter parsers may provide extra options; check the documentation for more on
that. Note, however, that if you have to deal with multipart bodies, then you cannot rely on
a body-parser; see https:/ ​/​github. ​com/ ​expressjs/ ​body- ​parser for some alternatives, and
see what suits you.

https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser

Implementing RESTful Services with Node Chapter 4

[166]

How it works...
We only had to add a couple of lines, and everything was set up. We can see our code
working by either changing our logger from the previous section, or by writing code like
this:

// Source file: src/get_parameters.js

app.use("*", (req, res) => {
 console.log(req.query, req.body);
 res.send("Server alive, with Express!");
});

URL parameters are automatically separated by Express into req.query, and req.body
will be parsed by bodyParser. We can try a couple of service calls, a GET and a POST, to
cover all cases:

> curl "http://127.0.0.1:8080/birthdays?day=22&month=9&year=1960"
> curl -X POST --data "name=FK" "http://127.0.0.1:8080/persons"

The output will be as follows:

> node out/get_parameters.js
Mini server (with Express) ready at http://localhost:8080/!
{ day: '22', month: '9', year: '1960' } {}
{} { name: 'FK' }

In the first case (GET), we can see that req.query is an object with the three query
parameters, while in the second case (POST) there are no query parameters, but the
req.body provides the single parameter (name) we provided.

This should convince you of the merits of Express' design, based on a middleware stack,
but let's go through some more examples, such as working with static files, routing,
security, and more.

Serving static files
We are planning to create a set of REST services, but it's very possible that your server will
also have to serve some static files, such as images, PDFs, and so on. On principle, you
could do this by hand by setting specific routes for each static asset, and then writing a
function that would read the required file and stream its contents to the client; we did
something like that in the Working with streams to process requests section in the previous
chapter.

Implementing RESTful Services with Node Chapter 4

[167]

However, this is such a common and reiterative task that Express provides a simpler
solution; let's look at how we can simply serve static files.

An even better solution would be to have another server, such as nginx, in
your stack and have it handle static files. Standard servers are much better
at handling this type of simple request, and will leave your Node code
free to handle more complex, demanding tasks.

How to do it...
Let's suppose we want to have some flag icons served for an application. I did the
following:

I created, at the same level as the /out directory into which the output files go,1.
a /flags directory with some
subdirectories: /flags/america/north, /flags/america/south, and
/flags/europe.
I placed some free flag icons by GoSquared, taken2.
from https://www.gosquared.com/resources/flag-icons/ in those directories.
For variety, the flags are accessible at the /static path, which doesn't actually
exist.
I wrote the following code; this is the basic server from earlier, with just some3.
added code (in bold font) to deal with static files:

// Source file: src/serve_statics.js

/* @flow */
"use strict";

const express = require("express");
const path = require("path");
const app = express();

app.get("/", (req, res) => res.send("Server alive, with
Express!"));

app.use(
 "/static",
 express.static(path.join(__dirname, "../flags"), {
 immutable: true,
 maxAge: "30 days"
 })
);

https://www.gosquared.com/resources/flag-icons/

Implementing RESTful Services with Node Chapter 4

[168]

app.use((err, req, res, next) => {
 console.error("Error....", err.message);
 res.status(500).send("INTERNAL SERVER ERROR");
});

app.listen(8080, () =>
 console.log(
 "Mini Express static server ready at
http://localhost:8080/!"
)
);

If you want to read more about serving static files, check out Node's
documentation at https:/ ​/​expressjs. ​com/​en/ ​starter/ ​static- ​files.
html.

app.use(), in this case, gets a special function, express.static(), which takes care of
sending files in the given path, with some headers for caching; let's get into the details:

The first parameter to app.use() is the base of the path that the user will select;
note that it doesn't need to exist in the actual directory, as in other examples we
have seen. We could write app.use() if we want to accept all HTTP methods,
by the way.
The first parameter to express.static() specifies the path where the files are
found. I'm using the path.join() function to find out the actual path: /flags
at the same level as /out.
The second parameter to express.static() lets you add options; in our case,
I'm sending some caching headers so that browsers will know that the file can be
safely cached for 30 days.

The format for the maxAge parameter can be in a format understood by
the ms package (https:/ ​/ ​github. ​com/ ​zeit/ ​ms), which is able to convert
date and time strings into the equivalent milliseconds, which is standard
for JS.

https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://expressjs.com/en/starter/static-files.html
https://github.com/zeit/ms
https://github.com/zeit/ms
https://github.com/zeit/ms
https://github.com/zeit/ms
https://github.com/zeit/ms
https://github.com/zeit/ms
https://github.com/zeit/ms
https://github.com/zeit/ms
https://github.com/zeit/ms
https://github.com/zeit/ms
https://github.com/zeit/ms

Implementing RESTful Services with Node Chapter 4

[169]

How it works...
Whenever the user specifies a path starting with /static, it is converted into the
equivalent starting from /flags, and if the file is found, it will be sent back, with the
caching headers included. Check out the following screenshot for an example of this:

 A static flag icon, served from a non-existing path, /static, mapped to an actual path

There's more...
If you want to send static files for some specific reason, without using the method shown in
the preceding section, you can use routing and the res.sendFile() method, as shown in
the following code:

// Source file: src/serve_statics_alt.js

/* @flow */
"use strict";

const express = require("express");
const app = express();
const path = require("path");

const flagsPath = path.join(__dirname, "../flags");

app.get("/uruguay", (req, res) =>
 res.sendFile(`${flagsPath}/america/south/UY.png`)
);

Implementing RESTful Services with Node Chapter 4

[170]

app.get("/england", (req, res) =>
 res.sendFile(`${flagsPath}/europe/GB.png`)
);

app.get("/license", (req, res) =>
 res.sendFile(`${flagsPath}/license.txt`)
);

app.use((err, req, res, next) => {
 console.error("Error....", err.message);
 res.status(500).send("INTERNAL SERVER ERROR");
});

app.listen(8080, () =>
 console.log(
 "Mini Express static server ready at http://localhost:8080/!"
)
);

If you access http:/ ​/ ​127. ​0. ​0. ​1:8080/ ​uruguay, you'll get my home country's flag,
and http:/​/​127. ​0. ​0.​1:8080/ ​license will retrieve the MIT license for the icon set I chose;
see the latter in the following screenshot:

 Testing a different route that sends back a text file

http://127.0.0.1:8080/uruguay/
http://127.0.0.1:8080/uruguay/
http://127.0.0.1:8080/uruguay/
http://127.0.0.1:8080/uruguay/
http://127.0.0.1:8080/uruguay/
http://127.0.0.1:8080/uruguay/
http://127.0.0.1:8080/uruguay/
http://127.0.0.1:8080/uruguay/
http://127.0.0.1:8080/uruguay/
http://127.0.0.1:8080/uruguay/
http://127.0.0.1:8080/uruguay/
http://127.0.0.1:8080/uruguay/
http://127.0.0.1:8080/uruguay/
http://127.0.0.1:8080/license
http://127.0.0.1:8080/license
http://127.0.0.1:8080/license
http://127.0.0.1:8080/license
http://127.0.0.1:8080/license
http://127.0.0.1:8080/license
http://127.0.0.1:8080/license
http://127.0.0.1:8080/license
http://127.0.0.1:8080/license
http://127.0.0.1:8080/license
http://127.0.0.1:8080/license
http://127.0.0.1:8080/license
http://127.0.0.1:8080/license

Implementing RESTful Services with Node Chapter 4

[171]

Of course, you wouldn't use this method if you had lots of static files to provide, but if you
have only a few, then this alternative solution works very well.

You may have noticed that I didn't add headers for caching, but it can
certainly be done. Read more on res.sendFile() at https:/ ​/
expressjs. ​com/ ​en/ ​api. ​html#res. ​sendFile, in particular the immutable
and headers options.

Adding routes
No matter what kind of server you are building (a RESTful one, as we plan to do, or any
other kind), you'll have to deal with routing, and Node and Express together provide easy
ways of doing this.

Going back to our database from the Working with a database section in the previous chapter,
in a RESTful fashion, we should provide the following routes, allowing for the given
methods:

/countries (GET to obtain the list of all countries, and POST to create a new
country)
/countries/someCountryId (GET to access a country, PUT to update one, and
DELETE to delete one)
/regions (GET to get all regions of all countries, POST to create a new region)
/regions/someCountryId (GET to get all regions of a given country)
/regions/someCountryId/someRegionId (GET to access a region, PUT to
update one, DELETE to delete one)
/cities (GET to get all cities – but we won't really want to allow this because of
the resulting set size!—plus POST to create a new one)
/cities/someCityId (GET to access a city, PUT to update one, and DELETE to
delete a city)

You could also allow for extra parameters, for example, to allow paging a result set, or to
enable some filtering, but what we care about now is setting up the routes. You could set
up all of the necessary routes in the main file, as we have been doing in our short examples
so far, but as you start adding more and more routes, some organization is needed to avoid
ending up with a thousands-of-lines-long main file.

https://expressjs.com/en/api.html#res.sendFile
https://expressjs.com/en/api.html#res.sendFile
https://expressjs.com/en/api.html#res.sendFile
https://expressjs.com/en/api.html#res.sendFile
https://expressjs.com/en/api.html#res.sendFile
https://expressjs.com/en/api.html#res.sendFile
https://expressjs.com/en/api.html#res.sendFile
https://expressjs.com/en/api.html#res.sendFile
https://expressjs.com/en/api.html#res.sendFile
https://expressjs.com/en/api.html#res.sendFile
https://expressjs.com/en/api.html#res.sendFile
https://expressjs.com/en/api.html#res.sendFile
https://expressjs.com/en/api.html#res.sendFile
https://expressjs.com/en/api.html#res.sendFile

Implementing RESTful Services with Node Chapter 4

[172]

How to do it...
Thanks to Express, we won't need too much code, with only two new lines to enable our
routing; check out the following code:

// Source file: src/routing.js

/* @flow */
"use strict";

const express = require("express");
const app = express();

const myRouter = require("./router_home.js");
app.use("/", myRouter);

// eslint-disable-next-line no-unused-vars
app.use((err, req, res, next) => {
 console.error("Error....", err.message);
 res.status(500).send("INTERNAL SERVER ERROR");
});

app.listen(8080, () =>
 console.log("Routing ready at http://localhost:8080")
);

The router_home.js module could have the first level of route branching, as shown in the
following code:

// Source file: src/router_home.js

/* @flow */
"use strict";

const express = require("express");
const routerHome = express.Router();

const routerCountries = require("./router_countries.js");
const routerRegions = require("./router_regions.js");
const routerCities = require("./router_cities.js");

routerHome.use("/countries", routerCountries);
routerHome.use("/regions", routerRegions);
routerHome.use("/cities", routerCities);

module.exports = routerHome;

Implementing RESTful Services with Node Chapter 4

[173]

And, going down one more level, we'd have three more files specifying the next levels. For
example, routing for countries would be as follows. You'll note a weird extra route,
/URUGUAY, which I added just to show you that we can have more routes than a RESTful
server would require!

// Source file: src/router_countries.js

/* @flow */
"use strict";

const express = require("express");
const routerCountries = express.Router();

routerCountries.get("/", (req, res) => {
 res.send(`All countries... path=${req.originalUrl}`);
});

routerCountries.get("/URUGUAY", (req, res) => {
 res.send(`GET UY (Uruguay)... path=${req.originalUrl}`);
});

routerCountries.get("/:country", (req, res) => {
 res.send(`GET Single country... ${req.params.country}`);
});

module.exports = routerCountries;

The regions routing file will be as shown in the following code, and we'll skip the cities
routing since it's quite similar to countries routing:

// Source file: src/router_regions.src

/* @flow */
"use strict";

const express = require("express");
const routerRegions = express.Router();

routerRegions.get("/", (req, res) => {
 res.send(`Region GET ALL... `);
});

routerRegions.get("/:country", (req, res) => {
 res.send(`Region GET ALL FOR Country=${req.params.country}`);
});

routerRegions.get("/:country/:id", (req, res) => {

Implementing RESTful Services with Node Chapter 4

[174]

 res.send(`Region GET ${req.params.country}/${req.params.id}`);
});

routerRegions.delete("/:country/:id", (req, res) => {
 res.send(`Region DELETE... ${req.params.country}/${req.params.id}`);
});

routerRegions.post("/", (req, res) => {
 res.send(`Region POST... `);
});

routerRegions.put("/:country/:id", (req, res) => {
 res.send(`Region PUT... ${req.params.country}/${req.params.id}`);
});

module.exports = routerRegions;

You can read more about Express routing at https:/ ​/​expressjs. ​com/
en/​starter/ ​basic- ​routing. ​html and https:/ ​/​expressjs. ​com/ ​en/
guide/ ​routing. ​html.

How it works...
Of course, our so-called RESTful server is, at least for now, a total joke, since it just returns
constant answers, doing nothing at all, but the key parts are practically all here. First, let's
analyze its structure. When you write app.use(somePath, aRouter), it means that all of
the routes starting with the given path will be taken up by the provided router, which will
take care of the routes from the given path onward. First, we write a basic router starting at
/, and then break down the routes by path (/countries, /regions, and /cities),
writing a router for each one. These latter routers will go deeper in the paths, until all of
your routes are mapped out.

To make it clear: when the server receives a request for, say, /regions/uy, the request is
first handled by our main router (at routing.js), which passes it to the home router
(router_home.js), which passes it to the final router (router_regions.js), where the
request is eventually handled.

https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/starter/basic-routing.html
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html

Implementing RESTful Services with Node Chapter 4

[175]

Now, let's move on to the routes by themselves. There are two kind of routes here: constant
routes such as /countries and variable routes such as /regions/uy/4, which include
some varying items, such as uy and 4, in this case. When you write a route such as
/regions/:country/:id, Express will pick out the varying parts (here, :country and
:id) and make them available as properties of the req.params object
(req.params.country and req.params.id) so that you can use them in your logic.

You can also use regular expressions to define a path, but remember the
joke: a programmer has a problem; a programmer decides to solve it using
regular expressions; a programmer now has two problems.

So, if we implement some requests on the preceding path, we'll see the functioning router;
all we will be lacking is the actual RESTful code to produce some useful results, but we'll
get to that later in this chapter:

> curl "http://127.0.0.1:8080/regions"
Region GET ALL..

> curl "http://127.0.0.1:8080/regions/uy"
Region GET ALL FOR Country=uy

> curl -X POST "http://127.0.0.1:8080/regions"
Region POST...

> curl -X PUT "http://127.0.0.1:8080/regions/uy/4"
Region PUT... uy/4

Of course, trying some methods that aren't allowed will produce an error; try doing a
DELETE request for /regions and you'll see what I mean. We now know how to do any
kind of routing, but we still must be able to receive JSON objects, allow for CORS if needed,
and some other considerations, so let's keep working and start by enabling secure
connections with HTTPS.

Implementing secure connections
Sending data over HTTPS instead of HTTP is a good security practice, and actually
mandatory if your server ever has to send sensitive, secure data over the web. There are
many kinds of attacks that are avoided by setting up an encrypted connection with the
client browser, so let's see how we can implement secure connections with Node and
Express.

Implementing RESTful Services with Node Chapter 4

[176]

In this recipe, we will cover how to enable HTTPS so that our server becomes more secure.

How to do it...
We want to enable HTTPS connections, so we'll have to do a bit of work to install
everything we need.

The first step in this installation will be getting yourself a certificate that properly validates
the site that you own. Buying it goes beyond this book, so let's do a workaround by
generating our own self-signed certificates—which, of course, aren't really secure, but will
let us do all of the required configuration!

Let's assume that we want to set up our www.modernjsbook.com site. Working in Linux,
you can create the necessary certificate files by executing the following commands and
answering some questions:

openssl req -newkey rsa:4096 -nodes -keyout modernjsbook.key -out
modernjsbook.csr
openssl x509 -signkey modernjsbook.key -in modernjsbook.csr -req -days 366
-out modernjsbook.crt

After doing this, you will end up with three files: a Certificate Signing Request (CSR), a
KEY (Private Key), and a self-signed certificate (CRT) file, as follows; in real life, a
Certificate Authority (CA) would be the actual signer:

> dir
-rw-r--r-- 1 fkereki users 1801 May 14 22:32 modernjsbook.crt
-rw-r--r-- 1 fkereki users 1651 May 14 22:31 modernjsbook.csr
-rw------- 1 fkereki users 3272 May 14 22:31 modernjsbook.key

Now, when you set up your server, you must read in those files (which should reside in a
safe, read-only directory for added security) and pass their contents as options. We will use
the fs module to do this, as in previous examples, and since reading the files is done only
when the server is loaded, fs.readFileSync() can be used. Take look at the following
code:

// Source file: src/https_server.js

/* @flow */
"use strict";

const express = require("express");
const app = express();
const https = require("https");

Implementing RESTful Services with Node Chapter 4

[177]

const fs = require("fs");
const path = require("path");

const keysPath = path.join(__dirname, "../../certificates");

const ca = fs.readFileSync(`${keysPath}/modernjsbook.csr`);
const cert = fs.readFileSync(`${keysPath}/modernjsbook.crt`);
const key = fs.readFileSync(`${keysPath}/modernjsbook.key`);

https.createServer({ ca, cert, key }, app).listen(8443);

Why port 8443? The reason has to do with security, and we saw why in
the Checking Node's setup section of the previous chapter; it's the same
motive that we had behind using port 8080 instead of port 80.

How it works...
Running the preceding code is enough to get encrypted connections to your server. (Of
course, if you use self-signed certificates, the end user will get warnings about the lack of
actual security, but you would get valid certificates, wouldn't you?) We can see the result of
this in the following screenshot—and keep in mind that with real certificates, the user
would get no alerts about your unsafe site!

 Installing certificates and using HTTPS instead of HTTP generates a secure server.
Of course, since we made up the certificate by ourselves, Google Chrome doesn't really like the site!

Implementing RESTful Services with Node Chapter 4

[178]

We can also force HTTP users to work with HTTPS by running a second server, this time
with HTTP, and redirecting all traffic to our first server, which is secure:

// Source file: src/http_server.js

/* @flow */
"use strict";

const express = require("express");
const app = express();
const http = require("http");

http.createServer(app).listen(8080);

app.use((req, res, next) => {
 if (req.secure) {
 next();
 } else {
 res.redirect(
 `https://${req.headers.host.replace(/8080/, "8443")}${req.url}`
);
 }
});

A Node server can only listen to a single port, so you'd run this server as a separate
instance. Now, if you try to use HTTP to access your server, you'll be redirected
automatically, a good practice!

Adding secure connections is simple; let's keep on working on more security aspects.

Adding security safeguards with Helmet
Out of the box, Express is a very good tool for building your RESTful server, or to provide
any other kind of service. However, unless you take some extra precautions, Express
doesn't apply all security best practices, which may doom your server. Not everything is
lost, in any case, because there are some packages that can help you with those practices,
and Helmet (at https:/ ​/ ​helmetjs. ​github. ​io/​) is one of the best for this.

Don't think of Helmet—or any other similar package, by the way—as a
magic silver bullet that will somehow solve all of your possible present
and future security headaches! Use it as a step in the right direction, but
you must keep on top of possible menaces and security holes, and not
trust any single package to manage everything.

https://helmetjs.github.io/
https://helmetjs.github.io/
https://helmetjs.github.io/
https://helmetjs.github.io/
https://helmetjs.github.io/
https://helmetjs.github.io/
https://helmetjs.github.io/
https://helmetjs.github.io/
https://helmetjs.github.io/
https://helmetjs.github.io/

Implementing RESTful Services with Node Chapter 4

[179]

How to do it...
Given that it works with Express, Helmet is also a piece of middleware. Its installation
and setup are rather easy, fortunately. Using npm takes care of the first part:

npm install helmet --save

Putting Helmet to work is just a matter of adding it at the top of the middleware stack:

const helmet = require("helmet");
app.use(helmet());

You're all set! By default, Helmet enables the following list of security measures, all of
which imply adding, changing, or removing specific headers from your response to a
request. For more documentation on specific headers or options, check out https:/ ​/
helmetjs.​github. ​io/ ​docs/ ​:

Module Effect

dnsPrefetchControl

Sets the X-DNS-Prefetch-Control header to the disable browsers prefetching
(requests done before the user has even clicked on a link) to prevent privacy implications
for users, who may seem to be visiting pages they actually aren't visiting (https:/​/
helmetjs.​github.​io/​docs/​dns-​prefetch-​control).

frameguard

Sets the X-Frame-Options header to prevent your page from being shown in an
iframe, and thus avoids some clickjacking attacks that may cause you to unwittingly click
on hidden links
(https:/​/​helmetjs.​github.​io/​docs/​frameguard/​).

hidePoweredBy

Removes the X-Powered-By header, if present, so that would-be attackers won't know
what technology powers the server, making targeting and taking advantage of
vulnerabilities a bit harder (https:/​/​helmetjs.​github.​io/​docs/​hide-​powered-
by)

hsts
Sets the Strict-Transport-Security header so that browsers will keep using
HTTPS instead of switching to the insecure HTTP.
(https:/​/​helmetjs.​github.​io/​docs/​hsts/​)

ieNoOpen
Sets the X-Download-Options header to prevent old versions of Internet Explorer
from downloading untrusted HTML in your pages (https:/​/ ​helmetjs.​github.​io/
docs/​ienoopen).

noSniff
Sets the X-Content-Type-Options header to prevent browsers from trying to sniff
(guess) the MIME type of a downloaded file, to disable some attacks (https:/​/
helmetjs.​github.​io/​docs/​dont-​sniff-​mimetype).

xssFilter
Sets the X-XSS-Protection header to disable some forms of Cross-side scripting
(XSS) attacks, in which you could unwittingly run JS code on your page by clicking a link
(https:/​/​helmetjs.​github.​io/​docs/​xss-​filter).

https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/dns-prefetch-control
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/frameguard/
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hide-powered-by
https://helmetjs.github.io/docs/hsts/
https://helmetjs.github.io/docs/hsts/
https://helmetjs.github.io/docs/hsts/
https://helmetjs.github.io/docs/hsts/
https://helmetjs.github.io/docs/hsts/
https://helmetjs.github.io/docs/hsts/
https://helmetjs.github.io/docs/hsts/
https://helmetjs.github.io/docs/hsts/
https://helmetjs.github.io/docs/hsts/
https://helmetjs.github.io/docs/hsts/
https://helmetjs.github.io/docs/hsts/
https://helmetjs.github.io/docs/hsts/
https://helmetjs.github.io/docs/hsts/
https://helmetjs.github.io/docs/hsts/
https://helmetjs.github.io/docs/ienoopen
https://helmetjs.github.io/docs/ienoopen
https://helmetjs.github.io/docs/ienoopen
https://helmetjs.github.io/docs/ienoopen
https://helmetjs.github.io/docs/ienoopen
https://helmetjs.github.io/docs/ienoopen
https://helmetjs.github.io/docs/ienoopen
https://helmetjs.github.io/docs/ienoopen
https://helmetjs.github.io/docs/ienoopen
https://helmetjs.github.io/docs/ienoopen
https://helmetjs.github.io/docs/ienoopen
https://helmetjs.github.io/docs/ienoopen
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/dont-sniff-mimetype
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter

Implementing RESTful Services with Node Chapter 4

[180]

You can also opt to enable some extra options, if they apply to your requirements. For notes
on how to do this, check out Helmet's documentation at https:/ ​/ ​helmetjs. ​github. ​io/
docs/​: the package, now at version 3.12.0, is often updated, and a plain npm install may
not be enough to enable the newer features. Take a look at the following table:

Module Effect

contentSecurityPolicy
Lets you configure the Content-Security-Policy header to specify what
things are allowed to be on your page, and where they may be downloaded from
(https:/ ​/​helmetjs. ​github.​io/​docs/ ​xss-​filter).

expectCt
Allows you to set the Expect-CT header to require Certificate Transparency
(CT), to detect possibly invalid certificates or authorities (https:/​/ ​helmetjs.
github.​io/​docs/ ​expect-​ct/ ​).

hpkp
Lets you configure the Public-Key-Pins header to prevent some possible
person-in-the-middle attacks, by detecting possibly compromised certificates
(https:/ ​/​helmetjs. ​github.​io/​docs/ ​hpkp/​).

noCache
Sets several headers to prevent users from using old cached versions of files, which
might have vulnerabilities or errors, despite newer versions being available
(https:/ ​/​helmetjs. ​github.​io/​docs/ ​nocache/​).

referrerPolicy
Lets you set the Referrer-Policy header to make browsers hide information as
to the origin of a request, avoiding some possible privacy problems (https:/ ​/
helmetjs.​github. ​io/​docs/​referrer- ​policy).

How it works...
There is not much more to be said about using Helmet. After you add it to the middleware
stack, and configure what to enable or disable, possibly giving some options as detailed in
the documentation, Helmet will simply verify that the headers included in any response
follow the security considerations that we listed in the preceding section.

Let's do a quick check. If you run our hello_world.js server, the response for http:/ ​/
localhost:8080/​ will include these headers:

Connection: keep-alive
Content-Length: 27
Content-Type: text/html; charset=utf-8
Date: Wed, 16 May 2018 01:57:10 GMT
ETag: W/"1b-bpQ4Q2jOe/d4pXTjItXGP42U4V0"
X-Powered-By: Express

https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/xss-filter
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/expect-ct/
https://helmetjs.github.io/docs/hpkp/
https://helmetjs.github.io/docs/hpkp/
https://helmetjs.github.io/docs/hpkp/
https://helmetjs.github.io/docs/hpkp/
https://helmetjs.github.io/docs/hpkp/
https://helmetjs.github.io/docs/hpkp/
https://helmetjs.github.io/docs/hpkp/
https://helmetjs.github.io/docs/hpkp/
https://helmetjs.github.io/docs/hpkp/
https://helmetjs.github.io/docs/hpkp/
https://helmetjs.github.io/docs/hpkp/
https://helmetjs.github.io/docs/hpkp/
https://helmetjs.github.io/docs/hpkp/
https://helmetjs.github.io/docs/hpkp/
https://helmetjs.github.io/docs/nocache/
https://helmetjs.github.io/docs/nocache/
https://helmetjs.github.io/docs/nocache/
https://helmetjs.github.io/docs/nocache/
https://helmetjs.github.io/docs/nocache/
https://helmetjs.github.io/docs/nocache/
https://helmetjs.github.io/docs/nocache/
https://helmetjs.github.io/docs/nocache/
https://helmetjs.github.io/docs/nocache/
https://helmetjs.github.io/docs/nocache/
https://helmetjs.github.io/docs/nocache/
https://helmetjs.github.io/docs/nocache/
https://helmetjs.github.io/docs/nocache/
https://helmetjs.github.io/docs/nocache/
https://helmetjs.github.io/docs/referrer-policy
https://helmetjs.github.io/docs/referrer-policy
https://helmetjs.github.io/docs/referrer-policy
https://helmetjs.github.io/docs/referrer-policy
https://helmetjs.github.io/docs/referrer-policy
https://helmetjs.github.io/docs/referrer-policy
https://helmetjs.github.io/docs/referrer-policy
https://helmetjs.github.io/docs/referrer-policy
https://helmetjs.github.io/docs/referrer-policy
https://helmetjs.github.io/docs/referrer-policy
https://helmetjs.github.io/docs/referrer-policy
https://helmetjs.github.io/docs/referrer-policy
https://helmetjs.github.io/docs/referrer-policy
https://helmetjs.github.io/docs/referrer-policy
http://127.0.0.1:8080
http://127.0.0.1:8080
http://127.0.0.1:8080
http://127.0.0.1:8080
http://127.0.0.1:8080

Implementing RESTful Services with Node Chapter 4

[181]

The same results, but running helmet_world.js, which is essentially the same code but
adding Helmet, shows more headers, as shown in the following code snippet in bold text:

Connection: keep-alive
Content-Length: 27
Content-Type: text/html; charset=utf-8
Date: Wed, 16 May 2018 01:58:50 GMT
ETag: W/"1b-bpQ4Q2jOe/d4pXTjItXGP42U4V0"
Strict-Transport-Security: max-age=15552000; includeSubDomains
X-Content-Type-Options: nosniff
X-DNS-Prefetch-Control: off
X-Download-Options: noopen
X-Frame-Options: SAMEORIGIN
X-XSS-Protection: 1; mode=block

You would get even more headers if you were to individually enable some of the optional
features, but the difference is clear: we managed to add some security controls with
essentially almost zero coding!

As with all security measures, it's necessary to follow Helmet's
functionality so that you can possibly add or remove some new
middleware options, and protect your server against new menaces.

Implementing CORS
Whenever the browser requests some resource from a server, there are some validation
rules that apply. For many of these interactions, which only ask for information and do not
attempt to produce any kind of change in the server, there is no limitation, and the requests
are always allowed, as in the following cases:

CSS styles are required via a <link rel="stylesheet"> tag
Images are required via an tag
JS code is required via a <script> tag
Media requests via the <audio> or <media> tags

Implementing RESTful Services with Node Chapter 4

[182]

For other types of requests, the Same Origin Policy or Single Origin Policy (SOP) limits
requests to those that are sent to the same origin (meaning the protocol, as in http://, host
name, as in modernjsbook.com, and port, as in :8080), refusing any other request that
doesn't match one or more of the origin URL elements. This impacts, for example, all Ajax
requests, which will be duly rejected.

However, if you are willing to accept requests from some or all servers, you can apply
Cross Origin Resource Sharing (CORS) to enable such requests. Basically, CORS defines
an interaction style that lets the server decide whether to allow a cross origin request;
instead of blocking every request (as SOP would imply) or allowing all of them (a huge
security breach!), rules can be applied to decide one way or the other.

If you want to read the current specification for CORS, see the Fetch
Living Standard document at https:/ ​/​fetch. ​spec. ​whatwg. ​org/ ​,
specifically Section 3.2. A good article about CORS can be found
at https:/ ​/ ​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/ ​HTTP/ ​CORS.

How to do it...
Let's start enabling CORS. Basically, it is just a matter of dealing with some requests by
examining some data in their headers and sending back some other headers to the browser
so that it will know what to expect. This type of process is very easily solved by applying
middleware, and a package for this already exists (cors), which can be installed easily with
the help of the following code:

 npm install cors --save

You can enable CORS for all routes or only a few. The first way only requires two lines of
code (in bold, in the following code), telling Express to apply the middleware right at the
top, for all requests:

// Source file: src/cors_server.js

/* @flow */
"use strict";

const express = require("express");
const app = express();

const cors = require("cors");
app.use(cors());

app.get("/", (req, res) => res.send("Server alive, with CORS!"));

https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Implementing RESTful Services with Node Chapter 4

[183]

app.listen(8080, () =>
 console.log("CORS server ready at http://localhost:8080/!")
);

You could also enable it specifically for any given route. Picking one example from earlier
in this chapter, you could have specified CORS for attempts to get a city; the change would
have been minimal:

routerCities.get("/:id", cors(), (req, res) => {
 res.send(`GET City... ${req.params.id}`);
});

Finally, some requests require a pre-flight check, which means that the browser, before
sending the actual request, will send an OPTIONS request to verify whether the original
request can be accepted. To enable this, you should enable CORS for whatever route, as in
the following example, or generically, with a single app.options('*', cors()) line at
the beginning of your middleware stack:

routerCities.options("/:id", cors());

routerCities.delete("/:id", (req, res) => {
 res.send(`DELETE City... ${req.params.id}`);
});

How it works...
The simplest way to verify that CORS is enabled is by simulating calls from different
sources using curl or a similar tool. (We'll be seeing more of this in the following chapter,
when we get to do some testing.) We can make it even simpler by writing up a small web
page that will do a cross-domain GET, adding a dummy header to force CORS, and
checking the network traffic. Our page is simplicity itself—totally no frills!

// Source file: src/cors_request.html

<html>
<head></head>
<body>
 <script type="text/javascript">
 const req = new XMLHttpRequest();
 req.open('GET', 'http://www.corsserver.com:8080/', true);
 req.onreadystatechange = () => {
 if (req.readyState === 4) {
 if (req.status >= 200 && req.status < 400) {
 console.log(req.responseText)
 } else {

Implementing RESTful Services with Node Chapter 4

[184]

 console.warn("Problems!")
 }
 }
 };
 req.setRequestHeader("dummy", "value");
 req.send();
 </script>
</body>
</html>

We will be running our CORS server at www.corsserver.com:8080 (I'm actually hacking
the /etc/hosts file on my own machine so that the server is actually in my machine
itself), and we'll use the Web Server for Chrome to load and run our page. Check out the
following screenshot for the results of doing this:

 Performing a simple cross domain GET shows that our server got an OPTIONS request, followed by the GET request afterwards

Using CORS is safer than other alternatives, including the old stalwart JSONP (JSON with
Padding, a way to enable getting information across domains), so adding it to your server
should be mandatory. However, as we've seen, it's simplicity itself with just a tad of
Express middleware.

Implementing RESTful Services with Node Chapter 4

[185]

Adding authentication with JWT
For any server-based application, one challenge that must be solved is authentication, and
our RESTful server therefore will need a solution for that. In traditional web pages, sessions
and cookies may be used, but if you are using an API, there's no guarantee that requests
will come from a browser; in fact, they may very well come from another server. Adding
this to the fact that HTTP is stateless, and that RESTful services are also supposed to be so,
we need another mechanism, and JSON Web Tokens (JWT) is an often used solution.

JWT is sometimes read aloud as JOT; see Section 1 of the RFC at https:/ ​/
www.​rfc- ​editor. ​org/ ​info/ ​rfc7519.

The idea with JWT is that the client will first exchange valid credentials (such as username
and password) with a server and get back a token, which will afterwards give them access
to the server's resources. Tokens are created using cryptological methods, and are far longer
and more obscure than usual passwords. However, tokens are small enough to be sent as
body parameters or a HTTP header.

Sending the token in the URL as a query parameter is a bad security
practice! And, given that the token isn't actually a part of a request,
putting it in the body also doesn't fit very well, so opt for a header; the
recommended one is Authorization: Bearer.

After getting the token, it must be supplied with every API call, and the server will check it
before proceeding. The token may include all information about the user so that the server
won't have to query a database again to re-validate the request. In that sense, a token works
like the security passes you are given at the front desk of a restricted building; you have to
prove your identity once to the security officer, but afterwards you can move through the
building by only showing the pass (which will be recognized and accepted) instead of
having to go through the whole identification procedure again and again.

Check out https:/ ​/ ​jwt. ​io/ ​ for online tools that allow you to work with
JWT, and also lots of information about tokens.

https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/

Implementing RESTful Services with Node Chapter 4

[186]

We won't be getting into the details of a JWT's creation, format, and so on; read the
documentation if you are interested, because we will be working with libraries that will
handle all such details for us. (We may just keep in mind that the token includes a payload
with some claims related to the client or the token itself, like an expiration or issue date, and
may include more information if we need to—but don't include secret data, because the
token can be read.)

In this recipe, let's create a basic server that will be able to first issue a JWT to a valid user,
and second check the presence of the JWT for specific routes.

How to do it...
Let's look at how we can add authentication. To work with JWT, we'll be using
jsonwebtoken from https:/ ​/​github. ​com/ ​auth0/ ​node- ​jsonwebtoken. Install it with the
help of the following command:

npm install jsonwebtoken --save

Our code example for JWT will be larger than in previous examples, and it should be
separated into many files. However, I avoided doing this in order to make it clearer. First,
we'll need to make some declarations, and the key lines are in bold:

// Source file: src/jwt_server.js

/* @flow */
"use strict";

const express = require("express");
const app = express();
const jwt = require("jsonwebtoken");
const bodyParser = require("body-parser");

const validateUser = require("./validate_user.js");

const SECRET_JWT_KEY = "modernJSbook";

app.use(bodyParser.urlencoded({ extended: false }));

Almost everything is standard, except for the validateUser() function and the
SECRET_JWT_KEY string. The latter will be used to sign the tokens, and most definitely
shouldn't be in the code itself! (If somebody could hack their way into the source code, your
secret would be out; rather, set the key in an environment variable, and get the value from
there.)

https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken

Implementing RESTful Services with Node Chapter 4

[187]

As for the function, checking if a user exists and if their password is correct is simple to do,
and can be achieved in many ways, such as by accessing a database, active directory,
service, and so on. Here, we'll just make do with a hardcoded version, which accepts only a
single user. The validate_user.js source code is, then, quite simple:

// Source file: src/validate_user.js

/* @flow */
"use strict";

/*
 In real life, validateUser could check a database,
 look into an Active Directory, call another service,
 etc. -- but for this demo, let's keep it quite
 simple and only accept a single, hardcoded user.
*/

const validateUser = (
 userName: string,
 password: string,
 callback: (?string, ?string) => void) => {
 if (!userName || !password) {
 callback("Missing user/password", null);
 } else if (userName === "fkereki" && password === "modernjsbook") {
 callback(null, "fkereki"); // OK, send userName back
 } else {
 callback("Not valid user", null);
 }
};

module.exports = validateUser;

Let's get back to our server. After the initial definitions, we can place the routes that need
no tokens. Let's have a /public route, and also a /gettoken route to get a JWT for later. In
the latter, we'll see whether the POST included user and password values in its body, and
if they are a valid user by means of the validateUser() function we showed in the
preceding code. Any problems will mean a 401 status will be sent, while if the user is
correct, a token will be created, expiring in one hour's time:

// Source file: src/jwt_server.js

app.get("/public", (req, res) => {
 res.send("the /public endpoint needs no token!");
});

app.post("/gettoken", (req, res) => {
 validateUser(req.body.user, req.body.password, (idErr, userid) => {

Implementing RESTful Services with Node Chapter 4

[188]

 if (idErr !== null) {
 res.status(401).send(idErr);
 } else {
 jwt.sign(
 { userid },
 SECRET_JWT_KEY,
 { algorithm: "HS256", expiresIn: "1h" },
 (err, token) => res.status(200).send(token)
);
 }
 });
});

Now that the unprotected routes are out of the way, let's add some middleware to verify
that a token is present. We expect, according to the JWT RFC, to have an Authorization:
Bearer somejwttoken header included, and it must be accepted. If no such header is
present, or if it's not in the right format, a 401 status will be sent. If the token is present, but
it's expired or has any other problem, a 403 status will be sent. Finally, if there's nothing
wrong, the userid field will be extracted from the payload, and attached to the request
object so that future code will be able to use it:

// Source file: src/jwt_server.js

app.use((req, res, next) => {
 // First check for the Authorization header
 const authHeader = req.headers.authorization;
 if (!authHeader || !authHeader.startsWith("Bearer ")) {
 return res.status(401).send("No token specified");
 }

 // Now validate the token itself
 const token = authHeader.split(" ")[1];
 jwt.verify(token, SECRET_JWT_KEY, (err, decoded) => {
 if (err) {
 // Token bad formed, or expired, or other problem
 return res.status(403).send("Token expired or not valid");
 } else {
 // Token OK; get the user id from it
 req.userid = decoded.userid;
 // Keep processing the request
 next();
 }
 });
});

Implementing RESTful Services with Node Chapter 4

[189]

Now, let's have some protected routes (in fact, a single one, /private, just for this
example), followed by error checking and setting up the whole server:

// Source file: src/jwt_server.js

app.get("/private", (req, res) => {
 res.send("the /private endpoint needs JWT, but it was provided: OK!");
});

// eslint-disable-next-line no-unused-vars
app.use((err, req, res, next) => {
 console.error("Error....", err.message);
 res.status(500).send("INTERNAL SERVER ERROR");
});

app.listen(8080, () =>
 console.log("Mini JWT server ready, at http://localhost:8080/!")
);

We're done! Let's see how this all comes together.

How it works...
We can start by testing the /public and /private routes, without any token. The former
won't cause any problems, but the latter will be caught by our token testing code and
rejected:

> curl "http://localhost:8080/public"
the /public endpoint needs no token!

> curl "http://localhost:8080/private"
No token specified

Now, let's try to get a token. Check out the following code:

> curl http://localhost:8080/gettoken -X POST -d
"user=fkereki&password=modernjsbook"
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyaWQiOiJma2VyZWtpIiwiaWF0IjoxNT
I2ODM5MDEwLCJleHAiOjE1MjY4NDI2MTB9.cTwpL-
x7kszn7C9OUXhHlkTGhb8Aa7oOGwNf_nhALCs

Another way of testing this would be going to https:/ ​/ ​jwt.​io/ ​ and
creating a JWT, including userid:"fkereki" in the payload, and using
modernJSbook as the secret key. You would have to calculate the
expiration date (exp) by yourself, though.

https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/

Implementing RESTful Services with Node Chapter 4

[190]

Checking the token at https:/ ​/​jwt. ​io shows the following payload:

{
 "userid": "fkereki",
 "iat": 1526839010,
 "exp": 1526842610
}

The iat attribute shows that the JWT was issued on 5/20/2018, close to 2:00 P.M. and the
exp attributes show that the token is set to expire one hour (3,600 seconds) later. If we now
repeat the curl request to /private, but adding the appropriate header, it will be accepted.
However, if you wait (at least an hour!), the result will be different; the JWT checking
middleware will detect the expired token, and a 403 error will be produced:

> curl "http://localhost:8080/private" -H "Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyaWQiOiJma2VyZWtpIiwiaWF0IjoxNT
I2ODM5MDEwLCJleHAiOjE1MjY4NDI2MTB9.cTwpL-
x7kszn7C9OUXhHlkTGhb8Aa7oOGwNf_nhALCs"
the /private endpoint needs JWT, but it was provided: OK!

With this code, we now have a way to add authentication to our RESTful server. If you
want, you could go further and add specific authorization rules so that some users would
get access to some features, while others would be restricted. Now, let's try to bring
everything together, and build ourselves a small REST set of services.

Tying it all together – building a REST server
In this recipe, let's write at least a part of a complete RESTful server for our world database
that we started using in the Working with a database section of the previous chapter,
according to the routing scheme that we saw in the Adding Routes section earlier in this
chapter. We'll focus on just working with Regions, but only for the sake of brevity;
Countries and Cities are very similar in terms of coding, and the full code is provided with
this book.

Our REST services will send JSON answers and require tokens for authorization. We will
enable CORS so that we can access them from different web pages. The routes we will
process will be as follows:

GET /regions will provide all regions of all countries
GET /regions/:country will return all regions of the given country
GET /regions/:country/:region will return a single region

https://jwt.io
https://jwt.io
https://jwt.io
https://jwt.io
https://jwt.io
https://jwt.io
https://jwt.io

Implementing RESTful Services with Node Chapter 4

[191]

DELETE /regions/:country/:region will let us delete a given region
POST /regions/:country will allow us to create a new region
PUT /regions/:country/:region will let us create or update a given region

Dealing with countries and cities is quite similar, with only a couple of exceptions:

Because of the size of the result set, we won't accept GET /cities requests to
provide all cities in the world; only GET /cities/:city will be permitted. An
alternative would be accepting the request, but sending back a 405 status code,
Method not allowed.
Since country codes cannot be assigned at will, we won't allow POST
/countries. Instead, PUT /countries/:country will be required to add a
new country, as well as for updating an existing one.

Each type of request will produce the appropriate HTTP status codes; we'll see that in the
following sections. Also, GET requests will be sent JSON results, and POST requests will be
sent the location of the newly created entity; more on this later.

How to do it...
Let's look at how we can write our server. We'll start with some basic code, skipping parts
that we already saw earlier, such as CORS and JWT handling:

// Source file: src/restful_server.js

/* @flow */
"use strict";
const express = require("express");
const app = express();
const bodyParser = require("body-parser");
const dbConn = require("./restful_db.js");
app.get("/", (req, res) => res.send("Secure server!"));

/*
 Add here the logic for CORS
*/

/*
 Add here the logic for providing a JWT at /gettoken
 and the logic for validating a JWT, as shown earlier
*/

Implementing RESTful Services with Node Chapter 4

[192]

Handling routing is quite standard. Since routes are simple and few, we may put them in
the same source file; otherwise, we'd set up separate files for different sets of routes. The
handlers for the routes will certainly go in another file ("restful_regions.js") so as not
to obscure the main server code. Note that country and region codes are, if present, part of
the URL; whenever the name for a region is needed, it goes in the body parameters:

// Source file: src/restful_server.js

const {
 getRegion,
 deleteRegion,
 postRegion,
 putRegion
} = require("./restful_regions.js");

app.get("/regions", (req, res) => getRegion(res, dbConn));

app.get("/regions/:country", (req, res) =>
 getRegion(res, dbConn, req.params.country)
);

app.get("/regions/:country/:region", (req, res) =>
 getRegion(res, dbConn, req.params.country, req.params.region)
);

app.delete("/regions/:country/:region", (req, res) =>
 deleteRegion(res, dbConn, req.params.country, req.params.region)
);

app.post("/regions/:country", (req, res) =>
 postRegion(res, dbConn, req.params.country, req.body.name)
);

app.put("/regions/:country/:region", (req, res) =>
 putRegion(
 res,
 dbConn,
 req.params.country,
 req.params.region,
 req.body.name
)
);

Implementing RESTful Services with Node Chapter 4

[193]

Finally, let's look at some more code that we've already seen to finish up the server, error
handling and setting up the server itself:

// Source file: src/restful_server.js

// eslint-disable-next-line no-unused-vars
app.use((err, req, res, next) => {
 console.error("Error....", err.message);
 res.status(500).send("INTERNAL SERVER ERROR");
});

/*
 Add here the logic for HTTPS, finishing with:

 https.createServer({ ca, cert, key }, app);
*/

app.listen(8080, () =>
 console.log("Routing ready at http://localhost:8080")
);

Let's move on and see how it works. We'll show the code for handling routes in the
following section.

How it works...
Since we have four kinds of requests, let's split our study of the server code appropriately.

Handling GETs
As we saw previously, there are three possible routes to handle:

/regions to get all regions of all countries
/regions/UY to get all regions of a given country—in this case, Uruguay (UY)
/regions/UY/11 to get a specific region of a country—here, region 11 of
Uruguay

Implementing RESTful Services with Node Chapter 4

[194]

We can handle all three cases in a similar way by just changing the SQL SELECT we'll be
doing. Handling the results, however, will require a special case, as we'll note in the
following code:

// Source file: src/restful_regions.js

const getRegion = async (
 res: any,
 dbConn: any,
 country: ?string,
 region: ?string
) => {
 try {
 res.set("Connection", "close");

 let sqlQuery = "";
 let regions;
 if (country == null) {
 sqlQuery = `
 SELECT rr.*
 FROM regions rr
 JOIN countries cc
 ON cc.countryCode=rr.countryCode
 ORDER BY cc.countryCode, rr.regionCode
 `;
 regions = await dbConn.query(sqlQuery);
 } else if (region == null) {
 sqlQuery = `
 SELECT 1
 FROM countries
 WHERE countryCode=?
 `;

 const countries = await dbConn.query(sqlQuery, [country]);
 if (countries.length === 0) {
 res.status(404).send("Country not found");
 return;
 }

 sqlQuery = `
 SELECT rr.*
 FROM regions rr
 JOIN countries cc
 ON cc.countryCode=rr.countryCode
 WHERE rr.countryCode=?
 ORDER BY rr.regionCode
 `;
 regions = await dbConn.query(sqlQuery, [country]);

Implementing RESTful Services with Node Chapter 4

[195]

 } else {
 sqlQuery = `
 SELECT rr.*
 FROM regions rr
 JOIN countries cc
 ON cc.countryCode=rr.countryCode
 WHERE rr.countryCode=?
 AND rr.regionCode=?
 `;
 regions = await dbConn.query(sqlQuery, [country, region]);
 }

 if (regions.length > 0 || region === null) {
 res.status(200)
 .set("Content-Type", "application/json")
 .send(JSON.stringify(regions));
 } else {
 res.status(404).send("Not found");
 }
 } catch (e) {
 res.status(500).send("Server error");
 }
};

The special case we mentioned in the preceding code is asking for something like
/regions/XYZZY, and providing a wrong country code. In this case, instead of sending an
empty set (which could imply that the country does exist, as it doesn't seem to have any
regions) we can send a 404, so the second if statement (country provided, region absent)
does a special check before proceeding.

We can see this code working with several examples. Getting /regions with no further
parameter provides a largish output (22 MB), so adding parameters to allow for filtering or
paging could be in order:

I removed the HTTPS, CORS, and mainly the JWT code from the server to
make the examples simpler to follow. Doing this meant that I haven't
received extra headers, and have avoided having to provide a JWT in each
call. Yes, I cheated a bit, but the source code provided with the book
includes everything, so don't worry about it!

Implementing RESTful Services with Node Chapter 4

[196]

> curl localhost:8080/regions/
[{"countryCode":"AD", "regionCode":"2", "regionName":"Canillo"},
{"countryCode":"AD", "regionCode":"3", "regionName":"Encamp"},
{"countryCode":"AD", "regionCode":"4", "regionName":"La Massana"},
.
.
.
{"countryCode":"ZW", "regionCode":"7", "regionName":"Matabeleland South"},
{"countryCode":"ZW", "regionCode":"8", "regionName":"Masvingo"},
{"countryCode":"ZW", "regionCode":"9", "regionName":"Bulawayo"}]

A request for a specific country (such as /regions/UY) produces an answer very much like
the one that we received previously, but including only the regions in the country
UY (Uruguay) and a request for a single region gets a single object:

> curl localhost:8080/regions/uy/10
[{"countryCode":"UY","regionCode":"10","regionName":"Montevideo"}]

Finally, we can try for an error; check out the following screenshot and note the 404 status:

 Asking our RESTful server for regions in a non-existent country produces a 404 error

Implementing RESTful Services with Node Chapter 4

[197]

Handling DELETEs
Deleting a region is simple, except that you must check beforehand whether the region has
any cities or not. We could solve this by implementing a cascading deletion so that when
you delete a region, all of its cities get deleted as well, or we may forbid the deletion
outright. In our case, I opted for the latter, but it could be argued that the former is also
valid, and would require not very complex logic:

Why are we checking for cities by ourselves, instead of letting the DB
server do it by using foreign keys? The reason is simple: I wanted to show
some code that went a bit beyond a single SQL statement. The very same
argument could be done for cascade deletions, which you could
implement with a hand-crafted SQL sentence, or by setting up special
rules in your database. And, let me state that for an actual application,
letting the DB do the work would actually be preferable!

// Source file: src/restful_regions.js

const deleteRegion = async (
 res: any,
 dbConn: any,
 country: string,
 region: string
) => {
 try {
 res.set("Connection", "close");

 const sqlCities = `
 SELECT 1 FROM cities
 WHERE countryCode=?
 AND regionCode=?
 LIMIT 1
 `;
 const cities = await dbConn.query(sqlCities, [country, region]);
 if (cities.length > 0) {
 res.status(405).send("Cannot delete a region with cities");
 return;
 }

 const deleteRegion = `
 DELETE FROM regions
 WHERE countryCode=?
 AND regionCode=?
 `;

 const result = await dbConn.query(deleteRegion, [country, region]);

Implementing RESTful Services with Node Chapter 4

[198]

 if (result.info.affectedRows > 0) {
 res.status(204).send();
 } else {
 res.status(404).send("Region not found");
 }
 } catch (e) {
 res.status(500).send("Server error");
 }
};

We can test this in a similar way. Deleting a region without cities works, while attempting
to do it for a region with cities or for a non-existing region fails:

> curl localhost:8080/regions/uy/23 -X DELETE --verbose
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> DELETE /regions/uy/23 HTTP/1.1
.
.
.
< HTTP/1.1 204 No Content

> curl localhost:8080/regions/uy/10 -X DELETE --verbose
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> DELETE /regions/uy/10 HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.59.0
> Accept: */*
>
< HTTP/1.1 405 Method Not Allowed
.
.
.
Cannot delete a region with cities

> curl localhost:8080/regions/uy/99 --verbose
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> GET /regions/uy/99 HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.59.0
> Accept: */*

Implementing RESTful Services with Node Chapter 4

[199]

>
< HTTP/1.1 404 Not Found
.
.
.
Not found

See the different status codes that may be returned:

204, if a region was deleted with no problems—and in that case, no text response
is sent
404, if the requested region doesn't exist
405, if the request couldn't be accepted (because the regions had cities)

Of course, you might change the workings of the service and, for example, provide for a
cascading delete operation if a certain parameter was provided, as in
http://some.server/regions/uy/23?cascade=true. Also, for some services, this
operation may happen without even asking for it; a user might have a set of preferences,
and whenever a user is to be deleted, you should also delete their preferences. This would
depend on the desired semantics of the service.

Handling PUTs
A PUT request means that an existing resource is to be updated. In our case, a pre-condition
is that the specified region must exist; otherwise, a 404 error would be appropriate. If the
region exists, then we can update it and send a 204 status. If MySQL detects that no changes
have been made to the region, it lets you know that the UPDATE didn't change anything;
you could either send a 204 (as I chose to) or a 409 error, but in any case, you are certain
that the region has the data you want. We'll also have to do some parameter checking; in
this case, just to make sure that a name is given, but the data validation logic could be much
more complex:

// Source file: src/restful_regions.js

const putRegion = async (
 res: any,
 dbConn: any,
 country: string,
 region: string,
 name: string
) => {
 res.set("Connection", "close");

Implementing RESTful Services with Node Chapter 4

[200]

 if (!name) {
 res.status(400).send("Missing name");
 return;
 }

 try {
 const sqlUpdateRegion = `
 UPDATE regions
 SET regionName=?
 WHERE countryCode=?
 AND regionCode=?
 `;

 const result = await dbConn.query(sqlUpdateRegion, [
 name,
 country,
 region
]);

 if (result.info.affectedRows > 0) {
 res.status(204).send();
 } else {
 res.status(409).send("Region not updated");
 }
 } catch (e) {
 res.status(500).send("Server error");
 }
};

This is easy to test, since there are only two situations (either the region exists or it doesn't),
plus a sanity check in case the name is missing. Let's add the missing tilde to a region first;
just like before, no content will be received because of the 204 status code:

> curl localhost:8080/regions/uy/16 -X PUT -d "name=San Jose" --verbose
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> PUT /regions/uy/16 HTTP/1.1
.
.
.
< HTTP/1.1 204 No Content

Implementing RESTful Services with Node Chapter 4

[201]

The two error cases (non-existent region, missing name) are quickly taken care of. The
former case is detected by MySQL, while the latter is caught by the initial if statement:

> curl localhost:8080/regions/uy/xyzzy -X PUT -d "name=Colossal Cave" --
verbose
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> PUT /regions/uy/xyzzy HTTP/1.1
.
.
.
< HTTP/1.1 409 Conflict
.
.
.
Region not updated

> curl localhost:8080/regions/uy/10 -X PUT --verbose
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> PUT /regions/uy/10 HTTP/1.1
.
.
.
< HTTP/1.1 400 Bad Request
.
.
.
Missing name

Handling PUT is just about the simplest case; let's finish our study of the server by taking a
close look at the most complex request, a POST.

Handling POSTs
Finally, handling POST requests is a bit more complex, since you are supposed to say to
which collection (in this case, a country's) you want to add the new resource, and the logic
is supposed to do everything, including assigning an ID. This means that our code will be a
bit longer, since we'll be adding the need to find an unused region code. There will be
another difference: when the resource is created, the URI for the new resource should be
returned in the Location header, so that will be another extra requirement.

Implementing RESTful Services with Node Chapter 4

[202]

Finally, once again, we'll have some data validation, as with PUT requests:

// Source file: src/restful_regions.js

const postRegion = async (
 res: any,
 dbConn: any,
 country: string,
 name: string
) => {
 res.set("Connection", "close");

 if (!name) {
 res.status(400).send("Missing name");
 return;
 }

 try {
 const sqlCountry = `
 SELECT 1
 FROM countries
 WHERE countryCode=?
 `;
 const countries = await dbConn.query(sqlCountry, [country]);
 if (countries.length === 0) {
 res.status(403).send("Country must exist");
 return;
 }

 const sqlGetId = `
 SELECT MAX(CAST(regionCode AS INTEGER)) AS maxr
 FROM regions
 WHERE countryCode=?
 `;
 const regions = await dbConn.query(sqlGetId, [country]);
 const newId =
 regions.length === 0 ? 1 : 1 + Number(regions[0].maxr);

 const sqlAddRegion = `
 INSERT INTO regions SET
 countryCode=?,
 regionCode=?,
 regionName=?
 `;

 const result = await dbConn.query(sqlAddRegion, [
 country,
 newId,

Implementing RESTful Services with Node Chapter 4

[203]

 name
]);
 if (result.info.affectedRows > 0) {
 res.status(201)
 .header("Location", `/regions/${country}/${newId}`)
 .send("Region created");
 } else {
 res.status(409).send("Region not created");
 }
 } catch (e) {
 res.status(500).send("Server error");
 }
};

This is the logic that requires the most queries. We must (1) check that the country exists,
(2) determine the maximum region ID for that country, and only then (3) insert the new
region and return a 201 status to the user. We can test this in a similar way to what we did
for PUT, so let's look at a simple case:

> curl localhost:8080/regions/ar -X POST -d "name=NEW REGION" --verbose
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8080 (#0)
> POST /regions/ar HTTP/1.1
.
.
.
< HTTP/1.1 201 Created
< X-Powered-By: Express
< Location: /regions/ar/25
.
.
.
Region created

> curl localhost:8080/regions/ar/25
[{"countryCode":"ar","regionCode":"25","regionName":"NEW REGION"}]

Argentina has 24 provinces, numbered from 1 to 24 in the regions table, so if we add a
new one, it should be #25, and the Location header in the answer proves that this is so.
(We are only returning the route, without the server and port, but we could easily add
those pieces of data.) Doing a GET confirms that the POST succeeded.

Implementing RESTful Services with Node Chapter 4

[204]

There's more...
We have set up a barebones RESTful server with Express, but there is much
more—enough for a book of its own! Let's finish this chapter by taking a very quick glance
at several ideas and tools that you might want to consider for your own projects.

Accepting JSON data
We have used POST parameters in our examples, but it's also possible to receive, parse, and
process JSON input. (This can make it easier to call a REST service, because at the frontend
it's very likely you'll be able to readily produce an object with the desired parameters for
the request.) Use express.json() as middleware, and the request body will include the
data from the JSON parameter.

Go to http:/ ​/​expressjs. ​com/ ​en/​4x/ ​api. ​html#express. ​json for more
information on this.

Adding the PATCH method for partial updates
The PUT method makes you update a complete entity, but sometimes you want to affect
only a few fields, and in this case you can allow the PATCH method. PATCH is similar to PUT,
but lets you update only some attributes. Adding support for this method is not complex,
and is very similar to the PUT logic, so you may provide a more powerful server with
relatively little extra coding.

You can read more about PATCH at https:/ ​/​developer. ​mozilla. ​org/
en-​US/ ​docs/ ​Web/ ​HTTP/ ​Methods/ ​PATCH and if you care about its
specification, at https:/ ​/​datatracker. ​ietf. ​org/​doc/ ​rfc5789/ ​.

Using Restify instead of Express
While Express is a very popular and widely used package that can be used to build any
kind of server, if you specifically want just a REST server and no other feature, you may
consider using other packages, such as Restify. The advantages of such a change have to
do with the orientation of the package, which provides similar features to Express, but
requires a bit less code in order to accomplish a RESTful deployment. Some well-known
users of Restify are npm and Netflix, but the list is much longer.

http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
http://expressjs.com/en/4x/api.html#express.json
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH
https://datatracker.ietf.org/doc/rfc5789/
https://datatracker.ietf.org/doc/rfc5789/
https://datatracker.ietf.org/doc/rfc5789/
https://datatracker.ietf.org/doc/rfc5789/
https://datatracker.ietf.org/doc/rfc5789/
https://datatracker.ietf.org/doc/rfc5789/
https://datatracker.ietf.org/doc/rfc5789/
https://datatracker.ietf.org/doc/rfc5789/
https://datatracker.ietf.org/doc/rfc5789/
https://datatracker.ietf.org/doc/rfc5789/
https://datatracker.ietf.org/doc/rfc5789/
https://datatracker.ietf.org/doc/rfc5789/
https://datatracker.ietf.org/doc/rfc5789/
https://datatracker.ietf.org/doc/rfc5789/

Implementing RESTful Services with Node Chapter 4

[205]

You can read more about Restify at http:/ ​/​restify. ​com/ ​.

Allowing filtering, sorting, and pagination
Since REST is basically a style and not a specification for services, there are aspects that
aren't specified, and you have some leeway as to their implementation. Three common
requirements are filtering (so you don't get all entities, but just those that satisfy some
condition), sorting (so that entities are included in some order), and pagination (because
showing hundreds or thousands of entities at once isn't practical). Of course, these three
requirements interact with each other; if you sort and filter, then paging should apply to the
sorted filtered data.

All of these requirements can be handled by adding some query parameters (or possibly
headers), but you'll have to study a bit to understand what's the best way for you:

Filtering may be specified with a format such as filter=price[lt]220, which
would specify that a given attribute (price) must be less than (lt) a value (200).
Building up more complex expressions involving logical operators such as and,
or, and not, plus optional parentheses, can also be done, at the cost of more
complex parsing and interpreting at the server.
Sorting may be specified by parameters such as sortby=price,name to order
first by price and then by name. You can add other options to allow for
ascending or descending sorting.
Paging can be done by using the limit and offset parameters, with the same
interpretation that's used in SQL SELECT statements (see https:/ ​/ ​dev.​mysql.
com/​doc/ ​refman/ ​8. ​0/ ​en/ ​select. ​html for more on that) or by specifying a page
size and the page number.

Adding the handling of these options to your REST server will make it more powerful, and
enable the client to send more specific, optimized requests. There is one more extension that
you may want; being able to select extra, related entities, so read on.

http://restify.com/
http://restify.com/
http://restify.com/
http://restify.com/
http://restify.com/
http://restify.com/
http://restify.com/
http://restify.com/
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Implementing RESTful Services with Node Chapter 4

[206]

Using GraphQL instead of REST
REST services are standard and easy to use, but may imply some overhead, mostly when
you don't need just a single entity, but also some related ones; for example, how would you
get a country and all of its regions? With our current design, you'd have to do separate calls
and join the results by yourself, or otherwise extend your routes yourself. For example, you
would do this for /regions/uy?include=cities so that the server would add—to each
region in UY—an array with its cities. While this solution may be apt for a small example
like the one we're using, for bigger, more complex databases, with tables related among
themselves in many ways, it could easily get out of hand.

There is, however, another option. GraphQL is a data query language that was developed
by Facebook, and it lets you define, at the client, the structure of the data you require; the
server will do whatever is needed to produce exactly that. GraphQL lets you get many
related resources with a single request by following references to build a complex structure,
and sending it along with the minimum delay. You also get tools to help you define your
data schema and perform online queries.

Let's look at a very short example, taken from the documentation of GraphQL's own site, at
http:/​/​graphql.​org/ ​learn/ ​queries/ ​. Given a database of Star Wars movies, you could
write the following query that wants to get the hero from a couple of movies, and for each
one, the name, the list of movies they appear in, and all of their friends' names:

{
 leftComparison: hero(episode: EMPIRE) {
 ...comparisonFields
 }
 rightComparison: hero(episode: JEDI) {
 ...comparisonFields
 }
}

fragment comparisonFields on Character {
 name
 appearsIn
 friends {
 name
 }
}

http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/
http://graphql.org/learn/queries/

Implementing RESTful Services with Node Chapter 4

[207]

The result of this query is as follows. Note how the object structure follows your
specification in the query, and that repeated fields, or foreign key access, were all solved by
the GraphQL server, and in a single request:

{
 data: {
 leftComparison: {
 name: "Luke Skywalker",
 appearsIn: ["NEWHOPE", "EMPIRE", "JEDI"],
 friends: [
 {
 name: "Han Solo"
 },
 {
 name: "Leia Organa"
 },
 {
 name: "C-3PO"
 },
 {
 name: "R2-D2"
 }
]
 },
 rightComparison: {
 name: "R2-D2",
 appearsIn: ["NEWHOPE", "EMPIRE", "JEDI"],
 friends: [
 {
 name: "Luke Skywalker"
 },
 {
 name: "Han Solo"
 },
 {
 name: "Leia Organa"
 }
]
 }
 }
}

Implementing RESTful Services with Node Chapter 4

[208]

While totally outside the scope of this chapter (we wanted a RESTful server, after
all), GraphQL is a very valid alternative for applications that need to work with complex,
linked structures, which would require too much processing and communication time
otherwise.

To learn more about GraphQL, check out the official site at https:/ ​/
graphql. ​org/ ​.

Implementing a microservice-based architecture
Now that you're able to develop a server by following the structure in this chapter, working
in an SOA might evolve into a microservices organization, in which the server, instead of
being a monolithic piece of code that can provide multiple services, is organized as a set of
distinct mini-servers, loosely coupled, connected by a lightweight protocol, and each
having a single responsibility. Services may be created by different groups, even using
different languages or libraries, that are only dependent on following a given interface so
that other services may freely interact with them as needed.

This structure, based on independent smaller pieces, greatly helps with scalability,
modularity, and even development and testing. If changes are needed, their impact will be
smaller, and strategies such as continuous delivery and deployment become feasible.
Developing the microservices themselves is readily done, and the necessary techniques for
doing this are mainly the ones that we saw in this chapter. Only adding the requests from
one microserver to another to gather all of the required information is necessary.

A couple of good starting points on the benefits of a microservice-based
architecture are the articles by Martin Fowler at https:/ ​/​martinfowler.
com/​microservices/ ​ and by Chris Richardson at http:/ ​/​microservices.
io/​patterns/ ​microservices. ​html.

https://graphql.org/
https://graphql.org/
https://graphql.org/
https://graphql.org/
https://graphql.org/
https://graphql.org/
https://graphql.org/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/microservices.html

5
Testing and Debugging Your

Server
In this chapter, we will look at the following recipes:

Adding logging with Winston
Adding HTTP logging with Morgan
Configuring your server for different environments
Unit testing your code
Measuring your test coverage
Debugging your code
Testing simple services from the command line
Testing more complex sequences of calls with Postman
Documenting and testing your REST API with Swagger

Introduction
In the previous chapters, we installed Node and created a RESTful server. Is everything
ready? Usually, things don't work out that well—bugs will creep in, and you'll have to find
out how to fix your code. In this chapter, we'll be getting into practical details, such as
testing and debugging your server.

So, after this chapter, you'll have your Node RESTful server ready for deployment and for
official production work. Let's get into the necessary tasks.

Testing and Debugging Your Server Chapter 5

[210]

Adding logging with Winston
Let's start with a simple, basic need: logging. Having solid, correct logging set up can help
you find problems quickly, while incomplete or otherwise lacking logging can make you
look for hours for what could be a simple, trivial problem. A basic rule for any application
is to ensure that proper login is set up so that you can be confident that any situation that
comes up will at least be recognized and recorded for future analysis.

The first idea you could have is to just use the console family of functions, such as
console.log(), console.warn(), console.info(), and more. (For a complete
reference, check out https:/ ​/ ​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​API/ ​console.)
While these are good for quick debugging, they just don't do it for application-level
logging. You should be able to select what kind of logs you want (everything? Errors only?)
to decide what logs you see depending on your environment (for example, you'd want to
see some kinds of logs in development but not in production), or even to enable or disable
logging. And, finally, we want to have some control over the provided information:

Timestamping, to learn at what time each log was written
Text formatting, so logging can be understandable by humans, but also parseable
by applications
Level setting, usually on a scale ranging from error (the most serious) through
warning, informative, verbose, and ending with debugging and silly (yes, truly!)
Destination picking, like stdout or stderr, the filesystem, and so on

If you look around in the npm listings, you'll find many modules that can do logging: some
are generic tools, and other are more specific ones. In our case, we'll use Winston for
generic, application-level logging, and we'll turn to a different tool, Morgan, which is
specifically tailored for HTTP traffic logging, as we'll see in the next section.

You can learn more about Winston at https:/ ​/​github. ​com/ ​winstonjs/
winston.

https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston

Testing and Debugging Your Server Chapter 5

[211]

How to do it...
We want to install Winston, so the first step will be to apply the time-honored method:

 npm install winston --save

Currently, version 3.0 is in beta, but by the time you get this book, it will
almost certainly be out of beta and ready for production. (By the way, I
installed the beta version by using a slightly changed command: npm
install winston@next --save; otherwise, I'd have gotten a 2.x.x
version.)

For (thorough!) documentation on Winston, check its own GitHub page
at https:/ ​/ ​github. ​com/ ​winstonjs/ ​winston. Be careful with articles on
the web, though, because there are some important changes in version 3,
so most code won't work without some updating.

We want to look at a simple example about the usage of Winston. This package has many
configuration parameters, so let's try to get a basic, sane configuration going, which you'll
be able to extend on your own:

// Source file: winston_server.js

/* @flow */
"use strict";

const express = require("express");
const winston = require("winston");

const app = express();

const logger = winston.createLogger({
 transports: [
 new winston.transports.Console({
 level: "info",
 format: winston.format.combine(
 winston.format.colorize({ all: true }),
 winston.format.label({ label: "serv" }),
 winston.format.timestamp(),
 winston.format.printf(
 msg =>
 `${msg.timestamp} [${msg.label}] ${msg.level} ${
 msg.message
 }`
)
)

https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston

Testing and Debugging Your Server Chapter 5

[212]

 }),
 new winston.transports.File({
 filename: "serv_error.txt.log",
 level: "warn",
 format: winston.format.combine(
 winston.format.timestamp(),
 winston.format.printf(
 msg =>
 `${msg.timestamp} [serv] ${msg.level} ${
 msg.message
 }`
)
)
 }),
 new winston.transports.File({
 filename: "serv_error.json.log",
 level: "warn"
 })
]
});

// continues...

Winston can handle several transports at the same time, and by transport, it means a
storage device for whatever you log. A single logger may have multiple transports, but
configured differently: for example, you may want to show all logs at the console, but only
write a file with warnings and errors, and yet more possibilities include writing a database
or sending data to some URL. Formats may also vary (text lines for the console, possibly
JSON for a file?), so you have lots of flexibility regarding configuring where your messages
will go.

In our case, we are creating three transports:

A console output, for all messages marked as "info" and above, using colorized
output (we'll see it in a short while), emitting output with a timestamp, a label
("serv", to help distinguish the server's messages from others that might show
up in the console, coming from other applications), the error level, and a message
A file output, for all messages marked as "warn" and above, in text format
Another file output, for the same messages, but in JSON format

We'll look at how to adapt logging (and other features) later in this
chapter, in the Configuring your server for different environments section, so
you'll be able to be even more flexible in logging and other features.

Testing and Debugging Your Server Chapter 5

[213]

After having created the logger and defined the transports, all we have to do is use it,
wherever we want. I'll start with a very basic server so that we can focus on getting logging
to work: we'll just handle two routes—/, which will send back a message, and /xyzzy,
which will simulate some program failure, instead of sending back a "Nothing happens"
message.

At the beginning, we could log every request by hand—though we'll get a better output
with Morgan, as we'll see afterwards. The following code does just that:

// ...continued

app.use((req, res, next) => {
 logger.info(`${req.method} request for ${req.originalUrl}`);
 next();
});

// continues...

Then, for each route, we can add some info or debug messages, as we may need:

// ...continued

app.get("/", (req, res) => {
 logger.info("Doing some processing...");
 logger.debug("Some fake step 1; starting");
 logger.debug("Some fake step 2; working");
 logger.debug("Some fake step 3; finished!");
 res.send("Winston server!");
});

app.get("/xyzzy", (req, res) => {
 logger.info("Adventurer says 'XYZZY'");
 res.say_xyzzy(); // this will fail
 res.send("Nothing happens.");
});

// continues...

Testing and Debugging Your Server Chapter 5

[214]

Handling wrong routes might produce a warn message, and in other unplanned situations,
a direct error. For the former, I'm only listing the required route, and for the latter, both
the error message and the traceback stack, to help in future debugging:

// ...continued

app.use((req, res) => {
 logger.warn(`UNKNOWN ROUTE ${req.originalUrl}`);
 res.status(404).send("NOT FOUND");
});

// eslint-disable-next-line no-unused-vars
app.use((err, req, res, next) => {
 logger.error(`GENERAL ERROR ${err.message}\n${err.stack}`);
 res.status(500).send("INTERNAL SERVER ERROR");
});

app.listen(8080, () => {
 logger.info("Ready at http://localhost:8080");
});

We're set! Let's try it out.

How it works...
After building the project, I ran the Winston logging code to catch all the produced logs. I
tried it out with a sequence of calls, simulated with curl; we'll be looking at how to do this
in more complex tasks in later sections in this chapter:

> curl localhost:8080/
Winston server!
> curl localhost:8080/
Winston server!
> curl localhost:8080/invented
NOT FOUND
> curl localhost:8080/
Winston server!
> curl localhost:8080/xyzzy
INTERNAL SERVER ERROR
> curl localhost:8080/
Winston server!
> curl localhost:8080/
Winston server!

Testing and Debugging Your Server Chapter 5

[215]

The output on the console can be seen in the following screenshot. The normal lines are in
green (yes, hard to see in a black and white book—sorry about that!), the warnings are
yellow, and the errors are in red. The request for the non-existing /invented path ended in
a warning, and the one for /xyzzy produced an error, since we tried to call a non-existent
function:

 Winston's console output for a few dummy requests

What got logged to the different log files? According to our specification, only the warning
and the error messages were stored. The text file is basically the same as the console output,
and that makes sense because the format specification we selected for those two transports
is exactly the same:

2018-05-28T00:29:06.651Z [serv] warn UNKNOWN ROUTE /invented
2018-05-28T00:29:11.214Z [serv] error GENERAL ERROR res.say_xyzzy is not a
function
TypeError: res.say_xyzzy is not a function
 at app.get
(/home/fkereki/MODERNJS/chapter05/out/winston_server.js:60:9)
 at Layer.handle [as handle_request]
(/home/fkereki/MODERNJS/chapter05/node_modules/express/lib/router/layer.js:
95:5)
 at next
(/home/fkereki/MODERNJS/chapter05/node_modules/express/lib/router/route.js:
137:13)
 at Route.dispatch

Testing and Debugging Your Server Chapter 5

[216]

(/home/fkereki/MODERNJS/chapter05/node_modules/express/lib/router/route.js:
112:3)
 at Layer.handle [as handle_request]
(/home/fkereki/MODERNJS/chapter05/node_modules/express/lib/router/layer.js:
95:5)
 at
/home/fkereki/MODERNJS/chapter05/node_modules/express/lib/router/index.js:2
81:22
 at Function.process_params
(/home/fkereki/MODERNJS/chapter05/node_modules/express/lib/router/index.js:
335:12)
 at next
(/home/fkereki/MODERNJS/chapter05/node_modules/express/lib/router/index.js:
275:10)
 at app.use
(/home/fkereki/MODERNJS/chapter05/out/winston_server.js:47:5)
 at Layer.handle [as handle_request]
(/home/fkereki/MODERNJS/chapter05/node_modules/express/lib/router/layer.js:
95:5)

The JSON file, on the other hand, is a bit reduced: each line includes an object with
the message and level attributes, because we didn't specify that anything in particular
should be added. However, you can change that: read Winston's documentation at https:/
/​github.​com/​winstonjs/ ​winston/ ​blob/ ​master/ ​README. ​md, and you'll have plenty of
available possibilities:

{"message":"UNKNOWN ROUTE /invented","level":"warn"}
{"message":"GENERAL ERROR res.say_xyzzy is not a function\nTypeError:
res.say_xyzzy is not a function\n at app.get
(/home/fkereki/MODERNJS/chapter05/out/winston_server.js:60:9)\n at
Layer.handle [as handle_request] ...part of the text snipped out...
(/home/fkereki/MODERNJS/chapter05/out/winston_server.js:47:5)\n at
Layer.handle [as handle_request]
(/home/fkereki/MODERNJS/chapter05/node_modules/express/lib/router/layer.js:
95:5)","level":"error"}

So, we have a flexible way to log just about whatever we want to, but our HTTP logging
was, in particular, a bit too skimpy, and that's a good reason to include Morgan, as we'll
see.

https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md
https://github.com/winstonjs/winston/blob/master/README.md

Testing and Debugging Your Server Chapter 5

[217]

There's more...
You may also be interested in looking at other packages, such as Bunyan (https:/ ​/ ​github.
com/​trentm/​node- ​bunyan) or Pino (https:/ ​/ ​github. ​com/ ​pinojs/ ​pino); the latter is said to
be the logging package with the best performance, but don't take my word for it—try it out!
Finally, should you work on developing npm packages, then debug (https:/ ​/​github. ​com/
visionmedia/​debug), which is basically a wrapper around console methods, could be
your package of choice—and being quite simple, it also works for web applications and
Node.

Adding HTTP logging with Morgan
In the previous section, we managed to provide a very basic HTTP logging feature when
we included some middleware that did Winston logging:

app.use((req, res, next) => {
 logger.info(`${req.method} request for ${req.originalUrl}`);
 next();
});

While this worked, there is much more information that we could desire, such as the HTTP
status code for the response, the processing time it required, and more, so let's add Morgan
into the mix, since that package is specific for requests logging.

You can learn more about Morgan at https:/ ​/​github. ​com/ ​expressjs/
morgan.

In this recipe, we'll add Morgan to our software stack so that we can get better logs for all
the processed requests.

https://github.com/trentm/node-bunyan
https://github.com/trentm/node-bunyan
https://github.com/trentm/node-bunyan
https://github.com/trentm/node-bunyan
https://github.com/trentm/node-bunyan
https://github.com/trentm/node-bunyan
https://github.com/trentm/node-bunyan
https://github.com/trentm/node-bunyan
https://github.com/trentm/node-bunyan
https://github.com/trentm/node-bunyan
https://github.com/trentm/node-bunyan
https://github.com/trentm/node-bunyan
https://github.com/pinojs/pino
https://github.com/pinojs/pino
https://github.com/pinojs/pino
https://github.com/pinojs/pino
https://github.com/pinojs/pino
https://github.com/pinojs/pino
https://github.com/pinojs/pino
https://github.com/pinojs/pino
https://github.com/pinojs/pino
https://github.com/pinojs/pino
https://github.com/pinojs/pino
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/expressjs/morgan
https://github.com/expressjs/morgan
https://github.com/expressjs/morgan
https://github.com/expressjs/morgan
https://github.com/expressjs/morgan
https://github.com/expressjs/morgan
https://github.com/expressjs/morgan
https://github.com/expressjs/morgan
https://github.com/expressjs/morgan
https://github.com/expressjs/morgan

Testing and Debugging Your Server Chapter 5

[218]

How to do it...
Let's start by installing Morgan with the usual method:

 npm install morgan --save

Now we must include it in our server, and we'll also require the fs package in order to
write Morgan's logs to a file. Note that I'm adding to our previous server, so the Winston
parts will be in place, unchanged from what we saw in the previous section:

// Source file: src/morgan_server.js

/* @flow */
"use strict";

const express = require("express");
const winston = require("winston");
const morgan = require("morgan");
const fs = require("fs");

const app = express();

// continues...

We want to do some general logging to a file, and also all errors (HTTP status code 400 and
higher) to the console, so we'll have to add morgan twice to our middleware stack. The first
parameter to morgan defines how the log messages will be formed: you have to provide
either a function to generate the message that will be logged, or a string with tokens that
morgan will replace at runtime. In the following code snippet, I used both styles, just for
variety: a function for the file output, and a string for the console:

// ...continued

const morganStream = fs.createWriteStream("serv_http_errors.log", {
 flags: "a"
});

app.use(
 morgan(
 (tokens, req, res) =>
 `${new Date().toISOString()} [http] ` +
 `${tokens.method(req, res)} ${tokens.url(req, res)}`,
 {
 immediate: true,
 stream: morganStream
 }
)

Testing and Debugging Your Server Chapter 5

[219]

);

app.use(
 morgan(
 `:date[iso] [http] ` +
 `:method :url (:status) :res[content-length] - :response-time
ms`,
 {
 skip: (req, res) => res.statusCode < 400
 }
)
);

// continues...

The second option to morgan lets you add some options, such as the following:

immediate, meaning that requests will be logged as soon as they come in
(immediate:true) or after they've been processed (immediate:false). The
advantage of the former is that you are sure that all requests will be logged, even
in the case of a serious crash, but the latter provides more information.
skip(), a function that lets you decide whether to log a given request or not. In
our case, we'll use it to just log requests that get a 400 or higher status.
stream, to which the output should be written.

When specifying the output format, you have access to several pieces of data, called tokens
in Morgan's parlance, such as the following, but check the documentation for the full list:

:date[format] Current date and time in UTC, in several formats
:http-version HTTP version of the request

:method HTTP method of the request
:remote-addr Remote address of the request
:req[header] The given header of the request, or "-" if the header isn't present
:res[header] The given header of the response, or "-" if the header isn't present

:response-time Processing time, in milliseconds
:status HTTP status of the response
:url URL of the request

You can see that I used several of these tokens when setting up Morgan's output. Now, let's
see this works.

Testing and Debugging Your Server Chapter 5

[220]

How it works...
Let's give this a whirl, using the same examples that we used for winston. Since we set the
console output to show only warnings and errors, we'll just see an added pair of lines.
Displaying [http] instead of [serv] helps finding them, among the rest of the console
output:

.

.

.
2018-05-28T19:27:19.232Z [http] GET /invented (404) 9 - 0.886 ms
.
.
.
2018-05-28T19:27:23.771Z [http] GET /xyzzy (500) 21 - 0.925 ms
.
.
.

The (complete) HTTP log went into a file, and is just a list of all of the requests:

2018-05-28T19:27:16.871Z [http] GET /
2018-05-28T19:27:17.827Z [http] GET /
2018-05-28T19:27:19.231Z [http] GET /invented
2018-05-28T19:27:20.677Z [http] GET /
2018-05-28T19:27:23.770Z [http] GET /xyzzy
2018-05-28T19:27:25.296Z [http] GET /

Note that we opted to do an immediate logging, which means that all requests—even those
that might cause everything to crash—get logged, but the outcome itself of the request is
then not available. If you wish to also get that information—but, say, only for requests that
caused some error—you might add a third morgan destination, sharing the same file
stream, but only for errors, as shown in the following code snippet:

app.use(
 morgan(
 `:date[iso] [http] ` +
 `:method :url (:status) :res[content-length] - :response-time
ms`,
 {
 skip: (req, res) => res.statusCode < 400,
 stream: morganStream
 }
)
);

Testing and Debugging Your Server Chapter 5

[221]

Using this, the log would then include more data, but only for the requests you picked:

2018-05-28T19:36:54.968Z [http] GET /
2018-05-28T19:36:55.453Z [http] GET /
2018-05-28T19:36:56.011Z [http] GET /
2018-05-28T19:36:58.149Z [http] GET /invented
2018-05-28T19:36:58.151Z [http] GET /invented (404) 9 - 1.230 ms
2018-05-28T19:36:59.528Z [http] GET /
2018-05-28T19:37:00.033Z [http] GET /
2018-05-28T19:37:01.886Z [http] GET /xyzzy
2018-05-28T19:37:01.888Z [http] GET /xyzzy (500) 21 - 1.115 ms
2018-05-28T19:37:03.060Z [http] GET /
2018-05-28T19:37:03.445Z [http] GET /
2018-05-28T19:37:03.903Z [http] GET /

There's more...
If you wish, you can make Morgan's output to go into Winston's to get a single common
logging stream, like so:

// Source file: src/morgan_in_winston_server.js

app.use(
 morgan(
 `:method :url (:status) :res[content-length] - :response-time ms`,
 {
 stream: {
 write: message => logger.info(message.trim())
 }
 }
)
);

Some output could be as follows; I highlighted the morgan lines:

2018-05-28T20:03:59.931Z [serv] info Ready at http://localhost:8080
2018-05-28T20:04:02.140Z [serv] info Doing some processing...
2018-05-28T20:04:02.146Z [serv] info GET / (200) 15 - 3.642 ms
2018-05-28T20:04:02.727Z [serv] info Doing some processing...
2018-05-28T20:04:02.728Z [serv] info GET / (200) 15 - 0.581 ms
2018-05-28T20:04:04.479Z [serv] warn UNKNOWN ROUTE /invented
2018-05-28T20:04:04.480Z [serv] info GET /invented (404) 9 - 1.170 ms
2018-05-28T20:04:05.842Z [serv] info Doing some processing...
2018-05-28T20:04:05.843Z [serv] info GET / (200) 15 - 0.490 ms
2018-05-28T20:04:07.640Z [serv] info Adventurer says 'XYZZY'

Testing and Debugging Your Server Chapter 5

[222]

A few details about the changes I made are as follows:

Adding .trim() gets rid of a possible extra new line character
Since all messages are sent through winston, you don't get your [http]
distinguishing text in the output
If you want to send warnings for status like 400 or above, you'll have to write a
more complex function that will scan the message text and decide whether to use
logger.info() or some other method

Configuring your server for different
environments
No matter what you develop, it's certain that you'll work at least with a couple of
environments, development and production, and settings for your code won't be the same. For
example, you won't use the same configuration for security, to access a database, to log
errors, or to connect to analytics services, and so on: when running in your development
environment, you'll need a certain setup, and for production there may be many changes.

You could set everything up in your code, but having users, passwords, IPs, and other
sensitive data in plain text and saved in a source code repository that might get hacked isn't
a good recipe for security. You should deal exclusively with your development
configuration and leave the actual deployment to production to a different team, which will
safely deal with that configuration.

Node lets you access environment variables and use them for configuration so that you can
move that setup outside of your code. In this chapter, let's look at some ways to deal with
all this, which will also indirectly help with our testing, later in this chapter.

How to do it...
When you are developing software, you'll obviously work in a different environment than
for production; in fact, you could have several environments such as development, testing,
preproduction, production, and so on. We'll also do this; let's start by going over some of the
configurations we have already seen in this book.

Testing and Debugging Your Server Chapter 5

[223]

In the Getting a connection section of Chapter 3, Developing with Node, when we created our
services, we defined four constants to access the database, as follows:

const DB_HOST = "127.0.0.1";
const DB_USER = "fkereki";
const DB_PASS = "modernJS!!";
const DB_SCHEMA = "world";

In the previous chapter, in the Adding Authentication with JWT section, we had a secret that
we used for signing:

const SECRET_JWT_KEY = "modernJSbook";

And, finally, in this very chapter, we decided what levels of logging should be done.
However, we hardcoded those levels, without the possibility of making things different in
production:

const logger = winston.createLogger({
 transports: [
 new winston.transports.Console({
 level: "info",
 format: winston.format.combine(
 winston.format.colorize({ all: true }),
 .
 .
 .

We also wrote the following, with some hardcoding:

const morganStream = fs.createWriteStream("serv_http_errors.log", {
 flags: "a"
});

app.use(
 morgan(
 `:date[iso] [http] ` +
 `:method :url (:status) :res[content-length] - :response-time
ms`,
 {
 skip: (req, res) => res.statusCode < 400

It's worth pointing out that changes between development and production need not be
limited to listing or not listing; you could also change the logging format, the files where
logs should be written, and so on.

Testing and Debugging Your Server Chapter 5

[224]

The key to changing configurations on the fly is the usage of environment variables, which
are provided via the process.env object. Every configuration variable in your
environment will appear as a property of that object. If we write and run a program that
just consists of a single console.log(process.env) line (or if we do node -e
"console.log(process.env)" at the command line) you'll get an output similar to the
following:

> node show_env.js
{ GS_LIB: '/home/fkereki/.fonts',
 KDE_FULL_SESSION: 'true',
 PILOTPORT: 'usb:',
 HOSTTYPE: 'x86_64',
 VSCODE_NLS_CONFIG: '{"locale":"en-us","availableLanguages":{}}',
 XAUTHLOCALHOSTNAME: 'linux',
 XKEYSYMDB: '/usr/X11R6/lib/X11/XKeysymDB',
 LANG: 'en_US.UTF-8',
 WINDOWMANAGER: '/usr/bin/startkde',
 LESS: '-M -I -R',
 DISPLAY: ':0',
 JAVA_ROOT: '/usr/lib64/jvm/jre',
 HOSTNAME: 'linux',
 .
 .
 .
 . many, many lines snipped out
 .
 .
 .
 PATH: '/home/fkereki/bin:/usr/local/bin:/usr/bin:/bin:/usr/lib/mit/sbin',
 JAVA_BINDIR: '/usr/lib64/jvm/jre/bin',
 KDE_SESSION_UID: '1000',
 KDE_SESSION_VERSION: '5',
 SDL_AUDIODRIVER: 'pulse',
 HISTSIZE: '1000',
 SESSION_MANAGER: 'local/linux:@/tmp/.ICE-unix/2202,unix/linux:/tmp/.ICE-
unix/2202',
 CPU: 'x86_64',
 CVS_RSH: 'ssh',
 LESSOPEN: 'lessopen.sh %s',
 GTK_IM_MODULE: 'ibus',
 NODE_VERSION: '9' }

Read more about process.env and its contents at https:/ ​/​nodejs. ​org/
api/​process. ​html#process_ ​process_ ​env.

https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env
https://nodejs.org/api/process.html#process_process_env

Testing and Debugging Your Server Chapter 5

[225]

There are two ways of taking advantage of this. We can either use an environment
variable to check whether we are in development, in production, or in any other situation,
and depending on that we can set some properties, or we can directly get the values for
those properties from the environment itself. Any of these two solutions will help you
unlink the code from the environment; let's see how this works in practice.

How it works...
Let's start by determining the environment. The standard is to set an environment variable
called NODE_ENV with the name of the environment, before running the Node server itself.
How to do that would depend on your actual machine, but in Linux, it would be something
akin to the following, while in Windows the SET command would be required:

> export NODE_ENV=production
> echo $NODE_ENV
Production

In your code, you could set a isDev variable to true if you are running in development
(and false otherwise) with just two lines. If no environment was specified, the first line
makes it default to "development", which is most likely the safest choice:

// Source file: show_env.js

const dev = process.env.NODE_ENV || "development";
const isDev = dev === "development";

Then, for example, you could have set different logging levels easily: see the following code
snippet, regarding how the level attribute gets its value, depending on the environment:

const logger = winston.createLogger({
 transports: [
 new winston.transports.Console({
 level: isDev ? "info" : "warn",
 format: winston.format.combine(
 winston.format.colorize({ all: true }),
 .
 .
 .

Testing and Debugging Your Server Chapter 5

[226]

Changing the log file would also be simple, along the same lines as the preceding code:

let loggingFile;
if (isDev) {
 loggingFile = "serv_http_errors.log";
} else {
 loggingFile = "/var/log/http_server.txt";
}

const morganStream = fs.createWriteStream(loggingFile, {
 flags: "a"
});

This style works, but it still has a couple of problems:

Any change in the environment requires changing the (hardcoded) server
The paths, tokens, passwords, and more, all reside in the source code, in a very
viewable state

So, we can do even better by directly taking the values for our internal variables directly
from the environment:

const DB_HOST = process.env.DB_HOST;
const DB_USER = process.env.DB_USER;
const DB_PASS = process.env.DB_PASS;
const DB_SCHEMA = process.env.DB_SCHEMA;
const SECRET_JWT_KEY = process.env.SECRET_JWT_KEY;

Alternatively, for logging, we could use the following:

const logger = winston.createLogger({
 transports: [
 new winston.transports.Console({
 level: process.env.WINSTON_LEVEL,
 format: winston.format.combine(
 winston.format.colorize({ all: true }),
 .
 .
 .

Testing and Debugging Your Server Chapter 5

[227]

There's more...
If you want to simplify working in development, but also make it easy for others when
pushing code to production or other environments, you may want to look into dotenv,
an npm package that lets you work with environment variables in text files. Install the
package with npm install dotenv --save, and then create a file at the root of your
project with the .env extension, which contains the desired variables values:

DB_HOST=127.0.0.1
DB_USER=fkereki
DB_PASS=modernJS!!
DB_SCHEMA=world
SECRET_JWT_KEY=modernJSbook

Then, in your code, you only need to add a single line, and that will load and merge all the
definitions in your .env file into process.env. Of course, if you only want to use this
feature in development (as it was originally intended by the creator of dotenv) you could
previously check the isDev variable, as we saw earlier:

if (isDev) {
 dotenv.load();
}

Environment files should never be uploaded to source control, so it makes sense to add a
line with **/*.env to your .gitignore file. You can, however, upload a sample file (say,
config.env.example), but without the actual values for the environment variables; this
will help new developers get the necessary files, but preserve security.

You can learn more about dotenv at https:/ ​/​github. ​com/ ​motdotla/
dotenv.

Unit testing your code
One of the best practices to ensure quality and to protect yourself from regression bugs
(those that happen when you modify something, and reintroduce an earlier, previously
corrected, bug) is to make sure that your code is unit tested. There are three types of testing:

Unit testing, which applies to each component, on their own
Integration testing, which applies to components working together
End-to-end (E2E) testing, which applies to the system as a whole

https://github.com/motdotla/dotenv
https://github.com/motdotla/dotenv
https://github.com/motdotla/dotenv
https://github.com/motdotla/dotenv
https://github.com/motdotla/dotenv
https://github.com/motdotla/dotenv
https://github.com/motdotla/dotenv
https://github.com/motdotla/dotenv
https://github.com/motdotla/dotenv
https://github.com/motdotla/dotenv

Testing and Debugging Your Server Chapter 5

[228]

Unit testing is good—not only because it helps try out your code, but because if done well,
as in Test-Driven Design (TDD), in which you basically first set up the tests, and only then
write the code—as it will help produce code of a better quality, and this will surely have an
impact on reducing bugs all over your system. (Finding bugs even before any testing work
begins is also a money saver; the earlier you find and fix bugs, the less costly it is.) So, let's
focus on how you can use unit testing for your Node work.

Of course, it's well-known that testing can prove the existence of bugs, but not
their absence, so no matter how much testing you do, some bugs will fall
through! And, when that happens, TDD will make you first create some
new unit tests that pinpoint the bug, and only then work at actually fixing
it; at least, that specific bug won't reappear, because it will be detected.

There are plenty of tools and frameworks for unit testing, and in this book we'll be using
Jest, a modern tool for Delightful JavaScript Testing as its lemma goes, which was
developed by Facebook. We'll have the additional advantage of being able to also use it
with React or React Native. Installation is quite simple, requiring just npm install jest
--save-dev. After doing that, we'll be able to write our tests; let's see how.

You can read more about Jest at the official web page, at https:/ ​/
facebook. ​github. ​io/ ​jest/ ​.

In this recipe, we'll look at how to write unit tests for Node and get valid experience for
future chapters.

How to do it...
Writing unit tests can be simpler or harder, depending on how you designed your code. If
you work in a clear, side effects-free style, then writing functional tests will be quite simple.
If you start adding complexities such as callbacks or promises and databases or filesystems,
then you'll require more work, because you'll have to mock some of those elements; after all,
you don't want to run tests on a production database, do you?

In the following sections, we'll look at how we can write unit tests and learn how to work
with some specific concepts such as mocks or spies.

https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/

Testing and Debugging Your Server Chapter 5

[229]

Doing functional tests
First, let's see a simple, basic set of functional tests, and for that, let's go back to the
rounding library we wrote in the Working with modules section of Chapter 3, Developing with
Node. When you test a module, you only test the exported functions to see if they perform
according to their specs. The interesting part to test is, then, the following:

const addR = (x: number, y: number): number => roundToCents(x + y);

const subR = (x: number, y: number): number => addR(x, changeSign(y));

const multR = (x: number, y: number): number => roundToCents(x * y);

const divR = (x: number, y: number): number => {
 if (y === 0) {
 throw new Error("Divisor must be nonzero");
 } else {
 return roundToCents(x / y);
 }
};

These four functions are totally functional, insofar that their computed results depend only
on their input parameters, and they have absolutely no side effects. Writing tests requires
(1) defining groups of tests, and (2) including one or more tests in each group. Here, it
makes sense to write a group for each function, so let's see how the code could go; we could
start with the addR() function, and write something like this:

// Source file: src/roundmath.test.js

/* @flow */
"use strict";

const rm = require("./roundmath");

describe("addR", () => {
 it("should add first and round later", () => {
 expect(rm.addR(1.505, 2.505)).toBe(4.01);
 });

 it("should handle negatives", () => {
 expect(rm.addR(3.15, -2.149)).toBe(1.0);
 });
});

// continues...

Testing and Debugging Your Server Chapter 5

[230]

The most usual style is naming the unit test file in the same way as the
tested file, but adding "test" or "spec" before the file extension. In our
case, for roundmath.js, we named the unit test file
as roundmath.test.js. As for placement, Jest is able to find your tests
no matter where you place them, so the usual practice is to place this new
file alongside the original one so that it will be easy to find.

Each describe() call defines a group, and each it() call within defines a specific test.
Should a test fail, Jest will report it, giving the group's and test's descriptions, as in "addR
should add first and round later". Tests consist of (1) setting things up, if needed;
(2) actually running the test by calling the function; and (3) checking whether the function
did as we expected.

The first test we wrote verifies that, when adding numbers, addition should be done first,
and only then rounding; rounding first and then adding wouldn't be right. We test this by
calling addR(1.505, 2.505), and we expect the result to be 4.01; if the function had
been rounded first, the result would have been 4.02. Each test should be good at verifying
at least one property of the function; our second test checks that addR() can handle
negative numbers.

The style in which you write your assumptions about the code is meant to
be easy to read: expect so-and-so to be such-value. Methods such as toBe()
or toThrow() (see our next example) are called matchers; see the quite
long list at https:/ ​/​facebook. ​github. ​io/ ​jest/ ​docs/ ​en/ ​expect. ​html for
more information.

Of course, just a couple of tests would probably not be enough for complex code, and you'll
usually have more tests, but as an example, these will do. Note that we should write tests
for all functions; for example, divR() could use something like this. While the first test is
quite straightforward (similar to one for addR()), in the second one, we verify that calling
divR() with a zero divisor should throw an exception:

// ...continued

describe("divR", () => {
 it("should divide first, then round", () => {
 expect(rm.divR(22.96, 0.001)).toBe(22960);
 });

 it("should not divide by zero", () =>
 expect(() => rm.divR(22, 0)).toThrow());
});

https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html
https://facebook.github.io/jest/docs/en/expect.html

Testing and Debugging Your Server Chapter 5

[231]

If you miss some functions or part of them, later in this chapter, we'll look at ways to detect
that; don't worry just now. At this point in time, we'll keep writing tests, and then we'll run
the complete suite.

Using spies
The functional tests we wrote are quite good, but just won't do for some situations, such as
when you work with callbacks. Let's turn to another piece of code we wrote: the user
validation routine we used for JWT. Basically, this function received a username, a
password, and an error-first callback, which was used to signal whether the username
really had that password or not. We wrote very basic validation code (a single user was
accepted!), but that doesn't matter here; we want to look at how we can deal with the
callback. The important parts we care about now are highlighted in the following code
extract:

const validateUser = (
 userName: string,
 password: string,
 callback: (?string, ?string) => void) => {
 if (!userName || !password) {
 callback("Missing user/password", null);
 } else if (userName === "fkereki" && password === "modernjsbook") {
 callback(null, "fkereki"); // OK, send userName back
 } else {
 callback("Not valid user", null);
 }
};

Testing this would require actually passing a callback, and then trying to see how it was
called; this can be done, but the details would be messy. Alternatively, we can have a
spy—a dummy function, which we can later interrogate to see if it was called or not, with
which parameters it was called, and more:

// Source file: validate_user.test.js

/* @flow */
"use strict";

const validateUser = require("./validate_user");

describe("validateUser", () => {
 let cb;
 beforeEach(() => {
 cb = jest.fn();
 });

Testing and Debugging Your Server Chapter 5

[232]

 it("should reject a call with empty user", () => {
 validateUser("", "somepass", cb);
 expect(cb).toHaveBeenCalled();
 expect(cb).toHaveBeenCalledWith("Missing user/password", null);
 });

 it("should reject a wrong password", () => {
 validateUser("fkereki", "wrongpassword", cb);
 expect(cb).toHaveBeenCalledWith("Not valid user", null);
 });

 it("should accept a correct password", () => {
 validateUser("fkereki", "modernjsbook", cb);
 expect(cb).toHaveBeenCalledWith(null, "fkereki");
 });
});

We can create such a spy by calling jest.fn(). Since we'll need a new spy for each test
we'll write, we can take advantage of a beforeEach() function, which Jest will call
automatically before running each individual test; this will save some extra writing. There
are actually four functions you can use, as follows:

beforeAll() will be called only once, before starting with your tests; for
example, you could set up a test database here and fill it with certain data
beforeEach() will be called before each test, as we did in our example to create
a spy
afterEach() will be called after each test, to clean up
afterAll() will be called after running all tests; for example, you could destroy
a test database you had created for testing purposes only

All three tests are similar; we will pick the first one. We call the validation routine, but pass
an empty parameter. In terms of the validation specification, that should create an error. By
doing this, we can test that the callback was actually called, and that it was called by
passing an error as the first parameter, and nothing as the second.

(Of course, the first test, using the .toHaveBeenCalled() matcher, is not needed given
the second one that tests if it was called with specific values, but we just wanted to show a
new pair of matchers.)

Using spies is quite practical if we only care about seeing if a given function was called or
not, but what would happen if the function under test actually required some value back
from our spy? We can also solve that; let's get into a more complex example.

Testing and Debugging Your Server Chapter 5

[233]

Working with mocks
Let's finish by working with a more complex example—a part of the REST code that
worked with regions, which requires a database and uses promises, among several
complications. Let's take the DELETE method handler as an example:

const deleteRegion = async (
 res: any,
 dbConn: any,
 country: string,
 region: string
) => {
 try {
 const sqlCities = `
 SELECT 1 FROM cities
 WHERE countryCode="${country}"
 AND regionCode="${region}"
 LIMIT 1
 `;

 const cities = await dbConn.query(sqlCities);

 if (cities.length > 0) {
 res.status(405).send("Cannot delete a region with cities");
 } else {
 const deleteRegion = `
 DELETE FROM regions
 WHERE countryCode="${country}"
 AND regionCode="${region}"
 `;

 const result = await dbConn.query(deleteRegion);

 if (result.info.affectedRows > 0) {
 res.status(204).send();
 } else {
 res.status(404).send("Region not found");
 }
 }
 } catch (e) {
 res.status(500).send("Server error");
 }
};

Testing and Debugging Your Server Chapter 5

[234]

We did something right by passing the database connection (dbConn) as a parameter to the
function. This means that we can mock it—meaning, provide an alternative version that will
behave as we may want it, but without actually using any database. Similarly, processing
our request will need to simulate a response object (res) whose status code we'll want to
check; we could code it by hand, but using the node-mocks-http package is simpler, so
just install it with npm install node-mocks-http --save. Check out its documentation
at https:/​/​github. ​com/ ​howardabrams/ ​node-​mocks- ​http, for more information—it can do
much more!

We know that the DELETE method should (1) confirm that the region to be deleted must
have no cities, and (2) if true, then actually delete the region. How can we test if the first
check works? Let's provide deleteRegion() with a mock that will say that the region we
want to delete actually has some cities:

// Source file: src/restful_regions.test.js

/* @flow */
"use strict";

const { deleteRegion } = require("./restful_regions");
const mockRes = require("node-mocks-http");

describe("deleteRegion", () => {
 let mDb;
 let mRes;
 beforeEach(() => {
 mDb = { query: jest.fn() };
 mRes = new mockRes.createResponse();
 });

 it("should not delete a region with cities", async () => {
 mDb.query.mockReturnValueOnce(Promise.resolve([1]));
 await deleteRegion(mRes, mDb, "FK", "22");
 expect(mRes.statusCode).toBe(405);
 });

// continues...

We could program a complete mock database that would analyze the incoming query and
then provide some expected answer, but in this case, a little knowledge about how the code
checks for cities is good. We can create a mock database object with a query attribute
(mDb.query) and set it so that when mDb.query() is called for the first time, it will return
a promise resolved to an array with a single 1—for that's what the actual SQL statement
would have produced when checking a region that actually includes some cities. We'll also
create a mock response object (mRes) that will get the routine's answer.

https://github.com/howardabrams/node-mocks-http
https://github.com/howardabrams/node-mocks-http
https://github.com/howardabrams/node-mocks-http
https://github.com/howardabrams/node-mocks-http
https://github.com/howardabrams/node-mocks-http
https://github.com/howardabrams/node-mocks-http
https://github.com/howardabrams/node-mocks-http
https://github.com/howardabrams/node-mocks-http
https://github.com/howardabrams/node-mocks-http
https://github.com/howardabrams/node-mocks-http
https://github.com/howardabrams/node-mocks-http
https://github.com/howardabrams/node-mocks-http
https://github.com/howardabrams/node-mocks-http
https://github.com/howardabrams/node-mocks-http
https://github.com/howardabrams/node-mocks-http

Testing and Debugging Your Server Chapter 5

[235]

What's left to do? You just have to call the deleteRegion() function with all the
parameters, await its results, and verify that the response status code is 405, as expected;
then, you're done!

The other tests are similar, but we have to simulate two SQL accesses, not one:

// ...continued

 it("should delete a region without cities", async () => {
 mDb.query
 .mockReturnValueOnce(Promise.resolve([]))
 .mockReturnValueOnce(
 Promise.resolve({
 info: { affectedRows: 1 }
 })
);
 await deleteRegion(mRes, mDb, "ST", "12");
 expect(mRes.statusCode).toBe(204);
 });

 it("should produce a 404 for non-existing region", async () => {
 mDb.query
 .mockReturnValueOnce(Promise.resolve([]))
 .mockReturnValueOnce(
 Promise.resolve({
 info: { affectedRows: 0 }
 })
);
 await deleteRegion(mRes, mDb, "IP", "24");
 expect(mRes.statusCode).toBe(404);
 });
});

The interesting thing is that we can set up a mock function to produce different answers
each time it is called, according to what we need. Thus, in order to test whether
deleteRegion() would correctly delete a region without cities, our mock DB object must
do the following:

First, return an empty array, showing that the region to be deleted has no cities
Second, return an object with affectedRows:1, showing that the (supposed)
DELETE SQL command was successful

After setting things up in this way, the rest of the code is like our first case; await the
function and check the status code.

Testing and Debugging Your Server Chapter 5

[236]

How it works...
To run the tests, we'll have to edit a script in package.json. Change the "test" script,
which up till now had just an error message, so it will read as follows:

 "test": "jest out/"

The "test" script can be run just by typing npm test. In our case, since our output code
goes into the out/ directory we are telling Jest to inspect that directory, and run all tests
(*.test.js files, by default) that it can find. You can modify Jest's configuration for more
specific cases, but in general, it works well with zero configuration. The output is short and
practical, as shown in the following screenshot:

The result of the npm test command is short and to the point

In our case, matching what we did, it shows that we ran three suites of tests, including a
total of 10 tests, and they all passed. Had one or more tests produced a wrong result, we'd
have gotten another sort of result, with lots of red. I modified a test on purpose so that it
would fail, and the following output was the result:

Testing and Debugging Your Server Chapter 5

[237]

 Modifying a test to make it fail, and running Jest, produces a listing including the missed expectations, the failed test, and more

Testing and Debugging Your Server Chapter 5

[238]

In the preceding screenshot, we can see that one test failed, in the
restful_regions.test.js file, showing that a 204 result was expected, but a 404 error
was received instead. The file is marked with a red FAIL message; the other two files are
marked with PASS, in green. In our case, it happened because we purposefully wrote a
failing test, but in real life, if the test had been running fine before, and now failed, it would
mean that someone messed with the code and accidentally introduced a bug. (To be fair,
there also exists the possibility that the test was not totally correct then, and the tested
function was actually right!) In any case, getting a red result means that the code cannot be
considered ready, and more work is needed.

There's more....
Should you need to mock some package that you cannot (or won't) inject as a parameter
into a function, you can provide Jest with a complete mocked version. Suppose you wanted
to mock the "fs" package: you'd start by creating a __mocks__ directory at the same level
of the node_modules one, then you would write and place your manual mock code there,
and finally you would specify jest.mock("fs") at the beginning of your test file so
that Jest will use your module rather than the standard one.

All of this can become a chore, so you'd better try to provide all of the modules as
parameters to your functions (as we did with dbConn when deleting regions) so that
standard mocks can be used. However, if you can't do that, check out https:/ ​/​facebook.
github.​io/​jest/​docs/ ​en/ ​manual- ​mocks. ​html for more information.

Measuring your test coverage
OK, so you have written a lot of tests, but how much of your code base are you actually
testing? This measure of the quality (breadth) of your testing is called coverage, and it's easy
to determine; in this recipe, let's find out how to do this. Fortunately, given all the work
that we have done, it will be a very simple recipe.

How to do it...
To have Jest produce a coverage report, showing what parts of your code were (and
weren't) covered by your tests, all you have to do is add a pair of parameters to the
corresponding script in the package.json file:

 "test": "jest out/ --coverage --no-cache"

https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html
https://facebook.github.io/jest/docs/en/manual-mocks.html

Testing and Debugging Your Server Chapter 5

[239]

In the preceding line of code, the first parameter, --coverage, tells Jest to collect all of
the necessary information, and the second parameter, --no-cache, ensures that all
information will be fresh; in certain situations, not totally correct results have been
produced when this parameter was omitted. How does this affect the testing? Let's see!

How it works...
The key difference when running Jest with coverage is that a different report is added at
the console, and also a HTML page is built. First, let's check the former: check out the
following screenshot —and once again, I accept that seeing colors in black and white is
really hard!

 Including coverage options when running Jest produces a more detailed analysis of your tests

For each file, you get the following information:

%Stmts: The percentage of statements that were executed at least once because of
your tests. Ideally, each and every statement should have been executed at least
once; otherwise, whatever statement wasn't executed could be anything, and you
wouldn't realize it.

Testing and Debugging Your Server Chapter 5

[240]

%Branch: The percentage of branches that were taken. The reasoning for this is
similar to that of %Stmts—if there are some branches (for example, an else) that
were never taken, that means that there are some paths in your code that could
do anything.
%Funcs: The percentage of functions in the file that were called.
%Lines: The percentage of lines that were covered. Note that a line may have
several statements, so %Lines will always be greater or equal to %Stmts.
Uncovered Line #s: This is NOT the number of lines (several billion!?), but the
numbers of specific lines that were never executed.

In our case, we find that all of the functions were tested in validate_user.js, but half the
functions were missed in roundmath.js (we tested addR() and divR(), but forgot about
subR() and multR(), so that's correct) and only one function (the DELETE handler) was
tested in restful_regions.js. Getting better coverage numbers means more work, and it
may not always be wise, in economic terms, to aim for 100% (80%-90% is common), but
25% or 50% is definitely too low, so more work is needed.

The more interesting part is that you can analyze in depth how tests ran by looking into the
coverage/lcov_report/ directory of your project and opening index.html in a
browser, as shown in the following screenshot:

 The main page of the web coverage report shows essentially the same data as the console run

Testing and Debugging Your Server Chapter 5

[241]

First, you can see the files in different colors: as usual, red means a not-too-good result, and
green is the best result. The interesting part is that if you click on a file, you'll get a detailed
analysis, including each line, if it was executed or not, and more:

 You can see which lines were executed, and which were missed, and why 100% wasn't achieved

Testing and Debugging Your Server Chapter 5

[242]

In our case, even if we thought we had covered all of the cases in deleteRegion(), the
screen shows us that we missed a possible situation: the SQL server failing to answer. Of
course, whether we include a specific test for this or not is a decision you'll have to take: at
least we can see that all of the most important code was covered, but don't forget the other
functions in the same file, which weren't tested at all!

Debugging your code
At some point or another, you'll have to debug your code. You might do well enough with
just a bit of logging (using the console object, as we saw earlier at the beginning of
the Adding logging with Winston section), but using a more powerful debugger is a great
help. In this recipe, let's see how you can do real-time debugging with breakpoints,
inspection of variables, and so on, so that you won't be limited to just trying to deduce
what's wrong by looking at console logs.

How to do it...
There are two ways of doing debugging; let's see both methods here.

If you just want to stay in your IDE, Visual Studio Code lets you directly start a debugging
session. Just click on the code you want to run (a reminder: pick the code in the out/
directory, and don't forget to use npm run build) and pick Debug | Start Debugging in
the menu. The window will look as follows:

Testing and Debugging Your Server Chapter 5

[243]

You can start a debugging session right in Visual Studio Code

Alternatively, if you'd rather keep using your favorite developer tools from Chrome, there's
an alternative you can use. First, in Chrome, look for N.I.M., the Node.js V8 Inspector
Manager, which can be found at https:/ ​/​chrome. ​google. ​com/ ​webstore/ ​detail/ ​nodejs-
v8-​inspector-​manag/ ​gnhhdgbaldcilmgcpfddgdbkhjohddkj, and add it to your browser.

https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj
https://chrome.google.com/webstore/detail/nodejs-v8-inspector-manag/gnhhdgbaldcilmgcpfddgdbkhjohddkj

Testing and Debugging Your Server Chapter 5

[244]

After doing that, open the N.I.M. console by going to about:inspect, and you'll get
something like what's shown in the following screenshot:

 The N.I.M. extension lets you debug Node sessions using Chrome's developer tools

All you have to do now is go to VSC, or a shell session, and run your code. Before doing
this, add the --inspect option, as in node --inspect out/restful_server.js. You
will receive the following output:

Testing and Debugging Your Server Chapter 5

[245]

 To connect Node to Chrome's developer tools, you must run your code with an extra --inspect option

Testing and Debugging Your Server Chapter 5

[246]

After that, a window will open, and you'll have full access to Chrome's debugger console,
as shown in the following screenshot:

If you examine the URL in Chrome's debugger, you'll see something
like chrome-
devtools://devtools/bundled/inspector.html?experiments=tr

ue&v8only=true&ws=..., followed by a URL and a (long) hexadecimal
number. These values are listed after running Node with --inspect, in
the line starting with "Debugger listening on ws...".

 If N.I.M. is enabled, your Node session will connect to it, and you'll be able to debug your code from within Chrome

Testing and Debugging Your Server Chapter 5

[247]

Finally, in any case, you are ready to start a serious debugging session; let's see what you
can do.

If you want to learn about how code inspection works, read the following
article: https:/ ​/​nodejs. ​org/ ​en/​docs/ ​guides/ ​debugging- ​getting-
started/ ​. This also gives you tips for debugging with other IDEs.

How it works...
In the preceding screenshots, both with VSC and Chrome, I opened the
out/restful_regions.js file and set a breakpoint at the place where a SELECT is done
in order to get some regions. Doing a request for /regions/uy caused the run to pause at
the point. You can then do the following:

Examine all variables, including block, local, and global ones—this includes the
possibility of modifying their values, if you want to
Add some variables or expressions to watch; whenever execution pauses, you'll
see their values
See the call stack
Set some specific breakpoints

As for program execution, you can do the following:

Stop execution at any breakpoint
Restart execution
Step through your code, with the option of drilling down to analyze function calls

If you use Chrome, you'll be able to get some extra options, like memory usage analysis or
code execution profiling, but clearly the web-specific options won't do any good. However,
debugging your code by using the inspection option is a very good aid for bug chasing, so
get used to it; you'll appreciate it a lot!

https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://nodejs.org/en/docs/guides/debugging-getting-started/

Testing and Debugging Your Server Chapter 5

[248]

Testing simple services from the command
line
Whenever you create services, you will need some way of testing them. So far, we have
seen some examples of doing just that with curl. So, in this recipe, let's go a bit deeper and
check out some options that you may find useful. Alternatively, you could opt for another
tool, such as wget. For our purposes, both options are roughly equivalent, allowing us to
do everything we need for RESTful services testing: they are scriptable, they can download
things, and they can also send requests posting data, so what you use will be mostly a
question of personal preference.

If you want to read more about curl, check out its site at https:/ ​/​curl.
haxx. ​se/ ​, or the source code at https:/ ​/​github. ​com/​curl/ ​curl. You may
also be interested in Everything Curl, a book that details all there is to
know about this tool, and which is freely available at https:/ ​/​www.
gitbook. ​com/ ​download/ ​pdf/​book/ ​bagder/ ​everything- ​curl—however,
do take into account that it's over 300 pages long!

Getting ready
How to install curl will depend on your operating system, but it's available for practically
every platform you are likely to work with; just check out all the downloads at https:/ ​/
curl.​haxx.​se/​download. ​html. The command has dozens of possible options, but for our
intents, we will be looking at the following table. Note that most options have two versions:
a short, single character one, and a longer one, intended to be clearer for understanding:

-K filename
--config filename

Lets you specify the name of a file that has options in it
so that your command is shorter. In the given file, each
option will be in a different line.

-d key=value
--data key=value

Allows you to send data in the body of the request. If
you use this option several times, curl will use & as a
separator, as standard.

--data-binary someData
Similar to --data, but used to send binary data. Most
frequently it is followed by @filename, meaning that
the contents of the named file will be sent.

-D filename
--dump-header filename

Dumps the headers of the received data into a file.

https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://www.gitbook.com/download/pdf/book/bagder/everything-curl
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

Testing and Debugging Your Server Chapter 5

[249]

-H "header:value"
--header "header:value"

Allows you to set and send some header with a request.
You can use this option several times to set many
headers.

-i
--include

Includes headers of the received data in the output.

-o filename
--output filename

Stores the received data in the given file.

-s
--silent

Minimizes output to the console.

-v
--verbose

Maximizes output to the console.

-X method
--request method

Specifies which HTTP method will be used, such as
GET, POST, PUT, and so on.

Finally, if you need help, use curl --help or curl --manual, and you'll get a full
description of the utility and its options. Now let's look at how we can use curl to test our
services.

How to do it...
Let's do a complete set of tests for the RESTful server we created in the previous chapter,
with all options enabled, including JWT—which, as you'll remember, we removed in order
to simplify our code! Let's follow these steps:

Firstly, we may verify that the server is up and running; the / route had no token
requirement. Remember that we are using 8443, and actual HTTPS: requests will be sent to
that port:

> curl localhost:8443/
Ready

Now, if we try to access some region, we'll be refused, because of the lack of an authorizing
JWT:

> curl localhost:8443/regions/uy/10
No token specified

If the line starts with *, it's some information from curl itself
If the line starts with >, it's a header sent with the request
If the line starts with <, it's a received header

Testing and Debugging Your Server Chapter 5

[250]

In the following listing, I highlighted the incoming data:

> curl localhost:8443/regions/uy/10 --verbose
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8443 (#0)
> GET /regions/uy/10 HTTP/1.1
> Host: localhost:8443
> User-Agent: curl/7.59.0
> Accept: */*
>
< HTTP/1.1 401 Unauthorized
< X-Powered-By: Express
< Access-Control-Allow-Origin: *
< Connection: close
< Content-Type: text/html; charset=utf-8
< Content-Length: 18
< ETag: W/"12-s2+Ia/H9PDrgc59/6Z0mcWLfxuw"
< Date: Sun, 03 Jun 2018 21:00:40 GMT
<
* Closing connection 0
No token specified

We can get a token by using the /gettoken route and providing user and password
values. Let's store the received token in a file to simplify future tests:

> curl localhost:8443/gettoken -d "user=fkereki" -d "password=modernjsbook"
-o token.txt
 % Total % Received % Xferd Average Speed Time Time Time
Current
 Dload Upload Total Spent Left
Speed
100 187 100 153 100 34 149k 34000 --:--:-- --:--:-- --:--:--
182k

> cat token.txt
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyaWQiOiJma2VyZWtpIiwiaWF0IjoxNT
I4MDU5Nzc0LCJleHAiOjE1MjgwNjMzNzR9.6tioV798HHqriOFkhUpf8xJc8wq5TY5g-jN-
XhgwaTs

Now we can try a simple GET. We can either cut-and-paste the token in a header, or use
some shell features, at least in Linux-based systems, and take advantage of the back tick
option to include the token file's contents in the request:

> curl localhost:8443/regions/uy/10 -H "Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyaWQiOiJma2VyZWtpIiwiaWF0IjoxNT
I4MDU5Nzc0LCJleHAiOjE1MjgwNjMzNzR9.6tioV798HHqriOFkhUpf8xJc8wq5TY5g-jN-
XhgwaTs"

Testing and Debugging Your Server Chapter 5

[251]

[{"countryCode":"UY","regionCode":"10","regionName":"Montevideo"}]

> curl localhost:8443/regions/uy/10 -H "Authorization: Bearer `cat
token.txt`"
[{"countryCode":"UY","regionCode":"10","regionName":"Montevideo"}]

All we've got left is to try out the other routes and methods. Let's change the name of
Montevideo to MVD, which actually is the IATA code for its international airport; we'll do
a PUT first (which should produce a 204 status code) and then a GET to verify the update:

> curl localhost:8443/regions/uy/10 -H "Authorization: Bearer `cat
token.txt`" -X PUT -d "name=MVD" --verbose
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8443 (#0)
> PUT /regions/uy/10 HTTP/1.1
> Host: localhost:8443
> User-Agent: curl/7.59.0
> Accept: */*
> Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyaWQiOiJma2VyZWtpIiwiaWF0IjoxNT
I4MDU5Nzc0LCJleHAiOjE1MjgwNjMzNzR9.6tioV798HHqriOFkhUpf8xJc8wq5TY5g-jN-
XhgwaTs
> Content-Length: 8
> Content-Type: application/x-www-form-urlencoded
>
* upload completely sent off: 8 out of 8 bytes
< HTTP/1.1 204 No Content
< X-Powered-By: Express
< Access-Control-Allow-Origin: *
< Connection: close
< Date: Sun, 03 Jun 2018 21:09:01 GMT
<
* Closing connection 0

> curl localhost:8443/regions/uy/10 -H "Authorization: Bearer `cat
token.txt`"
[{"countryCode":"UY","regionCode":"10","regionName":"MVD"}]

In one experiment, I created a new region, numbered 20. Let's delete it and verify that it's
gone with yet another GET. The first request should get a 204 status, and the second should
get a 404, because the region will no longer exist:

> curl localhost:8443/regions/uy/20 -H "Authorization: Bearer `cat
token.txt`" -X DELETE --verbose
* Trying 127.0.0.1...
* TCP_NODELAY set
* Connected to localhost (127.0.0.1) port 8443 (#0)

Testing and Debugging Your Server Chapter 5

[252]

> DELETE /regions/uy/20 HTTP/1.1
> Host: localhost:8443
> User-Agent: curl/7.59.0
> Accept: */*
> Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyaWQiOiJma2VyZWtpIiwiaWF0IjoxNT
I4MDU5Nzc0LCJleHAiOjE1MjgwNjMzNzR9.6tioV798HHqriOFkhUpf8xJc8wq5TY5g-jN-
XhgwaTs
>
< HTTP/1.1 204 No Content
< X-Powered-By: Express
< Access-Control-Allow-Origin: *
< Connection: close
< Date: Sun, 03 Jun 2018 21:12:06 GMT
<
* Closing connection 0

> curl localhost:8443/regions/uy/20 -H "Authorization: Bearer `cat
token.txt`" -X DELETE --verbose
.
. several lines snipped out
.
< HTTP/1.1 404 Not Found
.
. more snipped lines
.
Region not found

Finally, let's invent a new region to verify that POST also works; a 201 status should be
returned, as well as the new ID (which would be 20, after we deleted the previous invented
20th Uruguayan region):

> curl localhost:8443/regions/uy -H "Authorization: Bearer `cat token.txt`"
-X POST -d "name=Fictitious" --verbose
.
. lines snipped out
.
< HTTP/1.1 201 Created
< X-Powered-By: Express
< Access-Control-Allow-Origin: *
< Connection: close
< Location: /regions/uy/20
.
. snipped lines
.
Region created

> curl localhost:8443/regions/uy -H "Authorization: Bearer `cat token.txt`"

Testing and Debugging Your Server Chapter 5

[253]

[{"countryCode":"UY","regionCode":"1","regionName":"Artigas"},{"countryCode
":"UY","regionCode":"10","regionName":"MVD"},
.
. snipped out lines
.
{"countryCode":"uy","regionCode":"20","regionName":"Fictitious"},
.
. more snipped out lines
.
{"countryCode":"UY","regionCode":"9","regionName":"Maldonado"}]

So, by using curl and some console work, we can set out to test any kind of services.
However, at some point, you may need to work with more complex sequences of service
calls, and doing all this work by hand could become a chore. Indeed, by careful scripting
you may simplify your job, but let's consider another tool, Postman, that's more apt for that
kind of work.

Testing more complex sequences of calls
with Postman
Testing services manually, or even with a carefully crafted shell script, isn't really easy.
Furthermore, if you require some kind of complex test, using scripting may prove to be just
too hard. Postman can be used to write tests for services, to organize them into full testing
suites, and to document the way your RESTful API works. You can also use it to mock
services or as a help in development, but we won't be getting into that here. In this recipe,
we'll focus on the testing aspects.

Getting ready
Download Postman from https:/ ​/ ​www. ​getpostman. ​com/ ​, and install it according to the
instructions for each platform. Remember to take a look at its documentation for more
features that we won't be seeing here.

How to do it...
Postman lets you create requests that you can store in collections. Before and after each
request, you may execute JavaScript code, either to set up the upcoming request, to process
the resulting response, or to store some information for future requests in a test sequence.
Let's take a look at the following sections.

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/

Testing and Debugging Your Server Chapter 5

[254]

Doing basic requests
First, we'll start with a simple test to get a JWT, which we'll then store so that we can use it
in upcoming tests. Open the Postman application and click on New to create a request.
Give it a name and a description, and either select or create a collection or folder to save it.
Don't worry too much about the actual placement; you'll be able to move requests around,
edit them, and more.

Then, to get a token, we need a POST, so set the method appropriately. Select the BODY tab,
pick the x-www-form-urlencoded option, and add two values, user and password,
which will be sent with the request. (For other situations, you might send raw data such as
XML or JSON, or binary data such as a file.) Check out the following screenshot:

 Creating a POST request to get a JWT

Testing and Debugging Your Server Chapter 5

[255]

Now, if you test it out by clicking on Send, the request will go to your server, and the
answer will appear at the bottom of the screen:

 A test run of our request shows that everything is working fine

Testing and Debugging Your Server Chapter 5

[256]

Adding some checks
However, that's not enough. We don't just want to check whether the /gettoken endpoint
works—we'd like to test if the token looks right, and if so, store it so that later requests can
use it. We will create an environment (click on the gear at the upper right corner) and add a
token entry so that we can store and retrieve the value we got from the server:

 Creating an environment is one way you can share data between requests

Finally, let's write some tests for the token, and also store its value in the environment.
Writing the tests themselves is sort of similar to what we already did, but you'll have to
look into the documentation to see what objects and methods are available. As for the tests
themselves, they use Chai (see http:/ ​/ ​www. ​chaijs. ​com/ ​), which is similar to Jest when it
comes to writing your expectations, but not exactly the same:

pm.test("Response is long enough", () =>
 pm.expect(pm.response.text()).to.have.lengthOf.above(40));

pm.test("Response has three parts", () =>
 pm.expect(pm.response.text().split(".")).to.have.lengthOf(3));
pm.environment.set("token", pm.response.text()); // for later scripts

http://www.chaijs.com/
http://www.chaijs.com/
http://www.chaijs.com/
http://www.chaijs.com/
http://www.chaijs.com/
http://www.chaijs.com/
http://www.chaijs.com/
http://www.chaijs.com/
http://www.chaijs.com/
http://www.chaijs.com/

Testing and Debugging Your Server Chapter 5

[257]

First, we will test that the answer should be at least 40 bytes long; tokens have no special
size limits, but 40 characters is on the low side. Then, a second test will check that the token
is comprised of three parts, separated by periods. Finally, we will store the response itself
in the environment, for future use. If you check the TESTS tab, you'll see that both our tests
passed, as shown in the following screenshot:

 Both tests we created were successful

Testing and Debugging Your Server Chapter 5

[258]

Chaining requests
If you check the environment, you'll see that the token was stored. Now let's write a second
test, a GET, that will use the token. I went through a similar sequence by doing a request for
/regions/uy, but I added a line in the headers, with the Authorization key and the
Bearer {{token}} value, so that the previously stored token value would be replaced in
the header. I also added a couple of tests to make sure (1) I got a successful JSON answer,
and (2) the answer was an array of at least 19 regions. (Yes, I know my country, Uruguay,
has exactly 19 regions, but sometimes, for test purposes, I may add some new ones!) The
tests show some features we haven't seen before:

pm.test("Answer should be JSON", () => {
 pm.response.to.be.success;
 pm.response.to.have.jsonBody();
});

pm.test("Answer should have at least 19 regions", () => {
 const regions = JSON.parse(pm.response.text());
 pm.expect(regions).to.have.lengthOf.at.least(19);
});

In this fashion, you can create complete sequences of requests; make sure that getting the
JWT is placed earlier in the list. In a collection, you can also have many folders, each with a
distinct sequence of steps. (You may also change the sequence programatically, but we
won't get into that here; check out https:/ ​/​www.​getpostman. ​com/​docs/ ​v6/ ​postman/
scripts/​branching_ ​and_ ​looping for more information.)

I created two folders to test some GETs and a DELETE—but, of course, you should be
writing even more tests to verify every method, and as many different sequences as
possible. Let's see how we can make them run.

How it works...
Once you have organized your requests in folders, you can run any given sequence by
clicking on it at the sidebar on the left. If everything is OK, you'll get green marks for all
tests; a red mark highlights an issue:

https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping
https://www.getpostman.com/docs/v6/postman/scripts/branching_and_looping

Testing and Debugging Your Server Chapter 5

[259]

 Running a collection runs every test in it. Green blocks show successes; red ones mark errors.

With this, you already have a good tool for documenting your API (make sure that every
test and field has an explanation) and for making sure that it keeps working, going beyond
the unit testing into full end-to-end (E2E) testing.

Depending on your Postman account, you can also set things up to get
periodical monitoring of your API; check out https:/ ​/ ​www.​getpostman.
com/​docs/ ​v6/ ​postman/ ​monitors/ ​intro_ ​monitors for more information.

https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors

Testing and Debugging Your Server Chapter 5

[260]

There's more...
By using the newman package (install it with npm install newman --save-dev), you
can run your Postman tests from the command line, which could also allow you to include
them in a continuous integration workflow. First, export your collection from Postman
(uninspiredly, I called mine postman_collection.json), and then add a new script to
your package.json file called "newman":"newman run postman_collection.json".
Using npm run newman will then produce an output like the one shown in the following
code snippet. You could also test whether all of the tests ran satisfactorily or whether there
was a problem:

> npm run newman

> simpleproject@1.0.0 newman /home/fkereki/MODERNJS/chapter05
> newman run postman_collection.json

newman

Restful server testing for regions

❏ Test Delete
↳ Get JWT
 POST localhost:8443/gettoken [200 OK, 386B, 14ms]
 ✓ Response is long enough
 ✓ Response has three parts

↳ Delete non-existing region
 DELETE localhost:8443/regions/zz/99 [404 Not Found, 255B, 4ms]
 ✓ Status code is 404 baby!!

❏ Test Get
↳ Get JWT
 POST localhost:8443/gettoken [200 OK, 386B, 2ms]
 ✓ Response is long enough
 ✓ Response has three parts

↳ Get /regions/uy
 GET localhost:8443/regions/uy [200 OK, 1.46KB, 2ms]
 ✓ Answer should be JSON
 ✓ Answer should have at least 19 regions

↳ Get /regions/uy/10
 GET localhost:8443/regions/uy/11 [200 OK, 303B, 2ms]
 ✓ Answer has a single region
 ✓ Country code is UY
 ✓ Region code is 11

Testing and Debugging Your Server Chapter 5

[261]

 ✓ Region name is Paysandu
 ✓ Answer is valid, JSON

Documenting and testing your REST API
with Swagger
Now let's focus more on documentation and testing with a well-known tool: Swagger. This
is a tool that's meant to help you design, model, and test APIs. The key idea is that you'll
end up by having an online, interactive document that will describe in detail all of your API
calls, the parameter types and restrictions, the required and optional values, and so on,
even letting you try calls on the fly to better understand how the API is meant to be used.

Testing and Debugging Your Server Chapter 5

[262]

How to do it...
The first—and hardest!—part of setting up Swagger is preparing the specification for your
complete API. This is meant to be written in YAML Ain't Markup Language (YAML), and
can be difficult to get right. However, you can use a web editor, which you can run at your
own server (go to https:/ ​/​swagger. ​io/ ​tools/ ​swagger- ​editor/ ​ for the necessary
download) or online at https:/ ​/ ​editor. ​swagger. ​io. After writing that, however, setting
everything up will be truly easy, needing just three lines of code!

YAML is a recursive acronym that stands for YAML Ain't Markup
Language. If you want to learn more about it, visit http:/ ​/​yaml. ​org/ ​.

Writing our specs
We won't be able to introduce the full rules for writing API specs here, and also won't be
able to include all of its features in our example. Furthermore, a complete description for
any API can be hundreds of lines long, and that's another problem. So, let's just go over
some basic definitions, as well as a couple of the services, to get a taste of what needs to be
done. First, we'll need some basic data about our server:

swagger: "2.0"
info:
 description: "This is a RESTful API to access countries, regions, and
cities."
 version: "1.0.0"
 title: "World Data API"

host: "127.0.0.1:8443"
schemes:
- "http"

Then we must describe the tags (think sections) that our documentation will be divided into.
We work with tokens (for security), plus countries, regions, and cities, so those seem to be
the needed definitions:

tags:
- name: "token"
 description: "Get a JWT for authorization"
- name: "countries"
 description: "Access the world countries"
- name: "regions"
 description: "Access the regions of countries"

https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-editor/
https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io
http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/
http://yaml.org/

Testing and Debugging Your Server Chapter 5

[263]

- name: "cities"
 description: "Access the world cities"

Let's take a look at the /gettoken route. We define a POST request, which gets body
encoded parameters, and returns plain text. Two string parameters, user and password,
are required. The API may either return a 200 status if everything was OK, or 401
otherwise:

paths:
 /gettoken:
 post:
 tags:
 - "token"
 summary: "Get a token to authorize future requests"
 consumes:
 - "application/x-www-form-urlencoded"
 produces:
 - text/plain
 parameters:
 - in: formData
 name: user
 required: true
 type: string
 - in: formData
 name: password
 required: true
 type: string
 responses:
 200:
 description: A valid token to use for other requests
 401:
 description: "Wrong user/password"

Getting regions for a country would get a similar specification:

/regions:
 get:
 tags:
 - "regions"
 summary: "Get all regions of all countries"
 produces:
 - application/json
 parameters:
 - in: header
 name: "Authorization"
 required: true
 type: string
 description: Authorization Token

Testing and Debugging Your Server Chapter 5

[264]

 responses:
 200:
 description: "OK"
 401:
 description: "No token provided"

Enabling Swagger
To enable the Swagger documentation, we need the swagger-ui-express package, and
also need to load the JSON version of the YAML specs, so you'll need a couple of lines of
code. First, install the package with the usual npm install swagger-ui-express --
save, and then add the following lines to your server:

const swaggerUi = require("swagger-ui-express");
const swaggerDocument = require("../swagger.json");

In the server, we must also add a line for enabling the new route, at the beginning, after
other app.use() statements. We are adding Swagger to our RESTful API, and without a
token: you might prefer to set up a different server, only providing access to the API, and
possibly also enabling authorization, but both changes will be easy to accomplish. So, let's
go with the simpler version here:

app.use(cors());
app.use(bodyParser.urlencoded({ extended: false }));
app.use("/api-docs", swaggerUi.serve, swaggerUi.setup(swaggerDocument));

You're all set! After you rebuild the project and start the server, the new route will be
available, providing online documentation for your server.

How it works...
If you start the server, accessing the /api-docs route will provide access to the main
Swagger screen, as follows:

Testing and Debugging Your Server Chapter 5

[265]

 Swagger produces a main page, with access to every route you defined

Testing and Debugging Your Server Chapter 5

[266]

Interaction is easy: select an area, click on a given request, and you'll get the list of all routes
and operations. Let's see, for example, how to get the regions for Uruguay. First, we must
get a token, so we want to open the token area and enter the necessary user and password,
as shown in the following screenshot:

 Doing a request is just a matter of filling the fields and executing the query

Testing and Debugging Your Server Chapter 5

[267]

When the process runs, you'll get the answer, as shown in the following screenshot:

 A successful request returned the security token

Testing and Debugging Your Server Chapter 5

[268]

You can see the equivalent curl request at the top, which matches what we did earlier in
this chapter, in the Testing simple services from the command line section. Now, copying that
token and pasting it into the /regions/uy endpoint means that we're ready to do that
query:

 After getting a token, we can set up the query to get all of the regions of a country

Testing and Debugging Your Server Chapter 5

[269]

All that's left to do is execute that query, and we'll get the desired results, as shown in the
following screenshot:

 Doing sequences of calls is possible, and Swagger lets you experiment easily with different endpoints

What can we point out? First, obviously, Swagger is a very good tool, in terms of
documentation. You can add descriptions to methods, parameters, results, and even
include sample values and results. This means that developers who need to use your API
will have a very good way of learning about how to use it. In terms of actually using your
API, Swagger is simpler than curl or Postman, but it cannot chain operations, which
you'll have to do on your own. You should really think about starting your development
with this tool, and only moving forward with actual coding once you have everything
documented; give it a try!

6
Developing with React

In this chapter, we will cover the following recipes:

Starting out with React
Reinstalling your tools
Defining components
Handling state
Composing components
Handling life cycle events
Simplifying component development with Storybook

Introduction
In the last three chapters, we were developing a backend with Node, and now we'll turn to
the frontend and build a web application: in particular, a Single Page Application (SPA) in
the modern style users have gotten used to.

Starting out with React
Suppose you want to build a web application. How would you go about it? Unless you
have been hiding away somewhere, you are probably aware that there are many
frameworks out there that can help you construct and organize your web page. However,
you might be wondering, if you already know HTML, CSS, and JS, why use a framework at
all, instead of just keeping with vanilla JS, and possibly some library like jQuery or
Lodash? After all, a framework imposes some rules and ways of working that you could
consider to be offputting or bothersome.

Developing with React Chapter 6

[271]

You also have to learn how to use the framework, of course, and you probably won't benefit
from it until you become proficient. So, there are several possible answers for the why?
question – even including Sure, don't use any framework! – which could be just fine for a very
small, simple project:

Frameworks provide you with a well-tested, solid way, to organize your project
Frameworks usually scale better for large size applications
Frameworks let you work at a higher level of abstractions (for example, creating
and using your own components) and deal with the nitty-gritty aspects of getting
everything to work
Ramping up new developers is usually simpler: if they know the framework,
they already know where things are supposed to go and how they interact with
each other

Of course, as I mentioned previously, all of these advantages do not apply for small
projects, with a few developers.

There's one extra reason, however, that can be considered even more important.
Frameworks help you with the difficult task of keeping state (data) and view in sync. With
large applications, a change or event that happens in one corner of your application may
have implications elsewhere, in other places of the same application. Trying to wire things
up so that all of the changes are correctly propagated throughout your code isn't a simple
endeavor.

Most frameworks automatically generate the view from the data, and whenever anything
changes in the state, they do whatever's needed to update the screen in an optimal fashion.
For example, say you had a list of doodads somewhere. Then, you call a webservice and
you get an updated list—most doodads match, but some are added and some are missing.
You could, of course, just recreate the list from zero, but that wouldn't look very good, and
if you decide to regenerate the whole screen every time something changes, performance
will suffer. Usually, what will happen is that the framework will compute the differences
between the current list and the new one, and will correspondingly update the HTML code,
adding or removing DOM elements, so that the list is once again correct. Doing all of this
by hand, extending this to your whole application, would be a tad too much to do!

There are several well-known frameworks such as Angular (by Google), Vue, Ember,
Backbone, Knockout, and so on. (Sometimes you feel that a new framework is born every
day!) We'll be using React (by Facebook) in this book.

Developing with React Chapter 6

[272]

An admission: React is more correctly called a library than a framework,
because it doesn't include everything you need to develop your
application out of the box. However, all of the necessary packages are out
there, so that won't impede us. By the way, this sort of criticism also
applies to Vue, Knockout, and Backbone.

React also extends to doing mobile applications with React-Native, which we'll see later
in this book in Chapter 11, Creating Mobile Apps with React Native.

An interesting article, The Ultimate Guide to JavaScript Frameworks,
at https:/ ​/ ​javascriptreport. ​com/ ​the- ​ultimate- ​guide- ​to-​javascript-
frameworks/ ​, lists over fifty frameworks! Take a look, and see what pros
and cons each framework has.

In this recipe, we'll install the necessary packages and build a very basic first web
application of our own.

How to do it...
Let's go ahead and create our basic application. If you had to set up a project purely by
hand, you'd find yourself having to deal with many different tools, such as Babel for
transpiling, ESLint for code checks, Jest for testing, or Webpack in order to pack all of
your application together, instead of having to send dozens or hundreds of individual files
over the web. However, nowadays, there is a much simpler tool, create-react-app, that
can deal with this chore and get you set up for React development in a jiffy. The key
selling point is zero configuration, meaning that some reasonable good choices for both
development and production builds have been selected, and you can directly move on to
writing code, not really caring about myriad configuration details.

For people in the know, create-react-app is known as CRA, and that's
the name we'll be using. By the way, CRA is not the only possible way to
create a project; for example, react-boilerplate (at https:/ ​/​github.
com/​react- ​boilerplate/ ​react- ​boilerplate) provides an alternate
solution, but the chosen set of packages and tools are more suited to
experienced React developers.

https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://javascriptreport.com/the-ultimate-guide-to-javascript-frameworks/
https://github.com/react-boilerplate/react-boilerplate
https://github.com/react-boilerplate/react-boilerplate
https://github.com/react-boilerplate/react-boilerplate
https://github.com/react-boilerplate/react-boilerplate
https://github.com/react-boilerplate/react-boilerplate
https://github.com/react-boilerplate/react-boilerplate
https://github.com/react-boilerplate/react-boilerplate
https://github.com/react-boilerplate/react-boilerplate
https://github.com/react-boilerplate/react-boilerplate
https://github.com/react-boilerplate/react-boilerplate
https://github.com/react-boilerplate/react-boilerplate
https://github.com/react-boilerplate/react-boilerplate
https://github.com/react-boilerplate/react-boilerplate
https://github.com/react-boilerplate/react-boilerplate

Developing with React Chapter 6

[273]

To create the basic structure (which we'll explain later on) we'll use npx to run the
application creator tool, as shown in the following code. Since we are at Chapter 6, let's
(imaginatively!) name our project chapter06!

> npx create-react-app chapter06
Creating a new React app in /home/fkereki/JS_BOOK/modernjs/chapter06.

Installing packages. This might take a couple minutes.
Installing react-scripts...

...many lines describing installed packages, snipped out...

Success! Created chapter06 at /home/fkereki/JS_BOOK/modernjs/chapter06
Inside that directory, you can run several commands:

 npm start
 Starts the development server.

 npm run build
 Bundles the app into static files for production.

 npm test
 Starts the test runner.

 npm run eject
 Removes this tool and copies build dependencies, configuration files
 and scripts into the app directory. If you do this, you can’t go back!

We suggest that you begin by typing:

 cd chapter06
 npm start

Happy hacking!

Developing with React Chapter 6

[274]

If you are curious, npx is similar to npm, but it executes a binary command,
which is either found in your node_modules directory, or at a central
cache, even installing any packages it might need to run. For more
information, go to its GitHub page at https:/ ​/​github. ​com/ ​zkat/ ​npx, or
better yet, read an article by npx's creator, Introducing npx: an npm package
runner at https:/ ​/ ​medium. ​com/​@maybekatz/ ​introducing- ​npx- ​an-​npm-
package- ​runner- ​55f7d4bd282b.

How it works...
Running the script will create a basic project structure, including the following:

A package.json file, and a corresponding node_modules directory.
A README.md file, essentially a copy of what you can find at https:/ ​/ ​github.
com/​wmonk/ ​create- ​react- ​app- ​typescript/ ​blob/ ​master/ ​packages/ ​react-
scripts/ ​template/ ​README. ​md. Pay particular attention to it, because it's full of
tips, suggestions, and solutions to usual problems you may encounter.
A public/ directory, with the index.html basic HTML code for your
application, plus a favicon.ico icon file and a manifest.json file describing
your app. (If you want to read more about the latter, check out https:/ ​/
developer. ​mozilla. ​org/ ​en- ​US/ ​Add- ​ons/​WebExtensions/ ​manifest. ​json.)
A src/ directory with the index.js JS basic code for your application,
index.css with CSS styles, and an App component that shows some welcome
text, plus some basic instructions. All of your JS and CSS files should be placed in
src/ or in subdirectories within it, otherwise they won't be included in the build.

Basically, you will want to edit the index.* and App.* files, and grow the project by
expanding its structure to provide more components, styles, and so on. (Be careful: don't
change the names of the index.* files, or your project won't run!) Before getting into
writing code, and as shown in the preceding run, in the created project directory, you
should try npm start.

https://github.com/zkat/npx
https://github.com/zkat/npx
https://github.com/zkat/npx
https://github.com/zkat/npx
https://github.com/zkat/npx
https://github.com/zkat/npx
https://github.com/zkat/npx
https://github.com/zkat/npx
https://github.com/zkat/npx
https://github.com/zkat/npx
https://github.com/zkat/npx
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://github.com/wmonk/create-react-app-typescript/blob/master/packages/react-scripts/template/README.md
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json

Developing with React Chapter 6

[275]

By doing this, you'll be able to see the new application, as shown in the following
screenshot:

The created application, ready for you to start coding

If you wish, you can make any kind of minor change in App.js, save it, and notice the
immediate change in the browser page. As to what features of JS you can use in your
coding, the project is set to accept most modern options, from ES6 (full), ES7 (like the
exponentiation operator, which you may probably never use!), and even newer (most
interestingly, async and await), plus some Stage 3 proposals; check https:/ ​/​github. ​com/
facebook/​create- ​react- ​app/ ​blob/ ​master/ ​packages/ ​react- ​scripts/ ​template/ ​README.
md#supported-​language- ​features- ​and- ​polyfills for an updated list. It's noteworthy that
Flow is recognized, and also JSX, which we'll be using in later sections.

There's more...
It may happen, at some time, that you need to do some extra configuration that CRA hasn't
considered, or that you are unable to add it otherwise. In this case, you can use the npm
run eject command to move all of the configuration, scripts, and dependencies directly
into your project so that you can start tweaking things in any way you want. Of course, this
will be harder than using the zero configuration setup, but at least you won't be locked in,
with no way out.

https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#supported-language-features-and-polyfills

Developing with React Chapter 6

[276]

If you are curious to learn where all of those things are hidden away,
possibly to study how everything is set up, the answer is "in the
node_modules/create_react_app" directory; ejecting the project
copies things from that directory to your project's.

Reinstalling your tools
We have been using ESLint for code quality checks, Prettier for formatting, and Flow
for data types. In this recipe, we'll get these packages back to work, and we'll leave testing
(Jest, plus more) for Chapter 10, Testing your Application. Doing this for two of our tools
will be quite straightforward, but a tad more complex for the third.

How to do it...
With a fully manual installation, getting everything to work together will be quite difficult,
but CRA already includes practically everything we need, so all you have to do is add some
configuration details.

Reinstalling Flow and Prettier
Let's start with Flow. It's quite simple to do this: I just did the same as for Node, adding the
same packages, scripts, .flowconfig file, and so on. (If you need to, check out the Adding
Flow for Data Types checks section of Chapter 1, Working with JavaScript Development Tools for
more information.)

Next, let's deal with Prettier. It also is a simple matter: I had to remove the following
lines from package.json and put them in a separate .prettierrc file:

{
 "tabWidth": 4,
 "printWidth": 75
}

Flow already knows about React and CRA, so you won't need anything with regard to that.
However, to use PropTypes (we'll get to that very soon), you'll need the appropriate flow-
typed package, which is easy to install:

npm run addTypes prop-types@15

Developing with React Chapter 6

[277]

Reinstalling ESLint
Finally, our third tool will require a bit more work. For ESLint, we cannot use
package.json either, and we need a .eslintrc file. But, even if you extract that part,
you'll find that the configuration doesn't pay attention to your settings, and that's because
CRA has its own set of ESLint rules, which you cannot change! Unless, of course, you
decide to eject the project and start doing configuration by yourself, which you'll want to
avoid for as long as possible. There's a package, react-app-rewired, that lets you change
the internal configurations without ejection. Start by installing a couple of required
packages:

npm install react-app-rewired react-app-rewire-eslint --save-dev

As for rules themselves, you'll want to have the following:

npm install eslint-plugin-flowtype eslint-config-recommended eslint-plugin-
react --save-dev

Now you'll have to change a few scripts in package.json:

"scripts": {
 "start": "react-app-rewired start",
 "build": "react-app-rewired build",
 "test": "react-app-rewired test --env=jsdom",
 "eject": "react-app-rewired eject",
 .
 .
 .

Finally, create a config-overrides.js files, at the root of your project, at the same level
of the package.json file. The /* global module */ comment is there to avoid an error
that will pop up after ESLint gets to work, reporting that module isn't defined:

const rewireEslint = require("react-app-rewire-eslint");
function overrideEslintOptions(options) {
 // do stuff with the eslint options...
 return options;
}

/* global module */
module.exports = function override(config, env) {
 config = rewireEslint(config, env, overrideEslintOptions);
 return config;
};

Developing with React Chapter 6

[278]

You're all set! Your .eslintrc file should look as follows, with some additions and
changes:

{
 "parser": "babel-eslint",
 "parserOptions": {
 "ecmaVersion": 2017,
 "sourceType": "module"
 },
 "env": {
 "node": true,
 "browser": true,
 "es6": true,
 "jest": true
 },
 "extends": [
 "eslint:recommended",
 "plugin:flowtype/recommended",
 "plugin:react/recommended"
],
 "plugins": ["babel", "flowtype", "react"],
 "rules": {
 "no-console": "off",
 "no-var": "error",
 "prefer-const": "error",
 "flowtype/no-types-missing-file-annotation": 0
 }
}

If you are wondering why I left the line for Node, it's because Storybook
(which we'll see near the end of this chapter) uses a module variable,
which would otherwise be marked as undefined.

How it works...
In this case, there's not too much to explain. The normal configuration of the project already
includes all of the tools we need, so we are just configuring a bit instead of just going with
the standard.

As for ESLint, when you now use npm start, the ESLint configuration will get rewired to
work with your configuration instead of CRA's one. This means that all of your standard
settings and checks will continue to run, and you'll apply the same quality checks for React
than for other JS code—except, obviously, for the React-specific ones.

Developing with React Chapter 6

[279]

You can read more about react-app-rewired at https:/ ​/​github. ​com/
timarney/ ​react- ​app- ​rewired.

Defining components
The key idea behind working with React is that everything – and I mean, everything – is a
component. Your whole web application will be a component, itself made of other
components, which will themselves have smaller components, and so on. Components
generate HTML, which is shown onscreen. The data for the HTML comes from externally
assigned props (properties) and internally maintained state. Whenever there is a change in
props or state, React takes care of refreshing the HTML so that the view (what the user sees)
is always up to date.

Let's look at an example. Imagine that you want to create a screen that will let the user
query data about regions of the world. How could you go about designing it? Check out
the following screenshot for details:

 Whenever the user selects a country, we'll show several cards with information about its regions.
Note: I created this sketch at http://www.wireframes.com—but don't blame the tool for my poor sketching ability!

https://github.com/timarney/react-app-rewired.
https://github.com/timarney/react-app-rewired.
https://github.com/timarney/react-app-rewired.
https://github.com/timarney/react-app-rewired.
https://github.com/timarney/react-app-rewired.
https://github.com/timarney/react-app-rewired.
https://github.com/timarney/react-app-rewired.
https://github.com/timarney/react-app-rewired.
https://github.com/timarney/react-app-rewired.
https://github.com/timarney/react-app-rewired.
https://github.com/timarney/react-app-rewired.
https://github.com/timarney/react-app-rewired.
https://github.com/timarney/react-app-rewired.
https://github.com/timarney/react-app-rewired.

Developing with React Chapter 6

[280]

Your whole view would be a component, but it's fairly obvious that wouldn't help with
coding or testing. A good design principle is that each component should be responsible for a
single duty, and if it needs to do more, decompose it into smaller components. In our case,
we'd have the following:

The whole table is a RegionsInformationTable.
The part at the top can be the CountryFilterBar, with a dropdown for
countries
At the bottom we have a ResultsDataTable, which shows a collection
of ExpandableCard components, each with a title, a toggle, and space for more
components. We could have designed a specific card for this situation, but
having a generic card, whose components may be whatever we want, is more
powerful.

A first rule involves events, such as clicks on elements, data being entered, and so on. They
should be passed up until a component is able to fully process them: events flow up. For
example, when the user clicks on the button, that component shouldn't (and couldn't) fully
process it, at the very least because it couldn't access the table. So, the event will be passed
up (by means of callbacks) until some component is able to deal with it. You may have
options: for example, the CountryFilterBar component could handle calling a service
and getting the data, but then it would pass the results up to
the RegionsInformationTable, so that it can pass it to
the ResultsDataTable component, which will itself produce the
necessary ExpandableCard elements. Alternatives would be passing
the CountryFilterBar value up to the RegionsInformationTable, which would do the
search on its own, or passing it even higher, to some component to do the search and push
the data down as props to our big table.

The preceding explanation helps us with a second decision. You should analyze your
components hierarchy and decide where data (props or state) should be kept. A key rule is:
if two (or more) components share data (or if one component produces data that other
component needs). It should belong to a component higher up, which will pass it down as
needed: data flows down. In our case, we already applied that rule when we decided that the
regions data would be owned by the CountryFilterBar, which was then to be passed to
the RegionResults table; each ExpandableCard would only work with the props it
receives.

Even if we don't know how to handle web service requests to get the necessary data just yet
(or, for example, to initialize the countries dropdown), we can build a static version of our
components and see how it works.

Developing with React Chapter 6

[281]

It's better to start with these static aspects of web design, and only afterwards deal with the
dynamic aspects, such as reacting to events or getting data. Let's get to that code.

How to do it...
We need to create several components, and that will allow us to find out how we can
include components in other components, how to pass properties, how to define them, and
more. Let's go component by component.

Creating the application
To start a React application, all we need is a basic HTML page, and CRA already provides
one in public/index.html. Stripped down to the basics (check the book source code for
the full version), it's something like the following, and the key part is the <div>, in which
all of the React generated HTML code will be placed:

<!DOCTYPE html>
<html lang="en">
 <head>
 .
 .
 .
 <title>React App</title>
 </head>
 <body>
 <div id="root"></div>
 </body>
</html>

The entry point to our application will be index.js, which (we're dropping out some lines
of code that are irrelevant here) boils down to the following code:

/* @flow */

import React from "react";
import ReactDOM from "react-dom";
import App from "./App";

const root = document.getElementById("root");
if (root) {
 ReactDOM.render(<App />, root);
}

Developing with React Chapter 6

[282]

Why do we need to define a root variable and if? The key is a Flow check: a
document.getElementById(...) call may produce a web node, or may be null, and
Flow reminds us to check for null before committing to work.

Now that we have our basic scaffolding, let's get to writing some actual React components!

Creating the basic App component
Let's start with the App.js file; we'll render a simple RegionsInformationTable. We are
extending a React class called PureComponent; we'll explain what this implies later. Your
own components should have names starting with upper case to distinguish them from
HTML names, which should go in lower case. Every component should have a .render()
method that produces whatever HTML is needed; there are more methods you can use for
this, as we'll see:

/* @flow */

import React from "react";
import { RegionsInformationTable } from
"./components/regionsInformationTable";

class App extends React.PureComponent<{}> {
 render() {
 return <RegionsInformationTable />;
 }
}

export default App;

The only method that must be specified when defining a component is
.render(). Components also have many other methods, including
several life cycle ones, that we'll see later in the Handling life cycle
events section, but all of them are optional.

You may be asking yourself: why go to the bother of creating an <App> component that
doesn't do anything but produce a <RegionsInformationTable> component? Why not
use the latter directly? We'll get to the reason why in the upcoming sections; we'll want the
<App> component to do more, such as defining routing, managing a store, and so on. So,
even in this particular small example, it's overkill – it's a pattern we want to keep.

Developing with React Chapter 6

[283]

You'll also want to notice that we wrote React.PureComponent<{}>, and this was to let
Flow know that our component doesn't need either properties or state. In later sections
we'll look at more examples that require better type definitions.

Creating the RegionsInformationTable component
We can immediately see how the RegionsInformationTable component is rendered: it
just depends on two more of the components we decided that we would create. Note that
we are returning HTML code as if it were a valid JS value: this is JSX, and it provides a very
simple way to intermingle JS code and HTML code. We'll have a list of countries (much
reduced!) that supposedly comes from a web service, and a list of regions (also reduced,
with fake data) that would come from a different service, after the user has selected a
country. This data is the state of the component; whenever any of those lists changes, React
will re-render the component and everything it includes. We'll look at that further in the
Handling State section:

// Source file: src/components/regionsInformationTable/index.js

/* @flow */

import React from "react";

import { CountryFilterBar } from "../countryFilterBar";
import { ResultsDataTable } from "../resultsDataTable.2";

export class RegionsInformationTable extends React.PureComponent<
 {},
 {
 countries: Array<{
 code: string,
 name: string
 }>,
 regions: Array<{
 id: string,
 name: string,
 cities: number,
 pop: number
 }>
 }
> {
 state = {
 countries: [
 { code: "AR", name: "Argentine" },
 { code: "BR", name: "Brazil" },
 { code: "PY", name: "Paraguay" },

Developing with React Chapter 6

[284]

 { code: "UY", name: "Uruguay" }
],

 regions: []
 };

 update = (country: string) => {
 console.log(`Country ... ${country}`);

 this.setState(() => ({
 regions: [
 {
 id: "UY/5",
 name: "Durazno",
 cities: 8,
 pop: 60000
 },
 {
 id: "UY/7",
 name: "Florida",
 cities: 20,
 pop: 67000
 },
 {
 id: "UY/9",
 name: "Maldonado",
 cities: 17,
 pop: 165000
 },
 {
 id: "UY/10",
 name: "Montevideo",
 cities: 1,
 pop: 1320000
 },
 {
 id: "UY/11",
 name: "Paysandu",
 cities: 16,
 pop: 114000
 }
]
 }));
 }

 render() {
 return (
 <div>

Developing with React Chapter 6

[285]

 <CountryFilterBar
 list={this.state.countries}
 onSelect={this.update}
 />
 <ResultsDataTable results={this.state.regions} />
 </div>
);
 }
}

This component receives no props, but works with state, so for Flow's sake, we had to write
React.PureComponent<{},{countries:..., regions:...}>, providing data types
for the state elements. You could also define these data types in a separate file (see https:/
/​flow.​org/​en/​docs/ ​types/ ​modules/ ​ for more on this), but we'll let it be.

What about the list of countries? The CountryFilterBar should show some countries, so
the parent will provide the list as a prop; let's see how it will receive and use that list. We'll
also provide a callback, onSelect, that the child component will use to inform you
whenever the user selects a country. Finally, we'll pass the list of (fake, hardcoded) regions
to the ResultsDataTable.

A noteworthy comment: props are passed using a name=... syntax, as
standard with HTML elements; your React elements are used in the same
fashion as common, standard HTML ones. The only difference here is that
you use braces, in template fashion, to include any expression.

By the way, note that our list of regions starts out empty; the results table will have to deal
with that. When the user selects a country, the .update() method will run and load some
regions by using the .setState() method, which we'll see in the following section. Later
in this book, we'll also see how to use a web service to get that data, but for the time being,
a fixed result will have to do.

Creating the CountryFilterBar component
The next component we need is more complex: it receives a pair of props, and that starts by
providing PropTypes definitions for them:

// Source file: src/components/countryFilterBar.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";

https://flow.org/en/docs/types/modules/
https://flow.org/en/docs/types/modules/
https://flow.org/en/docs/types/modules/
https://flow.org/en/docs/types/modules/
https://flow.org/en/docs/types/modules/
https://flow.org/en/docs/types/modules/
https://flow.org/en/docs/types/modules/
https://flow.org/en/docs/types/modules/
https://flow.org/en/docs/types/modules/
https://flow.org/en/docs/types/modules/
https://flow.org/en/docs/types/modules/
https://flow.org/en/docs/types/modules/
https://flow.org/en/docs/types/modules/
https://flow.org/en/docs/types/modules/
https://flow.org/en/docs/types/modules/

Developing with React Chapter 6

[286]

export class CountryFilterBar extends React.PureComponent<{
 list?: Array<{ code: string, name: string }>,
 onSelect: string => void
}> {
 static propTypes = {
 list: PropTypes.arrayOf(PropTypes.object),
 onSelect: PropTypes.func.isRequired
 };

 static defaultProps = {
 list: []
 };

// continued...

This is our first component that receives props. We'll have to provide a definition for Flow,
which is easy: the component will receive list, an array of objects, and onSelect, a
function with a single string parameter, that doesn't return anything.

React also lets you define a runtime check for parameters. We define a propTypes class
property, with an element for each actual prop that our component will receive, and
another defaultProps property, for default values should actual ones not be provided.
Defining the data types is also needed (for example, onSelect is a function) if they are
required or optional (both are required, in this case). In development (not in production),
whenever you pass props to an object, they will be checked against their definitions and a
warning will be produced if there is some mismatch; this is a good debugging technique.

Why use both Flow and PropTypes if it seems that both do the same job?
Basically, Flow is a static checker, while PropTypes is a dynamic, runtime
checker. If you use Flow everywhere throughout your application,
theoretically, you could get by without using PropTypes—but since this
package, in testing, will catch anything you missed, it's an extra "safety
net" for your code. I do agree that writing two sets of data types is a
bother, though.

The valid types for this are as follows:

any, if any type is acceptable – this is not a good practice
array

arrayOf(someType), to specify the values of the array elements
bool, for Booleans
element, for a React element
func, for functions

Developing with React Chapter 6

[287]

instanceOf(SomeClass), for an object that must be an instance of a given class
node, for anything that can be rendered as HTML, such as numbers or strings
number

object

objectOf(SomeType), to specify an object with property values of a given type
oneOf([...an array of values...]), to verify that a prop is limited to
some values
oneOfType([...an array of types...]), to specify that a prop will be one
of a list of types
shape({...an object with types...}), to completely define an object,
including keys and value types
string

symbol

You can go even further and define, for example, specific functions for
type validation. For a complete explanation of all of the possibilities of
PropTypes, read https:/ ​/​reactjs. ​org/ ​docs/ ​typechecking- ​with-
proptypes. ​html.

Now, how would we generate the HTML for the filter? We need several <option>
elements, and we can apply .map() to this.props.list (properties are accessed through
this.props) as follows. Also note how we use the onChange callback to inform the parent
component whenever a different country is selected:

// ...continues

 onSelect(e) {
 this.props.onSelect(e.target.value);
 }

 render() {
 return (
 <div>
 Country:
 <select onChange={this.onSelect}>
 <option value="">Select a country:</option>
 {this.props.list.map(x => (
 <option key={x.code} value={x.code}>
 {x.name}
 </option>
))}
 </select>

https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html

Developing with React Chapter 6

[288]

 </div>
);
 }
}

The input properties (this.props) should be considered read-only, and
never modified. On the other hand, the component's state (this.state)
is read-write and can be modified, though not directly but rather through
this.setState(), as we'll see.

A special explanation is needed for the key= attribute. Whenever you define a list (with
<option> or , for example) and React needs to re-render it, the key attribute is used to
recognize already available elements and avoid regenerating them, but rather reuse them.
Keep in mind that the CountryFilterBar component will be called, over time, with
different lists of countries to render, so React will optimize its performance by avoiding the
creation of already existing list elements.

Creating the ResultsDataTable component
Building the results table is easy, and requires similar work to what we did with the
countries selector. We only have to check the special case when we haven't got any regions
to show:

// Source file: src/components/resultsDataTable.1/index.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";

import { ExpandableCard } from "../expandableCard.1";
import "../general.css";

export class ResultsDataTable extends React.PureComponent<{
 results: Array<{
 id: string,
 name: string,
 cities: number,
 pop: number
 }>
}> {
 static propTypes = {
 results: PropTypes.arrayOf(PropTypes.object).isRequired
 };

Developing with React Chapter 6

[289]

 render() {
 if (this.props.results.length === 0) {
 return <div className="bordered">No regions.</div>;
 } else {
 return (
 <div className="bordered">
 {this.props.results.map(x => (
 <ExpandableCard
 key={x.id}
 name={x.name}
 cities={x.cities}
 population={x.pop}
 />
))}
 </div>
);
 }
 }
}

A side comment: React allows us to define props as optional (meaning that no
isRequired is included when defining PropTypes) and to provide default values instead.
In this case, if results could be not provided, you would have written the following code,
using defaultProps to provide the necessary default values:

 static propTypes = {
 results: PropTypes.arrayOf(PropTypes.object)
 };

 static defaultProps = {
 results: []
 }

In terms of Flow and PropTypes, the definition is very much similar to the previous ones.
The interesting part is using .map() to process all of the received objects, creating an
ExpandableCard for each; this is a very common pattern with React. So, all we need now
to finish our application is to provide an expandable card, so let's get to that.

Developing with React Chapter 6

[290]

Creating the ExpandableCard component
For starters, let's forget about expanding a card—even though that makes the name of the
component a misnomer! Here, we'll just make a component that shows a few strings. In the
Composing Components section, we'll see some interesting ways of achieving our original
goal:

// Source file: src/components/expandableCard.1/index.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";

import "../general.css";

export class ExpandableCard extends React.PureComponent<{
 name: string,
 cities: number,
 population: number
}> {
 static propTypes = {
 name: PropTypes.string.isRequired,
 cities: PropTypes.number.isRequired,
 population: PropTypes.number.isRequired
 };

 render() {
 return (
 <div className="bordered">
 NAME:{this.props.name}

 CITIES:{this.props.cities}

 POPULATION:{this.props.population}
 </div>
);
 }
}

Everything is ready; let's see how and why it functions!

Developing with React Chapter 6

[291]

How it works...
When you start the application with npm start, you get our basic screen, showing the
dropbox with the countries, and no cards, as shown in the following screenshot:

 Our basic application, showing fixed, non-varying cards

Then, suppose you select a country; what will happen? Let's follow that, step by step:

In the CountryFilterBar, the onChange event will fire and will execute a1.
callback (this.props.onSelect()), providing it with the selected country
code.
In the RegionsInformationTable, the callback that was provided to the2.
CountryFilterBar is this.update(), so that method will execute.
The update method will log the country (just for reference) and use3.
this.setState (see the next section) to load some regions in the
RegionsInformationTable state.
The change in state will cause React to re-render the component.4.
The CountryFilterBar won't need re-rendering because neither its props nor5.
its state changed.
The ResultsDataTable, on the other hand, will be re-rendered because its6.
props will change, receiving a new list of regions.

Developing with React Chapter 6

[292]

So, after all this is said and done, the new view will be as follows:

 The updated view, after React handles all the necessary re-rendering

This is basically how your application will work: events are captured and handled, state is
changed, props are passed, and React takes care of re-rendering whatever needs to be re-
rendered.

There's more...
Let's go back to the CountryFilterBar component. We used the most recent JS ways to
define it, but in many articles and books, you may find an older style that you should be
aware of, if only to better understand the variant:

// Source file: src/components/countryFilterBar.old.style.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";
import "../general.css";

Developing with React Chapter 6

[293]

export class CountryFilterBar extends React.PureComponent<{
 list: Array<{ code: string, name: string }>,
 onSelect: string => void
}> {
 constructor(props) {
 super(props);
 this.onSelect = this.onSelect.bind(this);
 }

 onSelect(e: { target: HTMLOptionElement }) {
 this.props.onSelect(e.target.value);
 }

 render() {
 return (
 <div className="bordered">
 Country:
 <select onChange={this.onSelect}>
 <option value="">Select a country:</option>
 {this.props.list.map(x => (
 <option key={x.code} value={x.code}>
 {x.name}
 </option>
))}
 </select>
 </div>
);
 }
}

CountryFilterBar.propTypes = {
 list: PropTypes.arrayOf(PropTypes.object).isRequired,
 onSelect: PropTypes.func.isRequired
};

CountryFilterBar.defaultProps = {
 list: []
};

We can sum up the differences as follows:

The propTypes and defaultProps values are defined separately, by directly
modifying the class
We bind this.onSelect in the constructor, so when this method is called, the
value of this will be the window object, not what we need.

Developing with React Chapter 6

[294]

With modern JS features, this is not needed, but be aware that in older JS code, you are
likely to find these patterns.

Handling state
In the previous section, we saw the usage of state for the regions; let's delve a bit deeper
into that. The concept of state is very similar to props, but with crucial differences: props
are assigned from the outside and are read-only, and state is handled privately, and read-
write. If a component needs to keep some information, which it can use to render itself,
then using state is the solution.

How to do it...
Defining state is done by using class fields, a fairly new feature of JS, that's enabled via
Babel since it isn't fully official yet. (See https:/ ​/​github. ​com/ ​tc39/ ​proposal- ​class-
fields for the proposal, which is at Stage 3, meaning that it's one step away from being
officially adopted.) With older JS versions, you would have had to create this.state in
the class constructor, but this syntax is clearer. Let's remember what the code looked like,
and let's drop the Flow definition.

First, let's modify the RegionsInformationTable component:

export class RegionsInformationTable extends React.PureComponent<...> {
 state = {
 countries: [
 { code: "AR", name: "Argentine" },
 { code: "BR", name: "Brazil" },
 { code: "PY", name: "Paraguay" },
 { code: "UY", name: "Uruguay" }
],

 regions: []
 };

https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields

Developing with React Chapter 6

[295]

Second, let's see what happens when a country changes. Rendering for an object can
depend on both its props (which it cannot change, as we said) and its state (which it can
change), but there is an important restriction on updating state. You cannot simply assign a
new value to the component's state because it won't be detected by React, and then no
rendering will be done. Instead, you must use the .setState() method. This method can
be called in different ways, but functional .setState() is the safest way to do this. With
this, you must pass a function that will receive both state and props and return whatever
parts of the state need to be updated. In our earlier code, we would have written the
following:

update(country: string) {
 .
 .
 .
 this.setState((state, props) => ({ regions: [
 .
 .
 .
]}));

If you check, you'll see that we didn't include the state and props parameters in the
actual code, but that was in order to satisfy ESLint's rule about no unused arguments in
functions.

How it works...
Why did we need to pass a function? There's a key point to understanding this: state updates
are asynchronous. Whenever you call .setState(), React will update the component's
state and start its reconciliation process to update the UI view. But what happens if there is
more than one .setState() call? There lies the problem.

React is allowed to queue many such calls together into a single update to achieve better
performance, and that has an important effect: state may have changed before
.setState() is executed! (Even so, if batching is done, updates will be done in the order
they are called.) So, you provide a function and React will call it with the appropriately
updated state parameter. Don't do anything depending on this.state because it may
be wrong; always work with the state parameter.

Developing with React Chapter 6

[296]

There is a shortcut that you should know, in any case. If (and only if) your update does not
depend in any way on the state or props values, you can use an alternative call without
requiring a function. For example, our update could have been simply written as follows,
and this.state.regions would be changed, leaving the rest of the state unchanged; the
key is that the new values for the regions attribute are not dependent in any way on state
or props:

this.setState({ regions: [...]});

Why would this work? Because in this case, even if the state had changed before, your
update would still be the same. Be careful, though, and use this syntax only when your
update is totally independent of state and props; otherwise, use the functional approach we
showed first.

Once you realize that the state updates are functions, you can move that
logic out of components, for separate, independent coding and testing,
this will be quite similar to things we'll be doing with Redux in Chapter 8,
Expanding your Application. You would
write this.setState(someFunction) and someFunction() would be
defined separately; your code will have become more declarative in style.

There's more...
With what we have done here, you may realize that you have all you could need to handle
state, for any application size – and you would be right! You could set up the general state
for your whole application in the App component (remember we mentioned that App would
have more responsibilities?) and you would be able to do the following:

Pass it down to components by using props
Update it in answer to events that the components send

This is a perfectly valid solution, and App.state could have all sorts of data for the whole
page. App could handle, for example, calling a web service to get the regions for a given
country, storing the results in its state, and passing it to our components so that they can be
rendered. In our hardcoded version, RegionsInformationTable had the list of countries
(where did it get it from?) and handled the requests for regions (by returning hardcoded
data). In reality, as we'll see later in this book, getting this sort of information from a server
would be handled differently, and at a higher level: RegionsInformationTable would
handle rendering the table and leave data gathering to another part of your solution.

Developing with React Chapter 6

[297]

Even if you passed web services handling to App, as your application grows in size, this
sort of solution may become unwieldy because of the number of data fields you may have
to keep track of. We'll find a better scalable solution for this in Chapter 8, Expanding your
Application, by adding a specific package to handle state updates in a more orderly,
structured fashion.

Composing components
Let's go back to the ExpandableCard, which we didn't quite finish before. We could
certainly do a regions-specific card, but it seems that the general concept of a card that can
be expanded or condensed is useful enough that we could prefer a more general
solution. React allows us to do that via composition, as we'll see in this section.

How to do it...
The component we want to create could have any kind of content. (The same idea would
apply to generic dialog boxes, header sections, or sidebars, by the way.) Instead of creating
a base class and using inheritance to create multiple derived classes, React allows you to
pass a special children prop (this.props.children) so that you can pass children
elements to the original component.

First, let's see how our ResultsDataTable code would change. First, the render()
method would have to change:

render() {
 if (this.props.results.length === 0) {
 return <div className="bordered">No regions.</div>;
 } else {
 return (
 <div className="bordered">
 {this.props.results.map(x => (
 <ExpandableCard key={x.id} title={x.name}>
 <div>CITIES:{x.cities}</div>
 <div>POPULATION:{x.pop}</div>
 </ExpandableCard>
))}
 </div>
);
 }
}

Developing with React Chapter 6

[298]

Second, let's define the component we are using. We are inserting an ExpandableCard
component with a key and a title, and within it we are including a couple of
<div> elements with data for cities and population. This content will be available as
this.prop.children, as we'll see later. We also added a title prop and an internal
state, open, which will be toggled when you expand or condense a card via the .toggle()
method. First, let's look at the props, state, and types:

// Source file: src/comopnents/expandableCard.2/index.js

/* @flow */

import * as React from "react";
import PropTypes from "prop-types";

import "../general.css";
import "./expandableCard.css";

export class ExpandableCard extends React.PureComponent<
 {
 children: React.ChildrenArray<React.ChildrenArray<React.Node>>,
 title: string
 },
 { open: boolean }
> {
 static propTypes = {
 children: PropTypes.arrayOf(PropTypes.element).isRequired,
 title: PropTypes.string.isRequired
 };

 state = {
 open: false
 };

// continues...

For React, Flow predefines a lot of data types. (You can read more about this at https:/ ​/
github.​com/​facebook/ ​flow/ ​blob/ ​master/ ​website/ ​en/ ​docs/ ​react/ ​types. ​md.)

https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md
https://github.com/facebook/flow/blob/master/website/en/docs/react/types.md

Developing with React Chapter 6

[299]

The few more usual ones you are likely to require are as follows, but read the
aforementioned web page for a full list:

Data Types Explanations

React.ChildrenArray<T>
An array of children, of type <T>, just as shown in the previous
code.

React.Element<typeof
Component>

A node of a specific type: for example,
React.Element<"div"> is an element that renders a
<div>.

React.Key The type of a prop that is used as key: essentially, either a number
or a string.

React.Node
Any node that can be rendered, including React elements,
numbers, strings, Booleans, undefined, null, or arrays of those
types.

Finally, let's get to the functioning part of the component. Let's see how we show the
children of the component when the state of the component shows that it should be
expanded. Also of interest is looking at how clicking on the card calls the .toggle()
method to change the component's state.open value:

// continued...

 toggle = () => {
 this.setState(state => ({ open: !state.open }));
 }

 render() {
 if (this.state.open) {
 return (
 <div className="bordered">
 {this.props.title}
 <div
 className="toggle"
 onClick={this.toggle}
 >
 △
 </div>
 <div>{this.props.children}</div>
 </div>
);
 } else {
 return (
 <div className="bordered">
 {this.props.title}
 <div
 className="toggle"

Developing with React Chapter 6

[300]

 onClick={this.toggle}
 >
 ▽
 </div>
 </div>
);
 }
 }
}

We're done! Let's see how this all comes together.

How it works...
When this object is rendered for the first time, this.state.open is false, so the
.render() method will just produce the title of the card, plus a triangle pointing down, to
suggest that the card may be expanded by clicking on it. When the user clicks on the
triangle, this.setState() is called with a function that will take the current value of
this.state.open, and toggle it. React will decide whether the object needs to be re-
rendered (because of the change in state) and this time, since this.state.open will be
true, the expanded, complete version of the card will be rendered. In particular, the triangle
will be shown pointing up, so the user will understand that the card will be condensed if
they click there. Check out the following screenshot for a trial run, showing some expanded
and condensed cards:

 A run of our application; some cards are expanded and show their children

Developing with React Chapter 6

[301]

What's going to be the content of the expanded card? This is where
this.props.children comes in. Whatever elements were provided as props will be
rendered here. In this way, you can reuse your ExpandableCard with any type of content.
The main characteristics (the title, the triangle to expand/condense the card) will always be
there, but thanks to the use of composition, you'll be able to have as many versions of
expandable cards as you may need.

Handling life cycle events
Components don't only have a .render() method – they can also implement many more
life cycle events that can help you in specific situations. In this section, let's go over all of the
available methods and provide ideas about when you will use them.

For a full description of all the available methods, go to https:/ ​/​reactjs.
org/​docs/ ​react- ​component. ​html – but pay careful attention to some
deprecated, legacy methods that should be avoided, and also read about
the conditions and parameters for each method.

How to do it...
Let's go over the life of a component, in order from the time a component is created and
placed into the DOM, during its life when it may be updated, up to the moment the
component is removed from the DOM. We are going to hit only the main methods, and
even so it's likely that you won't get to use all of them:

constructor(): This method is called before the component is mounted for
basic setup and initialization. This method is used for all kinds of initialization.
The only key rule is that you should always start by
calling super(props) before doing anything else, so this.props will be
created and accessible.
componentDidMount(): This method is called after the component is mounted.
shouldComponentUpdate(nextProps, nextState): This method is used by
React to decide whether a component needs to be re-rendered or not.
render(): This (mandatory) method produces HTML elements, ideally based
only on this.props and this.state. If the function returns
a boolean or null value, nothing will be rendered. The method should be pure,
not attempting to modify the component's state (which can lead to nasty loops)
or to use anything but state and props.

https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html

Developing with React Chapter 6

[302]

forceUpdate(): This method is not really a life cycle one, and you can call it
whenever you want to force a re-rendering to be done.
componentDidUpdate(previousProps, previousState): This method is
called after a component has been updated.
componentWillUnmount(): This method is called just before a component is
going to be unmounted.

How it works...
We went over the methods in the previous section. Now let's go over some ideas about
getting the less obvious of them to work:

Methods Explanations

componentDidMount()

This is the usual place to start some action to get data from a web service. A
usual trick for that is to have a state property like
this.state.loading that you initialize to true when you ask for the
data and reset to false after the data comes in. You can then make the
.render() method produce different outputs, possibly a loading icon,
until the data comes, and real data afterwards.

shouldComponentUpdate(...)

This method works as a performance optimization, allowing React to skip
unnecessary updates. With React.PureComponent, this is
implemented by a comparison between the current state and the next state,
and the current props and the next props. For normal
React.Components this method always returns true, forcing re-
rendering. If your component is rendered based on anything extra (such as
other than state and props), you should use a Component instead of a
PureComponent.

componentDidUpdate(...)

You could use this method to do some animation, or to get data from a web
service—but in the latter case, you might want to compare the current state
and props with the previous values, because if there were no changes, the
request may not be needed, or it might have already been done.

componentWillUnmount() This is the usual place to do some cleanup tasks, like disabling timers or
removing listeners, for example.

Simplifying component development with
Storybook
When you are developing components, there is a basic, important question: how can you
try them out? Of course, you could include them somewhere, in any page, but then
whenever you want to see how they work, you must follow the full path through your
application so that you can get to actually see the component.

Developing with React Chapter 6

[303]

Storybook is a UI development environment that lets you visualize your components in
isolation, outside of your application, even making changes to them in an interactive way
until you get them exactly right!

How to do it...
First, start by installing Storybook itself; we are going to use this version for React, but
the tool can also be used with Angular and Vue:

npm install @storybook/react --save-dev

Then add a couple of scripts to package.json: one will launch Storybook (as we'll see
later) and the other will build a standalone application that you can use to showcase your
components in an independent fashion:

"scripts": {
 "storybook": "start-storybook -p 9001 -c .storybook",
 "build-storybook": "build-storybook -c .storybook -o out_sb",
 .
 .
 .

Now let's write a simple story for ExpandableCard. In the same directory where that
component is (the final version, which actually allowed expanding and compressing, not
the first version without that behavior), create a ExpandableCard.story.js file. What
would you want to show about your component? You could display the following:

An expandable card with a couple of lines within, as we used previously
Another card with many lines, to show how the card stretches
A card containing other cards, each of them with some minimal content

The code will look quite similar in style to the tests we wrote for Node back in Chapter 5,
Testing and Debugging your Server. I'm assuming that you can figure out what each test does:

// Source file: src/components/expandableCard.2/expandableCard.story.js

import React from "react";
import { storiesOf } from "@storybook/react";

import { ExpandableCard } from "./";

storiesOf("Expandable Card", module)
 .add("with normal contents", () => (
 <ExpandableCard key={229} title={"Normal"}>

Developing with React Chapter 6

[304]

 <div>CITIES: 12</div>
 <div>POPULATION: 41956</div>
 </ExpandableCard>
))

 .add("with many lines of content", () => (
 <ExpandableCard key={229} title={"Long contents"}>
 Many, many lines

 Many, many lines

 Many, many lines

 Many, many lines

 Many, many lines

 Many, many lines

 Many, many lines

 Many, many lines

 Many, many lines

 Many, many lines

 Many, many lines

 Many, many lines

 Many, many lines

 Many, many lines

 </ExpandableCard>
))

 .add("with expandable cards inside", () => (
 <ExpandableCard key={229} title={"Out card"}>
 <ExpandableCard key={1} title={"First internal"}>
 A single 1
 </ExpandableCard>
 <ExpandableCard key={2} title={"Second internal"}>
 Some twos
 </ExpandableCard>
 <ExpandableCard key={3} title={"Third internal"}>
 Three threes: 333
 </ExpandableCard>
 </ExpandableCard>
));

So as not to have a single story, let's write a short one for the CountryFilterBar
component; it will be in the same directory, named countryFilterBar.story.js. And,
yes, I know this is a very simple component, but this is just for our example!

// Source file: src/components/countryFilterBar/countryFilterBar.story.js

import React from "react";
import { storiesOf } from "@storybook/react";

import { CountryFilterBar } from "./";

Developing with React Chapter 6

[305]

const countries = [
 { code: "AR", name: "Argentine" },
 { code: "BR", name: "Brazil" },
 { code: "PY", name: "Paraguay" },
 { code: "UY", name: "Uruguay" }
];

storiesOf("Country Filter Bar", module).add("with some countries", () => (
 <CountryFilterBar list={countries} onSelect={() => null} />
));

Finally, we need a launcher. Create a .storybook directory at the root of the project, and a
config.js file within, as follows:

import { configure } from "@storybook/react";

configure(() => {
 const req = require.context("../src", true, /\.story\.js$/);
 req.keys().forEach(filename => req(filename));
}, module);

configure(loadStories, module);

Yes, it's sort of mysterious—but it basically says to scan the /src directory, and pick up all
of the files whose names end with .story.js. Now we are set to see how this all comes
together.

How it works...
We have written stories for just a couple of our components, but that will do for our
purposes. To start the Storybook server, you'll have to run one of the scripts we created
earlier in this section:

npm run storybook

Developing with React Chapter 6

[306]

After some work, you'll get the following screen:

 The Storybook, showing all of the available stories. You can interact with components, click on them, and even test out changes in source code.

You can select any component in the left sidebar (or even use the Filter text box), and you'll
get the individual stories for it. Clicking on a story will show the corresponding component
on the right. You can work with the component and see how it looks and performs... and if
you are not satisfied, you can dynamically change its source code, and immediately see the
results!

To finish, let's build a separate showcase application:

$ npm run build-storybook

> chapter06@0.1.0 build-storybook /home/fkereki/JS_BOOK/modernjs/chapter06
> build-storybook -s public -o out_sb

info @storybook/react v3.4.8
info
info => Loading custom addons config.
info => Using default webpack setup based on "Create React App".
info => Copying static files from: public
info Building storybook ...
info Building storybook completed.

Developing with React Chapter 6

[307]

After this, in the /out_sb directory, we will have a full standalone version of our
showcase. To see how it works, we can use the Web Server for Chrome application (search
for it in the Chrome extensions) and choose the output directory:

 The Web Server for Chrome application is sufficient to let us see what the standalone Storybook would look like

If you open the web server URL that is shown onscreen, you'll get exactly the same output
as earlier – but now you could copy the out_sb directory elsewhere, and use it as a
showcase tool, with independence from the developers.

Developing with React Chapter 6

[308]

There's more...
You can expand Storybook with add-ons, which allow you to enhance your showcase. Out
of the many available ones, we will install three of them and have a quick look at their
usage:

addon-actions lets you see the data received by event handlers to see what
would happen, for example, when the user clicks on a component
addon-notes allows you to add notes to a component, to explain how it works
or to give insights on its usage
addon-knobs lets you dynamically tweak a component's props to see how they
change

You can read more about add-ons at https:/ ​/​storybook. ​js. ​org/ ​addons/
introduction/ ​ and take a look at the gallery of available add-ons
at https:/ ​/ ​storybook. ​js. ​org/​addons/ ​addon- ​gallery/ ​.

Since add-ons are quite simple, let's look at an example where all of the aforementioned
ones are used. First, we'll have to create an addons.js file in the .storybook directory,
with a line for each add-on that we want to use:

import "@storybook/addon-actions/register";
import "@storybook/addon-knobs/register";
import "@storybook/addon-notes/register";

Now let's modify our stories so that CountryFilterBar will show what value it sends
back with the onSelect event, and will also show some notes describing the component, so
that ExpandableCard will let you tweak the props it receives:

// Source file:
src/components/expandableCard.2/expandableCardWithAddon.story.js

import React from "react";
import { storiesOf } from "@storybook/react";
import { action } from "@storybook/addon-actions";
import { withNotes } from "@storybook/addon-notes";

import { CountryFilterBar } from "./";
import markDownText from "./countryFilterBar.md";

const countries = [
 { code: "AR", name: "Argentine" },
 { code: "BR", name: "Brazil" },
 { code: "PY", name: "Paraguay" },

https://storybook.js.org/addons/introduction/
https://storybook.js.org/addons/introduction/
https://storybook.js.org/addons/introduction/
https://storybook.js.org/addons/introduction/
https://storybook.js.org/addons/introduction/
https://storybook.js.org/addons/introduction/
https://storybook.js.org/addons/introduction/
https://storybook.js.org/addons/introduction/
https://storybook.js.org/addons/introduction/
https://storybook.js.org/addons/introduction/
https://storybook.js.org/addons/introduction/
https://storybook.js.org/addons/introduction/
https://storybook.js.org/addons/introduction/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/
https://storybook.js.org/addons/addon-gallery/

Developing with React Chapter 6

[309]

 { code: "UY", name: "Uruguay" }
];

storiesOf("Country Filter Bar (with addons)", module).add(
 "with some countries - with actions and notes",
 withNotes(markDownText)(() => (
 <CountryFilterBar
 list={countries}
 onSelect={action("change:country")}
 />
))
);

For the action, I provided an action(...) function, which will display its results in
another tab, ACTION LOGGER, as follows:

 Whenever you select a country, the executed callback and its parameters are shown in the ACTIONS tab.
I clicked on my country, Uruguay, and I can see that "UY" is being sent.

Developing with React Chapter 6

[310]

I also added a withNotes(...) call, providing the text from a markdown file I created.
The content of this will be shown in the NOTES tab, as shown in the following screenshot:

 You can provide good documentation (not like mine!) for every component

Finally, we can add a few "knobs" that lets the user change parameters dynamically. Let's
allow them to modify the card's title and the numbers shown inside it:

import React from "react";
import { storiesOf } from "@storybook/react";

import { withKnobs, text, number } from "@storybook/addon-knobs";

import { ExpandableCard } from "./";

storiesOf("Expandable Card (with knobs)", module)
 .addDecorator(withKnobs)

Developing with React Chapter 6

[311]

 .add("with normal contents", () => (
 <ExpandableCard key={229} title={text("Card title", "XYZZY")}>
 <div>CITIES: {number("Number of cities", 12)}</div>
 <div>POPULATION: {number("Population", 54321)}</div>
 </ExpandableCard>
));

When the user sees this story, the KNOBS panel lets them type in some values that are
immediately updated on screen, as follows:

 Adding knobs to a story lets users experiment with different settings. The values you enter in the Knobs panel are automatically reflected in the component.

We used only texts and numbers, but you can also provide knobs for Booleans, colors,
dates, numbers within a given range, objects, string arrays, and options from a list.

7
Enhancing Your Application

In this chapter, we'll move forward and consider several tools that make for a better
application. The recipes we'll be seeing include the following:

Adding SASS for separate styling
Creating StyledComponents for inline styling
Making your application responsive to screen sizes
Making your application adaptive for enhanced usability
Making a global application with internationalization and localization
Setting up for accessibility

Introduction
In the previous chapter, we started developing applications with React, and saw the basics
of how to use it, how to create an application, and how to develop components.

We'll also be taking advantage of Storybook, which we used in the previous chapter, so
we can demonstrate each tool separately, and so we don't have to waste time focusing on
anything else.

Enhancing Your Application Chapter 7

[313]

Adding SASS for separate styling
Just about the very first thing we should add is some way to handle styling for our
application. If you wish, you need learn nothing new, nor install anything extra, for you
could go with plain old-fashioned CSS—as we already did! We used some CSS in the
previous chapter (look for the src/components/general.css file), but we don't even
need to go there. When we created our project then, an App.js file was created with the
following code:

import React, { Component } from "react";
import logo from "./logo.svg";
import "./App.css";

class App extends Component {
 render() {
 return (
 <div className="App">
 <header className="App-header">
 <img src={logo} className="App-logo"
 alt="logo" />
 <h1 className="App-title">Welcome to
 React</h1>
 </header>
 <p className="App-intro">
 To get started, edit <code>src/App.js</code>
 and save to reload.
 </p>
 </div>
);
 }
}

export default App;

By including the import "./App.css" line, you are getting the styles that were defined in
the App.css file, and you can then use them everywhere, as shown in the code.

This usage of import to deal with styling is not a JS thing, but rather is
due to Webpack, which is used by create-react-app to generate the
output code for your application.

Enhancing Your Application Chapter 7

[314]

So, if you wanted to get by with just CSS, you need to do but little, and you are set!
However, there are many tools that can help you with styling, adding features that really
come in handy, and in this section we will consider how to use SASS, one of the best-known
CSS extension languages.

If you want to fully learn SASS, I'd recommend browsing to http:/ ​/​sass-
lang. ​com/ ​ and particularly check out the LEARNING SASS and
DOCUMENTATION areas, at http:/ ​/​sass- ​lang. ​com/ ​guide and http:/
/​sass- ​lang. ​com/ ​documentation/ ​file. ​SASS_ ​REFERENCE. ​html,
respectively.

How to do it…
SASS is a preprocessor that works with .scss (Sassy CSS) files and produces standard CSS
files that browsers can work with. The preprocessing step is the key to using features that
aren't (at least yet) available in CSS, such as variables, nested structures, inheritance,
mixins, and many others. You can install and use SASS as a separate tool, but that isn't
really too appealing; we'll aim to instead include it in the project, so all needed
preprocessing will be done automatically. Let's see how to do that.

SASS has two possible syntaxes: an older, indented one, plainly known as
the indented syntax, and the newer SCSS. While the former is more concise,
the latter has the advantage of being an extension of CSS, which means
that any valid CSS file you might already have is automatically a valid
SCSS file with the very same meaning. This is a very good help if you are
migrating from CSS to SASS, so we'll only use SCSS in the text.

First, we need to install a tool. The developers of create-react-app didn't want to
include a fixed CSS preprocessor, so you can really add whichever you want. There are
several SASS tools, but the following one is recommended:

 npm install node-sass-chokidar --save-dev

Second, we'll also have to add an extra line to the .flowconfig file, so .scss files will be
properly recognized. The changed section would become as follows:

[options]
include_warnings=true
module.file_ext=.scss
.
.
.

http://sass-lang.com/
http://sass-lang.com/
http://sass-lang.com/
http://sass-lang.com/
http://sass-lang.com/
http://sass-lang.com/
http://sass-lang.com/
http://sass-lang.com/
http://sass-lang.com/
http://sass-lang.com/guide
http://sass-lang.com/guide
http://sass-lang.com/guide
http://sass-lang.com/guide
http://sass-lang.com/guide
http://sass-lang.com/guide
http://sass-lang.com/guide
http://sass-lang.com/guide
http://sass-lang.com/guide
http://sass-lang.com/guide
http://sass-lang.com/guide
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html

Enhancing Your Application Chapter 7

[315]

Finally, we'll have to modify some scripts. SASS preprocessing will run in parallel to npm
start, and for that we need a package that lets you run several commands in parallel:

npm install npm-run-all --save-dev

Now the changed scripts will be the following:

"build-scss": "node-sass-chokidar src/ -o src/",
"watch-scss": "npm run build-scss && node-sass-chokidar src/ -o src/ --
watch --recursive",
"start-js": "react-app-rewired start",
"build-js": "react-app-rewired build",
"storybook-js": "start-storybook -p 9001 -c .storybook",
"start": "npm-run-all -p watch-scss start-js",
"build": "npm-run-all build-scss build-js",
"storybook": "npm-run-all -p watch-scss storybook-js",
.
.
.

Let's see what our new and updated processes do:

build-scss converts .scss files in src/ to .css files; we'll be using the latter
ones
watch-scss does an initial conversion of SASS files, and then runs the
conversion in watch mode, running whenever there are new or changed files to
process
start-js, build-js, and storybook-js are our old start, build, and
storybook processes, which we won't be using directly
start now runs both watch-scss and start-js, in parallel (because of the -p
option)
build now runs build-scss followed by build-js, so all SCSS will have been
converted before building the application
storybook runs both watch-scss and storybook-js, also in parallel

You are set! From now on, .scss files will be properly processed, and converted to .css
files; let's see how we can make this work for us now.

Enhancing Your Application Chapter 7

[316]

How it works…
Let's create and style a basic component, a colored button, trying to take advantage of as
many SASS features as possible. This will be an extreme example, because it's not very
likely you'll have such a complex way of creating simple code, but we want to highlight
SASS here.

First, the code for the button itself, which we will call SassButton. It has three props:
normal (if true, will show normal colors; if false, alert ones); buttonText, which will be
displayed by the button; and onSelect, a callback for clicks. I highlighted the CSS-related
lines in the following code snippet:

// Source file: /src/components/sassButton/sassButton.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";
import "./styles.css";

export class SassButton extends React.PureComponent<{
 normal: boolean,
 buttonText: string,
 onSelect: void => void
}> {
 static propTypes = {
 normal: PropTypes.bool.isRequired,
 buttonText: PropTypes.string.isRequired,
 onSelect: PropTypes.func.isRequired
 };

 render() {
 return (
 <div
 className={
 this.props.normal ? "normalButton" : "alertButton"
 }
 onClick={this.props.onSelect}
 >
 {this.props.buttonText}
 </div>
);
 }
}

Enhancing Your Application Chapter 7

[317]

Even if working with SASS and .scss files, you'll be importing the
preprocessed .css output files, not the .scss original ones. Be careful
not to import a .scss file by mistake.

We assume that CSS classes .normalButton and .alertButton do exist; let's now get to
creating them. First, let's define a partial SCSS file, _constants.scss, which will define
some variables with colors. The filenames of partial files always start with an underscore,
and they won't be converted into CSS; rather, they are assumed to be an @import from
other SCSS files:

$normalColor: green;
$normalText: yellow;

$alertColor: red;
$alertText: white;

Variables' names start with a dollar sign, and are a very good way to set standard
definitions, such as for fonts or colors. If I were to decide that I want to change my normal
color to be blue, I would have to change it in just a single place, and it would be replaced
everywhere. Note that I could use $normalColor in many places, for backgrounds, texts,
and more, and all would be updated with a single edit.

Let's now define some mixins that can be used to include CSS code, even working with
parameters. Our darkenBackground() mixin will produce code to set the background-
color to a value, and to change the :hover attribute of whatever element it's used in to a
25% darker version. Note the ampersand in &:hover, which stands for the parent element,
and also the darken() function, which is just one of many functions that SASS provides,
for working with colors, sizes, and so on.

See http:/​/​sass-​lang. ​com/ ​documentation/ ​file. ​SASS_ ​REFERENCE. ​html#operations for
more on this:

@mixin darkenBackground($color) {
 background-color: $color;
 &:hover {
 background-color: darken($color, 25%);
 transition: all 0.5s ease;
 }
}

@mixin coloredBoldText($color) {
 color: $color;
 font-weight: bold;
}

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#operations

Enhancing Your Application Chapter 7

[318]

Finally, we can build our styles in a styles.scss file. First, we import our partials:

@import "_constants.scss";
@import "_mixins.scss";

Then, to show off other SASS features, let's define a basic placeholder class, %baseButton,
that will be extended. The initial % character (similar to class or ID initial characters) means
that this code is not meant to be directly used:

%baseButton {
 display: inline-block;
 text-decoration: none;
 padding: 5px 10px;
 border-radius: 3px;
}

Now let's extend this base class to create our buttons: we'll use @extend for that, and also
@include to add the output of our mixins to the resulting code. We also included some /*
... */ comments, but you can also use // for single-line comments:

/*
 A simple button for normal situations
*/
.normalButton {
 @extend %baseButton;
 @include darkenBackground($normalColor);

 span {
 @include coloredBoldText($normalText);
 }
}

/*
 An alert button for warnings or errors
*/
.alertButton {
 @extend %baseButton;
 @include darkenBackground($alertColor);

 span {
 @include coloredBoldText($alertText);
 }
}

Enhancing Your Application Chapter 7

[319]

If you are wondering what eventually comes out of all that, the produced styles.css file
is as follows: check it out carefully, and you'll see the translated mixins and constants, and
also how extended styles are defined, how :hover is used, and so on:

.normalButton, .alertButton {
 display: inline-block;
 text-decoration: none;
 padding: 5px 10px;
 border-radius: 3px; }

.normalButton {
 background-color: green; }
 .normalButton:hover {
 background-color: #000100;
 transition: all 0.5s ease; }
 .normalButton span {
 color: yellow;
 font-weight: bold; }

.alertButton {
 background-color: red; }
 .alertButton:hover {
 background-color: maroon;
 transition: all 0.5s ease; }
 .alertButton span {
 color: white;
 font-weight: bold; }

All we need now is to write a story and check out our buttons in Storybook:

// Source file: /src/components/sassButton/sassButton.story.js

import React from "react";
import { storiesOf } from "@storybook/react";
import { action } from "@storybook/addon-actions";

import { SassButton } from "./";

storiesOf("SASS buttons", module)
 .add("normal style", () => (
 <SassButton
 normal
 buttonText={"A normal SASSy button!"}
 onSelect={action("click:normal")}
 />
))
 .add("alert style", () => (
 <SassButton

Enhancing Your Application Chapter 7

[320]

 normal={false}
 buttonText={"An alert SASSy button!"}
 onSelect={action("click:alert")}
 />
));

When a prop is meant to be true or false, just including its name makes
it true. See how in the first story we can just write normal instead of
normal={true}; both are equivalent.

We can see the normal button in the following screenshot:

 Our normal button, shown in Storybook

Enhancing Your Application Chapter 7

[321]

The alert button, with a hovering cursor, is seen in the following screenshot:

 Our alert button, with hovering colors

So, here we have seen a common solution: using SASS to create CSS. In the next section,
let's get into a more original way of working, by having the CSS code right within our JS
code rather than separated from it!

Enhancing Your Application Chapter 7

[322]

Creating StyledComponents for inline
styling
CSS-in-JS is a sometimes controversial topic. Before React, it was almost mandatory that
you'd have a trio of sets of JS, HTML, and CSS separate files. When React introduced JSX,
that was a shot against the trio, because we started placing HTML in the JS code. CSS-in-JS
is the natural extension of that idea, because now we want to also include styling within the
same JS files.

A first reaction to this is: Isn't that just going back to inline styles? This is a valid question, but
inline styles aren't just powerful enough. While you can manage lots of styling by inlining
styles, the fact is that there are several features that aren't accessible in this way: keyframes
animation, media queries, pseudo selectors, and more.

The idea of going with CSS-in-JS is writing styles by using JS, but then injecting those styles
in a <style> tag within the DOM, so you'll have the full power of CSS for your code.
Furthermore, this is also well-aligned with component-based approaches such as React's,
because you manage to pack everything you need together in a properly encapsulated way
instead of depending on global style files and having to deal with CSS's single namespace.

There are many packages that promote this way of styling, and out of those, we are going
to pick styled-components, which is one of the best-regarded packages for CSS-in-JS
styling. Its philosophy is interesting: instead of adding styles to components, you create
components that incorporate those styles and use them everywhere. Let's start by seeing
how to add this package to our code, and then move on to using it.

For the original talk on CSS-in-JS, by Christopher vjeux Chedeau, in which
he gives the reasons for working with styling done in JS, see https:/ ​/
speakerdeck. ​com/ ​vjeux/ ​react- ​css- ​in-​js.

How to do it…
Installing styled-components is quite simple—and note this is not a development
dependency, because you'll be actually using the package in your production code, not as a
separate preprocessing step or anything like that:

npm install styled-components --save

https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js
https://speakerdeck.com/vjeux/react-css-in-js

Enhancing Your Application Chapter 7

[323]

We will be using tagged template literals (which we earlier saw in the Working with strings
section of Chapter 2, Using Modern JavaScript features), so you may want to refresh that part
of the book.

Working with Flow won't be a problem, because styled-components is well supported
by it, so we won't have to do anything in particular. Finally, for VSC you might want to use
the vscode-styled-components extension to add syntax highlighting.

Read the full documentation for styled-components at https:/ ​/​www.
styled- ​components. ​com/ ​docs.

How it works…
Let's try to recreate the button we build with SASS, but through using our new tool. We
won't try to mimic the SASS code, but we'll try to apply some of the same concepts like
defining constants in a separate file, having functions work as mixins, and extending a class
as we did earlier. We have a problem, because styled-components doesn't provide color
functions as SASS does, so we'll add a new library to take care of that, color:

This package provides you with lots of methods to create and manipulate
colors, so you'll do well by taking a look at its documentation, at https:/ ​/
github. ​com/ ​qix- ​/​color.

npm install color --save

Now, we are set. First, we'll have some basic color constants, in file constants.js, that
could be used everywhere:

export const NORMAL_COLOR = "green";
export const NORMAL_TEXT = "yellow";

export const ALERT_COLOR = "red";
export const ALERT_TEXT = "white";

There's an alternative way of sharing global style data, by means of
theming; if you are interested, check it out at https:/ ​/ ​www.​styled-
components.com/docs/advanced#theming.

https://www.styled-components.com/docs
https://www.styled-components.com/docs
https://www.styled-components.com/docs
https://www.styled-components.com/docs
https://www.styled-components.com/docs
https://www.styled-components.com/docs
https://www.styled-components.com/docs
https://www.styled-components.com/docs
https://www.styled-components.com/docs
https://www.styled-components.com/docs
https://www.styled-components.com/docs
https://www.styled-components.com/docs
https://github.com/qix-/color
https://github.com/qix-/color
https://github.com/qix-/color
https://github.com/qix-/color
https://github.com/qix-/color
https://github.com/qix-/color
https://github.com/qix-/color
https://github.com/qix-/color
https://github.com/qix-/color
https://github.com/qix-/color
https://github.com/qix-/color
https://github.com/qix-/color
https://www.styled-components.com/docs/advanced#theming
https://www.styled-components.com/docs/advanced#theming
https://www.styled-components.com/docs/advanced#theming
https://www.styled-components.com/docs/advanced#theming
https://www.styled-components.com/docs/advanced#theming
https://www.styled-components.com/docs/advanced#theming
https://www.styled-components.com/docs/advanced#theming
https://www.styled-components.com/docs/advanced#theming
https://www.styled-components.com/docs/advanced#theming

Enhancing Your Application Chapter 7

[324]

Now we'll directly get to defining our component, since all styling will also be there. First,
we'll need some imports:

// Source file: /src/components/styledButton/styledButton.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";
import styled from "styled-components";
import Color from "color";

import {
 NORMAL_TEXT,
 NORMAL_COLOR,
 ALERT_TEXT,
 ALERT_COLOR
} from "./constants";

// continues...

Given this, we can get to the main code. We'll have a makeSpan() function that will work
as a mixin; we'll get to use it very shortly, and we'll see what props means:

// ...continued

const makeSpan = props => `
 span {
 color: ${props.normal ? NORMAL_TEXT : ALERT_TEXT};
 font-weight: bold;
 }
`;

// continues...

Then, we'll define a BasicStyledDiv component, with some basic styling, that will do as a
base class for our button. (Remember, we are working in this unneedlessly complex way,
just to highlight several features you may want to use in problems that really need it!) This
component will roughly be the equivalent of our %baseButton declaration in SASS, from
the previous section:

// ...continued

const BasicStyledDiv = styled.div`
 display: inline-block;
 text-decoration: none;
 padding: 5px 10px;

Enhancing Your Application Chapter 7

[325]

 border-radius: 3px;
`;

// continues...

After, we can create a StyledDiv component by extending the previous one. Since
styled-component lets us use functions and expressions, we won't have to create two
distinct styles, as we did with SASS when we built .normalButton and .alertButton.
Also, note that we can use & here, meaning a reference to the class, just as in SASS:

// ...continued

const StyledDiv = BasicStyledDiv.extend`
 background-color: ${props =>
 props.normal ? NORMAL_COLOR : ALERT_COLOR};
 &:hover {
 background-color: ${props =>
 Color(props.normal ? NORMAL_COLOR : ALERT_COLOR)
 .darken(0.25)
 .string()};
 transition: all 0.5s ease;
 }
 ${props => makeSpan(props)};
`;

// continues...

What is this props parameter we see? When creating a style, the component's props will be
passed to our code, so we can tweak our style. In this case, if the component's
this.props.normal value is true, NORMAL_COLOR will be used; otherwise, ALERT_COLOR
will apply. This simplifies our code a lot, because we won't have to create styles in a fixed
fashion; we can make them adjust to whatever we want.

After all of this, the code for our button itself is very simple:

// ...continued

export class StyledButton extends React.PureComponent<{
 normal: boolean,
 buttonText: string,
 onSelect: void => void
}> {
 static propTypes = {
 normal: PropTypes.bool.isRequired,
 buttonText: PropTypes.string.isRequired,
 onSelect: PropTypes.func.isRequired
 };

Enhancing Your Application Chapter 7

[326]

 render() {
 return (
 <StyledDiv
 normal={this.props.normal}
 onClick={this.props.onSelect}
 >
 {this.props.buttonText}
 </StyledDiv>
);
 }
}

// continues...

Writing a story to check this is actually trivial, because we only need to copy the previous
one we wrote for the SASS style button and substitute StyledButton for SassButton; no
need for anything else. (OK, I also changed some strings for clarity, but those edits are
trivial.) If we launch Storybook, we can quickly verify that our new button works in the
same way as our previous one; see following screenshot for evidence of that:

 Using styled-components is as successful as SASS, and more "JavaScripty"

Enhancing Your Application Chapter 7

[327]

If you want to get some specific tips, and learn some new tricks, check
out https:/ ​/​github. ​com/ ​styled- ​components/ ​styled- ​components/ ​blob/
master/ ​docs/ ​tips- ​and- ​tricks. ​md.

Making your application responsive to
screen sizes
Creating a web application means that you cannot assume any given display size. In fact,
the user may change the browser's window size, and your application should somehow
respond to that, rearranging whatever is shown on screen to better work with the current
screen dimensions. If your web application is capable of this reorganization, it's said to be
responsive. Today, given the extreme range of devices with browsers (ranging from small
phone handsets to very large flat screens), doing responsive design is really a must, so in
this section we'll see how to work with this. I'll assume you are already aware of CSS
concepts such as grids and columnar designs; please read up on them if not.

To allay a common, fairly obvious question, if you are aware of current trends in CSS, you
may ask why aren't we using Flexbox or CSS Grids, both of which easily allow responsive
designs. The answer lies in availability: if you check places such
as https://www.caniuse.com/, you'll find out that both those features are only recently
available, and thus users may not yet have access to them. To sum it up, note the following:

Internet Explorer has partial support of both features, with many bugs
Edge supports them only since version 17, dated April 2018
FireFox supports them since version 60, dated May 2018
Safari supports them since version 11.1, dated March 2018
Chrome supported FlexBox since version 49, from March 2016, but CSS Grid only
since version 66, dated April 2018

As you can see, if you want to use these features, as of today (December 2018), only a few of
your users may have access to them, and for the vast majority, scrambled up displays
would be the result. So, even if it means working with a larger library than need be, we'll go
with a current-day standard, as we'll see in the next section.

https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://github.com/styled-components/styled-components/blob/master/docs/tips-and-tricks.md
https://www.caniuse.com/

Enhancing Your Application Chapter 7

[328]

How to do it…
One of the most popular frontend libraries for the design of websites and web applications,
is Bootstrap, which has been available since August 2011; it's about seven years old. It has
included responsive design handling since version 2. Mobile First Design (so you should first
get your design to work in smaller devices, and only afterwards worry about adding
handling for larger screens) was included in version 3, and SASS support appeared in
version 4. Apart from responsive design support, Bootstrap also offers other features,
such as components, typography, and more utilities, so you should probably not miss
checking the whole documentation at https:/ ​/​getbootstrap. ​com/​docs/ ​4. ​1/​getting-
started/​introduction/ ​.

Bootstrap is currently GitHub's second most starred project, following
FreeCodeCamp's first place. And if you wonder, React is practically tied
at third place with another framework, Vue, and with EBook's Foundation
set of free programming books. You can check the results by yourself
at https:/ ​/ ​github. ​com/ ​search? ​o= ​desc ​q=​stars%3A%3E1 ​s= ​stars ​type=
Repositories.

To install Bootstrap, we just need the usual npm command:

npm install bootstrap --save

You can save your work by downloading pre-build images, both for CSS
and JS; see https:/ ​/ ​getbootstrap. ​com/ ​docs/ ​4.​1/ ​getting- ​started/
download/ ​ for those options. Alternatively, there exists a React
package at https:/ ​/​react- ​bootstrap. ​github. ​io/ ​, react-bootstrap,
which today only supports Bootstrap version 3, but promises
forthcoming full support for Bootstrap version 4. Yet another possible
option you may want to look into is reactstrap, at https:/ ​/
reactstrap. ​github. ​io/ ​.

Bootstrap provides lots of features, including:

Components, such as alerts, buttons, dropdowns, navigation bars, and much
more; see https:/ ​/ ​getbootstrap. ​com/ ​docs/ ​4.​1/​components for a complete list
Tables, a common third-party component, with many configuration possibilities;
see https:/ ​/ ​getbootstrap. ​com/ ​docs/ ​4.​1/​content/ ​tables for more

https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://getbootstrap.com/docs/4.1/getting-started/download/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://reactstrap.github.io/
https://reactstrap.github.io/
https://reactstrap.github.io/
https://reactstrap.github.io/
https://reactstrap.github.io/
https://reactstrap.github.io/
https://reactstrap.github.io/
https://reactstrap.github.io/
https://reactstrap.github.io/
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/components
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables
https://getbootstrap.com/docs/4.1/content/tables

Enhancing Your Application Chapter 7

[329]

Typography-related elements, dealing with the many fonts you'll use in your
design; check out https:/ ​/​getbootstrap. ​com/ ​docs/ ​4.​1/ ​content/ ​typography/ ​S

Styling details, such as borders, colors, shadows, sizing, and more; read https:/ ​/
getbootstrap. ​com/ ​docs/ ​4. ​1/ ​utilities/ ​

In any case, we won't be specifically dealing with the preceding list, since it's basically just a
matter of styling, and we've already done that. We are going to focus, instead, on
positioning elements, changing their sizes, and even hiding or showing them according to
the current screen size; let's move on to that now.

How it works…
Bootstrap uses a grid system, based on 12 columns, with breakpoints for several device
sizes, based on media queries:

xs: very small, such as portrait phones, less than 576 pixels wide
sm: small, like landscape phones, up to 768 pixels
md: medium, like tablets, up to 992 pixels
lg: large, like desktops, up to 1200 pixels
xl: extra large, over 1200 pixels

These limits aren't hardcoded, and may be changed. Other common
values are 1024 and 1440, instead of 992 and 1200. Yet another possibility
is considering HD devices (1920x1080) and 4K devices, with a resolution
of 2560x1600.

Whenever you place elements, you specify their width in terms of columns, and positions
will be arranged depending on the available row space, moving to new rows if need be.
You can also allow for different sizing and ordering of elements depending on screen
dimensions, and even hide or show components (in full, or partially) depending on
available space.

https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/content/typography/
https://getbootstrap.com/docs/4.1/utilities/
https://getbootstrap.com/docs/4.1/utilities/
https://getbootstrap.com/docs/4.1/utilities/
https://getbootstrap.com/docs/4.1/utilities/
https://getbootstrap.com/docs/4.1/utilities/
https://getbootstrap.com/docs/4.1/utilities/
https://getbootstrap.com/docs/4.1/utilities/
https://getbootstrap.com/docs/4.1/utilities/
https://getbootstrap.com/docs/4.1/utilities/
https://getbootstrap.com/docs/4.1/utilities/
https://getbootstrap.com/docs/4.1/utilities/
https://getbootstrap.com/docs/4.1/utilities/
https://getbootstrap.com/docs/4.1/utilities/
https://getbootstrap.com/docs/4.1/utilities/
https://getbootstrap.com/docs/4.1/utilities/

Enhancing Your Application Chapter 7

[330]

Resizing elements
By using col-xx-yy classes (such as col-sm-3 or col-md-5) you can decide the size of
elements depending on the current screen width. The following code example shows
that—and notice I avoided a separate style sheet, just to simplify:

// Source file: /src/App.1.js

/* @flow */

import React, { Component } from "react";

class App extends Component<{}> {
 render() {
 const cl = "border border-dark p-2 bg-warning ";

 return (
 <div className="container mw-100">
 <div className="row border">
 <div className={cl + "col-sm-2 col-md-6"}>2/6</div>
 <div className={cl + "col-sm-4"}>4</div>
 <div className={cl + "col-sm-1"}>1</div>
 <div className={cl + "col-sm-1"}>1</div>
 <div className={cl + "col-sm-1"}>1</div>
 <div className={cl + "col-sm-1 col-md-5"}>1/5</div>
 <div className={cl + "col-sm-2 "}>2</div>
 <div className={cl + "col-sm-7 col-md-3"}>7/3</div>
 <div className={cl + "col-sm-4 "}>4</div>
 <div className={cl + "col-sm-1 col-md-3"}>1/3</div>
 </div>
 </div>
);
 }
}

export default App;

Enhancing Your Application Chapter 7

[331]

We can see how rendering changes with screen size; see following image:

 The same elements, rendered at different screen widths

At the smallest screen size, all elements are rendered at the same size vertically; this would
suit, logically, a very small device. As we enlarge the window size, the 7/3 element now
takes up 7 columns, while the 2/6, 1/5, and 1/3 elements are narrow. When we increase the
window width even more, note the 7/3 element takes only three columns, and the 3 other
elements become wide.

Of course, it's highly unlikely you'd ever come up with this weird design, with so many
different widths and such peculiar resizing rules, but the point here is that by using the
Bootstrap grid, elements can vary in size and gracefully flow to different rows, without
having to do anything special.

Enhancing Your Application Chapter 7

[332]

Reordering elements
In the previous example, we saw how components resized themselves, and flowed across
lines. However, there are other requirements: for instance, you could want a component to
appear at a different position for a given screen size. Fortunately, Bootstrap also allows
for that. Let's have an element that will change its place among the rest:

// Source file: /src/App.2.js

/* @flow */

import React, { Component } from "react";

class App extends Component<{}> {
 render() {
 const cl = "border border-dark p-2 bg-warning ";
 const ch = "border border-dark p-2 bg-dark text-white ";

 return (
 <div className="container mw-100">
 <div className="row border">
 <div className={cl + "col-sm-2 col-md-6"}>2/6</div>
 <div className={cl + "col-sm-4"}>4</div>
 <div className={cl + "col-sm-1"}>1</div>
 <div
 className={
 ch + "col-sm-1 order-sm-first order-md-
 last"
 }
 >
 1
 </div>
 <div className={cl + "col-sm-1 col-md-5"}>1/5</div>
 <div className={cl + "col-sm-3 "}>3</div>
 </div>
 </div>
);
 }
}

export default App;

Enhancing Your Application Chapter 7

[333]

For small devices, our special component should be the first, and for medium ones, it
should move to the end. For very small devices (for which we haven't provided any special
rules) it should appear at its normal place. See the following images:

 Components can also change their relative positions.

This takes care of a common second set of requirements, letting you vary at will the
sequence in which components appear on screen. We only have one more case, which we'll
see in the next section.

Hiding or showing elements
Our final type of design rule is that some components (or parts of them) should possibly
not be displayed at given screen sizes. For instance, if you were providing information
about a movie, in large screens you could include a still from a scene, plus pictures of the
main actors, in addition to the movie title and a full description, but in small screens you
could make do with just the movie title and basic information. Let's show this kind of
requirement with a couple of components: one will be fully hidden, while the other will just
hide part of its contents:

// Source file: /src/App.3.js

/* @flow */

import React, { Component } from "react";

Enhancing Your Application Chapter 7

[334]

class App extends Component<{}> {
 render() {
 const cl = "border border-dark p-2 bg-warning ";
 const ch = "border border-dark p-2 bg-dark text-white ";

 return (
 <div className="container mw-100">
 <div className="row border">
 <div className={cl + "col-sm-2 col-md-6"}>2/6</div>
 <div className={ch + "d-none d-sm-block col-sm-4"}>
 0/4
 </div>
 <div className={cl + "col-sm-2"}>2</div>
 <div className={cl + "col-sm-2"}>2</div>
 <div className={cl + "col-sm-1 col-md-5"}>1/5</div>
 <div className={cl + "col-sm-3 "}>3</div>
 <div className={ch + "col-sm-7 "}>
 <div>TOP</div>
 <div className="d-none d-sm-block">(MIDDLE)
 </div>
 <div>BOTTOM</div>
 </div>
 <div className={cl + "col-sm-4 "}>4</div>
 </div>
 </div>
);
 }
}

export default App;

Enhancing Your Application Chapter 7

[335]

To see this in action, check out the following image:

 A component fully disappears in small screens, while others show different contents

The 0/4 component is set to be shown only at small screens and more, so in the left side
screenshot it just disappears. The other component shows two lines in the smaller screen,
but fuller contents (OK, three lines instead of two) in bigger screens.

Making your application adaptive for
enhanced usability
By using grids and all the styles we saw in the previous section, in many cases you won't
need anything extra in order to build a responsive website. However, in some cases moving
components around, resizing them, or even hiding part or all of them, isn't enough. For
example, you may actually want to show totally different components for small and large
screens—say, a screen with three tabs for a phone, showing only one tab at a time, but a
three-column display for a desktop, showing everything simultaneously. Changes could be
even more drastic: you might decide that some functionality isn't going to be available on
mobile devices, but only included in large screens. So, instead of doing responsive design,
you are delving into adaptive design, meaning that the actual design and functions of the
screen will change, and then we need to be able to handle internal changes in code.

Enhancing Your Application Chapter 7

[336]

How to do it…
If you wanted to do adaptive design on your own, you could certainly set things up to
listen for screen size or orientation changes, and then produce some components or other.
While there's nothing wrong with this approach, it can be made far simpler by installing
react-responsive, a package that takes care of all that—you just specify the conditions
under which some components will be rendered, and whenever they are satisfied, those
components will be rendered. On any size or orientation change, the package will take care
of whatever re-rendering is needed.

Installation requires the usual npm command:

npm install react-responsive --save

The key component in this package is called <MediaQuery>, and lets you work with either
media queries, or by using props, in a fashion more like React; I prefer the latter, but check
out the documentation if you are interested about the more CSS-y option. Let's now see
how it is used.

Read more about react-responsive at https:/ ​/​github. ​com/​contra/
react- ​responsive. There are many more features than I'll be showing in
this text.

How it works…
Basically, all you have to do in order to detect any size changes is to produce one or more
<MediaQuery> components when rendering, and those whose requirements are met will
actually be rendered, and the rest won't appear on the page.

Let's write a very basic example with plenty of media queries, to see the coding style you'll
be using. The following is an example given in the react-responsive GitHub page; we'll just
try to detect some aspects of the current device and window:

// Source file: /src/App.4.js

/* @flow */

import React, { Component } from "react";
import MediaQuery from "react-responsive";

const XS = 576; // phone
const SM = 768; // tablet

https://github.com/contra/react-responsive
https://github.com/contra/react-responsive
https://github.com/contra/react-responsive
https://github.com/contra/react-responsive
https://github.com/contra/react-responsive
https://github.com/contra/react-responsive
https://github.com/contra/react-responsive
https://github.com/contra/react-responsive
https://github.com/contra/react-responsive
https://github.com/contra/react-responsive
https://github.com/contra/react-responsive
https://github.com/contra/react-responsive

Enhancing Your Application Chapter 7

[337]

const MD = 992; // desktop
const LG = 1200; // large desktop

class App extends Component<{}> {
 render() {
 return (
 <div>
 <MediaQuery minDeviceWidth={MD + 1}>
 <div>Device: desktop or laptop</div>

 <MediaQuery maxWidth={XS}>
 <div>Current Size: small phone </div>
 </MediaQuery>

 <MediaQuery minWidth={XS + 1} maxWidth={SM}>
 <div>Current Size: normal phone</div>
 </MediaQuery>

 <MediaQuery minWidth={SM + 1} maxWidth={MD}>
 <div>Current Size: tablet</div>
 </MediaQuery>

 <MediaQuery minWidth={MD + 1} maxWidth={LG}>
 <div>Current Size: normal desktop</div>
 </MediaQuery>

 <MediaQuery minWidth={LG + 1}>
 <div>Current Size: large desktop</div>
 </MediaQuery>
 </MediaQuery>

 <MediaQuery maxDeviceWidth={MD}>
 <div>Device: tablet or phone</div>
 <MediaQuery orientation="portrait">
 <div>Orientation: portrait</div>
 </MediaQuery>
 <MediaQuery orientation="landscape">
 <div>Orientation: landscape</div>
 </MediaQuery>
 </MediaQuery>
 </div>
);
 }
}

export default App;

Enhancing Your Application Chapter 7

[338]

I defined the four size constants (XS, SM, MD, and LG) to match the values used by
Bootstrap, but you could certainly work with other sizes.

You can also modify the values in Bootstrap, so it will work with
different breakpoints: see https:/ ​/​getbootstrap. ​com/ ​docs/ ​4. ​1/​layout/
grid/ ​#grid- ​tiers for more on this.

Whenever our App component is rendered, the media queries are executed, and depending
on their result, components will or won't be rendered. In our case, we are just producing
some <div> instances with text, but it should be obvious that you could actually produce
any other kind of components.

We can run this application in Chrome, and see how it produces different contents as we
resize the window: see the following image :

Our component automatically reacts to any screen size changes, and produces different components, even if our example lacks variety!

https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers
https://getbootstrap.com/docs/4.1/layout/grid/#grid-tiers

Enhancing Your Application Chapter 7

[339]

Alternatively, you could use the device toggle in the toolbar, and then you'd be also able to
see your application as it would look in a phone or tablet; take a look at the following
screenshot for a sample of this:

Chrome's Developer Tools include a device toggle that lets you simulate multiple kinds of devices, including phones and tablets as well

Enhancing Your Application Chapter 7

[340]

Working with Bootstrap for simple adjustments, and react-responsive for more
complex work, you can ensure your application will fit whatever device it's run on. Let's
now move on to a different kind of situation: running in different countries or regions!

Making a global application with
internationalization and localization
With the growing globalization levels, it's most likely that any website you write may be
required to be in two or more languages. In Canada, English and French would be
mandatory; in Switzerland, four languages could be asked for; and even in a (supposedly
single-language) country like the United States, a Spanish version of the site could well be
added to the English one. Of course, translation isn't enough: dates and currency amounts
also require different formatting depending on the country, so we'll have to take care of
that too.

Some definitions, now: being able to adapt your software to different languages is called
internationalization, usually abbreviated as i18n—the 18 stands for the 18 letters between the
initial i and the final n. Then, the specific process of configuring the system for a specific
area is called localization, abbreviated as l10n for similar reasons as in i18n. Finally, if you
really are into these numeronyms, the combination of internationalization and localization is
also known as globalization, shortened to g11n.

This pair of definitions is based upon a document by the W3C, at https:/
/​www. ​w3. ​org/ ​International/ ​questions/ ​qa-​i18n. There, they define that
"Internationalization is the design and development [...] that enables easy
localization for target audiences that vary in culture, region, or language"
and "Localization refers to the adaptation [...] to meet the language,
cultural and other requirements of a specific target market (a locale)."

Fortunately, handling these aspects is simple in React, and only requires some planning
ahead, as we'll see in this recipe.

How to do it…
A good package for handling all i18n concerns is i18next. We can install it, together with a
package for detecting the browser language, with the following command:

npm install i18next i18next-browser-languagedetector --save

https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n

Enhancing Your Application Chapter 7

[341]

You'll also have to decide on a fallback language (probably "en", for English), and provide
translations for all strings used in your application. To get a taste of this, for a fictitious data
entry form (in a really very small application; usually, you'd have hundreds of
translations!) you could have the following translations.en.json file for English:

{
 "details": "Details",
 "number": "How many things?",
 "color": "Thing Color",
 "send it before": "Send the thing before",
 "please enter details": "Please, enter details for your thing:",
 "summary": "Your only thing will be there before {{date,
 AS_DATE}}",
 "summary_plural":
 "Your {{count}} things will be there before {{date, AS_DATE}}",
 "colors": {
 "none": "None",
 "steel": "Steel",
 "sand": "Sand"
 }
}

If you decided to also provide Spanish ("es") translations, you'd add another file,
translations.es.json. (Note: you can name your files in any way you wish, and you
don't have to follow my examples.) This new JSON file has the very same keys, but
translated into Spanish:

{
 "details": "Detalles",
 "number": "¿Cuántas cosas?",
 "color": "Color de la cosa",
 "send it before": "Enviar antes de",
 "please enter details": "Por favor, ingrese detalles para su
 cosa:",
 "summary": "Su única cosa llegará antes de la fecha {{date,
 AS_DATE}}",
 "summary_plural":
 "Sus {{count}} cosas llegarán antes del {{date, AS_DATE}}",
 "colors": {
 "none": "Ninguno",
 "steel": "Acero",
 "sand": "Arena"
 }
}

Enhancing Your Application Chapter 7

[342]

The idea is that, whenever you want to display some text, you'll refer to it by its key (such
as "details" or "number"), eventually providing extra parameters (as in "summary"),
and the translation package will pick the correct string to display; let's see how it works by
completing an example.

The i18next package can also deal with plurals and specific formatting rules. You'll first
have to initialize it, as follows; we are creating a i18n file:

// Source file: /src/components/i18nform/i18n.js

import i18n from "i18next";
import LanguageDetector from "i18next-browser-languagedetector";

import EN_TEXTS from "./translations.en.json";
import ES_TEXTS from "./translations.es.json";

i18n.use(LanguageDetector).init({
 resources: {
 en: { translations: EN_TEXTS },
 es: { translations: ES_TEXTS }
 },
 fallbackLng: "en",
 ns: ["translations"],
 defaultNS: "translations",
 debug: true,
 interpolation: {
 escapeValue: false,
 format: function(value, format, lang = i18n.language) {
 if (format === "AS_DATE") {
 try {
 const dd = new Date(value);
 return new Intl.DateTimeFormat(lang).format(
 new Date(
 dd.getTime() + dd.getTimezoneOffset() *
 60000
)
);
 } catch (e) {
 return "???";
 }
 } else {
 return value;
 }
 }
 }
});

Enhancing Your Application Chapter 7

[343]

const t = i18n.t.bind(i18n); // to allow using t(...) instead of
i18n.t(...)

export { i18n, t };

Some details about the code should be noted:

The use(...) method tells i18next to use the browser language detector
package.
In the resources attribute, you have to provide the set of translations for each
language, which we imported from our JSON files.
fallbackLng specifies that English ("en") will be the default language.
ns and defaultNS define the namespace for translations, usually just translations
as we used in the resources attribute.
debug is a good tool, for it will log to the console any keys you want to translate,
but that haven't been defined in the resources.
interpolation.escapeValue gives you the option to escape all values: you
could use it to display unchecked user-entered values, but we don't need it here.
interpolation.format lets you define a special formatting function that
should produce whatever output you desire for a given value, in a specific
format, for a given language. In our case, we used it with the summary and
summary_plural keys to format dates in the proper style: month/day/year for
English, day/month/year for Spanish. You could also use this function to format
numbers as currency, for example.

You can check the full documentation for i18next at https:/ ​/​www.
i18next. ​com/ ​.

How it works…
Imagine we are defining an input form that lets you order some things, picking their color
and deciding a top date for delivery. Our <I18nForm> component could be coded as
follows—and note that we are just focusing on the input form, paying no attention to
actually doing anything with the user data! Also, pay no attention to the poor UI design;
once again, we care about translation here, so I wanted as little extra JSX code as possible:

// Source file: /src/components/i18nform/i18nform.js

https://www.i18next.com/
https://www.i18next.com/
https://www.i18next.com/
https://www.i18next.com/
https://www.i18next.com/
https://www.i18next.com/
https://www.i18next.com/
https://www.i18next.com/
https://www.i18next.com/

Enhancing Your Application Chapter 7

[344]

/* @flow */

import React from "react";

import "./styles.css";

import { i18n, t } from "./i18n";

export class I18nForm extends React.PureComponent<
 {},
 {
 delivery: String,
 howMany: Number,
 thingColor: String
 }
> {
 state = {
 delivery: "2018-09-22",
 howMany: 1,
 thingColor: "NC"
 };

 constructor(props) {
 super(props);
 this.rerender = () => this.forceUpdate();
 }

 componentDidMount() {
 i18n.on("languageChanged", this.rerender);
 }

 componentWillUnmount() {
 i18n.off("languageChanged", this.rerender);
 }

 render() {
 return (
 <div>
 <div>
 <h2>{t("details")}</h2>
 <button onClick={() => i18n.changeLanguage("es")}>
 ES
 </button>
 <button onClick={() => i18n.changeLanguage("en")}>
 EN
 </button>
 </div>

Enhancing Your Application Chapter 7

[345]

 <div>{t("please enter details")}</div>

 <div>
 {t("send it before")}:
 <input
 type="date"
 value={this.state.delivery}
 onChange={e =>
 this.setState({ delivery: e.target.value })
 }
 />
 </div>
 <div>
 {t("number")}:
 <input
 type="number"
 min="1"
 value={this.state.howMany}
 onChange={e =>
 this.setState({
 howMany: Number(e.target.value)
 })
 }
 />
 </div>
 <div>
 {t("color")}:
 <select
 onChange={e =>
 this.setState({ thingColor: e.target.value })
 }
 >
 <option value="NC">{t("colors.none")}</option>
 <option value="ST">{t("colors.steel")}</option>
 <option value="SD">{t("colors.sand")}</option>
 </select>
 </div>

 <div>
 {t("summary", {
 count: this.state.howMany,
 date: this.state.delivery
 })}
 </div>
 </div>
);
 }
}

Enhancing Your Application Chapter 7

[346]

Some details about the code should be noted:

Passing extra parameters for interpolation (as with the "summary" key) is done
via an object, with the desired parameters
If you want to have distinct lines for singular and plural versions, you have to
define two keys as we did here: summary for singular, and summary_plural for
plural, and then i18next will decide which to used based on the value of the
count parameter

How can we deal with dynamic language changes? We provided two buttons to call
i18n.changeLanguage(...), but how do we re-render components? There are (at least)
three ways of doing so:

You can listen to the "languageChanged" event and force an update, which was
what we did here. (We use .on(...) to set our component to listen, and
.off(...) to stop it later, when unmounting.)
Another solution would be to include the currently selected language in the
application state (we'll be looking into this in the next chapter) and you could
supply it to components via props, so React will re-render everything on a
language change.
And, finally, you could use the react-i18next framework package at https:/ ​/
github.​com/ ​i18next/ ​react- ​i18next to provide an even more seamless
integration.

We can test our translations with a very simple story:

// Source file: /src/components/i18nform/i18nform.story.js

/* @flow */

import React from "react";
import { storiesOf } from "@storybook/react";

import { I18nForm } from "./";

storiesOf("i18n form", module).add("standard", () => <I18nForm />);

https://github.com/i18next/react-i18next
https://github.com/i18next/react-i18next
https://github.com/i18next/react-i18next
https://github.com/i18next/react-i18next
https://github.com/i18next/react-i18next
https://github.com/i18next/react-i18next
https://github.com/i18next/react-i18next
https://github.com/i18next/react-i18next
https://github.com/i18next/react-i18next
https://github.com/i18next/react-i18next
https://github.com/i18next/react-i18next
https://github.com/i18next/react-i18next

Enhancing Your Application Chapter 7

[347]

When the story is loaded, it looks as seen in the following screenshot:

 Our input form, with initial values, displayed in English

Enhancing Your Application Chapter 7

[348]

If you change the quantity, the text at the bottom will be updated accordingly; see the
following screenshot:

 If we order more than one thing, the plural translation is used

Enhancing Your Application Chapter 7

[349]

And, if you change the language to Spanish, all texts will be automatically translated; take a
look at the following screenshot:

 By listening to the language change event, we can force the component to re-render itself and show translations for the newly chosen language

Enhancing Your Application Chapter 7

[350]

A small detail: whenever you use a date <input> element, dates are
formatted according to your computer's locale, so the displayed value
doesn't change for Spanish. However, the element's value is always the
same, in ISO format: in our case, 2018-09-22. You can solve this by using
a special handcrafted component, but we won't be doing that, since what
we cared about was showing how translations work.

As we saw, preparing an application for international usage isn't really a very hard
problem. Even if you don't plan on doing it at the beginning, it will pay to work in this
way; having to retrofit translations in existing code can be harder.

Setting up for accessibility (a11y)
When designing a web page, the term "accessibility" refers to providing support so
everyone, including people with disabilities, can use your page. There are then many needs
that have to be considered, including, for instance, the following:

Vision limitations, varying from poor eyesight, through color vision problems, all
the way up to total blindness
Hearing limitations, which require some fallback method for hearing impaired
users
Mobility limitations, which may imply difficulty or impossibility of using the
hands or controlling a mouse
Cognitive limitations, which may complicate understanding the information
shown on screen

There are many tools that can assist disabled users, such as screen zooming, speech
recognition, screen readers, braille terminals, closed captioning, and more, but even those
tools need some extra information in order to work properly. The Web Content
Accessibility Guidelines (WCAG) are a set of guidelines, published by the Web
Accessibility Initiative (WAI) of the World Wide Web Consortium (W3C). The current
version, 2.1, available online at https:/ ​/ ​www. ​w3.​org/ ​TR/ ​WCAG21/ ​, is based on four
principles, known as POUR as an acronym:

Perceivable: Information and user interface components must be presentable to
users in ways they can perceive
Operable: User interface components and navigation must be operable

https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/

Enhancing Your Application Chapter 7

[351]

Understandable: Information and the operation of user interface must be
understandable
Robust: Content must be robust enough that it can be interpreted by by a wide
variety of user agents, including assistive technologies

These principles, quoted from the cited page, include guidelines for use of color, working
with a keyboard, providing information for screen readers, having enough contrast,
displaying errors, and more; sufficient and advisory techniques, that can help follow the
guidelines; and success criteria, meaning testable conditions to be used for conformance
testing. The latter criteria are also used to define three levels of conformance: A, the
minimum; AA, medium, including all of A and AA success criteria, and AAA, the hardest to
attain, fulfilling all existing criteria—but it is acknowledged that it may be impossible to
achieve for some sites.

Trying to make sure that your web application follows all guidelines and applies all
techniques is not easy, so we'll see how we can add some tools to React in order to make
your task a bit easier.

How to do it…
In order to check our work for accessibility, we'll install a couple of packages, so let's follow
the procedure mentioned: one for static checks when writing code, using ESLint, and
another for dynamic checks when running our application. And, if you ask yourself Why
two tools instead of only one?, the answer is that a static tool cannot check everything: for
example, if you assign a variable's value to a title, will that value not be empty at run time?
On the other hand, since all your code is linted, you got a chance to detect some things that
could be missed during normal tests, so by using two tools you are not doing redundant
work, but rather increasing the odds of finding accessibility problems.

Installing the ESLint module is quite simple. First, we'll use npm to add the package:

npm install eslint-plugin-jsx-a11y --save-dev

Enhancing Your Application Chapter 7

[352]

Then, we'll have to modify our .eslintrc file a bit, adding the new plugin, and specifying
what rules we want to enforce:

{
 .
 .
 .
 "extends": [
 "eslint:recommended",
 "plugin:flowtype/recommended",
 "plugin:react/recommended",
 "plugin:jsx-a11y/recommended"
],
 "plugins": ["babel", "flowtype", "react", "jsx-a11y"],
 .
 .
 .
}

If you don't want to use all rules (as we did here) you can specify the rules
you care for in the "rules" part of the file: see https:/ ​/ ​github. ​com/
evcohen/ ​eslint- ​plugin- ​jsx- ​a11y for details on this, and inspect the
complete set of available rules at https:/ ​/​github. ​com/ ​evcohen/ ​eslint-
plugin- ​jsx- ​a11y/ ​tree/ ​master/ ​docs/ ​rules.

The second addition we want is react-a11y, a package that modifies React rendering
functions internally, so accessibility problems can be detected at runtime. Installation is
simple:

npm install react-a11y --save

Then, at the start of your application, you'll have to initialize the a11y module, along with
the rules you want to check. The format of the rules is the same as ESLint uses.
Check https:/​/​github. ​com/ ​reactjs/ ​react- ​a11y/ ​tree/ ​master/ ​docs/ ​rules for the
complete list, because new rules may be added. (You'll also have to see that list in order to
learn which rules, if any, have special options.) By default, all rules are "off", so you must
explicitly turn them on to "warn" or "error". A full configuration would be as follows, as
of December 2018:

import React from "react";
import ReactDOM from "react-dom";
import a11y from "react-a11y";

a11y(React, ReactDOM, {
 rules: {
 "avoid-positive-tabindex": "warn",

https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/evcohen/eslint-plugin-jsx-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules
https://github.com/reactjs/react-a11y/tree/master/docs/rules

Enhancing Your Application Chapter 7

[353]

 "button-role-space": "warn",
 "hidden-uses-tabindex": "warn",
 "img-uses-alt": "warn",
 "label-uses-for": "warn",
 "mouse-events-map-to-key-events": "warn",
 "no-access-key": "warn",
 "no-hash-ref": "warn",
 "no-unsupported-elements-use-aria": "warn",
 "onclick-uses-role": "warn",
 "onclick-uses-tabindex": "warn",
 "redundant-alt": ["warn", ["picture", "image", "photo", "foto",
 "bild"]],
 "tabindex-uses-button": "warn",
 "use-onblur-not-onchange": "warn",
 "valid-aria-role": "warn"
 }
});

// a11y.restoreAll() would undo all changes

You might want to not enable a11y in production, to avoid a needless
slowdown.

We have everything set up; let's now see how all of this comes together.

How it works…
First, let's see what happens with the errors that are detected via ESLint, and then we'll
move to the runtime problems.

Solving static problems
Our first victim of bad a11y coding is our SASS button; see the following screenshot:

Enhancing Your Application Chapter 7

[354]

 Our SASS button has (at least) two accessibility-related problems

One a11y rule is that you should be able to use the application with only the keyboard, so
we need to be able to tab our way to the button (this requires using a tabIndex) and
providing a keyboard listener (onKeyPress or onKeyDown). Furthermore, the role of our
element (which works as a button) must be specified. The corrected JSX code would be as
follows:

<div
 className={
 this.props.normal ? "normalButton" : "alertButton"
 }
 onClick={this.props.onSelect}
 onKeyPress={this.keyDownAsClick}
 tabIndex="0"
 role="button"
>
 {this.props.buttonText}
</div>

Enhancing Your Application Chapter 7

[355]

The new method, .keyDownAsClick(), would check if the user pressed the spacebar
(ASCII code 32) or the ENTER key (ASCII code 13), and if so, call the same logic as the
onClick handler:

keyDownAsClick = (e: { keyCode: number }) => {
 if (e.keyCode === 32 || e.keyCode === 13) {
 this.props.onSelect();
 }
}

Our input form also has a problem, albeit a simpler one. See the following screenshot:

 Our things ordering form only has a small a11y problem

The problem and its solution are clear: instead of using onChange, the suggestion is to
substitute onBlur, which effectively has no consequences for users. We won't show the
edited code, given how small the required change is, and just edit the file to replace the
method.

We could try adding an image to our form, just for the sake of getting another, different
warning. Try adding a Packt logo to the form, as follows:

<img
src="http://d1ldz4te4covpm.cloudfront.net/sites/all/themes/packt_v4/images/
packt-logo.svg"
 style={{ width: "50px", height: "25px" }}
/>

In this case, we'd get a warning about the need for an alt attribute (adding alt="Packt
logo" to the img tag would do) to describe the image; take a look at the following
screenshot:

Enhancing Your Application Chapter 7

[356]

 Another a11y rule requires images to have an alt attribute to describe them

Finally, let's see a case in which our tool fails! The button we created with styled-
components has basically the same problems as our SASS button, but nothing is reported;
why? The reason is simple: if you examine the code (see the Adding SASS for separate styling
section earlier in this chapter) we aren't using <div> or <button> instances or any other
recognizable HTML tags, but rather <StyledDiv> and <StyledButton>, which our a11y
eslint plugin doesn't understand. So far, the only workaround for this is to manually
change our styled components back to their original tags, solve whatever problems may
pop up, and then go back to the styled version not a very good solution, admittedly!

Solving runtime problems
If we now try our fixed components in Storybook, react-a11y won't say anything about
them, but it will report some problems with the styled-components one, which we
couldn't solve beforehand; see the following screenshot:

 The react-a11y runtime tests show some problems in our component

Enhancing Your Application Chapter 7

[357]

Of course, given that we build our component to match the previous SASS one, it won't be a
surprise that the solution to the accessibility problems are the same: adding onKeyDown,
tabIndex, role, and a key-handling method. The relevant parts of the corrected code
would be as follows:

keyDownAsClick = (e: { keyCode: number }) => {
 if (e.keyCode === 32 || e.keyCode === 13) {
 this.props.onSelect();
 }
};

render() {
 return (
 <StyledDiv
 normal={this.props.normal}
 onClick={this.props.onSelect}
 onKeyDown={this.keyDownAsClick}
 tabIndex="0"
 role="button"
 >
 {this.props.buttonText}
 </StyledDiv>
);
}

Of course, we have just seen the tip of the iceberg as to all the problems that can appear,
and their solutions—but what really matters is that you have some tools to help you with
the development of a11y-enabled applications, as we have shown.

There is more
What can we do to ensure a fully compliant a11y application? Unfortunately, you won't be
able to manage it with just some tools. For instance, none of the tools we selected pointed
out that we should add a name to the input fields, as pointed out by an ARIA rule
(see https:/​/​w3c. ​github. ​io/ ​using- ​aria/ ​#fifth for more on it). Also, there are some
conditions that cannot be tested in code. For example, guidelines say that error or
mandatory fields should not be highlighted just with color (because of color blindness) but
should have some external text or mark; how would you test for that in an automated way?
take a look at the following screenshot for an example, taken from https:/ ​/​govuk-
elements.​herokuapp. ​com/ ​errors/ ​example- ​form- ​validation- ​multiple- ​questions, with
enhanced visibility for errors:

https://w3c.github.io/using-aria/#fifth
https://w3c.github.io/using-aria/#fifth
https://w3c.github.io/using-aria/#fifth
https://w3c.github.io/using-aria/#fifth
https://w3c.github.io/using-aria/#fifth
https://w3c.github.io/using-aria/#fifth
https://w3c.github.io/using-aria/#fifth
https://w3c.github.io/using-aria/#fifth
https://w3c.github.io/using-aria/#fifth
https://w3c.github.io/using-aria/#fifth
https://w3c.github.io/using-aria/#fifth
https://w3c.github.io/using-aria/#fifth
https://w3c.github.io/using-aria/#fifth
https://w3c.github.io/using-aria/#fifth
https://w3c.github.io/using-aria/#fifth
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions
https://govuk-elements.herokuapp.com/errors/example-form-validation-multiple-questions

Enhancing Your Application Chapter 7

[358]

 A sample input form from a UK government site that shows good a11y practices for errors

It's not possible to get an A, AA, or AAA level without an audit, but you can add more
tools to help out with that:

The W3C Web Accessibility Initiative provides an extensive list of tools (113, as
of today!) at https:/ ​/​www. ​w3. ​org/​WAI/ ​ER/ ​tools/ ​

The A11Y Project provides a community effort to simplify web accessibility,
showing several useful techniques, at https:/ ​/​a11yproject. ​com/​

MDN has a full overview of ARIA, a spec from the W3C geared to providing
extra information for screen readers by way of the usage of HTML attributes,
at https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/ ​Accessibility/ ​ARIA/
ARIA_​Techniques

The W3C also provides many suggestions for using ARIA, including samples of
code, at https:/ ​/ ​w3c. ​github. ​io/ ​using- ​aria/ ​

There are several accessibility checkers, for all main browsers, which can
diagnose a page on the go, so just search for them; some work as browser
extensions, while others are code meant to be added to your website, to detect
and report possible problems

Even if no single tool or set of tools can ensure a11y compliance, you will be able to build
yourself a good starting lot of tools; experiment a bit!

https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://www.w3.org/WAI/ER/tools/
https://a11yproject.com/
https://a11yproject.com/
https://a11yproject.com/
https://a11yproject.com/
https://a11yproject.com/
https://a11yproject.com/
https://a11yproject.com/
https://a11yproject.com/
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques
https://w3c.github.io/using-aria/
https://w3c.github.io/using-aria/
https://w3c.github.io/using-aria/
https://w3c.github.io/using-aria/
https://w3c.github.io/using-aria/
https://w3c.github.io/using-aria/
https://w3c.github.io/using-aria/
https://w3c.github.io/using-aria/
https://w3c.github.io/using-aria/
https://w3c.github.io/using-aria/
https://w3c.github.io/using-aria/
https://w3c.github.io/using-aria/
https://w3c.github.io/using-aria/
https://w3c.github.io/using-aria/

8
Expanding Your Application

In this chapter, we are going to focus on larger, more complex applications, adding recipes
such as the following:

Managing state with Redux
Doing async actions with redux-thunk
Adding routing with react-router
Adding authorization to routes
Code splitting for performance

Introduction
In the previous two chapters, we saw how to develop web applications with React, and
endeavored to make them internationally usable, accessible for everybody, and nicely
styled to boot. In this chapter, we'll add some more features, which are typical of most
applications.

Managing state with Redux
What's difficult about building an application? Obviously, you can do anything with plain,
vanilla JS, but things start getting hairy when you try to keep the UI and the state of the
application in sync. You call services, you get data. Data must be reflected in several places,
HTML elements must be changed, added, or removed, and so on—this is where the
complexity lies.

Expanding Your Application Chapter 8

[360]

So far, we've been working only with state in components, and you could very well keep
doing so: your top level component's state will include everything you need, and you'd be
able to manage by passing everything you need as props to the components below. Of
course, as your application grows, this won't scale very well. What's the tipping
point? Redux is a tool to manage state, but its own developers suggest that you should use
their package if and only if you fulfill the following conditions, and I quote from https:/ ​/
redux.​js.​org/​#before- ​proceeding- ​further:

"You have reasonable amounts of data changing over time."

"You need a single source of truth for your state."

"You find that keeping all your state in a top-level component is no longer
sufficient."

Of course, these rules are not really precise, and allow for subjectivity, so there's no clear-
cut point at which you'll have to use Redux. However, for most modern large scale
applications, it's quite safe to say that Redux will probably come in handy, so let's assume
that for the rest of this chapter.

In this recipe, we'll install Redux, and start to see how to work with it in React.

Getting ready
Before anything else, we must install a couple of packages: redux, the state-managing
package itself, and the react-redux bindings for using Redux with React. (You can use
Redux with other frameworks or libraries, but this is not covered in this book.) Installation
is simple, just use npm, as we have done several times before:

npm install redux react-redux --save

https://redux.js.org/#before-proceeding-further
https://redux.js.org/#before-proceeding-further
https://redux.js.org/#before-proceeding-further
https://redux.js.org/#before-proceeding-further
https://redux.js.org/#before-proceeding-further
https://redux.js.org/#before-proceeding-further
https://redux.js.org/#before-proceeding-further
https://redux.js.org/#before-proceeding-further
https://redux.js.org/#before-proceeding-further
https://redux.js.org/#before-proceeding-further
https://redux.js.org/#before-proceeding-further
https://redux.js.org/#before-proceeding-further
https://redux.js.org/#before-proceeding-further
https://redux.js.org/#before-proceeding-further

Expanding Your Application Chapter 8

[361]

We'll have to learn several concepts in order to use Redux:

Store: The only place ("single source of truth") where you hold the application
state. You create the store globally, at the beginning of your application, and then
you connect components to it. Connected components will get re-rendered when
the state changes, and everything they need to render themselves should come
from the store. The store can only be updated through actions.
Actions: Objects that your components dispatch with any new data you wish.
Actions always have a type attribute to distinguish different types, and any
other data, with no restriction. Actions are usually created by action creators to
simplify coding, and after being dispatched they are processed by reducers.
Reducers: Pure functions (meaning, no side effects!) that change the application's
state, depending on the data received in actions. The state is never modified;
rather, a new state must be produced with whichever changes were necessary.
The reducer produces a new state as a function of the old state and the data
received in the action.

This is shown in the following diagram:

Data flow in Redux is strictly uni-directional, always following a circular pattern

Using this flow cycle helps keep the state and the view in sync—since the latter is produced
in terms of the former, and all updates to the state immediately cause the view to be
updated. We have installed the necessary tools to use, and we know what we have to do;
now, let's get to an actual example.

Expanding Your Application Chapter 8

[362]

You may want to look at eslint-plugin-redux, which gives you some
rules for how to get the best out of Redux. Check it out at https:/ ​/
github. ​com/ ​DianaSuvorova/ ​eslint- ​plugin- ​react- ​redux, and if you're
interested, add some or all of its rules to your ESLint configuration; by
default, they are all disabled.

In this recipe, let's do a simple example to show most of the concepts in the previous
section. After reading multiple articles and tutorials on the web, I think it's mandatory to
provide some kind of example involving a counter, and let's not break that tradition and do
it here too! We want to have a counter that we can modify by clicking on some buttons, and
we also want to know how many clicks we've made.

How to do it...
Before we start writing the code, let's have it in the open: we'll be writing too many lines of
code for what could have been easily solved without Redux—we won't have a reasonable
amount of data changing over time but only a couple of counts, and we certainly won't find that
keeping all your state in a top-level component isn't good enough, but since we want a simple
initial example, we'll use Redux anyway.

Defining actions
First, we need some actions. We'll want to increment and decrement the counter, and we'll
also want to reset it to zero. The first two requirements can be achieved with a single action
(decrementing is just incrementing by a negative amount), so we'll need two actions, each
identified by a constant:

// Source file: src/counterApp/counter.actions.js

/* @flow */

export const COUNTER_INCREMENT = "counter:increment";
export const COUNTER_RESET = "counter:reset";

export type CounterAction = {
 type: string,
 value?: number
};

export const reset = () =>
 ({
 type: COUNTER_RESET

https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux
https://github.com/DianaSuvorova/eslint-plugin-react-redux

Expanding Your Application Chapter 8

[363]

 }: CounterAction);

export const increment = (inc: number) =>
 ({
 type: COUNTER_INCREMENT,
 value: inc
 }: CounterAction);

export const decrement = (dec: number) =>
 ({
 type: COUNTER_INCREMENT,
 value: -dec
 }: CounterAction);

// returning increment(-dec) would have worked as well

In fact, we should say that increment(), decrement(), and reset() are action creators;
the actual actions are the values returned by those functions.

Writing a reducer
Then, after defining our actions, we need a reducer to process them. Of course, this also
means that we have to define the shape of our state, and its initial value:

// Source file: src/counterApp/counter.reducer.js

/* @flow */

import { COUNTER_INCREMENT, COUNTER_RESET } from "./counter.actions";

import type { CounterAction } from "./counter.actions.js";

export const reducer = (
 state = {
 // initial state
 count: 0,
 clicks: 0
 },
 action: CounterAction
) => {
 switch (action.type) {
 case COUNTER_INCREMENT:
 return {
 count: state.count + action.value,
 clicks: state.clicks + 1
 };

Expanding Your Application Chapter 8

[364]

 case COUNTER_RESET:
 return { count: 0, clicks: state.clicks + 1 };

 default:
 return state;
 }
};

Our reducer is basically a switch statement; when the right type is found, a new state is
returned. This pattern is very important, and key to Redux. We don't simply update the
state, but rather we produce a new state object every time. We need a default case because
actions are passed to all reducers (not in our case, since we have a single one), so it's
possible that a reducer will ignore an action.

In our example, we have a single reducer and a single set of actions, so it
can be argued that they could all be placed together in the same file, but
that's not likely with most applications. Furthermore, if your state grows
too large, check out combineReducers() at https:/ ​/​redux. ​js. ​org/ ​api/
combinereducers, and you'll be able to work in a more organized way,
with multiple reducers and a store divided into logical pieces.

Defining the store
Then, after all the previous definitions, we can define our store:

// Source file: src/counterApp/store.js

/* @flow */

import { createStore } from "redux";

import { reducer } from "./counter.reducer.js";

export const store = createStore(reducer);

By the way, it's also possible to define the initial value for the state by passing it as a second
parameter to createStore().

https://redux.js.org/api/combinereducers
https://redux.js.org/api/combinereducers
https://redux.js.org/api/combinereducers
https://redux.js.org/api/combinereducers
https://redux.js.org/api/combinereducers
https://redux.js.org/api/combinereducers
https://redux.js.org/api/combinereducers
https://redux.js.org/api/combinereducers
https://redux.js.org/api/combinereducers
https://redux.js.org/api/combinereducers
https://redux.js.org/api/combinereducers
https://redux.js.org/api/combinereducers

Expanding Your Application Chapter 8

[365]

Building our components
Finally, having fully defined our store plus the actions that will be dispatched and the
reducer that will process them, we can finish quickly by defining our components. Our
Counter component will have text, the counter value, and a few buttons. Note that we are
receiving count (the counter value) as a prop, and we also have a dispatch() function as
yet another prop:

// Source file: src/counterApp/counter.component.js

/* @flow */

import React from "react";
import { PropTypes } from "prop-types";

import {
 increment,
 decrement,
 reset,
 CounterAction
} from "./counter.actions.js";

export class Counter extends React.PureComponent<{
 count: number,
 dispatch: CounterAction => any
}> {
 static propTypes = {
 count: PropTypes.number.isRequired,
 dispatch: PropTypes.func.isRequired
 };

 onAdd1 = () => this.props.dispatch(increment(1));
 onSub2 = () => this.props.dispatch(decrement(2));
 onReset = () => this.props.dispatch(reset());

 render() {
 return (
 <div>
 Value: {this.props.count}

 <button onClick={this.onAdd1}>Add 1</button>
 <button onClick={this.onSub2}>Subtract 2</button>
 <button onClick={this.onReset}>Reset</button>
 </div>
);
 }
}

Expanding Your Application Chapter 8

[366]

Each button dispatches an action that was created by the action creators that we saw
earlier.

We need a second component. The ClicksDisplay component is even simpler! We receive
the total number of clicks as a prop, and we simply display it:

// Source file: src/counterApp/clicksDisplay.component.js

/* @flow */

import React from "react";
import { PropTypes } from "prop-types";

export class ClicksDisplay extends React.PureComponent<{
 clicks: number
}> {
 static propTypes = {
 clicks: PropTypes.number.isRequired
 };

 render() {
 return <div>Clicks so far: {this.props.clicks}</div>;
 }
}

Connecting components to the store
A good design rule, separating concerns, says that you shouldn't directly connect a
component to the store, but rather create a new component, a connected one, that will get
whatever is needed from the store and pass it on to the original component. This rule will
simplify, for example, all of our testing: our basic components will still receive everything
via props, and we won't have to do any mocking of the store or anything like that in order
to test them.

A good article on defining components, by Dan Abramov, is Presentational
and Container Components, at https:/ ​/​medium. ​com/ ​@dan_ ​abramov/ ​smart-
and-​dumb- ​components- ​7ca2f9a7c7d0. More on this can be found in
Container Components, at https:/ ​/​medium. ​com/ ​@learnreact/ ​container-
components- ​c0e67432e005.

https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@learnreact/container-components-c0e67432e005
https://medium.com/@learnreact/container-components-c0e67432e005
https://medium.com/@learnreact/container-components-c0e67432e005
https://medium.com/@learnreact/container-components-c0e67432e005
https://medium.com/@learnreact/container-components-c0e67432e005
https://medium.com/@learnreact/container-components-c0e67432e005
https://medium.com/@learnreact/container-components-c0e67432e005
https://medium.com/@learnreact/container-components-c0e67432e005
https://medium.com/@learnreact/container-components-c0e67432e005
https://medium.com/@learnreact/container-components-c0e67432e005
https://medium.com/@learnreact/container-components-c0e67432e005
https://medium.com/@learnreact/container-components-c0e67432e005
https://medium.com/@learnreact/container-components-c0e67432e005
https://medium.com/@learnreact/container-components-c0e67432e005

Expanding Your Application Chapter 8

[367]

So, following that rule, for each component we want to connect, we'll add a new connected
version. In our case, the connected version of the count will be the following, so the count
prop of the component will receive the state.count value:

// Source file: src/counterApp/counter.connected.js

/* @flow */

import { connect } from "react-redux";

import { Counter } from "./counter.component";

const getProps = state => ({ count: state.count });

export const ConnectedCounter = connect(getProps)(Counter);

Similarly, the component to display the total number of clicks will be connected in a similar
fashion:

// Source file: src/counterApp/clicksDisplay.connected.js

/* @flow */

import { connect } from "react-redux";

import { ClicksDisplay } from "./clicksDisplay.component";

const getProps = state => ({
 clicks: state.clicks
});

export const ConnectedClicksDisplay = connect(getProps)(ClicksDisplay);

We will place those connected components in our main code, and they will get the values
from the store, and pass them on to our original components, which will be totally
unchanged.

Expanding Your Application Chapter 8

[368]

Defining the main page
Our last piece of code is based on the standard App.js file that's produced by create-
react-app; the App class is imported by index.js:

// Source file: src/App.counter.js

/* @flow */

import React, { Component, Fragment } from "react";
import { Provider } from "react-redux";

import { store } from "./counterApp/store";
import { ConnectedCounter, ConnectedClicksDisplay } from "./counterApp";

class App extends Component<{}> {
 render() {
 return (
 <Provider store={store}>
 <Fragment>
 <ConnectedCounter />
 <hr />
 <ConnectedClicksDisplay />
 </Fragment>
 </Provider>
);
 }
}

The key part here is the <Provider> component. This is a part of React's latest Context
feature (see https:/ ​/ ​reactjs. ​org/ ​docs/ ​context. ​html for more on it), and it gives access
to the store object to any of the following components; the connect() function (that we
used in the previous section) uses it to provide props to those components, and to subscribe
them to changes. By the way, we are using Fragment here, just because Provider expects
a single element. In addition to this, <div> could have worked as well.

With everything together, let's see how this works!

https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html

Expanding Your Application Chapter 8

[369]

How it works...
When we start the application, the current state count is zero, and so is the number of
clicks, so the screen looks like the following:

 Our counter application in its initial state.

After some clicks on the following buttons, the value and clicks count get updated, and the
view automatically reflects those changes as they happen; see the following screenshot. Be
sure to understand how everything happens:

Whenever you click a button, an action is dispatched.
When the reducer processes the action, it creates a new state.

Expanding Your Application Chapter 8

[370]

When React sees the state change, it redraws your application. Take a look at the
following screenshot:

 After every click, the counter value and the number of clicks get automatically updated, and the view is re-rendered

So, we have seen that we can work with Redux in order to keep a global state and have the
view re-rendered whenever it's needed, without extra work on our part. Now, let's consider
a common problem: how would we deal with asynchronous changes, for example, when
we do Ajax calls?

See also
Redux is not the only state management package that you can use with React. The most
favored one is surely MobX, which adds reactive programming concepts, such as observable
objects and arrays; check it out at https:/ ​/​github. ​com/ ​mobxjs/ ​mobx. Its basic paradigm is
quite different from the Redux one, simpler in many ways, and more akin to a spreadsheet;
be ready, however, to change your way of thinking before using it!

https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx

Expanding Your Application Chapter 8

[371]

Doing async actions with redux-thunk
How can we do async actions, such as calling a web service? This kind of call requires some
different processing: you cannot just dispatch an action, if we are still waiting for the results
of an Ajax call. The Redux thunk middleware lets you write an action creator that returns a
function instead of an action; the function is given access to the store contents and to the
dispatch function itself, and can then do async calls, dispatch other functions, and so on.

It seems that the origin of the thunk word comes from a very late
programming session, in which, after many hours of work, a solution to a
problem was found that had been thought before, and thunk became its
name as a derivative of think, make of it what you will!

This sound a bit mysterious, so let's dive in and see how it works by doing a variation on
the country/region components we built in the Defining components section in Chapter 6,
Developing with React, only that this time we'll be working with actual API calls—for which
we already have our Node server, which we created in Chapter 4, Implementing RESTful
Services with Node.

How to do it…
Let's modify our region application so that it will connect to the backend service.

First of all, to use redux-thunk, we will have to install the package:

npm install redux-thunk --save

Then, we must modify the store to use the new middleware. (We'll be seeing more
middleware later in this chapter, and in the next one as well.) This change is very small, as
the following code shows:

// Source file: src/regionsApp/store.js

/* @flow */

import { createStore, applyMiddleware } from "redux";
import thunk from "redux-thunk";

import { reducer } from "./worlds.reducer.js";

export const store = createStore(reducer, applyMiddleware(thunk));

Expanding Your Application Chapter 8

[372]

Defining the actions
Whenever you try to get data from a service, a common pattern is as follows:

Fire an action when you do the request; this action may set some flag, which will in
turn be used by some component to display a "Loading..." text or a spinning icon
to show that something's going on, and the user should wait
If the service request was successful, fire an action signaling this success, resetting
the Loading... flag, and also providing the new data that must be added to the
store
If the service request failed, reset the Loading... flag, but signal error in some way

The actions we'll need for our application have to do with, firstly, getting the list of
countries for the country drop-down list, and, secondly, getting the list of regions for a
given country. The actions are as follows; first, here are the country-related ones:

// Source file: src/regionsApp/world.actions.js

/* @flow */

// Countries actions

export const COUNTRIES_REQUEST = "countries:request";
export const COUNTRIES_SUCCESS = "countries:success";
export const COUNTRIES_FAILURE = "countries:failure";

export type CountriesAction = {
 type: string,
 country?: string,
 listOfCountries?: [object]
};

export const countriesRequest = () =>
 ({
 type: COUNTRIES_REQUEST
 }: CountriesActions);

export const countriesSuccess = (listOfCountries: []) =>
 ({
 type: COUNTRIES_SUCCESS,
 listOfCountries
 }: CountriesActions);

export const countriesFailure = () =>
 ({
 type: COUNTRIES_FAILURE

Expanding Your Application Chapter 8

[373]

 }: CountriesActions);

// continues...

For regions, we have a similar set:

// ...continued

// Regions actions

export const REGIONS_REQUEST = "regions:request";
export const REGIONS_SUCCESS = "regions:success";
export const REGIONS_FAILURE = "regions:failure";

export type RegionsAction = {
 type: string,
 listOfRegions?: [object]
};

export const regionsRequest = (country: string) =>
 ({
 type: REGIONS_REQUEST,
 country
 }: RegionsActions);

export const regionsSuccess = (listOfRegions: [{}]) =>
 ({
 type: REGIONS_SUCCESS,
 listOfRegions
 }: RegionsActions);

export const regionsFailure = () =>
 ({
 type: REGIONS_FAILURE
 }: RegionsActions);

Note the style of the action constants—we are using "countries" and "regions" as a
sort of namespacing (as in "countries:success" versus "regions:success") to avoid
possible name duplications.

Expanding Your Application Chapter 8

[374]

Writing the reducer
We have actions; now, we need a reducer. Its code is also not complex:

// Source file: src/regionsApp/world.reducer.js

/* @flow */

import {
 COUNTRIES_REQUEST,
 COUNTRIES_SUCCESS,
 COUNTRIES_FAILURE,
 REGIONS_REQUEST,
 REGIONS_SUCCESS,
 REGIONS_FAILURE
} from "./world.actions";

import type { CountriesAction, RegionsAction } from "./world.actions";

// import type { CounterAction } from "./world.actions.js";

export const reducer = (
 state: object = {
 // initial state
 loadingCountries: false,
 currentCountry: "",
 countries: [],
 loadingRegions: false,
 regions: []
 },
 action: CountriesAction | RegionsAction
) => {
 switch (action.type) {
 case COUNTRIES_REQUEST:
 return {
 ...state,
 loadingCountries: true,
 countries: []
 };

 case COUNTRIES_SUCCESS:
 return {
 ...state,
 loadingCountries: false,
 countries: action.listOfCountries
 };

 case COUNTRIES_FAILURE:

Expanding Your Application Chapter 8

[375]

 return {
 ...state,
 loadingCountries: false,
 countries: []
 };

 case REGIONS_REQUEST:
 return {
 ...state,
 loadingRegions: true,
 currentCountry: action.country,
 regions: []
 };

 case REGIONS_SUCCESS:
 return {
 ...state,
 loadingRegions: false,
 regions: action.listOfRegions
 };

 case REGIONS_FAILURE:
 return {
 ...state,
 loadingRegions: false,
 regions: []
 };

 default:
 return state;
 }
};

The only thing that needs to be remarked upon is the following style of code, using the
spread operator in a way you may not have seen before:

 return {
 ...state,
 loadingCountries: true,
 currentCountry: "",
 countries: []
 };

We must be careful when returning the new state to not lose part of the old state, so starting
the object with ...state is a very common coding pattern.

Expanding Your Application Chapter 8

[376]

To avoid accidentally changing the state, a good solution is to handle state
with packages such as immutable-js (at https:/ ​/​github. ​com/
facebook/ ​immutable- ​js/ ​) or seamless-immutable (at https:/ ​/​github.
com/​rtfeldman/ ​seamless- ​immutable), because then you aren't able to
modify the state object; you are forced to produce a new one, avoiding
many hard-to-find mistakes.

Modifying the country drop-down list
We earlier had a country drop-down list that received a list of countries. Let's rewrite it so
that if no such list is provided, it will use a function to call a thunk, and get the countries
from our server:

// Source file: src/regionsApp/countrySelect.component.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";

import "../general.css";

export class CountrySelect extends React.PureComponent<{
 dispatch: ({}) => any
}> {
 static propTypes = {
 loading: PropTypes.bool.isRequired,
 list: PropTypes.arrayOf(PropTypes.object).isRequired,
 onSelect: PropTypes.func.isRequired,
 getCountries: PropTypes.func.isRequired
 };

 componentDidMount() {
 if (this.props.list.length === 0) {
 this.props.getCountries();
 }
 }

 onSelect = (e: { target: HTMLOptionElement }) =>
 this.props.onSelect(e.target.value);

 render() {
 if (this.props.loading) {
 return <div className="bordered">Loading countries...</div>;
 } else {

https://github.com/facebook/immutable-js/
https://github.com/facebook/immutable-js/
https://github.com/facebook/immutable-js/
https://github.com/facebook/immutable-js/
https://github.com/facebook/immutable-js/
https://github.com/facebook/immutable-js/
https://github.com/facebook/immutable-js/
https://github.com/facebook/immutable-js/
https://github.com/facebook/immutable-js/
https://github.com/facebook/immutable-js/
https://github.com/facebook/immutable-js/
https://github.com/facebook/immutable-js/
https://github.com/facebook/immutable-js/
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable
https://github.com/rtfeldman/seamless-immutable

Expanding Your Application Chapter 8

[377]

 const sortedCountries = [...this.props.list].sort(
 (a, b) => (a.countryName < b.countryName ? -1 : 1)
);

 return (
 <div className="bordered">
 Country:
 <select
 onChange={this.onSelect}
 onBlur={this.onSelect}
 >
 <option value="">Select a country:</option>
 {sortedCountries.map(x => (
 <option
 key={x.countryCode}
 value={x.countryCode}
 >
 {x.countryName}
 </option>
))}
 </select>
 </div>
);
 }
 }
}

As we can see in the .componentDidMount() method, if no list is available, we call a
function (which we'll see soon) to get that list, and put it in the store. A loading attribute
will be used, so while we wait for the countries to arrive, a Loading countries... text
will be shown instead of an empty <select> component. You'll also notice that I sorted the
countries, because the service sends them ordered by country code.

The connected version of this component is not as short as before, because we'll have to
connect props to the store, and also to actions to be dispatched; I highlighted those parts of
the code in the following snippet:

// Source file: src/regionsApp/countrySelect.connected.js

/* @flow */

import { connect } from "react-redux";

import { CountrySelect } from "./countrySelect.component";
import { getCountries, getRegions } from "./world.actions";

const getProps = state => ({

Expanding Your Application Chapter 8

[378]

 list: state.countries,
 loading: state.loadingCountries
});

const getDispatch = dispatch => ({
 getCountries: () => dispatch(getCountries()),
 onSelect: c => dispatch(getRegions(c))
});

export const ConnectedCountrySelect = connect(
 getProps,
 getDispatch
)(CountrySelect);

Modifying the region table
Since most of the new behavior will occur in the country drop-down component, we can
make do with a very simple table:

// Source file: src/regionsApp/regionsTable.component.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";

import "../general.css";

export class RegionsTable extends React.PureComponent<{
 list: Array<{
 regionCode: string,
 regionName: string
 }>
}> {
 static propTypes = {
 list: PropTypes.arrayOf(PropTypes.object).isRequired
 };

 static defaultProps = {
 list: []
 };

 render() {
 if (this.props.list.length === 0) {
 return <div className="bordered">No regions.</div>;
 } else {
 const ordered = [...this.props.list].sort(

Expanding Your Application Chapter 8

[379]

 (a, b) => (a.regionName < b.regionName ? -1 : 1)
);

 return (
 <div className="bordered">
 {ordered.map(x => (
 <div key={x.countryCode + "-" + x.regionCode}>
 {x.regionName}
 </div>
))}
 </div>
);
 }
 }
}

We also sort the regions in alphabetic order, and we just create a plain list of <div>, each
with a single region's name. The connected component gets access to the list of regions and
to a loading flag so that it can show something while the list of regions is being fetched
from the server:

// Source file: src/regionsApp/regionsTable.connected.js

/* @flow */

import { connect } from "react-redux";

import { RegionsTable } from "./regionsTable.component";

const getProps = state => ({
 list: state.regions,
 loading: state.loadingRegions
});

export const ConnectedRegionsTable = connect(getProps)(RegionsTable);

Setting up the main application
We have all the necessary components, so we can now produce our application. (And, no, I
haven't forgotten the promised functions!) Our main code will be as follows:

// Source file: src/App.regions.js

/* @flow */

import React, { Component, Fragment } from "react";

Expanding Your Application Chapter 8

[380]

import { Provider } from "react-redux";

import {
 ConnectedCountrySelect,
 ConnectedRegionsTable
} from "./regionsApp";

import { store } from "./regionsApp/store";

class App extends Component<{}> {
 render() {
 return (
 <Provider store={store}>
 <Fragment>
 <ConnectedCountrySelect />
 <ConnectedRegionsTable />
 </Fragment>
 </Provider>
);
 }
}

export default App;

Using thunks
Now, things start getting interesting. We are providing two functions to the country drop-
down list, both of which will work with thunks in order to connect to the server. Let's see
them!

We'll need two functions: one will deal with getting the list of countries, and the other will
be used to get the regions for the currently selected country. Let's just begin with the
former, and keep in mind that this code is to be added to the action file we saw earlier:

// Source file: src/regionsApp/world.actions.js

import axios from "axios";

export const getCountries = () => async dispatch => {
 try {
 dispatch(countriesRequest());
 const result = await axios.get(`http://fk-server:8080/countries`);
 dispatch(countriesSuccess(result.data));
 } catch (e) {

Expanding Your Application Chapter 8

[381]

 dispatch(countriesFailure());
 }
};

First, the signature for our getCountries() function is a bit weird (a function that returns
an async function, with a dispatch parameter), but this is what redux-thunk requires.
The logic is more interesting:

To start, we dispatch the results of the countriesRequest() action creator, so
the state of the application will show that we are waiting for some results.
Then, we use the axios() package, as used earlier in our Node work, to call our
server and get the list of countries.
If the call is successful, we dispatch a countriesSuccess() action, passing it
the list of countries that we received.
If the call failed, we dispatch a countriesFailure() action, to show that
failure.

As you can see, our code is able to dispatch many actions, but waiting until the right
moment to do so.

To work with regions, we'll have similar code:

// Source file: src/regionsApp/world.actions.js

export const getRegions = (country: string) => async dispatch => {
 if (country) {
 try {
 dispatch(regionsRequest());
 const result = await axios.get(
 `http://fk-server:8080/regions/${country}`
);
 dispatch(regionsSuccess(result.data));
 } catch (e) {
 dispatch(regionsFailure());
 }
 } else {
 dispatch(regionsFailure());
 }
};

The code is quite similar to what we had before, so we don't need to do much analysis.

Expanding Your Application Chapter 8

[382]

How it works…
When we npm start our application, we see a very plain design; see the following
screenshot. Let's understand how did we get here:

The main page was displayed.1.
The countries drop-down list, on receiving an empty list of countries, used a2.
thunk to get all countries.
A getCountries() action was dispatched.3.
The reducer updated the store to set the loadingCountries flag to true4.
The page was redrawn, and a "Loading countries..." text was shown5.
instead of the drop-down list.
When the countries list came back, a countriesSuccess() action was6.
dispatched, with the received list of countries.
The reducer updated the store to include all countries and to reset7.
loadingCountries to false.
The page was redrawn, and now the country drop-down list has a list of8.
countries to show as shown, in the following screenshot:

 Our initial screen

If we select a country, the service will be called, and results will be shown; see the following
screenshot. The logic for this is also interesting:

When the region table is drawn without any regions, some "No regions" text is1.
displayed.
When the user selects a country, the drop-down list uses a thunk to get its2.
regions.
A regionsRequest() action was dispatched.3.

Expanding Your Application Chapter 8

[383]

When the regions came back, a regionsSuccess() action was dispatched,4.
The page was redrawn after the reducer created a new state, showing the regions'5.
list. Refer to the following screenshot:

 The results of calling our restful server

You could be wondering, however, where is the "Loading countries..." text? The
problem (if you want to call it that!) is that the service response comes too quickly, so the
message flashes by and disappears. We can get to see it a bit longer if we cheat and add
some delay in the getCountries() function. Include the following line before calling
axios() to delay execution for five seconds:

await new Promise(resolve => setTimeout(resolve, 5000));

Expanding Your Application Chapter 8

[384]

Now, you'll have time to see the missing state, as shown in the following screenshot:

Adding some delay lets us see what's displayed while waiting for the list of countries

So, now we can see that our state handling was correct, and that everything is displayed the
way we wanted it to be!

There's more…
When you write your action creator, it actually gets passed not only dispatch() but also
the getState() function. This function can be used to access the current state value. We
didn't use this, but, for example, you could do so for caching or other similar ideas. Our
getRegions() function could be as follows, to detect whether you are requesting the same
country's regions again:

// Source file: src/regionsApp/world.actions.js

export const getRegions2 = (country: string) => async (
 dispatch,
 getState
) => {
 if (country === getState().currentCountry) {
 console.log("Hey! You are getting the same country as before!");
 }

 if (country) {
 .
 .
 . everything as earlier
 .
 .
 }
};

Expanding Your Application Chapter 8

[385]

In our case, we aren't doing anything other than logging a message, but you could use the
received parameters plus the current state contents in order to do some more complex logic.

Adding routing with react-router
When you work with React (as with other frontend frameworks, such as Angular or Vue,
to name just a couple) you usually develop Single Page Applications (SPAs) that never do
a full-page reload when you access a different part of them; rather, new content is swapped
into view, but staying put on the original page. Even if this kind of navigational experience
is modern and fluid, some aspects of more traditional routing are expected: the back and
forward buttons should move you, depending on your browsing story, and you should also
be able to bookmark a specific part of your application to be able to quickly return to it
later.

As usual, with React, there are many ways to handle routing, but react-router is
currently by far the most used library, probably because it really fits the React paradigm:
routes are just components that you render and work as expected! Let's start by building a
simple application to show how routes work, and in the next section we'll add a bit of
complexity by requiring authentication before allowing access to certain routes.

Getting started
The react-router library is practically a standard for handling routing within React
applications. Installing it requires a subtle distinction: instead of directly getting that
package, you must pick a different package, react-router-dom, which will itself take care
of getting react-router:

npm install react-router-dom --save

We can easily build an application with several links, a router that will take care of
rendering whichever view is correct, and even a 404 page for wrong links. Of course, we'll
focus on the routing aspects, so in other terms, our application will be more of a skeleton
than an actual usable web page—and don't get started on its very plain styling!

Expanding Your Application Chapter 8

[386]

How to do it…
In this recipe, we'll be creating a basic application but with several routes; let's see how.

To begin with, we'll need to import some packages and create a few components that will
represent the different pages in our application. For the latter, since we aren't going to
include any actual logic or contents, we'll make do with very simple functional components
that render a single H1 heading... I told you our application would be quite bare!

// Source file: src/App.routing.js

/* @flow */

import React, { Component } from "react";
import { Provider } from "react-redux";
import { BrowserRouter, Switch, Route, Link } from "react-router-dom";

import { store } from "./routingApp/store";

const Home = () => <h1>Home Sweet Home</h1>;
const Help = () => <h1>Help! SOS!</h1>;
const Alpha = () => <h1>Alpha</h1>;
const Bravo = () => <h1>Bravo</h1>;
const Charlie = () => <h1>Charlie</h1>;
const Zulu = () => <h1>Zulu</h1>;
const Error404 = () => <h1>404 Error!</h1>;

// continued...

Now, to continue, we must plan our application. We'll have <header> with a <nav> bar, in
which we'll include links to the parts of our application. Below that, we'll have a common
area in which the right component will be rendered. Our <App> component could be as
follows—though in real life, you'd probably define all routes in separate files; I'm placing
everything here for brevity:

// ...continued

class App extends Component<{}> {
 render() {
 return (
 <Provider store={store}>
 <BrowserRouter>
 <div>
 <header>
 <nav>
 <Link to="/">Home</Link>

Expanding Your Application Chapter 8

[387]

 <Link to="/about/routing">
 About Routing
 </Link>
 <Link to="/alpha">Alpha...</Link>
 <Link to="/bravo">Bravo...</Link>
 <Link to="/charlie">Charlie...
 </Link>
 <Link to="/wrong">...Wrong...
 </Link>
 <Link to="/zulu">Zulu</Link>
 <Link to="/help">Help</Link>
 </nav>
 </header>

 <Switch>
 <Route path="/" component={Home} />
 <Route path="/help" component={Help} />
 <Route
 path="/about/:something"
 render={props => (
 <div>
 <h1>About...</h1>
 {props.match.params.something}
 </div>
)}
 />
 <Route path="/alpha" component={Alpha} />
 <Route path="/bravo" component={Bravo} />
 <Route path="/charlie" component={Charlie}
 />
 <Route path="/zulu" component={Zulu} />
 <Route component={Error404} />
 </Switch>
 </div>
 </BrowserRouter>
 </Provider>
);
 }
}

export default App;

I've highlighted several parts of the code; let's see why:

<BrowserRouter> is a component based on the HTML5 "History" API, and
takes care of keeping your view synchronized with the URL; a change in the
latter will be reflected by a new view.

Expanding Your Application Chapter 8

[388]

<Link ...> is the component you must use instead of the usual <a ...>
HTML tags, and to= points to the desired route.
<Switch> is a component that renders the first child <Route> or <Redirect>
component (we'll using <Redirect> soon) that happens to match the current
location.
<Route ...> defines which component must be rendered when the path is
matched. Note that you could have to specify exactly to avoid false coincidences;
otherwise, visiting "/alpha" would be matched by the first route, "/", and the
wrong component would be displayed. You may specify what is to be rendered
by using component= or by providing a render() function; the latter is useful
when you need to display several components or take some parameters. In
particular, we used this for "/about/:something"; when this route is matched,
in a way similar to Express (check the Adding Routes section, in Chapter 4,
Implementing RESTful Services with Node) a new prop will be provided, with
attributes coinciding with the colon-starting parts of the URL. You can omit this
by specifying path=, and then you'll have a catch-all, which is useful for 404
errors, as we did here.

So, we have the code; let's see it in action.

How it works…
If you npm start the application and then navigate to it, you'll get the home page, as in
the following screenshot:

 Our routing application, showing the component for the basic "/" route

Expanding Your Application Chapter 8

[389]

If you select any valid route (that is, don't pick the Wrong one, at least not yet!), the
matching route will be activated, and the corresponding component will be displayed, as
shown in the following screenshot:

 Picking a valid route gets you the corresponding component

Finally, if you pick a wrong route, the default component will be shown, as follows:

 The last route in our <Switch> is a catch-all for undefined routes

Expanding Your Application Chapter 8

[390]

There's more…
There's something we haven't used yet: the possibility of directly navigating to a given
route or going back to the previous location and more. Whenever a <Route> is matched,
the rendered component gets some special props, which you can use:

this.props.history, providing access to the browser history, with several
methods like .goBack() to return to the previous page, or .push("someURL")
to navigate to a different page; see https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/
docs/​Web/ ​API/ ​History_ ​API and especially https:/ ​/​github. ​com/
ReactTraining/ ​react- ​router/ ​blob/ ​master/ ​packages/ ​react- ​router/ ​docs/ ​api/
history. ​md for more on this
this.props.location, with several properties related to the current location
and its URL; see https:/ ​/​github. ​com/ ​ReactTraining/ ​react- ​router/ ​blob/
master/​packages/ ​react- ​router/ ​docs/ ​api/ ​location. ​md for extra data
this.props.match, which tells you how the current route was matched;
see https:/ ​/ ​github. ​com/ ​ReactTraining/ ​react- ​router/ ​blob/ ​master/
packages/ ​react- ​router/ ​docs/ ​api/​match. ​md

So, we are now able to work with routes; let's move on to routes needing authorization.

Adding authorization to routes
Our previous routing example worked very well, but in some applications, you might need
authorization so that only logged-in users may access parts of your website. (You would
also need the user to be identified, if you were using an API such as the one we developed
in Chapter 4, Implementing RESTful Services with Node, which required JSON Web Token
(JWT). So, let's see what extra work we need in order to have both restricted and
unrestricted routes on our page.

How to do it…
Let's add authorization to our application by protecting some routes and requiring a
previous successful login.

We can find a very React-like solution. We will have some unprotected routes that
anybody may access without restriction, and protected routes that require having a login.
We'll need two components for that.

https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/history.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/match.md

Expanding Your Application Chapter 8

[391]

Creating a login component
First, let's create a <Login> component that we'll call our RESTful server, passing a
username and a password to it, and (if the values are right) getting back a JWT:

// Source file: src/routingApp/login.component.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";
import { Redirect } from "react-router-dom";

export class Login extends React.PureComponent<{
 logging: boolean
}> {
 static propTypes = {
 onLogin: PropTypes.func.isRequired,
 logging: PropTypes.bool.isRequired,
 token: PropTypes.string.isRequired,
 location: PropTypes.object
 };

 state = {
 userName: "",
 password: ""
 };

 onUserNameBlur = e => this.setState({ userName: e.target.value });

 onPasswordBlur = e => this.setState({ password: e.target.value });

 onLoginClick = () =>
 this.props.onLogin(this.state.userName, this.state.password);

 render() {
 if (
 this.state.userName &&
 this.state.password &&
 this.props.token
) {
 return (
 <Redirect to={this.props.location.state.from.pathname} />
);
 } else {
 return (
 <div>
 <h1>Login Form</h1>

Expanding Your Application Chapter 8

[392]

 <div>
 User:<input
 type="text"
 onBlur={this.onUserNameBlur}
 />
 </div>
 <div>
 Password:
 <input
 type="password"
 onBlur={this.onPasswordBlur}
 />
 </div>
 <button
 onClick={this.onLoginClick}
 disabled={this.props.logging}
 >
 Login
 </button>
 </div>
);
 }
 }
}

Defining actions and the reducer
Before getting into the details, let's see the reducer and actions we'll have. The former is
quite simple, since basically all we care about is having a token and a logging flag:

// Source file: src/routingApp/login.reducer.js

/* @flow */

import {
 LOGIN_REQUEST,
 LOGIN_SUCCESS,
 LOGIN_FAILURE
} from "./login.actions";

export const reducer = (
 state: object = {
 // initial state
 logging: false,
 token: ""
 },
 action

Expanding Your Application Chapter 8

[393]

) => {
 switch (action.type) {
 case LOGIN_REQUEST:
 return {
 ...state,
 logging: true,
 token: ""
 };

 case LOGIN_SUCCESS:
 return {
 ...state,
 logging: false,
 token: action.token
 };

 case LOGIN_FAILURE:
 return {
 ...state,
 logging: false
 };

 default:
 return state;
 }
};

We will have some action creators that will help us understand the rest. The important one
is attemptLogin() that tries connecting to the server, and if successful stores the token
that will mark that the user is logged in:

// Source file: src/routingApp/login.actions.js

/* @flow */

import { loginService } from "./serviceApi";

export const LOGIN_REQUEST = "login:request";
export const LOGIN_SUCCESS = "login:success";
export const LOGIN_FAILURE = "login:failure";

export const loginRequest = () => ({
 type: LOGIN_REQUEST
});

export const loginSuccess = (token: string) => ({
 type: LOGIN_SUCCESS,
 token

Expanding Your Application Chapter 8

[394]

});

export const loginFailure = () => ({
 type: LOGIN_FAILURE
});

// Complex actions:

export const attemptLogin = (
 user: string,
 password: string
) => async dispatch => {
 try {
 dispatch(loginRequest());
 // the next line delays execution for 5 seconds:
 // await new Promise(resolve => setTimeout(resolve, 5000));
 const result = await loginService(user, password);
 dispatch(loginSuccess(result.data));
 } catch (e) {
 dispatch(loginFailure());
 }
};

We'll leave it as an exercise to you to write a <LogOut> component that
will provide a button, which when clicked will just call an action to delete
the current token.

Creating a component to protect a route
To protect a route, let's create a new component that will check whether a user is logged in
or not. In the first case, the route will be shown, with no further ado. However, in the
second case, instead of the original route's component, <Redirect> will be produced,
redirecting the user to the login page:

// Source file: src/routingApp/authRoute.component.js

/* @flow */

import React from "react";
import { Route, Redirect } from "react-router-dom";
import PropTypes from "prop-types";

export class Auth extends React.Component<{
 loginRoute: string,
 token: string,

Expanding Your Application Chapter 8

[395]

 location: object
}> {
 static propTypes = {
 loginRoute: PropTypes.string.isRequired,
 token: PropTypes.string.isRequired,
 location: PropTypes.object
 };

 render() {
 const myProps = { ...this.props };
 if (!myProps.token) {
 delete myProps.component;
 myProps.render = () => (
 <Redirect
 to={{
 pathname: this.props.loginRoute,
 state: { from: this.props.location }
 }}
 />
);
 }
 return <Route {...myProps} />;
 }
}

We will connect this component to the store so that it can access the current token plus the
path to the login page:

// Source file: src/routingApp/authRoute.connected.js

/* @flow */

import { connect } from "react-redux";

import { Auth } from "./authRoute.component";
export const AuthRoute = connect(state => ({
 token: state.token,
 loginRoute: "/login"
}))(Auth);

Now, we have everything we need; let's make it work!

Expanding Your Application Chapter 8

[396]

How it works…
To use our new component, we'll change something in our original routes from earlier in
this chapter. Let's protect a few of the routes. All it will take is changing Route to
AuthRoute:

// Source file: src/App.routing.auth.js

<AuthRoute path="/alpha" component={Alpha} />
<AuthRoute path="/bravo" component={Bravo} />
<AuthRoute path="/charlie" component={Charlie} />
<AuthRoute path="/zulu" component={Zulu} />
<AuthRoute component={Error404} />

All the changed routes will require a previous login—and if the user enters a wrong route,
we won't even tell them about the 404 error; we'll force them to first log in, and if they
won't do it, they won't be able to even learn that the route existed or not.

Now, if we open the application and try to access the normal unprotected routes,
everything will work as before. However, if you try to get to some of the protected routes,
such as "/charlie", you will be redirected to the login page, as in the following
screenshot:

Trying to go to a protected route will redirect you to the login screen

Expanding Your Application Chapter 8

[397]

After logging in, the <Login> component will produce a <Redirect> of its own that will
send the user back to the originally requested page. See the following screenshot:

 After a successful login process, you'll be redirected again to the page you had first requested; the URL now points to the page we wanted to access

So, now you have a way to handle all kinds of routes, and in a very React-ish way, too!

There's more…
In usual web development, you use cookies or possibly local storage for access information,
but in a React application, storing the token (or whatever you use) in the state is good
enough. If you need to provide the token for API calls, remember that actions are defined
as follows:

const anActionCreator =
 (...parameters...) =>
 (dispatch, getState) =>
 { ...your action... }

So, you can access the token via the getState() function, and pass it back to the server as
needed; go back to the getRegions2() code, where we saw how to do async actions, to see
an example of using this function.

Expanding Your Application Chapter 8

[398]

Code splitting for performance
As your application grows in size, it will progressively be slower to load, and that will be
off-putting to your users. (And, remember that not everybody has access to high-speed
connections, especially in mobile devices!) Furthermore, users shouldn't have to download
the whole code if they only need a small part of it: for example, if a user wants to browse
products, why should the sign-up view be downloaded?

The solution to this space and speed problem is code splitting, which implies that your
application will be broken down into smaller chunks that will be loaded only if needed.
Fortunately, there are very good tools for this, which don't involve many changes to your
existing code, so it's a win all around.

Getting ready
When you import a module, it's a static thing, and the code for the desired module gets
included in the general source code pack. However, you can work with dynamic import()
calls to load code at runtime. You could work with that by yourself, but there's already a
simple package you can import, react-loadable, that will take care of most situations.
Let's install it in the usual way:

npm install react-loadable --save

We will be using a few of all the features of this package, so you should take a look
at https:/​/​github. ​com/ ​jamiebuilds/ ​react-​loadable to get ideas about more ways to
enhance your dynamic code loading features.

As of December 2018, import() is at stage 3, meaning that it's a candidate
for acceptance, expecting only few a (if any) changes and is well on its
way to stage 4, which means that it will be included in the formal
ECMAScript standard. However, as with other JS extensions, you can
already use them in your code, and it's supported by Babel and Webpack.
You can read more about import() at https:/ ​/​tc39. ​github. ​io/
proposal- ​dynamic- ​import/ ​.

https://github.com/jamiebuilds/react-loadable
https://github.com/jamiebuilds/react-loadable
https://github.com/jamiebuilds/react-loadable
https://github.com/jamiebuilds/react-loadable
https://github.com/jamiebuilds/react-loadable
https://github.com/jamiebuilds/react-loadable
https://github.com/jamiebuilds/react-loadable
https://github.com/jamiebuilds/react-loadable
https://github.com/jamiebuilds/react-loadable
https://github.com/jamiebuilds/react-loadable
https://github.com/jamiebuilds/react-loadable
https://github.com/jamiebuilds/react-loadable
https://github.com/jamiebuilds/react-loadable
https://tc39.github.io/proposal-dynamic-import/
https://tc39.github.io/proposal-dynamic-import/
https://tc39.github.io/proposal-dynamic-import/
https://tc39.github.io/proposal-dynamic-import/
https://tc39.github.io/proposal-dynamic-import/
https://tc39.github.io/proposal-dynamic-import/
https://tc39.github.io/proposal-dynamic-import/
https://tc39.github.io/proposal-dynamic-import/
https://tc39.github.io/proposal-dynamic-import/
https://tc39.github.io/proposal-dynamic-import/
https://tc39.github.io/proposal-dynamic-import/
https://tc39.github.io/proposal-dynamic-import/
https://tc39.github.io/proposal-dynamic-import/
https://tc39.github.io/proposal-dynamic-import/
https://tc39.github.io/proposal-dynamic-import/

Expanding Your Application Chapter 8

[399]

How to do it…
Let's modify our routing application—even if it's quite small!—to try out code splitting.

First, let's see what our main code will look like:

// Source file: src/App.splitting.js

/* @flow */

/* eslint-disable */

import React, { Component } from "react";
import { BrowserRouter, Switch, Route, Link } from "react-router-dom";

import {
 AsyncAlpha,
 AsyncBravo,
 AsyncCharlie,
 AsyncZulu,
 AsyncHelp
} from "./splittingApp";

const Home = () => <h1>Home Sweet Home</h1>;
const Error404 = () => <h1>404 Error!</h1>;

class App extends Component<{}> {
 render() {
 return (
 <BrowserRouter>
 <div>
 <header>
 <nav>
 <Link to="/">Home</Link>
 <Link to="/alpha">Alpha...</Link>
 <Link to="/bravo">Bravo...</Link>
 <Link to="/charlie">Charlie...</Link>
 <Link to="/wrong">...Wrong...</Link>
 <Link to="/zulu">Zulu</Link>
 <Link to="/help">Help</Link>
 </nav>
 </header>

 <Switch>
 <Route exact path="/" component={Home} />
 <Route path="/help" component={AsyncHelp} />
 <Route path="/alpha" component={AsyncAlpha} />
 <Route path="/bravo" component={AsyncBravo} />

Expanding Your Application Chapter 8

[400]

 <Route path="/charlie" component={AsyncCharlie}
 />
 <Route path="/zulu" component={AsyncZulu} />
 <Route component={Error404} />
 </Switch>
 </div>
 </BrowserRouter>
);
 }
}

export default App;

We have separated the Alpha, Bravo, and other components so that we can load them
dynamically. Seeing the code for one of them will be enough:

// Source file: src/splittingApp/alpha.component.js

/* @flow */

import React from "react";

const Alpha = () => <h1>Alpha</h1>;

export default Alpha;

But what about AsyncAlpha, AsyncBravo, and the rest? These components are
dynamically loaded versions of their normal counterparts, which we can get using react-
loadable:

// Source file: src/splittingApp/alpha.loadable.js

/* @flow */

import Loadable from "react-loadable";

import { LoadingStatus } from "./loadingStatus.component";

export const AsyncAlpha = Loadable({
 loader: () => import("./alpha.component"),
 loading: LoadingStatus
});

Expanding Your Application Chapter 8

[401]

The AsyncAlpha component can be loaded dynamically, and while it's being loaded, its
contents will be provided by the LoadingStatus component; you can make it as fancy as
you want but I went with a very simple thing:

// Source file: src/splittingApp/loadingStatus.component.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";

export class LoadingStatus extends React.Component<{
 isLoading: boolean,
 error: boolean
}> {
 static propTypes = {
 isLoading: PropTypes.bool,
 error: PropTypes.bool
 };

 render() {
 if (this.props.isLoading) {
 return <div>Loading...</div>;
 } else if (this.props.error) {
 return <div>ERROR: the component could not be loaded.</div>;
 } else {
 return null;
 }
 }
}

So, now that we know how we can get any component to load dynamically, let's see how it
works.

Being able to load components dynamically, instead of whole routes as
usual with web applications, is a great plus. For example, your application
could have a large, heavy component in a tab, but why load it unless the
user actually goes to that tab? Deferred loading can also help show a page
faster; you could endeavor to first show components at the top, and use
dynamic imports for the components at the bottom.

Expanding Your Application Chapter 8

[402]

How it works…
We will use the web developer tools to look at the network transfers. When we start the
application, we get the home page and just a few transfers, including bundle.js, the main
source block. This is the file that will grow heavily in size as your application becomes
larger. See the following screenshot:

The initial load of the page shows that only bundle.js was sent over the net

Expanding Your Application Chapter 8

[403]

If we click on a link, the corresponding chunk of split code will be transferred. After
accessing several of the links, you'd get something like the following:

 As you go to different links, chunks will get loaded, but only as needed

Expanding Your Application Chapter 8

[404]

Even if our example is really tiny, you can see that you could easily partition the
application to work in several smaller chunks. We can give no rules to suggest when you
should start applying this technique, but, as we've seen, changing any component into an
asynchronously loaded equivalent takes little effort, so you could start using the technique,
even with all of your application already written.

There's more…
The components created by Loadable() include a .preload() method that you can use
to start the importing process before the components are actually needed. We can quickly
test it. For example, let's set things up so that if the user moves the mouse over the Alpha
link, the component will be preloaded:

<Link to="/alpha">
 AsyncAlpha.preload()}>Alpha...
</Link>

We can quickly verify that this works. When you load the updated version of the code, if
you hover over the Alpha link, you'll see that a chunk of code gets downloaded—though
nothing changes onscreen, as the following screenshot shows:

Expanding Your Application Chapter 8

[405]

 Preloading works in the background and lets you download a component in advance: a chunk (1.chunk.js) has been loaded, though it hasn't been shown onscreen

Give it some time, and note that when you actually click the Alpha link, the component will
be shown immediately, with no further downloads. There are more usages for preloading:
you could use setTimeout() after the initial page load, for instance, or you could do
predictive downloading, trying to foresee what the user will want next, based on what
they've been doing.

9
Debugging Your Application

The recipes we'll see here are:

Logging with style
Debugging with the React Developer Tools
Debugging with the standalone tool
Logging Redux with redux-logger
Debugging Redux with the Redux Developer Tools
Connecting routing for debugging

Introduction
In the previous chapters, we saw how to develop a basic React application, how to
enhance it for a better user experience, and how to expand it, making it more scalable for
complex and large application scopes. All this development, however, is sure to require
both testing and debugging, so in this chapter, we'll be touching upon debugging recipes,
and in the following chapter, we'll cover testing.

Logging with style
Logging is still a very good tool, but you cannot just depend on using tools such as
console.log() or console.error(). Even though they do the work for a short
debugging run, if you plan to include logging more seriously and want to disable it in
production, you'll have a lot of work chasing down every logging call—or monkey patching
the console object so .log() or .error() won't do their thing, and that's even worse!

Debugging Your Application Chapter 9

[407]

Back in the Adding logging with Winston section of Chapter 5, Testing and Debugging Your
Server, we used Winston for logging (and also Morgan, but that was specific for HTTP
logging, so it doesn't count) and that library had features that enabled us to easily start or
stop logging. There's no version of Winston for browsers, but we can fall back to debug, an
old standard (we referred to in the There's more... section at the end of the chapter we just
mentioned) that happens to work on the web as well.

You can find the complete documentation for debug at https:/ ​/​github.
com/​visionmedia/ ​debug. Note that if you wish, you could also use it with
Node, though we think our earlier choice is better.

Getting ready
You install debug in the same way as if you wanted to use it with Node.

npm install debug --save

You will also have to decide how to namespace your logs because with debug you have an
easy way to select which messages (if any) get shown and which are not displayed. Some
possible ideas are to have names like MYAPP:SERVICE:LOGIN,
MYAPP:SERVICE:COUNTRIES, MYAPP_SERVICE:PDF_INVOICE, and so on for each service
in your application, or MYAPP_FORM:NEW_USER, MYAPP:FORM:DISPLAY_CART,
MYAPP:FORM:PAY_WITH_CARD, and so on for each form, or
MYAPP:COMPONENT:PERSONAL_DATA, MYAPP:COMPONENT_CART, and the like for specific
components; the list can go on for actions, reducers, and so on, as you wish.

There's a way to select afterwards which logs will be shown, by storing a value in
LocalStorage (we'll get to this) so you can set:

MYAPP:* to display all logs from my app
MYAPP:SERVICE:* to display all service-related logs
MYAPP:FORM: and MYAPP:COMPONENT:* to display logs related to some forms
or components, but omit others
MYAPP:SERVICE:COUNTRIES,MYAPP:FORM:NEW_USER and
MYAPP:FORM:PAY_WITH_CARD to display logs related to those three items

You can also prefix a string with "-" to exclude it. MYAPP:ACTIONS:*,-
MYAPP:ACTIONS:LOADING will enable all actions, but not the LOADING one.

https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug
https://github.com/visionmedia/debug

Debugging Your Application Chapter 9

[408]

You may wonder: why include a fixed text such as MYAPP: everywhere?
The key is that many of the libraries you may use actually also use debug
for logging. If you were to say to display everything (*) instead of
MYAPP:*, you would get in the console every single message from all
those libraries, and that's not what you expected!

You are free to decide the naming of your logs, but setting up a well-structured list will
make it possible for you to pick and choose later which logs to display, meaning that you
won't have to start messing around with the code to enable or disable any given set of
messages.

How to do it…
Let's aim to replicate what we had in Winston, at least in part, so it will be easier for you if
you do full stack work, both client- and server-side. We want to have a logger object with
methods such as .warn() and .info() that will display a given message in an
appropriate color. Also, we don't want logs to be displayed in production. This leads us to
the code as follows:

// Source file: src/logging/index.js

/* @flow */

import debug from "debug";

const WHAT_TO_LOG = "myapp:SERVICE:*"; // change this to suit your needs
const MIN_LEVEL_TO_LOG = "info"; // error, warn, info, verbose, or debug

const log = {
 error() {},
 warn() {},
 info() {},
 verbose() {},
 debug() {}
};

const logMessage = (
 color: string,
 topic: string,
 message: any = "--",
 ...rest: any
) => {
 const logger = debug(topic);
 logger.color = color;

Debugging Your Application Chapter 9

[409]

 logger(message, ...rest);
};

if (process.env.NODE_ENV === "development") {
 localStorage.setItem("debug", WHAT_TO_LOG);

 /* eslint-disable no-fallthrough */
 switch (MIN_LEVEL_TO_LOG) {
 case "debug":
 log.debug = (topic: string, ...args: any) =>
 logMessage("gray", topic, ...args);

 case "verbose":
 log.verbose = (topic: string, ...args: any) =>
 logMessage("green", topic, ...args);

 case "info":
 log.info = (topic: string, ...args: any) =>
 logMessage("blue", topic, ...args);

 case "warn":
 log.warn = (topic: string, ...args: any) =>
 logMessage("brown", topic, ...args);

 case "error":
 default:
 log.error = (topic: string, ...args: any) =>
 logMessage("red", topic, ...args);
 }
}

export { log };

Some important details:

The WHAT_TO_LOG constant lets you select which messages should be shown.
The MIN_LEVEL_TO_LOG constant defines the lowest level that will be logged.
The log object has a method for each severity level, as in Winston.
Finally, a non-operative log object is returned if we are not in development
mode; all calls to logging methods will produce exactly nothing.

Note that we used fallthrough in the switch statement (no break
statements in it!) to correctly build up the log object. It's not often that
you can do this in a good way, and we had to shut up ESLint about it!

Debugging Your Application Chapter 9

[410]

We have the code we need; let's see an example of its usage.

How it works…
Given that logging is not a complex concept and we have already seen it for the server, let's
go with a very short example. We could change the index.js file for our application to
include a few example logs:

// Source file: src/index.js

.

.

.

import { log } from "./logging";

log.error("myapp:SERVICE:LOGIN", `Attempt`, { user: "FK", pass: "who?" });

log.error("myapp:FORM:INITIAL", "Doing render");

log.info(
 "myapp:SERVICE:ERROR_STORE",
 "Reporting problem",
 "Something wrong",
 404
);

log.warn("myapp:SERVICE:LOGIN");

log.debug("myapp:SERVICE:INFO", "This won't be logged... low level");

log.info("myapp:SERVICE:GETDATE", "Success", {
 day: 22,
 month: 9,
 year: 60
});

log.verbose("myapp:SERVICE:LOGIN", "Successful login");

Debugging Your Application Chapter 9

[411]

Running our application will produce the following output in the console; see the next
screenshot. You should verify that only the correct messages were logged: info level and
above, and only if they matched myapp:SERVICE:*:

Using debug produces clear, understandable output in the console

Debugging Your Application Chapter 9

[412]

Note that, according to our specification, only the myapp:SERVICE related messages were
shown.

Debugging with the React Developer Tools
When we worked with Node (in Chapter 5, Testing and Debugging Your Server) we saw how
to do basic debugging, but now we are going to focus on a React-specific tool, the React
Developer Tools (RDT), which are attuned to working with components and props. In this
recipe, let's see how to install and use the package.

Getting Ready
The RDT are an extension for Chrome or Firefox that let you inspect components in the
standard web developer tools. We are going to work with the Chrome version here, but
usage is similar for Firefox. You can install the extension by going to the Chrome Web
Store at https:/​/​chrome. ​google. ​com/ ​webstore/ ​category/ ​extensions and searching for
RDT; the extension you want is authored by Facebook. Click the Add to Chrome button,
and when you open the Chrome Developer Tools, you'll find a new tab, React.

If you don't use Chrome or Firefox, or if you have to test a React
application that will be shown in an iframe, you'll want to look at the
standalone version of the tools; we'll get to them in the Debugging with the
standalone tool section, just after this one.

https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions

Debugging Your Application Chapter 9

[413]

How to do it…
Let's see how to use RDT with the counter application we developed in the Managing state
with Redux section in the previous chapter. That application was simple, so we'll be able to
see easily how to use the tool, but of course you can apply it to very complex, full-of-
components pages as well. Start the application, open the web developer tools, select the
React tab, and if you expand every component, you'll see something like the following
screenshot:

The React tab in the web developer tools let you access the whole component hierarchy for your application

Debugging Your Application Chapter 9

[414]

By the way, you can use the tool with any React-developed application. The small tool's
icon will change color when it can be used, and if you click on it you'll get information on
whether you are running a development (red-colored icon) or production (green-colored
icon); this screenshot shows our specific situation:

 Our new tool will detect and work with any React-developed application

How it works…
We have installed our debugging tool, and we have applied it to our application; let's now
see how it works, and what we can do with it.

If you select any specific component by clicking on it, you can see which components and
HTML elements it generates. You can also select a component in a more traditional way by
selecting a component directly onscreen (click on the leftmost icon, to the left of the
Memory tab) and then click on the React tab; the element you clicked on will be selected.
You can also use the Search function to look for a specific component; this will be useful
with large applications to avoid having to manually scroll through lots and lots of HTML.

The triangle next to each component may have two different colors,
depending on whether it's an actual React component (such as
<Counter> or <ClicksDisplay> , in our case) or a Redux connection to
the store. HTML elements don't have any triangles.

In the third panel, you can see the current props. If you edit one (try setting the count prop
to a different value, for example), you'll immediately see changes on the left. Also, if you
click on a button, you'll see how the prop values change; experiment a bit with the three
buttons on your application.

Debugging Your Application Chapter 9

[415]

If you want to interact with any component, you may notice that the currently selected one
has == $r next to it. This means that there is a special JS variable, which points to the
selected component in our case, <Counter>. If you open the Console tab, you can examine
its props, by typing in $r.props, or experiment with calling the diverse methods available,
such as $r.onAdd1() , as shown in the next screenshot:

 The $r variable lets you work (and experiment) with the currently selected component

Interestingly, in our application, as we coded it, the .onAdd1() method actually dispatches
an action, and we can see it in the screenshot: an object with type:"counter:increment"
and value:1, just as we coded it; see the Defining Actions section in the previous chapter to
check.

If you select the <Provider> component, you can inspect the current state of the
application. First you'll have to select it (so $r points to it) and then, in the Console tab,
you'll need to enter $r.store.getState() to get results as in the next screenshot:

Debugging Your Application Chapter 9

[416]

By selecting the <Provider> component, you can inspect the application's state

In fact, you can even fire actions if you want; by entering something
like $r.store.dispatch({type:"counter:increment", value:11}) , you have full
control over the application state.

Debugging with the standalone tool
If you are working with other browsers such as Safari or Internet Explorer, or if you cannot
use Chrome or Firefox for some reason, there's a standalone version of the tool, which you
can find at https:/ ​/ ​github. ​com/ ​facebook/ ​react- ​devtools/ ​tree/ ​master/ ​packages/
react-​devtools. Be warned, though, that for web development, you won't be getting the
full functionality, so you'll probably be better off keeping to a supported browser!

Getting ready
We want to use the standalone tool; let's see how to set it up. To start with, obviously, we
need to install the package. You can do it globally, but I prefer working locally within the
project itself:

npm install react-devtools --save-dev

https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools

Debugging Your Application Chapter 9

[417]

In order to be able to run the new command, you could use npx (as we saw a couple of
times in the book), but it's easier to just define a new script in package.json. Add
something like the following to it, and you'll be able to open the standalone app with npm
run devtools:

"scripts": {
 .
 .
 .
 "devtools": "react-devtools"
}

Now you are set up; let's see how to use the tool.

In case you are curious, this standalone application is itself written in JS
and converted to a desktop application with Electron, as we'll be seeing
later in the book in Chapter 13, Creating a Desktop Application with
Electron.

How to do it…
We got the standalone tool; let's see how to use it. In order to use the RDT in a standalone
fashion, you'll have to add a single line at the top of your HTML code.

<!DOCTYPE html>
<html lang="en">

<head>
 <script src="http://192.168.1.200:8097"></script>
 .
 .
 .

Then start the application normally, and after it's up and running, start the standalone app.
You'll get something like the next screenshot. Note that we are seeing two separate
windows: one with the RDT, and the other with the application (for variety) in Opera; in
the same way I could have used Safari or IE or any other browser:

Debugging Your Application Chapter 9

[418]

 The standalone RDT let you inspect React applications even if they are running in browsers other than Chrome or Firefox

Now you are really set to go; let's finish this section by seeing what we can (and cannot) do.

For more details on how to configure the standalone application, in
particular, if you need to use a different port, check out the official
documentation at https:/ ​/​github. ​com/ ​facebook/ ​react- ​devtools/ ​tree/
master/ ​packages/ ​react- ​devtools. For complicated cases, you may end
up using a different package, react-devtools-core, over at https:/ ​/
github. ​com/ ​facebook/ ​react- ​devtools/ ​tree/ ​master/ ​packages/ ​react-
devtools- ​core.

https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core
https://github.com/facebook/react-devtools/tree/master/packages/react-devtools-core

Debugging Your Application Chapter 9

[419]

How it works…
This version of the developer tools lets you interact with the application and see
components and props, but you'll be restricted as to interacting with them through the
console, as we'll see.

First, start by checking that if you click on the buttons in the Opera window, you'll
automatically see the changes in the RDT, as before see the next screenshot for the results
after some Add 1 clicks:

 Whatever you do in the React application will be shown in the Developer Tools. In this example, I clicked six times on Add 1, and the updated component tree shows the new
values

Debugging Your Application Chapter 9

[420]

Most functions work the same way as in Chrome. You can search for a component by
name, and if you right-click on a component, you get several options, including showing all
the occurrences of the component's name (as with the search) or copying its props; see the
following screenshot:

The RDT let you get full information about any component

However, note that you won't get complete values. For instance, in the preceding example,
the copied props were as in the following code snippet; instead of a function, I got a string
description:

{
 "count": 6,
 "dispatch": "[function dispatch]"
}

Debugging Your Application Chapter 9

[421]

Another restriction is that you won't be able to use $r to directly access an object; this is
beyond the tools' capabilities. However, if you are out of solutions for debugging, at least
you'll be able to see the internal workings of your app, nothing to be dismissed out of hand!

Logging Redux with redux-logger
One basic tool for debugging is the use of a logger. While JS already has enough logging
features available (we already mentioned the window.console functions in the Adding
logging with Winston section in Chapter 5, Testing and Debugging Your Server, you will
require some help in order to log the Redux actions, a key requirement. Certainly, you
could add code before dispatching any action, but that would become too long-winded.
Rather, we'll consider adding some middleware that will log all actions; even if we'll see
better tools in the next Debugging Redux with the Redux Developer Tools section, this kind of
log will prove quite useful. In this recipe, let's see how to add redux-logger.

We have used middleware for thunks, but if you want to write your own
middleware, you can find several examples (including a logging function)
at https:/ ​/ ​redux. ​js. ​org/ ​advanced/ ​middleware.

Getting ready
Our first step, as always, is to get the new tool. Installation is simple and straightforward,
along the same lines we seen in most of the text:

npm install redux-logger --save

This will install the new package, but you'll have to manually add it to your store creation
code; by itself, the package won't have any effect.

If you want to read more about the redux-logger features and
capabilities, check out https:/ ​/​github. ​com/ ​evgenyrodionov/ ​redux-
logger.

https://redux.js.org/advanced/middleware
https://redux.js.org/advanced/middleware
https://redux.js.org/advanced/middleware
https://redux.js.org/advanced/middleware
https://redux.js.org/advanced/middleware
https://redux.js.org/advanced/middleware
https://redux.js.org/advanced/middleware
https://redux.js.org/advanced/middleware
https://redux.js.org/advanced/middleware
https://redux.js.org/advanced/middleware
https://redux.js.org/advanced/middleware
https://redux.js.org/advanced/middleware
https://redux.js.org/advanced/middleware
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger

Debugging Your Application Chapter 9

[422]

How to do it…
Setting up redux-logger requires first creating a logger with the createLogger()
function, which lets you select many options to customize the logged output, and then
include the generated logger as middleware for Redux.

Out of the many available options, these are the most interesting:

colors : If you wish to change how the output looks.

diff: : A Boolean flag to decide if you want to display the difference between
the old state and the new state; there's also a diffPredicate(getState,
action) function that you can use to decide whether to display the differences.

duration : A Boolean flag to print how long it took to process an action; this
would be interesting mainly in async actions

predicate(getState, action) : Can inspect the action and the current state,
and return true or false to define whether the action should be logged or not; this
is quite useful to restrict logging to, say, just a few action types.

 titleFormatter(), stateTransformer(), actionTransformer(), and
several other formatter functions.

For the complete set of options, check out https:/ ​/​github. ​com/
evgenyrodionov/ ​redux- ​logger.

https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger
https://github.com/evgenyrodionov/redux-logger

Debugging Your Application Chapter 9

[423]

Setting up our counter application
We'll see how to use this logger with our counter application for the simplest possible case,
and then with the regions browser, which will add thunks to the mix. You have to use the
applyMiddleware() function (which we already saw in the Doing async actions: redux-
thunk section in Chapter 8, Expanding Your Application, when we started using redux-
thunk) to add the logger to the process:

// Source file: src/counterApp/store.js

/* @flow */

import { createStore, applyMiddleware } from "redux";
import { createLogger } from "redux-logger";

import { reducer } from "./counter.reducer.js";

const logger = createLogger({ diff: true, duration: true });
export const store = createStore(reducer, applyMiddleware(logger));
.
.
.

Of course, you would probably want to enable this only for development, so the last line in
the preceding snippet should rather be something like the following:

export const store =
 process.env.NODE_ENV === "development"
 ? createStore(reducer, applyMiddleware(logger))
 : createStore(reducer);
.
.
.

This sets the logger to access every single action that gets dispatched, and to log it including
the differences between states and the processing time. We'll get to see how this works
soon, but first let's take a look at our second application, which already had some
middleware.

Debugging Your Application Chapter 9

[424]

Setting up our region application
When you want to apply two or more pieces of middleware, you have to specify in which
order they will be applied. In our case, remembering that a thunk could either be an object
(fine to list) or a function (that will get called to eventually produce an object) we have to
place our logger right at the end of all possible middleware:

// Source file: src/regionsApp/store.js

/* @flow */

import { createStore, applyMiddleware } from "redux";
import thunk from "redux-thunk";
import { createLogger } from "redux-logger";

import { reducer } from "./worlds.reducer.js";

const logger = createLogger({ duration: true });

export const store = createStore(reducer, applyMiddleware(thunk, logger));
.
.
.

I decided to skip listing differences because we'd be getting lists that are a bit long (over 200
countries, for example) so output would have become too large. Let's now get to see how
this logging works in practice.

How it works…
We set both our applications to log all actions, with no filtering; all we have to do is npm
start, and the logger's output will appear in the web developer tools console.

Debugging Your Application Chapter 9

[425]

Logging the counter application
The counter application is quite simple: the whole state had just two pieces of data (the
current counter value and the number of clicks so far) so it's easy to follow what happens
during a test run; see the next screenshot:

 A sample run of the counter application, but logging all actions with redux-logger

Debugging Your Application Chapter 9

[426]

You can easily follow the test run, and you'll be able to see when we clicked each of the
buttons which action was dispatched and the successive values of the store—if there were
any problems with the reducer's logic, you'd probably find them easy to detect, given all
the information that appears onscreen.

Logging the region application
Our second application is more interesting, given that we are doing actual async requests,
the amount of data to process is larger, and the screen display, while still a bit simple, is at
least more complex than the counter display. When we start the application, the dropdown
used an action to request the whole list of countries, as you can see in this screenshot:

 The drop-down component dispatched an action to get the countries (countries:request), and it proved successful (countries:success) returning a list with 249 countries

Debugging Your Application Chapter 9

[427]

After the countries were loaded, I decided to pick France (a very small homage to the FIFA
Soccer World champions of 2018!), and some new actions were fired, as shown in the next
screenshot:

 The results of picking a country: several actions were dispatched and the API was called

For the sake of a smaller display, I compacted the two first actions, and I could then expand
the last one, showing the answer that was received from our own server. You can check
that all regions are correctly displayed, though in alphabetic order, as we had sorted the list
by name.

With this logger, you have already a good tool to see what happens in the React+Redux
applications—but we'll add yet another tool for a even better way of working.

Debugging Your Application Chapter 9

[428]

Debugging Redux with the Redux Developer
Tools
One of the best things to have if you are working with React+Redux are the Redux
Developer Tools (or DevTools), which provide a console that lets you look into actions and,
states, and even provide a "time machine" mode that allows you to go back and forth in
time, so you can carefully check if everything's as it should be. In this recipe, let's see how
to use this very powerful tool to help debug our code.

If you want to see Dan Abramov's demonstration of this tool, check out
his talk at React Europe in 2015 at https:/ ​/​www. ​youtube. ​com/ ​watch? ​v=
xsSnOQynTHs.

Getting ready
Installing the required redux-devtools-extension is easy, but be careful! Don't confuse
the redux-devtools-extension package, at https:/ ​/​github. ​com/ ​zalmoxisus/ ​redux-
devtools-​extension, with redux-devtools, a similar but different package at https:/ ​/
github.​com/​reduxjs/ ​redux- ​devtools. The latter is more of a "DIY" package, which
requires plenty of configuration, though it will let you create a totally custom monitor for
Redux, if you care to. For ourselves, this is what we need:

npm install redux-devtools-extension --save-dev

You will also want to install a Chrome extension, Redux Devtools, which works together
with the package we just installed. This extension will add a new option to the web
developer tools, as we'll see.

https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/reduxjs/redux-devtools
https://github.com/reduxjs/redux-devtools
https://github.com/reduxjs/redux-devtools
https://github.com/reduxjs/redux-devtools
https://github.com/reduxjs/redux-devtools
https://github.com/reduxjs/redux-devtools
https://github.com/reduxjs/redux-devtools
https://github.com/reduxjs/redux-devtools
https://github.com/reduxjs/redux-devtools
https://github.com/reduxjs/redux-devtools
https://github.com/reduxjs/redux-devtools
https://github.com/reduxjs/redux-devtools

Debugging Your Application Chapter 9

[429]

How to do it…
In order to enable the tool, once again we must change the creation of the store. Let's do it
for the region application, which already had a couple of middleware functions in it. On the
plus side, we won't have to worry about development or production environments: the
Redux DevTools will only work in the former. The modified store code can be as seen in the
following snippet; the composeWithDevTools() added function will take care of the
necessary connections to make everything work:

// Source file: src/regionsApp/store.js

/* @flow */

import { createStore, applyMiddleware } from "redux";
import thunk from "redux-thunk";
import { createLogger } from "redux-logger";
import { composeWithDevTools } from "redux-devtools-extension";

import { reducer } from "./worlds.reducer.js";

const logger = createLogger({ duration: true });

export const store = createStore(
 reducer,
 composeWithDevTools(applyMiddleware(thunk, logger))
);

If you run the code, it will work exactly as before, but let's see how the added debugging
functions work.

How it works…
Let's fire up our region application, and then open the web developer tools and pick the
Redux tab. You'll get something like in the following screenshot:

Debugging Your Application Chapter 9

[430]

 Loading the application shows the initial state plus a couple of actions: the request for countries and the success of that request

There are many features here. The following slider (you will have to click the clock icon on
the bottom bar to see it) is probably the most interesting one, because it lets you go back
and forth; try sliding it, and you'll see how the application changes.

Debugging Your Application Chapter 9

[431]

For example, you could easily see how the screen looked when the country request action
had been dispatched, but before the data came back; see the next screenshot. You'll
remember that in order to check this out, we had to add an artificial time delay before; now,
you can examine the situation at will, with no need to add any special code:

By using the slider, you can see how the application looked at any previous moment

Debugging Your Application Chapter 9

[432]

If you select the Inspector option in the drop-down list at the top, you can examine actions
and states. For example in the next screenshot, you can examine the action that was
dispatched when the list of countries was retrieved from the server with all its data. You'll
notice that this kind of information is very similar to what the Redux logger package
produced, but you can work with it in a more dynamic way:

The Inspector feature lets you view actions (as here) and states, so you can inspect everything that happened

Debugging Your Application Chapter 9

[433]

Let's advance a bit; select France again, and we'll see how the state changed after those
regions came in. The Diff tab shows you only the differences in the state: in our case, the
loadingRegions value was reset to false (it had been set to true when the request for
region action was dispatched), and the list of regions got its values (all the regions of
France). See the following screenshot:

 The Diff tab lets you quickly see just the state changed attributes for a faster, simpler analysis

Debugging Your Application Chapter 9

[434]

We haven't gone through all functions, so go ahead and click everywhere
to find what else is available. For example, the buttons on the left in the
bottom bar let you open a separate window for debugging, so your screen
won't get so cramped; another button lets you create and dispatch any
action, so go ahead, try everything out!

You really should experiment with the tool to get a clear perspective on what you can
achieve with it—and, in particular, try out the time machine function. You'll appreciate
the fact that this kind of result is possible only because of the way in which React creates
the view as a function of the state, but then you will eventually come to notice that
something is missing; let's find out what is it, and how to fix it?

Connecting routing for debugging
What did we miss? The simple applications we tried out in previous sections of this chapter
didn't include routing—but what would have happened if they did? The problem now is
visible: whenever the user navigates to a new route, nothing in the state would keep track
of that change, so the time machine functions wouldn't really work. To solve this, we need
to keep the router information in sync with the store, and that will restore full functionality
to our debugging; let's see here how to do that.

Getting ready
With previous versions of react-router, a react-router-redux package took care of
linking the router and the state, but that package was recently deprecated and replaced by
connected-react-router, which we'll install. I'm mentioning this because there are
many articles on the web that still show the usage of the former package; be careful:

npm install --save connected-react-router

This is half the solution; getting the package to work will (once more!) require changes in
the store and in the structure of your application; let's see that.

Debugging Your Application Chapter 9

[435]

How to do it…
We want to modify our code so that the Redux time machine functionality will work. Let's
use again the basic routing application we saw in the Adding routing with react-router section
in Chapter 8, Expanding Your Application; we had routing and also a login form that
dispatched some actions, so we'll be able to see (on a very small scale, agreed!) all the kinds
of things we find in a normal application.

There will be changes in two places: first, we'll have to connect our store with a history
object related to the router, and, second, we'll have to add a component to our main code.
The store changes are as follows—observe that we also added here our other debugging
tools to match those in the rest of the chapter:

// Source file: src/routingApp/store.js

/* @flow */

import { createStore, applyMiddleware } from "redux";
import thunk from "redux-thunk";
import { createLogger } from "redux-logger";
import { composeWithDevTools } from "redux-devtools-extension";
import { connectRouter, routerMiddleware } from "connected-react-router";
import { createBrowserHistory } from "history";

import { reducer } from "./login.reducer";

const logger = createLogger({ duration: true });

export const history = createBrowserHistory();

export const store = createStore(
 connectRouter(history)(reducer),
 composeWithDevTools(
 applyMiddleware(routerMiddleware(history), thunk, logger)
)
);

Debugging Your Application Chapter 9

[436]

The code is sort of obscure-looking, but basically:

We create a history object, which we'll have to export because we'll need it later
We wrap our original reducer with connectRouter() to produce a new
reducer that will be aware of the router state
We add routerMiddleware(history) to allow for routing methods like
push()

Then we'll have to add a <ConnectedRouter> component to our main JSX; this will
require the history object that we created before:

// Source file: src/App.routing.auth.js

import React, { Component } from "react";
import { Provider } from "react-redux";
import { BrowserRouter, Switch, Route, Link } from "react-router-dom";
import { ConnectedRouter } from "connected-react-router";

import {
 ConnectedLogin,
 AuthRoute
} from "./routingApp";
import { history, store } from "./routingApp/store";

const Home = () => <h1>Home Sweet Home</h1>;
const Help = () => <h1>Help! SOS!</h1>;
.
.
.

class App extends Component<{}> {
 render() {
 return (
 <Provider store={store}>
 <BrowserRouter>
 <ConnectedRouter history={history}>
 <div>
 <header>
 <nav>
 <Link to="/">Home</Link>
 <Link to="/login">Log
 in</Link>
 .
 .
 .
 </nav>
 </header>

Debugging Your Application Chapter 9

[437]

 <Switch>
 <Route exact path="/" component={Home} />
 <Route path="/help" component={Help} />
 .
 .
 .
 </Switch>
 </div>
 </ConnectedRouter>
 </BrowserRouter>
 </Provider>
);
 }
}

export default App;

Everything's set now; let's see how this works.

For a fuller description of connected-react-router, check out its
GitHub page at https:/ ​/​github. ​com/​supasate/ ​connected- ​react-
router; in particular, you may be interested in the many articles listed
near the bottom of the page with diverse tips and suggestions.

How it works…
Let's start our application now, and don't forget to run our server from Chapter 4,
Implementing RESTful Services with Node, as we did before. Opening the Redux DevTools,
we see a single new action, @@INIT, and the state now includes a new router attribute; see
the following screenshot:

https://github.com/supasate/connected-react-router
https://github.com/supasate/connected-react-router
https://github.com/supasate/connected-react-router
https://github.com/supasate/connected-react-router
https://github.com/supasate/connected-react-router
https://github.com/supasate/connected-react-router
https://github.com/supasate/connected-react-router
https://github.com/supasate/connected-react-router
https://github.com/supasate/connected-react-router
https://github.com/supasate/connected-react-router
https://github.com/supasate/connected-react-router
https://github.com/supasate/connected-react-router
https://github.com/supasate/connected-react-router
https://github.com/supasate/connected-react-router

Debugging Your Application Chapter 9

[438]

 After connecting routing to the store, some new actions and state attributes appear

Debugging Your Application Chapter 9

[439]

If we click on Alpha..., we'll see that two actions were dispatched: the first attempted to
access /alpha, and the second was our redirection to the /login page, as shown in this
screenshot:

 Attempting to access a protected route redirects us to the login page

Debugging Your Application Chapter 9

[440]

After entering user and password, we see our login:request and login:success actions—as
we have seen since we enabled the Redux Developer Tools—followed by another action,
corresponding to the redirection to the /alpha page appears after as shown in the
following screenshot:

 Our own actions are intermixed with the router actions

Debugging Your Application Chapter 9

[441]

But, now the time machine functionality is enabled for routing as well; for example, if you
move the slider back to the beginning, you'll see the home page again, and you can go back
and forth, and the view will appropriately reflect everything you had earlier seen; check the
next screenshot:

 Having connected the router to the state, now we can use the slider to go back and see the correct pages every time

We now have a good set of debugging tools; let's move on to do automatic testing, as we
earlier did with Node.

10
Testing Your Application

In this chapter, we will cover the following recipes:

Testing components with Jest and Enzyme
Testing reducers and mappings
Testing actions and thunks
Testing changes with snapshots
Measuring test coverage

Introduction
In the previous chapter, we dealt with debugging. Now let's add some unit testing recipes
to round out all we'll need for development. As we've seen before, having good unit testing
helps not only with development, but also as a preventive tool to avoid regression bugs.

Testing components with Jest and Enzyme
Back in Chapter 5, Testing and Debugging Your Server, we did unit testing for our Node
code, and we used Jest for it. As we said there, an advantage of this package is that we can
also use it with React (or React Native, which we'll be looking at in Chapter 11, Creating
Mobile Apps with React Native), so everything we learned about earlier in this book still
holds; give it a quick look over if you will, so we won't have to repeat ourselves here.

What shall we test? Obviously, we'll have to write unit tests for our components, but since
we've been using Redux, we'll also require tests for reducers, actions, and thunks; we'll
cover all of these topics in this section and the following ones. Some of these tests will be
quite simple to write, and for others, some more work will be needed. Let's get started,
then!

Testing Your Application Chapter 10

[443]

Getting ready
For Node, we had to install Jest on our own, but create-react-app already does that for
us, so it's one less thing to worry about. (If you created the React application on your own,
by writing your own configuration files then you should take a look at https:/ ​/​jestjs. ​io/
docs/​en/​getting- ​started to see how to proceed.) We will, however, also use Enzyme, a
package that will simplify making assertions about, or manipulating, the HTML that your
components produce in a way that is quite similar to jQuery.

If you want to learn more about these functions, or if you haven't used
jQuery for a while (my own case!), read about cheerio, the package
that's used by Enzyme, at https:/ ​/​github. ​com/ ​cheeriojs/ ​cheerio. For
Enzyme itself, including its configuration, you can visit its GitHub site
at https:/ ​/ ​github. ​com/ ​airbnb/ ​enzyme.

Since we are using version 16 of React, the current way to install the package is as follows;
the enzyme-adapter-react-16 additional package is needed to link Enzyme with React:

npm install enzyme enzyme-adapter-react-16 --save-dev

Another nice thing is that we won't need to do any particular configuration, because
create-react-app also takes care of setting everything up. However, should you decide
that you need something special, react-app-rewired will help: check out https:/ ​/
github.​com/​timarney/ ​react- ​app- ​rewired for more on that.

We have everything we need; let's get testing!

How to do it...
What components should we test? We have worked with connected and unconnected
components already, but we'll focus on the latter here. Why? Connected components get
their props and dispatch logic from the mapStateToProps() and
mapDispatchToProps() functions; we can trust this is so, and therefore we don't actually
have to test it. If you want, you could set up a store and verify that those two functions do
their job—but those test are trivial to write, and I wouldn't suggest that you actually need
them. Instead, we'll focus on the unconnected version of the components and fully test
them. We'll set up all of the tests here, and then we'll look at how to run them, and what
output to expect.

https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://github.com/cheeriojs/cheerio
https://github.com/cheeriojs/cheerio
https://github.com/cheeriojs/cheerio
https://github.com/cheeriojs/cheerio
https://github.com/cheeriojs/cheerio
https://github.com/cheeriojs/cheerio
https://github.com/cheeriojs/cheerio
https://github.com/cheeriojs/cheerio
https://github.com/cheeriojs/cheerio
https://github.com/cheeriojs/cheerio
https://github.com/cheeriojs/cheerio
https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme
https://github.com/timarney/react-app-rewired
https://github.com/timarney/react-app-rewired
https://github.com/timarney/react-app-rewired
https://github.com/timarney/react-app-rewired
https://github.com/timarney/react-app-rewired
https://github.com/timarney/react-app-rewired
https://github.com/timarney/react-app-rewired
https://github.com/timarney/react-app-rewired
https://github.com/timarney/react-app-rewired
https://github.com/timarney/react-app-rewired
https://github.com/timarney/react-app-rewired
https://github.com/timarney/react-app-rewired
https://github.com/timarney/react-app-rewired
https://github.com/timarney/react-app-rewired

Testing Your Application Chapter 10

[444]

Testing a component without events
We want to test a component, so let's pick up a suitable one. For our first unit testing, let's
work with the <RegionsTable> component, which didn't process any events; it was just a
display component. Tests are usually named the same way as the component, but changing
the extension from .js to .test.js—or to .spec.js, but I like .test.js better. Pick
whatever you want, and just be consistent about it.

First, let's start by considering what should we test. The specification for our component
says that it works differently depending on whether it receives an empty or non-empty list
of countries. In the first case, we can test that the produced HTML text includes No regions,
and in the second case, we should verify that all of the provided regions do appear in the
output. Of course, you can think up more detailed, specific cases, but try not to make your
tests too brittle, meaning that the slightest change in implementation will make your tests
fail. The tests that I described may not cover all cases, but it's pretty certain that even if you
were to implement the component in a different way, the tests should still be successful.

Starting out with the actual tests, all of them will start in a similar way: with us needing to
import to necessary libraries, plus the component to test, and setting up Enzyme and its
adapter. In the following code, I'll highlight the related lines:

// Source file: src/regionsApp/regionsTable.test.js

/* @flow */

import React from "react";
import Enzyme from "enzyme";
import Adapter from "enzyme-adapter-react-16";

import { RegionsTable } from "./regionsTable.component";

Enzyme.configure({ adapter: new Adapter() });

// continued...

Testing Your Application Chapter 10

[445]

Like we did earlier, we'll start using describe() and it() to set up different test cases. To
check the empty regions list case, we can just use a few lines of code:

// ...continues

describe("RegionsTable", () => {
 it("renders correctly an empty list", () => {
 const wrapper = Enzyme.render(<RegionsTable list={[]} />);
 expect(wrapper.text()).toContain("No regions.");
 });

// continued...

We use Enzyme.render() to generate the DOM for our component, and the .text()
method to generate a text version of it. With the latter, we just need to verify that the
desired text appears so that the whole test is really short.

We also had a second use case, in which we provided a non-empty list of regions. The code
is similar, but obviously longer; let's check out the code first, and we'll explain it after:

// ...continues

 it("renders correctly a list", () => {
 const wrapper = Enzyme.render(
 <RegionsTable
 list={[
 {
 countryCode: "UY",
 regionCode: "10",
 regionName: "Montevideo"
 },
 {
 countryCode: "UY",
 regionCode: "9",
 regionName: "Maldonado"
 },
 {
 countryCode: "UY",
 regionCode: "5",
 regionName: "Cerro Largo"
 }
]}
 />
);
 expect(wrapper.text()).toContain("Montevideo");
 expect(wrapper.text()).toContain("Maldonado");
 expect(wrapper.text()).toContain("Cerro Largo");

Testing Your Application Chapter 10

[446]

 });
});

The logic is pretty similar: render the components, produce text, check that the right
content is there. As we said, you could also verify if each region is within a element,
and if they have keys, and so on; keep in mind, however, what we wrote about brittle tests,
and avoid over-specifying the tests, so that only one possible, specific, given
implementation of the component could pass them!

Testing a component with events
Now we want to test a component with events. For this, the <CountrySelect> component
will come in handy, because it can process some events, and it will call some callbacks
accordingly.

First of all, let's see the initial setup, including a list of countries that we'll be using for
different tests:

// Source file: src/regionsApp/countrySelect.test.js

/* @flow */

import React from "react";
import Enzyme from "enzyme";
import Adapter from "enzyme-adapter-react-16";

import { CountrySelect } from "./countrySelect.component";

Enzyme.configure({ adapter: new Adapter() });

const threeCountries = [
 {
 countryCode: "UY",
 countryName: "Uruguay"
 },
 {
 countryCode: "AR",
 countryName: "Argentina"
 },
 {
 countryCode: "BR",
 countryName: "Brazil"
 }
];

// continued...

Testing Your Application Chapter 10

[447]

Now, what cases will we write unit tests for? Let's start with the case in which no list of
countries is given: according to what we wanted, in that case, the component would have to
use a prop, such as getCountries(), to get the necessary data. We'll use spies again (we
saw them in the Using spies section of Chapter 5, Testing and Debugging Your Server) to
simulate and test the necessary behavior:

// ...continues

describe("CountrySelect", () => {
 it("renders correctly when loading, with no countries", () => {
 const mockGetCountries = jest.fn();
 const mockOnSelect = jest.fn();

 const wrapper = Enzyme.mount(
 <CountrySelect
 loading={true}
 onSelect={mockOnSelect}
 getCountries={mockGetCountries}
 list={[]}
 />
);
 expect(wrapper.text()).toContain("Loading countries");

 expect(mockGetCountries).toHaveBeenCalledTimes(1);
 expect(mockOnSelect).not.toHaveBeenCalled();
 });

// continued...

We are creating two spies: one for the onSelect event handler, and one to get the list of
countries. Testing that the output of the component includes the "Loading countries"
text is simple; let's focus on the spies instead. We expect that the component should have
called the function to get the list of countries (but only once!) and that the event handler
should not have been called: the last two checks take care of this.

Testing Your Application Chapter 10

[448]

Now, what should happen if a list had been provided? We can write a similar test, and just
verify, for a difference, that the component didn't call the function to get the (already given)
countries; I have highlighted the related code:

// ...continues

 it("renders correctly a countries dropdown", () => {
 const mockGetCountries = jest.fn();
 const mockOnSelect = jest.fn();

 const wrapper = Enzyme.mount(
 <CountrySelect
 loading={false}
 onSelect={mockOnSelect}
 getCountries={mockGetCountries}
 list={threeCountries}
 />
);

 expect(wrapper.text()).toContain("Uruguay");
 expect(wrapper.text()).toContain("Argentina");
 expect(wrapper.text()).toContain("Brazil");

 expect(mockGetCountries).not.toHaveBeenCalled();
 expect(mockOnSelect).not.toHaveBeenCalled();
 });

// continued...

Given the tests we have already written, this part of the code should have been easy to
understand: we have already seen similar tests before, so we don't have anything new to
explain here.

Let's get to the final, more interesting, situation: how do we simulate that the user selected
something? For this, we'll have to detect the <select> element within our
<CountrySelect> component, and for that I decided to provide a name attribute: I
changed a single line in the component's original render() method and changed it
from <select onChange={this.onSelect}> to <select
onChange={this.onSelect} name="selectCountry">, so that I have a way to get at
the element. Of course, you could object to changing the original component code in any
way, and you could also very correctly add that this makes the test somewhat brittler than
before; should the component be re-coded in a different way, without using a <select>
element, the test would automatically fail, and you'd be right. This is a judgment call as to
how far to go in the tests, and what extra baggage is needed.

Testing Your Application Chapter 10

[449]

To finish our suite of tests, we want to verify that the correct event handler is called:

// ...continues

 it("correctly calls onSelect", () => {
 const mockGetCountries = jest.fn();
 const mockOnSelect = jest.fn();

 const wrapper = Enzyme.mount(
 <CountrySelect
 loading={false}
 onSelect={mockOnSelect}
 getCountries={mockGetCountries}
 list={threeCountries}
 />
);

 wrapper
 .find("[name='selectCountry']")
 .at(0)
 .simulate("change", { target: { value: "UY" } });

 expect(mockGetCountries).not.toHaveBeenCalled();
 expect(mockOnSelect).toHaveBeenCalledTimes(1);
 expect(mockOnSelect).toHaveBeenCalledWith("UY");
 });
});

We have to use some DOM traversal to find the desired element, and then use
.simulate() to fire an event. Since no actual event is really fired, we'll have to provide the
values it would include, which in our case is .target.value. Then we can finish our test
by verifying that the event handler was called once with the right value ("UY").

We have written our component tests; let's see how they work.

How it works...
Running the tests is simple: you just need to use npm test, in the same way that we did for
Node, as follows:

Testing Your Application Chapter 10

[450]

 The Jest output is in the same style as we saw for Node; the Snapshots total will be explained later

Jest is set up to automatically watch for changes, so if you modify any file, testing will
proceed again – the q command will stop the watch mode, and you'll have to use a to run
all tests, or p and t to filter some tests to run.

We have now seen how to test components. However, some extra work is needed, because
in our examples, we haven't dealt with any Redux-related matters, such as dispatching
actions or thunks; let's move on to other kinds of tests.

Testing reducers and mappings
After testing the components, we are now moving on to a simpler set of tests: first,
reducers; and then mappings such as mapStateToProps() and mapDispatchToProps().
Why are these tests easier to write? Because in all of these cases, we are dealing with pure
functions, without side effects, that produce their output based only on their inputs. We
already dealt with these sort of functions earlier in this book when we did testing for Node,
so now we'll make do with a short section. The only particular care we'll have is to verify
that no function (for example, a reducer) attempts to modify the state, but other than that,
it's simple to test all the way. In this recipe, let's look at the different kind of tests we'll need
for reducers and mappings.

Testing Your Application Chapter 10

[451]

How to do it...
We'll have to test the reducers and mappings, so let's start by thinking about how you
would test a reducer. There are two key things to verify: first, that given an input state, it
produces a correct output state, and second, that the reducer doesn't modify the original
state. The first condition is pretty obvious, but the second can easily be missed – and a
reducer that modifies the current state can produce hard-to-find bugs.

Let's look at how we could test our countries and regions application's reducer. First, since
all tests are analog, we'll just see a couple of them, for two of all the possible actions – but of
course, you want to test all of the actions, right? We'll also include another test to verify that
for unknown actions, the reducer just returns the initial state, unchanged in every way:

// Source file: src/regionsApp/world.reducer.test.js

/* @flow */

import { reducer } from "./world.reducer.js";
import { countriesRequest, regionsSuccess } from "./world.actions.js";

describe("The countries and regions reducer", () => {
 it("should process countryRequest actions", () => {
 const initialState = {
 loadingCountries: false,
 currentCountry: "whatever",
 countries: [{}, {}, {}],
 loadingRegions: false,
 regions: [{}, {}]
 };

 const initialJSON = JSON.stringify(initialState);

 expect(reducer(initialState, countriesRequest())).toEqual({
 loadingCountries: true,
 currentCountry: "whatever",
 countries: [],
 loadingRegions: false,
 regions: [{}, {}]
 });

 expect(JSON.stringify(initialState)).toBe(initialJSON);
 });

 it("should process regionsSuccess actions", () => {
 const initialState = {
 loadingCountries: false,

Testing Your Application Chapter 10

[452]

 currentCountry: "whatever",
 countries: [{}, {}, {}],
 loadingRegions: true,
 regions: []
 };

 const initialJSON = JSON.stringify(initialState);

 expect(
 reducer(
 initialState,
 regionsSuccess([
 { something: 1 },
 { something: 2 },
 { something: 3 }
])
)
).toEqual({
 loadingCountries: false,
 currentCountry: "whatever",
 countries: [{}, {}, {}],
 loadingRegions: false,
 regions: [{ something: 1 }, { something: 2 }, { something: 3 }]
 });

 expect(JSON.stringify(initialState)).toBe(initialJSON);
 });

 it("should return the initial state for unknown actions", () => {
 const initialState = {
 loadingCountries: false,
 currentCountry: "whatever",
 countries: [{}, {}, {}],
 loadingRegions: true,
 regions: []
 };
 const initialJSON = JSON.stringify(initialState);

 expect(
 JSON.stringify(reducer(initialState, { actionType: "other" }))
).toBe(initialJSON);
 expect(JSON.stringify(initialState)).toBe(initialJSON);
 });
});

Testing Your Application Chapter 10

[453]

Are you wondering about Enzyme, and why we skipped it? We only need
it when we are rendering components, so for testing reducers or actions
(as we'll be doing soon), it's not required at all.

Each test for the reducer will be the same, and follow these steps:

Define an initialState and use JSON.stringify() to save its original string1.
representation.
Invoke the reducer and use .toEqual() (a Jest method that does deep,2.
recursive, equality comparison between objects) to verify that the new state fully
matches what you expect it to be.
Check that the initialState JSON representation still matches the original3.
value.

I used dummy values for countries and regions, but if you want to be even more careful,
you could specify complete, correct values instead of things like { something:2 } or
"whatever"; it's up to you.

You may want to take a look at redux-testkit at https:/ ​/​github. ​com/
wix/​redux- ​testkit; this package can help you write reducer tests,
automatically checking whether the state has been modified.

After writing these tests, it should be fairly obvious that writing a test for a mapping
function is the same thing. For example, when we set up the <ConnectedRegionsTable>
component, we wrote a getProps() function:

const getProps = state => ({
 list: state.regions,
 loading: state.loadingRegions
});

https://github.com/wix/redux-testkit
https://github.com/wix/redux-testkit
https://github.com/wix/redux-testkit
https://github.com/wix/redux-testkit
https://github.com/wix/redux-testkit
https://github.com/wix/redux-testkit
https://github.com/wix/redux-testkit
https://github.com/wix/redux-testkit
https://github.com/wix/redux-testkit
https://github.com/wix/redux-testkit
https://github.com/wix/redux-testkit
https://github.com/wix/redux-testkit

Testing Your Application Chapter 10

[454]

We would have to export the function (we didn't at the time, because it wasn't going to be
used elsewhere) and then a test could be performed, as follows:

// Source file: src/regionsApp/regionsTable.connected.test.js

/* @flow */

import { getProps } from "./regionsTable.connected.js";

describe("getProps for RegionsTable", () => {
 it("should extract regions and loading", () => {
 const initialState = {
 loadingCountries: false,
 currentCountry: "whatever",
 countries: [{ other: 1 }, { other: 2 }, { other: 3 }],
 loadingRegions: false,
 regions: [{ something: 1 }, { something: 2 }]
 };
 const initialJSON = JSON.stringify(initialState);

 expect(getProps(initialState)).toEqual({
 list: [{ something: 1 }, { something: 2 }],
 loading: false
 });
 expect(JSON.stringify(initialState)).toBe(initialJSON);
 });
});

How does this work? Let's see what happens when we run these tests.

How it works...
Using npm test will produce a nice all green output, meaning that all of the tests have
passed, as in the previous section; no need to see that again. In each individual test, we
apply the technique that was described earlier: set up state, save a string version of it, apply
the reducer or the mapper function, check it matches what you wanted it to produce, and
check that the original state still matches the saved version.

Testing Your Application Chapter 10

[455]

Imagine that somebody accidentally modified the getProps() function that we tested so
that instead of returning the regions, it returned the countries list, like so:

 Any unexpected change in a mapping (or reducer) function would be detected by our usage of the .toEqual() method,
which does a deep comparison of the produced and expected values

So, these simple tests can help you be safe against accidental changes – including the
addition, removal, or modification of the expected values. This is a good safety net!

Testing Your Application Chapter 10

[456]

Testing actions and thunks
To finish our testing goals, we have to look at how we can test actions and thunks. Testing
the former is really trivial after everything we've done so far, because it's just a matter of
calling an action creator and checking the fields on the produced action, but testing thunks,
which will surely involve an asynchronous service call and will surely dispatch several –
OK, that's interesting!

We'll skip the simpler action tests (though we'll get to test them, anyway, as you'll see) and
we'll dive in directly to writing unit tests for our thunks.

Getting ready
A good tool that we'll need here is redux-mock-store, a small package that lets us work
with a fake store, aping all its functionality, and providing with some calls, such as
.getActions(), to inspect which actions were dispatched, in what order, with which data,
and so on. The installation is simple, as usual:

npm install redux-mock-store --save-dev

You may be wondering how we'll manage to mock the API service calls. Depending on
your architecture, if you have thunks directly using things like axios() or fetch() to
contact a service, then you will certainly need a corresponding mock package. However,
since we spirited away those API calls in separate packages, we can do very well by
mocking the whole call so that no AJAX calls will ever be done; we'll get to this soon.

Check out the full documentation for redux-mock-store at its GitHub
site, over at https:/ ​/ ​github. ​com/ ​dmitry- ​zaets/ ​redux- ​mock- ​store.

https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store
https://github.com/dmitry-zaets/redux-mock-store

Testing Your Application Chapter 10

[457]

How to do it...
We want to test actions. Let's take a look at how we can execute those tests.

Since we've been working with our countries-and-regions example a lot, let's finish by
testing (at least some of) its actions and thunks: getCountries() is a good example, and
quite similar to getRegions(). It will be good to remember that particular code here, so
let's take a look:

export const getCountries = () => async dispatch => {
 try {
 dispatch(countriesRequest());
 const result = await getCountriesAPI();
 dispatch(countriesSuccess(result.data));
 } catch (e) {
 dispatch(countriesFailure());
 }
};

To begin with, it dispatches an action to mark that a request is being done. Then it waits for
the result of a web service call; this will require mocking! Finally, if the call was successful,
an action is dispatched, including the received list of countries. On a failed call, a different
action is dispatched, but showing the failure.

Now let's consider the following—how can we deal with the API call? The
world.actions.js source code directly imports getCountriesAPI() from a module,
but Jest has a feature just for that: we can mock a full module, providing mocks or spies
for whichever functions we desire, as follows:

// Source file: src/regionsApp/world.actions.test.js

/* @flow */

import configureMockStore from "redux-mock-store";
import thunk from "redux-thunk";

import {
 getCountries,
 COUNTRIES_REQUEST,
 COUNTRIES_SUCCESS,
 COUNTRIES_FAILURE
} from "./world.actions.js";

import { getCountriesAPI } from "./serviceApi";

let mockPromise;

Testing Your Application Chapter 10

[458]

jest.mock("./serviceApi", () => {
 return {
 getCountriesAPI: jest.fn().mockImplementation(() => mockPromise)
 };

// continues...

Whenever the getCountries() function calls getCountriesAPI(), our mocked module
will be used and a promise (mockPromise) will be returned; it's up to us to appropriately
decide what should that promise be, and we'll make that choice depending on whether we
want a test to fail or succeed.

Now that we have a way to intercept API calls and have them produce any result we want,
we can move on to writing the actual tests.

Let's deal with the happy path first, in which the API call for countries is successful, with no
problems. A test can be written in the following way:

// ...continued

describe("getCountries", () => {
 it("on API success", async () => {
 const fakeCountries = {
 data: [{ code: "UY" }, { code: "AR" }, { code: "BR" }]
 };
 mockPromise = Promise.resolve(fakeCountries);

 const store = configureMockStore([thunk])({});

 await store.dispatch(getCountries());

 const dispatchedActions = store.getActions();

 expect(getCountriesAPI).toHaveBeenCalledWith();
 expect(dispatchedActions.length).toBe(2);
 expect(dispatchedActions[0].type).toBe(COUNTRIES_REQUEST);
 expect(dispatchedActions[1].type).toBe(COUNTRIES_SUCCESS);
 expect(dispatchedActions[1].listOfCountries).toEqual(
 fakeCountries.data
);
 });

// continues...

Testing Your Application Chapter 10

[459]

How is this code structured?

We initially define some data (fakeCountries) that will be returned by our1.
mockPromise.
Then we create a mock store, according to the redux-mock-store2.
documentation; we are only using the thunk middleware in our case, but you
may add more. In fact, in our original code, we followed thunk with logger, but
that's not relevant for our testing.
After that, we store.dispatch() the getCountries() thunk and await its3.
results.
Once everything is done, we use store.getActions() to get the list of actions4.
that were actually dispatched.
We test that our getCountriesAPI() function was called; if it hasn't been, we'll5.
be in deep trouble!
Finally, we test all of the dispatched actions, checking their type and other6.
attributes. This is, in fact, an indirect test on the action creators themselves!

Now that we've looked at a successful case, let's simulate that the API call somehow failed.
To simulate this, all we have to do is define a different promise for the
getCountriesAPI() call to return:

// ...continued

 it("on API failure", async () => {
 mockPromise = Promise.reject(new Error("failure!"));

 const store = configureMockStore([thunk])({});

 await store.dispatch(getCountries());

 const dispatchedActions = store.getActions();

 expect(getCountriesAPI).toHaveBeenCalledWith();
 expect(dispatchedActions.length).toBe(2);
 expect(dispatchedActions[0].type).toBe(COUNTRIES_REQUEST);
 expect(dispatchedActions[1].type).toBe(COUNTRIES_FAILURE);
 });
});

// continues...

Testing Your Application Chapter 10

[460]

What's different in this case? Our mockPromise is now set to fail, so the tests for the second
dispatched actions vary: in this case, instead of success and a list of countries, we just get a
failure—but the rest of the test is essentially the same.

Let's finish with an extra case. When we coded our thunks, we saw that we could access the
current state by means of a getState() function and act differently depending on its
contents. We could have coded our getCountries() function to avoid doing an API call if
the list of countries had already been obtained, for a small optimization; the key part would
have been as follows:

// ...continued

export const getCountries = () => async (dispatch, getState) => {
 if (getState().countries.length) {
 // no need to do anything!
 } else {
 try {
 dispatch(countriesRequest());
 const result = await getCountriesAPI();
 dispatch(countriesSuccess(result.data));
 } catch (e) {
 dispatch(countriesFailure());
 }
 }
};

// continues...

How could we test this case? The difference would be in how we set up the store, and what
actions actually get dispatched:

// ...continued

describe("optimized getCountries", () => {
 it("doesn't do unneeded calls", async () => {
 const store = configureMockStore([thunk])({
 countries: [{ land: 1 }, { land: 2 }]
 });

 jest.resetAllMocks();

 await store.dispatch(getCountries());

 expect(getCountriesAPI).not.toHaveBeenCalled();
 expect(store.getActions().length).toBe(0);
 });
});

Testing Your Application Chapter 10

[461]

When we set up the store, we can provide it with initial values, as in this case, in which we
make believe that some countries (fake data!) are already loaded. A special requirement: we
must use jest.resetAllMocks(), because otherwise we won't be able to check that
getCountriesAPI() wasn't called – because it was called, but by the previous tests. Then,
after dispatching the thunk, we just check that the API wasn't called and that zero actions
were dispatched: everything's OK!

How it works...
There isn't much to running these tests, and npm test is all we need. We can see the results
for both our tests (the original and the optimized getCountries() functions), and the
passing result shows that everything is as expected. The output, when you run a single test,
is more detailed, showing each individual test:

The tests for actions and thunks require a bit more setup, but run in the same way. We're getting a more detailed output because we're running a single test this time.

Testing Your Application Chapter 10

[462]

Testing changes with Snapshots
So far, we've been looking at automatic tests for components, events, and actions, so let's
end this chapter by considering a testing tool that isn't really a part of TDD, but rather a
safeguard against unwanted or unexpected changes after the fact: snapshots. (In TDD, tests
would be written before coding the component, but you'll see that this is impossible here.)
Snapshot tests work like this: you render a UI component, capture what HTML was
produced, and then that is compared to a reference capture that was previously stored. If
both captures do not match, either somebody made an unexpected change or the change
was actually expected. If this is the case, you'll have to verify that the new capture is correct
and then drop the old one.

How to do it...
We can use snapshot testing for all of our components, but it's more interesting for those
whose output varies in terms of their props, so different behaviors are to be expected. We
will be using a different way of rendering: instead of producing HTML elements, we'll use
renderers that produce text output that can be stored and compared in a easy way.

First, the simplest cases are for components with a standard, fixed kind of output. We have
some examples of that: for our <ClicksDisplay> component, the test would be written as
follows:

// Source file: src/counterApp/clicksDisplay.test.js

import React from "react";
import TestRenderer from "react-test-renderer";

import { ClicksDisplay } from "./";

describe("clicksDisplay", () => {
 it("renders correctly", () => {
 const tree = TestRenderer
 .create(<ClicksDisplay clicks={22} />)
 .toJSON();
 expect(tree).toMatchSnapshot();
 });
});

Testing Your Application Chapter 10

[463]

Basically, we import the special TestRenderer renderer function, use it to produce output
for our component, and then compare that with the stored snapshot; we'll see how this
looks soon. Tests are pretty much always the same: for our <Counter> component, the test
code would be totally analog:

// Source file: src/counterApp/counter.test.js

import React from "react";
import TestRenderer from "react-test-renderer";

import { Counter } from "./counter.component";

describe("clicksDisplay", () => {
 it("renders correctly", () => {
 const tree = TestRenderer
 .create(<Counter count={9} dispatch={() => null} />)
 .toJSON();
 expect(tree).toMatchSnapshot();
 });
});

The differences are minimal; it's just a matter of providing the correct expected props, and
nothing more. Let's move on to more interesting cases.

Should you have to render an object with prop values that cannot be
predetermined (not the most likely case), you'll have to use special
Property Matchers; you can read more about them at https:/ ​/​jestjs. ​io/
docs/ ​en/ ​snapshot- ​testing#property- ​matchers.

When you have components whose output varies depending on their props, snapshot tests
become more interesting because they let you verify that different results are produced as
expected. With our countries and regions code, we had these kind of cases: for example, the
<RegionsTable> component was expected to display a list of regions (if any were
provided) or a "No regions" text (if none were available). We should write these tests,
then. Let's proceed:

// Source file: src/regionsApp/regionsTable.snapshot.test.js

import React from "react";
import TestRenderer from "react-test-renderer";

import { RegionsTable } from "./regionsTable.component";

describe("RegionsTable", () => {
 it("renders correctly an empty list", () => {
 const tree = TestRenderer.create(<RegionsTable list={[]}

https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers
https://jestjs.io/docs/en/snapshot-testing#property-matchers

Testing Your Application Chapter 10

[464]

/>).toJSON();
 expect(tree).toMatchSnapshot();
 });

 it("renders correctly a list", () => {
 const tree = TestRenderer
 .create(
 <RegionsTable
 list={[
 {
 countryCode: "UY",
 regionCode: "10",
 regionName: "Montevideo"
 },
 .
 .
 .
]}
 />
)
 .toJSON();
 expect(tree).toMatchSnapshot();
 });
});

We have two distinct cases, just like we described previously: one snapshot will match the
no regions case, and the other will match what's expected if some regions were given. For
the <CountrySelect> component, the code would be similar:

// Source file: src/regionsApp/countrySelect.snapshot.test.js

import React from "react";
import TestRenderer from "react-test-renderer";

import { CountrySelect } from "./countrySelect.component";

describe("CountrySelect", () => {
 it("renders correctly when loading, with no countries", () => {
 const tree = TestRenderer
 .create(
 <CountrySelect
 loading={true}
 onSelect={() => null}
 getCountries={() => null}
 list={[]}
 />
)
 .toJSON();

Testing Your Application Chapter 10

[465]

 expect(tree).toMatchSnapshot();
 });

 it("renders correctly a countries dropdown", () => {
 const tree = TestRenderer
 .create(
 <CountrySelect
 loading={false}
 onSelect={() => null}
 getCountries={() => null}
 list={[
 {
 countryCode: "UY",
 countryName: "Uruguay"
 },
 .
 .
 .
]}
 />
)
 .toJSON();
 expect(tree).toMatchSnapshot();
 });
});

So, testing components with more than one possible output isn't hard at all, and only
requires you to write more than one snapshot test; a simple solution.

Finally, in order to simplify tests, when you have components that themselves have more
components, using shallow rendering helps concentrate on the main, high level aspects,
and leave the details of the inner components' rendering to other tests. We could whip up
something like this, with an invented <CountryAndRegions> component that shows both
our countries' drop-down and regions table:

// Source file: src/regionsApp/countryAndRegions.test.js

import React from "react";
import ShallowRenderer from "react-test-renderer/shallow";

import { CountrySelect } from "./countrySelect.component";
import { RegionsTable } from "./regionsTable.component";

class CountryAndRegions extends React.Component {
 render() {
 return (
 <div>

Testing Your Application Chapter 10

[466]

 <div>
 Select:
 <CountrySelect
 loading={true}
 onSelect={() => null}
 getCountries={() => null}
 list={[]}
 />
 </div>
 <div>
 Display: <RegionsTable list={[]} />
 </div>
 </div>
);
 }
}

describe("App for Regions and Countries", () => {
 it("renders correctly", () => {
 const tree = new ShallowRenderer().render(<CountryAndRegions />);
 expect(tree).toMatchSnapshot();
 });
});

Note that the way to use the ShallowRenderer differs from the other renderer: you must
create a new object, call its .render() method, and not use .toJSON() anymore. We'll
look at how this new test differs from the previous ones soon.

How it works...
Running snapshots is no different from running other tests: you run the Jest test script,
and all the tests run together.

Running the tests
If you run npm test, like we did earlier, you'll now get an output similar to the following
listing:

 PASS src/regionsApp/countryAndRegions.test.js
 PASS src/counterApp/counter.test.js
 PASS src/regionsApp/countrySelect.test.js
 PASS src/regionsApp/regionsTable.test.js
 PASS src/counterApp/clicksDisplay.test.js

Testing Your Application Chapter 10

[467]

Test Suites: 5 passed, 5 total
Tests: 7 passed, 7 total
Snapshots: 7 passed, 7 total
Time: 0.743s, estimated 1s
Ran all test suites related to changed files.

Watch Usage
 › Press a to run all tests.
 › Press p to filter by a filename regex pattern.
 › Press t to filter by a test name regex pattern.
 › Press q to quit watch mode.
 › Press Enter to trigger a test run.

The only visible difference is that you get a specific count of snapshots (seven, in this case),
but there's something more.

The produced snapshot files
If you check the source code directories, you'll find some new __snapshots__ directories,
with some .snap files in it. For example, in the /regionsApp directory, you'd find this:

> dir
-rw-r--r-- 1 fkereki users 956 Aug 10 20:48 countryAndRegions.test.js
-rw-r--r-- 1 fkereki users 1578 Jul 28 13:02 countrySelect.component.js
-rw-r--r-- 1 fkereki users 498 Jul 25 23:16 countrySelect.connected.js
-rw-r--r-- 1 fkereki users 1301 Aug 10 20:31 countrySelect.test.js
-rw-r--r-- 1 fkereki users 212 Jul 22 21:07 index.js
-rw-r--r-- 1 fkereki users 985 Aug 9 23:45 regionsTable.component.js
-rw-r--r-- 1 fkereki users 274 Jul 22 21:17 regionsTable.connected.js
-rw-r--r-- 1 fkereki users 1142 Aug 10 20:32 regionsTable.test.js
-rw-r--r-- 1 fkereki users 228 Jul 25 23:16 serviceApi.js
drwxr-xr-x 1 fkereki users 162 Aug 10 20:44 __snapshots__
-rw-r--r-- 1 fkereki users 614 Aug 3 22:22 store.js
-rw-r--r-- 1 fkereki users 2679 Aug 3 21:33 world.actions.js

For each .test.js file that includes snapshots, you'll find a corresponding .snap file:

> dir __snapshots__/
-rw-r--r-- 1 fkereki users 361 Aug 10 20:44 countryAndRegions.test.js.snap
-rw-r--r-- 1 fkereki users 625 Aug 10 20:32 countrySelect.test.js.snap
-rw-r--r-- 1 fkereki users 352 Aug 10 20:01 regionsTable.test.js.snap

Testing Your Application Chapter 10

[468]

The contents of those files show the snapshots that were taken at runtime. For example, the
countrySelect.test.js.snap file includes the following code:

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`CountrySelect renders correctly a countries dropdown 1`] = `
<div
 className="bordered"
>
 Country:
 <select
 onChange={[Function]}
 >
 <option
 value=""
 >
 Select a country:
 </option>
 <option
 value="AR"
 >
 Argentina
 </option>
 <option
 value="BR"
 >
 Brazil
 </option>
 <option
 value="UY"
 >
 Uruguay
 </option>
 </select>
</div>
`;

exports[`CountrySelect renders correctly when loading, with no countries
1`] = `
<div
 className="bordered"
>
 Loading countries...
</div>
`;

Testing Your Application Chapter 10

[469]

You can see the output for both our cases: one with a full list of countries, and another for
when the countries were being loaded, waiting for the service response to arrive.

We can also see a shallow test in the countryAndRegions.test.js.snap file:

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`App for Regions and Countries renders correctly 1`] = `
<div>
 <div>
 Select:
 <CountrySelect
 getCountries={[Function]}
 list={Array []}
 loading={true}
 onSelect={[Function]}
 />
 </div>
 <div>
 Display:
 <RegionsTable
 list={Array []}
 />
 </div>
</div>
`;

In this case, note that the <CountrySelect> and <RegionsTable> components weren't
expanded; this means that you are testing only the high level snapshot here, as desired.

Regenerating snapshots
What happens if a component has changed? Just for the sake of it, I made a pretty small
change to a component. Upon running the tests, I got a FAIL message, with a comparison,
that was produced by the usual diff command:

 FAIL src/regionsApp/countryAndRegions.test.js
 ● App for Regions and Countries › renders correctly

 expect(value).toMatchSnapshot()
 Received value does not match stored snapshot 1.
 - Snapshot
 + Received
 @@ -7,11 +7,11 @@
 loading={true}
 onSelect={[Function]}

Testing Your Application Chapter 10

[470]

 />
 </div>
 <div>
 - Display:
 + Displays:
 <RegionsTable
 list={Array []}
 />
 </div>
 </div>
 at Object.it (src/regionsApp/countryAndRegions.test.js:31:22)
 at new Promise (<anonymous>)
 at Promise.resolve.then.el (node_modules/p-map/index.js:46:16)

What should you do, then? You should first verify whether the change is correct or not, and
in the former case, you could either delete the .snap file (so that it will get regenerated next
time) or you can press u, as shown in the test summary:

Snapshot Summary
 › 1 snapshot test failed in 1 test suite. Inspect your code changes or
press `u` to update them.

Be careful! If you just regenerate the snapshot without verifying that the output is correct,
the tests will be worthless; a very bad result!

Measuring test coverage
We already saw how to get coverage for Jest tests back in the Measuring your test
coverage section of Chapter 5, Testing and Debugging Your Server, so in this recipe, we'll just
go over some small changes that we'll be making to the test.

Testing Your Application Chapter 10

[471]

How to do it...
We want to measure how thorough our testing is, so let's look at the necessary steps. When
working with Node, we directly invoked the jest command. Here, however, as the
application was built by create-react-app, we'll have to work a bit differently. We'll
have to add a new script to package.json that will invoke our tests with extra parameters:

"scripts": {
 .
 .
 .
 "test": "react-app-rewired test --env=jsdom",
 "coverage": "react-app-rewired test --env=jsdom --coverage --no-cache",
 .
 .
 .
}

The --coverage option will produce a coverage report, and also generate a /coverage
directory, in the same way as with Node, and the --no-cache option will force Jest to
regenerate all results instead of depending on previously, possibly no longer valid, cached
values.

Our .gitignore file includes a line reading /coverage, so the generated
files won't be pushed to the Git server.

How it works...
If you run npm run coverage, you'll get both a text output and a HTML one. The former
looks like what's shown in the following screenshot; you'll have to accept that in reality,
lines are colored green, yellow, or red, depending on the achieved degree of coverage.

Testing Your Application Chapter 10

[472]

In our case, we got quite a lot of red since we only wrote a few tests, instead of going for a
full test suite; you may work on completing it on your own, as an exercise for the reader!

 The colored ASCII output shows the coverage evaluations for all of our source code files; green means good coverage, yellow a medium one,
and red means a poor result. Since we only wrote a few tests, we are getting plenty of red!

Testing Your Application Chapter 10

[473]

If you open the /coverage/lcov-report/index.html file in a browser, you'll get the
same sort of result as in the Node chapter, as follows:

The HTML output lets you browse the directories and files of your project. If you click on a specific file, you can even see which lines and functions were executed, and which
were skipped by your tests.

If you want, you can even use the coverageThreshold configuration
object to specify coverage levels that must be reached, in order for the
tests to be considered sufficient; see https:/ ​/ ​jestjs. ​io/ ​docs/ ​en/
configuration. ​html#coveragethreshold- ​object for more on this.

We have now finished working with React and Redux, we've looked at how to build web
applications, and we've used our previously developed Node server backend. Let's move on
to other types of development, starting with mobile applications, also with JS!

https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object
https://jestjs.io/docs/en/configuration.html#coveragethreshold-object

11
Creating Mobile Apps with

React Native
n this chapter, we'll look at the following recipes:

Setting things up
Adding development tools
Using native components
Adapting to devices and orientation
Styling and laying out your components
Adding platform-specific code
Routing and navigation

Introduction
In the last few chapters, we showed you how to use React to build web applications, and
in this chapter, we'll use a close relative, React Native, to develop native apps that you
can run on Android and iOS (Apple) phones.

Creating Mobile Apps with React Native Chapter 11

[475]

Setting things up
For development of mobile apps, there are several possible approaches:

Use native languages, with possibilities such as Java or Kotlin for Android, or
Objective C or Swift for iOS, using the native development tools for each
platform. This can make sure that your app has the best fit for different phones,
but will require multiple teams of developers, each with experience of a specific
platform.
Use a pure website that the user can visit with the phone's browser. This is the
simplest solution, but the application will have limitations, such as not being able
to access most of the phone's features because they cannot be used in HTML.
Also, running with a wireless connection, which may vary in strength, can
sometimes prove hard. You can use any framework for this development, such as
React.
Develop a hybrid application, which is a web page, bundled with a browser that
includes a set of extensions so that you can use the phone's internal features. For
the user, this is a single standalone application, which runs even without a web
connection, and that can use most of the phone's features. These applications
frequently use Apache Cordova, or a derived product, PhoneGap.

There's a fourth style, provided by React Native, which was developed by Facebook,
along the lines of the existing React. Instead of rendering components to a browser's DOM,
React Native (which, from now on, we'll shorten to RN) invokes native APIs to create
internal components that are handled through your JS code. There are some differences
between the usual HTML elements and RN's components, but they are not too hard to
overcome. With this tool, you are actually building a native app that looks and behaves
exactly as any other native application, except that you use a single language, JS, for both
Android and iOS development.

In this recipe, we'll set up a RN application so that we can start trying our hand at
developing apps for mobile phones.

Creating Mobile Apps with React Native Chapter 11

[476]

How to do it...
There are three ways to set up a RN application: completely manually, which you won't
want to do; secondly, with packages, using the react-native-cli command-line
interface; or lastly, by using a package very similar to what we already used for React,
create-react-native-app (from now on, we'll refer to this as CRAN). A key difference
between the two packages is that with the latter, you cannot include custom native
modules, and if you need to do so, you'll have to eject the project, which will also require
setting up several other tools.

You can read more about the two latter methods at https:/ ​/​facebook.
github. ​io/ ​react- ​native/ ​docs/ ​getting- ​started. ​html, and if you want
to be prepared for ejecting, go to https:/ ​/ ​github. ​com/ ​react- ​community/
create- ​react- ​native- ​app/ ​blob/ ​master/ ​EJECTING. ​md.

We start by getting a command-line utility, which will include plenty of other packages:

npm install create-react-native-app -g

Afterwards, we can create and run a simple project with just three commands:

create-react-native-app yourprojectname
cd yourprojectname
npm start

You're set! Let's see how it works—and yes, we still have some more configuration to do,
but it's good to check whether things are going well so far.

https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md

Creating Mobile Apps with React Native Chapter 11

[477]

How it works...
When you run your app, it starts a server at your machine, at port 19000 or 19001, to
which you will connect using the Expo application, which you can find at https:/ ​/ ​expo.
io/​learn, available for both Android or iOS. Install it by following the instructions
onscreen:

The initial screen you get when you fire up your app

https://expo.io/learn
https://expo.io/learn
https://expo.io/learn
https://expo.io/learn
https://expo.io/learn
https://expo.io/learn
https://expo.io/learn
https://expo.io/learn

Creating Mobile Apps with React Native Chapter 11

[478]

When you open the Expo app for the first time, it will look like the following screenshot.
Note that both the phone and your machine must be in the same local network, and your
machine must also allow connections to ports 19000 and 19001; you may have to modify
your firewall for this to work:

On loading the Expo app, you'll have to scan the QR code in order to connect to the server

Creating Mobile Apps with React Native Chapter 11

[479]

After you use the Scan QR Code option, there will be some synchronization, and soon
you'll get to see your basic code running with no problems:

Success—your code is up and running!

Creating Mobile Apps with React Native Chapter 11

[480]

Furthermore, if you modify the App.js source code, the changes will be immediately
reflected in your device, which means all is well! To make sure this happens, shake the
phone to enable the debugging menu, and make sure that Live Reload and Hot
Reloading are enabled. You'll also require Remote JS Debugging for later. Your phone
should look as follows:

These settings enable reloading and debugging

Creating Mobile Apps with React Native Chapter 11

[481]

There's more...
By using the Expo client, CRAN lets you develop for iOS, even if you don't own an Apple
computer. (You cannot develop for Apple systems if you have a Windows or Linux
machine; you must have a MacBook or similar; this is a restriction of Apple's.) Also,
working on an actual device is better in some ways, because you can actually see what the
final user will see—no question about it.

However, there may be a couple of reasons why you would want to work differently,
perhaps with an emulator on your computer that simulates real-life devices. Firstly, it may
be difficult for you to get a dozen or so of the most popular devices in order to test your
application on each of them. Secondly, it's more convenient to work on your own machine
only, where you can easily debug, take screenshots, copy and paste, and so on. So, you
could install Xcode or the Android SDK to enable yourself to work with emulated
machines.

We won't be going into details here, because there are a lot of combinations depending on
your development OS and the target OS; rather, let's point you to the documentation
at https:/​/​facebook. ​github. ​io/ ​react- ​native/ ​docs/ ​getting- ​started. ​html, where you
should click on Building Projects with Native Code, and see what's needed in order to
work with emulators. After having installed them, you will need the Expo client (as for
your actual device) and then you'll be able to run your code on your own machine.

https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html

Creating Mobile Apps with React Native Chapter 11

[482]

For instance, take a look at the Android emulator simulating a Nexus 5 in the following
screenshot:

An emulated Nexus 5 running Android, directly on your screen

Creating Mobile Apps with React Native Chapter 11

[483]

With this emulator, you have exactly the same functionality as with an actual device. For
example, you can also get the debugging menu, though opening it will be different; for
example, on my Linux machine, I needed to press Ctrl + M:

All the functionality that is available on your phone is also available with emulated devices

Creating Mobile Apps with React Native Chapter 11

[484]

Using the Android Virtual Device (AVD) manager, you can create lots of different
emulators for phones and tablets; you get similar functionality with Xcode, though that will
only work on macOS computers.

Adding development tools
Now, let's now get a better configuration going. As in previous chapters, we want to have
ESLint for code checking, Prettier for formatting, and Flow for data types. CRAN takes
care of including Babel and Jest, so we won't have to do anything for those two.

How to do it...
As opposed to what happened with React, where we had to add a special rewiring
package in order to work with specific configurations, in RN, we can just add some
packages and configuration files, and we'll be ready to go.

Adding ESLint
For ESLint, we'll have quite a list of packages we want. We used most of them in React,
but there's a special addition, eslint-plugin-react-native, which adds a few RN-
specific rules:

npm install --save-dev \
 eslint eslint-config-recommended eslint-plugin-babel \
 eslint-plugin-flowtype eslint-plugin-react eslint-plugin-react-native

If you want to learn more about the (actually few) extra rules added by
eslint-plugin-react-native, check out its GitHub page at https:/ ​/
github. ​com/ ​Intellicode/ ​eslint- ​plugin- ​react- ​native. Most of them
have to do with styles, and one is applied for platform-specific code, but
we'll get to this later.

We'll require a separate .eslintrc file, as we did with React. The appropriate contents
includes the following, and I've highlighted the RN-specific additions:

{
 "parser": "babel-eslint",
 "parserOptions": {
 "ecmaVersion": 2017,
 "sourceType": "module",

https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native
https://github.com/Intellicode/eslint-plugin-react-native

Creating Mobile Apps with React Native Chapter 11

[485]

 "ecmaFeatures": {
 "jsx": true
 }
 },
 "env": {
 "node": true,
 "browser": true,
 "es6": true,
 "jest": true,
 "react-native/react-native": true
 },
 "extends": [
 "eslint:recommended",
 "plugin:flowtype/recommended",
 "plugin:react/recommended",
 "plugin:react-native/all"
],
 "plugins": ["babel", "flowtype", "react", "react-native"],
 "rules": {
 "no-console": "off",
 "no-var": "error",
 "prefer-const": "error",
 "flowtype/no-types-missing-file-annotation": 0
 }
}

Adding Flow
Having completed that, ESLint is set to recognize our code, but we have to configure Flow
as well:

npm install --save-dev flow flow-bin flow-coverage-report flow-typed

We'll have to add a couple of lines to the scripts section of package.json:

"scripts": {
 "start": "react-native-scripts start",
 .
 .
 .
 "flow": "flow",
 "addTypes": "flow-typed install"
},

Creating Mobile Apps with React Native Chapter 11

[486]

Then, we have to initialize the working directories of Flow:

npm run flow init

Finally, we can use the same .flowconfig files that we used earlier for React:

[ignore]
.*/node_modules/.*

[include]

[libs]

[lints]
all=warn
untyped-type-import=off
unsafe-getters-setters=off

[options]
include_warnings=true

[strict]

We are now set to use Flow, so we can keep working in the style we were accustomed
to—we just have to add Prettier to format our code, and we'll be on our way!

Adding Prettier
There's not much to re-installing Prettier, and all we need is a npm command, plus the
.prettierrc file we've been working with. For the former, just use the following
command:

npm install --save-dev prettier

For configuration, we can use the contents of this .prettierrc file:

{
 "tabWidth": 4,
 "printWidth": 75
}

Now, we are set! We can check it's working; let's do that.

Creating Mobile Apps with React Native Chapter 11

[487]

How it works...
Let's check that everything is OK. We'll start by looking at the App.js file that was created
by CRAN, and we can immediately verify that the tools work—because a problem is
detected! Have a look at the following screenshot:

We can verify that ESLint integration is working, because it highlights a problem

The rule that fails is a new one, from eslint-plugin-react-native: no-color-
literals, because we are using constants in styling, which could prove to be a
maintenance headache in the future. We can solve that by adding a variable, and we'll use a
type declaration to make sure Flow is also running. The new code should be as
follows—I've highlighted the required changes:

// Source file: App.original.fixed.js

/* @flow */

import React from "react";
import { StyleSheet, Text, View } from "react-native";

export default class App extends React.Component<> {
 render() {
 return (
 <View style={styles.container}>
 <Text>Open up App.js to start working on your app!</Text>
 <Text>Changes you make will automatically reload.</Text>
 <Text>Shake your phone to open the developer menu.</Text>
 </View>
);
 }
}

const white: string = "#fff";

Creating Mobile Apps with React Native Chapter 11

[488]

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: white,
 alignItems: "center",
 justifyContent: "center"
 }
});

So, now that we have restored all our tools, we can get started with actual code!

Using native components
Working with RN is very much like working with React—there are components, state,
props, life cycle events, and so on—but there is a key difference: your own components
won't be based on HTML, but on specific RN ones. For instance, you won't be using <div>
elements, but rather <View> ones, which will be then mapped by RN to a UIView for iOS,
or to an Android.View for Android. Views can be nested inside views, just as <div> tags
can be. Views support layout and styling, they respond to touch events and more, so they
are basically equivalent to <div> tags, leaving aside the mobile environment behaviors and
specifics.

There are more differences: components also have different properties than the HTML
ones, and you'll have to go through the documentation (at https:/ ​/​facebook. ​github. ​io/
react-​native/​docs/ ​components- ​and- ​apis) to learn about all the possibilities for each
specific component.

You are not limited to using the components that RN provides you with.
You can extend your project by using native components developed by
other people; for this, a top notch source is the Awesome React Native
list, at http:/ ​/ ​www. ​awesome- ​react- ​native. ​com/ ​. Note that it's likely that
you'll have to eject your project in order to do this, so check https:/ ​/
github. ​com/ ​react- ​community/ ​create- ​react- ​native- ​app/ ​blob/ ​master/
EJECTING. ​md for more.

https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
https://facebook.github.io/react-native/docs/components-and-apis
http://www.awesome-react-native.com/
http://www.awesome-react-native.com/
http://www.awesome-react-native.com/
http://www.awesome-react-native.com/
http://www.awesome-react-native.com/
http://www.awesome-react-native.com/
http://www.awesome-react-native.com/
http://www.awesome-react-native.com/
http://www.awesome-react-native.com/
http://www.awesome-react-native.com/
http://www.awesome-react-native.com/
http://www.awesome-react-native.com/
http://www.awesome-react-native.com/
http://www.awesome-react-native.com/
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md
https://github.com/react-community/create-react-native-app/blob/master/EJECTING.md

Creating Mobile Apps with React Native Chapter 11

[489]

Getting ready
Let's start by going over the list of RN components and APIs you may want to use, and
afterward, we'll move to some actual code:

RN Component Replaces... Objective
ActivityIndicator animated GIF A component to display a circular loading indicator

Button button A component to handle touches (clicks)
DatePickerAndroid
TimePickerAndroid

input type="date"
input type="time"

An API that shows a popup where you can enter a
date and a time; for Android

DatePickerIOS

input type="date"
input type="datetime-

local"
input type="time"

A component where the user can enter a date and
time; for iOS

FlatList - A list component that only renders elements that are
visible; used for performance gains

Image img A component to display an image
Picker select A component to pick a value from a list

Picker.Item option A component to define values for the list
ProgressBarAndroid - A component to show activity; for Android only
ProgressViewIOS - A component to show activity; for iOS only

ScrollView - Scrolling container that may contain multiple
components and views

SectionList - Similar to FlatList, but allows for sectioned lists
Slider input type="number" A component to select a value from a range of values

StatusBar - A component to manage the app status bar
StyleSheet CSS Apply styling to your app

Switch input type="checkbox" A component to accept a Boolean value
Text - A component to display text

TextInput input type="text" A component to enter text using the keyboard
TouchableHighlight
TouchableOpacity

- Wrapper to make views respond to touches

View div A basic structural feature for your app
VirtualizedList - An even more flexible version of FlatList

WebView iframe A component to render web content

Creating Mobile Apps with React Native Chapter 11

[490]

There are also many APIs that you may be interested in; some of them are as follows:

API Description
Alert Displays an alert dialog with the given title and text

Animated Simplifies creating animations
AsyncStorage An alternative to LocalStorage
Clipboard Provides access for getting and setting clipboard content
Dimensions Provides access to the device dimensions and orientation changes
Geolocation Provides access to geolocation; available only for ejected projects
Keyboard Allows control of keyboard events
Modal Displays content above a view

PixelRatio Provides access to the device pixel density
Vibration Allows control of device vibration

To have as few problems as possible, you might prefer to eschew
platform-specific components and APIs, and make do with the generic,
compatible components. However, if you are determined to use some
Android or iOS-specific elements, have a look at https:/ ​/​facebook.
github. ​io/ ​react- ​native/ ​docs/ ​platform- ​specific- ​code for details on
how to do it; it's not complex. Remember, however, that this will become
harder to maintain, and will probably change some interactions or screen
designs.

Now, let's revisit an example we wrote for React in Chapter 6, Developing with React, the
countries and regions page, which will also let us use Redux and async calls, as in Chapter
8, Expanding Your Application. Since we are using PropTypes, we'll need that package.
Install it with the following command:

npm install prop-types --save

Then, we'll have to reinstall some packages, starting with Redux and relatives. Actually,
CRAN already includes redux and react-redux, so we don't need those, but redux-
thunk isn't included. If you had created the project in a different fashion, without using
CRAN, you would have needed to install all three packages manually. In both cases, the
following command would do, because npm won't install an already installed package:

npm install react react-redux redux-thunk --save

We'll also be using axios for async calls, as we did earlier in this book:

npm install axios --save

https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code

Creating Mobile Apps with React Native Chapter 11

[491]

By default, RN provides fetch instead of axios. However, RN includes
the XMLHttpRequest API, which allows us to install axios with no
problems. For more on network handling, check out https:/ ​/​facebook.
github. ​io/ ​react- ​native/ ​docs/ ​network.

Our final step will be to run the server code that we wrote back in Chapter 4, Implementing
RESTful Services with Node, so that our app will be able to do async calls. Go to the directory
for that chapter, and just enter the following command:

node out/restful_server.js.

Now, we're set! Let's now see how we can modify our code to make it appropriate for RN.

How to do it...
Since RN uses its own components, your HTML experience will be of little use. Here, we'll
see some changes, but in order to derive the full benefits of all of RN's possibilities, you'll
have to study its components on your own. Let's start with the <RegionsTable>
component, which was rather simple. We saw its original code in the Defining
Components section of Chapter 6, Developing with React; here, let's focus on the differences,
which are all constrained to the render() method. Earlier, we use <div> tags and
displayed texts in them; here, with RN, we're required to use the <View> and <Text>
elements:

// Source file: src/regionsApp/regionsTable.component.js

.

.

.

render() {
 if (this.props.list.length === 0) {
 return (
 <View>
 <Text>No regions.</Text>
 </View>
);
 } else {
 const ordered = [...this.props.list].sort(
 (a, b) => (a.regionName < b.regionName ? -1 : 1)
);

 return (
 <View>

https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network
https://facebook.github.io/react-native/docs/network

Creating Mobile Apps with React Native Chapter 11

[492]

 {ordered.map(x => (
 <View key={x.countryCode + "-" + x.regionCode}>
 <Text>{x.regionName}</Text>
 </View>
))}
 </View>
);
 }
}

Notice that there are no changes in the rest of the component, and all your React
knowledge is still valid; you just have to adjust the output of your rendering method.

Next, we'll change the <CountrySelect> component to use <Picker>, which is sort of
similar, but we'll require some extra modifications. Let's take a look at our component,
highlighting the parts where changes are needed:

// Source file: src/regionsApp/countrySelect.component.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";
import { View, Text, Picker } from "react-native";

export class CountrySelect extends React.PureComponent<{
 dispatch: ({}) => any
}> {
 static propTypes = {
 loading: PropTypes.bool.isRequired,
 currentCountry: PropTypes.string.isRequired,
 list: PropTypes.arrayOf(PropTypes.object).isRequired,
 onSelect: PropTypes.func.isRequired,
 getCountries: PropTypes.func.isRequired
 };

 componentDidMount() {
 if (this.props.list.length === 0) {
 this.props.getCountries();
 }
 }

 onSelect = value => this.props.onSelect(value);

 render() {
 if (this.props.loading) {
 return (
 <View>

Creating Mobile Apps with React Native Chapter 11

[493]

 <Text>Loading countries...</Text>
 </View>
);
 } else {
 const sortedCountries = [...this.props.list].sort(
 (a, b) => (a.countryName < b.countryName ? -1 : 1)
);

 return (
 <View>
 <Text>Country:</Text>
 <Picker
 onValueChange={this.onSelect}
 prompt="Country"
 selectedValue={this.props.currentCountry}
 >
 <Picker.Item
 key={"00"}
 label={"Select a country:"}
 value={""}
 />
 {sortedCountries.map(x => (
 <Picker.Item
 key={x.countryCode}
 label={x.countryName}
 value={x.countryCode}
 />
))}
 </Picker>
 </View>
);
 }
 }
}

Lots of changes! Let's go through them in the order they occur:

An unexpected change: if you want a <Picker> component to display its current
value, you must set its selectedValue property; otherwise, even if the user
selects a country, the change won't be seen onscreen. We'll have to provide an
extra prop, currentCountry, which we'll get from the store, so we can use it as
the selectedValue for our list.
The fired event when the user selects a value is also different; the event handler
will be called directly with the chosen value, instead of with an event from which
to work with event.target.value.

Creating Mobile Apps with React Native Chapter 11

[494]

We have to replace the <select> element with <Picker>, and provide a
prompt text prop that will be used when the expanded list is shown onscreen.
We have to use <Item> elements for the individual options, noting that the
label to be displayed is now a prop.

Let's not forget the change when connecting the list of countries to the store; we'll only have
to add an extra property to the getProps() function:

// Source file: src/regionsApp/countrySelect.connected.js

const getProps = state => ({
 list: state.countries,
 currentCountry: state.currentCountry,
 loading: state.loadingCountries
});

Now, all we need to do is see how the main app is set up. Our App.js code will be quite
simple:

// Source file: App.js

/* @flow */

import React from "react";
import { Provider } from "react-redux";

import { store } from "./src/regionsApp/store";
import { Main } from "./src/regionsApp/main";

export default class App extends React.PureComponent<> {
 render() {
 return (
 <Provider store={store}>
 <Main />
 </Provider>
);
 }
}

Creating Mobile Apps with React Native Chapter 11

[495]

This is pretty straightforward. The rest of the setup will be in the main.js file, which has
some interesting details:

// Source file: src/regionsApp/main.js

/* @flow */

import React from "react";
import { View, StatusBar } from "react-native";

import {
 ConnectedCountrySelect,
 ConnectedRegionsTable
} from ".";

export class Main extends React.PureComponent<> {
 render() {
 return (
 <View>
 <StatusBar hidden />
 <ConnectedCountrySelect />
 <ConnectedRegionsTable />
 </View>
);
 }
}

Apart from the usage of <View> wherever we would previously have used <div> (a
change to which you should already have gotten used to), there's an added detail: we don't
want the status bar to show, so we use the <StatusBar> element, and make sure to hide it.

OK, that's it! When writing code for RN, at first you'll have to make some effort to
remember what elements are the equivalent of your old and familiar HTML ones, and
which props or events change, but aside from that, all your previous knowledge will still be
valid. To finish, let's see our app running.

Creating Mobile Apps with React Native Chapter 11

[496]

How it works...
Just for variety, instead of using my mobile phone, as I did earlier in this chapter, I decided
to use an emulated device. After starting the application with npm start, I started my
device, and soon got the following:

Our application, just loaded, waiting for the user to select a country

Creating Mobile Apps with React Native Chapter 11

[497]

If the user touches the <Picker> element, a popup will be displayed, listing the countries
that were received from our Node server, as shown in the following screenshot:

Upon touching on the list of countries, a popup shows up so that the user can select the desired country

Creating Mobile Apps with React Native Chapter 11

[498]

When the user actually taps on a country, the onValueChange event is fired, and after
calling the server, the list of regions is displayed, as follows:

After picking a country, the list of its regions is displayed, as in our earlier HTML React version

Creating Mobile Apps with React Native Chapter 11

[499]

Everything works, and is using native components; great! By the way, if you were not very
sure about the selectedValue problem we described, just omit that prop, and when the
user picks on a country, you'll get a bad result:

There are some differences, such as requiring the selectedValue prop to be present, or otherwise the currently picked value
won't be updated—even though Brazil was selected, the picker doesn't show it

Creating Mobile Apps with React Native Chapter 11

[500]

Here, we went through an example of writing RN code, and as we have seen, it doesn't
differ much from simple React code, other from the fact that we don't get to use HTML,
having us instead depending on different elements.

We have seen two ways of running our code: with the Expo client on our
mobile device, and with emulators on our computer. To experiment with
RN, there are a couple of online playgrounds you may want to look at
Snack, at https:/ ​/ ​snack. ​expo. ​io/​, and Repl.it, at https:/ ​/ ​repl. ​it/
languages/ ​react_ ​native. In both of these environments, you can
create files, edit code, and see the results of your
experiments online.

There's more...
One final step, after getting your app to run, is to create a standalone package that you
could ideally distribute via the Apple and Google app stores. If you created your
application manually, then the process can get a bit complicated, and you'll even require an
actual macOS computer, because you won't be able to build for iOS otherwise: you'll have
to read how to produce an app with Xcode or the Android developers' kit, which can be a
bit complicated. With CRAN apps, instead, the process can be simplified, because Expo
provides an app building capability so that you won't have to. Check out https:/ ​/​docs.
expo.​io/​versions/ ​latest/ ​guides/ ​building- ​standalone- ​apps. ​html for specific
instructions.

In any case, no matter which way you decide to proceed for your build
process, check out some of the suggestions to help ensure your app will be
approved and well received at https:/ ​/​docs. ​expo. ​io/​versions/ ​latest/
guides/ ​app- ​stores. ​html.

Adapting to devices and orientation
When we developed a responsive and adaptive web page back in the Making your
application adaptive for enhanced usability section in Chapter 7, Enhancing Your Application, we
had to deal with the possibility that the window size could be changed at any moment, and
our page's contents had to relocate itself properly. With mobile devices, the screen size
won't change, but you still have the possibility of a rotation (changing from portrait mode
to landscape, and vice versa), so you still have to deal with at least one change. And, of
course, if you want to make your app look good on all devices, it's probable that you'll have
to take into account the screen size in order to decide how to accommodate your contents.

https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://repl.it/languages/react_native
https://repl.it/languages/react_native
https://repl.it/languages/react_native
https://repl.it/languages/react_native
https://repl.it/languages/react_native
https://repl.it/languages/react_native
https://repl.it/languages/react_native
https://repl.it/languages/react_native
https://repl.it/languages/react_native
https://repl.it/languages/react_native
https://repl.it/languages/react_native
https://repl.it/languages/react_native
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/building-standalone-apps.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/app-stores.html

Creating Mobile Apps with React Native Chapter 11

[501]

In this recipe, we'll look at a simple technique to make your application aware of different
device types. This technique can be easily upgraded to also cover specific screen
dimensions.

We'll look more at styling later; for the time being, we'll focus on getting
the app to recognize the device type and orientation, and then in the next
section, we'll follow up with specific style examples.

How to do it...
If we want our app to adapt, we have to be able to answer several questions in our code:

How can we tell if the device is a tablet or a handset?
How can we learn if it's in the portrait or landscape modes?
How do we code a component that will render differently depending on the
device type?
How can we make a component redraw itself automatically upon a screen
orientation change?

Let's go over all these questions now. Let's first look at how we can learn about the device
type and orientation. RN includes an API, Dimensions, that provides data that's necessary
to render the app, such as the screen dimensions. How can we, then, learn the device type
and orientation? The second question is easier: since there are no square devices (at least so
far!), it's enough to see which of the two dimensions is bigger—if the height is bigger, then
the device is in portrait mode, and otherwise it's in landscape mode.

The first question, however, is harder. There's no strict rule that defines, in terms of screen
sizes, where handsets end and where tablets start, but if we look at information on devices
and calculate form factors (the ratio of the longest side to the shortest side), a simple rule
appears: if the calculated ratio is 1.6 or below, it's more likely a tablet, and higher ratios
suggest handsets.

If you need more specific data, check http:/ ​/​iosres. ​com/ ​ for information
on iOS devices, or https:/ ​/​material. ​io/​tools/ ​devices and http:/ ​/
screensiz. ​es for a larger variety of devices, in particular for Android,
which is used on devices with a much greater variety of screen sizes.

http://iosres.com/
http://iosres.com/
http://iosres.com/
http://iosres.com/
http://iosres.com/
http://iosres.com/
http://iosres.com/
http://iosres.com/
https://material.io/tools/devices
https://material.io/tools/devices
https://material.io/tools/devices
https://material.io/tools/devices
https://material.io/tools/devices
https://material.io/tools/devices
https://material.io/tools/devices
https://material.io/tools/devices
https://material.io/tools/devices
https://material.io/tools/devices
https://material.io/tools/devices
http://screensiz.es
http://screensiz.es
http://screensiz.es
http://screensiz.es
http://screensiz.es
http://screensiz.es

Creating Mobile Apps with React Native Chapter 11

[502]

With the following code, we basically return all the information provided by Dimensions,
plus a couple of attributes (.isTablet and .isPortrait) to simplify the coding:

// Source file: src/adaptiveApp/device.js

/* @flow */

import { Dimensions } from "react-native";

export type deviceDataType = {
 isTablet: boolean,
 isPortrait: boolean,
 height: number,
 width: number,
 scale: number,
 fontScale: number
};

export const getDeviceData = (): deviceDataType => {
 const { height, width, scale, fontScale } = Dimensions.get("screen");

 return {
 isTablet: Math.max(height, width) / Math.min(height, width) <= 1.6,
 isPortrait: height > width,
 height,
 width,
 scale,
 fontScale
 };
};

Using the preceding code, we have all we'd need to draw a view in a manner that is
suitable for all kinds of devices, sizes, and both possible orientations—but how would we
use this data? Let's look at this now, and make our app adjust properly in all cases.

For more on the Dimensions API, read https:/ ​/​facebook. ​github. ​io/
react- ​native/ ​docs/ ​dimensions.

https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions
https://facebook.github.io/react-native/docs/dimensions

Creating Mobile Apps with React Native Chapter 11

[503]

We could directly use the information provided by getDeviceData() in our components,
but that would pose some problems:

The components would not be as functional as before, because they would have a
hidden dependency in the function
As a result, testing components would then become a bit harder, because we'd
have to mock the function
Most importantly, it wouldn't be so easy to set the components to re-render
themselves when the orientation changes

The solution for all of this is simple: let's put the device data in the store, and then the
relevant components (meaning those that need to change their way of rendering) can be
connected to the data. We can create a simple component to do this:

// Source file: src/adaptiveApp/deviceHandler.component.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";
import { View } from "react-native";

class DeviceHandler extends React.PureComponent<{
 setDevice: () => any
}> {
 static propTypes = {
 setDevice: PropTypes.func.isRequired
 };

 onLayoutHandler = () => this.props.setDevice();

 render() {
 return <View hidden onLayout={this.onLayoutHandler} />;
 }
}

export { DeviceHandler };

The component won't be seen onscreen, so we can add it to our main view anywhere.
Connecting the component is the other necessary step; when the onLayout event fires
(meaning the device's orientation has changed), we'll have to dispatch an action:

// Source file: src/adaptiveApp/deviceHandler.connected.js

/* @flow */

Creating Mobile Apps with React Native Chapter 11

[504]

import { connect } from "react-redux";

import { DeviceHandler } from "./deviceHandler.component";
import { setDevice } from "./actions";

const getDispatch = dispatch => ({
 setDevice: () => dispatch(setDevice())
});

export const ConnectedDeviceHandler = connect(
 null,
 getDispatch
)(DeviceHandler);

Of course, we need to define both the actions and the reducer, as well as the store. Let's
look at how to do this—we'll begin with the actions. The very minimum we'd need (apart
from other actions needed by our hypothetical app) would be as follows:

// Source file: src/adaptiveApp/actions.js

/* @flow */

import { getDeviceData } from "./device";

import type { deviceDataType } from "./device"

export const DEVICE_DATA = "device:data";

export type deviceDataAction = {
 type: string,
 deviceData: deviceDataType
};

export const setDevice = (deviceData?: object) =>
 ({
 type: DEVICE_DATA,
 deviceData: deviceData || getDeviceData()
 }: deviceDataAction);

/*
 A real app would have many more actions!
*/

We are exporting a thunk that will include the deviceData in it. Note that by allowing it to
be provided as a parameter (or a default value being used instead, created by
getDeviceData()), we will simplify testing; if we wanted to simulate a landscape tablet,
we'd just provide an appropriate deviceData object.

Creating Mobile Apps with React Native Chapter 11

[505]

Finally, the reducer would look like the following (obviously, for a real app, there would be
many more actions!):

// Source file: src/adaptiveApp/reducer.js

/* @flow */

import { getDeviceData } from "./device";

import { DEVICE_DATA } from "./actions";

import type { deviceAction } from "./actions";

export const reducer = (
 state: object = {
 // initial state: more app data, plus:
 deviceData: getDeviceData()
 },
 action: deviceAction
) => {
 switch (action.type) {
 case DEVICE_DATA:
 return {
 ...state,
 deviceData: action.deviceData
 };

 /*
 In a real app, here there would
 be plenty more "case"s
 */

 default:
 return state;
 }
};

So, now that we have our device information in the store, we can study how to code
adaptive, responsive components.

Creating Mobile Apps with React Native Chapter 11

[506]

We can see how to code adaptive and responsive components by using a very basic
component that simply displays whether it's a handset or a tablet, and its current
orientation. Having access to all of the deviceData objects means that we can take any
kind of decisions: what to show, how many elements to display, what size to make them,
and so on. We'll be making this example short, but it should be clear how to expand it:

// Source file: src/adaptiveApp/adaptiveView.component.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";
import { View, Text, StyleSheet } from "react-native";

import type { deviceDataType } from "./device";

const textStyle = StyleSheet.create({
 bigText: {
 fontWeight: "bold",
 fontSize: 24
 }
});

export class AdaptiveView extends React.PureComponent<{
 deviceData: deviceDataType
}> {
 static propTypes = {
 deviceData: PropTypes.object.isRequired
 };

 renderHandset() {
 return (
 <View>
 <Text style={textStyle.bigText}>
 I believe I am a HANDSET currently in
 {this.props.deviceData.isPortrait
 ? " PORTRAIT "
 : " LANDSCAPE "}
 orientation
 </Text>
 </View>
);
 }

 renderTablet() {
 return (
 <View>

Creating Mobile Apps with React Native Chapter 11

[507]

 <Text style={textStyle.bigText}>
 I think I am a
 {this.props.deviceData.isPortrait
 ? " PORTRAIT "
 : " LANDSCAPE "}
 TABLET
 </Text>
 </View>
);
 }

 render() {
 return this.props.deviceData.isTablet
 ? this.renderTablet()
 : this.renderHandset();
 }
}

Don't worry about the textStyle definition—soon we'll be getting into
how it works, but for now I think it should be easy to accept that it defines
bold, largish, text.

Given this.props.deviceData, we can use the .isTablet prop to decide which
method to call (.renderTablet() or .renderHandset()). In those methods, we can then
use .isPortrait to decide what layout to use: portrait or landscape. Finally—although
we don't show this in our example—we could use .width or .height to show more or
fewer components, or to calculate the components' sizes, and so on. We only need to
connect the component to the store as follows, and we'll be set:

// Source file: src/adaptiveApp/adaptiveView.connected.js

/* @flow */

import { connect } from "react-redux";

import { AdaptiveView } from "./adaptiveView.component";

const getProps = state => ({
 deviceData: state.deviceData
});

export const ConnectedAdaptiveView = connect(getProps)(AdaptiveView);

We have everything we need now; let's see it working!

Creating Mobile Apps with React Native Chapter 11

[508]

How it works...
We have prepared a (hidden) component that responds to orientation changes by
dispatching an action to update the store, and we know how to code a component that will
use the device information. Our main page could look as follows:

// Source file: src/adaptiveApp/main.js

/* @flow */

import React from "react";
import { View, StatusBar } from "react-native";

import { ConnectedAdaptiveView } from "./adaptiveView.connected";
import { ConnectedDeviceHandler } from "./deviceHandler.connected";

export class Main extends React.PureComponent<> {
 render() {
 return (
 <View>
 <StatusBar hidden />
 <ConnectedDeviceHandler />
 <ConnectedAdaptiveView />
 </View>
);
 }
}

Creating Mobile Apps with React Native Chapter 11

[509]

If I run the app on a (simulated) Nexus 5 device in portrait mode, we'd see something like
the following:

Our device is recognized as a handset, currently in portrait (vertical) orientation

Rotating the device would produce a different view:

Creating Mobile Apps with React Native Chapter 11

[510]

When the orientation changes, the store is updated and the app re-renders itself appropriately

In our design, components never use the Dimension API by themselves—since they get the
device information from the store, testing the components' behavior for different devices
and orientations could be done functionally, without needing to mock anything.

There's more...
In our component, we included everything in a single class, but that could prove not to be
great for complex situations. In that case, we could opt to use classes and inheritance, as
follows. To start with, create a basic something.base.js file, which will contain the base
class that you will extend for handsets and tablets. In particular, your .render() method
should be coded as in the following code snippet, in order to make the class behave as an
abstract one that isn't meant to be used directly. You'll need to disable the ESLint
react/require-render-return rule to make .render() not to return anything:

import React from "react";
import PropTypes from "prop-types";

// eslint-disable-next-line react/require-render-return
class SomethingBase extends React.PureComponent<{
 deviceData: deviceDataType
}> {
 static propTypes = {

Creating Mobile Apps with React Native Chapter 11

[511]

 deviceData: PropTypes.object.isRequired
 };

 render() {
 throw new Error("MUST IMPLEMENT ABSTRACT render() METHOD");
 }
}

export { SomethingBase };

To continue, write separate something.handset.js and something.tablet.js files
that extend SomethingBase to define the SomethingHandset and SomethingTablet
components. And, to finish, set up the something.component.js file that will be used to
check whether the device is a handset or a tablet, and return either a
<SomethingHandset> component or a <SomethingTablet> one:

import { SomethingTablet } from "./something.tablet";
import { SomethingHandset } from "./something.handset";
import { getDeviceData } from "./device";

export const Something = getDeviceData().isTablet ? SomethingTablet
: SomethingHandset;

With this style, you'd use and connect <Something> components in your code, which,
internally, would really be the appropriate version for the current device's type.

In computer science terms, this is called the Factory design pattern, where
you are able to create an object without actually specifying its class.

Styling and laying out your components
Applying CSS styles to your app is not difficult, but you'll have to un-learn and re-learn
some of the following concepts that are just plain different in RN, when compared to
HTML:

In web pages, CSS style is global, and applies to all tags; in RN, styling is done
locally on a component-by-component basis; there is no global styling. Also, you
don't need selectors, because styles are directly associated to components.

Creating Mobile Apps with React Native Chapter 11

[512]

There is no inheritance of styles: in HTML, children inherit some of their parent's
style by default, but in RN, if you want this to happen, you'll have to provide the
specific desired style to the children. However, if you wish, you can export
styles and import them elsewhere.
RN styles are completely dynamic: you can use all JS functions to compute
whichever values you wish to apply. You could even alter styles on the fly, so an
app background color could be lighter during the day, gradually changing to
darker colors at night, as time goes by. You won't need anything like SASS or
LESS; you can do math and use constants, because that's pure JS.

There are some other minor differences as well:

RN uses camelCase style (such as fontFamily) instead of CSS's kebab-case style
(for example, font-family); that's easy enough to get used to. Also, not all
usual CSS properties may be present (it depends on specific components), and
some may be restricted as to their possible values.
RN has only two possible measurements: either percentages, or density
independent pixels (DP). DP aren't the classic screen pixels from the web; rather,
they work well with every device, independently of their pixel density or pixels
per inch (ppi), thus guaranteeing a common look for all screens.
The layout is done with flex, so positioning elements is simpler. You may not
have the full set of options that are available for web pages, but what you get is
absolutely enough for any kind of layout.

There's much to read about styling in RN (for starters, see https:/ ​/​facebook. ​github. ​io/
react-​native/​docs/ ​style for an introduction, and https:/ ​/​facebook. ​github. ​io/​react-
native/​docs/​height- ​and- ​width and https:/ ​/​facebook. ​github. ​io/​react- ​native/ ​docs/
flexbox for sizing and positioning elements), so here, in this recipe, we'll look at some
specific examples by styling our countries-and-regions app.

How to do it...
Let's try to enhance our app a bit. And, to complete what we earlier saw about adaptive
and responsive displays, we are going to provide a different layout for portrait and
landscape orientations. We won't need media queries or column based layouts; we'll make
do with simple styling.

https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/style
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/height-and-width
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox

Creating Mobile Apps with React Native Chapter 11

[513]

Let's begin by creating styles for the <Main> component. We'll be using the
<DeviceHandler> we developed earlier; both components will be connected to the store. I
didn't want to do specific versions for tablets and handsets, but I wanted to display a
different layout for portrait and landscape orientations. For the former, I basically used
what I had developed earlier, but for the latter, I decided to split the screen in half,
displaying the countries selector on the left and the regions list on the right. Oh, and you
may notice that I opted to use inline styles, even if it's not the preferred option; since
components are usually short, you may place styles right in the JSX code without losing
clarity. It's up to you to decide whether you like it or not:

// Source file: src/regionsStyledApp/main.component.js

/* @flow */

import React from "react";
import { View, StatusBar } from "react-native";

import {
 ConnectedCountrySelect,
 ConnectedRegionsTable,
 ConnectedDeviceHandler
} from ".";
import type { deviceDataType } from "./device";

/* eslint-disable react-native/no-inline-styles */

export class Main extends React.PureComponent<{
 deviceData: deviceDataType
}> {
 render() {
 if (this.props.deviceData.isPortrait) {
 .
 . // portrait view
 .
 } else {
 .
 . // landscape view
 .
 }
 }
}

Creating Mobile Apps with React Native Chapter 11

[514]

When the device is in portrait orientation, I created a <View>, occupying all the screen
(flex:1) and setting its components vertically using flexDirection:"column", although
this is actually the default value, so I could have omitted this. I didn't specify a size for the
<CountrySelect> component, but I set the <RegionsTable> to occupy all possible
(remaining) space. The detailed code is as follows:

// Source file: src/regionsStyledApp/main.component.js

 return (
 <View style={{ flex: 1 }}>
 <StatusBar hidden />
 <ConnectedDeviceHandler />
 <View style={{ flex: 1, flexDirection: "column" }}>
 <View>
 <ConnectedCountrySelect />
 </View>
 <View style={{ flex: 1 }}>
 <ConnectedRegionsTable />
 </View>
 </View>
 </View>
);

For the landscape orientation, some changes were required. I set the direction for the
contents of the main view to horizontal (flexDirection:"row") and I added two equal-
sized views within. For the first, with the country list, I set its contents vertically and
centered, because I thought it looked better that way, instead of appearing at the top. I
didn't do anything in particular for the regions list that occupies the right side of the screen:

// Source file: src/regionsStyledApp/main.component.js

 return (
 <View style={{ flex: 1 }}>
 <StatusBar hidden />
 <ConnectedDeviceHandler />
 <View style={{ flex: 1, flexDirection: "row" }}>
 <View
 style={{
 flex: 1,
 flexDirection: "column",
 justifyContent: "center"
 }}
 >
 <ConnectedCountrySelect />
 </View>
 <View style={{ flex: 1 }}>
 <ConnectedRegionsTable />

Creating Mobile Apps with React Native Chapter 11

[515]

 </View>
 </View>
 </View>
);

If you want a component to occupy a larger piece of space, increase its flex value;
flex implies that components will flexibly expand or shrink according to the available space,
which is shared among all components in direct proportion to their flex values. If I had
wanted the countries list to occupy one third of the screen, leaving the other two thirds to
the regions list, I would have set flex:1 for it, and flex:2 for the regions. Of course, you
could also set heights and widths directly (in either DIP values or as percentages), as you
could have done with CSS.

As for distributing children in a view, apart from "center", which centers all children in
the parent view, you also have several other options:

"flex-start" places them together, at the start of the parent view; here, it's top,
given the vertical alignment
"flex-end" would have behaved similarly, but placed the children at the end
(here, the bottom) of the parent view
"space-between" splits the extra space equally between the children
components
"space-around" also splits extra space equally, but includes space at the start
and at the end of the parent view
"space-evenly" splits all space equally between children and dividing spaces

After setting how the components will be laid out in the main flex direction, you can use
alignItems to specify how the children will be aligned along the secondary flex direction
(if flexDirection is "row", then the secondary direction will be "column", and vice
versa). Possible values are "flex-start", "center", and "flex-end", with similar
meaning to what was just given, or you could use "stretch", which will occupy all
possible space.

If you want to experiment with these options, go to https:/ ​/​facebook.
github. ​io/ ​react- ​native/ ​docs/ ​flexbox and modify the code examples.
You'll immediately see the effects of your changes, which is the easiest
way to understand the effects and implications of each option.

https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox

Creating Mobile Apps with React Native Chapter 11

[516]

Now, let's style the regions table. For this, I had to make some changes, starting with the
need for a <ScrollView> instead of a plain <View>, given that the list may be too long to
fit in the screen. Also, to show you some styles and constants, I decided to go with separate
style files. I started by creating a styleConstants.js file, which defines a color constant
and a simple, full-sized style:

// Source file: src/regionsStyledApp/styleConstants.js

/* @flow */

import { StyleSheet } from "react-native";

export const styles = StyleSheet.create({
 fullSize: {
 flex: 1
 }
});

export const lowColor = "lightgray";

The interesting thing here, rather than the (assumedly quite Spartan) fullSize style, is the
fact that you can export styles, or define simple JS constants that will be used elsewhere. In
the regions list, I imported both the style and the color:

// Source file: src/regionsStyledApp/regionsTable.component.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";
import { View, ScrollView, Text, StyleSheet } from "react-native";

import type { deviceDataType } from "./device";

import { lowColor, fullSizeStyle } from "./styleConstants";

const ownStyle = StyleSheet.create({
 grayish: {
 backgroundColor: lowColor
 }
});

export class RegionsTable extends React.PureComponent<{
 deviceData: deviceDataType,
 list: Array<{
 regionCode: string,
 regionName: string

Creating Mobile Apps with React Native Chapter 11

[517]

 }>
}> {
 static propTypes = {
 deviceData: PropTypes.object.isRequired,
 list: PropTypes.arrayOf(PropTypes.object).isRequired
 };

 static defaultProps = {
 list: []
 };

 render() {
 if (this.props.list.length === 0) {
 return (
 <View style={ownStyle.fullSize}>
 <Text>No regions.</Text>
 </View>
);
 } else {
 const ordered = [...this.props.list].sort(
 (a, b) => (a.regionName < b.regionName ? -1 : 1)
);

 return (
 <ScrollView style={[fullSizeStyle, ownStyle.grayish]}>
 {ordered.map(x => (
 <View key={`${x.countryCode}-${x.regionCode}`}>
 <Text>{x.regionName}</Text>
 </View>
))}
 </ScrollView>
);
 }
 }
}

There are some interesting details here in the preceding block of code:

As I said before, I'm using a <ScrollView> component to enable the user can
browse through lists that are longer than the available space. A <FlatList>
component would also have been a possibility, though for relatively short and
simple lists as here, it wouldn't have made much of a difference.

Creating Mobile Apps with React Native Chapter 11

[518]

I used the imported color to create a local style, grayish, which I used later.
I directly applied the imported fullSize style to the regions' <ScrollView>.
I applied more than one style to the second <ScrollView>; if you provide an
array of styles, they get applied in the order of appearance. In this case, I got a
full-sized gray area. Note that the color is only applied if some regions are
present; otherwise, the color is unchanged.

Note that the style can be created dynamically, and that allows for interesting effects. To
use an example based upon one in RN's documentation at https:/ ​/​facebook. ​github. ​io/
react-​native/​docs/ ​stylesheet, you could have a title changing style depending on a
prop. In the following code, the style for the title would change depending on
this.props.isActive:

<View>
 <Text
 style={[
 styles.title,
 this.props.isActive
 ? styles.activeTitle
 : styles.inactiveTitle
]}
 >
 {this.props.mainTitle}
 </Text>
</View>

You could produce even more interesting results; remember that you have the full power of
JS available to you, and that a style sheet can be created on the fly, so you actually have
limitless possibilities.

https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/docs/stylesheet

Creating Mobile Apps with React Native Chapter 11

[519]

How it works...
I fired up the emulator, and tried out the code. When in portrait orientation, the view is as
shown in the following screenshot; note that I scrolled down, and the app correctly handles
it:

Our styled application, showing colors, styles, and a scrollable view

Creating Mobile Apps with React Native Chapter 11

[520]

If you change the device's orientation, our device handler logic captures the event, and the
app is rendered differently. Here, we can see the split screen, with centered elements on the
left and the scrollable view on the right, with its grayish background:

The landscape view gets a different layout, courtesy of new styling rules

As we've seen—and this was only an introduction to the many styling features provided by
RN—you can get the same kind of results as with HTML and CSS, though here you are
assuredly working with different elements and styles. The possibility of applying the full
extent of JS to the definition of styles lets you forget about using tools such as SASS,
because all the extra functionality that it would bring is already available through JS itself.
Let's look at a further example of styling, this time for text, as we consider how to write
code that's been specifically oriented to a given platform.

Creating Mobile Apps with React Native Chapter 11

[521]

Adding platform-specific code
Working with the generic components is good enough for most development, but you may
want to utilize some platform-specific feature, and RN provides a way to do so. Obviously,
if you start along this trend, you may end with a bigger job, and it will be harder to
maintain your code, but done judiciously, it can add some extra pizzazz to your app.

In this recipe, we'll look at how to adapt your app so that it will fit in better for whatever
platform it runs on.

How to do it...
The simplest way to recognize your platform is by using the Platform module, which
includes a property, Platform.OS, which tells you whether you are running Android or
iOS. Let's go for a simple example. Imagine you wanted to use some monospaced font in
your app. It happens that the right name for the relevant font family varies between
platforms: it would be "monospace" in Android, but "AmericanTypewriter" (among
others) on Apple devices. By checking Platform.OS, we can set the .fontFamily
attribute of a style sheet appropriately, as in the following screenshot:

Using Platform.OS is the simplest way to detect the platform of the device

Creating Mobile Apps with React Native Chapter 11

[522]

If you wanted to pick several attributes differently, you might want to use
Platform.select() instead:

const headings = Platform.select({
 android: { title: "An Android App", subtitle: "directly from Google" },
 ios: { title: "A iOS APP", subtitle: "directly from Apple" }
});

In this case, headings.title and headings.subtitle will get the values appropriate to
the current platform, either Android or iOS. Obviously, you could have managed this using
Platform.OS, but this style may be shorter.

For more on the available font families in both Android and iOS devices,
you may want to check the lists at https:/ ​/​github. ​com/ ​react- ​native-
training/ ​react- ​native- ​fonts. Take into account, however, that the list
may change from version to version.

How it works...
Just for variety, I decided to try out platform detection in Snack (at https:/ ​/​snack. ​expo.
io/​; we mentioned this tool earlier in this chapter) because it would be much faster and
simpler than running code on two actual devices.

https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://github.com/react-native-training/react-native-fonts
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/
https://snack.expo.io/

Creating Mobile Apps with React Native Chapter 11

[523]

I opened the page, and in the sample application that is provided, I just added the
.fontFamily change I showed earlier, and tested the results for both platforms:

The Snack emulators show the different look of my app, with distinct fonts for Android (left) and iOS (right)

As we can see, issues with platform differences can be easily solved, and the end users of
your app will get something that more closely match their expectations regarding colors,
fonts, components, APIs, and whatnot.

Creating Mobile Apps with React Native Chapter 11

[524]

There's more...
The changes we saw in this recipe are rather small in scope. If you wanted some radically
bigger differences, such as, for example, getting a date by using a DatePickerIOS
component for iOS, but the DatePickerAndroid API for Android, there's another feature
you should consider.

Let's say your own component was named AppropriateDatePicker. If you create two
files, respectively named appropriateDatePicker.component.ios.js and
appropriateDatePicker.component.android.js, then when you import your
component with import { AppropriateDatePicker } from
"AppropriateDatePicker", the .ios.js version will be used for Apple, and the
.android.js version for Android: simple!

For a complete description of the Platform module and the platform-
specific options, read https:/ ​/​facebook. ​github. ​io/ ​react- ​native/ ​docs/
platform- ​specific- ​code.

Routing and navigating
With the React router, you just used a <Link> component to navigate from one page to
another, or used methods to programmatically open a different page. In RN, there is a
different way of working, and the react-navigation package is practically the de facto
standard. Here, you define a navigator (there are several kinds to pick from) and provide it
with the screens (views) that it should handle, and then forget about it! The navigator will
handle everything on its own, showing and hiding screens, adding tabs or a sliding drawer,
or whatever it needs, and you don't have to do anything extra!

In this recipe, we'll revisit an example from earlier pages of this book, and show how the
router is written differently, to highlight differences in style.

There's more to navigation than what we'll see here. Check out the API
documentation at https:/ ​/​reactnavigation. ​org/ ​docs/ ​en/​api-
reference. ​html for more, and beware if you Google around, because the
react-navigation package has evolved, and many sites have references
to old methods that are currently deprecated.

https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://facebook.github.io/react-native/docs/platform-specific-code
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html
https://reactnavigation.org/docs/en/api-reference.html

Creating Mobile Apps with React Native Chapter 11

[525]

How to do it...
In the React part of this book, we built a complete routing solution, including public and
protected routes, using a login view to enter the user's name and password. In a mobile
application, since the user is more restricted, we can just make do by enabling a login at the
beginning, and enabling the normal navigation afterward. All the work with usernames,
passwords, and tokens is basically the same as before, so for now, let's only worry about
navigation, which is different in RN, and forget the common details.

For starters, let's have some views—a empty screen with some centered text will do:

// Source file: src/routingApp/screens.js

/* @flow */

import React, { Component } from "react";
import {
 Button,
 Image,
 StyleSheet,
 Text,
 TouchableOpacity,
 View
} from "react-native";

const myStyles = StyleSheet.create({
 fullSize: {
 flex: 1
 },
 fullCenteredView: {
 flex: 1,
 flexDirection: "column",
 justifyContent: "center",
 alignItems: "center"
 },
 bigText: {
 fontSize: 24,
 fontWeight: "bold"
 },
 hamburger: {
 width: 22,
 height: 22,
 alignSelf: "flex-end"
 }
});

// continues...

Creating Mobile Apps with React Native Chapter 11

[526]

Then, to simplify creating all the needed views, let's have a makeSimpleView() function
that will produce a component. We'll include a hamburger icon at the top right, which will
open and close the navigation drawer; we'll see more on this later. We'll use this function to
create most of our views, and we'll add a SomeJumps extra view, with three buttons that
allow you to navigate directly to another view:

// ...continued

const makeSimpleView = text =>
 class extends Component<{ navigation: object }> {
 displayName = `View:${text}`;

 render() {
 return (
 <View style={myStyles.fullSize}>
 <TouchableOpacity
 onPress={this.props.navigation.toggleDrawer}
 >
 <Image
 source={require("./hamburger.png")}
 style={myStyles.hamburger}
 />
 </TouchableOpacity>
 <View style={myStyles.fullCenteredView}>
 <Text style={myStyles.bigText}>{text}</Text>
 </View>
 </View>
);
 }
 };

export const Home = makeSimpleView("Home");
export const Alpha = makeSimpleView("Alpha");
export const Bravo = makeSimpleView("Bravo");
export const Charlie = makeSimpleView("Charlie");
export const Zulu = makeSimpleView("Zulu");
export const Help = makeSimpleView("Help!");

export const SomeJumps = (props: object) => (
 <View style={myStyles.fullSize}>
 <Button
 onPress={() => props.navigation.navigate("Alpha")}
 title="Go to Alpha"
 />
 <Button
 onPress={() => props.navigation.navigate("Bravo")}
 title="Leap to Bravo"

Creating Mobile Apps with React Native Chapter 11

[527]

 />
 <Button
 onPress={() => props.navigation.navigate("Charlie")}
 title="Jump to Charlie"
 />
 </View>
);

Here, for simplicity, and given that we weren't using props or state, and
that the view was simple enough, I used a functional definition for the
SomeJumps component, instead of using a class, as in most other
examples. If you want to revisit the concept, have a look at https:/ ​/
reactjs. ​org/ ​docs/ ​components- ​and- ​props. ​html.

Where does the navigation prop come from? We'll see more in the next section, but some
explanation can be given here. Whenever you create a navigator, you provide it with a set
of views to handle. All those views will get an extra prop, navigation, which has a set of
methods you can use, such as toggling the visibility of the drawer, navigating to a given
screen, and more. Read about this object at https:/ ​/​reactnavigation. ​org/ ​docs/ ​en/
navigation-​prop. ​html.

Now, let's create the drawer itself. This will handle the sidebar menu and show whatever
view is needed. The createDrawerNavigator() function gets an object with the screens
that will be handled, and a set of options; here, we just specified the color of the drawer
itself and its width (there are plenty more possibilities, which are detailed at https:/ ​/
reactnavigation.​org/ ​docs/ ​en/ ​drawer- ​navigator. ​html):

// Source file: src/routingApp/drawer.js

/* @flow */

import { createDrawerNavigator } from "react-navigation";

import {
 Home,
 Alpha,
 Bravo,
 Charlie,
 Zulu,
 Help,
 SomeJumps
} from "./screens";

export const MyDrawer = createDrawerNavigator(
 {
 Home: { screen: Home },

https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/navigation-prop.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html
https://reactnavigation.org/docs/en/drawer-navigator.html

Creating Mobile Apps with React Native Chapter 11

[528]

 Alpha: { screen: Alpha },
 Bravo: { screen: Bravo },
 Charlie: { screen: Charlie },
 Zulu: { screen: Zulu },
 ["Get Help"]: { screen: Help },
 ["Some jumps"]: { screen: SomeJumps }
 },
 {
 drawerBackgroundColor: "lightcyan",
 drawerWidth: 140
 }
);

The result of createDrawerNavigation() is itself a component that will take care of
showing whatever view is selected, showing and hiding the drawer menu, and so on. We
only need to create the main application itself.

Next, let's creating our navigable application, since we now have a set of views and a
drawer navigator to handle them. The main view for our application is then quite
simple—check out its .render() method, and you'll have to agree:

// Source file: App.routing.js

/* @flow */

import React from "react";
import { StatusBar } from "react-native";

import { MyDrawer } from "./src/routingApp/drawer";

class App extends React.Component {
 render() {
 return (
 <React.Fragment>
 <StatusBar hidden />
 <MyDrawer />
 </React.Fragment>
);
 }
}

export default App;

Creating Mobile Apps with React Native Chapter 11

[529]

An interesting point: since navigators are components. If you so wish, you can have a
navigator within another navigator! For example, you could create a TabNavigator, and
include it in a drawer navigator: when the corresponding option is selected, you'll get a
tabbed view onscreen, now governed by the tab navigator. You can compose navigators in
any way you wish, allowing for very complex navigation structures, if you want.

How it works...
When you open the application, the initial route is shown. There are several options you
can provide, such as initialRouteName to specify which should be the first shown view,
order to rearrange the drawer items, and even a custom contentComponent if you want
to draw the contents of the drawer by yourself; all in all, there is lots of flexibility. Your first
screen should look like the following:

Our drawer navigator showing the initial screen

Creating Mobile Apps with React Native Chapter 11

[530]

The usual way to open a drawer is by sliding from the left (although you can also set the
drawer to slide in from the right). We also provided the hamburger icon to toggle the
drawer open and shut. Opening the drawer should look like the following screenshot:

The opened drawer shows the menu, with the current screen highlighted, and the rest of the screen darkened

Creating Mobile Apps with React Native Chapter 11

[531]

Clicking on any menu item will hide the current view, and show the selected view instead.
For instance, we could select the Some jumps screen, as shown here:

After selecting an option, the drawer menu slides close on its own, and the selected screen is shown

In this particular screen, we show three buttons, all of which use the
props.navigation.navigate() method to show a different screen. This shows that your
navigation is not restricted to using the drawer, but that you can also directly browse in any
way you want.

Creating Mobile Apps with React Native Chapter 11

[532]

There's more...
You'll notice we didn't make any reference to Redux, as we did in the React chapters.
While use of this is possible, the react-navigation authors are tending toward not
enabling this, and at https:/ ​/ ​reactnavigation. ​org/ ​docs/ ​en/ ​redux- ​integration. ​html,
you can read the following:

"Warning: in the next major version of React Navigation, to be released in Fall 2018, we
will no longer provide any information about how to integrate with Redux and it may
cease to work. Issues related to Redux that are posted on the React Navigation issue
tracker will be immediately closed. Redux integration may continue to work, but it will
not be tested against or considered when making any design decisions for the library."

This warning suggests that it wouldn't be a good idea to devote space to an integration that
might just go away and stop working without notice. If you want to integrate Redux, read
the preceding page I mentioned, but be careful when you update the navigation package,
just in case something stops working. You have been warned!

https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html
https://reactnavigation.org/docs/en/redux-integration.html

12
Testing and Debugging Your

Mobile App
In this chapter, we'll be looking into the following recipes:

Writing unit tests with Jest
Adding snapshot testing
Measuring test coverage
Using Storybook to preview components
Debugging your app with react-native-debugger
Debugging in an alternative way with Reactotron

Introduction
In the previous chapter, we saw how to develop a React Native (RN) mobile app, and
along the same lines of what we did with Node and React, here let's complete the
development process for mobile apps by looking at testing and debugging our app.

Writing unit tests with Jest
Doing unit testing for RN won't be too much of a surprise, because it happens that we'll be
able to reuse most of what we learned before (for example, using Jest also with snapshots,
or how to test Redux), except for some small details that must be taken care of, as we'll see.

In this recipe, we'll look at how to set up unit tests for RN, along the lines of what we
already did for Node and React.

Testing and Debugging Your Mobile App Chapter 12

[534]

Getting ready
Whether you create the mobile app with CRAN (as we did) or with react-native init,
support for Jest is baked in; otherwise, you'd have to install it on your own, as we saw in
the Unit testing your code section of Chapter 5, Testing and Debugging Your Server.
Depending on how you create the project, there's a difference in the Jest configuration in
package.json; we won't have to do anything, but see https:/ ​/​jestjs. ​io/ ​docs/ ​en/
tutorial-​react-​native. ​html#setup for the alternative. We'll have to add a few packages
that we used earlier, but that's about it:

npm install enzyme enzyme-adapter-react-16 react-test-renderer redux-mock-
store --save

After doing this, we can write tests as before. Let's look at an example.

How to do it...
Earlier in this book, we wrote some tests for the countries and regions application, and
since we have already rewritten that in RN, why not also rewrite the tests? That will allow
us to verify that writing unit tests for RN isn't that different from writing them for plain
React. We had already written tests for the <RegionsTable> component; let's check them
here:

// Source file: src/regionsStyledApp/regionsTable.test.js

/* @flow */

import React from "react";
import Enzyme from "enzyme";
import Adapter from "enzyme-adapter-react-16";

import { RegionsTable } from "./regionsTable.component";

Enzyme.configure({ adapter: new Adapter() });

const fakeDeviceData = {
 isTablet: false,
 isPortrait: true,
 height: 1000,
 width: 720,
 scale: 1,
 fontScale: 1
};

https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup
https://jestjs.io/docs/en/tutorial-react-native.html#setup

Testing and Debugging Your Mobile App Chapter 12

[535]

describe("RegionsTable", () => {
 it("renders correctly an empty list", () => {
 const wrapper = Enzyme.shallow(
 <RegionsTable deviceData={fakeDeviceData} list={[]} />
);
 expect(wrapper.contains("No regions."));
 });

 it("renders correctly a list", () => {
 const wrapper = Enzyme.shallow(
 <RegionsTable
 deviceData={fakeDeviceData}
 list={[
 {
 countryCode: "UY",
 regionCode: "10",
 regionName: "Montevideo"
 },
 {
 countryCode: "UY",
 regionCode: "9",
 regionName: "Maldonado"
 },
 {
 countryCode: "UY",
 regionCode: "5",
 regionName: "Cerro Largo"
 }
]}
 />
);

 expect(wrapper.contains("Montevideo"));
 expect(wrapper.contains("Maldonado"));
 expect(wrapper.contains("Cerro Largo"));
 });
});

The differences are really minor, and mostly it's the same code:

We had to add fakeDeviceData, but that was only because our RN component
required it
We changed Enzyme.render() to Enzyme.shallow()
We changed the way we use the wrapper object to check for included text
directly, using wrapper.contains()

Testing and Debugging Your Mobile App Chapter 12

[536]

For a complete (and long!) list of all the available wrapper methods, check
out https:/ ​/​github. ​com/ ​airbnb/ ​enzyme/ ​blob/ ​master/ ​docs/ ​api/
shallow. ​md.

We can also have a look at the <CountrySelect> tests, which involved simulating events.
We can skip the tests that are practically identical to the React versions; let's focus on the
last one of our original tests:

// Source file: src/regionsStyledApp/countrySelect.test.js

/* @flow */
import React from "react";
import Enzyme from "enzyme";
import Adapter from "enzyme-adapter-react-16";

import { CountrySelect } from "./countrySelect.component";

Enzyme.configure({ adapter: new Adapter() });

const threeCountries = [
 {
 countryCode: "UY",
 countryName: "Uruguay"
 },
 {
 countryCode: "AR",
 countryName: "Argentina"
 },
 {
 countryCode: "BR",
 countryName: "Brazil"
 }
];

const fakeDeviceData = {
 isTablet: false,
 isPortrait: true,
 height: 1000,
 width: 720,
 scale: 1,
 fontScale: 1
}

describe("CountrySelect", () => {
 //
 // some tests omitted

https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md
https://github.com/airbnb/enzyme/blob/master/docs/api/shallow.md

Testing and Debugging Your Mobile App Chapter 12

[537]

 //

 it("correctly calls onSelect", () => {
 const mockGetCountries = jest.fn();
 const mockOnSelect = jest.fn();

 const wrapper = Enzyme.shallow(
 <CountrySelect
 deviceData={fakeDeviceData}
 loading={false}
 currentCountry={""}
 onSelect={mockOnSelect}
 getCountries={mockGetCountries}
 list={threeCountries}
 />
);

 wrapper.find("Picker").simulate("ValueChange", "UY");

 expect(mockGetCountries).not.toHaveBeenCalled();
 expect(mockOnSelect).toHaveBeenCalledTimes(1);
 expect(mockOnSelect).toHaveBeenCalledWith("UY");
 });
});

The key difference between how we wrote the tests for React and for RN is in the way we
.find() the element to click (RN uses a Picker component, instead of a group of option
elements), and the event we simulate ("ValueChange" instead of "change"). Other than
that, though, the code is the same as earlier.

For native modules, you may have to use mocks in order to simulate the
expected behaviors. We haven't used such modules in our code, but
should you require any of them, use the same mocking styles we saw in
Chapter 5, Testing and Debugging Your Server, and for React itself in
Chapter 10, Testing Your Application.

Having gone over some of the differences in RN components testing, we are done, because
there are no differences in the code when testing actions or reducers. These use the same
style of functional unit testing that doesn't involve any particular RN features, so we have
nothing more to say. In the next section, we'll look at our test run.

Testing and Debugging Your Mobile App Chapter 12

[538]

How it works...
Running the tests is achieved with a single command, as before:

npm test

The output is as shown in the following screenshot—note that we also ran some tests we
had copied from the React chapter, without any changes, and they also performed
perfectly:

All our components' tests run OK

So, apart from the need to use shallow rendering, and possibly some changes in the way we
access elements or simulate events, coding unit tests for RN is pretty much the same as for
React, which is good news. We are forgetting something, however – what about snapshot
testing? Let's move on to that.

Adding snapshot testing
Snapshot testing with RN is a nice surprise, because you won't have to change anything in
the way you worked before. Let's just look at a few examples, and you'll be convinced.

Testing and Debugging Your Mobile App Chapter 12

[539]

How to do it...
We had already seen snapshot testing in the Testing changes with snapshots section of
Chapter 10, Testing Your Application. It so happens that the very same code will work
perfectly with RN apps, without demanding any specific changes, other than those
depending on variations in the code. Let's consider the following example. The
<RegionsTable> component we had developed earlier has an extra prop in RN:
deviceData. So, we can copy the original snapshot test code and just add the new prop, as
follows:

// Source file: src/regionsStyledApp/regionsTable.snapshot.test.js

/* @flow */

import React from "react";
import TestRenderer from "react-test-renderer";

import { RegionsTable } from "./regionsTable.component";

const fakeDeviceData = {
 isTablet: false,
 isPortrait: true,
 height: 1000,
 width: 720,
 scale: 1,
 fontScale: 1
};

describe("RegionsTable", () => {
 it("renders correctly an empty list", () => {
 const tree = TestRenderer.create(
 <RegionsTable deviceData={fakeDeviceData} list={[]} />
).toJSON();
 expect(tree).toMatchSnapshot();
 });

 it("renders correctly a list", () => {
 const tree = TestRenderer.create(
 <RegionsTable
 deviceData={fakeDeviceData}
 list={[
 {
 countryCode: "UY",
 regionCode: "10",
 regionName: "Montevideo"
 },
 {

Testing and Debugging Your Mobile App Chapter 12

[540]

 countryCode: "UY",
 regionCode: "9",
 regionName: "Maldonado"
 },
 {
 countryCode: "UY",
 regionCode: "5",
 regionName: "Cerro Largo"
 }
]}
 />
).toJSON();
 expect(tree).toMatchSnapshot();
 });
});

If you bother to compare versions, you'll see that the only changed parts are the ones I
highlighted in bold text, and they have to do with the different components, not with any
RN-specific thing. If you write a snapshot test for the <CountrySelect> component, you'll
find exactly the same result: the only necessary changes have to do with its new props
(deviceData, currentCountry), but pose no other difficulty.

For variety, let's add snapshot testing to our <Main> component. We'll have two interesting
details here:

Since our component rendered itself differently in portrait or landscape mode,
we should have two tests; and
As the component includes connected components, we must not forget to add a
<Provider> component, lest the connections cannot be made.

The code would be as follows; in particular, notice the varying device data, and the
<Provider> inclusion:

// Source file: src/regionsStyledApp/main.snapshot.test.js

/* @flow */

import React from "react";
import { Provider } from "react-redux";
import TestRenderer from "react-test-renderer";

import { Main } from "./main.component";
import { store } from "./store";

const fakeDeviceData = {
 isTablet: false,

Testing and Debugging Your Mobile App Chapter 12

[541]

 isPortrait: true,
 height: 1000,
 width: 720,
 scale: 1,
 fontScale: 1
};

describe("Main component", () => {
 it("renders in portrait mode", () => {
 const tree = TestRenderer.create(
 <Provider store={store}>
 <Main
 deviceData={{ ...fakeDeviceData, isPortrait: true }}
 />
 </Provider>
).toJSON();
 expect(tree).toMatchSnapshot();
 });

 it("renders in landscape mode", () => {
 const tree = TestRenderer.create(
 <Provider store={store}>
 <Main
 deviceData={{ ...fakeDeviceData, isPortrait: false }}
 />
 </Provider>
).toJSON();
 expect(tree).toMatchSnapshot();
 });
});

How it works...
Since all our snapshot tests' filenames end with .snapshot.js, we can run all the snapshot
tests with a single command:

npm test snapshot

Testing and Debugging Your Mobile App Chapter 12

[542]

The first time you run the tests, as before, the snapshots will be created:

As with React, the first run will create snapshots for components

If we check the __snapshots__ directory, we will find the three produced .snap files
within. Their format is the same as with the React examples that we developed earlier.
Let's just have a look at the <RegionsTable> one, which we showed earlier:

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`RegionsTable renders correctly a list 1`] = `
<RCTScrollView
 style={
 Array [
 undefined,
 Object {
 "backgroundColor": "lightgray",
 },
]
 }
>
 <View>
 <View>
 <Text
 accessible={true}

Testing and Debugging Your Mobile App Chapter 12

[543]

 allowFontScaling={true}
 ellipsizeMode="tail"
 >
 Cerro Largo
 </Text>
 </View>
 <View>
 <Text
 accessible={true}
 allowFontScaling={true}
 ellipsizeMode="tail"
 >
 Maldonado
 </Text>
 </View>
 <View>
 <Text
 accessible={true}
 allowFontScaling={true}
 ellipsizeMode="tail"
 >
 Montevideo
 </Text>
 </View>
 </View>
</RCTScrollView>
`;

exports[`RegionsTable renders correctly an empty list 1`] = `
<View
 style={undefined}
>
 <Text
 accessible={true}
 allowFontScaling={true}
 ellipsizeMode="tail"
 >
 No regions.
 </Text>
</View>
`;

Testing and Debugging Your Mobile App Chapter 12

[544]

If in the future you run the tests again and nothing has been changed, then the results will
be three PASS green messages:

Our snapshot tests were all successful

Everything is working fine, so we can aver that writing snapshot tests doesn't add any
complications to RN testing, and can be carried out without difficulty.

Measuring test coverage
In the same way we did for Node and React, back in Chapter 5, Testing and Debugging Your
Server, and Chapter 10, Testing Your Application, we would like to have a measure of the
coverage of our tests to see how thorough we have been, and to be able to detect pieces of
code that need more work. Fortunately, we'll be able to manage with the same tools that we
did before, so this recipe will prove easy to implement.

How to do it...
The setup for the application done by CRAN included Jest, as we saw, and Jest provides
us with the coverage option we need. To start, we'll have to add a simple script, to run our
suite of tests with a couple of extra parameters:

"scripts": {
 .
 .
 .

Testing and Debugging Your Mobile App Chapter 12

[545]

 "test": "jest",
 "coverage": "jest --coverage --no-cache",
},

That's all, we don't have anything else to do; let's just see it work!

How it works...
Running the tests is simple; we just have to use the new script:

npm run coverage

All of the suite will be run in the same fashion as in the previous sections of this chapter,
but at the end, a text summary will be produced. As earlier, colors will be used: green for
well-covered (in terms of testing) source files, yellow for intermediate coverage, and red for
low or no coverage:

Running Jest with the coverage option enabled produces the same type of result we saw for Node and React

Testing and Debugging Your Mobile App Chapter 12

[546]

We can also examine the HTML-produced files, which can be found at /coverage/lcov-
report. Open the index.html file there, and you'll get an interactive version of the report,
as in the following screenshot:

The produced HTML report is interactive, and lets you see what you missed in your tests

Testing and Debugging Your Mobile App Chapter 12

[547]

For example, if you wondered why the deviceHandler.component.js file got such a low
value (and never mind that you didn't write a test for it; all code should be covered, if
possible), you can click on it and see the reason. In our case, the onLayoutHandler code
was (logically) never called, thus lowering the coverage for the file:

Clicking on a file shows what lines were executed and which ones (red background) were missed

To see some ways to disable reporting lines that aren't covered, or for
cases you don't want to consider, look at https:/ ​/ ​github. ​com/
gotwarlost/ ​istanbul/ ​blob/​master/ ​ignoring- ​code- ​for-​coverage. ​md.

https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md
https://github.com/gotwarlost/istanbul/blob/master/ignoring-code-for-coverage.md

Testing and Debugging Your Mobile App Chapter 12

[548]

Using Storybook to preview components
Storybook, our React tool from the Simplifying component development with Storybook
section of Chapter 6, Developing with React, can also be used to help with the development
of components, so in this recipe, let's look at how to use it in order to simplify our work.

Getting ready
Installing Storybook is simple, and similar to what we did before; the react-native-
storybook-loader package will let us place our *.story.js files wherever we want,
and find them anyway. The second command will take a while, installing many packages;
be warned! Also, a storybook directory will be created, at the root of your directory.
Install Storybook with the following command:

npm install @storybook/cli react-native-storybook-loader --save-dev
npx storybook init

The storybook/Stories directory can be safely deleted, as we'll place
our stories elsewhere, along with the components being demonstrated, as
we did earlier in this book.

Running Storybook within an RN app created with CRNA requires an extra step:
providing an appropriate App.js file. The simplest way to achieve this is with a one-liner
file:

export default from './storybook';

However, this is a problem—how will you run your app? You could, of course, have two
different App.storybook.js and App.standard.js files, and copy one or another
to App.js, but that would quickly become boring if done manually. Of course, you could
make do with some npm scripts. The following would work for Linux or macOS machines
by using the cp command to copy files, but would require small changes for Windows
devices:

"scripts": {
 "start": "cp App.standard.js App.js && react-native-scripts start",
 .
 .
 .
 "storybook": "cp App.storybook.js App.js && rnstl && storybook start -p
7007"
},

Testing and Debugging Your Mobile App Chapter 12

[549]

We'll also need to add some configuration for the loader in package.json. The following
makes the loader look for *.story.js files in the ./src directory, and generates a
storyLoader.js file with the found stories:

"config": {
 "react-native-storybook-loader": {
 "searchDir": [
 "./src"
],
 "pattern": "**/*.story.js",
 "outputFile": "./storybook/storyLoader.js"
 }
},

Finally, we'll have to modify storybook/index.js, as follows:

import { getStorybookUI, configure } from "@storybook/react-native";

import { loadStories } from "./storyLoader";

configure(loadStories, module);
const StorybookUI = getStorybookUI({ port: 7007, onDeviceUI: true });

export default StorybookUI;

We are now set; let's write some stories!

Check https:/ ​/ ​github. ​com/ ​storybooks/ ​storybook/ ​tree/ ​master/ ​app/
react- ​native for more documentation on Storybook for RN,
and https:/ ​/​github. ​com/ ​elderfo/ ​react- ​native- ​storybook- ​loader for
details on the loader we are using.

How to do it...
Let's write some stories. We can start with the <RegionsTable> component, which is quite
simple: it doesn't include any actions, and just displays data. We can write two cases: when
an empty list of regions is provided, and when a non-empty one is given. We don't have to
think too much about the needed fake data, because we can reuse what we wrote for our
unit tests! Consider the following code:

// Source file: src/regionsStyledApp/regionsTable.story.js

/* @flow */

import React from "react";

https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/storybooks/storybook/tree/master/app/react-native
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader
https://github.com/elderfo/react-native-storybook-loader

Testing and Debugging Your Mobile App Chapter 12

[550]

import { storiesOf } from "@storybook/react-native";

import { Centered } from "../../storybook/centered";
import { RegionsTable } from "./regionsTable.component";

const fakeDeviceData = {
 isTablet: false,
 isPortrait: true,
 height: 1000,
 width: 720,
 scale: 1,
 fontScale: 1
};

storiesOf("RegionsTable", module)
 .addDecorator(getStory => <Centered>{getStory()}</Centered>)
 .add("with no regions", () => (
 <RegionsTable deviceData={fakeDeviceData} list={[]} />
))
 .add("with some regions", () => (
 <RegionsTable
 deviceData={fakeDeviceData}
 list={[
 {
 countryCode: "UY",
 regionCode: "10",
 regionName: "Montevideo"
 },
 {
 countryCode: "UY",
 regionCode: "9",
 regionName: "Maldonado"
 },
 {
 countryCode: "UY",
 regionCode: "5",
 regionName: "Cerro Largo"
 }
]}
 />
));

Adding a decorator to center the displayed component is just for clarity: the
necessary <Centered> code is simple, and needs a little of the styling we saw in the
previous chapter:

// Source file: storybook/centered.js

Testing and Debugging Your Mobile App Chapter 12

[551]

/* @flow */

import React from "react";
import { View, StyleSheet } from "react-native";
import PropTypes from "prop-types";

const centerColor = "white";
const styles = StyleSheet.create({
 centered: {
 flex: 1,
 backgroundColor: centerColor,
 alignItems: "center",
 justifyContent: "center"
 }
});

export class Centered extends React.Component<{ children: node }> {
 static propTypes = {
 children: PropTypes.node.isRequired
 };

 render() {
 return <View style={styles.centered}>{this.props.children}</View>;
 }
}

Now, setting up stories for <CountrySelect> is more interesting, because we have
actions. We'll provide two to the component: one when the user clicks on it to select a
country, and an other for the getCountries() callback that the component will use to get
the list of countries:

// Source file: src/regionsStyledApp/countrySelect.story.js

/* @flow */

import React from "react";
import { storiesOf } from "@storybook/react-native";
import { action } from "@storybook/addon-actions";

import { Centered } from "../../storybook/centered";
import { CountrySelect } from "./countrySelect.component";

const fakeDeviceData = {
 isTablet: false,
 isPortrait: true,
 height: 1000,
 width: 720,
 scale: 1,

Testing and Debugging Your Mobile App Chapter 12

[552]

 fontScale: 1
};

storiesOf("CountrySelect", module)
 .addDecorator(getStory => <Centered>{getStory()}</Centered>)
 .add("with no countries yet", () => (
 <CountrySelect
 deviceData={fakeDeviceData}
 loading={true}
 currentCountry={""}
 onSelect={action("click:country")}
 getCountries={action("call:getCountries")}
 list={[]}
 />
))
 .add("with three countries", () => (
 <CountrySelect
 deviceData={fakeDeviceData}
 currentCountry={""}
 loading={false}
 onSelect={action("click:country")}
 getCountries={action("call:getCountries")}
 list={[
 {
 countryCode: "UY",
 countryName: "Uruguay"
 },
 {
 countryCode: "AR",
 countryName: "Argentina"
 },
 {
 countryCode: "BR",
 countryName: "Brazil"
 }
]}
 />
));

We are all set now; let's see how this works.

Testing and Debugging Your Mobile App Chapter 12

[553]

How it works...
To view the Storybook app, we need to use the script we edited in the preceding section.
Start by running the storybook script (it would be better to do this in a separate console)
and then run the application itself, as follows:

// at one terminal
npm run storybook

// and at another terminal
npm start

The first command produces a bit of output, allowing us to confirm that our script works
and that all our stories were found. The following code was slightly edited for clarity:

> npm run storybook

> chapter12b@0.1.0 storybook /home/fkereki/JS_BOOK/modernjs/chapter12
> cp App.storybook.js App.js && rnstl && storybook start -p 7007

Generating Dynamic Storybook File List

Output file:
/home/fkereki/JS_BOOK/modernjs/chapter12/storybook/storyLoader.js
Patterns: ["/home/fkereki/JS_BOOK/modernjs/chapter12/src/**/*.story.js"]
Located 2 files matching pattern
'/home/fkereki/JS_BOOK/modernjs/chapter12/src/**/*.story.js'
Compiled story loader for 2 files:
/home/fkereki/JS_BOOK/modernjs/chapter12/src/regionsStyledApp/countrySelect
.story.js
/home/fkereki/JS_BOOK/modernjs/chapter12/src/regionsStyledApp/regionsTable.
story.js
=> Loading custom .babelrc from project directory.
=> Loading custom addons config.
=> Using default webpack setup based on "Create React App".
Scanning 1424 folders for symlinks in
/home/fkereki/JS_BOOK/modernjs/chapter12/node_modules (18ms)

RN Storybook started on => http://localhost:7007/

Scanning folders for symlinks in
/home/fkereki/JS_BOOK/modernjs/chapter12/node_modules (27ms)

+--+
| |
| Running Metro Bundler on port 8081. |
| |

Testing and Debugging Your Mobile App Chapter 12

[554]

| Keep Metro running while developing on any JS projects. Feel free to |
| close this tab and run your own Metro instance if you prefer. |
| |
| https://github.com/facebook/react-native |
| |
+--+

Looking for JS files in
 /home/fkereki/JS_BOOK/modernjs/chapter12/storybook
 /home/fkereki/JS_BOOK/modernjs/chapter12
 /home/fkereki/JS_BOOK/modernjs/chapter12

Metro Bundler ready.

webpack built bab22529b80fbd1ce576 in 2918ms
Loading dependency graph, done.

We can open the browser and get a view quite similar to the one we got for the web apps
and React:

You can select stories in the sidebar, and the app will show them

Testing and Debugging Your Mobile App Chapter 12

[555]

If you select a story in the menu, the app will show it, as follows:

The app shows the story you picked in the browser

Testing and Debugging Your Mobile App Chapter 12

[556]

You can also select which story to show in the app itself by pressing the hamburger menu
at the top left of the preceding screenshot. The resulting selection menu is shown as
follows:

The app also lets you select what story to show

Testing and Debugging Your Mobile App Chapter 12

[557]

Finally, you can see the actions in the browser. Let's imagine you open the story for the
country list with three countries:

The country selector lets you interact with actions

Testing and Debugging Your Mobile App Chapter 12

[558]

If you click on Brazil, the browser will show the fired actions. First, we can
see call:getCountries when the getCountries() callback is called, and then
click:country when you click on an option:

As with web apps, you can interact with stories and see what actions were called with which parameters

So, we've seen that adding stories is practically the same as for the web, and you get an
extra tool to help in development—you should take this into account.

Testing and Debugging Your Mobile App Chapter 12

[559]

Debugging your app with react-native-
debugger
Debugging a RN app is harder than working with a web app, because everything you want
to do is done remotely; you cannot just run a fully powered debugger in your mobile
device. There are several tools that can help you out with this, and in this section, we'll
consider a "catch-all" tool, react-native-debugger, that includes a powerful trio of
utilities, with which most (if not all) of your requirements should be fulfilled.

The basic tools you'll require for thorough debugging (and we already met them earlier)
would be the following:

Chrome Developer Tools, at https:/ ​/​developers. ​google. ​com/ ​web/​tools/
chrome-​devtools/ ​, for access to the console and more
React devtools (in its standalone version) at https:/ ​/​github. ​com/​facebook/
react-​devtools, for dealing with components
The Redux DevTools extension, at https:/ ​/​github. ​com/ ​zalmoxisus/ ​redux-
devtools- ​extension, for inspecting actions and state

You could, of course, install each of them separately, and work with the trio, but having all
of them together is undoubtedly simpler, so we'll follow that track. So, let's get on with
debugging our code in this recipe!

You can read about the basics of RN debugging at http:/ ​/​facebook.
github. ​io/ ​react- ​native/ ​docs/ ​debugging, and study react-native-
debugger at https:/ ​/ ​github. ​com/ ​jhen0409/ ​react- ​native- ​debugger.

Getting started
We'll have to install several packages in order to get everything to work. First, just
get the react-native-debugger executable from its releases page at https:/ ​/ ​github.
com/​jhen0409/​react- ​native- ​debugger/ ​releases. Installation is just a matter of unzipping
the file you downloaded; execution simply requires running the executable within the
unzipped directory.

https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
http://facebook.github.io/react-native/docs/debugging
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases
https://github.com/jhen0409/react-native-debugger/releases

Testing and Debugging Your Mobile App Chapter 12

[560]

We'll require a couple of packages in order to connect our app, which be get by running
either on a simulator or on an actual device, with react-native-debugger. Let's install
these with the following command:

npm install react-devtools remote-redux-devtools --save-dev

We now have everything we need. Let's look at a few details on integrating the tools
(mostly, the Redux debugger) with our app, and we'll be ready to start debugging.

How to do it...
Let's look at how to set up our app so that we can use our debugging tools. To start with,
we'll require a simple change in the store creation code, adding a couple of lines, as shown
here:

// Source file: src/regionsStyledApp/store.js

/* @flow */

import { createStore, applyMiddleware } from "redux";
import thunk from "redux-thunk";
import { composeWithDevTools } from "redux-devtools-extension";

import { reducer } from "./world.reducer";

export const store = createStore(
 reducer,
 composeWithDevTools(applyMiddleware(thunk))
);

Just for the sake of it—so that we can actually get some debugging messages – I added
sundry console.log() and console.error() calls throughout the code. For
consistency, I wanted to use debug (from https:/ ​/​www. ​npmjs. ​com/ ​package/ ​debug), as we
did earlier in the book, but it won't work, because it requires LocalStorage, and in RN
you get AsyncStorage instead, with a different API. Just as an example, we'll look at some
log output from world.actions.js. I didn't bother logging the output from successful
API calls, because we'll be getting that through react-native-debugger, as we'll see:

// Source file: src/regionsStyledApp/world.actions.js

.

.

.

https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug
https://www.npmjs.com/package/debug

Testing and Debugging Your Mobile App Chapter 12

[561]

export const getCountries = () => async dispatch => {
 console.log("getCountries: called");
 try {
 dispatch(countriesRequest());
 const result = await getCountriesAPI();
 dispatch(countriesSuccess(result.data));
 } catch (e) {
 console.error("getCountries: failure!");
 dispatch(countriesFailure());
 }
};

export const getRegions = (country: string) => async dispatch => {
 console.log("getRegions: called with ", country);
 if (country) {
 try {
 dispatch(regionsRequest(country));
 const result = await getRegionsAPI(country);
 dispatch(regionsSuccess(result.data));
 } catch (e) {
 console.error("getRegions: failure with API!");
 dispatch(regionsFailure());
 }
 } else {
 console.error("getRegions: failure, no country!");
 dispatch(regionsFailure());
 }
};

We have everything in place; let's try it out.

How it works...
First, run your app with the following command:

npm start

Testing and Debugging Your Mobile App Chapter 12

[562]

On your device (whether real or emulated), access the developer menu by shaking (on an
actual device) or using command + m for macOS or Ctrl + M for Windows or Linux. At the
very least, you want to enable remote JS debugging:

Using the device's developer menu to enable remote JS debugging

Testing and Debugging Your Mobile App Chapter 12

[563]

Now, open the react-native-debugger app by clicking on the executable you
downloaded. If nothing happens, even after reloading the app, then the problem is surely
due to a different port being set: in the menu, select Debugger, then New Window, and
pick port 19001, and everything should be fine. When you start the app, it should look like
the following screenshot. Notice all our logs on the right of the screen, the first Redux
actions in the top left, and the React tools in the bottom left (and if you don't care for some
of these tools, right-click on the screen to hide any of the three):

Upon successful connection, you'll see the three tools in react-native-debugger running at once

Testing and Debugging Your Mobile App Chapter 12

[564]

If you check the Network tab, you'll see that the API calls from the app don't appear by
default. There's a simple workaround for this: right-click on react-native-debugger,
choose Enable network inspection, then right-click on the Chrome Developer tools and
select Log XMLHttpRequests, and all calls will appear:

API calls are not displayed by default, but can be enabled by right-clicking on the react-native-debugger screen

Testing and Debugging Your Mobile App Chapter 12

[565]

You can also inspect AsyncStorage—see the following screenshot. I opted to hide React
and Redux DevTools, as I mentioned previously, just for clarity. Since our app doesn't
actually use AsyncStorage, I fudged it a bit: note that you can use
a require() function on any module, and then use it directly:

Examining AsyncStorage with the RN debugger

What else can we say? Not much, actually, since these tools are basically the same that we
saw when using React for the web. The interesting detail here is that you get all of them
together, instead of having to deal with many separate windows. Let's finish this chapter by
considering an alternate tool, which you might just happen to prefer.

Testing and Debugging Your Mobile App Chapter 12

[566]

Debugging in an alternate way with
Reactotron
While it's possible that react-native-debugger will work for most of your needs, there's
another package that, while coinciding with many features, also adds some new ones, or at
least give a twist to old ones: Reactotron. This tool can also work with plain React, but I
opted to show it here with RN, because it's more likely you'll require it. After all, React
tools for the web are easy to use without any undue complications, while RN debugging is,
as we've seen, a bit more of a challenge. Reactotron is said to be more efficient than react-
native-debugger, but I won't attest to that: check it out, and be aware that Your mileage
may vary (YMMV). Let's finish this chapter with a recipe to demonstrate this alternative
way of debugging.

Getting ready
We'll need a pair of packages: the basic Reactotron one, along with reactotron-redux to
help with Redux. Install them with the following command:

npm install reactotron-react-native reactotron-redux --save-dev

Reactotron can work with redux-sagas instead of redux-thunk, and
even with MobX, instead of Redux. Read more about this at https:/ ​/
github. ​com/ ​infinitered/ ​reactotron.

You'll also require the native executable tool that connects to your app. Go to the releases
page at https:/​/ ​github. ​com/ ​infinitered/ ​reactotron/ ​releases and get the package that
matches your environment: in my particular case, I just downloaded and unzipped the
Reactotron-linux-x64.zip file. For macOS users, there is another possibility: check
out https:/​/​github. ​com/ ​infinitered/ ​reactotron/ ​blob/ ​master/ ​docs/ ​installing. ​md.

After installing all of this, we are ready to prepare our app; let's do so now!

https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron/releases
https://github.com/infinitered/reactotron/releases
https://github.com/infinitered/reactotron/releases
https://github.com/infinitered/reactotron/releases
https://github.com/infinitered/reactotron/releases
https://github.com/infinitered/reactotron/releases
https://github.com/infinitered/reactotron/releases
https://github.com/infinitered/reactotron/releases
https://github.com/infinitered/reactotron/releases
https://github.com/infinitered/reactotron/releases
https://github.com/infinitered/reactotron/releases
https://github.com/infinitered/reactotron/releases
https://github.com/infinitered/reactotron/releases
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md
https://github.com/infinitered/reactotron/blob/master/docs/installing.md

Testing and Debugging Your Mobile App Chapter 12

[567]

How to do it...
It's a fact that you can use both Reactotron and react-native-debugger at the same time,
but in order to avoid mixing things up, let's have a separate App.reactotron.js file and a
few other changes. We have to follow a few simple steps. First, let's begin by adding a new
script to package.json in order to enable running our app with Reactotron:

 "scripts": {
 "start": "cp App.standard.js App.js && react-native-scripts start",
 "start-reactotron": "cp App.reactotron.js App.js && react-native-
scripts start",
 .
 .
 .

Second, let's configure the connection and plugins. We'll create a reactotronConfig.js
file to establish the connection with Reactotron:

// Source file: reactotronConfig.js

/* @flow */

import Reactotron from "reactotron-react-native";
import { reactotronRedux } from "reactotron-redux";

const reactotron = Reactotron.configure({
 port: 9090,
 host: "192.168.1.200"
})
 .useReactNative({
 networking: {
 ignoreUrls: /\/logs$/
 }
 })
 .use(
 reactotronRedux({
 isActionImportant: action => action.type.includes("success")
 })
)
 .connect();

Reactotron.log("A knick-knack is a thing that sits on top of a whatnot");
Reactotron.warn("If you must make a noise, make it quietly");
Reactotron.error("Another nice mess you've gotten me into.");

export default reactotron;

Testing and Debugging Your Mobile App Chapter 12

[568]

Here are a few details about some of the values and options in the previous code snippet:

192.168.1.200 is the IP for my machine, and 9090 is the suggested port to use.
The ignoreUrls option for networking gets rid of some calls made by Expo, but
not our own code, making for a clearer session.
The isActionImportant function lets you highlight some actions so that they
will be more noticeable. In our case, I opted to pick out the countries:success
and regions:success actions, both of which include "success" in their types,
but of course, you could select any others as well.

Reactotron also includes logging functions, so I added three (useless!) calls just to see
how they appear in our debugging. I didn't want to show all the logging we added, but you
would probably want to use the following commands so all your logging will go to
Reactotron instead:

console.log = Reactotron.log;
console.warn = Reactotron.warn;
console.error = Reactotron.error;

Now, we have to adapt our store so that it will work with the reactotron-redux plugin. I
opted to make a copy of store.js, called store.reactotron.js, with the following
necessary changes:

// Source file: src/regionsStyledApp/store.reactotron.js

/* @flow */

import { AsyncStorage } from "react-native";
import { applyMiddleware } from "redux";
import thunk from "redux-thunk";
import reactotron from "../../reactotronConfig";

import { reducer } from "./world.reducer";

export const store = reactotron.createStore(
 reducer,
 applyMiddleware(thunk)
);

// continues...

Just for variety, and to be able to see how Reactotron handles AsyncStorage, I added a
few (totally useless!) lines to set a few items:

// ...continued

Testing and Debugging Your Mobile App Chapter 12

[569]

(async () => {
 try {
 await AsyncStorage.setItem("First", "Federico");
 await AsyncStorage.setItem("Last", "Kereki");
 await AsyncStorage.setItem("Date", "Sept.22nd");
 await AsyncStorage.getItem("Last");
 } catch (e) {
 }
})();

Next, let's make some changes to our App.js file. These changes are minor: simply include
the configuration file, and use the store I just adapted:

// Source file: App.reactotron.js

/* @flow */

import React from "react";
import { Provider } from "react-redux";

import "./reactotronConfig";

import { store } from "./src/regionsStyledApp/store.reactotron";
import { ConnectedMain } from "./src/regionsStyledApp/main.connected";

export default class App extends React.PureComponent<> {
 render() {
 return (
 <Provider store={store}>
 <ConnectedMain />
 </Provider>
);
 }
}

Now, we're ready; let's see it work!

For full documentation on Reactotron, check out the developers' web
page at https:/ ​/​github. ​com/ ​infinitered/ ​reactotron. Reactotron
includes more plugins that can help you when working with Redux or
Storybook to do benchmarking of slow functions, or to log messages, so
you may find many things of interest there.

https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron
https://github.com/infinitered/reactotron

Testing and Debugging Your Mobile App Chapter 12

[570]

How it works...
To use Reactotron, just start it (double-clicking should do the job) and you'll get the initial
screen shown in the following screenshot. The tool will just wait for your app to connect;
sometimes, it may take more than one attempt to get the initial connection started, but after
that, things should move along swimmingly:

The initial screen for Reactotron shows it waiting for connections

Testing and Debugging Your Mobile App Chapter 12

[571]

After you start the application, you will see that it made a connection. Reactotron shows
some details: for example, the device is on Android, running version 8.1.0, and we can also
see the size and scale of the device. See the following screenshot:

After a connection is made, you can see the details about the device

Testing and Debugging Your Mobile App Chapter 12

[572]

When the app starts, we get something like the following screenshot. Notice the highlighted
action (countries:success), the ASYNC STORAGE logs, and the three lines from old
movies that we added (trivia time, for movie buffs: who said those three lines?):

When our app starts to run, we get all these debugging texts in the Reactotron window

Testing and Debugging Your Mobile App Chapter 12

[573]

We can also see the state of the Redux store—see the following screenshot. I
inspected deviceData and one of the countries:

You can examine the Redux store to see what was put in it

Testing and Debugging Your Mobile App Chapter 12

[574]

Finally, I select Austria in the app. We can examine the API call that went out, and also the
action that was dispatched afterwards; see the following screenshot:

The results of selecting Austria in our app: we can examine the API call and the Redux actions as well. Here, we see the
nine regions of Austria, and the details for the fifth one, Salzburg, of Mozart fame

Reactotron has, as we said, some different features, and for some purposes, it may suit
you better than react-native-debugger, so it's a worthwhile inclusion in your arsenal of
debugger tools.

13
Creating a Desktop Application

with Electron
We will look at the following recipes:

Setting up Electron with React
Adding Node functionality to your app
Building a more windowy experience
Testing and debugging your app
Making a distributable package

Introduction
In the previous chapters, we used Node to set up servers, and React to create web pages. In
this chapter, we'll bring both together, adding another tool called Electron, and we'll see
how we can use JS to write desktop apps that work exactly like any native executable app.

Setting up Electron with React
Electron is an open source framework, created by GitHub, that lets you develop desktop
executables that bring together Node and Chrome to provide a full GUI experience.
Electron has been used for several well-known projects, including developer tools such as
Visual Studio Code, Atom, and Light Table. Basically, you can define the UI with HTML,
CSS, and JS (or using React, as we'll be doing), but you can also use all of the packages and
functions in Node, so you won't be limited to a sandboxed experience, being able to go
beyond what you could do with just a browser.

Creating a Desktop Application with Electron Chapter 13

[576]

You may also want to read about Progressive Web Apps (PWA) which
are web apps that can be "installed" at your machine, very much like they
were native apps. These apps are launched as any other app, and run in a
common app window, without tabs or a URL bar as a browser would
show. PWAs may not (yet?) have access to full desktop functionality, but
for many cases they may be more than enough. Read more about PWAs
at https:/ ​/ ​developers. ​google. ​com/ ​web/ ​progressive- ​web- ​apps/ ​.

How to do it...
For now, in this recipe, let's first install Electron, and then in the later recipes, we'll see
how we can turn one of our React apps into a desktop program.

I started out with a copy of the repository from Chapter 8, Expanding Your Application, to
get the countries and regions app, the same we also used for an RN example. It just so
happens that you can work perfectly well with Electron with a CRA-built app, without
even needing to eject it, so that's what we'll do here. First, we need to install the basic
Electron package, so in the same directory where we wrote our React app, we'll execute
the following command:

npm install electron --save-dev

Then, we'll need a starter JS file. Taking some tips from the main.js file at https:/ ​/
github.​com/​electron/ ​electron- ​quick- ​start, we'll create the following electron-
start.js file:

// Source file: electron-start.js

/* @flow */

const { app, BrowserWindow } = require("electron");

let mainWindow;

const createWindow = () => {
 mainWindow = new BrowserWindow({
 height: 768,
 width: 1024
 });
 mainWindow.loadURL("http://localhost:3000");
 mainWindow.on("closed", () => {
 mainWindow = null;
 });
};

https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://github.com/electron/electron-quick-start
https://github.com/electron/electron-quick-start
https://github.com/electron/electron-quick-start
https://github.com/electron/electron-quick-start
https://github.com/electron/electron-quick-start
https://github.com/electron/electron-quick-start
https://github.com/electron/electron-quick-start
https://github.com/electron/electron-quick-start
https://github.com/electron/electron-quick-start
https://github.com/electron/electron-quick-start
https://github.com/electron/electron-quick-start
https://github.com/electron/electron-quick-start
https://github.com/electron/electron-quick-start
https://github.com/electron/electron-quick-start

Creating a Desktop Application with Electron Chapter 13

[577]

app.on("ready", createWindow);

app.on("activate", () => mainWindow === null && createWindow());

app.on(
 "window-all-closed",
 () => process.platform !== "darwin" && app.quit()
);

Here are some points to note regarding the preceding code snippet:

This code runs in Node, so we are using require() instead of import
The mainWindow variable will point to the browser instance where our code will
run
We'll start by running our React app, so Electron will be able to load the code
from http:/ ​/ ​localhost:3000

In our code, we also have to process the following events:

"ready" is called when Electron has finished its initialization, and can start
creating windows.
"closed" means your window was closed; your app might have several
windows open, so at this point you should delete the closed one.
"window-all-closed" implies your whole app was closed. In Windows and
Linux, this means quitting, but for macOS, you don't usually quit applications,
because of Apple' s usual rules.
"activate" is called when your app is reactivated, so if the window had been
deleted (as in Windows or Linux), you have to create it again.

The complete list of events that Electron can emit is at https:/ ​/​github.
com/​electron/ ​electron/ ​blob/ ​master/ ​docs/ ​api/ ​app. ​md; check it out.

We already have our React app in place, so we just need a way to call Electron. Add the
following script to package.json, and you'll be ready:

 "scripts": {
 "electron": "electron .",
 .
 .
 .

https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md
https://github.com/electron/electron/blob/master/docs/api/app.md

Creating a Desktop Application with Electron Chapter 13

[578]

We are set; let's see how it all comes together.

How it works...
To run the Electron app in development mode (we'll get on to creating an executable file
later), we have to do the following:

Run our restful_server_cors server code from Chapter 4, Implementing1.
RESTful Services with Node.
Start the React app, which requires the server to be running.2.
Wait until it's loaded, and then and only then, move on to the next step.3.
Start Electron.4.

So, basically, you'll have to run the two following commands, but you'll need to do so in
separate terminals, and you'll also have to wait for the React app to show up in the
browser before starting Electron:

// in the directory for our restful server:
node out/restful_server_cors.js

// in the React app directory:
npm start

// and after the React app is running, in other terminal:
npm run electron

After starting Electron, a screen quickly comes up, and we again find our countries and
regions app, now running independently of a browser. See the following screenshot—note
that I resized the window from its 1024 × 768 size:

Our app, running as an independent executable

Creating a Desktop Application with Electron Chapter 13

[579]

The app works as always; as an example, I selected a country, Canada, and correctly got its
list of regions:

The app works as before; pick a country, and a call to our RESTful server will get its regions

We are done! You can see that everything is interconnected, as before, in the sense that if
you make any changes to the React source code, they will be instantly reflected in the
Electron app.

So far, we have seen that we can make an executable out of a web page; let's now see how
to make it more powerful.

Adding Node functionality to your app
In the previous recipe, we saw that with just a few small configuration changes, we can
turn our web page into an application. However, you're still restricted in terms of what you
can do, because you are still using only those features available in a sandboxed browser
window. You don't have to think this way, for you can add basically all Node functionality
using functions that let you go beyond the limits of the web. Let's see how to do it in this
recipe.

Creating a Desktop Application with Electron Chapter 13

[580]

How to do it...
We want to add some functionality to our app of the kind that a typical desktop would
have. Let's see how can we do that. The key to adding Node functions to your app is to use
the remote module in Electron. With it, your browser code can invoke methods of the
main process, and thus gain access to extra functionality.

See https:/ ​/​github. ​com/ ​electron/ ​electron/ ​blob/ ​master/ ​docs/ ​api/
remote. ​md for more on the remote module. There is also extra information
that might come in handy at https:/ ​/​electronjs. ​org/ ​docs/ ​api/ ​remote.

Let's say we wanted to add the possibility of saving the list of a country's regions to a file.
We'd require access to the fs module to be able to write a file, and we'd also need to open a
dialog box to select what file to write to. In our serviceApi.js file, we would add the
following functions:

// Source file: src/regionsApp/serviceApi.js

/* @flow */

const electron = window.require("electron").remote;

.

.

.

const fs = electron.require("fs");

export const writeFile = fs.writeFile.bind(fs);

export const showSaveDialog = electron.dialog.showSaveDialog;

Having added this, we can now write files and show dialog boxes from our main code. To
use this functionality, we could add a new action to our world.actions.js file:

// Source file: src/regionsApp/world.actions.js

/* @flow */

import {
 getCountriesAPI,
 getRegionsAPI,
 showSaveDialog,
 writeFile
} from "./serviceApi";

https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://github.com/electron/electron/blob/master/docs/api/remote.md
https://electronjs.org/docs/api/remote
https://electronjs.org/docs/api/remote
https://electronjs.org/docs/api/remote
https://electronjs.org/docs/api/remote
https://electronjs.org/docs/api/remote
https://electronjs.org/docs/api/remote
https://electronjs.org/docs/api/remote
https://electronjs.org/docs/api/remote
https://electronjs.org/docs/api/remote
https://electronjs.org/docs/api/remote
https://electronjs.org/docs/api/remote
https://electronjs.org/docs/api/remote
https://electronjs.org/docs/api/remote

Creating a Desktop Application with Electron Chapter 13

[581]

.

.

.

export const saveRegionsToDisk = () => async (
 dispatch: ({}) => any,
 getState: () => { regions: [] }
) => {
 showSaveDialog((filename: string = "") => {
 if (filename) {
 writeFile(filename, JSON.stringify(getState().regions), e =>
 e && window.console.log(`ERROR SAVING ${filename}`, e);
);
 }
 });
};

When the saveRegionsToDisk() action is dispatched, it will show a dialog to prompt the
user to select what file is to be written, and will then write the current set of regions, taken
from getState().regions, to the selected file in JSON format. We just have to add the
appropriate button to our <RegionsTable> component to be able to dispatch the necessary
action:

// Source file: src/regionsApp/regionsTableWithSave.component.js

/* @flow */

import React from "react";
import PropTypes from "prop-types";

import "../general.css";

export class RegionsTable extends React.PureComponent<{
 loading: boolean,
 list: Array<{
 countryCode: string,
 regionCode: string,
 regionName: string
 }>,
 saveRegions: () => void
}> {
 static propTypes = {
 loading: PropTypes.bool.isRequired,
 list: PropTypes.arrayOf(PropTypes.object).isRequired,
 saveRegions: PropTypes.func.isRequired
 };

Creating a Desktop Application with Electron Chapter 13

[582]

 static defaultProps = {
 list: []
 };

 render() {
 if (this.props.list.length === 0) {
 return <div className="bordered">No regions.</div>;
 } else {
 const ordered = [...this.props.list].sort(
 (a, b) => (a.regionName < b.regionName ? -1 : 1)
);

 return (
 <div className="bordered">
 {ordered.map(x => (
 <div key={x.countryCode + "-" + x.regionCode}>
 {x.regionName}
 </div>
))}
 <div>
 <button onClick={() => this.props.saveRegions()}>
 Save regions to disk
 </button>
 </div>
 </div>
);
 }
 }
}

We are almost done! When we connect this component to the store, we'll simply add the
new action, as follows:

// Source file: src/regionsApp/regionsTableWithSave.connected.js

/* @flow */

import { connect } from "react-redux";

import { RegionsTable } from "./regionsTableWithSave.component";

import { saveRegionsToDisk } from "./world.actions";

const getProps = state => ({
 list: state.regions,
 loading: state.loadingRegions
});

Creating a Desktop Application with Electron Chapter 13

[583]

const getDispatch = (dispatch: any) => ({
 saveRegions: () => dispatch(saveRegionsToDisk())
});

export const ConnectedRegionsTable = connect(
 getProps,
 getDispatch
)(RegionsTable);

Now, everything's ready—let's see it working.

How it works...
The code we added showed how we could gain access to a Node package (fs, in our case)
and some extra functions, such as showing a Save to disk dialog. (The latter function has
more to do with the native look of your app, and we'll see more about it in the upcoming
Building a more windowy experience section.) When we run our updated app and select a
country, we'll see our newly added button, as in the following screenshot:

We now have a Save regions to disk button after the regions list

Creating a Desktop Application with Electron Chapter 13

[584]

Clicking on the button will pop up a dialog, allowing you to select the destination for the
data:

Clicking on the button brings up a Save screen, to specify to which file to save the results

If you click Save, the list of regions will be written in JSON format, as we specified earlier
in our writeRegionsToDisk() function:

[{"countryCode":"CA","regionCode":"1","regionName":"Alberta"},
{"countryCode":"CA","regionCode":"10","regionName":"Quebec"},
{"countryCode":"CA","regionCode":"11","regionName":"Saskatchewan"},
{"countryCode":"CA","regionCode":"12","regionName":"Yukon"},
{"countryCode":"CA","regionCode":"13","regionName":"Northwest
Territories"},
{"countryCode":"CA","regionCode":"14","regionName":"Nunavut"},

Creating a Desktop Application with Electron Chapter 13

[585]

{"countryCode":"CA","regionCode":"2","regionName":"British Columbia"},
{"countryCode":"CA","regionCode":"3","regionName":"Manitoba"},
{"countryCode":"CA","regionCode":"4","regionName":"New Brunswick"},
{"countryCode":"CA","regionCode":"5","regionName":"Newfoundland and
Labrador"},
{"countryCode":"CA","regionCode":"7","regionName":"Nova Scotia"},
{"countryCode":"CA","regionCode":"8","regionName":"Ontario"},
{"countryCode":"CA","regionCode":"9","regionName":"Prince Edward Island"}]

A final detail to note is that your app won't be able to run in a browser now, and you'll
have to get used to seeing something as in the following screenshot, even though your code
will run fine with Electron:

If you use Node's or Electron's functions, your code will no longer run in the browser, though it will perform perfectly well with Electron

That's it! Without much hassle, we were able to go beyond the limits of normal browser
apps. You can see that there's practically no limit to what you can do in an Electron app.

Creating a Desktop Application with Electron Chapter 13

[586]

Building a more windowy experience
In the previous recipe, we added the possibility of using any and all of the functions
provided by Node. In this recipe, let's now focus on making our app more window-like,
with icons, menus, and so on. We want the user to really believe that they're using a native
app, with all the features that they would be accustomed to. The following list of interesting
subjects from https:/ ​/​electronjs. ​org/ ​docs/ ​api is just a short list of highlights, but there
are many more available options:

clipboard To do copy and paste operations using the system's clipboard

dialog To show native system dialogs for messages, alerts, opening
and saving files, and so on

globalShortcut To detect keyboard shortcuts
Menu, MenuItem To create a menu bar with menus and submenus
Notification To add desktop notifications
powerMonitor,

powerSaveBlocker
To monitor power state changes, and to disable entering sleep
mode

screen To get information about the screen, displays, and so on
Tray To add icons and context menus to the system's tray

Let's add a few of these functions so that we can get a better-looking app that is more
integrated to the desktop.

How to do it...
Any decent app should probably have at least an icon and a menu, possibly with some
keyboard shortcuts, so let's add those features now, and just for the sake of it, let's also add
some notifications for when regions are written to disk. Together with the Save dialog we
already used, this means that our app will include several native windowing features. Let's
implement the following steps and understand how to add these extras.

To start with, let's add an icon. Showing an icon is the simplest thing, because
it just requires an extra option when creating the BrowserWindow() object. I'm not very
graphics-visual-designer oriented, so I just downloaded the Alphabet, letter, r Icon Free file
from the Icon-Icons website, at https:/ ​/​icon- ​icons. ​com/ ​icon/ ​alphabet- ​letter- ​r/​62595.
Implement the icon as follows:

mainWindow = new BrowserWindow({
 height: 768,
 width: 1024,
 icon: "./src/regionsApp/r_icon.png"

https://electronjs.org/docs/api
https://electronjs.org/docs/api
https://electronjs.org/docs/api
https://electronjs.org/docs/api
https://electronjs.org/docs/api
https://electronjs.org/docs/api
https://electronjs.org/docs/api
https://electronjs.org/docs/api
https://electronjs.org/docs/api
https://electronjs.org/docs/api
https://electronjs.org/docs/api
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595
https://icon-icons.com/icon/alphabet-letter-r/62595

Creating a Desktop Application with Electron Chapter 13

[587]

});

You can also choose icons for the system tray, although there's no way of using our regions
app in that context, but you may want to look into it nonetheless.

There's another way of adding an icon to your app when you do the build,
by adding an extra configuration item to the "build" entry in
package.json.

To continue, the second feature we'll add is a menu, with some global shortcuts to boot. In
our App.regions.js file, we'll need to add a few lines to access the Menu module, and to
define our menu itself:

// Source file: src/App.regions.js

.

.

.

import { getRegions } from "./regionsApp/world.actions";

.

.

.

const electron = window.require("electron").remote;
const { Menu } = electron;

const template = [
 {
 label: "Countries",
 submenu: [
 {
 label: "Uruguay",
 accelerator: "Alt+CommandOrControl+U",
 click: () => store.dispatch(getRegions("UY"))
 },
 {
 label: "Hungary",
 accelerator: "Alt+CommandOrControl+H",
 click: () => store.dispatch(getRegions("HU"))
 }
]
 },
 {
 label: "Bye!",

Creating a Desktop Application with Electron Chapter 13

[588]

 role: "quit"
 }
];

const mainMenu = Menu.buildFromTemplate(template);
Menu.setApplicationMenu(mainMenu);

Using a template is a simple way to create a menu, but you can also do it manually, adding
item by item. I decided to have a Countries menu with two options to show the regions for
Uruguay (where I was born) and Hungary (from where my father's father came). The
click property dispatches the appropriate action. I also used the accelerator property
to define global shortcuts. See https:/ ​/ ​github. ​com/ ​electron/ ​electron/ ​blob/ ​master/
docs/​api/​accelerator. ​md for the list of possible key combinations to use, including the
following:

Command keys, such as Command (or Cmd), Control (or Ctrl), or both
(CommandOrControl or CmdOrCtrl)
Alternate keys, such as Alt, AltGr, or Option
Common keys, such as Shift, Escape (or Esc), Tab, Backspace, Insert, or
Delete

Function keys, such as F1 to F24
Cursor keys, including Up, Down, Left, Right, Home, End, PageUp, and PageDown
Media keys, such as MediaPlayPause, MediaStop, MediaNextTrack,
MediaPreviousTrack, VolumeUp, VolumeDown, and VolumeMute

I also want to be able to quit the application (never mind that the window created by
Electron already has an × icon to close it!)—that's a predefined role for which you don't
need to do anything special. A complete list of roles is available at https:/ ​/​electronjs.
org/​docs/​api/​menu- ​item#roles. With these roles, you can do a huge amount, including
some specific macOS functions, along with the following:

Work with the clipboard (cut, copy, paste, and pasteAndMatchStyle)
Handle the window (minimize, close, quit, reload, and forceReload)
Zoom (zoomIn, zoomOut, and resetZoom)

To finish, and really just for the sake of it, let's add a notification trigger for when a file is
written. Electron has a Notification module, but I opted to use node-notifier
from https:/​/​github. ​com/ ​mikaelbr/ ​node-​notifier, which is quite simple to use. First,
we'll add the package in the usual fashion:

npm install node-notifier --save

https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://github.com/electron/electron/blob/master/docs/api/accelerator.md
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://github.com/mikaelbr/node-notifier
https://github.com/mikaelbr/node-notifier
https://github.com/mikaelbr/node-notifier
https://github.com/mikaelbr/node-notifier
https://github.com/mikaelbr/node-notifier
https://github.com/mikaelbr/node-notifier
https://github.com/mikaelbr/node-notifier
https://github.com/mikaelbr/node-notifier
https://github.com/mikaelbr/node-notifier
https://github.com/mikaelbr/node-notifier
https://github.com/mikaelbr/node-notifier
https://github.com/mikaelbr/node-notifier
https://github.com/mikaelbr/node-notifier

Creating a Desktop Application with Electron Chapter 13

[589]

In serviceApi.js, we'll have to export the new function, so we'll able to import from
elsewhere, as we'll see shortly:

const electron = window.require("electron").remote;

.

.

.

export const notifier = electron.require("node-notifier");

Finally, let's use this in our world.actions.js file:

import {
 notifier,
 .
 .
 .
} from "./serviceApi";

With all our setup, actually sending a notification is quite simple, requiring very little code:

// Source file: src/regionsApp/world.actions.js

.

.

.

export const saveRegionsToDisk = () => async (
 dispatch: ({}) => any,
 getState: () => { regions: [] }
) => {
 showSaveDialog((filename: string = "") => {
 if (filename) {
 writeFile(filename, JSON.stringify(getState().regions), e => {
 if (e) {
 window.console.log(`ERROR SAVING ${filename}`, e);
 } else {
 notifier.notify({
 title: "Regions app",
 message: `Regions saved to ${filename}`
 });
 }
 });
 }
 });
};

Creating a Desktop Application with Electron Chapter 13

[590]

We are set! Let's see what our more windowy app looks like now.

How it works...
First, we can easily check that the icon appears. See the following screenshot, and compare
it with the very first screenshot in this chapter:

Our app now has its own icon, possibly not too exclusive or original, but better than nothing

Now, let's look at the menu. It has our options, including the shortcuts:

Our app now also has a menu, as any self-respecting app should

Creating a Desktop Application with Electron Chapter 13

[591]

Then, if we select an option (let's say Uruguay) with either the mouse or the global shortcut,
the screen correctly loads the expected regions:

The menu entries work as expected; we can use the Uruguay option to see my country's 19 departments

Finally, let's see if the notifications work as expected. If we click on the Save regions to disk
button and select a file, we'll see a notification, as in the following screenshot:

Saving a file now shows a notification; in this case, for Linux with KDE

Creating a Desktop Application with Electron Chapter 13

[592]

We've now seen how to expand our browser page to include Node features and windowing
native functions. Now, let's go back to more basic requirements, and learn how to test and
debug our code.

Testing and debugging your app
Now, we get to a common requirement: testing and debugging your app. The first thing I'll
have to tell you is that there's no news in regards to testing! All the techniques we saw for
testing browser and Node code still apply, since your Electron app is essentially just a
browser app (albeit possibly with some extra functions) that you'll mock in the same way
you did earlier, so there's nothing new to be learned here.

However, with regard to debugging, there will be some new requirements, since your code
is not running in a browser. In a similar way as with React Native, we'll have to use
some tools in order to be able to look into our code as it runs. Let's see, in this recipe, how
to go about all of this.

How to do it...
We want to install and configure all the necessary tools for debugging. Let's do that in this
section. The key tool for debugging will be electron-devtools-installer, which you
can get from https:/ ​/​github. ​com/ ​MarshallOfSound/ ​electron- ​devtools- ​installer. We'll
install it, as well as the Redux Devtools extension we used before, with a simple
command:

npm install electron-devtools-installer redux-devtools-extension --save-dev

To use the Redux Devtools, we'll have to start by fixing the store, as we did earlier;
nothing new here:

// Source file: src/regionsApp/store.with.redux.devtools.js

/* @flow */

import { createStore, applyMiddleware } from "redux";
import { composeWithDevTools } from "redux-devtools-extension";
import thunk from "redux-thunk";

import { reducer } from "./world.reducer";

export const store = createStore(
 reducer,

https://github.com/MarshallOfSound/electron-devtools-installer
https://github.com/MarshallOfSound/electron-devtools-installer
https://github.com/MarshallOfSound/electron-devtools-installer
https://github.com/MarshallOfSound/electron-devtools-installer
https://github.com/MarshallOfSound/electron-devtools-installer
https://github.com/MarshallOfSound/electron-devtools-installer
https://github.com/MarshallOfSound/electron-devtools-installer
https://github.com/MarshallOfSound/electron-devtools-installer
https://github.com/MarshallOfSound/electron-devtools-installer
https://github.com/MarshallOfSound/electron-devtools-installer
https://github.com/MarshallOfSound/electron-devtools-installer
https://github.com/MarshallOfSound/electron-devtools-installer
https://github.com/MarshallOfSound/electron-devtools-installer
https://github.com/MarshallOfSound/electron-devtools-installer
https://github.com/MarshallOfSound/electron-devtools-installer

Creating a Desktop Application with Electron Chapter 13

[593]

 composeWithDevTools(applyMiddleware(thunk))
);

For the tools themselves, we'll also have to tweak our starter code a bit:

// Source file: electron-start.with.debugging.js

/* @flow */

const { app, BrowserWindow } = require("electron");
const {
 default: installExtension,
 REACT_DEVELOPER_TOOLS,
 REDUX_DEVTOOLS
} = require("electron-devtools-installer");

let mainWindow;

const createWindow = () => {
 mainWindow = new BrowserWindow({
 height: 768,
 width: 1024
 });
 mainWindow.loadURL("http://localhost:3000");

 mainWindow.webContents.openDevTools();

 installExtension(REACT_DEVELOPER_TOOLS)
 .then(name => console.log(`Added Extension: ${name}`))
 .catch(err => console.log("An error occurred: ", err));

 installExtension(REDUX_DEVTOOLS)
 .then(name => console.log(`Added Extension: ${name}`))
 .catch(err => console.log("An error occurred: ", err));

 mainWindow.on("closed", () => {
 mainWindow = null;
 });
};

app.on("ready", createWindow);

app.on("activate", () => mainWindow === null && createWindow());

app.on(
 "window-all-closed",
 () => process.platform !== "darwin" && app.quit()
);

Creating a Desktop Application with Electron Chapter 13

[594]

The good thing is that you can add all the tools from code, with no special installation or
any other procedure. After these simple changes, you are done; now, let's see it work!

How it works...
If you start the modified code, you'll see that the Electron window now includes the
classic Chrome tools, including React and Redux. See the following screenshot:

The electron-devtools-installer package lets you add all the tools you need, with a simple procedure

Creating a Desktop Application with Electron Chapter 13

[595]

Apart from the console, you can use the React Devtools to inspect components:

The React Devtools can be used to inspect components and their props

Creating a Desktop Application with Electron Chapter 13

[596]

Similarly, the Redux DevTools let you inspect actions and the store. See the following
screenshot:

You also installed the Redux developer tools, which let you inspect everything Redux-related

As you can see, we've got all the tools we were accustomed to, with one exception—what
about network calls? Let's see to that now.

Creating a Desktop Application with Electron Chapter 13

[597]

There's more...
You may have noticed that the Network tab doesn't show the API calls done from the app.
With RN, we solved that because the tools we used included the ability to inspect all
network traffic, but that doesn't happen here. So, instead of an easy, automated solution,
we'll have to do a bit of extra work. If you do all of your API calls with axios, you can
simply modify its original methods to produce logging:

// Source file: src/regionsApp/serviceApi.js

.

.

.

axios.originalGet = axios.get;
axios.get = (uri, options, ...args) =>
 axios.originalGet(uri, options, ...args).then(response => {
 console.log(`GET ${uri}`, {
 request: { uri, options, ...args },
 response
 });
 return response;
 });

The change shown will cause every successful GET to log everything you need, as in the
following screenshot:

Our changed axios.get() method produces a satisfying log

Creating a Desktop Application with Electron Chapter 13

[598]

Of course, this is just the tip of the required changes. You'll have to add code for a failed
call (so, add some logging in .catch(), too) and you'll also want to do this sort of change
for the other methods (.post(), .delete(), and so on), but the necessary code is simple,
so I'll leave it as an exercise for the reader!

Making a distributable package
Now that we have a full app, all that's left to do is package it up so that you can deliver it as
an executable file for Windows, Linux, or macOS users. Let's finish the chapter by looking
at how to do that in this recipe.

How to do it...
There are many ways of packaging an app, but we'll use a tool, electron-builder, that
will make it even easier, if you can get its configuration right!

You can read more about electron-builder, its capabilities, and its
configuration at https:/ ​/​www. ​electron. ​build/ ​.

Let's take a look at the necessary steps. First of all, we'll have to begin by defining the build
configuration, and our initial step will be, as always, to install the tool:

npm install electron-builder --save-dev

To access the added tool, we'll require a new script, which we'll add in package.json:

"scripts": {
 "dist": "electron-builder",
 .
 .
 .
}

https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/

Creating a Desktop Application with Electron Chapter 13

[599]

We'll also have to add a few more details to package.json, which are needed for the build
process and the produced app. In particular, the homepage change is required, because the
CRA-created index.html file uses absolute paths that won't work later with Electron:

"name": "chapter13",
"version": "0.1.0",
"description": "Regions app for chapter 13",
"homepage": "./",
"license": "free",
"author": "Federico Kereki",

Finally, some specific building configuration will be required. You cannot build for macOS
with a Linux or Windows machine, so I'll leave that configuration out. We have to specify
where the files will be found, what compression method to use, and so on:

"build": {
 "appId": "com.electron.chapter13",
 "compression": "normal",
 "asar": true,
 "extends": null,
 "files": [
 "electron-start.js",
 "build/**/*",
 "node_modules/**/*",
 "src/regionsApp/r_icon.png"
],
 "linux": {
 "target": "zip"
 },
 "win": {
 "target": "portable"
 }
}

Read more about building for different platforms at https:/ ​/​www.
electron. ​build/ ​multi- ​platform- ​build. For more on all of the
configuration options, see https:/ ​/​www. ​electron. ​build/ ​configuration/
configuration#configuration.

https://www.electron.build/multi-platform-build
https://www.electron.build/multi-platform-build
https://www.electron.build/multi-platform-build
https://www.electron.build/multi-platform-build
https://www.electron.build/multi-platform-build
https://www.electron.build/multi-platform-build
https://www.electron.build/multi-platform-build
https://www.electron.build/multi-platform-build
https://www.electron.build/multi-platform-build
https://www.electron.build/multi-platform-build
https://www.electron.build/multi-platform-build
https://www.electron.build/multi-platform-build
https://www.electron.build/multi-platform-build
https://www.electron.build/multi-platform-build
https://www.electron.build/configuration/configuration#configuration
https://www.electron.build/configuration/configuration#configuration
https://www.electron.build/configuration/configuration#configuration
https://www.electron.build/configuration/configuration#configuration
https://www.electron.build/configuration/configuration#configuration
https://www.electron.build/configuration/configuration#configuration
https://www.electron.build/configuration/configuration#configuration
https://www.electron.build/configuration/configuration#configuration
https://www.electron.build/configuration/configuration#configuration
https://www.electron.build/configuration/configuration#configuration
https://www.electron.build/configuration/configuration#configuration
https://www.electron.build/configuration/configuration#configuration

Creating a Desktop Application with Electron Chapter 13

[600]

We have completed the required configuration, but there are also some changes to do in the
code itself, and we'll have to adapt the code for building the package. When the packaged
app runs, there won't be any webpack server running; the code will be taken from the built
React package. Also, you won't want to include debugging tools. So, the starter code will
require the following changes:

// Source file: electron-start.for.builder.js

/* @flow */

const { app, BrowserWindow } = require("electron");
const path = require("path");
const url = require("url");

let mainWindow;

const createWindow = () => {
 mainWindow = new BrowserWindow({
 height: 768,
 width: 1024,
 icon: path.join(__dirname, "./build/r_icon.png")
 });
 mainWindow.loadURL(
 url.format({
 pathname: path.join(__dirname, "./build/index.html"),
 protocol: "file",
 slashes: true
 })
);
 mainWindow.on("closed", () => {
 mainWindow = null;
 });
};

app.on("ready", createWindow);

app.on("activate", () => mainWindow === null && createWindow());

app.on(
 "window-all-closed",
 () => process.platform !== "darwin" && app.quit()
);

Creating a Desktop Application with Electron Chapter 13

[601]

Mainly, we are taking icons and code from the build/ directory. An npm run build
command will take care of generating that directory, so we can proceed with creating our
executable app.

How it works...
After doing this setup, building the app is essentially trivial. Just do the following, and all
the distributable files will be found in the dist/ directory:

npm run electron-builder

You may want to add a new line to the .gitignore file so that the
distribution directory won't be committed. I included a **/dist line to
mine, paralleling the previous **/node_modules and **/dist existing
lines.

Now that we have the Linux app, we can run it by unzipping the .zip file and clicking on
the chapter13 executable. (The name came from the "name" attribute in package.json,
which we modified earlier.) The result should be like what's shown in the following
screenshot:

The Linux executable runs as a native app, showing the same screen as we saw earlier

I also wanted to try out the Windows EXE file. Since I didn't have a Windows machine, I
made do by downloading a free VirtualBox virtual machine from https:/ ​/​developer.
microsoft.​com/​en- ​us/ ​microsoft- ​edge/ ​tools/ ​vms/ ​—they only work for 90 days, but I
needed it for just a few minutes.

https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

Creating a Desktop Application with Electron Chapter 13

[602]

After downloading the virtual machine, setting it up in VirtualBox, and finally running it,
the result that was produced was the same as for Linux, as shown in the following
screenshot:

Our native Windows app runs equally in a Windows machine

So, we've managed to develop a React app, enhanced it with the Node and Electron
features, and finally packaged it for different operating systems. With that, we are done!

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Building Enterprise JavaScript Applications
Daniel Li

ISBN: 9781788477321

Practice Test-Driven Development (TDD) throughout the entire book
Use Cucumber, Mocha and Selenium to write E2E, integration, unit and UI tests
Build stateless APIs using Express and Elasticsearch
Document your API using OpenAPI and Swagger
Build and bundle front-end applications using React, Redux and Webpack
Containerize services using Docker
Deploying scalable microservices using Kubernetes

https://www.packtpub.com/web-development/building-enterprise-javascript-applications

Other Books You May Enjoy

[604]

Learn Blockchain Programming with JavaScript
Eric Traub

ISBN: 9781789618822

Gain an in-depth understanding of blockchain and the environment setup
Create your very own decentralized blockchain network from scratch
Build and test the various endpoints necessary to create a decentralized network
Learn about proof-of-work and the hashing algorithm used to secure data
Mine new blocks, create new transactions, and store the transactions in blocks
Explore the consensus algorithm and use it to synchronize the blockchain
network

https://www.packtpub.com/web-development/learn-blockchain-programming-javascript

Other Books You May Enjoy

[605]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
accelerator property
 reference 588
accessibility (a11y)
 runtime problems, solving 356
 setting up for 350, 351, 353, 357
 static problems, solving 353, 355
actions
 testing 456, 458, 461
add-ons
 reference 308
Ajax calls
 making, with promises 98
app
 debugging 592, 594, 597
 testing 592, 594, 596, 597
 window-like feature, adding 586, 587, 588, 590,

592

arguments object
 reference 82
ARIA rule
 reference 357
arrow functions
 default argument values, defining 88
 reference 85
 this value, handling 86
 types, defining 88
 writing 84
async actions
 country drop-down list, modifying 376
 defining 372
 main application, setting up 379
 performing, with redux-thunk 371, 380, 382,

384

 reducer, writing 374
 region table, modifying 378

async calls
 making 96, 97
Awesome React Native list
 reference 488

B
babel-eslint package
 reference 46
basic App component
 creating 282
blocks
 reference 80
Bootstrap
 reference 328
Bunyan
 reference 217

C
Certificate Authority (CA) 176
Certificate Signing Request (CSR) 176
Certificate Transparency (CT) 180
Chai
 reference 256
cheerio
 reference 443
Chrome Web Store
 reference 412
code enhancement
 about 77
 arrays and objects, destructuring 82
 power calculations 84
 values, joining 81
 values, spreading 81
 variables, scoping 78
 working, in strict mode 77, 78
code
 debugging 242, 244, 247

[607]

 splitting, for performance 398, 402, 405
 unit testing 227
command line
 services, testing 248, 249, 253
complex call sequences
 testing, with Postman 253
components
 composing 297, 298, 300
 defining 279, 280
 laying out 511, 514, 517, 520
 previewing, Storybook used 548, 549, 553, 556,

558

 styling 511, 514, 517, 520
 testing, with events 446, 448, 449
 testing, without events 444
 working 291, 292
CountryFilterBar component
 creating 285
Cross Origin Resource Sharing (CORS)
 implementing 181, 183
Cross-side scripting (XSS) 179
curl
 reference 248

D
data types
 adding 58, 59
 aliases 65
 class types 63, 65
 generic types 66, 67
 in Flow 60, 62
 libraries, working with 70, 71
 other types 68, 70
 union types 62
database
 connection, obtaining 145
 queries, executing 146
 updating 147
 working example 149, 150
 working with 144
debug
 reference 217, 407
DeepScan tool
 reference 49
density independent pixels (DP) 512

development tools
 adding 484, 487, 488
 ESLint, adding 484
 Flow, adding 485
 Prettier, adding 486
Dimensions API
 reference 502
disjoint unions
 reference 62
distributable package
 creating 598, 601, 602
Don't Repeat Yourself (DRY) 66
dotenv
 reference 227

E
electron-builder
 reference 598
Electron
 reference 577
 setting up, with React 575, 576, 578, 579
end-to-end (E2E) testing 227
Enzyme
 reference 443
 used, for testing components 442
error first callbacks
 replacing, with promises 134, 135, 137
eslint-plugin-react-native
 reference 484
ESLint
 adding 484
 reference 46
 reinstalling 277, 278
 rules, reference 50
 used, for adding code quality checks 44, 45, 48
European Computer Manufacturers Association

(ECMA)
 reference 57
exact object types
 reference 62
exec()
 used, for executing external processes 151,

152, 153
ExpandableCard component
 creating 290

[608]

Expo application
 reference 477
Express routing
 reference 174
express.json([options])
 reference 204
Express
 methods, reference 159
 reference 158
 used, for developing server 158, 160
external processes
 executing, with exec() 151, 152

F
Fira Code font
 adding 18, 20, 21
 reference 19
Flexbox
 reference 515
Flow
 adding 485
 adding, for data types checks 50, 52
 linting configuration 52
 reinstalling 276
 using, directly with Node 125
 using, with Node through preprocessing 128,

129, 130
 using, within VSC 54
fork()
 used, for Node commands execution 155, 156
fs stream
 reference 143
functional programming techniques
 about 90
 arrays, filtering 93
 arrays, mapping 92
 arrays, reducing to values 90, 91
 functions, producing from functions 93
 transformations 95
functional tests
 performing 229, 230
functions
 arrow functions, writing 84
 defining 84
 values, returning 85

G
generic types
 reference 67
Git Supercharged 31
Git
 used, for performing version control 29, 30, 34
global application
 creating, with internationalization and localization

340, 342, 346, 350
globalization 340
GraphQL
 reference 206, 208
grid tiers
 reference 338

H
Helmet
 used, for adding security safeguards 178
Higher Order Functions (HOFs) 93
HTTP logging
 adding, with Morgan 217, 220

I
i18next
 reference 343
Icon-Icons website
 reference 586
immutable-js
 reference 375
import()
 reference 398
Integrated Development Environment (IDE) 9
internationalization
 versus localization, reference 340
iosres
 reference 502

J
Jest
 reference 228, 443, 534
 used, for testing components 442
 used, for writing unit tests 533, 538
JSDoc
 reference 40

[609]

 used, for documenting code 40, 44
JSON Web Token (JWT)
 about 390
 reference 185
 used, for adding authentication 185, 187, 190

L
labels
 reference 86
let/const
 reference 80
library definitions (libdefs)
 reference 70
life cycle events
 handling 301, 302
linters 45
logging
 adding, with Winston 210, 213, 217
 using 406, 408, 409, 411
Long Term Support (LTS) 23

M
mappings
 testing 450, 453, 455
MariaDB
 reference 144
middleware
 adding 160, 162, 164
mobile apps development
 approaches 475
mocks
 working with 233, 234, 236, 238
modules
 working with 122, 123, 124, 125
Morgan
 used, for adding HTTP logging 217, 220, 222
Mozilla Developer Network (MDN) 57
multi platform build
 reference 600
multiline strings
 writing 74
MySQL WorkBench
 reference 144

N
native components
 using 488, 490, 494, 497, 500
navigation prop
 reference 527
navigation
 reference 524
navigator
 using 524, 527, 530, 531
network handling
 reference 491
no-console rule
 reference 47
no-plusplus rule
 reference 47
Node functionality
 adding, to app 579, 581, 583, 585
node-notifier
 reference 588
Node
 code execution, with Nodemon 130, 131, 133
 command execution, with fork() 155, 156
 Flow, using through preprocessing 128, 129,

130

 Flow, using with 125
 setup, checking 120, 121
nodemon
 used, for Node code execution 130, 131, 133
npm package runner
 reference 274
npm
 adding, for package management 21, 23, 29
 comparison with yarn, reference 29
 installation, ways 27
 packages, installing 27
 reference 21
 used, for creating project 24, 26
npx
 reference 274
nvm
 reference 23

O
Object-Relational Mapping (ORM) library 150

[610]

OpenSUSE
 reference 10

P
PATCH
 reference 204
Pino
 reference 217
pixels per inch (ppi) 512
platform-specific code
 adding 521, 522, 524
 reference 490, 524
platform-specific options
 reference 524
Postman
 basic requests, performing 254
 checks, adding 256, 257
 reference 253
 requests, chaining 258, 260
 used, for testing complex calls sequences 253
Prettier Code
 used, for formatting source code 34, 38, 40
Prettier
 adding 486
 reinstalling 276
process.env
 reference 225
Progressive Web Apps (PWA)
 about 575
 reference 575
promises
 using, instead of error first callbacks 134, 135,

137

Property Matchers
 reference 463
props
 reference 527
 this.props.history 390
 this.props.location 390
 this.props.match 390
PropTypes
 reference 287

R
React application
 creating 281
React Developer Tools (RDT)
 used, for debugging 412, 414, 415
 used, for debugging Redux 428, 429, 431, 433,

434

React router
 using 524, 525, 527, 530, 531
react-app-rewired
 reference 278
react-boilerplate
 reference 272
react-devtools-core
 reference 418
react-i18next framework package
 reference 346
react-native-debugger
 reference 559
 used, for debugging RN app 559, 562, 565
react-native-fonts
 reference 522
react-responsive
 reference 336
react-router
 used, for routing addition 385, 388, 390
React
 initiating 270, 271, 272, 275
 used, for setting up Electron 575, 577, 579
Reactotron
 reference 566
 used, for debugging 566, 569, 572, 574
reducers
 testing 450, 453, 454
Redux integration
 reference 532
redux-devtools-extension
 reference 428
redux-logger
 counter application, logging 425
 counter application, setting up 423
 region application, logging 426, 427
 region application, setting up 424
 used, for logging Redux 421, 422, 424
redux-mock-store

[611]

 documentation, reference 456
redux-testkit
 reference 453
redux-thunk
 used, for performing async actions 371
Redux
 actions, defining 362
 components, building 365
 components, connecting to store 366
 debugging, with RDT 428, 429, 432, 434
 logging, with redux-logger 421, 422
 main page, defining 368
 reducer, writing 363
 reference 360, 370
 state, managing 369
 store, defining 364
 used, for managing state 359, 362
RegionsInformationTable component
 creating 283, 285
remote module
 reference 580
request parameters
 obtaining 165, 166
REST server
 building 190, 193
 DELETEs, handling 197, 199
 filtering 205
 GETs, handling 193, 196
 GraphQL, using 206
 JSON data, accepting 204
 microservice-based architecture, implementing

208

 pagination 205
 PATCH method, adding for partial updates 204
 POSTs, handling 201, 204
 PUTs, handling 199, 201
 Restify, using instead of Express 204
 sorting 205
Restify
 reference 204
ResultsDataTable component
 creating 288, 289
RN application
 adapting, to devices 500, 506, 508, 510, 511
 adapting, to orientation 501, 504, 507, 510

 debugging, with react-native-debugger 559, 562,
565

 setting up 475, 480, 481, 484
RN debugging
 reference 559
roles
 reference 588
routes
 actions, defining 392
 adding 171, 174
 authorization, adding 390
 login component, creating 391
 protection, by creating component 394, 396,

397

 reducer, defining 392
routing
 adding, with react-router 385, 388, 390
 connection, for debugging 434, 437, 440, 441

S
Same Origin Policy (SOP) 182
SASS
 addition, for separate styling 313, 314, 316,

318, 321
 reference 314
seamless-immutable
 reference 375
secure connections
 implementing 175
 securing 178
security measure
 modules 179
Sequelize
 reference 150
server
 configuring, for different environments 222, 225,

227

Single Origin Policy (SOP) 182
Single Page Applications (SPAs) 385
Snack
 reference 522
snapshot testing
 adding 538, 540, 542, 544
snapshots
 produced snapshot files 467

[612]

 regenerating 469
 used, for test execution 466
 used, for testing changes 462, 463, 466
spawn()
 used, for command execution 153
 used, for communicating with command 153,

154

spies
 using 231
standalone tool
 used, for debugging 416, 418, 420
state
 handling 294, 295, 296, 297
static files
 reference 168
 serving 166, 169, 171
Storybook
 used, for previewing components 548, 550, 553,

557, 558
 used, for simplifying component development

302, 303, 305, 306, 307, 309, 311
streams
 duplex 138
 readable 138
 transform 138
 used, for file compression 141, 142
 working, with for request processing 137, 139,

140

 writable 138
string.raw
 reference 75
strings
 iterating over 77
 padding 75
 repeating 75
 searching in 76
 trimming 76
 working with 72
StyledComponents
 creation, for inline styling 322, 323, 324, 326
Swagger
 enabling 264
 reference 262
 specs, writing 262
 used, for documenting REST API 261

 used, for testing REST API 261
 working 264, 267, 269

T
tagged templates 73, 74
template literals
 reference 72
template strings
 interpolating in 72
test coverage
 measuring 238, 242, 470, 473, 544, 547
Test-Driven Design (TDD) 228
theming
 reference 324
thunk word 371
thunks
 testing 456, 458, 461
tools, for RN app debugging
 Chrome Developer Tools 559
 React devtools 559
 Redux DevTools extension 559
tools
 reinstalling 276
tslint-eslint-rules
 reference 50
tuples
 reference 60

U
unit tests
 writing, with Jest 533, 538

V
virtual machines
 download link 601
Visual Studio Code (VSC)
 extending 14, 17
 features 10
 installing, for development 9, 10, 13
 reference 9
VSC Marketplace
 reference 17

W
Web Accessibility Initiative (WAI) 350
web application
 adapting, with enhanced usability 335, 338
 elements, hiding 333
 elements, reordering 332
 elements, resizing 330
 elements, showing 333
 screen size, setting 327, 328, 329
Web Content Accessibility Guidelines (WCAG)

350

Winston
 reference 210
 used, for adding logging 210, 212, 215

World Wide Web Consortium (W3C) 350
wrapper methods
 reference 536

Y
YAML Ain't Markup Language (YAML)
 about 262
 reference 262
yarn
 reference 29
yet another compiler compiler (yacc) 45

Z
zlib stream
 reference 143

	Cover
	Title Page
	Copyright and Credits
	Dedication
	www.PacktPub.com
	Contributors
	Table of Contents
	Preface
	Chapter 1: Working with JavaScript Development Tools
	Introduction
	Installing Visual Studio Code for development
	How to do it…
	How it works…

	Extending Visual Studio Code
	How to do it…

	Adding Fira Code font for better editing
	How to do it…
	How it works…

	Adding npm for package management
	How to do it…
	How it works…
	Creating a project with npm
	Installing packages for different purposes

	There's more…

	Doing version control with Git
	How to do it…
	There's more…

	Formatting your source code with Prettier
	How to do it…
	How it works…

	Documenting your code with JSDoc
	How to do it…
	How it works…

	Adding code quality checks with ESLint
	How to do it…
	How it works…
	There's more…

	Adding Flow for data types checks
	How to do it…
	How it works…
	Configuring Flow's linting
	Using Flow within VSC

	Chapter 2: Using Modern JavaScript Features
	Introduction
	Adding types
	Getting started
	How to do it...
	Basic types in Flow
	Union types
	Class types
	Type aliases
	Generic types
	Opaque types for safer coding
	Working with libraries

	Working with strings
	How to do it...
	Interpolating in template strings
	Tagged templates
	Writing multiline strings
	Repeating strings
	Padding strings
	Searching in strings
	Trimming strings
	Iterating over strings

	Enhancing your code
	How to do it...
	Working in strict mode
	Scoping variables
	Spreading and joining values
	Destructuring arrays and objects
	Doing powers

	Defining functions
	How to do it...
	Writing arrow functions
	Returning values
	Handling this in arrow functions
	Defining types for arrow functions
	Defining default argument values

	Programming functionally
	How to do it...
	Reducing arrays to values
	Mapping arrays
	Filtering arrays
	Producing functions from functions

	Doing async calls compactly
	Getting started
	How to do it...
	Doing Ajax calls with promises
	Doing Ajax calls with async/await

	Working with objects and classes
	How to do it...
	Defining classes
	Extending classes
	Implementing interfaces
	Static methods
	Using getters and setters

	Organizing code in modules
	How to do it...
	Doing modules the IIFE way
	Redoing our IIFE module in the modern way
	Adding initialization checks
	Using more import/export possibilities
	Using Flow types with modules

	Determining a feature's availability
	How to do it...

	Chapter 3: Developing with Node
	Introduction
	Checking Node's setup
	How to do it…
	How it works…

	Working with modules
	How to do it…
	How it works…

	Using Flow with Node, directly
	How to do it…
	How it works…

	Using Flow with Node through preprocessing
	How to do it…
	How it works...

	Running your Node code with Nodemon
	How to do it...
	How it works...

	Using promises instead of error first callbacks
	How to do it…
	How it works…
	There's more…

	Working with streams to process requests
	How to do it…
	How it works…

	Compressing files with streams
	How to do it…
	How it works…

	Working with a database
	Getting ready
	How to do it…
	Getting a connection
	Executing some queries
	Updating the database
	Getting everything together

	How it works…
	There's more...

	Executing external processes with exec()
	How to do it…
	How it works…
	There's more...

	Using spawn() to run a command, and communicating with it
	How to do it…
	How it works…

	Using fork() to run Node commands
	How to do it…
	How it works…

	Chapter 4: Implementing RESTful Services with Node
	Introduction
	Developing a server with Express
	How to do it...
	How it works...

	Adding middleware
	Getting ready
	How to do it...
	How it works...

	Getting request parameters
	How to do it...
	How it works...

	Serving static files
	How to do it...
	How it works...
	There's more...

	Adding routes
	How to do it...
	How it works...

	Implementing secure connections
	How to do it...
	How it works...

	Adding security safeguards with Helmet
	How to do it...
	How it works...

	Implementing CORS
	How to do it...
	How it works...

	Adding authentication with JWT
	How to do it...
	How it works...

	Tying it all together – building a REST server
	How to do it...
	How it works...
	Handling GETs
	Handling DELETEs
	Handling PUTs
	Handling POSTs

	There's more...
	Accepting JSON data
	Adding the PATCH method for partial updates
	Using Restify instead of Express
	Allowing filtering, sorting, and pagination
	Using GraphQL instead of REST
	Implementing a microservice-based architecture

	Chapter 5: Testing and Debugging Your Server
	Introduction
	Adding logging with Winston
	How to do it...
	How it works...
	There's more...

	Adding HTTP logging with Morgan
	How to do it...
	How it works...
	There's more...

	Configuring your server for different environments
	How to do it...
	How it works...
	There's more...

	Unit testing your code
	How to do it...
	Doing functional tests
	Using spies
	Working with mocks

	How it works...
	There's more....

	Measuring your test coverage
	How to do it...
	How it works...

	Debugging your code
	How to do it...
	How it works...

	Testing simple services from the command line
	Getting ready
	How to do it...

	Testing more complex sequences of calls with Postman
	Getting ready
	How to do it...
	Doing basic requests
	Adding some checks
	Chaining requests

	How it works...
	There's more...

	Documenting and testing your REST API with Swagger
	How to do it...
	Writing our specs
	Enabling Swagger

	How it works...

	Chapter 6: Developing with React
	Introduction
	Starting out with React
	How to do it...
	How it works...
	There's more...

	Reinstalling your tools
	How to do it...
	Reinstalling Flow and Prettier
	Reinstalling ESLint

	How it works...

	Defining components
	How to do it...
	Creating the application
	Creating the basic App component
	Creating the RegionsInformationTable component
	Creating the CountryFilterBar component
	Creating the ResultsDataTable component
	Creating the ExpandableCard component

	How it works...
	There's more...

	Handling state
	How to do it...
	How it works...
	There's more...

	Composing components
	How to do it...
	How it works...

	Handling life cycle events
	How to do it...
	How it works...

	Simplifying component development with Storybook
	How to do it...
	How it works...
	There's more...

	Chapter 7: Enhancing Your Application
	Introduction
	Adding SASS for separate styling
	How to do it…
	How it works…

	Creating StyledComponents for inline styling
	How to do it…
	How it works…

	Making your application responsive to screen sizes
	How to do it…
	How it works…
	Resizing elements
	Reordering elements
	Hiding or showing elements

	Making your application adaptive for enhanced usability
	How to do it…
	How it works…

	Making a global application with internationalization and localization
	How to do it…
	How it works…

	Setting up for accessibility (a11y)
	How to do it…
	How it works…
	Solving static problems
	Solving runtime problems

	There is more

	Chapter 8: Expanding Your Application
	Introduction
	Managing state with Redux
	Getting ready
	How to do it...
	Defining actions
	Writing a reducer
	Defining the store
	Building our components
	Connecting components to the store
	Defining the main page

	How it works...
	See also

	Doing async actions with redux-thunk
	How to do it…
	Defining the actions
	Writing the reducer
	Modifying the country drop-down list
	Modifying the region table
	Setting up the main application
	Using thunks

	How it works…
	There's more…

	Adding routing with react-router
	Getting started
	How to do it…
	How it works…
	There's more…

	Adding authorization to routes
	How to do it…
	Creating a login component
	Defining actions and the reducer
	Creating a component to protect a route

	How it works…
	There's more…

	Code splitting for performance
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 9: Debugging Your Application
	Introduction
	Logging with style
	Getting ready
	How to do it…
	How it works…

	Debugging with the React Developer Tools
	Getting Ready
	How to do it…
	How it works…

	Debugging with the standalone tool
	Getting ready
	How to do it…
	How it works…

	Logging Redux with redux-logger
	Getting ready
	How to do it…
	Setting up our counter application
	Setting up our region application

	How it works…
	Logging the counter application
	Logging the region application

	Debugging Redux with the Redux Developer Tools
	Getting ready
	How to do it…
	How it works…

	Connecting routing for debugging
	Getting ready
	How to do it…
	How it works…

	Chapter 10: Testing Your Application
	Introduction
	Testing components with Jest and Enzyme
	Getting ready
	How to do it...
	Testing a component without events
	Testing a component with events

	How it works...

	Testing reducers and mappings
	How to do it...
	How it works...

	Testing actions and thunks
	Getting ready
	How to do it...
	How it works...

	Testing changes with Snapshots
	How to do it...
	How it works...
	Running the tests
	The produced snapshot files
	Regenerating snapshots

	Measuring test coverage
	How to do it...
	How it works...

	Chapter 11: Creating Mobile Apps with React Native
	Introduction
	Setting things up
	How to do it...
	How it works...
	There's more...

	Adding development tools
	How to do it...
	Adding ESLint
	Adding Flow
	Adding Prettier

	How it works...

	Using native components
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adapting to devices and orientation
	How to do it...
	How it works...
	There's more...

	Styling and laying out your components
	How to do it...
	How it works...

	Adding platform-specific code
	How to do it...
	How it works...
	There's more...

	Routing and navigating
	How to do it...
	How it works...
	There's more...

	Chapter 12: Testing and Debugging Your Mobile App
	Introduction
	Writing unit tests with Jest
	Getting ready
	How to do it...
	How it works...

	Adding snapshot testing
	How to do it...
	How it works...

	Measuring test coverage
	How to do it...
	How it works...

	Using Storybook to preview components
	Getting ready
	How to do it...
	How it works...

	Debugging your app with react-native-debugger
	Getting started
	How to do it...
	How it works...

	Debugging in an alternate way with Reactotron
	Getting ready
	How to do it...
	How it works...

	Chapter 13: Creating a Desktop Application with Electron
	Introduction
	Setting up Electron with React
	How to do it...
	How it works...

	Adding Node functionality to your app
	How to do it...
	How it works...

	Building a more windowy experience
	How to do it...
	How it works...

	Testing and debugging your app
	How to do it...
	How it works...
	There's more...

	Making a distributable package
	How to do it...
	How it works...

	Other Books You May Enjoy
	Index

